
Technische Universität München
TUM School of Computation, Information and Technology

Towards Secure Coprocessors and Instruction Set
Extensions for Acceleration of Post-Quantum Cryptography

Tim Fritzmann

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Andreas Herkersdorf

Prüfer der Dissertation:
1. Prof. Dr.-Ing. Georg Sigl
2. Prof. Dr.-Ing. Daniel Müller-Gritschneder

Die Dissertation wurde am 16.03.2022 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology am
08.11.2022 angenommen.

Copyright c©2022 by Tim Fritzmann.
All rights reserved.

Abstract

The development of quantum computers has made significant advances in recent years.
Large-scale quantum computers can achieve extreme speedups for solving complex prob-
lems. However, such speedups lead to a severe problem for currently deployed Public-Key
Cryptography (PKC) because the mathematically complex problems it relies on might
become solvable using a quantum computer. PKC allows setting up a secure communica-
tion channel in an insecure network, such as the Internet. Therefore, it is an essential part
of our economy and daily life. It consists of digital signature, encryption, and decryption
algorithms to provide confidentiality and integrity in digital communication.
The scientist Shor developed quantum algorithms to solve the integer factorization and

discrete logarithm problems in polynomial time. Typically deployed PKC cryptosystems,
such as RSA and elliptic curve cryptography, rely on these two mathematical problems
and are considered broken when a powerful quantum computer exists. Therefore, inves-
tigating cryptographic algorithms resistant to quantum attacks is essential to prevent a
possible collapse of the global communication system. Post-quantum cryptography de-
notes the research area that includes such quantum-resistant cryptographic algorithms.
Numerous scientists have contributed to the development of various post-quantum

cryptography algorithms. To further encourage the public research effort and prepare
those algorithms for real-world applications, the National Institute of Standards and
Technology (NIST) started a post-quantum standardization process in 2017. In addi-
tion to the mathematical security of the algorithm, efficient applicability is one of the
most important criteria affecting the suitability for standardization. In particular, the
algorithms must also be deployable in constrained devices, which are getting increasingly
important due to the rapidly growing IoT market.
This work focuses on the efficient and secure implementation of post-quantum cryptog-

raphy on embedded devices. In this context, hardware accelerators for mathematically
complex and computationally intensive operations of post-quantum cryptography are in-
vestigated. While related works focused on standalone hardware implementations, this
thesis presents hardware/software codesign solutions to combine the benefits of flexible
software and efficient hardware solutions.
This work further analyzes processor coupling strategies for post-quantum hardware

accelerators. The results show that loosely coupled coprocessors can efficiently accelerate
modern lattice-based post-quantum cryptography. A tight coupling to the main processor
can lead to further advantages. It allows sharing system resources between accelerators
and the main processor, and it can avoid extensive bus communication. In order to
fully exploit the potential of a tightly coupled solution, this thesis explores methods for
reducing costly memory accesses and investigates tailored instruction set extensions to
control the accelerators.

i

Abstract

The security of a system depends not only on the mathematical robustness of the
chosen cryptographic algorithm but also on its implementation. This work proposes
countermeasures for post-quantum cryptography accelerators in order to protect against
implementation attacks, thus contributing to the development of fast and secure imple-
mentations.
In order to explore algorithmic improvements, this thesis investigates the influence of

strong error-correcting codes for lattice-based cryptography, which are used to improve
the security level, key/ciphertext sizes, and the intrinsic failure rate of the algorithm.
This thesis further analyzes the applicability of post-quantum cryptography for real-

world applications. This work demonstrates that post-quantum cryptography can be
efficiently implemented on a tiny non-commercial chip suitable for mass production.
Moreover, the suitability of post-quantum cryptography for the automotive industry is
analyzed. As a case study, it is shown that post-quantum cryptography can be deployed in
automotive microcontrollers. Finally, an accelerator design for hybrid key encapsulations
is proposed to foster a secure transition towards post-quantum cryptography.

Keywords— Post-quantum cryptography, lattice-based cryptography, embedded de-
vices, hardware accelerators, accelerator coupling strategies, implementation attacks

ii

Kurzfassung

Die Entwicklung von Quantencomputern hat in den letzten Jahren erhebliche Fortschritte
erzielt. Große Quantencomputer können eine extreme Beschleunigung bei der Lösung von
komplexen Aufgaben erreichen. Das führt allerdings zu einem erheblichen Problem für
die derzeit eingesetzte Public-Key-Infrastruktur, da diese auf mathematischen Proble-
men beruht, welche mit einem Quantencomputer gelöst werden könnten. Public-Key-
Kryptografie bildet die Grundlage für eine sichere Kommunikation über einen unsicheren
Übertragungskanal, wie dem Internet, und ist somit ein essenzieller Bestandteil für unsere
Wirtschaft und unser tägliches Leben. Die Public-Key-Kryptografie besteht aus digitalen
Signatur-, Verschlüsselungs- und Entschlüsselungsverfahren, um Vertraulichkeit und In-
tegrität in der digitalen Kommunikation zu erzielen.
Der Forscher Shor entwickelte Quantenalgorithmen, welche die Probleme der Integer-

Faktorisierung und des diskreten Logarithmus in polynomialer Laufzeit auf einem Quan-
tencomputer lösen können. Somit werden die üblicherweise eingesetzten Public-Key
Kryptosysteme, wie RSA und Elliptische-Kurven-Kryptografie, gebrochen sein, wenn ein
entsprechend leistungsstarker Quantencomputer entwickelt wurde. Um einen möglichen
Kollaps des globalen Kommunikationssystems zu vermeiden, werden neuartige kryp-
tografische Algorithmen entwickelt, bei denen davon auszugehen ist, dass sie resistent
gegen Quantenalgorithmen und klassische Kryptoanalyse sind. Der Forschungsbereich,
welcher sich mit diesen neuartigen Algorithmen beschäftigt, nennt sich Post-Quanten-
Kryptografie.
Durch umfassende Forschungsanstrengungen wurden bereits mehrere, auf sehr unter-

schiedlichen Problemen beruhende, Post-Quanten-Kryptografie Algorithmen entwickelt.
Das National Institute of Standards and Technology (NIST) startete im Jahr 2017 einen
Standardisierungsprozess, um die Forschungsbemühungen zu fördern und um die Al-
gorithmen praxistauglich zu machen. Neben der mathematischen Sicherheit dieser Ver-
fahren spielt die Effizienz und Anwendbarkeit eine besonders große Rolle bei der Entschei-
dung, welcher Kandidat standardisiert werden sollte. Insbesondere müssen die Algorith-
men auch für Geräte mit geringen Ressourcen geeignet sein, welche durch den rapide
wachsenden IoT Markt immer wichtiger werden.
Diese Arbeit konzentriert sich auf die effiziente und sichere Implementierung von Post-

Quanten-Kryptografie in eingebetteten Systemen. In diesem Zusammenhang werden ins-
besondere Hardwarebeschleuniger für die mathematisch komplexen und rechenintensiven
Operationen erforscht. Während sich vorherige Arbeiten auf reine Hardwarelösungen
konzentrieren, werden in dieser Arbeit Hardware/Software Codesign Lösungen präsen-
tiert, welche die Vorteile einer flexiblen Softwarelösung und einer besonders effizienten
Hardwarelösung verbinden.
Außerdem wird in dieser Arbeit analysiert, welchen Einfluss die Kopplungsart zwis-

iii

Kurzfassung

chen Post-Quanten-Beschleuniger und dem Hauptprozessor hat. Die Ergebnisse zeigen,
dass moderne gitterbasierte Post-Quanten-Kryptografie effizient mit einem lose gekoppel-
ten Koprozessor beschleunigt werden kann. Eine enge Prozessorkopplung kann sogar zu
noch besseren Ergebnissen führen, da Systemressourcen wiederverwendet und eine kom-
plexe Buskommunikation vermieden werden können. Des Weiteren werden Befehlssatzer-
weiterungen zur Kontrolle der eng gekoppelten Hardwarebeschleuniger und Methoden zur
Reduzierung der zeitintensiven Speicherzugriffe vorgestellt.
Die Sicherheit eines Systems hängt nicht nur von der mathematischen Robustheit des

gewählten kryptografischen Algorithmus ab, sondern auch von der Implementierung. Um
sich gegen Implementierungsattacken zu schützen, werden in dieser Arbeit Gegenmaß-
nahmen für Post-Quanten-Beschleuniger entwickelt. Somit wird ein wichtiger Beitrag zur
Entwicklung von schnellen und sicheren Implementierungen dieser Algorithmen geleistet.
Auf algorithmischer Ebene wird zudem die Anwendung von starken Fehlerkorrekturver-

fahren für gitterbasierte Kryptografie analysiert, um das Sicherheitslevel, Schlüssel- und
Geheimtextgrößen sowie die Fehlerwahrscheinlichkeit der Algorithmen zu optimieren.
Am Schluss dieser Arbeit wird die Eignung von Post-Quanten-Kryptografie für reale

Anwendungsfälle analysiert. Es wird gezeigt, dass Post-Quanten-Kryptografie effizient
auf einem winzigen, nicht-kommerziellen Chip implementiert werden kann, der für eine
Massenproduktion geeignet ist. Darüber hinaus wird die Eignung von Post-Quanten-
Kryptografie für die Automobilindustrie analysiert. Als Anwendungsfall wird gezeigt,
dass Post-Quanten-Kryptografie für beliebte Mikrocontroller der Automobilbranche ein-
setzbar ist. Abschließend wird ein Beschleunigerdesign für hybride Schlüsselkapselungs-
verfahren entwickelt, um einen sicheren Übergang von herkömmlicher Kryptografie zu
Post-Quanten-Kryptografie zu fördern.

Keywords— Post-Quanten-Kryptografie, gitterbasierte Kryptografie, eingebettete Ge-
räte, Hardwarebeschleuniger, Strategien Prozessorkopplung, Implementierungsattacken

iv

Acknowledgment

Many people supported me over the past few years. Without them, this major project—
the dissertation—would probably not have been possible.
First, I would like to thank my thesis advisor Prof. Georg Sigl, who believed in my

skills from the beginning and gave me the opportunity to pursue a doctorate. He has
always been available for all kinds of questions and supported me directly whenever there
were difficulties. I particularly had appreciated the helpful and solution-oriented advice,
the realistic expectations, and the uncomplicated handling when something did not work
as intended. There has always been a great working atmosphere at the chair, and I
enjoyed the regular social events.
I would also like to especially thank Dr. Johanna Sepúlveda. Without her, I would

probably never have discovered my interest in research and cryptography. She offered me
a great master’s thesis topic and greatly supported me in getting the research position
at the chair. She has always supported me and guided me in the right direction. Thanks
to her excellent connections and expertise, we have achieved many successes together. I
learned that more things are possible than I initially thought through her encouragement.
I would also like to thank my colleagues at the chair. In particular, I would like to

thank Christoph Frisch, Thomas Schamberger, Dr. Debapriya Basu Roy, and Patrick
Karl for the joint research, the discussions, but also for the funny moments. It has been
a pleasure working with you and with all other workmates not explicitly mentioned here.
My thanks also go to Georg Maringer from the Institute for Communications Engineering
for the research cooperation and the technical as well as private discussions. At this point,
I would also like to thank Michiel Van Beirendonck from KU Leuven for the exciting and
productive collaboration. Further, I would like to thank Dr. Thomas Pöppelmann. His
expertise in the field of post-quantum cryptography is impressive. It has been a pleasure
and an honor to work with him on joint research projects and articles.
I would also like to thank my students that I have supervised or co-supervised during

the last years: Daniel Witsch, Fahd Kaatich, Jonas Vith, Tobias Peter, David Bon-
gartz, Albert Brauer, Waleed Zaghloul, Paul Kohl, Abdelrahman Osman, Dinakar Raj
Kariyappa Chikkamallaiah, Felix Oberhansl, Julia Mader, and Daniel Milincic.
Above all, I am grateful to my wife Sarah for always supporting me during the good

but also the tough times. I would also like to thank my whole family and friends who
have always encouraged me.

v

Contents

Abstract i

Kurzfassung iii

Acknowledgment v

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Post-Quantum Cryptography Standardization 2
1.3 Problem Definitions . 3
1.4 Research Objectives, Contributions, and Thesis Outline 5

2 Preliminaries 9
2.1 Mathematical Background and Notation 9
2.2 Lattice-Based Cryptography . 11

2.2.1 NTRU . 11
2.2.2 Public-Key Encryption for NTRU-Based Schemes 11
2.2.3 Learning With Errors (LWE) . 14
2.2.4 Public-Key Encryption for LWE-Based Schemes 15

2.3 Polynomial Ring Arithmetic . 16
2.3.1 Schoolbook Multiplication . 16
2.3.2 Number Theoretic Transform (NTT) 18
2.3.3 Karatsuba / Toom–Cook . 20

2.4 Polynomial Sampling and Randomness Generation 23
2.5 Hardware Accelerators and Coupling Strategies 24

3 Loosely Coupled Coprocessors for PQC 29
3.1 Introduction Loosely Coupled PQC Coprocessors 29
3.2 Use Case: NTRU on FPGA-SoC Platform 32

3.2.1 Algorithmic Operations in NTRU 32
3.2.2 Ternary Polynomial Multiplication Accelerator 33

vii

CONTENTS

3.2.3 NTRU System Design for an FPGA-SoC 34
3.2.4 Experimental Results of NTRU System Design 35

3.3 Use Case: NewHope on RISC-V SoC Platform 37
3.3.1 Algorithmic Optimizations of NTT 37
3.3.2 NTT Hardware Accelerator . 42
3.3.3 NTT Power Optimizations . 45
3.3.4 NewHope System Design for RISC-V 47
3.3.5 Experimental Results of NewHope System Design 49

3.4 Summary . 51

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC 53
4.1 Introduction of Tightly Coupled Accelerators for PQC 54
4.2 Instruction Set Extensions for the PQC Scheme LAC 55

4.2.1 Extension of Ternary Polynomial Multiplication Accelerator 55
4.2.2 Error Correction Accelerator . 58
4.2.3 Core Integration of LAC Accelerators 60
4.2.4 Experimental Results of LAC System Design 62

4.3 Instruction Set Extensions for the PQC Schemes NewHope, Kyber, and
Saber . 63
4.3.1 Optimizing the NTT for a Tight Coupling 64
4.3.2 Tightly Coupled NTT Accelerator 67
4.3.3 Experimental Results of Tightly Coupled NTT Accelerator 70
4.3.4 Tightly Coupled Accelerator for Karatsuba/Toom–Cook Multipli-

cations . 70
4.3.5 Tightly Coupled Hash Accelerator 72
4.3.6 Tightly Coupled Binomial Sampling Accelerator 73
4.3.7 Experimental Results of Keccak and Polynomial Sampling 75
4.3.8 Core Integration of Modular Arithmetic and Sampling Accelerators 75
4.3.9 Experimental Performance Results 78
4.3.10 Experimental Resource Consumption Results 81

4.4 Instruction Set Extensions for the PQC Scheme SIKE 83
4.4.1 Bottlenecks of Isogeny-Based Cryptography 85
4.4.2 System Integration of SIKE Accelerators 85
4.4.3 Experimental Results of SIKE System Design 85

4.5 Summary . 87

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations 89
5.1 Introduction of Side-Channel Protection Mechanisms 90
5.2 Preliminaries Masking . 91
5.3 Masking PKE/KEM . 93
5.4 Accelerators for Linear Operations . 95

5.4.1 Increasing the Flexibility of NTT 95
5.4.2 Flexible NTT Accelerator . 99
5.4.3 Results of the Flexible NTT Accelerator 102

viii

CONTENTS

5.5 Accelerators for Non-Linear Operations . 102
5.5.1 Masking Keccak . 102
5.5.2 Masking Binomial Sampling . 105
5.5.3 Secure Adder . 108
5.5.4 Results of Non-Linear Accelerators 108

5.6 System Integration . 111
5.6.1 Accelerator Integration . 112
5.6.2 Architectural Leakage Reduction 112
5.6.3 Results of System Integration . 113

5.7 Experimental Results . 114
5.7.1 Performance of Unmasked Implementations 114
5.7.2 Performance of Masked Implementations 116
5.7.3 Side-Channel Leakage Evaluation 118

5.8 Summary and Open Problems . 119

6 Analysis of Error-Correcting Codes for Lattice-Based Cryptography 123
6.1 Introduction of Error-Correcting Codes for Lattice-Based Cryptography . 124
6.2 Decryption Errors of LWE Schemes . 125
6.3 Exploration of Error-Correcting Codes . 128
6.4 Analysis for the Post-Quantum Scheme NewHope 129

6.4.1 NewHope Compression Noise . 129
6.4.2 NewHope with BCH Code . 130
6.4.3 NewHope with LDPC Code . 130
6.4.4 NewHope with Concatenation of BCH and LDPC Code 132
6.4.5 Comparison Coding Options . 132

6.5 Discussion and Open Problems . 132
6.5.1 Stochastic Dependence of Decryption Errors and its Impact on the

Failure Rate Analysis . 133
6.5.2 Side-Channel Vulnerability and Implementation Aspects 136

6.6 Summary . 137

7 PQC Migration and Real-World Applicability 139
7.1 Introduction of PQC for Real-World Applications 139
7.2 Post-Quantum Chip Design . 141

7.2.1 ASIC Digital Design Flow . 141
7.2.2 The Post-Quantum Chip . 141

7.3 Application of PQC in the Automotive Industry 144
7.4 Hybrid Key Encapsulation . 146

7.4.1 Unified Post-Quantum and Elliptic Curve Accelerator 146
7.4.2 Experimental Results . 148

7.5 Summary . 150

8 Conclusion 151
8.1 Conclusion . 151

ix

CONTENTS

8.2 Future Work . 155

Acronyms 157

Own Publications 161

Bibliography 163

x

List of Figures

2.1 Coupling strategies. 25

3.1 Loosely coupled coprocessor. 31
3.2 Ternary multiplication accelerator. 33
3.3 NTRU hardware/software codesign for an FPGA-SoC. 35
3.4 NTT architecture (parts for post-processing in red). 44
3.5 Operand isolation at input registers and after first multiplier. 46
3.6 Operand isolation at multipliers for INVNTT. Set red input as default and

avoid unnecessary switching. 46
3.7 NewHope hardware/software codesign (RISC-V SoC architecture). 48
3.8 Loosely coupled NTT coprocessor. 49
3.9 Loosely coupled hash coprocessor. 50

4.1 Extended ternary multiplication accelerator. 56
4.2 Galois field multiplier. 59
4.3 Chien search multiplier. 60
4.4 LAC hardware/software codesign. 61
4.5 Optimized NTTCTbr←no example with n = 16, l = 8, and two parallel but-

terfly units. The red boxes indicate which coefficients are stored together
and in which order they are processed by the two butterfly units. The
blue arrows indicate the swapping. 66

4.6 NTT and Modular Arithmetic Unit. 67
4.7 Modular Arithmetic Unit – butterfly operation decimation-in-time. 68
4.8 Tightly coupled Keccak accelerator. 73
4.9 Binomial Sampling Unit. 74
4.10 RISC-V core integration of tightly coupled accelerators. 76
4.11 Power distribution optimized RISQ-V ASIC implementation (averaged for

NewHope-512). 84
4.12 SIKE accelerator coupling. 86

5.1 Loosely coupled generic NTT (dashed lines for configuration signals). . . . 99
5.2 Modular Arithmetic Unit. Black: DIT butterfly, red: DIF butterfly, gray:

pipeline stages and other functionalities. 101
5.3 Masked Chi accelerator. Dashed lines illustrate register stages and control

signals. 104
5.4 Bit-slicing accelerator. Dashed lines illustrate control signals. 106
5.5 Adder tree for binomial sampling (Binom Tree) with ηmax = 5. 109

xi

LIST OF FIGURES

5.6 Secure Kogge–Stone adder (SecAdd) for 4-bit additions. 110
5.7 RISC-V system with masked post-quantum accelerators. 111
5.8 Placement of cells for different ASIC design versions. 115
5.9 TVLA results for critical non-linear operations and corresponding accel-

erators (100 000 traces, confidence interval in red and trigger interval in
orange). 120

6.1 LDPC error correction with sum-product algorithm. 129
6.2 BCH error correction. 129
6.3 NewHope compression influence. 131
6.4 Improvement Options 1 and 2 (compression of v and u). 131
6.5 Improvement Option 3 (compression of v and u). 131
6.6 Improvement Option 4 (compression of v and u). 131
6.7 Decryption failure probability of LAC-256 depending on the error correc-

tion capability. 135

7.1 ASIC digital design flow. 142
7.2 Placement of cells and highlighted PQC accelerators (left) and final chip

(right). 143
7.3 Post-quantum chip. Open chip package (left) and chip in test setup (right).143
7.4 Generic MAC unit with integer multiplication support. 147

xii

List of Tables

1.1 Post-quantum candidates of NIST PQC competition. 4

2.1 Implementation types and coupling strategies. 25

3.1 NTRU parameter sets as defined in [L+01]. 36
3.2 Resource utilization of NTRU hardware/software codesign. 36
3.3 Cycle count in kilo cycles of NTRU hardware/software codesign and com-

parison to reference implementation. 37
3.4 NTT power results (ASIC 65 nm). 46
3.5 NTT area results (ASIC 65 nm). 47
3.6 RISC-V memory mapping of NewHope hardware/software codesign. . . . 48
3.7 Cycle count of NewHope-1024 hardware/software codesign. 50
3.8 Resource utilization of NewHope-1024 hardware/software codesign. 50

4.1 Example ternary multiplier positive wrapped convolution (conv_n = 0). . 56
4.2 Example ternary multiplier negative wrapped convolution (conv_n = 1). . 56
4.3 Cycle count of LAC with tightly coupled accelerators CCA versions. . . . 62
4.4 Resource utilization of LAC hardware/software codesign with tightly cou-

pled accelerators. 63
4.5 Register content and input for the two butterfly units BF0 and BF1 for

the example n = 16, l = 8. 66
4.6 Cycle count of the NTT operation. 71
4.7 Cycle count of SHAKE-256 (32-byte input/output length), GenA, and

Sample. Kyber and Saber have for all parameter sets the same polynomial
length. The results for the sampling are given for the generation of one
polynomial. 75

4.8 PQC ISA extension for lattice-based cryptography 77
4.9 Cycle count of NewHope, Kyber, and Saber with tightly coupled accelerators. 80
4.10 Code size in bytes of NewHope, Kyber, and Saber with tightly coupled

accelerators. 81
4.11 RISQ-V resource utilization for FPGA. 82
4.12 RISQ-V area of final ASIC layout (UMC 65nm). 83
4.13 RISQ-V power and energy results of the final ASIC design (UMC 65nm). 84
4.14 Cycle count of SIKEp434 with tightly coupled finite field accelerator (total

indicates cycles for Encaps+Decaps). 86
4.15 Resource utilization of SIKE hardware/software codesign with tightly cou-

pled accelerators. 86

xiii

LIST OF TABLES

5.1 Operations of LWE-based schemes in a masked setting. 94
5.2 NTT parameters of several lattice-based algorithms. 95
5.3 Resource and performance overview for loosely coupled NTT. 103
5.4 Resource and performance overview for the non-linear accelerators. 111
5.5 FPGA resource overview and estimated max. frequency for the system

with and without accelerators. 113
5.6 ASIC resource overview and estimated max. frequency (UMC 65nm). . . 113
5.7 Cycle count and code size in bytes of optimized non-masked Kyber and

Saber. 117
5.8 Cycle count and code size in bytes of optimized masked Kyber and Saber. 118

6.1 Summary of explored coding options. 130
6.2 Comparison error correction options. 133
6.3 Pearson correlation for LAC-128 and LAC-256 (Round 1/2), 1011 samples. 135
6.4 Pearson correlation for different parameter sets (n,q,η), 1011 samples. . . . 136
6.5 Cycle count of the BCH code with 6-bit error correction capability. 137

7.1 RISQ-V area of ASIC tapeout (UMC 65nm). 144
7.2 RISQ-V size and routing details of ASIC tapeout (UMC 65nm). 144
7.3 Cycle count and code size in bytes of lattice-based PKE/KEM finalists on

AURIX-TC297TF. 146
7.4 Resource utilization results of unified post-quantum and elliptic curve design.149
7.5 Cycle count for Saber with unified post-quantum and elliptic curve accel-

erator. 149
7.6 Cycle count for scalar multiplication in Curve25519 with unified post-

quantum and elliptic curve accelerator. 150

8.1 List of accelerators. 154

xiv

1 Introduction

This chapter discusses the exciting area of Post-Quantum Cryptography (PQC),
related problems, and open research questions. Further, the contributions
achieved in this work are summarized, and an overview of the thesis organi-
zation is provided.

1.1 Motivation . 1
1.2 Post-Quantum Cryptography Standardization 2
1.3 Problem Definitions . 3
1.4 Research Objectives, Contributions, and Thesis Outline . . 5

1.1 Motivation

Public-Key Cryptography (PKC), or asymmetric cryptography, forms the basis for secure
communication between different devices and is, therefore, a vital component of today’s
communication networks. The concept of PKC is based on the distinction between public
and secret keys. Algorithms in the subcategory Public-Key Encryption (PKE) use the
public key for the encryption of sensitive data and the secret key for the decryption of
the corresponding ciphertext. Such algorithms can also be modified to establish a shared
secret key on both sides of the communication channel, which can be used for further
communication with fast symmetric encryption algorithms like Advanced Encryption
Standard (AES). This type of PKE algorithm is also known as Key Encapsulation Mech-
anism (KEM). Digital signature algorithms are another subcategory of PKC. They use
the secret key to create signatures and the public key for the verification. Thus, PKC is
used to ensure confidentiality and integrity in digital communication.
Modern cryptography is based on the hardness of solving mathematically complex

problems. Therefore, cryptosystems can only be secure if the underlying problem can-
not be solved practically. In 1994, Shor developed a quantum algorithm [Sho94] that
breaks—when using a sufficiently large quantum computer—the well-known and widely
deployed PKC cryptosystems Rivest–Shamir–Adleman (RSA) and elliptic curve cryptog-
raphy. His algorithm can compute the mathematically hard integer factorization problem
(required for RSA) and the discrete logarithm problem (required for elliptic curve cryp-
tography) in polynomial time. Grover discovered another powerful quantum algorithm,
which accelerates the search in an unsorted database [Gro96]. His algorithm can be used
to achieve a quadratic speedup of brute-force attacks on symmetric cryptography, e.g.,
on AES. In order to protect against Grover’s algorithm, it is suggested to double the

1

1 Introduction

key size [CJL+16]. In contrast to symmetric cryptography, PKC requires substantially
different mathematical approaches because doubling key sizes is not sufficient in this
case.
In 2019, Google claimed that a specific task was solved in 200 seconds on its 53-

qubit quantum computer “Sycamore” while a conventional supercomputer is expected
to take approximately 10 000 years for the same task [AAB+19b]. Although there have
been doubts about whether a conventional computer would really take that long, this
example shows that quantum computers exploiting quantum phenomena, such as su-
perposition and entanglement, are already getting extremely powerful. Nevertheless,
currently developed quantum computers are not yet powerful enough to break today’s
PKC. In [GE21], the authors estimated that 20 million noisy qubits might be needed to
break 2 048-bit RSA. While still far away from such a powerful quantum computer, the
amount of achieved physical qubits significantly increased in the last years. Moreover,
ambitious goals for the following years were announced. For instance, IBM announced
targeting a 1 000-qubit quantum computer by already the end of 2023 [Gam20]. It is
relatively unclear how the development will further scale. However, it is expected that
it could take only a few decades until a sufficiently powerful quantum computer is built
to break PKC. Due to the enormous threat and long migration times, it is vital to al-
ready act now [Mos18]. In particular, products and devices with a long life cycle, such
as automotive systems and airplanes, need to consider future quantum attacks. It also
must be considered that encrypted data can be stored and broken later when stronger
quantum computers are built. Cryptography resistant to attacks performed on quantum
computers—also known as Post-Quantum Cryptography (PQC)—needs to be developed
to ensure long-term secure communication channels between servers, clients, and multiple
embedded devices.

1.2 Post-Quantum Cryptography Standardization

In 2015, the US National Security Agency (NSA) recognized the threat of quantum crypt-
analysis and announced activities towards a transition to quantum-resistant cryptogra-
phy [Nat16b]. The National Institute of Standards and Technology (NIST) has initiated
a standardization process to drive the development of PQC algorithms and prepare them
for real-world applications [Nat16a]. This process focuses on quantum-resistant schemes
for PKE/KEM and digital signatures. In 2017, the public standardization process started
with 69 potential candidates. In the second round of this standardization process, 25
candidates remained [AASA+19]. In 2020, seven algorithms were selected as finalists
and eight as alternate candidates [AASA+20]. A complete list of all second-round candi-
dates, the selected finalists, and alternate candidates is provided in Table 1.1. Finalists
are considered to be standardized by NIST soon after the next selection round. Alternate
candidates require more analysis or might become more interesting when new security
issues at some finalists appear.
The NIST PQC submissions can be divided into five PQC classes: lattice-based cryp-

tography, code-based cryptography, multivariate cryptography, hash-based cryptography,

2

1.3 Problem Definitions

and isogeny-based cryptography [CJL+16].

Lattice-based cryptography. This category contains cryptographic algorithms with se-
curity proofs based on hard lattice problems. Lattice problems are already well under-
stood and are considered to be resistant against all known quantum computer attacks.
Moreover, lattice-based cryptography is characterized by a high performance with mod-
erate key and ciphertext sizes. These characteristics are the main reasons why this class
is the largest one within the NIST standardization competition. This thesis will have,
therefore, also a particular focus on lattice-based cryptography.

Code-based cryptography. This category is based on error-correcting codes and the fact
that the general decoding problem is NP-complete [BMVT78]. The most popular code-
based NIST candidate is Classic McEliece. This candidate has already been well studied
and has one of the smallest ciphertext sizes [AASA+20]. Nevertheless, its large public
key size prevents the application of this scheme in most embedded devices. Structured
code-based schemes, such as BIKE, and other new code-based approaches, such as HQC,
reduced the public key size but are based on less studied problems.

Multivariate cryptography. This category is based on the hardness of solving non-linear
multivariate equations of polynomials over a finite field, which is NP-complete [DY09].
Signature schemes of this class, such as Rainbow and GeMSS, frequently suffer from large
public keys and are therefore less suitable for small devices [AASA+20].

Hash-based cryptography. The security proofs of this category are based on the un-
derlying hash function. The NIST alternate candidate SPHINCS+ is considerably slower
and has larger signature sizes compared to its competitors. The scheme Picnic has a very
high memory consumption and is unsuitable for small embedded devices [KRSS19]. The
advantage of hash-based cryptography is the high trust in its security proofs.

Isogeny-based cryptography. This category is based on the complexity of finding iso-
genies between supersingular elliptic curves [JDF11]. The only NIST submission of this
category, SIKE, has extremely small key and ciphertext sizes but a comparably low
performance [AASA+20].

1.3 Problem Definitions

Efficient realizations and implementations of the NIST PQC candidates play a major
role in increasing the confidence in the practicability of these schemes [AASA+20]. PQC
introduces new mathematical elements that are computationally intensive. In particular,
constrained devices with limited computing capabilities and resources usually require
hardware acceleration to meet the performance and energy requirements. The design
of efficient low-energy solutions gets increasingly important for smart cards, Trusted
Platform Module (TPM) devices, and other smart devices related to the rising Internet

3

1 Introduction

Table 1.1: Post-quantum candidates of NIST PQC competition.

Algorithm Category Status Class
Kyber PKE/KEM finalist lattice-based
NTRU PKE/KEM finalist lattice-based
Saber PKE/KEM finalist lattice-based
Classic McEliece PKE/KEM finalist code-based
FrodoKEM PKE/KEM alternate lattice-based
NTRU Prime PKE/KEM alternate lattice-based
BIKE PKE/KEM alternate code-based
HQC PKE/KEM alternate code-based
SIKE PKE/KEM alternate isogeny-based
LAC PKE/KEM 2nd round lattice-based
NewHope PKE/KEM 2nd round lattice-based
Round5 PKE/KEM 2nd round lattice-based
ThreeBears PKE/KEM 2nd round lattice-based
LEDAcrypt PKE/KEM 2nd round code-based
ROLLO PKE/KEM 2nd round code-based
RQC PKE/KEM 2nd round code-based
Dilithium signature finalist lattice-based
FALCON signature finalist lattice-based
Rainbow signature finalist multivariate-based
GeMSS signature alternate multivariate-based
Picnic signature alternate hash and block ciphers
SPHINCS+ signature alternate hash-based
qTESLA signature 2nd round lattice-based
LUOV signature 2nd round multivariate-based
MQDSS signature 2nd round multivariate-based

4

1.4 Research Objectives, Contributions, and Thesis Outline

of Things (IoT) market. While hardware implementations of cryptographic algorithms
can achieve a high performance and low energy consumption, they are inflexible and are
difficult to update. Software implementations provide a high flexibility but have a lower
performance. Achieving high flexibility, high performance, and low resource consumption
is a challenging task requiring new design strategies and inevitable trade-offs.
In addition to these implementation goals, the secure realization of the cryptographic

algorithm is of high relevance. Although mathematically secure, cryptographic imple-
mentations can still be broken using Side-Channel Attacks (SCA). This is a major prob-
lem of applied cryptography. At SCA, attackers measure and exploit physical charac-
teristics (e.g., timing, power, or electromagnetic signals) of a cryptographic operation
to retrieve information about secret data [Koc96]. Effective countermeasures for PQC
against SCA and the corresponding cost analysis are essential points that are still largely
unexplored.
Several open problems exist regarding implementation aspects but also regarding al-

gorithmic aspects. The cryptanalysis and certain parameter settings are still research
targets as most PQC algorithms are relatively new. In particular, lattice-based cryp-
tography can use error-correcting codes to improve specific characteristics, such as the
security level. However, a strong error-correcting code increases the complexity and in-
troduces new problems. Therefore, an important step is an analysis of the benefits and
drawbacks of using strong error-correcting codes.
Finally, the migration from traditional cryptography to PQC and the deployment of

PQC in the applications are challenging tasks that will probably take many years.

1.4 Research Objectives, Contributions, and Thesis Outline

The following points summarize the research objectives, contributions, and publications
related to this thesis:

(I) Design of efficient hardware architectures and coprocessors for PQC
(related publications: [BFM+18, FSF+19, FS19, FSM+19]);

(II) Investigation of accelerator integration strategies and instruction set extensions for
PQC
(related publications: [FSS20a, FSS20b, RFS20, KFS22]);

(III) Side-channel protection mechanisms for PQC
(related publications: [FVBBR+21]);

(IV) Analysis of error-correcting codes for lattice-based cryptography
(related publications: [FPS18, FVS20, MFS20]);

(V) Integration of PQC into applications and migration using hybrid key encapsulation
(related publications: [FVS19, FVFS21, OFP+22]).

5

1 Introduction

Part I. This part presents design methodologies as well as hardware and system archi-
tectures for lattice-based PQC. Several design solutions for the performance bottlenecks
of PQC are investigated, including the generation of ring elements and polynomial ring
arithmetic. The first hardware/software codesign solutions for lattice-based protocols are
presented for different target devices to increase the flexibility and overcome the draw-
backs of pure hardware designs. The developed coprocessors are coupled to the main
processor through bus interfaces.

Part II. This part analyzes small and highly flexible hardware/software codesigns. In
contrast to the coprocessors developed in Part I, the PQC accelerators are directly inte-
grated into the system’s processor. The control and access of the tightly coupled accel-
erators are realized using instruction set extensions. Design strategies to reuse existing
system resources and reduce costly memory accesses are explored.

Part III. This part investigates how the presented hardware accelerators can be pro-
tected against SCA. It presents the first masked hardware accelerators with instruction
set extensions for two lattice-based NIST PQC finalists and measures towards secure sys-
tem design. The accelerators ensure a controlled execution and boost the performance of
hardened PQC implementations. This part provides a detailed analysis of implementa-
tion costs for the hardened designs and helps to assess the advantages and disadvantages
of two closely related NIST finalists.

Part IV. This part analyzes the influence of strong error-correcting codes for lattice-
based cryptography. Lattice-based protocols have an intrinsic failure rate that depends
on the parameter set. The analysis has shown that the security level, key/ciphertext
sizes, and failure rate can be optimized with a strong error correction. This work further
contributes to the failure rate analysis for lattice-based cryptography with error cor-
rection, which is not straightforward due to stochastic dependence between decryption
failures.

Part V. This part shows the applicability of PQC for safety-critical applications with
long-term security requirements. As a case study, the automotive industry is considered.
First performance results of lattice-based PQC schemes are provided for the automo-
tive industry. Moreover, this part presents a unified hardware accelerator that supports
traditional cryptography and PQC to foster the migration to PQC using hybrid key en-
capsulations. Finally, a post-quantum cryptography chip is presented that was developed
in the context of this thesis.

Thesis organization. The structure of this thesis is mainly ordered according to the
contributions of Parts I–V. Chapter 2 introduces lattice-based cryptography, discusses
its performance bottlenecks, and summarizes hardware accelerator types. Chapter 3
investigates the design and performance of loosely coupled post-quantum coprocessors.

6

1.4 Research Objectives, Contributions, and Thesis Outline

As use cases, hardware/software codesigns of two popular lattice-based schemes are pro-
posed. Chapter 4 investigates tightly coupled accelerators to improve flexibility, reusabil-
ity, and other important design characteristics for five different post-quantum schemes.
In Chapter 5, a generic arithmetic accelerator for lattice-based cryptography is presented.
Moreover, side-channel countermeasures for two PQC NIST finalists are presented and
evaluated. Chapter 6 investigates the integration of powerful error-correcting codes for
lattice-based cryptography. The integration of PQC in real-world applications and related
challenges are discussed in Chapter 7. The thesis ends with a conclusion in Chapter 8.

7

2 Preliminaries

This chapter provides the theoretical background for this work. At the begin-
ning of this chapter, lattice-based cryptography and the popular NTRU and
LWE cryptosystems are introduced. Further, a discussion about performance
bottlenecks of lattice-based cryptography and theoretical optimizations for the
polynomial ring arithmetic and polynomial sampling is provided. The chapter
ends with an overview of PQC implementation strategies and hardware accel-
erator types. The description of NTRU is partly based on the author’s publi-
cation [FSF+19]. For the description of the LWE cryptosystems, the polyno-
mial ring arithmetic, the polynomial sampling, and the hardware accelerator
types, parts of the author’s publications [FSS20b, FVBBR+21, FVFS21] are
used.

2.1 Mathematical Background and Notation 9
2.2 Lattice-Based Cryptography 11

2.2.1 NTRU . 11
2.2.2 Public-Key Encryption for NTRU-Based Schemes 11
2.2.3 Learning With Errors (LWE) 14
2.2.4 Public-Key Encryption for LWE-Based Schemes 15

2.3 Polynomial Ring Arithmetic 16
2.3.1 Schoolbook Multiplication 16
2.3.2 Number Theoretic Transform (NTT) 18
2.3.3 Karatsuba / Toom–Cook 20

2.4 Polynomial Sampling and Randomness Generation 23
2.5 Hardware Accelerators and Coupling Strategies 24

2.1 Mathematical Background and Notation

The following paragraphs provide the mathematical background of PQC and introduce
the notation used in this thesis.

Fields. A field is a set of elements where the conventional mathematical operations
(additions, subtractions, multiplications, and divisions) are defined. Further, properties
like associativity, commutativity, and distributivity are valid in a field. Well-known fields
are the rational numbers Q, the real numbers R, and the complex numbers C [Koc08].

9

2 Preliminaries

Finite fields. Let Z be the set of integers and let Fq = Zq be the set of integers modular
q. The set Fq is a typical example of a finite field. It has a finite number of in total q
elements. All mathematical field operations can be applied without leaving the finite set.
Fqk with k > 1 is an extension field of degree k, where each element is a polynomial of
degree k − 1. Depending on the context, the finite field or the extension field is referred
to as Galois field GF(qk).

Polynomial rings. Rings have similar properties as fields. However, the commutativity
of multiplications and the existence of inverse elements are no conditions for a ring.
Nevertheless, commutativity of multiplications might be applicable, and inverse elements
might exist in a ring. Let R = Zq/〈φ(x)〉 be a ring with the cyclotomic polynomial φ(x).
The ring elements of R are polynomials of degree n− 1 with integer coefficients in [0, q).
These elements can be represented as a = a0 +a1x+a2x

2 + · · ·+an−1x
n−1 =

∑n−1
i=0 aix

i.
The cyclotomic polynomial φ(x) is frequently set to φ(x) = xn − 1 or φ(x) = xn + 1.
The coefficients are reduced modular q and the whole polynomial modular φ(x) during
the ring arithmetic.

Polynomial additions. Let a, b ∈ R and let c be the sum of these two polynomials.
Then, the polynomial addition is defined by

c = a+ b =

n−1∑
i=0

(ai + bi mod q)xi . (2.1)

The reduction by the cyclotomic polynomial does not affect polynomial additions or
subtractions.

Polynomial multiplications. Let a, b ∈ R and let c be the product of these two poly-
nomials. Then, the polynomial multiplication is defined by

c = a · b mod φ(x) = (
2n−2∑
i=0

i∑
j=0

(aj · bi−j mod q)xi) mod φ(x) . (2.2)

In this equation, the coefficients al and bl are zero for l ≥ n.

Polynomial inversions. The inverse polynomial a−1 must fulfill a · a−1 = ã with ã0 = 1
and ãi = 0 for ∀i 6= 0. Such an inverse element does not necessarily exist for each element
a ∈ R.

Distributions. Lattice-based cryptography requires different probability distributions.
Let Uq be a uniform distribution with outcomes in the set [0, q). Let Ψη be a centered
binomial distribution with standard deviation

√
η/2 and outcomes in the set [−η, η].

Usually, the outcomes of the binomial distribution are much smaller than the outcomes
of the uniform distribution, i.e., η � q.

10

2.2 Lattice-Based Cryptography

Sampling. The sampling process is defined by x $←− S, which randomly samples the value
x from the set S. Each coefficient is sampled separately from the target distribution to
sample a complete polynomial. The polynomial sampling from a uniform distribution
is written as a $←− Uq. Similarly, the sampling from a binomial distribution is written

as a $←− Ψη. Some PQC schemes require the sampling of a ternary polynomial. In this

thesis, the notation a $←− Td is used for the sampling of a polynomial with coefficients in
the set {−1, 0, 1}, where d coefficients are equal to 1 and −1, respectively. The notation
x
seed← S is used to indicate a deterministic sampling process, i.e., repeating the sampling

with the same seed will always return the same result.

General notation. This thesis uses the letters q or p for the modulus. The modulus
is either a prime or a power-of-two integer for all considered schemes. Moreover, bold
letters are mainly used for vectors and bold capital letters for matrices.

2.2 Lattice-Based Cryptography

Mathematical hard problems are the basis of modern cryptography. The hardness as-
sumption ensures the security of the cryptographic primitives. In 1996, the pioneering
work of Ajtai in [Ajt96] introduced the first cryptographic one-way function based on the
hardness of lattice problems. This work has been the start of lattice-based cryptography.
But the breakthrough of lattice-based cryptography came two years later when Jeffrey
Hoffstein, Jill Pipher, and Joseph Silverman proposed the efficient and practical public-
key encryption scheme Nth Degree Truncated Polynomial Ring Unit (NTRU) [HPS98].
In 2009, Regev proposed the Learning With Errors (LWE) problem together with the
first security proofs showing that LWE is as hard as worst-case lattice problems [Reg09].
NTRU and LWE are the basis for most modern lattice-based cryptographic primitives.

2.2.1 NTRU

NTRU was standardized with modifications in the IEEE standard P1363.1 and the finan-
cial services industry standard X9.98 as an efficient alternative to RSA and elliptic curve
cryptography. In 2017, the three NTRU variants NTRUEncrypt, NTRU-HRSS-KEM,
and NTRUPrime were submitted to the NIST PQC standardization process. NIST re-
cently selected the merged variant of NTRUEncrypt and NTRU-HRSS-KEM as a finalist
and NTRUPrime as an alternate candidate [AASA+20].

2.2.2 Public-Key Encryption for NTRU-Based Schemes

PKE/KEM schemes are composed of the three operations key generation (KeyGen),
encryption (Encrypt), and decryption (Decrypt). These operations are provided for
NTRU in a generic and simplified form of the IEEE P1363.1 standard in Algorithms 1–3.
The main principles are similar for all other NTRU versions. The algorithms omit details
that are not important for understanding this work. A comprehensive description can be

11

2 Preliminaries

found in the original specification [L+01]. The following paragraphs describe the main
parameters of NTRU, necessary subroutines, and the NTRU protocol (Algorithms 1–3).

Parameters and rings. NTRU can be mainly defined using the integer parameters n,
q, p, dF , dg, and dr. The polynomial length n and the sampling parameters dF , dg, and
dr depend on the chosen NTRU parameter set. The primes are fixed to q = 2048 and
p = 3 for the standardized parameter sets. All computations are performed in the rings
Rq = Zq/〈φ(x)〉 or Rp = Zp/〈φ(x)〉 with φ(x) = xn − 1.

Polynomial / byte stream conversion. The subroutine poly2byte is used to transform
a polynomial of Rq into its byte representation. The function m2poly turns the byte
sequence of a message into a ternary polynomial. It splits the byte sequence into 3-bit
chunks and maps them into two ternary coefficients, respectively. The reverse operation
of m2poly is poly2m.

Blinding Polynomial Generation Method (BPGM). This deterministic function com-
putes an ephemeral blinding polynomial r. It is based on a cryptographic hash function
G (e.g., SHA256) and takes as input the byte string seed_bpgm. This can be written as

r = BPGM(seed_bpgm) . (2.3)

Mask Generation Function (MGF). This function is very similar to BPGM and is also
based on a hash function G. However, the internal operations are slightly different. It
takes as input the byte string seed_mgf and creates a full mask mmask for the message.
This can be written as

mmask = MFG(seed_mgf) . (2.4)

NTRU.KeyGen. It generates the public key pk and the secret key sk. The algorithm
first samples two random ternary polynomials F, g ∈ Rp from the ternary distributions
TdF and Tdg . As p = 3, the coefficients of both polynomials can be represented as integers
in the set {−1, 0, 1}. The number of coefficients equal to 1 and −1 is determined by the
parameter dF for F and dg for g. Not all polynomials are invertible in Rq. Therefore, it
is checked if f = 1 + p ·F and g are invertible. If they are not, the sampling is repeated.
The public key h = (f−1 · g) · p can be computed after the sampling. The computations
involve one polynomial multiplication and one consecutive scalar multiplication with the
modulus p. The secret key is defined by f = 1 + p ·F , where only a scalar multiplication
and addition with 1 is required.

NTRU.Encrypt. It transforms a message m into a ciphertext ct. The algorithm first
generates the byte representation of the truncated public polynomial htrunc using the
poly2byte conversion. The result is then concatenated with an object identifier (OID),
the plaintext messagem, and a random number b. This concatenation is taken to generate
the blinding polynomial r using BPGM. The resulting polynomial r is multiplied with h.

12

2.2 Lattice-Based Cryptography

Algorithm 1: NTRU.KeyGen

1 F
$←− TdF // F ∈ Rp

2 f ← 1 + p · F // f ∈ Rq

3 f−1 mod q (goto 1 if not invertible)

4 g
$←− Tdg // g ∈ Rp

5 g−1 mod q (goto 4 if not invertible)
6 h← (f−1 · g) · p // h ∈ Rq

Result: pk = h, sk = f

Algorithm 2: NTRU.Encrypt
Input: pk = h, m ∈ {0, . . . , 255}lenm ,

OID ∈ {0, . . . , 255}3, b $←− U lenb
256

1 seed1 ← {OID ||m || b || poly2byte(htrunc)}
2 r ← BPGM(seed1) // r ∈ Rp

3 seed2 ← poly2byte(r · h) // r · h ∈ Rq

4 mmask ← MFG(seed2) // mmask ∈ Rp

5 mpad ← {b || lenm ||m || 00 . . . }
6 mter ← m2poly(mpad) // mter ∈ Rp

7 m′ ← mter +mmask mod p // m′ ∈ Rp

8 e← m′ + r · h // e ∈ Rq

Result: ct = e

Algorithm 3: NTRU.Decrypt
Input: ct = e, sk = f , pk = h,

OID ∈ {0, . . . , 255}3
1 m′ ← f · e mod p // m′ ∈ Rp

2 r · h← e−m′ // r · h ∈ Rq

3 seed1 ← poly2byte(r · h)
4 mmask ← MGF(seed1) // mmask ∈ Rp

5 mter ← m′−mmask mod p // mter ∈ Rp

6 {b || lenm ||m || 00 . . . } ← poly2m(mter)
7 seed2 ← {OID ||m || b || poly2byte(htrunc)}
8 rcalc = BPGM(seed2) // rcalc ∈ Rp

9 if r · h 6= rcalc · h then
10 m← error
11 end

Result: m

This product is converted into a byte stream, which is used as input for the MGF operation
to generate mmask. Then, a concatenation of b, the parameter lenm, and the zero padded
input message is built. This concatenation is transformed into a polynomial and masked
with mmask to obtain m′. The masking operation corresponds to a polynomial addition
with consecutive reduction by the modulus p. The ciphertext ct = e is the addition of
the masked message m′ and r · h.

NTRU.Decrypt. It retrieves the plaintext message m from the ciphertext ct = e. The
algorithm uses the secret key f and the ciphertext e to compute r ·h. With the knowledge
of r · h, the mask mmask can be retrieved by means of MGF. This mask can be used to
unmask m′ = f · e mod p and obtain the predicted plaintext message m. Reapplying
BPGM withm, thus, repeating parts of the encryption to obtain rcalc, can expose modifica-
tions of the ciphertext. This allows detecting and preventing Chosen-Ciphertext Attacks
(CCA). If the recomputed product rcalc · h is equal to r · h, the algorithm outputs the
message m. Otherwise, an error message is assigned to the output.

13

2 Preliminaries

2.2.3 Learning With Errors (LWE)

Several variants of the plain LWE problem have been published within the last years
to achieve performance improvements. In the following paragraphs, the algebraically
structured variants Ring Learning With Errors (RLWE), Module Learning With Errors
(MLWE), Integer Module Learning With Errors (IMLWE), and Module Learning With
Rounding (MLWR) are outlined.

RLWE. It was introduced in [LPR10] as an LWE variant to reduce key and ciphertext
sizes and to realize efficient arithmetic.

Definition 1 (RLWE instance of [LPR10]). The RLWE instance is defined by (a, b =

a · s+ e) with all elements in Rq, the uniformly distributed public polynomial a $←− Uq, the
Gaussian/binomially distributed secret s $←− Ψη1, and the Gaussian/binomially distributed

error e $←− Ψη2 .

MLWE. Instead of single large ring elements, it uses matrices and vectors of a smaller
ring. This leads to higher flexibility as the arithmetic can be optimized for a single ring,
and security level modifications are simply achievable with an adaptation of the matrix
and vector dimensions.

Definition 2 (MLWE instance of [BGV14, LS15]). The MLWE instance is defined by
(A, b = A · s + e) with the uniformly distributed public matrix A ∈ Rk1×k2q , the Gaus-
sian/binomially distributed secret s ∈ Rk2q , and the Gaussian/binomially distributed error
e ∈ Rk1q .

MLWR. It is a combination of Learning With Rounding (LWR) proposed in [BPR12]
and MLWE. LWR or MLWR replace the error term with noise generated from a deter-
ministic rounding function. This rounding function introduces the noise required for the
security proofs and automatically reduces the key and ciphertext sizes.

Definition 3 (MLWR instance of [DKRV18]). The MLWR instance is defined by (A, b =
bpq (A · s)e) with the uniformly distributed public matrix A ∈ Rk1×k2q , the Gaussian/
binomially distributed secret s ∈ Rk2q , and the integers p, q with q > p. The rounding
function scales the inner product by p/q and rounds the result to the closest integer
modular p.

IMLWE. It is the integer version of MLWE. The general idea proposed in [Gu19] is
to evaluate the polynomials in RLWE/MLWE schemes for a specific value of x. Thus,
efficient and well-studied big-integer arithmetic libraries can be used, especially when
using Mersenne primes for the evaluation.

Definition 4 (IMLWE instance of [Ham19]). Let x = q be an integer and φ(x) = N a
prime number to avoid subrings. The integer ring is defined by RN = ZN . The IMLWE
instance is similar to the MLWE instance but consists of computations in RN .

14

2.2 Lattice-Based Cryptography

If all elements are sampled randomly, it is conjectured to be mathematically hard to
distinguish the LWE-based sample pair (a, b) or (A, b) from uniformly distributed noise
(decision problem) and to recover the secret element from the instance b or b (search
problem). Due to its average-case hardness assumption, LWE is well suited for creating
cryptographic primitives. Prominent algorithms based on RLWE, MLWE, MLWR, and
IMLWE are the NIST PQC schemes NewHope [AAB+19a], Kyber [ABD+20], Saber
[BMD+20], and ThreeBears [Ham19], respectively.

2.2.4 Public-Key Encryption for LWE-Based Schemes

LWE-based PKE/KEM schemes are also composed of the three operations key gen-
eration (KeyGen), encryption (Encrypt), and decryption (Decrypt). These oper-
ations are shown in a generic and simplified form in Algorithms 4–6. The notation
of these algorithms is partly based on [ABD+20]. Note that for RLWE schemes, the
parameter k is set to one and that all error terms for LWR schemes are set to zero
(instead, the rounding operation is used). More detailed descriptions can be found
in [AAB+19a, ABD+20, BMD+20, Ham19]. The following paragraphs first describe im-
portant subroutines required for LWE-based cryptography and then explain the general
protocol structure.

Compression/decompression. The function compressq(a, d) is used to compress the
polynomial a (or vector a) such that all coefficients are in the set [0, 2d). The poly-
nomials can be compressed before transmitting them over the channel to decrease the
bandwidth, i.e., the key and ciphertext sizes. The compression corresponds to a modulus
switching between the prime q and 2d, where q > 2d. This is similar to the removal
of the lower-order bits of the coefficients. These bits have low information content.
The decompressq(a, d) operation is the reverse operation required after the transmis-
sion to lift the polynomial to its original size. More formally, the two operations are
defined by compressq(a, d) = d(2d/q) · ac mod 2d and decompressq(a, d) = d(q/2d) · ac
mod q [BDK+18].

Encoding/decoding. The functions encode and decode are used to switch between bit
streams and polynomials (or vectors of polynomials). The encode operation transforms
a bit stream, e.g., the message with a length of 256-bit, into a polynomial. Each bit
of the bit stream can be mapped, e.g., to one coefficient until all bits are encoded. For
instance, if a message bit is 1 the respective coefficient is mapped to dq/2c, otherwise it
is mapped to 0. Let m be the message bit stream and let v be the resulting polynomial
of the encoding. Then, the encoding is the same as decompressq(m, 1) and the decoding
the same as compressq(v, 1). Some schemes also apply an error correction mechanism
and map one bit to multiple coefficients. This increases the robustness of the scheme and
allows a more advanced message decoding. However, when error correction is used, the
decompression and compression operations cannot be applied for the message encoding
and decoding.

15

2 Preliminaries

LWE.KeyGen. It generates the public key pk = (b, seed1) and the secret key sk = s.
The algorithm first computes the uniformly distributed public element A using a random
seed and a Pseudo Random Number Generator (PRNG). Typically, the hash primitives
SHAKE-128/SHAKE-256 or the symmetric cipher AES are used as PRNG. In the next
step, the random secret key s and the error e are sampled from the noise distribution
Ψk
η. Finally, the LWE-based instance b = As+e is generated and optionally compressed

using the compressq function. The secret key is set to sk = s and the public key to
pk = (b, seed1). The public key securely hides the secret key in the LWE instance b,
which can be transmitted over an insecure channel. If the parameter set is carefully
chosen, it is impossible for an attacker to retrieve s from b or to distinguish (A, b) from
a uniform sample pair. To reduce the key size, not the whole public elementA is assigned
to the public key but only the seed that is used to generate it.

LWE.Encrypt. It generates the ciphertext ct = (u, v) of a given input message m.
This algorithm first computes A using seed1 from pk = (b, seed1). As a deterministic
sampling operation is used, Encrypt has the same public element A as KeyGen. The
algorithm further samples the secret element s′ and the error elements e′, e′′. These
terms are then used to create two LWE-based instances u and v, whereas v contains the
secret input message m. At the message encoding, the byte string of m is transformed
to a polynomial, and an error correction encoding can be applied. Again, optionally
compression can be utilized to reduce the ciphertext size. The ciphertext is composed of
u and v. These LWE instances securely hide the secret element s′ and the secret input
message m.

LWE.Decrypt. It computes the predicted plaintext m′ from the ciphertext ct = (u, v)
using the secret key sk = s. This function requires only a few decompression and
arithmetic operations. The decompressed LWE instance v′ contains the encoded secret
input message encode(m) but also the term b′Ts′ + e′′. To partly remove the latter
term from v′, the product sTu′ is subtracted from v′. This removes the largest terms
such that, after the message decoding, the probability is high that m′ ≡ m. An error
correction decoder can be used at the decode operation to increase the success rate of
the decryption. See Chapter 6 for a more detailed analysis.

2.3 Polynomial Ring Arithmetic

The ring arithmetic described in the previous section is one of the major performance
bottlenecks of structured lattice-based cryptography. In particular, the polynomial mul-
tiplication is frequently the optimization target for performance improvements.

2.3.1 Schoolbook Multiplication

The polynomial ring additions and subtractions of structured lattice-based cryptography
can be performed coefficient-wise with a complexity of O(n) (as shown in Section 2.1,

16

2.3 Polynomial Ring Arithmetic

Algorithm 4: LWE.KeyGen

1 seed1
$←− U256

2

2 A
seed1← Uk×kq

3 s, e
$← Ψk

η ×Ψk
η

4 b← As+ e

5 b← compressq(b, db)
Result: pk = (b, seed1), sk = s

Algorithm 5: LWE.Encrypt
Input: pk = (b, seed1), m ∈ {0, 1}256

1 AT seed1← Uk×kq

2 s′, e′, e′′
$← Ψk

η ×Ψk
η ×Ψη

3 b′ ← decompressq(b, db)
4 u← ATs′ + e′

5 v ← b′
T
s′ + e′′ + encode(m)

6 u← compressq(u, du)

7 v ← compressq(v, dv)
Result: ct = (u, v)

Algorithm 6: LWE.Decrypt
Input: ct = (u, v), sk = s

1 u′ ← decompressq(u, du)

2 v′ ← decompressq(v, dv)
3 m′ ← decode(v′ − sTu′)
Result: m′

Equation 2.1). Polynomial ring multiplications are significantly more expensive. The
schoolbook method—the most straightforward approach—has a complexity of O(n2). In
lattice-based cryptography, the product of a polynomial multiplication of length 2n is
typically reduced by the cyclotomic polynomial φ(x) (frequently xn − 1 or xn + 1) to a
polynomial of length n as shown in Section 2.1, Equation 2.2. The reduction modular
φ(x) in this equation can be simplified as illustrated in the following paragraph.

Schoolbook multiplication modular φ(x). Let a, b ∈ Zq/〈φ(x)〉 be two ring polynomi-
als and c ∈ Zq/〈φ(x)〉 the corresponding product polynomial. Then, the polynomial ring
multiplication with integrated modular reduction by φ(x) is defined by

ci = (
i∑

j=0

aj · b(i−j) mod q ±
n−1∑
j=i+1

aj · b(n+i−j) mod q) mod q , (2.5)

where the latter part is added for positive wrapped convolutions (φ(x) = xn − 1) and
subtracted for negative wrapped convolutions (φ(x) = xn + 1).

Example 1 (Schoolbook multiplication)
Let a = 12 + x + 7x2 + 13x3 and b = 4 + 2x + 15x2 + 0x3 be two ring elements in
Zq/〈φ(x)〉 = Z17/〈x4 + 1〉. The multiplication of c = a · b mod (x4 + 1) applying the
schoolbook method according to Equation 2.2 is summarized in the following steps. Note
that these steps can be merged into a single one using Equation 2.5.

1. Pad input polynomial to a length of n′ = 2n: a = 12 + x + 7x2 + 13x3 + 0x4 +
0x5 + 0x6 + 0x7 and b = 4 + 2x+ 15x2 + 0x3 + 0x4 + 0x5 + 0x6 + 0x7.

17

2 Preliminaries

2. Compute c′ = a · b, where multiplications with padded zeros are skipped:

c′ = (a0 · b0 mod q) + (a0 · b1 + a1 · b0 mod q)x

+ (a0 · b2 + a1 · b1 + a2 · b0 mod q)x2

+ (a0 · b3 + a1 · b2 + a2 · b1 + a3 · b0 mod q)x3

+ (a1 · b3 + a2 · b2 + a3 · b1 mod q)x4

+ (a2 · b3 + a3 · b2 mod q)x5 + (a3 · b3 mod q)x6

= 14 + 11x+ 6x2 + 13x3 + 12x4 + 8x5 + 0x6 + 0x7

3. Compute c = c′ mod x4 + 1:

c = (c′0 − c′4 mod q) + (c′1 − c′5 mod q)x+ (c′2 − c′6 mod q)x2

+ (c′3 − c′7 mod q)x3 = 2 + 3x+ 6x2 + 13x3

2.3.2 Number Theoretic Transform (NTT)

The NTT is an efficient method to reduce the complexity of the polynomial multiplication
from O(n2) to O(n log2(n)). It is a variant of the Fast Fourier Transform (FFT) with
operations in the field Zq instead of the complex numbers [RVM+14].
Let a, b ∈ Zq/〈φ(x)〉 be two ring polynomials. Then, the polynomial multiplication

using the forward and inverse NTT can be computed with c = INVNTT(NTT(a) �
NTT(b)), where � represents the coefficient-wise multiplication [ADPS16b].
The ring must contain primitive roots of unity to allow an application of the NTT. Let

ωn ∈ Zq be the n-th root of unity with ωnn = 1 mod q and ωin 6= 1 mod q for ∀i ∈ [1, n).
The forward transform of the coefficients ai and the inverse transform of âi are computed
with

âi =
n−1∑
j=0

γj · ωijn · aj , ai =
1

n
· γ−i

n−1∑
j=0

ω−ijn · âj , (2.6)

where γ ∈ Zq.

Positive and negative wrapped convolutions. The multiplications of γi before the
NTT (preprocessing) and with γ−i after the INVNTT (postprocessing) result into a
reduction by xn − 1 or xn + 1 depending on the value of γ. Choosing γ = 1 leads
to positive wrapped convolutions and choosing γ = γn =

√
ωn with ωnn = 1 mod q,

ω
n/2
n = γnn = −1 mod q, and n = 2k leads to negative wrapped convolutions. The

variable γn is also known as the 2n-th root of unity.

Example 2 (NTT multiplication)

Let a = 12 + x + 7x2 + 13x3 and b = 4 + 2x + 15x2 + 0x3 be two ring elements in

18

2.3 Polynomial Ring Arithmetic

Zq/〈φ(x)〉 = Z17/〈x4 + 1〉. The multiplication of c = a · b mod (x4 + 1) using the NTT
can be computed with the following steps.

1. Determine NTT parameters: ωn = 4, γn = 2, ω−1n = 13, γ−1n = 9, n−1 = 13

2. NTT preprocessing:

a′0 = a0 · γ0n mod q = 12 b′0 = b0 · γ0n mod q = 4

a′1 = a1 · γ1n mod q = 2 b′1 = b1 · γ1n mod q = 4

a′2 = a2 · γ2n mod q = 11 b′2 = b2 · γ2n mod q = 9

a′3 = a3 · γ3n mod q = 2 b′3 = b3 · γ3n mod q = 0

3. NTT transformation:

â0 = (a′0 · ω0·0
n + a′1 · ω1·0

n + a′2 · ω2·0
n + a′3 · ω3·0

n) mod q = 10

â1 = (a′0 · ω0·1
n + a′1 · ω1·1

n + a′2 · ω2·1
n + a′3 · ω3·1

n) mod q = 1

â2 = (a′0 · ω0·2
n + a′1 · ω1·2

n + a′2 · ω2·2
n + a′3 · ω3·2

n) mod q = 2

â3 = (a′0 · ω0·3
n + a′1 · ω1·3

n + a′2 · ω2·3
n + a′3 · ω3·3

n) mod q = 1

b̂0 = (b′0 · ω0·0
n + b′1 · ω1·0

n + b′2 · ω2·0
n + b′3 · ω3·0

n) mod q = 0

b̂1 = (b′0 · ω0·1
n + b′1 · ω1·1

n + b′2 · ω2·1
n + b′3 · ω3·1

n) mod q = 11

b̂2 = (b′0 · ω0·2
n + b′1 · ω1·2

n + b′2 · ω2·2
n + b′3 · ω3·2

n) mod q = 9

b̂3 = (b′0 · ω0·3
n + b′1 · ω1·3

n + b′2 · ω2·3
n + b′3 · ω3·3

n) mod q = 13

4. Coefficient-wise multiplication:

ĉ0 = â0 · b̂0 mod q = 0, ĉ1 = â1 · b̂1 mod q = 11

ĉ2 = â2 · b̂2 mod q = 1, ĉ3 = â3 · b̂3 mod q = 13

5. INVNTT transformation:

c′0 = (ĉ0 · ω−0·0n + ĉ1 · ω−1·0n + ĉ2 · ω−2·0n + ĉ3 · ω−3·0n) mod q = 8

c′1 = (ĉ0 · ω−0·1n + ĉ1 · ω−1·1n + ĉ2 · ω−2·1n + ĉ3 · ω−3·1n) mod q = 7

c′2 = (ĉ0 · ω−0·2n + ĉ1 · ω−1·2n + ĉ2 · ω−2·2n + ĉ3 · ω−3·2n) mod q = 11

c′3 = (ĉ0 · ω−0·3n + ĉ1 · ω−1·3n + ĉ2 · ω−2·3n + ĉ3 · ω−3·3n) mod q = 8

19

2 Preliminaries

6. NTT postprocessing:

c0 = (c′0 · n−1 · γ−0n mod q) + (c′1 · n−1 · γ−1n mod q)x

+ (c′2 · n−1 · γ−2n mod q)x2 + (c′3 · n−1 · γ−3n)x3

= 2 + 3x+ 6x2 + 13x3

NTT algorithms. When exploiting symmetry, periodicity, and scale properties of the
Fourier transformation, the complexity of Equation 2.6 can be reduced with a divide-
and-conquer approach from O(n2) to O(n log2(n)). The two most common methods for
splitting a large Fourier transform into smaller pieces are the Cooley–Tukey (CT) [CT65]
and the Gentleman–Sande (GS) [GS66] algorithms. The butterfly operation, which is
the main operation of these algorithms, consists of arithmetic in Zq. The Cooley–Tukey
Decimation-In-Time (DIT) approach computes x′ ← x + y · ω and y′ ← x − y · ω with
ω, x, y ∈ Zq and ω usually a power of ωn (also known as Twiddle factor). The Gentleman–
Sande Decimation-In-Frequency (DIF) approach computes x′ ← x+y and y′ ← (x−y)·ω.

Bit-reversal and algorithm variants. The bit-reversal operation is a particular per-
mutation of a sequence of elements and is inherently part of optimized NTT algorithms.
Given an array of n elements, the index of the i-th element ai can be represented in binary
notation i = {b0, b1, . . . , blog2(n)−1}. The bit-reversal operation swaps the i-th element
with the j-th element having the bit-reversed index j = {blog2(n)−1, blog2(n)−2, . . . , b0}.
Different in-place variants of the Cooley–Tukey and Gentleman–Sande algorithms ex-

ist. They can be denoted as NTTCTbr→no, NTT
CT
no→br, NTT

GS
br→no, and NTTGSno→br, where,

e.g., no → br indicates that the input is in normal and the output in bit-reversed or-
der. The bit-reversal can be completely avoided when combining different variants, e.g.,
NTTCTno→br and INVNTTGSbr→no [POG15].

2.3.3 Karatsuba / Toom–Cook

The NTT requires the existence of primitive roots of unity and is therefore not di-
rectly applicable to all lattice-based schemes. Two alternatives for performing flexible
and efficient multiplications are the Karatsuba and Toom–Cook methods. These algo-
rithms iteratively split a large polynomial multiplication into several smaller ones. Karat-
suba outperforms Toom–Cook for low degree polynomials, and Toom–Cook outperforms
Karatsuba for large polynomials. Therefore, it is a common approach to combine both
methods to achieve an ideal performance. The exact polynomial degree where both ap-
proaches perform equally well depends on the implementation and platform. For a 32-bit
microcontroller, it was shown in [BMKV20] that Karatsuba performs better than Toom–
Cook at polynomial degrees ≤ 64. It must be noted that several other multiplication
approaches exist. They, however, have been rarely used in lattice-based cryptography so
far and are therefore not further discussed in this section.

20

2.3 Polynomial Ring Arithmetic

Karatsuba multiplication. The Karatsuba algorithm [KO62] reduces the quadratic run-
time of the polynomial multiplication to a complexity of O(nlog2(3)) ≈ O(n1.58). It splits
the two length-m input polynomials a and b of the multiplication into length-m/2 poly-
nomials, i.e., into a lower part (al, bl) and higher part (ah, bh). Instead of four polynomial
multiplications of these length-half polynomials, Karatsuba’s tweak requires only three
different multiplications

c = as = albl + ((ah + al)(bh + bl)− ahbh − albl)xm/2 + ahbhxm . (2.7)

Saving this single multiplication costs further additions and subtractions, which are less
complex for large polynomial degrees.

Toom–Cook multiplication. The Toom–Cook multiplication [Too63] is a generalization
of the Karatsuba algorithm. It is typically divided into the following steps: splitting,
evaluation, point-wise multiplication, interpolation, and recombination.

Splitting. The algorithm first splits two polynomials a and b into k parts of length
m = dn/ke. This is written as a(x) = α0 + α1x

m + · · · + αk−1x
m(k−1) and b(x) =

β0 + β1x
m + · · ·+ βk−1x

m(k−1), where αi and βi are the sub-parts of the polynomials a
and b. For the case k = 2, the k-way Toom–Cook algorithm is identical to the Karatsuba
algorithm.

Evaluation. After the splitting, the equations a(x) and b(x) are evaluated for 2k − 1
carefully selected values. These values are usually chosen such that this step is simple. In
practice, the evaluation is a multiplication with the evaluation matrix that is constructed
with the selected evaluation points p0, p1, . . . , p2k−2. The evaluation for a(x) can be
written as

r0
r1
. . .
r2k−2

 =

p00 p10 . . . pk−10

p01 p11 . . . pk−11

.

p02k−2 p12k−2 . . . pk−12k−2

 ·

α0

α1

. . .
αk−1

 (2.8)

The evaluation of b(x) works equally.

Point-wise multiplication. The evaluated results are point-wise multiplied, i.e., r′ =
[a(p0) · b(p0), a(p1) · b(p1), . . . , a(p2k−2) · b(p2k−2)] is computed.

Interpolation. The interpolation step is the reverse operation of the evaluation and can
be again realized with a matrix multiplication.

c′0
c′1
. . .
c′2k−2

 =

p00 p10 . . . p2k−20

p01 p11 . . . p2k−21

.

p02k−2 p12k−2 . . . p2k−22k−2

−1

·

r′0
r′1
. . .
r′2k−2

 (2.9)

21

2 Preliminaries

Recombination. This step leads to the final multiplication result. The product poly-
nomial is recombined according to c(x) = c′0 + c′1x

m + · · ·+ c′2k−2x
m·(2k−2). Toom–Cook

requires in total O(n
log2(2k−1)

log2(k)) primitive operations.

Example 3 (Karatsuba/Toom–Cook multiplication)

Let a = 12 + x + 7x2 + 13x3 and b = 4 + 2x + 15x2 + 0x3 be two ring elements in
Zq/〈φ(x)〉 = Z17/〈x4 + 1〉. The multiplication of c = a · b mod (x4 + 1) using Toom–
Cook with a split of k = 2 can be computed with the following steps. This specific case
corresponds to the Karatsuba algorithm.

1. Splitting:

a = α0 + α1x
2, with α0 = 12 + x, α1 = 7 + 13x

b = β0 + β1x
2, with β0 = 4 + 2x, β1 = 15 + 0x

2. Evaluation at 2k−1 points: p0 = 0, p1 = 1, p2 =∞, where the evaluation at infinity
is defined as taking the coefficient with highest degree and setting all others to zero.
The multiplication with the evaluation matrix according to Equation 2.8 results inr0r1

r2

 =

1 0
1 1
0 1

 · [α0

α1

]
=

 12 + x
19 + 14x
7 + 13x

 ,
s0s1
s2

 =

1 0
1 1
0 1

 · [β0
β1

]
=

 4 + 2x
19 + 2x

15

3. The pointwise multiplication clearly illustrates that only three different polynomial

multiplications for Karatsuba are required. It leads to:

r′0 = r0 · s0 = 48 + 28x+ 2x2

r′1 = r1 · s1 = 361 + 304x+ 28x2

r′2 = r2 · s2 = 105 + 195x

4. Interpolation using Equation 2.9:c′0c′1
c′2

 =

 1 0 0
−1 1 −1
0 0 1

 ·
r′0r′1
r′2

 =

 48 + 28x+ 2x2

208 + 81x+ 26x2

105 + 195x

5. Finally, the recombination gives

c = ((48 mod q) + (28 mod q)x+ (2 + 208 mod q)x2 + (81 mod q)x3

+ (26 + 105 mod q)x4 + (195 mod q)x5) mod xn + 1

= (14 + 11x+ 6x2 + 13x3 + 12x4 + 8x5) mod xn + 1 = 2 + 3x+ 6x2 + 13x3

22

2.4 Polynomial Sampling and Randomness Generation

2.4 Polynomial Sampling and Randomness Generation

Most post-quantum cryptosystems require a tremendous amount of randomness. This is
particularly true for the generation (sampling) of random polynomials in lattice-based
cryptography, where a large data set of uniformly distributed randomness is used to con-
struct the coefficients according to the desired output distribution (Gaussian, binomial,
or uniform). In order to produce this large amount of uniform randomness, a small seed
from a physical source of randomness can be expanded using a PRNG. The primitives
SHA-3, AES, and ChaCha20 are particularly suitable for this task. Among these three
alternatives, SHA-3 is the most performant option in hardware because it generates the
highest amount of pseudorandom bits per round [BUC19]. SHA-3 is a subset of the Kec-
cak family standardized by NIST. The standard lists four specific instances of SHA-3 and
two XOFs (SHAKE-128 and SHAKE-256). The two SHAKE variants permit extracting
a variable output length, which is ideal for the pseudorandom bit generation.
The most important part of the SHA-3 and SHAKE primitives is the Keccak permu-

tation, which calls in each of 24 rounds the f-1600 function. The f-1600 function is
divided into five steps: Theta (θ), Rho (ρ), Pi (π), Chi (χ), and Iota (ι). These steps
have an input state A (1 600-bit) and a processed output state B. The states can be
represented in a three-dimensional array containing 25 words, each with a length of 64-
bit. These words can be structured in a cube with x and y coordinates indexed from
0 ≤ x < 5 and 0 ≤ y < 5. Each bit of this cube can be addressed with A[x, y, z]. The
following conventions are used to facilitate the description of the f-1600 function: the
part of the state which presents the word is also called lane, a two-dimensional part of
the state with fixed z is called a slice, and all lanes with the same x-coordinate form a
sheet. The following paragraphs describe the steps of the f-1600 function according to
the definition of the Keccak team [BDPVA09].

Theta Step (θ). This step first computes the parity of each sheet of the state C[x] =
A[x, 0]⊕A[x, 1]⊕A[x, 2]⊕A[x, 3]⊕A[x, 4] for x in [0, 4]. The output of the θ step can
then be computed with B[x, y] = A[x, y] ⊕ (C[x − 1] ⊕ rot(C[x + 1], 1)) for x and y in
[0, 4], where rot denotes the rotation. Note that the bit addressing is computed modular
5.

Rho/Pi Step (ρ/π). The ρ and π steps work on the lanes of the state A[x, y]. Therefore,
they are usually processed together. The ρ step rotates the lane by a constant offset
r[x, y] that depends on the x and y positions. This can be formulated as B[x, y] =
rot(A[x, y], r[x, y]) for x and y in [0, 4]. The π step swaps the complete lanes of the state
according to B[y, 2x+ 3y] = A[x, y] for x and y in [0,4].

Chi/Iota Step (χ/ι). The non-linear χ step can be computed according to B[x, y] =
A[x, y]⊕ (A[x+1, y]∧A[x+2, y]) for x and y in [0,4]. At the ι step, a round constant Rc
is XORed to the lane A[0, 0], i.e., B[0, 0] = A[0, 0]⊕Rc[i]. This round constant depends
on the current round i. Also, the χ and ι step can be combined.

23

2 Preliminaries

2.5 Hardware Accelerators and Coupling Strategies

Hardware accelerators can be used to accelerate computationally intensive operations
and thus reduce the load of the main processor. Especially, small and less powerful
processors benefit from an application-specific hardware accelerator.

The need for hardware acceleration. Many small embedded devices could not meet
performance requirements without hardware acceleration. This is particularly critical
for real-time applications where reaction times and responses must be guaranteed to be
within a small time frame. Failing those requirements can lead to severe safety-critical
problems for some applications. Performance improvements are an obvious advantage of
hardware accelerators, but several others exist. The reduction of the energy consump-
tion and a controlled execution are two of them. The energy consumption has a high
correlation with the execution time. When the execution time is reduced, the energy
consumption is reduced as well if the power dissipation of the circuit remains in a similar
range. Specialized operations within the accelerator can avoid costly intermediate calcu-
lations and memory accesses, leading to a positive influence on the energy consumption.
The energy consumption is particularly important for battery-powered devices, which are
highly present in the IoT market. The controlled execution of cryptographic algorithms
is of high relevance to avoid SCA. Constant-time implementations of algorithms are eas-
ier to achieve with a hardware design as the constant-time behavior is more natural for
hardware circuits. Moreover, the data movement is more defined for hardware circuits.
This reduces unexpected microarchitectural leakages and facilitates certifiability.

Performance vs. flexibility. The level of flexibility is another important criterion, par-
ticularly for products with a long lifespan. New security issues might lead to the necessity
of parameter set changes, algorithmic modifications, or integration of further SCA coun-
termeasures. While software implementations achieve a high level of flexibility, hardware
implementations achieve a high performance but a poor flexibility. FPGAs provide a cer-
tain degree of flexibility but updating hardware circuits is usually difficult due to their
high complexity. For ASIC implementations, updating a circuit is nearly impossible and
redesigns are not only time-consuming but also extremely expensive.

Hardware/software codesign. Hardware/software codesigns can be deployed to com-
bine the advantages of flexible software and fast hardware solutions. Performance-critical
operations are executed with hardware accelerators, while the general control flow of the
algorithm is executed in software to keep a high level of flexibility. The actual imple-
mentation method significantly influences the execution time, energy consumption, chip
area, and flexibility. These parameters are mutually dependent, and a compromise must
be found.

Accelerator types and coupling strategies. Table 2.1 and Figure 2.1 summarize the
different implementation types and hardware accelerator coupling strategies. The per-

24

2.5 Hardware Accelerators and Coupling Strategies

Main CPU

Processor Pipeline

Fetch Load/
Store

Decode

Registers

ALU

Tightly
Accel I

Accel II

System
Instruction RAM
(Flexible SW code)

System
Data RAM

Loosely Coupled Coprocessor

IO-Buffer

Accel. I Accel. II

config config

Standalone Coprocessor

Memory

Address
Controller Control Circuit

Accel. I Accel. II

Generic Operations
(conversion, compression, etc)

Figure 2.1: Coupling strategies.

Table 2.1: Implementation types and coupling strategies.

Type Advantages Disadvantages

Standalone coprocessor Highest performance Lowest flexibility
Lowest energy consumption Highest hardware complexity

Loosely coupled coprocessor Good performance Low/moderate flexibility
Low energy consumption Intensive bus communication

Tightly coupled accelerator
Good performance Core modifications required
Low energy consumption Instruction set must be modified
High flexibility

Plain software Highest flexibility Lowest performance
Highest energy consumption

formance, energy consumption, and flexibility behave exactly the opposite way for stan-
dalone coprocessors (monolithic hardware solutions) and plain software implementations.
Many applications have a main processor that is not used when the crypto coprocessor is
active. Hardware/software codesign solutions, however, use the available main processor
resources. Such codesigns can be categorized into loosely and tightly coupled solutions.
Loosely coupled coprocessors are connected to the main processor via a system bus, e.g.,
Advanced eXtensible Interface (AXI). Tightly coupled accelerators are directly integrated
into the processor. Both coupling strategies, loosely and tightly, have advantages and
disadvantages. A thorough analysis of these coupling strategies in the context of PQC is
provided in Chapters 3–4.

FPGA-SoC platforms. FPGAs are getting increasingly powerful and already offer com-
plete system solutions. The combination of one or multiple processors with programmable
logic in one FPGA increases the flexibility and allows extremely fast design periods.

25

2 Preliminaries

Such FPGA-SoCs provide the ideal environment for creating fast and efficient hard-
ware/software codesigns. The strengths of FPGA-SoCs are demonstrated with a hard-
ware/software codesign example for NTRU in Section 3.2.

RISC-V platforms. RISC-V is an open Instruction Set Architecture (ISA) based on
the Reduced Instruction Set Computer (RISC) principles. The RISC-V initiative started
in 2010 by the University of California, Berkley, and has meanwhile grown to a large
non-profit corporation [RIS21]. RISC-V provides a free, open, flexible, and extensible
ISA usable for embedded systems and high performance computers. Several open-source
hardware implementations supporting the RISC-V ISA exist. Implementations that have
drawn particular attention are Rocket Chip1, VexRiscv2, and the RISC-V cores from
Parallel Ultra Low Power (PULP)3.
Rocket Chip is based on the hardware construction language Chisel4. The implemen-

tation offers a dedicated interface, called Rocket Custom Coprocessor (RCC), to extend
the system with hardware accelerators. However, the integration of tightly coupled ac-
celerators is not straightforward on this platform. VexRiscv was developed using another
high-level hardware description language called SpinalHDL5. The VexRiscv project al-
lows modifications of the processor [AEL+20]. The PULP project features three dif-
ferent RISC-V cores designed using the hardware description language SystemVerilog.
The CVA6 core (formerly Ariane) is a 6-stages 64-bit solution. For smaller embedded
devices, the PULP team offers the in-order execution 2-stages 32-bit solution Ibex (for-
merly Zero-riscy) and the 4-stages 32-bit solution CV32E40P (formerly RI5CY). The
RISC-V cores CV32E40P and Ibex can be integrated into the single-core microcontroller
platform PULPino6, offering a rich set of peripherals such as I2C, SPI, UART, and
GPIO [TZS+16].

Selection of RISC-V core. The use of standard SystemVerilog allows selective modifi-
cations of the entire design. This makes the PULP cores ideally suitable for this work.
Although the CV32E40P core is slightly inferior, it is suitable for comparisons with the
ARM Cortex-M4, the most popular microcontroller for PQC benchmarks. Therefore, this
RISC-V core is used for the hardware/software codesigns proposed in Chapters 3–5, 7.

RISC-V ISA extension. To enhance the basic integer instruction set (I), RISC-V de-
fines several standard extensions: the extensions for multiplication/division (M); single,
double, and quad precision floating-point operations (F, D, Q); atomic operations (A);
and compressed instructions (C). The CV32E40P core fully supports the I, M, F, and
C instruction sets. In addition, it provides the PULP-specific extension Xpulp, which

1https://github.com/chipsalliance/rocket-chip (Last accessed 1st Nov. 2021).
2https://github.com/SpinalHDL/VexRiscv (Last accessed 1st Nov. 2021).
3https://github.com/pulp-platform (Last accessed 1st Nov. 2021).
4https://www.chisel-lang.org (Last accessed 1st Nov. 2021).
5https://github.com/SpinalHDL (Last accessed 1st Nov. 2021).
6https://github.com/pulp-platform/pulpino (Last accessed 1st Nov. 2021).

26

https://github.com/chipsalliance/rocket-chip
https://github.com/SpinalHDL/VexRiscv
https://github.com/pulp-platform
https://www.chisel-lang.org
https://github.com/SpinalHDL
https://github.com/pulp-platform/pulpino

2.5 Hardware Accelerators and Coupling Strategies

includes hardware loops, SIMD extensions, bit manipulations, and post-increment in-
structions. This work further develops the PQC extension (Chapters 4, 5, 7).
RISC-V defines four different base instruction format types: R-type, I-type, S-type,

and U-type. Depending on the instruction type, the instruction structure consists of
an opcode, function fields, immediate values, the source registers rs1 and rs2, and the
destination register rd. Most PQC instructions developed in this work use the R-type. An
R-type 32-bit instruction follows the format {func7, rs2, rs1, func3, rd, opcode}, where
7-bit are reserved for opcode, 3×5-bit for rs1, rs2, and rd, 3-bit for func3, and 7-bit for
func7. The use of function fields (func3/func7) allows designing multiple operations
with only a single opcode. This thesis uses the available opcode 0x77 for the PQC
instructions. More details about the instruction formats can be found in the RISC-V
instruction set manual [WAE19].

27

3 Loosely Coupled Coprocessors for PQC

In this chapter, hardware circuits and coprocessors to accelerate computa-
tionally expensive operations of PQC are presented. The two popular post-
quantum algorithms NTRU and NewHope are chosen as a case study. They
represent the two main branches of lattice-based cryptography: NTRU-based
and LWE-based systems. With an FPGA-SoC and RISC-V SoC, two dif-
ferent platforms were used for the coprocessor evaluations. The NTRU sys-
tem design was published in [BFM+18, FSF+19]. For the description of
the NTRU coprocessor, small fractions of the author’s publication [FSS20a]
are also used. An earlier version of the NewHope system design was pub-
lished in [FS19, FSM+19]. Moreover, a small part of the author’s publica-
tion [FSS20b] is used for the description of the NewHope coprocessor.

3.1 Introduction Loosely Coupled PQC Coprocessors 29
3.2 Use Case: NTRU on FPGA-SoC Platform 32

3.2.1 Algorithmic Operations in NTRU 32
3.2.2 Ternary Polynomial Multiplication Accelerator 33
3.2.3 NTRU System Design for an FPGA-SoC 34
3.2.4 Experimental Results of NTRU System Design 35

3.3 Use Case: NewHope on RISC-V SoC Platform 37
3.3.1 Algorithmic Optimizations of NTT 37
3.3.2 NTT Hardware Accelerator 42
3.3.3 NTT Power Optimizations 45
3.3.4 NewHope System Design for RISC-V 47
3.3.5 Experimental Results of NewHope System Design 49

3.4 Summary . 51

3.1 Introduction Loosely Coupled PQC Coprocessors

A coprocessor is an additional hardware block that supports the main processor at com-
putationally intensive tasks. Such coprocessors are usually connected by a bus to the
main processor, as mentioned in Section 2.5 and illustrated in Figure 3.1. In this chapter,
it is analyzed if loosely coupled coprocessors are suitable for lattice-based PQC. In con-
trast to previous works, the focus of this work is not on standalone hardware solutions
for a whole algorithm but on hardware/software codesign solutions. While standalone

29

3 Loosely Coupled Coprocessors for PQC

solutions achieve a high performance, they usually suffer from a low flexibility. Hard-
ware/software codesign techniques can be used to meet performance, energy, and flexi-
bility requirements. Such approaches can also significantly improve development cycles
as hardware designs must be only designed for specific bottlenecks. The overall control
flow and algorithm execution remain in software. As a case study, this chapter analyzes
hardware/software codesigns for the lattice-based algorithms NTRU and NewHope.

Related works. The development of hardware circuits for lattice-based cryptography
started soon after the invention of NTRU. In 2001, the authors of [BCE+01] proposed the
probably first NTRU encryption hardware circuit. Subsequent works focused on accel-
eration techniques for the costly polynomial multiplications of NTRU [ABF+08, KY09,
LW15]. The work in [ABF+08] targeted a small multiplier design for low-cost devices, and
[KY09] exploited the special structure of NTRU polynomials (several zero-coefficients) to
reduce the overall amount of multiplications. The authors in [LW15] proposed to model
the polynomial multiplication using a Linear-Feedback Shift Register (LFSR) structure.
This approach was later improved in [LW16], where a circuit was developed that skips the
multiplication whenever two consecutive zero-coefficients are detected. As shown by the
author of this thesis and other coauthors of [BFM+18, FSF+19], this approach leaks tim-
ing side-channel information and thus reduces the security level of NTRU. In [BFM+18],
the author of this thesis and other coauthors of the publication presented a full hard-
ware implementation of the IEEE 1363.1 version of NTRU. Interested readers might have
a deeper look directly at the publications [BFM+18, FSF+19] as the full NTRU hard-
ware implementation and the timing side-channel leakage of the NTRU implementation
in [LW16] are not further discussed in this dissertation. A hardware design of the NTRU
Prime streamline variant was proposed in [Mar20].
Over the years, the focus shifted due to patent issues from NTRU-based to LWE-

based schemes. The main optimization target for LWE-based cryptography has also been
the polynomial multiplication—particularly multiplications with NTT. First hardware
implementations of the NTT multiplication for PQC were proposed in [GFS+12, PG12].
The authors in [APS13] and [RVM+14] improved the NTT memory access strategy and
presented approaches to compute the Twiddle factor (required for the NTT) on the
fly. Complete standalone hardware solutions were later designed for NewHope variants
[OG17, KLC+17, ZYC+20], Kyber [HHLW20], Saber [SRB20], and Frodo [HOKG18].
Sapphire [BUC19] and VPQC [XHY+20] are two coprocessor solutions where the main

processor is mostly used for configuration purposes. Sapphire supports multiple algo-
rithms: Frodo, NewHope, qTESLA, Kyber, and Dilithium. The coprocessor VPQC is
able to support NewHope, Kyber, and LAC. Still, these processors have a limited flexibil-
ity as almost all the computations are executed in hardware. One of the first real hard-
ware/software codesigns with a lattice-based cryptography coprocessor was proposed by
the thesis author in [FSF+19]. The content, an NTRU system design, is summarized in
Section 3.2. In contrast to the strong hardware-oriented solutions, the presented approach
executes the complete algorithmic flow in software and performs only critical operations
in hardware. A few months later, the authors of [FND+19] proposed a similar hard-

30

3.1 Introduction Loosely Coupled PQC Coprocessors

Main CPU

Coprocessor

Accel. 1
. . .

Accel. n

Bus Interconnect

Software Hardware

Figure 3.1: Loosely coupled coprocessor.

ware/software codesign for NTRU, which was further extended to more NTRU variants
in [FDNG19]. The authors in [AHH+18] reused an existing RSA coprocessor to develop a
hardware/software codesign for the LWE-based scheme Kyber. The most probably first
complete hardware/software codesign with a coprocessor specially developed for LWE-
based cryptography was presented by the thesis author in [FSM+19]. The summarized
content, a codesign for NewHope, is provided in Section 3.3. Another hardware/software
codesign for the LWE-based signature scheme qTESLA was presented in [WTJ+20].

Contributions. This chapter analyzes the suitability of lattice-based cryptography for
flexible hardware/software codesign solutions. The two schemes NTRU and NewHope
(LWE-based) are investigated to represent the two main directions. As target platforms,
an FPGA-SoC is selected for NTRU and a RISC-V SoC for NewHope.
The contributions of this chapter can be summarized as follows:

• Design of hardware accelerators for NTRU. This includes an efficient modular p re-
duction circuit and a flexible ternary multiplier. The ternary multiplier is enhanced
to support the non-ternary multiplications in NTRU;

• Integration, hardware/software codesign, and evaluation of NTRU on an FPGA-
SoC;

• Design of hardware accelerator blocks for NewHope. This includes an NTT multi-
plier and a generic sampling module;

• Analysis of hardware optimizations for the NTT multiplier, including the integra-
tion of the NTT post-processing into the main algorithm, integration of efficient
reduction routines, and power optimizations;

• Integration, hardware/software codesign, and evaluation of NewHope on a RISC-V
SoC.

31

3 Loosely Coupled Coprocessors for PQC

3.2 Use Case: NTRU on FPGA-SoC Platform

This section introduces the algorithmic components of the IEEE 1363.1 version of NTRU,
describes the hardware accelerators designed for this NTRU variant, and finally shows
the coprocessor integration for an FPGA-SoC platform. The methods presented in this
section are, in general, also applicable to other NTRU variants, i.e., to the NTRU NIST
submissions.

3.2.1 Algorithmic Operations in NTRU

The IEEE version of NTRU is based on the Shortest Vector Encryption Scheme (SVES),
which uses the principles of the NTRU Asymmetric Encryption Padding (NAEP) trans-
form [HGSSW03] to provide security against CCA. As discussed in Section 2.2.2, the
encryption and decryption operations of NTRU require additions, subtractions, and
multiplications of ring elements. The polynomial ring additions and subtractions can
be efficiently computed. The polynomial multiplications {r · h} at the encryption and
{f · e, r · h, rcalc · h} at the decryption are much more expensive and therefore the main
target for optimizations. Previous works also concluded that the multiplications are the
main bottleneck of NTRU [GPM+17]. Other important building blocks are the func-
tions BPGM and MGF. They mainly consist of computationally intensive hash calculations.
Optimizations of these two functions have been left as future work.

Modular reduction. The ring arithmetic in NTRU requires modular reductions by q
and p. The modulus q is often chosen as a power of two, turning reductions into a simple
bit masking. The parameter p is set for the IEEE 1363.1 version of NTRU to 3. For
the Mersenne prime number p = 3, a fast reduction routine, shown in Algorithm 7, is
applicable. It is based on [Jon01, GPM+17]. The algorithm makes use of the fact that
28 mod 3 ≡ 1, 24 mod 3 ≡ 1, and 22 mod 3 ≡ 1. This allows the reduction of the
input to a smaller value congruent to modular 3, e.g., x mod 3 = (x/28 + (x mod 28))
mod 3. The algorithm iteratively reduces the input range of x until it is small enough to
use a LUT for the final reduction. Note that divisions correspond to logical shifts and
modular reductions to AND operations with a bitmask for a power-of-two value.

Algorithm 7: Modular reduction p = 3

Input: Integer x ∈ [0, 216)
Result: Integer z = x mod 3

1 x = (x� 8) + (x ∧ 0xFF) // x mod 3 = (x/2
8

+ (x mod 28)) mod 3

2 x = (x� 4) + (x ∧ 0xF) // x mod 3 = (x/2
4

+ (x mod 24)) mod 3

3 x = (x� 2) + (x ∧ 0x3) // x mod 3 = (x/2
2

+ (x mod 22)) mod 3

4 x = (x� 2) + (x ∧ 0x3) // x mod 3 = (x/2
2

+ (x mod 22)) mod 3

// Now x < 6

5 LUT = {0, 1, 2, 0, 1, 2}
6 z = LUT[x] // Corresponds to final conditional subtraction

32

3.2 Use Case: NTRU on FPGA-SoC Platform

cn−1 M
A
U

cn−2 M
A
U

. . . c0 M
A
U

Control Unit
cntr

ai

bn−1 bn−2 b0

. . .

start rst a ∈ R3 b ∈ Rq

c ∈ Rq

Figure 3.2: Ternary multiplication accelerator.

3.2.2 Ternary Polynomial Multiplication Accelerator

NTRU requires the multiplications r · h and f · e, where h, f, e ∈ Rq with q = 2048 and
r ∈ Rp with p = 3. The hardware architecture of this work is based on the efficient
LFSR convolution method of [LW15]. Their architecture is able to multiply a ternary
polynomial in Rp with a polynomial in Rq. The circuit is enhanced by a control unit to
increase the flexibility of their architecture and to support the non-ternary multiplication
of f · e. Figure 3.2 illustrates the architecture of this optimized ternary multiplication
module.

Architecture of the ternary multiplication module. This module multiplies a ∈ Rp
(coefficients in {−1, 0, 1}) with b ∈ Rq (coefficients in [0, q)) to compute c = a · b
mod xn − 1 in n clock cycles. The circularity of the convolution for polynomial mul-
tiplications is achieved due to the LFSR structure, which shifts the coefficients of c in
each cycle to the right. The register width is set to 11-bit to support computations in
R2048. The feedback loop realizes the positive wraparound, i.e., the reduction by xn− 1.
The polynomial a is forwarded to the Control Unit, which serializes the ternary coef-
ficients ai, starting from a0, at the first clock cycle, until an−1. The coefficients of b
are always assigned to the first input of the Modular Arithmetic Unit (MAU), which
performs the actual arithmetic operations. The MAUs have three operation modes (ad-
dition, subtraction, and forwarding), which are activated depending on the value of the
coefficient ai: i) when 1, ci+ bi mod q is calculated; ii) when −1, ci− bi mod q is calcu-
lated; and iii) when 0, ci is forwarded. This way, multiplications are completely avoided.
The width of the MAU is set to 11-bit. Keeping only the least significant 11 bits during
the computations realizes the modular reduction by q = 2048. The multiplication r · h

33

3 Loosely Coupled Coprocessors for PQC

can be directly supported with this ternary multiplier within n cycles.

Support for non-ternary multiplication. In this work, the fact f = 1+pF with F ∈ Rp
is exploited to use the ternary multiplier for the multiplication of f ·e. The multiplication
of the secret key with the ciphertext can be reformulated f · e = (1 + pF) · e = e+ pF · e.
In order to compute pF · e, the convolution of F · e is repeated two more times (p = 3)
without resetting the registers in between. After the first n cycles, the result registers
contain the value F · e, after 2n cycles F · e+F · e, and after 3n cycles 3F · e. In order to
add e on the result of pF · e, the control unit sets the first input polynomial to a = 1 and
the second polynomial will remain e. After further n cycles, the desired result e+ pF · e
is computed. It is also possible to skip this round if the registers are preloaded with e at
the beginning of the decryption process.

3.2.3 NTRU System Design for an FPGA-SoC

This section presents the developed hardware/software codesign of NTRU. The general
NTRU algorithm is executed in software and the performance-critical multiplications are
outsourced to the hardware coprocessor. The focus of this section is on the encryption
and decryption routines as the NTRU key generation must be executed only once.

FPGA-SoC interfaces. Modern FPGA-SoCs provide multiple ports to transfer data
between the processing system (e.g., CPU or memory) and programmable logic (e.g.,
coprocessor). The interfaces can be frequently divided into General-Purpose Port (GP),
High Performance Port (HP), and Accelerator Coherency Port (ACP). The GP interface
is mainly used for small data transfers, i.e., for configurations and status requests. HP
and ACP interfaces allow high-speed transfers and direct system memory access (e.g.,
to DDR-RAM). The main difference between HP and ACP is that ACP ensures cache
coherency.
AXI4 is frequently used in embedded devices to realize the on-chip communication.

The AXI-Lite specification is suitable for simple memory-mapped data transfers and
thus for the GP interface. For the high-speed interfaces, AXI-Full and AXI-Stream are
preferred. The advantage of AXI-Full is that burst transfers are supported. AXI-Stream
is suitable for unidirectional data streams between two points without requiring any
address signals.

NTRU system design. Figure 3.3 shows the proposed design of the NTRU FPGA-
SoC architecture. The processor of the processing system runs the NTRU algorithm
and configures the coprocessor via the GP interface. The coprocessor accelerates the
computationally intensive polynomial multiplications (r · h and f · e) with optional con-
secutive modular reductions by p = 3. The consecutive reduction by p is required for the
computation of f · e mod p during the decryption (see Section 2.2.2, Algorithm 3).
The Direct Memory Access (DMA) module allows an efficient data transfer between

coprocessor and the system’s DDR-RAM. The main processor controls the configuration
of the DMAmodule via the GP interface. The configuration includes the memory transfer

34

3.2 Use Case: NTRU on FPGA-SoC Platform

Processing
System

AXI Connect

DMA Coprocessor
MM2S MM2S

S2MM S2MM
Read/Write

Mod3 Mod3

Ternary Mul

HP
MM2S

S2MM

AXI ConnectGP
config status

Figure 3.3: NTRU hardware/software codesign for an FPGA-SoC.

start and end addresses, the direction, and the trigger for the data transfer. With the
two AXI-Stream interfaces, the coprocessor achieves simple and fast data transfers. The
abbreviation MM2S indicates memory-mapped to stream ports and S2MM stream to
memory-mapped ports. One data packet contains two coefficients in Zp (2 × 2-bit) and
two coefficients in Zq (2×11-bit) to exploit the 32-bit bus width. Remaining bit positions
are packed with zeros, i.e., the packet has the structure (000 || ai+1 || bi+1 || 000 || ai || bi)
with a ∈ Rp and b ∈ Rq.
The coprocessor has the states idle, read, write, mul_ter, and mul_gen. The state

switches from idle to read when the DMA sends a valid input packet and remains in this
state until the last packet signal is identified. Depending on the config signal, the state
machine switches to mul_ter for usual ternary multiplications or to mul_gen for generic
multiplications in the form f · e according to the description in Section 3.2.2 (paragraph:
“Support for non-ternary multiplication”). During the write state, the coefficients of the
polynomial product c are transferred back to the system’s memory. Optionally, a modular
p reduction according to Algorithm 7 is performed at this step. Each data packet of the
transfer of c contains two coefficients. Hence, two reduction accelerators are instantiated
to optionally reduce the coefficients modular p before they are transmitted.

3.2.4 Experimental Results of NTRU System Design

The evaluation platform of this section is the Xilinx Zynq UltraScale+ MPSoC ZCU102,
which is equipped with a quad-core ARM Cortex-A53. For the baseline software imple-
mentation, the library of the NTRU open-source project [Why17] is used. It is compliant
with the IEEE-1363.1 standard and was designed by the NTRU authors. The software
polynomial multiplication exploits the sparsity of the ternary polynomial and skips com-
putations with coefficients equal to zero.

Parameter sets. The IEEE-1363.1 standard defines 12 different parameter sets for
NTRU. They are summarized in Table 3.1. The parameter sets are categorized into
the security levels 112-bit, 128-bit, 192-bit, and 256-bit. Three parameter sets for dif-
ferent design goals are defined for each security level. The targeted design goals are: i)
size, ii) cost, defined as (operation time)2 × size, and iii) speed. The parameter sets
mainly differ in the polynomial length n and the sampling parameters (e.g., dF , dg). The

35

3 Loosely Coupled Coprocessors for PQC

Table 3.1: NTRU parameter sets as defined in [L+01].

Size Cost Speed
112 bit ees401ep1 ees541ep1 ees659ep1
128 bit ees449ep1 ees613ep1 ees761ep1
192 bit ees677ep1 ees887ep1 ees1087ep1
256 bit ees1087ep2 ees1171ep1 ees1499ep1

Table 3.2: Resource utilization of NTRU hardware/software codesign.

Parameter set Total Coprocessor Ternary Mul. DMA
LUT/FF LUT/FF LUT/FF LUT/FF

ees401ep1 19 582/16 104 15 572/10 710 11 378/5 342 1 263/1 759
ees541ep1 25 108/19 729 21 090/14 335 15 167/7 074 1 273/1 759
ees659ep1 29 181/22 787 25 169/17 393 18 454/8 614 1 270/1 759

ees449ep1 21 463/17 375 17 440/11 981 12 763/5 980 1 272/1 759
ees613ep1 27 547/21 583 23 533/16 189 17 169/8 013 1 265/1 759
ees761ep1 32 615/25 449 28 602/20 055 21 303/9 944 1 267/1 759

ees677ep1 29 891/23 249 25 880/17 855 18 956/8 848 1 267/1 759
ees887ep1 38 670/28 752 34 659/23 358 24 832/11 590 1 268/1 759
ees1087ep1 46 788/33 966 42 773/28 572 30 423/14 199 1 271/1 759

ees1087ep2 46 788/33 966 42 773/28 572 30 423/14 199 1 271/1 759
ees1171ep1 50 402/36 183 46 384/30 789 32 757/15 296 1 272/1 759
ees1499ep1 63 221/44 766 59 197/39 372 41 912/19 574 1 276/1 759

naming convention of the parameter set is eesXXXXepY, where XXXX is the polynomial
length. As the design goal classification is made for a software reference implementation,
this classification does not need to hold for the hardware/software codesign of this thesis.

Resource utilization. Table 3.2 summarizes the resource utilization of the programmable
logic for the proposed design with different NTRU parameter sets. The evaluation shows
that the required LUTs and FFs (registers) highly depend on the polynomial length. In
particular, the coprocessor, containing the ternary multiplier, increases with larger poly-
nomial degrees. The size of the DMA module does not depend on the parameter set. It
is, however, relatively large as it requires, in addition to the listed LUTs and registers,
two Block RAM (BRAM) instances.

Performance. The ARM Cortex-A53 is set to a target frequency of 1 200MHz (real
1 199.88MHz) and the hardware accelerator to a target frequency of 200MHz (real
187.48MHz). The runtime was measured using the cycle count register provided by
the Performance Monitor Unit (PMU) of the ARM Cortex-A53 and was verified with
a hardware counter. Table 3.3 presents the clock cycle counts for the NTRU baseline
software implementation with and without hardware accelerator, including all commu-
nication overhead (optimization flag -O3). The measured clock cycles are related to the
clock of the processing system. One clock cycle in hardware corresponds to roughly six
cycles in the processing system.

36

3.3 Use Case: NewHope on RISC-V SoC Platform

Table 3.3: Cycle count in kilo cycles of NTRU hardware/software codesign and comparison to
reference implementation.

Parameter set Mult. ternary Mult. generic Encryption Decryption
ref./opt. ref./opt. ref./opt. ref./opt.

ees401ep1 141.6/13.0(×10.9) 153.3/24.3(×6.3) 257.3/131.5(×2.0) 421.5/164.0(×2.6)
ees541ep1 81.1/14.0(×5.8) 97.0/29.2(×3.3) 180.1/114.8(×1.6) 289.1/154.3(×1.9)
ees659ep1 73.4/16.0(×4.6) 92.8/34.7(×2.7) 181.2/124.8(×1.5) 273.6/156.0(×1.8)

ees449ep1 183.7/14.6(×12.6) 196.3/27.2(×7.2) 316.5/149.9(×2.1) 524.5/186.5(×2.8)
ees613ep1 100.5/15.3(×6.6) 118.1/32.8(×3.6) 211.8/128.4(×1.6) 343.2/171.8(×2.0)
ees761ep1 90.6/17.6(×5.1) 113.7/39.3(×2.9) 215.3/144.8(×1.5) 329.6/182.7(×1.8)

ees677ep1 307.1/19.6(×15.7) 327.7/38.5(×8.5) 482.0/194.7(×2.5) 824.5/247.9(×3.3)
ees887ep1 201.7/21.2(×9.5) 229.1/47.0(×4.9) 365.9/187.5(×2.0) 613.1/249.8(×2.5)
ees1087ep1 189.5/24.5(×7.7) 221.4/55.2(×4.0) 374.8/212.1(×1.8) 593.9/263.9(×2.3)

ees1087ep2 357.1/25.6(×13.9) 389.4/56.8(×6.9) 567.8/239.5(×2.4) 980.8/318.5(×3.1)
ees1171ep1 335.1/26.5(×12.6) 369.3/60.2(×6.1) 553.0/247.8(×2.2) 947.1/330.6(×2.9)
ees1499ep1 314.8/31.9(×9.9) 358.8/75.2(×4.8) 559.2/280.7(×2.0) 919.7/353.8(×2.6)

The original grouping of the parameter sets in size, cost, and speed does not apply to
the presented hardware/software codesign. For example, the parameter set ees1499ep1
(grouped to speed) is slower than the parameter set ees1087ep2 (grouped to size).
The design achieves speedup factors of up to 2.5 for the encryption and up to 3.3

for the decryption. This is a considerable improvement because the ARM Cortex-A53
is already a powerful processor running at a higher clock frequency than the hardware
accelerator. The ternary multiplication itself achieves a speedup factor of up to 15.7. It
could be considered to develop a hardware accelerator for the computing-intensive hash
operations at the polynomial sampling, BPGM operation, and MGF operation to further
improve the performance.

3.3 Use Case: NewHope on RISC-V SoC Platform

This section analyzes a fast and power-optimized mapping of the NTT algorithm to a
hardware circuit. It further proposes an efficient hardware/software codesign for the
PQC scheme NewHope on a RISC-V platform. The methods used in this section are also
applicable to other LWE-based schemes, e.g., Kyber or Dilithium.

3.3.1 Algorithmic Optimizations of NTT

As discussed in Section 2.3.2, the Cooley–Tukey method is an efficient NTT variant to re-
alize a complexity of O(n log2(n)) for polynomial multiplications. Algorithm 8 shows the
standard NTTCTbr→no algorithm. The algorithm has three nested loops. The DIT butterfly
operation, which consists of a modular multiplication, addition, and subtraction, is per-
formed in the inner loop. The following paragraphs discuss algorithmic optimizations to
efficiently map this NTT algorithm to a hardware circuit. First, existing optimizations of
previous works are discussed. Then, new approaches are investigated, such as an efficient

37

3 Loosely Coupled Coprocessors for PQC

Algorithm 8: NTTCTbr→no transform (notation adapted from [RVM+14])
Input: Coefficients ai with i ∈ [0, n)
Result: Coefficients âi with i ∈ [0, n)

1 a← BitReversal(a)
2 for m = 2 to n by m = 2m do
3 ωm ← ω

n/m
n

4 ω ← 1
5 for j = 0 to m/2− 1 by 1 do
6 for k = 0 to n− 1 by m do
7 z1 ← ak+j+m/2 · ω mod q
8 ak+j+m/2 ← ak+j − z1 mod q
9 ak+j ← ak+j + z1 mod q

10 end
11 ω ← ω · ωm mod q

12 end
13 end

integration of modular reduction techniques, integration of the NTT post-processing, and
power optimizations.

Calculation of Twiddle factors (powers of ωn). Most NTT software implementations
precompute the Twiddle factors and store them in memory. As the generated tables
for these Twiddle factors are very large for high-degree polynomials, previous works
developed an approach to compute the Twiddle factors in hardware on the fly [RVM+14].
Due to the high memory access latency of large tables, an on-the-fly generation can be
even faster than loading the Twiddle factors from memory.

Memory access. One of the main performance bottlenecks of the NTT is the trans-
fer of the coefficients between the main memory and processing element. The authors
in [RVM+14] observed that most LWE-based schemes have coefficients smaller than 16-
bit and that two coefficients can be stored in one word of a 32-bit system to decrease
the required load and store operations. After performing the butterfly operation, the
intermediate results of the two coefficients must be partly swapped to prepare the com-
putations of the next NTT layer.

Optimized Cooley–Tukey algorithm. Algorithm 9 shows the NTTCTbr←no algorithm with
the discussed optimizations: on-the-fly Twiddle factor computation, storing two coeffi-
cients in one memory word, and the swapping operation. The algorithm can be divided
into three steps: input preparation, calculation of the first NTT layers, and calculation
of the last NTT layer.
In the first step (Line 1), the coefficients of polynomial a are stored in a bit-reversed

order in the main memory. In this step, it is considered that two coefficients are stored
in a single word.

38

3.3 Use Case: NewHope on RISC-V SoC Platform

Algorithm 9: NTTCTbr→no transform with optimized memory access (notation adapted
from [RVM+14])

Input: Coefficients ai with i ∈ [0, n), precalculated values of ωn/mn (ω−n/mn for INVNTT)
Result: Coefficients âi with i ∈ [0, n)

1 a← BitReversal(a)
2 for m = 2 to n/2 by m = 2m do
3 ωm ← ω

n/m
n or ω−n/mn for INVNTT

4 ω ← ω
n/(2m)
n or 1 for INVNTT

5 for j = 0 to m/2− 1 by 1 do
6 for k = 0 to n/2− 1 by m do
7 ak+j+m/2, ak+j ← MEMk+j // Load first coefficient pair
8 H1, L1 ← ak+j+m/2, ak+j
9 ak+j+3m/2, ak+m+j ← MEMk+j+m/2 // Load second coefficient pair

10 H2, L2 ← ak+j+3m/2, ak+m+j

11 H1, H2 ← (H1 · ω) mod q, (H2 · ω) mod q
12 ak+j+m/2, ak+j ← (L1 −H1) mod q, (L1 +H1) mod q
13 ak+j+3m/2, ak+m+j ← (L2 −H2) mod q, (L2 +H2) mod q
14 MEMk+j ← ak+j+m, ak+j // Store and swap coefficients
15 MEMk+j+m/2 ← ak+j+3m/2, ak+j+m/2 // Store and swap coefficients
16 end
17 ω ← (ω · ωm) mod q

18 end
19 end
20 m← n // Prepare last NTT layer

21 ωm ← ω
n/m
n or ω−n/mn for INVNTT

22 ω ← ω
n/(2m)
n or 1 for INVNTT

23 for j = 0 to m/2− 1 by 1 do
24 aj+m/2, aj ← MEMj // Load coefficient pair
25 H1, L1 ← aj+m/2, aj
26 H1 ← (H1 · ω) mod q
27 aj+m/2, aj ← (L1 −H1) mod q, (L1 +H1) mod q
28 MEMj ← aj+m/2, aj // Store without swap
29 ω ← (ω · ωm) mod q

30 end

39

3 Loosely Coupled Coprocessors for PQC

Algorithm 10: Barrett reduction
Input: a, k, m = b2k/qc
Result: a mod q

1 u = (a ·m)� k
2 u = u · q
3 a = a− u
4 if a ≥ q then
5 a = a− q
6 end

Algorithm 11: Montgomery reduc-
tion
Input: a, R = 2n, q′ = −q−1 mod R
Result: a ·R−1 mod q

1 u = ((a mod R) · q′) mod R
2 a = a+ (u · q)
3 a = a/R
4 if a ≥ q then
5 a = a− q
6 end

In the second step (Lines 2–19), the first log2(n) − 1 NTT layers are calculated. The
Twiddle factor ω is initialized in Line 4 and always updated during runtime by a modular
multiplication with ωm in Line 17. The value of ωm depends on the current NTT layer
indicated by the variable m. In practice, the values for ωm still need to be precomputed.
However, only one entry for each layer is required, resulting in log2(n) precomputations.
The variable ω is initialized with the square root of ωm in Line 4 to implicitly realize the
multiplications by powers of γ = γn for the preprocessing discussed in Section 2.3.2. The
same precomputations as for ωm can be used because ω1/2

m and ωm from the previous
layer have the same value. Only for the first layer (m = 2), the value ω1/2

m must be
computed separately.
The most important part of the algorithm is the butterfly operation, described in the

inner loop (Lines 7–15). In the beginning, two coefficient pairs are loaded from the
main memory locations MEMk+j and MEMk+j+m/2 and are assigned to two tempo-
rary variables, each consisting of a lower halfword L1/L2 and a higher halfword H1/H2

(Lines 7–10). Then, two butterfly operations are performed (Lines 11–13). Finally, the
result is swapped and stored in the correct memory location (Lines 14–15).
The third and last step is the computation of the last NTT layer (Lines 20–30). The

operations of the last layer are similar to the operations of the other layers. The main
difference is that no swapping operation is required.

Modular reduction. Modular reductions are complex operations that usually require
hardware dividers. But the use of a constant modulus in the NTT algorithm allows the
integration of efficient reduction techniques. The Barrett reduction [Bar86] (Algorithm
10) and Montgomery reduction [Mon85] (Algorithm 11) are common methods to perform
the reductions of finite field arithmetic.
For the Barrett reduction, the modulus q and the input range of a determine the

selection of the parameters k and m. Due to approximations within the algorithm, an
error e = 1/q−m/2k (a floating-point number) that depends on these parameters exists.
The algorithm works correctly as long as the input is smaller than b1/ec. The Barrett
algorithm performs exceptionally well for relatively small input ranges, i.e., for modular

40

3.3 Use Case: NewHope on RISC-V SoC Platform

additions at LWE-based PKE/KEM schemes.
The Montgomery reduction is more suitable than the Barrett reduction for larger input

ranges [BGV93]. Therefore, it is frequently used for the prime modular multiplications of
lattice-based schemes. At least one of the input operands (or the product itself) should
be in Montgomery representation, i.e., the input of the Montgomery algorithm should
be multiplied with R. The output of the algorithm is scaled with R−1. The constant
R is chosen such that the modular reduction by this constant is simple, e.g., a power
of two. Further, the condition GCD(q,R) = 1 must hold. The valid input range of the
Montgomery algorithm depends on R and is [0, R · q).
To illustrate the suitability of these algorithms for PQC, let us have a look at an

example. Let the modulus be q = 12289 (e.g., as in NewHope, Falcon). For modular
multiplications, the minimum input range that must be supported is [0, (q−1)·(q−1)]. In
this case, the smallest parameters for the Barrett algorithm are k = 27 and m = 10921,
and the smallest suitable parameter for the Montgomery algorithm is R = 214. Now, the
Barrett algorithm requires one 28×14-bit multiplication and one 14×14-bit multiplication
in Lines 1–2 (Algorithm 10). The Montgomery algorithm requires only two 14 × 14-bit
multiplications in Lines 1–2 (Algorithm 11). The Barrett algorithm is more suitable for
smaller input ranges, e.g., for modular additions. For instance, when choosing m = 5
and k = 16, inputs of up to ≈ 16 · q can be handled at the cost of only 18 × 3-bit and
4× 14-bit multiplications.
The preferred method for modular multiplications is the Montgomery algorithm. For

modular additions/subtractions, conditional subtractions are the most optimal solution.
This method subtracts q from the input (e.g., the sum) if it is larger or equal to q.
Otherwise, the input is left unchanged. In this thesis, all NTT hardware architectures
use the cheaper conditional subtraction instead of the Barrett algorithm for modular
additions and subtractions. It must be noted that many software implementations use
the lazy reduction method at the sampling and ring arithmetic to improve the perfor-
mance [ADPS16a]. At this method, the operands are only reduced by the modulus when
the input range gets too large or when all subsequent computations are completed. There-
fore, designs must be carefully implemented to avoid precision errors when changing the
reduction method.

Efficient modular reduction for the Cooley–Tukey algorithm. The modular additions
and subtractions of Lines 12, 13, and 27 in Algorithm 9 can be directly performed with a
conditional subtraction (csub). The prime q can be added before the reduction is applied
to avoid negative numbers at the modular subtraction. In order to allow the usage of
the Montgomery reduction, the precomputed values of ωm are stored in the Montgomery
representation (Lines 3 and 21), i.e., ωm = ω

n/m
n · R mod q for the forward transform

and ωm = ω
−n/m
n · R mod q for the inverse transform. The variable ω is initialized

with values that are in the Montgomery domain, i.e., ω = ω
n/(2m)
n · R mod q for the

forward transform or ω = R for the inverse transform, to ensure that the update of the
Twiddle factor in Lines 17 and 29 remains in the Montgomery domain. Thus, all modular
multiplications, including the multiplications of Twiddle factors and coefficients, can be

41

3 Loosely Coupled Coprocessors for PQC

conducted with Montgomery reductions.

Hiding NTT post-processing costs. The multiplications by the powers of γ = γn
(pre-processing) for the forward NTT can be realized by the discussed initialization of
ω (see paragraph: “Optimized Cooley–Tukey algorithm”). Realizing the multiplications
by n−1 and the inverse powers of γn (post-processing) is more complicated. This work
shows a methodology to integrate the post-processing directly into the Cooley–Tukey
algorithm without requiring large precomputations for the inverse powers of γn. The
optimized method, which affects the last NTT layer, is illustrated in Algorithm 12. In
the last round of the NTT, the coefficients ai and ai+n/2 are stored in the same word
(loop counter is equal to the indexing variable j = i in the last round). Four coefficients
are always loaded (memory locations MEMj and MEMj+1) to use the same pipeline
structure as for the first NTT layers. The scaling factor α1 is used to multiply n−1γ−in
with coefficient ai; α2 to multiply n−1γ−i−1n with ai+1; α3 to multiply n−1γ−i−n/2n with
ai+n/2; and α4 to multiply n−1γ−i−n/2−1n with ai+n/2+1. The scaling factors α1, α2, α3,
and α4 (Lines 4–7) are therefore initialized for the first coefficients with the precomputed
values n−1R mod q, n−1γ−1n R mod q, n−1γ−n/2n R mod q, and n−1γ

−n/2−1
n R mod q,

respectively. Note that the Montgomery representation is used during the initialization.
The butterfly operation is performed in Lines 13–17. The post-processing at the INVNTT
corresponds to multiplications of the coefficients in MEMj and MEMj+1 with α1, α2, α3,
and α4. In Lines 21–22, the values of α1, α2, α3, and α4 are updated. The discussed
approach does not require extra clock cycles for the post-processing step as the proposed
algorithm allows integrating this step into the pipeline structure.

3.3.2 NTT Hardware Accelerator

This section presents the developed NTT hardware architecture. It requires several
design parameters that depend on the specific scheme. These parameters include: (i) the
polynomial length n; (ii) the parameters q, R, and q′ for the reduction; (iii) log2(n) + 1
values of ωm (γm) or ω−1m (γ−1m) in Montgomery domain; and (iv) the precomputed scaling
parameters β, γ1, γ2, γ3, and γ4 for the INVNTT. Further, the control signals ntt_start
and inverse (for selecting NTT/INVNTT) are required.

Functionality. Figure 3.4 shows the proposed NTT architecture. It is mainly composed
of a single port RAM, Address Unit, ω/α Update Unit, and arithmetic components. For
the NTT/INVNTT operation, the RAM is first initialized with the coefficients of the
polynomial that should be transformed. In this step, the lower and higher halfword
of a 32-bit memory line are initialized with the even and odd coefficients, respectively.
The Address Unit controls the load and store operations of the operands according to
Algorithms 9 and 12. It is responsible for passing the coefficients to the arithmetic circuit
and selects the current index for the precomputed ωm/ω−1m selection.
The two coefficients from the RAM are sequentially stored in the registers L1 (lower

halfword) and H1 (higher halfword). First, the coefficients of memory location MEMk+j

42

3.3 Use Case: NewHope on RISC-V SoC Platform

Algorithm 12: Optimized last NTT layer
1 m← n

2 ωm ← ω
n/m
n ·R or ω−n/mn ·R for INVNTT

3 ω ← ω
n/(2m)
n ·R or R for INVNTT

4 α1 ← γ1 // forward: γ1 = 0, inverse: γ1 = n−1R

5 α2 ← γ2 // forward: γ2 = 0, inverse: γ2 = n−1γ−1
n R

6 α3 ← γ3 // forward: γ3 = 0, inverse: γ3 = γ1γ
−n/2
n

7 α4 ← γ4 // forward: γ4 = 0, inverse: γ4 = γ2γ
−n/2
n

8 for j = 0 to m/2− 1 by 2 do
9 aj+m/2, aj ← MEMj // Load first coefficient pair

10 H1, L1 ← aj+m/2, aj
11 aj+m/2+1, aj+1 ← MEMj+1 // Load second coefficient pair
12 H2, L2 ← aj+m/2+1, aj+1

13 H1 ← montgomery(H1 · ω)
14 ω ← montgomery(ω · ωm)
15 H2 ← montgomery(H2 · ω)
16 aj+m/2, aj = csub(L1 −H1 + q), csub(L1 +H1)
17 aj+m/2+1, aj+1 = csub(L2 −H2 + q), csub(L2 +H2)
18 if INVNTT then
19 aj+m/2, aj ← montgomery(α3 · aj+m/2), montgomery(α1 · aj)
20 aj+m/2+1, aj+1 ← montgomery(α4 · aj+m/2+1), montgomery(α2 · aj+1)
21 α1, α2 ← montgomery(α1 · β), montgomery(α2 · β) // β = ω−1

n R

22 α3, α4 ← montgomery(α3 · β), montgomery(α4 · β) // β = ω−1
n R

23 end
24 MEMj ← aj+m/2, aj // Store without swap
25 MEMj+1 ← aj+m/2+1, aj+1 // Store without swap
26 ω ← montgomery(ω · ωm)

27 end

43

3 Loosely Coupled Coprocessors for PQC

inverse

ntt_start

Single
Port
RAM
with
MUX

do_ext

di_ext

addr_r_ext

addr_w_ext

we_ext

H1

L1

do2

do1

×

ωmH1

- +

L1 L1

ω

R1 R4

×

α2α1β

α1,2

×

α3 α4 β

α3,4

R2 R5

R3

Address
Unit

ad
dr

_r

ad
dr

_w

we

n

di1

di2

ω/α
Update
Unit

β, γ1, γ2, γ3, γ4, table with ωm / ω−1m

ωm
ω

α1,2

α3,4

in
de

x

α1α2α3α4

Figure 3.4: NTT architecture (parts for post-processing in red).

are loaded and processed (modular multiplication, addition, and subtraction operations
are performed). One clock cycle later, the memory location MEMk+j+m/2 is loaded and
processed. The first log2(n)−1 rounds require a swap of the coefficients (see Lines 14–15,
Algorithm 9). The registers R1–R5 are used to store intermediate results to allow the
swapping operation. The data of R4 and R5 is written back to the memory location
MEMk+j during the first write cycle and the data of R2 and R3 to MEMk+j+m/2 during
the second one. For the last round, no swap is required, and the results of R2 and R5

are written in the first and second write cycle into MEMj and MEMj+1, respectively.

Additional components that are required for the INVNTT are highlighted in red in
Figure 3.4. This includes multipliers for realizing Lines 19–22 of Algorithm 12.

The ω/α Update Unit ensures that the variables ω, α1, α2, α3, and α4 are initialized
and updated. For the update ω = ω · ωm, the multiplier of the butterfly operation
upper multiplier) is reused. In the last NTT layer, each loop iteration requires two
multiplications of the coefficients with ω and another two multiplications for the updates
of ω. These four multiplications fit exactly into the four cycles that are required for
the memory access of one loop iteration. Also, the lower two multipliers are reused for
updating purposes. In each loop iteration, four multiplications with the coefficients and
four multiplications for the update of the scaling factors α1, α2, α3, and α4 are realized.
The select signals of the multiplexers ensure that the right operands are fed into the
multipliers.

44

3.3 Use Case: NewHope on RISC-V SoC Platform

3.3.3 NTT Power Optimizations

The large number of arithmetic operations required for the NTT leads to a large power
dissipation. To reduce the dynamic power consumption of the NTT, in this thesis, the
application of two methods is proposed: clock gating and operand isolation.

Clock gating. Due to the high fan-out, the clock signal usually contributes to a large
extent to the overall dynamic power consumption. Clock gating is an efficient method to
reduce this consumption. The aim of clock gating is to turn on the clock signal only for
functional units that must be active. All inactive registers have then only a static power
consumption due to leakage currents. During the clock gating optimization process,
registers with a common enable signal are grouped together. The original enable logic is
then replaced by a common gated clock cell. Special clock gating cells are used for this
purpose to avoid glitches on the gated clock signal.

Operand isolation. The second technique used in this thesis to reduce the switching
activity of the circuit is operand isolation [MBC+08]. It blocks the signal propagation
when it is not required for the functionality. This avoids unnecessary toggles and leads
to a lower dynamic power consumption. The signal propagation is usually blocked with
latches, AND gates, or multiplexers.
Operand isolation is particularly important to reduce switching activities in the arith-

metic components of the proposed design (modular adder, subtractor, multiplier). The
results of the first multiplier (H1 · ω), subtractor, and adder in Figure 3.4 are required
in only two out of four clock cycles. As a result, the input of the registers H1 and L1

can be frozen during all write cycles. At the write operation, the memory usually either
outputs the value that is currently written or zero. Therefore, the old values of H1 and
L1 must be preserved with a clock gating cell to avoid unnecessary toggles, as illustrated
in Figure 3.5. The upper multiplier is reused to update the value of ω during the idle
cycles. But the result of the multiplier for this update is not required for the subsequent
adder or subtractor circuits. In order to block the signal propagation, if not required, a
latch is added to the circuit, as shown in the right part of Figure 3.5.
The multipliers used for the inverse transform are always updated with new values

from R1 and R4 when no update of the scaling parameters is performed. As the output
of these multipliers is only required at the last layer of the inverse transform, the input
can be set to a constant value in all other rounds, as shown in Figure 3.6. Note that β
is a constant value, while R1 and R4 change their value. Thus, the default input should
be β. To reduce the switching activity, the select signals of the multiplexers should only
change if required. Putting additional conditions on the select signals requires further
logic but significantly reduces the switching activity.

Evaluation of power savings. The design was synthesized with the UMC 65 nm ASIC
technology to evaluate the power savings. A low leakage library with a high threshold
voltage was chosen to achieve a low-power design. For the measurements, a moderate
frequency of 25MHz, a nominal supply voltage of 1.2V, and a temperature of 25◦C were

45

3 Loosely Coupled Coprocessors for PQC

RAM

H1

L1

do2

do1

en
clk

×

ωmH1

- +

L1 L1

ω

Latchen

Figure 3.5: Operand isolation at input reg-
isters and after first multiplier.

R4

×

α2α1β
R1

×

α3 α4 β

Figure 3.6: Operand isolation at multipliers
for INVNTT. Set red input as
default and avoid unnecessary
switching.

Table 3.4: NTT power results (ASIC 65 nm).

Variant n Mode Pstatic (nW) Pdyn (nW) Ptotal (nW)

Non-Optimized

256
NTT 5 634 2 701 784 2 707 417
INVNTT 5 633 2 702 856 2 708 489

512
NTT 5 634 2 612 861 2 618 495
INVNTT 5 634 2 631 534 2 637 168

1024
NTT 5 631 2 663 700 2 669 331
INVNTT 5 631 2 684 750 2 690 381

Clock Gating
and

Operand Isolation

256
NTT 5 589 1 289 621 1 295 210
INVNTT 5 589 1 452 673 1 458 262

512
NTT 5 589 1 365 274 1 370 863
INVNTT 5 589 1 430 824 1 436 412

1024
NTT 5 588 1 360 870 1 366 458
INVNTT 5 588 1 423 302 1 428 890

considered. The dynamic post-synthesis power consumption using gate-level switching
activity files was determined to obtain a reasonable accuracy.
Table 3.4 summarizes the power consumption and Table 3.5 the NTT area for com-

monly used lattice-based cryptography parameter sets. The first test set has the param-
eters (n = 256, q = 7681, ωn = 3844), the second (n = 512, q = 12289, ωn = 3), and the
third (n = 1024, q = 12289, ωn = 49).
The static power consumption does not depend on the NTT parameters as the same

architecture is used for all test sets. The dynamic power consumption also does not
significantly change for different parameters. Only the energy consumption and clock
cycle count highly depend on the parameter selection—particularly on n.
The design contains in total 976 FFs, where 700 FFs are suitable for clock gating.

Clock gating and operand isolation increase the cell count by 79. The overall circuit size,
however, does not increase. When taking both optimization methods into consideration,
the total power consumption of the NTT can be decreased with the first, second, and
third parameter set by 52.16%, 47.65%, and 48.81%, respectively. This reduction is

46

3.3 Use Case: NewHope on RISC-V SoC Platform

Table 3.5: NTT area results (ASIC 65 nm).

Variant #Cells Cell-Area (µm2) Net-Area (µm2) Tot.-Area (µm2)

Non-Optimized 7 474 102 942 17 712 120 654

Clock Gating and
Operand Isolation 7 553 101 508 17 317 118 825

achieved at nearly no cost. The power consumption of the inverse transform is larger
than the one of the forward transform as the multipliers are always active during the last
round of the inverse computation.

Cycle count and storage results. The implementation requires n · dlog2(qmax)e bits for
storing the input/output coefficients and only (2·log2(n)+1)·dlog2(qmax)e bits for storing
the powers of ωm, ω−1m , and γm, where dlog2(qmax)e was set to 16 in the experiments.
When a single port RAM and one clock cycle for each memory access are considered,

the amount of required clock cycles for the NTT and INVNTT is equal to n · log2(n)
(plus 8 cycles latency). In contrast to previous hardware accelerators of the Cooley–
Tukey NTTCTbr→no, no additional clock cycles for the post-processing are required as it is
integrated into the main algorithm. This saves at least 2n clock cycles. A dual-port RAM
is more costly and has a higher area consumption but might be preferable for certain
applications focusing on high performance.

3.3.4 NewHope System Design for RISC-V

This section presents the loosely coupled coprocessors and hardware/software codesign
of NewHope.

RISC-V platform. The CV32E40P core is integrated into the PULPino microcontroller
platform discussed in Section 2.5. The overall architecture of the hardware/software
codesign is shown in Figure 3.7. The RISC-V core includes the following components:
prefetch buffer, instruction decoder, General-Purpose Register (GPR), optional Floating-
Point Register (FPR), Control and Status Register (CSR), Arithmetic Logic Unit (ALU),
multiplication unit, optional Floating-Point Unit (FPU), and Load-Store Unit (LSU).
An AXI interface is used to connect the RISC-V core with the developed hash and NTT
coprocessors. The AXI to APB bridge provides an interface for the peripherals (UART,
SPI, I2C, and GPIO). The instruction and data memories are accessible from the RISC-V
core and from the AXI interface. All peripherals and coprocessors are memory-mapped.
The corresponding address spaces are listed in Table 3.6. The address mapping is used
for the configuration of the address decoder and for the development of software drivers.

NTT coprocessor. Figure 3.8 illustrates the loosely coupled NTT coprocessor. Its main
component is a wrapper containing the NTT design discussed before. The memory-

47

3 Loosely Coupled Coprocessors for PQC

RISC-V Core

IF
ID

ID
EX

EX
WB

Prefetch
Buffer

Decode

GPR

FPR

CSR

ALU

MULT

FPU

LSU

Instruction Interface Data Interface
addrrdata addrwdata rdataB

ri
dg

e

Instr.
Mem B

ri
dg

e

Data
Mem

AXI Bus

Bridge

APB

UART SPI I2C GPIO

NTT
Coprocessor

Hash
Coprocessor

Figure 3.7: NewHope hardware/software codesign (RISC-V SoC architecture).

Table 3.6: RISC-V memory mapping of NewHope hardware/software codesign.

Address Range Peripheral
0x00000000 – 0x0000FFFF Instruction memory
0x00100000 – 0x0010FFFF Data memory
0x1A100000 – 0x1A10FFFF UART, SPI, I2C, GPIO
0x1B100000 – 0x1B10FFFF NTT coprocessor
0x1C100000 – 0x1C10FFFF Hash coprocessor

48

3.3 Use Case: NewHope on RISC-V SoC Platform

BitRev

NTT Unit

addr_ext

do_ext
di_ext
we_ext

ntt_config

Figure 3.8: Loosely coupled NTT coprocessor.

mapped signal ntt_config is used for the configuration and control of the coprocessor.
The NTT coprocessor has four main configuration modes: idle, write data to NTT
memory, read data from NTT memory, and NTT/INVNTT operation. As discussed in
Section 2.3.2, the bit-reversal operation of the NTT is a permutation of the sequence of
the coefficients. For the deployed NTTCTbr→no algorithm, this operation is required before
the NTT/INVNTT starts. Hence, the coefficients are written in bit-reversed order into
the NTT memory. While software implementations require large LUTs or expensive
operations for the bit-reversal step, in hardware, the address signal can be simply rewired
during the write operation. This ensures that the coefficients are stored in bit-reversed
order in the memory.

Hash coprocessor. The hash coprocessor, illustrated in Figure 3.9, is used to generate
the uniformly distributed public polynomial of NewHope (with SHAKE-128) and the bi-
nomially distributed secret/error polynomials (with SHAKE-256). The keccak_config
signal triggers the two main submodules of Keccak: the absorption module and permu-
tation module. It further configures the read/write access to handle the data transfer
between the main processor and Keccak coprocessor. The Keccak absorb module takes
the input of the hash function (e.g., a random seed) and the memory-mapped Keccak
parameters rate and input_length. During the absorption phase, the input is trans-
formed into a state with 25× 64 bits. The Keccak permutation module, which is based
on the implementation in [Hsi12], transforms the state according to the Keccak f-1600
function (see Section 2.4). After the permutation phase, the output is ready and stored
in the state register. The output hash length of a single run depends on the rate and
is either 1344-bit for SHAKE-128 or 1088-bit for SHAKE-256. If more randomness is
required, the state can be permuted again using the f-1600 function.

3.3.5 Experimental Results of NewHope System Design

To evaluate the performance of the proposed NewHope design, the FPGA Xilinx Zynq-
7000 (Zedboard) is used. The software is compiled with the RISC-V PULP toolchain1

(Version 7.1.1) with compiler flag -O3 (optimization for speed). The reference imple-

1https://github.com/pulp-platform/pulp-riscv-gnu-toolchain (Last accessed 1st Nov. 2021).

49

https://github.com/pulp-platform/pulp-riscv-gnu-toolchain

3 Loosely Coupled Coprocessors for PQC

Keccak
Absorb

State
25x64
bits

Keccak
Permu-
tation

round
constants

rate
input_length

Access
Unit

(R/W)

addr_ext
di_ext
we_ext
do_ext

keccak_config

Figure 3.9: Loosely coupled hash coprocessor.

Table 3.7: Cycle count of NewHope-1024 hardware/software codesign.

GenA Sample NTT INVNTT KeyGen Encaps Decaps
SW CPA Cortex-M4 [AJS16] a) 263 089 111 794 86 769 97 340 781 518 1 140 594 174 798
SW CCA Cortex-M4 [KRSS19] – – – – 1 219 908 1 903 231 1 927 505
SW CCA Cortex-M4 [ABCG20] – – 68 131 51 231 1 157 222 1 674 899 1 587 107

SW CPA (this work)
544 299 559 897 238 233 252 535

2 312 751 3 291 016 417 543
SW CCA (this work) 2 767 270 4 282 504 4 239 534

HW/SW CPA (this work)
48 730 72 840 24 119 24 119

361 927 591 779 168 505
HW/SW CCA (this work) 784 734 1 534 879 1 229 142

a) ChaCha20 instead of SHAKE primitives are used to achieve a higher speedup.

Table 3.8: Resource utilization of NewHope-1024 hardware/software codesign.

Complete Design
LUT FF DSP BRAM

Extended PULPino 27 801 15 189 15 33

Single Components and Accelerators
LUT FF DSP BRAM

RISC-V core 6 062 2 210 6 0
Peripherals+Memory 5 373 5 193 0 32
NTT coprocessor 647 416 9 1
Keccak coprocessor 11 049 4 097 0 0

50

3.4 Summary

mentation is based on the C code of the NewHope NIST submission [AAB+19a]. The
largest parameter set with the highest security level (NewHope-1024) is selected for the
evaluation.
The clock cycle measurements in Table 3.7 show a significant cycle count reduction

when the loosely coupled coprocessors are used. This validates the effectiveness of the
chosen approach. The comparison to related works is not straightforward as RISC-V
software implementations are still lacking. Although the commercial ARM Cortex-M4
has a more advanced instruction set, it is due to its high relevance for embedded appli-
cations a good baseline for comparisons. The plain software implementation of this work
is significantly slower than the assembly-optimized ARM Cortex-M4 implementations
in [AJS16, KRSS19, ABCG20]. However, the achieved cycle count with the coproces-
sors is clearly better than the cycle count of these implementations. Even the use of
ChaCha20 in [AJS16] to accelerate the randomness generation does not lead to a lower
cycle count compared to the approach of this work. The cycle counts for the CCA ver-
sions of NewHope are always larger than those of the CPA versions. In particular, the
decapsulation is slower as it requires a re-encryption step to prevent CCA attacks.
Writing the coefficients of a polynomial for the NTT from the RISC-V core to the

coprocessor’s memory and reading the transformed coefficients requires in total 13 858
clock cycles. The NTT accelerator is called two times in KeyGen (27 716 cycles for
the transfer), three times in Encaps (41 574 cycles for the transfer), and one time in
the CPA version of Decaps (13 858 cycles for the transfer). Also, at the sampling of
the uniform polynomial (GenA) and the sampling of the secret and error polynomials
(Sample), the bus communication highly affects the cycle count costs. Pure hardware
implementations, e.g., the implementation in [ZYC+20], can avoid such costs and are
therefore faster than the proposed hardware/software codesign. But the design in this
work outperforms existing microcontroller implementations and at the same time offers
high flexibility.
The achieved performance comes at the cost of an increased area. Table 3.8 summarizes

the resource utilization of the complete system. The NTT coprocessor has a relatively
low amount of LUTs and FFs. The DSP slices are instantiated in the constant-time
modular multipliers. In contrast to the software implementations, this work avoids large
LUTs for the bit-reversal, Twiddle factors, and preprocessing/postprocessing.

3.4 Summary

In this chapter, two different hardware/software codesign solutions for PQC were pro-
posed. The results prove that a significant speedup can be achieved for both NTRU and
NewHope when loosely coupled coprocessors are integrated.
For NTRU, a flexible ternary hardware multiplier was designed, which achieved speedup

factors of up to 15.7 for the polynomial multiplication. To further accelerate the overall
performance, a hash accelerator could be integrated into the design.
For NewHope, optimized NTT and hash coprocessors were developed. It has been

demonstrated that constant-time reduction algorithms and the NTT postprocessing can

51

3 Loosely Coupled Coprocessors for PQC

be efficiently integrated into the Cooley–Tukey NTT algorithm with on-the-fly Twid-
dle factor computation. Further, it was shown that clock gating and operand isolation
significantly decrease the power consumption of the NTT computation.
The presented hardware/software codesigns achieve good performance results and a

high flexibility. Nevertheless, a non-negligible part of the runtime is consumed by the
bus communication. DMA modules can be used to improve the communication overhead
between the processing system and coprocessor but also increase the design complexity
and area overhead. In the next chapter, further methods are analyzed to avoid complex
bus communication, decrease the area footprint, and further increase the flexibility.

52

4 Tightly Coupled Accelerators and
Instruction Set Extensions for PQC

In this chapter, an investigation of tightly coupled hardware accelerators for
PQC is presented. In contrast to the previous chapter, the accelerators de-
veloped in this chapter are not loosely coupled but deeply integrated into
the processor. In order to investigate the advantages of this approach, this
chapter proposes tightly coupled accelerators and system evaluations for LAC
(published in [FSS20a]), NewHope/Kyber/Saber (published in [FSS20b]), and
SIKE (published in [RFS20]).

4.1 Introduction of Tightly Coupled Accelerators for PQC . . . 54
4.2 Instruction Set Extensions for the PQC Scheme LAC 55

4.2.1 Extension of Ternary Polynomial Multiplication Accelerator . 55
4.2.2 Error Correction Accelerator 58
4.2.3 Core Integration of LAC Accelerators 60
4.2.4 Experimental Results of LAC System Design 62

4.3 Instruction Set Extensions for the PQC Schemes NewHope,
Kyber, and Saber . 63

4.3.1 Optimizing the NTT for a Tight Coupling 64
4.3.2 Tightly Coupled NTT Accelerator 67
4.3.3 Experimental Results of Tightly Coupled NTT Accelerator . . 70
4.3.4 Tightly Coupled Accelerator for Karatsuba/Toom–Cook Multi-

plications . 70
4.3.5 Tightly Coupled Hash Accelerator 72
4.3.6 Tightly Coupled Binomial Sampling Accelerator 73
4.3.7 Experimental Results of Keccak and Polynomial Sampling . . 75
4.3.8 Core Integration of Modular Arithmetic and Sampling Acceler-

ators . 75
4.3.9 Experimental Performance Results 78
4.3.10 Experimental Resource Consumption Results 81

4.4 Instruction Set Extensions for the PQC Scheme SIKE . . . 83
4.4.1 Bottlenecks of Isogeny-Based Cryptography 85
4.4.2 System Integration of SIKE Accelerators 85
4.4.3 Experimental Results of SIKE System Design 85

4.5 Summary . 87

53

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

4.1 Introduction of Tightly Coupled Accelerators for PQC

Integrating application-specific hardware accelerators directly into the processor core can
improve important design parameters. It avoids complex bus communication and can
lead to higher flexibility compared to standalone hardware or loosely coupled coproces-
sor solutions. For instance, copying the large polynomials of structured lattice-based
cryptography from the system memory to the accelerator is very costly. DMA modules
can be helpful but are also not the optimal solution due to an increase in the design
complexity and the necessity of DMA setup routines. Therefore, this chapter explores
how accelerators for PQC can be directly integrated into the core region. Thus, system
resources can be reused, complex bus communication can be avoided, and accelerators
have direct access to the processor’s register files.

Related works. The rapid advances in open-source processor designs and the RISC-
V ISA foster research in the areas of tightly coupled cryptographic accelerators and
instruction set extensions. Different RISC-V security working groups have elaborated
cryptographic extensions—particularly for symmetric ciphers [OM20]. Further, recent
works proposed instruction set extensions for AES [MNP+20] and ChaCha20 [MPP21].
As discussed in Chapter 3, previous hardware designs for PQC rather focused on stan-

dalone hardware solutions and partly on loosely coupled coprocessors. Only a few works
have investigated tightly coupled PQC accelerators. The first tightly coupled accelerators
for the lattice-based scheme LAC were developed by the thesis author in [FSS20a]. This
publication is summarized in Section 4.2. In [AEL+20], a small tightly coupled finite field
accelerator for NewHope and Kyber was developed. Concurrently, more powerful tightly
coupled accelerators for NewHope, Kyber, and Saber were developed by the thesis au-
thor in [FSS20b]. The corresponding work is summarized in Section 4.3. The first tightly
coupled accelerators for isogeny-based cryptography were proposed by the thesis author
in [RFS20]. The respective design and analysis are recapitulated in Section 4.4. RISC-V
vector extensions for the code-based scheme Classic McEliece running on a relatively
powerful RISC-V core were investigated in [PGZMG21].

Contribution. This chapter analyzes RISC-V ISA extensions and tailored tightly cou-
pled hardware accelerators for PQC. In contrast to [AEL+20], all bottlenecks are consid-
ered, and more powerful approaches are evaluated.
The contributions of this chapter can be summarized as follows:

• System design of LAC on a RISC-V platform with tightly coupled accelerators and
ISA extensions;

• Enhancement of the ternary polynomial multiplier of Section 3.2.2 to support dif-
ferent convolution modes and investigation of accelerators for the error correction
used in LAC;

• System design of NewHope, Kyber, and Saber on a RISC-V platform with tightly
coupled accelerators and ISA extensions;

54

4.2 Instruction Set Extensions for the PQC Scheme LAC

• Development of tightly coupled accelerators for NTT multiplications, Karatsuba/
Toom–Cook multiplications, and polynomial sampling with optimized memory ac-
cess strategy and reuse of system resources;

• System design of SIKE on a RISC-V platform with tightly coupled accelerators for
large finite field arithmetic.

4.2 Instruction Set Extensions for the PQC Scheme LAC

LAC is based on the RLWE problem and has high similarities with NewHope. The
particularity of LAC is the integration of a powerful error correction into the protocol.
It uses Bose–Chaudhuri–Hocquenghem (BCH) codes to decrease the protocol’s intrin-
sic failure rate in order to allow a reduction of the coefficient sizes and, consequently,
key/ciphertext sizes. LAC is the only LWE-based scheme that has ternary secret and
error polynomials and requires, just like NTRU, ternary polynomial multiplications. But
in contrast to NTRU, it uses the cyclotomic polynomial φ = xn + 1 instead of xn − 1.
The next sections discuss how to increase the flexibility of ternary polynomial multipliers
and how to accelerate the error correction of LAC.

4.2.1 Extension of Ternary Polynomial Multiplication Accelerator

In this section, the ternary hardware multiplier presented in Section 3.2.2 is extended to
support both positive and negative wrapped convolutions. The hardware architecture of
this multiplier is shown in Figure 4.1. The components highlighted in red are added to
support the convolution for φ = xn + 1. The multiplexers forward ai or the negation
of it. The select signal seli = 0 for positive wrapped convolutions (conv_n = 0). For
negative wrapped convolutions (conv_n = 1), seli = 1 if i > n− 1− cntr and seli = 0
otherwise, where the value of cntr is equal to the current clock cycle (from 0 to n− 1).
After n clock cycles, the coefficients of the result are ready to be forwarded from the
registers c0, . . . , cn−1 to the output c.

Example 4 (Extended Ternary Multilier)

Let a = a0 + a1x + a2x
2 and b = b0 + b1x + b2x

2 be two ring elements in Zq/〈φ(x)〉
with n = 3. Let cntr be equal to the current clock cycle and let k = n− 1− cntr be an
auxiliary variable used for the select signals of the multiplexers. Table 4.1 illustrates the
register content of the ternary multiplier, which contains after three steps (clock cycles)
the result c = c0 + c1x + c2x

2 = ab mod x3 − 1. In this case, the multiplexers MUX0–
MUX2 always select the positive serialized coefficient ai. Table 4.2 shows the register
content for φ(x) = x3 + 1. Now, it holds seli = 1 if i > k. When seli = 1, the i-th
MUX forwards the negative coefficient −ai instead of the positive one. This realizes the
negative wrapping.

55

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

cn−1 M
A
U

cn−2 M
A
U

. . . c0 M
A
U

Control Unit
cntr

ai

bn−1 bn−2 b0

seln−1 seln−2 sel0

. . .

. . .

start rst conv_n

sel

a ∈ R3 b ∈ Rq

c ∈ Rq

Figure 4.1: Extended ternary multiplication accelerator.

Table 4.1: Example ternary multiplier positive wrapped convolution (conv_n = 0).

cntr k MUX2|MUX1|MUX0 c2 c1 c0
0 2 +a0 + a0 + a0 a0b0 a0b2 a0b1
1 1 +a1 + a1 + a1 a0b1 + a1b0 a0b0 + a1b2 a0b2 + a1b1
2 0 +a2 + a2 + a2 a0b2 + a1b1 + a2b0 a0b1 + a1b0 + a2b2 a0b0 + a1b2 + a2b1

Table 4.2: Example ternary multiplier negative wrapped convolution (conv_n = 1).

cntr k MUX2|MUX1|MUX0 c2 c1 c0
0 2 +a0 + a0 + a0 a0b0 a0b2 a0b1
1 1 −a1 + a1 + a1 a0b1 + a1b0 a0b0 − a1b2 a0b2 + a1b1
2 0 −a2 − a2 + a2 a0b2 + a1b1 + a2b0 a0b1 + a1b0 − a2b2 a0b0 − a1b2 − a2b1

Software-based polynomial splitting. The proposed multiplication architecture scales
directly with the polynomial length n, where n = 512 for LAC-128 and n = 1024 for
LAC-192/LAC-256. In order to use the same hardware architecture for all three security
levels, this work proposes to perform a software-based split when n = 1024 is set.
The software split is described in the following paragraphs. The length-m polynomials

a and b can be split into length-m/2 polynomials: (i) lower part (al, bl); and (ii) higher
part (ah, bh). The multiplication with these smaller polynomials can be written as

c = ab = albl + (albh + ahbl)xm/2 + ahbhxm . (4.1)

56

4.2 Instruction Set Extensions for the PQC Scheme LAC

Note that Karatsuba’s algorithm reduces the four polynomial multiplications in Equa-
tion 4.1 to three. However, Karatsuba’s approach requires the multiplication of (ah+al) ·
(bh+bl) (see Section 2.3.3, Equation 2.7). The addition of ah+al performed in Zq/〈φ(x)〉
leads to a polynomial that is not ternary anymore (although ah, al are initially ternary).
Therefore, Karatsuba’s algorithm requires general multiplications Rq × Rq, preventing
the applicability of the ternary multiplier. Enhancing the ternary multiplier to support
general multiplications implies an increase in the design complexity. Therefore, Karat-
suba’s tweak is not applied in this case.

A length-512 ternary multiplier presents a good trade-off between performance and
area. It directly supports LAC-128 and requires a split for LAC-192/LAC-256. Let
MulTernary512 be the ternary hardware multiplication operation supporting length-
512 multiplications. In order to use MulTernary512 for multiplications of length-
1024 polynomials, a two-level polynomial split must be performed: first a split into
length-512 and then into length-256 polynomials. The reason for the second split is
that MulTernary512 only supports reductions by x512 ± 1 and not by x1024 ± 1.
Algorithm 13 shows the two-level splitting technique. It first splits the polynomials a
and b into length-512 polynomials. In Lines 1–2, the shares of these polynomials are
forwarded to four instances of Algorithm 14, which splits the polynomials further into
length-256 polynomials in order to use MulTernary512. The four partial results of
Equation 4.1 are then recombined in Lines 3–11 (Algorithm 14). When the four instances
of Algorithm 14 completed the recombination, Algorithm 13 starts the recombination
phase in Lines 3–12. While in Algorithm 14 the recombination is done as in Equation 4.1,
Algorithm 13 already integrates the modular reduction by x1024 + 1. The polynomial
reduction by x1024 + 1 is performed by wrapping coefficients larger than 1023 negatively
around as done in Lines 5 and 11. The wrapping requires simple subtractions modular
q = 251.

Algorithm 13: SplitMulHigh(a, b, c)

Input: a, b ∈ Rn=1024

1 SplitMulLow(al, bl, cll), SplitMulLow(ah, bh, chh)

2 SplitMulLow(al, bh, clh), SplitMulLow(ah, bl, chl)
3 for i← 0 to 1024− 1 do
4 ci ← clli
5 ci ← (ci − chhi) mod q // wrap around
6 end
7 for i← 0 to 512− 1 do
8 ci+512 ← (ci+512 + clhi + chli) mod q
9 end

10 for i← 512 to 1024− 1 do
11 ci−512 ← (ci−512 − clhi − chli) mod q // wrap around
12 end

Result: c ∈ Rn=1024

57

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

Algorithm 14: SplitMulLow(a, b, c)

Input: a, b ∈ Rn=1024 with condition ∀i ≥ 512, ai = 0, bi = 0 (not Rn=512 as φ = x1024 + 1
remains after splitting)

1 MulTernary512(al, bl, cll), MulTernary512(ah, bh, chh)

2 MulTernary512(al, bh, clh), MulTernary512(ah, bl, chl)
3 for i← 0 to 512− 1 do
4 ci ← clli
5 end
6 for i← 0 to 512− 1 do
7 ci+256 ← (ci+256 + clhi + chli) mod q
8 end
9 for i← 0 to 512− 1 do

10 ci+512 ← (ci+512 + chhi) mod q
11 end

Result: c ∈ Rn=1024

4.2.2 Error Correction Accelerator

LAC uses a BCH(n=511,k=367,t=16) code for LAC-128/LAC-256 and a BCH(511, 439, 8)
code for LAC-192, where n is the codelength, k the maximum message length, and t the
number of correctable bits. The BCH decoder can be divided into three steps: calculation
of the syndromes, calculation of the error locator polynomial Λ (e.g., with Berlekamp–
Massey algorithm [Ber66, Mas69]), and calculation of the roots of the error locator poly-
nomial (e.g., with Chien search [Chi64]). In this work, the Chien search is accelerated.
It is the costliest operation for the selected BCH code parameters (see Section 4.2.4).

Hardware architecture Galois field multiplier. The BCH codes used in LAC require
arithmetic operations in the Galois field GF(2m) with m = 9. Let α be a primitive ele-
ment in GF(2m) and the generator for the closed finite field F ∗q = {0, 1, α, α2, . . . , α2m−2}.
The multiplicative group F ∗q is also called power representation. To obtain the vector
representation of the finite field, first x of the primitive polynomial p(x) = 1 + x4 + x9

(for m = 9) is substituted with α and the equation is then set to zero. This results into
α9 = 1 + α4 (with binary additions). Using this knowledge, the vector representation
can be constructed. For example, α9 = 1 +α4 =̂ (100010000), α10 = α9α = (1 +α4)α =
α+ α5 =̂ (010001000), and α11 = α2 + α6 =̂ (001000100).
The vector representation is especially suitable for finite field additions as simple XOR

operations are sufficient. GF-multiplications in the vector representation are more com-
plicated than additions. The developed GF-multiplication module of this work, which
is presented in Figure 4.2, is based on the architecture in [LC04]. It has a shift-and-
add structure with interleaved reduction by the primitive polynomial. This reduction
is achieved by the feedback loop. For m = 9, the result of register c8 is fed back to
the inputs of c0 and c4. The AND and XOR gates are used to perform the required
binary multiplications and additions, respectively. The bits ai of the input a are directly
assigned to the first input of the AND gates. The Control Unit selects and forwards

58

4.2 Instruction Set Extensions for the PQC Scheme LAC

+ c0 + c1 + c2 + c3 + . . . + c8

en rst en rst en rst en rst en rst

a0 a1 a2 a3 a4 a8

Control Unit
en
rst sel

b8
b7
b6
b5
b4
b3
b2
b1
b0

. . .

a b

cstart rst

Figure 4.2: Galois field multiplier.

sequentially the bits bi to the second input of the AND gates, beginning in the first clock
cycle with the last element b8. It further triggers the computation when start = 1 and
stops the rotation after m cycles. The result of the registers is then forwarded to the
output c.

Hardware architecture Chien search. The last step of the decoding process and the
most time-consuming one is to find the roots of the error locator polynomial Λ(x) =
λ0 +λ1x+ · · ·+λtx

t, where t denotes the maximum number of correctable errors, and λi
is a finite field element. The root-finding problem can be solved using the Chien search
algorithm [Chi64]. It successively substitutes x of Λ(x) with 1, α, α2, . . . , αn−1, where n
is the code-length:

Λ(αi) = λ0 + λ1α
i + · · ·+ λtα

it . (4.2)

If αl turns out to be a root, there is an error at the location number n − l. As the
codeword in LAC is systematic, and the message length is only 256-bit, not all powers
of α must be checked, i.e., only Λ(α112) to Λ(α368) for LAC-128/LAC-256, and Λ(α184)
to Λ(α440) for LAC-192.
Special circuits for multiplying a field element with the constant αi exist [LC04]. How-

ever, for each constant, a different circuit would be required. The general Galois field
multiplier is used (MUL-GF) to achieve high flexibility while keeping the area overhead
low. In order to speed up the arithmetic operations of Equation 4.2, four field multipli-
cations and accumulations are computed in parallel, as shown in Figure 4.3. Thus, the
equation is split into two parts for t = 8 and into four parts for t = 16:

59

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

×
MUL-GF

×
MUL-GF

×
MUL-GF

×
MUL-GF

+

outj

α1+4j α2+4j α3+4j α4+4jλ1+4j λ2+4j λ3+4j λ4+4j

start

rst

loop

Figure 4.3: Chien search multiplier.

Λ(αi) = λ0 +

t/4−1∑
j=0

λ1+4jα
i(1+4j) + λ2+4jα

i(2+4j)

+λ3+4jα
i(3+4j) + λ4+4jα

i(4+4j) = λ0 +

t/4−1∑
j=0

outj .

(4.3)

A feedback loop from the output to the input is set in order to avoid an update of the
multiplier input values in each i-th check (Λ(αi)). The values λ1+4j to λ4+4j are only
loaded to the second input of the GF multipliers in the first round. In all other rounds,
the result is fed back (loop enabled), thus increasing the performance. The first input is
set to α1+4j for the first multiplier until α4+4j for the fourth multiplier.

4.2.3 Core Integration of LAC Accelerators

For the experiments of this chapter, the same processor and platform as in Section 3.3
are used.
The original RISC-V core is extended by the Post-Quantum ALU (PQ-ALU), as shown

in Figure 4.4. The PQ-ALU is directly placed in the execution stage of the processor
and includes the ternary multiplier (MUL-TER), the Chien search multiplier (MUL-
CHIEN), a SHA256 accelerator, and a modular reduction accelerator (MODq). The
SHA256 accelerator is based on a previous work of the author of this thesis [BFM+18]
and is not further discussed here. The MODq module is based on the Barrett reduction
(Algorithm 10, Section 3.3). Note that conditional subtractions could be used for modular
reductions when lazy reductions are avoided. However, the Barrett multiplier is very
small compared to the remaining design (see next section). Therefore, the more flexible
Barrett reduction is integrated for this specific case.

Controlling the accelerators. To access and control the custom accelerators, the RISC-
V ISA is extended by four PQC instructions: pq.mul_ter, pq.mul_chien, pq.sha256,

60

4.2 Instruction Set Extensions for the PQC Scheme LAC

RISC-V Core

IF
ID

ID
EX

EX
WB

Prefetch
Buffer

Decode

GPR

FPR

CSR

ALU

MULT

PQ-ALU

LSU

Instruction Interface Data Interface
addrrdata addrwdata rdata

MUL-TER

MUL-CHIEN

SHA256

MODq

rd

rdy

rs1
rs2

en

sel

Figure 4.4: LAC hardware/software codesign.

and pq.modq. The developed instructions have the R-type instruction format (see Sec-
tion 2.5). The instruction decoder sets the sel signal according to the function fields of
the instruction. This activates the desired accelerator. The MUL-TER, MUL-CHIEN,
and SHA256 accelerators use input/output buffers as their operands are too large to fit
into two input registers rs1/rs2 and one output register rd.

The MUL-TER unit has three operation modes: read input coefficients, calculate the
multiplication, and write output coefficients. During the read input operation, five gen-
eral coefficients (8-bit each) and five ternary coefficients (2-bit each) are repetitively
packed into the source registers rs1 and rs2 until all n = 512 coefficients are available at
the accelerator. The calculate multiplication operation computes the ternary multiplica-
tion in n cycles. During the write output operation, rd is repetitively packed with four
coefficients (8-bit each). The remaining bits not required for these operations are used
for the control of the accelerator (e.g., the conv_n signal and read/write address).

The MUL-CHIEN unit has three operation modes: read four field elements for the left
two multipliers, read four elements for the right two multipliers, and calculate/return the
result. One field element requires 9-bit. Therefore, four elements are packed into the two
source registers. The remaining bits are used for the control (e.g., the loop signal).

At the SHA256 unit, rs1 is used for the input values (8-bit each) and rs2 for the
read/write address as well as the configuration signals (generate the hash and reset the
internal state).

61

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

Table 4.3: Cycle count of LAC with tightly coupled accelerators CCA versions.

Scheme Device KeyGen Encaps Decaps GenA Sample PolyMul BCH-Dec
LAC-128 ref. [KRSS19] ARM M4 2 266 368 3 979 851 6 303 717 – – – –
LAC-192 ref. [KRSS19] ARM M4 7 532 180 9 986 506 17 452 435 – – – –
LAC-256 ref. [KRSS19] ARM M4 7 665 769 13 533 851 21 125 257 – – – –
LAC-128 ref. RISC-V 2 981 055 4 969 238 7 897 403 159 192 190 256 2 381 843 514 280
LAC-192 ref. RISC-V 10 162 502 13 388 952 23 126 138 287 736 165 185 9 482 261 220 181
LAC-256 ref. RISC-V 10 515 588 18 165 040 28 220 945 287 609 344 436 9 482 263 513 687

LAC-128 opt. RISC-V 542 814 640 237 839 132 154 746 159 134 6 390 160 295
LAC-192 opt. RISC-V 816 635 1 086 148 1 324 014 282 264 156 320 151 354 52 142
LAC-256 opt. RISC-V 1 086 252 1 388 366 1 759 756 282 264 291 007 151 355 160 296

NewHope-1024 opt. RISC-V 784 734 1 534 879 1 229 142 48 730 72 840 120 510 –

4.2.4 Experimental Results of LAC System Design

This section evaluates the performance improvement for LAC when using the proposed
accelerators. Three different security levels were analyzed: LAC-128 (NIST Level I),
LAC-192 (NIST Level III), and LAC-256 (NIST Level V). The RISC-V system with the
extended processor was synthesized and implemented using the programmable logic of
the Xilinx Zynq UltraScale+ ZCU102 platform. The software code for the RISC-V core
was compiled using the official RISC-V compiler from Berkeley (Version 8.2.0) and was
loaded via SPI to the instruction and data memory.

Constant runtime. Employing the powerful BCH error correction improves certain
characteristics of lattice-based cryptography but increases the complexity of the design.
It further introduces a potential point of attack. The authors in [DTVV19] successfully
mounted a timing attack on LAC. Timing attacks are particularly critical and must be
prevented as they are applicable in many use cases and usually do not require expensive
equipment. A constant-time version of the BCH code was proposed in [WR20] to protect
against timing attacks. As the second round implementation of LAC had initially not a
constant runtime, the constant-time BCH software implementation of [WR20] is used as
a baseline for this work. The BCH(511, 367, 16) code requires for the simulation with 16
failures 89 335 cycles (syndrome computation), 33 867 cycles (Berlekamp–Massey), and
380 748 cycles (Chien search) on the RISC-V platform. These results show that the Chien
search is the most expensive step of the decoding.

Cycle count comparison. Table 4.3 summarizes the cycle count results of four different
implementations: (i) the LAC reference implementation on ARM Cortex-M4 [KRSS19];
(ii) the LAC reference implementation on RISC-V (with constant-time BCH); (iii) the
optimized LAC implementation on RISC-V with instruction set extensions; and (v) the
optimized NewHope hardware/software codesign of Section 3.3.
Compared to the LAC reference implementation on ARM Cortex-M4, the reference

implementation on RISC-V is clearly slower. When comparing the optimized design
with the reference, speedup factors of 7.84 (LAC-128), 14.47 (LAC-192), and 13.44 (LAC-

62

4.3 Instruction Set Extensions for the PQC Schemes NewHope, Kyber, and Saber

Table 4.4: Resource utilization of LAC hardware/software codesign with tightly coupled accel-
erators.

LUT FF DSP BRAM
RISC-V core total 53 819 13 928 10 0
– Ternary multiplier 31 465 9 305 0 0
– Chien accelerator 86 158 0 0
– SHA256 accelerator 1 031 1 556 0 0
– Modular arithmetic accelerator 35 0 2 0

NTT accelerator (Sect. 3.3) 647 416 9 1
Keccak accelerator (Sect. 3.3) 11 049 4 097 0 0

256) are achieved. LAC-256 and NewHope-1024 can be categorized to the highest NIST
security level. Compared to the loosely coupled NewHope implementation, the optimized
LAC implementation is around 19% slower for the whole algorithm execution. The
overhead can be mainly explained by the slower SHA256 (compared to Keccak) and the
additional error-correcting code.
The functions GenA and Sample are used to generate the public polynomial and

secret/error polynomials, respectively. They use repetitive calls of SHA256 (LAC) and
Keccak/SHAKE (NewHope). The SHA256 hardware module has a lower output bit rate
compared to the Keccak implementation, but Table 4.4 shows that the required resources
are also considerably lower. This is mainly due to the size of the internal state: 256-bit
(SHA256) vs. 1600-bit (Keccak). Using the Keccak accelerator for LAC has been left
as future work. A particularly high speed improvement was achieved for the polynomial
multiplication. When the software split is used (LAC-192 and LAC-256), however, the
NTT-based approach in NewHope is faster. A multiplication at NewHope requires two
forward and one inverse NTT operation as well as further cycles for the coefficient-wise
multiplications. While the software split decreases the performance, the amount of LUTs
and registers is significantly reduced as these resources directly scale with the polynomial
length. Compared to the NTT accelerator, the ternary multiplier still requires a high
amount of LUTs and registers but no DSPs or BRAMs. In comparison to the reference
implementation on RISC-V, the total BCH decoding time was improved by a factor of
3.21 and 4.22 for LAC-128/256 and LAC-192, respectively. Although LAC is slower as
NewHope in this scenario, it should be considered that LAC has significantly lower key
and ciphertext sizes, e.g., for the highest NIST security level LAC/NewHope requires
‖pk‖ = 1 056/1 824, ‖sk‖ = 1 024/1 792, and ‖ct‖ = 1 424/2 176 bytes.

4.3 Instruction Set Extensions for the PQC Schemes
NewHope, Kyber, and Saber

The ternary multiplier for LAC is, despite its tight coupling and the polynomial splitting,
still relatively large. In order to exploit the full potential of a tightly coupled approach,
this section provides an exploration of smaller and more flexible solutions that do not

63

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

require large input/output buffers and that systematically make use of existing system
resources. As use cases, the PQC schemes NewHope, Kyber, and Saber are analyzed.
While NewHope and Kyber included the NTT as part of their specification, Saber does
not directly support NTT-based ring arithmetic.

4.3.1 Optimizing the NTT for a Tight Coupling

In this section, the design rationale and optimization techniques for the development of
a tightly coupled NTT accelerator are presented. The performance and size of such an
NTT accelerator are highly influenced by the calculation of Twiddle factors, bit-reversal
computation, and memory access strategy.

NTT algorithm selection. The polynomial length is n = 512 (NewHope-512), n = 1024
(NewHope-1024), and n = 256 (all Kyber instances). As the polynomial length highly
affects the NTT costs, different design decisions were made for NewHope and Kyber. For
NewHope, the basic NTTCTbr→no algorithm with on-the-fly Twiddle factor computation is
used to avoid large precomputed tables. For Kyber, the precomputation of the Twiddle
factors is due to the smaller polynomial length less memory consuming. Therefore,
precomputed tables together with the combination of NTTCTno→br and INVNTTGSbr→no are
used to avoid extra computational costs for the bit-reversal and post-processing steps.
On-the-fly computations of the Twiddle factors with the combination of these two NTT
algorithms are not straightforward. Hence, this combination is not applied for NewHope
in this thesis.

Memory access strategy. The NTT can be divided into log2(n) layers, with n being
the polynomial length. A naive approach requires loading and storing all n coefficients
in each layer, resulting in total in n · log2(n) load and store operations, respectively. In
order to decrease the number of memory accesses, multiple coefficients can be stored
in a single memory word, as discussed in Section 3.3. As the polynomial coefficients of
NewHope and Kyber can be expressed with at most 16-bit, two coefficients are stored
in a single word (32-bit). After performing the butterfly operation, the intermediate
results of the coefficients are swapped to prepare them for the next layer. Note that
precalculated Twiddle factors can be stored in any desired order. Such particularity
enhances the traverse possibilities through the NTT structure and allows avoiding the
swapping operation. Merging the NTT layers is another technique used in [GOPS13,
AJS16, BKS19, ABCG20]. The goal is to keep a certain amount of coefficients as long
as possible within the register file. Let l denote the total number of coefficients that can
be stored within the register file. After computing the butterfly operations for the first
l coefficients within the first layer, the results are not written back to the main memory.
Instead of completing the first layer, the next layer is already processed. This method
saves the memory accesses for the next layer. When l coefficients can be loaded into
the registers, up to log2(l) layers can be merged. The exact number of mergeable layers
depends on the selected NTT instance and must be determined on a case-by-case basis.
Previous works loaded up to 16 coefficients into the registers to process up to four NTT

64

4.3 Instruction Set Extensions for the PQC Schemes NewHope, Kyber, and Saber

levels without reloading coefficients between the layers. In [ABCG20], for NewHope-512
3 + 3 + 3 layers of in total 9 layers were merged (Layer 1–3, 3–6, and 6–9, respectively).
For Kyber, the authors in [ABCG20] merged 3 + 3 + 1 layers of in total 7 layers. In this
work, the complete FPR of the RISC-V core (32×32 bit) is used to store l = 2×32 = 64
coefficients for NewHope. An address controller loads the coefficients directly from the
FPR into two butterfly units such that the calculation of multiple NTT levels can be
performed. Kyber requires different algorithms for the forward and inverse transforms,
and thus two address controllers would be required. As this increases the complexity and
area of the design, for Kyber no dedicated address controllers are developed. An analysis
of the performance improvement of Kyber with address controller has been left as future
work. This means that in this thesis, only the GPR was used for Kyber to store l = 16
coefficients in order to merge 3 + 3 + 1 layers. Note that Kyber uses the concept of an
incomplete NTT, which leads to an early abort of the NTT transformation. For this
reason, the last layer of Kyber cannot be merged with the other ones [ABCG20]. For
further details about the incomplete NTT, please refer to Section 5.4.1.
Figure 4.5 illustrates an example of the applied NTT layer merging and swapping

techniques for the NTTCTbr←no variant that is used for NewHope. In the small example for
n = 16, eight coefficients can be loaded from the main memory into the registers (l = 8).
Two butterfly operations can be processed in parallel within the units BF0 and BF1.
The red rectangles show the order in which the coefficient pairs are processed by the two
butterfly units. In order to simplify the following description, the term distance is defined
as the difference between the positions of two coefficients in an array. At the beginning,
the first eight coefficients a0, a8, a4, a12, a2, a10, a6, a14 are loaded pairwise into the register
file. In the first layer, the distance between the coefficients that are processed together
is equal to one, i.e., they are in the same register. The coefficient pairs (a0, a8), (a4, a12)
are processed first using the two butterfly units, and (a2, a10), (a6, a14) are processed
next. Instead of storing the result back to the main memory, the second layer is already
processed. In the second layer, the distance between the coefficients that are processed
together is equal to two. It requires the results of the first layer for the coefficient pairs
(a0, a4), (a2, a6) and (a8,a12), (a10,a14). A swap is performed by the butterfly units,
indicated in Figure 4.5 by the blue arrows, as these coefficient pairs are not next to each
other, i.e., they are not within the same register. This swapping operation, which is
an exchange of 16-bit values in two registers, can be performed in hardware almost for
free. In the third layer, the distance between the coefficients that are processed together
is four, which means that some required coefficients would still be within the register
set. However, not all coefficients required for the swapping operation to prepare the
content of the registers for the next layer are in the register set. Therefore, the number
of layers that can be merged is log2(l)− 1. In the example shown in Figure 4.5, it is two.
However, the swapping technique allows always having the right coefficients in the same
word. Table 4.5 illustrates the register content and the input values for the butterfly units
BF0 and BF1 for the small example in Figure 4.5. An unoptimized version of the NTT
only loads two coefficients at the same time, has only one butterfly unit, and processes
layer after layer. While in this small example with n = 16 coefficients the unoptimized
version requires n · log2(n) = 16 · 4 = 64 memory accesses, the optimized version shown

65

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

a0

a8

a4

a12

a2

a10

a6

a14

a1

a9

a5

a13

a3

a11

a7

a15

×

×

×

×

×

×

×

×

ω0

ω0

ω0

ω0

ω0

ω0

ω0

ω0

×

×

×

×

ω0

ω0

ω0

ω0

×

×

×

×

ω4

ω4

ω4

ω4

×
ω0

×
ω2

×
ω4

×
ω6

×
ω0

×
ω2

×
ω4

×
ω6

×
ω0

×
ω1

×
ω2

×
ω3

×
ω4

×
ω5

×
ω6

×
ω7

â0

â1

â2

â3

â4

â5

â6

â7

â8

â9

â10

â11

â12

â13

â14

â15

+

+

+

+

+

+

+

+

−

−

−

−

−

−

−

−

+

+

+

+

+

+

+

+

−

−

−

−

−

−

−

−

+

+

+

+

−
−
−
−
+

+

+

+

−
−
−
−

+

+

+

+

+

+

+

+

−
−
−
−
−
−
−
−

0

0

1

1

4

4

5

5

2

3

2

3

6

7

6

7

8

9

10

11

8

9

10

11

12

13

14

15

16

17

18

19

Layer 1 Layer 2 Layer 3 Layer 4

Figure 4.5: Optimized NTTCTbr←no example with n = 16, l = 8, and two parallel butterfly
units. The red boxes indicate which coefficients are stored together and in which
order they are processed by the two butterfly units. The blue arrows indicate the
swapping.

in Figure 4.5 (n = 16, l = 8) requires n/2 · (log2(n) + 1 − (log2(l) − 1)) = 24 memory
accesses.
The algorithmic modifications required for the merging technique include the manipu-

lation of the start and end values of the outer and inner loop of Algorithm 9, Lines 2 and 6
(Section 3.3.1). For the hardware architecture, 32 registers are considered to be available
from the FPR for storing l = 64 coefficients to merge five NTT layers. The nested loops
can be split into n/64 parts. The outer loop, which indicates the current layer, starts for
each part from 21 and terminates at the value 25, i.e., m = {2, 4, 8, 16, 32}. The inner
loop iterates for the i-th part from k = 32i to k = 32i+ 31, where i ∈ [0, n/64). Instead
of loading and storing the coefficients from the main memory, the coefficients are kept
within the register set and are only refreshed between the n/64 parts.

Table 4.5: Register content and input for the two butterfly units BF0 and BF1 for the example
n = 16, l = 8.

Register Step 0 Step 1 Step 2 Step 3 Store coeffs./
content Load coeffs. BF0 BF1 BF0 BF1 BF0 BF1 BF0 BF1 Load coeffs. . . .
R0 a0, a8 a0, a8 a0, a4 a1, a9
R1 a4, a12 a4, a12 a8, a12 a5, a13
R2 a2, a10 a2, a10 a2, a6 a3, a11
R3 a6, a14 a6, a14 a10, a14 a7, a15

66

4.3 Instruction Set Extensions for the PQC Schemes NewHope, Kyber, and Saber

T
o
R
eg
is
te
r

C
on

tr
ol

Fr
om

D
ec
od

er
Fr
om

R
eg
is
te
rs

round
update_gamma
mul_gamma2
mul_gamma1
butterfly
mod_sub
mod_add
mod_mul
update_w
inv_ntt
single_bf
index
multiple_bf

Address
Unit

raddr
waddr
wen

Twiddle Update Unit

ωm[index]
LUT

ωm[index]
INVLUT ×

ω

ω′

ωωm
index’

Modular Arithmetic Unit

H1
L1
H2
L2

To Registers

Figure 4.6: NTT and Modular Arithmetic Unit.

4.3.2 Tightly Coupled NTT Accelerator

Figure 4.6 illustrates the hardware architecture of the proposed NTT and Modular Arith-
metic Unit. The architecture is composed of three main modules: Address Unit, Twiddle
Update Unit, and Modular Arithmetic Unit. The design is optimized for the NTTCTbr←no
algorithm, which is used in NewHope, but also supports different NTT algorithms. The
input of the NTT and Modular Arithmetic Unit is the content of two registers from the
processor’s register bank (with lower halfwords L1/L2 and higher halfwords H1/H2) and
the control signals from the instruction decoder. The output consists of the processed
input values and the control signals for the register bank.

Address Unit. This module controls the automatic NTT computation and the merge
of five NTT layers by setting the two read and write addresses for the register bank
according to Algorithm 9, Section 3.3 (with modified loop start and end values). In this
work, the automatic address calculation is only supported for the NTTCTbr←no variant and
therefore only for NewHope. Supporting different NTT variants would be possible but
has been left as future work. The address calculation is triggered by the multiple_bf
signal. At each clock cycle, the read/write addresses and write enable signal are updated.
The Address Unit is also responsible for selecting the correct index for the small LUT

67

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

Modular Arithmetic Unit

−

L1

L2

+

L1

L2

×

H1L1 γ1L2

ω ω′

γ1γ
−1
n L1γ1

L3

−

L2 H1 H2

+

L2 H1H2

×

H2H1 γ2 ω γ2γ
−1
n H1 γ2

H3

Reordering MUX

To Registers

mod_mul
mod_add
mod_sub
butterfly
mul_gamma1
mul_gamma2
update_gamma

round

H1

L1

H2

L2

ω′ ω

� Butterfly (DIT)
� Post-Processing – mul_gamma1
� Post-Processing – mul_gamma2
� Post-Processing – update_gamma1
� Vectorized Modular Arithmetic
(mod_mul,mod_add,mod_sub)

Figure 4.7: Modular Arithmetic Unit – butterfly operation decimation-in-time.

of the precalculated values of ωm and for triggering the Twiddle factor update. When
the NTT and Modular Arithmetic Unit is in single operation mode, the Address Unit
remains in an idle state.

Twiddle Update Unit. This module calculates the Twiddle factors ω on-the-fly. The
update of ω is always triggered by the update_w signal, which is either set by the Address
Unit or by the corresponding signal from the instruction decoder. The Twiddle factor
update ω = ω · ωm mod q is performed as described in Algorithm 9, Lines 17 and
29 (Section 3.3). The value for ωm is determined through the current NTT layer. All
log2(n) possible values for ωm are precalculated and stored in a LUT within the hardware
accelerator. The index signal is used to select the correct value from the LUT. Depending
on the value of the inv_ntt signal, either the LUT for the forward or inverse NTT is
selected.

Modular Arithmetic Unit. This module can perform the following operations: butterfly
operation (decimation-in-time and decimation-in-frequency), post-processing (mul_gamma1,
mul_gamma2, update_gamma), and vectorized modular arithmetic (mod_mul, mod_add,
mod_sub). The detailed microarchitecture of the Modular Arithmetic Unit in the butter-
fly operation mode is shown in Figure 4.7. A set of multiplexers is used to set the desired
operation.
The butterfly operation mode (triggered by butterfly) calculates two butterfly oper-

ations {L1 − H1 · ω, L1 + H1 · ω} and {L2 − H2 · ω, L2 + H2 · ω} in parallel (modular

68

4.3 Instruction Set Extensions for the PQC Schemes NewHope, Kyber, and Saber

reduction omitted in the description). The previous Twiddle factor ω′ is also forwarded
to the Modular Arithmetic Unit to allow the computation of two butterfly operations in
parallel within the last NTT layer. As a result, the utilization of the Modular Arithmetic
Unit can be increased. The Reordering MUX is responsible for preparing the coefficients
for the next round (NTT layer) by swapping the coefficients after the butterfly opera-
tion for all rounds except for the last one. The architecture is extended to support the
calculation of the decimation-in-frequency butterfly operation, i.e., the computation of
{(L1 −H1) · ω, L1 +H1} and {(L2 −H2) · ω, L2 +H2}. For reasons of better visibility,
this extension is not shown in Figure 4.7. In order to avoid any combinatorial loop in the
circuit, either two additional modular multipliers or modular subtractors are required.
As such subtractors are less complex than multipliers, they were chosen and placed on
top of the existing multipliers. The input values of the additional subtractors are (L1,
H1) and (L2, H2). The output is connected to the multiplexers of the left input of the
existing multipliers.
The post-processing operations (mul_gamma1, mul_gamma2, update_gamma) are used to

calculate the multiplications with n−1 and γ−in at the inverse NTT operation. These
multiplications can be merged with the last layer of the inverse NTT. The control signal
mul_gamma1 ensures that the coefficients ai and ai+n/2 of the first input (L1, H1) are
multiplied with γ1 = n−1γ−in and γ2 = n−1γ

−i−n/2
n , respectively. Before the multiplica-

tion with the first coefficients a0 and an/2 starts, γ1 is initialized with n−1γ0n mod q and
γ2 with n−1γ−n/2n mod q. The mul_gamma2 control signal is used to perform the multi-
plications with the next coefficient pair ai+1 and ai+1+n/2. The Reordering MUX brings
the results of the mul_gamma1 and mul_gamma2 operation in the desired order {ai+1, ai}
and {ai+1+n/2, ai+n/2} and assigns the result to the output. The update_gamma signal
is used to update γ1 = γ1γ

−1
n and γ2 = γ2γ

−1
n after each mul_gamma1 and mul_gamma2

operation.
The vectorized modular arithmetic (mod_mul, mod_add, mod_sub) calculates vectorized

modular multiplications (L1 · L2 mod q, H1 · H2 mod q), additions (L1 + L2 mod q,
H1+H2 mod q), and subtractions (L1−L2 mod q, H1−H2 mod q). Like the butterfly
operation, the vectorized modular arithmetic belongs to the category of packed arithmetic
and follows the Single Instruction Multiple Data (SIMD) principle.

Bit-Reversal. Reversing the bits is an expensive software task. A straightforward ap-
proach is looping through all m = log2(n) bits of an integer. The fastest solution is to
use a LUT with n entries of m bits each. For large arrays, i.e., for large polynomial
lengths, this approach leads to a high memory footprint. To achieve a better trade-off
between memory footprint and performance, the RISC-V ISA is extended, and special
instructions for the bit-reversal operation are developed. These instructions are derived
from the store word/halfword operations sw, sh. In addition to the value to be stored
and the destination address, the new instructions also take an offset. This offset is added
in bit-reversed order to the destination address. The functionality of the new instruc-
tions can be expressed as MEMrs1+bitrev(rs2) ← rd, where rs1 contains the destination
address, rs2 the offset, and rd the value that is stored. Reversing the offset in hardware

69

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

can be efficiently solved through rewiring. The bit-reversal of a whole polynomial can be
performed by loading in a loop each coefficient and storing the coefficient with the new
instruction. In this case, the offset simply corresponds to the loop counter.

4.3.3 Experimental Results of Tightly Coupled NTT Accelerator

In the remainder of this chapter, the RISC-V PULP toolchain (Version 7.1.1) with com-
piler flag -O3 (optimization for speed) is used to compile the software programs. This
toolchain supports customized instructions for the PULP cores that are not part of the
RISC-V standard. Table 4.6 summarizes the clock cycle count required for the NTT, IN-
VNTT, and bit-reversal of NewHope and Kyber. The following implementations are com-
pared: (i) the RISC-V baseline implementation derived from [AAB+19a] and [ABD+19];
(ii) the RISC-V implementations with finite field multiplication accelerator in [AEL+20];
(iii) the loosely coupled NTT accelerator implementation of Chapter 3.3; and (iv) the
tightly coupled NTT accelerator implementation of this chapter. As discussed in Sec-
tion 4.3.1, the bit-reversal (BitRev) is eliminated for Kyber. For the loosely coupled
accelerator, the bit-reversal costs are hidden through a rewiring when copying the input
coefficients to the NTT memory.
The results show that the tightly coupled approach of this work achieves the lowest

cycle count. In comparison to the baseline implementation of NewHope, it achieves
a speedup factor of 13.18/12.40 (NTT/INVNTT) for n = 512 and 13.01/11.95 (NTT/
INVNTT) for n = 1024. Further, the proposed bit-reversal instruction allows eliminating
any LUTs for this step (1024 bytes for NewHope-512 and 2048 bytes for NewHope-
1024). Moreover, it improves the performance. Although the architecture of the NTT
and Modular Arithmetic Unit is not optimized for the NTTCTno→br and INVNTTGSbr→no
variants, Kyber achieves a considerable speedup factor of 17.93/27.79 (NTT/INVNTT)
when compared to the baseline. Kyber strongly benefits from the parallel decimation-
in-frequency butterfly and vectorized modular multiplication operations.
Another advantage of the proposed architecture is the reduction of precomputations.

The NewHope reference implementation in [AAB+19a] requires 7n precomputed bytes (n
denotes the polynomial length) for the bit-reversal step, Twiddle factors, and pre-/post
processing. The proposed implementation only requires 4 · log2(n) + 4 bytes. In concrete
numbers, the LUTs were reduced from 7 168 to 44 bytes for NewHope-1024 and from 3 584
to 40 bytes for NewHope-512. Moreover, in contrast to the loosely coupled approach,
the tightly coupled architecture does not require extra memory blocks or input/output
buffers.

4.3.4 Tightly Coupled Accelerator for Karatsuba/Toom–Cook
Multiplications

Recent works proposed a combination of the Karatsuba and Toom–Cook methods to
perform the polynomial multiplication in Saber [DKRV18, DKRV20, BMKV20]. Similar
to [DKRV18], in this chapter, the polynomials of Saber are split using four-way Toom–
Cook and two consecutive levels of Karatsuba. The polynomial length is then small

70

4.3 Instruction Set Extensions for the PQC Schemes NewHope, Kyber, and Saber

Table 4.6: Cycle count of the NTT operation.

Device NTT INVNTT BitRev
NewHope-512 [ABCG20] ARM Cortex-M4 31 217 23 439 –
NewHope-512 [AEL+20] RISC-V (VexRiscv) 14 787 14 893 0
NewHope-512 baseline RISC-V (PULPino) 107 666 107 668 6 623
NewHope-512 tightly RISC-V (PULPino) 8 169 8 684 2 056

NewHope-1024 [ABCG20] ARM Cortex-M4 68 131 51 231 –
NewHope-1024 [AEL+20] RISC-V (VexRiscv) 31 295 31 735 0
NewHope-1024 baseline RISC-V (PULPino) 241 121 241 123 13 279
NewHope-1024 loosely RISC-V (PULPino) 24 119 24 119 0
NewHope-1024 tightly RISC-V (PULPino) 18 537 20 171 4 105

Kyber [ABCG20] ARM Cortex-M4 6 855 6 983 0
Kyber [AEL+20] RISC-V (VexRiscv) 6 868 6 367 0
Kyber baseline RISC-V (PULPino) 34 703 53 636 0
Kyber tightly RISC-V (PULPino) 1 935 1 930 0

enough (16 coefficients) to efficiently apply the schoolbook multiplication. At a certain
point, further splitting the polynomials does not bring any performance advantage since
the savings derived from the multiplication do not outweigh the increasing number of
additions.
Since the coefficients in Saber are, similar to NewHope and Kyber, smaller than 16-

bit, they are suitable for packed (vectorized) arithmetic. Although the ISA extension
for packed arithmetic of the RISC-V specification1 is still in draft mode, the RISC-V
core used in this work already supports some packed operations [TGS]. In the following,
useful instructions for the polynomial multiplication in Saber are listed:

pv.add.h: rd[15:0] = (rs1[15:0] + rs2[15:0]) mod 216

rd[31:16] = (rs1[31:16] + rs2[31:16]) mod 216

p.mulu: rd[31:0] = rs1[15:0] · rs2[15:0]
p.mulhhu: rd[31:0] = rs1[31:15] · rs2[31:15]
p.macuN : rd[31:0] = (rs1[15:0] · rs2[15:0] + rd) >> Is3
p.machhuN : rd[31:0] = (rs1[31:16] · rs2[31:16] + rd) >> Is3

Saber and other PQC candidates, e.g., some NTRU variants, use a power-of-two mod-
ulus with q ≤ 216. This allows processing two multiplications in parallel. Besides,
the schoolbook and Karatsuba multiplication in Equation 2.7 (Section 2) benefit from
the Multiply Accumulate (MAC) principle. As a result, a vectorized modular multiply-
accumulate function is proposed. It is defined by:

pq.mac: rd[15:0] = (rs1[15:0] · rs2[15:0] + rd[15:0]) mod q′

rd[31:16] = (rs1[31:16] · rs2[31:16] + rd[31:16]) mod q′

In this work, the parameter q′ is set to 216 in order to increase the flexibility and to

1https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/
riscv-spec-20191213.pdf Version 20191213 (Last accessed 1st Nov. 2021).

71

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

support multiple schemes. After performing the polynomial multiplication, the result can
be reduced with the original modulus q because (a mod q′) mod q ≡ a mod q if both
moduli are a power of two and q′ ≥ q. When using the pq.mac operation, the number
of clock cycles for the polynomial multiplication in Saber was reduced from 104 074 to
71 349.

4.3.5 Tightly Coupled Hash Accelerator

In Section 3.3, a loosely coupled Keccak implementation optimized for high performance
is presented. The aim of this section is to find an alternative design approach to decrease
the resource consumption while maintaining a good performance.
The resource consumption and performance mainly depend on how the Keccak state

is stored and how it is accessible for the Keccak operations θ, ρ, π, χ, and ι. The
Keccak state is a three-dimensional bit array that must be stored in a two-dimensional
memory location. Each of the Keccak operations transforms the state into a new state,
as illustrated in Figure 4.8.
In [BDH+20], the Keccak team presented three different Keccak hardware designs2:

a high-speed core, a low-area core, and a mid-range core (trade-off between speed and
area). The high-speed core is based on similar principles as the standalone loosely coupled
coprocessor presented in Section 3.3. It requires a buffer for the input message and output
hash. The Keccak state is stored in internal registers. This allows accessing all state bits
in parallel. The low-area core reuses the system memory as storage for the Keccak state.
Only some intermediate results are internally stored in this design. This method saves
a lot of resources compared to the high-speed core. On the other side, memories usually
have only one or two read/write ports. Therefore, loading and storing the Keccak state
is time-consuming. The mid-range core splits the state into smaller chunks to reduce the
area overhead. Further, the order of the permutation function is modified such that the
slice and lane-oriented steps can be processed together, respectively. As the ρ, π and ι
steps work on lanes, and the χ and θ steps on slices, the state must be loaded at least
two times for each f-1600 permutation.
The proposed accelerator of this section does not split the state into multiple parts

to keep the amount of memory accesses small. Instead, the complete state is stored in
the FPR with 32 × 32-bit registers and in a part of the GPR with 18 × 32-bit (in the
temporary registers t0–t6 and saved registers s1–s11). Still enough registers remain
untouched in the GPR to guarantee a normal operation of the RISC-V core. The saved
registers must be stored on the stack before the Keccak operation starts. In order to
keep a high degree of flexibility, one round of the Keccak f-1600 permutation function
is accelerated in hardware. The advantages of this design approach are that available
system resources are reused and that the full state can be accessed in parallel to achieve
a high performance. In contrast to the loosely coupled Keccak design, no input/output
buffers, control circuit, and absorb module are required.
Figure 4.8 illustrates the proposed tightly coupled Keccak accelerator. The accelerator

2https://keccak.team/files/Keccak-implementation-3.2.pdf (Last accessed 1st Nov. 2021).

72

https://keccak.team/files/Keccak-implementation-3.2.pdf

4.3 Instruction Set Extensions for the PQC Schemes NewHope, Kyber, and Saber

+ Rc[rnd]

θ ρ π χ ι

FPR

f0
f1
f2

. . .
f29
f30
f31

GPR

. . .
t0
. . .
t6
. . .
s1
. . .
s11
. . .

From
Decoder

keccak_rst

keccak_wen

rnd

Figure 4.8: Tightly coupled Keccak accelerator.

takes as input the mentioned registers from FPR/GPR, the round signal rnd, the start
signal keccak_wen, and the reset signal keccak_rst. Triggered by the start signal, the
accelerator performs one round of the f-1600 function, where the round signal selects
the corresponding round constant. The result of this operation is written back to the
registers.

The polynomial sampling can be performed with the following steps. The state is first
set to zero using the keccak_rst signal, which resets all related registers in one cycle.
After this initialization, the input message or a message block is written together with
a constant into a subset of the state. This step is also known as the Keccak absorption.
The state permutation will then transform this initial state. Depending on the rate, a
certain number of bits is squeezed out while a part of the state, the capacity, remains
untouched. The squeezed output is then processed to model the desired distribution of
the polynomial coefficients. Thereby, the state registers must remain untouched when
the state is not written back to the memory. In order to obtain fresh randomness,
the state is permuted and squeezed again. Keeping the state for the whole polynomial
sampling process within the registers leads to a significant performance improvement as
slow main memory accesses to store the state are avoided. Only in case of an interrupt,
the respective state registers must be stored in memory.

4.3.6 Tightly Coupled Binomial Sampling Accelerator

Many LWE-based schemes, such as NewHope, Kyber, and Saber, replaced the discrete
Gaussian error distribution with a centered binomial distribution. This increases the
efficiency and avoids complex arithmetic or table lockups. Let Ψη be a centered bino-
mial distribution with standard deviation σ =

√
η/2. Let x and x′ be two uniformly

distributed random η-bit integers and let xi denote the i-th bit of the integer x. Given

73

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

Binomial Sampling Unit

+

+

+

+

+

rs1[23 : 16]

+

+

+

+

+

rs2[23 : 16]

+

+

+

+

+

rs1[7 : 0]

+

+

+

+

+

rs2[7 : 0]

− −

rd
To GRP

From GPR

mode

Fr
om

D
ec
od

er

Figure 4.9: Binomial Sampling Unit.

x and x′, a binomially distributed sample can be retrieved by

Ψη =

η−1∑
i=0

(xi − x′i) mod q , (4.4)

for any modulus q ∈ Z.
Figure 4.9 shows the proposed tightly coupled Binomial Sampling Unit. It reads the

uniformly distributed samples of registers rs1 and rs2 and transforms them into bino-
mially distributed coefficients. Two output samples are computed in parallel as a single
coefficient is at most 16-bit for the considered schemes. The Binomial Sampling Unit
supports η = {2, 3, 4, 5, 8} to cover all instances of NewHope, Kyber, and Saber. The
least significant byte of the first input register (rs1[7 : 0]) contains the η-bit integer x,
and the least significant byte of the second input register (rs2[7 : 0]) contains the η-bit
integer x′. The two adder trees on the right side of Figure 4.9 compute s(η) =

∑η−1
i=0 xi

and s′(η) =
∑η−1

i=0 x
′
i for all η = {2, 3, 4, 5, 8}. The mode signal is responsible for the

configuration of the multiplexers. It ensures that the corresponding sums s(ηsel) and
s′(ηsel) are forwarded to the modular subtractor. The modular subtractor computes
s(ηsel) − s′(ηsel) mod q as in Equation 4.4. The left side of Figure 4.9 transforms the
next sample pair in parallel. The corresponding uniform input samples are located in
the upper halfword of rs1 and rs2. The results of the two modular subtractions are
combined in register rd.

74

4.3 Instruction Set Extensions for the PQC Schemes NewHope, Kyber, and Saber

Table 4.7: Cycle count of SHAKE-256 (32-byte input/output length), GenA, and Sample.
Kyber and Saber have for all parameter sets the same polynomial length. The
results for the sampling are given for the generation of one polynomial.

SHAKE-256 GenA Sample
NewHope-512 baseline 31 907 272 615 280 079
NewHope-512 tightly 308 10 136 7 847

NewHope-1024 baseline 31 907 548 019 560 058
NewHope-1024 loosely – 48 730 72 840
NewHope-1024 tightly 308 20 205 15 643

Kyber-512 baseline 31 907 501 300 33 902
Kyber-512 tightly 308 22 414 2 375

Lightsaber baseline – 306 387 130 896
Lightsaber tightly – 9 652 3 260

4.3.7 Experimental Results of Keccak and Polynomial Sampling

Table 4.7 summarizes the clock cycle count for the accelerated SHAKE-256, uniform
sampling of polynomial a (GenA), and binomial sampling from the error distribution
(Sample). The proposed tightly coupled approach accelerates SHAKE-256 by a factor
of 103.59 compared to the software baseline implementation on RISC-V. For GenA, a
speedup factor of up to 27.12 for NewHope, 22.37 for Kyber, and 31.74 for Saber is
achieved. For Sample, the measured speedup factors are between 14.27 and 40.15. The
speedup for Kyber is smaller compared to NewHope or Lightsaber due to the smaller
variance of the error distribution.
The tightly coupled approach is significantly faster than the speed-optimized loosely

coupled coprocessor of Section 3.3. The main reason for the remarkable performance is
that the Keccak state is held within the register sets for the complete sampling process,
and complex bus communication is completely avoided.

4.3.8 Core Integration of Modular Arithmetic and Sampling Accelerators

Figure 4.10 illustrates the architecture of the CV32E40P RISC-V core with integrated
modular arithmetic and sampling accelerators. It consists of two new components PQI-
ALU and PQII-ALU. All accelerators within these components are added as modules
and can be selected using dedicated define directives.
The PQI-ALU contains the NTT and Modular Arithmetic Unit and the Keccak accel-

erator. It is placed within the decode stage to achieve a particular tight coupling to the
register sets. This avoids routing a large number of register signals to the execution stage.
The PQII-ALU contains the Binomial Sampling Unit. This accelerator requires access
to two input and one output register. In order to reuse existing hardware resources, the
pq.mac operation is directly integrated into the MULT Unit. The hardware resources for
performing the multiplications are already available in the MULT Unit. An extension
for the pq.mac support comes with a negligible overhead of multiplexers and two adders.
The developed post-quantum instructions to control the accelerators can be divided

75

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

RISC-V Core

IF
ID

ID
EX

EX
WB

Prefetch
Buffer

Decode

GPR

FPR

PQI
ALU

CSR

ALU

MULT
pq.mac

PQII
ALU

LSU

Instruction Interface Data Interface
addrrdata addrwdata rdata

BitRev

NTT and Modular
Arithmetic Unit Keccak

Binomial
Sampling Unit

Figure 4.10: RISC-V core integration of tightly coupled accelerators.

into seven main classes: NTT configuration, NTT operation, modular arithmetic, bit-
reversal, PQ-MAC, Hash, and binomial sampling. A complete list of all instructions is
provided in Table 4.8.

NTT configuration class. This class contains instructions for the following function-
alities: (i) setting the scheme NewHope-512, NewHope-1024, or Kyber (all security
categories); (ii) setting the forward or inverse NTT; and (iii) setting either the first
rounds or the last round of the NTT. Selecting one of the NewHope variants sets the
modulus to q = 12289 and the Montgomery parameter for the modular multipliers to
−q−1 mod R = 12287 with R = 218. When Kyber is selected, q = 3329 and −q−1
mod R = 199935 is set. Setting the forward or inverse NTT determines the selection for
the precomputed values of ωm. The selection of the first rounds or last round activates
or deactivates the swapping of coefficients.

NTT operation class. This class contains all instructions for the optimized NTTCTbr←no
computation. The pq.ntt_multiple_bf instruction triggers the automatic calculation
of the five merged NTT layers. The pq.ntt_single_bf instruction is used to calculate
two parallel decimation-in-time butterfly operations. The instructions pq.update_m and
pq.update_omega are used to control the Twiddle Update Unit. The pq.mul_gamma1,
pq.mul_gamma2, and pq.update_gamma instructions are provided for the multiplications
with n−1 and γ−in at the inverse transform.

Modular arithmetic class. This class contains instructions for the vectorized modular
multiplication, addition, subtraction, and butterfly operations (decimation-in-time and
decimation-in-frequency). For these operations, rs1 and rs2 are used as source registers
and rd as the destination register. At butterfly instructions, rs1 is also used for the

76

4.3 Instruction Set Extensions for the PQC Schemes NewHope, Kyber, and Saber

Table 4.8: PQC ISA extension for lattice-based cryptography

Opcode Funct3 Funct7 Operation Name Cycles
111 0111 000 0000000 NTT Configuration: pq.set_kyber 1
111 0111 001 0000000 NTT Configuration: pq.set_newhope512 1
111 0111 010 0000000 NTT Configuration: pq.set_newhope1024 1
111 0111 011 0000000 NTT Configuration: pq.set_fwd_ntt 1
111 0111 100 0000000 NTT Configuration: pq.set_inv_ntt 1
111 0111 101 0000000 NTT Configuration: pq.set_first_rounds 1
111 0111 110 0000000 NTT Configuration: pq.set_last_round 1
111 0111 000 0000001 NTT Operation: pq.ntt_multiple_bf 83
111 0111 001 0000001 NTT Operation: pq.ntt_single_bf 1
111 0111 010 0000001 NTT Operation: pq.update_m 1
111 0111 011 0000001 NTT Operation: pq.update_omega 1
111 0111 100 0000001 NTT Operation: pq.mul_gamma1 1
111 0111 101 0000001 NTT Operation: pq.mul_gamma2 1
111 0111 110 0000001 NTT Operation: pq.update_gamma 1
111 0111 000 0000010 Modular Arithmetic: pq.mod_mul 1
111 0111 001 0000010 Modular Arithmetic: pq.mod_add 1
111 0111 010 0000010 Modular Arithmetic: pq.mod_sub 1
111 0111 011 0000010 Modular Arithmetic: pq.bf_dit 1
111 0111 100 0000010 Modular Arithmetic: pq.bf_dif 1
111 0111 000 0000011 Bit-reversal: pq.br256 1
111 0111 001 0000011 Bit-reversal: pq.br512 1
111 0111 010 0000011 Bit-reversal: pq.br1024 1
111 0111 000 0000100 Hash: keccak.f1600 1
111 0111 000 0000101 Binomial Sampling: pq.bs_k2 1
111 0111 001 0000101 Binomial Sampling: pq.bs_k3 1
111 0111 010 0000101 Binomial Sampling: pq.bs_k4 1
111 0111 011 0000101 Binomial Sampling: pq.bs_k5 1
111 0111 100 0000101 Binomial Sampling: pq.bs_k8 1
111 0111 000 0000110 Vectorized Modular Multiply Accumulate: pq.mac 1

77

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

second output. In contrast to the pq.ntt_single_bf operation, used for the optimized
NTTCTbr←no, the pq.bf_dit operation does not use registers from the FPR but the GPR.

Bit-reversal class. This class contains the bit-reversal instructions for the polynomial
lengths n = 256, n = 512, and n = 1024. The register rd contains the value that has to
be stored, rs1 the base address of the store location, and rs2 the offset value. The LSU
handles the bit-reversal and stores the coefficient to the desired location.

PQ-MAC class. This class contains the vectorized modular multiply-accumulate in-
struction pq.mac as described in Section 4.3.4.

Hash class. This class contains the Keccak instruction keccak.f1600. The register rs1
selects the current Keccak round, and rs2 is used to reset the state.

Binomial sampling class. This class contains instructions to turn uniform samples
stored in rs1 and rs2 into binomially distributed coefficients stored in rd.
Except for the pq.ntt_multiple_bf operation, all operations are single cycled. The

pq.ntt_multiple_bf function requires 83 clock cycles (80 cycles for the functionality and
3 cycles to fill the address generation pipeline) to complete the automized NTT opera-
tions for the merged layers. While the pq.ntt_multiple_bf writes the last results to the
registers, the processing element can already read the first results after 68 cycles.

4.3.9 Experimental Performance Results

Table 4.9 summarizes the benchmark results of the proposed tightly coupled accelera-
tors. Four implementation categories are benchmarked to analyze the influence of the
proposed accelerators on the two performance bottlenecks: (i) baseline implementation;
(ii) implementation with optimized modular arithmetic and NTT computations (using
NTT and Modular Arithmetic Unit, bit reversal, and pq.mac); (iii) implementation with
optimized polynomial sampling (using Keccak and Binomial Sampling Unit); and (iv)
implementation with all optimizations presented in this chapter. The baseline implemen-
tations are derived from the reference implementations in [AAB+19a], [ABD+19], and
[DKRV20].

Comparison with baseline implementations. Compared to the baseline implementa-
tion, a cycle count speedup factor of up to 11.39 for NewHope, up to 9.62 for Kyber, and
up to 2.65 for Saber was achieved for a complete algorithm run. It must be noted that
the baseline implementation might be improved using assembly optimizations. However,
assembly optimizations for RISC-V are still largely unexplored. Although the NTT and
Modular Arithmetic Unit is not particularly designed for the NTT types used in Kyber, a
significant performance improvement was measured. Due to the early abort of the NTT,
Kyber has a complex basecase multiplication, which highly benefits from the proposed

78

4.3 Instruction Set Extensions for the PQC Schemes NewHope, Kyber, and Saber

vectorized modular arithmetic instructions. For the Saber instances, the polynomial mul-
tiplication remains the performance bottleneck, although the pq.mac operation already
brings a considerable improvement.

Comparison with ARM Cortex-M4 implementations. The presented work beats the
cycle count of the latest assembly optimized ARM Cortex-M4 implementations of New-
Hope and Kyber in [ABCG20, KRSS19]. Compared to [ABCG20], a clock cycle speedup
factor of up to 4.46 for NewHope and up to 3.84 for Kyber was achieved for a complete
algorithm run. When comparing with the Karatsuba/Toom–Cook optimized Saber im-
plementations on ARM Cortex-M4 [BMKV20], the achieved speedup factors are between
0.97 (Firesaber) and 1.16 (Lightsaber). For this comparison, it must be considered that
the deployed RISC-V core and compiler are less advanced than the commercial ARM
Cortex-M4 products.

Comparison with RISC-V implementations. The work in [AEL+20] has shown that
NewHope and Kyber can benefit from instruction set extensions for finite field mul-
tiplications. The more powerful accelerators proposed in this work lead to a further
significant speedup. In comparison to the design in [AEL+20], this work achieves a cycle
count speedup factor of up to 7.11 for NewHope and up to 6.15 for Kyber. The authors
in [AEL+20] use a Barrett multiplier to accelerate the modular arithmetic. In contrast
to the work in [AEL+20], which can calculate one modular multiplication at a time, the
proposed solution of this work is more powerful and versatile as it can calculate com-
plete vectorized butterfly operations and vectorized modular additions, subtractions, and
multiplications.
Optimizing the modular and NTT arithmetic turns out to be not sufficient to alleviate

all performance bottlenecks. For all schemes and security levels, the ISA extensions
for accelerating the polynomial sampling have shown a more significant impact on the
performance when compared to the extensions for the modular and NTT arithmetic.
Using the sampling extensions alone will already beat the cycle count of the latest ARM
Cortex-M4 implementations for NewHope and Kyber.
Furthermore, the tightly coupled design is faster than the loosely coupled NewHope

implementation in Section 3.3 (improvement factor of 3.58 for the whole algorithm). The
better performance can be explained by the reduced communication overhead (due to
the tight coupling of the NTT and Keccak accelerators) and by the introduction of vec-
torized modular arithmetic and binomial sampling instruction set extensions. Moreover,
the generic Modular Arithmetic Unit allows accelerating coefficient-wise multiplications,
additions, and subtractions.

Code size. Table 4.10 summarizes the measured code size for the baseline and opti-
mized implementations. In particular, for the optimized NewHope implementations, the
code size was significantly decreased compared to the baseline implementation. This is
mainly achieved due to the elimination of large LUTs for the Twiddle factors and bit-
reversal. Moreover, the ISA extensions have the side effect that fewer instructions for

79

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

Table 4.9: Cycle count of NewHope, Kyber, and Saber with tightly coupled accelerators.

Algorithm Device KeyGen Encaps Decaps
NewHope-512 CCA [ABCG20] ARM Cortex-M4 578 890 858 982 806 300
NewHope-512 CCA [AEL+20] RISC-V (VexRiscv) 904 000 1 424 000 1 302 000
NewHope-512 CCA baseline RISC-V (PULPino) 1 370 735 2 153 075 2 091 823
NewHope-512 CCA opt. arithmetic RISC-V (PULPino) 1 144 997 1 781 652 1 585 400
NewHope-512 CCA opt. sampling RISC-V (PULPino) 350 939 569 945 719 027
NewHope-512 CCA opt. (all) RISC-V (PULPino) 116 991 195 449 209 915

NewHope-1024 CCA [KRSS19] ARM Cortex-M4 1 219 908 1 903 231 1 927 505
NewHope-1024 CCA [ABCG20] ARM Cortex-M4 1 157 222 1 674 899 1 587 107
NewHope-1024 CCA [AEL+20] RISC-V (VexRiscv) 1 776 000 2 742 000 2 528 000
NewHope-1024 CCA baseline RISC-V (PULPino) 2 767 270 4 282 504 4 239 534
NewHope-1024 CCA loosely RISC-V (PULPino) 784 734 1 534 879 1 229 142
NewHope-1024 CCA opt. arithmetic RISC-V (PULPino) 2 238 982 3 425 458 3 076 761
NewHope-1024 CCA opt. sampling RISC-V (PULPino) 751 826 1 220 705 1 572 218
NewHope-1024 CCA opt. (all) RISC-V (PULPino) 218 367 363 658 409 444

Kyber-512 CCA [KRSS19] ARM Cortex-M4 514 291 652 769 621 245
Kyber-512 CCA [ABCG20] ARM Cortex-M4 455 191 586 334 543 500
Kyber-512 CCA [Gre20] RISC-V (VexRiscv) 1 218 557 1 592 689 1 515 876
Kyber-512 CCA [AEL+20] RISC-V (VexRiscv) 710 000 971 000 870 000
Kyber-512 CCA baseline RISC-V (PULPino) 1 137 052 1 547 789 1 525 621
Kyber-512 CCA opt. arithmetic RISC-V (PULPino) 939 932 1 223 887 1 051 003
Kyber-512 CCA opt. sampling RISC-V (PULPino) 356 758 514 652 678 938
Kyber-512 CCA opt. (all) RISC-V (PULPino) 150 106 193 076 204 843

Kyber-768 CCA [KRSS19] ARM Cortex-M4 976 757 1 146 556 1 094 849
Kyber-768 CCA [ABCG20] ARM Cortex-M4 864 008 1 032 540 969 867
Kyber-768 CCA [Gre20] RISC-V (VexRiscv) 2 288 109 2 771 517 2 653 584
Kyber-768 CCA baseline RISC-V (PULPino) 2 102 505 2 625 824 2 573 963
Kyber-768 CCA opt. arithmetic RISC-V (PULPino) 1 768 400 2 138 810 1 889 930
Kyber-768 CCA opt. sampling RISC-V (PULPino) 625 943 832 137 1 048 473
Kyber-768 CCA opt. (all) RISC-V (PULPino) 273 370 325 888 340 418

Kyber-1024 CCA [KRSS19] ARM Cortex-M4 1 575 052 1 779 848 1 709 348
Kyber-1024 CCA [ABCG20] ARM Cortex-M4 1 404 695 1 605 707 1 525 805
Kyber-1024 CCA [Gre20] RISC-V (VexRiscv) 3 686 344 4 280 420 4 123 722
Kyber-1024 CCA [AEL+20] RISC-V (VexRiscv) 2 203 000 2 619 000 2 429 000
Kyber-1024 CCA baseline RISC-V (PULPino) 3 378 603 4 024 887 3 949 039
Kyber-1024 CCA opt. arithmetic RISC-V (PULPino) 2 856 302 3 312 957 2 989 896
Kyber-1024 CCA opt. sampling RISC-V (PULPino) 872 686 1 118 704 1 385 263
Kyber-1024 CCA opt. (all) RISC-V (PULPino) 349 673 405 477 424 682

Lightsaber CCA [BMKV20] ARM Cortex-M4 466 000 653 000 678 000
Lightsaber CCA [KRSS19] ARM Cortex-M4 459 965 651 273 678 810
Lightsaber CCA baseline RISC-V (PULPino) 1 071 836 1 503 594 1 537 939
Lightsaber CCA opt. arithmetic RISC-V (PULPino) 947 777 1 317 503 1 289 533
Lightsaber CCA opt. sampling RISC-V (PULPino) 495 211 719 084 914 072
Lightsaber CCA opt. (all) RISC-V (PULPino) 366 837 526 496 657 583

Saber CCA [BMKV20] ARM Cortex-M4 853 000 1 103 000 1 127 000
Saber CCA [KRSS19] ARM Cortex-M4 896 035 1 161 849 1 204 633
Saber CCA baseline RISC-V (PULPino) 2 110 283 2 737 181 2 797 400
Saber CCA opt. arithmetic RISC-V (PULPino) 1 824 799 2 354 078 2 317 110
Saber CCA opt. sampling RISC-V (PULPino) 1 036 707 1 367 795 1 661 214
Saber CCA opt. (all) RISC-V (PULPino) 760 893 1 000 043 1 201 524

Firesaber CCA [BMKV20] ARM Cortex-M4 1 340 000 1 642 000 1 679 000
Firesaber CCA [KRSS19] ARM Cortex-M4 1 448 776 1 786 930 1 853 339
Firesaber CCA baseline RISC-V (PULPino) 3 427 099 4 215 630 4 328 885
Firesaber CCA opt. arithmetic RISC-V (PULPino) 2 918 509 3 576 818 3 560 557
Firesaber CCA opt. sampling RISC-V (PULPino) 1 790 609 2 235 737 2 633 554
Firesaber CCA opt. (all) RISC-V (PULPino) 1 300 272 1 622 818 1 898 051

80

4.3 Instruction Set Extensions for the PQC Schemes NewHope, Kyber, and Saber

Table 4.10: Code size in bytes of NewHope, Kyber, and Saber with tightly coupled accelerators.

Algorithm Device Code Size
NewHope-512 CCA [KRSS19] ARM Cortex-M4 11 000
NewHope-512 CCA baseline RISC-V (PULPino) 17 658
NewHope-512 CCA opt. RISC-V (PULPino) 9 998

NewHope-1024 CCA [KRSS19] ARM Cortex-M4 12 176
NewHope-1024 CCA baseline RISC-V (PULPino) 21 548
NewHope-1024 CCA opt. RISC-V (PULPino) 11 688

Kyber-512 CCA [KRSS19] ARM Cortex-M4 11 000
Kyber-512 CCA baseline RISC-V (PULPino) 16 928
Kyber-512 CCA opt. RISC-V (PULPino) 12 532

Kyber-768 CCA [KRSS19] ARM Cortex-M4 11 400
Kyber-768 CCA baseline RISC-V (PULPino) 17 266
Kyber-768 CCA opt. RISC-V (PULPino) 11 658

Kyber-1024 CCA [KRSS19] ARM Cortex-M4 12 424
Kyber-1024 CCA baseline RISC-V (PULPino) 17 670
Kyber-1024 CCA opt. RISC-V (PULPino) 12 874

Lightsaber CCA [KRSS19] ARM Cortex-M4 44 916
Lightsaber CCA baseline RISC-V (PULPino) 18 772
Lightsaber CCA opt. RISC-V (PULPino) 12 544

Saber CCA [KRSS19] ARM Cortex-M4 44 468
Saber CCA baseline RISC-V (PULPino) 17 912
Saber CCA opt. RISC-V (PULPino) 11 802

Firesaber CCA [KRSS19] ARM Cortex-M4 44 184
Firesaber CCA baseline RISC-V (PULPino) 17 794
Firesaber CCA opt. RISC-V (PULPino) 11 680

complex operations are required. It should also be noted that the Saber implementations
in [KRSS19] have a significantly larger memory consumption. The authors developed an
auto-generated assembly code for a fast polynomial multiplication, which, however, has
a large code size.

4.3.10 Experimental Resource Consumption Results

The enhanced RISC-V core with the proposed post-quantum instruction set extensions
is in the following named as RISQ-V. The complete design is first synthesized for an
FPGA prototype and then for an ASIC technology.

FPGA results. The Xilinx Zynq-7000 programmable SoC (Zedboard) was used for the
FPGA evaluation. The resource utilization of the complete RISQ-V implementation and
the costs for the single accelerators are provided in Table 4.11. The circuit size of RISQ-V
is 9 058 LUTs and 1 268 registers larger than the size of the original PULPino. For this
comparison, the FPU/FPR of the original PULPino is omitted as it is not necessarily
required for the considered PQC algorithms.
Compared to the loosely coupled NTT design, the tightly coupled one requires a higher

amount of LUTs but a lower number of registers (FFs). The increase in LUTs can be

81

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

Table 4.11: RISQ-V resource utilization for FPGA.

Complete Cores
LUT FF DSP BRAM

PULPino original 15 248 9 569 6 32
RISQ-V 24 306 10 837 18 32

Single Accelerators
LUT FF DSP BRAM

NTT accelerator Section 3.3 (loosely) 647 416 9 1
NTT and Modular Arithmetic Unit (tightly) 2 908 170 9 0

Keccak accelerator Section 3.3 (loosely), 0.5 cycle/round 11 049 4 097 0 0

Keccak low-areaa) [BDH+20], 375 cycle/round 1 159 236 0 0

Keccak high-speeda) [BDH+20], 1 cycle/round 4 189 2 641 0 0
Keccak (tightly), 1 cycle/round 3 847 0 0 0

Binomial Sampling Unit (tightly) 124 0 0 0

MULT Unit with PQ-MAC (tightly) 304 4 5 0

a) VHDL design of [BDH+20] was synthesized for the same FPGA (Xilinx Zynq-7000). Resources
do not include the costs for the connection to the system bus.

explained by the higher flexibility of the NTT and Modular Arithmetic Unit. The tightly
coupled design supports the computation of two parallel butterfly operations (decimation-
in-time and decimation-in-frequency) and vectorized modular arithmetic instead of only
single decimation-in-time butterfly operations. Another advantage of the tightly coupled
approach is that it does not need any further memory block to store the input/output
data. Instead of using extra multipliers for the NTT post-processing, the proposed tightly
coupled approach uses the same multipliers as the butterfly operation.
The tightly coupled Keccak implementation only uses combinatorial logic. No addi-

tional registers are used in this design as the state is stored in the FPR and GPR. The
tight coupling saves all logic and registers that are used for buffering the input/output
data. Moreover, no control logic for the Keccak absorption and squeezing phase is re-
quired. In contrast to the loosely coupled Keccak implementation, the tightly coupled
variant calculates one round of the permutation function per clock cycle instead of two.
This further decreases the resource utilization.
The two hardware accelerators of the execution stage have a negligible hardware over-

head. While the Binomial Sampling Unit only requires 124 LUTs, the overhead for
supporting the pq.mac operation is nearly eliminated by reusing the resources of the
MULT Unit.

ASIC results. The same UMC 65nm technology as in Section 3.3.3 is used for the
ASIC design. The main objective of this chapter is to achieve a low energy consumption.
Therefore, a low leakage standard cell library with a high threshold voltage but lower
speed is chosen. Table 4.12 shows the number of logic cells and the area consumption of
the original PULPino and RISQ-V. The results are provided for the final ASIC designs
(after synthesis, floorplanning, clock tree synthesis, placement, and routing). Compared

82

4.4 Instruction Set Extensions for the PQC Scheme SIKE

Table 4.12: RISQ-V area of final ASIC layout (UMC 65nm).

Cell Count Combinat. Sequent. Buffer+Inv. Clk-Gate Memory

PULPino orig. 42 115
78 373µm2 92 261µm2 20 534µm2 365µm2 669 345µm2

(54 kGE) (64 kGE) (14 kGE) (0.25 kGE) (465 kGE)

RISQ-V 68 853
148 941µm2 102 203µm2 27 186µm2 346µm2 669 345µm2

(103 kGE) (71 kGE) (19 kGE) (0.24 kGE) (465 kGE)

to the original design, the cell area of RISQ-V increased by 70 568µm2 for the combi-
natorial logic and by 9 942µm2 for the sequential logic. However, this increase does not
significantly impact the overall area because the memory blocks are the largest parts
of both designs. The maximum clock frequency for a typical operating condition was
reduced from 75.67MHz to 46.33MHz as the Modular Arithmetic Unit has a relatively
long critical path. A solution to break this critical path could be to add pipeline reg-
isters within the modular multipliers. As the achieved frequency is acceptable for most
embedded applications, these registers are omitted and have been left as future work.
The simulated measurements for the power and energy consumption were performed at

a frequency of 10MHz, a nominal supply voltage of 1.2V, and a temperature of 25◦C. In
order to obtain realistic results, the dynamic post-layout power consumption is extracted
with an analysis of the switching activity of the circuit. For this purpose, a Toggle Count
Format (TCF) file was generated with a back annotated post-layout simulation using
Cadence’s Incisive Enterprise Simulator. Subsequently, the power consumption was cal-
culated using the Cadence power analyzer Joules. The results of the power measurements
of the original PULPino and the optimized RISQ-V implementation are summarized in
Table 4.13. The leakage power belongs to the category of static power consumption. Due
to the higher area consumption, the leakage power is marginally higher for RISQ-V com-
pared to the original design. Interestingly, the total power consumption depends mainly
on the applied scheme but not on the security level. This is probably the case because
similar operations are used for all security levels. Due to the shorter execution time, the
energy consumption is significantly lower when using the tightly coupled accelerators.
Figure 4.11 illustrates the averaged power consumption of the optimized RISQ-V im-

plementation when NewHope-512 is executed. The placement of the accelerators can
be viewed in Figure 5.8 (Chapter 5). However, the averaged power dissipation is not
conspicuous for the accelerators. In particular, the two large memory blocks in the left
corners of the core area and the clock pad on the right boundary have a large power
consumption. The remaining circuit has a relatively moderate power consumption. The
standard cells for the peripherals consume nearly no power at the execution of the PQC
algorithms.

4.4 Instruction Set Extensions for the PQC Scheme SIKE

This section illustrates that other PQC categories than lattice-based cryptography also
benefit from a tightly coupled approach. Similar methods as in the previous section can

83

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

Table 4.13: RISQ-V power and energy results of the final ASIC design (UMC 65nm).

Leakage Internal Switching Tot. Power Cycles Energy
NewHope-512 CCA (baseline) 3.50e-05W 1.42e-03W 3.50e-04W 1.81e-03W 5 615 725 1 016.45µJ
NewHope-512 CCA (opt.) 3.61e-05W 1.49e-03W 4.55e-04W 1.98e-03W 522 687 103.49µJ

NewHope-1024 CCA (baseline) 3.50e-05W 1.41e-03W 3.48e-04W 1.79e-03W 11 289 402 2 020.80µJ
NewHope-1024 CCA (opt.) 3.61e-05W 1.49e-03W 4.54e-04W 1.98e-03W 991 801 196.38µJ

Kyber-512 CCA (baseline) 3.50e-05W 1.46e-03W 3.62e-04W 1.85e-03W 4 210 556 778.95µJ
Kyber-512 CCA (opt.) 3.61e-05W 1.54e-03W 5.03e-04W 2.07e-03W 548 119 113.46µJ

Kyber-768 CCA (baseline) 3.50e-05W 1.46e-03W 3.61e-04W 1.86e-03W 7 302 385 1 358.24µJ
Kyber-768 CCA (opt.) 3.61e-05W 1.55e-03W 5.05e-04W 2.09e-03W 940 008 196.46µJ

Kyber-1024 CCA (baseline) 3.50e-05W 1.47e-03W 3.61e-04W 1.86e-03W 11 352 622 2 111.59µJ
Kyber-1024 CCA (opt.) 3.61e-05W 1.55e-03W 5.21e-04W 2.11e-03W 1 183 372 249.69µJ

Lightsaber CCA (baseline) 3.50e-05W 1.56e-03W 3.58e-04W 1.95e-03W 4 113 463 802.13µJ
Lightsaber CCA (opt.) 3.61e-05W 1.71e-03W 4.86e-04W 2.24e-03W 1 551 010 347.43µJ

Saber CCA (baseline) 3.50e-05W 1.56e-03W 3.60e-04W 1.95e-03W 7 645 196 1 490.81µJ
Saber CCA (opt.) 3.61e-05W 1.72e-03W 4.86e-04W 2.24e-03W 2 962 792 663.67µJ

Firesaber CCA (baseline) 3.50e-05W 1.56e-03W 3.60e-04W 1.96e-03W 11 971 708 2 346.45µJ
Firesaber CCA (opt.) 3.61e-05W 1.72e-03W 4.88e-04W 2.25e-03W 4 821 233 1084.78µJ

1.0e+2
1.0e+1
1.0e+0
1.0e−1
1.0e−2
1.0e−3
1.0e−4
1.0e−5
1.0e−6
1.0e−7
1.0e−8

Ptot [mW] (log)

Instr. RAM

Data RAM

Clk Pad

Figure 4.11: Power distribution optimized RISQ-V ASIC implementation (averaged for
NewHope-512).

84

4.4 Instruction Set Extensions for the PQC Scheme SIKE

be applied to accelerate, for instance, the isogeny-based scheme SIKE.

4.4.1 Bottlenecks of Isogeny-Based Cryptography

An isogeny φ : EA ← EB is a structure-preserving map between two elliptic curves EA
and EB over finite fields [JDF11]. The security of SIKE relies on the hardness of solving
the isogeny map between supersingular elliptic curves over a quadratic extension field
Fq = Fp2 with p = 2n ·3m±1 and the public integers n,m [J+20]. The finite field elements
of Fp2 can be represented as a = a0 +a1 · i with a0, a1 ∈ Fp and i being the complex root
of unity. All operations used in SIKE can be reduced on the lowest abstraction layer to
Fp arithmetic. The field multiplication in Fp poses a particular performance bottleneck,
but field additions and subtractions are also costly. The actual sizes of the field elements
depend on the chosen parameter set. The evaluation of this work is based on SIKEp434
with operand sizes of 434-bit. The same principles can be applied to other parameter
sets.

4.4.2 System Integration of SIKE Accelerators

This section discusses a system integration strategy for tightly coupled field multiplica-
tion, addition, and subtraction accelerators. The deployed finite field multiplier is based
on the Montgomery algorithm with redundant number system as presented in [RM19].
The accelerator for the field addition is based on an optimized adder circuit with con-
ditional subtraction to realize the reduction. The field subtraction follows a similar
principle. Further details can be found in the publication related to this section [RFS20].
Figure 4.12 presents the tightly coupled accelerator integration. Similar as in the

previous section, the accelerators can access all operands in parallel from the registers.
The first operand for the finite field accelerators is stored in the registers f0–f13 and
the second operand in f14–f27. The control signals of this architecture are mul, add,
and sub. The result is stored back to the registers f0–f13. A single field multiplication
requires 22 cycles and a field addition or subtraction 7 cycles assuming the operands to
be available within the registers.

4.4.3 Experimental Results of SIKE System Design

The Xilinx Zynq-7000 programmable SoC (Zedboard) was used to evaluate the perfor-
mance and area of the proposed approach.

Performance evaluation. Table 4.14 provides a comparison with existing assembly op-
timized SIKEp434 implementations on ARM. The RISC-V baseline implementation uses
the source code provided in the NIST submission [J+20]. The results show that the
proposed design has a significantly lower cycle count than the assembly optimized ARM
Cortex-M4 implementation in [SAJA21]. It even has a smaller cycle count than the
implementations on the much more powerful 64-bit ARM processors (Cortex-A55 and
Cortex-A75). The PULPino platform achieves a frequency of around 25MHz for the

85

4 Tightly Coupled Accelerators and Instruction Set Extensions for PQC

FPR

f0
f1
f2

. . .
f11
f12
f13
f14
f15
f16

. . .
f25
f26
f27
f28
f29
f30
f31

Modular Adder (Fp)

Modular Subtractor (Fp)

Modular Multiplier (Fp)

sel

add

sub

mul

Figure 4.12: SIKE accelerator coupling.

Table 4.14: Cycle count of SIKEp434 with tightly coupled finite field accelerator (total indicates
cycles for Encaps+Decaps).

Work Platform CC CC ×106

Fp mul Fp add Fp sub KeyGen Encaps Decaps Total
[SAJA21] ARM M4 1011 253 207 54.0 87.0 94.0 181.0

[SSJA20] ARM A55 602 74 67 27.2 44.8 47.7 92.5

[SSJA20] ARM A75 561 34 28 22.8 37.5 40.0 77.5

This work baseline RISC-V 7 111 341 656 271.5 444.4 474.3 918.7

This work opt. RISC-V 96 79 79 10.7 17.8 19.1 36.9

target FPGA. The maximum frequency for the finite field accelerators is 150MHz. They
are, therefore, not part of the critical path. Nevertheless, the achieved frequencies are
several times smaller than most ARM Cortex-A/M platforms achieve. But when inte-
grating the proposed design at a small technology node on ASIC, the operating frequency
could be significantly increased (e.g., up to 938MHz for the same processor was reported
in [SRP+18]).

Resource consumption. Table 4.15 summarizes the resource utilization of the devel-
oped design. The amount of LUT/FF/DSP increased by factors 1.45/1.76/11.33 when
the finite field arithmetic is integrated.

Table 4.15: Resource utilization of SIKE hardware/software codesign with tightly coupled ac-
celerators.

Design LUT FF DSP BRAM
PULPino original 15 248 9 569 6 32

PULPino with accelerators 22 166 16 882 68 32

86

4.5 Summary

4.5 Summary

This chapter illustrated the great advantages of integrating the accelerators directly into
the main processor. Usually, data is first loaded from the main processor and then
distributed over a bus interface to the loosely coupled accelerator. In order to circum-
vent a part of this overhead, this chapter first presented tightly coupled accelerators
for LAC. The ternary hardware multiplier used for NTRU was extended to support the
negative wrapped convolution of LAC and was directly integrated into a RISC-V core.
The proposed architecture supports multiple polynomial lengths due to a software-based
splitting. Further, a modular reduction unit, SHA256 accelerator, and Chien search
accelerator were integrated into the main processor.
While the hardware/software codesign of LAC already achieves a good performance,

it still does not exploit the full potential of a tightly coupled approach. For the use-
cases NewHope, Kyber, and Saber, it was demonstrated how memory accesses can be
systematically reduced and how system resources can be reused. It was shown that keep-
ing coefficients during the NTT computation within the register file significantly reduces
time-consuming memory accesses. The proposed versatile NTT and modular arithmetic
accelerator and the applied SIMD principles significantly boosted the performance. For
non-NTT based schemes as Saber, a vectorized modular MAC function was developed.
It comes at almost no area overhead as it reuses the multipliers of the existing RISC-V
multiplication unit. Another essential building block presented in this chapter is the
tightly coupled Keccak accelerator. As the register sets of the RISC-V core are reused,
it requires only combinatorial logic. It was shown that an extreme speedup is achieved
when keeping the state for the complete sampling process within the register sets. A
binomial sampling accelerator complements the proposed design.
In comparison to the loosely coupled designs of the previous chapter, it was illustrated

that the tightly coupled approach can be faster while decreasing the overall area over-
head. Tightly coupled accelerators do not require any control circuit as instruction set
extensions are used to control them. This does not only decrease the circuit size but
also leads to a high flexibility. The experiments verified that tightly coupled accelerators
and instruction set extensions for lattice-based cryptography significantly improve per-
formance and energy characteristics. Such improvements are also possible for other PQC
schemes. The results for the isogeny-based scheme SIKE show that resource-constrained
open-source RISC-V platforms, in many ways, can compete with commercial ARM mi-
crocontrollers when hardware acceleration is applied.
In conclusion, tightly coupled PQC approaches seem to be more appealing for hard-

ware/software codesigns when flexibility and area are relevant. The main reason is that
the large operand (e.g., polynomial) sizes of PQC involve a high communication overhead
between main processor and loosely coupled coprocessor. This decreases the achieved per-
formance gain of a design with loosely coupled accelerators. In order to counteract this
problem, larger parts of the algorithm must be computed directly within the accelerator.
Thus, taking a loss of flexibility into account.

87

5 Generalization of the NTT Algorithm
and Masking of Non-Linear Operations

Implementation attacks are highly critical because they can break crypto-
graphic systems even if they are considered as mathematically secure. In
order to prevent such attacks, cryptographic implementations must integrate
countermeasures. This chapter introduces measures to protect PQC hard-
ware/software codesigns, like those presented in the last chapters, against
implementation attacks. The related content presented in this chapter was
published in [FVBBR+21]. Moreover, the previous chapters have shown
that accelerated polynomial multiplications using the NTT achieve a partic-
ular good speedup with a moderate increase in area. Therefore, this chap-
ter also analyzes how the NTT can be applied to schemes that natively do
not support it. The proposed method contains parts of the author’s publica-
tions [FSS20b, FVBBR+21].

5.1 Introduction of Side-Channel Protection Mechanisms 90
5.2 Preliminaries Masking . 91
5.3 Masking PKE/KEM . 93
5.4 Accelerators for Linear Operations 95

5.4.1 Increasing the Flexibility of NTT 95
5.4.2 Flexible NTT Accelerator 99
5.4.3 Results of the Flexible NTT Accelerator 102

5.5 Accelerators for Non-Linear Operations 102
5.5.1 Masking Keccak . 102
5.5.2 Masking Binomial Sampling 105
5.5.3 Secure Adder . 108
5.5.4 Results of Non-Linear Accelerators 108

5.6 System Integration . 111
5.6.1 Accelerator Integration . 112
5.6.2 Architectural Leakage Reduction 112
5.6.3 Results of System Integration 113

5.7 Experimental Results . 114
5.7.1 Performance of Unmasked Implementations 114
5.7.2 Performance of Masked Implementations 116
5.7.3 Side-Channel Leakage Evaluation 118

89

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

5.8 Summary and Open Problems 119

5.1 Introduction of Side-Channel Protection Mechanisms

The protection of cryptographic algorithms against implementation attacks is highly
relevant for applied cryptography. Fault attacks or SCA are able to retrieve secret in-
formation during the execution of mathematically secure algorithms. Countless attacks
have been demonstrated in recent years. Protecting implementations against all of them
is an extremely difficult, maybe unsolvable, task. It is therefore of high relevance to iden-
tify particularly critical attack scenarios. One highly critical attack type is the category
of timing attacks. They are applicable for most applications. Current PQC implementa-
tions address this topic by ensuring that the algorithm’s execution time does not depend
on secret data. Simple Power Analysis (SPA) and Differential Power Analysis (DPA) are
two attack types that are more difficult to prevent. They do need access to the physical
device, which is possible for many applications. SPA relies on single or few measurements.
DPA takes a large number of measurements to reduce the influence of noise and to allow
the identification of extremely small secret-dependent correlations [KJJ99]. Masking is
a typical countermeasure to protect implementations against DPA [CJRR99]. The tech-
nique splits every secret-dependent variable randomly into multiple parts—also known
as shares. The cryptographic algorithm is then executed on these shares separately. The
recombination of the shares at the end of the critical operation returns the desired result.
Due to the random splitting, the power consumption does not depend on the original
secret anymore.

Related works. Different works analyzed countermeasures to protect PQC implementa-
tions against DPA. The first masking method for the basic LWE protocol was presented
in [RRVV15] and later refined in [RdCR+16]. Several digital signature schemes were
analyzed regarding side-channel protection. The signature scheme GLP was analyzed
in [BBE+18], and blinding countermeasures for BLISS were proposed in [Saa18]. The
NIST second-round signature candidate qTESLA was masked in [GR19] and the final-
ist Dilithium in [MGTF19]. In the category of PKE/KEM, a predecessor of the New-
Hope NIST submission was masked in [OSPG18]. Further, a masked ARM Cortex-M4
implementation of the NIST finalist Saber was proposed in [BDK+21]. The authors of
[BGR+21] published, concurrently to the work of the thesis author in [FVBBR+21], a
masked Kyber implementation. The publication [FVBBR+21] is the basis for the con-
tent of this chapter. Further works discuss DPA protection mechanisms for the binomial
sampling [SPOG19] and polynomial multiplication [HP21].
Despite the remarkable progress due to these prior works, DPA protection for PQC is

a research area with numerous open questions. Previous works focused on protected soft-
ware implementations. It remains unclear how DPA countermeasures can be efficiently
designed for pure hardware or hardware/software codesign solutions. DPA-protected im-
plementations are significantly slower than unprotected implementations and can greatly

90

5.2 Preliminaries Masking

benefit from hardware acceleration. Hardware circuits have not only the advantage of
a high performance but also ensure a controlled execution, which is particularly im-
portant to prevent side-channel leakages. A clear picture of different implementation
strategies and the related costs for the protection is still not available for the lattice-
based PKE/KEM finalists Kyber, Saber, and NTRU. NIST indicated that only one of
the lattice-based finalists would be standardized. NTRU has the advantage of a long
history and a low risk of new patent issues but is slower than the other two competi-
tors [AASA+20]. The difference between Kyber and Saber in terms of DPA protection
is less obvious. A decision between Kyber, Saber, and NTRU as a winner of the NIST
competition might be influenced by the suitability for SCA protection.

Contributions. This chapter presents masked implementations of Kyber and Saber on
a RISC-V platform to provide an analysis of the DPA-protection overhead. This chapter
further proposes hardware accelerators for critical operations of the masked designs. Since
performance bottlenecks are even more pronounced in a masked setting, acceleration
becomes more important. Among others, the NTT accelerator of the previous chapter is
extended to support Saber in order to further improve the performance of both schemes.
The contributions of this chapter can be summarized as:

• Investigating a generic NTT multiplier (featuring positive/negative wrapped con-
volutions, incomplete NTTs, and prime lifts) to support a variety of PKE/KEM
and signature schemes;

• Proposing masked hardware accelerators for hashing, binomial sampling, A2B/B2A
conversions, and compression;

• Presenting measures towards secure system design with share separation;

• Developing the first masked hardware/software codesigns for PQC with Saber and
Kyber as a case study (one of the first masked Kyber implementations in general);

• Achieving new cycle count records for Saber and Kyber on a RISC-V platform with
instruction set extensions and accelerators.

5.2 Preliminaries Masking

This section discusses masking—a provable secure method to protect lattice-based PQC
against DPA. In the remainder of this chapter, the subscript is used to access an element
of an array/matrix and the superscript to access a share of a masked variable. As an
example, ai accesses the i-th share of the variable a{0:n−1} with n shares. In the following
description, two shares are considered for a first-order secure masking. The secret variable
x is randomly split into two parts, either using the arithmetic sharing x = a0 + a1 or
Boolean sharing x = b0 ⊕ b1. A2B and B2A are conversion methods to securely switch
between both sharing types. Let r = a1 = b1 be a random mask, then the two equations

91

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

Algorithm 15: A2B [CGV14]

Input: x{0:1} = (a0, a1) s.t. x = a0 + a1

mod 2k

Result: x{0:1} = (b0, b1) s.t. x = b0 ⊕ b1

1 r0, r1
$←− Z2k

2 b
{0:1}
1 ← (a0 ⊕ r0, r0), b

{0:1}
2 ← (a1 ⊕ r1, r1)

3 x{0:1} ← SecAdd(b
{0:1}
1 ,b

{0:1}
2)

Algorithm 16: A2Bq [BBE+18]

Input: x{0:1} = (a0, a1) s.t. x = a0 + a1

mod q
Result: x{0:1} = (b0, b1) s.t. x = b0 ⊕ b1

1 r0, r1
$←− Zq

2 b
{0:1}
1 ← (a0 ⊕ r0, r0), b

{0:1}
2 ← (a1 ⊕ r1, r1)

3 x{0:1} ← SecAddq(b
{0:1}
1 ,b

{0:1}
2)

b0 = (a0 + r) ⊕ r and a0 = (b0 ⊕ r) − r describe how to switch between the two types.
The problem is that these equations require the recombination of the secret variable x.
The first mathematically secure conversion methods were proposed in [Gou01]. While

the presented B2A conversion is already fast in software, the A2B conversion was further
optimized using table lookups in [CT03, Deb12]. The drawback of these conversion
algorithms is that they are not well suited for non-power-of-two moduli and, therefore,
not for Kyber. Some workarounds were proposed in [OSPG18, BBE+18, SPOG19]. In
this work, the approach of [BBE+18] is used as it supports non-power-of-two moduli
conversions (denoted as B2Aq/A2Bq), it is extensible to higher-order masking, and it is
suitable for hardware. Their approach is based on the secure masked addition algorithm
SecAdd [CGV14].
The secure addition is defined as s{0:1} = SecAdd(x{0:1},y{0:1}) such that (s0 ⊕

s1) = (x0 ⊕ x1) + (y0 ⊕ y1). Similarly, the secure addition modular q is defined as
s{0:1} = SecAddq(x{0:1},y{0:1}) such that (s0⊕ s1) = (x0⊕x1) + (y0⊕ y1) mod q. The
SecAddq operation can be realized using two conventional SecAdd operation. The
first operation computes (s0 ⊕ s1) = (x0 ⊕ x1) + (y0 ⊕ y1) and the second one securely
adds −q to the result. Depending on the sign bit either the result of the first or second
addition is selected. For more details, please refer to the related publication of this
section [FVBBR+21].

A2B/A2Bq. The A2B and A2Bq conversions are provided in Algorithms 15 and 16.
Computing A2B and A2Bq with SecAdd is straightforward. Each input share is masked
with a different random variable, and the result is then assigned to the input of SecAdd.
The SecAdd operation already returns the desired Boolean masking as output.

B2A/B2Aq. The B2A and B2Aq conversions are provided in Algorithms 17 and 18. The
two algorithms B2A and B2Aq are very similar. They start with sampling two random
variables, while the first random variable is directly assigned to the first output share
a0. The second random variable is then used to mask −a0 in order to securely compute
a1 = (b0 ⊕ b1)− a0 using SecAdd.

Glitch-resistant masking. Glitches, caused by different propagation delays within the
circuit, can lead to severe side-channel leakages of theoretically secure systems. This is

92

5.3 Masking PKE/KEM

Algorithm 17: B2A [CGV14]

Input: x{0:1} = (b0, b1) s.t. x = b0 ⊕ b1
Result: x{0:1} = (a0, a1) s.t. x = a0 + a1

mod 2k

1 a0
$←− Z2k

2 r
$←− Z2k

3 b
{0:1}
1 ← ((2k − a0)⊕ r, r)

4 b
{0:1}
2 ← SecAdd(x{0:1},b

{0:1}
1)

5 x{0:1} ← (a0, b02 ⊕ b12)

Algorithm 18: B2Aq [BBE+18]

Input: x{0:1} = (b0, b1) s.t. x = b0 ⊕ b1
Result: x{0:1} = (a0, a1) s.t. x = a0 + a1

mod q

1 a0
$←− Zq

2 r
$←− Z2w

3 b
{0:1}
1 ← ((q − a0)⊕ r, r)

4 b
{0:1}
2 ← SecAddq(x{0:1},b

{0:1}
1)

5 x{0:1} ← (a0, b02 ⊕ b12)

particularly critical for non-linear operations as they process data from multiple shares.
Threshold Implementation (TI) is an effective method to prevent leakages caused by
glitches [NRR06]. The concept is based on multi-party computation with the follow-
ing properties: correctness (the result after the computations remains correct), non-
completeness (the partial functions and computations are at least independent of one
input share), and uniformity (input and output are uniformly distributed). For a secu-
rity order of d and a function of algebraic degree t, the number of input shares must be
s ≥ td+ 1 [RBN+15]. Thus, first-order TIs require a minimum of three input shares for
non-linear functions.
Another glitch-resistant method is Domain-Oriented Masking (DOM) [GMK16]. DOM

assigns each share of a variable to a domain and strictly keeps each domain separated
from the other domains. At non-linear operations, domain crossing operations use fresh
randomness to preserve the independence of the domains. Additional registers prevent
signal propagation and glitches. The AND-gate proposed in [GMK16] is an important
example of DOM.

5.3 Masking PKE/KEM

Running a single key exchange is not vulnerable against DPA as only one measurement
can be taken by an attacker. DPA is more critical in a PKE setting. While the key
generation is still executed only once, the encryption and decryption are repeated multiple
times. The decryption uses the long-term secret key, which must be protected against
DPA. In order to avoid CCA, a secret-dependent re-encryption is performed during the
decryption (decapsulation). Hence, the decryption and re-encryption are vulnerable and
must be masked. Note that further countermeasures are required to protect against SPA
attacks that analyze the side-channel trace horizontally [CFG+10]. This type of attack
uses information from multiple time instances of an algorithm. Shuffling and the random
insertion of dummy operations are typical countermeasures against this kind of attack.
A detailed analysis has been left as future work.
The CCA secure decapsulation requires, in addition to the decryption operation (Algo-

rithm 6, Chapter 2), a re-encryption (Algorithm 5, Chapter 2) with a consecutive equality

93

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

Table 5.1: Operations of LWE-based schemes in a masked setting.

Operation Type Sharing
Ring arithmetic (·,+,−) linear arithmetic sharing
Randomness generation for sampling (XOF/Keccak) non-linear Boolean sharing
Binomial sampling (ψη) non-linear Boolean sharing
A2B/B2A (Saber), A2Bq/B2Aq (Kyber) non-linear both
Decoding/compression (compressq(x, d)) non-linear both

Ciphertext comparison (?
=) non-linear a) Boolean sharing

a) Non-linear ciphertext comparison is not critical after hash computations.

check that verifies that a malicious party did not modify the ciphertext. Table 5.1 sum-
marizes the main operations required for the masked CCA secure decapsulation of Kyber
and Saber.
Linear operations, such as ring arithmetic, can be performed on each share separately.

As a result, the execution time doubles, and it becomes even more important to improve
the performance of these operations. An optimized hardware accelerator for the linear
arithmetic in Kyber and Saber is presented in Section 5.4.
Non-linear operations are more critical to mask as they need access to multiple shares

simultaneously. Partly non-linear operations are Keccak, binomial sampling, A2B/B2A
(A2Bq/B2Aq) conversions, decoding/compression, and the ciphertext comparison after
the re-encryption. Accelerators for the non-linear operations are provided in Section 5.5.
Section 5.5.1 presents a masked version of Keccak to securely generate uniform ran-
domness for the sampling process. Section 5.5.2 proposes generic hardware accelerators
for the masked binomial sampling. Finally, Section 5.5.3 presents the non-linear secure
addition (SecAdd) required for the A2B/B2A (A2Bq/B2Aq) conversion, as discussed
in the previous section. Apart from SecAdd, all operations for these conversions can
be efficiently performed in software. The masked decoding/compression and ciphertext
comparison require the same accelerators as the other non-linear operations. They are
briefly discussed in the following paragraphs.
In a masked setting, the decoding/compression compressq(a, d) = d(2d/q) ·ac mod 2d

takes an arithmetic sharing of a polynomial as input. The required division by a power-
of-two modulus corresponds to a simple shift, which can be efficiently performed with a
Boolean sharing. Hence, an A2B conversion can be applied in this context. In the related
publication of this section [FVBBR+21], an efficient method was proposed that is also
applicable for prime moduli. The method exploits that d(2d/q) · ac mod 2d tolerates an
approximate quotient and, therefore, a bounded failure. Hence, it is possible to perform
the decoding/compression operation with a finite precision on both shares individually
without having inaccuracies at the recombination of both shares. The complete decod-
ing/compression operation requires only simple arithmetic and an A2Bq conversion. As
this conversion type is already covered, the masked decoding/compression is not further
discussed in this thesis. For more details, please refer to the publication [FVBBR+21].
The masked ciphertext comparison check applied in this work is based on the method

proposed in [BDK+21], which uses concepts of [OSPG18]. The equality check still has

94

5.4 Accelerators for Linear Operations

Table 5.2: NTT parameters of several lattice-based algorithms.

Scheme n q φ(x) NTT-based dlog2(q′)e
NewHope-512/1024 512/1024 12289 xn + 1 yes 14
Kyber 256 3329 xn + 1 yes 12
Dilithium 256 8380417 xn + 1 yes 23
Falcon-512/1024 512/1024 12289 xn + 1 yes 14
Saber 256 8192 xn + 1 no 34
ntruhps2048509 509 2048 xn − 1 no 31
ntruhps2048677 677 2048 xn − 1 no 32
ntruhps4096821 821 4096 xn − 1 no 34
ntruhrss701 701 8192 xn − 1 no 36
LAC-128 512 251 xn + 1 no 25
LAC-192/256 1024 251 xn + 1 no 26

sensitive inputs, and recombining the re-encrypted ciphertext must be prevented. In or-
der to avoid leakages, first two hash valuesH(u⊕u′0‖v⊕v′0) andH(u′1‖v′1) are computed
using the ciphertext ct = (u, v) and the re-encrypted ciphertext ct′ = (u′{0,1},v′{0,1}).
The comparison is then performed on these hash values, which contain no sensitive in-
formation anymore. A Keccak accelerator can be used to improve the performance of
this operation. The masked comparison is less critical than the other non-linear oper-
ations because the hash operations require only one share, respectively. All subsequent
operations do not contain sensitive data.

5.4 Accelerators for Linear Operations

The ring arithmetic accelerators proposed in the previous chapters can be directly applied
in a masked setting. Linear operations are consecutively performed with each share.
Therefore, eliminating bottlenecks becomes more relevant in a masked setting. The
presented small Karatsuba/Toom–Cook accelerator for Saber of Section 4.3.4 is still not
optimal. This section investigates the application of the NTT for Saber to achieve a
comparably good speedup at the ring arithmetic as for Kyber.

5.4.1 Increasing the Flexibility of NTT

Table 5.2 summarizes parameters for the polynomial arithmetic of several lattice-based
algorithms. While some schemes are tailored for an efficient NTT usage, others choose a
prime not suitable for a direct application of the NTT.

NTT with prime lift. The original prime q can be lifted to any “NTT-friendly” prime
q′ > n · q2. This can be done because the result of a polynomial multiplication without
reductions has coefficients not larger than n · q2. If q′ is set sufficiently large, precision
errors caused by the modular arithmetic are avoided [PNPM15]. After the polynomial
multiplication with the lifted prime, the coefficients can be reduced by the original prime

95

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

q. When using signed arithmetic, the maximum absolute value of the coefficients during
the computation of the polynomial multiplication is n · q2/4 when the coefficients are
represented in [−q/2, q/2). Some schemes always multiply large polynomials with small
polynomials sampled from the error distribution, allowing to decrease the value of q′ if
signed arithmetic is used. However, as unsigned arithmetic is more practical for hardware
circuits, the rule q′ > n · q2 is applied in this work.

Reusing the tightly coupled accelerator for Saber. While the moduli of NewHope and
Kyber fit in one halfword (16-bit), Saber requires a 34-bit modulus to apply the NTT
with unsigned arithmetic (see Table 5.2). The polynomial multiplication of Saber can be
computed with several smaller moduli suitable for the 16-bit NTT hardware architecture
of Section 4.3.2. The final result can then be retrieved applying the Chinese Remainder
Theorem (CRT).

Chinese Remainder Theorem. Let q′0, q′1, . . . , q′k−1 be pairwise coprime, q′ =
∏k−1
i=0 q

′
i,

and c0, c1, . . . , ck−1 integers with 0 ≤ ci < q′i. Then, the system of linear congruences

x ≡ c0 mod q′0

x ≡ c1 mod q′1

. . .

x ≡ ck−1 mod q′k−1

has a unique solution solving all congruences simultaneously [Sch13]. The CRT problem
can be solved using Gauss’s algorithm with

x ≡ c0d0 + c1d1 + · · ·+ ck−1dk−1 mod q′ , (5.1)

where di = (q′/q′i)
−1 mod q′i [DI 10]. As di can be precomputed, the results of the poly-

nomial multiplication with smaller primes can be combined by multiplications, additions,
and one reduction by q′ as in Equation 5.1.

Parameters for Saber with tightly coupled accelerator. Lifting to a higher prime only
works if no reduction errors are introduced during the convolution. Negacyclic convolu-
tions involve negative intermediate results that lead to an erroneous output when reduced
by q′. These reductions can be avoided using signed arithmetic. For unsigned arithmetic,
polynomial multiplications with polynomials of length n′ = 2n, zero-padding, and con-
secutive polynomial reduction by φ(x) can be used. Positive wrapped convolutions can
still be realized with an NTT of length n′ = n.
For the experiments of the polynomial multiplication in Saber with the tightly coupled

NTT accelerator, this work chooses the parameters n′ = 512, q′ = q′0 · q′1 · q′2 with
q′0 = 12289, q′1 = 13313, and q′2 = 15361. These primes are suitable for the tightly
coupled accelerator and are the smallest ones fulfilling q ≡ 1 mod 2n such that the
corresponding n-th root of unity exists [ADPS16b] and the NTT is applicable. Moreover,
these primes fulfill the condition q′ > n · q2.

96

5.4 Accelerators for Linear Operations

Results for Saber with tightly coupled accelerator. The complete polynomial multipli-
cation of one share with zero-padding requires 36 102 cycles on the RISC-V platform with
the NTT accelerator. In total, 108 306 cycles are necessary to compute the polynomial
multiplication for all three shares. Further cycles are then required for the recombination
of the intermediate results applying the CRT. However, using the proposed accelerator
for Karatsuba/Toom–Cook turns out to be more efficient (71 349 cycles).

Parameters for a generic NTT. In order to avoid the costly CRT decomposition, a
flexible NTT accelerator is designed that directly supports larger prime values. All
NTT-based schemes of Table 5.2 have primes smaller than or equal to 23-bit. In this
chapter, a flexible Montgomery multiplier for any prime up to 24-bit is developed to cover
all of them. For algorithms that are not NTT-based, a lifted prime q′ must be found
that covers the remaining algorithms. To allow an efficient reduction, the Solinas prime
q′ = 239− 212 + 1 is chosen. For this prime, the condition q′ ≡ 1 mod 2n holds, and the
n-th as well as the 2n-th root of unity exists (e.g., for n ∈ [256, 512, 1024, 2048]).

Incomplete NTT. The prime q is usually chosen such that φ(x) can be factored into

n = 2k linear terms φ(x) =
n−1∏
i=0

φi(x) mod q [LS19]. This allows the full application of

the NTT, and the basecase multiplication of two transformed polynomials corresponds to
a simple coefficient-wise multiplication. The concept of the incomplete NTT for lattice-
based cryptography was first proposed in [LS19], and a similar concept was later adopted
in the second-round Kyber specification. Kyber reduced its prime value (consequently
key and ciphertext sizes) and chose a value where the n-th root of unity exists but not the
2n-th root of unity. This prevents the application of a full NTT, and only l− 1 layers of
the NTT are computed, resulting in n/2 polynomials of degree two. More precisely, the

cyclic polynomial is factored to φ(x) = xn+1 =
n/2−1∏
i=0

(x2−ω2i+1
n) =

n/2−1∏
i=0

(x2−ω2br(i)+1
n)

with br denoting the bit-reversal function.

Generalization of NTT/INVNTT algorithms. Algorithms 19 and 20 illustrate the op-
erations for the proposed flexible NTT. The original NTTCTno→br and INVNTTGSbr→no al-
gorithms are first modified to support incomplete NTTs, as required for Kyber. The
incomplete NTT can be activated using the early_abort signal. The proposed algo-
rithms further support either positive or negative wrapped convolutions. The desired
convolution mode can be switched with the negacyclic signal. Thus, all schemes of
Table 5.2 can use the same algorithms. Note that the INVNTT requires a final scaling
by n−1.
This chapter mainly focuses on increasing the performance of masked Kyber and Saber

implementations. As these two schemes have relatively small polynomial lengths, no on-
the-fly Twiddle factor computation is used, and a moderate amount of precomputations
is accepted. The combination of NTTCTno→br and INVNTTGSbr→no complicates on-the-fly
twiddle factor computations but allows circumventing the bit-reversal. Moreover, the

97

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

Algorithm 19: NTTCTno→br transform
Input: a ∈ Zq/φ(x), twiddle_table,

early_abort, negacyclic
Result: â ∈ Zq/φ(x)

1 if early_abort then
2 stop← n/2
3 else
4 stop← n
5 end
6 t← n
7 for m = 1 to stop− 1 by m = 2m do
8 t← t/2
9 for i = 0 to m− 1 by 1 do

10 j1 ← 2it, j2 ← j1 + t
11 if negacyclic then
12 ω ← twiddle_table[m+ i]
13 else
14 ω ← twiddle_table[i]
15 end
16 for j = j1 to j2 − 1 by 1 do
17 z1 ← aj+t · ω mod q
18 aj ← aj + z1 mod q
19 aj+t ← aj − z1 mod q

20 end
21 end
22 end

Algorithm 20: INVNTTGSbr→no trans-
form
Input: â ∈ Zq/φ(x), invtwiddle_table,

early_abort, negacyclic
Result: a ∈ Zq/φ(x)

1 if early_abort then
2 m← n/2, t← 2, k ← 0
3 else
4 m← n, t← 1
5 end
6 for m to m > 1 by m = m/2 do
7 j1 ← 0
8 if negacyclic then
9 m′ ← m/2

10 else
11 m′ = 0
12 end
13 for i = 0 to m/2− 1 by 1 do
14 j2 ← j1 + t
15 if early_abort then
16 ω ← invtwiddle_table[k++]
17 else
18 ω ← invtwiddle_table[m′ + i]
19 end
20 for j = j1 to j2 − 1 by 1 do
21 z1 ← aj , z2 ← aj+t
22 aj ← z1 + z2 mod q
23 aj+t ← (z1 − z2) · ω mod q

24 end
25 j1 ← j1 + 2t

26 end
27 t← 2t

28 end

post-processing can be integrated into the precomputed twiddle factor tables. This is
only possible when a DIF butterfly operation is performed within the inverse transform.
Another difference to the optimized NTTCTbr→no presented in Chapters 3 and 4 is that
no memory access optimizations are applied. The reason is that the operand widths are
large and, therefore, only one coefficient is stored in one word. However, a dual-port
RAM is used to alleviate the memory access bottleneck.

For NTT-based schemes, the Twiddle table is stored in the Montgomery domain to
allow the application of the flexible Montgomery multiplier. For negacyclic NTT-based
schemes, the Twiddle table contains n (n/2 at early aborts) merged values for the powers
of ωn and γn in bit-reversed order and the same number of precomputed values for the
inverse transform. For schemes with positive wrapped convolutions or schemes not based
on NTT, n precomputed values of the powers of ωn are stored in the Twiddle table.

98

5.4 Accelerators for Linear Operations
C
O
N
F
IG

D
I

P
A
R
A
M
S

n
mont
negacyclic
early_abort
ntt
invntt
pointwise
basemul
wrapping
mul_ninv

addr_in
we_in
data_in

offset_1

offset_2

offset_3

n−1

q

q̂

NTT
Address
Unit

INVNTT
Address
Unit

Point
Address
Unit

Wrap
Address
Unit

RAM
NTT

(4096× 39)

RAM
Twiddle

(4096× 39)

addrbaddra wea

0

web

+

addrb

+

addra wea

Modular
Arithmetic

Unit

ntt
invntt
pointwise
pointwise_add
pointwise_sub
mul_ninv
mont

dia diadib dobdoa dob

D
O

S
T
A
T
U
S

Figure 5.1: Loosely coupled generic NTT (dashed lines for configuration signals).

5.4.2 Flexible NTT Accelerator

Designing an efficient and flexible NTT that supports all mentioned lattice-based schemes
requires a new design approach. Figure 5.1 illustrates the developed hardware architec-
ture. The 39-bit NTT operations are not very suitable for instruction set extensions
because two registers would be required in a 32-bit architecture for a single operand.
This doubles load/store latencies and complicates instruction encodings. Therefore, a
loosely coupled approach is the preferred solution to clearly separate the 39-bit oper-
ations of the NTT and the 32-bit operations of the processor. The proposed loosely
coupled NTT accelerator consists of seven different main modules: two RAM blocks
(NTT and Twiddle RAM), four address units (NTT, INVNTT, Point, and Wrap), and
a Modular Arithmetic Unit.

NTT and Twiddle RAM. The two memory blocks are used for storing the input/output
coefficients and the precomputed Twiddle table, respectively. The size of these memory
blocks is chosen large enough to support all parameter sets. The dual-port capabilities of
the RAM blocks are exploited to increase the efficiency. In order to keep the bus commu-
nication overhead small, the input data_in (and the output) can store two coefficients
in one word.

99

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

Algorithm 21: Basecase multiplication (incomplete NTT)
Input: f̂ , ĝ ∈ Zq/φ(x), twiddle_table, invtwiddle_table
Result: ĥ = f̂ ◦ ĝ ∈ Zq/φ(x)

1 for i = 0 to n/4 by 4 do
2 ω ← twiddle_table[n/4 + i]

3 ĥ4i ← f̂4i+1 · ĝ4i+1 · ω + f̂4i · ĝ4i mod q

4 ĥ4i+1 ← f̂4i · ĝ4i+1 + f̂4i+1 · ĝ4i mod q
5 ω ← invtwiddle_table[n/4− i− 1]

6 ĥ4i+2 ← f̂4i+3 · ĝ4i+3 · ω + f̂4i+2 · ĝ4i+2 mod q

7 ĥ4i+3 ← f̂4i+2 · ĝ4i+3 + f̂4i+3 · ĝ4i+2 mod q

8 end

NTT/INVNTT Address Unit. It generates the two read and write addresses to load
and store two coefficients according to Algorithms 19 and 20. It further outputs the read
address for the Twiddle factor. The signals ntt and invntt trigger the corresponding
address computations. Optionally, early_abort and negacyclic can be set. The signal
mont is used to select the number of pipeline stages to delay the write signals according
to the delay in the arithmetic units.

Point Address Unit. It computes the addresses for coefficient-wise multiplications, ad-
ditions, and subtractions. The signal basemul is used to select the basecase multiplication
for schemes with early abort. Let f, g ∈ Zq/φ(x) and let NTT(f) ◦ NTT(g) = f̂ ◦ ĝ = ĥ
be the basecase multiplication. This basecase multiplication has for Kyber n/2 prod-
ucts [ABD+20], which are computed by

ĥ2i + ĥ2i+1x = (f̂2i + f̂2i+1x)(ĝ2i + ĝ2i+1x) mod x2 − ω2br(i)+1
n (5.2)

= (f̂2i · ĝ2i) + (f̂2i · ĝ2i+1)x+ (f̂2i+1 · ĝ2i)x (5.3)

+ (f̂2i+1 · ĝ2i+1)x
2 mod x2 − ω2br(i)+1

n (5.4)

= (f̂2i · ĝ2i + (f̂2i+1 · ĝ2i+1) · ω2br(i)+1
n) + (f̂2i · ĝ2i+1 + f̂2i+1 · ĝ2i)x (5.5)

To ideally exploit the NTT hardware architecture and to reuse the precomputed Twiddle
factor tables (which are stored in bit-reversed order), the basecase computation is split
into four parts according to Algorithm 21. Each multiplication and addition step can
be carried out in n/4 cycles (plus pipeline slack), whereas the address is always incre-
mented by four. Note that the Kyber reference implementation in [ABD+20] computes
−twiddle_table[n/4 + i] in Line 5. As negative values are disadvantageous for hardware
implementations, the symmetry property of the Twiddle factor is used (−ωn−in ≡ ω−in) in
this work. Thus, the invtwiddle_table can be used to circumvent negative numbers.

Wrap Address Unit. This address unit is used for schemes not based on NTT to reduce
the length-n′ polynomial product by φ(x) = xn+1. At this negative wrapping, the lower
part of the polynomial is subtracted with the higher part.

100

5.4 Accelerators for Linear Operations

×

−

in1

in2

+

in1

in2

Output MUX

in1 in2

−

in1 in2

ω in2 n−1

Modular Arithmetic Unit

out1
out2

ω
in1
in2n−1

q

q̂

ntt
invntt
pointwise
pointwise_add
pointwise_sub
mul_ninv
mont

...
...

Figure 5.2: Modular Arithmetic Unit. Black: DIT butterfly, red: DIF butterfly, gray: pipeline
stages and other functionalities.

Modular Arithmetic Unit. It performs the butterfly operation of Algorithm 19 (Lines
17–19) and Algorithm 20 (Lines 21–23). Figure 5.2 illustrates the architecture of this unit.
Its main components are a generic modular multiplier, a modular adder, and two mod-
ular subtractors. The signals ntt, invntt, pointwise, pointwise_add, pointwise_sub,
mul_ninv are used to configure the multiplexers to either perform DIT or DIF butter-
fly operations, pointwise multiplications (out1 = in1 · in2 mod q), pointwise additions
(out1 = in1 + in2 mod q), pointwise subtractions (out1 = in1− in2 mod q), or multi-
plications by constants (out1 = in1 · n−1 mod q).

Generic Modular Multiplier. The proposed generic modular multiplier architecture
supports Montgomery modular multiplications with up to 24-bit moduli. Moreover, it
supports modular multiplications with the reduction-friendly Solinas prime (239−212+1)
for multiplications with lifted primes. The mont signal is used to switch between the two
operation modes. Costly resources like FPGA DSP blocks are shared between the two
multiplication modes. The adders and subtractors are implemented using fast carry
chains [KG16]. The reduction logic for multiplications with Solinas prime reduction is
implemented using the target prime structure and involves only two additions and three
subtractions. To achieve a high operating frequency, the Montgomery and Solinas mul-
tiplier have pipeline registers included (12 and 6 stages, respectively).

101

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

5.4.3 Results of the Flexible NTT Accelerator

The platform used for the experimental results of this chapter is the NewAE Technology
Target Board CW305 equipped with an Artix 7 FPGA XC7A100T. It is designed for mea-
suring side-channel leakages, which is important for the subsequent sections. Table 5.3
compares flexible NTT design solutions. None of the previous works provides a similar
degree of versatility. The proposed design supports the following features: (i) config-
urable on runtime; (ii) the highest parameter range covering all mentioned lattice-based
algorithms with n up to 4096 and q up to 39-bit; (iii) positive and negative convolutions;
(iv) early abort; and (v) pointwise multiplications, additions, and subtractions.
The required clock cycle count of the loosely coupled NTT architecture is 2n · log2(n)

plus 14 or 8 cycles latency depending on whether Montgomery or Solinas prime reductions
are performed. The tightly coupled NTT accelerator of the previous chapter achieves
a lower cycle count due to its more powerful modular arithmetic unit. The BRAM
consumption is another drawback of the loosely coupled approach. Therefore, the tightly
coupled method is still more suitable for schemes with small coefficients.
The cycle count can be further reduced when using multiple data RAM blocks (e.g., 8

in [BUC19]). This mitigates the memory access bottleneck because multiple coefficients
can be processed in parallel. As shown in [MKÖ+20], this can significantly reduce the
cycle count. However, using multiple RAM blocks and butterfly units increases the design
complexity and is expensive in terms of area.
Using the generic NTT for polynomial multiplications is not a natural choice for

Saber due to its power-of-two modulus. The works in [BMTK+20, SRB20, BR21,
ZZY+20] presented high-speed multipliers based on shift-register structures to com-
pute the convolution-like multiplication. The approaches follow similar principles as
the ternary multiplier presented in the previous chapters. These types of multipliers can
get extremely large for Saber as it does not have ternary polynomial multiplications.
Moreover, they are not suitable for NTT-based schemes as Kyber. The NTT design of
this chapter provides an appropriate balance between resource costs and performance,
and at the same time supports a wide range of parameters and schemes.

5.5 Accelerators for Non-Linear Operations

In this section, hardware architectures for the non-linear operations of Kyber and Saber
are described. These operations need to combine information from both shares and
require special treatment in a masked design. In contrast to the NTT accelerator, the
accelerators proposed in this section are designed for a tight processor coupling.

5.5.1 Masking Keccak

As already pointed out, Keccak is highly relevant for the sampling of random polynomials.
While Theta, Rho, Pi, and Iota of the Keccak f-1600 operation are linear functions
consisting of XOR and rotation operations, the function Chi is a non-linear operation,
which additionally requires AND as well as NOT operations. The linear functions can

102

5.5 Accelerators for Non-Linear Operations

Table 5.3: Resource and performance overview for loosely coupled NTT.

Design Device LUT FF DSP BRAM NTT Cycles (+ pipeline slack)

[BUC19] ASIC − − − −
n = 256: 1 289
n = 512: 2 826
n = 1024: 6 155

[MKÖ+20] FPGA

7 400 5 000 24 24 n = 256: 160
8 100 5 200 24 24 n = 512: 345

16 000 14 000 56 24 n = 1024: 490
22 000 17 000 248 96 n = 4096: 3 276

Tightly NTT FPGA 2 908 170 9 0
n = 256: 1 935

n = 512: 8 169 a)

n = 1024: 18 537 a)

Loosely NTT (this chapter) FPGA 2 454 1 917 7 4.5

n = 256: 4 096(+14/8)
n = 512: 9 216(+14/8)
n = 1024: 20 480(+14/8)
n = 2048: 45 056(+14/8)
n = 4096: 98 304(+14/8)

a) Does not include time for bit-reversal.

be performed on the shares individually. Therefore, only the non-linear function Chi is
discussed in more detail.

Masked Chi operation (χ). Let A[x, y] be the input lane (a 64-bit word) of a specific
operation and B[x, y] the corresponding output lane. The χ operation is defined by
B[x, y] = A[x, y]⊕ (A[x+ 1, y] + 1) ∧ A[x+ 2, y] for x and y in [0, 4] (see Chapter 2.4).
As proposed in [BDPVA10], the output shares B0[x, y] and B1[x, y] of the masked input
shares A0[x, y] and A1[x, y] can be computed with

B0[x, y]← A0[x, y]⊕(A0[x+1, y]+1)∧A0[x+2, y]⊕A0[x+1, y]∧A1[x+2, y] and (5.6)

B1[x, y]← A1[x, y]⊕ (A1[x+ 1, y] + 1)∧A1[x+ 2, y]⊕A1[x+ 1, y]∧A0[x+ 2, y] . (5.7)

If the operations in Equations 5.6 and 5.7 are executed from left to right, the authors
in [BDPVA10] argue that all intermediate computations are independent of native vari-
ables. Instead of using fresh randomness, different parts of the state are reused to form
independent computations.

Masked Chi accelerator. The hardware design of Figure 5.3 is developed to accelerate
the computations of Equations 5.6 and 5.7. In order to break down the Chi opera-
tion into smaller sub-operations with 32-bit operands, each of the two shared states
is split into 2 × 5 chunks. More precisely, share A0 is split into the sub-state A0 ∈
{A0[0:4, y, 0:31], A0[0:4, y, 32:63]} for y in [0, 4] and A1 is split into A1 ∈ {A1[0:4, y, 0:31],
A1[0:4, y, 32:63]} for y in [0, 4]. The following description of the accelerator is divided

103

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

C
O
N
F
IG en_write

en_calc
en_read

D
I

in1
in2
addr

Address
Decoder

32

32

32

Reg-A0

(5× 32-bit)

A0[4, y, 0 : 31]

A0[3, y, 0 : 31]

A0[2, y, 0 : 31]

A0[1, y, 0 : 31]

A0[0, y, 0 : 31]

Reg-A1

(5× 32-bit)

A1[4, y, 0 : 31]

A1[3, y, 0 : 31]

A1[2, y, 0 : 31]

A1[1, y, 0 : 31]

A1[0, y, 0 : 31]

2× 32

2× 32

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Secure
Address
Decoder

D
O32

χ

Figure 5.3: Masked Chi accelerator. Dashed lines illustrate register stages and control signals.

into three main steps. In the first step, the first chunks A0[0:4, 0, 0:31] and A1[0:4, 0, 0:31]
for y = 0 are written via an address decoder into two separated register files. De-
pending on the address value, the input in1 and in2 are either stored in the registers
Reg-A0 or Reg-A1. In the second step, the Chi operation is computed. Therefore, Equa-
tion 5.6 is split into two parts: B̂0[x, y] = A0[x, y] + (A0[x+ 1, y] + 1) ∧A0[x+ 2, y] and
B0[x, y] = B̂0[x, y] +A0[x+ 1, y]∧A1[x+ 2, y]. These computations can be further split
into 2×5 parts such that the Chi operation is performed on each chunk separately. Equa-
tion 5.7 is split and processed in the same way. While the first part of these equations
(B̂0[x, y] and B̂1[x, y]) contains only computations with a single share, the second part
includes both shares. However, the critical shares are already blinded by independent
state bits. In order to avoid leakages due to glitch effects, the computations are sepa-
rated by registers. In the third and final step, the result of the first chunk is ready and is
transferred via a secure address decoder back to the GPR. This procedure is repeated for
all 2× 5 chunks until the whole Chi operation is performed. Loading the complete state
into an accelerator would only lead to a small performance improvement as the actual
Chi computation of the proposed accelerator requires only two cycles. However, it would
significantly increase the area costs.

Secure address decoder. It prevents leakages during the transfer of the output shares
to the GPR. A standard address decoder is equivalent to a MUX that forwards the
desired 32-bit value of the Chi accelerator output depending on the addr signal. When
the bits of the addr signal toggle to their new value, glitches can lead to temporarily
wrong addresses. In this case, the two shares are possibly forwarded simultaneously,
and secret-dependent leakages might occur within the combinatorial path. In order to
prevent such leakage effects, the secure address decoder uses a one-hot-encoding. The

104

5.5 Accelerators for Non-Linear Operations

one-hot-encoding allows controlling and blocking undesired signal propagation from the
wrong share domain.

5.5.2 Masking Binomial Sampling

A few works have already presented masked software implementations for the binomial
sampling. The authors in [OSPG18] proposed a masked implementation of the bino-
mial sampling that relies on fresh randomness and a carefully elaborated execution or-
der. Their method is only suitable for a first-order masking. In [SPOG19], the authors
enhanced the method of [OSPG18] and further developed another approach that is ex-
tensible to a higher-order masking. Their presented approach computes the Hamming
weight (number of bits set to one) of x and x′ in Equation 4.4 (Section 4.3.6) using
some linear arithmetic and a secure AND operation. The method of this work is based
on similar principles, but instead of a software solution a hardware circuit is developed.
The proposed generic binomial sampling accelerator is suitable for various values of η. It
supports Kyber-512 (η = 2, η = 3), Kyber-768 (η = 2), Kyber-1024 (η = 2), Lightsaber
(η = 5), Saber (η = 4), and Firesaber (η = 3). The binomial sampling comprises two
different accelerators: a bit-slicing accelerator and a masked adder tree.

Bit-slicing accelerator. Boolean operations on single bits—as required for the masked
sampling—are inefficient. The bit-slicing method allows the computation of multiple
samples in parallel. It uses the full word-size of the processor to compute, in this case,
32 samples in parallel. But the conversion from the Keccak output into bit-sliced format
turns out to be costly in software if the sampling is performed according to the speci-
fication of, e.g., Kyber or Saber [BDK+21]. However, turning the Keccak output into
a bit-sliced format corresponds to a simple rewiring in hardware. Figure 5.4 shows the
top-level architecture of the bit-slicing accelerator. The uniformly distributed Keccak
squeeze is stored in up to 2ηmax registers within the accelerator with ηmax = 5. The
transformation in the accelerator is performed according to Algorithm 22 for different
values of η. Depending on the value of addr, the address decoder at the output selects
the desired 32-bit values of xi[0 : 31] or x′i[0 : 31] with i ∈ [0, η − 1]. The bit-slicing ac-
celerator also supports the reverse operation for unpacking bit-sliced values of xi[0 : 31]
into normal representation. Note that in the following description not only one but 32
samples are processed. This is emphasized by the brackets.

Masked adder tree. After transforming the Keccak squeeze into a bit-sliced format, the
two sums s[0 : 31] =

∑η−1
0 xi[0 : 31] and s′[0 : 31] =

∑η−1
0 x′i[0 : 31] must be computed

and subtracted according to Equation 4.4 (Section 4.3.6). This time i denotes the index
of 32-bit variables and not the bit location. These sums compute 32 binomial samples in
parallel. The required computations can be performed in hardware using the adder tree
shown in Figure 5.5 (a). In order to simplify the subsequent description of the binomial
sampler, the brackets are omitted, e.g., instead of xi[0 : 31] the notation xi is used. The
adder tree consists of η stages with η half adders each. The computation of the binomial
sampling can be split into two steps. In the first step, the sum s is computed using the

105

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

C
O
N
F
IG en_write

en_read

D
I

in1
in2
addr

Address
Decoder

32

32

32

Reg-A
(10× 32-bit)

b[0 : 31]

b[32 : 63]

b[64 : 95]

b[96 : 127]

b[128 : 159]

b[160 : 191]

b[192 : 223]

b[224 : 255]

b[256 : 287]

b[288 : 319]

2× 32
Transform η = 2

Transform η = 3

Transform η = 4

Transform η = 5

Unpack

Address
Decoder

D
O32

Figure 5.4: Bit-slicing accelerator. Dashed lines illustrate control signals.

Algorithm 22: Bit-slicing transform η

Input: Byte array b = {b0, b1, . . . , b8η−1} ∈ B8η with B denoting the set [0, 255]
Result: Bit-sliced 32-bit terms xi[0 : 31] and x′i[0 : 31] with i ∈ [0, η − 1]

1 s← BytesToBitstream(b)
2 for i = 0 to 31 by 1 do
3 for j = 0 to η − 1 by 1 do
4 xj [i]← (s� (2η · i+ j)) ∧ 1
5 x′j [i]← (s� (2η · i+ j + η)) ∧ 1

6 end
7 end

106

5.5 Accelerators for Non-Linear Operations

input x and z, whereas z is initially set to zero. Now, in each stage, the 32-bit values
of x are subsequently added to the intermediate sum of the previous stage. The carries
of these computations are always forwarded to the next half adder of the same stage,
and the intermediate sums are forwarded to the next stage. After η stages, the circuit
outputs the sum s. In the second step, the sum of the previous step is assigned to the
input z = s, and additions with the inverse of x′ are performed within the stages. This
corresponds to the desired subtraction of s and s′.

Masked adder tree based on TI. Let the sum and carry computations in the adder tree
be split into two functions f1 : (x0, z0)→ (s0) with s0 = x0⊕z0 and f2 : (ci−1, zi−1, zi)→
(ci, si) with ci = ci−1 ∧ zi−1 and si = zi ⊕ ci for i 6= 0. The direct sharing approach
presented in [BNN+12] can be used to construct functions that are in accordance to the
TI principles. With the three input shares of x{0:2}i , the sum s

{0:2}
i and carry c{0:2}i can

be computed with the following splits:

s00 = x00 ⊕ z00 , s10 = x10 ⊕ z10 , s20 = x20 ⊕ z20 (5.8)

c0i = (c1i−1 ∧ z1i−1)⊕ (c1i−1 ∧ z2i−1)⊕ (c2i−1 ∧ z1i−1); s0i = z0i ⊕ c0i (5.9)

c1i = (c2i−1 ∧ z2i−1)⊕ (c0i−1 ∧ z2i−1)⊕ (c2i−1 ∧ z0i−1); s1i = z1i ⊕ c1i (5.10)

c2i = (c0i−1 ∧ z0i−1)⊕ (c0i−1 ∧ z1i−1)⊕ (c1i−1 ∧ z0i−1); s2i = z2i ⊕ c2i (5.11)

While the linear functions in these equations can always be computed with a single
share, for the non-linear functions, at least one share is always missing during the compu-
tations (non-completeness property). When converting the proposed adder tree using TI
principles and the functions f1 and f2, the architecture of Figure 5.5 (b) is obtained. It
is impossible to fulfill the uniformity property of a non-linear Boolean operation that has
two inputs and one output [NRS11]. Therefore, the uniformity property for each output
of the function f2 needs to be recovered using fresh randomness. Changing the adder
tree to use full adders where three-input operations are used to avoid the refreshing step
is theoretically possible. However, such an architecture would lose the flexibility as for
each η another circuit would be required. Therefore, another alternative to reduce the
randomness requirements is investigated.

Masked adder tree based on DOM. When the uniformity property is preserved, secure
TI implementations can be realized with a low amount of randomness. As this is not
the case for the proposed adder tree and the generation of fresh randomness is in most
platforms expensive, the behavior of the adder tree architecture with DOM principles
is investigated. The DOM approach significantly reduces the complexity, as shown in
Figure 5.5 (c). Instead of three instances of f1 and 3 · (ηmax − 1) instances of f2 in
each level, only two of f1 and ηmax − 1 of f2-DOM are required. The computation
ci = ci−1∧zi−1 in f2-DOM is realized with the secure DOM-AND. For the generation of 32
binomially distributed coefficients, the adder tree based on TI requires 4 ·ηmax ·(ηmax−1)

107

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

random 32-bit values plus (2 · ηmax) values for randomizing the zero-input of z. In
contrast, the DOM approach requires 2 · ηmax · (ηmax − 1) plus ηmax random values. For
instance, with ηmax = 5 the amount of randomness reduces from 90×32-bit to 45×32-bit.

5.5.3 Secure Adder

The secure arithmetic addition for masked Boolean shares is an essential element for
the generic B2A and A2B conversions. Two secure adder designs based on the ripple-
carry adder and Kogge–Stone adder were proposed in [SMG15]. The Kogge–Stone adder
achieves a lower latency as it belongs to the class of carry-lookahead adders. It splits the
carry computation into a generate and propagate part. Due to its good performance, the
suggested Kogge–Stone adder was adopted for the hardware design of this subsection.
The TI-based Kogge–Stone adder for three shares, shown in Figure 5.6, is constructed
using three stages for performing 4-bit additions. The vertical stages create propagate
bits p{0:2}i and generate bits g{0:2}i . The first stage, requires the linear function f1 :

(x
{0:2}
i ,y

{0:2}
i)→ p

{0:2}
i with

p0i = x0i ⊕ y0i , p1i = x1i ⊕ y1i , p2i = x2i ⊕ y2i (5.12)

and the non-linear function f2 : (x
{0:2}
i ,y

{0:2}
i , ri)→ g

{0:2}
i with

g0i = (x1i ∧ y1i)⊕ (x1i ∧ y2i)⊕ (x2i ∧ y1i)⊕ ri , (5.13)

g1i = (x2i ∧ y2i)⊕ (x0i ∧ y2i)⊕ (x2i ∧ y0i)⊕ (x0i ∧ ri)⊕ (y0i ∧ ri) , (5.14)

g2i = (x0i ∧ y0i)⊕ (x0i ∧ y1i)⊕ (x1i ∧ y0i)⊕ (x0i ∧ ri)⊕ (y0i ∧ ri)⊕ ri . (5.15)

The remaining stages require f2 and f3 : (g
{0:2}
i+j , g

{0:2}
i ,p

{0:2}
i+j)→ g

{0:2}
i+j with j = 2stage−1

and
g0i+j = (g1i ∧ p1i+j)⊕ (g1i ∧ p2i+j)⊕ (g2i ∧ p1i+j)⊕ g1i+j , (5.16)

g1i+j = (g2i ∧ p2i+j)⊕ (g0i ∧ p2i+j)⊕ (g2i ∧ p0i+j)⊕ g2i+j , (5.17)

g2i+j = (g0i ∧ p0i+j)⊕ (g0i ∧ p1i+j)⊕ (g1i ∧ p0i+j)⊕ g0i+j . (5.18)

While the first stage requires further randomness for recovering the uniformity property
after f2, the remaining stages can use the independent bit values of g0i instead of ri to
keep uniformity.

5.5.4 Results of Non-Linear Accelerators

Table 5.4 summarizes the resource utilization and performance of the developed acceler-
ators. Critical signals and components that involve non-linear operations were defined
with the Verilog dont_touch attribute, preventing the synthesis tool from optimizations.
A lower resource utilization can be expected without this attribute, but a higher risk for
undesired optimizations exists.
The Keccak f-1600 accelerator supports complete round computations for non-masked

settings and incomplete round computations (only Theta, Rho, Pi) for masked settings.

108

5.5 Accelerators for Non-Linear Operations

HA HA HA HA HA

z0 = 0 z1 = 0 z2 = 0 z3 = 0 z4 = 0

x0

HA HA HA HA HAx1

. . .

HA HA HA HA HAx4

s0 s1 s2 s3 s4

(a) Adder tree for binomial sampling accelerator

f1 f1 f1

x00 x10 x20z00 z10 z20

s00 s10 s20

f2

f2

f2

x00x
1
0x

2
0

z21

z11

z01

z00 z10 z20

s21s11s01

f2

f2

f2

z22

z12

z02

z01 z11 z21

s22s12s02

f2

f2

f2

z23

z13

z03

z02 z12 z22

s23s13s03

f2

f2

f2

z24

z14

z04

z03 z13 z23

s24s14s04

f1 f1 f1

x01 x11 x21s00 s10 s20

s00 s10 s20

f2

f2

f2

x01x
1
1x

2
1

s21

s11

s01

s00 s10 s20

s21s11s01

f2

f2

f2

s22

s12

s02

s01 s11 s21

s22s12s02

f2

f2

f2

s23

s13

s03

s02 s12 s22

s23s13s03

f2

f2

f2

s24

s14

s04

s03 s13 s23

s24s14s04
. . .

f1 f1 f1

x04 x14 x24s00 s10 s20

s00 s10 s20

f2

f2

f2

x04x
1
4x

2
4

s21

s11

s01

s00 s10 s20

s21s11s01

f2

f2

f2

s22

s12

s02

s01 s11 s21

s22s12s02

f2

f2

f2

s23

s13

s03

s02 s12 s22

s23s13s03

f2

f2

f2

s24

s14

s04

s03 s13 s23

s24s14s04

(b) Masked adder tree for binomial sampling accelerator (TI)

f1 f1

x00 x10z00 z10

s00 s10

f2-DOM f2-DOM f2-DOM f2-DOM
x00
x10

z00 z10 z01 z11 z01 z11 z02 z12 z02 z12 z03 z13 z03 z13 z04 z14

s01 s11 s02 s12 s03 s13 s04 s14

f1 f1

x01 x11s00 s10

s00 s10

f2-DOM f2-DOM f2-DOM f2-DOM
x01
x11

s00 s10 s01 s11 s01 s11 s02 s12 s02 s12 s03 s13 s03 s13 s04 s14

s01 s11 s02 s12 s03 s13 s04 s14
. . .

f1 f1

x04 x14s00 s10

s00 s10

f2-DOM f2-DOM f2-DOM f2-DOM
x04
x14

s00 s10 s01 s11 s01 s11 s02 s12 s02 s12 s03 s13 s03 s13 s04 s14

s01 s11 s02 s12 s03 s13 s04 s14

(c) Masked adder tree for binomial sampling accelerator (DOM)

Figure 5.5: Adder tree for binomial sampling (Binom Tree) with ηmax = 5.

109

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

f1 f2 f1 f2 f1 f2 f1 f2

x
{0:2}
0 x

{0:2}
0 x

{0:2}
1 x

{0:2}
1 x

{0:2}
2 x

{0:2}
2 x

{0:2}
3 x

{0:2}
3

y
{0:2}
0 y

{0:2}
1 y

{0:2}
2 y

{0:2}
3

y
{0:2}
0 y

{0:2}
1 y

{0:2}
2 y

{0:2}
3

r0 r1 r2 r3

s
{0:2}
0 s

{0:2}
1 s

{0:2}
2 s

{0:2}
3

f2 f3 f2 f3 f2 f3

p
{0:2}
0 g

{0:2}
0 p

{0:2}
1 g

{0:2}
1 p

{0:2}
2 g

{0:2}
2 p

{0:2}
3 g

{0:2}
3

r4 r5 r6

f2 f3 f2 f3

p
{0:2}
1 g

{0:2}
1 p

{0:2}
2 g

{0:2}
2 p

{0:2}
3 g

{0:2}
3

r7 r8

Post-processing

p
{0:2}
2 g

{0:2}
2 p

{0:2}
3 g

{0:2}
3

c
{0:2}
in c

{0:2}
out

Figure 5.6: Secure Kogge–Stone adder (SecAdd) for 4-bit additions.

It is an enhanced version of the design presented in Section 4.3.5. The masked Chi
accelerator is used to securely accelerate the non-linear operation of Keccak. So far,
no other masked hardware/software codesign of Keccak was found. The masked pure
hardware designs in [BDPVA10, GSM17, ABP+18] report only ASIC results in gate
equivalents making a comparison to this thesis difficult.
The results show that the DOM variant of the binomial sampling accelerator (Binom

Tree) does not only decrease the required amount of randomness but also leads to a
significant area reduction compared to the TI variant. Therefore, only the DOM variant
is considered for further measurements in the remainder of this thesis.
Compared to [SMG15], the secure adder of this work is very similar. Both are de-

signed for 32-bit operations. The higher resource consumption can be explained by the
dont_touch attributes, an additional secure address decoder, and an additional feature
that allows computing 32-bit additions with and without input carry.

Cycle count of non-linear accelerators. The cycle counts in Table 5.4 are the latencies
within the accelerator without load/store and clean operations. The Keccak f-1600
operation is single cycled. Although the complete f-1600 operation is performed without
any pipeline stages, it achieves a high frequency. The masked Chi accelerator requires,
due to the two pipeline stages within the Chi operation, two clock cycles for the arithmetic
computations (see Figure 5.3). The bitslicing accelerator consists of only combinatorial
logic without any register stages. The binomial sampling accelerator (Binom Tree) has
five stages with five half-adders each for ηmax = 5. The largest propagation delay from the
input {x0, z0} to the output s4 is nine cycles (propagation from upper-left to lower right

110

5.6 System Integration

Table 5.4: Resource and performance overview for the non-linear accelerators.

Design LUT FF Slices DSP BRAM Max. Freq. Cycles
Keccak (f-1600) 3 100 0 920 0 0 303MHz 1/round
Masked Chi 1 488 971 632 0 0 370MHz 2

Bit-slice 277 320 123 0 0 357MHz 1

Binom Tree (DOM) 5 352 2 570 1 706 0 0 112MHz 9
Binom Tree (TI) 9 232 4 166 2 839 0 0 140MHz 9
Secure Adder (TI) [SMG15] 937a) 1 330a) – 0 0 62MHz 6
Secure Adder (TI) 2 464 1 323 1 054 0 0 454MHz 6 (7)

a) Does not contain resources for secure address decoder and no support for an input carry.

RISC-V Core

IF
ID

ID
EX

EX
WB

Prefetch
Buffer

Decode

GPR

FPR

Keccak

CSR

ALU

MULT

Chi
Bit-slice
Binom
Tree
Secure
Adder

LSU

Instruction Interface Data Interface
addrrdata addrwdata rdataB

ri
dg

e

Instr.
Mem

B
ri
dg

e

Data
Mem1

Data
Mem2
(opt.)

AXI Bus

Bridge

APB

UART SPI I2C GPIO

NTT Accelerator

Figure 5.7: RISC-V system with masked post-quantum accelerators.

corner in Figure 5.5). The secure adder has for a 32-bit addition six register stages. The
secure addition requires one additional clock cycle when the support for computations
with input carry is enabled.

5.6 System Integration

Figure 5.7 shows the architecture of the complete RISC-V system with accelerators. It
includes the tightly coupled accelerators (Keccak, Chi, Bit-slice, Binom Tree, Secure
Adder) and the loosely coupled NTT accelerator. The same environment is used as in
Chapter 4. The optional FPR without FPU is again activated as it is required for the
Keccak f-1600 accelerator.

111

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

5.6.1 Accelerator Integration

The configuration registers and memory of the loosely coupled NTT are memory-mapped.
The addresses starting at 0x1B10 8000 include: (i) the parameters offset_1, offset_2,
offset_3, n−1, q, and q̂, (ii) a configuration register containing the polynomial length n
and the configuration signals mont, negacyclic, early_abort, ntt, invntt, pointwise,
basemul, wrapping, and mul_ninv (see Section 5.4.2).
The tightly coupled Keccak accelerator for the f-1600 round function is placed, sim-

ilar as in Chapter 4, in the decode stage. All non-linear accelerators require at most
three input and one output operand and are placed in the execution stage. The Keccak
accelerator can be configured to perform complete rounds for non-masked settings and
incomplete rounds for masked settings (without the non-linear Chi operation as it is per-
formed with a separate accelerator). The register rs1 controls this configuration. The
register rs2 is used for the Keccak round selection. The remaining accelerators have write
instructions (input in rs1/rs2, address in rd) and read instructions (output and address
in rd) to securely copy the shares between register file and accelerator. In addition to
the compute operation, the Binom Tree accelerator has instructions for resetting z{0:n−1}

and copying the sum s{0:n−1} to the input z{0:n−1}. The instruction pq.mbincinv is used
for the computation of the subtraction.

5.6.2 Architectural Leakage Reduction

Storing two shares in the same register file can lead to exploitable leakages, even if both
shares are not accessed simultaneously [SR15]. The reason is that the registers can be
connected to the same internal bus and combinatorial circuit. Although influencing the
performance, only one share is located within the register file at each time step in this
work. Before processing the second share, the first share is cleared. At the non-linear
accelerators in the execution stage, the shares are always stored in different register
files. Register values are only accessed via a secure address decoder, as discussed in
Section 5.5.1.
The pipeline registers between the decode and execution stage are another typical

source of leakage at the transition of operations with another share. This affects three
operand registers for the ALU, multiplier unit, and post-quantum accelerators, respec-
tively. These pipeline registers must be cleared after critical operations. Moreover, the
serial divider, which can perform divisions and remainder computations, contains pipeline
registers that must be cleared to avoid leakages.
The instruction and data memories in an FPGA design are constructed using BRAM

resources. The main elements of a BRAM are an input register, memory array, output
latch, and an optional output register to improve the critical path. Overwriting one of
the registers/latches with another share can lead to exploitable leakages [BDGH15]. The
routing nets in the memory array have buffers to improve the signal quality. Charging
and discharging the nets can thus lead to amplified leakages. In order to avoid such
effects, a second data memory is placed in the design. It can be optionally used to
clearly separate the shares for critical operations. Variables can be relocated using the

112

5.6 System Integration

Table 5.5: FPGA resource overview and estimated max. frequency for the system with and
without accelerators.

Design Platform LUT FF Slices DSP BRAM Max. Freq.
Baseline PULPino 13 010 8 318 4 821 6 32 62MHz
Accel. PULPino 20 697 11 833 6 852 13 36.5 62MHz
Accel. masked PULPino 29 889 17 152 9 641 13 52.5 58MHz

Table 5.6: ASIC resource overview and estimated max. frequency (UMC 65nm).

Cell Count Combinat. Sequent. Buffer+Inv. Clk-Gate Memory Max. Freq.

PULPino orig. 42 115
78 373µm2 92 261µm2 20 534µm2 365µm2 669 345µm2

75MHz(54 kGE) (64 kGE) (14 kGE) (0.25 kGE) (465 kGE)

Accel. (Chap. 4) 68 853
148 941µm2 102 203µm2 27 186µm2 346µm2 669 345µm2

46MHz(103 kGE) (71 kGE) (19 kGE) (0.24 kGE) (465 kGE)

Accel. (Chap. 5) 74 197
151 050µm2 131 592µm2 36 760µm2 397µm2 992 336µm2

77MHz(105 kGE) (91 kGE) (26 kGE) (0.28 kGE) (689 kGE)

Accel. masked (Chap. 5) 97 987
195 562µm2 180 843µm2 48 481µm2 392µm2 1 327 008µm2

75MHz(136 kGE) (126 kGE) (34 kGE) (0.27 kGE) (922 kGE)

section attribute of the compiler.

5.6.3 Results of System Integration

Table 5.5 provides the FPGA resource consumption with three different configurations:
(i) RISC-V baseline implementation without accelerators and FPR; (ii) accelerated im-
plementation that includes the loosely coupled NTT and tightly coupled Keccak accel-
erators; (iii) accelerated masked implementation that further includes the Chi, Bit-slice,
Binom Tree, and Secure Adder accelerators.
When comparing the accelerated implementation with the original RISC-V platform,

the number of LUTs and registers increased by factors of 1.59 and 1.42, respectively.
A comparison to the implementation of Chapter 4 is provided for an ASIC synthesis
below. When comparing the accelerated configuration with the configuration that further
integrates masking accelerators, the number of LUTs increased by a factor of 1.44 and
the amount of registers by a factor of 1.45. A direct resource comparison to [AEL+20],
which uses a finite field accelerator to accelerate lattice-based cryptography on RISC-V,
is barely possible as a completely different platform was used. However, the resource
overhead in [AEL+20] is expected to be smaller as only a single Barrett multiplier is
added to the original core.

ASIC design results. Table 5.6 summarizes the resource overview of the ASIC UMC
65 nm designs after complete layout generation. The same technology and low leakage
library with high threshold voltage were chosen as in the previous chapters. This choice
trades performance in favor of a low power and energy consumption and is thus well
suited for embedded devices. Compared to the accelerated system design in Chapter 4.3,

113

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

the accelerated design of this chapter requires a similar amount of combinatorial cells
and about 29% more sequential cells. Due to the loosely coupled NTT, the memory
size is about 48 % larger. While FPGAs offer a high number of BRAMs with dual-port
capabilities, memory is usually very costly for ASIC designs. However, one advantage of
an ASIC design is the higher flexibility as also the unusual word length of 39-bit can be
directly supported. The presented NTT design uses one dual-port RAM (207 178µm2)
for the coefficients and one single port RAM (115 812µm2) for the Twiddle factors (each
of size 4k × 39-bit). When only Kyber and Saber are targeted, smaller memory sizes
would be sufficient. For example, for a 1k× 39-bit single-port RAM, the area reduces to
37 526µm2.
A visual comparison of the different design approaches is provided in Figure 5.8. It

shows the placement of the standard cells and macro blocks. It is clearly recognizable
that the additional memory blocks of the generic loosely coupled NTT presented in this
chapter require much area. Tailoring the design for specific schemes might reduce this
area. However, the tightly coupled approach and on-the-fly twiddle factor computation
are more suitable when targeting a low area. For a core size of 1.46mm× 1.46mm, the
core utilization is 40.39% (baseline), 44.48% (accelerated Chapter 4.3), 61.56% (accel-
erated this chapter), and 82.21% (masked accelerated this chapter). The measurements
exclude physical cells such as filler and well-tap cells.
Masked designs benefit from a second data memory, as discussed in Section 5.6.2.

Moreover, masked designs have a higher memory consumption compared to non-masked
designs as they need to store multiple shares and a large number of random values.
Computing the random values with an efficient TRNG on the fly could reduce the memory
consumption and hence the required area. However, the development, integration, and
evaluation of the masked design with such a TRNG has been left as future work.

5.7 Experimental Results

This section provides an overview of the performance results for the optimized non-
masked and masked implementations of Kyber and Saber, and the leakage assessment of
the developed routines and accelerators.

5.7.1 Performance of Unmasked Implementations

Table 5.7 summarizes the benchmark results of the accelerated non-masked Kyber and
Saber implementations. They only use the loosely coupled generic NTT and Keccak
f-1600 accelerators. The results show that the new design beats the cycle count of
all ARM Cortex-M4 implementations and RISC-V hardware/software codesigns. Com-
pared to the fastest assembly-optimized ARM Cortex-M4 implementations, cycle count
improvement factors of 3.47 for Kyber-768 and 2.63 for Saber were achieved (whole
algorithm execution). While the ARM Cortex-M4 is more advanced than the deployed
open-source RISC-V core, the area overhead of the accelerators must be considered. Com-
pared to the RISC-V instruction set extensions for finite field operations in [AEL+20],
an improvement factor of 7.06 for Kyber-1024 was achieved. Clearly, it must be noted

114

5.7 Experimental Results

� RISC-V core region
� RISC-V ALU
� RISC-V MULT

� NTT and modular arithmetic accelerator
� Keccak accelerator

� Loosely generic NTT
� Keccak accelerator

� Loosely generic NTT
� Masking accelerators
� Keccak accelerator

RISC-V baseline Accelerated (Chapter 4.3)

Accelerated (Chapter 5) Accelerated masked (Chapter 5)

Instr. RAM

Data RAM

Instr. RAM

Data RAM

Instr. RAM

Data RAM

NTT RAM

Twiddle
RAM

Instr. RAM

Data 1 RAM Data 2 RAM

NTT RAM

Twiddle
RAM

Figure 5.8: Placement of cells for different ASIC design versions.

115

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

that more powerful accelerators are larger, which, however, is justified by the achieved
performance gain.
Compared to the RISC-V design in Chapter 4, a performance improvement factor of

1.14 for Kyber-768 and 3.30 for Saber was achieved (whole algorithm execution). Due to
the genericity of the NTT unit, a clear performance advantage for the non-NTT based
scheme Saber gets visible. The slight performance advantage of Kyber with the new
NTT design is achieved by a systematic reduction of the data transfer between core
and accelerator. The matrix-vector multiplications in MLWE/MLWR schemes require
multiplying different ring elements from the matrix with always the same vector. In
order to reduce the communication overhead, the transformed vector is left within the
NTT memory, and the result is only written back at the very end when also subsequent
operations like polynomial additions/subtractions are completed.
Further cycle count improvements can be achieved with coprocessor solutions where

the main processor is mostly used for configuration purposes, as in Sapphire [BUC19] and
VPQC [XHY+20]. These almost standalone solutions compute large parts of the complete
scheme within the accelerator. However, this work focuses on a solution that uses the
RISC-V processor as the main computing element to keep the flexibility high. This
facilitates spontaneous algorithmic changes and the integration of SCA countermeasures.

5.7.2 Performance of Masked Implementations

This section provides an overview of the results for the masked Kyber and Saber im-
plementations and compares them to prior and concurrent works [OSPG18, BDK+21,
BGR+21]. The masked RLWE implementation presented in [OSPG18] is based on the
NewHope algorithm, which has many similarities to Kyber. Both are NTT-based and
use a prime modulus, leading to similar masking requirements and approaches. The
masked RLWE scheme in [OSPG18] can be categorized to NIST Level V. Although the
comparison between ARM Cortex-M4 and the deployed RISC-V platform is difficult, the
measurements in Table 5.8 indicate that the presented accelerators and masking methods
lead to a significantly lower cycle count.
Compared to the masked Saber implementation in [BDK+21], a cycle count improve-

ment of factor 3.10 (including randomness generation) is achieved. Larger improvements
might be possible using specialized accelerators for Saber. However, this work focuses
on a high flexibility. It also must be noted that the chosen algorithms of [BDK+21]
are not easily extensible to higher masking orders. The masked Kyber implementation
in [BGR+21] was initially developed for the ARM Cortex-M0, an energy-efficient and
resource-constrained platform. A direct comparison with the deployed RISC-V core is
again difficult. But in absolute cycle counts, the presented implementation is a factor of
8.70 faster (including randomness generation).
For the target platform of this work, Kyber is more costly to mask than Saber. The

reason is that Kyber requires sampling masked error polynomials, while Saber avoids
this using a deterministic rounding operation. Moreover, the prime modulus of Kyber
turns out to be more costly at some points. For example, the secure addition modular q
operation for B2Aq/A2Bq conversions requires more instructions than the normal secure

116

5.7 Experimental Results

Table 5.7: Cycle count and code size in bytes of optimized non-masked Kyber and Saber.

Algorithm Device KeyGen Encaps Decaps Code size
Kyber-512 [KRSS19] ARM M4 514 291 (×4.42) 652 769 (×3.71) 621 245 (×3.33) 11 000
Kyber-512 [ABCG20] ARM M4 455 191 (×3.91) 586 334 (×3.33) 543 500 (×2.92) –
Kyber-512 [Gre20] RISC-V (VexRiscv) 1 218 557 (×10.46) 1 592 689 (×9.05) 1 515 876 (×8.13) –
Kyber-512 opt. [AEL+20] RISC-V (VexRiscv) 710 000 (×6.10) 971 000 (×5.52) 870 000 (×4.67) –
Kyber-512 baseline (Chap. 4) RISC-V (PULPino) 1 137 052 (×9.76) 1 547 789 (×8.79) 1 525 621 (×8.19) 16 928
Kyber-512 opt. (Chap. 4) RISC-V (PULPino) 150 106 (×1.29) 193 076 (×1.10) 204 843 (×1.10) 12 532
Kyber-512 opt. (Chap. 5) RISC-V (PULPino) 116 454 (×1.00) 176 034 (×1.00) 186 341 (×1.00) 14 208

Kyber-768 [KRSS19] ARM M4 976 757 (×4.57) 1 146 556 (×3.85) 1 094 849 (×3.50) 11 400
Kyber-768 [ABCG20] ARM M4 864 008 (×4.04) 1 032 540 (×3.46) 969 867 (×3.10) –
Kyber-768 [Gre20] RISC-V (VexRiscv) 2 288 109 (×10.70) 2 771 517 (×9.30) 2 653 584 (×8.48) –
Kyber-768 baseline (Chap. 4) RISC-V (PULPino) 2 102 505 (×9.83) 2 625 824 (×8.81) 2 573 963 (×8.22) 17 266
Kyber-768 opt. (Chap. 4) RISC-V (PULPino) 273 370 (×1.28) 325 888 (×1.09) 340 418 (×1.09) 11 658
Kyber-768 opt. (Chap. 5) RISC-V (PULPino) 213 862 (×1.00) 298 048 (×1.00) 313 034 (×1.00) 13 028

Kyber-1024 [KRSS19] ARM M4 1 575 052 (×5.92) 1 779 848 (×4.83) 1 709 348 (×4.35) 12 424
Kyber-1024 opt. [ABCG20] ARM M4 1 404 695 (×5.28) 1 605 707 (×4.36) 1 525 805 (×3.88) –
Kyber-1024 [Gre20] RISC-V (VexRiscv) 3 686 344 (×13.85) 4 280 420 (×11.62) 4 123 722 (×10.50) –
Kyber-1024 [AEL+20] RISC-V (VexRiscv) 2 203 000 (×8.28) 2 619 000 (×7.11) 2 429 000 (×6.18) –
Kyber-1024 baseline (Chap. 4) RISC-V (PULPino) 3 378 603 (×12.69) 4 024 887 (×10.93) 3 949 039 (×10.05) 17 670
Kyber-1024 opt. (Chap. 4) RISC-V (PULPino) 349 673 (×1.31) 405 477 (×1.10) 424 682 (×1.08) 12 874
Kyber-1024 opt. (Chap. 5) RISC-V (PULPino) 266 209 (×1.00) 368 409 (×1.00) 392 873 (×1.00) 14 442

Lightsaber [KRSS19] ARM M4 459 965 (×3.12) 651 273 (×3.23) 678 810 (×3.00) 44 916
Lightsaber [BMKV20] ARM M4 466 000 (×3.16) 653 000 (×3.24) 678 000 (×2.99) –
Lightsaber [CHK+21] ARM M4 360 000 (×2.44) 513 000 (×2.55) 498 000 (×2.20) –
Lightsaber baseline (Chap. 4) RISC-V (PULPino) 1 071 836 (×7.27) 1 503 594 (×7.46) 1 537 939 (×6.79) 18 772
Lightsaber opt. (Chap. 4) RISC-V (PULPino) 366 837 (×2.49) 526 496 (×2.61) 657 583 (×2.90) 12 544
Lightsaber opt. (Chap. 5) RISC-V (PULPino) 147 472 (×1.00) 201 457 (×1.00) 226 528 (×1.00) 11 442

Saber [KRSS19] ARM M4 896 035 (×3.84) 1 161 849 (×3.72) 1 204 633 (×3.43) 44 468
Saber [BMKV20] ARM M4 853 000 (×3.65) 1 103 000 (×3.52) 1 127 000 (×3.21) –
Saber [CHK+21] ARM M4 658 000 (×2.82) 864 000 (×2.77) 835 000 (×2.38) –
Saber baseline (Chap. 4) RISC-V (PULPino) 2 110 283 (×9.04) 2 737 181 (×8.76) 2 797 400 (×7.96) 17 912
Saber opt. (Chap. 4) RISC-V (PULPino) 760 893 (×3.26) 1 000 043 (×3.20) 1 201 524 (×3.42) 11 802
Saber opt. (Chap. 5) RISC-V (PULPino) 233 452 (×1.00) 312 477 (×1.00) 351 370 (×1.00) 10 988

Firesaber [KRSS19] ARM M4 1 448 776 (×4.13) 1 786 930 (×3.94) 1 853 339 (×3.63) 44 184
Firesaber [BMKV20] ARM M4 1 340 000 (×3.82) 1 642 000 (×3.62) 1 679 000 (×3.29) –
Firesaber [CHK+21] ARM M4 1 008 000 (×2.88) 1 255 000 (×2.77) 1 227 000 (×2.40) –
Firesaber baseline (Chap. 4) RISC-V (PULPino) 3 427 099 (×9.78) 4 215 630 (×9.29) 4 328 885 (×8.47) 17 794
Firesaber opt. (Chap. 4) RISC-V (PULPino) 1 300 272 (×3.71) 1 622 818 (×3.58) 1 898 051 (×3.71) 11 680
Firesaber opt. (Chap. 5) RISC-V (PULPino) 350 524 (×1.00) 453 564 (×1.00) 511 088 (×1.00) 11 070

117

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

Table 5.8: Cycle count and code size in bytes of optimized masked Kyber and Saber.

Algorithm Device Decapsulation Generate Code size
unmasked masked randomness masked

Masked RLWE [OSPG18] ARM M4 4 416 918 25 334 493 (×5.74) +0 (×5.74)a) –
Kyber-512 (this work) RISC-V 186 341 929 072 (×4.99) +125 770 (×5.66) 30 518
Kyber-768 [BGR+21] ARM M0 5 530 000 12 208 000 (×2.21) – –
Kyber-768 (this work) RISC-V 313 034 1 235 460 (×3.95) +167 190 (×4.48) 28 554
Kyber-1024 (this work) RISC-V 392 873 1 628 467 (×4.15) +200 697 (×4.66) 30 314

Lightsaber (this work) RISC-V 226 528 604 457 (×2.67) +7 154 (×2.70) 21 778

Saber [BDK+21] ARM M4 1 123 280 2 833 348 (×2.52) +0 (×2.52)a) –
Saber (this work) RISC-V 351 370 905 395 (×2.58) +9 530 (×2.60) 21 042
Firesaber (this work) RISC-V 511 088 1 156 406 (×2.26) +11 745 (×2.29) 20 768

a) Randomness generation included in decapsulation measurement as onboard TRNG available.

addition. For some non-linear operations, Kyber further requires a rejection sampling to
obtain uniform randomness modular q.

5.7.3 Side-Channel Leakage Evaluation

This section presents the leakage evaluation for all non-linear operations of this work.

Leakage assessment. The Test Vector Leakage Assessment (TVLA) method [GJJR11]
is a well-established procedure to detect side-channel leakages of an implementation. The
method is very powerful as it does not require information about the actual implemen-
tation or algorithm. It uses Welch’s t-test [Wel47] to test the hypothesis that two data
sets have the same means. The method first determines a t-value according to

t =
µ0 − µ1√
σ2
0
n0

+
σ2
1
n1

, (5.19)

where µ0, µ1 are the means, s20, s21 the variances, and n0, n1 the cardinality of the two sets.
If the value is larger than a certain threshold, then the null hypothesis, both means are
equal, is rejected. The value 4.5 has been established as a threshold in the side-channel
community, leading to a confidence of > 99.999% [GJJR11]. In practice, multiple power
measurements (called traces) are recorded and categorized into two different sets for
the side-channel leakage assessment. The first set Qfix contains all measurements with a
fixed input xfix = x0+x1 of any algorithm. The second set Qrand contains only randomly
masked inputs xrand = x′0 + x′1. The t-value is then evaluated for each time instance
(sample point). If the t-value is always lower than the threshold, the implementation is
considered secure against first-order univariate attacks for the given number of traces.

Measurement setup. As already mentioned, the RISC-V design was implemented on a
NewAE CW305 target board. The test programs are loaded via SPI to the instruction and
data memory of the RISC-V platform. The UART interface is used to send the input data
for the TVLA tests from the host PC to the RISC-V target. The Picoscope 6402D USB

118

5.8 Summary and Open Problems

oscilloscope with a sampling frequency of 156.25MHz was used to measure the voltage
drop across a 100mΩ shunt resistor (with a 20 dB low-noise amplifier). For the tests, a
total of 100 000 traces were recorded as done in other related works [BDK+21, BGR+21].

Evaluation results. In order to verify the measurement setup, each leakage test is per-
formed twice: once with activated Random Number Generator (RNG) and once with
deactivated RNG. The results for the validation of the first-order SCA resistance of the
hardware architectures and the non-linear operations are shown in Figure 5.9. It can
be clearly seen that the resulting t-values contain high peaks far above the confidence
boundary of |t| > 4.5 for the tested operations when the RNG is turned off. This vali-
dates the setup and shows that all considered operations are leaking information in an
unmasked setting or with deactivated RNG. In order to cover all accelerators and non-
linear operations, which require processing two shares simultaneously, the following tests
are performed: (i) masked Keccak SHAKE-128 (includes f-1600 and Chi accelerators),
(ii) masked binomial sampling Ψ4 (includes Bit-slicing and Binom Tree accelerators),
(iii) masked B2A (includes Secure Adder accelerator), (iv) masked B2Aq (includes Se-
cure Adder accelerator), and (v) MaskedCompressq (includes Secure Adder accelerator).
Note that the experiment for the compression includes the A2B conversion. Thus, the
experiments cover all critical non-linear operations for masking Kyber and Saber. Ex-
cept for the masked Keccak operation, all experiments of the non-linear operations were
performed with 32 polynomial coefficients, which is one function call of the bit-sliced
binomial sampler. The masked binomial sampling was measured with Saber parameters
η = 4. The evaluation results with activated RNG show that all implementations remain
below the threshold of |t| < 4.5. This validates the univariate first-order SCA resistance
of the non-linear functions, and thus all corresponding accelerators for the given amount
of measurement traces. Stronger adversaries might be able to increase the SNR (e.g.,
with EM measurements) and the amount of recorded traces. Hence, additional evalua-
tions, which have been left as future work, might be necessary to protect against stronger
attacks.

5.8 Summary and Open Problems

Implementation attacks are a threat to cryptographic implementations. While most im-
plementations already prevent timing attacks, more advanced attacks, such as DPA, are
more challenging to protect. This chapter presented the first masked hardware/software
codesigns for the two lattice-based NIST PQC finalists Saber and Kyber. It investigated
masked tightly coupled accelerators for the non-linear operations to achieve a controlled
and efficient execution. This includes the Keccak Chi, binomial sampling with bit-slicing,
and secure addition operations. The accelerators are designed to achieve a high flexibility
and provide resistance against leakages caused by glitches. As bottlenecks are getting
worse in a masked setting, a more powerful accelerator for the polynomial arithmetic of
Saber is analyzed. It turned out that a flexible NTT can be efficiently developed that
covers most lattice-based algorithms. Future work should consider protection against

119

5 Generalization of the NTT Algorithm and Masking of Non-Linear Operations

0 500 1000 1500 2000 2500
time [us]

0

2

4

6

8

10

12

14

ab
so

lu
te

t-
va

lu
e

(a) Masked Keccak – SHAKE-128 (RNG on)

0 500 1000 1500 2000 2500
time [us]

0

100

200

300

400

500

ab
so

lu
te

t-
va

lu
e

(b) Masked Keccak – SHAKE-128 (RNG off)

0 20 40 60
time [us]

0

2

4

6

8

10

12

14

ab
so

lu
te

t-
va

lu
e

(c) Masked sampling – Ψ4 (RNG on)

0 20 40 60
time [us]

0

100

200

300

400

500

ab
so

lu
te

t-
va

lu
e

(d) Masked sampling – Ψ4 (RNG off)

0 50 100 150
time [us]

0

2

4

6

8

10

12

14

ab
so

lu
te

t-
va

lu
e

(e) Masked B2A(RNG on)

0 50 100 150
time [us]

0

50

100

150

200

250

300

350

ab
so

lu
te

t-
va

lu
e

(f) Masked B2A(RNG off)

0 100 200 300 400
time [us]

0

2

4

6

8

10

12

14

ab
so

lu
te

t-
va

lu
e

(g) Masked B2Aq(RNG on)

0 100 200 300 400
time [us]

0

50

100

150

200

250

300

350

ab
so

lu
te

t-
va

lu
e

(h) Masked B2Aq(RNG off)

0 50 100 150 200 250 300
time [us]

0

2

4

6

8

10

12

14

ab
so

lu
te

t-
va

lu
e

(i) MaskedCompressq (RNG on)

0 50 100 150 200 250 300
time [us]

0

50

100

150

200

250

300

350

ab
so

lu
te

t-
va

lu
e

(j) MaskedCompressq (RNG off)

Figure 5.9: TVLA results for critical non-linear operations and corresponding accelerators
(100 000 traces, confidence interval in red and trigger interval in orange).

120

5.8 Summary and Open Problems

higher-order attacks and other implementation attacks (e.g., horizontal SPA).

121

6 Analysis of Error-Correcting Codes for
Lattice-Based Cryptography

In this chapter, the application of strong error-correcting codes is analyzed to
improve the failure probability, security level, and bandwidth of lattice-based
cryptography. Different error-correcting codes are explored, and related ad-
vantages and disadvantages are highlighted. As a use case, strong BCH and
LDPC error-correcting codes were integrated into the PQC scheme NewHope.
This chapter further analyzes the stochastic dependence between decryption
errors, which influences the failure rate computations. In order to evaluate
the performance of a constant-time BCH code, a timing-attack resistant de-
coder for the PQC scheme ThreeBears is presented. The error correction
exploration for NewHope contains parts of the publication [FPS18], which is
based on the author’s master’s thesis [Fri17] but was majorly revised during
the author’s Ph.D. studies. The influence of the stochastic dependence of de-
cryption errors includes sections of [MFS20]. Georg Maringer and the author
of this dissertation jointly elaborated the ideas and performed the measure-
ments. The author of this thesis focused on the Pearson correlation as an
independence measure, which is therefore presented in this work. The section
of the constant-time error correction for ThreeBears and the corresponding
description of error-correcting codes contains parts of [FVS20, FVFS21].

6.1 Introduction of Error-Correcting Codes for Lattice-Based
Cryptography . 124

6.2 Decryption Errors of LWE Schemes 125

6.3 Exploration of Error-Correcting Codes 128

6.4 Analysis for the Post-Quantum Scheme NewHope 129

6.4.1 NewHope Compression Noise 129

6.4.2 NewHope with BCH Code 130

6.4.3 NewHope with LDPC Code 130

6.4.4 NewHope with Concatenation of BCH and LDPC Code 132

6.4.5 Comparison Coding Options 132

6.5 Discussion and Open Problems 132

6.5.1 Stochastic Dependence of Decryption Errors and its Impact on
the Failure Rate Analysis 133

6.5.2 Side-Channel Vulnerability and Implementation Aspects . . . 136

123

6 Analysis of Error-Correcting Codes for Lattice-Based Cryptography

6.6 Summary . 137

6.1 Introduction of Error-Correcting Codes for
Lattice-Based Cryptography

While the previous chapters focused on improving implementation strategies, this chap-
ter highlights possible algorithmic improvements of PQC. There have been significant
parameter set changes during the last years due to advances in the cryptanalysis. Also,
implementation aspects and a decrease of key/ciphertext sizes have led to various pa-
rameter changes. Thanks to these parameter optimizations and the intensive research
in recent years, lattice-based cryptography has become highly efficient in terms of per-
formance when compared to other PKC solutions. A drawback that remains is the
relatively large key/ciphertext size (also called bandwidth)—at least large compared to
traditional elliptic curve cryptography. Furthermore, it is not yet entirely clear how much
the cryptanalysis will advance in the following decades. For this reason, further potential
algorithmic optimizations are of great importance. The security of LWE-based schemes
relies on the intentional introduction of a noise term. Increasing the variance of the noise
improves the security level. In addition, the bandwidth can be optimized by applying
a strong compression (see Section 2.2.4). However, raising the variance and applying a
stronger compression increases the protocol’s failure rate. Using an error-correcting code
can help to optimize the characteristics of a scheme while keeping a low failure rate.

Related works. The authors of the lattice-based scheme NewHope recognized early
the advantage of an error correction [ADPS16a]. They proposed to map each message
bit into four coefficients at the encryption. At the decryption, this allows using the
information of four coefficients for the message decoding. This principle corresponds
to some kind of analog repetition code, in the remainder denoted as additive threshold
encoding. In connection to the NIST call for PQC proposals, several candidates where
proposed that explicitly make use of forward error correction. This includes the lattice-
based algorithms Hila5 [Saa17], KCL [ZJGS17], ThreeBears [Ham17], and LAC [LLJ+17].
Except for LAC, which uses a powerful BCH code, all schemes mentioned above apply
an error correction that can only correct a few errors. Concurrent to these works, the
author of this thesis analyzed in [FPS18] the potential of a powerful error correction
for NewHope. Further, the error correction capability of ThreeBears was improved in
other publications of the thesis author [FVS20, FVFS21]. Together with the analysis of
decryption failures in [MFS20] these works build the basis for the content of this chapter.
The consecutive work [MPWZ21] further investigated in this direction and determined a
theoretical lower bound of the RLWE channel capacity.

Contributions. This chapter investigates the application of error-correcting codes with
a high error correction capability for lattice-based cryptography. As a use case, the influ-
ence of powerful error-correcting codes for the NewHope version presented in [ADPS16a]

124

6.2 Decryption Errors of LWE Schemes

is analyzed. In contrast to other related works, the error correction level is significantly
increased to achieve a correction capability close to the channel capacity. This work addi-
tionally investigates the stochastic dependence of decryption failures, which complicates
the failure rate estimation. Finally, open problems and SCA vulnerabilities of schemes
with error correction are discussed.
The contributions can be summarized as:

• Analysis of powerful error correction methods for NewHope to improve its failure
rate, security level, and bandwidth;

• Evaluation of NewHope with different combinations of three codes (additive thresh-
old encoding, BCH, and Low-Density Parity-Check (LDPC));

• Investigation of stochastic dependence between decryption failures;

• Exploration of constant-time error correction for ThreeBears.

6.2 Decryption Errors of LWE Schemes

The decryption fails if the predicted message m′ of the decryption is not equal to the
original message m. LWE-based schemes have two noise sources that are responsible for
such decryption errors.

Difference noise. It emerges from the LWE protocol structure, which cannot completely
remove all error terms. Assuming the compression is turned off, after the computation
of encode(m′) = v′ − sTu′ in Algorithm 6 (Chapter 2), the largest noise terms cancel
out but a relatively small noise term α = eTs′ − sTe′ + e′′ remains.

Proof. According to Algorithms 4–6 (Chapter 2), the deployed LWE instances are b =
As + e, u = ATs′ + e′, and v = b′Ts′ + e′′ + encode(m). The decrypted message can
be written as encode(m′) = v′ − sTu′. When no compression is applied, the following
conditions hold b′ = b, u′ = u, and v′ = v. The following computations derive the
difference noise.

encode(m′) = v − sTu
= bTs′ + e′′ + encode(m)− sT (ATs′ + e′)

= (As+ e)Ts′ + e′′ + encode(m)− sT (ATs′ + e′)

= ((As)T + eT)s′ + e′′ + encode(m)− sT (ATs′ + e′)

= (sTAT + eT)s′ + e′′ + encode(m)− sT (ATs′ + e′)

= sTATs′ + eTs′ + e′′ + encode(m)− sTATs′ − sTe′

= encode(m) + (eTs′ − sTe′ + e′′) = encode(m) + α

125

6 Analysis of Error-Correcting Codes for Lattice-Based Cryptography

The large term sTATs′, which contains the large public matrix A, cancels out, and only
α remains. All secret and error polynomials of α are sampled from the error distribution
Ψη. Usually, η is relatively small such that the decode operation returns with a high
probability m′ = m. An increase of the variance σ2 = η/2 of the error distribution
directly increases the error term α.

Difference noise. It is caused by the compressq operation. Let cb, cu, and cv be uni-
formly distributed compression noise that appears when compressing and decompressing
the elements b, u, and v, respectively. Then, the compression noise remaining at the end
of the decryption is β = cb

Ts′ − sTcu + cv.

Proof. For this proof, the compression is turned on, i.e., b′ = b + cb = As + e + cb,
v′ = v + cv = b′Ts′ + e′′ + encode(m) + cv, and u′ = u + cu = ATs′ + e′ + cu. The
following computations derive the compression noise.

encode(m′) = v′ − sTu′

= b′
T
s′ + e′′ + encode(m) + cv − sT (ATs′ + e′ + cu)

= (As+ e+ cb)Ts′ + e′′ + encode(m) + cv − sT (ATs′ + e′ + cu)

= sTATs′ + eTs′ + cb
Ts′ + e′′ + encode(m) + cv − sTATs′ − sTe′ − sTcu

= encode(m) + α+ (cb
Ts′ − sTcu + cv) = encode(m) + α+ β

In the remainder of this chapter, the overall noise term is denoted as d = α+ β.

Computation of the failure rate. One method to compute the failure rate of lattice-
based cryptography is to use the Cramér–Chernoff inequality as in [ADPS16a]. More
recent works directly determine the probability distribution of the noise term [Saa17,
ABD+20]. This method is also applied in this work. In the remainder of this chapter,
only RLWE instances are considered. The overall failure rate of an RLWE-based scheme
depends on s, s′, e, e′, e′′, cb, cu, and cv. For all coefficients of these variables, the
initial distribution is known. While the secret and error terms are sampled from a
binomial distribution, the compression terms can be expressed as uniform samples. The
distribution of the overall noise term for a single coefficient can be exactly computed
using the following theorems.

Theorem 1 (Addition of random variables). Let ΨX(x) and ΨY (y) be two probability
distributions of the independent random variables X and Y . Then, the probability distri-
bution of the sum of both random variables corresponds to the convolution of the individ-
ual probability distributions, which can be written as ΨZ(z) = ΨX+Y = ΨX(x) ~ ΨY (y)
[GHW12].

Theorem 2 (Product distribution). Let ΨX(x) and ΨY (y) be two probability distri-
butions of the independent random variables X and Y . Then, the product distribution
ΨZ(XY = c) =

∑
x∈X,y∈Y s.t.xy=c ΨX(x)ΨY (y).

126

6.2 Decryption Errors of LWE Schemes

Theorem 3 (Polynomial product distribution). Let a and b be two polynomials of the
ring Rq = Zq/〈xn + 1〉 with degree n− 1 and independent coefficients randomly sampled
from Ψη. Let c be the result of the polynomial multiplication of a and b. Then, the
probability distribution of an arbitrary coefficient of c equals the n-fold convolution of the
product distribution ΨZ of two random variables sampled from Ψη.

Proof Theorem 3. Let a, b ∈ Zq/〈φ(x)〉 with φ(x) = xn+ 1 and with coefficients sampled
from the probability distribution Ψη. The multiplication of these polynomials results in
c = (a0+a1x+ · · ·+an−1xn−1)(b0+b1x+ · · ·+bn−1xn−1). Using the distributive law and
grouping all terms with the same degree together, this equation can be written as c =
(a0b0+· · ·−an−2b2−an−1b1)+(a0b1+· · ·−an−2b3−an−1b2)x+· · ·+(a0bn−1+· · ·+an−2b1+
an−1b0)x

n−1. A sum of n products determines each coefficient of polynomial c. Since all
coefficients of a and b are independently sampled from the probability distribution Ψη,
the probability distribution of the coefficients of c is an n-fold convolution of the product
distribution of two random variables sampled from Ψη.

Computing the failure rate. The overall noise term d can be represented as a poly-
nomial with n coefficients. A decryption error occurs if the absolute value of one noise
coefficient di is greater than q/4. In this case, the decode operation maps the respective
coefficient to the wrong message bit.
Let pb be the failure probability of each single bit and let P [df] be the probability that

one or more bits fail (overall failure probability). Given pb, the Fréchet inequality can be
applied to compute an upper bound of the overall failure probability:

P [df] = P [|d0| > q/4 ∪ |d1| > q/4 ∪ · · · ∪ |dn−1| > q/4]

≤ min(1, P [|d0| > q/4] + P [|d1| > q/4] + · · ·+ P [|dn−1| > q/4])

= min(1, n · pb)
(6.1)

Let us assume the independence of decryption failures. Then, for RLWE-based schemes
using a t-bit error correction, the probability that a binary vector of S bits (in this analysis
256 message bits) has more than t errors is

Pt[df] =

S∑
i=t+1

(
S

i

)
pib(1− pb)S−i = 1−

t∑
i=0

(
S

i

)
pib(1− pb)S−i . (6.2)

Desired failure rates. Ephemeral key exchanges and PKE have different requirements
for the failure rate. The presence of errors is less critical for ephemeral key exchanges,
and a failure rate of ≈ 2−40 can be acceptable since two parties can repeat the key
exchange in the rare case of an error. The issue of decryption errors is more critical
in a PKE setting. In order to protect against CCA, PKE schemes use the Fujisaki–
Okamoto method [FO99, TU16] to transform from CPA to CCA security. A CCA secure
cryptosystem that uses this transformation requires a negligible failure rate to avoid
attacks [Flu16]. The failure rate is therefore desired to be lower than 2−128. In this
chapter, a failure rate lower than 2−140 is targeted for the PKE setting to have a margin.

127

6 Analysis of Error-Correcting Codes for Lattice-Based Cryptography

An overall failure rate of 2−128 or 2−140 means that the bit failure rate pb must be n times
smaller if no error correction is applied. If an error correction is applied, the acceptable bit
failure rate depends on the error correction capability. In order to apply Equation 6.2,
the independence of decryption errors must be assumed, as in [Saa17, LLJ+17]. The
influence of the dependence between decryption errors on the failure rate computation is
still an open research question and is further discussed in Section 6.5.

6.3 Exploration of Error-Correcting Codes

Error-correcting codes realize reliable data transmissions over noisy channels. Instead
of the additive threshold encoding used in NewHope, the effect of more powerful error-
correcting codes is investigated. The desired characteristics of the error-correcting code
are: (i) good error correction capability to improve the security level and bandwidth;
(ii) low failure rate to avoid protocol repetitions and to apply CCA transformations; and
(iii) reasonable time complexity.

Modern codes (LDPC codes). Modern codes based on probabilistic coding theory have
a strong error correction capability. They can get close to the channel capacity for long
code lengths. The most commonly used codes of this class are LDPC and Turbo codes.
Compared to Turbo codes, LDPC codes usually have a lower time complexity [Fan12],
and their error floor occurs at lower failure rates [LC04]. The error floor is a phenomenon
of some modern codes that limits the performance for low failure rates. For these reasons,
LDPC codes in favor of Turbo codes are selected for the investigation performed in this
chapter.
LDPC codes were developed in [Gal62]. A block diagram of this code category is

provided in Figure 6.1. LDPC codes are characterized by their parity check matrix H,
which has a low density, i.e., a low number of ones. For the encoding, usually, the
systematic form of H is computed to derive the generator matrix. The generator matrix
is then used to compute the codeword c for a given message m. In the noisy channel,
noise is added to the transmitted codeword. At NewHope, this would be the difference
and compression noise. The sum-product algorithm is an efficient soft decision message-
passing decoder. It takes as input a parity check matrix, the maximum number of
iterations, and the Log-Likelihood Ratio (LLR) of the received codeword r. The decoding
process can be illustrated as a bipartite graph with Check Nodes (CN) and Variable Nodes
(VN), representing the rows and columns of H, respectively. The sum-product algorithm
iteratively sends LLR messages from variable nodes to check nodes and vice versa until
a correct codeword is found or the maximum number of iterations is reached. A full
description of the algorithm can be found in works like [HEAD01, QLW13].

Classical codes (BCH codes). The advantages of algebraically structured classical
error-correcting codes are that they have no error floor and that the number of cor-
rectable errors can be determined during the construction of the code. When the number

128

6.4 Analysis for the Post-Quantum Scheme NewHope

Encoding +

Noise

Calculate
LLR’s

CN update
VN update

Codeword
found/
max. it-
eration?

c r

no

c′

yes
m

Decoding

Figure 6.1: LDPC error correction with sum-product algorithm.

Encoding +

Noise

Syndrome Berlekamp–
Massey Chien search +c r s σ e c′m

Decoding

Figure 6.2: BCH error correction.

of correctable errors is known, the achievable failure rate of the code can be calculated.
Otherwise, simulations are required.
BCH codes are a class of powerful classical error-correcting codes that are widely

used in real-world applications due to their good performance and flexibility in terms of
code length and code rate. These characteristics make the BCH code a good choice for
protocols with very low failure rates. Figure 6.2 illustrates the encoding and decoding
process of BCH codes. During the encoding, the codeword c is built out of a message m.
The decoder is used to correct multiple errors in the received codeword r. The decoding
process usually consists of three parts: computation of syndrome s, computation of error
locator polynomial σ, and finding the zeros of σ (see Section 4.2).

Code concatenations. Different codes can be concatenated to achieve both a high error
correction capability and a very low failure rate. The concatenation of BCH and LDPC
codes is a common method, which is used, e.g., in the second generation of the digital
video broadcast standard for satellite (DVB-S2).

6.4 Analysis for the Post-Quantum Scheme NewHope

Different design options using LDPC and BCH codes are investigated to maximize the er-
ror correction capability of NewHope and to achieve very low failure rates. The respective
advantages and disadvantages are summarized in Table 6.1.

6.4.1 NewHope Compression Noise

Figure 6.3 illustrates the influence of the compression noise on the protocol’s failure rate
P [df]. The compression is particularly visible for low values of η. For higher values, the
difference noise dominates. In order to improve both the security level and bandwidth, a
balance between the difference noise and compression noise must be found. When apply-
ing the described error correction options, a good trade-off was found at a compression

129

6 Analysis of Error-Correcting Codes for Lattice-Based Cryptography

Table 6.1: Summary of explored coding options.

Option Coding technique Advantages Disadvantages
Option 1: BCH Good error correction Computationally ex-

pensive
Option 2: BCH + additive Faster than Option 1 Weaker error correction

threshold encoding (lower Galois field) than Option 1
Option 3: LDPC Closer to channel ca- Does not achieve very

pacity than Options 1/2 low error rates
Option 4: LDPC + BCH Lower error rates than Computationally ex-

Option 3 achievable pensive

of v from 14-bit to 3-bit per coefficient and a compression of u from 14-bit to 10-bit per
coefficient. The curve with compression of v corresponds to the original implementa-
tion of the NewHope specification in [ADPS16a]. Note that the compression noise cu is
magnified by a multiplication with the secret polynomial. Hence, the compression must
be lower than the one of v. Due to some concerns regarding security proofs, public-key
compression (on polynomial b) is currently not recommended [ABD+19].

6.4.2 NewHope with BCH Code

Figure 6.4 shows the improvements when BCH codes are used in NewHope. Option 1
uses a BCH(1023,258) capable of correcting up to 106-bit errors. The 256-bit message
is first encoded into a 1023-bit codeword. Each codeword bit is then mapped to one
coefficient (polynomial length is 1024). As computations in GF(210) are more complex
than in GF(29), Option 2 uses the smaller BCH(511,259) capable of correcting up to
30 errors. As the code length is 511, each bit can be mapped to two coefficients. This
allows further benefiting from an additive threshold encoding. The results show that
both BCH variants (Options 1 and 2) allow a quasi-error-free communication for η ≤ 46.
While NewHope with compression of v and u has a failure rate of 1.69 · 10−3 for η = 46,
Options 1 and 2 achieve a failure rate of 1.83 · 10−57 and 2.30 · 10−44, respectively. Thus,
it is possible to significantly increase η and consequently the security level.

6.4.3 NewHope with LDPC Code

Frequently, the error correction capability of an error-correcting code is first evaluated for
the basic Binary Input Additive White Gaussian Noise Channel (BI-AWGNC) model.
The combination of the signal-to-noise ratio and achieved bit error rate is a suitable
performance indicator for the error correction capability of a code. Simulations are used
to evaluate the error correction improvement of the LDPC code over the BCH code. For
the code rate 1/2, the simulated results have shown that the applied LDPC(1024,512)
code achieves an improvement over the BCH(1023, 513) code of about 2.8 dB at a bit
error rate of 10−6. For the code rate 1/4, the improvement of the LDPC(1024,256) code
over the BCH(1023,258) code is about 3.8 dB. This verifies that the LDPC code is able

130

6.4 Analysis for the Post-Quantum Scheme NewHope

20 30 40 50 60 70 80 90

10−50

10−40

10−30

10−20

10−10

100

2−40

2−140

η

P
[d

f
]

with compression of v and u

with compression of v
w/o compression

Figure 6.3: NewHope compression influ-
ence.

20 30 40 50 60 70 80 90

10−50

10−40

10−30

10−20

10−10

100

2−40

2−140

η
P
[d

f
]

NewHope (4 coeff./bit encoding)
BCH(511,259) + 2 coeff./bit encoding
BCH(1023,258)

Figure 6.4: Improvement Options 1 and 2
(compression of v and u).

20 30 40 50 60 70 80 90
10−4

10−3

10−2

10−1

100

η

P
[d

f
]

NewHope (4 coeff./bit encoding)
BCH(1023,258)
LDPC(1024,256)

Figure 6.5: Improvement Option 3 (com-
pression of v and u).

20 30 40 50 60 70 80 90

10−50

10−40

10−30

10−20

10−10

100

2−40

2−140

η

P
[d

f
]

NewHope (4 coeff./bit encoding)
BCH(1023,258)
LDPC(1024,512) + BCH(511,259)

Figure 6.6: Improvement Option 4 (com-
pression of v and u).

131

6 Analysis of Error-Correcting Codes for Lattice-Based Cryptography

to improve the error correction capability. The next paragraph analyzes if this is also
true for the channel model of NewHope.
Figure 6.5 compares the threshold encoding of NewHope with the implementations

of NewHope using an LDPC code (Option 3) and BCH code (Option 1). The graph
shows that LDPC codes can be used to further improve the error correction performance.
While the BCH(1023,258) begins to operate in the waterfall region for η < 76, the
waterfall region for the LDPC(1024,256) begins at η < 92. The error floor is expected
to limit the performance of the LDPC code for error rates smaller than about 10−10 (see
analysis in [Ric03]) such that BCH codes usually perform better for such a low failure
rate. Note that for the PKE setting, a failure rate of 2−140 ≈ 7 · 10−43 is targeted.
Unfortunately, no mathematical formula for the real failure probability of the LDPC
code exists. Simulations for a failure rate of 10−10 are extremely time-consuming, and
simulations for a failure rate of 7 ·10−43 are even impossible. However, the concatenation
of BCH and LDPC code circumvent this problem, as discussed in the next paragraph.

6.4.4 NewHope with Concatenation of BCH and LDPC Code

To achieve very low error rates and to get closer to the channel capacity, the BCH and
LDPC codes are combined (Option 4). Figure 6.6 illustrates the performance of the code
concatenation LDPC(1024,512) and BCH(511,259). The BCH code is intended as inner
code and the LDPC code as outer code.

6.4.5 Comparison Coding Options

Table 6.2 summarizes the results of the different coding options. In order to achieve
a failure rate of smaller than 2−140, parameter η is set for Options 1, 2, and 4 to 48,
46, and 66, respectively. Such low failure rates cannot be proven for the pure LDPC
implementation (Option 3) as it solely relies on simulations, and exact formulas do not
exist. Option 1 has only a slightly better security strength than Option 2. Therefore,
Option 2 can be seen as more suitable as it has a lower time complexity due to the
smaller Galois field arithmetic. Option 3 achieves the best error correction capability for
moderate failure rates, but the error floor limits the performance for failure rates lower
than ∼ 10−10. Option 4 cannot get as close to the channel capacity as Option 3, but it
achieves extremely low error rates. Option 4 achieves an error rate of 2−140, increases the
post-quantum security bit level by 20.39%, and decreases the communication overhead
by 12.80%. If η and thus the security level is left unchanged, and only the compression
on u is increased, the communication overhead can be reduced with Option 4 by 19.20%.

6.5 Discussion and Open Problems

The application of strong error-correcting codes for lattice-based cryptography can lead
to significant advantages, as shown in the previous section. On the other hand, they
introduce some problems that are still not solved. The next sections present an analysis
of these issues.

132

6.5 Discussion and Open Problems

Table 6.2: Comparison error correction options.

Coding option P [df] η Security Exchanged bytes
Classic/PQ

NewHope Simple [ADPS16a] 2−127.88 16 281/255 bits 4 000

Option 1, BCH(1023,258) < 2−140 48 324/294 bits 3 488

Option 2, BCH(511,259) < 2−140 46 323/292 bits 3 488
+ 2 coeff./bit encoding

Option 3, LDPC(1024,256) < 2−12 a) 80 348/315 bits 3 488

Option 4, LDPC(1024,512) < 2−140 66 338/307 bits 3 488
+ BCH(511,259)

a) With Option 3 a failure rate of ∼ 10−10 = 2−33.22 can be efficiently reached.

6.5.1 Stochastic Dependence of Decryption Errors and its Impact on the
Failure Rate Analysis

The noise term discussed in the previous sections can be constructed using polynomial
arithmetic. Each of the coefficients of the involved polynomials is independently sam-
pled. The polynomial addition preserves the independence between coefficients. But
this is not true for the polynomial multiplication. The proof of Theorem 3 shows
that after the polynomial multiplication, e.g., c0 = (a0b0 + · · · − an−2b2 − an−1b1) and
c1 = (a0b1 + · · · − an−2b3 − an−1b2). It is directly visible that the independence between
the coefficients is not preserved as both c0 and c1 contain, e.g., the value a0 in their
equations. The probability distribution of a single coefficient from the noise term can be
exactly determined as described in Section 6.2. Consequently, the single bit error rate
can be computed as well. However, the joint probability distribution of all coefficients of
the noise term is not easy to determine.
Lattice-based schemes without a t-bit error correction can use inequalities to bound

the joint failure rate (see Equation 6.1). To apply Equation 6.2 for schemes with such an
error correction, independence between the failures must be assumed. In other words,
the stochastic dependence between decryption failures must be at least extremely low.
The authors in [DVV19] have shown that the failure rate of the PQC scheme LAC, which
uses a BCH code, was in the first round NIST submission higher than expected. The
reason is that the stochastic dependence between decryption failures was underestimated
for the parameter set of LAC. The authors further recognized that the norm of the noise
polynomial directly influences the stochastic dependence of decryption failures. Based
on the results in [DVV19], the LAC second-round submission fixed the norm of the poly-
nomials to reduce the dependence between decryption failures. The correlation between
the failures is measured in this work to verify that this approach indeed reduces the de-
pendence between decryption failures. Moreover, the influence of the RLWE parameters
(n, q, η) is investigated.

133

6 Analysis of Error-Correcting Codes for Lattice-Based Cryptography

Pearson correlation as measure for stochastic dependence. While the exact compu-
tation of the correlation between decryption failures is not straightforward, stochastic
methods can be used. The Pearson correlation is a well-known method for determining
the linear correlation between two data sets. It is thus suitable to quantify the stochastic
dependence between decryption failures. Given two sets of samples of the random vari-
ables X with samples xi and Y with samples yi, the Pearson correlation can be computed
with

rxy =

∑n−1
i=0 (xi − x)(yi − y)√∑n−1

i=0 (xi − x)2
√∑n−1

i=0 (yi − y)2
, (6.3)

where x = 1
n

∑n−1
i=0 xi and y = 1

n

∑n−1
i=0 yi [Uni21]. The value of the Pearson correlation

ranges between −1 and 1. The correlation between the data sets decreases with the
absolute value of rxy.

Test setup. For the experiments, the first two coefficients of the difference noise d =
es′− se′+ e′′ are sampled n times (RLWE setting without compression). The samples of
d0 (random variable X) and d1 (random variable Y) are then mapped to one element of
the set {S, F} depending on whether a decryption failure occurs (F) or not (S). A failure
occurs if abs(di) > q/4. This results into four possible combinations of XY : F0F1,
F0S1, S0F1, and S0S1. The number of samples are increased such that the result of the
Pearson correlation converges. The smaller the Pearson correlation gets, the smaller is
the linear dependence between decryption failures of the sampled coefficients d0 and d1.
It is difficult to determine a value of the Pearson correlation at which the dependence
between decryption errors can be neglected for the failure rate analysis of LWE schemes
with error correction. However, different sampling methods and parameter sets can be
compared with this approach. Further, it can be evaluated which methods/parameters
have a stronger dependence between decryption errors.

Fixing the norm of the polynomials. In order to demonstrate the problem of the
stochastic dependence between decryption failures, the overall decryption failure proba-
bility P [df] depending on the error correction capability is determined with two different
methods. The first method assumes independence between decryption failures and uses
Equation 6.2 (Section 6.2). The second method performs an exhaustive experimental
test and approximates the real failure probability. The decryption failure probability is
evaluated for the LAC instance LAC-256 (NIST Level V). The following analysis dis-
tinguishes between the sampling method of LAC Round 1 and of LAC Round 2 (NIST
rounds). The results are illustrated in Figure 6.7. For the sampling used in LAC Round
1, it can be observed that there is a mismatch between the computed failure probability
using the independence assumption and the exhaustive experimental test. The reason for
this mismatch is the stochastic dependence between decryption errors. In LAC Round
2, the norm of the polynomials sampled from the error distribution is fixed. For this
case, the experimental values match the computed ones, implying a decrease in the de-
pendence of decryption errors. This assumption matches with the measurement results

134

6.5 Discussion and Open Problems

0 5 10 15 20 25
2−30

2−24

2−18

2−12

2−6

20

Error correction capability

P
[d
f
]

Round 1 sampling experimental
Round 1 sampling indep. assumption
Round 2 sampling experimental
Round 2 sampling indep. assumption

Figure 6.7: Decryption failure probability of LAC-256 depending on the error correction capa-
bility.

Table 6.3: Pearson correlation for LAC-128 and LAC-256 (Round 1/2), 1011 samples.

Error distribution Pearson (abs) P[F0F1] P[F0S1] P[S0F1] P[S0S1]
LAC-128 Round 1 8.852e-06 9.230e-09 9.170e-05 9.178e-05 0.99982
LAC-128 Round 2 5.083e-06 7.430e-09 8.874e-05 8.879e-05 0.99982
LAC-256 Round 1 1.032e-04 3.201e-05 5.575e-03 5.575e-03 0.98882
LAC-256 Round 2 6.077e-06 3.143e-05 5.572e-03 5.572e-03 0.98882

given in Table 6.3. Fixing the norm of the error distribution reduced the Pearson cor-
relation from 1.032 · 10−04 to 6.077 · 10−06. For LAC-128 Round 2 (NIST Level I), the
Pearson correlation decreased to a value of 5.083 · 10−06. These results imply that fixing
the norm of the sampling process increases the accuracy of the failure rate analysis using
independence assumption.

Influence of LWE parameters. The Pearson correlation is determined for different pa-
rameter sets to evaluate the influence of the LWE parameters (n,q,η) on the depen-
dence between decryption failures. The parameter set of LAC-256 with (n = 1024,q =
251,η = 1) is used as a baseline. In order to evaluate the influence of the polynomial
length, n is set to the typical values {512, 768, 1024}. For the modulus q, the values
{251 − 20, 251, 251 + 20} are evaluated. Finally, the influence of η is tested for the set
{1, 2}. Note that the LWE parameters cannot be arbitrarily chosen for this test. In
order to obtain stable results for the Pearson correlation, the test set must contain a
sufficiently large amount of decryption failures. Table 6.4 summarizes the influence of
the parameter set on the stochastic dependence between decryption failures. The results
show that a decrease of the polynomial length n, an increase of the modulus q, and a de-
crease of the noise distribution parameter η lead to a smaller Pearson correlation, thus to
a smaller dependence. Generally, the stochastic dependence between decryption failures

135

6 Analysis of Error-Correcting Codes for Lattice-Based Cryptography

Table 6.4: Pearson correlation for different parameter sets (n,q,η), 1011 samples.

Parameter set Pearson (abs) P[F0F1] P[F0S1] P[S0F1] P[S0S1]
(512,251,1) 8.852e-06 9.230e-09 9.170e-05 9.178e-05 0.99982
(768,251,1) 5.445e-05 2.005e-06 1.387e-03 1.387e-03 0.99722
(1024,251,1) 1.032e-04 3.201e-05 5.575e-03 5.575e-03 0.98882
(1024,231,1) 1.414e-04 1.180e-04 1.068e-02 1.068e-02 0.97853
(1024,251,1) 1.032e-04 3.201e-05 5.575e-03 5.575e-03 0.98882
(1024,271,1) 6.897e-05 7.947e-06 2.777e-03 2.777e-03 0.99444
(1024,251,1) 1.032e-04 3.201e-05 5.575e-03 5.575e-03 0.98882
(1024,251,2) 5.512e-04 2.751e-02 0.13816 0.13816 0.69617

increases with the failure probability. The applied method helps designers in selecting
the parameter set. The results show that the parameter set does not only influence the
performance and security level but also the failure rate analysis.

6.5.2 Side-Channel Vulnerability and Implementation Aspects

Each new component of a cryptographic algorithm introduces a potential point of attack.
As already described in Section 4.2.4, constant-time error-correcting codes whose runtime
is independent of the input message, the codeword, and the number of errors must be
developed to avoid timing side channels. The authors in [WR20] developed a constant-
time BCH code for LAC. In this work, the BCH code of ThreeBears, which is initially
capable of correcting two errors, is extended to correct up to six errors and protected
against timing attacks.

Constant-time error correction. Typical exploitable operations for a timing attack are
if conditions and loop operations. The BCH implementation of this chapter is based on
the non-protected implementation in [Glo11]. The encoding of the BCH code is straight-
forward to implement with a constant runtime. It can be realized with the principles
of an LFSR. The execution time of such structures is usually independent of the input
message. The decoding time natively depends on the received codeword, the number of
errors, and the computed syndromes. This is particularly true for the Berlekamp–Massey
and the Chien search algorithms. Both algorithms are modified to behave always as for
the maximum number of errors. In order to achieve this, the loops were unrolled, and if
conditions were modified such that all cases always execute. Invalid results are simply
discarded (not used).
The extended timing protected BCH code of ThreeBears was implemented on the Au-

tomotive Realtime Integrated NeXt Generation Architecture (AURIX). AURIX is one
of the most popular automotive microcontrollers in the automotive industry. Table 6.5
illustrates the timing variations of the unprotected baseline implementation and the con-
stant cycle count of the protected version. When six errors are corrected, the protected

136

6.6 Summary

Table 6.5: Cycle count of the BCH code with 6-bit error correction capability.

#Errors 0 1 2 3 4 5 6

Baseline 1 383 3 764 4 188 18 771 22 146 24 409 27 267

Protected 208 993

version is a factor of 7.66 slower than the baseline. The result illustrates that the protec-
tion for this code is relatively costly. Nevertheless, the error correction is not always the
bottleneck of the cryptographic scheme. Further, hardware accelerators, as shown in Sec-
tion 4.2, can be deployed. A more detailed analysis of the error correction in ThreeBears
can be found in the publications of the thesis author [FVS20, FVFS21].

Open challenges. Timing attacks on the error correction of PQC were presented in
[DTVV19, PT19, WTBB+20]. While these attacks can be prevented with a constant-
time implementation, more powerful SCA methods, such as power or EM attacks, might
still be applicable. Practical attacks of this category on the error correction have been
demonstrated in [RSRCB20, SRSWZ20]. Developing protection mechanisms against
these attacks is still an open research area.
The code-based cryptography schemes LEDAcrypt [BBC+18] and BIKE [ABB+20]

rely on the LDPC variants QC-LDPC and QC-MDPC, respectively. Both schemes use
a decoder implementation based on the bit-flipping algorithm. Prior works have already
developed constant-time implementations for this decoder type [RMGS20, ZGF20]. In
Section 6.3, a sum-product decoder was used instead of a bit-flipping approach. It typ-
ically achieves better error correction capabilities as it uses soft-decision information.
When mapping the coefficients of the received codeword directly to binary values, in-
formation gets lost. This information loss is avoided at soft-decision decoders. Unfor-
tunately, constant-time implementations of this kind of decoder have not been found so
far. A detailed analysis of protection mechanisms is still future work.

6.6 Summary

This section demonstrated the potential of a strong error-correcting code for lattice-based
cryptography. LWE-based schemes have an unavoidable noise term. This noise term is
influenced by the LWE parameters and the applied ciphertext compression. Increasing
the noise term and compression leads to a high security level and small bandwidth,
respectively. On the other hand, it increases the protocol’s failure rate. Error-correcting
codes can be used to optimize the failure rate and thus the security level and bandwidth.
This chapter analyzed the influence of a combination of powerful error-correcting codes
for the PQC scheme NewHope. Modern LDPC codes were used to achieve an error
correction capability close to the channel capacity. For a low failure rate, classical BCH
codes were deployed. Combining both code categories increased the security level against
quantum attacks from 255-bit to 307-bit and decreased the bandwidth by 12.8%.

137

6 Analysis of Error-Correcting Codes for Lattice-Based Cryptography

The dependence between decryption errors complicates an accurate computation of the
failure rate when error-correcting codes are involved. This chapter verified that fixing
the norm of the sampled noise polynomials as done in the LAC second-round NIST
submission decreases the stochastic dependence between decryption failures. Moreover,
the influence of the LWE parameters on the stochastic dependence between decryption
errors was analyzed to provide a clearer picture for LWE designers.
Further, it was shown how constant-time implementations of the error correction help

to resist against timing attacks. Despite this effort, strong error correction for lattice-
based PQC is still an active research area. The error correction introduces another point
of attack that has not been sufficiently analyzed so far. For this reason, NIST did not
select any lattice-based scheme with forward error correction. Currently, the confidence
in such schemes is not sufficiently large for the NIST standardization. This might change
in the future. Due to low ciphertext sizes, particularly applications with a low data
transmission rate would benefit from further research in this direction.

138

7 PQC Migration and Real-World
Applicability

This chapter illustrates the suitability of PQC for real-world applications. At
the beginning of this chapter, the first PQC chip that is based on a hard-
ware/software codesign approach with instruction set extensions is presented.
The results show that the bare die size of the complete PQC microcontroller
is only 3.01mm2. The chapter further discusses the integration of PQC into
the popular AURIX microcontroller, which is widely used in the automo-
tive industry. The content of this part was published in [FVS19, FVFS21].
Finally, this chapter explores a hardware architecture for hybrid key encap-
sulation to combine the security of trusted traditional cryptography and new
quantum-resistant cryptography. The corresponding part is based on the pub-
lication [OFP+22], which was submitted to the Journal of Cryptographic En-
gineering (JCEN).

7.1 Introduction of PQC for Real-World Applications 139
7.2 Post-Quantum Chip Design 141

7.2.1 ASIC Digital Design Flow 141
7.2.2 The Post-Quantum Chip 141

7.3 Application of PQC in the Automotive Industry 144
7.4 Hybrid Key Encapsulation . 146

7.4.1 Unified Post-Quantum and Elliptic Curve Accelerator 146
7.4.2 Experimental Results . 148

7.5 Summary . 150

7.1 Introduction of PQC for Real-World Applications

The previous chapters discussed how to improve fundamental design characteristics of
PQC, including speed, energy consumption, protection against SCA, security level, and
bandwidth. This chapter focuses on the question of whether PQC is already suitable for
real-world applications.
Most NIST submissions already demonstrate the suitability of PQC for powerful stan-

dard computers. Also, the Supercop platform provides benchmark results for the NIST
finalists on different high-end platforms. For the Intel Xeon E-1220 CPU running at a
frequency of 3.1GHz, the Supercop project reports 364 761 cycles for Firesaber, 195 220

139

7 PQC Migration and Real-World Applicability

cycles for Kyber-1024, 495 351 cycles for ntruhps4096821, and 234 501 487 cycles for
mceliece8192128f [BL21]. Even the slowest PKE/KEM finalist with the highest parame-
ter set requires less than 76ms for the complete algorithm execution on such a platform.
The suitability of PQC for constrained applications with low computing power is not

so apparent as for powerful platforms. They usually have frequencies in the range of a
megahertz up to few hundred megahertz. For example, at a typical frequency of 25MHz,
the baseline software implementation of Kyber-1024 on PULPino (RISC-V) would require
454ms. This will not be fast enough for many applications. It was already shown in the
previous chapters that hardware acceleration could be used to meet performance and
energy requirements. Only 47ms or even less are required for the accelerated version of
Kyber-1024 at such a frequency (see Chapter 4).

Post-quantum chip. The previous chapters already illustrated what hardware acceler-
ation achieves. This chapter increases the confidence in the proposed hardware/software
codesign approach and shows its suitability for real-world applications. For instance,
Section 7.2 presents a real ASIC tapeout of the design presented in Chapter 4. This
ASIC verifies the suitability for mass production and helps to estimate area costs. Due
to the good performance/area characteristics and the generic RISC-V core, the chip tar-
gets various embedded applications. The design and presented ideas could be, e.g., used
in a Hardware Security Module (HSM) or smartcard to securely handle cryptographic
operations.

Microcontroller applications. The applicability of PQC has been demonstrated for
several microcontrollers with moderate computing power. As described in the previous
chapters, the ARM Cortex-M4 microcontroller has been the main evaluation platform.
But PQC was also already deployed on other platforms. For instance, the authors of
[AHH+18] investigated the application of Kyber on the security microcontroller SLE 78,
and the authors of [WGY20] implemented Saber on an ESP32 microcontroller used for
IoT environments. The applicability of PQC for the automotive industry was demon-
strated by the thesis author in [FVS19]. The work implemented NewHope on the au-
tomotive microcontroller AURIX. In [HPS+20], the same platform and algorithm were
used to develop an authenticated key exchange for automotive systems. The suitability
of the PQC NIST finalists for the automotive industry was investigated by the thesis
author in [FVFS21]. Parts of this work are summarized in Section 7.3. The migration
towards PQC is particularly critical for automotive applications as they are characterized
by long life cycles and high safety as well as security requirements.

Hybrid key encapsulation. Compared to traditional cryptography, PQC has been less
studied so far. Therefore, previous works proposed to combine the well-analyzed tra-
ditional KEMs with the new PQC approaches [Bra16, BBF+19]. This method is also
known as key concatenation or hybrid key encapsulation. NIST already considered hybrid
key encapsulation in the official recommendation for key-derivation methods [BBCD18].
However, while leading to a higher trust in the system’s security, this approach also

140

7.2 Post-Quantum Chip Design

implies a higher algorithmic and computational complexity. Section 7.4 discusses a hard-
ware accelerator that natively supports traditional cryptography and PQC to increase
the performance of hybrid key encapsulations.

Contributions. This chapter discusses the integration of PQC into real-world applica-
tions. The specific contributions can be summarized as:

• Development of a PQC chip for embedded and low energy applications;

• Integration of PQC PKE/KEM finalists into the popular AURIX microcontroller;

• Investigation of a hybrid key encapsulation accelerator for a secure transition to-
wards PQC.

7.2 Post-Quantum Chip Design

This section presents the PQC chip developed in connection with this work. The design
contains the RISC-V processor developed in Chapter 4 with the proposed tightly coupled
PQC extensions for NewHope, Kyber, Saber, and SIKE.

7.2.1 ASIC Digital Design Flow

An Application-Specific Integrated Circuit (ASIC) is a customized microchip. ASICs
allow efficiently realizing specific tasks, such as crypto acceleration or digital signal pro-
cessing. The mask generation for the ASIC fabrication is extremely costly. But this
setup cost becomes less relevant when a high volume of chips is produced. In order to
decrease the design costs and complexity, predefined and reusable standard cells from a
cell library can be used. For most designs, this is sufficient, and full-custom solutions are
rather rare. For low production volumes or applications that demand a high hardware
flexibility, reprogrammable FPGAs can be more suitable. FPGAs have configurable logic
blocks that can be programmed and connected to realize the desired functionality. In
contrast, ASICs can hardly be modified once the silicon is produced. However, current
ASIC technologies can achieve significantly better performance and area results than
FPGAs.
The ASIC design flow involves various steps, as illustrated in Figure 7.1. The logical

synthesis, physical synthesis, and sign-off steps are the major phases of an ASIC digi-
tal design flow. Each design step involves Electronic Design Automation (EDA) tools
helping designers to generate the GDSII file, which is handed over to the foundry for
the production of the chip. The leading EDA tool providers are Cadence, Synopsys, and
Mentor Graphics.

7.2.2 The Post-Quantum Chip

The developed ASIC is based on the design presented in Chapter 4. It includes the tightly
coupled NTT and Modular Arithmetic Unit, the PQ-MAC accelerator, the sampling ac-
celerator, the generic Keccak accelerator, and the large field arithmetic accelerator for

141

7 PQC Migration and Real-World Applicability

RTL

Logical Synthesis

Physical Synthesis

Sign Off

GDSII

SDC

ASIC Library

Figure 7.1: ASIC digital design flow.

SIKE (SIKEp751). The ASIC is designed for the UMC 65nm technology with high
threshold voltage cells. They trade a low power consumption with a slower signal prop-
agation. The cell height of the standard cells is 1.8µm, and the drawn gate length is
60 nm (physical gate length can slightly deviate).
Figure 7.2 (left) illustrates the ASIC layout after floorplanning and placement of stan-

dard cells. The overall chip size is 1 737.6µm × 1 737.6µm. The chip has in total 67 IO
pads, visible at the edges in the picture. The IO pads are used for the 1.2V core voltage,
3.3V IO voltage, clock/reset logic, processor fetch enable, UART, SPI, I2C, GPIOs, and
JTAG. The two large blocks in the upper left and lower left corners of the core area are
memory blocks. They are used to store the instruction and data code for the RISC-V
processor. The chip can be programmed via the SPI port. The standard cells that are
part of the PQC accelerators are highlighted in the figure. The prime field arithmetic
accelerator for the isogeny-based scheme SIKE is the largest part of the design. It uses
several smaller multipliers, register stages, and adder circuits to realize the large field
multiplications. Compared to the SIKE accelerator, the remaining accelerators are sig-
nificantly smaller. The RISC-V core region is at the circular structure where the Keccak
accelerator and parts of the other accelerators are placed. Other non-highlighted cells
mainly belong to the peripherals.
Figure 7.2 (right) shows the final chip design of the ASIC. Vertical power stripes

and a power ring around the core area of the ASIC were created to obtain a good power
distribution across the chip. The highest routing congestion is at the RISC-V core region,
where also the Keccak accelerator is placed. Numerous connections are the reason for
the congestion at the processor core region. The high routing effort for Keccak is caused
by several rewiring operations (e.g., Rho and Pi operations). Nevertheless, there is still
space left for additional logic in the chip core region. The final chip is an IO limited
design. This means that the size of the IO pads determines the overall chip size.
Figure 7.3 presents the post-quantum chip. The bare die is mounted on a QFN package

142

7.2 Post-Quantum Chip Design

� Lattice-based NTT and arithmetic accelerator
� PQC accelerator large field arithmetic (SIKE)
� Keccak accelerator

Instr. RAM

Data RAM

Figure 7.2: Placement of cells and highlighted PQC accelerators (left) and final chip (right).

Figure 7.3: Post-quantum chip. Open chip package (left) and chip in test setup (right).

with 80 pins and a size of 12mm × 12mm. This package allows connecting the chip to
the Printed Circuit Board (PCB). Small wires, also called bonding wires, connect the
passivation openings of the IO pads to the QFN package pins. The packaged chip is
soldered on a PCB, or a socket is used for the mounting instead.

Measurement results and design characteristics. An overview of the post-quantum
chip’s cell count and area consumption is provided in Table 7.1. Further details about
the chip size and routing are provided in Table 7.2. With a core density of 53.83%,
the design has a smaller overall cell area compared to the designs in Chapter 5, which
uses the generic loosely coupled NTT accelerator. The reason is the use of separate
memory macros for the loosely coupled NTT accelerator. Due to the SIKE accelerator,
the amount of logic cells is larger when compared to the accelerated design in Chapter 5.
The test board feeds the post-quantum ASIC with a 20MHz clock. At typical operating

143

7 PQC Migration and Real-World Applicability

Table 7.1: RISQ-V area of ASIC tapeout (UMC 65nm).

Cell Count Combinat. Sequent. Buffer+Inv. Clk-Gate Memory

Tapeout PQC Chip 104 111
268 033µm2 152 586µm2 57 156µm2 367µm2 669 345µm2

(186 kGE) (106 kGE) (40 kGE) (0.25 kGE) (465 kGE)

Table 7.2: RISQ-V size and routing details of ASIC tapeout (UMC 65nm).

Routing Layers #Nets # Pads Area Pads Core Density Die size [µm2]
(w/o corner pads)

8 118 328 67 585 654µm2 53.83% 1 737.6× 1737.6

conditions, the ASIC achieves a maximum frequency of 45MHz. For further performance
and design evaluations, please refer to Chapter 4.

7.3 Application of PQC in the Automotive Industry

The automotive industry is currently going through one of its most significant transfor-
mations. The high degree of automation and the increasing effort for autonomous driving
lead to unprecedented changes. One of the key aspects for the next decades is the secure
interconnection of the various devices in and around the vehicle. This includes the con-
nection to different vehicles (vehicle-to-vehicle communication) and nearby infrastructure
(vehicle-to-infrastructure communication). These interconnections allow sharing impor-
tant information about different events on the road, such as glazed frost, traffic jams,
or accidents. Besides these safety-relevant data exchanges, less critical applications, like
audio streaming (vehicle-to-everything communication), become increasingly important.
In the past, safety has always been of high relevance in the automotive industry, while

security considerations were nearly not present. This changes with the increased attack
surface due to the extreme interconnectivity. A high level of attention is required in the
automotive industry when integrating cryptographic processes. Even small mistakes can
have extreme impacts and cause serious accidents. Due to the long life cycles of automo-
tive products, possible future attacks, including attacks with a quantum computer, are
of high relevance.
The IEEE standard 1609.2-2016 “Standard for Wireless Access in Vehicular Environ-

ments - Security Services for Applications and Management Messages” [IEE16] is essential
for security in the automotive industry. In order to realize secured communications, the
standard recommends using the following cryptographic components:

• digital signatures using Elliptic Curve Digital Signature Algorithm (ECDSA);

• asymmetric encryption using Elliptic Curve Integrated Encryption Scheme (ECIES);

• symmetric authenticated encryption using Advanced Encryption Standard in CCM
mode (AES-CCM).

144

7.3 Application of PQC in the Automotive Industry

The first two components will be completely broken when a large-scale quantum computer
exists. In order to investigate the suitability of PQC for automotive systems, this section
presents an evaluation of the PQC PKE/KEM finalists implemented on the automotive
microcontroller AURIX.

AURIX. It is a widely used Harvard-based microcontroller family developed by Infineon
for safety-critical real-time applications. AURIX microcontrollers are used in various au-
tomotive applications, such as secure onboard communication, powertrain applications
(e.g., fuel injection), and safety applications (e.g., braking electronic control unit). They
are developed to withstand demanding environmental conditions with high tempera-
ture ranges and steep temperature gradients. The lockstep architecture of AURIX with
up to three independent TriCore CPUs allows achieving the highest Automotive Safety
Integrity Level (ASIL) categorization for life-threatening applications. The deployed Tri-
Core architecture of Infineon combines RISC, microcontroller, and DSP principles within
one core to achieve a high performance for embedded applications.
For the evaluation of this section, the AURIX-TC297TF was used. The superscalar

architecture of the core can achieve a low number of cycles per instruction. The architec-
ture further supports MAC operations, SIMD operations, and compressed instructions.
Directly at each of the cores, fast RAM blocks containing a Program Scratchpad RAM
(PSPR) and a Data Scratchpad RAM (DSPR) are placed.

Performance evaluation. Table 7.3 summarizes the performance results of the three
lattice-based NIST PKE/KEM finalists with different security levels. The implementa-
tions are based on the reference code submitted to NIST. For the measurements, the
optimization flag -O3 was set. Note that further assembly optimizations might lead
to better performance results. The publications of the thesis author [FVS19, FVFS21]
present further details about how such optimizations could be achieved for this target
platform.
The results show that the cycle count reaches from 2 454 381 to 254 153 765 for the dif-

ferent algorithms and instantiations. At the maximum clock frequency of 300MHz, these
cycle counts lead to execution times between 8ms and 847ms. The highest parameter set
of NTRU seems to be not directly suitable for a variety of applications. In particular, the
key generation is slow for NTRU as it requires complex operations, such as polynomial
inversions. Hardware acceleration might become necessary for some instantiations and
schemes, although the AURIX microcontroller is already relatively powerful. Assembly
optimizations can also increase the performance.

Open problems. The results have shown that some PQC algorithms are directly suit-
able for the integration into the AURIX microcontroller. The AURIX microcontroller
has an HSM that is separated from the remaining system. It is based on a 32-bit pro-
cessor and has several security features, such as secure key storage, TRNG, elliptic curve
cryptography accelerator, and SHA256 accelerator. Extending the HSM to support PQC

145

7 PQC Migration and Real-World Applicability

Table 7.3: Cycle count and code size in bytes of lattice-based PKE/KEM finalists on AURIX-
TC297TF.

Algorithm Level KeyGen Encaps Decaps Total Size
Kyber-512 I 684 696 846 402 923 283 2 454 381 18 924
Kyber-768 III 992 324 1 203 042 1 176 436 3 371 802 19 214
Kyber-1024 V 1 612 002 1 786 338 1 712 873 5 111 213 19 834

Lightsaber I 889 026 1 162 042 1 336 895 3 387 963 19 044
Saber III 1 736 518 2 168 152 2 449 162 6 353 832 18 588
Firesaber V 2 867 689 3 450 745 3 847 442 10 165 876 18 908

ntruhps2048509 I 86 905 630 3 700 492 8 008 763 98 614 885 17 860
ntruhps2048677 III 153 245 662 6 084 278 14 065 691 173 395 631 18 032
ntruhps4096821 V 224 988 347 8 566 935 20 598 483 254 153 765 20 512

is still an open task. However, the described hardware architecture principles of Chap-
ters 3–5 can be applied.

7.4 Hybrid Key Encapsulation

Previous works reused RSA and elliptic curve accelerators to accelerate lattice-based
cryptography [AHH+18, WGY20, BRvV22]. The main idea of these works is to convert
the polynomials of lattice-based cryptography into large integers in order to reuse the
large field accelerators of traditional cryptography.

Kronecker substitution. The principle of the Kronecker substitution [Kro82] is to eval-
uate the polynomial a(x) and b(x) at a sufficiently large number 2l ∈ Z and perform the
integer multiplication c(2l) = a(2l) · b(2l). The result can then be transformed back to
the polynomial representation c(x). The substitution value must be large enough such
that the final result has no overlaps in the coefficients.
This approach is well suited for applications where the accelerators are already devel-

oped. In that case, the Kronecker substitution overhead might be acceptable. However,
new accelerators should switch the design focus from traditional cryptography to PQC.

7.4.1 Unified Post-Quantum and Elliptic Curve Accelerator

This section presents a hardware accelerator that natively supports the PQC NIST fi-
nalists NTRU and Saber and additionally elliptic curve cryptography. The developed
hardware accelerator is thus ideally suited for hybrid key encapsulations. As a use case,
the efficient PQC scheme Saber and the popular elliptic curve scheme Curve25519 [Ber06]
are evaluated.
The idea of the unified hardware architecture is based on the shift register approach for

polynomial multiplications of Sections 3.2.2 and 4.2.1. The architecture of these sections
is extended to first support generic polynomial multiplications and then to support large
integer multiplications. Some additional features complement the design.

146

7.4 Hybrid Key Encapsulation

×

ak · bi

+

ccarryi cloweri

bi

ak

cloweri+1

w

w

w

2w

w

w + 1

+−

+
−

+
−

Figure 7.4: Generic MAC unit with integer multiplication support.

Extension for generic polynomial multiplications. The transformation of a ternary
multiplier to a generic multiplier is straightforward for the shift-and-add multiplier ar-
chitecture. Only the ternary modular arithmetic unit (see Section 3.2.2) must be replaced
by a generic MAC unit. This unit multiplies the sequentially loaded coefficient ak with
the constant input coefficient bi and accumulates the product in the shift register. The
power-of-two modular reduction of each operation is implicitly performed by discarding
the higher-order bits (limiting the register width). The resulting circuit is suitable for
both NIST finalists Saber and NTRU.

Extension for integer multiplications. Each integer can be represented as a polynomial
with w-bit coefficients. Then, the same shift-and-add multiplication method as for the
polynomial multiplication can be used. But in contrast to the polynomial multiplication
in Saber and NTRU, the result of the multiplications or accumulations is not reduced
by the modulus. Therefore, the generic MAC unit must be extended to handle the carry
propagation for the integer mode. Each MAC result has a bit-length of 2w+1. The lower
part, clowi , is shifted to the next generic MAC unit. The higher part, ccarryi , is added
to the content of the register in the next clock cycle. The resulting generic MAC unit
is shown in Figure 7.4. The complete shift register circuit requires n′ = dn/we generic
MAC units and the same number of cycles to sequentially load the input chunks of an
n-bit integer. Additional n′ cycles are required to shift out the result.

Extensions for vectorized arithmetic. The multipliers and adders/subtractors of the
generic MAC units are reused to perform vectorized polynomial multiplications, addi-
tions, and subtractions. Coefficient-wise operations of two vectors of length n′ are sup-
ported when using all n′ MAC units. This feature requires only some multiplexer logic to
feed the correct inputs and read back the results from the multipliers or adders/subtractors.

147

7 PQC Migration and Real-World Applicability

Supporting reductions for Curve25519. Curve25519 requires field arithmetic in Fp
with the pseudo-Mersenne prime p = 2255 − 19. Reductions can be simplified due to the
fact a = ah · 2255 + al ≡ ah · 19 + al (mod p). Hence, one multiplier of the generic MAC
units is enhanced to support multiplications by 19.

Parameter selection. The shift register length is set to n′ = 16 such that the overall
circuit has a moderate area consumption. The larger polynomials in Saber and NTRU
must apply a software-based split. The generic MAC unit maps well to the Xilinx FPGA
DSP blocks DSP48E1/DSP48E2. DSP48E1 slices contain a 25×18-bit multiplier, a 48-bit
adder/subtractor stage, a 17-bit shifter circuit, and a logic unit (supporting AND, NOT,
NAND, NOR, XOR, XNOR operations). The more advanced DSP48E2 slice supports a
27×18-bit instead of a 25×18-bit multiplication and has a more flexible adder/subtractor
stage. The generic MAC can be completely mapped to a DSP48E2 slice. The DSP48E1
slice has no feedback path from the output of the adder/subtractor stage to its input
(for ccarryi , Figure 7.4). Therefore, the carry logic must be instantiated outside of the
DSP48E1 slice. DSP48E2 slices have such a feedback path. It can be used together with
the 17-bit shifter circuit to forward ccarryi . Given the operand widths of the DSP slices,
the parameter w = 17 is set to reflect the supported bit-width of the shifting operation.

Core integration. The unified hardware architecture for post-quantum and elliptic
curve cryptography is placed like the tightly coupled Keccak accelerator (see Section 4.3.5)
into the decode stage. This provides fully parallel access to the registers in GPR/FPR.
Due to the small shift register length n′, no extra buffers are required.

7.4.2 Experimental Results

The next paragraphs provide the experimental results for the unified post-quantum and
elliptic curve accelerator. As the side-channel evaluation is not the focus of this chapter,
the measurements are again performed with the Xilinx Zynq-7000 programmable SoC
(Zedboard). The Zynq-7000 family has DSP slices of type DSP48E1. The newer Ultra-
scale+ family has DSP48E2 slices. They are even more suitable for the mapping of the
generic MAC unit as described in Section 7.4.1. For this reason, the measurements are
repeated with the Zynq UltraScale+ ZCU102 FPGA.

Resource utilization evaluation. Table 7.4 provides an overview of the resource uti-
lization. The results show that the tightly coupled design of Chapter 4 has a similar
resource utilization as the approach of this chapter. While the designs in Chapters 4 and
5 also support NTT-based schemes, the architecture of this section supports the large
integer arithmetic of elliptic curve cryptography and RSA. Using the Ultrascale+ FPGA
slightly decreases the resource consumption. A larger difference between the two plat-
forms can be observed at the maximum operating frequency, which is highly dependent
on the technology node. The frequency of the baseline implementation and the design
with unified hardware accelerator is 39/34MHz (baseline/accelerated) for the Zynq-7000
platform and 83/76MHz (baseline/accelerated) for the Ultrascale+ platform. Although

148

7.4 Hybrid Key Encapsulation

Table 7.4: Resource utilization results of unified post-quantum and elliptic curve design.

FPGA type LUT FF DSP BRAM
PULPino original Zynq-7000 15 248 9 569 6 32

Accel. Chapter 4 Zynq-7000 24 306 10 837 18 32

Accel. Chapter 5 Artix-7 20 697 11 833 13 36.5

Accel. Chapter 7 Zynq-7000 24 235 11 863 22 32
UltraScale+ 23 441 11 094 22 32

Table 7.5: Cycle count for Saber with unified post-quantum and elliptic curve accelerator.

KeyGen Encaps Decaps

Saber on ESP32 with coprocessor [WGY20] 827 050 1 070 073 243 023a)

Saber Zynq-7000 SoC [BMTK+20] 2 180 000 2 762 000 2 560 000
Saber baseline (Chapter 4) 2 110 283 2 737 181 2 797 400
Saber (Chapter 4) 760 893 1 000 043 1 201 524
Saber (Chapter 5) 233 452 312 477 351 370
Saber (Chapter 7) 217 330 279 320 300 480

a) Only CPA-secure.

the critical path is not within the accelerators, the maximum operating frequency slightly
decreased for the design of this chapter. This is most probably the case because a higher
resource utilization leads to a higher routing effort. It must be noted that the Keccak
and binomial sampling accelerators of Section 4.3 are included in the design costs of the
proposed approach.

Cycle count evaluation for Saber. Table 7.5 provides the cycle count measurements
of the proposed design. The results show a similar cycle count as the accelerated version
in Chapter 5, which is based on the generic NTT with prime lift. This chapter uses a
tailored ring splitting algorithm to map the large polynomials to the architecture. The
developed approach allows performing the ring reductions directly in hardware. For
further details, the corresponding publication of this section can be read [OFP+22].

Cycle count evaluation for Curve25519. The advantage of the generic design ap-
proach becomes present when evaluating the performance of elliptic curve cryptogra-
phy. Table 7.6 summarizes the cycle count for different Curve25519 implementations.
The RISC-V baseline implementation of this thesis uses the library of [Sod21]. Com-
pared to the software baseline implementation, a speedup factor of 9.96 was achieved
with the proposed accelerator. The achieved cycle count also outperforms existing ARM
implementations. The results verify that the unified hardware multiplier significantly
accelerates Saber and Curve25519.

149

7 PQC Migration and Real-World Applicability

Table 7.6: Cycle count for scalar multiplication in Curve25519 with unified post-quantum and
elliptic curve accelerator.

Scalar Mult. Inv. Mult. Add. Sub.
ARM Cortex-M4 [HL19]a) 625 347 42 590 222 55 72

ARM Cortex-M4 [FA19]a) 894 391 64 425 273 86 86
ARM Cortex-A7 [FA19] 825 914 62 648 290 52 52
ARM Cortex-A15 [FA19] 572 910 41 978 225 36 36
RISC-V Hifive1 [vdB20] 4 432 988 – – – –
PULPino baseline 4 103 653 343 334 1 691 42 42
This work 411 810 19 350 87 68 84

a) The works evaluated the performance of different ARM Cortex-M4 microcon-
trollers. In the table, the results for the STM32F4 microcontroller are reported.

7.5 Summary

This chapter presented the first post-quantum chip that is based on a hardware/software
codesign approach with post-quantum instruction set extensions. The chip verifies that
the proposed tightly coupled post-quantum accelerators are suitable for real-world ap-
plications and ASIC designs. The complete chip has an area of only 3.01mm2. Due to
its high flexibility, similar concepts are suitable for a variety of applications. The results
show that no expensive or powerful processor is required to support PQC.
The chapter further investigated the suitability of PQC for automotive applications.

The steadily growing communication effort, the required high level of safety and security,
and the long life cycles make automotive cryptography a particularly relevant use case for
applied cryptography. AURIX is a widely deployed microcontroller that fulfills the tough
requirements of the automotive industry. In order to verify the applicability of PQC for
this microcontroller, the NIST finalists Kyber, Saber, and NTRU were implemented and
evaluated. While Kyber and Saber seem to be directly applicable for this microcontroller,
NTRU seems to require more research effort to achieve good performance results for this
microcontroller. Further research would be required to integrate PQC directly into the
HSM of the AURIX microcontroller. For this purpose, the hardware/software codesign
ideas of this thesis might be applied.
The last part of this chapter presented a hardware architecture that efficiently supports

hybrid key encapsulations. Hybrid key encapsulations combine well-known cryptography
with new PQC primitives. It fosters migration towards PQC as it increases the confidence
in the security of a system. It turned out that the schoolbook multiplication based on a
shift register approach suits well for hardware accelerators for the polynomial arithmetic
of PQC and the large integer arithmetic of elliptic curve cryptography.

150

8 Conclusion

This chapter recapitulates the content and approaches presented in this the-
sis. The thesis investigated the applicability of PQC for embedded devices.
Several hardware/software codesign strategies were developed that allow de-
ploying PQC even on small non-commercial microcontrollers. This chapter
summarizes these approaches and strategies. Furthermore, it highlights re-
search areas that require more attention in the next years to develop highly
efficient, practical, and secure cryptography resistant against quantum at-
tacks.

8.1 Conclusion . 151
8.2 Future Work . 155

8.1 Conclusion

In connection with the NIST standardization process, strong cryptographic algorithms
have been developed that are resistant to quantum attacks. NIST plans to create
the first draft standards of selected remaining candidates between the years 2022 and
2024 [NIS21]. Especially, lattice-based cryptography is well suited for the development
of PKE/KEM and digital signature schemes. Most schemes of the NIST competition
can be efficiently implemented on modern desktop computers. There is also remark-
able progress in assembly optimized implementations for microcontrollers with moderate
computing power. However, for countless applications with smaller computational power,
hardware acceleration seems to be unavoidable. This is also the case for security applica-
tions on embedded devices that require strong protection against implementation attacks
(e.g., HSMs or smartcards). Hardware acceleration additionally becomes important in a
hybrid key encapsulation setting (PQC + traditional cryptography), where two crypto-
graphic operations must be performed within the same time frame in which previously
only one operation was performed.

Flexibility. Monolithic accelerators are tailored hardware realizations of a specific scheme
or instance. They achieve an extremely high throughput but have the disadvantages of
a large area consumption and low flexibility. For many applications with constrained re-
sources, the extreme speedup of a monolithic accelerator is not necessary, e.g., because the
performance is limited by the transmission rate anyway. For this reason, flexibility is of-
ten given greater importance. This thesis provided an investigation of hardware/software

151

8 Conclusion

codesign solutions for PQC to find an ideal trade-off between performance and flexibility.

Loosely coupled coprocessors. This work presented efficient coprocessors for the bot-
tlenecks of lattice-based cryptography. The developed coprocessor for the ternary poly-
nomial multiplication of NTRU achieves significant speed improvements. This work fur-
ther explored suitable hardware realizations of the NTT, which is used for some lattice-
based schemes to reduce the arithmetic complexity of polynomial multiplications. It
was shown that efficient reduction routines could be integrated into NTT algorithms
with on-the-fly Twiddle factor computations. Further, it was illustrated how to hide
the NTT post-processing cost and that just a few additional gates significantly reduce
the power consumption of the NTT circuit. The development of a hardware/software
codesign for NewHope with loosely coupled Keccak and NTT coprocessors demonstrated
that flexibility can be efficiently combined with performance. Except for hash and NTT
computations, the whole algorithm flow was executed in software leading to a high degree
of flexibility.

Tightly coupled accelerators. A tight processor coupling turned out to bring many
advantages. It can reduce the area overhead as no costly input/output buffers and control
circuitry are required. Moreover, existing system resources like memory blocks, registers,
and multipliers of the processor can be reused. Tightly coupled accelerators are often
designed for small operations, leading to a high flexibility. This thesis illustrated that
tightly coupled accelerators and instruction set extensions are well suited for lattice-
based cryptography, isogeny-based cryptography, and elliptic curve cryptography. In
particular, Keccak and the NTT have proven to be well suited for a tightly coupled
approach. In order to improve the performance, SIMD principles and memory access
strategies were developed. A tightly coupled hardware/software codesign can be even
faster than a loosely coupled approach. Loosely coupled solutions require a complex
bus communication, which decreases the performance when copying multiple operands
(e.g., polynomials) from the system memory to the accelerator. In order to avoid this
overhead, intermediate results must be stored within the accelerator, leading to a higher
area consumption of the accelerator. In summary, tightly coupled solutions should be
preferred if they are able to meet the performance requirements and if the tasks can be
broken down into sufficiently small pieces.

SCA protection. This work investigated DPA protection mechanisms for hardware/
software codesigns of lattice-based cryptography. As a use case, the PQC NIST final-
ists Kyber and Saber were considered. The work presented masked accelerators and
instruction set extensions for the linear and non-linear operations of these schemes. In
particular, the non-linear operations, such as the Keccak Chi operation or binomial sam-
pling, require great attention. They need to combine multiple shares and are thus often
the source of side-channel leakage. Therefore, the non-linear operations were completely
performed in hardware to achieve a controlled execution. The proposed approach care-
fully separates the different shares and deletes sensitive data before processing the next

152

8.1 Conclusion

share. Compared to Saber, Kyber turned out to have a higher masking overhead such
that hardware acceleration is required for many embedded applications. Kyber requires
sampling several binomially distributed polynomials, which is costly in a masked setting.
Moreover, Kyber has a prime modulus, which complicates ciphertext compression and
A2B/B2A conversions.

Hardware accelerator overview. The developed hardware accelerators of this work can
be mainly categorized into sampling/hash accelerators, arithmetic accelerators, error
correction accelerators, and A2B/B2A conversion accelerators. Table 8.1 provides an
overview and analysis of accelerators for lattice-based and isogeny-based cryptography.
All sampling/hash accelerators are more suitable for a tight processor coupling. The

Keccak and SHA256 accelerators can highly benefit from a parallel access to multiple
registers of the processor. This parallel access brings a huge performance improvement
and comes with a small cost of several multiplexers. In order to avoid a routing to the
execution stage, Keccak and SHA256 accelerators can be directly placed in the instruction
decode stage (T-ID coupling), where the register sets GPR and FPR are located. All
other sampling accelerators, e.g., Binomial or Gaussian sampler, can be placed in the
execution stage (T-EX coupling) as they only require access to a few registers. The
Gaussian sampling has not been discussed so far. In [LG20], it was shown that uniformly
distributed randomness could be efficiently turned into discrete Gaussian samples using
Boolean functions. It turns out that these Boolean functions can be efficiently realized
with a small hardware accelerator located in the execution stage. Further investigations
have been conducted in a publication of the thesis author [KFS22].
Several accelerators were explored for the arithmetic operations of PQC. The most

suitable accelerator depends on the application. If NTT-based schemes shall be sup-
ported, the developed tightly coupled NTT and Modular Arithmetic Unit is well suited.
If, in addition, also non-NTT-based schemes shall be supported, a loose coupling can be
considered (L coupling) because the operand width when using prime lifts might not be
suitable for a 32-bit system. For schemes with a ternary polynomial multiplication, a
ternary shift-register multiplier might be selected. This multiplier can be extremely fast
but must apply a software splitting to achieve a good trade-off between area and perfor-
mance. The generic shift-register multiplier is well suited for hybrid key encapsulations.
It is, however, not suitable for NTT-based schemes. The large field arithmetic accelera-
tor is suitable for SIKE and can be extended to support elliptic curve cryptography or
RSA. SIKE is one of the slowest NIST schemes and requires a high amount of hardware
resources or a small and fast technology node. Therefore, also standalone accelerator
solutions might be considered for this scheme.
The thesis has shown how the error correction can improve the bandwidth and security

level. On the other side, the error correction introduces another performance bottleneck.
This bottleneck can be mitigated by an error correction accelerator.
Finally, the masked secure adder is relevant for all schemes that apply masking coun-

termeasures and that require A2B/B2A conversions.

153

8 Conclusion

Table 8.1: List of accelerators.
Name Category Suited Schemes Type Notes

Keccak Accelerator Sampling, hash All T-ID Requires 50× 32-bit reg.
(reuse GPR/FPR)

Masked Keccak Chi
Accelerator Sampling, hash All T-EX Can be combined with

Keccak accelerator

SHA256 Accelerator Sampling, hash All T-ID Requires 8× 32-bit reg.
(reuse GPR)

Binomial Sampling
Accelerator Sampling Kyber, Saber,

NewHope T-EX –

Masked Binomial
Sampling Accelerator Sampling Kyber, Saber,

NewHope T-EX –

Gaussian Sampling
Accelerator Sampling Frodo, Falcon T-EX –

NTT Accelerator I Ring arithmetic All NTT schemes T-EX,
T-ID For modulus ≤ 32-bit

NTT Accelerator II Ring arithmetic All NTT schemes
+ Saber, NTRU, LAC L For non-NTT schemes

with modulus > 32-bit
Shift-Register-
Multiplier I (ternary) Ring arithmetic NTRU, LAC T-ID,

L
Gets large if no splitting
is applied

Shift-Register-
Multiplier II (generic)

Ring arithmetic,
field arithmetic

All non-NTT
schemes, ECC, RSA T-ID Supports hybrid key

encapsulation
Large field arithmetic
accelerator Field arithmetic SIKE T-ID Can be extended for

hybrid key encapsulation
Error Correction
Accelerator Error correction LAC, ThreeBears T-EX For Chien search

Masked Secure Adder A2B/B2A
conversions All T-EX Required in masked

setting

154

8.2 Future Work

NIST finalists from an implementation perspective. Due to its large public key size,
Classic McEliece is not suitable for many embedded applications. For small devices, the
most relevant PKE/KEM finalists are Kyber, NTRU, and Saber. They all have two main
bottlenecks: polynomial sampling and ring arithmetic.
The polynomial sampling requires a huge amount of randomness. All three lattice-

based finalists need an efficient PRNG, like Keccak, to create the required randomness.
In a non-masked setting, the transformation of a uniform PRNG bitstream into the
desired target distribution is relatively cheap. Only in a masked setting, high variances
of the target distribution significantly increase the complexity. While Kyber needs to
sample secret and error polynomials, the MLWR scheme Saber can completely avoid the
sampling of error polynomials. This is a small advantage of Saber. NTRU is generally
slower than the other two lattice-based finalists [AASA+20].
The polynomial ring arithmetic is the next important bottleneck. The selection of the

modulus q has the largest impact on the performance. A modulus that supports the NTT
leads to efficient implementations. Even if the modulus does not directly support NTTs,
prime lifts can be considered to apply NTT-based polynomial multiplications. The prime
lift, however, leads to increased operand widths. While Kyber is highly optimized for
the NTT, Saber and NTRU have a power-of-two modulus and can apply the NTT only
with prime lifts. On the other side, the power-of-two modulus facilitates the integration
of masking. In addition to the costly polynomial multiplications, NTRU requires time-
consuming polynomial inversions within the key generation, which is not required for
Kyber and Saber.
All three lattice-based finalists have their advantages and disadvantages. The differ-

ences between Kyber and Saber are relatively small. Both schemes can be efficiently
implemented. NTRU seems to require more research effort if it gets standardized by
NIST. Particularly, the protection against SCA and the efficient implementation of the
key generation have received less research attention so far.

8.2 Future Work

In the last years, the focus has been on PKE/KEM schemes—among others—because
encrypted messages can be recorded and broken later when a sufficiently large quantum
computer is built. Even if such scenarios are less problematic for signature schemes,
they should soon receive more research attention due to long migration times. Lattice-
based signature schemes require similar hardware accelerators as PKE/KEM schemes.
Nevertheless, a thorough analysis of different implementation aspects is missing.
Efficient countermeasures against implementation attacks are also not sufficiently stud-

ied yet. Lattice-based cryptography is built upon many different components. This leads
to a complicated overall system with various potential vulnerabilities. A comprehensive
guideline for the protection against implementation attacks must be developed. In par-
ticular, efficient countermeasures against horizontal SCA and fault attacks have not yet
been sufficiently investigated. The attacks are becoming more sophisticated every day.
Among others, attacks using machine learning have become very powerful. Research

155

8 Conclusion

in the direction of secure and efficient PQC implementations but also the migration of
various applications towards PQC will take many years to complete.

156

Acronyms

BPGM Blinding Polynomial Generation Method.

MGF Mask Generation Function.

A2B Arithmetic to Boolean.

ACP Accelerator Coherency Port.

AES Advanced Encryption Standard.

ALU Arithmetic Logic Unit.

ASIC Application-Specific Integrated Circuit.

ASIL Automotive Safety Integrity Level.

AURIX Automotive Realtime Integrated NeXt Generation Architecture.

AXI Advanced eXtensible Interface.

B2A Boolean to Arithmetic.

BCH Bose–Chaudhuri–Hocquenghem.

BI-AWGNC Binary Input Additive White Gaussian Noise Channel.

BRAM Block RAM.

CCA Chosen-Ciphertext Attacks.

CPA Chosen-Plaintext Attacks.

CRT Chinese Remainder Theorem.

CSR Control and Status Register.

DDR-RAM Double Data Rate Synchronous Dynamic Random-Access Memory.

DIF Decimation-In-Frequency.

DIT Decimation-In-Time.

DMA Direct Memory Access.

157

Acronyms

DOM Domain-Oriented Masking.

DPA Differential Power Analysis.

DSP Digital Signal Processing.

EDA Electronic Design Automation.

FF Flip-Flop.

FFT Fast Fourier Transform.

FPGA Field-Programmable Gate Array.

FPR Floating-Point Register.

FPU Floating-Point Unit.

GP General-Purpose Port.

GPIO General-Purpose Input/Output.

GPR General-Purpose Register.

HP High Performance Port.

HSM Hardware Security Module.

I2C Inter-Integrated Circuit.

IMLWE Integer Module Learning With Errors.

IoT Internet of Things.

ISA Instruction Set Architecture.

KEM Key Encapsulation Mechanism.

LDPC Low-Density Parity-Check.

LFSR Linear-Feedback Shift Register.

LLR Log-Likelihood Ratio.

LSU Load-Store Unit.

LUT Lookup Table.

LWE Learning With Errors.

158

Acronyms

LWR Learning With Rounding.

MAC Multiply Accumulate.

MAU Modular Arithmetic Unit.

MLWE Module Learning With Errors.

MLWR Module Learning With Rounding.

NAEP NTRU Asymmetric Encryption Padding.

NIST National Institute of Standards and Technology.

NSA National Security Agency.

NTRU Nth Degree Truncated Polynomial Ring Unit.

NTT Number Theoretic Transform.

PCB Printed Circuit Board.

PKC Public-Key Cryptography.

PKE Public-Key Encryption.

PQC Post-Quantum Cryptography.

PRNG Pseudo Random Number Generator.

PULP Parallel Ultra Low Power.

QC-LDPC Quasi-Cyclic Low-Density Parity-Check.

QC-MDPC Quasi-Cyclic Moderate-Density Parity-Check.

QFN Quad-Flat No-leads.

RAM Random Access Memory.

RCC Rocket Custom Coprocessor.

RISC Reduced Instruction Set Computer.

RLWE Ring Learning With Errors.

RNG Random Number Generator.

RSA Rivest–Shamir–Adleman.

159

Acronyms

SCA Side-Channel Attacks.

SIMD Single Instruction Multiple Data.

SoC System on a Chip.

SPA Simple Power Analysis.

SPI Serial Peripheral Interface.

SVES Shortest Vector Encryption Scheme.

TCF Toggle Count Format.

TI Threshold Implementation.

TPM Trusted Platform Module.

TRNG True Random Number Generator.

TVLA Test Vector Leakage Assessment.

UART Universal Asynchronous Receiver Transmitter.

XOF eXtendable-Output Function.

160

Own Publications

[BFM+18] Konstantin Braun, Tim Fritzmann, Georg Maringer, Thomas Scham-
berger, and Johanna Sepúlveda. Secure and compact full NTRU hardware
implementation. In IFIP/IEEE International Conference on Very Large
Scale Integration (VLSI-SoC), pages 89–94. IEEE, 2018.

[FPS18] Tim Fritzmann, Thomas Pöppelmann, and Johanna Sepúlveda. Analysis
of error-correcting codes for lattice-based key exchange. In Selected Areas
in Cryptography (SAC), pages 369–390. Springer, 2018.

[Fri17] Tim Fritzmann. Towards an improved NewHope Simple. Master’s thesis,
Technical University of Munich, 2017. Submitted on: 25th Oct. 2017.

[FS19] Tim Fritzmann and Johanna Sepúlveda. Efficient and flexible low-power
NTT for lattice-based cryptography. In IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 141–150. IEEE,
2019.

[FSF+19] Tim Fritzmann, Thomas Schamberger, Christoph Frisch, Konstantin
Braun, Georg Maringer, and Johanna Sepúlveda. Efficient hard-
ware/software co-design for NTRU. In Nicola Bombieri, Graziano
Pravadelli, Masahiro Fujita, Todd Austin, and Ricardo Reis, editors,
VLSI-SoC: Design and Engineering of Electronics Systems Based on New
Computing Paradigms, pages 257–280. Springer, 2019.

[FSM+19] Tim Fritzmann, Uzair Sharif, Daniel Müller-Gritschneder, Cezar Rein-
brecht, Ulf Schlichtmann, and Johanna Sepúlveda. Towards reliable and
secure post-quantum co-processors based on RISC-V. In Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pages 1148–1153.
IEEE, 2019.

[FSS20a] Tim Fritzmann, Georg Sigl, and Johanna Sepúlveda. Extending the RISC-
V instruction set for hardware acceleration of the post-quantum scheme
LAC. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1420–1425. IEEE, 2020.

[FSS20b] Tim Fritzmann, Georg Sigl, and Johanna Sepúlveda. RISQ-V: Tightly cou-
pled RISC-V accelerators for post-quantum cryptography. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2020(4):239–280,
Aug. 2020.

161

OWN PUBLICATIONS

[FVBBR+21] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick
Karl, Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked
accelerators and instruction set extensions for post-quantum cryptography.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2022(1):414–460, Nov. 2021.

[FVFS21] Tim Fritzmann, Jonas Vith, Daniel Flórez, and Johanna Sepúlveda. Post-
quantum cryptography for automotive systems. Microprocessors and Mi-
crosystems, 87(November 2021):1–8, Nov. 2021.

[FVS19] Tim Fritzmann, Jonas Vith, and Johanna Sepúlveda. Post-quantum key
exchange mechanism for safety critical systems. In 17th escar Europe: em-
bedded security in cars. Ruhr-Universität Bochum, Universitätsbibliothek,
2019.

[FVS20] Tim Fritzmann, Jonas Vith, and Johanna Sepúlveda. Strengthening post-
quantum security for automotive systems. In 23rd Euromicro Conference
on Digital System Design (DSD), pages 570–576. IEEE, 2020.

[KFS22] Patrick Karl, Tim Fritzmann, and Georg Sigl. Hardware accelerated
FrodoKEM on RISC-V. In International Symposium on Design and Diag-
nostics of Electronic Circuits and Systems (DDECS). IEEE, 2022.

[MFS20] Georg Maringer, Tim Fritzmann, and Johanna Sepúlveda. The influence
of LWE/RLWE parameters on the stochastic dependence of decryption
failures. In International Conference on Information and Communications
Security (ICICS), pages 331–349. Springer, 2020.

[OFP+22] Felix Oberhansl, Tim Fritzmann, Thomas Pöppelmann, Debapriya Basu
Roy, and Georg Sigl. Uniform instruction set extensions for multiplications
in contemporary and post-quantum cryptography. In Journal of Crypto-
graphic Engineering (JCEN). Springer, 2022. Submitted in February 2022
(no acceptance decision yet).

[RFS20] Debapriya Basu Roy, Tim Fritzmann, and Georg Sigl. Efficient hard-
ware/software co-design for post-quantum crypto algorithm SIKE on ARM
and RISC-V based microcontrollers. In IEEE/ACM International Confer-
ence On Computer Aided Design (ICCAD), pages 1–9. IEEE/ACM, 2020.

162

Bibliography

[AAB+19a] Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la Piedra,
Thomas Pöppelmann, Peter Schwabe, and Douglas Stebila. NewHope: Al-
gorithm Specifications and Supporting Documentation (v2), 2019. Accessed
December 18, 2021: https://newhopecrypto.org/data/NewHope_2019_
07_10.pdf.

[AAB+19b] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin,
Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao,
David A Buell, et al. Quantum supremacy using a programmable super-
conducting processor. Nature, 574(7779):505–510, 2019.

[AASA+19] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, et al. Status
report on the first round of the NIST post-quantum cryptography stan-
dardization process. US Department of Commerce, NIST, 2019.

[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,
et al. Status report on the second round of the NIST post-quantum cryp-
tography standardization process. US Department of Commerce, NIST,
2020.

[ABB+20] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Phillipe Gaborit, Santosh Ghosh, Shay
Gueron, Tim Guneysu, Carlos Aguilar Melchor, et al. BIKE: Bit flipping
key encapsulation (Round 3 submission), 2020. Accessed December 18,
2021: https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

[ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard.
Cortex-M4 optimizations for {R,M}LWE schemes. Cryptology ePrint
Archive, Report 2020/012, 2020.

[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS-Kyber: Algorithm specifications and sup-
porting documentation (v2), 2019. Accessed December 18, 2021: https:
//pq-crystals.org/kyber/data/kyber-specification-round2.pdf.

163

https://newhopecrypto.org/data/NewHope_2019_07_10.pdf
https://newhopecrypto.org/data/NewHope_2019_07_10.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf

BIBLIOGRAPHY

[ABD+20] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS-Kyber: Algorithm specifications and sup-
porting documentation (v3), 2020. Accessed December 18, 2021: https:
//pq-crystals.org/kyber/data/kyber-specification-round3.pdf.

[ABF+08] Ali Can Atici, Lejla Batina, Junfeng Fan, Ingrid Verbauwhede, and
S Berna Ors Yalcin. Low-cost implementations of NTRU for pervasive
security. In International Conference on Application-Specific Systems, Ar-
chitectures and Processors, pages 79–84. IEEE, 2008.

[ABP+18] Victor Arribas, Begül Bilgin, George Petrides, Svetla Nikova, and Vin-
cent Rijmen. Rhythmic Keccak: SCA security and low latency in HW.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2018(1):269–290, Feb. 2018.

[ADPS16a] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. New-
Hope without reconciliation. Cryptology ePrint Archive, Report 2016/1157,
2016.

[ADPS16b] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange—a new hope. In USENIX security symposium,
pages 327–343, 2016.

[AEL+20] Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen, and
Richard Petri. ISA extensions for finite field arithmetic: Accelerating Kyber
and NewHope on RISC-V. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2020(3):219–242, Jun. 2020.

[AHH+18] Martin R. Albrecht, Christian Hanser, Andrea Hoeller, Thomas Pöppel-
mann, Fernando Virdia, and Andreas Wallner. Implementing RLWE-based
schemes using an RSA co-processor. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2019(1):169–208, Nov. 2018.

[AJS16] Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. NewHope on ARM
Cortex-M. In International Conference on Security, Privacy, and Applied
Cryptography Engineering, pages 332–349. Springer, 2016.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings
of the 28th annual ACM Symposium on Theory of Computing, pages 99–
108. Association for Computing Machinery, 1996.

[APS13] Aydin Aysu, Cameron Patterson, and Patrick Schaumont. Low-cost and
area-efficient FPGA implementations of lattice-based cryptography. In
IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pages 81–86. IEEE, 2013.

164

https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf

BIBLIOGRAPHY

[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor. In Conference
on the Theory and Application of Cryptographic Techniques, pages 311–323.
Springer, 1986.

[BBC+18] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and
Paolo Santini. LEDAkem: A post-quantum key encapsulation mechanism
based on QC-LDPC codes. In International Conference on Post-Quantum
Cryptography, pages 3–24. Springer, 2018.

[BBCD18] Elaine Barker, Elaine Barker, Lily Chen, and Richard Davis. Recommen-
dation for key-derivation methods in key-establishment schemes. US De-
partment of Commerce, National Institute of Standards and Technology,
2018.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Ben-
jamin Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP
lattice-based signature scheme at any order. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages
354–384. Springer, 2018.

[BBF+19] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, and Dou-
glas Stebila. Hybrid key encapsulation mechanisms and authenticated key
exchange. In International Conference on Post-Quantum Cryptography,
pages 206–226. Springer, 2019.

[BCE+01] Daniel V. Bailey, Daniel Coffin, Adam Elbirt, Joseph H. Silverman, and
Adam D. Woodbury. NTRU in constrained devices. In International Work-
shop on Cryptographic Hardware and Embedded Systems, pages 262–272.
Springer, 2001.

[BDGH15] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Wei He. Exploiting
FPGA block memories for protected cryptographic implementations. ACM
Transactions on Reconfigurable Technology and Systems (TRETS), 8(3):1–
16, 2015.

[BDH+20] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, and Gilles Van
Assche. Keccak in VHDL, 2020. Accessed December 18, 2021: https:
//keccak.team/hardware.html.

[BDK+18] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. In 2018
IEEE European Symposium on Security and Privacy (EuroS&P), pages
353–367. IEEE, 2018.

165

https://keccak.team/hardware.html
https://keccak.team/hardware.html

BIBLIOGRAPHY

[BDK+21] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar,
Josep Balasch, and Ingrid Verbauwhede. A side-channel-resistant imple-
mentation of Saber. Journal on Emerging Technologies in Computing Sys-
tems, 17(2), Apr. 2021.

[BDPVA09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Kec-
cak sponge function family main document. Submission to NIST (Round
2), 3(30):320–337, 2009.

[BDPVA10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Building power analysis resistant implementations of Keccak. In Second
SHA-3 Candidate Conference. Citeseer, 2010.

[Ber66] Elwyn R. Berlekamp. Nonbinary BCH decoding. In International Sympo-
sium on Information Theory, 1966.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In
Public Key Cryptography, pages 207–228. Springer, 2006.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking Kyber: First- and higher-order implementations.
Cryptology ePrint Archive, Report 2021/483, 2021.

[BGV93] Antoon Bosselaers, René Govaerts, and Joos Vandewalle. Comparison of
three modular reduction functions. In Annual International Cryptology
Conference, pages 175–186. Springer, 1993.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3):1–36, 2014.

[BKS19] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. Memory-
efficient high-speed implementation of Kyber on Cortex-M4. In Interna-
tional Conference on Cryptology in Africa, pages 209–228. Springer, 2019.

[BL21] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmarking
of cryptographic systems, 2021. Accessed December 18, 2021: https://
bench.cr.yp.to.

[BMD+20] Andrea Basso, Jose Maria Bermudo Mera, Jan-Pieter D’Anvers,
Angshuman Karmakar, Sujoy Sinha Roy, Michiel Van Beirendonck,
and Frederik Vercauteren. SABER: Mod-LWR based KEM (v3),
2020. Accessed December 18, 2021: https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[BMKV20] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Ver-
bauwhede. Time-memory trade-off in Toom-Cook multiplication: an appli-
cation to module-lattice based cryptography. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, 2020(2):222–244, Mar. 2020.

166

https://bench.cr.yp.to
https://bench.cr.yp.to
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

BIBLIOGRAPHY

[BMTK+20] Jose Maria Bermudo Mera, Furkan Turan, Angshuman Karmakar, Su-
joy Sinha Roy, and Ingrid Verbauwhede. Compact domain-specific co-
processor for accelerating module lattice-based KEM. In 57th ACM/IEEE
Design Automation Conference (DAC), pages 1–6. ACM/IEEE, 2020.

[BMVT78] Elwyn Berlekamp, Robert McEliece, and Henk Van Tilborg. On the in-
herent intractability of certain coding problems. IEEE Transactions on
Information Theory, 24(3):384–386, 1978.

[BNN+12] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg
Stütz. Threshold implementations of all 3 × 3 and 4 × 4 S-boxes. In In-
ternational Workshop on Cryptographic Hardware and Embedded Systems,
pages 76–91. Springer, 2012.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom func-
tions and lattices. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 719–737. Springer, 2012.

[BR21] Andrea Basso and Sujoy Sinha Roy. Optimized polynomial multiplier ar-
chitectures for post-quantum KEM Saber. In 58th ACM/IEEE Design
Automation Conference (DAC), pages 1285–1290. ACM/IEEE, 2021.

[Bra16] Matt Braithwaite. Experimenting with post-quantum cryptography, 2016.
Accessed December 18, 2021: https://security.googleblog.com/2016/
07/experimenting-with-post-quantum.html.

[BRvV22] Joppe W. Bos, Joost Renes, and Christine van Vredendaal. Post-
quantum cryptography with contemporary co-processors: Beyond Kro-
necker, Schönhage-Strassen & Nussbaumer. In 31st USENIX Security Sym-
posium. USENIX Association, 2022.

[BUC19] Utsav Banerjee, Tenzin Ukyab, and Anantha Chandrakasan. Sapphire:
A configurable crypto-processor for post-quantum lattice-based protocols.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2019(4):17–61, Aug. 2019.

[CFG+10] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet,
and Vincent Verneuil. Horizontal correlation analysis on exponentiation.
In International Conference on Information and Communications Security
(ICICS), pages 46–61. Springer, 2010.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala.
Secure conversion between Boolean and arithmetic masking of any order.
In International Workshop on Cryptographic Hardware and Embedded Sys-
tems, pages 188–205. Springer, 2014.

167

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

BIBLIOGRAPHY

[Chi64] Robert Chien. Cyclic decoding procedures for Bose-Chaudhuri-
Hocquenghem codes. IEEE Transactions on Information Theory,
10(4):357–363, 1964.

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT multiplication for NTT-
unfriendly rings: New speed records for saber and NTRU on Cortex-M4
and AVX2. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(2):159–188, Feb. 2021.

[CJL+16] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray
Perlner, and Daniel Smith-Tone. Report on post-quantum cryptography,
volume 12. US Department of Commerce, National Institute of Standards
and Technology, 2016.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In Annual
International Cryptology Conference, pages 398–412. Springer, 1999.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calcu-
lation of complex Fourier series. Mathematics of Computation, 19(90):297–
301, 1965.

[CT03] Jean-Sébastien Coron and Alexei Tchulkine. A new algorithm for switching
from arithmetic to Boolean masking. In International Workshop on Cryp-
tographic Hardware and Embedded Systems, pages 89–97. Springer, 2003.

[Deb12] Blandine Debraize. Efficient and provably secure methods for switching
from arithmetic to Boolean masking. In International Workshop on Cryp-
tographic Hardware and Embedded Systems, pages 107–121. Springer, 2012.

[DI 10] DI Management Services. The Chinese Remainder Theorem, 2010. Accessed
December 18, 2021: https://www.di-mgt.com.au/crt.html.

[DKRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Fred-
erik Vercauteren. Saber: Module-LWR based key exchange, CPA-secure
encryption and CCA-secure KEM. In International Conference on Cryp-
tology in Africa, pages 282–305. Springer, 2018.

[DKRV20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and
Frederik Vercauteren. SABER: Mod-LWR based KEM (v2), 2020.
Accessed December 18, 2021: https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[DTVV19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid
Verbauwhede. Timing attacks on error correcting codes in post-quantum
schemes. In Proceedings of ACM Workshop on Theory of Implementation
Security Workshop, pages 2–9. Association for Computing Machinery, 2019.

168

https://www.di-mgt.com.au/crt.html
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

BIBLIOGRAPHY

[DVV19] Jan-Pieter D’Anvers, Frederik Vercauteren, and Ingrid Verbauwhede. The
impact of error dependencies on Ring/Mod-LWE/LWR based schemes. In
Post-Quantum Cryptography, pages 103–115. Springer, 2019.

[DY09] Jintai Ding and Bo-Yin Yang. Multivariate public key cryptography. In
Post-Quantum Cryptography, pages 193–241. Springer, 2009.

[FA19] Hayato Fujii and Diego F. Aranha. Curve25519 for the Cortex-M4 and be-
yond. In International Conference on Cryptology and Information Security
in Latin America (LATINCRYPT), pages 109–127. Springer, 2019.

[Fan12] John Fan. Constrained Coding and Soft Iterative Decoding. The Springer
International Series in Engineering and Computer Science. Springer, 2012.

[FDNG19] Farnoud Farahmand, Viet B. Dang, Duc Tri Nguyen, and Kris Gaj. Eval-
uating the potential for hardware acceleration of four NTRU-based key en-
capsulation mechanisms using software/hardware codesign. In PQCrypto,
pages 23–43. Springer, 2019.

[Flu16] Scott Fluhrer. Cryptanalysis of ring-LWE based key exchange with key
share reuse. Cryptology ePrint Archive, Report 2016/085, 2016.

[FND+19] Farnoud Farahmand, Duc Tri Nguyen, Viet B. Dang, Ahmed Ferozpuri, and
Kris Gaj. Software/hardware codesign of the post quantum cryptography
algorithm NTRUEncrypt using high-level synthesis and register-transfer
level design methodologies. In 29th International Conference on Field Pro-
grammable Logic and Applications (FPL), 2019.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Annual International Cryptology
Conference, pages 537–554. Springer, 1999.

[Gal62] Robert Gallager. Low-density parity-check codes. IRE Transactions on
Information Theory, 8(1):21–28, 1962.

[Gam20] Jay Gambetta. IBM’s roadmap for scaling quantum technology,
2020. Accessed December 18, 2021: https://research.ibm.com/blog/
ibm-quantum-roadmap.

[GE21] Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits. Quantum, 5:433, 2021.

[GFS+12] Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann,
and Sorin Huss. On the design of hardware building blocks for modern
lattice-based encryption schemes. In International Workshop on Crypto-
graphic Hardware and Embedded Systems, pages 512–529. Springer, 2012.

169

https://research.ibm.com/blog/ibm-quantum-roadmap
https://research.ibm.com/blog/ibm-quantum-roadmap

BIBLIOGRAPHY

[GHW12] Richard Gitlin, Jeremiah Hayes, and Stephen Weinstein. Data Commu-
nications Principles. Applications of Communications Theory. Springer,
2012.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing
methodology for side-channel resistance validation. In NIST non-invasive
attack testing workshop, pages 115–136, 2011.

[Glo11] Neal Glover. Fast software BCH encoder and decoder, 2011. Ac-
cessed December 18, 2021: http://www.channelscience.com/files/
NealGloverFastSoftwareBCHEndecR400r2.pdf.

[GMK16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-Oriented
Masking: Compact masked hardware implementations with arbitrary pro-
tection order. In ACM Workshop on Theory of Implementation Security,
page 3. Association for Computing Machinery, 2016.

[GOPS13] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe.
Software speed records for lattice-based signatures. In International Work-
shop on Post-Quantum Cryptography, pages 67–82. Springer, 2013.

[Gou01] Louis Goubin. A sound method for switching between Boolean and arith-
metic masking. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 3–15. Springer, 2001.

[GPM+17] Oscar M. Guillen, Thomas Pöppelmann, Jose M. Bermudo Mera,
Elena Fuentes Bongenaar, Georg Sigl, and Johanna Sepúlveda. Towards
post-quantum security for IoT endpoints with NTRU. In Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pages 698–703.
IEEE, 2017.

[GR19] François Gérard and Mélissa Rossi. An efficient and provable masked im-
plementation of qTESLA. In International Conference on Smart Card Re-
search and Advanced Applications, pages 74–91. Springer, 2019.

[Gre20] Denisa Greconici. Kyber on RISC-V, 2020. Accessed December 18, 2021:
https://www.ru.nl/publish/pages/769526/denisa_greconici.pdf.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In 28th annual ACM Symposium on Theory of Computing, pages 212–219.
Association for Computing Machinery, 1996.

[GS66] W. Morven Gentleman and Gordon Sande. Fast Fourier transforms: for fun
and profit. In Proceedings of the November 7-10, 1966, Fall Joint Computer
Conference, pages 563–578, 1966.

[GSM17] Hannes Groß, David Schaffenrath, and Stefan Mangard. Higher-order side-
channel protected implementations of Keccak. In Euromicro Conference on
Digital System Design (DSD), pages 205–212. IEEE, 2017.

170

http://www.channelscience.com/files/NealGloverFastSoftwareBCHEndecR400r2.pdf
http://www.channelscience.com/files/NealGloverFastSoftwareBCHEndecR400r2.pdf
https://www.ru.nl/publish/pages/769526/denisa_greconici.pdf

BIBLIOGRAPHY

[Gu19] Chunsheng Gu. Integer version of ring-LWE and its applications. In Inter-
national Symposium on Security and Privacy in Social Networks and Big
Data, pages 110–122. Springer, 2019.

[Ham17] Mike Hamburg. Post-quantum cryptography proposal: ThreeBears (Round
1), 2017. Accessed December 18, 2021: https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions.

[Ham19] Mike Hamburg. Post-quantum cryptography proposal: ThreeBears (Round
2), 2019. Accessed December 18, 2021: https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions.

[HEAD01] Xiao-Yu Hu, Evangelos Eleftheriou, D-M Arnold, and Ajay Dholakia. Ef-
ficient implementations of the sum-product algorithm for decoding LDPC
codes. In IEEE Global Telecommunications Conference, pages 1–6. IEEE,
2001.

[HGSSW03] Nick Howgrave-Graham, Joseph H. Silverman, Ari Singer, and William
Whyte. NAEP: Provable security in the presence of decryption failures.
Cryptology ePrint Archive, Report 2003/172, 2003.

[HHLW20] Yiming Huang, Miaoqing Huang, Zhongkui Lei, and Jiaxuan Wu. A pure
hardware implementation of CRYSTALS-KYBER PQC algorithm through
resource reuse. IEICE Electronics Express, pages 1–6, 2020.

[HL19] Björn Haase and Benoît Labrique. AuCPace: Efficient verifier-based PAKE
protocol tailored for the IIoT. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2019(2):1–48, Feb. 2019.

[HOKG18] James Howe, Tobias Oder, Markus Krausz, and Tim Güneysu. Standard
lattice-based key encapsulation on embedded devices. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2018(3):372–393, Aug.
2018.

[HP21] Daniel Heinz and Thomas Pöppelmann. Combined fault and DPA pro-
tection for lattice-based cryptography. Cryptology ePrint Archive, Report
2021/101, 2021.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. NTRU: A ring-based
public key cryptosystem. In International Algorithmic Number Theory Sym-
posium, pages 267–288. Springer, 1998.

[HPS+20] Julius Hermelink, Thomas Pöppelmann, Marc Stöttinger, Yi Wang, and
Yong Wan. Quantum safe authenticated key exchange protocol for au-
tomotive application. In 18th escar Europe: embedded security in cars.
Ruhr-Universität Bochum, Universitätsbibliothek, 2020.

171

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

BIBLIOGRAPHY

[Hsi12] Homer Hsing. OpenCores. SHA3 (KECCAK), 2012. Accessed October 01,
2018: https://opencores.org/projects/sha3.

[IEE16] IEEE. IEEE standard for wireless access in vehicular environments–security
services for applications and management messages. IEEE Std 1609.2-2016,
pages 1–240, 2016.

[J+20] David Jao et al. Supersingular isogeny key encapsulation, 2020. Accessed
December 18, 2021: https://sike.org/files/SIDH-spec.pdf.

[JDF11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In Post-Quantum Cryptography,
pages 19–34. Springer, 2011.

[Jon01] Douglas W. Jones. Modulus without division, a tutorial, 2001. Accessed
December 18, 2021: http://homepage.cs.uiowa.edu/~jones/bcd/mod.
shtml.

[KG16] Petter Källström and Oscar Gustafsson. Fast and area efficient adder for
wide data in recent Xilinx FPGAs. In 26th International Conference on
Field Programmable Logic and Applications (FPL), pages 1–4. IEEE, 2016.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Annual International Cryptology Conference, pages 388–397. Springer,
1999.

[KLC+17] Po-Chun Kuo, Wen-Ding Li, Yu-Wei Chen, Yuan-Che Hsu, Bo-Yuan Peng,
Chen-Mou Cheng, and Bo-Yin Yang. High performance post-quantum key
exchange on FPGAs. Cryptology ePrint Archive, Report 2017/690, 2017.

[KO62] Anatolii Alekseevich Karatsuba and Yu P. Ofman. Multiplication of many-
digital numbers by automatic computers. In Doklady Akademii Nauk, pages
293–294. Russian Academy of Sciences, 1962.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie–Hellman,
RSA, DSS, and other systems. In Annual International Cryptology Confer-
ence, pages 104–113. Springer, 1996.

[Koc08] Cetin Kaya Koc. Cryptographic Engineering. Springer, 2008.

[Kro82] Leopold Kronecker. Grundzüge einer arithmetischen Theorie der algebrais-
chen Größen, 1882.

[KRSS19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffe-
len. pqm4: Testing and benchmarking NIST PQC on ARM Cortex-M4.
Cryptology ePrint Archive, Report 2019/844, 2019.

172

https://opencores.org/projects/sha3
https://sike.org/files/SIDH-spec.pdf
http://homepage.cs.uiowa.edu/~jones/bcd/mod.shtml
http://homepage.cs.uiowa.edu/~jones/bcd/mod.shtml

BIBLIOGRAPHY

[KY09] Abdel Alim Kamal and Amr M. Youssef. An FPGA implementation of the
NTRUEncrypt cryptosystem. In International Conference on Microelec-
tronics, pages 209–212. IEEE, 2009.

[L+01] Daniel Lieman et al. Standard specification for public-key cryptographic
techniques based on hard problems over lattices. IEEE P1363, 1:D2, 2001.

[LC04] Shu Lin and Daniel J. Costello. Error Control Coding, Second Edition.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[LG20] Michael X. Lyons and Kris Gaj. Sampling from discrete distributions in
combinational hardware with application to post-quantum cryptography. In
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2020.

[LLJ+17] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan He, and
Zhenfei Zhang. Supporting documentation: LAC (Round 1 submission),
2017. Accessed December 18, 2021: https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-1-Submissions.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 1–23.
Springer, 2010.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015.

[LS19] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU us-
ing NTT. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2019(3):180–201, May 2019.

[LW15] Bingxin Liu and Huapeng Wu. Efficient architecture and implementation
for NTRUEncrypt system. In IEEE 58th International Midwest Symposium
on Circuits and Systems (MWSCAS), pages 1–4. IEEE, 2015.

[LW16] Bingxin Liu and Huapeng Wu. Efficient multiplication architecture over
truncated polynomial ring for NTRUEncrypt system. In IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pages 1174–1177.
IEEE, 2016.

[Mar20] Adrian Marotzke. A constant time full hardware implementation of stream-
lined NTRU Prime. In International Conference on Smart Card Research
and Advanced Applications, pages 3–17. Springer, 2020.

[Mas69] James Massey. Shift-register synthesis and BCH decoding. IEEE Transac-
tions on Information Theory, 15(1):122–127, 1969.

173

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

BIBLIOGRAPHY

[MBC+08] Enrico Macii, Leticia Bolzani, Andrea Calimera, Alberto Macii, and Mas-
simo Poncino. Integrating clock gating and power gating for combined
dynamic and leakage power optimization in digital CMOS circuits. In 11th
EUROMICRO Conference on Digital System Design Architectures, Meth-
ods and Tools, pages 298–303. IEEE, 2008.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain
Fouque. Masking Dilithium: Efficient implementation and side-channel
evaluation. In Applied Cryptography and Network Security, pages 344–362.
Springer, 2019.

[MKÖ+20] Ahmet Can Mert, Emre Karabulut, Erdinç Öztürk, Erkay Savaş, Michela
Becchi, and Aydin Aysu. A flexible and scalable NTT hardware: appli-
cations from homomorphically encrypted deep learning to post-quantum
cryptography. In Design, Automation & Test in Europe Conference & Ex-
hibition (DATE), pages 346–351. IEEE, 2020.

[MNP+20] Ben Marshall, G. Richard Newell, Dan Page, Markku-Juhani O. Saarinen,
and Claire Wolf. The design of scalar AES instruction set extensions for
RISC-V. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(1):109–136, Dec. 2020.

[Mon85] Peter Montgomery. Modular multiplication without trial division. Mathe-
matics of Computation, 44(170):519–521, 1985.

[Mos18] Michele Mosca. Cybersecurity in an era with quantum computers: will we
be ready? IEEE Security & Privacy, 16(5):38–41, 2018.

[MPP21] Ben Marshall, Daniel Page, and Thinh Hung Pham. A lightweight ISE
for ChaCha on RISC-V. In IEEE 32nd International Conference on
Application-specific Systems, Architectures and Processors (ASAP), pages
25–32. IEEE, 2021.

[MPWZ21] Georg Maringer, Sven Puchinger, and Antonia Wachter-Zeh. Higher rates
and information-theoretic analysis for the RLWE channel. In IEEE Infor-
mation Theory Workshop (ITW), pages 1–5. IEEE, 2021.

[Nat16a] National Institute of Standards and Technology (NIST). An-
nouncing request for nominations for public-key post-quantum cryp-
tographic algorithms. Federal Register, 81, 92787-92788, 2016.
Accessed December 18, 2021: https://csrc.nist.gov/news/2016/
public-key-post-quantum-cryptographic-algorithms.

[Nat16b] National Security Agency. Commercial national security algorithm suite,
2016. Accessed December 18, 2021: https://apps.nsa.gov/iaarchive/
programs/iad-initiatives/cnsa-suite.cfm.

174

https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm

BIBLIOGRAPHY

[NIS21] NIST. Post-quantum cryptography - workshops and timeline, 2021.
Accessed December 18, 2021: https://csrc.nist.gov/Projects/
post-quantum-cryptography/workshops-and-timeline.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold im-
plementations against side-channel attacks and glitches. In International
Conference on Information and Communications Security, pages 529–545.
Springer, 2006.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware
implementation of nonlinear functions in the presence of glitches. Journal
of Cryptology, 24(2):292–321, 2011.

[OG17] Tobias Oder and Tim Güneysu. Implementing the NewHope-Simple key
exchange on low-cost FPGAs. In International Conference on Cryptology
and Information Security in Latin America (LATINCRYPT), pages 128–
142. Springer, 2017.

[OM20] Jeffrey Osier-Mixon. RISC-V: An open approach to system security,
2020. Accessed December 18, 2021: https://riscv.org/blog/2020/03/
risc-v-an-open-approach-to-system-security/.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim
Güneysu. Practical CCA2-secure and masked Ring-LWE implementation.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2018(1):142–174, Feb. 2018.

[PG12] Thomas Pöppelmann and Tim Güneysu. Towards efficient arithmetic
for lattice-based cryptography on reconfigurable hardware. In Interna-
tional Conference on Cryptology and Information Security in Latin America
(LATINCRYPT), pages 139–158. Springer, 2012.

[PGZMG21] Sabine Pircher, Johannes Geier, Alexander Zeh, and Daniel Müller-
Gritschneder. Exploring the RISC-V vector extension for the Classic
McEliece post-quantum cryptosystem. In 22nd International Symposium
on Quality Electronic Design (ISQED), pages 401–407. IEEE, 2021.

[PNPM15] Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrian Ma-
cias. Accelerating homomorphic evaluation on reconfigurable hardware (ex-
tended version). In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 143–163. Springer, 2015.

[POG15] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-performance
ideal lattice-based cryptography on 8-bit ATxmega microcontrollers. In
International Conference on Cryptology and Information Security in Latin
America (LATINCRYPT), pages 346–365. Springer, 2015.

175

https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline
https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline
https://riscv.org/blog/2020/03/risc-v-an-open-approach-to-system-security/
https://riscv.org/blog/2020/03/risc-v-an-open-approach-to-system-security/

BIBLIOGRAPHY

[PT19] Thales Bandiera Paiva and Routo Terada. A timing attack on the HQC
encryption scheme. In International Conference on Selected Areas in Cryp-
tography (SAC), pages 551–573. Springer, 2019.

[QLW13] Chen Qian, Weilong Lei, and Zhaocheng Wang. Low complexity LDPC de-
coder with modified Sum-Product algorithm. Tsinghua Science and Tech-
nology, 18(1):57–61, 2013.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and In-
grid Verbauwhede. Consolidating masking schemes. In Annual Cryptology
Conference, pages 764–783. Springer, 2015.

[RdCR+16] Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren,
and Ingrid Verbauwhede. Additively homomorphic ring-LWE masking. In
Post-Quantum Cryptography, pages 233–244. Springer, 2016.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):1–40, 2009.

[Ric03] Tom Richardson. Error floors of LDPC codes. In Annual Allerton Confer-
ence on Communication Control and Computing, pages 1426–1435, 2003.

[RIS21] RISC-V. History of RISC-V, 2021. Accessed December 18, 2021: https:
//riscv.org/about/history/.

[RM19] Debapriya Basu Roy and Debdeep Mukhopadhyay. Post quantum ECC on
FPGA platform. Cryptology ePrint Archive, Report 2019/568, 2019.

[RMGS20] Andrew H. Reinders, Rafael Misoczki, Santosh Ghosh, and Manoj R. Sas-
try. Efficient BIKE hardware design with constant-time decoder. In IEEE
International Conference on Quantum Computing and Engineering (QCE),
pages 197–204. IEEE, 2020.

[RRVV15] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. A masked ring-LWE implementation. In International Work-
shop on Cryptographic Hardware and Embedded Systems, pages 683–702.
Springer, 2015.

[RSRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic side-channel attacks on CCA-secure lattice-based PKE
and KEMs. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2020(3):307–335, Jun. 2020.

[RVM+14] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong
Chen, and Ingrid Verbauwhede. Compact Ring-LWE cryptoprocessor. In
International Workshop on Cryptographic Hardware and Embedded Sys-
tems, pages 371–391. Springer, 2014.

176

https://riscv.org/about/history/
https://riscv.org/about/history/

BIBLIOGRAPHY

[Saa17] Markku-Juhani O. Saarinen. Supporting documentation: HILA5 (Round
1 submission), 2017. Accessed December 18, 2021: https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions.

[Saa18] Markku-Juhani O. Saarinen. Arithmetic coding and blinding countermea-
sures for lattice signatures. Journal of Cryptographic Engineering, 8(1):71–
84, 2018.

[SAJA21] Hwajeong Seo, Mila Anastasova, Amir Jalali, and Reza Azarderakhsh. Su-
persingular isogeny key encapsulation (SIKE) Round 2 on ARM Cortex-M4.
IEEE Transactions on Computers, 70(10):1705–1718, 2021.

[Sch13] Manfred Schroeder. Number Theory in Science and Communication: With
Applications in Cryptography, Physics, Digital Information, Computing,
and Self-Similarity. Springer Series in Information Sciences. Springer, 2013.

[Sho94] Peter W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In 35th annual Symposium on Foundations of Computer
Science, pages 124–134. IEEE, 1994.

[SMG15] Tobias Schneider, Amir Moradi, and Tim Güneysu. Arithmetic addition
over Boolean masking. In International Conference on Applied Cryptogra-
phy and Network Security, pages 559–578. Springer, 2015.

[Sod21] Sodium. libsodium, 2021. Accessed December 18, 2021: https://github.
com/jedisct1/libsodium.

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Ef-
ficiently masking binomial sampling at arbitrary orders for lattice-based
crypto. In IACR International Workshop on Public Key Cryptography,
pages 534–564. Springer, 2019.

[SR15] Hermann Seuschek and Stefan Rass. Side-channel leakage models for RISC
instruction set architectures from empirical data. In Euromicro Conference
on Digital System Design, pages 423–430. IEEE, 2015.

[SRB20] Sujoy Sinha Roy and Andrea Basso. High-speed instruction-set coproces-
sor for lattice-based key encapsulation mechanism: Saber in hardware.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020(4):443–466, Aug. 2020.

[SRP+18] Pasquale Davide Schiavone, Davide Rossi, Antonio Pullini, Alfio Di Mauro,
Francesco Conti, and Luca Benini. Quentin: an ultra-low-power PULPis-
simo SoC in 22nm FDX. In IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S3S), pages 1–3, 2018.

[SRSWZ20] Thomas Schamberger, Julian Renner, Georg Sigl, and Antonia Wachter-
Zeh. A power side-channel attack on the CCA2-secure HQC KEM. In

177

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium

BIBLIOGRAPHY

International Conference on Smart Card Research and Advanced Applica-
tions, pages 119–134. Springer, 2020.

[SSJA20] Hwajeong Seo, Pakize Sanal, Amir Jalali, and Reza Azarderakhsh. Op-
timized implementation of SIKE Round 2 on 64-bit ARM Cortex-A pro-
cessors. IEEE Transactions on Circuits and Systems I: Regular Papers,
67(8):2659–2671, 2020.

[TGS] Andreas Traber, Michael Gautschi, and Pasquale Davide Schiavone. PULP
RI5CY: User manual. Apr. 2019.

[Too63] Andrei L. Toom. The complexity of a scheme of functional elements real-
izing the multiplication of integers. In Soviet Mathematics Doklady, pages
714–716. Russian Academy of Sciences, 1963.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of
the Fujisaki-Okamoto and OAEP transforms. In Theory of Cryptography
Conference, pages 192–216. Springer, 2016.

[TZS+16] Andreas Traber, Florian Zaruba, Sven Stucki, Antonio Pullini, Germain
Haugou, Eric Flamand, Frank K. Gurkaynak, and Luca Benini. PULPino:
A small single-core RISC-V SoC. In 3rd RISCV Workshop, 2016.

[Uni21] Pennsylvania State University. Pearson correlation coefficient r, 2021.
Accessed December 18, 2021: https://online.stat.psu.edu/stat462/
node/96/.

[vdB20] Stefan van den Berg. RISC-V implementation of the NaCl-library, 2020.
Accessed December 18, 2021: https://pure.tue.nl/ws/portalfiles/
portal/169647601/Berg_S._ES_CSE.pdf.

[WAE19] Andrew Waterman and Krste Asanović (Editors). The RISC-V instruction
set manual, Volume I: User-Level ISA, Document Version 20191213, 2019.
RISC-V Foundation. Accessed December 18, 2021: https://riscv.org/
wp-content/uploads/2019/12/riscv-spec-20191213.pdf.

[Wel47] Bernard L. Welch. The generalization of student’s problem when several dif-
ferent population variances are involved. Biometrika, 34(1-2):28–35, 1947.

[WGY20] Bin Wang, Xiaozhuo Gu, and Yingshan Yang. Saber on ESP32. In Inter-
national Conference on Applied Cryptography and Network Security, pages
421–440. Springer, 2020.

[Why17] William Whyte. NTRU Open Source Project, 2017. Accessed December
20, 2018: https://github.com/NTRUOpenSourceProject/NTRUEncrypt.

[WR20] Matthew Walters and Sujoy Sinha Roy. Constant-time BCH error-
correcting code. In IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1–5. IEEE, 2020.

178

https://online.stat.psu.edu/stat462/node/96/
https://online.stat.psu.edu/stat462/node/96/
https://pure.tue.nl/ws/portalfiles/portal/169647601/Berg_S._ES_CSE.pdf
https://pure.tue.nl/ws/portalfiles/portal/169647601/Berg_S._ES_CSE.pdf
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://github.com/NTRUOpenSourceProject/NTRUEncrypt

BIBLIOGRAPHY

[WTBB+20] Guillaume Wafo-Tapa, Slim Bettaieb, Loïc Bidoux, Philippe Gaborit, and
Etienne Marcatel. A practicable timing attack against HQC and its coun-
termeasure. Advances in Mathematics of Communications, 2020.

[WTJ+20] Wen Wang, Shanquan Tian, Bernhard Jungk, Nina Bindel, Patrick Longa,
and Jakub Szefer. Parameterized hardware accelerators for lattice-based
cryptography and their application to the HW/SW co-design of qTESLA.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020(3):269–306, Jun. 2020.

[XHY+20] Guozhu Xin, Jun Han, Tianyu Yin, Yuchao Zhou, Jianwei Yang, Xu Cheng,
and Xiaoyang Zeng. VPQC: A domain-specific vector processor for post-
quantum cryptography based on RISC-V architecture. IEEE Transactions
on Circuits and Systems I: Regular Papers, 2020.

[ZGF20] Davide Zoni, Andrea Galimberti, and William Fornaciari. Efficient and
scalable FPGA-oriented design of QC-LDPC bit-flipping decoders for post-
quantum cryptography. IEEE Access, 8:163419–163433, 2020.

[ZJGS17] Yunlei Zhao, Zhengzhong Jin, Boru Gong, and Guangye Sui. Supporting
documentation: KCL (Round 1 submission), 2017. Accessed December 18,
2021: https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-1-Submissions.

[ZYC+20] Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei, and Leibo
Liu. Highly efficient architecture of NewHope-NIST on FPGA using low-
complexity NTT/INTT. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2020(2):49–72, Mar. 2020.

[ZZY+20] Yihong Zhu, Min Zhu, Bohan Yang, Wenping Zhu, Chenchen Deng, Chen
Chen, Shaojun Wei, and Leibo Liu. A high-performance hardware im-
plementation of Saber based on Karatsuba algorithm. Cryptology ePrint
Archive, Report 2020/1037, 2020.

179

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

BIBLIOGRAPHY

180

	Abstract
	Kurzfassung
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Post-Quantum Cryptography Standardization
	Problem Definitions
	Research Objectives, Contributions, and Thesis Outline

	Preliminaries
	Mathematical Background and Notation
	Lattice-Based Cryptography
	NTRU
	Public-Key Encryption for NTRU-Based Schemes
	Learning With Errors (LWE)
	Public-Key Encryption for LWE-Based Schemes

	Polynomial Ring Arithmetic
	Schoolbook Multiplication
	Number Theoretic Transform (NTT)
	Karatsuba / Toom–Cook

	Polynomial Sampling and Randomness Generation
	Hardware Accelerators and Coupling Strategies

	Loosely Coupled Coprocessors for PQC
	Introduction Loosely Coupled PQC Coprocessors
	Use Case: NTRU on FPGA-SoC Platform
	Algorithmic Operations in NTRU
	Ternary Polynomial Multiplication Accelerator
	NTRU System Design for an FPGA-SoC
	Experimental Results of NTRU System Design

	Use Case: NewHope on RISC-V SoC Platform
	Algorithmic Optimizations of NTT
	NTT Hardware Accelerator
	NTT Power Optimizations
	NewHope System Design for RISC-V
	Experimental Results of NewHope System Design

	Summary

	Tightly Coupled Accelerators and Instruction Set Extensions for PQC
	Introduction of Tightly Coupled Accelerators for PQC
	Instruction Set Extensions for the PQC Scheme LAC
	Extension of Ternary Polynomial Multiplication Accelerator
	Error Correction Accelerator
	Core Integration of LAC Accelerators
	Experimental Results of LAC System Design

	Instruction Set Extensions for the PQC Schemes NewHope, Kyber, and Saber
	Optimizing the NTT for a Tight Coupling
	Tightly Coupled NTT Accelerator
	Experimental Results of Tightly Coupled NTT Accelerator
	Tightly Coupled Accelerator for Karatsuba/Toom–Cook Multiplications
	Tightly Coupled Hash Accelerator
	Tightly Coupled Binomial Sampling Accelerator
	Experimental Results of Keccak and Polynomial Sampling
	Core Integration of Modular Arithmetic and Sampling Accelerators
	Experimental Performance Results
	Experimental Resource Consumption Results

	Instruction Set Extensions for the PQC Scheme SIKE
	Bottlenecks of Isogeny-Based Cryptography
	System Integration of SIKE Accelerators
	Experimental Results of SIKE System Design

	Summary

	Generalization of the NTT Algorithm and Masking of Non-Linear Operations
	Introduction of Side-Channel Protection Mechanisms
	Preliminaries Masking
	Masking PKE/KEM
	Accelerators for Linear Operations
	Increasing the Flexibility of NTT
	Flexible NTT Accelerator
	Results of the Flexible NTT Accelerator

	Accelerators for Non-Linear Operations
	Masking Keccak
	Masking Binomial Sampling
	Secure Adder
	Results of Non-Linear Accelerators

	System Integration
	Accelerator Integration
	Architectural Leakage Reduction
	Results of System Integration

	Experimental Results
	Performance of Unmasked Implementations
	Performance of Masked Implementations
	Side-Channel Leakage Evaluation

	Summary and Open Problems

	Analysis of Error-Correcting Codes for Lattice-Based Cryptography
	Introduction of Error-Correcting Codes for Lattice-Based Cryptography
	Decryption Errors of LWE Schemes
	Exploration of Error-Correcting Codes
	Analysis for the Post-Quantum Scheme NewHope
	NewHope Compression Noise
	NewHope with BCH Code
	NewHope with LDPC Code
	NewHope with Concatenation of BCH and LDPC Code
	Comparison Coding Options

	Discussion and Open Problems
	Stochastic Dependence of Decryption Errors and its Impact on the Failure Rate Analysis
	Side-Channel Vulnerability and Implementation Aspects

	Summary

	PQC Migration and Real-World Applicability
	Introduction of PQC for Real-World Applications
	Post-Quantum Chip Design
	ASIC Digital Design Flow
	The Post-Quantum Chip

	Application of PQC in the Automotive Industry
	Hybrid Key Encapsulation
	Unified Post-Quantum and Elliptic Curve Accelerator
	Experimental Results

	Summary

	Conclusion
	Conclusion
	Future Work

	Acronyms
	Own Publications
	Bibliography

