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Abstract

Platelets play a central role in maintaining the physiological hemostasis of human blood.

Furthermore, they are significantly involved in the development of arterial thromboembolic

pathophysiological events. Among the heterogeneous human platelet population, immature

“reticulated” platelets (RPs) are of particular importance. In contrast to mature platelets (MPs),

they have an increased thrombogenicity, negatively influence the effectiveness of anti-platelet

drugs and are associated with an increased mortality. Despite progressing knowledge with

regard to the biology of this platelet subpopulation, no specific biomarkers exist so far and an

established characterization of the functionality of RPs is pending.

In the first study, I developed a reproducible staining and sorting protocol that enables

RNA extraction of RPs for the first time. Staining of platelets with the fluorescent RNA

dye Thiazole Orange allowed the sorting after RNA content (high RNA content=RPs, low

RNA content = MPs). Stimulation of sorted platelets with adenosine diphosphate (ADP)

demonstrated a hyper-reactive phenotype of RPs, characterized by an increased expression

of the platelet activation markers P-selectin and LAMP-3. In the second study, I focused

on the receptor expression diversity of platelets and designed a mass cytometry by time of

flight (CyTOF) pipeline for platelet investigation from platelet-rich-plasma (PRP). The method

allows the freezing of stained samples and the acquisition of a high cell number, which

is essential for bioinformatic analysis. CyTOF analysis of stimulated PRP with thrombin

receptor activating peptide (TRAP) and collagen related peptide (CRP-XL) showed differences

in platelet reactivity. During the third study, I investigated platelet reactivity in COVID-19

patients compared to healthy donors. By using the previously developed CyTOF protocol

I detected a disease specific hyperreactive platelet phenotype at rest and a dysregulated

activation pattern of stimulated COVID-19 platelets.
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Kurzfassung

Blutplättchen spielen eine zentrale Rolle bei der Erhaltung der physiologischen Hämostase

des Blutes. Ferner sind sie maßgeblich an der Entstehung arterieller thromboembolischer

pathophysiologischer Ereignisse beteiligt. Unter der heterogenen menschlichen Blutplätt-

chenpopulation sind unreife „retikulierte“ Plättchen (RPs) besonders wichtig. Im Gegensatz

zu reifen Thrombozyten (MPs) haben sie eine erhöhte Thrombogenität, beeinflussen die

Wirksamkeit von Thrombozytenaggregationshemmern negativ und sind mit einer erhöhten

Sterblichkeit verbunden. Trotz steigender Erkenntnisse zur Biologie von RPs existieren bisher

keine spezifischen Biomarker und eine funktionelle Charakterisierung ist ausstehend.

In der ersten Studie habe ich ein reproduzierbares Zellsortierungsprotokoll entwickelt, das

erstmals die RNA-Extraktion von RPs ermöglichte. Die Färbung der Blutplättchen mit dem

fluoreszierenden RNA-Farbstoff Thiazol Orange ermöglichte die Sortierung nach RNA (hoher

RNA-Gehalt = RPs, niedriger RNA-Gehalt = MPs). Die Stimulation sortierter Plättchen mit

Adenosindiphosphat (ADP) zeigte hyperreaktive RPs, gekennzeichnet durch eine erhöhte Ex-

pression der Aktivierungsmarker P-Selektin und LAMP-3. In der zweiten Studie untersuchte

ich die Diversität der Rezeptorexpression von Blutplättchen mittels einer Massenzytometrie

(CyTOF)-Pipeline für die Analyse von Plättchen aus plättchenreichem Plasma (PRP). Die Me-

thode ermöglichte das Einfrieren gefärbter Proben und die Messung einer hohen Zellzahl, was

für die bioinformatische Analyse wesentlich ist. Die CyTOF-Analyse von stimuliertem PRP

mit Thrombinrezeptor-aktivierendem und kollagenverwandtem Peptid zeigte signifikante

Reaktivitätsunterschiede. Während der dritten Studie untersuchte ich die Plättchenreaktivität

bei COVID-19-Patienten im Vergleich zu gesunden Spendern. Mittels der zuvor entwickelten

CyTOF-Pipeline entdeckte ich einen krankheitsspezifischen hyperreaktiven Phänotyp im

Ruhezustand und eine fehlregulierte Aktivierung von stimulierten COVID-19-Thrombozyten.
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1 Introduction

1.1 Human Platelets - Generation and Biological Function

Even before platelets were known as such, several scientists over the past 100 years took

interest in the small blood cells and investigated their part in the composition of blood [1]

or their role during thrombosis [2]. In 1910, James Wright was the first to refer to them as

they are known today while investigating at first attempts the platelet origin and production

[3]. It took until the 21st century to fully understand platelet production, the so-called

thrombopoiesis [4], and the underlying principle of megakaryopoiesis, the maturation and

differentiation of megakaryocytes [5].

The process starts in the bone marrow with pluripotent hematopoietic stem cells (HSC)

and their ability to differentiate into all lineages of circulating blood cells [6, 7]. Then, the

long journey begins with the immature megakaryocytes production that underlies several

differentiation steps: From HSC into multipotent progenitor cells, followed by differentiation

into committed megakaryocyte-progenitor cells [8, 9]. The latter ones become immature

megakaryocytes when triggered by key regulator thrombopoietin [10], transcription and

growth factors as well as hematopoietic cytokines [11, 12]. Thrombopoietin also plays a

key role in the process afterwards, called endomitosis [13]. It is characterized by persistent

DNA replication inside the immature megakaryocytes without resulting in cell proliferation,

leading to cells containing up to 64 times the normal amount of DNA [14]. Alongside the

ploidy, the size of megakaryocytes also increases during endomitosis [15]. Importantly, these

characteristics allow the cells to gather organelles, proteins, granules and several kinds of

ribonucleic acid (RNA) [16]. Later on, these compounds are passed on to platelets after

the maturated megakaryocytes have docked to the blood vessel membrane and formed

1



1 Introduction

pseudopodia [9, 17]. After release into the circulating blood flow, the resulting pro-platelets

further release individual platelets, a process that is accelerated by shear stress [18].

Figure 1.1: Overview of megakaryopoiesis. Megakaryocytes are derived from the hematopoietic stem cell and
proliferate and differentiate under the influence of thrombopoietin [19].

All these newly produced platelets have only a short lifespan of up to 10 days [20], partly

predetermined by the limited resource of anti-apoptotic protein Bcl-xL [21]. This theory is

supported by the use of Bcl-xL knock-out mice which show decreased numbers of circulating

platelets [22]. Despite this inability of de novo production due to lacking a nucleus, platelets

are equipped with several mRNAs and components which enable them to perform RNA

processing and translation on their own [23, 24, 25]. Some of these processes are signal-

dependent and regulated by platelet activation [25, 26, 27, 28]. While the number of platelets

in healthy human blood should be at 150-400 billion platelets per liter, 100 billion platelets

need to be produced daily considering their short lifespan [29]. Chronic and acute diseases

[30, 31, 32] as well as myeloproliferate neoplasms, inflammation and stress [33, 34, 35] can

lead to an upregulation of platelet production and a subsequently increased platelet count

in blood. This condition with more than 450 billion platelets per liter of blood is called

thrombocythemia. In contrast to that, a disturbance in the balance of platelet production and

clearance can lead to the opposite, a condition with less than 50 billion platelets per liter of

blood [36]. This disease condition describing an abnormally low platelet count is referred to

as thrombocytopenia and underlies either an increased platelet elimination or a decrease in

platelet production [37].

Most prominently, platelets are known to be key regulators in hemostasis. In particular,

2



1 Introduction

this refers to maintaining the functional integrity of blood vessels [9]. Generally, platelet

activation is suppressed by endothelial cells with the activation of antithrombin III or the

use of adenosine diphosphatase (ADPase) to break down Adenosine 5’-diphosphate (ADP)

signal [38]. Yet, the situation changes upon blood vessel damage, when endothelial cells and

tissue factor, known as coagulation factor III or tissue thromboplastin, actively initiate platelet

activation, eventually leading to the formation of a hemostatic plug [39]. Exposed collagen

initiates further platelet activation as they bind to the fibers via von Willebrand factor (VWF)

[40]. The resulting release of α-granule contents like surface receptors and soluble platelet

activators triggers the recruitment of more platelets to the site of injury [41]. Additionally,

platelets bind to fibrin and fibronectin, which stabilizes the increasing thrombus [42, 43]. In

this way, platelets ensure the sealing of the injured vessel after internal or external damage as

well as the continuation of a normal blood flow [44].

Apart from their hemostatic role, platelets are also involved in immune response. It has been

shown that they express several chemokine receptors, which allow platelets to detect allergens

or viruses [45]. Moreover, platelets actively interact with leukocytes in peripheral blood

and platelet-neutrophil aggregates have been described and correlated with pro-thrombotic

phenotypes [46]. On top of that, platelets directly participate in neutralizing not only viruses

but also bacteria and other pathogens by digestion and subsequent granule release [47, 44, 48].

In releasing metabolically active mitochondria that initiate inflammatory responses, platelets

underline their additional role as immune cells [49]. In contrast to that, platelets can also

worsen the outcome of several diseases. During tumor progression, they have been shown

to interact with tumor cells directly. For example, platelets are shading tumor cells from

immune cells, allowing them to bypass an immune response [50, 51].

1.2 Platelet Structure

Quiescent platelets in healthy humans are elliptically shaped [52]. With a diameter of only

1.5 - 3 µm they present the smallest particulate component of blood [53, 54]. Upon activation,

platelets do not only undergo a shape change but also show an increase in surface. This

3



1 Introduction

results in an overall higher mean platelet volume [55, 56]. In contrast to their roundly shaped

non-activated form, activated platelets exhibit protrusions of plasma membrane, so called

pseudopodia [57]. Despite their differences, there are several structural characteristics that all

platelets have in common.

Figure 1.2: Schematic drawing of a quiescent platelet. This scheme shows a simplified unactivated platelet and its
common compounds (Figure altered with permission from Marina Biasi).

A layer made of several glycoproteins (GPs), the glycocalyx, covers the platelet plasma

membrane [58]. As familiar from other cell types, the platelet plasma membrane consists of

the typical polarized phospholipid bilayer sheet [59]. In platelets, the asymmetric distribution

of phospholipids is essential for platelet function [60]. This structure is changed upon platelet

activation: it triggers the release of several second messengers, arachidonic acid and the

assembly of platelet factor Va by the plasma membrane [61].

Microtubuli as well as the microfilament network account for the maintenance of platelet

structure and stability [62]. As a side effect, these structures and their resulting acting forces

are the main determinants of platelet size at the stage of fresh platelet production [63].

4



1 Introduction

Besides the role of platelet mitochondria during inflammation [49], they are mainly respon-

sible for providing energy at rest and maintaining the energy level despite increased need

during platelet activation [64, 65]. Next to mitochondria, endoplasmic reticulum, golgi com-

plexes [66], glycogen and glycosomes [67], the platelet cytoplasm contains three different

forms of granula: α-granules, dense granules (δ-granules) and lysosomes [68]. These platelet

characteristic storage loci incorporate proteins and other substances important for platelet

function. Dense granules mainly store ADP, Adenosine-5’-Triphosphate (ATP), Ca2+, sero-

tonin and pyrophosphate [69, 70], substances known to promote aggregation [71, 72]. Also the

most abundant storage units, α-granules, contain several adhesive proteins as well as growth

and coagulation factors which influence platelet aggregation and adhesion [73]. Lysosomal

granules on the other hand, are similar to lysosomes of nucleated cells and mainly degrade

proteins and extracellular components [74]. For this purpose, they contain hydrolases and

other components necessary for protein degradation [75].

Together with the dense tubular system, the open canalicular system builds up the most

important part of platelet membrane systems. The latter one is connected to the plasma

membrane via its twisted canals and represents an enlargement of the plasma membrane

system [76, 77]. It is accessible from the extracellular space through pores and is able to

transport several substances and either absorb or release them [78, 79]. In contrast to that,

the dense tubular system is derived from the endoplasmic reticulum that the platelets have

received from megakaryocytes during thrombopoiesis [80]. It mainly functions as Ca2+

storage [81]. Despite their different roles within the platelet, both systems join forces and

interact in terms of Ca2+ signaling [82]. During activation, several changes in the described

systems and pathways occur. These alterations and shifts in platelet structure as well as

activation pathways and markers are addressed in the next chapter.

1.3 Platelet Activation

Platelet activation induces important biomolecular and functional changes in platelets within

a few seconds. Easiest to observe is the activation-triggered change of the elliptically or

5



1 Introduction

disk-like platelet to a spherical structure [83, 84]. Mostly driven by the polymerization of actin

filaments [85], the process of spreading is followed by the formation of filopodia, through

which platelets can connect. The more the platelet stretches out, the more its contents like

granules and other organelles are moved to the center [86]. Upon fusion with the open

canalicular system, they are eventually excreted [87]. Next to an increased amount of free

Ca2+ in the cytoplasm, the cytoskeleton is also modified by other signaling pathways [88].

With the phosphoinositide pathway activation leading to changes in the plasma membrane

[89], direct control of the actin cytoskeleton is possible [90]. In addition, Rho GTPases also

influence and control the cytoskeleton as well as several other physiological processes within

the platelet [91]. Their activation is mainly triggered through downstream signaling of platelet

receptors [92]. Changes in the microtubule skeleton resulting in the formation of a central

microtubule coil, are additional factors of activation-related change of platelet shape [93, 94].

1.3.1 Activation Pathways and Cellular Interaction

Behind the activation and shape change of platelets lay a series of reactions, building up

on one another [95]. Several receptors on resting platelets and their downstream activation

cascades are triggered by contact with surface or soluble platelet stimuli [96, 97, 98]. ADP,

thrombin, collagen or arachidonic acid metabolite thromboxane A2 (TXA2) are such stimuli,

which upon release by activated platelets trigger activation of further platelets. The initiated

downstream G-protein coupled receptor (GPCR) signaling processes are described below.

ADP, one of the most prominent stimuli, binds to GPCRs P2Y1 and P2Y12 after its release by

platelet dense granules or discharge from injured endothelial tissue [99, 100, 101]. Binding

to the P2Y1 receptors leads to subsequent phospholipase C (PLC) signaling activation [102],

while stimulation of the P2Y12 receptor results in the initiation of the protein kinase C

pathway [103]. Both pathways eventually lead to an increase of intracellular Ca2+ [104,

105]. Additionally, P2Y12 receptor stimulation induces the dephosphorylation of vasodilator-

stimulated phosphoprotein (VASP), a regulator protein of the actin cytoskeleton. As inhibition

of the P2Y12 receptor leads to phosphorylation of VASP in return, it is possible to measure

P2Y12 receptor- mediated platelet activation with the (de)phosphorylation levels of VASP

6



1 Introduction

[106]. Moreover, the binding of ATP to the P2X1 receptor induces additional Ca2+ influx

[107, 108]. Further ADP release is enabled by the following conformational change and

degranulation processes [109, 110]. This results in signal amplification which initiates further

platelet activation [101].

Besides ADP-mediated platelet activation, also thrombin-mediated activation is well described

in literature [111]. Known to be a strong platelet agonist, thrombin binds to protease-activated

receptors (PARs) PAR1 and PAR4 on the membrane of human platelets [112]. The subsequent

activation of downstream signaling events leads to the recruitment and activation of more

platelets [113] and the activation of GPIIbIIIa receptors [114]. Via binding of fibrinogen,

GPIIbIIIa receptors enable the formation of stable platelet aggegrates [115]. Furthermore,

thrombin transforms fibrinogen into fibrin, which stabilizes these aggregates [116].

Collagen has also been subject to several studies investigating its role in platelet interaction

and activation [117, 118, 119]. Binding to collagen receptor GPVI leads to degranulation of α-

and dense granules accompanied by strong platelet activation [120, 121]. While collagen also

binds to the receptor complex GPIb-IX-V via VWF, it can additionally bind to the GPIa/IIa

(CD49/CD29) receptor directly [122]. Therefore, endogenous collagen is considered a strong

platelet activator, equal to thrombin [95, 123].

Another soluble agonist is TXA2, which acts as an enhancing factor for other stimuli [124].

Through binding to the GPCR thromboxane receptor [125] it induces a positive feedback

reaction [126]. As downstream signaling cascades, PLC and Rho signaling pathways are

initiated via coupled G-proteins [127, 114], leading to platelet shape change and aggregation

[98]. Activated platelets then synthesize more TXA2, the primary product of cyclooxygenase-1

(COX-1) [128, 129].

In addition to the most prominent platelet agonists, also other substances like serotonin [130],

adrenaline [131], prostaglandin E2 [132] CaCl2 [133] or epinephrine [134] have been described

to be soluble platelet activators. How platelet activation can be observed on the platelet

surface, is subject of the next subsection.
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1 Introduction

1.3.2 Platelet Activation Biomarkers

During laboratory experiments, several of the above-mentioned receptors are used to measure

platelet activation. Most familiar in flow cytometry experiments is the use of the adhesion

protein P-Selectin (CD62P) as a marker for platelet activation [135, 136]. CD62P interacts

not only with other platelets but also with leukocytes and neutrophils through binding to

P-Selectin glycoprotein ligand-1 (PSGL-1), expressed on the cell surfaces [137, 138]. Before

activation and degranulation lead to the translocation of CD62P to the platelet surface,

it is stored inside the α-granules [139, 140]. Also, the glycoprotein CD63 (LAMP-3) is

only expressed on the surface upon activation and previously located on the membrane of

lysosomal granules [141, 142].

Other activation markers used in experimental settings during my doctoral project include

CD107 (LAMP-1), CD154 (CD40-ligand) and IgM PAC1, the latter one recognizing the acti-

vated GPIIbIIIa receptor. After conformational change of agonist-stimulated platelets, PAC1

binds to the now exposed fibrinogen receptor of integrin αIIb3 [143]. Like P-Selectin, CD154,

also called CD40-ligand (CD40L), is located in the platelet α-granules, exposed to the surface

upon degranulation [144]. Besides its role during hemostasis and thrombus stabilization [145],

CD40L also triggers a direct inflammatory response [146]. In a similar pattern, lysosomal-

associated-membrane-protein 1 (LAMP-1) is translocated from the lysosomal membrane to

the platelet surface upon activation [147].

Though constitutively expressed on the platelet surface, the following receptors show altered

functionality patterns during platelet activation. Some of the platelet glycoproteins have the

ability to sense injured blood vessels via binding free VWF or collagen [148]. The activation

of collagen receptor GPVI and its direct binding to collagen triggers the platelet integrins

to switch to a high affinity state [122]. Additionally, GPVI-mediated downstream signaling

initiates the release of granule content [149]. The GPIb-IX-V receptor complex, consisting

of VWF receptor units CD42a-d (GPIX, GPIbα, GPIbβ, GPV) connects to stationary VWF on

collagen [150]. Also, the GPIIbIIIa receptor reaches an activated form, recognized by PAC1.

Its activation is mainly driven by the platelet agonist amplification processes described before

[151, 126, 114] and activation via Ca2+ binding [152]. In its activated and high affinity state,
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GPIIbIIIa is able to bind fibrinogen and therefore contributes to platelet-platelet-aggregation

[153].

1.4 Platelet Heterogeneity - Reticulated Platelets

Transmembrane receptors as well as other platelet components are not equally distributed

between platelets. While platelets are equipped with megakaryocyte-derived mRNA and

possess the ability to process and translate this RNA [25], the composition of their RNA pool

differs [154]. Reasons behind this heterogeneous content within the platelet population might

be a discriminative transfer of mRNA during thrombopoiesis [27] as well as the platelets’

capability of performing RNA exchange with other cells [155, 156]. In addition, particular

RNA decay over time might influence or emphasize transcriptome- and subsequently also

proteome heterogeneity [23]. The latter one is characterized by variations in surface receptor

expression among the platelet population at health [157] and during several disease conditions

[158, 159, 160]. Furthermore, platelet diversity also appears in terms of size [161] and granule

density [162, 163]. While a laboratory-based platelet subgroup distinction relying on the basis

of size differences has been prominent in the past [161], recent technologies allow for platelet

discrimination using other parameters.

Currently, one platelet subgroup differing from the other platelets in terms of containing more

RNA content has been subject to recent studies. These immature or reticulated platelets (RPs)

have first been described in 1969 as younger platelets, more involved in platelet aggregation

compared to other platelets [164]. These RPs are defined differently when discussed in the

clinical or laboratory context.

In present clinical studies, RPs have shown prothrombotic capabilities [165]. In these studies,

the reticulated platelet fraction is defined by a point of care system like Sysmex, Abbot or

Mindray hematology analyzers. Most commonly used, the Sysmex system (Kobe, Japan)

quantifies RPs in clinical routine by using a nucleic acid specific dye in an optical fluorescent

channel [166, 167]. It measures the percentage of RPs in the total number of platelets in the

bloodstream as immature platelet fraction (IPF%) with an in-house designed gating system.
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Additionally, the system provides the immature platelet count (IPC 109/L), product of total

platelet count and IPF% [168]. Although RP measurements by point-of-care methods are

fast, cheap and highly feasible for routine diagnosis in the clinics, they are limited to analyze

only quantitative parameters of RPs. These methods do not allow downstream biological

characterization of the detected RP population. In order to investigate the biology of RPs and

their correlation with the negative outcome of several diseases, it requires laboratory-based

sorting methods that permit further usage of the sorted cell populations.

Figure 1.3: Schematic illustration of prothrombotic transcripts enriched in reticulated platelets (RPs). Summary
of essential adhesion and activation receptor transcripts enriched in RPs of healthy donors. Significantly
upregulated transcripts are drawn in bold font. Nonbold characters and unfilled forms are not
significantly upregulated but are included to complete the illustration (own Figure [169]).

In the laboratory context, RPs can be detected with a flow cytometer. The staining with

fluorescent dye thiazole orange (TO) makes it possible to separate platelets by their RNA

content [170, 171], a technique that was standardized in the earliest publication part of this

dissertation [136]. RNA-seq after sorting allows the identification of upregulated transcripts

in RPs (Fig.1.3). These flow cytometry-detected RPs have been shown to moderately correlate

with the RPs determined by hematology analyzers [172, 173]. Biological investigations of

these RPs by several groups showed a hyper-reactivity of RPs in healthy donors [174] and
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in patients after dual antiplatelet therapy [175, 176]. Additionally, RPs, defined as platelets

with higher TO-staining, predominantly participated in thrombus generation [177]. In our

study, we investigated the hyper-reactive behavior of sorted RPs by capturing their higher

response to activation stimulus ADP in contrast to sorted mature platelets (MPs) in healthy

donors [169]. Other studies have conducted similar experiments, detecting higher P-Selectin

levels on the membrane surface [178]. Both the associated hyperactivity and especially the

pro-thrombotic characteristics of RPs make them an interesting study subject in the clinical

context.

1.5 Pathophysiological Roles of Reticulated Platelets

RPs are of particular interest in biomedical research, because high RP-levels in blood are

associated with the incidence of adverse events and a worse prognosis in several diseases.

In combination with their pro-thrombotic and hyper-reactive behavior, these characteristics

made them the target of several researchers. Apart from the cardiovascular context, RPs are

also elevated in diabetic patients, in smokers [32, 179] and after surgery [180, 181]. These

findings contribute to making RPs an appealing drug target both in and outside the cardiology

field.

In cardiologic settings, RPs are of particular interest: In the last 15 years, several studies

investigated the connection of high levels of RPs and a deficient reaction to dual antiplatelet

treatment, consisting of aspirin and different P2Y12 receptor inhibitors [182, 165, 183]. The

most prominent and currently used antiplatelet drugs targeting the P2Y12 receptor are

prasugrel [184], clopidogrel [185] and ticagrelor [186]. Although aspirin irreversibly inhibits

the TXA2 secretion via blockage of COX-1, [187] it does not prevent platelet activation in all

patients to the desired extent [188]. While some patients could be non-responders due to

genetic reasons or an acquired resistance [189], most aspirin-resistant patients are generally

at higher risk for adverse cardiovascular events [190]. Additionally, a higher abundance of

RPs resulting from an elevated platelet-turnover is another reason behind a lacking aspirin

response [32]. Overall, a higher abundance of RPs in patients generally worsens the outcome
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of disease progression. By assessing the absolute number or fraction of immature platelets,

several studies have stated that a high IPF predicts an insufficient response to dual antiplatelet

treatment [191, 192, 193]. Additionally, as shown in Fig.1.4, a high immature platelet count

was found to be associated with cardiovascular death and thrombotic events in chronic and

acute coronary syndrome patients [194, 195].

Figure 1.4: Cox Proportional Hazards Model for MACE at Follow-Up After adjustment for diagnosis at time of
enrollment, initial treatment, age, history of heart failure, smoking, hematocrit, and platelet count, the
level of immature platelet count (IPC) was found to be significantly associated with major adverse
cardiovascular events (MACE) [195].

1.5.1 Chronic Coronary Syndrome

Chronic coronary syndrome describes the pathological progression of coronary artery disease.

While the state of chronic disease progression can be kept at bay or can even be improved by

using medication, lifestyle changes or via surgery, it can also worsen abruptly [196]. The stable

phase of coronary artery disease can be naturally asymptomatic or influenced by medication

[197]. If symptoms already arise at this stage, they are similar to acute coronary syndrome and
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mostly include angina pectoris. It is typically described as a substernal pain or pressing heavy

feeling which can occasionally move into the shoulder and arm [198]. Furthermore, angina

pectoris can be classified into different categories according to the Canadian Cardiovascular

Society [199, 200]. Depending on the genetic and coronary risk factors, the velocity in which

disease progression deteriorates, differs [201]. Most commonly, the acute phase is initiated by

the rupture and increase of atherosclerotic plaques and the subsequent blocking of normal

blood flow. During this phase, symptoms like chest pain and shortness of breath are likely to

occur or worsen [197, 202]. At the same time, further platelets circulating in the blood are

triggered by the present plaque material, increasing the size of thrombi [203]. Eventually, the

oxygen transport to the heart cells is impaired, leading to cell death, ischemia and myocardial

infarction [204, 197]. Myocardial infarction as one subtype of acute coronary syndrome [205]

is, after an initial phase of drug loading and after percutaneous coronary intervention (PCI),

treated similarly to chronic coronary syndrome.

Standard treatment of chronic coronary syndrome involves the use of aspirin as well as a

potent P2Y12 inhibitor [206] as described before (chapter 1.4.1). Briefly, studies in the last

decade have shown that this standard therapy significantly lowers the chance of adverse

cardiovascular events if continued after PCI [207, 208]. Nonetheless, a high platelet turnover

and the presence of an abnormal level of RPs in the blood can impair the effect of this

treatment [193]. This characteristica as well as the pathophysiological role of RPs in general

were the initial reason for the research performed during the course of my PhD.

1.5.2 Platelets during SARS-CoV-2 infection

At the beginning of the pandemic, an increase in cardiovascular events in COVID-19 patients

was reported by clinicians worldwide [209, 210, 211]. While some studies reported an

aberrant coagulopathy [212, 213, 214], others discovered resulting higher venous and arterial

thrombotic risks [215, 216, 217]. Additionally, severe COVID-19 cases correlate with an

increase of ischaemic stroke [218]. Generally, stroke was also reported in young SARS-CoV-2

individuals [219] and discovered more frequently in COVID-19 patients compared to influenza

patients [220]. As previously described in chapter 1.3, platelets play an important role in
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maintaining a normal blood flow [221] while high platelet reactivity influences coagulopathy.

Therefore, it was not clear if the hypercoagulopathy reported during SARS-CoV-2 infection

was directly linked to a higher reactivity in platelets [222, 223, 224]. The mechanisms behind

this thrombo immune dysregulation are still not fully understood.
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1.6 Aim of the thesis

Overall, I planned to characterize platelet expression heterogeneity in health and disease. In

the clinical context, it is important to understand platelet biology as platelets are involved

in several diseases. As reticulated platelets (RPs) show treatment resitance during dual

antiplatelet therapy, a deep characterization of this subgroup is needed to identify better

therapies for patients with high RP levels.

1. In the first project on which this thesis is based on, I aimed to lay the foundations to

investigate the biology of RPs. In order to get there, my first step was to develop a

sorting technique for RPs and MPs, which later on makes RNA-sequencing of both

subgroups possible.

2. In addition to that, I planned to investigate platelet heterogeneity beyond the RPs

and MPs subgroups by using CyTOF. Thus, I aimed to develop a CyTOF protocol

to analyze platelets from platelet-rich plasma (PRP) allowing a broader investigation

of heterogeneity. Within the CyTOF project, I planned to work on data analysis

optimization to set a standard for differential expression analysis in platelets.

3. As an upregulation of cardiovascular and thrombotic events was observed in COVID-19

patients, the question arose if these observations could be directly linked to platelets

and a higher reactivity during SARS-CoV-2 infection. Therefore, I planned to examine

the role of platelets during SARS-CoV-2 infection. With the previously developed

CyTOF strategy, I aimed to investigate platelet reactivity at rest and after stimulation in

COVID-19 patients compared to healthy donors.
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2 Material and Methods

This section describes the study design, reagents, experimental procedures and bioinformatic

analysis techniques used in this work. Catalog numbers are indicated at first mentioning.

2.1 Study Design and Participants

All subprojects included in this thesis required the recruitment of healthy blood donors and

patient donors. From each healthy donor, I collected 12-20 mL venous blood into 3 mL vials

containing citrate dextrose A (Sarstedt AG & Co.KG, 05.1165.001). From the patients, 12-20 mL

were collected directly at the ward by medical doctors. Patients were recruited at the Klinikum

rechts der Isar, Department for Internal Medicine I, Cardiology, at the Technical University of

Munich. Healthy donor blood collection was performed by myself. All study participants

gave written informed consent according to the declaration of Helsinki. Additionally, the

three studies have been approved by the local ethics committee of the Technical University

Munich (TUM, ethikkomission@mri.tum.de) Ismaninger Straße 22, 81675 Munich (Ethic no.

352/18 S-AS, for COVID-19 study: additional approval number 147/20).

2.2 Blood Sampling and PRP generation

During the first project, I optimized the preparation of platelet-rich-plasma (PRP) and set a

standard for our laboratory. In brief, I prepared PRP immediately after each blood collection

within 30 minutes after withdrawal. Per 3 mL of whole blood, the PRP yield was between

16



2 Material and Methods

500 µL and 1.5 mL. The whole-blood vials were centrifuged at room temperature (RT) for

10 minutes at 200 x g in a benchtop centrifuge (rotina 420 R, Hettich GmbH & Co. KG,

4701 4706) without brake. At this step, the blood plasma containing the platelets was

separated from the erythrocytes and the leucocyte-rich buffy coat. Afterwards, the plasma

phase was transferred to a 15 mL RNase free tube (Greiner Bio-One, 188261) using a 1 mL

pipette (Eppendorf AG, 3124000121). All steps were carried out with caution to prevent

platelet activation. Additionally, 0.6 U ADPase/ml (Apyrase from potatoes; Sigma-Aldrich,

A6535-100UN) and 1 µM prostaglandin E1 (PGE1; Sigma-Aldrich, 538903) were added to

the plasma. Mixing was induced by rolling the tube carefully on the bench. Then, the

plasma was incubated in a 37°C water bath for 30 minutes. Further platelet aggregation

was prevented by the addition of 5 mM ethylenediamine tetraacetic acid (EDTA; Invitrogen,

Thermo Fisher Scientific, 5575020) and the pH was balanced by adding 1 mM citric acid

(Sigma-Aldrich, 251275). Again, the tubes were rolled without inversion to gently mix the

substances and immediately centrifuged at 800 x g for 15 minutes without brake using the

same benchtop centrifuge. After discarding two-thirds of the supernatant, another inhibition

cocktail was added to the sample containing 0.6 U ADPase/mL, 20 mM 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (HEPES; Sigma-Aldrich, 15630080), 1 µM PGE1 and 1 mM

ethylene glycol-bis(β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA; Sigma-Aldrich,

E3889). Following this, the pellet was resuspended carefully with a 1 mL pipet and the

resulting PRP was ready for downstream experiments.

2.3 Transcriptomic Methods

2.3.1 PRP Staining for Sorting

Fluorescence activated cell sorting (FACS) required previous staining with fluorescent anti-

bodies. In total, 300 µL PRP was stained with platelet marker CD41 (1:200 v/v; Biolegend,

303729) for positive selection, as well as deoxyribonucleic acid (DNA) binding dye (1:500

v/v; Vybrant DyeCycle Ruby Stain, Thermo Fisher Scientific, V10309) for negative selection.
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Sorting after RNA content additionally required staining with 600 µL Thiazole Orange (TO;

BD ReticCount, Becton Dickinson, 349204) for a final concentration of 6.7 µg/mL. After

30 min incubation at RT in the dark on a rotator at slowest speed (Heidolph instruments,

544–41200-00), I magnetically labeled the samples with CD61-MicroBeads (Miltenyi Biotec,

130-051-101) for 10 min. Then, I centrifuged the samples at 1000 x g for 12 min. Pellet

resuspension followed in 2-3 mL Ca2+ and Mg2+ free phosphate buffered saline (PBS; Gibco,

Thermo Fisher Scientific, 10010023) containing 0.6 U/mL ADPase, 1 mM EGTA and 1 µM

PGE1. All samples were filtered through a 35 µM cell strainer (Thermo Fisher Scientific,

10585801) and transferred to a 15 mL lo-bind tube (Eppendorf, 0030122216).

2.3.2 Sorting of RPs and MPs

Platelets were sorted at the Microbiology sorting facility (CyTUM MIH) by trained operators

using a FACS Aria III (Becton Dickinson). I applied the gates as shown in Fig. 2.1. Briefly, the

first gate in the forward scatter area/side scatter area (FSC-A/SSC-A) plot excluded other cells

based on size, while doublets were excluded in gate two in the FSC-width (FSC-W)/FSC-A

plot. In the DNA stain/CD41 plot, I selected for platelets (CD41+/DNA-). The final plot

Thiazole Orange/SSC-A included all previous gates. Here, I defined platelets with the highest

RNA content (15% highest TO signal) as RPs and platelets with the lowest RNA content (30%

lowest TO signal) as MPs. Of these two populations, the operators sorted up to 2 x 107 cells

into 15 mL lo-bind tubes containing 500 µL Ca2+ and Mg2+ free PBS. After reaching the

capacity of 1 x 106 cells per tube, tubes were replaced and stored on ice until the end of the

sort.

2.3.3 Magnetic-Based Separation

For the RNA isolation procedure, a PBS-based RNA isolation buffer with pH 7.2 was prepared

containing 0.5% bovine serum albumin (BSA; Gibco, Thermo Fisher Scientific, 15260037) and

2 mM EDTA.

Immediately after sorting, I performed magnetic-based concentration of the sorted populations
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Figure 2.1: Flow Cytometry sorting strategy. (A) Applied gate to stained platelet-rich plasma (PRP) separating the
platelets by size using FSC/SSC. (B) Doublets are excluded by a high FSC-width. (C) Sorting strategy
after CD41 and DNA staining for platelet isolation. Platelets are selected by gating CD41 positive
and DNA negative events. CD41-BV = 421 nm, DNA stain Ruby = 638 nm. (D) Gating strategy for
RNAlow platelets (mature platelets, MPs) and RNAhigh platelets (reticulated platelets, RPs). Platelets
with the 15% highest TO signal are defined as RPs, platelets with the lowest 30% TO signal as MPs
(TO = 488 until 550 nm). TO: Thiazole Orange, BD FACS Aria III, SSC: Side Scatter, FSC: Forward
Scatter. RPs: reticulated platelets, MPs: mature platelets [136].
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using MS columns (Miltenyi biotec, 130-042-201) and a magnetic activated cell sorting (MACS)

separator magnetic field attached to a MACS multistand (both Miltenyi biotec, 130-042-109

and 130-042-303). During the process, the sorted samples were kept on ice to keep the RNA

intact. Following the manufacturer’s instructions, I cleaned the columns three times with

500 µL RNA isolation buffer after loading the column with the sample. Then, I eluted the

platelets bound to the magnets into a 1.7 mL RNAse free tube (Axygen, Corning, MCT-175-X)

using 1 mL RNA buffer. The eluted samples were pelleted at 12,000 x g for 10 min at

4°C, resuspended and homogenized in 700 µL QIAzol (Qiagen, 79306) using a vortex mixer

(Heidolph instruments). Until RNA extraction, homogenized cells were stored in QIAzol at

-80°C.

2.3.4 RNA Extraction

For RNA extraction, I used the miRNeasy micro kit (Qiagen, 217084) and followed the

manufacturer’s instructions. Briefly, 140 µL chloroform (Merck, 102445) was added to the

homogenized cells in 700 µL Qiazol and thoroughly mixed by shaking. After a 3 min

incubation on the bench, samples were centrifuged for 15 min at 12,000 x g. RNA was then

extracted from the upper aqueous phase following the miRNeasy Micro Handbook. At the

final step, the RNA was eluted in 20 µL RNase-free water from the kit and stored at -80°C

until further processing or shipment to our collaborators at the Department of Cardiovascular

Medicine at the Humanitas Clinical and Research Center Irccs of the Humanitas University in

Rozzano, Italy (Humanitas).

2.4 Mass Cytometry

CyTOF allows the exploration of receptors expressed on the platelet membrane and can detect

differences in platelet subgroups. In addition, this method allows the analysis of platelet

behavior at rest and after activation. Functional assays investigating the role of different

platelet activators ADP, thrombin receptor activating peptide (TRAP) or collagen related
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peptide (CRP-XL) can be used to examine the platelet activation cascade.

My publication “Mass cytometry of platelet-rich plasma: a new approach to analyze platelet

surface expression and reactivity” shows the development of an optimal protocol to analyze

platelets from PRP. Therefore, I described the CyTOF methods in most detail within the paper

and I will only briefly present them in this section.

2.4.1 Panel Preparation

Before the actual experiments, I designed a panel which I used in all further mass cytometry

experiments. In summary, all receptors known to be expressed on the platelet surface to a

high- medium extent were chosen to be coupled to metals known to be detected to a low

extent. Surface markers that are known to be expressed to only a low extent on the platelet

membrane were chosen in a form in which they were coupled to metals emitting a high

detectable CyTOF signal. Table 2.1 shows the finalized panel including all receptor functions

and the antibodies with their attached metals.

Table 2.1: Mass Cytometry Panel

Antigen Common Name Biological Function Clone Type 1 Metal Tag 2 Fabricator

CD3 T-cell Receptor T3,

TCR-CD3 complex

Adaptive immune

response

UCHT1 IgG Er170 c Fluidigm

CD9 Tetraspanin Cell Adhesion SN4 C33A2 IgG Yb171 c Fluidigm

CD29 Integrin β1 Collagen Receptor Unit TS2/16 IgG Gd156 c Fluidigm

CD31 PECAM-1 Cell Adhesion WM59 IgG Nd145 c Fluidigm

CD36 GPVI Collagen Receptor 5-271 IgG Sm152 c Fluidigm

CD40 TNFRSF5 Induction of Immuno-

globulin Secretion

5-C3 IgG Nd142 c Fluidigm

CD41 Integrin αII Alpha Unit of

Fibrinogen Receptor

HIP8 IgG Y89 c Fluidigm

CD42a GPIX Von Willebrand Factor

Receptor Unit

GR-P IgG Pr141 i Thermofisher

1all antibodies are monoclonal, final concentration 0.5 mg/ml
2c=commercial, i=in-house
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CD42b GPIbα Von Willebrand Factor

Receptor Unit

HIP1 IgG Nd144 c Fluidigm

CD45 PTPRC Positive Regulator of

T-cell Coactivation

HI30 IgG Sm154 c Fluidigm

CD47 MER6 Adhesion Receptor for

THBS1 on Platelets

CC2C6 IgG Bi209 c Fluidigm

CD61 Integrin β3 Beta Unit of Fibrinogen

Receptor

VI-PL2 IgG Nd146 c Fluidigm

CD62P P-Selectin Cell Adhesion,

Activation Marker

KO-2-7 IgG Dy161 i Thermofisher

CD63 LAMP-3 Cell Adhesion,

Activation Marker

H5C6 IgG Nd150 c Fluidigm

CD69 CLEC2C Lymphocyte Signal

Transmission

FN50 IgG Dy162 c Fluidigm

GPVI GPVI Collagen Receptor HY101 IgG Lu175 i Thermofisher

PAC1 Activated αIIbβ3,

Activated GPIIb-IIIa

Fibrinogen/

Von Willebrand Receptor

PAC1 IgM Gd155 i BD Biosciences

PAR1 F2R Thrombin Receptor ATAP2 IgG Sm147 i Thermofisher

PEAR1 JEDI Platelet Endothelial

Aggregation Receptor

492621 IgG Yb174 i Novusbio

CD107a LAMP-1 Cell Adhesion, Activation H4A3 IgG Eu151 c Fluidigm

CD154 CD40L Interaction with

Endothelial Cells

24-31 IgG Er168 c Fluidigm

2.4.2 Antibody Conjugation

Commercially available and ready-to use antibodies for CyTOF analysis were preferably

used for the experiments. Nonetheless, the following antibodies were not available in a

metal-conjugated state and had to be conjugated in-house: CD42a, CD62P, GPVI, PAR1 (all

four Thermo Fisher Scientific, MA1-91023, MA1-81809, 14-9813-81 and 35–2200) as well as

PAC1 (BD Biosciences, 340535) and PEAR1 (Novus Biologicals, MAB4527).

Briefly, I coupled 100 mg of these carrier-free antibodies to a metal-labeled X8 polymer

from the Maxpar X8 Multimetal Labeling Kit (Fluidigm Sciences, 201300). By following
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the Maxpar Antibody Labeling Protocol (Fluidigm Sciences), I coupled the antibodies to

isotopically enriched lanthanide metals (provided in the Maxpar X8 Multilabel kit, see Table

2.1 for the corresponding metals). The manufacturer recommends the use of IgG antibodies

only. In case of PAC1 it has been previously shown that although it is an IgM antibody,

the coupling reaction with the recommended kit works and that the antibody is suitable for

CyTOF analyses [159]. All labeled antibodies were stored in an antibody stabilization buffer

(Boca Scientific, 131050) at a concentration of 0.5 mg/mL at 4°C until use.

2.4.3 Antibody Validation

Before the first use, the custom-conjugated antibodies were validated. For this process, I

added 0.5 µL of the respective conjugated antibody to one drop of calibration beads (Fluidigm

Sciences, 201078). After a 15 min incubation step, I washed the sample twice by adding 1.5

mL PBS and centrifuging at 300 x g for 10 min. Additionally, I performed two more wash

steps with 1.5 mL de-ionized water (MiliQ water, Merck) at the same centrifugation speed.

Acquisition followed resuspending the sample in 200 µL de-ionized water.

2.4.4 Staining

Platelet-rich-plasma was obtained from each donor as described in section “Blood sampling

and PRP generation”. Per sample, 600 mL PRP were mixed with 400 µL PBS and stained

with 1 µL Cell-ID Cisplatin (Fluidigm Sciences, 201064) for a final concentration of 5 µM

Cisplatin per mL. After a 5 min incubation period, I added 5 mL cell staining buffer (CSB;

Fluidigm Sciences, 201068), centrifuged the samples at 300 x g for 5 min, and resuspended the

pellets in 50 µL CSB. For each experiment, one baseline sample consisting of non-stimulated

platelets and 1-2 activated samples (stimulated platelets) were produced. Depending on the

experiment, platelets were either activated by adding 10 µM TRAP (Bachem, 4031274) and/or

2 µg/mL CRP-XL (Cambcol Laboratories, CRP-XL). After incubating for 2 min, I added

50 µL of a previously mixed antibody-cocktail to all samples and incubated them at room

temperature for 30 min (see Table 2.1 for antibody-metal information). Two washing steps,
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each consisting of adding 2 mL CSB and centrifuging at 300 x g for 5 min, were followed by a

cell fixation step. The pellet was resuspended in 1 mL of 1.6% formaldehyde (Thermo Fisher

Scientific, 28906) in PBS and left at 4°C overnight. Cells were centrifuged at 800 x g for 10

min the next day before the pellet was resuspended in up to 50 µL residual solution. A 1 h

incubation with 125 nM Iridium in 1 mL MaxPar Fix and Perm Buffer (Fluidigm Sciences,

201067) at room temperature preceded a centrifugation at 800 x g for 5 min. Afterwards, as a

final washing step, 2 mL CSB were added to the samples which were centrifuged at 800 x g

for 5 min. The pellet was resuspended in 10% dimethyl sulfoxide (DMSO, Sigma-Aldrich,

D2650) in fetal bovine serum (Thermo Fisher Scientific, F7524) and frozen at -80 °C until

acquisition.

2.4.5 Final Preparation

After thawing on ice, the samples were shortly spun down and transferred to a 5 mL

polystyrene tube (Thermo Fisher Scientific, 10100151). In total, I performed four wash steps.

I added 2 mL CSB for the first two washing steps, subsequently 2 mL de-ionized water for

the last two. All centrifugation steps were carried out at 800 x g for 5 min with subsequent

removal of supernatant. The pellet from the final run was stored at 4°C until measurement

within 24 hours.

2.4.6 CyTOF Measurement

Cells were resuspended to a concentration of 1 x 106 platelets/mL in 10% EQ beads in cell

acquisition solution (CAS; Fluidigm Sciences, 201240) before acquisition. Then, I acquired the

samples at the Helios instrument (Fluidigm Sciences) using the recommended acquisition

parameters (lower convolution threshold 400, event length 10–150, sigma 3, signal subtraction

0). Based on the experiment, I measured between 300,000 and 500,000 events per sample at

an acquisition rate of 200-350 events/second.
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Figure 2.2: Gating protocol on PRP sample. A) Exclusion of beads, B-E) clean-up according to the Gaussian
discrimination, F) selecting event length for low range intensity, G) live-dead cell discrimination by
only excluding cisplatin stained cells, H-J) RNA containing cells stained with 191/193-Iridium, K)
gating only CD41 and CD61 positive cells to exclude debris and contamination. Percentages show the
% of parent population. In the last gate, 62.22% of the total acquired events are left [225].
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2.4.7 Normalization and Gating

Normalization was performed immediately after measurement using the Fluidigm software

v7.0. Gating was performed on the normalized .fcs files according to the Maxpar clean-

up protocol (Approach to Bivariate Analysis of Data Acquired Using the Maxpar Direct

Immune Profiling Assay, Fig.2.2 A-I). For platelet specific analysis, gates J and K were

added (Fig.2.2 J-K). I performed all gating processes using the Cytobank software v8.1 (pre-

mium.cytobank.org). For further processing, I exported the gated .fcs files and transformed

them by factor 5 using the in-house developed cytometry analysis using shiny (CYANUS)

application (https://exbio.wzw.tum.de/cyanus/ [226]). All following bioinformatic analyses

were performed on these transformed files.

2.4.8 Computational Data Analysis - Preprocessing and Visualization

I performed differential expression analysis using the CYANUS shiny app. Design of the

project and app development was performed by three bioinformatic master students under

the co-supervision of me and Olga Lazareva. Therefore, the students designed the app for my

analysis needs and it was used throughout the project from the point of data transformation,

having first looks at the expression distribution, dimensionality reduction etc. [226]. In short,

I will describe the normal workflow that I used whenever working with the app. First, I

inserted the previously gated data which were exported from premium.cytobank.org and

uploaded them to the main page. Alongside, also a panel file including the markers, their

metals, and corresponding overall function of being either a negative marker, a type marker

or a state marker was uploaded as a .csv file (Table 2.2. The latter markers are supposed to

change their expression through activation. The third file needs to be a meta file, describing

the .fcs files with regard to sampleID, patientID, condition, activated_baseline, timepoint and

other valuable information. After upload, the data was transformed with cofactor 5 using

an inverse hyperbolic sine transformation before continuation [227, 228]. In many cases, it

was necessary to downsample to a defined cell number, so that all files contain the same

amount of cells. First steps include several quality checkpoints, for example the generation of

an pseudobulk-level multi-dimensional-scaling plot (MDS) plot based on the median marker
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expression values, in which similar samples within the same condition should cluster together.

On the second page, dimensionality reduction techniques are available as data visualization

to get a broad overview of the samples. Furthermore, clustering analysis can be performed

using the FlowSOM algorithm, which uses a Self-Organizing Map (SOM) [229].

Table 2.2: Panel file used for upload to the CYANUS web application

fcs_colname antigen marker_class

Dy161Di CD62P state

Dy162Di CD69 type

Er168Di CD154 state

Er170Di CD3 none

Eu151Di CD107a state

Gd155Di PAC1 state

Gd156Di CD29 type

Lu175Di GPVI type

Nd142Di CD40 none

Nd144Di CD42b type

Nd145Di CD31 type

Nd146Di CD61 type

Nd150Di CD63 state

Pr141Di CD42a type

Sm147Di PAR1 type

Sm152Di CD36 type

Sm154Di CD45 none

Y89Di CD41 type

Yb171Di CD9 type

Bi209Di CD47 type

Yb174Di PEAR type

2.4.9 Computational Data Analysis - Differential Expression

After completion of these steps, differential marker expression analysis is possible. In contrast

to differential cluster abundance analysis, which is used to compare the proportions of cell

types across experimental conditions per cluster, differential marker expression analysis
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focuses on the different marker expression per condition, either overall or cluster-wise. In the

following, I only used differential marker expression analysis. For data visualization, boxplots

are generated displaying the desired populations next to one another. Then, an algorithm

determining the statistical difference between two groups can be chosen. In my case, I first

ran limma, which compares median expression data and is completed within several seconds.

For some applications it was necessary to use CyEMD, an algorithm designed and adapted

in-house [226] using the calculation of the earth mover’s distance (EMD). The EMD compares

two histograms of marker expression and calculates the amount of work that is needed to

transform one histogram into the other. Using this non-parametric approach, differences that

are not visible on the median level can be found. It takes all data points into account and is the

algorithm of choice when investigating differences in markers that have a high zero inflation

(mainly activation markers CD107a and CD154). A high zero inflation is characterized by

many cells showing only very weak expression of a certain marker which results in the

median being 0. Limma and other algorithms comparing only the median expression will

compare 0 against 0 while CyEMD will take all values into account and may find differences

that are present. The CyEMD reports a p value and Cohen’s effect size. Differences between

several groups with a p value < 0.05 were considered significant.

2.4.10 Clustering and Dimensionality Reduction Analysis

I performed clustering analysis mostly using Cytobank v8.1 (premium.cytobank.org), as

most plots were generated before the CYANUS shiny app was finished. Of note, there

are currently no techniques available on the Cytobank platform that allow for differential

marker expression or differential cluster abundance analysis. For dimensionality reduction

on the other hand, Cytobank offers several algorithms which reflect the needs of different

experiment settings. In most cases, visual stochastic network embedding (viSNE) analysis

is the dimensionality reduction method of choice to gain a broad overview of the different

samples and marker expression among subpopulations. Platelet subpopulations are far less

heterogeneous than most cells that researchers using CyTOF analysis work with. Hence,

the algorithms are designed for showing the differences in expression of several sub cell

28



2 Material and Methods

types which have experimentally proven lineage markers. In the case of platelet analysis,

subpopulation analysis is a field which requires new ideas and de novo definition of which

kind of subtypes might be present. Using only viSNE or uniform manifold approximation

and projection (UMAP) analysis, a real estimation is not possible. Therefore, I mainly used

the FlowSOM algorithm for clustering analysis and visualized the clusters on viSNE plots

[229].

2.5 Methods Covid Study

2.5.1 Patient Characteristics

For this study, the blood of 8 patients with symptomatic SARS-CoV-2 infection, hospitalized at

the Klinikum rechts der Isar, was collected between March and May 2020 as described above.

Infection was confirmed by IgM antibodies against COVID-19 in the blood or a positive

reverse transcriptase-polymerase chain reaction (PCR) test result. Additionally, 11 healthy

donors who tested negative for SARS-CoV-2 infection were recruited. In the weeks after

blood collection, none of them developed any symptoms. All donors were between >18 and

<70 years and did not have any pre-existing conditions except for arterial hypertension and

were taking no medication except for antihypertensive drugs. Further exclusion criteria were

platelet disorders like thrombocytopenia (<100 G/L) or thrombocytosis (>500 G/L) as well

as a decreased leukocyte count (<1 G/l), decreased hemoglobin levels (<10g/dL) or a renal

dysfunction (glomerular filtration rate <60ml/min).

2.5.2 Mass Cytometry

Throughout the study, healthy and COVID-19 patient samples were prepared, stained and

measured alongside at the CyTOF, using the antibody panel shown in Table 2.1.

29



2 Material and Methods

2.5.3 Software

Gated and pre-preprocessed samples (as described previously) were used for the compu-

tational analysis. Python package v0.11.1 [230] was used to build and evaluate all models.

Further processing after using the Cytobank platform was done with R 4.0 (R Development

Core Team, 2005) and Python 3.6 (Python 3 Reference Manual, 2009).

2.5.4 Computational Analysis

We used UMAP (using CATALYST v1.12.1) based on 16 markers (all markers excluding

activation markers and negative marker CD3) for dimensionality reduction and to visualize

activation marker expression across the platelet population. For an equal analysis, we

randomly downsampled to the lowest number of acquired events (41,525 events) and built

mixed-effect linear models for both groups, TRAP-stimulated and non-stimulated samples.

Sample-wise median signal intensity was treated as a dependent variable, whereas disease

status was treated as fixed and the patientID as a random effect [231]. In order to evaluate

if activation is significantly influenced by the disease status, we built a linear model with

an interaction term for TRAP-stimulated and non-stimulated samples. Finally, we used

the Benjamini-Hochberg method for multiple hypothesis correction of the p values (false

discovery rate <0.05) [232].

2.5.5 Differential Analysis - COVID-19 Patients and Healthy Donors

We used the following linear mixed-effect model to investigate differential expression between

COVID-19 patients and healthy donors, in more detail to test the difference of the sample-wise

median marker expressions. Regression analysis was used to assess statistical significance.

Yij = β0j + βcjxci + γi + ϵij (2.1)

In this model, Yij is the median expression of the j-th marker for i-th patient, xci is a binary
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variable that specifies whether a patient i belongs to case or control group, and γi˜N(0, σ2i) is

a random intercept for each patient, allowing us to unravel the variance within-sample and

within-group.

We used slope coefficients βcj to test the linear relationship between the independent variable

xc and the dependent variable Y for significance:

H0 : βcj = 0

H1 : βcj ̸= 0
(2.2)

2.5.6 Differential Analysis - Baseline and TRAP-Stimulated Samples

Moreover, we investigated the reaction capacity of quiescent COVID-19 and controls upon

stimulation. Therefore, we compared the slope coefficients for the covariate that matches

activation in patients and healthy donors separately. The following model was used for

control samples:

Yhj = β0j + βajxah + γh + ϵhj (2.3)

Here, h belongs to a set of indices for all controls, whereas xah is a binary variable that

indicates if a sample h was TRAP-stimulated. For every marker j, several slopes βaj were

computed which show an average linear increase in expression after stimulation.

For the slope analysis in COVID-19 patients we used a similar model:

Ypj = β0j + βajxap + γp + ϵpj (2.4)

Here, p belongs to a set of indices for all COVID-19 patients. Direct comparison of βa

coefficients from the model (3) and model (4) do not allow us to reason that the difference
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between slope coefficients is statistically significant. Instead, a single model with an interaction

effect term was used to test for a statistically significant difference in the reaction to TRAP

stimulation between patients and controls.

A resulting significance of the Interaction effect means that the combination of activation

status and patient condition (disease or control) has a significantly larger effect on median

signal intensity than compared to the sum of the individual factors alone. Thus, the following

model was used:

Yij = β0 + βaxaij + βcxcij + βintijxintij + γi + ϵij (2.5)

In this model, xint is an interaction term defined as xa × xc. The slope coefficient for the

interaction βint was then tested for statistical significance as shown in equation 2.

2.5.7 Clustering Analysis Using FlowSOM

Unlike the FlowSOM analysis that I mainly performed during my projects, the clustering

analysis for the COVID data was not run with the algorithm embedded in Cytobank. Instead,

we manually ran the clustering analysis using FlowSOM [229], compensated, transformed

and scaled the data. Then, cells were distributed on a 10 x 10 self-organizing map. Based on

the relative change in area under the cumulative distribution function curve, we selected to

perform meta clustering in 12 clusters as more clusters indicated no improvement. Using a

linear mixed-effect model, a p value was calculated for each cluster-marker pair:

Yij = β0 + βcjxci + γi + ϵij (2.6)

In this model, Yij belongs to the median expression of the j-th marker for i-th cluster, whereas

xci is a binary variable indicating if cell population Yij belongs to the case or the control

group, and γi˜N(0, σ2i) is a random intercept for each cell subpopulation. Finally, we tested
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slope coefficients βcj between the independent variable xc and the dependent variable Y for

significance of their linear relationship.
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Citation

The article entitled “Sorting and magnetic-based isolation of reticulated platelets from periph-

eral blood” was published online at Taylor & Francis on 11 February 2020 and in print on 2

January 2021 (www.tandfonline.com).

Full Citation:

“Isabell Bernlochner, Melissa Klug, Ditya Larasati, Moritz Von Scheidt, Donato Santovito,

Michael Hristov, Christian Weber, Karl-Ludwig Laugwitz & Dario Bongiovanni (2021) Sorting

and magnetic-based isolation of reticulated platelets from peripheral blood, Platelets, 32:1,

113-119, DOI: 10.1080/09537104.2020.1724923.”

3.1.1 Summary and Author Contributions

Summary

In this study, we developed a reproducible approach for detection, isolation and collection of

reticulated platelets (RPs) from peripheral blood. RPs are known to be larger platelets that

contain more RNA compared to others and have been shown to have a prothrombotic and

hyperactive behavior. In several clinical settings like in diabetic patients or after myocardial

infarction, RP levels are increased and correlate with mortality and adverse cardiovascular

events. Moreover, high RP levels predict an insufficient response to dual antiplatelet treatment

with aspirin and P2Y12 inhibitors, which makes them a potential drug target. The lack of an
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RP specific marker which would allow selection and their instability make their processing

challenging. Studies in the past have investigated RPs using flow cytometry. Based on their

size (FSC/SSC) and RNA-content after staining with Thiazole Orange (TO), analysis was

possible but not standardized. Furthermore, until now a method to sort and extract RNA from

RPs has been lacking. Therefore, we developed a standardized protocol that allows detection,

isolation and collection of RPs from whole blood by using RNA-specific staining with TO.

The additional magnetic platelet-specific labeling made it possible to reach sufficient RNA

output in high quality. This protocol allows the continuation with RNA extraction and deep

biological downstream analysis of the sorted platelets, for example with RNA-sequencing.

Author Contribution

M.K. refers to Melissa Klug, author of this dissertation. D.B., D.S. and I.B. had the initial idea

behind the project, while M.K. carried out all experiments in this paper, some assisted by

former master student D.L.. The first draft of the paper was written by M.K., while I.B. and

D.B. wrote the main discussion part. M.H. operated the FACS Aria III and gave input on

sorting parameters. M.K. prepared all figures and tables upon consultation with D.B. and I.B..

Interpretation of results was done by M.K., D.L., D.B., I.B., D.S. and M.H., while these next to

M.S., C.W. and K.L. revised the paper.

3.1.2 Publisher Permission to Reproduce the Included Articles

Thesis/Dissertation Reuse Request: Taylor & Francis is pleased to offer reuses of its content

for a thesis or dissertation free of charge contingent on resubmission of permission request if

work is published.
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METHOD ARTICLE

Sorting and magnetic-based isolation of reticulated platelets from
peripheral blood

Isabell Bernlochner1,2*, Melissa Klug 1,2*, Ditya Larasati1, Moritz Von Scheidt2,3, Donato Santovito 4,
Michael Hristov4, Christian Weber2,4, Karl-Ludwig Laugwitz1,2, & Dario Bongiovanni 1,2,5

1Medical Department 1, Cardiology, Klinikum Rechts Der Isar, Technische Universität, Munich, Germany, 2DZHK (German Center for Cardiovascular
Research), Partner Site Munich Heart Alliance, Munich, Germany, 3Department of Cardiology, Deutsches Herzzentrum München, Technische
Universität, Munich, Germany, 4Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany, and
5Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, Rozzano, Milan, Italy

Abstract

Reticulated Platelets (RPs) are large, RNA-rich, prothrombotic and hyperactive platelets known to
be elevated in high-risk populations such as diabetics and patients with acute coronary syndrome.
High levels of RPs correlate with mortality and adverse cardiovascular events in patients with
coronary artery disease as well as with an insufficient antiplatelet response to thienopyridines and
aspirin after percutaneous coronary interventions, making them an appealing drug target.
However, processing of platelets is challenging and no specific marker for RPs exists. Until now,
the gold standard laboratory-based method to study them is based on the flow cytometric
measurement of their cell size and their RNA-content with the fluorescent dye Thiazole Orange
(TO). Nevertheless, standardized protocols for staining and processing of RPs are missing and the
existing techniques were not applied for cell sorting. We provide here a structured and reprodu-
cible method to detect, isolate and collect RPs from peripheral blood by RNA-specific staining with
TO implementing several platelet inhibitors as well as magnetic labeling allowing sufficient cell
recovery and deep biological investigation of these platelets.

Keywords

Immature platelets, platelet isolation, reticu-
lated platelets

History

Received 14 September 2019
Revised 21 December 2019
Accepted 28 January 2020
Published online 13 February 2020

Method

Materials

Biological Materials

Fifteen to eighteen milliliters of human peripheral blood. Caution:
all experiments involving human subjects must comply with the
declaration of Helsinki and be carried out following national and
institutional guidelines. Written informed consent must be
obtained.

Reagents and Consumables

Safety-Multifly needle 21G with tube 80 mm, DEHP-free -
Sarstedt Catalog #: 85.1638.203

3 mL S-Monovette® tubes, Citrate 3.2% (1:10), 66 × 11 mm,
green EU code, paper label, 50/inner box sterile – Sarstedt
Catalog #: 05.1165.001

15 mL conical tubes – Thermo Fisher Scientific Catalog #:
10136120

5 mL round-bottom polystyrene tubes – Thermo Fisher
Scientific Catalog #: 10100151

5 mL tubes with cell strainer – Corning Catalog #: 10585801
15 mL conical tubes – Eppendorf Catalog #: 0030122151

1.7 mL RNase-free tubes – Corning Catalog #: MCT-
175-X

Adenosine 5′-diphosphatase, Apyrase from potatoes (10 U/100
µL in PBS stock) – Sigma-Aldrich Catalog #: A6535-100UN

Prostaglandin E1 (C20H34O5 1 mg/mL DMSO stock, 0.1 mg/
mL in PBS) – EMD Millipore Corp. Catalog #: 538903

EDTA (C10H14N2Na2O8 * 2H2O, 0.5 M, pH 8.0) – Invitrogen
Catalog #: 5575020

Citric Acid (HOC(COOH)(CH2COOH)2, 1 M stock) – Sigma-
Aldrich Catalog #: 251275

HEPES (C8H18N2O4S, 1 M buffer solution, pH 7.2–7.5) –
Thermo Fisher Scientific Catalog #: 15630080

Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic
acid ([-CH2OCH2CH2N(CH2CO2H)2]2; EGTA, 0.5 M stock,
pH 8) – Sigma-Aldrich Catalog #: E3889

PBS (Ca2+ and Mg2+ free; pH 7.4) – Gibco Catalog #:
10010023

BSA (Bovine Albumin Fraction V 7.5%) – Gibco Catalog #:
15260037

BD ReticCount Thiazol Orange (TO, 0.01mg/mL, 200 mL,
store at 4°C) – BD Catalog #: 349204

Brilliant Violet 421 anti-human CD41 antibody – Biolegend
Catalog #: 303729

Vybrant DyeCycle Ruby Stain – Thermo Fisher Scientific
Catalog #: V10309

CD 61 magnetic beads, MicroBeads – Miltenyi Biotec Catalog
#: 130-051-101

MS columns – Miltenyi Biotec #: 130-042-201

*These authors contributed equally
Correspondence: Isabell Bernlochner, Department of Cardiology,
Klinikum Rechts Der Isar, Ismaningerstr. 22, Munich 81675, Germany.
E-mail: isabell.bernlochner@tum.de
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Equipment

BD FACS Aria III Cell Sorter – BD Biosciences Catalog #:
648282

Neubauer counting chamber – Brand Catalog #: 717805
Rotating shaker – Heidolph Instruments Catalog #: 544-

41200-00
MACS separator Octomacs – Miltenyi Biotec #: 130-042-109
MACS Multistand – Miltenyi Biotec #: 130-042-303

Procedure

Blood withdrawal, timing 5–10 min

(1) Take 4 × 3 mL venous blood from a donor into tubes with
3.2% citrate dextrose. Use a Safety-Multifly needle no smal-
ler than 21 gauge. Alternatively, a Safety-Multifly needle
connected to a 20 mL syringe containing citrate can be
used. Throw away the first 1 mL of blood to prevent hemo-
lysis and turn the tubes up and down 1–2 times to mix blood
and citrate. If using a tourniquet, apply it loosely to not
activate platelets during the procedure.

CRITICAL: Proceed with no delay to the next step. In order to
avoid platelet activation and RNA degradation, we suggest to
process all samples immediately after phlebotomy. Consult
Table 1 for the whole troubleshooting guideline.

Production of platelet-rich-plasma, timing 1.5 h

(2) Centrifuge the vials at 200 × g for 10 min at room tempera-
ture without brake.

CRITICAL: Set acceleration and deceleration to the lowest
level.

(3) The sample is now separated into red blood cells (RBC),
buffy coat and plasma. Take only the plasma phase.
Depending on the donor, take ~1–2 mL of plasma per vial

and collect it in a fresh 15 mL tube. Be careful to not aspirate
the buffy coat.

(4) Add apyrase to prevent ADP-mediated platelet activation (0.6
U ADPase/mL) to the plasma. For example, add 6 µL of the
aliquot solution to 1 mL of plasma. Additionally, add 1 µM
prostaglandin E1 (e.g. 10 µL from the PGE1 aliquot to 1 mL
of plasma). Carefully tip against the tube to mix.

(5) Incubate the sample in a 37°C water bath for 30 min.
(6) Further platelet aggregation can be prevented by adding

5 mM EDTA (e.g. 10 µL stock/mL plasma) and reducing
the pH adding 1 mM citric acid (e.g. 10 µL of stock/mL
plasma). Gently roll the tube without inversion to mix, do
not pipet up and down. CRITICAL: EDTA irreversibly dena-
turates many proteins including the integrin complex GPIIb/
IIIa. Consider avoiding the usage of EDTA if downstream
proteomic investigation is planned.

(7) Immediately centrifuge the sample at 800 × g for 15 min at
room temperature without brake.

CRITICAL: Set acceleration and deceleration to the lowest
level.

(8) Discard the upper two-thirds of the solution and add the
following reagents to the lower one-third of the sample: 0.6
U Apyrase/mL (e.g. 6 µL of stock/ml), 20 mM of HEPES
(e.g. 20 µL of stock/ml) and 1 mM EGTA (e.g. 10 µL of
stock/ml). Carefully resuspend the pellet in the lower one-
third of the solution.

CRITICAL: Use large pipette tips (e.g. 1 mL tips) for resus-
pension to prevent platelet activation.

(9) Add 1 µM PGE1 (e.g. 10 µL from stock/ml), mix by tipping
against the tube and incubate the sample for 5 min at room
temperature.

Platelet Counting, timing 10 min

(10) To our knowledge, no automatic counter can detect cells
under 4 µm diameter. Thus, we suggest counting platelets
using the traditional method with a counting chamber:
Take 10 µL of the PRP and add 90 µL of PBS. Analyze 10 L
of this diluted PRP using a Neubauer counting chamber.
CRITICAL: A minimum of 100 platelets must be counted.

Staining, timing 45 min

(11) Prepare an unstained control sample by adding 50 µL of the
PRP solution to 200 µL PBS.

(12) Addition of Thiazole Orange and CD 41 antibody:

Dilute the PRP to 6 × 105 platelets/µL PRP. Take ~1.8 × 108

platelets (e.g. 300 µL of PRP containing 6 × 105 platelets/µL
PRP). Add Thiazole Orange reaching the concentration of 6.7
µg/mL (e.g. 600 µL of 0.01 mg/mL stock) and 1:200 v/v
CD41-BV (e.g. 4.5 µL).

CRITICAL: The whole staining procedure should be carried
out in the dark.

NOTE: Thiazol Orange is light sensitive and must be stored at
2–8°C in the dark. It can be used until the expiration date.
Further information can be found in the manufacturer’s protocol.

(13) Cover the sample in aluminum foil and put it on a shaker for
10 min, rotating at the slowest speed.

(14) OPTIONAL Add 1:500 v/v DNA dye Vybrant Red (e.g. 1.8
µL for 300 µL PRP and 600 µL TO) and gently roll the tube
without inversion to mix.

Table I. Troubleshooting.

Step Problem Possible Reason Solution

3 Leucocyte
contamination

Buffy coat was
aspirated

Only take the upper part of
plasma.
Use DNA-dye to gate only for
DNA negative cell (s. steps 14
and 26).

6 Aggregation Platelets
activated

Do not pipet up and down,
control concentration of all
inhibitors (ADPase, PGE1,
EDTA, citric acid).

7 No pellet
visible

Platelets
disrupted

Use centrifuge with acc/dec
settings at the lowest level.

17 Activation/
aggregation

Fast shaking
activated the
platelets

Only shake at the lowest speed,
if that is too fast: do not put the
sample on shaker but tip
against the tube every 5–10
min.

27 No visible TO
stain

TO staining not
sufficient

Make sure to mix the sample
after TO addition at steps
11–17.

34 Bubbles Plunger was
pushed too
slowly

Increase the speed of gently
pushing the plunger. Pull the
column out of the solution
while pushing.

35 No pellet Platelets float in
supernatant

Increase the centrifugation
speed or time.

37 Low outcome
of platelets

Not enough
beads bound to
platelets

Mix the beads before use.
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(15) Incubate the sample for additional 20 min on the shaker at
the slowest speed.

(16) Addition of magnetic beads:

Add 18.5 µL CD61-magnetic beads/107 cells. Keep a ratio of
5/1, solution/beads (e.g. 333.3 µL CD61-magnetic beads to
300 µL of PRP containing ~1.8 × 108 platelets). Add PBS to
sustain the volume ratio of 1 part beads to 5 parts of total
volume (1:5 v/v ratio), (e.g. 433.3 µL PBS; v/v 1666 µL
solution/333.3 µL beads) and mix well by pipetting up and
down with a 1 mL pipette tip.

CRITICAL: Mix the beads well before use to ensure the
distribution of the magnetic tags.

(17) Cover the sample again and incubate 10 min on the shaker
rotating at the slowest speed.

CRITICAL: Comply with suggested incubation time with TO for
a total of 30 min.
Prepare samples for Flow Cytometry, timing 15–20 min

(18) Centrifuge the sample and the unstained control at 1000 ×
g for 12 min with brake.

(19) Aspirate the supernatant by applying vacuum, being careful
not to mobilize the pellet.

(20) Add 400 µL PBS containing 1 mM EGTA and 0.6 U/mL
Apyrase (e.g. 4 µL and 2.4 µL of stock, respectively) to the
unstained sample and resuspend.

Add 2000 µL PBS containing 1 mM EGTA and 0.6 U/mL
Apyrase (e.g. 20 µL and 6 µL of stock, respectively) to the
sample and resuspend.

(21) After resuspension, add 1 µM PGE1 to both samples and
incubate for 5 min at room temperature.

(22) Filter each solution through a 35 µm cell strainer of a 5 mL
round-bottom polystyrene tube and put on ice.

(23) Prepare 6 to 8 RNase-free low-bind collection tubes for the
sorting by adding 1 mL PBS to each tube. Store the tubes on
ice until ready for collection.

Sorting at the Flow Cytometer, timing 1.5–2.5 h

(24) Gate for platelet size at appropriate FSC threshold in an
FSC/SSC log plot, excluding the cells with the largest FSC
and SSC pattern (Figure 1A).

Figure 1. Flow Cytometry sorting strategy. (A) Applied gate to stained platelet-rich-plasma (PRP) separating the platelets by size using FSC/SSC. (B)
Doublets are excluded by a high FSC-width. (C) Sorting strategy after CD41 and DNA staining for platelet isolation. Platelets are selected by gating
CD41 positive and DNA negative events. CD41-BV = 421 nm, DNA stain Ruby = 638 nm. (D) Gating strategy for RNAlow platelets (mature platelets,
MPs) and RNAhigh platelets (reticulated platelets, RPs). Platelets with the 15% highest TO signal are defined as RPs, platelets with the lowest 30% TO
signal as MPs (TO = 488−550 nm). TO: Thiazole Orange, BD FACS Aria III, SSC: Side Scatter, FSC: Forward Scatter. RPs: reticulated platelets,
MPs: mature platelets.
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(25) Exclude doublets in the FSS-W (linear)/FSC-A (log)
plot by gating out cells with a higher FSC-width
(Figure 1B).

(26) Gate for CD41 positive and DNA negative (CD41+/DNA-)
events to avoid leucocyte contamination (Figure 1C).

(27) For the TO gating strategy plot TO fluorescence against
SSC. The 15% TO-brightest cells consist of RPs
(RNAhigh). OPTIONAL: the 30% TO-lowest (RNAlow)
can be used as control for mature platelets (MPs).
(Figure 1D).

Sort the RPs by using the 70 µL nozzle at purity precision and
(optional) the MPs populations.

CRITICAL: Verify purity after sorting (Figure 1E,F).

(28) Using a BD FACS Aria III, up to 6 × 106 platelets can be
sorted into 15 mL low binding tube in around 45 min.

Magnetic Separation, timing 30–60 min

(29) Prepare a buffer containing 0.5% BSA and 2 mM EDTA in
PBS (e.g. add 2.67 mL of BSA stock and 200 µL of EDTA
stock to 36 mL PBS, store at 4°C).

(30) Place 2–4 columns in a magnetic field of a MACS separator
and put a collection basin underneath.

(31) Prepare the columns by rinsing 500 µL of buffer per column.
(32) Pour the cell suspensions onto the columns.

Figure 2. Validation. (A–C) RNase-treatment of platelets after permeabilization with saponin: dot plots showing (A) the unstained sample, (B) >24%
TO positive events for the TO stained sample and (C) 0.62% TO positive events with the use of RNase and TO. (D) Staining signal stability of TO
staining over time from four healthy subjects (median and range; h = hours). One-way ANOVA did not detect any statistical differences from one to 4
h (MPs P= .83, RPs: P = .28, all platelets: P = .13). (E) Gating strategy for RNAlow platelets (mature platelets, MPs) and RNAhigh platelets (reticulated
platelets, RPs). Platelets with the 15% highest TO signal are defined as RPs, platelets with the lowest 30% TO signal as MPs (TO = 488 − 550 nm). (F)
Exemplary purity analysis after sorting of MPs and the RPs (G) gated populations. (H) Scatter plot showing the correlation of TO positive cells (based
on unstained controls) with the immature platelet fraction (IPF) measured with the point of care system Sysmex XN in 18 patients with CAD. (I) TRAP
activation assay showing the CD62P expression of PRP before sorting and sorted MPs and RPs after sorting and after MACS column separation (for
methods see supplemental file). A concentration of 5 µM TRAP was added to induce activation. * = P value <.05, ** = P value <.01, non-significant
relations are not shown. TO: Thiazole Orange, BD FACS Aria III, Thiazole Orange: 488–550 nm, SSC: Side Scatter, MFI: mean fluorescence intensity,
unst.: unstained, sap.: saponin, CAD: coronary artery disease, CD62P: P-Selectin, TRAP: thrombin receptor activation peptide.
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CRITICAL Only separate up to 10 × 106 platelets per column
in order to not overload the column.

(33) Wash the columns three times with 500 µL buffer, always
waiting until the column is dry before applying the buffer.

(34) Remove column from the magnetic field and place it on a sterile
RNase-free pre-chilled collection tube. Elute platelets with 1 mL
of buffer by gently pushing the plunger. If using more than one
column, increase the elution volume to a maximum of 1.2 mL.
(For 2 RNAhigh columns, elute each sample in 600 µL buffer and
collect the elution in the same tube.)

(35) Centrifuge the samples at 12 000 × g for 10 min at 4°C.
Keep the centrifuge at 4°C and place samples on ice.

(36) Carefully remove the supernatant with a 200 µL pipette tip
without touching the pellet.

(37) The pellet is now ready for downstream applications.

Discussion

We describe a reliable standardized validated method to detect,
sort and collect reticulated platelets (RPs) from peripheral blood
allowing downstream applications in order to investigate their
biology. RPs are large, RNA-rich, prothrombotic and hyperactive
platelets [1–4]. They are known to be elevated in high-risk popu-
lations such as diabetics and smokers as well as in patients with
coronary artery disease and acute coronary syndromes [2,5–7].
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Figure 3. Schematic overview of the isolation method. Steps 1 to 37 are indicated as bold and underlined characters. RPs: reticulated platelets, MPs:
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Over the last years, high levels of RPs in peripheral blood have
been shown to be associated with an insufficient antiplatelet
response to thienopyridines and aspirin after coronary artery
percutaneous interventions, making them an important drug target
[4,8]. Moreover, elevated RPs in peripheral blood are strong
predictors of mortality and adverse cardiovascular events in
patients with coronary artery disease as well as in other patholo-
gical settings such as severe sepsis and after major surgery.
[7,9,10] However, the reason for these correlations as well as of
the hyperactive phenotype of RPs was unknown until recently.
Our novel method enabled us to compare the transcriptome of
RPs with that of mature platelets for the first time. Interestingly,
we detected a significant enrichment of pro-thrombotic mRNA in
RPs compared to mature platelets providing the first biological
explanation of RPs hyper-reactive nature [11].

The limited knowledge concerning the biology of RPs is mainly
attributable to the absence of standardized isolation and sorting
methods. In general, platelet isolation is extremely challenging as
these anuclear cells are prone to adhesion and activation. To avoid
unspecific activation, the addition of several inhibitory substances is
recommended [12]. In addition, depending on the downstream appli-
cation, cell fixation is often not possible, as fixation agents are
known to inhibit the activity of retro-transcriptase. No specific
marker is known for RPs and the gold standard method to study
them is based on cell size andmeasurement of the RNA-content with
the fluorescent dye Thiazole Orange (TO) [2,13–17]. With this
regard, several different approaches with distinct TO concentrations
have been used often starting from whole blood instead of PRP
[16,18,19]. Of importance, these methods have been used only for
flow cytometry so far without testing their feasibility for platelet
sorting. We demonstrate with our RNase experiments that staining
of RPs with TO, if used at a correct concentration and incubation
time, is highly RNA specific (Figure 2, s. supplemental file for
RNase experiment methods) and allows correct and reproducible
staining and isolation of these cells (Figure 1). Moreover, we pro-
pose a new column-based magnetic cell isolation method (graphical
summary in Figure 3) to improve platelet recovery after sorting and
to avoid unnecessary high-speed centrifugation, which may injure
the platelets and promote unspecific activation. At the same time,
using platelet-specific CD61-MicroBeads-antibodies we gain an
additive checkpoint for positive selection avoiding contamination
with other cell types.

However, TO-staining still bears several limitations as its
specificity is time- and concentration-dependent. In particular,
prolonged staining time and excessively high concentrations can
promote unspecific labeling to platelet alpha granules, which
affects RNA-specificity and alters the results [20,21]. For these
reasons, concentration and staining time should be carefully
titrated and always verified with RNase experiments (Figure 2).
With our method, we proved that TO-signal is RNA-specific
(Figure 2A-C) and stable for up to 4 h (Figure 2D). Moreover,
platelet activation assays using thrombin receptor activation pep-
tide (TRAP) proved that the sorted platelets are viable and still
able to react upon stimulation (Figure 2I). Of note, TRAP-
induced activation showed a significant higher expression of the
activation marker P-Selectin (CD62P) in RPs compared to MPs,
confirming the hyperreactive nature of the isolated RPs.

Hille et al. [22] proposed a new method for staining and sorting
of RPs based on the fluorescent dye SYTOTM 13. Despite some
very interesting aspects of this approach, information about the
specificity of SYTOTM 13 to bind RNA is lacking, because RNase-
treatment experiments are not shown. Moreover, the provided data
do not allow a direct comparison of the SYTOTM 13 method with
the TO method due to several reasons: 1) In their experiments, the
authors used uncommonly low concentrations of TO of only about
1/10 of the established and suggested TO concentration in literature

to detect platelet RNA [2,15–17] and 2) the authors used unusually
long incubation times for TO of up to 90 min, which does not
adhere to previous experiences in literature [2,16,17] and which is
known to affect the RNA specificity of TO.

Recently, Angénieux et al. [23] investigated the reliability of HLA
I/MHC I cell surface expression with flow cytometry as a marker of
RPs. The authors reported that a higher expression of HLA I/MHC
correlated with an increased TO staining, proposing this marker as
a new valuable parameter to identify RPs in patients with thrombo-
cytopenia. However, like TO, HLA I/MHC I is not specific for RPs
as it is also expressed in lower amounts in older platelets. In addition,
it was not tested as a marker to guide platelet sorting.

Conclusion

We herein present a structured and reproducible method to detect,
isolate and collect RPs in peripheral blood by RNA-specific
staining with TO and subsequent magnetic labeling allowing
deep biological investigation of these cells.
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3.2 Publication 2: Mass Cytometry of Platelets from PRP
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The article titled “Mass cytometry of platelet-rich plasma: a new approach to analyze platelet
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2021 (www.tandfonline.com).

Full Citation:
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platelet-rich plasma: a new approach to analyze platelet surface expression and reactivity,

Platelets, DOI: 10.1080/09537104.2021.2009453.”

3.2.1 Summary and Author Contributions

Summary

In this publication, we propose a new methodological pipeline to perform mass cytometry of

platelets with and without activation stimuli. Assessing platelet receptor expression at single

cell level with high resolution is possible using mass cytometry by time of flight (CyTOF).

Whereas previous CyTOF research mainly focused on leukocyte subgroup analysis, we use

it to decipher platelet heterogeneity and are the first to use platelets from PRP. Published

protocols until now only allow platelet analysis from whole blood, and require samples to be

measured immediately after staining. With our approach, we offer a standardized technique

that allows the preparation, staining, acquisition and analysis of platelets from PRP with high

resolution. The study performed includes the validation of a common freezing technique

on platelets after staining which simplifies platelet measurement due to the possibility of

sample storage in -80°C until acquisition. Moreover, our standardized method to measure

platelet reactivity includes the usage of different external stimuli and offers a reproducible

protocol for a subsequent bioinformatic investigation of the data. Using platelets from PRP
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allows the acquisition of a high cell number that is required for deep bioinformatic analysis

of different platelet subgroups. We use our previously designed freely available analysis

pipeline optimized for platelets to assess differential expression between differently treated

platelets and investigate overall platelet heterogeneity. Our protocol can be further used to

investigate platelet heterogeneity using CyTOF in several disease settings.

Author Contribution

In the following M.K. refers to Melissa Klug, the author of this doctoral thesis. Together with

D.B. and I.B., M.K. designed the research. Additionally, M.K. wrote the initial draft of the

paper, while D.B. and I.B. added their thoughts. All experiments were carried out by M.K.,

who guided her master student K.K. and MD student J.H. to perform experiments alongside.

G.V. and M.K. took turns in recruiting healthy donors and collecting their blood. M.K. created

all the figures besides Figure 1, which was done by K.K under the guidance of M.K. After

learning from M.R. who acquired the fresh and frozen samples, M.K. operated the CyTOF

alone and acquired all other CyTOF data presented in the paper with K.K or J.H helping in

the preparation of the samples. Normalization, gating, transformation, viSNE and differential

expression analysis was carried out by M.K. All other bioinformatic analyses were carried out

by K.K., O.L, J.B. and M.L. Finally, M.K. discussed the results with D.B. and I.B. who gave

further input for interpretation and reviewed the paper alongside M.S., J.R., G.C., K.L. and

M.L..
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Abstract
Mass cytometry (CyTOF) is a new technology that allows the investigation of protein expres
sion at single cell level with high resolution. While several protocols are available to investigate 
leukocyte expression, platelet staining and analysis with CyTOF have been described only from 
whole blood. Moreover, available protocols do not allow sample storage but require fresh 
samples to be obtained, processed, and measured immediately. We provide a structured and 
reproducible method to stain platelets from platelet-rich plasma to study thrombocyte protein 
expression and reactivity using mass cytometry. With our method, it is possible to acquire 
a large number of events allowing deep bioinformatic investigation of platelet expression 
heterogeneity. Integrated in our protocol is also a previously established freezing protocol that 
allows the storage of stained samples and to delay their measurement. Finally, we provide 
a structured workflow using different platelet stimulators and a freely available bioinformatic 
pipeline to analyze platelet expression. Our protocol unlocks the potential of CyTOF analysis for 
studying platelet biology in health and disease.
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Method

Materials

Biological Materials

Twelve to eighteen milliliters of human peripheral blood. 
Caution: all experiments involving human subjects must comply 
with the declaration of Helsinki and be carried out following 
national and institutional guidelines. Written informed consent 
must be obtained.

Reagents and Consumables
● Safety-Multifly needle 21 G with tube 80 mm, DEHP-free - 

Sarstedt Catalog #: 85.1638.203
● 3 mL S-Monovette® tubes, Citrate 3.2% (1:10), 66 × 11 mm, 

green EU code, paper label, 50/inner box sterile – Sarstedt 
Catalog #: 05.1165.001

● 15 mL conical tubes – Thermo Fisher Scientific Catalog #: 
10136120

● 15 mL conical tubes – Eppendorf Catalog #: 0030122151

● 5 mL round-bottom polypropylene tubes – Thermo Fisher 
Scientific Catalog #: 10314791

● 5 mL tubes with cell strainer – Corning Catalog #: 10585801
● Adenosine 5′-diphosphatase, Apyrase from potatoes (10 U/100 µL 

in PBS stock) – Sigma-Aldrich Catalog #: A6535-100UN
● CRP-XL (collagen-related peptide) – Cambcol Laboratories 

Catalog #: CRP-XL
● Thrombin receptor activating peptide (TRAP-6-Amide) – 

Bachem Catalog #: 4031274
● Prostaglandin E1 (C20H34O5 1 mg/mL DMSO stock, 0.1 mg/ 

mL in PBS) – EMD Millipore Corp. Catalog #: 538903
● EDTA (C10H14N2Na2O8 * 2 H2O, 0.5 M, pH 8.0) – Invitrogen 

Catalog #: 5575020
● Citric Acid (HOC(COOH)(CH2COOH)2, 1 M stock) – Sigma 

Aldrich Catalog #: 251275
● HEPES (C8H18N2O4S, 1 M buffer solution, pH 7.2–7.5) – 

Thermo Fisher Scientific Catalog #: 15630080
● Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic 

acid ([-CH2OCH2CH2N(CH2CO2H)2]2; EGTA, 0.5 M stock, 
pH 8) – Sigma-Aldrich Catalog #: E3889

● PBS (Ca2+ and Mg2+ free; pH 7.4) – Gibco Catalog #: 10010023
● FBS (Fetal Bovine Serum) - Sigma Aldrich - Catalog #: F7524
● DMSO (dimethyl sulfoxide) - Sigma Aldrich - Catalog #: D2650
● AB Stabilizer, PBS base - Boca Scientific- Catalog #: 131050
● Maxpar® Cell Staining Buffer (CSB) - Fluidigm Catalog #: 

201068
● Maxpar® Fix and PermBuffer - Fluidigm Catalog #: 201067
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● Maxpar® Cell Acquisition Solution (CAS) - Fluidigm Sciences 
- Catalog #: 201240

● Maxpar® X8 Multimetal Labeling Kit - Fluidigm - Catalog #: 
201300

● Cell-ID™ Intercalator-Ir - Fluidigm - Catalog #: 201192A
● Cell-ID™ Cisplatin - Fluidigm - Catalog #: 201064
● EQ Four Element Calibration Beads - Fluidigm - Catalog #: 201078

Antibodies
● CD42a (GR-P)- 141Pr - Thermo Fisher Scientific - Catalog #: 

MA1-91023
● CD62P (KO-2-7)-161Dy- Thermo Fisher Scientific - Catalog 

#: MA1-81809
● GPVI (HY101)-175Lu - Thermo Fisher Scientific - Catalog #: 14– 

9813-81
● PAC1 (Activated GPIIbIIIa/αIIbβ3)-155Gd - BD Biosciences - 

Catalog #: 340535
● PAR1 (ATAP2) −147Sm - Thermo Fisher Scientific - Catalog #: 

35–2200
● PEAR (492621)-174Yb - Novusbio - Catalog#: MAB4527
● CD107a/LAMP1 (H4A3)-151Eu - Fluidigm Sciences - Catalog #: 

3151002B
● CD154/CD40L (24-31)-168Er - Fluidigm Sciences - Catalog #: 

3168006B
● CD29 (TS2/16)156Gd - Fluidigm Sciences - Catalog #: 3156007B
● CD3 (UCHT1)-170Er - Fluidigm Sciences - Catalog #: 3170001B
● CD31/PECAM-1 (WM59)-145Nd - Fluidigm Sciences - Catalog #: 

3145004B
● CD36 (5–271)152Sm - Fluidigm Sciences - Catalog #: 3152007B
● CD40 (5C3)-142 Nd - Fluidigm Sciences - Catalog #: 3142010B
● CD41 (HIP8)-89Y - Fluidigm Sciences - Catalog #: 3089004B
● CD42b (HIP1)-144Nd - Fluidigm Sciences - Catalog #: 3144020B
● CD47 (CC2C6)209B - Fluidigm Sciences - Catalog #: 3209004B
● CD61 (VI-PL2)-146Nd - Fluidigm Sciences - Catalog #: 3146011B
● CD63 (H5C6)-150Nd - Fluidigm Sciences - Catalog #: 3150021B
● CD69 (FN50)162Dy - Fluidigm Sciences - Catalog #: 3162001B
● CD9 (SN4 C33A2)-171Yb - Fluidigm Sciences - Catalog #: 

3171009B

Equipment
● Helios CyTOF system – Fluidigm
● Rotating shaker – Heidolph Instruments Catalog #: 544–41200-00
● Heraeus Megafuge 1.0 R - Thermo Fisher Scientific Catalog #: 

75003041

Procedure

Panel Design

We chose a set of 21 antibodies, most of them known to be 
expressed on the platelet surface and involved in several platelet 
aggregation and adhesion processes. Additionally, known platelet 
activation markers are included as well as negative markers to 
exclude contamination of other cell types.

Non commercially available antibodies were conjugated in- 
house, strictly following the step-wise protocol by Maxpar 
(Maxpar Antibody Labeling User Guide). All in-house conju
gated antibodies were IgG antibodies except for PAC1, which is 
an IgM antibody that has been previously tested to be suitable for 
the Maxpar antibody labeling process without losing its function
ality to specifically bind the activated alphaIIbetaIII complex[1].  

In-house conjugated antibodies need to be titrated after prepara
tion before use.

Platelet Rich Plasma

Platelet-rich-plasma is generated as described in detail before 
by Bernlochner et al[2] and shown in Figure 1. Briefly, whole 
blood is centrifuged without brake at 200 x g within 30 min 
after collection before Apyrase (0.6 U ADPase/mL) and PGE1 
(1 μM prostaglandin E1) are added to the plasma. 30 
min incubation at 37°C is followed by an addition of 5 mM 
EDTA and 1 mM citric acid. After a second round of centri
fugation without brake at 800 x g, the pellet is resuspended in 
the lower ⅓ of the plasma in 0.6 U Apyrase/mL, 20 mM of 
HEPES and 1 mM EGTA .

CRITICAL: When investigating PAC1, EDTA should be avoided 
as high dosages denatures the integrin complex GPIIb/IIIa. 
However, without EDTA the samples may show a low activation 
(low expression of activation markers). It is critical to verify this step 
and to be consistent with the entire experimental pipeline.

Viability Staining

(1) Carefully add 600 µL PRP and 400 µL PBS into a LoBind tube 
to reach an approx. concentration of 1 × 108 platelets per mL.

(2) Stain cells for 5 min with 1 µL per 1 mL sample Cell-ID 
Cisplatin (5 μM final concentration) at room temperature to 
distinguish live from dead cells.

(3) Stop staining by adding 5 mL Maxpar Cell staining buffer 
(CSB) (5 times the volume of the cell suspension).

(4) Centrifuge suspension immediately at 300 g for 5 min (with 
brake) and discard supernatant carefully. From here on, all 
centrifugation steps are carried out with brake.

CRITICAL: Discard the supernatant with a pipet and not 
a vacuum pump to avoid platelet activation 

(5) Resuspend the cells in 50 μL CSB buffer (approx. 1–3 x 10^6 
platelets in total volume).

Platelet Stimulation

(6) Stimulate previously resuspended platelets from step 5 in-vitro 
for 2 min by adding 10 µM TRAP (7.7 µL of 130 µM stock), 
or 2 µg/mL CRP-XL (2.8 µL of 0.07 µg/µl stock).
OPTIONAL: Alternatively, ADP can be added at this step, for 
example 5 µM or 20 µM ADP, as described before[3,4]. 

(7) Also other known platelet stimulators can be used at this 
point. An appropriate concentration should be determined 
experimentally beforehand.

CRITICAL: Wait 2 minutes before adding the antibody cock
tail to ensure proper platelet stimulation. 

(8) This protocol can be used to find different expression profiles 
of platelet subgroups and the overall platelet population in 
several settings. See Figure 2 for the analysis of the different 
platelet activators in 4 healthy donors. As expected, the acti
vation marker expression increases after stimulation. 
Furthermore, other differences between baseline and stimu
lated samples in healthy donors are shown. For example, 
according to previous studies, the expression of CD42a and 
CD42b receptors goes down after TRAP stimulation, while 
CD42a is also lower expressed after CRP-XL simulation[1,5].
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Figure 1. Graphical abstract. Schematic illustration of the CyTOF workflow. Steps 1 to 23 are indicated as bold and underlined characters. If not 
indicated differently, all centrifugation steps are carried out at RT with brake. × g: times gravity, TRAP: thrombin receptor-activating peptide, CRP-XL 
: collagen-related peptide, ADP: adenosine diphosphate, CAS: cell acquisition solution.
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Antibody Staining and Wash

(9) Add 50 μL antibody cocktail (cocktail is mixed according to 
the table in Appendix A of the “Maxpar Cell Surface Staining 
with Fresh Fix” protocol). Cells are stained for 30 min at 
room temperature.

OPTIONAL: Prepare the antibody mixture beforehand like 
previously described[6]. Signal loss and antibody aggregates 
can occur, therefore previously published protocols should be 
followed [7]. 

(10) Wash cells twice by adding 2 mL Maxpar CSB buffer to the 
suspension and centrifuged at 300 g for 5 min and the super
natant is carefully aspirated.

(11) The cell pellet gets resuspended by firstly adding EGTA to 
a final concentration of 1 mM and secondly adding 200 μL 
PBS buffer.

CRITICAL: Ensure the complete disruption of the pellet. 

Cell Fixation

(12) Prepare fresh 1.6% formaldehyde solution and add 1 mL to 
the cell suspension and incubate the cells overnight at 4°C.

OPTIONAL: Incubation can also take place for 10 minutes at 
RT. Both incubation periods (short and overnight) are 

Figure 2. A. Platelet reaction capacity. Median signal intensity increase of activation marker expression after 10 µM TRAP- (red, first row) or 2 µg/mL 
CRP-XL- stimulation (blue, second row) compared to non-stimulated platelets (baseline). Linear model analysis detected a higher expression of 
activation markers after CRP-XL stimulation. (α: signal increment slope coefficient; ns: non-significant. N = 11 healthy donors for TRAP, N = 10 
healthy donors for CRP-XL. B. Activation marker expression in baseline (red, N = 17), TRAP stimulated (green, N = 11) and CRP-XL stimulated 
(blue, N = 10) samples as well as C. relevant transmembrane receptor expression. The horizontal line within the box plot represents the median, the top 
and bottom the interquartile range (Q1–Q3), whisker bars indicate the largest observation that is less than or equal to the upper inner fence 
(UIF = Q3 + 1.5 × IQR) or the smallest observation that is greater than or equal to the lower inner fence (LIF = Q1–1.5 × IQR) and each dot 
represents the mean expression of one sample. N = 4 healthy donors.
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recommended by the state-of-the-art MaxPar protocol 
(Maxpar Cell Surface Staining with Fresh Fix) guideline. 

(13) Centrifuge at 800 g for 10 min (with break) and discard the 
supernatant carefully.

Iridium Staining

(14) Add 1 mL Maxpar Fix and Perm buffer and Cell-ID™ 
Intercalator-Ir—125 µM (1:1000) and incubate the suspen
sion for 1 h at room temperature.

OPTIONAL: Iridium staining can also be performed for up to 
48 h at 4°C before data acquisition. 

(15) Centrifuge the cells at 800 g for 5 min and discard the 
supernatant carefully.

(16) Resuspend the cells in 2 mL Maxpar CSB buffer and cen
trifuge the cells again for 5 min at 800 g and again discard 
the supernatant.

Cell Freezing

(17) The cells get resuspended in 1 mL 10% DMSO/ Fetal bovine 
serum (FBS). Samples can be stored at – 80°C until 
measurement.

(18) The freezing process at this point does not alter signal 
profiles. Please see Figure 4 for the comparative analysis 
of fresh versus frozen samples of two healthy donors.

CRITICAL: Freezing process may cause cell loss which makes 
it less suitable for methods using whole blood as these samples 
only have a low platelet count. By using PRP more than 
enough platelets are present even after several rounds of wash
ing after thawing the samples. 

Sample Preparation before Acquisition

(19) Thaw the samples on ice and centrifuge them down using 
a bench-top centrifuge for 10 sec before continuing.

(20) 1 mL of the sample is used and 2 mL CSB buffer is added 
into a 5 ml polypropylene tube. The suspension is centri
fuged at 800 g for 5 min and the supernatant is discarded. 
Repeat this wash step once.

(21) In the third wash step add 2 mL ddH2O/MilliQ water and 
centrifuge the sample at 800 g for 5 min and discard the 
supernatant.

(22) A fourth wash step with water can be performed if the signal 
at the machine shows artifacts or contamination.

(23) The sample is left pelleted at 4°C until measurement.

CyTOF Measurement

(24) Resuspend the pelleted sample in a 10% EQ beads in CAS 
(cell acquisition solution) solution in an approximate dilution 
of 1x 10^6 platelets/mL.

(25) Analyze samples on a Helios Mass Cytometer (Fluidigm 
Corporation, San Francisco, CA). We use the following 
parameters: lower convolution threshold 400, event length 
10–150, sigma 3, signal subtraction 0.

OPTIONAL: Adjust sample acquisition parameters according 
to the experiment. 

(26) Acquire up to 500,000 events per sample depending on the 
required bioinformatic analysis at a rate of 200–350 events/ 
sec. The acquisition of additional events is possible.

CRITICAL: In mass cytometry, higher cell numbers than in 
flow cytometry are needed for accurate performance of dimen
sionality reduction methods. Only with a high number of 
acquired events, meaningful platelet subclusters have the 
chance to be discovered. 

(27) After acquisition, normalize data using the Fluidigm software.

CyTOF Analysis

(28) Transfer normalized FCS data to your platform of interest.
(29) We recommend gating according to the Maxpar state-of-the- 

art (Approach to Bivariate Analysis of Data Acquired Using 
the Maxpar Direct Immune Profiling Assay) protocol. The 
recommended gaussian parameter clean-up procedure 
assures exclusion of noise, technical artifacts and ion fusion 
events. On top, CD41 and CD61 positive events are used to 
discriminate for platelets only as previously described[8].

CRITICAL: At this step it is important that enough cells have 
been acquired and that the washing process has been per
formed according to this protocol. Otherwise, high technical 
noise can be present which leads to the exclusion of many 
events and a high amount of cell loss. 

(30) Files need to be transformed before any further analysis. 
Kaluza, FlowJo, Cytobank (https://premium.cytobank.org/ 
cytobank/), OMIQ (https://www.omiq.ai/) or the R catalyst 
package (https://github.com/HelenaLC/CATALYST) can be 
used to transform data for subsequent analysis.

OPTIONAL: Compensation might need to be applied. 
Therefore, create a compensation matrix using catalyst as 
described previously[9]. The acquisition of single-stained sam
ples is necessary for this step. 

(31) For dimensionality reduction methods, Cytobank, OMIQ or 
R (catalyst, diffcyt) are preferable sources. Besides many 
others, these platforms offer algorithms like viSNE, diffu
sion map, FlowSOM and UMAP[10,11]. See Figure 3 for an 
exemplary viSNE analysis of one healthy donor.

CRITICAL: In the absence of bioinformatic knowledge, often
times clustering is performed ill-suited for platelets and other cell 
types. Most importantly, to assess differential expression of func
tional markers across clusters, they cannot be used for the cluster
ing process itself[12]. As typical lineage markers are lacking 
within the platelet populations, all platelet surface markers not 
associated with platelet activation are used for the generation of 
clusters. Markers used previously to gate for platelets (in this 
study CD41 and CD61) also should not be used for the clustering. 
If activation markers are taken into account, differences in terms 
of different “Islands” within the viSNE plots will only be visible 
between stimulated and non-stimulated samples. More robust 
and reliable results are achieved when following the best practice 
guidelines presented in this paper. 

(32) Differential expression analysis can be performed using the 
R packages diffcyt which is also available as a user-friendly 
shiny app (https://exbio.wzw.tum.de/cyanus/) with the possi
bility to use many differential expression analysis meth
ods[13].

Discussion

We present a structured and reliable method to stain and analyze 
platelets from PRP with CyTOF. This technique enables to record 
the expression of up to 40 markers at once which severely 
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improves simultaneous investigation of platelet protein expression 
heterogeneity.

PRP generation is a common technique in platelet research 
to concentrate platelets from peripheral blood minimizing the 
risk of contamination from other cells. It has been proven 
suitable for platelet research including reactivity studies [14– 
17]. Recently, PRP has also been used for the first time in mass 
cytometry studies examining platelet reactivity and investigat
ing platelet subtypes during SarsCoV2 infection and after 
BNT162b2 vaccination[8,18]. PRP generation from whole 
blood has been described by several groups before; with the 
use of the different platelet inhibitors it is quick, simple and 
reliable as it allows to avoid cell contamination and to maintain 
thrombocyte reactivity. The use of PRP in mass cytometry 
allows to save rather expensive CyTOF-antibodies in a high- 
concentrated platelet solution. On the contrary, staining whole 
blood, which is characterized by a low platelet concentration 
wastes cell material and antibodies leading to fewer recorded 
platelet events in longer time of measurement[1]. With our 
method along with following the state-of-the-art clean-up 

protocol using gaussian parameters (Maxpar protocol), it is 
possible to acquire 300,000 to 500,000 events which enables 
the investigation of extremely small platelet subgroups of the 
entire platelet population [19,20]. This is of particular impor
tance as platelets are, in comparison to other cells, a rather 
homogeneous group. Thus it is necessary to acquire a high 
number of cells in order to achieve the desirable power to 
perform suitable bioinformatic analyses.

Nevertheless, CyTOF allows for the first time investigation of 
platelet heterogeneity. When investigating disorders that require 
the analysis of large platelets like macrothrombocytopenia, 
a protocol that uses whole blood might be beneficial. 
Nonetheless, the use of PRP is the method of choice for several 
other cardiovascular diseases. We compared the pre-processing of 
our protocol to whole blood data from Spurgeon et al.[6]. and 
concluded that by using PRP instead of whole blood less cells are 
lost in the gating process which improves efficiency and quality 
(Supplementary Figures 1 and 2). While CyTOF protocols and 
workflows are usually made for other cell types, our protocol has 
been designed and optimized for platelets only and allows other 

Figure 4. Normalized smoothed densities of marker expression (arcsinh transformed) of A. Activation markers of TRAP-stimulated samples and 
B. Transmembrane receptor expression of baseline samples. Plots show the density curve for each of the four samples (2 fresh, 2 frozen, n = 2).

Figure 3. Multidimensional analysis of platelet subpopulations. viSNE plots of one exemplary donor are shown. Samples were stained with a metal- 
labeled antibody cocktail containing 21 markers. Color intensity refers to antigen expression (low [blue] or high [red]) and each dot represents a single 
platelet. viSNE = visual stochastic neighbor embedding.
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researchers to further investigate platelet heterogeneity with high 
power and resolution.

For CyTOF analysis in general and platelet analysis in parti
cular, we have developed the freely available analysis pipeline 
CYANUS[13] and an adaption which is built on analysis scripts 
previously employed in two CyTOF studies[8,18]. The analysis 
pipeline is based on diffcyt,[21,22] and presents an alternative to 
commercially available tools. Additionally, it offers the possibility 
to perform differential expression analysis between groups or 
conditions and introduces a novel analysis method CyEMD (a 
model-free approach using the earth mover’s distance). This 
method was specifically tailored for the characteristics of platelet 
markers which can show extreme zero-inflation that biases pre
viously existing methods[13].

CYANUS, which is included in this protocol, has been proven 
extremely useful to compare fresh versus frozen platelet samples 
and to rule out that the freeze-thawing process impairs the protein 
expression signal (Figure 4).

The presented freezing process offers the possibility to delay 
the measurement and to accumulate samples, reducing the batch 
effect by acquiring all samples in the same run[23]. This approach 
has been proven useful in several studies using other cell types 
[6,24]. In our experience, freezing in DMSO/FBS lowers the 
chances of cell clots that could alter and complicate sample 
analysis. Therefore, acquisition time can possibly be decreased 
using DMSO/FBS.

We acknowledge that CyTOF protocols for platelets, originally 
developed for other cell types, still require further improvements. 
The proposed antibody panel (Supplemental table 1) requires 
expansion. However, to date, only a small number of platelet 
antibodies is commercially available and applicable for CyTOF 
and the validation of suitable antibodies is resource demanding. 
Of equal importance would be the extension of the platelet anti
body panel to intracellular markers. Although they would prob
ably require an additional cell permeabilization step, they would 
expand the possibilities to discover further, yet unknown platelet 
subgroups.

Conclusion

We present a structured and reproducible method to prepare, 
stain, and acquire platelets from platelet-rich-plasma as well as 
to decipher and analyze platelet expression heterogeneity using 
a Helios mass cytometer. Our described method provides a tool 
that allows to detect and further characterize unknown platelet 
subgroups among the heterogeneous human platelet pool.
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3.3.1 Summary and Author Contributions

Summary

As increased cardiovascular events and abnormal coagulation parameters were reported

during SARS-CoV-2 infection, we aimed to investigate platelets from COVID-19 patients. In

this study, we compared platelet transmembrane receptor and adhesion marker expression

from 8 hospitalized COVID-19 patients to 11 healthy donors. Therefore, we investigated

platelets at baseline level and after in vitro TRAP-stimulation using mass cytometry by time of

flight (CyTOF). Our customized antibody panel consisting of 21 surface proteins allowed the

largest investigation of platelets using CyTOF to date. In line with the clinical observations,

we detected an increased reactivity of platelets from COVID-19 patients as they expressed

activation markers P-Selectin and LAMP-3, as well as several adhesion markers involved

in platelet-platelet or platelet-leukocyte interactions significantly higher than platelets from

healthy donors. Although a higher expression of activation markers in COVID-19 patients

was also detected after TRAP-stimulation, the overall platelet reaction capacity was lower

than in the healthy donors. This impaired reaction capacity as well as the high baseline

reactivity of platelets in COVID-19 patients suggest a hyperreactive platelet phenotype during

SARS-CoV-2 infection. Our findings are in compliance with other researchers aiming to

59



3 Publications

investigate benefits of antiplatelet therapy in COVID-19 patients.
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SARS-CoV-2 infection is associated with a
pro-thrombotic platelet phenotype
Dario Bongiovanni 1,2,3, Melissa Klug 1,2,4, Olga Lazareva4, Simon Weidlich5, Marina Biasi1, Simona Ursu6,
Sarah Warth6, Christian Buske6,7, Marina Lukas5, Christoph D. Spinner5, Moritz von Scheidt2,8, Gianluigi Condorelli3,
Jan Baumbach4, Karl-Ludwig Laugwitz1,2, Markus List4 and Isabell Bernlochner 1,2

Abstract
Novel coronavirus disease 2019 (COVID-19) is associated with a hypercoagulable state, characterized by abnormal
coagulation parameters and by increased incidence of cardiovascular complications. With this study, we aimed to
investigate the activation state and the expression of transmembrane proteins in platelets of hospitalized COVID-19
patients. We investigated transmembrane proteins expression with a customized mass cytometry panel of 21
antibodies. Platelets of 8 hospitalized COVID-19 patients not requiring intensive care support and without pre-existing
conditions were compared to platelets of healthy controls (11 donors) with and without in vitro stimulation with
thrombin receptor-activating peptide (TRAP). Mass cytometry of non-stimulated platelets detected an increased
surface expression of activation markers P-Selectin (0.67 vs. 1.87 median signal intensity for controls vs. patients,
p= 0.0015) and LAMP-3 (CD63, 0.37 vs. 0.81, p= 0.0004), the GPIIb/IIIa complex (4.58 vs. 5.03, p < 0.0001) and other
adhesion molecules involved in platelet activation and platelet–leukocyte interactions. Upon TRAP stimulation, mass
cytometry detected a higher expression of P-selectin in COVID-19 samples compared to controls (p < 0.0001).
However, we observed a significantly reduced capacity of COVID-19 platelets to increase the expression of activation
markers LAMP-3 and P-Selectin upon stimulation with TRAP. We detected a hyperactivated phenotype in platelets
during SARS-CoV-2 infection, consisting of highly expressed platelet activation markers, which might contribute to the
hypercoagulopathy observed in COVID-19. In addition, several transmembrane proteins were more highly expressed
compared to healthy controls. These findings support research projects investigating antithrombotic and antiplatelet
treatment regimes in COVID-19 patients, and provide new insights on the phenotypical platelet expression during
SARS-CoV-2 infection.

Introduction
Despite severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2)’s worldwide spread, little is known about
the pathophysiological mechanisms leading to multiorgan

damage in coronavirus disease 2019 (COVID-19). A
hypercoagulable state with increased incidence of cardi-
ovascular complications and venous thrombotic events
has been reported in several studies1–7. Abnormal coa-
gulation parameters are observed in hospitalized patients
and are associated with poor prognosis8–10. Interestingly,
two studies reported in COVID-19 alterations in platelet
transcriptome and proteome, and an increased platelet
reactivity11,12. A recent study described the presence
microvascular thrombi in lung, heart and kidney con-
taining neutrophil extracellular traps (NETs) in severe
SARS-CoV-2 infection, as well as circulant neutrophil-
platelet aggregates and immunothrombotic dysregulation,

© The Author(s) 2021
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Dario Bongiovanni (bongiovanni@tum.de) or
Isabell Bernlochner (Isabell.bernlochner@tum.de)
1Department of Internal Medicine I, School of Medicine, University hospital
rechts der Isar, Technical University of Munich, Munich, Germany
2German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart
Alliance, Munich, Germany
Full list of author information is available at the end of the article
These authors contributed equally: Dario Bongiovanni, Melissa Klug
These authors jointly supervised this work: Markus List, Isabell Bernlochner
Edited by A. Stephanou

Official journal of the Cell Death Differentiation Association

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;



which changes with disease severity13. Recently, a com-
putational system’s medicine platform identified as new
drug target several proteins involved in the coagulation
cascade14,15. However, the role of platelet activation and
changes of transmembrane receptor expression in
COVID-19-induced coagulopathy still needs to be further
investigated.
Platelets not only play a pivotal role in vascular

hemostasis but are also involved in immune response,
tumor progression, and other inflammatory processes16.
They are activated during sepsis and in septic shock, and
antiplatelet therapy has been suggested as a novel strategy
to prevent organ damage17. In fact, in the presence of
severe infections or cytokine storms18,19, platelet hyper-
reactivity may be responsible for major cardiovascular
adverse events20. Viral infections are known to be asso-
ciated with coagulation disorders21. Interestingly, an
increased incidence of acute coronary syndrome has been
observed after influenza infection22, suggesting that viral
diseases could trigger platelet activation leading to car-
diovascular complications. Moreover, viral-induced coa-
gulopathies have been already observed in SARS-CoV-1
infection including thrombocytosis, disseminated intra-
vascular coagulation, and thromboembolism23,24. In this
study, we investigated the expression of platelet trans-
membrane receptors and adhesion molecules at baseline
level and after in vitro platelet stimulation in hospitalized
COVID-19 patients without pre-existing conditions and
in healthy donors using mass cytometry by time of flight
(CyTOF). Here we present the largest existing CyTOF
panel of platelet antibodies specifically developed to
investigate platelet activation and adhesion (Table 1).

Methods
Data and code availability
All mass cytometry data have been made available at

flowrepository.org and can be accessed at repository ID FR-
FCM-Z2MT. The scripts used in this analysis have been
deposited at github.com and can be accessed at https://
github.com/biomedbigdata/SARS-CoV-2-platelets-analysis.

Study design and participants
SARS-CoV-2-infected patients hospitalized at the Kli-

nikum recht der Isar, Munich, Germany, between March
and May 2020 with symptomatic COVID-19 not requiring
intensive care unit admission and without known pre-
existing conditions were recruited in our study and
compared to an asymptomatic control cohort of healthy
donors. Inclusion criteria for the COVID-19 group were a
symptomatic (dyspnea) SARS-CoV-2 infection confirmed
by a positive reverse-transcription PCR assay from any
respiratory specimen or IgM antibodies in peripheral
blood, age between >18 and <70 years, and written
informed consent.

Exclusion criteria were known platelet dysfunctions,
relevant thrombocytopenia (<100 G/l) or thrombocytosis
(>500 G/l), impaired renal function (glomerular filtration
rate < 60ml/min), hemoglobin < 10g/dl, leukocytes < 1 G/l,
any known pre-existing condition except arterial hyper-
tension, any medication except antihypertensive drugs,
and a history of hematological neoplasia including active
lymphoma, mental impairment, or pregnancy.
Blood samples were collected from patients within the

first 36 h after admission. As a control group, we recruited
a healthy and asymptomatic cohort of donors. All healthy
donors were tested negative for SARS-CoV-2 IgG and

Table 1 Mass cytometry panel.

Antigen Common name Biological function

CD107a LAMP-1 Cell adhesion, activation marker

CD141 Thrombomodulin Thrombin-binding protein

CD154 CD40L, CD40 ligand Regulation of platelet–leukocyte

interactions

CD29 Integrin subunit β1 Fibronectin and collagen receptor

subunit

CD3 TCR–CD3 complex Adaptive immune response,

negative control

CD31 PECAM-1 Cell adhesion

CD36 GPIV Thrombospondin receptor, cell

adhesion

CD40 TNFRSF5 Mediates immune and inflammatory

responses

CD41 Integrin αIIb, GPIIb α-Unit of fibrinogen receptor

CD42a GPIX Von Willebrand factor receptor unit

CD42b GPIbα Von Willebrand factor receptor unit

CD47 MER6 adhesion receptor for THBS1 on

platelets

CD61 Integrin β3, GPIIIa β-Unit of fibrinogen receptor

CD62P P-Selectin Cell adhesion, activation marker

CD63 LAMP-3 Cell adhesion, platelet

activation marker

CD69 CLEC2C Signal transmission in NKCs and

platelets

CD9 Tetraspanin-29 Cell adhesion, integrin binding

F2R Par1 Thrombin receptor

GPVI Platelet glycoprotein 6 Collagen receptor

GPIIbIIIa GPIIb/GPIIIa complex GPIIb/GPIIIa complex-specific

antibody

PEAR1 JEDI Platelet endothelial aggregation

receptor
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IgM, were followed up, and did not develop any symp-
toms in the weeks following the recruitment. Throughout
the entire study design, patients’ samples were handled
together with control samples. The study complied to the
Declaration of Helsinki, was approved by the local ethics
committee (approval numbers 147/20 and 352/18), and all
participants provided written informed consent.

Sample collection and preparation
Peripheral venous blood was collected in citrate tubes

and immediately processed to produce platelet-rich
plasma (PRP) as described before25,26. CyTOF staining
assay was performed according to the manufacturer’s
protocols. Briefly, 600 µl PRP previously inhibited by a
mixture of 0.6 U Apyrase/ml, 20 mM of HEPES, and
1mM EGTA was diluted in phosphate-buffered saline
(PBS) pursuant to the gold standard protocol for mass
cytometry (Fluidigm, San Francisco, CA, USA) to a final
concentration of 105 platelets/µl. The PRP was stained
with 5 µM Cell-IDTM Cisplatin (Fluidigm) for 5 min and
then washed with 5ml MaxPar Cell Staining Buffer
(Fluidigm). After centrifugation, cells were resuspended in
50 µl Cell Staining Buffer. Two samples were prepared
from each donor: one baseline sample (non-stimulated
platelets) and one sample stimulated with 10 µM throm-
bin receptor-activating peptide (TRAP). TRAP addition
was followed by a 2min incubation at room temperature.
In the same cell suspensions platelets were stained with
50 µl of the custom-made CyTOF-antibody panel in Cell
Staining Buffer for 30min (containing anti-CD3-170Er,
anti-CD9-171Yb, anti-CD29-156Yb, anti-CD31-145Nd,
anti-CD36-152Nd, anti-CD40-142Nd, anti-CD41-89Y,
anti-CD42a-141Pr, anti-CD42b-144Nd, anti-CD47-209Bi,
anti-CD61-146Nd, anti-CD62P-161Dy, anti-CD63-
150Nd, anti-CD69-162Dy, anti-CD107a-151Eu, anti-
CD141-166Er, anti-CD154-168Er, anti-GPVI-175Lu, anti-
GPIIb/GPIIIa complex-155Gd, anti-Par1-147Sm, and
anti-PEAR-147Sm; see Supplemental Material for anti-
body information). After washing twice with 2 ml Cell
Staining Buffer at 300 g for 5 min, cells were fixed over-
night at 4 °C in 1ml of 1.6% Formaldehyde. After fixation,
cells were pelleted at 800 × g for 10 min, the supernatant
was aspirated and removed. Then, cells were gently vor-
texed and resuspended in the residual volume (~50 µl)
and incubated with 125 nM Iridium in 1ml MaxPar Fix
and Perm Buffer (Fluidigm) for 1 h following the manu-
facturer’s protocol (Fluidigm). Afterwards, they were
centrifuged at 800 × g for 5 min, then washed with 2ml
Cell Staining Buffer at 800 g for 5 min, then frozen in 10%
dimethyl sulfoxide (DMSO) in fetal bovine serum until
acquisition27. After thawing the samples, they were
washed twice with Cell Staining Buffer and once with
water at 800 × g for 5 min to eliminate DMSO remnants.
Cells were then handled according to the manufacturer’s

protocol. Prior to measurement, cells were diluted to a
final concentration of 103 platelets/µl before addition of
EQ calibration beads. Cells were measured using a Helios
mass cytometer (Fluidigm). Throughout the study,
patients’ samples were measured with at least one control
sample to reduce batch effect. In total, 476,756 ± 151,746
events were acquired at a rate of 300–500 events
per second. Experiments were carried out by the same
scientist and antibodies were from the same lot. See
Supplemental Material for a complete reagent list.

Mass cytometry
CyTOF allows multidimensional relative protein quan-

tification for single-cell datasets and we adapted it for
platelets using a customized mass cytometry panel of
21 antibodies (Table 1). For custom-made antibody con-
jugations, 100 mg of carrier-free antibody was coupled to
metal-labeled X8 polymer according to the manu-
facturer’s instructions (Fluidigm). Briefly, using the
MaxPAR antibody conjugation kit (Fluidigm) following
the manufacturer’s recommended protocol, six antibodies
were conjugated to isotopically enriched lanthanide
metals. After labeling, the antibodies were stored in an
antibody stabilization buffer (Boca Scientific, Westwood,
MA, USA) at 4 °C. The other antibodies were pre-con-
jugated, CyTOF-ready, and commercially available (Flui-
digm Sciences). Please see the Supplemental Materials for
the reagent list. All custom-conjugated antibodies were
validated with calibration beads. In detail, 0.5 µl of the
conjugated antibody was added to one drop of beads and
incubated for 15 min. After two washing steps with 1.5 ml
PBS at 300 × g for 10 min, the mixture was washed twice
with de-ionized water at 300 × g for 10 min, and resus-
pended in 200 µl water until acquisition.

CyTOF processing
After acquisition, samples were cleaned up according to

the latest standard of data pre-gating (Fluidigm) using the
Cytobank™ software (www.cytobank.org, Beckman-Coul-
ter, Brea, CA, USA)28. To avoid leukocyte contamination,
we gated the acquired events for platelet-specific markers:
only CD41 (GPIIb)- and CD61-(GPIIIa) positive events
were selected for further analysis and defined as platelets
(Supplemental Fig. I). CD3 marker was included in
the panel as an additional negative control (Supplemental
Fig. II).

Computational analysis
All models were built and assessed using the statsmodels

v0.11.1 python package29. CyTOF data were processed
using Cytobank and analyzed using R 4.0 (R Development
Core Team, 2005) and Python 3.6 (Python 3 Reference
Manual, 2009). For visualization of activation markers in
reduced dimensions, we performed uniform manifold
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approximation and projection based on 16 markers
(excluding the activation markers) using the CATALYST
v1.12.1 R package. To account for differences in coverage
between samples, we randomly sampled the minimum
number of events acquired (41,525 events per sample,
Fig. 1). Following standard practice for differential marker
expression in CyTOF30, we built mixed-effect linear models
for the TRAP-stimulated and non-stimulated sample
groups, respectively. We considered the sample-wise med-
ian signal intensity as dependent variable, disease status as

fixed and patient IDs as random effect, i.e., each patient has
a different intercept. Furthermore, we built a linear model
for all samples (TRAP-stimulated and non-stimulated) with
an interaction term to assess whether activation is sig-
nificantly affected by disease status. P-values of model
coefficients were corrected for multiple hypothesis testing
using the Benjamini–Hochberg method (false discovery
rate < 0.05)31.

Differential analysis of overall marker expression
Statistical significance is evaluated based on regression

analysis. To estimate whether the sample-wise median
expression of a marker is significantly different between
COVID-19 patients and healthy controls, the following
linear mixed-effect model was used:

Y ij ¼ β0j þ βcj xci þ γ i þ ϵij ð1Þ

where Yij is the median expression of the j-th marker for
i-th patient, xci is a binary variable indicating if a patient
i belongs to case or control group, and γ i � N 0; σ2

i

� �
is a

random intercept for each patient. The latter allows us to
disentangle within-sample and within-group variance.
Slope coefficients βcj were tested for significance of the

linear relationship between the independent variable xc
and the dependent variable Y:

H0 : βcj ¼ 0 ð2Þ
H1 : βcj ≠ 0

Difference in TRAP stimulation effect for COVID-19
patients
To analyze if a higher expression of activation markers

in COVID-19 quiescent platelets is coupled with a
reduced capacity to react upon activation stimuli, we
compared slope coefficients for the covariate that corre-
sponds to activation for cases and controls separately.
We used the following model for healthy controls:

Yhj ¼ β0j þ βajxah þ γh þ ϵhj ð3Þ

where h belongs to a set of indices for all healthy controls
and xah is a binary variable that indicates if a sample h was
TRAP-stimulated or not. We computed a set of slopes βaj
that show an average linear increase in expression after
activation for every marker j.
A similar model was used for COVID-19 patients:

Ypj ¼ β0j þ βajxap þ γp þ ϵpj ð4Þ

where p belongs to a set of indices for all COVID-19
patients. Although we can compare βa coefficients from the

Fig. 1 Activation marker expression in non-stimulated platelets.
Uniform manifold approximation and projection (UMAP) after equal
random sampling from each sample and scaled, arcsinh-transformed
expression [0–1] for each activation marker colored according to the
expression level: A P-Selectin, B LAMP-3, and C LAMP-1, N= 8 COVID-
19 patients, 11 healthy donors.
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model (3) and model (4) directly, we cannot conclude if the
difference between slope coefficients is statistically signifi-
cant. To evaluate if there is a statistically significant
difference in the reaction to TRAP stimulation between
patients and controls, we used a single model with an
interaction effect term. Significance of the Interaction effect
means that activation status and patient condition (disease
or control) combined have a significantly larger effect on
median signal intensity as compared to the sum of the
individual factors alone. Formally, this results in the
following model:

Y ij ¼ β0 þ βaxaij þ βcxcij þ βintijxintij þ γ i þ ϵij ð5Þ

where xint is an interaction term defined as xa × xc. The
slope coefficient for the interaction βint was then tested
for statistical significance as shown in Eq. (2).

Clustering analysis: FlowSOM algorithm
Automated clustering analysis was done using the

FlowSOM algorithm32. After gating (Supplemental Fig. I),
data were compensated, transformed with an estimated
logical transformation, and scaled. Cells were assigned to a
10 × 10 self-organizing map and then metaclustering in 12
clusters was performed. The number of clusters was
selected based on relative change in area under the
cumulative distribution function curve that indicated that
cells stratification in more than 12 clusters cannot improve
the clustering results. For each cluster-marker pair, a p-
value was computed using a linear mixed-effect model:

Y ij ¼ β0 þ βcjxci þ γ i þ ϵij ð6Þ

where Yij is the median expression of the j-th marker for
i-th cluster, xci is a binary variable indicating if cell
population Yij belongs to case or control group, and γ i �
N 0; σ2

i

� �
is a random intercept for each cell subpopula-

tion. Slope coefficients βcjwere tested for significance of
the linear relationship between the independent variable
xc and the dependent variable Y.

Results
Study population characteristics
Eight hospitalized symptomatic COVID-19 patients

without pre-existing conditions requiring oxygen support
were recruited and compared to a cohort of 11 asymp-
tomatic healthy donors, tested negative for SARS-CoV-2
(mean age COVID-19: 51.4 ± 11.7, controls: 44.7 ± 13.0,
p= 0.27; male COVID-19 62.5%, controls: 45% p= 0.49).
Seven patients showed typical COVID-19 pulmonary
lesions in chest computed tomography. Patients were
admitted through the emergency department and moved
to normal wards due to dyspnea. During the hospitaliza-
tion, one patient was transferred to an intermediated care

unit (2 days after blood collection) for a few hours, for the
purpose of monitoring due to respiratory deterioration.
No patient required assisted ventilation and all were dis-
charged in good condition (average hospitalization 9.5 ±
6.3 days). No major adverse events (bleeding and
thromboembolic events) were reported. All admitted
patients were not under regular medication, except one
with two antihypertensive medications: amlodipine and
valsartan. For a detailed description of the study popula-
tion, see the Supplementary Table 1.

Platelet surface receptor and adhesion molecule
expression in non-stimulated platelets
Compared to healthy controls, non-stimulated platelets

of COVID-19 patients showed a significantly higher
spontaneous expression of specific platelet activation
markers (Fig. 1), such as P-Selectin (0.67 vs. 1.87 median
signal intensity for healthy donors vs. patients, p= 0.0015)
and LAMP-3 (0.37 vs. 0.81 median signal intensity, p=
0.0004, Fig. 2a), as well as the the GPIIb/IIIa complex
(4.58 vs. 5.03 median signal intensity, p < 0.0001). In
addition, we detected a higher spontaneous expression of
some constitutive receptors and adhesion molecules
involved in platelet activation and aggregation in COVID-
19 platelets, such as the transmembrane integrins GPIIb
(p= 0.0001) and GPIIIa (p < 0.0001), as well as the gly-
coproteins GPIbα (p= 0.0086) and GPIX (p= 0.0126,
Fig. 2b). The expression level of all other activation
markers and adhesion molecules are shown in Supple-
mental Fig. II.

Diseased platelet reactivity after TRAP stimulation
To further investigate platelet reactivity, we stimulated

the collected platelets with 10 µM TRAP. Upon TRAP
stimulation, mass cytometry also detected a significantly
higher expression of the platelet activation marker P-
selectin in samples of COVID-19 patients compared to
healthy controls (p= 0.0176), but LAMP-3 did not show
significant differences (p= 0.40, Fig. 3a). Interestingly, the
GPIIb/GPIIIa complex remained upregulated in COVID-
19 patients after TRAP stimulation (p < 0.0001). Similar to
non-stimulated platelets, we also observed a higher
expression level for the integrins GPIIb (p < 0.0001),
GPIIIa (p= 0.0009), as well as for the glycoproteins
GPIbα in TRAP-stimulated platelets compared to healthy
controls (p < 0.0001, Fig. 3b). In Table 2, we provide a
complete result list of markers tested.
To assess the reaction capacity of platelets upon sti-

mulation, we compared the expression of activation
markers before and after stimulation with TRAP. Inter-
estingly, we observed a significantly reduced capacity of
COVID-19 platelets to increase the expression of the
activation markers LAMP-3 and P-Selectin (p= 0.04 and
p= 0.04, respectively) upon stimulation (Fig. 4).
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Discussion
We analyzed the expression of activation markers and

transmembrane receptors in platelets of hospitalized
stable COVID-19 patients without pre-existing conditions
and without anticoagulants or antiplatelet drugs (except
prophylactic low-molecular-weight heparin during hos-
pitalization). As a major result, we detected significant
higher levels of the platelet activation markers P-Selectin
and LAMP-3 compared to controls, as well as significantly
higher levels of the transmembrane proteins GPIIb/
GPIIIa complex, GPIbα, GPIX, CD9, and CD40. After
TRAP stimulation, platelets of COVID-19 patients
showed significantly higher levels of the collagen receptor

GPVI, whereas the receptor PEAR1 showed lower levels
in COVID-19. These findings indicate the presence of a
hyperactivated phenotype of platelets during SARS-CoV-
2 infection, which might contribute to the hypercoagu-
lopathy observed in COVID-19 and might influence dis-
ease progression. The adhesion protein P-Selectin
translocates to the plasma membrane upon activation and
regulates platelet–leukocyte interactions resulting in
activation of neutrophil integrins and inducing NETs
formation33,34. Moreover, platelet–leukocyte interaction
may trigger the tissue factor expression as recently
described in severe COVID-1935. P-Selectin expression
together with the upregulation of the integrins GPIIb

Fig. 2 Marker expression in non-stimulated platelets. Median signal intensity of activation markers (A) and relevant transmembrane proteins
(B) in non-stimulated platelets. COVID-19 patients are plotted in red, whereas controls are plotted in blue. The horizontal line within the box plot
represents the median, the top and bottom the interquartile range(Q1–Q3), whisker bars indicate the largest observation that is less than or equal to
the upper inner fence (UIF=Q3+ 1.5 × IQR) or the smallest observation that is greater than or equal to the lower inner fence (LIF=Q1–1.5 × IQR)
and the circles indicate outliers, if present; *P < 0.01. N= 8 COVID-19 patients, 11 healthy donors.
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(CD41) and GPIIIa (CD61), and the subunits of the von
Willebrand receptor GPIbα and GPIX, known to regulate
platelet–leukocyte interactions, may contribute to the
COVID-19 inflammatory response33,36. Consistent with
our data, Manne et al.11 recently reported a higher surface
expression of P-Selectin and higher levels of circulating
platelet–leukocyte aggregates in COVID-19 patents.
Moreover, the study showed a faster platelet aggregation
and increased spreading on fibrinogen and collagen in
COVID-19 patients compared to controls. The higher
surface expression of integrins and adhesion protein
detected in our study may provide a first mechanistic
explanation to these findings.

To further investigate platelet reactivity in COVID-19, we
induced platelet activation with TRAP, which activates
platelets by thrombin signaling. After activation, we
detected significantly higher levels of platelet activation
markers P-Selectin and GPIIb/GPIIIa complex but not
LAMP-3 in COVID-19 patients compared to healthy con-
trols. Interestingly, we observed a decreased activation
capacity in platelets of COVID-19 patients compared to
controls, suggesting that the chronic platelet activation
during SARS-CoV-2 correlates with an altered reactivity
upon stimuli, which is possibly due to an higher activation
level at rest in COVID-19 (Fig. 4)8,33. Of note, CD40 ligand
(CD154) expression did not provide informative data: signal

Fig. 3 Marker expression in TRAP-stimulated platelets. Median signal intensity of activation markers (A) and relevant transmembrane proteins
(B) in TRAP-stimulated platelets (10 µM TRAP). COVID-19 patients are plotted in red, whereas controls are plotted in blue. The horizontal line within
the box plot represents the median, the top and bottom the interquartile range (Q1–Q3), whisker bars indicate the largest observation that is
less than or equal to the upper inner fence (UIF=Q3+ 1.5 × IQR) or the smallest observation that is greater than or equal to the lower inner fence
(LIF=Q1–1.5 × IQR) and the circles indicate outliers, if present; *P < 0.01. N= 8 COVID-19 patients, 11 healthy donors.
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increased after TRAP stimulation but we did not detected
any differences among groups (Supplemental Fig. II).
Subgroups investigations using FlowSOM analysis

detected some differences in platelet activation patterns
between healthy donors and COVID-19 patients (Sup-
plemental Fig. III). However, as shown in Fig. 1, we did
not find any defined and distinct subgroups, highlighting
the lower heterogeneity of platelets compared to other
cells in peripheral blood. Nonetheless, the FlowSOM trees
shown in Supplemental Fig. III report a different activa-
tion pattern in COVID-19 patients compared to controls
involving different platelet subgroups. Further studies are
needed, to dissect the role of platelet heterogeneity in
COVID-19 platelet activation.
Although the pathophysiological mechanisms behind the

high incidence of thromboembolic events in hospitalized
COVID-19 patients remain unclear, our data describe with
high resolution the presence of activated platelets, which
may provide one explanation for COVID-19 coagulopathy
and suggests platelet inhibition as a possible therapeutic
option in COVID-19 patients. Our data are consistent with

previous studies reporting an immunothrombotic dysre-
gulation as a typical marker of SARS-CoV-2 infection11,13.
However, the key drivers behind platelet activation in
COVID-19 remain to be determined. SARS-CoV-2 tropism
for thrombocytes has not been proven yet and platelet
activation may be induced by infected endothelium as well
as by the cytokine storm occurring during SARS-CoV-2
infection37. Clinical trials investigating empirically different
anticoagulation schemes and antiplatelet therapies are
ongoing worldwide, and may provide more insights con-
cerning the clinical relevance of antithrombotic regimes for
COVID-19 patients38.
A strength of our analysis is the simultaneous mea-

surement in a healthy control group, minimizing the risk
that the observed higher platelet activation in COVID-19
was due to procedural biases. In addition, we restricted
our measurements to stable COVID-19 patients not
requiring supported respiration or extracorporeal perfu-
sion, which may induce non-disease associated platelet
activation. A further strength of our study consists in the
high-resolution achieved by our measurements using

Table 2 Median signal intensity and p-values of CyTOF panel.

Non-stimulated TRAP-stimulated

Controls COVID-19 p-Value Controls COVID-19 p-Value

CD41 1.8856 2.3906 0.0001 1.877 2.5435 <0.0001

CD40 0 0.0308 0.0005 0 0.0612 0.915

CD42b 3.2253 3.6501 0.0086 3.1198 3.4849 <0.0001

CD31 2.2122 2.5058 0.0522 2.1849 2.5 0.2388

CD61 2.3059 2.8594 <0.0001 2.2974 2.9396 0.0009

PAR1 1.2734 1.4094 0.1697 1.2733 1.3221 0.7218

CD63 0.347 0.8061 0.0004 1.9609 2.0531 0.4026

CD107a 0 0.0322 1 0.3622 0.6348 0.2114

CD36 2.928 3.2467 0.4988 2.8899 3.2625 0.2388

GPIIb/GPIIIa complex 4.5825 5.0363 <0.0001 4.5809 5.1493 0.0176

CD29 3.8587 4.0407 0.0761 3.8499 4.0422 0.2077

CD62P 0.6714 1.8705 0.0015 4.0868 4.3855 <0.0001

CD69 1.8559 2.0478 0.0002 2.1615 2.2371 0.0326

CD141 0 0 1 0 0 0.3288

CD154 0 0 1 0.2288 0.2188 0.8033

CD3 0 0 1 0 0 1

CD9 4.2401 4.6766 0.001 4.2612 4.7279 0.0176

PEAR 1.5399 1.2474 0.0039 1.8075 1.41 <0.0001

GPVI 3.3737 3.3506 0.4884 3.4984 3.3675 0.0176

CD47 2.3005 2.7849 0.0015 2.3625 2.9007 0.0555

CD42a 3.4665 3.7047 0.0126 3.3374 3.5062 0.2077
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mass cytometry, avoiding the spectral limitation of flow
cytometry and allowing the measurements of 21 markers
at single-cell level with virtually no overlapping.
Limitations of this study consist in the limited number

of patients and in its ex vivo observational nature: our
research was limited to the phenotypical observation of
platelet surface receptor expressions and we did not assess
the pathophysiological mechanisms triggering platelet
activation. In fact, other pathways including the cytokine
storm and the pro-inflammatory state during SARS-CoV-
2 infection may play a relevant role in COVID-19 coa-
gulopathy. Moreover, we did not include patients with
non-COVID-19 inflammation and/or other types of vir-
emia (e.g. influenza or other respiratory viruses) as an
additional control group. Thus, we cannot quantify the
severity of platelet activation in COVID-19 comparing it
with other pathological settings. Nevertheless, here we
provide the first mass cytometric analysis of platelets in
COVID-19 and our results provide the basis for further
research regarding pathways of platelet activation in
COVID-19 patients as well as for further investigations of
platelet biology in other pathological settings.
In conclusion, mass cytometry of COVID-19 patients

revealed higher expression levels of platelet activation
markers and adhesion proteins compared to healthy
controls. These findings provide new insights into
COVID-19 coagulopathy and support research projects
investigating antithrombotic and antiplatelet treatment
regimes in COVID-19.
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Fig. 4 Platelet reaction capacity. Median signal intensity increase of
activation marker expression after TRAP stimulation (10 µM) compared
to non-stimulated platelets (baseline). Linear model analysis detected
a reduced capacity of COVID-19 patients to increase expression of
activation markers LAMP-3 and P-Selectin (p= 0.04 and p= 0.04) after
TRAP stimulation. A P-Selectin, B LAMP-3, C LAMP-1. α: signal
increment slope coefficient (for details see Methods); ns:
nonsignificant. N= 8 COVID-19 patients, 11 healthy donors.
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4 Discussion

During the course of my PhD I developed reproducible protocols for the sorting of RPs and

for the mass cytometric analysis of platelets from healthy donors. This was of particular

importance as these protocols allowed me to characterize the biology of immature platelets

for the first time and to decipher the heterogeneity of human platelets further. In the wake of

the COVID-19 pandemic, I investigated platelets from COVID-19 patients in comparison to

healthy donors using mass cytometry. The main findings of this study were the discovery

of a hyper-reactive platelet population and a dysfunctional reactivity pattern of platelets in

COVID-19 patients compared to healthy donors.

Here, I focus on the challenges of fluorescence activated cell sorting of RPs, which lay

the foundation of RNA extraction and platelet subgroup analysis using RNA-sequencing.

Moreover, advantages and limitations of platelet mass cytometry analysis using PRP are

discussed. Previously published data on RNA-sequencing and CyTOF analysis from platelets

of healthy donors are included to evaluate the functionality of both developed protocols.

Finally, also the COVID-19 specific platelet research will be discussed and emphasize the

need of platelet CyTOF analysis.

4.1 Sorting

Sorting and the subsequent magnetic-based isolation of RPs in a standardized manner allows

the use of downstream applications to examine the biology of RPs. This is of specific clinical

interest, as the biological reasons behind the RPs correlation with the prediction of adverse

cardiovascular events and mortality are not fully understood [165, 182].
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Due to the absence of platelet subtype specific markers, the isolation of RPs is currently only

possible by gating platelets according to their RNA amount. The specificity of TO binding to

RNA was proven in an experiment part of publication 1 using RNase and saponin. Saponin

is used to permeabilize the cell membrane by creating holes [233, 234]. Through these, RNase

can enter the cell and digest RNA [31, 235, 236]. Subsequent staining with TO resulted in less

to no signal as most RNA has been digested previously. While the use of other nucleic acid

dyes like SYTO 13 have been suggested by other researchers, a validation with RNase and a

cell permeabilization reagent is still missing [237]. Therefore, the most accurate sorting after

RNA content is currently only possible using TO. While other researchers have examined a

TO-stained and gated RPs population from whole blood [238, 239, 240], we were the first to

sort RPs based on TO-staining. Nonetheless, RNA has also been extracted and sequenced

from “RPs” after SYTO13 staining, although validation of RNA specificity is still lacking. In

this SYTO13 study, several transcripts involved in platelet activation were found upregulated

in “RPs” [176].

In the past, staining with TO has already been shown to be RNA specific in platelets but

has been used in several different concentrations [171, 241, 170]. In publication 1, I showed

a reproducible method for staining with TO, which usually results in a 2:1 (v/v, TO/PRP)

solution. TO staining of whole blood has not been shown to be suitable for platelet isolation,

mainly due to the limited platelet amount. While the use of PRP results in a higher available

platelet population [242], using only several micro liters of whole blood does not offer

enough platelets for separation. As RNA sequencing analysis requires good quality and RNA

concentration, around 6 to 10 million platelets need to be sorted. This amount can only be

reached using PRP. On the other hand, an advantage of platelet staining in whole blood is

the shorter time of the workflow. As platelets are a challenging substrate, the experimental

timetable has to be as short as possible. Platelets tend to aggregate upon activation which

can occur from the exposure to cold temperature [243, 244, 245], shaking, the application of

strong forces, shear stress in general [246, 247, 248] or the attachment to surfaces [249, 250].

Despite the shorter time of the workflow, it has been shown that platelets from whole blood

have a higher activation and aggregation rate after exposure to shear stress compared to
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platelets from PRP [251].

Moreover, the usage of PRP bears another advantage. During multiple centrifugation rounds,

red and white blood cells are already removed from the solution [252]. On the one hand, this

reduces platelet activation via other cells in the bloodstream; on the other hand, this facilitates

the sorting process. Due to the absence of bigger blood cells disturbing measurement,

contamination in the sorted cells is reduced. Additional gating by size excludes cells with a

higher forward or side scatter signal. Moreover, the use of DNA stain showed the presence of

under 0.5% of cells containing DNA, which emphasizes the purity of the PRP. Nonetheless,

some studies point out disadvantages of producing PRP. For example, platelets from PRP

were shown to be more activated that platelets derived from buffy-coat [253]. The latter one

refers to the layer of blood between plasma and red blood cells following centrifugation,

which contains mainly leukocytes and platelets. In our studies, the use of buffy coat derived

platelets would not have been beneficial, as we explicitly gate out leukocytes and highly

prevent any leukocyte contamination in the final RNA extraction step. Platelet RNA purity

is crucial, as out of the total 15 µg/ml RNA in the blood [254], platelet RNA accounts for

only <0.5 µg. Hence, even low levels of leukocyte contamination would significantly alter the

results. However, at the same time, activation must be kept at a minimum during and after

the sorting process.

Additional precautions have to be taken in order to avoid unwanted platelet activation during

the generation of PRP [255]. Besides the optimization of timing, platelets need to be inhibited

with several substances to keep them detached from one another [256]. In the process of

PRP generation, I have optimized the amount and substances for platelet inhibition while

preserving platelet reaction capacity. It begins with blood collection into a tube containing

the first inhibitory substance: Citrate Dextrose A. While the usage of a tube containing

Citrate as well as a combination of platelet antagonists would prevent undesired platelet

inhibition more [257], others have found no differences of coagulation between platelets

drawn into combinatory tubes and tubes containing only citrate [258]. Further inhibition is

achieved by using ADPase which inhibits platelet activation via ADP [259, 260] and the use

of prostaglandin E1, a substance known to activate inhibition receptors [83, 261]. The pH of
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the platelet solutions were kept at bay using HEPES [262, 263] and citric acid, whereas EGTA

and EDTA were used to decrease doublet formation by chelating Ca2+ ions in the solution

[256, 264]. For the latter, the degree of inhibition highly depends on the applied concentrations

and can lead to the inability of platelets to be activated in downstream experiments [265].

Additionally, platelet fixation is only possible when downstream analyses do not require the

activity of retro-transcriptase.

In order to assess possible platelet activation occurring during the sorting process, I measured

platelet reaction to thrombin in sorted RPs and MPs. As both populations still showed

the same ability to react upon stimuli than before sorting, the RPs more than the MPs, an

excessive activation during sorting was excluded. However, one limitation is the testing of

only one stimulus, thrombin. Other activation pathways like the ADP-mediated one might be

exhausted and impaired through the sorting procedure. Nonetheless, even after magnetic

based separation, both RP and MPs populations are still capable of activating upon thrombin

stimulation. Therefore, the magnetic-based isolation process not only offers an additional

exclusion of non-platelet cell types but also does not impair platelet reactivity to any extent

and can be used in platelet reactivity studies after sorting.

Using the developed protocol, we investigated the transcriptome of RPs in healthy donors

and found several transcripts associated with platelet activation and adhesion upregulated in

RPs compared to MPs [169]. Moreover, I found similar transcripts differentially regulated

in the platelets of CCS patients. However, these data are still preliminary and remain to

be published. Nonetheless our data on healthy donors and CCS patients emphasizes the

usability of the developed sorting protocol.

4.2 Mass Cytometry

Mass Cytometry offers the possibility to simultaneously investigate expression of up to more

than 40 proteins at once, which allows the investigation of platelet heterogeneity on a deeper

level [266, 227]. In comparison to flow cytometry, antibodies are bound to lanthanide metals

instead of fluorophores, which narrows the influence of spectral overlap [267]. While spectral
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overlap was believed to have no influence at the beginning of mass cytometry research

[268, 269], it was soon proven to be detectable [270]. Nonetheless, overlap is present to a

lower extent than in flow cytometry. It is mostly found in the neighboring isotope channels

of the stained metals or +16 channels away, due to oxidation [270, 271]. However, it can be

overcome using a compensation matrix [272].

Current limitations of mass cytometry are the availability of ready-to use antibodies and

the limitation of lanthanide heavy-metals. Nonetheless, the spectrum of available metals for

coupling is constantly increasing and several researchers have shown that antibodies can also

be coupled to silver nanoparticles [273], platinum [274] or organotelluriums [275]. Moreover,

imaging mass cytometry emerged, which allows CyTOF analysis from tissue sections [276].

Overall, the CyTOF field is growing, with more researchers using the technique worldwide

and the constant improvement of machines, antibodies and labeling options, theoretically

allowing the simultaneous analysis of up to 100 markers [277].

In terms of platelet analysis, mass cytometry is still at an early stage, with only one other

group worldwide applying MC to detect platelet heterogeneity so far [159]. Compared to our

method, Blair et al. used platelets from whole blood and are therefore limited to lower cell

numbers, with the ability to acquire only around 30,000 events per sample [159]. Moreover, the

clean-up gating process according to Gaussian parameters (method section, Fig.2.2) leads to a

significant loss of cells when applied to platelet data from whole blood [225]. Consequently,

only few events are available for computational analysis preventing the algorithms to find

meaningful clusters [278]. Using PRP, these limitations can be overcome as more than 500,000

events can be acquired from one sample [225, 157]. However, certain use cases might benefit

from whole blood analysis. For example when investigating platelet-leukocyte interactions,

the formation of thrombi, or diseases that depend on the analysis of big platelets which might

be lost during the generation of PRP. In these cases, one needs to balance the amount of

whole blood used and the loss of cell and reagent material.

Additionally, our protocol offers the possibility to freeze samples after staining. In this way,

several samples can be collected and acquired at the CyTOF in the same run. We validated

the freezing protocol previously developed by Sumatoh et al. for platelets, which freezes
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the stained samples in 10% DMSO in FBS [279]. Compared with other methods that showed

signal loss after freezing, this technique reassures signal stability. Platelets from whole blood

have been frozen without a buffer, which increases cell loss and is therefore not recommended

for samples with a low cell number [280]. An additional advantage of acquiring frozen

samples is the lower abundance of clotting. Especially the use of platelet stimulators like

TRAP or collagen lead to rather sticky platelets solutions. This resulted, when fresh cells were

acquired directly after staining, in the higher incidence of clots.

Current platelet CyTOF research is united by the problem to identify relevant subgroups and

decipher lineage-like platelet types. Due to the absence of typical platelet lineage markers,

dimensionality reduction techniques and clustering approaches fail to predict clearly distinct

platelet sub-populations [280, 281, 278]. However, CyTOF analysis still offers the possibility

to identify platelet groups and clusters that react differently in response to stimuli or under

disease conditions [159, 158, 225, 157]. The different reaction capacity of platelets from healthy

donors compared to COVID-19 patients will be discussed later (4th part of the discussion)

while the differential protein expression between thrombin and collagen-mediated platelets

from healthy donors underlies this part.

Stimulation with TRAP and CRP led to differences in surface receptor expressions for several

markers. Although they were used in different concentrations (TRAP 10 µM, CRP 2 µg/ml),

these concentrations have been shown to lead to similar activation measured by CD62P

expression using FC. A reason for the higher PAC1 signal after CRP stimulation could be a

stimulus dependent pathway activation. CRP stimulation turns integrins α2β1 into a high

affinity state. Subsequently, this results in the formation of platelet-platelet aggregates as

αIIbβ3 fibrinogen receptors are binding with higher affinity to the fibrinogen receptors on

other platelets [117].

Single cell proteomics however, may help to discover currently unknown platelet clusters.

For example, suitable markers for subgroup detection and in particular RP determining

markers could potentially be discovered using single cell proteomics. Moreover, stimulation-

or disease-specific alterations of surface expression markers that currently cannot be targeted

by CyTOF antibodies could be discovered.
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4.3 COVID-19

In the course of the pandemic, data accumulated regarding a burst of thrombotic events during

COVID-19 disease progression. We were the first to investigate platelets from COVID-19

patients using CyTOF. In our study, we showed a higher platelet reactivity during mild SARS-

CoV-2 infection. Additionally, we detected a reduced capacity of platelets from COVID-19

patients to react upon stimulation. Together with the discovered hyper-coagulable state, these

findings highly emphasizes a pre-activated platelet phenotype upon SARS-CoV-2 infection

[158].

Our clustering approach showed clusters of platelets behaving differently between case

and control as well as between stimulated and non-stimulated samples of the same kind.

Mainly due to the absence of platelet-subgroup specific lineage markers, clear subgroups

were not characterized. Nonetheless, comparing the subgroups of COVID-19 patients and

healthy controls, it became clear that there are different platelet subgroups involved in platelet

activation in each of the groups. Adding additional markers to the panel, like intracellular

markers, would possibly allow further differentiation between the FlowSOM categorized

meta-clusters.

The differential analysis between case and control was based on differences in the median

marker expression, as usually done in the CyTOF context [231, 282, 226]. Taking into

account all values could partly alter the results but also make them more precise. With the

pipeline we have developed after the COVID-19 study, it is possible to calculate differences in

marker expression by using the earth-mover’s distance (EMD), as described in the method

section [226]. As we encounter a high zero inflation for markers CD107a and CD154, our

developed CyEMD method could improve the differential expression analysis for at least

these two markers. Overall, the bioinformatic tools we used in Publication 3 are integrated

into our customized CyTOF data analysis pipeline with the exception of the slope analysis

(https://exbio.wzw.tum.de/cyanus/).

Throughout the whole study, I have produced samples of healthy and diseased donors

simultaneously to prevent day specific alteration, also called batch effect. As it is widely
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known that batch effects can have a high influence on mass cytometry data and oftentimes

need to be corrected for either using technical replicates as reference samples [283, 284] or

other methods [285, 286], we kept batch variation to a minimum. Thus, we used antibodies

from the same lot and measured our data with the same instrument, although it would

theoretically be possible to compare CyTOF data from different sites [287]. Additionally, we

alternated measurements of case and control, stimulated and baseline samples. Finally, we

did not detect any batch effect resulting from different measurement days and therefore did

not apply any batch effect correction method.

Current COVID-19 research back up our results as researchers identified higher levels of

soluble P-Selectin [288] and a higher abundance of platelet activation and aggregation markers

[289, 290] during SARS-CoV-2 infection. While these data could partly explain the occurrence

of thrombotic events in COVID-19 patients, further research on other cell types included in

thrombus formation is also needed. Other researchers confirmed an increase of thrombotic

events after which the platelet reactivity decreased again [291]. Furthermore, increasing

platelet thrombus formation has been linked to an abnormal glycosylation on immune

complexes against SARS-Co-V-2 spike IgG [292].

Other reasons behind COVID-19 induced platelet activation may include the well-known

virus-induced cytokine storm [293]. Alongside endothelial function disparity it triggers an

enormous cell activation resulting in an increased platelet-mediated tissue factor production

[294, 295]. While a direct interaction of SARS-CoV-2 Spike protein binding to ACE2 receptors

on platelets was reported by one single study, this finding requires further validation [296].

More recent studies have picked up on investigating the particular influence of RPs, de-

termined by point-of care systems, during SARS-CoV-2 infection. As reported previously

for other diseases, the immature platelet fraction also negatively correlated with COVID-19

disease progression. Higher RPs levels were found in patients with severe disease compared

to those with only a mild COVID-19 infection [297].

Despite all these studies supporting our findings, our study bears some limiations. The

main limitation is the low sample size of the investigated cohort. Nonetheless, the study
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contains enough samples on both sides to perform meaningful statistical analysis and found

overall global differences between case and control. Shortly after the discovery of platelet

involvement and the existence of cardiovascular events, antiplatelet treatment has become

part of the treatment strategy for COVID-19, for example by using therapeutic anticoagulation

with heparin [298]. Another study on a large patient cohort showed a lower mortality rate

and a decrease in mechanical ventilation time for patients treated with antiplatelet therapy

consisting of aspirin alone or in combination with either clopidogrel, ticlopidine, prasugrel

or ticagrelor during SARS-CoV-2 infection [299]. More research in this field even led to the

suggestion of a provisionary antiplatelet therapy when infected with SARS-CoV-2, which was

shown to decrease the in-hospital mortality rate of patients [300].

The lack of comparison to a group of patients suffering from other viral pneumonia diseases

like influenza and the therefore unknown specific effect of coronavirus-19, is another limitation

of our study. The hyperactive platelet state we observed could theoretically also be due

to a higher platelet reactivity appearing during viral infection in general. However, the

COVID-19 patients in our study were naïve from treatment and without history of previous

medically relevant conditions. We were the first to show an increased expression of important

transmembrane receptors as well as activation markers in COVID-19 patients even with a

mild disease and without any pre-existing condition. Additionally, there are other studies

that included both COVID-19 and influenza patients, which put our results into more context.

For example, Zaid et. al showed a higher reactivity of platelets from COVID-19 platelets

upon stimulation compared to influenza patients [301]. Additionally, Nicolai et. al discovered

an immunothrombotic dysregulation in COVID-19 patients in comparison to non-COVID-19

pneumonia patients [224, 302]. These studies point out once more that COVID-19 disease has

its own characteristics and needs to be treated differently to other viral diseases.

All in all, the COVID-19 study has proven the feasibility of the mass cytometry method using

platelets from platelet-rich plasma (Publication 2). Additionally, conducting the study on

the investigation of platelets in healthy donors undergoing BNT-162b2 vaccination [157] also

showed reproducibility of the developed CyTOF method in different settings.
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4.4 Conclusion

In the human heterogeneous platelet population, RPs are of particular interest because they

correlate with the prediction of adverse cardiovascular events. During the course of my PhD,

I developed protocols that enable deep biological characterization of these cells. While the

sorting protocol (Publication 1) allows the investigation of the RP transcriptome for the first

time, the CyTOF protocol (Publication 2) offers a deep examination of platelet heterogeneity in

terms of protein expression. By applying the CyTOF protocol to investigate platelet reactivity

in COVID-19 patients (Publication 3), I have proven the feasability of my previously designed

CyTOF pipeline. Among others, our COVID-19 project showed a disease-specific platelet

heterogeneity with the involvement of certain platelet subgroups during disease progression.

The protocols developed during my PhD are the basis for further investigation of the RPs

biology and the protein expression diversity of platelets at health and disease.
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4.5 Outlook

The possibility to sort RPs and MPs from the entire platelet population as well as the resulting

option to perform RNA-sequencing analysis has shed more light on the biology of RPs. In this

way, RPs have been shown recently to be hyper-reactive and have a pro-thrombotic influence

in healthy but also in severely ill patients, not limited to the cardiovascular field. As the

COVID-19 pandemic has proven, platelets play their role during disease progression [303].

RPs in particular correlate with worse outcome and disease severity [297]. More than ever,

the pandemic has shown that cardiovascular events are a burden that hospitals face from

several patients with different illnesses [304].

In general, further platelet heterogeneity analysis could offer new insights to support a

personalized medicine approach. Although it is known that high RP-levels correlate with an

insufficient response to antiplatelet treatment, an antithrombotic therapy tailored to RPs has

not been investigated yet. Several cardiologic researchers have suggested to tailor standard

dual antiplatelet therapy after percutaneous coronary intervention in patients that show

elevated levels of RPs. Moreover, it has been speculated that a specific inhibition of RPs

could optimize the patient’s outcome while simultaneously reducing the burden of bleeding

events. In this context, precision medicine based on the phenotypical characterization of

patient features in cardiovascular diseases could decrease morbidity and thus lead to a cost

reduction in terms of invested resources. However, if such therapeutic procedures can reduce

averse events not only in the cardiovascular field but also in other diseases warrants further

inverstigation.

Until then, the main short short-term goals are focused on increasing the resolution of platelet

heterogeneity characterization. For example, a single-cell whole proteome analysis as well as

a single-cell RNA-sequencing analysis would offer deep investigation of the role of platelet

heterogeneity in cardiovascular diseases. Nevertheless, these approaches need validated

standardized protocols that are currently not yet available.
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