
Technische Universität München
TUM School of Engineering and Design

A Deep Reinforcement Learning Model for
Combinatorial Optimization and Fleet Dispatching

in Mobility On-Demand Services

Sascha Sirus Jakob Hamzehi

Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Constantinos Antoniou
Prüfer*innen der Dissertation: 1. Prof. Dr.-Ing. Klaus Bogenberger

2. Prof. Dr. Maximilian Schiffer

Die Dissertation wurde am 17.06.2022 bei der Technischen Universität München eingereicht 

und durch die TUM School of Engineering and Design am 16.01.2023 angenommen.





Foreword and Acknowledgements

The underlying thesis summarizes my research during the last three and a half years at the
Institute of Traffic Engineering of the Technical University Munich. First and foremost, I would
like to thank and express my gratitude to all my colleagues for the exciting and wonderful
time we shared at the institute and BMW Group. Besides this, I would like to mention some
colleagues and friends who contributed to this thesis. Clearly, this thesis would not have been
possible without my first Ph.D. advisor Prof. Dr. Klaus Bogenberger, who offered me this
Ph.D. position. His excellent knowledge of Operations Research and mobility systems, his
personal encouragement, and his motivational, professional, and technical advice has always
led to progress and success within my thesis. Equally, I would like to express my gratitude to
Prof. Dr. Maximilian Schiffer who additionally provided his excellent knowledge within the
field of Operations Research and Supply Chain Management for this thesis. Equally, I am very
grateful to Prof. Dr. Bernd Kaltenhäuser, who always provided excellent constructive criticism
for all publications. Besides, I would also like to thank my advisors at the BMW Group, Philipp
Franeck for his great profession, orchestrational efforts, machine learning and programming
advice, discussions, and personal trust throughout these years. Without him, this thesis would
not have been possible. I want to express my gratitude to Dr. Urlich Fastenrath, who showed
great trust in my abilities and provided very valuable discussions, especially in the beginning of
my research. Many thanks go to my colleagues Tian Jilei, Dr. Alvin Chin, Tanja Niels, Florian
Dandl, Roman Engelhardt, Fynn Terhar, Arslan Ali Syed, Aledia Bilali, Marvin Erdmann, and
Cao Yang for always helping me with discussions, traveling, and all other things that kept me
running. I would like to thank the support of David Gackstetter with his Master’s thesis and a
big thank you to all proofreaders: Patrick Malcolm, Julius Tutz, Mauricio Platteau, and Julia
Blank. I am especially delighted that Tian Jilei, Alvin Chin, and Cao Yang provided with
me funds for improving my research at their machine learning research department abroad in
Chicago, USA. I also have to mention the great atmosphere and funny moments in the office
that I have shared with Katharina Gompf, Dr. Felix Rempe, and Dr. Melike Güler in the course
of time. A very special thank-you goes to my family and friends. I am in depth with my parents
Ingeborg and Hossein, who always supported me, who showed great sympathy, and understood
when I had hard times. Particularly, I am deeply grateful to my girlfriend Monika who always
shared my most difficult and also my best moments. Her unprecedented empathy and trust
helped me to stay positive, healthy, and energetic. The same thank you goes to my friends Julius
Tutz, Daniel Urbinati, and Mauricio Platteau, who always provided hope, cheerfulness, and an
open door. Finally, there is my beloved brother Sebastian, who always enlightens my mood with
his positivity, intellectual challenges, and heartful jokes. All of you are awesome and have my
utmost respect and gratitude.

Thank You!

Sascha Sirus Jakob Hamzehi

iii





Contents

Foreword and Acknowledgements iii

Contents I

Abstract V

Zusammenfassung VI

1 Introduction 1
1.1 On-Demand Mobility (ODM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Applications of ODM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 ODM Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Focus of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Challenges of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Solution Approach of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Research Questions and Outline of the Thesis . . . . . . . . . . . . . . . . . . . . 12
1.8 Contributions and Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Fleet Dispatching and Combinatorial Optimization 16
2.1 Introduction to Graph-Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Set and Node Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Graph-Network Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Objective and Constraint Formulations . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Graph Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Conversion of Objective Formulations . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Combinatorial Optimization in On-Demand Mobility 27
3.1 Introduction and State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Exact Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Heuristics and Meta-Heuristic Algorithms . . . . . . . . . . . . . . . . . . . . . . 30
3.4 DRL Applications in ODM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 DRL Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1 DRL Approaches for TSPs . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.2 DRL Approaches for VRPs . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Summary and Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6.1 Summary of Exact and Heuristic Methods . . . . . . . . . . . . . . . . . . 42
3.6.2 Summary of DRL Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.3 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

I



Contents

4 Deep Reinforcement Learning 45
4.1 Introduction to Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Introduction to Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Feed-forward Neural Networks (NNs) . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Convolutional Neural Networks (CNNs) . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Recurrent Neural Networks (RNNs) . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6 Learning with NNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.7 NN Training Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8 Solving NN Training Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.9 Introduction to Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 59
4.10 Reinforcement Learning Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.10.1 Value-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.10.2 Policy-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.10.3 Actor-Critic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Algorithm and Model Implementations 74
5.1 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Data Generation and Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Generation of TSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.2 Generation of MWMs and PDPs . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.3 Generation of MWMs with Real Data . . . . . . . . . . . . . . . . . . . . 82

5.3 Graph-Contextual Embeddings and Encoding . . . . . . . . . . . . . . . . . . . . 86
5.4 Attention Mechanism and Context Modeling . . . . . . . . . . . . . . . . . . . . 90
5.5 Pointer Generation Process (PGP) . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6 Decoder Module (DCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6.1 Greedy Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6.2 Top-k Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.7 Mask Functions (MASK) for Constraint Optimization . . . . . . . . . . . . . . . 96
5.8 Cost-Reward Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.9 Critic Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.10 Training Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.11 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.12 Avoidance of Over-fitting and Exploding Gradients . . . . . . . . . . . . . . . . . 101
5.13 Real Data and Feature Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.14 Algorithm Baselines for Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . 102

5.14.1 Greedy Heuristic (GRH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.14.2 k-Regret Heuristic (KRH) . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.14.3 Hungarian-Munkres-Kuhn Algorithm (HMK) . . . . . . . . . . . . . . . . 104
5.14.4 Jonker Volgenant Castanon (JVC) . . . . . . . . . . . . . . . . . . . . . . 104
5.14.5 Simplex Algorithm (Cplex) . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Benchmarking and Results 109
6.1 Benchmark Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.1 Data and Network Parameters . . . . . . . . . . . . . . . . . . . . . . . . 110
6.1.2 Training Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2.1 Benchmark 1: Symmetry and Asymmetric Graphs . . . . . . . . . . . . . 113
6.2.2 Benchmark 2: Balanced and Unbalanced Graphs . . . . . . . . . . . . . . 116

II



Contents

6.2.3 Benchmark 3: Constrained and Real Data Graphs . . . . . . . . . . . . . 123
6.3 Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Conclusions & Future Research 132
7.1 Answers to Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2 Limitations of the Pointer Generation Network (PGN) . . . . . . . . . . . . . . . 133
7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.4 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Acronyms 138

Notation 140

Appendix 148
A.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.2 Stochastic Error Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.3 Symmetric and Asymmetric Origin Demand Distance Matrices . . . . . . . . . . 149
A.4 Combinatorial Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.5 Symmetric Euclidean-Planar TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.6 MWBM and Pickup Drop-Off / Delivery Problems (PDP) . . . . . . . . . . . . . 155
A.7 Maximum Weighted Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
A.8 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

List of Figures 162

List of Tables 166

Bibliography 167

III





Abstract

This thesis is about the development and benchmarking of a deep reinforcement learning
model using a pointer generation neural network with an Actor-Critic Monte-Carlo Policy
Gradient training algorithm. Within this thesis, novel architectural solutions are developed for
the solution of unbalanced, asymmetric, and constraint combinatorial optimization problems
for Traveling Salesman Problems (TSPs) and Minimum Weighted Bipartite Matching (MWBM)
graphs by learning a competitive near-optimal and efficient heuristic automatically. Classical
approaches for solving Minimum Weighted Bipartite Matching (MWBM) problems compute
mathematical solutions from a naive greedy heuristic in order to obtain efficient solutions, or
classical approaches focus on exact Mixed Integer Programming (MIP) solvers for optimal but less
time competitive solutions. In practice, approximate algorithms are used to handle the rapidly
increasing complexity of combinatorial optimization problems. The concept of existing neural
network architectures for solving TSP graphs is extended to learn and solve different variants of
MWBM graphs. Graphs as such, are more complex with respect to their structural variability
and context-feature-sensitivity and thus require more contextual features for modeling. Herefore,
the pursued DRL approach develops a Sequence-to-Sequence (Seq2Seq) - Encoder-to-Decoder
neural network architecture based on the knowledge of machine learning, Deep Reinforcement
Learning (DRL), and machine translation. The approach analyzes, evaluates, and transfers the
existing Mixed Integer Programming (MIP) formulations to a Markov Decision Process (MDP)
formulation in order to represent the problem structure in a machine-learnable manner. The
developed model called PGN can be applied to a variety of combinatorial optimization problems
such as optimal transport problems (Operations Research), scheduling, tracking, collaborative
fleet routing, knapsack, and similar tasks (Supply-Chain Management) where the least cost
assignments between two or more sets of nodes must be found efficiently. After the PGN
network has been trained, the network state is saved and subsequently can be used to solve even
different variants of MWBM efficiently. The thesis finally includes qualitative and quantitative
comparisons with respect to solution quality, solution times, and solution reliability. For this
purpose, a set of additional suited algorithm baselines are implemented to evaluate the PGN
performance to well-known combinatorial optimization algorithms of the MIP and graph theory
research. The results show that for symmetric, asymmetric, balanced, and unbalanced MWBM
graphs the developed PGN can achieve a solution quality of 3.2% MAPE deviation from the
global optimal solution provided by CPLEX. However, the PGN approach provides much faster
solution times which results in approximately 66 times faster solution times compared to CPLEX.
Hence, the results show that the approach provides the most efficient method currently known
compared with all other tested state-of-the-art methods.
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Zusammenfassung
Die vorliegende Dissertation behandelt die Entwicklung sowie die anschließende Evaluation

einer Neuronalen Netz Architektur und eines Lern-Algorithmus des bestärkenden Lernens. Die
Architektur wird als Ansatz zur effizienten kombinatorischen Lösung von Fahrzeug-Kunden
Zuweisungen im Anwendungsbereich der intelligenten Transport Steuerung für hoch-performante
Server-basierte Mobilitätssysteme benötigt. Innerhalb dieses Ansatzes werden bereits existierende
mathematische MIP Repräsentierungen als Markov-Entscheidungs-Problem (MDP) reformuliert,
um eine Maschinen-erlernbare Aufgabenstellung zu erhalten. Der entwickelte Lernansatz genannt
Zeiger-Generations-Netzwerk (vgl. Eng. Pointer Generation Network (PGN)) kann bei der
effizienten Lösung einer Vielzahl von kombinatorischen Optimierungsproblemen, wie optimale
Transport Probleme, Termin und Zeitplanung, Kollaborative Flotten-Navigation, Aufgaben-
verteilung, kombinatorische Rucksack-Pack-Probleme (Operations Research), sowie ähnliche
Aufgabenstellungen in der Lieferkettenoptimierung effizient angewendet werden. Hierbei muss die
kombinatorische Zuweisung mit den geringsten Kosten zwischen allen Knoten schnellst-möglich
gefunden werden. Nachdem das Zeiger-Generations-Netzwerk (vgl. Eng. Pointer Generation
Network (PGN)) trainiert wurde, kann dieses im gespeicherten Zustand verschiedenste Varianten
von Zuweisungsproblemen effizient lösen. Die Dissertation zeigt und stützt dies mit beinhal-
teten qualitativen und quantitativen vergleichen hinsichtlich Lösungsgüte, Lösungszeit und
Lösungs-Zuverlässigkeit. Zu diesem Zweck, wird eine Menge von bekannten kombinatorischen Op-
timierungsalgorithmen aus der Literatur implementiert, um die beinhalteten Vergleiche zwischen
der Zeiger-Generations-Netzwerk (vgl. Eng. Pointer Generation Network (PGN)) Architektur
und den anderen Algorithmen aus den wissenschaftlichen Bereichen der Mixed-Integer Program-
mierung (MIP) und Graph Theorie stochastisch aufzustellen, zu interpretieren und zu bewerten.
Hierbei werden die Anwendungsmöglichkeiten und die in der Literatur bestehenden Architekturen,
um die Möglichkeit der Lösung für unbalancierte, asymmetrische und eingeschränkte kombina-
torische Optimierungsprobleme erweitert. Um die Lösungsgüte und die statistische Lösungsef-
fektivität zu belegen, wird hierfür ein spezieller Testaufbau mit anschließender stochastischer
Auswertung entwickelt. Der Test-Aufbau umfasst dabei statische bestehende kombinatorische
Optimierungsprobleme eines realen operativen serverbasierten Ride-Hailing Management und
Flottenmanagement Systems. Um bestehende kombinatorische Probleme wie dem Traveling
Salesman Problem (TSP) oder gewichtete Zuweisungsprobleme (MWBM) für “Ride Hailing”
Applikationen noch effizienter zu lösen, wird eine Datengenerationsmethodik entwickelt, um große
Beispielmengen von kombinatorischen Optimierungsproblemen zu generieren. Nach der Daten-
generation soll das Neuronale Netz eine möglichst optimale kombinatorische Heuristik (Strategie)
selbstständig erlernen, um die gestellten kombinatorischen Optimierungsprobleme möglichst
akkurat zu lösen. Anschließend wird die Qualität und Quantität der zurück-gegebenen Lösungen
des Neuronalen Netzes nach der Trainings- und Validierungsphase mit Vergleichslösungen anderer
Algorithmen und mathematischen MIP Lösungsverfahren verglichen. Die Tests des entwickel-
ten PGN Ansatzes für symmetrische, asymmetrische, balancierte, unbalancierte und limitierte
MWBM Graph-Probleme zeigen, dass der Ansatz Lösungsgüten von 3.2% MAPE Abweichung
vom globalen Optimum, verglichen mit der CPLEX Lösung, erreichen kann. Allerdings, bietet
der entwickelte PGN Ansatz in etwa 66-mal schnellere Lösungszeiten und ist dahingehend viel
effizienter als die bis dahingehend bekannten Lösungsmethoden. Die erarbeiteten stochastischen
Ergebnisse dienen final als Grundlage für die abgeleiteten Schlussfolgerungen und der Ableitung
von weiteren wissenschaftlichen Arbeiten in diesem Zusammenhang und angrenzendem Kontext.
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1. Introduction

1.1 On-Demand Mobility (ODM)

With the recent boom of digital connectivity in Intelligent Transportation Systems (ITS) (see
Figure 1.1) and the development of On-Demand Mobility (ODM) services for Ride Hailing (RH)
and Ride Sharing (RS), urban mobility is transformed to provide comfortable transportation to
anybody, anywhere, and anytime.

 

 

GPS

Map Data

Connectivity

Ride-Hailing, -Sharing, On-Demand Mobility

Digitalization

P

Figure 1.1: A smart and connected city.

ODM services like Didi Chuxing, Uber, Lyft, and Share Now present tremendous potential and
advantages for human impacts with respect to greenhouse gas emissions, energy consumption,
particulate matter, pollution, and congestion. On the other hand, user-centric mobility has
become a large-scale contributor to negative impacts on environmental sustainability [Nations,
p. 3]1, which may further reinforce the development of future ODM services. For instance,

1https://www.un.org/en/climatechange/assets/pdf/cas_report_11_dec.pdf

1
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1. Introduction

in the United States, user-centric mobility is the reason for tremendous congestion costs, and
consequently, user waiting times. The annual cost of congestion is approximately $ 121 billion per
year, which is 1% of the Gross Domestic Product (GDP). Additionally, this includes 5.5 billion
hours of waiting time and an extra 2.9 billion gallons of fuel caused by traffic jams [Schrank
et al., 2012, p. 1]. In Europe, the transportation sector causes 20% of the accumulated European
greenhouse emissions, and thus, is one of the major hazardous environmental emission effects
[Schiffer and Walther, 2018b].

On-Demand Mobility (ODM) Ride Sharing (RS) systems could help to decrease such negative
impacts due to increased vehicular capacity utilization. RH can also benefit especially from the
increase of available information by using it to avoid costly situations. The advantage of platform-
based ODM services is that large databases enable the aggregation of large-scale information for
planning trips, optimizing routes, and managing humanly-driven or autonomous fleets. Each
trip and decision-making process is completed by efficient algorithms, which can be used to
save resources, increase profit, increase fleet utility, and for other use cases. Future efficient
large-scale fleet routing and dispatching algorithms will have more and more significant positive
and maybe also negative impacts on environmental sustainability. While many big companies
focus on saving operational costs and increasing the fleet utility to increase profit, officials and
government are interested in how ODM services could improve human and environmental impacts.
All programmed algorithms on each ODM platform process and make context-sensitive decisions
between user-vehicle requests in a matter of milliseconds. Thus, the used algorithms have a
significant influence with respect to the operational transport efficiency (e.g. the trips completed,
required CO2 emissions), functionality (e.g. energy and resource consumption of platform and
fleet), and reliability (e.g. algorithm recommendations may influence if traffic jams occur), etc.
Due to the availability of additional mobile phone data, ODM and ITS present an ideal research
domain for Artificial Intelligence (AI), Machine Learning (ML), and data mining applications.

1.2 Applications of ODM

ODM operational environments (i.e. urban districts in different cities) are usually characterized
by stochastic, continuous, discrete, static, dynamic, and combinatorial processes. Hence, ODM
usually deals with a challenging, complex, and interactive system. On a time scale, the strategic
requirements within ODM for dynamic and context-based (i.e. situation-depending) decision-
making processes can change by the hour, the minute, or even the second. During operation, the
main goal of an ODM platform is to support, recommend, plan, and manage client journeys and
short trips in the most comfortable way. Applications of ODM are related to fleet and supply
chain logistics. For example, there are

• RS / RH companies that usually assign the best routes for drivers to pick up and drop-off
passengers,

• package delivery companies that aim to assign routes for drivers to complete their deliveries,
• mobile planning applications that aim to find an optimal context-based sightseeing tour,
• and maintenance companies or applications, where the best routes for technicians and

2



1.3 ODM Platform

logistic vehicles are desired in order to offer and absolve maintenance services, deliver items
and goods, or to complete other tasks.

In order to provide efficient planning and control mechanisms, ODM, RS/RH platforms typically
depend on a set of sub-mechanisms to ensure quality services to their clients. Typically, the most
critical components include

• supply and demand forecasts, where the trends of client demand, vehicle stock supplies,
and traffic data are predicted [Dandl et al., 2019],

• booking [Dandl and Bogenberger, 2018a], reservation [Bilali et al., 2019b; Bilali et al.,
2019a], and payment components for RH/RS client requests [Hardt and Bogenberger,
2016],

• RS and pooling mechanisms [Engelhardt et al., 2019; Bilali et al., 2019c; Bilali et al.,
2020],

• planned and managed vehicle-client assignments [Syed et al., 2019b; Erdmann et al.,
2019],

• fleet relocation mechanisms to re-balance vehicle distributions within city hotspots [Weikl
and Bogenberger, 2013],

• collaborative routing components used for planning and adapting vehicle routes within the
city [Dandl and Bogenberger, 2018b], thus requiring routing algorithms for calculating
the shortest routes or paths between departure and destination locations,

• or the calculation of roundtrips such as TSPs, Vehicle Routing Problems (VRPs), and
other Pickup-and-Delivery Problems (PDPs).

The next section 1.3, will provide more technical details on a given sample ODM platform
for RS / RH and vehicle-client trip assignment purposes. The platform will provide the basis
framework for the upcoming chapters by providing the technical background for developing a
new DRL-based approach for vehicle-client trip planning and assignments.

1.3 ODM Platform

Figure 1.2 shows a more detailed example of an RS/RH platform-based system architecture.
For fleet planning and control, the system requires a set of functional parameters, such as a
description of a road-graph network, information about the availability of each vehicle within
the operational fleet, multiple communication channels between the clients, a central planning
and control component and the operational fleet where the tasks are updated via automated
messages. Further examples of automated messages are explained in the following.

An ODM and Fleet Logistic System: A general fleet planning and control system, for example,
shown in Figure 1.2, involves continuously updated and exchanged real-time data flows in the
following:

1. Information about the fleet availability and activity, such as vehicle arrivals, departures,
trip cancellations, and operational interruptions, requiring repeatedly updated location
data of the vehicles,

3



1. Introduction

Figure 1.2: A centralized fleet planning and control architecture of an On-Demand Mobility
(ODM) system ensuring demand responsiveness for an operational autonomous or
non-autonomous fleet.

2. Information about the client or system users, where each incoming request may require
information about additional passengers, geographical locations, time windows, a pre-
set pickup/drop-off location, where the conglomerate of information is processed by an
automated client request broker,

3. Information about current booking confirmation, where only the sub-set of clients that
have shown commitment to finishing the booking confirmation are considered for the trip
planning and scheduling process,

4. Information about booking cancellations, where the currently confirmed booking is made
obsolete and excluded from the trip planning process,

5. Information about dispatched vehicles, where a specified vehicle driver receives messages in
order to get directed to reach a client within a specified time and specified pickup location,

6. Information about the verification of trip-requests, where the sent messages indicate if a
trip has been a success, failure, or another type of attribute for recording and accumulating
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historical data, and
7. Informative and contextual messages about the system state and offers for new bookings,

trip restarts, or re-bookings of stranded passengers [Horn, 2002, p. 38].
Within the fleet planning and control component, visualized in Figure 1.3, the accumulated valid
bookings are temporally gathered in a preprocessing process called batching (visualized in Figure
1.4). Furthermore, batching is necessary to ensure a time-concluded combinatorial optimization
setting for the fleet planning and control process, which proceeds to start the scheduling process.
After each batch has been optimized, the vehicles are subsequently dispatched via automated
messages from the fleet dispatching component [Pavone et al., 2020; Potts and Kovalyov,
2000, pp. 1–32, 228–249].
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Figure 1.3: The core fleet planning and control component for bipartite assignment or matching of
client requests to vehicles.

During the scheduling process, the fleet planning component must decide which vehicle (supply)
should pickup which client (demand). The current group of client requests is therefore referred
to as demand, where the goal of the scheduling process is to satisfy as much demand as possible
for RS. For RH, which we will consider in later sections, a client requests a ride for himself only.
For RH, each currently available vehicle has to be assigned to an unknown number of client
requests for each batch. Clearly, the problem setup results in a Combinatorial Optimization
Problem (COP), where the planning component has to select the right vehicle for each customer.
Technically, the problem setting can be modeled as a discrete mathematical optimization problem
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COP with 

balanced nodes

COP with

unbalanced nodes

b = 0 b = 1 b = 2 b = 3 b = 4 batches B

Vehicle Nodes Pickup Nodes Drop-Off Nodes Service / Charging Nodes

 Vehicle Node Request Node Drop-Off Node    Service Station Node

 

Legend:

Figure 1.4: The Temporal Batching Process.

Figure 1.5: The vehicle-client assignment, matching, fleet dispatching as Combinatorial Optimization
Problem (COP) decision-making process.

with a cost matrix and multiple constraints, as MDP representation, which is explained later,
and using a graph theory-based (network) representation. Using graph theory, each entity (e.g.
vehicle, client, and service stations) can be modeled as nodes and intermediary assignments.
The cost for assigning a vehicle to a client can be modeled via adhering costs and profits as
links between vehicle, client, and service station nodes. Such graph-model structure further
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results in a bipartite graph (see Figure 1.6) where such problem settings are well-known under
the domain of Minimum Weighted Bipartite Perfect Matching (MWBPM). The Operations
Research (OR) domain also deals with similar problems under the name of Pickup-and-Delivery
Problems (PDPs). Within OR, the formulation of PDPs is usually proposed using a discrete
Mixed Integer Programming (MIP) formulation. Generally, the whole optimization domain also
can be seen as a specific instance of the general maximum flow problem [Wayne and Tardos,
1999]. However, differences in objective functions and constraints often occur if the desired result
is a minimum-cost path instead of a maximum-cost (capacity) flow. After the vehicle-client
assignment process (see Figure 1.3) the vehicles have served a client trip. Subsequently, the
vehicles often end up distributed within the operating environment (i.e. the city). Hence, there
is an appended optimization process, called vehicle relocation, which has the goal to relocate the
vehicles to higher-demand areas within the city. This problem setting another time results in a
maximum flow COP, which can be solved equally to the vehicle-client assignment problem, (i.e.
as Mixed Integer Programming (MIP) or using graph algorithms, etc.). Note, that in Chapter
2, “Fleet Dispatching and Combinatorial Optimization”, more details about the mathematical
perspective on the optimization problem are provided.

1.4 Focus of the Thesis

In the following chapters, this thesis will focus on the vehicle-client assignment problem as
MWBPM (see Figure 1.5) with DRL in an offline learning process. The DRL solver module is
employed as a central fleet planning component (see Figure 1.6) and is used to solve the vehicle-
client assignment problem. Generally, multiple algorithms exist that could handle the same
purpose. The goal of this thesis is to provide the development of a DRL-based learning algorithm
that is suited to efficiently solving shortest path problems, such as the aforementioned the
vehicle-client assignment problem. Also, the thesis provides a custom-tailored and sophisticated
benchmarking framework for comparing the solution quality and quantity (reliability) to other
existing scheduling algorithms, i.e. for assigning vehicles to clients.

In order to accomplish this, an aggregation of multiple data sources to a general database is
required initially, which ideally should contain all necessary information as follows. It is assumed
that all necessary information is known at the decision time within the core fleet planning
component. On one hand, this assumption enables a transparent algorithm benchmarking
process, however, on the other hand, it may not always be fulfilled in reality (see next Section
1.5 for further details). In other words, it is assumed that enough contextual information for
decision-making and enough strategic information can be aggregated within a certain (real-) time.
Such information further entails data structures and data attributes about vehicles, client requests,
service or charging stations, and environmental data. In more detail, such data structures and
attributes should include

• large client request and fleet databases, used for tracking and understanding the environ-
mental processes,

• request pickup and drop-off Global Positioning System (GPS) locations,
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Figure 1.6: The generic algorithmic bipartite assignment or matching process of the core fleet
planning and control in order to assign client requests to vehicles [Hamzehi et al.,
2021a].

• vehicle (fleet) GPS locations,
• service station or charging station GPS locations,
• accurate traveling distances, e.g. from a routing engine or Application Programming

Interfaces (APIs),
• accurate traveling times from a routing engine or APIs,
• accurate vehicle State-Of-Charge (SOC) information, and
• additional information about anomalies such as construction site locations, tidal lanes or

one way roads.

Apart from the provided information sources, functional requirements must also be provided. In
order to provide meaningful DRL optimization, one requires functional features such as:
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1.5 Challenges of the Thesis

• an objective function capturing the strategic goals for the clients and fleet in the environment
(city),

• constraints that capture which decisions for planned trips are infeasible,
• high-performance computing power w.r.t. large-scale application, and
• sufficient evaluation and monitoring mechanisms for observing the quality and efficiency of

decisions, and
additional information that is helpful for modeling contextual decisions such as
• average velocity on traveled roads, speed limits,
• the seat occupancy of every vehicle, etc.
When optimizing the schedule of vehicles to clients or vice versa, the strategic goals to achieve

are defined as mathematical objectives, e.g. serving as many customers as possible or reducing fleet
operating costs. Using mathematical formulations different strategic objectives can be defined and
also combined. It is assumed that each objective is formulated either using an accumulated cost
or a reward (profit) structure, which is well-known in Mixed Integer Programming (MIP). Within
this thesis, the main objective is to find the most optimal sets of vehicle-to-client assignments
(i.e. ordered integer sequences with minimal cost, also called solution trajectories or paths) for
all available vehicles (vehicle supply), originating from client requests (demand). As well, this
thesis aims to incorporate assignments to service stations, which presents an additional challenge
by inflicting adverse effects (conflicting objectives) to satisfy as much demand as possible.

1.5 Challenges of the Thesis

As Figure 1.6 illustrates, the task of the fleet planning component is to find the best assignments
given multiple sets of entities: vehicles, client pickup and drop-off requests, and additional
service station requests. Different entities must be distinguished via an identifier (ID), which
is represented by subscript numbers in Figure 1.6. Obviously, if more and more entities for
possible assignments exist, it is more and more difficult to find the best assignments among all
vehicles, requests and service stations (graph complexity increases). In addition, the number
of possible decisions increases if some assignments are infeasible. Moreover, the number of
active vehicles and active requests can change, which leads to balanced or unbalanced sets
of entities. This further leads to the challenge of gracefully denying to assign either vehicles
or requests depending on the availability of vehicles (supply) and demand (amount of client
requests). Another challenge is that the costs for each assignment may vary depending on the
city road network topology (tidal lanes, one-way roads, etc.). This is termed as an asymmetric
cost if the visiting order of request and service station assignments may result in different
costs, if individual costs do not change with respect to assignment order. Depending on the
current demand (i.e. the number of current client requests) the number of possible decisions
can increase to very large numbers, making it very difficult for exact and search algorithms to
provide fast solutions periodically (see Chapter 2, Section A.4). For this reason, it has been a
traditional practice, widely used in large RH companies, to use simple greedy heuristic methods2,

2The term heuristic refers to finding the most optimal way imaginable with the least amount of effort.
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solely based on the locations of vehicles and clients. The task of a fleet operator hereby is
to dispatch the nearest vehicle to serve a new client [Liao, 2003]. But, there also have been
other strategies. Some other central taxi dispatching systems have applied variations of queuing
strategies, e.g. First-Come-First-Serve (FCFS) [Alonso-Mora et al., 2017]. The advantage
of such simple scheduling strategies is that they are easy to implement by programmers, but
also easy to manage and understand by clients. However, they typically result in user-centric
and uncoordinated vehicle behavior which prioritizes immediate client satisfaction over optimal
vehicle supply utilization. A consequence is that given optimization potentials are not addressed
completely, which is particularly important for large-scale Ride-Hailing / -Sharing companies
and logistic dispatching systems. The application of simple dispatching strategies also leads to
adverse effects on environmental sustainability, citizen health factors, and fleet sustainability,
since the given resources are utilized sub-optimally.

Since heuristics most often provide efficient but suboptimal results, the most efficient solution
would be a mathematical model. However, since operational environments, fleet tasks, and
client patterns differ greatly for different cities and countries, strategic requirements may also
completely change by the hour or the minute. This property makes it a tedious effort to develop
and tune transferable mathematical models for large-scale RH applications. Similar to heuristics,
mathematical models often can be used for a specific task only, and thus are often even less
flexible. In order to yield optimal results, exact mathematical solvers can be used for a given
cost function. However, such solvers do not re-use any experience of spatiotemporal contextual
patterns such as traffic congestion, stochastic demand and supply patterns, and re-occurring
events such as vehicle charging. Exact solvers have been used widely in OR, however, for
large-scale applications of 40 billion routing requests, and 15 billion location points per day [Ye,
2018], even the fastest mathematical solvers may not be fast enough. This approach also by
design would have major disadvantages with respect to platform resources. With this being
said, how can a solution method be designed that is characterized by superior flexibility and
scalability? This question is further addressed in Section 1.6.

1.6 Solution Approach of the Thesis

In order to research modern methods for achieving advanced fleet planning strategies, this
thesis focuses on algorithms for efficient offline fleet planning and dispatching optimization.
The term offline refers to the characteristic, that all information of clients and vehicles is
known in advance. Given large-scale datasets of client orders and fleet data, the goal is to
optimize over a short temporal horizon and to benchmark the developed algorithm solutions with
other state-of-the-art algorithms. Since modern dispatching and matching systems use batching
methods to group temporally similar client requests, this thesis focuses on developing a scalable
method for repeated parallel computation of batches. Within each batch, groups of similar fleet
planning problems are solved as discrete Combinatorial Optimization Problems (COPs). Each
fleet planning problem is further represented by small MWBM graphs. Since combinatorial
optimization problems are classified among the most difficult existing optimization problems
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computation-wise, inefficient algorithms can lead to high energy consumption on a server platform
during the service operation. Generally, COPs are hard to scale, which is caused by the enormous
amount of solution possibilities (search space size), from which the best combination of tasks has
to be found automatically.

For this purpose, this thesis aims to provide a scalable method for repeated parallel computation
of similar and small to medium-sized fleet planning problems as MWBM graphs. One of the biggest
challenges for the presented optimization component is to handle different node classes at once,
where multiple optimization objectives must be achieved for clients and vehicles. Furthermore,
this thesis focuses on the development of approximation-based algorithms using DRL, since exact
and globally optimal solutions would result in very long system response delays, which increase
exponentially for large quantities of client requests, and many operating vehicles. In such a
situation, an optimal algorithm may not be practical with respect to short real-time applications.
Importantly, this thesis does not focus on finding optimal solvers for large fleet planning problems
individually, since such large problems do not occur regularly when using temporal clustering
and batching methods.

Although a tremendous amount of work has been dedicated to traditional transportation
problems, the scientific research currently available is far from being complete or satisfactory
for the increasing and constantly changing requirements resulting from the rapidly evolving
digitalization trends. In particular, the decision-making or core planning process for transportation
has attracted a surge of interest in machine learning-based methods for large-scale transportation
and route networks. Here, the application of available mathematical models for fleet operation,
management, and routing is usually highly problem specific and typically cannot be generalized
or transferred to other problems. The comparably complex objective diversity in fleet dispatching
and pickup- or delivery problems originates from many different system goals that have to be
satisfied or for which the best consensus must be found (visualized in Figure 1.7). Continuously
changing system objectives lead to very dynamic optimization requirements, especially when the
mathematical model must be changed for different applications. The development of mathematical
models for each slightly different fleet routing or dispatching application results in a repetitive
and tedious process, where each newly developed model has to be tuned with parameters and
validated for deployment on a platform. Usually, for deployment, a clear definition of the
mathematical function is required, but what can be done if such a definition does not exist or
cannot be defined covering all scenarios from the start? What if such a definition additionally
needs to be changed frequently, as previously mentioned?

An example of this case is the algorithmic application to different urban environments or cities
which may be structurally and inherently different. In order to be applicable and scaleable to
different environments, a more flexible approach is required which is capable of adapting, or
rather of learning new models from scratch and from the actual data basis.

With this all being said, what if a mathematical model could be learned automatically and could
generalize (i.e. learn to adapt autonomously) to many or even all fleet operating environments?
This would obviously simplify the algorithm development process significantly and speed up the
development process for real-world application. Such a mechanism of automated model learning
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will be fundamentally system-relevant for the successful implementation of future fleet management
solutions, and this is precisely why this thesis focuses on this aspect. Note, the next section
describes the domain of fleet dispatching, routing, management, and operation research processes
in more detail, in order to provide more technical context for this thesis.
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Figure 1.7: Three stake-holding entities influencing the objective function for designing optimal
system behavior within mobility-services and fleet management domains.

1.7 Research Questions and Outline of the Thesis

After providing the research context and introducing the thesis’ objectives, this section further
details the objectives of specific research questions that will be answered at the end of this thesis.
The research questions are further based on the publications made within a 4-year time frame
from 2017 to 2021. As outlined before, the platform requires a flexible and efficient algorithm
for processing batches for planning and managing vehicular-request assignments. The choice of
DRL is based on past work and the current state-of-the-art where such algorithms have already
been used and have shown very good results [Syed et al., 2019b; Feng et al., 2020; Lin et al.,
2018]. From this state, the following research questions are proposed:

• Research Question 1: Can a Deep Reinforcement Learning approach learn near-optimal fleet
routing and assignment controls for generally occurring graph structures in collaborative
fleet routing and dispatching?

• Research Question 2: If Research Question (RQ) 1 is yes, does this assumption hold for
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symmetric and asymmetric graphs?
• Research Question 3: If RQ 1 and RQ 2 are yes, does this assumption hold for balanced

and unbalanced graphs?
• Research Question 4: If RQ 1, RQ 2, and RQ 3 are yes, does this assumption hold for

mathematical problem constraints?
• Research Question 5: If RQ 1, RQ 2, RQ 3, and RQ 4 are yes, can a DRL-based approach

be applied to real fleet data?

This thesis covers one major aspect of developing a DRL architecture for fleet planning as
a discrete Combinatorial Optimization Problem (COP) in the ODM domain. The developed
architecture comprises a deep Recurrent Neural Network (RNN)-based Pointer Network and a
Reinforcement Learning (RL) algorithm called Advantage Actor-Critic Monte-Carlo Policy Gra-
dient (AACMCPG) for training the RNN. The Actor network includes an Attention Mechanism
for learning contextual information from the environment (urban map data) and a mask function
in order to satisfy given optimization constraints. Moreover, the thesis contains experimental,
and computational simulations as well as analytic discussions and a final applied implementation
instance tested with real client and fleet data. In order to provide a benchmarking framework (see
Figures 1.8 and 1.9), the thesis includes multiple sub-parts for comparing the algorithm solution
quality, efficiency, and reliability. Initially, chapter 2 introduces the necessary mathematical
formulations, optimization objectives, and fundamental definitions. In order to research different
capable approaches for fleet planning, Chapter 3 summarizes the current state-of-the-art from
multiple research domains of On-Demand Mobility (ODM), Machine Learning (ML), Natural
Language Processing (NLP), discrete Combinatorial Optimization Problem (COP), and Opera-
tions Research (OR). Note, that only the state-of-the-art with respect to combinatorial DRL
and MIP regarding combinatorial optimization problems with the focus of operations research
are considered within Chapter 3. Since both fields of research are very vast, this thesis only
introduces the state-of-the-art in a very abstract, and punctual way. The Fundamentals of Graph
Theory or Maximum Flow Optimization can be found in Chapter 2, while the basics of Deep
Reinforcement Learning (DRL) can be found in Chapter 4. The main development phase within
this thesis starts in Chapter 5, where further detailed Benchmarks with different state-of-the-art
algorithms are shown in Chapter 6. Finally, Chapter 7 presents a summary of conclusions and
aspects about future work and mechanisms for possible improvements.

1.8 Contributions and Outcomes

This thesis advances theoretical and practical knowledge of machine-learning-based algorithms in
a real-world platform-based application of autonomous fleet operation and mobility services. The
value of the outcomes will be important to one or more communities (mobility service managers,
environmental engineers, machine learning algorithm developers, and computer scientists). The
thesis therefore contains outcomes about algorithm learnability, efficiency (scalability), solution
quality (optimality), and solution quantity (reliability) which heavily influence operation costs of
an autonomous-operated vehicle fleet in urban environments. In particular, the thesis benefits

13



1. Introduction

 

 

 

 

Data

Aggregation and  

Processing

1

2 4

3 5

Dataset 

Generation

Neural Network

Training Phase

Evaluation with

State of the Art

Algorithms

Visualization and

Improvements

Figure 1.8: The individual methodological phases of this thesis.

the domain of Combinatorial Optimization (CO) for complex mathematical problems. Generally,
COPs are hard to scale which is caused by the enormous amount of possibilities where the task
is to automatically find and select the best solution. In practice, there are even more difficulties
added by modeling a number of variations which is characterized by real-world application. This
thesis further contains practical insights about the development process of applied machine
learning algorithms in a real working environment, i.e. the computation platform often called
the “cloud” and in the presence of real data. The thesis furthermore touches on multiple areas
in intelligent transportation systems, machine learning, robotics, traffic engineering, operations
research, computer science, statistics, informatics, game theory, network modeling, and graph
theory.
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Figure 1.9: The Process of Algorithm Benchmarking.
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2. Fleet Dispatching and
Combinatorial Optimization

The biggest challenge in fleet planning with DRL is the “Curse of Dimensionality” [Bellman,
2015, p. 94]. On one hand, there is the size of the feature space dimensionality and the
combinatorial complexity on the other hand. When using DRL for fleet planning, it is crucial
to use a representation of the mathematical fleet planning problem graph that scales well with
the dimension of state space features, which can be for example travel times, distances, vehicle
ranges, and other physical entities. Since this thesis deals with approximate computations of
state spaces (called “Embeddings”), it is possible to over-approximate or under-approximate
complex state and action spaces. Another challenge is that more data to consider increases the
training time, which can lead to the exhaustion of computation capacities, even for modern
high-performance computation platforms. Problem constraints are hard to learn for any ML-
based method, but without constraints, the solution to a given fleet planning problem is less
valuable because of missing solution guarantees (e.g. also called conflict-freeness). Another
important aspect is that the most important computations for predicting fleet planning solutions
must be computed efficiently. This property limits the quantity of optimization methods that
can be used for large-scale fleet planning purposes during the prediction phase with DRL.
In order to provide more details about the fleet planning problem as discrete Combinatorial
Optimization Problem (COP) this chapter continues to introduce important mathematical
definitions, formulations, and objective descriptions. This chapter is organized as follows: Section
2.4 introduces the PDP problem formulations with representations of general network graphs,
combinatorial optimization objectives via MIP and MWBPM representations, the representation
of individual solutions, and further fundamental definitions. Next, it is shown in Section 2.6,
how an MIP representation can be converted to an MDP representation.

2.1 Introduction to Graph-Networks

Different types of networks including information flows can be encountered in our daily lives. For
instance, electrical circuits, telephone communication, cables, manufacturing, computer networks,
supply-demand logistics, railroads, and road networks. Using existing formulations in graph
theory, such a network or graph structure can be described as a network graph G(N ,L). The
short form, commonly just called a graph, consists of special points called nodes N and their
connections called links L. Some general networks examples are listed in Table 2.1.
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2.2 Set and Node Representations

Network Nodes Links Flow
communication data exchange, phone,

computers, satellites
cables, optics, mi-
crowaves

messages: voice, text,
video, data

financial currencies, stocks, de-
mand, supply

transactions money

hydraulic lakes, reservoirs,
pump stations

pipelines hydraulic fluids: wa-
ter, gas, oil, etc.

transportation, logis-
tics

airports, rail hubs,
road intersections

roads, highways, rail-
roads, flight routes

vehicles, passengers,
cargo

Table 2.1: Common Examples of Networks [Wayne and Tardos, 1999, pp. 2–4].

2.2 Set and Node Representations

The most general entities considered in automated fleet planning are sets of nodes that represent
a location on a map (see Figure 2.1). However, in order to build more context, different classes of
nodes for vehicles, client requests, and ⟨e, g⟩ are considered within this thesis. First, a vehicle set
that specifies the number of available vehicles within an environment (i.e. the operation area of
the fleet) is considered. In particular, a vehicle node class can have multiple physical attributes
such as an Identifier (ID) that enables to distinguish all vehicles, location coordinates, a number
of passengers or capacities, a State-Of-Charge (SOC) for electric vehicles, a State-Of-Fuel (SOF)
for combustion engines, limited driving ranges, and other status messages.

Definition 1 (Vehicle Set): The Vehicle Set denotes a set of vehicles V = {v0, ..., vn} where
each vehicle has a location pv and a passenger capacity cv = 1 at any given time t.

The major task of an ODM fleet is to satisfy a client demand, which is represented by a
quantity of client requests. Similar to the vehicle nodes, a client request requires an ID and
location for any pickup and drop-off trip on demand.

Definition 2 (Request Set): The Request Set consists of multiple client-requests (vehicle orders)
R = {r0, ..., rm} which may also be referred to as request schedule.

The difference to the vehicle node is that a client request additionally provides the trip
destination (drop-off location) as secondary information.

Definition 3 (Request): A Request is denoted by multiple attributes r[p,d] = {po, pd} such as a
client pickup rp and drop-off request rd which entails the trip routes from origin position po, to
the drop-off destination position pd.

For RH it usually is assumed that each client request is characterized by a passenger capacity
cv of 1. Both pickup and drop-off location tuples (i.e. two values for lat and lon or x and y

coordinates) are considered as nodes on the map (visualized in Figure 2.1). During demand
satisfaction, the operating fleet consumes energy which has to be recharged or refilled. Hence, a
set of fixed service, fuel, and charging stations as another class of location nodes with different
attributes is considered.
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2. Combinatorial Optimization and Collaborative Routing

Definition 4 (Service Station Set): The Service Station Set consists of multiple electrical e or
gasoline g service station locations S = {s⟨e,g⟩

0 , ..., s
⟨e,g⟩
o } with ID o, an individual location tuple

ps and number of free slot capacity cs, that can be used to recharge or refuel a vehicle.

Figure 2.1: The pickup and delivery/drop-off problem with a collaborative fleet.

2.3 Graph-Network Representations

Modeling a whole city complexity as an operational environment would exceed even modern
memory requirements and running cost of any ODM platform. Luckily, it is sufficient to use
abstract models to represent the most important environment characteristics. In order to
represent the city as operational environment, this thesis considers a given road graph-network,
and more specifically, a constructed assignment network which is denoted as bipartite graph G.
The graph G further comprises all node sets and so-called links L that represent a trip between
given location nodes. In order to distinguish a large quantity of links, each link is denoted by a
subscript tuple ⟨i, j⟩, which represents the direction of trip traversal from location i to location j.

Definition 5 (Graph-Network): A general Graph-Network is denoted by a weighted bipartite and
asymmetrical graph G = ⟨N ,L, C⟩ with a set of nodes N and a set of links L with corresponding
costs or weights C. Each link ⟨i, j⟩ ∈ L(ni, nj ∈ N ) corresponds to a traveling cost along the
link which is determined by a cost function using time, distance, price values or other similar
utility entities. If the vehicle driving speeds are available, both metrics can be transformed
interchangeably.

As Definition 5 shows, all graph link weights are characterized by individual trip costs C. Each
link cost thereby can bootstrap multiple profits, costs and other attributes at once. If multiple
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2.4 Objective and Constraint Formulations

costs are bootstrapped, the whole link weight is either represented as a final cost or profit, i.e. a
real value c ∈ R.

Definition 6 (Travel Cost): Given at least two nodes in a graph-network G, the travel cost is
indicated by C(ni, nj) as the link cost between any two nodes ni ∈ N and nj ∈ N .

If multiple trips between locations are considered, the concatenation of locations results in
costs for traveling a route or multiple routes. The path or route cost further is an ordered
sequence of costs which can be accumulated to a singular cost value, representing the costs of
the whole travel path.

Definition 7 (Cost Path): A travel cost path P is a vehicle route which is defined by the sum
of all travel costs over the traversed nodes and links starting from the sequence: vehicle nodes to
request pickup locations, to drop-off locations and to service station nodes ⟨v⟨e,g⟩

n , rp
m, r

d
m, s

⟨e,g⟩
o ⟩.

The travel cost path,

P = ⟨v⟨e,g⟩
0 , rp

0, r
d
0 , s

⟨e,g⟩
0 ⟩, ..., ⟨v⟨e,g⟩

|N |−1, r
p
|R|−1, r

d
|R|−1, s

⟨e,g⟩
|S|−1⟩

is represented by an ordered sequence of vehicle, origin and destination of requests and charging
stations. There is also the possibility that the ordered list may be reduced to

P = ⟨v⟨e,g⟩
0 , s

⟨e,g⟩
0 ⟩, ..., ⟨v⟨e,g⟩

|N |−1, s
⟨e,g⟩
|S|−1⟩

which results in a vehicle trip to the service station directly.

Obviously, since multiple vehicles are considered simultaneously, every vehicle can be assigned
with diverse routes and designated route costs individually. Hence, most optimal route assignment
is crucial for any ODM fleet and plays a major role for an operational success. In particular,
the optimization of assignments furthermore saves costs and thus increases fleet operational
profits. The next section continues to describe how strategic and collaborative objectives can be
represented.

2.4 Objective and Constraint Formulations

Ideally, a fleet always is provided with collaborative routes to minimize the total effort or
maximize the total profit during operation. Any ODM service requires to satisfy strategic goals,
where different goals exist to increase client comfort, reduce fleet operational costs or reduce the
environment footprint. Different mathematical ways and formulations of modeling collaborative
objectives exist. Within OR, traditionally PDPs are modeled as MIP comprising a decision
matrix X where any residing decision value can take integer values of either 0 or 1. General
MIP formulations also come with at least one cost matrix C that models individual trip or route
assignment costs from origin to destination locations as follows:
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2. Combinatorial Optimization and Collaborative Routing

X[N×M ] =


x11 x12 . . . x1m

x21 x22 . . . x2m

...
... . . . ...

xn1 xn2 . . . xNM

 (2.1) C[N×M ] =


c11 c12 . . . c1m

c21 c22 . . . c2m

...
... . . . ...

cn1 cn2 . . . cNM

 (2.2)

Both matrices have N rows and M columns, where N represents the number of origin locations
and M is the number of destination locations. Such structures are called Origin-Destination (O-D)
matrices, where origins are represented by vehicle nodes and destinations are represented by the
next pickup locations or service station location nodes. When using O-D matrices to describe
the transportation flow of vehicles to requests and ⟨e, g⟩. The decision structure results in an
MWBM graph which can be solved via an MIP assignment problem formulation, as shown in
Equation (2.5).

Definition 8 (MWBM ): Given a Minimum Weighted Bipartite Matching (MWBM) graph, a
set of vehicles V , requests R, and ⟨e, g⟩ S, the optimization objective is to find the optimal set of
route assignments, such that for each vehicle v ∈ V the optimal travel route cost P∗ is minimal,
and such that the objective cost function C(V,R,S) is minimized

C(V,R,S) = min
B−1∑
b=0

Pi,j−1∑
h=0

Ci,jXi,j (2.3)

Pi,j−1∑
h=0

=
N−1∑
i=0

M−1∑
j=0

(2.4)

[B, Pi,j ] ∈ Z+
0 ∀ {b, h, i, j} (2.5)

subject to the constraints

N−1∑
i=0

M−1∑
j=0

Di,j < rv
n (2.6)

m∑
j=1

pi,j∑
h=1

Xi,j = 1 ∀i, (2.7)

n∑
i=1

pi,j∑
h=1

Xi,j = 1 ∀j, (2.8)

Xi,j ∈ {0, 1} ∀{i, j} (2.9)
Xi,j ∈ Z+ ∀{i, j} (2.10)

within the given constraints: i) route feasibility constraint: The solution path P must be a
feasible route in the sense that the vehicle driving range exceeds the driving distance; ii) unique
assignment constraint: each vehicle must serve a different request and thus must result in a
minimal-cost perfect matching/assignment. The objective cost function is defined by multiple
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2.4 Objective and Constraint Formulations

cost matrices (batches) Ci,j and multiple decision or also called adjacency matrices Xi,j .

Each individual solution to a given objective cost function can be represented as two sequences
of IDs between vehicle nodes and destination nodes (client pickup nodes or service station nodes).
Since every assignment between any ID tuple results in an assignment cost, equally there exist
cost sequences for multiple assignments.

Definition 9 (Assignment Cost): Given at least two nodes in a graph-network G, the assignment
cost is calculated by a function D(ni, nj) as the distance between any two nodes i ∈ N and
j ∈ N .

Multiple vehicles, may have multiple assignment cost paths, which are as previously mentioned,
represented by ID sequences of nodes that are visited per vehicle.

Definition 10 (Assignment Cost Path): An assignment cost path P can include multiple nodes
per vehicle, which is represented by the sum of all travel costs over the traversed nodes and links
starting from the sequence: vehicles to pickup location, to drop-off location, and to a final service
station location node ⟨v⟨e,g⟩

n , rp
m, r

d
m, s

⟨e,g⟩
o ⟩. Technically, a vehicle path such as

P = ⟨v⟨e,g⟩
0 , rp

0, r
d
0 , s

⟨e,g⟩
0 ⟩, ..., ⟨v⟨e,g⟩

|V|−1, r
p
|R|−1, r

d
|R|−1, s

⟨e,g⟩
|S|−1⟩

can be represented by an ordered integer sequence of vehicle, request pickup/drop-off, and service
station Identifiers (IDs). There is also the possibility that the ordered list may be reduced to

P = ⟨v⟨e,g⟩
0 , s

⟨e,g⟩
0 ⟩, ..., ⟨v⟨e,g⟩

|V|−1, s
⟨e,g⟩
|S|−1⟩ ,

which results in a vehicle trip to the service station directly.

Multiple cost paths of multiple vehicles are called assignment policy. The assignment policy
hereby is a strategic decision over all vehicles to minimize the objective costs via collaboration.

Definition 11 (Assignment Policy): An “Assignment Policy” of a vehicle v is denoted by
multiple assignment sequences Aπ = ⟨P0, ...,P|N |⟩ with N = V ∪R ∪ S, which is represented by
multiple sets of ordered sequences, that exist for each vehicle.

As previously mentioned, each among the sequences consist of IDs that represent a trip from
vehicle origin nodes v⟨e,g⟩

n to either request pickup nodes rp
m and request drop-off nodes rd

m, or
from vehicle origin nodes v⟨e,g⟩

n to charging or service station s⟨e,g⟩
o location nodes directly. Note,

that the trip cost for assigning a vehicle to a client request or service station can be calculated via
a variety of metrics and distances. A common case within ODM is to represent the assignment
costs with the travel distance or travel time for traveling between any O-D pairs of locations. It
is crucial to distinguish the used distances or metrics via terms such as symmetric or asymmetric.
Distances by default may not be symmetric for real road networks with the existence of one way
roads or tidal lanes. Generally, real road distances rarely satisfy the triangle inequality. On one
hand, this limits the combinatorial complexity for a given dispatching problem, however, this
also makes it harder for a learning algorithm to learn a combinatorial strategy that solves the
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2. Combinatorial Optimization and Collaborative Routing

dispatching problem. If a distance function is called on any pair of nodes and the calculated
distances satisfy the triangle inequality, the distance function is called a metric.

Definition 12 (Triangle Inequality): The triangle inequality states that for any triplet of nodes
i, j and k the edge weights or costs between satisfy

ci,j ≤ ci,k + ck,j ∀i, j, k ∈ N . (2.11)

Note, that the term symmetric also refers to the cost values above and below the matrix
diagonal of any given cost matrix, for example, see in Equation (2.5). A metric produces costs
that equal, regardless of the assignment direction between any origin-destination node pair. On
the other hand, a normal distance function can calculate costs that are different depending on
the assignment direction.

Definition 13 (Symmetry): The symmetry between any tuple of nodes i, j yields the same cost
or distance values for D(ni, nj) = D(nj , ni).

Apart from reaching objectives in combinatorial optimization, assigning vehicles for client
requests without constraints would result in unpleasant consequences, particularly if the number
of vehicles currently available, do not equal the number of client requests currently booked. If a
vehicle would be assigned to two clients, this would not result in a proper solution. Such effects
are resolved via modeling constraints. The consequence of constraint modeling in Equations (2.7)
and (2.8), ideally ensures a solution that is called a perfect assignment or matching. Another
case where constraints are required is if the current vehicle ranges do not suffice to carry out
specific long trips.

Definition 14 (Vehicle Range Constraint): A vehicle node is defined to have limited range
Rv attributes while traveling within the road network and while serving customer pick-up and
drop-off requests.

Additionally, constraints ensure that only vehicles are assigned to client requests that ensure
feasible trips.

Definition 15 (Feasible Trip): A feasible trip is valid only if the vehicle range is sufficient
to execute the trip successfully, i.e. if the current vehicle range exceeds the trip’s total travel
distance denoted by

∑N−1
i=0

∑M−1
j=0 Di,j < rv

n.

The travel costs further can be either distances or an average Estimated Time of Arrival (ETA),
which can be obtained by querying a Routing Engine, such as the open-source OSRM Router. If
the assumption of traffic is ignored, the travel distance and travel time can be used interchangeably.

2.5 Graph Variants

To summarize, Figure 2.2 shows the different MWBM problem graph variants considered in this
thesis. As previously mentioned, one can distinguish
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2.5 Graph Variants

• “Balanced MWBM Graphs”, where the “cardinality”, i.e. the numbers of elements between
the matched sets, such as vehicles V and requests R must be equal,

• “Unbalanced MWBM Graphs”, which is the counter-example such that both sets may have
unequal numbers of elements,

• “Symmetric MWBM Graphs”, which refers to the definition that bidirectional assignment
directions (v0, r1), (r1, v0) do not result in different assignment costs or weights C(v0, r1) =
C(r1, v0) for a symmetric MWBM graph,

• “Asymmetric MWBM Graphs”, which are characterized by different costs or graph weights
depending on the assignment direction C(v0, r1) ≤ C(v1, r0), and finally,

• “MWBM Graph Constraints”, required for modeling limited vehicle ranges or distances,
which require modeling infinite costs for infeasible graph link weights C(v0, r1) =∞.

Generally, such properties have an influence on the solution structure, -efficiency, and -quality
and thus are crucial to consider. Clearly, the presented problem description is well-known in OR

r0
r1
r2

v0
v1
v2

MWBM Problem Variants

Balanced|V| = |R| |V| > |R|r0
r2

v0
v1
v2

Unbalanced|V| < |R|

r0
r1
r2

v0
v1
v2

AsymmetricC v , r >  C r , v( 0 1) ( 1 0)C v , r <  C r , v( 1 2) ( 2 1)

r0
r1
r2

v0
v1
v2

SymmetricC v , r =  C r , v( 0 1) ( 1 0)C v , r =  C r , v( 1 2) ( 2 1)

r0
r1
r2

v0
v1
v2

ConstraintC v , r =  ∞( 0 1)C v , r = R( 1 2) +0∞
R+0
∞

Figure 2.2: Different problem variants of Minimum Weighted Bipartite Matching (MWBM) graphs
that have an impact on solution structure, quality and efficiency.

and discrete combinatorial optimization. However, in order to solve such a problem with DRL, a
method must be found to reformulate the MWBM problem structure as an MDP. Hence, the
next section will address one way how to deal with this challenge.
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2. Combinatorial Optimization and Collaborative Routing

2.6 Conversion of Objective Formulations

A general MWBM problem setup can be typically solved optimally via the Hungarian method
[Kuhn, 1955], where the decision graph is visualized in Figure 2.3 and 2.5. The presented
objective conversions in Figures 2.3a and 2.3b show that the problem setting in Equation (2.5)
can be exactly solved using other mathematical solvers as well. This includes MIP assignment,
CP-SAT, Integer Linear Program (ILP), TSP, VRP, Auction Algorithms, Minimum Cost Flow
solvers, and MWBPM algorithms, which are well-known in discrete combinatorial optimization.
Also, the relation between the MWBM problem and the minimum flow problem in Figure
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(a) A MWBM Vehicle-Request Assignment
Problem.

y, lat

0
x , lon

1
x , lon

1

x , lon

000

1

2

3

4

5

6

707

(b) The same graph but solved as Traveling
Salesman Problem (TSP).

Figure 2.3: A MWBM Graph to converted to a TSP with shortest augmenting path.

2.3 explains why a DRL approach that solves Traveling Salesman Problems (TSPs) can be
used additionally to solve the MWBM problem as well. The main reason is that by adding a
source and a sink node to an existing MWBM problem becomes a more general minimum flow
problem formulation. In order to solve the special instance (i.e. the MWBM problem) with a
DRL-based approach, the mathematical formulation has to be transferred to a Markov Decision
Process (MDP) formulation. The transfer to a MDP is visualized in Figure 2.4, which shows
that each individual trip among all vehicles has to be reduced to individual assignment actions.

Definition 16 (Markov Decision Process (MDP)): An MDP is denoted by a tuple of a state
space, action space, reward function, and state transition function denoted by S, A, R(·), and
T (·). A MDP that provides mathematical processes for sequential decision-making problems.

Generally, Figure 2.1 visualizes an example of a RH planning problem, where optimal routes
for a fleet of vehicles is desired with respect to driving range constraints. If a client request can be
served, the final stop is again a service station. If the vehicle range does not suffice, the vehicle is
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2.6 Conversion of Objective Formulations

redirected to a service station directly. The optimization algorithm has to consider vehicle ranges
and the distances for incoming client requests (pickup and drop-off trip), and the follow-up route
to a given service station. The optimization algorithm furthermore has to decide if such a trip
is feasible within the driving range limits and which combinatorial route assignments yield the
minimal cost based on the objective in Definition 8 (also see Equation (2.5)). The vehicle, the
request, and the services station locations are given via coordinates (latitudes and longitudes).
It is assumed that each vehicle has a capacity of 1, whereas a vehicle must be able to follow the
route sequence called Action 1 (vehicle to, pickup, drop-off, and service station locations) to
serve a client request or Action 2 (vehicle to service station location) in order to recharge/refuel
the vehicle state of charge.

Figure 2.4: State and action space model, by transforming the MIP to a MDP.

Definition 17 (MDP Action): The MDP actions include two main types of actions in the
presented fleet planning setting.

By reducing the route node assignments to bootstrapped actions, the MWBM is transformed
to an MDP. This yields the advantage that the problem setting of state transitions, actions, and
rewards can be simplified. With this measure, the whole fleet planning problem can be seen as
a centralized decision-making component, i.e. also called a single agent MDP. Moreover, the
environment (i.e. the city network, the fleet, the client-request, and service station data) must
contain the complete information required for the decision-making process, which is called MDP
state.

Definition 18 (MDP State): The MDP state must satisfy the Markov property and includes
all information required to solve the MDP.
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2. Combinatorial Optimization and Collaborative Routing

Figure 2.5: A fleet planning problem modeled as Markov Decision Process with cost matrix.

Importantly, the MDP state serves as the basis input mechanism for the DRL architecture
and further developments in Chapter 5. The MDP state is defined to include all current node
features such as latitudes, longitudes, the vehicle ranges and the distance and time metrics to
currently available request pickup and drop-off and service station nodes.
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3. Combinatorial Optimization in
On-Demand Mobility

The introduced problem formulations (static fleet planning problem, MIP, PDP, MWBM, and
MDP formulation) in the previous chapter are used for reviewing different solution approaches
and results in this chapter. All formulations belong to the category of mathematical discrete
combinatorial optimization problems, which also include shortest-path problems such as TSPs
and VRPs. An introduction to combinatorial optimization with respect to fleet planning problems
is presented below.

3.1 Introduction and State of the Art

Basically, discrete combinatorial optimization techniques determine an optimal set of solution
indices (integers) that represent assignment IDs for vehicle, request, and service station nodes
among a large set of possible assignment combinations. Using a graph model, the assignments
can be also represented as graph links and thus, the same problem can be solved by finding an
optimal unique set of graph-links with the least global cost. When using a PDP formulation,
which is a special instance of the VRP, shortest-path techniques (TSP Solvers) can be used as well
to find optimal collaborative routes [Gamache et al., 2005, pp.1]. The most simple model to use
for exact solutions, however, is to use an MIP or MWBPM formulation as assignment problem.
For problem structures as such, a variety of solution methods exist, where a well-known optimal
algorithm is the Hungarian algorithm (when using the MWBPM formulation). Due to the high
problem complexity, however, it has been a wide practice to use simpler heuristics (see Section
3.3). Heuristics are interpreted as naive rules which are similar to a policy (strategy) to make
good decisions [Kool et al., 2018, p. 2]. When formulating the problem as MIP, subsequently
also well-known MIP assignment, CP-SAT, ILP, and Auction Algorithms can be used (see Section
3.2, “Exact Algorithms”). An even more general formulation can be achieved when formulating
the problem as maximum flow problem with minimum costs. Maximum flow solvers algorithms
are well known in OR. All mentioned methods have their own advantages, disadvantages, and
characteristics when it comes to optimality, scalability (efficiency), and reliability. With respect
to the aforementioned algorithms, a lot of literature can be found, which makes it relatively
straight forward to asses which algorithm might be the best for the given problem. Since this
thesis aims to build a DRL-based approach, which is a fundamentally different approach by
definition. Thus, the question now is how competitive an MDP formulation, i.e. being solved
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3. State of the Art

by a DRL approach, might be. With respect to ODM applications, DRL approaches have been
widely and successfully used (see in Section 3.4 “DRL Applications in ODM”). However, with
respect to graph-based fleet planning and combinatorial optimization, comparably little closely
related literature (compared to exact solution methods) is available. One important relation
however is found, if the problem formulation is considered a sequential-decision making process.
Thus, Section 3.5 “DRL Algorithms” will review the contributions of other authors and their
achievements with respect to combinatorial sequential-decision making (see Section 3.5, “DRL
Algorithms”).

3.2 Exact Algorithms

At a glance, Table 3.1 shows the history of exact MWBPM or shortest augmenting path algorithms
is dated back to the year of publication in 1955-1965, when the first exact shortest-augmenting path
(Hungarian Method) and MWBPM have been published [Kuhn, 1955; Edmonds, 1965]. Kuhn
further noted that their algorithm even was latent in the work of the Hungarian mathematicians
Köning and Egerváry [Kuhn, 1955; Duan et al., 2018].

The history can be traced back even further, where recent rediscovery has stated that Jacobi
had described a variant of the Hungarian algorithm in 1865 [Ollivier, 2009; Duan et al.,
2018]. Munkres showed that the running time of the presented Hungarian method is O(n4) for
quadratic matrices at the time. Here, n means the number of nodes serving as origins and m is
the number of nodes serving as destinations for rectangular matrices. In the case of quadratic
matrices n = m holds, i.e. the number of origin nodes equals the number of destination nodes.
Additionally, Gleyzal published a polynomial time cycle-canceling (min-cut) algorithm for a
generalized assignment problem (transportation problem) [Gleyzal, 1955]. The same problem
later was addressed by Brown and Von Neumann who provided a solution for the general
assignment problem by finding optimal strategies in a zero-sum Bi-Matrix game, where the
algorithm is stated to run in polynomial time [Brown and Von Neumann, 1950]. Faster
algorithms have been published later in the late 1960s, where Dinic and Kronrod provided an
O(n3) run-time algorithm. Two years later, it was stated by Edmonds and Karp; Tomizawa,
that the general assignment problem can be reduced to n single-shortest path computations,
given a non-negatively weighted directed graph. However, also given arbitrary weighted graphs,
different reductions are known to n single-shortest path computations, e.g. see [Ford Jr and
Fulkerson, 1962; Hoffman and Markowitz, 1963; Desler and Hakimi, 1969]. For this
algorithm, the computation time could be reduced to O(nm+ n2loglogn), by using Fibonacci
heaps and n sequential executions of Dijkstra’s shortest path algorithm [Dijkstra et al., 1959].
In 2002, it was reported that this algorithm can be implemented faster in O(nm) time for
given random integer weighted graphs, instead of floating point weights [Han, 2002; Thorup,
2004] and regardless of the maximum integer link weight [Andersson et al., 1998]. Another
algorithm published by Gabow and Tarjan was improved by the same authors and provides
a weight scaling algorithm for the assignment problem in O(m

√
nlog(nIw)) time, O(log(nIw))

slower than the Hopcroft-Karp algorithm [Hopcroft and Karp, 1973; Karzanov, 1973] which
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No. Year Complexity O(·) Reference

1 1955 n4, n3 Kuhn
2 1962 n|fmax| Ford Jr and Fulkerson
3 1965 nm2 Edmonds
4 1965 nm2 Witzgall and Zahn
5 1969 nm2 Balinski
6 1969 n3 Dinic and Kronrod
7 1971 m

√
n Hopcroft and Karp

8 1973 m
√
n Dinic; Karzanov

9 1976 n3 Gabow
10 1976 n3 Lawler
11 1976 n3 +mnlogn Karzanov
12 1978 poly(n) Cunningham and Marsh
13 1980 m

√
n Micali and Vazirani

14 1982 mnlogn Galil et al.
15 1985 mn3/4logn Gabow and Tarjan
16 1987 n2 − n3 Jonker and Volgenant
17 1989 mn logloglogd n+ n2logn Gabow et al.
18 1990 mn+ n2logn Gabow
19 1991 m

√
nα(n,m)lognlog(nN) Gabow and Tarjan

20 1991 m
√
n/κ Feder and Motwani

21 1996 m
√
n2 + n5/2/ω Cheriyan et al.

22 1997 m
√
n/κ Goldberg and Kennedy

23 2004 m
√
n/κ Goldberg and Karzanov

24 2004 m
√
n/κ Mucha and Sankowski

25 2006 nω Harvey
26 2012 Nnω Cygan et al.
27 2013 nm Orlin
28 2014 approx. ≤ m√n Duan and Pettie

Table 3.1: Well-known perfect Maximum Weighted Bipartite Matching (MWBM) algorithms and
their complexities [Duan and Pettie, 2014; Cook and Rohe, 1999].

solves maximum flow problems. A few years later, even faster algorithms could be developed
for small and dense graphs [Cheriyan et al., 1996; Kao et al., 2001] or when fast solutions
of a specific cost matrix size are desired [Ramshaw and Tarjan, 2012]. Interestingly, there
is an algorithm that solves the MWBPM problem in O(Iwn

ω) time, where Iw is the maximum
integer link weight and ω is the exponent of square matrix multiplication. To summarize, for a
general MWBPM problem, it can be assumed currently, that the solution time of the fastest exact
solving algorithms is O(nm). However, faster solution times can be achieved by approximating
the search space. The aforementioned publications can be accessed in Table 3.1. Note, that it
is also possible to exactly solve MWBPM problems with MIP solvers, see Table 3.2. However,
it is stated that algorithms such as the simplex method [Nelder and Mead, 1965] or interior
point methods [Dantzig, 1955; Karmarkar, 1984; Nesterov and Nemirovskii, 1994; Boyd
et al., 2004] practically scale at least in quadratic O(n2) [Gudmundsson et al., 2007] up to
super-cubic O(n3logn) time complexity for square matrices and equal numbers of node sets
[Pele and Werman, 2009]. Thus, using the simplex method would not lead to a comparably
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No. Year Method Complexity O(·) Reference MIP-model

1 1965 Simplex (n2)-(n3log n) Nelder and Mead
√

2 1988 Branch and Cut (n2)-(n3log n) Padberg and Rinaldi
√

Table 3.2: MIP algorithms and MWBM time complexity.

scalable approach, especially if the current state-of-the-art algorithm has been stated to achieve
a O(nm) time complexity [Orlin, 2013; Duan and Pettie, 2014].

3.3 Heuristics and Meta-Heuristic Algorithms

According to the literature research so far, the most efficient exact methods can solve the
special instances of a maximum flow problem, called MWBPM in O(nm) time, for n row and
m column entries. To yield faster algorithms, there is an additional possibility to leverage
heuristics and other approximations for optimal transport problems [Duan and Pettie, 2014;
Villani, 2008]. When looking at the Operations Research (OR) domain, apart from the
already introduced methods, commonly Heuristic (HR) and Meta-Heuristic (MHR) have been
used to yield efficient approximate solutions to large-scale problems. This is shown by Table
3.4, where the first well-known heuristic, i.e. the Clarke and Wright Savings heuristic was
proposed [Clarke and Wright, 1964] in 1964. The heuristic is still integrated in modern
solvers such as OR-Tools [Google OR-Tools, 2016], and can be used to approximately solve a
variety of optimal transport or combinatorial optimization problems, e.g. Minimum Weighted
Bipartite Matchings (MWBMs), Traveling Salesman Problems (TSPs), and Vehicle Routing
Problems (VRPs). In 1966, Von Neumann, Burks, et al. proposed a Meta-Heuristic (MHR)
which is an algorithm inspired by the natural selection of biological operators such as mutation,
crossover, and selection [Mitchell, 1998]. Seven years later, Lin and Kernighan published
the well-known Lin-Kernighan Heuristic (LKH) local search heuristic, which has achieved very
good results for optimizing TSPs and VRPs [Lin and Kernighan, 1973]. For the same purpose,
Christofides extended the work of Lin and Kernighan, but with the extension to asymmetric
TSPs. They published the extended local search heuristic in the year 1976, where importantly
some variants like guided local search are currently used in modern TSP solvers like OR-Tools
[Voudouris and Tsang, 1999]. Due to the characteristic, that many problems in transportation
are of stochastic and sequential decision-making nature, Powell and Sheffi proposed multiple
approaches using Approximate Dynamic Programming (ADP), which similar to RL, makes use of
the Bellman update equation to express a notion of systematic utility (of the whole transportation
system), that has to be maximized or minimized [Bellman, 1966]. For this optimization process,
the complete system state variables, the decision variables, random or stochastic process variables,
a transition function, and the utility or target function to optimize must be known. Every
solution to a multi-stage stochastic optimization process is represented by a rule-based form
expression called policy [Sutton et al., 2000; Powell, 2007]. ADP furthermore uses basic
principles of stochastic dynamic programming, such as value iteration and policy iteration. Both
also are well-known in the RL domain [Sutton et al., 2000], where the approach uses efficient
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generation of predictions for representing the parametric value function. The generation is done
via generating multiple state space samples via Monte-Carlo (MC) simulation and updates of
the predictions by stochastic gradient descent. It is commonly known that approximate dynamic
programming enables to efficiently generate good solutions for a given optimization problem,
however, usually with the solution being suboptimal or non-exact. One year later, in 1983,
Kirkpatrick et al. published another method known as Simulated Annealing (SA), which
similar to ADP, is a stochastic or probabilistic approximative technique for approximating the
global optimum of a given cost function. The approach requires an objective cost function and
leverages a slow cooling parameter, also called the temperature parameter, to control the initial
search exploration and final optimum selection phase. Simulated Annealing (SA) is considered to
be powerful for solving combinatorial optimization problems such as TSPs, VRPs, and MWBMs,
when finding an approximate solution is more important than finding an exact local optimum
within a given time duration. In the year 1989, Glover proposed another MHR method called
Tabu-Search, for solving TSPs, VRPs, and MWBMs. Tabu-Search again is an iterative approach
to approximate the solution of complex optimization problems. Furthermore, the approach is
trajectory-based, in the sense that the algorithm keeps track of the previously visited trajectories
during the search for the global optimum. Several strategies for adding solutions to the Tabu-list
exist, where a well-known strategy is to add the complement of the currently followed solution
by the Meta-Heuristic (MHR) [Glover, 1989].

Another quite different approach called Particle Swarm Optimization (PSO) is an MHR
inspired by the biological behavior of swarms in order to look for an efficient solution. The
algorithm was published in 1995, by Eberhart and Kennedy. The algorithm further imitates
the behavior of animals to control particles that are employed to search for improved or exploit
already achieved results. The search and exploitation strategy thus is naturally balanced, and
the algorithm terminates after the algorithm stops improving for a given time. In combination
with Q-Learning (i.e. a RL method) the algorithm has been applied to solve symmetric and
asymmetric TSPs [Dorigo and Gambardella, 1997]. Interestingly, PSO has been reported to
achieve high qualitative results, i.e. a Mean Absolute Percentage Error (MAPE) of 0− 3.79%. In
1997, two interesting approaches to tackling TSPs were published by Mladenović and Hansen;
Dorigo and Gambardella. The first method, called Variable Neighborhood Search (VNS)
again belongs to the category of MHR algorithms and is based on local search-based (LCS)
methods [Voudouris and Tsang, 1999]. The algorithm furthermore explores distant neighboring
solutions of the current solution by deciding to transfer to the new solution if an improvement
can be made by consequence. The method generally explores neighboring local optima, in order
to achieve an approximate solution of a given discrete and continuous combinatorial optimization
problem. Later in 2006 VNS has been extended to an even more powerful extension called
Adaptive Large Neighborhood Search (ALNS) by Ropke and Pisinger. More recently, this
approach has been optimized and applied to spatial customer distribution, time windows and
dynamic demand applications by Schiffer and Walther, where the authors present the
MHR under requirements of large-sized instances and real-world application ready circumstances
[Schiffer et al., 2021]; for electric logistics fleets [Schiffer et al., 2018], robust location routing
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[Schiffer and Walther, 2018b], and green logistics with intermediate stops [Schiffer et al.,
2019], solved by an ALNS approach [Schiffer and Walther, 2018a].

Generally, this MHR uses an implicitly defined solution destroy and repair method and has
shown interesting results for various transportation and scheduling problems, e.g. the TSP [Syed
et al., 2019b] and VRP [Ropke and Pisinger, 2006]. Interestingly, ALNS in combination with
Neural Network (NN) selection methods has shown promising results for MWBM for client-vehicle
matching and Ride Hailing (RH) purposes. Since additionally, Machine Learning (ML) methods
have shown promising results, i.e. when combined with traditional optimization algorithms
[Syed et al., 2019b] , the next paragraphs will continue with past publications in the domain of
Machine Learning (ML) for solving combinatorial optimization problems.

3.4 DRL Applications in ODM

In 2019 companies such as Uber, Didi Chuxing, Share Now have tried to leverage the qualities
of efficient ML algorithms for large-scale fleet applications [Lin et al., 2018]. For this purpose,
large-scale databases of data are aggregated to leverage ML-based methods via cloud-based
high-computing platforms [Chuxing, 2019]. The overall challenge originates from the large
number of vehicles and billions of customer requests that may occur daily. The goal thereby is
to automate the management of given fleet operations and logistics, when given actual vehicle
telematics in addition to maintenance tasks [Aljaafreh et al., 2011; Vujanović et al., 2012].
Such tasks furthermore include applications of autonomous pick-up, drop-off as well as charging
and fueling strategies to ensure operational responsiveness and to increase fleet availability.

Interestingly, more and more stochastic approaches [Lin et al., 2018] have been tried where
DRL is used for efficient strategy planning. Currently, the challenge is that only small numbers of
zones can be managed. Each zone thereby is a discretization with respect to the client geolocations
and an approximation of the original cost for trips from A to B. In practice, more complex
planning problems cannot be solved efficiently, which leaves room for further improvements.
Other applications further include vehicle supply and demand forecasting, the classification of
suited pick-up and drop-off locations, the learning of accurate ETAs and to optimize the number
of required vehicles and capacities for fleet management decisions and operations [Uber, 2019].

Moreover, the application of NN has already reduced operation costs of vehicle fleets, e.g.
by increasing also the profitability through efficient demand prediction [Ke et al., 2017; Geng
et al., 2019; Yao et al., 2018; Hauschild et al., 2013] for different cities world-wide. NN-based
predictions play an important role for the implementation of efficient and adaptive pricing
strategies [Hardt and Bogenberger, 2016; Hardt and Bogenberger, 2018; Schmöller
et al., 2019], adaptive control strategies [Dandl et al., 2019; Dandl and Bogenberger, 2018b;
Dandl et al., 2020] and other conditional service quality factors [Bilali et al., 2019c; Bilali
et al., 2020]1. Furthermore, service quality factors and parameters such as system response times
heavily influence the perceived quality of a given mobility service [Bilali et al., 2019c]. In order
to provide fast response times in a dynamic and stochastic city environment, very flexible and

1Hereby, the programming language python plays an important role in academia such as Technical University
Munich, Stanford University, Massachusetts Institute of Technology, and Harvard University.
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efficient optimization methods are required. The focus generally is set on the approximation
of the environment states, decision states, and feature spaces [Powell et al., 1995]. Other
authors rather focus on the efficiency of exact algorithms [Syed et al., 2019b; Syed et al., 2019a;
Syed et al., 2019b; Engelhardt et al., 2020] or efficient meta-heuristics [Erdmann et al.,
2019; Erdmann et al., 2020]. In summary, this illustrates the potential of efficient algorithms.
Furthermore, this illustrates that efficient planning and decision-making control strategies are
crucial, especially for economical but also environmental and human factors. In particular,
well-designed algorithms play an important role to avoid congestion/pollution patterns, to save
sustainability resources, and to reduce system energy requirements [Alonso-Mora et al., 2017;
Schwarting et al., 2018; Engelhardt et al., 2019; Gurumurthy et al., 2019; Alonso-Mora
et al., 2017].

3.5 DRL Algorithms

With recent advances in ML in planning and decision-making processes, techniques such as
NN and RL have been successfully applied in real-world decision-making games (Atari, Go,
Chess) [Mnih et al., 2015; Silver et al., 2016; Silver et al., 2017]. Such games range from 3D
navigation through labyrinths, and physical system control to user interaction. In this domain, the
success of NN originates from RL training which is a general-purpose decision-making algorithm
for unknown environment tasks. By incorporating a reward signal as a feedback mechanism,
algorithms that explore all possible and hopefully good actions can learn to solve such a sequential
decision-making task. An RL learning algorithm interacts with the environment (e.g. map, route
costs, vehicle positions), thereby iteratively learns its characteristics, and searches for better
decisions and actions incrementally via episodes. By steadily improving its experience or utility,
such an algorithm can achieve very competitive results as well as very fast decision times.

Since, Neural Networks (NNs) have been proven to be an universal function approximators
[Hornik et al., 1989], the use of Embeddings [Cuturi, 2013] might be the key to yield efficient
solution methods for complex combinatorial problems. While NNs have to be trained based
on given labeled datasets, RL enables to also use unlabeled datasets for training. It is well
known that the performance of NNs usually increases for large datasets, hence the generation of
large unlabeled datasets may result in a challenge that has to be considered. For this reason,
many researches in the fleet planning domain have rather focused on Deep Reinforcement
Learning (DRL) instead on supervised-learning approaches with Deep Learning (DL) only.

The first time that a Deep Reinforcement Learning (DRL) method has shown a major
breakthrough in real-world decision-making applications has been in 2013, where the work
of Mnih et al. demonstrated the capabilities and potentials of this method within ATARI
games. Previously, Deep Neural Networks (DNNs) also have outperformed classic approaches
for application such as speech recognition, machine translation, image captioning by learning
from data [LeCun, Bengio, et al., 1995, pp. 1–14]. Although DNNs usually are used to make
predictions for regression and classification, Reinforcement Learning (RL) has enabled DL-based
methods to make decisions by interacting with a provided game environment (e.g. when playing

33



3. State of the Art

ATARI games). The objective here is to efficiently learn the control strategy (called a policy) of
one or more entities (e.g. called agents) by observing high-dimensional sensor input data. For
instance, such data includes images, vision, sound, and speech which is the main challenge RL
algorithms could provide new breakthroughs.

Since the real-world is not a game, wrong decisions can have very severe consequences for
the environment, interacting humans, and interfacing systems. Thus, the ITS domain equally
requires algorithms that also provide reliability, safety, and provide guarantees when solving
real-world problems. For each wrong solution, a client may consequently be very dissatisfied
or even hurt depending on the type of mobility system. Hence, algorithms as such have to
prove their applicability to real-world problems with respect to reliability. Especially, additional
monitoring means are required if ML-based algorithms have large-scale responsibilities and
influences on the system stability. With respect to combinatorial optimization for TSPs, VRPs,
and Minimum Weighted Matchings (MWMs) the history of OR is shown in Tables 3.3 and 3.5.
All aforementioned algorithms have been part of past research. In 2013, one can observe that
DRL techniques have become more and more popular, which majorly can be explained by the
progress and availability of computational resources.

The attempts to apply NNs to combinatorial optimization problems (combinatorial decision
making) dates back to the work of [Hopfield and Tank, 1985, pp. 1–12], where a Hopfield-
Network was implemented for solving small TSP instances. However, due to the lack of computa-
tion power at this time, the benefit was not large enough to be successful in real-world examples.
However, 30 years later, the development of powerful Graphics Processing Units (GPUs) and
high-performance platform computing platforms has led to a revival of NNs. Tremendous ad-
vances in technology have enabled new possibilities and more efficient training methods, that
have paved the way for DRL techniques. At the same time, and due to increasing digitalization,
large amounts of datasets have become available open-source. New benefiting circumstances as
such, have been the basis for modern research as follows.

3.5.1 DRL Approaches for TSPs

One of the first modern approaches to tackle the TSP (e.g. see Figure 3.1a) with an RNN
solution has been proposed by [Vinyals et al., 2015, pp. 1–12] in 2015. For the first time,
[Vinyals et al., 2015] have proposed an RNN-based Seq2Seq model-based [Sutskever et al.,
2014, pp. 1–9] PN architecture [Vinyals et al., 2015, pp. 1–12] with “Attention Mechanism”
[Vaswani et al., 2017, pp. 5998–6008] to overcome prior architectural limitations of fixed length
input and output sequences. This is the so-called dictionary length or “Embedding Size”, where
the new architecture allows for variable input and output dictionary sequence lengths. This
invention is fundamental for combinatorial optimization problems, where the length of the output
sequences depends on the length of the prior input sequences. The whole architecture is called
PN, and initially was trained via supervised learning (without RL). In more detail, the authors
used a single layer Long-Term Short-Term Memory (LSTM) with 256 up to 512 hidden units
and trained the NN with stochastic gradient descent. Furthermore, they used a learning rate of
1.0, while training 128 graph problems with a batch size of 128 in parallel. The initial network
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Acronym Explanation

HR Heuristic
SL Scheduling
ILP Integer Linear Programming
NETs Networks
NN Neural Networks
DCO Discrete Combinatorial Optimization
DRL Deep Reinforcement Learning
TSP Traveling Salesman Problem
RL Reinforcement Learning
ADP Approximate Dynamic Programming
DP Dynamic Programming
AP Assignment Problems
MWM Maximum Weighted Matching
MWBM Maximum Weighted Bipartite Matching
MWBPM Maximum Weighted Bipartite Perfect Matching
MHR Meta-Heuristic
SA Simulated Annealing
VNS Variable Neighborhood Search
PSO Particle Swarm Optimization
ALNS Adaptive Large Neighborhood Search
QL Q-learning
PN Pointer Network
GCN Graph Convolutional Network
GCAN Graph Convolutional Attention Network
CVRP Capacitated Vehicle Routing Problem
ATTN Attention
MCTS Monte-Carlo Tree Search
mTSP Multi-Traveling Salesman Problems
mVRP Multi-Vehicle Routing Problems

Table 3.3: Acronyms for Table 3.5.

weights were initialized from -0.08 to 0.08, where additionally, ℓ2-norm-gradient clipping with a
magnitude of 2.0 was used to protect the network from divergence2 during the training phase.
Upon the test phase, [Vinyals et al., 2015] beam search was applied to filter invalid TSP tours.
Moreover, 1 Million training examples (graph problems) were generated, where over-fitting the
network was only observed for small training dataset sizes. Finally, tests were shown that the
training generally converged after 10 up to 20 training epochs. The authors conducted more
tests for 20-50 TSP nodes, where, compared to state-of-the-art algorithms, the Pointer Network
could achieve close-to-optimal for larger problem sizes and optimal results for small problem
sizes. The results of Vinyals et al. showed that for small TSP problem sizes with 5 nodes, the
optimal tour with an optimal tour length of 2.12 could be found [Vinyals et al., 2015, p. 8].
When training and testing with 10 TSP nodes, the computed results by the PN showed a slight
deviation, i.e. 2.88 from the optimal tour length 2.87. Computing the MAPE [De Myttenaere
et al., 2016, pp. 1–33] estimate from this deviation would result in a MAPE of 0.34%. When
training with 20 TSP nodes and testing only 10 TSP nodes, however, the optimal tour length of

2i.e. the exploding gradient phenomenon, e.g. see Chapter 4, Section 4.7 for further details;
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No. Year Method Task Reference Model-based

1 1964 HR SL Clarke and Wright
√

2 1966 Genetic MHR ILP Von Neumann, Burks,
et al.

√

3 1973 HR TSP Lin and Kernighan
√

4 1976 HR TSP Christofides
√

5 1980 Local Search TSP Kanellakis and Pa-
padimitriou

√

6 1982 ADP MWBM/AP Powell and Sheffi
√

7 1983 SA MHR DCO Kirkpatrick et al.
√

8 1989 Tabu-Search MHR SL Glover
√

9 1995 PSO MHR TSP Eberhart and
Kennedy

√

10 1997 VNS MHR TSP Mladenović and
Hansen

√

11 2006 ALNS MHR TSP Ropke and Pisinger
√

Table 3.4: Heuristic and approximate combinatorial optimization techniques.

No. Year Method Task Reference Model-based

1 1958 NN Classification Rosenblatt
√

2 1981 RL NETs Sutton and
Barto

√

3 2002 α, β Search Chess Campbell et al.
√

4 2013 Conv.DRL/QL Atari Mnih et al. ×
5 2015 Seq.DRL/PN TSP Vinyals et al. ×
6 2016 Seq.DRL/PN TSP Bello et al. ×
7 2016 Conv.DRL/MCTS/Minimax Alpha Go Silver et al. ×
8 2017 Conv.DRL/Struc2Vec TSP Khalil et al. ×
9 2017 Conv.DRL/GCN QAP/MWM Nowak et al. ×
10 2018 Seq.DRL/PN TSP Deudon et al. ×
11 2018 Conv.DRL/GCAN TSP Kool et al. ×
12 2018 Seq.DRL/RNN+Attn. CVRP Nazari et al. ×
13 2018 Conv.DRL/GCN+Pooling mTSP Kaempfer and

Wolf
×

14 2018 Seq./Conv.DRL/SPG TSP/MWM Emami and
Ranka

×

15 2019 Conv.DRL/GCN TSP Joshi et al. ×
16 2019 Conv.DRL/AC CVRP Malazgirt et al.

√

Table 3.5: Neural Network-based approximation techniques for combinatorial optimization.

2.87 could be found. For TSP node sets above 10, the computed results by the Pointer Network
showed an increasing degradation in solution quality [Vinyals et al., 2015, p. 8]. For 20 trained
TSP and 20 tested TSP the MAPE shows a magnitude of 1.3%. For 20 trained TSP nodes, but
30 tested TSP nodes, the MAPE rate increases to 2.6%, for 40 tested TSP nodes the MAPE
rate increases to 13% and for 50 TSP nodes the MAPE rate increases to 32%. In other words,
this shows that with their model, optimal TSP tours could be learned by the PN up to 20 TSP
nodes [Vinyals et al., 2015, p. 8].
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One year later, [Bello et al., 2016, pp. 1–15] showed an improvement when tackling the
same 2D Euclidean TSP graph setup as shown by [Vinyals et al., 2015]. As a major difference,
[Bello et al., 2016, pp. 1–15] showed that RL instead of supervised learning could be used
to learn close-to-optimal routes up to even 100 TSP nodes. Bello et al. used an architecture
called Actor-Critic with Attention Mechanism which comprised two RNN modules. Both RNN
modules further included Encoder and Decoder modules which respectively, consisted of LSTM
cells [Bello et al., 2016, p. 2]. In order to train the PN, Bello et al. proposed to use a Policy
Gradient RL algorithm, since computing labeled data for supervised learning is impractical,
especially for the training of large graph problem instances. In order to improve the learning
stability, or to reduce the probability of exploding gradients, a critic module was used as a
baseline function. This further enabled to reduce the variance of the computed network gradients.
A baseline function was leveraged to compute an exponential moving average of the achieved
network rewards over the training time. During the training phase, the critic network parameters
were additionally optimized via stochastic gradient descent, using a mean squared error objective
(loss) function between the Actor and Critic network. In order to compute multiple candidate
solutions from the learned Actor policy3, Bello et al. used Monte-Carlo Sampling and Active
Search, which further led to improvements in the PN’s solution quality. Subsequent benchmarks
were conducted for Euclidean TSPs with 20, 50, and 100 TSP nodes per graph instance, where
equally to the work of Vinyals et al., all node coordinates were uniformly and randomly sampled
within unit square [0, 1]2. During the tests of the actor network, 1000 sampled TSP graphs were
used and were divided into 128 mini-batches. Further, the batches were sequentially processed
by the actor network [Bello et al., 2016, p. 5]. The actor module consisted of LSTM 128 hidden
units, that embedded two coordinates for each node in a 128-dimensional hidden unit space. The
models were trained with the Adam optimizer [Kingma and Ba, 2014, pp. 1–15], where an initial
learning rate of 10−3 was used for testing the 20 and 50 TSP node datasets. A smaller learning
rate 10−4 was used for the larger graph problems, consisting of 100 TSP nodes. The learning rate
was decayed every 5000 steps by a factor of 0.96, where the network parameters were initialized
uniformly and random within [−0.08, 0.08] [Bello et al., 2016, p. 8]. In particular, the gradients
were clipped to 1.0 using the ℓ2-norm. Both authors, Vinyals et al. and Bello et al. used one
attention glimpse, that allowed the attention mechanism to update or rather focus on only one
specific input (node assignment) at a decoding time step. Compared to the work of Vinyals
et al., Bello et al. introduced an extra model depth in the decoder module, where an additional
attention glimpse at the Embeddings was used. During the learning phase, the authors used a
mask function for masking the TSP nodes already visited.

During the networks’ search for optimal TSP solutions, the training mini-batches consisted of
a subset of TSP graphs with replications of the test data set sequences and its permutations.
A baseline decay α was used and was set to 0.99. Whereas a validation set of 10000 randomly
generated TSP graph instances was used for hyper-parameter tuning. The Critic module consisted
of an encoder network, which was architecturally similar to the policy network, but with the
difference of having exactly 3 processing steps and 2 fully connected layers. The Logit values of

3e.g. see Chapter 4, Section 4.9
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the actor network were clipped to magnitudes of [−10, 10] but also a tanh(·) activation function
has been applied4, which helped to balance exploration and exploitation and resulted in slight
performance gains during the MC search for good TSP solutions. Bello et al. furthermore
tested a simple greedy decoding search strategy during the decoding steps, that was needed to
find the largest probability of a node assignment in order to complete a whole TSP tour. Their
results showed, that the combination of RL pretraining in combination with Active Search yielded
the best performance [Bello et al., 2016, p. 8] compared to past attempts [Vinyals et al.,
2015]. They noted, that for each test instance, an Active Search method was called for 10.000
training steps, while sampling and applying batch sizes of 128 TSP graphs, out of 1,280,000
TSP candidate solutions in parallel [Bello et al., 2016, p. 9]. The Actor-Critic PN approach
was compared against 3 different increasingly qualitative and complex baselines, such as i) the
Christofides algorithm [Christofides, 1976], ii) Heuristic-based algorithms as implemented
in the OR-Tools [Google OR-Tools, 2016]5 Vehicle Routing Solver, which includes simple local
search operators as 2-opt [Johnson, 1990], a version of the LKH [Lin and Kernighan, 1973],
simulated annealing [Kirkpatrick et al., 1983; Reinelt, 1994], Tabu-Search [Glover et al.,
2018] or Guided Local Search [Voudouris and Tsang, 1999] and iii) optimal solutions via the
Concorde Solver [Applegate et al., 2006a]. They deployed their DRL method on a single Nvidia
Tesla K80 GPU, whereas other heuristics with Or-Tools were executed on an Intel Haswell CPU.
Further, Concorde and the LKH were executed on an Intel Xeon CPU E5-1650 v3 3.50GHz CPU.
The learning time of the PN approach with Active Search was stated to require a considerable
amount of time, i.e. 7.25 hours per experiment with 50 and 100 TSP nodes. Note, that for this
benchmark various implementations in Pytorch [Paszke et al., 2016]6 and Tensorflow [Abadi
et al., 2016]7 can be found [Github, 2020a; Github, 2020b].

Also note, that in the work of Bello et al., a comparison between the work of Vinyals et al.
is included. It is reported that training the PN with RL significantly improved the solution
quality over the previously published supervised learning approach by Vinyals et al. and that
all proposed methods generally surpassed the tested Christofides heuristic [Christofides, 1976].
With respect to solution quality, the PN further is stated to be slightly less competitive compared
to Tabu-Search and even much less than Guided Local Search. For the training and testing
datasets that are characterized by 20 TSP the PN approach of Bello et al. yields the optimal
tour length computed by the Concorde solver. For 50 trained and tested TSP nodes the results
showed a slight degradation yielding a MAPE of 0.35%. The optimal TSP tour length was
calculated to be 5.68 whereas the achieved TSP tour length was 5.70 by the proposed PN
approach. For 100 trained and tested TSP nodes the MAPE further increased to 0.77, achieving
a tour length of 7.83 by the PN and an optimal tour length of 7.77 by the Concorde solver.
Finally, this illustrated that the proposed PN could solve the TSP with a MAPE of less than
1% which is an accuracy above 99%. The proposed PN was compared with Concorde, which is
stated to be the most accurate TSP solver currently known [Applegate et al., 2006a].

4e.g. see Chapter 4, Section 4.8
5https://developers.google.com/optimization/routing
6https://pytorch.org/
7https://www.tensorflow.org/
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In 2017, other authors proposed a different model based on Convolutional Neural Networks
(CNNs) [Khalil et al., 2017]. Instead of using separate Encoder and Decoder modules based
on the Seq2Seq model, Khalil et al. proposed a non-autoregressive single model solution with
Struc2Vec Embeddings. The term regressive refers to the model characteristic of conditioning
the network output to the qualitative partial solutions of the TSP tour. An autoregressive
model is merely a feed-forward NN that predicts future values by incorporating past values,
while non-autoregressive models process every prediction from current values (ignoring past
computations) and produce its outputs in parallel. Such a model was trained with a 1-step Deep
Q-learning Network (DQN) [Mnih et al., 2015], while RL and helper functions were required
to compose the final TSP tour from the network. Hereby, the networks’ output was the order
in which partial TSP nodes have to be visited. Furthermore, individual partial solutions were
composed to the final best possible ordering location. As an objective function, Khalil et al.
used the negative of the reward, which led to the behavior that the network inserted the farthest
nodes at first. This was later stated to be an effective heuristic for solving TSP problems in
general [Rosenkrantz et al., 1977; Kool et al., 2018].

Other non-autoregressive approaches were proposed by [Nowak et al., 2017a], where a Graph
Neural Network (GNN) was trained via Supervised Learning to learn the optimal adjacency
matrix (i.e. the decision matrix X), which entails the information of which nodes are connected
within a TSP tour. The GNN response was converted into a feasible solution using Beam Search
[Medress et al., 1977]. As a result, Nowak et al. reported an optimality gap of 2.7% for 20 TSP
nodes, which was slightly inferior than the regressive approaches by [Bello et al., 2016, p. 8].

At the same time, Shimomura and Takashima proposed an MCTS algorithm for yielding
efficient solutions to the TSP, whereas in this scheme another MCTS method was developed by
[Fu et al., 2019]. Based on this work, Emami and Ranka implemented an Actor-Critic NN, and
chose a different approach with SPG to learn the policy by approximating a double stochastic
matrix.

In 2018, [Deudon et al., 2018] similar to [Kool et al., 2018] presented an auto-regressive
Graph Multi-Head Attention Network (GMHAN) approach for solving the TSP. Deudon et al.
showed a performance increase when using 2-OPT local search within the Policy Gradient training
algorithm of used for training the PN. The results showed that the optimal solution could be
obtained for 20 TSP nodes, whereas for 50 nodes their model achieved a total tour length of
5.77 with respect to an optimal tour length of 5.68. This resulted in a MAPE of 1.6%. For 100
TSP nodes, the GMHAN obtained a total tour length of 8.16, which compared with the optimal
solution of 7.77, yielded a MAPE of 5%.

On the other hand, the GMHAN approach of Kool et al. was trained using the RL algorithm
called “REINFORCE” [Williams, 1992]. The algorithm is a Policy Gradient-based technique,
which iteratively was used to improve the quality of the learned and obtained TSP solutions during
training. The authors showed results for 20 TSP nodes, where the Attention Mechanism (AM)
yielded a MAPE of 0.3% by achieving the same tour length as OR with 3.85, compared with an
optimal tour length of 3.84, calculated by Concorde. For 50 nodes, the AM achieved a MAPE of
1.8% and for 100 TSP nodes a MAPE of 4.5% was achieved. The individual solution times for
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20, 50, and 100 TSP nodes were reported to be 0.1, 2 and 5 seconds. Kool et al. also showed
solutions of their model to other problems such as the CVRP, Split Delivery Vehicle Routing
Problem (SDVRP), Orienteering Problem (OP), Price Collecting TSP (PCTSP), and Stochastic
Prize Collecting TSP (SPCTSP).

Other work by [Joshi et al., 2019] provided a non-autoregressive approach where they trained
a GCN. The approach is similar to [Emami and Ranka, 2018] in the sense, that the optimal
output of an adjacency matrix was targeted for the TSP with 20, 50 and 100 nodes. Similar to
Nowak et al., Joshi et al. employed Beam Search to compose the finally obtained TSP tours.
As a result, the authors reported that the average MAPE could be reduced from 0.52% to 0.01%,
and 2.26% to 1.39% for 50, and 100 TSP nodes.

To summarize, all aforementioned models can be classified as model-free approaches, where the
trained model does not require any stochastic transition model matrix T. But also modern online
model-based approaches can be found, such as by [Malazgirt et al., 2019, pp. 50–51]. Note,
that the term on-line refers to the train-ability in repeated short amount of times. This however
may result in a quality-scalability trade-off with respect to the achievable solution quality of
many TSP nodes. While model-free approaches (e.g. Bello et al.) do not depend on a stochastic
transition model matrix T, Malazgirt et al. showed that the training time could be reduced
efficiently by leveraging a transition model. Their results also provided insights into the final
solution quality. As a result, their model provided total tour lengths of 2.88, 3.91, 6.37 for 10,
20, and 50 TSP nodes, where the optimal tour lengths were 2.87, 3.82, and 5.68. The resulting
MAPE magnitudes can be self-calculated to 0.34%, 2.35%, and 12% deviations from the optimal
tour length.

3.5.2 DRL Approaches for VRPs

In 2018, Nazari et al. were known to be the first authors to tackle VRP with a DRL approach.
Briefly, VRPs are multiple extensions of TSPs from the depot node, visualized in Figures 3.1a
and 3.1b, and thus are considered to be even more complex to solve. Equal to the TSP the VRP
belongs to the class of combinatorial optimization problems, where a decision component must
calculate the optimal round-trip routes for multiple vehicles. Here, each vehicle route may consist
of several stops or pickup locations for clients or station locations. Essentially, this requires
calculating multiple dependent TSPs which all have a common start at the depot node. While
targeting to solve VRPs, Nazari et al. extended the approach of Bello et al. by replacing
the LSTM encoder of the PN by element-wise projections, such that the updated Embeddings
can be efficiently computed during state changes. Nazari et al. apply their architecture to the
VRP while also considering split deliveries and stochastic variants, such as dynamic demands
and supply modeling, called CVRP. The stochastic graph features as demands and supplies
could be incorporated via dynamic tensor elements, whereas static features were employed
to represent static VRP elements such as present node coordinates. Each input element was
composed of a stacked input tensor which incorporated the static and dynamic tensor elements
via xi

t := (si, di
t), t = 0, 1, ..., T , for each input element i at each encoding-decoding time step t.

The authors argued that the RNN encoder of the approach of Bello et al. added unnecessary

40



3.5 DRL Algorithms

(a) A general visualization of an TSP with depot
node.

(b) A general visualization of an VRP with depot
node.

Figure 3.1: Extension visualization from TSP graphs to VRP graphs.

complication to the encoder. Whereas by omitting the encoder, the approach could be made
less complex and more general. They mentioned crucial limitations of the approach of Bello
et al., where dynamic elements could not be updated concurrently while computing the updated
probabilities for the next decision step. To prevent such limitations, Nazari et al. proposed a
model where an embedding layer between the input and Attention Mechanism mapped the inputs
to high-dimensional vector space [Nazari et al., 2018, 5, Figure 2]. The RNN encoder further
stored the information on the decoded sequence, where the RNN hidden state and embedded
input were used to compute the conditional probability distribution over the next input using
an Attention mechanism. They reasoned this with the usual characteristic that combinatorial
optimization would not provide any meaningful order within the input data [Nazari et al., 2018,
p. 5]. As an example, the VRP inputs usually are sets of unordered customer locations with
individual demands. Moreover, the order of the input does not matter to the network. With
respect to architectural design, the model of Nazari et al. consisted of two main components,
namely the embedding mechanism, which mapped the inputs to D-dimensional space to enable
the input processing for the AM. The second component was the common practice to use RNNs to
model the Encoder and Decoder networks [Bahdanau et al., 2014; Cho et al., 2014; Sutskever
et al., 2014]. The authors reported that only the static tensor elements were used as input to
the decoder, whereas the dynamic elements did not yield any significant improvements when
they were being used as input. Instead, the dynamic elements were only used in the Attention
Mechanism of the overall network [Nazari et al., 2018, 5, Section 3.2]. With respect to the
results, Nazari et al. additionally employed a set of heuristics and OR for competitive baselines.
Finally, they reported that their approach could find optimal solutions for the VRP with 10 and
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20 nodes, while they used a MIP formulation [Toth and Vigo, 2002] for comparisons. The
authors uploaded their work online where also their tensor flow implementation can be found8.

As a final note, it is also worth mentioning that the recently published Transformer architecture
[Vaswani et al., 2017; Kaempfer and Wolf, 2018] has been trained while targeting the mTSP
or VRP. The result can be interpreted as the linear relaxation of the problem, where Kaempfer
and Wolf have used beam search to obtain the final feasible TSP tour [Kool et al., 2018].
Unfortunately, no details on the accuracy of their model are shown. Also note, that NN approaches
have been used to advance modern meta-heuristics ALNS [Syed et al., 2019b; Hottung and
Tierney, 2019], which also have shown competitive results to the approaches aforementioned.

3.6 Summary and Research Gap

In this chapter, most related literature was analyzed to summarize the state-of-the-art within
MIP and DRL for combinatorial optimization. The next Subsection 3.6.1 briefly summarizes the
insights gathered from exact and heuristic combinatorial optimization algorithms with a focus on
achievable run-time complexities. Secondly, Subsection 3.6.2 summarizes the insights from DRL
approaches for the same purpose. Finally, the summary finishes with Subsection 3.6.3 which
explains the gap of research and further defines the course of research within this thesis.

3.6.1 Summary of Exact and Heuristic Methods

The literature research of past combinatorial optimization has shown that many authors have
shown very remarkable results, using a variety of very different approaches. Comparably simple
approaches are dated back to the 60s, when the first heuristics were used to approximate complex
Combinatorial Optimization Problems (COPs) such as TSPs, and VRPs. Whereas, for PDP
and MWBMs naive greedy heuristics (O(n) or O(m) time complexity) have been a widely used
practice, and are even used within some RH companies today. The reason for using such simple
methods mainly originates from user-centric design, scalability and maintainability reasons.
However, heuristics do not reach full optimization potential, particularly when dealing with fleet
planning and scheduling applications. Heuristics furthermore are known to provide very fast
solution times, however, also are stated to require tedious development and testing efforts (costs)
in order to work well for many different problem scenarios.

Thus, many authors proposed MIP formulations, which can be exactly solved by well-known
MIP assignment, simplex, CP-SAT, ILP, Auction Algorithms, and Max-Flow-Min-Cut (Hungarian
Method) solvers, see Figure 3.2.

8accessed 07/30/2020: https://github.com/OptMLGroup/VRP-RL
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Figure 3.2: Computational Effort vs. Scalability by different MIP, Linear Sum Assignment Program
(LSAP) and MWBM Methods for fleet planning problems.

On the one hand, past authors have shown optimal results and large efficiency improvements.
For instance, with respect to MWBPMs, modern research has stated to achieve exact-optimal
solutions in quadratic O(nm) (best-case) time complexity up to polynomial, e.g. O(n3log n)
(worst-case) time complexity. Faster efficiencies only were achieved using qualitatively suited
approximations. In this case, meta-heuristics finally have become more and more popular, and
have shown remarkable results with respect to a trade-off for solution efficiency and optimality.

3.6.2 Summary of DRL Methods

All presented approaches focus on the solution of large quantities of logistic requests for shortest-
path problems like TSPs and VRPs. Known approaches further leverage DRL-based autore-
gressive and non-autoregressive approaches to efficiently solve such combinatorial problems. It
can be noted that the combinatorial complexity highly depends on the problem formulation
and the used features for definition [James and Lam, 2017; Lee et al., 2012; Jaillet et al.,
2016, pp. 1, 1, 3]. Past surveys also showed that common Traveling Salesman Problems (TSPs),
Vehicle Routing Problems (VRPs) and Minimum Weighted Matching Problems (MWMPs) were
mainly solved with ILP or MIP solvers which achieved polynomial run-times. Using DRL past
authors have focused on solving TSPs and VRPs via artificially generated datasets. By solving
artificial Euclidean symmetric TSPs the potential of using regressive approaches was shown to
achieve optimal for small TSPs below 20 nodes and near-optimal results for larger TSPs for
20-100 nodes [Bello et al., 2016]. In general, “Encoder-Decoder”-based architectures with policy
gradient optimization were employed and showed remarkable results regarding solution quality
while providing efficient solutions to combinatorial complex optimization problems. Secondly,
an extended architecture was used to optimally solve VRPs with static and dynamic problem
features, e.g. vehicular capacities [Nazari et al., 2018]. Unfortunately, Nazari et al. still used
artificial data for comparisons, which makes it difficult to assess how similar approaches might
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perform in real-world applications. Since the VRP is closely related to a PDP, it might be
possible to develop an architecture that could solve PDPs and MWMs efficiently. However, with
respect to this combinatorial problem, it is additionally unknown which problem properties could
be solved and which may fail.

3.6.3 Research Gap

As aforementioned, some past authors have used DRL methods to optimally solve TSPs and
VRPs. Conversely, asymmetric, unbalanced, and constraint MWMs, PDPs, and MWBM have
not been solved optimally with Neural Networks at this point. Also past authors mainly have used
artificial data, which commonly leaves the consequences of using real data currently unknown.
Generally, the problem structure of an PDP is similar to an VRP and by omitting the routes
to the depot, both problems can be transformed to MWBMs. However, by doing so, multiple
problems arise. First, it is unclear, if an approach as proposed by Nazari et al. could handle
symmetric or asymmetric distances (ubiquitous in real road networks). Second, it is unclear if
such “Encoder-Decoder” architecture could learn to solve unbalanced problems with different
sequence lengths in the input data. All past approaches have assumed balanced graph samples
with the same amount of nodes for training and testing. This assumption however is comparably
unrealistic for real-world fleet planning problems. Alongside this challenge, another fact occurs
that client request node quantities cannot be controlled without insertion of dummy nodes.
In this case, if dummy nodes would be inserted, another question arises, if DRL approaches
could yield competitive solution qualities and learning reliability. Finally, it is unclear how DRL
approaches might behave with the existence of problem constraints. Past approaches often have
focused on reaching optimal results for equal problems, rather than optimal results for general
and variable problems. Thus, this thesis will focus on such aspects to provide a complementary
view to past and modern literature.
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4.1 Introduction to Machine Learning

This chapter provides fundamental introductions to Machine Learning (ML), Reinforcement
Learning (RL) and Deep Learning (DL) methods. The following sections 4.1-4.9 provide a focus
on the subfield of Machine Learning called Deep Reinforcement Learning (DRL) where the
main components of Reinforcement Learning and Deep Learning are combined. The sections
also aim to provide information on why and how DRL has a profound influence on data-driven
optimization problems in operations research and similar domains. 
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Figure 4.1: Regression.
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Figure 4.2: Classification.

Generally, ML is a subfield of AI that relates to teaching computers to learn from data examples.
Further, ML incorporates multiple technologies where machines are enabled to perceive, recognize,
understand, and decide. Such “intelligent” machines can learn from data samples, knowledge
bases, and experience from reward mechanisms by interacting with an environment.

Generally, it is distinguished into three major categories as follows,
• Supervised Learning, where the learner (learning program) also called “the agent” learns

to solve classification or regression tasks from labeled training and validation datasets.
• Unsupervised Learning, where the agent has to learn tasks such as clustering, anomaly

detection or associations for given datasets without any pre-provided labeling data samples
from the programmer.
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• Reinforcement Learning (RL) which concerns with the learning of optimal actions given an
environment structure. The learning machine or so-called “agent” tries to learn the correct
order of actions in order to maximize its cumulative reward (given a reward function) or to
reduce its cumulative collected penalties given a cost function.

Due to recent improvements in Deep Learning (DL), the aforementioned three major categories
have seen major improvements, especially working with big and high-dimensional data such as
time series, images, and videos. The success of Deep Learning originates from recent technological
improvements: (i) the exponential increase of available computing power, also by enhancing
GPUs for matrix operations, (ii) scientific breakthroughs in Deep Learning methods [Srivastava
et al., 2014; Ioffe and Szegedy, 2015; He et al., 2016; Szegedy et al., 2017; Klambauer
et al., 2017] and (iii) the increasingly available open libraries, datasets, and support tools which
simplify the training and testing processes.

4.2 Introduction to Deep Learning

Deep Learning (DL) models are initially inspired and algorithmically adapted from the biological
neural processes of the human brain. Recent scientific advances in neural biology however have
led to fundamental conceptual differences between Deep Learning and neural biology [Bengio
et al., 2015].

Generally, Convolutional Neural Networks (CNNs) are well known for their application for
computer vision and Recurrent Neural Networks (RNNs) for the application of NLP and sequence
prediction. Both neural network architectures incorporate the same fundamental components
which are called neurons or also “Perceptron”. Initially, invented by McCulloch and Pitts [Jain
et al., 1996; Rosenblatt, 1958] the fundamental components of a NN architecture are described
in Figure 4.3. Overall, the basic set of components can be described as the input state vector

Figure 4.3: Basic Perceptron Model [Rosenblatt, 1958].

xn (sometimes referred to as input layer), a summed junction Σ, which computes the weighted
sum among all input states, the non-linear differentiable activation function φ(·) which serves as
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non-linear threshold by limiting the amplitude of the Perceptron’s output value and mapping it to
a finite interval of values. The bias bk is an offset value applied for increasing and decreasing the
net input of the activation function, which affects the output by means of an affine transformation.
Each NN introduces a set of learnable parameters which are optimized and tweaked to find
the best function approximation between the input and output states. In the presented NN
model, the learnable parameters θ are a set of weights wn that are represented as links in Figure
4.3. The individual weights are multiplied with an individual input state xn, summed with
all corresponding bias terms bk and the linear weighted sum is fed to the activation function
(element-wise non-linearity) as described in the following equation

yk = φ(
m∑

j=1
Wnjxnj + bkj) . (4.1)

In its most abstract description, a neural network aims to learn to model a function f(x,θ) that
represents an optimal mapping of an input vector or matrix x to some output signal y and
formally denoted by f(x,θ) : x→ y.

4.3 Feed-forward Neural Networks (NNs)

The first feed-forward Neural Network (NN) models with a single hidden layer were introduced
in 1985 by Rumelhart et al. The first NN model, as visualized in Figure 4.4, was composed
by the input layer x as state vector (a row vector with n elements), W1 the weight matrix
containing all weights and b the bias, offset or translation which transforms the weighted
sum via affine transformation xW1 + b [Rumelhart et al., 1985]. Generally, there are many
applicable activation functions φ(·). The most common functions used are functions such as the
Sigmoid (Sigm), the Tangens Hyperbolicus (TanH) or the Rectified Linear Unit (ReLU)1, as
shown in Figure 4.5. The non-linear activation functions are applied to the affine transformation
output, which is called the hidden layer (deterministic function of the input). In the hidden layer,
the network elements are referred to as hidden units or hidden neurons [Murphy, 2012; Bishop,
2006, pp. 564, 226]. The composition is again transformed via a second affine transformation
including the weight matrix W2 which maps the hidden layer values to a finite interval, which
is referred to as model output layer yk. The model output yk hereby is a row vector with k

elements. Thus the neural network model contains two inner-product layers where W1 is n× k
and W2 is k × d dimensional. Finally, b and the network output y are k dimensional which can
be summarized by

ȳ = φ(Wx + b)W2 . (4.2)

Note, that different activation functions mainly influence the gradient calculation during back-
propagation. The gradient determines to which degree the weights are changed or updated in
the learning process [Gal and Ghahramani, 2016, p. 3].

1relu(x) = max(x, 0)
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Figure 4.4: An example feed-forward neural network model with two fully-connected layers
[Rumelhart et al., 1985].
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Figure 4.5: Three examples of activation functions φ(x): (i, blue) Sigmoid, (ii, green) Tangens
Hyperbolicus and (iii, orange) ReLU.

Back in 1989, it was first proved that a multi-layered neural network using Sigmoid activation
functions can serve as an Universal Function Approximator [Cybenko, 1989, pp. 303–314].
During the first application in 1991, it was shown by [Hornik, 1991] that the topology of a
multi-layered neural network is rather crucial than using different activation functions. This is
meant in a deeper context, stating that a multi-layered neural network can approximate any
smooth function to any desired accuracy, if enough hidden units are given [Murphy, 2012,
p. 564]. For more information, the reader may see the additional literature [Bishop et al., 1995;
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Bishop, 2006, pp. 16–138, 225–284].
In order to use a multi-layered neural network for statistical regression or classification applica-

tions, the learning process requires a quality metric that describes how close the approximation
is learned compared to the original inputs. Given a neural network regression task, a simple
example solution would be to minimize the distance between the line and all original data points
during the regression. Therefore, a simple example metric function might be the Euclidean loss
function

EW1,W2(x,y) = 1
2N

N∑
i=1
∥ yi(xn)− ȳi ∥2 (4.3)

whereby the original data points are denoted by y1, ...,yn and the predicted model outputs are
denoted by ȳ1, ..., ȳn, corresponding to the observed inputs x1, ...,xn. Further, the parameters
W1,W2, b are learned such that, by learning the adaptation of weights W1,W2, and bias b, the
Euclidean error in Equation (4.3) is minimized. The loss function hereby estimates the error
between the actual correct solution and the network’s predicted solution. By learning the optimal
parameters θ and W the training error or loss are minimized. To do so, all learnable parameters
within all layers have to be trained and updated. This is called back-propagation [Rumelhart
et al., 1986, pp. 533–536], where most commonly gradient descent methods, but also evolutionary
strategies can be used for updating the learnable parameters within the NN layers [Salimans
et al., 2017, pp. 1–13]. By observing the network’s prediction error on the validation dataset, it
is possible to evaluate the network’s generalization of transferability capabilities to unseen data.
Similarly to the training error or training loss function, it is desired to minimize the validation
error. If the validation error can be minimized, the network should perform well on test data as
well and therefore generalize to an unseen test dataset xtest,ytest. In other words, the model has
learned the parameters θ and W from the training data xtrain,ytrain which enables the network
to successfully predict the outcomes of other test datasets xtest,ytest.

4.4 Convolutional Neural Networks (CNNs)

A well-known class of Neural Networks (NNs) are Convolutional Neural Networks (CNNs)
[Rumelhart et al., 1985]. The present hidden layers are sequentially positioned and connected
via operations such as a recursively executed convolution, pooled (max) layers, and inner product
layers. Incorporating convolutional layers, CNNs are particularly suited for image processing,
matrix filtering, and also sequential data applications [LeCun, Bengio, et al., 1995]. Using
convolutional matrix operations, CNNs are capable of learning the classification and regression
of data patterns. By using the linear transformation of the input information the model
can preserve the input’s spatial information. The max pooling layers subsequently take the
convolutional output and apply the maximum of the image pixel blocks (kernels) which reduces
its dimensionality [Gal and Ghahramani, 2016]. Figure 4.6 illustrates the individual terms
such as Input Layer, Input Layer Height, Number of Channels, Channel Width, Kernel Width,
and Kernel Height. The Output Layer consists of a number of kernels that compress the output
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information. Overall, CNNs generally consist of feed-forward layers with fully-connected layers,

Figure 4.6: Basic CNN: For example, if the network captures an RGB image, then each kernel would
capture the different blue, green, and red channel containing the colored pixels. Each
kernel may be of different size, therefore capturing different locations and features of the
image and serving as edge or feature detector. This can be seen as a simple convolution
[Mairal et al., 2014, p. 4].

where the difference is that the weights may be set to zero, whereas other values may share
the same values [LeCun, Bengio, et al., 1995]. The input features are stored as values, where
concise input features are enforced and fuzzy features are filtered using the convolution operation,
illustrated in Figure 4.7.
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4.5 Recurrent Neural Networks (RNNs)

In comparison to Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) as
shown in Figure 4.8, are particularly designed to apply for handling sequential data [Rumelhart
et al., 1985; Werbos, 1988]. Many different architectural models exist, such as the LSTM

Figure 4.8: An example Recurrent Neural Network (RNN) with Input Layer, Hidden Layer, Output
Layer and Hidden Unit Recurrence Connection.

[Hochreiter and Schmidhuber, 1997] and Neural Turing Machines (NTMs) [Graves et al.,
2014] which got special importance for natural language processing / understanding [Sutskever
et al., 2014], language generation and translation [Kalchbrenner and Blunsom, 2013; Mikolov
et al., 2010; Sundermeyer et al., 2012; Bahdanau et al., 2014] and video processing [Graves,
2012; Donahue et al., 2015; Srivastava et al., 2015, p. 2]. The major difference of RNNs to
CNNs is that the neuron cells have recurrent connections to propagate information to higher
leveled neurons. To realize this, special neuron cells such as LSTM cells and Gated Recurrent
Units (GRUs) are used [Chung et al., 2014]. Furthermore, this enables the modeling of long-term
information dependency which is required for time-series prediction modeling. For each individual
input sequence, the Input Layer is fed with a set of features where for each time step a neural
network unit is applied to a single feature at a time step and added to the RNN units’ output
from the previous time step.
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Gated Recurrent Units (GRUs): This paragraph aims to provide more detailed information
regarding the use of GRUs in a multi-layered RNN which is applied to an input sequence. In order
to realize the modeling of long-term information dependencies which is required for time-series
prediction and combinatorial optimization, a neuron or also called neural network cell should
provide certain types of characteristics:

• the used NN cells should be able to store long-term dependencies between different input
sequences,

• the cell should provide a method of resetting or forgetting specific and partial parts of the
input and hidden state information,

• thus, having a concurrent information propagation paradigm comes with promising charac-
teristics for combinatorial optimization.

Requirements as such, generally are satisfied by the GRU cell but also LSTM cells provide this
feat. The individual parts of a GRU cell will be explained next and are visualized in Figure 4.9.
Given an input sequence feature vector x = [x1, ...,xI ] with size I and a multi-layered GRU

Figure 4.9: An example RNN GRU Cell with input (last hidden state), reset, update, new information,
and output (next hidden state) gate [Dey and Salemt, 2017, pp. 1597–1600].

RNN, as depicted in Figure 4.10, each layer computes individual forward propagated values. The
forward propagation is denoted by the following functions [Pytorch Doc., 2020a]:

  

  

  

  

hht-1t-1 hhtt

xxtt

rrtt
zztt nntt

--1.1.

GRU CellGRU Cell

𝜎𝜎𝜎𝜎 𝜏𝜏

Legend:Legend:
tanh(tanh( ⋅⋅ ))

sigm(sigm( ⋅⋅ ))
inverse(inverse( ⋅⋅ ))
elementwise sum(elementwise sum( ⋅⋅ ))

elementwise product(elementwise product( ⋅⋅ ))

hhtt hht+1t+1

xxt+1t+1

Legend:Legend:
tanh(tanh( ⋅⋅ )) sigm(sigm( ⋅⋅ )) inverse(inverse( ⋅⋅ )) elementwise sum(elementwise sum( ⋅⋅ )) elementwise product(elementwise product( ⋅⋅ ))

hht-1t-1

xxtt

rrtt
zztt nntt

--1.1.

GRU CellGRU Cell

𝜎𝜎𝜎𝜎 𝜏𝜏

hht-2t-2

xxt-1t-1

tt -- 11 tt++11

DataData

Aggregation +Aggregation +    

ProcessingProcessing

11

22 44

33 55

DatasetDataset  

GenerationGeneration

Neural NetworkNeural Network

Training PhaseTraining Phase

Evaluation withEvaluation with

State of the ArtState of the Art

AlgorithmsAlgorithms

Visualization +Visualization +

ImprovementsImprovements
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information and output (next hidden state) gate. The repeating modules apply three
individual activation layers respectively [Dey and Salemt, 2017, pp. 1597–1600].
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rt = σ(Wirxt + bir + Whrht−1 + bhr) , (4.4)
zt = σ(Wizxt + biz + Whzht−1 + bhz) , (4.5)
nt = τ(Winxt + bin + rt ⊙ (Whnht−1 + bhn)) , (4.6)
ht = (1− zt)⊙ nt + zt ⊙ ht−1 , (4.7)

where ht denotes the hidden state at a time step t and accordingly, xt is the input feature vector
at time step t. The hidden layer state tensor from the previous time step is denoted by ht−1.
Note, that the previous time step additionally may be the initial hidden state at time step 0.
The main parts of the GRU are:

• the reset gate rt which is used to forget certain information,
• the update gate zt, which is used to update existing information,
• the new information gates nt for the input of new data,
• the Sigmoid and Tangens Hyperbolicus activation functions, σ(·) = sigm(·), τ(·) = tanh(·),
• and the final output or next RNN hidden state ht.

In a multi-layered GRU, where the number of layers must be two at minimum (l >= 2), each
input xl of the l-th layer yields the hidden state-value of the previous layer hl−1

t , multiplied with
the dropout probability δl−1

t . Here, δl−1
t is a Bernoulli random variable that takes the value 0

with the dropout probability δl−1
t . The main parameters of the GRU are called the input_size

I, hidden_size H, and the amount of layers used num_layers L. The hidden size H thereby
denotes how many hidden layers are used to define the depth of the RNN. Initially, all weights
and biases are initialized uniformly via U [−

√
k,
√
k] where k is defined by the inverse of the

hidden size k = 1
H [Dey and Salemt, 2017, pp. 1597–1600].

4.6 Learning with NNs

The learning process of a neural network or technically, the update mechanism of the neural
network’s parameters, is achieved by applying two main processes as follows. First, there is the

• Forward Pass, f(x) which refers to the calculation of output values by propagating the
input data through the network (network top-down). The input data traverses all neuron
elements from the first to the last layer. Using the output values, a loss function is calculated
which indicates the training error in the training dataset. Subsequently, there is the

• Backward Pass or so-called Back-propagation Jxf(x) refers to the process of estimating the
changes in the weights (i.e. the learning process) usually using gradient descent or similar
algorithms. The computation of the Backward Pass is made from the last layer, backward
to the first layer (network bottom-up). In order to compute all network parameter updates
via gradient descent, all gradients of network’s state (i.e. its computational graph) are
required. In more detail, a gradient is the partial derivation of all residing network states
denoted by:

y = f(x) : Rd → R , (4.8)
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∂y

∂x
= ▽xf(x) =

[
∂f

∂x1
, ...,

∂f

∂xd

]
. (4.9)

Here, f(x) is a function that calculates a d-dimensional input state x to a scalar output R.
The gradient in Equation (4.9) is the vector of partial derivatives. The positive gradient
furthermore computes the directional vector which denotes the maximum increase of the
original function f(x). On the other hand, the negative gradient presents the directional
vector which denotes the minimum increase and vice versa.
Subsequently, the gradient vectors can be stacked, which is called the Jacobian matrix
with dimensions d × k. The Jacobian matrix finally formulates the generalization for
d-dimensional input signals and k-dimensional output signals as follows:

y = f(x) : Rd → Rk , Jx
i,j = ∂yi

∂xj
, (4.10)

∂y

∂x
= Jx[f(x)] =


∂y1
∂x1

. . . ∂y1
∂xd... . . . ...

∂yk
∂x1

. . . ∂yk
∂xd

 . (4.11)

Generally, Backward and Forward Pass can be seen as one iteration, where a subset of the
training or validation dataset is passed. The subset of the individual data set is called mini-batch,
whereas passing all data at once would be called a batch [Google Deep Mind Lecture, 2020].

Gradient Descent: The main learning algorithm behind Deep Learning is called Gradient
Descent. Gradient Descent is a numerical algorithm that estimates to which degree the network’s
weights and bias parameters are adjusted [Kingma and Ba, 2014, pp. 1–3], where the gradient
is calculated based on a pre-defined loss (training error) function. Generally, stochastic gradient
descent finds a local minimum of any given function f(x) in R3 three-dimensional space, if the
function is sufficiently smooth.

The algorithm initially picks a random starting point and progressively uses several parameter
updates and iterations to converge to the local optimum as depicted in Figure 4.11. The update
rule is as follows:

θt+1 ← θt − αt▽θL(θt) (4.12)

▽θL(θt) = ▽θ

I∑
i

l(g(xi,θt), ti) =
I∑
i

▽θl(g(xi,θt), ti) . (4.13)

In Equation (4.12), θ is a bootstrapping parameter that includes all weights and bias hyper
parameters of the network, α is the learning rate, and ▽θL(θt) is the gradient of an arbitrary loss
function, see for an example in Figure 4.11. The choice of the learning rate α is crucial because
this influences the learning step size of the algorithm. The parameter α determines how rapidly
the algorithm approaches the local minimum, and thus how urgently the network adjusts and
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Figure 4.11: An example 3-D Loss function L(θt) where the gradient stochastic descent algorithm
aims to find the directions to a local minimum.

learns the weight and bias parameters. A small learning rate usually leads to slow, but robust
learning, a high learning rate value leads to fast learning and therefore large parameter updates,
however, this may also lead to unstable learning behavior. This is commonly called learning
divergence, which should be avoided at this point since the network is not progressing to learn a
stationary policy. The process of stagnating learning is called (under-fitting) which is one of the
problems that may occur during the training of neural networks. Such problems are addressed in
more detail in Subsection 4.7.

Finally, the gradients that are required for the main gradient descent update in Equation
(4.12), are computed mathematically by using the chain rule as follows:

y = f(g(x)), ∂y

∂x
= ∂f

∂g

∂g

∂x
, (4.14)

y = f(g(x)), ∂y

∂x
=

I∑
i=1

∂f

∂g

i∂gi

∂x
, (4.15)

where f(x) is the outer and g(x) is the inner function of the neural network’s graph. If the
inputs x, the outputs y and f(x), g(x) are multi-dimensional, the chain rule is applied via matrix
calculus which is the sum over all possible input data paths. This computes the gradients over
the whole NN computational graph by summing over the partial derivatives in Equation (4.15)
and generally depends on the used network topology.

The computation of the gradients is efficiently solved by automatic differentiation optimizers.
For this purpose, multiple optimizers exist that are based on gradient descent. Some optimizers
such as ADAM [Kingma and Ba, 2014, pp. 1–10], RMSprop [Tieleman and Hinton, 2012]
Adadelta [Zeiler, 2012, pp. 1–6] and Adagrad [Duchi et al., 2011, pp. 1–39] have been proven
and practically successful. In the past, NNs have been applied to learn from discrete non-smooth
or discrete datasets. It turns out, that violating the smoothness assumption, however, leads
to unstable learning when using NNs for function approximation. Such behavior is commonly
indicated by a non-decrease of the loss function during the learning phase and can be avoided by
using the methods introduced in Subsection 4.8.
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4.7 NN Training Issues

This section contains common issues when training NNs such as

• under-fitting,
• over-fitting,

• exploding gradients,
• and vanishing gradients.

A very common issue when training neural networks is the occurrence of over-fitting and
under-fitting. As the neural network becomes more powerful over the training phase, the NN
model can create very complex hypotheses, even if the input data is very simple. As the NN gets
more complex, in the sense that it increases its capabilities of representing increasingly complex
functions, the more probable it is for the NN to end up over-fitting the input data [Vapnik,
2013, pp. 512–513]. Over-fitting refers to the issue that the network learns to represent the
input data in a relatively over-complicated way such as memorizing the training data without
learning its patterns at all. Hereby, the capability of representing increasingly complex input
data while storing more data over time is referred to as the increase of the hypothesis space H,
e.g. see Figure 4.12. While increasing the hypotheses space, the training error decreases because

Figure 4.12: An example plot that illustrates the Risk of under- and over-fitting depending on the
model complexity or also called Hypotheses Space Capacity H [Belkin et al., 2019].

the network parameters are tuned in order to minimize the training error as much as possible.
This as mentioned earlier, is stated by the universal function approximation theorem [Cybenko,
1989, pp. 303–314]. Another common issue when training neural networks with Gradient Descent
is that all values of the gradients may saturate (exploding gradient) [Pascanu et al., 2013,
pp. 1310–1318] or the directional values of the gradient converge to zero (vanishing gradient)
[Hochreiter, 1998, pp. 107–116] and the gradient loses its directional information. Both issues
deteriorate, or in the worst-case scenario, prevent the learning progress and therefore should be
avoided. Especially, the training of RNNs with GRUs is prone to run into the exploding gradient
issue [Kanai et al., 2017, pp. 435–444]. In order to avoid such issues, a list of countermeasures
can be found in the next Section 4.8.
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4.8 Solving NN Training Issues

This section contains common methods dealing with the issues of training neural networks that
have been introduced in Section 4.7. In more detail, this section addresses methods such as
specific “Selection”, “Dropout”, “Gradient Normalization”, and “Maximum Gradient Clipping”.
Such methods are mainly used to avoid the over-fitting, exploding, and vanishing gradient issues
in the main Chapter 5. Still, there are other means worth mentioning including the previously
mentioned methods such as

• Activation Function Selection [Marchisio et al., 2018],
• Dropout and Noising Training Data [Gal and Ghahramani, 2016, p. 60],
• Maximum Gradient Normalization [Chen et al., 2018, pp. 1–10] and Clipping [Graves,

2013; Pytorch Doc., 2020b, pp. 23, 1],
• Batch Normalization [Ioffe and Szegedy, 2015, pp. 1–11],
• Early Stopping [Caruana et al., 2001, pp. 1–7], and
• Lp regularization [Zaremba et al., 2014; Demyanov, 2015, pp. 1–8, 45–75].

First, the Activation Function Selection mainly addresses and solves the vanishing gradient issue,
which commonly occurs when using Sigmoid and Hyperbolic Tangent activation functions within
a Deep Neural Network with many layers. The vanishing gradient problem refers to the case,
that large networks become harder to train when adding more and more layers. By adding more
and more layers, the gradients calculated based on the loss functions tends to converge to zero.
This unfortunately prevents the network from progressing to learn new valuable information.
This phenomena, can be explained at the example in Figure 4.13, where the calculated derivative
of the Sigmoid function σt+1(x) converges to zero for large negative and large positive inputs x.
Hereby, certain activation functions such as the Sigmoid and Tangens Hyperbolicus, squash large

Figure 4.13: An example plot that depicts the vanishing gradient issue of using a Sigmoid activation
function.
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input states into a small input space between a function-specific value range, e.g. [0, 1]. If the
derivative of the used activation function has a very flat gradient for large negative and large
positive numbers, large input values will result in small gradient changes in the output of the NN.
This occurrence is quite common when training large neural networks and therefore has to be
considered and mitigated. The same phenomena can be observed for any Tangens Hyperbolicus
activation function since the function similarly is characterized by an “s-shaped” basis function,
which results in the analogous effect of the Sigmoid function. In comparison, other shapes of
activation functions such as the ReLU basis function are less prone to the vanishing gradient
problem [Glorot et al., 2011, pp. 315–323]. The basis shape furthermore results in a first-order
derivation that does not allow for a convergence process towards zero. Even less prone to the
vanishing gradient are relatively modern designed activation functions such as the Leaky ReLU
[Maas et al., 2013, pp. 1–3] and the Exponential Linear Unit (ELU) [Clevert et al., 2015,
pp. 5–10], which enhance the similar calculus effect. In particular, the work of Clevert et al. has
illustrated, that by changing the activation functions to ReLUs, Leaky ReLUs, and especially to
ELUs the learning efficiency of RNNs can be increased [Clevert et al., 2015, pp. 1–14]. On the
other bookend, similarly shaped activation functions are relatively prone to face the exploding
gradient issue, where the gradient values converge to infinity. Well known as the exploding
gradient problem, this phenomenon can be efficiently encountered using Maximum Gradient
Clipping [Graves, 2013; Pytorch Doc., 2020b, pp. 23, 1] and Gradient Normalization [Chen
et al., 2018, pp. 1–10] during the training phase.

Another technique for mitigating the exploding gradient phenomenon is called “Dropout”.
Dropout is a regularization technique that has the effect of inflicting noise on the training process
in order to counter NN over-fitting issues during the training phase. Dropout forces a number of
neural network cells within a layer to vary their responsibility for computing the output from the
input data. Therefore, the concept aims to break or dropout learning situations where each prior
NN layer propagates mistakes to the post-NN layers. This generally makes the model more robust,
especially when the model is prone to over-fitting [Srivastava et al., 2014, p. 23]. Additionally,
useful for preventing a NN model to over-fit, is by using Dropout [Gal and Ghahramani, 2016;
Zaremba et al., 2014, pp. 60, 1–8] and scaling or normalizing the gradient, which aims to reduce
the magnitudes of large gradients. This results in the effect, that high changes in the weights
are reduced, which not solely reduces over-fitting, but also reduces the risk of the exploding
gradient issue [Chen et al., 2018, pp. 1–10]. Particularly, useful when dealing with exploding
gradient phenomena, is the concept of “Maximum Gradient Clipping”. The gradient magnitudes
are clipped, if the derivative of the loss function with respect to the NN’s inputs exceeds a
certain value range [Graves, 2013; Pytorch Doc., 2020b, p. 23]. The objective here is to keep
the gradient in a predefined range, where clipping according to the predefined bounds directly
depends on the used activation function shape and its derivative. If the used NN is likely to face
the exploding gradient issue, the gradient clipping method presents an additional efficient means
to increase the NN’s learning robustness. Batch Normalization [Ioffe and Szegedy, 2015,
pp. 1–11] for instance, aims to reduce the dynamism of each NNs layer, which results in increases
concerning the learning robustness. Without using Batch Normalization, the training of Deep
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NNs is stated to require lower learning rates, which results in a slower learning process. The
concept achieves this by normalizing the layer inputs for each trained mini-batch. The work of
Ioffe and Szegedy shows that Batch Normalization achieves faster training times by achieving
the same prediction accuracy for state-of-the-art image classification models, which underlines
the advantages of this method. Moreover, the concept of early stopping can be explained by
taking into account Figure 4.12. The concept aims to stop the learning process of a NN by
stopping the learning at the point which is marked as a “Sweet Spot” in Figure 4.12. This is
achieved by tracking the decreasing Training Error or Loss to the point where the Validation
Loss or Error values stops decreasing. At this point, the NN model achieves the best trade-off of
avoiding the under-fitting and over-fitting issues. The last method which is the simplest and
most traditional method to prevent a DNN from over-fitting is called Lp regularization, which
has similar effects to Maximum Gradient Clipping and Dropout.
Lp regularization similarly aims to penalize large weight updates due to large calculated

gradients by adding a p-order penalty to reduce the magnitudes of the derived gradient values.
The method is a common standard, where more information can be found in [Demyanov, 2015,
pp. 45–75]. As a final note, it is worth mentioning, that the work of Belkin et al. proved,
that under some constraints, large-scale NN models are less prone to over-fitting because as
the network size increases, the learning dynamics simultaneously change [Belkin et al., 2019,
pp. 303–314]. Nevertheless, the training of large NN models still requires and benefits from the
outlined regularization methods. After researching the outlined regularization concepts it can
be concluded, that enhancing regularization methods have desired properties with respect to
increasing learning efficiency and quality.

4.9 Introduction to Reinforcement Learning

This section contains a brief and fundamental introduction to the research field of Reinforcement
Learning (RL). It is advised to additionally consider fundamental literature for a deep-dive and
more information [Sutton, Barto, et al., 1998, pp. 1–445].

Reinforcement Learning (RL) is a sub-area in machine learning where the main focus lies on
sequential decision-making processes under stochastic uncertainty assumptions. RL algorithms
mainly use the trial-and-error paradigm for gaining experience in order to learn problem-specific
beneficial behavior. Thus the area of RL is fundamentally and methodologically different to other
optimization paradigms such as genetic algorithms, simulated annealing, and linear programming.
The named paradigms differ in the sense that no experience/learning phase is used to compute a
desired optimal solution to a given problem. An RL framework as visualized in Figure 4.14 is
mathematically formalized by introducing the terms

• “environment” (i.e. the dynamic process, surroundings or habitat) which is affected and is
changed by the agent’s decisions and actions,

• “reward or cost mechanism”(i.e. the notion of desired and undesired agent behavior), and
finally,

• the learning “agent”,
which symbolizes a learning entity that has to make decisions in order to achieve its goals or in
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other words to optimize its utility. This is possible given the notion of rewards or penalties/costs

Exploration / Search Policy

Filters

MemoryAlgorithms

Agent Real World System (Environment)

State (Environment Abstraction)

Reward or Cost (Notion of Utility)

Action of Agent 

Networks

Data
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Figure 4.14: A basic reinforcement learning framework with the essential parts such as the envi-
ronment, a learning agent as a decision entity, a reward mechanism, the environment
state representation, and the selected action. The term agent thereby is an intelligent
software component that learns a strategy to solve problems of the environment. The
software component capabilities thereby may include data exploration, search and
optimization algorithms, memory of the environment behavior, and action consequences
using the models of networks while filtering unnecessary data. For learning about the
environment, the agent requires a feedback loop based on its actions, thus learning
about the environment workings, processes, and causalities.

for desired and undesired behavior. The RL framework incorporates a variety of essential features
in artificial intelligence and is applicable to many tasks, which require notions of cause and effect,
as well as uncertainty and non-determinism. The RL framework has tight connections to game
theory, economics, planning, and fuzzy logic control processes which are characterized by similar
requirements.

RL and Bayesian Decision Theory: This section introduces fundamental mathematical and
probabilistic formulations in order to establish the simple RL framework in Figure 4.14. At the
root, every rigorous RL framework leverages the basic mathematical formulations from probability
theory, Bayesian Decision Theory and MDPs, which essentially deal with discrete time, stochastic
control processes, and sequential decision-making [Bellman, 1957, pp. 1–3]. As Figure 4.14
illustrates, the agent requires an abstracted version of the current environment state in order to
learn a belief or notion of the real-world state. In order to achieve this, fundamental methods
from graph and probability theory can be used to represent the environment and the agents’
belief of the current environment state [Murphy, 2012, p. 176]. The same framework applies to
strategic games such as chess where two players have to develop a strategy to win the game within
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its environment (chessboard). Further, the same characteristics apply to many other real-world
problems in game theory, economics, and especially logistic planning, where the processes always
come with a notion of uncertainty and the main hypothesis is to increase the expected utility of
the controllable system (e.g. for instance the fleet operation in a city) with respect to future
decisions and uncertain outcomes. Here it is important to increase the probability of a desired
future outcome, which has the same statistical and probabilistic characteristics as aiming to win
a gamble while playing k-armed bandits.

In this thesis, however, the focus is set on planning and logistic control processes, therefore this
work will omit all other application domains. Generally, an underlying real-world environment
(e.g. a city) changes its state dynamically. In almost all RL frameworks the environment state
is formulated based on MDPs which defines transition probabilities in order to model how the
environment state changes over time (i.e. called Markov Chain). At each time step, when the
environment state can be observed, the representation or a mapping of the environment state,
that is used as input information for the agent in the form of data. In Bayesian Decision Theory
this is referred to as an (environment state) observation s ∈ S. In the context of a fleet operation,
the environment state and fleet state would be sub-states of the whole dynamic environment
state, which again would be collectively observed by an agent. Based on the previously made
environment observations, an agent (e.g. a fleet manager) may plan actions for the future in
order to reach certain goals [Lin et al., 2018, p. 176]. In order to achieve certain goals, the agent
requires a set or repertoire of possible actions. This is called action space A. In the context
of real-world fleet management, the agent would be a fleet manager which plans the routes of
taxis or trucks to their destinations. Here the action space would be the order of processed
customer (demand) requests and the selection of adequate vehicles (fleet supply). In order to
assess the value of the planned and executed actions, a feedback loop in the form of a reward,
cost (penalty), or error (loss) function is required. Hereby, the executed or planned actions a

naturally have to be compatible with the desired environment state. If a sequence of actions
(decision procedure) can be learned by the agent, to reach a certain goal, the agent has learned a
strategy to maximize the expected utility. This learned decision procedure or agent strategy is
called policy π : S→ A which is defined to specify the optimal action sequence for each possible
environment state observation. The term optimality is meant in the sense that the learned
action sequence should minimize the expected (future) loss or maximize the expected (future)
achievable reward. In the example of a cost or loss function L(s,a) this can be formulated as:

π(s) = argmin
a∈A

E[L(s,a)] (4.16)

which is known as the maximum expected utility principle [Miller et al., 2015] that models the
rational behavior of an agent, or with respect to this work’s application, the rational decisions of
a fleet operation planning system. The word expected can be found with two meanings, first in
Bayesian versions it is referred to the expected value of a given data distribution P (s). In the
frequentist version, the expected value is referred as the expected value of a posterior probability
distribution ρ(s) which takes the expected value at some time-step in the future. According to
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Bayesian Decision Theory, an optimal action at the current time step can be computed when
having observed the current environment state s and an action a are selected that minimize the
posterior expected loss (cost) (or maximizes the reward function). This probabilistic decision
rule is called the Bayes estimator and is denoted by

ρ(a|s) ≜ Ep(a|s)[L(s,a)] =
∑
s

L(s,a)p(a|s) . (4.17)

Markov Decision Processes and Markov (State) Chain: In continuous time versions the sum
is replaced by an integral, whereas the sum illustrates the discrete formulation setting. Generally,
the MDP formulation refers to fully observable environments, where all environmental state
changes can be observed instantly and therefore completely characterize the workings of the
environment. In real-world systems, most systems however are characterized by the term partially
observable, which refers to the issue that some changes in the environment state may be delayed
or may not be observed directly and therefore can not be directly associated with the agent’s
made decisions and actions. Nevertheless, partially observable environments can be converted
into MDPs [Martin, 2004, p. 14]. The formulation via MDP moreover comes with certain
properties which are important and briefly introduced in the following paragraph.

Definition 19: A Markov Process (or Markov Chain) is a tuple ⟨S, t⟩, where S is a (finite) set
of states, t is a state transition probability matrix, tss′ = [St+1 = s′ | St = s].

The RL framework therefore can be fully formulated using the MDP formulation. The
formulation defines a discrete time and stochastic control process where the agent observes the
environment state st ∈ S (abstraction of city data and fleet data in Figure 5.1). The agent starts
to gather an initial observation s0 and continues to observe the environment for each consecutive
time step t. For each time step, the agent has to select a sequence of actions a ∈ A, where good
actions result in a corresponding reward rt ∈ R. Finally, the control loop encloses where the
agent obtains the new environment state observation st+1, which is affected and has changed
based on the previously chosen action. In Figure 4.15, the interaction between an agent and the
environment is shown. The agent observes the environment state st+1 and select action at+1

accordingly. While observing the next environment state st+2 the agent receives the reward for
selecting action at+1 from the previous time step. Furthermore, the typical RL framework is

Figure 4.15: RL agent and environment.

Legend:
at action
st state
st+1 next state
rt reward

Table 4.1: Legend of Figure 4.15.

defined by a Markovian stochastic control process, that again comes along with some definitions:
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Definition 20: An stochastic control process with discrete time is Markovian only if it satisfies
the Markov property:

P (st+1|st,at) = P (st+1|s0,a0, ..., sT ,aT ) .

The Markov property states that all future actions and states of the environment must be
causally associative with the current observed environment state. In other words, the learning
agent must be able to reason in an MDP without requiring the full history of all passed states.
Thus, the agent’s learning and decision-making must be possible within a fixed time horizon.
The stochastic and discrete-time MDP is further defined as follows:

Definition 21: A MDP is a 5-tuple of parameters ⟨S,A, t, R(·), γ⟩ where
1. S is a finite set of environment states,
2. A is a finite set of (agent) actions,
3. t : S×A×S→ [0, 1] is a probability transition function matrix with conditional probabilities

for describing the probability of changing from state to next state,
4. R(·) : S× A× S is a continuous reward function, which defines a set of achievable rewards

or cost (penalties) in a range rmax ∈ R+ (e.g., [0, rmax]) and cmax ∈ R+ (e.g., [0, rmax]),
5. γ ∈ [0, 1) which is the discount factor.

Figure 4.16: A visualized Markov Decision Process
(MDP) or Markov Chain with state tran-
sitions, selected actions based on the
agent’s policy and received rewards based
on the current policy and chosen actions.

Legend:
s state sequence
a action sequence
r reward sequence
T until terminal state

Table 4.2: Legend of Figure 4.16.

Figure 4.16 moreover shows the visualization of the discrete time and stochastic MDP based
on Markov state transitions, which are defined as follows.

Definition 22: Each Markov state st has a successor state st+1, where the state transition
matrix defines the state transition probabilities by

tst,st+1 = P [st+1|st] = from

to
p1,1 · · · p1,n

...
...

pn,1 · · · pn,n

where each row of the matrix defines in what state the agent is possibly in. Further, they must
sum up to 1, which corresponds to a normalization to 100% probability.
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Definition 23: A sample of episodes from a MDP is a random state sequence, that is sampled
from the probability distribution of sequences of states.

Markov Reward Process: In order to create a value judgment of good or bad agent behavior,
there must be a functional definition for a total gain depending on previously selected actions.
Generally, this tells the agent that if initially being in state s0 how the magnitude of the reward
is to transition to another more desired state s1. So based on the reached state sequences the
agent also receives a sequence of positive total rewards or penalty costs. This is called the total
return or gain Gt.

Definition 24: The total return or gain Gt is the overall sequence of discounted rewards from
time-step t and is denoted by

Gt = Rt+1 + γRt+2 + ... =
∞∑

t=0,k=0
γRt+1 . (4.18)

The selectable weight parameter γ ∈ [0, ..., 1] is called the discount factor which represents the
fact that future rewards are less certain than rewards closer to the actual agent state. If γ is close
to 0 the behavior of the agent leads to “myopic” evaluation. Otherwise, if γ is closer to 1, this
will lead to a rather “far-sighted” agent behavior, which increases the priority of future rewards.
This formulation of the total gain is required if the environment of the agent does not provide
perfect knowledge about the evolution of its processes. In other words, if the environment model
is not perfectly known in its behavior, this formulation helps the agent to focus on reachable
rewards in its developed plan and strategy.

Agent Policy: The agent’s policy defines the strategy of how an agent selects the sequence of
actions and is based on the observed states, e.g. see Figure 4.16. In the mathematical formalism,
the policy further is described as a mapping from states to actions, as follows:

1. π(s) : S→ A ,
2. π(s,a) : S→ [0, 1] .

Policies thereby can be categorized using two criteria. The first criterion refers to being stationary
and non-stationary. Non-stationary refers to the definition of being time-step dependent and
stationary as being time-step independent. The second criterion is of being either deterministic
or stochastic. In the deterministic case, the policy is formulated by equation (1), whereas the
stochastic version is formulated in Equation (2), where π(s,a) defines the action probability
of selecting a among the state s. In the next sections, the different ways of learning an RL
policy (agent strategy) will be covered. The following sections refer to the different possibilities
of learning an RL policy.
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4.10 Reinforcement Learning Variants

This section describes the inner methods and components of an RL agent. The agent may include
one or more of the following components:

1. a representation of the agent state,
2. a representation of utility, in the sense from the agent perspective, how desired each state

is for reaching a goal,
3. a direct representation of the policy π(s),π(s,a) and the executable actions,
4. a planning algorithm for planning the next sequence of actions,
5. and finally a model of the environment (environment state).

The second component can be distinguished in model-free and model-based methods that aim
to represent the value function of an agent in a indirectly or directly way, see Figure 4.17. The

Figure 4.17: The dependencies of model-free and model-based RL methods [Sutton, Barto, et al.,
1998].

difference hereby between model-free and model-based is that model-free methods do not require
any model that defines the state transitions t. Instead, model-free methods solely aim to learn
from the action and reward feedback, while learning a representation of the environment model
indirectly (as an approximation). This has a big advantage, especially if the environment model
is very complex and hard to capture in its fullest complexity. A drawback of model-free methods
usually comes with increased learning times, since the agent needs to build up experience first
during a convergence process, in order to learn the workings of the environment processes and
dynamics. Further, this section briefly introduces and differs between the common RL methods
of Value-based Methods and Policy-based Methods in more detail.

4.10.1 Value-based Methods

Let us consider an RL framework with MDP ⟨S,A, t, R(·), γ⟩ where the objective of the agent is
to find a deterministic policy (strategy) π(s) ∈ Π. The agent must learn a policy that optimizes
the agent’s belief in good behavior (i.e. the “state-value function”). This is achievable by finding
the policy that yields the optimal and maximum expected return. The maximum expected return
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Vπ (s) that provides the value of being in state s further is formulated in the following.

Value Function: The value function Vπ (s) gives the long-term value of state s, where

Definition 25: The state-value function V (s) of a Markov Reward Process (MRP) is the
expected return starting in state s and is defined by

Vπ (s) = E [Gt | st ∈ S] = max
π∈Π

Vπ (s) . (4.19)

The agent state-value function represents the total amount of achievable reward from the start
of the agent’s plan until the agent’s terminal state. The state-value function in Equation (4.19)
thereby is characterized by the (i) immediate reward Rt+1 and the discounted future value of
state γVπ(st+1). Inserting Equation (4.18) in the state-value function in Equation (4.19), the
function becomes the well-known Bellman Equation

Vπ (s)← E [Gt | St = s] , (4.20)

E
[
Rt+1 + γRt+2 + γ2 Rt+3 + ... | St = s

]
, (4.21)

E [Rt+1 + γ (Rt+2 + γRt+3 + ...) | St = s] , (4.22)
E [Rt+1 + γGt+1 | St = s] , (4.23)
E [Rt+1 + γ V (St+1) | St = s] , (4.24)

which is fundamental in dynamic programming [Bellman, 1966, pp. 1–5]. Complementary, the
RL interaction between states, actions, and rewards is particularly visualized in Figure 4.15.
Using the Bellman Equation, the state-value function and action-value function can be recursively
formulated as

Vπ(st)←max
at

(Rat
st

+ γ
∑

st+1∈S
P at
st,st+1 Vπ(st+1)) , (4.25)

Qπ(at|st)←Rat
st

+ γ
∑

st+1∈S
P at
s,st+1 max

at
(Qπ(st+1,at+1)) , (4.26)

Vπ (s)←
∑
a∈A

π(at|st)Qπ(at|st) , (4.27)

Qπ(at|st)← Ra
s + γ

∑
st+1∈S

P a
s,st+1 Vπ(st+1) . (4.28)

Similarly to the Value Function, some classes of algorithms such as Q-Learning and Sarsa aim
to build the value function indirectly. The algorithms do not work directly with the V -value
function but instead make use of the Q-value function Qπ(st,at) : S × A → R which can be
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defined as follows:

Qπ(st,at)← E

 ∑
st+1∈S

γRt | st ∈ S,at ∈ A,π

 , (4.29)

where the optimal Q∗(st,at)-value function can be defined as

Q∗(st,at)← max
π∈Π

Qπ(st,at) , (4.30)

Qπ(st,at)←
∑
st∈S

t(st,at, st+1) [R(st,at, st+1) + γQπ(st+1,a = π(st+1))] ,

Qk+1
π (st,at)← (1− αk)Qk(st,at) + αkR(st,at, st+1) ,

+ γk
{[

Qk
π(st+1,a = π(st+1))−Qk

π (st,a = π(st))
]}

.

(4.31)

which again holds if the environment system fulfills the MDP requirements. The difference
between the V -function and Q-function is that the Q-function bootstraps the state-action
dependency and further aims to compute the optimal policy in a model-free way, i.e. without
the necessity of any transition matrix t. This is known as the basic version of the Q-learning
algorithm which makes use of the fixed-point iteration of the Bellman equation and is defined for
discrete state-action pairs. The Q-learning algorithm further is defined to converge under the
assumption that all actions are repeatedly sampled within all accessible agent states [Watkins
and Dayan, 1992, pp. 57–68].

Solving the Bellman Equation: Inserting Equation (4.28) in Equation (4.26) results in the
recursive formulation of the Bellman expectation equation as follows:

Vπ (st) =
∑
at∈A

π(at|st)

Rat
st

+ γ
∑

st+1∈S
P at
st,st+1 Vπ(st+1)

 . (4.32)

Equation (4.32) can be solved directly and optimally by calculating the inverse as follows:

Vπ (st) = (I − γ Pπ)−1Rπ . (4.33)

However, as Equation (4.33) shows, the Bellman Optimality Equation is non-linear and in general
there is no efficient closed-form solution. Hence, it is necessary to use iterative solution methods
e.g. Value Iteration, and Policy Iteration which are iterative dynamic programming methods.
Such methods normally start with an initial estimate and compute iterative solutions that are
hopefully closer to the optimum by updating themselves recursively. There are also iterative
steps regarding matrix inversion.
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4.10.2 Policy-based Methods

Policy-Evaluation, -Improvement and -Iteration: Computing the state-value function Vπ for
establishing a policy π is referred to as policy evaluation in DP literature and is commonly seen
as prediction problem [Sutton and Barto, 1998, p. 60]. At each iteration of an iterative policy
evaluation update, the value of every state is updated in order to yield a new approximation
value function V k+1

π for the next iteration k+ 1. The reason for computing the state-value or the
action-value function is to find better policies. This depends on the observation of the current
state s, where we would like to know if the agent has to change its policy deterministically
in order to achieve a better selection of actions, which may not be possible using the current
policy at ̸= π(s). The key criterion for improving a deterministic policy is if a greater utility
(expected return) value Vπ or Qπi than the current value can be achieved. In other words,
the new policy must obtain a greater or equal expected return from all states s ∈ S than the
current expected return value. This is called the policy improvement theorem. In the presents of
a stochastically generated policy π(at|st) the same idea applies if there are several actions at
which the maximum expected return can be achieved. In the stochastic case, it is not required
to select a single action among all possible actions as long as infeasible actions are given zero
probability, and sub-optimal actions are given relatively less sampling probability [Sutton and
Barto, 1998, p. 64]. If the policy π could be improved once, it might be possible to improve the
policy π∗ multiple times repeatedly to yield even better π∗∗. Thus it is possible to formulate a
policy trajectory planning problem, where a sequence of actions can be monotonically improved
using the current state-value functions via:

πk=0
E→ Vπk=0

I→ πk=1
E→ Vπk=2

I→ πk=2
E→, ..., I→ π∗

E→ V∗ . (4.34)

Here, E→ and I→ denote the alternating principle of evaluation and policy improvement, where
the policy is guaranteed to be updated only if a strict improvement could be reached until the
policy is optimal reaching π∗ and V∗. This scheme of improving the policy until it is optimal is
called policy iteration [Sutton and Barto, 1998, p. 64] which is the functional basis for the
policy gradient algorithm which will be explained next.

Monte-Carlo Sampling Methods: The previous methods such as Policy-Evaluation, -Improvement,
and -Iteration require the complete knowledge of the environment in a MDP. Alternatively,
Monte-Carlo Methods aim to estimate the optimal value functions and policies only by interaction
and experience. This is done by sampling states, selecting actions, and observing the outcomes
from the simulated environment. Learning from actual experience is very advantageous because
it does not require any prior knowledge of the environment dynamics, yet still, optimal behavior
can be attained and learned [Sutton and Barto, 1998, p. 75]. Therefore, Monte-Carlo methods
are based on the Policy Iteration scheme where the goal is to learn an approximate value function
and the resulting approximate optimal policy. The respective value function and current policy
thereby are repeatedly altered to more closely approximate the value function and are repeatedly
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improved regarding the current value function. This is illustrated as follows:

πk=0
E→ Qπk=0

I→ πk=1
E→ Qπk=2

I→ πk=2
E→, ..., I→ π∗

E→ Q∗ , (4.35)

where E→ is a complete policy evaluation and I→ is the whole policy improvement. Over many
learning and sampling epochs, the approximate action-value function approaches the real function
in an asymptotic convergence process. At the beginning of an epoch, new variations of the policy
are explored, whereas at the end of an epoch, the best policy choices are selected greedily. The
policy exploration-exploitation principle generally is crucial to find superior valued policies. By
observing the state outcomes based on the changes in the policy, Monte Carlo methods can be
used to find the optimal policy and value function without any knowledge of the environment
dynamics, given that the reward function can be rigorously defined.

Policy Gradient with Monte-Carlo Sampling (Rollouts): In Policy Gradient Methods combined
with Monte-Carlo Search Methods, continuous Monte-Carlo sampling, and approximation over
epochs is the key to establishing the agent’s memory for the environment state and dynamics.
The agent therefore trains the policy on a simulative environment in order to alter or improve
its actions based on the causal state observations. Generally, the agent aims to alter the policy
in a way that yields highly rewarding actions with high probability. It is assumed that future
actions do not change past decisions and therefore the selected actions only have an impact on
the future. Figure 4.18 illustrates the Policy Gradient Algorithm where the agent observes 

L s ,  a ,  𝜋 ,  𝜏  = ▽  log 𝜋 a  | s R 𝜏t t 𝜃
b 1

B
∑
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∑
T

t=0

𝜃 𝜃
b
t

b
t

b

𝜋 a  | s( t t)
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actionat →

state, next states ,  s  t t+1 →
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Figure 4.18: The dependencies of the Policy Gradient Algorithm [Levine, 2017].

1. the environment state st,
2. selects an action sequence at based on its belief, i.e. the policy π(at|st) based on state st,
3. the action changes the environment state, which results in a new environment state,
4. the agent takes new actions based on the new observable environment state, and finally,
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5. the agent may adjust its belief, i.e. the policy π(at|st) based on the achieved total rewards
R(τt).

Hereby, τt denotes the state-action sequences or also called the Monte-Carlo sampling of different
trajectories τt = {s0, a0, ..., sB, aB}, where B denotes the batch size. The agent’s objective can
be formulated via

J(θ) = E
[

T∑
t=0

R(st,at)
]

=
∑

b

P (τ b,θ)R(τ b) (4.36)

which is to maximize its expected rewards. Equation (4.36) formulates this as a sum over
the product of the probabilities for taking a trajectory of actions P (τ b,θ), times the reward
for each individual trajectory R(st,at). The individual policy parameters are stored in the
so-called Jacobian matrix J(θ). Later the derivations of the Jacobian provide are calculated
using auto-differentiation algorithms such as stochastic gradient descent. Therefore the agent’s
objective is reformulated in an objective loss function that describes the performance of the
agent, and further describes the changes in the policy in order to yield higher probabilities for
high rewards as follows:

L(st,at,πθ, τ
b) = 1

B

B∑
b=0

T∑
t=0

▽θlog
[
πθ(ab

t |sb
t)

]
R(τ b) (4.37)

where T is the time horizon that is bounding the planning time. This is required when using
a NN for approximating the state or action spaces [Levine, 2017, pp. 682–697]. The gradient
(partial derivation) of the Jacobian furthermore can be calculated with auto-differentiation via

▽θJ(θ) ≈ 1
B

B∑
b=0

{
T∑

t=0
▽θlog

[
πθ(ab

t |sb
t)

]} {
T∑

t=0
R(sb

t ,a
b
t)

}
(4.38)

which is the
∑T

t=0 ▽θlog
[
πθ(ab

t |sb
t)

]
is called the maximum log-likelihood. This term measures

the likelihood of the observed environment states, and therefore states how likely it is to compute
an action sequence trajectory under the current policy πθ(ab

t |sb
t). The product with the achieved

action sequence rewards, the objective tends to increase the likelihood of actions under the
current policy for high-rewarding action sequences. On the contrary, negative action sequences
are reduced in probability in the same manner. This formalizes the agent’s notion principle of
“trial and error” which enables the agent to find highly rewarding actions with high probability
[Levine, 2017, p. 13].

Policy Gradients Issues and Improvements: A significant aspect of the Policy Gradient
algorithm is that the probabilities of the action sequences are characterized by long-term
dependencies. In other words, long action sequences strongly correlate and therefore may vary
strongly in structure and order. This is because the probabilities for selecting an action sequences
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are calculated via multiplication:

πθ(τ ) = P (s1) Π
t=1

πθ(at|st)P (st+1|st,at) (4.39)

which is stated to trigger vanishing and exploding gradient issues easily when combined with NN
function approximation. However, this issue can be solved by only summing up the gradient
instead, which avoids the necessity of computing the product of long probability sequences
respectively. The trick works as follows:

πθ(τ )▽θlogπθ(τ ) = ▽θπθ(τ ) (4.40)

where using the logarithm operator enables to avoid the computation of the product, but instead
can be reduced to a sum over all probabilities instead. This being said the basic variant of the
REINFORCE algorithm [Williams, 1992, pp. 319–350] using Monte-Carlo Tree Search (MCTS)
Rollouts can be formulated as follows: The MCTS sampling method further generates a whole

Algorithm 1: REINFORCE Algorithm with MCTS Rollouts.
1 Sample action sequence trajectory τ b from πθ(ab

t |sb
t),

evaluate the policy from the actual observed environment state
2 Update ▽θJ(θ) ≈ 1

B

∑B

b=0

[∑T

t=0 ▽θlog πθ(ab
t |sb

t)
] [∑T

t=0 R(sb
t ,ab

t)
]

3 Update θ ← θ + α▽θJ(θ)

action sequence trajectory and memorized the exact rewards of the action trajectory. Moreover,
the MC sampling method is required to approximate the gradient of the Jacobian Matrix ▽θJ(θ).
A particular characteristic of the Policy Gradient Method is, that the stochastic policy can vary
concisely for different episodes and small differences in the state observations can completely
adjust the policy. This is called high variance with respect to the used network optimization
algorithm, where volatile gradient updates (gradient descent directions) detain the machine
learning model from converging and therefore from learning. In detail, each action sequence
can have large differences in the achieved reward, which leads to large gradient fluctuations
and therefore deteriorates the convergence process when using a NN for function approximation.
There are several options to mitigate high learning variants. The first is to increase the used
batch size B, however, if B is chosen too high the sample efficiency is reduced and therefore the
machine learning model requires a long time to learn. Thus, the batch size cannot be increased
too far, and additional measures are required for reducing the learning variance. Another way
is reducing the magnitude of sampled rewards, which is straight-forward. The high variance
generally originates from high sensitivity of the model towards minor changes in the training
data and state observations. This results in an overestimation (over-adjustment) of the computed
gradients. The gradients, therefore, may fluctuate to a degree, where the gradient updates fail
to minimize the objective loss function and the stochastic gradient descent algorithm fails to
converge. This ultimately reduces the learning capability of the learning model. Conversely, a
learning model also may witness high bias, which is the opposite bookend. The gradients are
not updated enough (under-adjustment) so the model fails to learn the mapping from states to
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action sequences. Another way of detaining the gradient from large magnitude updates is to
introduce a so-called baseline, which is the basis for Actor-Critic Methods in the next subsection.

4.10.3 Actor-Critic Methods

The major difference between the Advantage Actor-Critic Algorithm and the REINFORCE policy
gradient algorithm is the components 3 and 5 in Figure 4.19. As the Figure shows Actor-Critic
Methods introduce a second module called Critic with a so-called baseline function in order to
mitigate large gradient update effects, i.e. so-called high learning variance. In order to reduce
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Figure 4.19: The dependencies of the Advantage Actor-Critic Algorithm [Levine, 2017].

the high variability of computed gradients an auxiliary network, called Critic, can be used. The
Critic further evaluates the expected results of a change in the Actor’s gradient, and estimates
or predicts if the solution is becoming better according to the changed Actor policy and action
selection. In order to do so, the Critic observes the environment state and stores a smoothed
version of the achieved reward, which originates from the previous action of the Actor Network.
The major difference can be seen in Figure 4.19 and Component 5. Here the so-called advantage
function is processed, which essentially is the difference between the total reward of the actor
and the smoothed state-value reward from the Critic Network component. The original baseline
function is mathematically formulated as follows:

▽θJ(θ) ≈ 1
B

B∑
b=0

[
T∑

t=0
▽θlog πθ(ab

t |sb
t)

] [∑T
t=0R(sb

t ,a
b
t)

]
Q(sb

t ,ab
t)

, (4.41)

72



4.10 Reinforcement Learning Variants

where the total actor reward Q(sb
t ,a

b
t) =

∑T
t=0R(sb

t ,a
b
t) is extended with the state-reward value

function V (sb
t) from the Critic Network as follows:

▽θJ(θ) ≈ 1
B

B∑
b=0

[
T∑

t=0
▽θlog πθ(ab

t |sb
t)

] [
Q(sb

t ,a
b
t)− V (sb

t)
]

a(sb
t ,ab

t)

. (4.42)

Advantage Actor Critic: Furthermore, the blue underline in Equation (4.42) defines the
advantage function a(sb

t ,a
b
t) which is used to limit the fluctuation of gradient updates and is

defined by

a(sb
t ,a

b
t) = Q(sb

t ,a
b
t)− V (sb

t) (4.43)

where the final gradient update equation can be reformulated by inserting the advantage function
as follows:

▽θJ(θ) ≈ 1
B

B∑
b=0

[
T∑

t=0
▽θlog πθ(ab

t |sb
t)

] [
a(sb

t ,a
b
t)

]
. (4.44)

In Deep Learning, the input features should be zero-centered. This means that RL generally is
concerned about whether an action is performed better than the average. If rewards are defined
to be always positive R(sb

t ,a
b
t) > 0, the Policy Gradient algorithm tries to increase the action

sequence or trajectory probability of getting high rewards, even if the algorithm receives much
smaller reward values than for previous learning epochs. Let’s consider two scenarios where

• (i) the action sequence A receives a reward value of +100 and the action sequence B only
receives a reward value of -10,

• (ii) the action sequence A receives +100 and action sequence B achieves a reward value of
+5.

In the first scenario (i), the Policy Gradient algorithm increases the probability of sampling the
action sequence A for achieving the reward value of +100, while it decreases the probability of
sampling the action sequence B which results in a negative reward -10. In the second scenario (ii),
the Policy Gradient algorithm will increase both relatively of their reward, since both rewards
are positive. However, if a human would decide which trajectory to increase in probability, it
would be very likely to decrease the sampling of the action sequence B in both scenarios (i) and
(ii). This is the objective of the introduced critic baseline such as V (sb

t) which adjusts the action
sequence selection to achieve rewards that are superior to average action sequences. More details
about the development and implementation of a DRL architecture with Encoder-Decoder, PGN,
Advantage Actor-Critic training methods, and Policy Gradient Optimization will be presented
in the next chapter. The choice of this architecture is based on the remarkable results this
architecture has achieved for the optimization of TSPs [Bello et al., 2016].
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The previously introduced algorithms for combinatorial optimization are the current state-of-the-
art approaches and will be important for comparing algorithms further on course. The current
state-of-the-art approaches do not provide scalable and comparably flexible mechanisms to gener-
alize (transferability) towards changes in requirements, i.e. changing the operation environment,
problem constraints, and other problem formalism characteristics. This however, is essential for
algorithm applications that are inherently changing, such as for fleet planning and operation,
which will be investigated later. First, this chapter aims to develop and provide implementation
details with respect to a DRL model that has the potential to solve the aforementioned issues.
In DL and RL terminology, a learning component is, in general briefly referred to as an “Agent”.
In this thesis, the Agent comprises the “Actor” and “Critic” networks, which are required for
learning to assign near-optimal combinations of vehicles, requests, and service stations for a
given vehicle fleet (see Figure 5.1). In more detail, the required components comprise

Exploration / Search Policy

Filters

MemoryAlgorithms

Agent Simulated Fleet System (Environment)

State (Environment Abstraction)

Reward or Cost (Notion of Utility)

Action of Agent 

Networks

Data

Abstraction

Recommendation

1

2

HP

Figure 5.1: A basic Agent that learns good assignments for a given fleet simulation.

• a basic reinforcement learning framework, where the Agent receives environment data (fleet
and traffic) as abstracted state, computes a strategy to assign good requests, and sends the
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strategy in the form of a sequence of actions to the customer and fleet.
• The customer receives a recommendation as to which vehicle will pick up and drop-off the

customer.
• Finally, the vehicle receives a recommendation of a suited service/charging station based

on its State-Of-Charge (SOC).
Further, the whole implementation contains a large list of components and modules, which are
explained in more detail in this chapter. For first glance, a holistic architectural overview of the
implemented modules can be accessed in Section 5.1.

5.1 Architectural Overview

The following architecture essentially has two separate networks that are used as memory
structures (see Figure 5.2). Here, the Actor-Critic architecture is used to explicitly model the
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Figure 5.2: The Actor-Critic networks and their training architecture.

Actor network, which aims to learn a policy (that is, for example, a set of heuristic rules or
strategies resulting in a good combinatorial solution), while the Critic network mitigates an over-
or underestimated policy and thus mitigates greedy actions by the Actor network (see Figure
5.3 and Figure 5.4). The Critic network (also Figure 5.3) should, furthermore learn about the
current policy (i.e. a subjective evaluation of the current solution) and also provides a Critic
response signal that can be expressed as a scalar error value (also sometimes referred to as the
loss value). The Critic response scalar signal is further processed by the advantage function and
later provides information about the learning progress of both Actor and Critic network. Note,
that more detailed explanations and fundamentals about Actor-Critic methods can be accessed
here [Sutton and Barto, 1998, p. 257]. As well, a more detailed list of the components used is
shown in Figure 5.5. The most important architectural components are

• the Data Generation module (see Section 5.2) which is responsible for generating arbitrary
datasets of TSPs and assignment problems such as MWM problem instances,
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Figure 5.3: The Actor and Critic network modules and their architecture.

• the Routing API, which provides required data features such as travel times and travel
distances,

• the DRL model implementation with respective submodules, and
• the Mathematical MIP and Heuristic Solver implementations for evaluating the solution

quality and efficiency.

The extended DRL model developments are based on the previous work of [Nazari et al., 2018]
which contains a set of sub-modules such as

• the Encoder Module, see Section 5.3,
• the Attention Module, see Section 5.4,
• the Pointer Network Module, see Section 5.5,
• the Decoder Module, see Section 5.6, and
• the AACMCPG Training Algorithm 5.10 for training the NN architecture.

The following sections will provide further details about the data generation module and how
data abstractions are processed in order to serve as input for the Actor and Critic network
modules.
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Figure 5.4: The Actor and Critic network modules and individual dimensions.
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5.2 Data Generation and Processing

The “Data Generation Class” is comprised of data generation components (see Figure 5.5), where
its residual subclasses and subfunctions can be used to efficiently generate arbitrary amounts
of symmetric and asymmetric TSPs (see Subsection 5.2.1), as well as balanced, unbalanced,
and constraint MWBMs graphs in Subsection 5.2.2. Technically, the generation of one million
MWBM graphs requires to querying the Data Generation Module 1 million times as well. Hence,
the efficiency of the Data Generator has a very significant and direct proportional effect on the
complete generation time per training, validation, and test dataset.

5.2.1 Generation of TSPs

Symmetric Euclidean TSP: In more detail, artificially generated TSPs are defined in unit
Cartesian R2 space, which enables to conduct of comparable, reproducible datasets and experi-
ments (see Figure 5.6). Such datasets are later used to generate training, validation, and tests
with up to 4M = 4e+06, 1e+04, and 1e+03 TSP samples. Thereby, the x and y coordinates are
random-uniformly sampled within floating point ranges of ]0, 1[ so that the coordinates never
reach the value of 0.0 and 1.0. The module further enables to generate arbitrary TSP node sets
and therefore arbitrary complex TSP problem datasets.

Asymmetric Euclidean TSP: The difference of asymmetric TSPs to symmetric TSPs (see
Figures 5.6 and 5.7) is that bidirectional link assignments result in different costs, e.g. node cost
0 to 1 is different from 1 to 0. In order to generate asymmetric TSPs in unit Cartesian R2 space
the individual bidirectional edges are characterized by different bidirectional distances. In order
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Figure 5.6: Artificial symmetric TSP in unit
Cartesian R2 space.
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Figure 5.7: Artificial asymmetric TSP graph
with different bidirectional costs.

to generate such a TSP graph, the distances within the lower triangle of an O-D matrix need to
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5. Model Implementation

be altered by small proportions of the original edge length. For this reason, the Data Generator
Class also contains a function that artificially alters the bidirectional edge length, so that the
direction of TSP graph traversal results in different distance values. As for the symmetric TSP
graph setting, the function enables to sample arbitrary TSPs with random uniformly distributed
xy-coordinates within floating point ranges of ]0, 1[ in unit R2 space.

Solution Structure of TSPs: Generally, all TSPs, i.e. symmetric and asymmetric TSPs are
solved by finding the order of node assignments that yield the lowest cost of the Hamiltonian
Path (i.e. one round-trip traversing all nodes once). Hereby, the nodes that are visited are added
in sequences (see Figure 5.8). The difference between symmetric and asymmetric TSPs solutions
is that fewer solution sequences will result in the same minimal cost. This characteristic, however,
is ubiquitous in real road networks and real route planning. Hence, it is interesting to model
such problem characteristics for future learning and testing processes.
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Figure 5.8: Learning of solution permutations as valid TSP solutions.

5.2.2 Generation of MWMs and PDPs

MWMs and PDPs: The generation of MWBMs graphs differs from the TSP by the selection of
graph links and thus assignment actions that can be learned and selected by the Actor network.
Instead of the Hamiltonian Path, the goal is to find the maximum flow with least cost via the
shortest augmenting path (see Figures 9a and 9b). The structural relationship of TSP and
MWBM allows for representing an MWBM solution in the same solution structure as for the
TSP, with the only difference being that some links are omitted as shown in Figure 9a. General
MWBM graphs can have multiple characteristics, i.e. symmetry, asymmetry, balanced and
unbalanced, or even constraint instances, as previously shown in Figure 2.2 in Chapter 2, Section
2.5. The characteristics of symmetry have already been explained in Section 5.2.1. Additionally,
there is to be mentioned that MWBM graphs can vary in the number of nodes for from_nodes
(vehicles) and to_nodes (requests). Additionally, the links between from_nodes and to_nodes
may be represented as a constraint where a cost value may result in an invalid assignment action,
of which an example can be seen in Figure 5.10. There are multiple methods to model constraint
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Figure 5.9: Conversion of Vehicle-Request MWBM graph to a TSP tour.

Figure 5.10: Valid and invalid assignment actions for one vehicle node.

MWBM graphs. First, the link cost can be represented as an infinite high-cost value, second
invalid assignments can be assigned to dummy nodes. And finally, the link may be filtered and
omitted using a mask function. For instance, Figure 5.11 shows such typical unbalanced MWBM
graphs, where blue nodes represent vehicles, and green nodes represent occurring client requests.
The Figure also shows that the number of vehicle and request nodes may vary, which results
in the difficulty that some vehicles or requests must be omitted from the decision problem. By
using a directed graph formulation the cost matrix for a MIP formulation typically results in a
rectangular cost matrix for an unbalanced number of nodes. Generally, most graph problems
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Figure 5.11: Unbalanced MWBM graph for vehicle-request assignments.

occurring in a practical application are typically unbalanced in the sense that the available
number of vehicles does not equal the number of requests and charging stations. This can be
artificially handled by inserting the number of differing numbers of nodes as dummy nodes for
balancing the graph problem. Depending on the MWBM graph problem size, the use of dummy
nodes, however, may be costly. This is due to the fact that adding dummy nodes also increases the
memory and computation time required for algorithms to solve large individual graph problems.
Clearly, defining directed graphs, which avoids empty entries in cost matrices, helps to reduce the
graph complexity. This furthermore saves memory and computational resources, especially when
being stored in Python dictionaries. However, the MWBM graph can be additionally represented
in a MIP formulation as a linear assignment cost sum problem. In other words, here the goal is
to calculate the sum of assigned edges that result in the minimization of the global cost. The
selection of edges is modeled by selecting the correct combination of decision variables xi,j to
minimize the sum of all assignments from node i to node j. Next, the generation of real data
MWBM graph samples is explained in more detail.

5.2.3 Generation of MWMs with Real Data

The generator modules for generating MWM graph instances are depicted in the component
diagram in Figure 5.12. Generally, the modules are necessary to generate the required (real
data) datasets for PN training, validation, and testing. In order to be able to generate rather
complex graph problem instances the implementation contains a list of modules as follows. First,
Figure 5.12 shows the generator classes for generating individual vehicle nodes, request nodes,
and charging state nodes for each matching graph. Depending on the settings captured in the
settings.py component (see Figure 5.12), it is possible to generate arbitrary numbers of arbitrary
complex graphs for assignment, planning and matching applications (see Figure 5.13). For
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5.2 Data Generation and Processing

Figure 5.12: A component and data flow chart of the data generator module.

the training process with MWBM graphs the most important parameters are the train_size,
valid_size, test_size, and the individual numbers of nodes for generating sets of vehicles, requests,
and charging stations. The relevant data features are extracted from the New York Taxi data
set offered by the [NYC Taxi and Limousine Commission (TLC), 2020] and aggregated to
yield different graph problems for training the PN. The aggregated MWBM graphs and their
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Figure 5.13: The generation of different assignment-, planning-, and matching-graphs.

contextual features must be represented as tensors in order to serve as network input. This is
further explained as follows.

Data Input Features: The aggregated TSP, MWBM graphs and their contextual features can
be stored in static tensors with static graph features, such as indices and the coordinates of
nodes (i.e. vehicles, requests, service or charging stations, the quantities and types of nodes,
etc.). On the other hand, dynamic TSP and MWBM graph features such as distances, ETAs,
vehicle ranges, capacities, demands, and supplies can be stored in dynamic tensors. Both static
and dynamic tensors serve as containers for the Actor networks’ input. Next, the individual node
classes and their features will be explained as follows.

Vehicle Class: The vehicle class is a programmed object that models a vehicle with a vehicle node
V with its attributes such as the vehicle key veh_key as ID, longitude and latitude coordinates
veh_x_lon and veh_y_lat, and the vehicle type veh_type with electric and combustion engine
settings. Furthermore, each vehicle node instance can have dynamic features such as the
individual vehicle driving range veh_range based on the vehicle SOC veh_soc, which is calculated
from the energy/fuel capacity of the vehicle type and their individual energy consumption.
Obviously, the calculation of the electric vehicle range is different for electric and combustion
engine-driven vehicles. The calculation of the residual energy capacity e_battery_cap differs
from a combustion-powered vehicle capacity c_energy_cap. Furthermore, different consumption
parameters e_energy_cons, c_energy_cons are required to estimate realistic but approximate
driving ranges for electric and combustion-driven vehicles. Importantly, when calculating driving
ranges the resulting values can have a lot of variance and uncertainty. This requires building
additional buffering means which will not be elaborated on in this thesis.

Since the NY Taxi dataset does not provide any information about the used vehicle character-
istics, this thesis uses a generation process via sampling different vehicle characteristics. This
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is explained as follows, where different vehicle configurations are generated with individually
different attributes. The electrical SOC ve

s and fuel SOC vc
s is an integer value sampled within a

percentage in the range of [0, 100], which is the basis for estimating the electrical approximate
driving range ρe

v[km] via

ρe
v = ve

s · ce
v

100 · 1
ve

c

, (5.1)

and the fuel driving range ρf
v [km] via

ρf
v = vc

s · cc
v

100 · 1
vc

c

, (5.2)

for combustion engine-driven vehicles. Furthermore, ce
v = 50[kWh] and cc

v = 97[l] are electrical
and fuel-based total and nominal battery/fuel tank capacities of individual vehicle types. The
parameters ve

c = 17[kWh]/100[km] and vc
c = 14[l]/100[km] denote individual vehicle consumption

parameters for either electrical or combustion-driven vehicle types. However, also additional or
other vehicle-based data features such as capacities (seat occupancy or cargo) can be modeled in
a similar way. Next, the generation of requests via the request class is explained.

Request Class: The request class is required for modeling a request node R and its associated
attributes, such as the request key req_key, req_x_lon_pu, req_y_lat_pu, req_x_lon_do, req_-
y_lat_do, and req_type. The attributes again define the request object with an ID key, the
pickup coordinates (req_y_lat_pu, req_x_lon_pu), the drop-off coordinates (req_y_lat_do,
req_x_lon_do), and the individual request type req_type. As the final node class the generation
of service stations and charging stations will now be explained in the following.

Charging Station Class: The last of the three node classes is the class “Charging Station”
for modeling the present city charging stations as the object with individual attributes. Each
object instance of the class Charging Station is equipped with the individual attributes chs_key,
chs_y_lat chs_x_lon, chs_type, chs_slots, chs_charging_rate for modeling a charging station
and its capacities. More specifically, the attribute chs_slots can be used for modeling individual
vehicle capacities of the charging station, whereas the chs_type and chs_charging_rate can
be used to mode electrical and gasoline charging stations with individual electrical and fuel
charging rates. Since the generation of node classes and assignments comes with many features
and complex dependencies, it is important to reduce the graph and contextual complexity when
training the Actor and Critic network. A detailed explanation of the process of reducing the
complexity and finding similarities between individual TSP and MWBM graph problems is
explained in the following section.
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5.3 Graph-Contextual Embeddings and Encoding

In general, Graph-Contextual Embeddings, or in short Embeddings, as visualized in Figures 5.14
and 5.15, are used for mapping complex data features or non-numerical data to numerical space
within the Encoder module. This is required in order to make the Actor and Critic networks

Figure 5.14: The extraction of graph features and the following feature Embedding. The Encoder
module is used to learn the contextual and structural components and inter-dependencies
of the given Minimum Weighted Bipartite Matching (MWBM) graphs samples. Here,
the Encoder is used to learn the contextual information from the static and dynamic
tensors which contain the actual graph information. In contrast, the Decoder is used
to retrieve the learned assignment indices based on the learned assignment probabilities
by the Attention Mechanism.

understand how intrinsic graph features differ by structure (cohesion) or costs (weighted link
distributions), even if there is no programming notion of comparing the training graphs yet. For
this purpose, Embeddings are used for extracting relevant and useful data in order to transform
useful graph features into a vector space. Subsequently, its structures and contextual properties
may be learned by a network. Thus, Embeddings are also an efficient method of reducing the
input dimensionality of the training graphs, while preserving essential information required for
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Figure 5.15: The extraction of graph features and the subsequent feature Embedding and mapping
to high dimensional space.

computation [Sumanshu Arora, 2020].

A couple of different methods for Embedding data structures exist, such as similarity metrics
for comparing words using distance matrices, Principal Component Analysis (PCA), and Kernel
PCA [Wold et al., 1987], Word2Vec [Goldberg and Levy, 2014, pp. 1–5] for text-based data
or Fourier descriptors [Zahn and Roskies, 1972, pp. 1–13] applied to shape image data. Another
way to conceptualize Embeddings is that each Embedding emits a certain measure of similarity
between generated training graphs. Thus, when training the network later, the network learns to
know the causes of good or bad assignments during the training process and hopefully tries to
avoid them on the further training course. Embeddings are a subpart of the Encoder module
which works by computing a set of similarity representations for each batch of input graphs. By
training a single-layer neural network with 1-D Convolution significant and important static
graph features such as node positions and weight costs as well as dynamic features such as long
distances or short traveling duration times can be learned and encoded to a vector representation.
This is similar to a Word2Vec encoding [Mikolov et al., 2013; Goldberg and Levy, 2014,
pp. 1–12, 1–5], where graphs having similar node counts and dynamic features will point to
similar vector directions in high dimensional space. This also reduces the required features of the
input graphs, which is advantageous for saving computational resources. In the case of structural
representation, a Convolutional Kernel is used a bit differently to the known application in image
processing. The kernel still applies a sliding window where the enclosed values are multiplied
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and summed up. However, the kernel no longer is square, but instead, a wide rectangle with
dimensions 2× 10 and 3× 100 is applied (the dimensions in this example are chosen arbitrarily).
The dimension with size 100 is often called “Embedding Size” E (sometimes also referred to
as “Dictionary Length” in NLP). The height of the kernel is furthermore the number of graph
input features or number of Embeddings that are seen at once while applying the convolution
operation. In this case, the width of the kernel should span the length of multiple input graphs
within the provided data. The convolutional neural network layer further will apply many such
kernels where each of the kernel weights is learned. Each kernel furthermore looks at a graph
and its surrounding features in a sequential window, where the resulting output value captures
something about each input graph. In this way, the convolution operation can be viewed as a
window-based feature extraction method that captures essential features and patterns of the
grouped input graphs indicating different structural and contextual patterns. In that way, the
convolutional operation is used in order to obtain similar Embeddings for similar graph structures
and patterns. In other words, if such Convolutional Kernel is applied to similar or different sets
of graphs, it will produce similar or different sets of output vectors. Also note, that the number
of input channels, if a 1-D Convolutional Layer is used, has a dimensionality of 2. Hereby, each
graph within both static and dynamic features is simultaneously encoded as one context vector
as visualized in Figure 5.16. The 1-D Convolution refers to the process that the kernel is applied

Figure 5.16: The implicated dimensions when transferring the input graphs to vector representations.

sequentially, moving from the input graph to the next stored input graph and its associated
features. In order to embed unbalanced graph structures with unbalanced nodes and weights,
it is necessary to use “Paddings” in order to keep the dimensions at a constant size. This way,
the size of the input graph structures does not matter. This is also required in order for the
Convolutional Kernel to sweep over an input sequence correctly while applying the convolution
operation.

Application of the Encoder Module: The implemented “Embedding” method takes the static
and dynamic tensors with TSP or MWBM graphs as input. In the example with MWBM
graphs, the Embedding method represents a sequence of Ng = vn · (rm + so) assignments
among vn vehicle rm request and so service/charging station nodes in two-dimensional space
s = {qi}Ni=1 where each coordinate is in Euclidian 2-D space qi ∈ R2. Embeddings are used to
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5.3 Graph-Contextual Embeddings and Encoding

track the sampled permutation of the assignments between the points q which are N origin
and M destination points. Such assignments can be expressed via the assignment sequence Y
which is a sequence list of integers. For MWBM graph features, the implemented Embedding
module is used to embed tensors of complete square O-D matrices D : Rn×n and ETA matrices
E : Rn×n with zero-diagonal entries diag(D) : Rn×n → Rn, diag(D) = [d0,0, ..., di,i] := 0 and
diag(E) : Rn×n → Rn, diag(E) = [e0,0, ..., ei,i] := 0. The dimensions of tensors and matrices
depend on the numbers of nodes generated for vehicles, |N | MWBM nodes where 1 ≤ i ≤ |N |
and requests and service/charging station nodes 1 ≤ i ≤ |M| for N and M. Finally, individual
driving distances are computed from the N and M coordinate xy-tuples where ni = ⟨loni, lati⟩
and mj = ⟨lonj , latj⟩. Generally, there are some advantages and disadvantages of using such
Embedding methods: The advantages are that i) these methods allow one to work with complex
and unstructured data, as long as one can define a measure of similarity between graphs as a
distance metric, ii) the output of Embedding layers’ is low-dimensional numerical data which can
be further processed with other modules, algorithms, or as in this case a neural network. The
disadvantages are that this approach neglects some information present in the training graphs since
each individual training graph is replaced with a numerical similarity value. Depending on the
graph and Embedding method, the computation of such similarity value can be computationally
expensive and thus time-consuming. This also depends on the actual Embedding layer complexity,
the activation functions used, and the code/platform efficiency. Some Embedding methods may
also be very sensitive to noise in the input data and therefore training, validation, and test set
graphs. Hence, the application of Embeddings may require additional data cleaning before such
a module may provide qualitative results. It is also possible that some Embedding methods
are rather prone to be sensitive to the choice of working hyper-parameters. A rule of thumb
is, therefore, that more complex Embedding methods are prone to be more sensitive towards
influences of the aspects as aforementioned. As Figure 5.15 shows, the Encoder module is a
functional module that is applied before the Attention Mechanism. Thus, the inner processes of
the Attention Mechanism are explained in the next Section 5.4.

The specific Batched Data Input (BDI) data structure and implemented 1D Convolutional
Embedding method is visualized in Figure 5.17. There exist two cases that are important for
implementing the MWBM graph structures with static and dynamic features within two tensors
for static and dynamic data. In the first case, a surplus of client nodes requires repeating vehicle
indices within the tensors to model all possible assignment possibilities. In the second case, a
surplus of vehicles requires to sample new or repeat old service trip nodes of services station
locations to balance the assignment possibilities due to fixed tensor dimensions. Thereby, the
X-Axis (static and dynamic tensor) contains the sample index for each MWBM graph, whereas
the Y-Axis of the static tensor contains static MWBM graph features such as the vehicle ID
which is the origin of a trip, and the two indices of request nodes and service station nodes.
Furthermore, the axis contains the node types for the vehicle, request pickup, request drop-off and
service station node classes. The Y-Axis of the dynamic tensor contains dynamic MWBM graph
features such as the driving distances between any node connection, the vehicle ranges (capable
driving range), and optionally the estimated times of arrival. Finally, the Z-axis contains an index
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range of valid assignment indices for each MWBM graph index. This models the PGN search
space and allows the network to limit the search space while searching for good assignments
among all assignment possibilities. This way of modeling the search space furthermore allows
representing invalid connections in a numeric way, which furthermore is the basis to enable
masking individual connections from the search space in the later constraint satisfaction process.
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Figure 5.17: The BDI data structure and implemented 1D Convolutional Embedding. This Figure
contains a fraction of the whole DRL architecture in Figure 5.3.

5.4 Attention Mechanism and Context Modeling

Generally, an “Attention Mechanism” (see Figure 5.18) can be used to store and adapt probabilities
in order to model the learning experience of an Agent (i.e. the Actor network). The Attention
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Figure 5.18: A functional view on the Attention Mechanism (ATTN).

Mechanism then learns probability values that are based on the input of similarity sequences
(vectors) from the Embedding module. The probabilistic process is known as negative maximum
log-likelihood estimation from probability theory. The maximum log-likelihood estimate is
explained as an estimate of a parameter as a value whose probability is the most likely to have
generated the given data or outcome [Sutton and Barto, 1998, p. 153] and is well-known in ML,
NLP, and machine translation [Bahdanau et al., 2016, p. 2]. Moreover, Attention probabilities
can be updated via different functions, where in this thesis the definition of probabilities is done via
negative probability values called negative logits, where the range of the updated values is defined
by the logit function (see Figure 5.19). The Attention Mechanism is used to learn approximate
probabilities of near-optimal assignments of nodes for TSP and links for MWBM graphs. Thereby,
the Attention model can be leveraged to pick out the most important assignments even for large
and complex graph problems. Hereby, the Attention Mechanism learns a graph summary of
the most important graph problem assignments. Additionally, the Attention Mechanism is a
context-sensitive structure that extracts relevant information from the data input and Embedding
layer. The relevance of the input data is decided via an alignment vector that processes at per
decoding step t, and is computed from the embedded inputs ei

t = (si,xi
s,xi

d)t for each embedded
input i, memory state cell ht ∈ RD and decoding step t. The Attention Mechanism controls the
exploration-exploitation balance and is used to extract relevant information from the graph input
data while applying MCTS. Technically, this is a categorical sampling based on the probability
distribution of the input sequence. Similar to a probabilistic filter, a variable-length alignment
vector at is used to specify the input data sequence index for the next decoding step t and thus
controls, which relevant information is extracted from the input data. For an embedded input i,
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Figure 5.19: A logit function - modeling the negative maximum likelihood probability of the Attention
Mechanism (ATTN) that models the Actors’ policy π.

the memory state of the RNN cell is x̄s
t = (s̄i, d̄i

t) and the alignment vector at is computed as

at = at(x̄t,ht) = softmax(ut), (5.3)
ui

t = vT
a tanh(Wa[x̄i

t,ht]), (5.4)

where “[·, ·]" is the concatenation of both vectors. The conditional probabilities are calculated by
computing the context vector ct via

ct =
I−1∑
i=0

ai
t x̄i

t, (5.5)

where the embedded input values are normalized with the Softmax function as follows:

π(·|Yt,Xt) = softmax(ūt), (5.6)
ūi

t = vT
c tanh(Wc[x̄i

t, ct]). (5.7)

Within Equations (5.4-5.7), the learned parameters are the vectors va,vc and the weighted
matrices Wa,Wc. After modeling individual assignment qualities with Attention probabilities,
the Actor network requires a mechanism to retrieve individual node assignments for TSPs and
link assignments for MWBM graphs. Such assignments can be represented as integer sequences,
whose generation processes are explained in the following.

5.5 Pointer Generation Process (PGP)

The generation of assignment indices composed as index-integer solution sequences I = {I0, ..., In}
requires the Pointer Generation Process (PGP) (see Figure 5.20). Each index I defines an assign-
ment of a link for MWBMs graphs and the traversal of a node for TSPs graphs. Furthermore, based
on the current Attention probabilities (i.e. the Actor policy), a categorical (multinomial) sampling
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5.5 Pointer Generation Process (PGP)

Figure 5.20: RNN PGP with Multinomial Sampling resulting in Monte Carlo Tree Search (MCTS).

process I ∼ Mult(n,π) is used to retrieve assignment indices from Attention probabilities that
model the Actors’ policy π (see Figure 5.20). Note, that a multinomial distribution is generally a
multi-binomial distribution [Bishop, 2006, p. 70] I = {I0, ..., In} = {Bin(n0, p0), ...,Bin(nE , pE)}.
The process involves a sampling of n times from the probabilities with π = [p0, pE ]. In combination
with the Attention Mechanism, the addition of the PGP results in a weighted Monte-Carlo Tree
Search (MCTS) to generate near-optimal candidate sequences for the solution of combinatorial
problems like TSP and MWBM graphs. The mechanisms of the PGP are depicted in Figure
5.20, where individual combinatorial solutions are generated from the Attention Mechanism’s
probabilities

p(Y = y0, ..., yN |X = x0, ..., xN ) (5.8)

=
N∏

i=1
p(yn+1| XN , y0, ..., yN ) . (5.9)

For multiple node classes in MWBM graphs, the PGP learns to assign the graph links which have
the highest Attention probabilities. Hence, the output of the PGP is used to efficiently search for
good solutions for multiple mini-batches within training, validation, and test MWBM graphs. In
more detail, each pointer vector i = {it, jt} ∀i ∈ I determines which routes are assigned among
the observed vehicles and pickup-drop-off and service station nodes.

In the case of TSP graphs, each probability models the assignment of a node within a
Hamiltonian tour. Hence, instead of links, the integer sequences represent the IDs of nodes,
which is the only major difference. The output of the PGP furthermore serves as input for the
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cost or reward function to assess the Actor networks’ current policy (i.e. to what degree the
Attention probabilities have converged to good assignments).

Now, the complex part about later RL training comes down to formulating a suitable objective
function in order to reach a near-optimal Actor policy π∗. Ideally, the learned Actor policy
should minimize the cost or maximize the reward function depending on the defined formulation.
As aforementioned, during the learning phase, the Actor network yields graph approximations via
similarities, and thus by default the Actor policy generates stochastic and approximated solutions
π̃∗. Later, the learning phase requires an automated tuning of multiple sets of parameters θ that
parameterize (adapt) the approximated solution π̃∗. Note, that the PGP is active during the
learning phase. If the learning phase is terminated (converged) the indices are generated via the
decoder module, which is explained next.

5.6 Decoder Module (DCDR)

After each training epoch, a validation step is required in order to assess if the Actor network can
generalize on unseen test data graphs. For this step, the assignment indices are not generated
via categorical sampling, instead, there are two different methods that are used for generating
the final predictions of the Actor network. The final predictions are based on the converged
Attention Mechanism probabilities (current Actor policy) after each learning epoch and during
the final test predictions of the Actor network. Hereby, the decoder module is required for
the reconversion of the Attention probabilities to solution indices for validation and test graph
problems of MWBM graphs and TSPs. The decoder module used in this thesis computes the
Attention probabilities to an output, i.e. a sequence list of integer indices i = (i0, .., iE) given
the input sequence state vector x = (x1, ..., xE) from the Attention Mechanism. The length of
the integer lists depends on the individual MWBM graph sizes and dummy nodes (Paddings) in
order to yield the same Embedding size E overall generated unbalanced MWBM graph problems.
In this thesis the decoder uses the output gate of the GRUs, as depicted in Figures 5.21 and 5.22,
to select solution indices among the highest probabilities given the probability state vector from
the Attention Mechanism. In more detail, the decoder module leverages two different methods
of retrieving the assignments for MWBM graphs and TSPs, which are explained in the following.

5.6.1 Greedy Decoding

In order to assign the best assignment indices for TSPs this thesis uses greedy decoding that
computes the most probable node assignments in order to optimize a complete TSP or Hamiltonian
tour. This is well-known from previous work, where also Beam-Search also has been used to
compute the final assignment indices from the Attention probabilities [Bello et al., 2016; Nazari
et al., 2018]. More precisely, at every time step (decoding step), the greedy decoder computes
the pointer vector (integer sequences) from the maximal log-likelihood values until every node
has been visited. However, in order to make the decoder module work with MWBM graphs, the
decoder module must be changed as follows.
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5.6 Decoder Module (DCDR)

Figure 5.21: A typical Recurrent Neural Network (RNN) Gated Recurrent Unit (GRU) cell with input
(last hidden state), reset, update, new information, and output (next hidden state)
gate [Dey and Salemt, 2017].
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Figure 5.22: Sequentially updated Recurrent Neural Network (RNN) with Gated Recurrent Units
(GRUs) cell with input (last hidden state), reset, update, new information and output
(next hidden state) gate [Dey and Salemt, 2017].

5.6.2 Top-k Decoding

In order to decode MWBM graphs the greedy decoder is changed to a parallel top-k decoder
module. The decoder selects the top-k assignments per MWBM graph, which are computed
from the top-k Attention Mechanism probabilities (i.e. the top-k negative log-likelihood values).
In other words, the Top-k Decoder Module tries to assign the given number of vehicles all at
once, in order to occupy all vehicles. The module further starts with the first input state vector
sequence X0 and generates a pointers vector y0 which incorporates the same number of indices as
required for assigning all vehicle nodes at once. Instead of stopping the assignments if all nodes
are assigned, the termination condition is set if all vehicles are assigned to a feasible request
or charging station. This is required in order to prevent the Actor from selecting infeasible
assignments which may still happen by small risk. In other words, the decoder does filter
infeasible assignments to ensure the emission of feasible assignments only. Finally, the Top-k
Decoder Module enables to speed up the learning process but also achieves better learning results,
which is explained later. In order to explain how constraints can be incorporated in the learning
phase, the next section explains how mask functions can be used during the training and learning
phase.
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5.7 Mask Functions (MASK) for Constraint Optimization

In this thesis, mask functions are used to represent constraints during training processes of
the Actor network. For instance, when aiming to model constraints for MWBM graphs, i.e.
limited vehicle ranges and other characteristics, constraints have to be used to represent infeasible
assignments (see Figure 5.23). Technically, a mask tensor that is updated via the mask function

Figure 5.23: A Mask Function for masking individual links of the Maximum Weighted Matching
Bipartite (MWBM) graphs.

is used to eliminate undesirable assignments made by the Actor network. In more detail, the
mask is used to ensure that individual assignment probabilities are less likely than the residual
assignment probabilities. The mask tensor is a binary tensor that is used to bias individual
conditional log-probabilities before the softmax(·) operation in the Actor network’s forward pass
(i.e. before computing the attention probabilities). After representing constraints via the masking
of probabilities, the Actor network may learn which assignments may be infeasible. However, the
Actor network still does not have any information about which assignments are preferred over all
assignments. This is represented by the cost or reward function as follows.
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5.8 Cost-Reward Functions

5.8 Cost-Reward Functions

In this thesis, the presented cost and reward functions are required to represent which assignments
of links for MWBM graphs or TSPs might be preferred for minimizing the overall combinatorial
problem. Furthermore, such functions provide algorithmic and iterative assessment procedures
for monitoring the Actor network’s learning progress during the training phase. In this thesis, the
cost function used for training the Actor-Critic networks consists of two main terms as follows:

Ca(S = (V,R,S)| A) = min
B∑

b=0

Π−1∑
π=0

w1 · ηb,π + w2 · ζb,π . (5.10)

The first term describes the similarity of the assignments made with respect to node balance,
whereas the second term is used to penalize assignments that are less desirable. In this thesis,
the second term is used to minimize the driving distance to clients while trying to assign vehicles
with the correct vehicle range. However, other criteria can also be modeled, such as minimizing
ETAs, maximizing fleet utilities, profits, and more. In more detail, w1 and w2 are scalar factors,
where ηb,π is the first term that provides an angular Boolean vector similarity value. This vector
is particularly important for learning with unbalanced MWBM graphs. The second term ζb,π

is crucial to minimize the second objective, described by the difference between required route
distances and individual vehicle ranges. In more detail, the two objective terms are defined as
follows:

η = | (vf,π − r) |+ | (ve,π − s) | , (5.11)

ζ =
[(
ψ d′

b,π

)
− r′

b,π

]
. (5.12)

Note, that due to the prime operator □′ individual terms such as the trip distances db,π, and
current vehicle ranges db,π are min-max scaled via normalization. The prime operator is further
used to free individual terms from their Système International (d’unités)) (SI)-unit and value
dependency. All distance and vehicle range values should be normalized to a value range of
[0, 1], which is similar to using a percentage for costs and rewards. If individual rewards or
costs may additionally be negative, it is necessary to standardize the features used for costs
and rewards around a zero mean. Crucially, this further stabilizes the learning procedure and
mitigates over-fitting/exploding gradient phenomena.

5.9 Critic Network Architecture

The Critic network architecture has already been shown previously in Section 5.1, Figure 5.3.
The Critic network furthermore maps the input graph samples and features in the static and
dynamic input state tensors X = {xt,xd} to an Actor prediction as to whether, changing the
Actor policy would result in a decrease or increase of the Cost Function Ca(S = (V,R,S)| A) in
Equation 5.10. In this case, the Critic network serves as a “teacher” or supervision mechanism to
intervene in case the Actor’s knowledge and predictions become worse or stagnate. Specifically,
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the Critic network achieves this by testing the changes in the Actor policy and providing a more
conservative smoothed reward mechanism - preventing the Actor policy from large simultaneous
changes (changes in the gradient). Technically, this is achieved via the advantage function, where
the conservative Critic values ensure that the Actor gradients are kept from fluctuating between
large magnitudes (i.e. during back-propagation). With respect to its architecture, the Critic
Module consists of i) three NN modules using 1-D forwarding convolutional process blocks and
ii) 2-layer ReLU NN output, as visualized in Figure 5.21. The operation can be explained in
more detail by the following sequentially applied processing equations:

y1 = ReLU(Conv1D(C,H,K)) , (5.13)
y2 = ReLU(Conv1D(y1, H,O)) , (5.14)
y3 = ReLU(Conv1D(y2, O,K,K)) . (5.15)

In Equation (5.13) C = 1 is a singular input channel, and H = 128 is the output channel of the
first processing block with 128 hidden units. A kernel window of K = 1 is used to sweep and
convolute over the currently given mini-batch rows with residual graph sequences for each sample
graph. The second layer in Equation (5.14) is used as an intermediary, to map the Critic values
to higher dimension H = 128, i.e. 128 hidden neurons. Finally, in Equation (5.15) is the output
channel with dimension O = 20 which outputs the Critic Modules response tensor xc

[B,F,E] with
initial dimensions of mini-batch size B, feature space size F and Embedding size E.

5.10 Training Process

It has been proposed to train the underlying pointer network architecture via a semi-supervised
RL approach [Bello et al., 2016] in order to avoid the generation of millions of solutions to
NP-hard graph problems, which would be impractical and tedious. In order to train the Actor
module, i.e. also called PGN, it is required to provide a reward/penalty mechanism in order to
assess the quality of the networks’ predictions during combinatorial optimization. Thus, this
avoids the necessity for expensive supervised-labeled data computed by linear programming
solvers. The next paragraphs follow this approach using model-free policy-based RL to optimize
the pointer network’s parameters θ with Monte-Carlo Policy Gradient Optimization [Bello
et al., 2016; Nazari et al., 2018] or also called REINFORCE [Williams, 1992]. The networks
are trained in an Actor and Critic scheme where the Critic network with the parameters θC

serves as an auxiliary network by returning an estimate of the expected reward for every sampled
batch. The Critic network reduces the variance of occurring gradients during the training process
and is trained with stochastic gradient descent on a mean absolute error objective between the
actual reward and the prediction estimate θC . This is a slightly different change to [Bello et al.,
2016], but has qualitative advantages for the experiments made. The objective is formulated in
Algorithm 2 line 9.

Algorithm 2 and Figure 5.24 formally sample a quantity of B sample graphs {s1, ..., sB} ∼ S
and by sampling a single matching sequence per graph, i.e. πi ∼ Pθ(·|si), the gradient in Equation
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Algorithm 2: The Advantage Actor-Critic Monte-Carlo Policy Gradient (AACMCPG)
Training Process.
1 Process Training set X, number of epochs E, training steps T , batch size B
2 Initialize Pointer Network Param. θ, Critic Network Param. θa,θc

3 for each epoch e do
4 for each batch B ∈ X and training step t ∈ {0, ..., |X| − 1 = T − 1} do
5 PassFW Actor static and dynamic tensors from batch Actor({xs,xd,xsd

0 } := B)
6 Sample solution sequence πi from Pθ(·|xs

i,:,:,x
d
i,:,:,x

sd
i,:,0) for i ∈ {0, ..., B − 1}

7 Update Actor batch costs or rewards Ca
i,:,: ← C(πi,:,:) for i ∈ {0, ..., B − 1}

8 PassFW Critic static and dynamic tensors from batch {xs,xd,xsd
0 } := B

9 Update Critic baseline cost or reward Cc
i,:,: ← Critic← c(xs,xd) for i ∈ {0, ..., B − 1}

10 Update la
θ ← 1

B

∑B

i=1(Ca
i (πi|S)−Cc

i E(S))▽θ log Pθ(πi,:,:|S) for i ∈ {0, ..., B − 1}
11 Update lc

θ ← 1
B

∑B

i=1 ∥ (Ca
i (πi|S)−Cc

i E(S)) ∥2
2

12 Update θa ← ADAM(θa)
13 Update θc ← ADAM(θc,▽c,θa, la

θ)
14 end for
15 Return θ

16 end training

(10) is approximated with Monte Carlo sampling in Algorithm 2 line 10. The Critic baseline
c(xs,xd) is computed by a second, i.e the Critic network, which returns a second estimate of
the Actor reward based on the current static and dynamic state. The policy gradient algorithm
is used to approximate the distributions of training data MC sampling (also called Rollouts)
by drawing with batch size B independent and identically distributed (i.i.d.) sample MWBM
graphs Xt = {G0, ...,GB} and sample unique assignments per graph i.e. π ∼ P (·|xb) where the
gradient is computed via the mean squared error objective

▽θJ(θ)←
B∑
b

(Ca
b (π|xt,xd)−Cc

Eb
(xt,xd))▽θ logpθ(π|xt,xd) (5.16)

which defines the Actor loss value lAc
b
,Cc

b
. For adjusting the Critic network gradients via stochastic

gradient descent a Critic loss function is used and is defined by the mean squared error objective

lC ←
1
B

B∑
i=1
∥ (Ca

b (π|xt,xd)−Cc
Eb

(xt,xd)) ∥22 . (5.17)

In the end, this enables the critic network to learn the outcome of the changing Actor policy
and resulting Actor assignments. Technically, the Critic learns the well-known Mean Squared
Error (MSE) between the Critic’s predictions and the current Actor networks’ policy, i.e. the
current negative log-likelihood probability distribution. Ideally, the AACMCPG algorithm
iteratively progresses in teaching the Actor network to learn a good policy. The current policy of
the Actor network hereby is optimized via stochastic gradient descent during back-propagation.
Technically, this is achieved by employing the sophisticated ADAM optimizer [Kingma and Ba,
2015].
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Figure 5.24: Advantage Actor-Critic Monte-Carlo Policy Gradient (AACMCPG) training process with
line references to Algorithm 2.

5.11 Activation Functions

Different activation functions can have beneficial and adverse effects on learning efficiency and
quality. In this section, some activation functions are briefly introduced. Since the Encoder
Module in Section 5.3 requires at least a 1-D Convolutional Layer with activation functions, it
is also possible to experiment with different activation functions for increasing or decreasing
the Embedding complexity and quality, as shown in Figure 5.25. In this thesis, the focus is on
hyperbolic tangent (Tanh) activations used in the Attention Mechanism, whereas LeakyReLU
activations are used in the Encoder and Decoder modules. Later experiments with TSP include
comparisons with a relatively new activation function called MISH [Misra, 2019]. Essentially, the
different curvatures of the activation functions shown, influence the calculation of gradients for
currently activated value magnitudes before the neuron activation. For large value magnitudes,
i.e. x > 5 modern activation functions such as LeakyReLU suffer less from the vanishing
gradient phenomenon, compared to Tanh and Softmax activations. One benefit of LeakyReLU
activations is that they enable efficient learning (due to the function’s simplicity) compared
to more complex activation functions. On the other hand, it is well-known that monotonic
(continuously differentiable) activation functions provide benefits for learning more qualitative
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Figure 5.25: Enhanced application of activation functions (i, purple) LeakyReLU and (ii, violet)
MISH [Misra, 2019].

solutions. Hence, this will be investigated in the later testing phase within this thesis.

5.12 Avoidance of Over-fitting and Exploding Gradients

Generally, two training issues are very likely to occur during the training phase. For instance,
there is the i) exploding gradient and the ii) vanishing gradient phenomena, which are explained
in Chapter 4, Section 4.7 in a more fundamental way. Briefly, the AACMCPG training algorithm
is known to suffer more with respect to the exploding gradient phenomena, where gradient
adaptions start to fluctuate during learning process. Those result in an undesirable rapid change
in the Actors’ policy during learning, which also mitigates the learning process and learned
qualitative solutions. This can be explained by analyzing the definition of the algorithm. Since
multiple index sequences (assignment indices) can be updated at once, multiple changes of indices
may result in high changes of the cost/reward feedback signal that is computed using the cost
function. In other words, if extremely high cost or reward values are used in the cost function,
it is very likely that the AACMCPG training process deteriorates by way of the exploding
gradient phenomenon. In order to mitigate both phenomena, the well-known mechanisms of
maximum gradient clipping between gradient magnitudes of [0, 1] [Graves, 2013], and dropout
with probability of 0.2 [Gal and Ghahramani, 2016] are used within this thesis. Furthermore,
within this thesis two decays of Actor and Critic learning rates via the factors γα = 0.99 and
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γβ = 0.96 are used. This finally helps to stabilize the learning phase in the majority of cases.

5.13 Real Data and Feature Scaling

The use of real data and physical metrics (i.e. distances, ranges, etc.) with different units, such
as SI- or United States Customary System (USCS)-units [Newell and Tiesinga, 2019; Judson,
1976], requires additional means to reduce undesirable learning phenomena (see Section 5.12)
caused by large values with different value and unit ranges. For the most part, real datasets
usually come with units such as SI- or USCS-units [Newell and Tiesinga, 2019; Judson,
1976], however, different value ranges and units can have negative impacts on the AACMCPG
learning progress. Some changes within the cost function, see Section 5.8, are required as follows.
For instance, any used term that relates to a SI- or USCS-unit must be at least min-max scaled
(normalized) and sometimes standardized, if negative value ranges are allowed to appear within
the definition of the cost function or reward function. Standardization is typically understood as
re-scaling data distributions to zero-mean and standard deviation of 1 (with unit variance). As
an example, the cost function

C(Y |X) = min
P−1∑
i=0

D−1∑
j=0

(
d′

i,j − rv,′
i

)
· xi,j (5.18)

minimizes the deviation of route distances for vehicle routes to client trips and the currently
available vehicle range. This leads to the assignment behavior that vehicles with suited ranges
are selected for individual lengths of client trips. Since distances and ranges are affiliated with
SI- or USCS-units, they have to be min-max scaled, where the prime operator □′ denotes the
so-called feature min-max scaling. The operation is defined in

x′ = x−min(x)
max(x)−min(x) , (5.19)

where min-max scaling is ideally applied for distances and ranges that provide positively defined
value ranges. In the case of real data rewards and penalties the values should be standard-
ized instead. Both operations allow increasing the learning efficiency and quality during the
AACMCPG learning process.

5.14 Algorithm Baselines for Benchmarking

This section contains a short description of the algorithms involved for benchmarking the different
Actor-Critic PGN solutions. Basically, the PGN can be well compared against other scalable
heuristics such as the Greedy heuristic as follows.

5.14.1 Greedy Heuristic (GRH)

The Greedy Heuristic (GRH) is a very simple algorithm that computes the next best MWBM
assignment using an available cost matrix C(x) row i by row i + 1, until a minimal solution
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is found. The Greedy heuristic pseudo-code in Algorithm 3, is explained in more detail in the

Algorithm 3: Greedy Search Heuristic Method.
Result: Greedy Heuristic Assignment Method

1 Repeat until all tasks are assigned to vehicles;
2 Minimize cost matrix C(x), maximum cost value mc;
3 while min C(x) ≤ mc do
4 find next min value;
5 (il, jl), (imin, jmin) = min C(x);
6 add value to objective value;
7 ok

c = ok−1
c (imin, jmin);

8 for j = 0, ..., m do
9 C(imin, jl) = Mc;

10 for i = 0, ..., n do
11 C(il, jmin) = Mc;
12 end
13 end
14 end

following:

1. Input a random cost matrix C(·), and select the maximum cost value mc;

2. While a minimum value can be found that is lower mc;

3. Locate the minimum value over rows i and columns j;

4. Update the objective value ok
c , of the current iteration k by adding to the previous iterative

objective value ok−1
c ;

5. For all columns j, locate the minimum value row and column position ⟨imin, jmin⟩, assign
the task to the assignment list, and set the minimum value to maximum cost mc for all
residual row entries;

6. For all rows i, locate the minimum value, assign the task and set the minimum value to
the maximum cost mc for all residual column entries;

7. until no minimum values are left being lower than the maximum value mc;

Hereby, it may happen that the Greedy algorithm does not find the optimal nor the complete
solution of a combinatorial optimization problem.

5.14.2 k-Regret Heuristic (KRH)

The next heuristic called k-Regret Heuristic (KRH) is an insertion-based algorithm that attempts
to insert (or add) a link from vehicle nodes V to the next node A in order to build a rapid solution
of a superior assignment Graph G(V,A). The algorithm checks if adding a link to the overall
solution would cause a violation of the previously found valid solution and if an improvement
would be the cause of adding the currently selected edge. During the insertion process, and as
more edges are added to the graphs, more and more violations occur. In order to mitigate the
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computation times the measure k is set to define an upper bound to the amount of violations
tolerated. A higher value selection for k thus means longer computation times, but also superior
solution qualities achieved in many cases generally.

5.14.3 Hungarian-Munkres-Kuhn Algorithm (HMK)

The Hungarian-Munkres-Kuhn (HMK) algorithm [Munkres, 1957; Kuhn, 1956; Kuhn, 1955,
pp. 32–38, 253–258, 83–97] implemented1 is a general algorithm to solve maximum flow or MWBM
graphs optimally. One MWBM problem graph hereby can be solved via MIP formulation with a
cost matrix C. Thereby, Ci,j is a cost for assigning a vehicle v[e,g] ∈ V to a client request r and
or service station s. In the optimization community, the vehicle node is termed as (a “worker”)
and the link to the next node is termed (a “job” or “task”) of a second node set. Generally, the
algorithm solves the equation

min
∑

i

∑
j

Ci,jXi,j , (5.20)

where each row represents an assignment to at most a column, and vice versa. If the MWBM
graph is unbalanced the cost matrix will have either more rows than columns or vice versa. In
this case, not every row must be assigned to a column and not every column must be assigned to
a row (vice versa).

5.14.4 Jonker Volgenant Castanon (JVC)

The MIP formulation in Equation (5.20) equally holds for the Jonker-Volgenant-Castanon (JVC)
algorithm. In comparison to the HMK algorithm, the JVC uses an n-Dijkstra method to find the
shortest-augmenting path among all augmenting paths within an MWBM graph [Jonker and
Volgenant, 1987, pp. 325–340]. Where the Hungarian-Munkres-Kuhn finds any augmenting
path out of the feasible ones, the JVC method finds the shortest augmenting path among all
constructed augmenting paths. The JVC algorithm is based on the HMK Method [Munkres,
1957], however, the additional pre-processing steps are explained in the following. Again the
MIP Formulation minimizes a balanced or unbalanced cost matrix

min
∑
i∈V

∑
j∈A

Ci,j ·Xi,j , (5.21)

from vehicle nodes to action nodes (client request pickup, to drop-off, and service station nodes).
Hereby, only one vehicle is allowed to be assigned to one client or service station, as defined in
Equations (5.22)-(5.23): ∑

i∈V
ci,j = 1 ∀i ∈ V , (5.22)

1accessed 07/30/2020: https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_-
assignment.html
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∑
j∈A

ci,j ≤ 1 ∀j ∈ A . (5.23)

Here, Xi,j is again a Boolean matrix, see Equation (5.24), that defines if an assignment is made
(True=1) or not (False=0):

xi,j ∈ {0, 1} ∀j ∈ V, ∀j ∈ A . (5.24)

The pseudo-code of the JVC algorithm is presented in Algorithms 4 and 5.
The algorithm uses a couple of processing steps, that are explained in the following. First the

algorithm uses a couple of steps such as the

1. initialization step with sub-steps such as a) column reduction, b) reduction transfer, c)
reduction of unassigned rows, similar to auction algorithms,

2. termination step, if the row assignment is complete,

3. augmentation step, where an auxiliary network is generated to determine which generates
an alternating path with minimal total reduced objective cost from unassigned row i to
unassigned column j,

4. update step of the dual solution, where the complementary slackness variables are updated,
and finally, the

5. return step to the termination Step 2) [Selmair et al., 2021, pp. 1–8],

where the JVC algorithm computes the optimal integer sequence to assign each row entry to a
minimal column entry vj = mini(ci,j). In the existence of unbalanced graphs and non-square
matrices, the algorithm does not assign all rows or columns, which is particularly important
for unbalanced graphs with non-square matrices. Moreover, the JVC algorithm minimizes the
primal objective

min
∑

i

∑
j

ci,jxi,j s.t.
∑

i

xi,j = 1,
∑

j

xi,j = 1 , (5.25)

xi,j ≤ 0, ∀(i, j) ∈ E , (5.26)

and maximizes the dual objective

max
{∑

i

ui +
∑

j

vj

}
s.t. ci,j − ui − vj ≤ 0 , (5.27)

where the algorithm uses a reduction transfer to reduce the number of columns or rows. This is
completed from unassigned to assigned rows where for each row i:
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j1 = xi, (5.28)
µ = min{ci,j − vj : j = [1, ..., n],∀j ̸= j − 1} , (5.29)

vj1 = vj1 − (µ− ui) , ui = µ . (5.30)

After augmentation Step 3), the partial integer solution assignments are updated. Additionally,
the dual values in Equation (5.27) are updated to restore the complementary slackness conditions:

cik − ui − vk = 0, if xi = k ∀ assigned columns and (5.31)
k, i = 1, .., n and (5.32)
cik − ui − vk ≤ 0 . (5.33)

Overall, the time-space complexity of the first two initialization procedures is stated to be
O(n2), while the augmenting reduction procedure has a complexity of O(Rn2). Here, R is the
real-valued range of the optimization problem-specific cost coefficients [Jonker and Volgenant,
1987].

5.14.5 Simplex Algorithm (Cplex)

Introduced for the first time in 1965, the ILP algorithm that is important for leveraging Cplex is
called the well-known simplex algorithm [Dantzig, 1965]. In general, it is known that the simplex
method requires stochastic (expected) polynomial complexity by finding the global optimum
for a variety of combinatorial optimization problems [Spielman and Teng, 2004, pp. 385–463].
In order to apply Cplex [Nelder and Mead, 1965, pp. 308–313], a MIP representation of the
respective combinatorial optimization problem is required. With respect to the methodological
principle, the algorithm aims to find the minimum convex polytopes while constructing increasing
path lengths within a vertex (graph network), that models the overall combinatorial optimization
problem graph and its cost parameters [Klee and Minty, 1972, pp. 159–175].
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Algorithm 4: JVC Algorithm 1a)-1c).
Result: Optimal assignment, Shortest Augmenting Path vj = mini(ci,j) of Equation (5.21) w. r. t.

constraints (5.22-5.24).
Step 1) Initialization;
Step 1a) column reduction;

1 for j = n, ..., 1 do
2 cj = j; h = c1j ; i1 = 1;
3 for i = 2, ..., n do
4 if ci,j < h then
5 h = ci,j ;
6 i1 = i;
7 vj = h;
8 else
9 if xi1 = 0 then

10 xi1 = j;
11 yj = i1;
12 else
13 xi = −xi;
14 yj = 0;
15 end
16 end
17 end
18 end

Result: Step 1c): Pre-Processing augmenting reduction of unassigned rows.
19 for Unassigned row list L, ∀i ∈ L do
20 repeat;
21 k1 = min{ci,j − vj : j = 1, .., n};
22 select j1 with ci,j1 − vj1 = k1;
23 k2 = min{ci,j − vj : j = 1, ..., n; j ̸= j1};
24 select j2 with w = ci,j2 − vj2 = k2; j2 ̸= j1;
25 ui = k2;
26 if k1 < k2 then
27 vj1 = vj1 − (k2 − k1) ;
28 else
29 if j1 is assigned then
30 j1 = j2;
31 r = yj1 ;
32 if r ≤ 0 then
33 xr = 0;
34 x0 = j1;
35 yj1 = i;
36 i = r;
37 end
38 end
39 end
40 until k1 = k2 or r = 0
41 end
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Algorithm 5: JVC Algorithm Steps 3)-4).
Result: Optimal assignment, Shortest Augmenting Path vj = mini(ci,j) of Equation (5.21) w. r. t.

constraints (5.22-5.24).
Steps 3) and 4): Augmentation and Update;
Modified version of Dijkstra’s shortest path;

1 for Unassigned row i and ∀i∗ do
2 for Unassigned row j = 1, .., n do
3 Lto_scan = {1, ..., n};
4 dj =∞;
5 end
6 i = i∗;
7 di∗ = 0;
8 µ = 0;
9 repeat;

10 for ∀j ∈ (Lout(i), Lto_scan) do
11 if µ + ci,j − ui − vj ≤ dj then
12 dj = µ + ci,j − ui − vj ;
13 pred[j] = i;
14 end
15 µ =∞;
16 for ∀j ∈ Lto_scan do
17 if dj ≤ µ then
18 µ = dj ;
19 µj = j;
20 end
21 i = yµj ;
22 Lto_scan = Lto_scan − {µj};
23 end
24 until yµj = 0;
25 end
26 end
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The previous Chapter 5 Algorithm and Model Implementations, presented the software compo-
nents developed, as well as functions and algorithms that are required to learn artificial and real
data-based fleet planning and assignment problems. In order to provide enough computational
power to train the presented Pointer Generation Network (PGN) approach, sophisticated and
suitable computation resources are required as presented in this chapter. Additionally, this
chapter presents state-of-the-art algorithms that serve to enable qualitative and quantitative
efficiency comparisons for the results presented in Section 6.2. Finally, Section 6.2 presents all
results within this thesis and serves as a successive basis for the next Chapter 7 Conclusions &
Future Research.

6.1 Benchmark Setup

In order to conduct experiments for training and testing PGN network solutions, comparably
high computational resources are required for generating millions of training, ten thousands of
validation, and thousands of test graphs, especially when training the Encoder-Decoder PGN
multiple times. In this thesis, a local computer with multiple GPUs is used to develop and test
solutions. After successful development, the training is ideally done in the cloud (GPU cluster)
to reach the full potential and best qualitative solution behavior. The full training process flow
is shown in Figure 6.2, where additional monitoring means are crucial to survey the current
learning progress of the PGN. For each training run, the Data Generator module accesses a
database that includes large sets of client, vehicle, and service station data. The generator
further generates millions of training samples for training, tens of thousands of validation samples
for validation (generalization) monitoring, and thousands of test samples for final test, quality,
efficiency, and reliability benchmarking. After each training run has been completed, the PGN
network solves a large set of test graphs, which subsequently are solved by state-of-the-art exact
solvers and approximate heuristics to perform comparisons. The PGN code is deployed on two
systems in this thesis. The code runs on a development computer with Ubuntu 18.04.5 LTS
64 bit, 15.6 Gigabyte (GiB) Random-Access Memory (RAM), Intel Core i7-6700K CPU at 8
× 4.00 Gigahertz (GHz), mainly using two Nvidia GeForce GTX 1080 GPUs. Second, in the
final sophisticated training, the code is run in the cloud (Microsoft (MS) Azure, Amazon Web
Service (AWS)), where it is trained with NC-Series Virtual Machines (VMs) using the Nvidia
Tesla K80 GPUs with 12 GiBs and an Intel Xeon E-52690 v3 (Haswell) processor. The PGN
leverages the Compute Unified Device Architecture (CUDA) 10.1 which makes training 10-20
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Figure 6.1: The basic benchmark setup.

times faster compared to CPU-based training. The required deployment memory is around 1.8
GiB in total, while a single GPU Utilization is approximately 80% during training. In more
detail, the data generation process for training, validating, and testing the PGN is explained
next.

6.1.1 Data and Network Parameters

Data Processing: Initially, during each training run, the data generator in Figure 6.2 generates
a training set with one to four million graph samples individually. Each graph sample consists of
predefined amounts of vehicle, client, and service station nodes. After the training set generation,
the validation set with 10 thousands of validation graph samples is generated. This is required
to monitor if the PGN network can learn to solve graph samples that have not been seen before.
Furthermore, this allows one to monitor if the PGN network can actually progress to learn better
solutions for the final test set samples. After the validation set generation, the final training set
with 1000 training graph samples is generated. Importantly, the test set represents the problem
graph samples that are solved in reality. In this thesis, the test set hereby is generated for
benchmarking the PGN network and other algorithms in the final benchmarking stage. Thus,
the test set is not available to the PGN network during the training phase. The individual data
generation setups for successive benchmarks are shown in Table 6.1 as follows. As mentioned
in Chapter 4 Deep Reinforcement Learning, the training set, validation set, and test set
are divided into mini-batches and thus are not taken into consideration all at once. Here, the
Batch Size B (e.g. see Table 6.1) defines how many problem graphs per mini-batch are shown to
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No. Benchmarks Dataset Sizes [|G| Graphs] Learn. Epochs
X V T B L

1. TSP (artificial) 1− 4e6 10.000 1.000 256 10-50
2. PDP/MWBM (artificial) 1− 2e6 10.000 1.000 15 5,10,15,20
3. PDP/MWBM (real data) 1e5 - 1e6 10.000 1.000 50 5,10,15,20

Table 6.1: Important benchmark and PGN network parameters.

the PGN network simultaneously for learning. For Benchmark 3 each mini-batch consists of 50
problem graphs, that are sampled from the training set during training, and sampled from the
validation set during the validation phase at the end of each learning epoch L. As illustrated in
Table 6.2, the learning progress of the actor and critic sub-network modules and their decays
can be defined as follows. In this thesis, a designated actor learning rate α and its learning rate
decay γα is defined. Both parameters define the initial learning rate and its decay throughout
the learning process. Similarly, the critic learning rate β and the decay γβ define to which degree
the critic module intervenes and stabilizes the actor learning policy if the actor network does not
succeed to learn improvements during training. The exact parameter values are shown in Table
6.2 as follows.

No. Benchmarks Learning Rates (LR) LR-Decays
α Actor LR β Critic LR γα γβ

1. TSP (artificial) 1e−3 1e−3 0.99 0.96
2. PDP/MWBM (artificial) 5e−4 5e−4 0.99 0.96
3. PDP/MWBM (real data) 5e−4 5e−4 0.99 0.96

Table 6.2: Important actor and critic module parameters.

Network Weight Initialization: During the network weight initialization the PGN network
weights are initialized via Xavier Uniform Distribution. This method fills the input tensors with
uniformly distributed values, and the resulting tensor is uniformly sampled from U(−a,a) with

a = G×
√

6
fi + fo

. (6.1)

This is also known as Glorot initialization, where in this thesis the gain parameter is set to G = 1
[Glorot and Bengio, 2010; Pytorch Xavier Uniform Sampling, 2021, p. 253].

6.1.2 Training Monitoring

During the network’s training process, there are a couple of signals that need to be monitored.
First, there is the actor loss (error) signal, which indicates the learning and training progress
of the actor if the loss is decreased. Second, there is the critic loss, which successively rises in
magnitude, if the actor loss increases and decreases if the actor loss decreases. Here, the critic loss
signal is used to stabilize the actor learning process. Next, there is the moving average cost signal,
where a decrease signalizes if the actor network module is capable of learning how to reduce the
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Objective Cost function for each new training batch with batch size B. In this thesis a tool called
Tensorboard is used to monitor the training processes implemented in Pytorch (see Figure 6.2).
Tensorboard enables to monitor individual PGN network and training parameters by tracking

Figure 6.2: Monitoring the training process via Tensorboard (Screenshot).

the parameters over training iterations. Furthermore, the plot of each individual parameter can
be dynamically inspected, and different axis formats can be altered to show linear as well as
logarithmic axes. Finally, the slider smoothing controls how smooth the moving average of the
parameters being tracked is computed, and thus enables to show long-term trends of parameter
changes to be displayed. Finally, the next section contains a summary of all benchmarking tests
and results within this thesis.

6.2 Benchmark Results

In general, the result section is characterized by a listed and ordered structure, where the made
benchmarks increase in problem size and complexity. In order to do so, the overall problem
complexity has been divided into groups and features. The first benchmark test, is whether the
implemented PGN network can handle link weight symmetries and asymmetries as mentioned
and introduced in Chapter 2 Fleet Dispatching and Combinatorial Optimization, Section 2.5,
Figure 2.2.
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6.2.1 Benchmark 1: Symmetry and Asymmetric Graphs

In this benchmark, one to four million TSP graph samples for the training set X are generated,
as shown in Table 6.1. Additionally, a validation set of 10000 TSP graphs is generated to validate
the learning progress of the PGN. For the final benchmarking, a test set of 1000 TSP graphs
is generated by the Data Generator module. More precisely, each TSP graph contains N = 20
nodes, where each node is defined by coordinates that are uniformly drawn from unit 2-D square
[0, 1]2. During training a mini-batch size Batch Size (BS) with 256 TSP graphs is used to train
the Actor module. The code was tested on the Microsoft Azure platform using NC-Series VMs
powered by Nvidia Tesla K80 GPUs with 12 GiB RAM and an Intel Xeon E5-2690 v3 (Haswell)
processor. Furthermore, CUDA 10.1 is used, where during testing the maximum GPU usage
reaches 80%. The individual baselines are compared with the MAPE quality metric computed
via MAPE(d0,dx). Hereby, the MAPE value scores are defined by

MAPE(d0,dx) = 1
B

B−1∑
b=0

|dx − do|
do

, (6.2)

where do is the total TSP tour length computed by the OR solver using the local search setting.
The OR tour lengths are compared to the calculated tour lengths computed from the PGN. The
MAPE finally calculates the mean of all summed tour length deviations divided by do. This finally
provides an evaluation value as a percentage that is independent of tour length units. The MAPE
is calculated on the basis of the 1000 TSP graphs generated for the test set. Compared to previous
work, the implemented PGN model is extended to work with asymmetric distances, which is
called a Distance-Based Pointer Generation Network (DBPN) in this benchmark. Compared
to the previous model Coordinate-Based Pointer Generation Network (CBPN), the new model
thus can solve asymmetric TSP instances, which is not possible for the CBPN model. Hence,
generating symmetric TSPs, both models can be trained and compared with respect to their
solution quality or accuracy. As a reference baseline, the OR TSP solver is used to generate
qualitative TSP tour results. During the benchmarks, different loss and activation functions were
tested, which can be seen in Chapter 5, Section 5.11, Figure 5.25.

Results for Symmetric TSPs: Figure 6.3 shows the proportions of TSP graphs tested on the
x-axis as a percentage, while on the y-axis the individual MAPE values achieved are shown as
a quality performance measure. In Figure 5 different lines are shown, where the purple circled
line is the first implementation of the DBPN without any modifications on loss and activation
functions. The light blue crossed line shows the improved performance for the DBPN using
modifications on loss and activation functions. The orange circled line and green crossed line
are the performance achieved by the CBPN approaches. The CBPN approaches achieve better
solution quality. However, they cannot capture the notion of TSP asymmetry. All network
baselines are compared against the OR-Tools state-of-the-art solver, represented by the red
colored dotted line at a MAPE of 0.00. The results shown in Figure 6.3 illustrate that the
extended DBPN method with linear 1-D Convolutional Embeddings achieves a MAPE of 0.091,
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which is a relative deviation of 9.1% compared to the OR solver. Here, the CBPN achieves
a slightly better solution quality indicated by a MAPE of 4.6%. By using a different loss
function Accumulated Actor-Critic Cross-Entropy Loss (AACEL) and the activation function
called Mish the solution quality of the DBPN can be improved from a MAPE of 0.1289 ≈ 13%
to 0.0592 ≈ 6%. From a reliability perspective, Figure 6.3 shows that the initial implementation
of the DBPN (including ReLU activation functions, mean actor loss) only achieved a solution
quality of 0.10 ≤ 10% for 44% of 1000 TSP test graphs, i.e. 440 TSP graph problems. Here,
the reliability could be improved using the actor critic cross entropy loss and Mish activation
functions instead. For the aforementioned test set size of 1000 TSP graph problems, the DBPN
requires 0.55 seconds, where OR by reference requires 15.03 seconds to finish all 1000 TSP graphs.
In other words, the DBPN is 15.03[s]/0.55[s] ≈ 27 faster than the OR reference solver.
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Figure 6.3: The benchmark results for symmetric TSPs with percentual coverage plot with MAPE
quality assessment [Hamzehi et al., 2021b].

Results for Asymmetric TSPs: As previously mentioned, the CBPN approach by definition
cannot capture the notion of TSP graph asymmetry. Thus the extended DBPN approach can
only be compared with the OR reference solver in this second sub-benchmark. While training
and aiming to solve asymmetric TSP graphs, network hyper-parameters are used that are
almost exactly the same. The difference is that a small notion of random biases is exerted on a
proportion of TSP graph links, which results in asymmetric TSP graphs for training and testing
the DBPN. Again 1000 TSP test graphs are used, but this time a random uniformly distributed
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bias db
i,j = U(0, 1) is exerted on 1-22% of the existing TSP links per graph via da

i,j = db
i,j + ds

i,j or
da

ji = db
ji + ds

ji. Here, ds
ji is the original symmetric distance value between any node pair. The

random bias value is added on one of the link directions i, j or j, i via ds
i,j , ds

ji. By summing both
distances the new biased and now asymmetric distance value da

i,j is calculated. More precisely,
the individual benchmarks are repeated 10 times to provide test reliability. Thus, there are 10
entries marked in Figure 6.4, illustrating the results with respect to asymmetric TSPs graphs. In
contrast to the previous benchmark with symmetric TSPs, the solution quality of the DBPN
(including the actor critic entropy loss and the Mish activation function) tested decreases by
2.3%. This can be inferred by a MAPE increase from 6.1% to 8.3%. Thus, the results of Figure
6.4 lead to the conclusion that the extended and improved DBPN approach is comparably robust
when solving asymmetric TSP graphs. For this, the DBPN requires 0.51[s] seconds for 1000
asymmetric TSP graph instances, whereas OR requires 14.49 seconds for the same task. Thus,
this illustrates that the DBPN method developed is more efficient than OR in general, and the
tests indicate that the DBPN developed is currently approximately 14.49[s]/0.51[s] ≈ 27 times
more efficient.

0 5 10 15 20
Percentual Distance Asymmetry of TSP Test Set [%]

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

M
A

P
E

(d
o
,d

x
)

DBPN,mean,asymmetric

DBPN,stdv,asymmetric

OR-Tools ground-truth

Figure 6.4: The benchmark results for asymmetric TSPs, asymmetry, and MAPE quality assessment
[Hamzehi et al., 2021b].
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6.2.2 Benchmark 2: Balanced and Unbalanced Graphs

In general, the results from Benchmark 1 are important for Benchmark 2. Here, the overall
motivation is to reformulate the TSP formulation to work for multiple and unbalanced node classes
such as vehicles, client-request pickup nodes, delivery or drop-off nodes, and service (charging
or fueling) nodes (see Figure 6.5). This can be achieved by reformulating the TSP shortest-

E-Charge StationFuel/Gas Station
Request Drop-o↵ LocationRequest Pick-up Location
Vehicle RangeRoute Distance

Figure 6.5: Motivation: Collaborative Routing, Service, and Maintenance Application [Hamzehi
et al., 2021a].

path problem to an augmenting shortest-path problem for MWBM graphs. In comparison to
Benchmark 1, where it is shown that the shortest-path for symmetric and asymmetric TSP
distances can be learned for fixed node amounts by the PGN. The second Benchmark aims
to test unbalanced MWBM problems with multiple node classes, asymmetric costs for each
route, and increasing node complexity. Overall, the generic MWBM problem is a special case of
the maximum flow or minimum cut problem. Here, the mathematical goal is to minimize the
overall Objective Cost Function, which also can be expressed as MIP formulation. The multi-
vehicle assignment problem is defined for a set of graphs G(N ,L) that contain random uniformly
sampled bipartite graphs U(G(N ,L)), where each graph again contains unbalanced sets of vehicle
nodes V = {v0, ..., vn−1}, request nodes R = {r0, ..., rm−1} and service or charging station nodes
S = {s0, ..., so−1} summarized by N = V ∪ R ∪ S. Each random vehicle assignment graph is
characterized by a set of links L which represent all possible vehicle assignments or combinations
among client requests and service station nodes. The complexity |L| = |V| · (|R|+ |S|) can be
represented by the amount of assignment links that increase by adding vehicle, request or service
station nodes. Each graph problem can be expressed via a MIP formulation as follows

C(Y |X) = min
R−1∑
i=0

V−1∑
j=0

[di,j − ri] · xi,j (6.3)
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subject to the constraints

xi,j ∈ [0, 1], di,j ∈ [0, ...,
√

2], ri ∈ [0, ..., 1], (6.4)
V−1∑
i=0

xi,j ≤ 1,
R−1∑
j=0

xi,j ≤ 1,
S−1∑
k=0

xi,j ≤ 1, (6.5)

ν−1∑
i=0

ζ−1∑
j=0

[−di,j + ri] · xi,j ≥ κ ·max ri, (6.6)

R−1∑
i=0

V−1∑
j=0

xi,j = min [|V| , |R+ S|] . (6.7)

Here, ν ∈ V is the set of origin nodes, i.e. artificially sampled vehicle nodes, and ζ ∈ {R,S}
is the set of destination nodes, i.e. the sampled pickup/drop-off locations and service stations.
The decision variables are represented by assignment sequences that contain integers for the
assignment of individual graph links X = {x0, ..., xL}. Additionally, Y = {y0, ..., yL} are the
resulting objective cost values for each route link assignment. Furthermore, the constraints in
equation (6.4) limit the range of distance, and range values between [0, 1], and importantly x is
a binary matrix 1(x; cond) = {0, 1} where the values mean

1(x; cond) =

1 if vehicle assignment,
0 otherwise.

(6.8)

The constraint in equation (6.6) represents the condition that no vehicle should exceed its own
vehicle range for any client or service station route. Within the constraint, the distance values
di,j,k and range values ri are represented via the negative Euclidean distance based on the
random uniformly sampled coordinates within unit 2-D square [0, 1]2. This allows problems to be
designed where the longest possible driving distance and vehicle range is

√
2. Here, the possibility

exists that the PGN draws assignments that exceed the current vehicle range, which, however,
is not desired and should be avoided during learning and testing. Further, the term κ ·max ri

describes that individual range values are normalized based on the vehicle with maximum driving
range. This allows to represent individual vehicle range values as relative percentage within
float value ranges of [0, 1], see Equation (6.4). Finally, constraint (6.7) ensures that vehicle or
request/service station unbalances are considered and handled. In other words, the solution
length depends on the minimal amount of nodes between the vehicle node set and the aggregated
request and service station node set within each MWBM graph.

Specific Benchmark Details: Benchmark 2 again requires the generation of training, learning,
and test data sets. The graph complexity hereby increases by adding more nodes for each sample
graph within training, validation, and test data. In more detail, the node amounts of vehicles,
client requests, and charging stations are randomly sampled within ranges of [3, 6] in order to
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get different complex MWBM graphs. As shown in Table 6.1, the training data consists of
artificially generated 1-2 Million unbalanced MWBM graphs and the validation set again consists
of 10.000 unbalanced MWBM graphs. For the final benchmark and quality evaluation, the Data
Generator module is used to generate 1000 random artificial MWBM test graphs. The PGN
parameters are again Xavier random-uniformly initialized, and maximum gradient clipping of
1.0 using the ℓ2 norm and Dropout of 0.2 is used to avoid the exploding gradient phenomenon
and possible over-fitting. The code runs on a PC with Intel Core i7-6700K, 8 Core Processors,
running on 4 GHz, and 2 GeForce GTX 1080 GPUs for training and solving the problems with
the other algorithm baselines. The Operating System (OS) used is Ubuntu 18.04.3 LTS with 16
GiB RAM memory. Across the benchmarks, the tested PGN leverages GRUs with 128 hidden
units and a mini-batch size of 15. This means, that 15 MWBM Graphs are simultaneously
processed until no batches are left within the training data. Subsequently, the next learning
epoch begins starting with the same 15 batches in the beginning. The learning epochs progress
until a predefined maximum learning epoch parameter L is reached. Here the network is trained
for L = [5, 10, 15, 20] learning epochs, as shown in Table 6.1.

Evaluation and Solution Scoring: Due to the existence of unbalanced MWBM graphs, the
length of the calculated solution sequences may vary depending on the minimum number of
nodes of vehicles or client request, and service station nodes. Hence, a simple definition of an
accumulated objective cost (sum) or a mean-based definition would not work for comparisons.
Since the prior objective is to find all unique assignments before minimizing driving distances and
maximizing the fleet range, it is necessary for later benchmarking to define a function model as
Objective Cost as well as Evaluation Function. The developed Objective Function and evaluation
function is as follows:

sx(xi,j) =

R−1∑
i=0

V−1∑
j=0

xi,j

2

+
R−1∑
i=0

V−1∑
j=0

[−di,j + ri] · xi,j . (6.9)

Thereby, all compared algorithms solve the 1000 unbalanced MWBM graphs according to the
aforementioned cost function and are benchmarked against the optimal Cplex solver baseline as
follows. In the next step, the Optimality Gap Score (OGS) is calculated in Equation (6.10)

S = sx∗ − sx

sx∗
, (6.10)

which calculates the difference between the near-optimal cost values sx calculated by the individual
algorithms and the optimal cost values sx∗ provided by Cplex. Finally, the OGS score is
represented by the scalar value S, where a higher score illustrates a closer solution toward the
optimal solution of Cplex.

Results for unbalanced MWBMs: In this paragraph, the results of the PGN compared to
the three other baselines with increasing complexity are presented. The baselines include a
simple naive Greedy Heuristic, a k-Regret Heuristic, the self-developed PGN, and the optimal
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solver Cplex. In order to provide more details about the stochasticity within the test data, the
individually achieved Optimality Gap Scores (OGS) (y-axis) are visualized over the node degree
deg(G) (x-axis) using Kernel Density Estimation (KDE) plots (see Figures 6.6a, 6.6b, 6.6c and
6.6d). The Figures 6.6a, 6.6b, 6.6c, and 6.6d also include a linear regression plot which are
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(b) The k-Regret KDE.
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(c) The PGN KDE.
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Figure 6.6: The Kernel Density Estimates (KDEs) of individual algorithm OGS distributions and
Linear Regression [Hamzehi et al., 2021b].
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used to visualize trends of the achieved solution quality (scores) depending on different graph
complexities. For instance, the figures show that the highest sampling density of MWBM graphs
exists for a node degree of 20-50. In this node degree interval, the presented results can be
interpreted with the highest stochastic confidence. Furthermore, the figures show that with
increasing node degree (i.e. the measure of graph complexity) Cplex and the PGN find the
highest scores, which indicates very closely optimal solutions (positive slope of linear regression).
In contrast, the Greedy and k-Regret Heuristics do not find optimal solutions, which is indicated
by the negative slope of the linear regression line. The k-Regret Heuristic requires tuning the
parameter k, which, however, does not always can be optimized for all given MWBM graphs.
Sometimes, the k-Regret Heuristic can outperform the Greedy Heuristic, however, this occurs
seldom for fixed parameters k. Moreover, the results of the PGN seem to be promising in
comparison with the optimal Cplex solutions. In order to provide more detailed insights, a more
suited visualization is established subsequently. The regressive score lines of Figures 6.6a, 6.6b,
6.6c, and 6.6d are relatively compared with the most optimal Cplex baseline as follows. By
calculating the relative score delta via Equation (6.10), the next Figures 6.7a and 6.7b can be
generated.

The figures show all four baselines where the best scores achieved by Cplex are set on the
zero axis. All slightly deteriorated solutions are indicated by a positive deviation from 0.
Complementary, Figure 6.7b provides a closer view of 6.7a. Both Figures show that the PGN
learns optimal solutions for MWBM graphs with node complexity below 23. Above a node
degree of 23 deg(G), the PGN solution quality degrades by 10[%]/77[n] = 0.14% per node degree.
Relatively, the solution quality of the Greedy Heuristic deteriorates by 100[%]/80[n] = 1.3%,
while the k-Regret heuristic solution quality even decreases by 100[%]/7[n] = 11% per node
degree for deg(G) > 16[n]. Interestingly, the k-Regret Heuristic reaches optimal results for
comparably simple problems below a node degree of 16. Overall, Cplex always calculates the
optimal solution, which is also illustrated in the next Figure 6.7c. Here, Figure 6.7c shows the
coverage of all algorithms, which serves the analysis as a generic indicator for reliability. Cplex
again provides the optimal baseline, however, more interestingly, the PGN matches the reliability
of Cplex by 60% (PGN baseline matches Cplex baseline until the percentile of 60). Above a
percentile of 60%, the plot illustrates that in total 40% percent of the remaining solutions are
solved sub-optimally, but still outperform the Greedy and k-Regret heuristics. Clearly, the
analytic results from Figure 6.7c also illustrate that the Greedy heuristic never finds the global
optimum, but only provides approximated solutions. In contrast, the k-Regret heuristic solves
very simple MWBM graphs optimally but degrades increasingly as aforementioned. Particularly,
the next Figure 6.7d shows the potential of the PGN, which clearly outperforms Cplex with
respect to solution time. The most efficient heuristic is the simple Greedy Heuristic, while the
k-Regret Heuristic is also outperformed by the implemented PGN. For rather complex MWBM
graphs, i.e. node degrees above 60 the PGN outperforms all other baselines with respect to the
achieved solution times.

By introducing the Score Optimality-Time (SOT) function 6.8, a composed score-optimality-
time (SOT) function of the achieved solution qualities and times can be created. The score
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(b) Enlarged version of Figure 6.7a.
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(d) Solution times required for test data.

Figure 6.7: Algorithm solution time w.r.t. graph complexity [Hamzehi et al., 2021a].

metric (SOT ) incorporates the solution optimality and time efficiency via

SOT (sx, tx) = sx · log
( 1
tx

)
, (6.11)

where additionally the individual algorithmic results are depicted in Figure 6.8. Since the
algorithmic solution times achieved by the individual algorithms are at the range/scale of
10−5 − 10−2 the values are artificially transferred to the same value range of the Optimality Gap
scores. This is achieved by calculating the so-called inverse log-times via log 1/tx. The resulting
values of the combined indicator function in Equation (6.11) are shown in Figure 6.8. Here,
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the figure shows a significant peak at a node degree deg(G) of 5. At this point, the heuristic
algorithms, i.e. the Greedy and k-Regret heuristics, provide very good and efficient results. Thus,
both heuristics initially achieve a higher SOT score compared to all other algorithms. However,
with increasing MWBM graph complexity (i.e. increasing node degree), the solution quality
degrades faster than for all other baselines.

Alongside the Greedy and k-Regret heuristic, Cplex achieves efficient and optimal solutions
for comparably small MWBM graphs. Here, the solution quality by Cplex also outperforms the
implemented PGN. However, for relatively complex problems with node degree deg(G) > 50,
Figure 6.8 shows that the PGN outperforms even Cplex with respect to the combined indicators
of solution quality and solution efficiency (time). Complementary, Table 6.3 shows multiple delta
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Figure 6.8: Combined time and solution quality comparison [Hamzehi et al., 2021a].

scores such as the delta of the Optimality Gap Score (OGS), the Assignment Gap Score (AGS),
and the achieved augmented path tour length (ATL) relative to Cplex. Here, the AGS delta
score basically shows if all assignments have been found by the algorithms and the ATL delta
score essentially is the sum of all costs for each algorithm and subsequently subtracted from the
optimal and minimal Cplex tour length. Note, that the scores of Table 6.3 are based on the
optimal solution of Cplex, hence the column of Cplex has only zero entries. More importantly,
the table shows that the PGN finds all assignments (solution completeness) equal to Cplex and
the k-Regret heuristic. Here, the Greedy heuristic does not find all assignments. The PGN
furthermore achieves the minimal mean of the achieved augmented path tour length deltas. In
other words, this means that the PGN additionally is the best algorithm for minimizing the
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objective MWBM costs compared to the other heuristics. Thus, the PGN achieves the best
(minimal) delta OGS score of Equation (6.10). With respect to the achieved regressive solution

Metric Greedy k-Regret Ptr-Net Cplex

µ(▽SOGS) -1.2e+05 -1.0e+02 -0.4e+00 +0.0e+00
σ2(▽SOGS) +3.3e+11 +2.6e+05 +8.2e+01 +0.0e+00
µ(▽SAGS) -0.1e−01 +0.0e+00 +0.0e+00 +0.0e+00
σ2(▽SAGS) +1.5e+00 +0.0e+00 +0.0e+00 +0.0e+00
µ(▽SAT L) +0.3e−02 +0.1e−01 +0.2e−03 +0.0e+00
σ2(▽SAT L) +1.3e+01 +1.4e+02 +0.4e−01 +0.0e+00

Table 6.3: Delta Optimality Gap Score (OGS), Delta Assignment Gap Score (AGS), and Delta
Augmented Path Tour Length (ATL) for a test dataset size of 1e+3 MWBM graphs
[Hamzehi et al., 2021a].

times in Figure 6.7d, the next Table 6.4 shows the actual average solution time values µ(tx) for
all four algorithm baselines Greedy, k-Regret, PGN, and Cplex, i.e. µ(tg)[s], µ(tk)[s], tµ(tp)[s],
and µ(tc)[s]. For statistical completeness, the next Table 6.5 also provides the achieved solution

deg(G) µ(tg)[s] µ(tk)[s] µ(tp)[s] µ(tc)[s]

18 5.8e−02 1.5e−03 5.8e−04 5.8e−02
28 2.6e−02 1.1e−03 5.4e−04 2.6e−02
32 2.6e−02 1.2e−03 5.2e−04 2.6e−02
36 2.7e−02 1.9e−03 5.6e−04 2.7e−02
40 2.7e−02 2.3e−01 5.5e−04 2.7e−02
44 2.8e−02 2.1e−01 5.4e−04 2.8e−02
49 2.4e−02 8.7e−04 5.2e−04 2.4e−02
60 3.2e−02 2.5e−03 5.7e−04 3.2e−02
77 2.6e−02 1.7e−03 5.4e−04 2.6e−02

Table 6.4: Mean values of algorithm solution times in seconds [s] [Hamzehi et al., 2021a].

time variances for all four algorithm baselines σ(tg)[s], σ(tk)[s], σ(tp)[s], σ(tc)[s] respectively. In
combination with both Tables, Figure 6.7d shows that the PGN solution time is stable when
increasing the MWBM graph complexity, i.e. an increase of the node degree deg(G). Thus,
for large problem instances, the PGN provides the second lowest variance in column σ2(tp)[s].
Here, the Greedy heuristic is the most stable (lowest variance). In contrast, Cplex ends up
having the fourth highest variance, which shows that the solver does not provide real-time results.
Interestingly, even the k-Regret heuristic outperforms Cplex with respect to the achieved solution
time variance.

6.2.3 Benchmark 3: Constrained and Real Data Graphs

The third and final benchmark includes the results for constrained unbalanced MWBM test
graphs. In comparison to the benchmarks made before, more algorithms and baselines for further
comparisons are implemented. For qualitative comparisons, some well-performing baselines such
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deg(G) σ2(tg)[s] σ2(tk)[s] σ2(tp)[s] σ2(tc)[s]

18 2.5e−09 5.4e−09 1.2e−09 1.1e−03
28 3.6e−08 5.5e−07 1.4e−09 3.4e−05
32 0.0e+00 0.0e+00 0.0e+00 0.0e+00
36 0.0e+00 0.0e+00 0.0e+00 0.0e+00
40 4.3e−08 1.1e+00 2.2e−09 3.5e−05
44 4.4e−08 1.0e+00 1.5e−09 1.0e−04
49 5.6e−08 9.4e−07 2.1e−09 6.2e−05
60 3.4e−08 6.9e−07 1.6e−09 3.0e−05
77 6.9e−09 4.0e−06 2.6e−10 4.3e−06

Table 6.5: Variance values of algorithm solution times in seconds [s] [Hamzehi et al., 2021a].

as OR-Tools local search, the Greedy Heuristic (GHR), Cplex, Random Iterative Search, the
Hungarian-Munkres-Kuhn (HMK) algorithm, the Jonker-Volgenant-Castanon (JVC) [Jonker
and Volgenant, 1987, pp. 325–340], the CBC-coin Branch and Cut ILP solver, [Vigerske,
2017, p. 1] and Vogel’s approximation method [Selmair et al., 2019, pp. 261–266] are included.
The qualitative results for each of the 2000 test graphs (2 test datasets) can be seen in Figure 10.

The figure shows that for unbalanced and constrained MWBM graphs the PGN solution is
close to the optimal solution provided by Cplex (blue line). Here all objective costs achieved by
the PGN are below the costs achieved by the Vogel’s heuristic (VGL) and the Greedy heuristic
(GRH). The figure also shows the algorithmic median and mean objective cost values for all test
graphs which show the same fact. The next Figure 6.9 provides a closer zoom on the first 50
subgraphs within the first 1000 MWBM graphs. The plot below the objective values shows each
individual node configuration for each MWBM test graph. Further, the plot shows that the test
graphs are unbalanced with respect to the amounts of vehicle nodes, client request, and service
station nodes solved by the PGN network. Interestingly, the network objective values have a
higher variance than the other heuristic baselines, which is a similar variant to the Cplex optimal
baseline. This indicates that the PGN learns to solve individual MWBM graphs in an intelligent
manner, which comes close to the solutions provided by Cplex. The figure also shows that the
PGN does not provide optimal solutions equal to Cplex.

In order to look for a behavioral pattern, the next plot aims to cluster all solutions depending
on all unique node configurations available in the test data. From the data generation process
where 3-6 nodes are sampled for each class of vehicles, requests, and service stations, it follows
that there must be 64 individually different classes of node configurations (or graph variants)
in total. This can be seen in the next Figure 6.10. The upper plot of Figure 6.10 shows the
objective values, and more specifically the medians and means of all algorithm baselines such as
the Greedy (GRH), Cplex (CPL), Hungarian-Munkres-Kuhn (HMK), Jonker-Volgenant-Castanon
(JVC), Cbc-coin (CBC), random iterative tabu search (RTS), and the final Pointer Generation
Network (PGN) objective values. The values are clustered with respect to their individual
node configuration occurrence in the test data sets. Figure 6.10 shows that there is no general
conspicuous pattern, however, there is one peak around the unique node configuration index of
50. The test graph is relatively big compared to other test graphs with 6 nodes for all vehicle-,
request- and service station sets. This means, that the individual node configuration does not
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Figure 6.9: Enlarged version of Figure 10.

have an impact on the solution quality, however, the size of each individual graph surely does,
specifically on the heuristic-based solution methods. Supplementary, the next Figure 6.11 shows
the solution times achieved by the individual baselines. The figure in general shows the medians,
25% and 75% quantiles of all achieved solution time measurements for each algorithm baseline.
The plot below further shows the individual MWBM test graph node configurations among
1000 test graph problems. A closer look at Figure 6.11 reveals that all algorithm solution times
fluctuate depending on the size of the individual test graph. The individual test graphs further
are shown in the plot below in the same figure. Interestingly, the local search heuristic from
OR-Tools and the optimal Cplex solver have noticeable fluctuations, whereas in the case of
Cplex, this can be explained by its stochastic run-times which are already known in the literature.
Moreover, the plot shows that simple heuristics are more stable with respect to their solution
time, while more sophisticated algorithms tend to be characterized with more solution time
variance. In general, the plot also shows that the solution times do mainly vary in the cases of
larger MWBM test graphs. It can be observed that the node configuration only has an indirect
influence. In other words, it does not matter which class of nodes has larger node sets than any
other node class. Finally, the next Figure 6.12 provides a qualitative summary of the solution
qualities achieved among all algorithm baselines.

In Figure 6.12, the x-axis shows all algorithms and their average objective costs on the y-axis.
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Metric LCS GRH CPL HMK JVC CBC RTS PGN VGL∑
C(x) 1.1148 1.1474 0.00486 0.00897 0.008974 0.0090 0.01065 0.0093 0.0247

µ(x) 4.3e-04 3.0e-03 2.4e-06 4.9e-06 4.5e-06 4.5e-06 5.16e-06 4.7e-06 1.2e-05

µ̃(x) 4.90e-06 1.43e-05 2.31e-06 4.22e-06 4.22e-06 4.22e-06 4.92e-06 4.41e-06 1.2e-05

MAE 43.0e-03 0.003e-03 0.0 2.06e-06 2.06e-06 2.07e-06 2.68e-06 2.23e-06 9.94e-06

MSE 4.30e-02 3.01e-03 0.0 2.06e-06 2.06e-06 2.07e-06 2.68e-06 2.24e-06 9.93e-06

MAPE[%] 9.2 12.1 00.0 2.7 2.7 2.8 3.2 3.2 10.6

RMSE 0.0015 0.0034 0.0 0.0014 0.0014 0.0014 0.0016 0.0014 0.0031

RMSPE[%] 1.5 3.4 0.0 1.4 1.4 1.4 1.6 1.4 3.1

MEDE 2.70e-06 1.20e-05 0.0 1.94e-06 1.94e-06 1.95e-06 2.57e-06 2.12e-06 9.94e-06

MEDPE[%] 22 100 0 16 16 16 21 18 82

Table 6.6: Baseline solution quality results normed to Cplex optimal solutions.

Generally, Figure 6.12 reveals that the PGN achieves mean objective costs close to the JVC,
HMK, Coin Branch and Cut/Bound (CBC) algorithms. In the ranking, those algorithms share
the second best qualitative results behind the optimal solutions by the Cplex solver. The PGN
has less variance in the found qualitative solutions than all other heuristics such as the local search
(LCS) by the OR-Tools solver, the greedy heuristic (GRH), and Vogel’s approximation method
(VGL). Clearly, the figure also shows that the PGN can find better solutions than the simple
naive Greedy heuristic GRH, which is a positive key indicator that the combinatorial solutions
learned by the network are better or more intelligent than simply finding the next best MWBM
edge. The potential of the approach can again be seen in Figure 6.13 and Table 6.7, which reveals
that the PGN requires the least median time for each among the tested MWBM graphs. Here,
the PGN requires 0.0003[s] seconds (median) for each MWBM graph, whereas the optimal MIP
Solver CPLEX, requires 0.02[s] seconds, being much less efficient for the same task. In numbers,
the efficiency gain factor between the PGN approach and CPLEX is 0.02[s]/0.0003[s] = 66.67.
Compared to the most efficient heuristics such as the Local Search (LCS) (LCS OR-Tools,
requires 0.0091[s]) and Vogel’s approximation (requires 0.0470[s]) the efficiency gain using the
PGN approach would be factors of 0.0091[s]/0.0003[s] = 30.33 and 0.0470[s]/0.0003[s] = 156.67.
Hence, the results of the PGN approach show that factors of 10 to 200 in efficiency could be
gained using the PGN for static batching and large-scale real fleet dispatching scenarios.

6.3 Executive Summary

This chapter has shown three different benchmarks, where our proposed DRL method called
Pointer Generation Network (PGN) shows efficient capabilities for solving balanced, unbalanced,
symmetric, asymmetric, and even constraint combinatorial optimization problems with artificial
TSPs and MWBM graphs with respect to real-world vehicle-to-request-to-services station settings.

The first among three benchmarks shows that for the first time, a PGN-based approach is
used to solve symmetric but also asymmetric TSPs. Using different forms of feature Embeddings
(coordinates and distances), two different methods are used and compared to OR-Tools LCS
(ground truth). By achieving MAPE values of 9.1% for the DBPN and 4.1% for the original
CBPN method, the results show that embedding with distances compared to coordinates results
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Metric
[s]

LCS GRH CPL HMK JVC CBC RTS PGN VGL

max(t) 0.0500 0.1370 0.0408 0.1412 0.1490 0.2891 1.2897 0.0004 0.0758

quant.
75%

0.0137 0.0817 0.0270 0.0799 0.0816 0.2187 0.9160 0.0004 0.0564

µ̃(t) 0.0091 0.0807 0.0257 0.0793 0.0805 0.1958 0.7641 0.0003 0.0470

quant.
25%

0.0054 0.0803 0.0230 0.0789 0.0797 0.1812 0.7181 0.0003 0.0440

min(t) 0.0040 0.0791 0.0193 0.0782 0.0790 0.1592 0.6675 0.0003 0.0420

Table 6.7: Baseline solution times with minimum, median, maximum, and 25-75% quantiles.

in a noteworthy deterioration of solution quality performance. However, this is a necessity, if a
Neural Network based solution method should be enabled to learn real-world graph instances
with asymmetric graphs. When comparing the solution times of both methods the solution
times required for the DBPN and CBPN approximately doubles, when using distances instead
of coordinates as Embeddings. Nevertheless, the DBPN method is approximately 27 times, and
the CBPN method is approximately 53 times more efficient than OR-Tools LCS. As a final note,
the CBPN method is generally unable to learn asymmetric graph instances by design, and thus,
cannot be used for solving real-world graph examples without any adaptations.

The second benchmark is extended towards testing balanced and unbalanced MWBM graphs,
which often occur in realistic vehicle-to-request fleet assignment or matching settings. The key
essence of the proposed approach is that it learns to solve balanced and unbalanced MWBM
graphs for an upper bound, i.e. a node degree of 23, where a synthetic dataset is used. Within
this benchmark, the PGN provides solution qualities that match the solution quality of the MIP
solver CPLEX up to the aforementioned node degree bound. However, the PGN solution quality
degrades by 0.14% per node degree which is less than all other tested heuristics. In other words,
when testing larger and more complex graphs, the PGN method outperforms the tested heuristics
Greedy and k-Regret with respect to solution quality. Here, CPLEX is used as a ground-truth
mechanism and thus always provides optimal results. Important to note is also that the PGN
provides the least solution times overall tested methods, Greedy, k-Regret, and even CPLEX.
This property is highly desired for efficient solution methods and thus leaves the conclusion that
the PGN provides an efficient solution method, working as a trainable efficient and near-optimal
heuristic for balanced and unbalanced methods.

The third and final benchmark data set is extended to match the complexity and characteristics
of real-world vehicle-to-request matching/assignment graphs. Here, the dataset includes balanced,
unbalanced, symmetric, asymmetric, and also constraint MWBM graphs, which have been stated
as a target from the beginning. Multiple solver baselines and algorithms such as LCS (heuristic),
GRH (heuristic), CPLEX-IL (ground-truth solver), HMK (exact), JVC (exact), CBC (exact),
Random Tree Search (RTS) (dynamic programming), Vogel’s Heuristic (VGL) (heuristic) are
compared to the proposed PGN with algorithmic (mask reuse in reward, updated reward function)
and Embedding adaptions compared to both previous benchmarks. The key outcome of the
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third benchmark is that again the PGN shows the best solution times when it comes to solution
efficiency. Additionally, the PGN outperforms all other heuristics when turning the subject to
overall solution quality. Thereby, the PGN nearly reaches (overall 3.2% MAPE to CPLEX)
the solution quality of open-source exact solvers such as HMK, JVC, and CBC. Only CPLEX,
which is used as a ground-truth solver, provides exact and optimal results. As a final note, the
PGN provides a very efficient (approx. 66 times faster than CPLEX) solution method, by also
providing near-optimal results, shown as 3.2% MAPE. The major drawbacks should be pointed
out as follows. Generally, the PGN method becomes increasingly unstable if more variables and
constraints are added to the objective function and overall optimization problem. This requires
extra means (monitoring and algorithmic changes) to cope with such challenges. If enough
countermeasures are set and a high learning stability is provided, the proposed PGN method is
a very interesting/efficient choice for solving batches of small to medium-sized MWBM graphs in
a realistic vehicle-to-request-to-service station setting; and can be adapted/generalized to other
settings with some efforts as well.
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Figure 6.11: Solution times of the benchmarked algorithms.
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Figure 6.12: Benchmarked algorithms with resulting solution errors (higher mean objective cost
means worse solution quality).
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Figure 6.13: Benchmarked algorithms with resulting solution times per MWBM graph (higher solution
time means less efficient).
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7. Conclusions & Future Research

This thesis developed and presented a novel deep reinforcement learning method that can
be used to efficiently solve vehicle-to-client request assignments and higher abstractions of
combinatorial fleet planning problems. This chapter summarizes the conclusions made and the
further research directions possible within this context of deep reinforcement learning and the
solution of combinatorial optimization problems.

7.1 Answers to Research Questions

Initially, some research questions were proposed, which are answered in the following section.
• Research Question 1: Can a Deep Reinforcement Learning approach learn near-optimal fleet

routing and assignment controls for generally occurring graph structures in collaborative fleet
routing and dispatching? The general answer to this question is yes, with the limitations
that are explained in Section 7.2 in more detail. Particularly, with increasing size and graph
complexity, the final solution quality achieved deteriorates. The network size should be
increased, which also results in increased requirements such as requiring more computational
resources, memory, and training time.

• Research Question 2: If Research Question (RQ) 1 is yes, does this assumption hold for
symmetric and asymmetric graphs? The results of Chapter 6 and Benchmark 2 in Section
6.2.2 show that the asymmetry has a noticeable impact on the resulting solution quality.
More specifically, the MAPE degrades from 6.1% to 8.3% when learning symmetric and
asymmetric graphs. Also, the model requires double the amount of memory to learn
asymmetric graphs.

• Research Question 3: If RQ 1 and RQ 2 are yes, does this assumption hold for balanced and
unbalanced graphs? Yes, balanced and unbalanced graphs can be learned by the presented
PGN approach, which is shown in Chapter 6, Section 6.2.2. The results show that the
network can interpolate, which means that learning from larger complex graphs and solving
smaller and less complex graphs can be achieved with near-optimal results. With increasing
graph complexity, the PGN approach solution quality deteriorates for node degrees above
23 when solving for 1000 unbalanced MWBM graphs.

• Research Question 4: If RQ 1, RQ 2, and RQ 3 are yes, does this assumption hold for
mathematical problem constraints? At first, this question had to be answered as no. In
the presented benchmark in Chapter 6, Section 6.2.2 it was not possible to model hard
constraints with a mask function only. The reason for this is that, the more constraints
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and more neurons are masked, the learning capabilities of the PGN are increasingly limited
(due to the loss of learnable information). It is possible to learn soft constraints by using
the cost function and modeling soft constraints via a soft mask function. Hard constraints,
however, could only be satisfied with a 100% guarantee by applying a hard mask function
in the Decoder Module. This is a novelty that is shown in Chapter 6, Section 6.2.3 in more
detail. In particular, this approach has shown to be successful and did not have any major
losses with respect to the solution quality. Given these facts, this question is now answered
as yes.

• Research Question 5: If RQ 1, RQ 2, RQ 3, and RQ 4 are yes, can a DRL-based approach
be applied to real fleet data? In Chapter 6, Section 6.2.3, real New York Taxi Data is used
to generate the distributions of training, validation, and test data. Here, realistic distances
and vehicle ranges are generated to generate the MWBM problem graphs with 3-6 nodes of
vehicle, client requests, and service stations. The results of Chapter 6, Section 6.2.3, show
that input data normalization between value ranges of [0, 1] is recommended to improve the
learning efficiency and thus the solution quality. In general, large value ranges deteriorate
the learning capabilities of the PGN network, since very small cost values or large rewards
can lead to greedy and stagnating learning behaviors.

7.2 Limitations of the PGN

Next, this section will outline important limitations found while training and benchmarking the
presented Actor Critic PGN model. First, there is the aspect that

• the presented Actor Critic PGN learns a heuristic and does not work like a basic mathemat-
ical solver. In other words, there is no guarantee of optimality, and sophisticated evaluation
and monitoring means are required to ensure aspects as such (MIP competitive solution
quality). In other words, a limitation of this approach is that permanent human/machine
supervision is required to monitor correct training and solution behavior.

• With respect to the PGN solution performances achieved, it can be observed that the
solution quality deteriorates increasingly if the test graph structures diverge increasingly
from the training graph samples. In other words, if different graph variants are trained, the
training graph distribution has an influence on the final prediction/solution quality of the
PGN. Generally, small graphs are learned easier than large and complex graph samples.

• Another important aspect during training is learning efficiency and stability. In general, a
lot of computational resources are required for training large Actor-Critic PGN models,
whereas later on during operation, a lot of computational resources can be saved. In more
detail, the computational resources required for computation do not ultimately decrease
compared to traditional solutions with exact solvers but rather are shifted to an earlier
time of the data processing chain. Note, that efficient data generation and processing
methods increasingly matter for the overall algorithm operation process. In this work, one
or two weeks are required to generate 1 Million that is 1e06 MWBM graphs to complete
the training dataset automatically.

133



7. Conclusions & Future Work

• With respect to very important learning stability, the generation of artificial data usually
results in a stable and efficient learning process. On the contrary, using real data slows
down the data generation process, hence mitigating re-learning capabilities, deteriorates the
learning stability, and therefore also indirectly decreases the final achievable solution quality
compared to the generation of artificial data. The learning stability is largely influenced
by the choice of the DRL model and its sub-components. Generally, the presented policy
gradient procedure is considered a method of high variance, hence the model is prone to
exploding gradient phenomena, which can be observed via oscillating learning or achieved
cost signals within monitoring tools, e.g. Tensorboard and similar. Additionally, learning
phases with many graph features or large and very dissimilar imbalanced graphs are very
likely to result in unstable learning. This is also a strong limitation, which shows that the
application of such an ML model is currently technically limited on the side of learnable
graph complexities. However, the application scenarios of such a DRL model are different
from the ones of mathematical MIP solvers. In this case, traditional mathematical MIP
solvers and MWBM algorithms are superior to DRL methods. Another limitation is that
the stability of the presented PGN model is influenced by the design of the used cost
or reward function. In practice, summed equations usually result in comparably stable
learning, whereas on the other hand, product or differences result in high cost or reward
fluctuations, which should be avoided for stable learning behaviors.

• Generally, in order to achieve excellent learning performances during training, the PGN
requires a rigorous optimization of hyper-parameters (network parameter settings), thus a
lot of testing is required beforehand. Not only, the behaviors of the PGN learning quality,
efficiency, and stability can change drastically, but also only one hyper-parameter can be
changed at a time in order to observe the behavioral outcome. Consequently, this further
makes the hyper-parameter optimization process a time-consuming effort.

• Compared to other models implemented, the Actor Critic PGN is relatively memory
expensive (compared to “Convolutional Architectures”) due to the many required sub-
components within the architecture. Additionally, enabling the model to learn and solve
asymmetric cost problems approximately doubles the required memory for symmetric cost
or distance scenarios. Here, a minimum of 800 MB of memory is required while training
symmetric TSPs with 20 nodes, whereas 1.7 GiB is required to solve the same setup for
asymmetric TSPs (due to the inclusion of bidirectional edges).

• Overall, the learning, training, and validation process requires quite large amounts of data,
processing power, and memory requirements. As a rule of thumb, it is not recommended
to train the network below 500,000 training samples, if a final solution quality above
80% should be achieved. Since graph samples with 20-50 nodes per graph sample are
comparably small graphs, the training for larger graphs would require even more data and
more processing power. For practical applications, training with small node counts still
may be very useful for different applications, however, from a scientific perspective, the
capabilities of such models are still quite limited. In other words, at this point in time,
training such a model still does not provide acceptable solution qualities for very large
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graphs, i.e. containing more than 50 nodes per graph problem.
• Another limitation is that constraints are comparably hard to realize practicably in the

learning process, whereas they can be easily implemented in the decoding process of the
Actor Critic PGN. Generally, adding too many constraint formulations can lead to unstable
learning and decoding (solution) behaviors, which limits the model to some use cases with
complex constraint formulation scenarios.

• The learning of asymmetric graphs requires more memory than symmetric graphs. The
benchmarks showed that learning asymmetric graphs requires approximately twice the
amount of computational memory during the training and learning phases on GPUs.
Besides, the first benchmark shows that the learning of asymmetric MWBM graphs with
20 Nodes doubles the required memory consumption from 0.8 GiB to 1.7 GiB in the case
batch sizes of 256 MWBM graphs are used.

7.3 Conclusions

This section summarizes the results from Chapter 6, which includes benchmarks and tests of
the Actor Critic PGN for 1) symmetric and asymmetric TSPs in Section 6.2.1, 2) balanced
and unbalanced MWBM in Section 6.2.2, and 3) symmetric, asymmetric, balanced, unbalanced
and constrained MWBM in Section 6.2.3. Generally, the presented PGN approach can be used
to find very good (superior to state-of-the-art heuristics) and even near-optimal solutions for
NP-hard problems (like the symmetric TSP). However, it is important to note, that the approach
does not solve the TSP, but rather finds a good heuristic (i.e. good solution strategies or rules)
automatically. In other words, there is no guarantee that such an approach finds always the
optimal solution, which can be explained by the limited memory capacity of every neural network
and thus the DRL approach. In reality, the most occurring combinatorial problems like the
directed MWBM problem are not NP-hard. Although there are such heavy limitations, DRL
approaches like the presented PGN can be game-changing in practice and operation. Besides, a
scientifically interesting thing is that the presented PGN method may be capable of showing if a
given combinatorial real world problem is NP-hard or not.

The first benchmark in Section 6.2.1 shows two different methods called CBPN and DBPN,
which are part of the benchmarks for symmetric and asymmetric TSPs. The benchmarks
showed that both methods can be used to learn efficient heuristics to solve both symmetric
and asymmetric planar 2-D Euclidean TSP problems respectively. More specifically, the DBPN
presents an extended and novel approach to tackle the asymmetric TSP setting and thus provides
crucial advantages for the application of optimizing collaborative fleets within real road networks
with one-way roads or tidal lanes, or other asymmetric travel cost settings. Moreover, the DBPN
provides a scalable method for combinatorial optimization problems by achieving near-optimal
combinatorial solutions. The solution quality largely depends on the training quality, where
conversely, the benchmarks showed that a MAPE of 6% compared to state-of-the-art solvers
such as OR can be learned with high reliability. The potential of the presented PGN method
can be seen when looking at the solution times. The solving for 1000 TSP instances is 27 times
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faster than with the OR solver. Compared to the CBPN method the DBPN variant achieves
solution qualities by only 3% worse, which enables the DBPN to model more complex use cases
with respect to real world application.

The second benchmark in Section 6.2.2 focuses on the learning of balanced and unbalanced
MWBM graphs in a vehicle to client request or service station assignment setup. The focus
lies on finding complete solutions for unbalanced problems which are a major challenge for the
presented approach. In the experiments, three different baselines (algorithm comparisons) are
shown, while optimal solutions are provided by Cplex. The results show that the PGN method
learns globally optimal solutions to an upper bound depending on the number of nodes, or more
specifically the actual node degree of 23 (i.e. the graph complexity expressed as graph coherence
or number assignment possibilities). But for more complex MWBM graphs, the solutions found
by the PGN deteriorate at a rate of 10% per node degree.

The third benchmark in Section 6.2.1 focuses on the learning of relatively complex (mix of
balanced, unbalanced, and constrained) MWBM graphs. Again, multiple algorithm and solver
baselines (such as OR-Tools local search, the Greedy Heuristic (GRH), the simplex algorithm via
Cplex, Random Iterative Search, the Hungarian-Munkres-Kuhn (HMK) algorithm, the Jonker-
Volgenant-Castanon (JVC), the CBC-Coin Branch and Cut ILP solver and Vogel’s approximation
method) are used for qualitative and quantitative comparisons and other analyses.

Based on the changes made to the PGN architecture in 6.2.3, the results show that the PGN
is capable of finding near-optimal solutions even for constrained MWBM graphs. In the case
of the best training possible, the PGN outperforms all other heuristics and can even equal the
solution quality of the JVC, HMK, and CBC baselines, showing the advantage of much faster
computation times. Only Cplex still provides better results with respect to solution optimality.
Generally, the presented PGN network architecture has significant advantages when solving
small to medium-sized (10-50 nodes) MWBM graph problems. In this case, the PGN approach
is comparably flexible when compared to state-of-the-art heuristics (Greedy, k-Regret, Vogel’s
Approximation, etc.). Moreover, the PGN can be trained on different TSP or MWBM graphs
based on different city data and still can find very good solutions. The approach is furthermore
very efficient when thousands of MWBM graphs should be processed via batches (multiple graphs
in one group). By using a mask function for constraint modeling during the learning and decoding
phase, even constrained MWBM graphs can be learned and constraint satisfaction guarantees
can be ensured, i.e. required when the route length of the vehicle-to-client assignments could
exceed the current vehicle range.

Further, the results from Benchmark 3 show that the learning stability of the PGN deteriorates
for increasingly complex MWBM graphs. However, if the learning phase is completed successfully
(actor training and validation cost signals are minimized as much as possible), the PGN learns
competitive solutions with state-of-the-art solvers such as Cplex and OR. In general, the
PGN hereby outperforms state-of-the-art heuristics in solution quality and provides competitive
solution efficiencies. The next section will summarize possible future research on this topic. Also
recommendations are provided in order to lead future research toward promising directions.
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7.4 Future Research

Overall, the results of this thesis have shown that the use of the Embedding and Attention
architecture has a large influence on the solution quality, learning efficiency, and precious memory-
computational resources. From an architectural perspective, it would be very interesting to
explore how the solution quality could be improved when introducing and implementing more
sophisticated Embedding methods and Multi-Head Attention modules. The work of [Kool et al.,
2018] shows that even for complex combinatorial and dynamic graphs, optimal results can be
expected. The drawback of this extension, however, may be that the training time is further
extended, while memory requirements may also increase. For this reason, more sophisticated
Embedding methods should be introduced and tested, which could decrease the memory required
for Multi-Head attention modules. Another way of improving the solution quality is to implement
a complementary decoding method such as Beam Search, which can be seen in the work of [Bello
et al., 2016]. However, the already known method would require an extension to unbalanced and
constrained MWBM graphs, which is not straightforward. Since the presented PGN approach
does not match the solution quality of Cplex for unbalanced and constrained MWBM graphs, it
would be scientifically interesting to extend the already existing results of Benchmark 3 for fixed
node sets. Generally, it is advised to train the presented PGN approach with fixed node sizes for
training, validation, and test graphs. This is because, the training runs on variable graphs have
not shown that the PGN performance could be improved, and also the training has shown to
deteriorate concerning stability. Additionally, an interesting idea would be to train multiple PGN
networks for different MWBM graph structures, but this requires large computational resources
which may only be available in the cloud.

From a testing perspective, it would be scientifically interesting to include tests with fixed
solution time for optimal and heuristic algorithms. Since not all algorithms could be set up
with respect to this aspect, this would only be possible with Cplex, OR-Tools algorithms, and
the CBC solver. All other optimal transport algorithms would only output a solution if the
algorithm has reached its termination condition. On one side, the termination condition could
be relaxed, however, this makes it more difficult to compare to fixed solution time settings.
Another scientifically interesting approach using neural Sinkhorn Layers is shown in [Emami
and Ranka, 2018], which could yield advantages with respect to the learning time required.
Since this approach is novel, only very few authors have tried to leverage it. The presented
approach sometimes requires 1 week on the GPU setup shown in Chapter 6, Section 6.1, and 1
day in the cloud. In other words, the learning time is another important perspective to consider,
where other aforementioned approaches may be very useful. Finally, it would be scientifically
interesting to see how this approach performs under dynamic fleet routing and approximation
conditions. The capabilities of retraining the PGN from an offline to an online approach are
important. Hence, this thesis may serve to provide creative hints for future research that is still
to come.
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Acronyms

AACMCPG Advantage Actor-Critic
Monte-Carlo Policy Gradient

AACEL Accumulated Actor-Critic
Cross-Entropy Loss

AC Actor-Critic

ADP Approximate Dynamic
Programming

AI Artificial Intelligence

ALNS Adaptive Large Neighborhood
Search

AM Attention Mechanism

AP Assignment Problem

API Application Programming
Interface

ATTN Attention

AWS Amazon Web Service

BDI Batched Data Input

BS Batch Size

CBC Coin Branch and Cut/Bound

CBPN Coordinate-Based Pointer
Generation Network

CNN Convolutional Neural Network

CO Combinatorial Optimization

COP Combinatorial Optimization
Problem

CUDA Compute Unified Device
Architecture

CVRP Capacitated Vehicle Routing
Problem

DBPN Distance-Based Pointer
Generation Network

DCO Discrete Combinatorial
Optimization

DL Deep Learning

DNN Deep Neural Network

DP Dynamic Programming

DQN Deep Q-learning Network

DRL Deep Reinforcement Learning

ETA Estimated Time of Arrival

ELU Exponential Linear Unit

FCFS First-Come-First-Serve

GDP Gross Domestic Product

GCAN Graph Convolutional Attention
Network

GCN Graph Convolutional Network

GiB Gigabyte

GHz Gigahertz

GMHAN Graph Multi-Head Attention
Network

GNN Graph Neural Network

GPU Graphics Processing Unit

GPS Global Positioning System

GRH Greedy Heuristic

GRU Gated Recurrent Unit

HMK Hungarian-Munkres-Kuhn

HR Heuristic

ID Identifier

ILP Integer Linear Program

ITS Intelligent Transportation
Systems

i.i.d. independent and identically
distributed

JVC Jonker-Volgenant-Castanon

KDE Kernel Density Estimation

KDEs Kernel Density Estimates
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Acronyms

KRH k-Regret Heuristic

LCS Local Search

LKH Lin-Kernighan Heuristic

LSAP Linear Sum Assignment Program

LSTM Long-Term Short-Term Memory

MAPE Mean Absolute Percentage Error

MC Monte-Carlo

MCTS Monte-Carlo Tree Search

MDP Markov Decision Process

MHR Meta-Heuristic

MIP Mixed Integer Programming

ML Machine Learning

MRP Markov Reward Process

MWM Minimum Weighted Matching

MWBM Minimum Weighted Bipartite
Matching

MWBPM Minimum Weighted Bipartite
Perfect Matching

MWMPs Minimum Weighted Matching
Problems

MS Microsoft

MSE Mean Squared Error

mTSP Multi-Travelling Salesman
Problem

mVRP Multi-Vehicle Routing Problem

NET Networks

NLP Natural Language Processing

NN Neural Network

NTM Neural Turing Machine

O-D Origin-Destination

ODM On-Demand Mobility

OGS Optimality Gap Score

OP Orienteering Problem

OR Operations Research

OS Operating System

PCA Principal Component Analysis

PCTSP Price Collecting TSP

PDP Pickup-and-Delivery Problems

PGN Pointer Generation Network

PGP Pointer Generation Process

PN Pointer Network

PSO Particle Swarm Optimization

QAP Quadratic Assignment Problems

QL Q-Learning

RAM Random-Access Memory

ReLU Rectified Linear Unit

RH Ride Hailing

RL Reinforcement Learning

RNN Recurrent Neural Network

RQ Research Question

RS Ride Sharing

RTS Random Tree Search

Seq2Seq Sequence-to-Sequence

Struc2Vec Structure-to-Vector

SA Simulated Annealing

SDVRP Split Delivery Vehicle Routing
Problem

SI Système International (d’unités))

Sigm Sigmoid

SL Scheduling

SPG Sinkhorn Policy Gradient

SOC State-Of-Charge

SOF State-Of-Fuel

SOT Score Optimality-Time

SPCTSP Stochastic Prize Collecting TSP

TanH Tangens Hyperbolicus

TSP Traveling Salesman Problem

TSPs Traveling Salesman Problems

USCS United States Customary System

VGL Vogel’s Heuristic

VM Virtual Machine

VNS Variable Neighborhood Search

VRP Vehicle Routing Problem

VRPs Vehicle Routing Problems
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Notation

Conventions

This work uses different fonts for different types of symbols and mathematical entities.
• Sets containing integer numbers and real-values are denoted by uppercase blackboard bold

letters.
• Tensors are denoted by uppercase bold sans-serif letters.
• Matrices are denoted by uppercase bold serif letters.
• Scalars and vectors are denoted by lowercase serif letters.
• Random variables are denoted by uppercase standard calligraphic letters.
• Functions are generally denoted by standard calligraphic non-italic letters.
• Algebraic and Numerical Spaces are denoted by capital double-struck letters

(e.g. ABCDEFGHIJKLMNOPQRSTUVWXYZ).
• Graph Theory sets are denoted by uppercase calligraphic letters

(e.g. ABCDEFGHIJKLMNOPQRST UVWXYZ) and Machine Learning sets are de-
noted by Typewriter letters (e.g. ABCDEFGHIJKLMNOPQRSTUVWXYZ).

• Distance Matrices e.g. the origin-destination planar 2-D Euclidean R2 Distance Matrices,
computed from vectors are denoted by calligraphic italic letters with function parentheses
“D(·)”.

The elements of a vector a are denoted by ai, the elements of a matrix A as Ai,j , and the
elements of a 3-D tensor (i.e. a multi-dimensional matrix) by A[A,B,C], where the tensor is
indicated by multiple superscripts [A,B,C], that are separated by commas. In some equations,
a dot is used to increase the readability of a product (e.g. a · b), but this is not the same
as a scalar-vector product of two vectors cT x. Further, this should not be confused with the
Hadamard-Schur element-wise product of matrices C⊙X.

Numbers & Arrays

a An integer or real scalar variable.

⟨a, b⟩ A tuple of scalar variables.

{(a, b)} := {(a, b)(b, a)} A permutation as Cauchy notation.

140



Notation

A A scalar constant.

A A matrix.

a A vector.

A[A,B,C,D] A tensor with dimensions ABCD.

W A weight matrix.

I N×M The N × N identity matrix.

XN×M Dataset inputs (matrix with N rows, M columns, one for each
graph sample).

Y N×M Dataset outputs (matrix with N rows, M columns, one for each
graph sample).

xN Input data sample vector with size N .

yM Output data sample vector with size M .

a A scalar random variable.

a A vector-valued random variable.

A A matrix-valued random variable.

Table 7.1: The Numbers & Arrays Notation.

Scalars

I Length of input dimension.
E Embedding Set Size or dictionary length.
L Number of Learning Epochs.

Table 7.2: The Scalar Notation.

Spaces

A A numerical space.

[a, b] The real-valued interval including a and b.

]a, b] The real-valued interval excluding a and b.

A/B A numerical space subtraction, i.e. the space containing elements
of numerical space A that are not in space B.

N The numerical space of natural numbers.

N+ The numerical space of positive natural numbers.
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Q+ The numerical space of rational numbers.

Q+ The numerical space of positive rational numbers.

R The numerical space of real-valued numbers.

R+ The numerical space of positive real-valued numbers.

R2 The numerical space of the 2-Dimensional Euclidean Space.

Table 7.3: The Space Notation.

Nodes and Locations

v
[e,g]
n A e electrical or g gas combustion engine vehicle node v with ID n.

rp
m A client request pickup node r with ID m.

rd
m A client request drop-off node r with ID m corresponds to a pickup

node.
s

[e,g]
o A service station node s with e electrical charging or g gasoline

fueling possibility and ID o.

Table 7.4: The Node Notation.

Sets

{0, 1} A set containing 0 and 1.

{0, 1, ..., n} A set of all integers between 0 and N .

H The hypotheses set capacity, denoting the complexity of a machine
learning model (e.g. NN).

G A graph in which nodes n denote a random variable n(i) and each
edge denotes a conditioned dependency which is directed or a corre-
lated dependency which is undirected.

N The set of nodes.

L The set of links w.r.t. numbers of nodes and their adjacency.

V The set of vehicle nodes.

R The set of request nodes.

C The set of charging or maintenance nodes.

Q The set of coordinate tuples qi = ⟨xi, yi⟩ = {qi}N −1
i=0 set.

G The set of graph samples.
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X The set of training problem distributions containing the training
examples.

V The set of validation problem distributions containing the training
examples.

T The set of testing problem distributions containing the training
examples.

B The set of batches that is a subset of training, validation or test set
examples from X .

P∗ The set of solution paths (node index sequences) that minimize or
maximize a combinatorial problem.

Table 7.5: The Set Notation.

Indexing

ai Select element i of vector a, with the index starting at 0.

a−1i All elements of a vector a except for element i.

Ai,j Element i, j of matrix A.

Ai,: Row i of matrix A.

A:,j Column j of matrix A.

Ai,j,k Element i, j, k of a 3-D tensor A.

A:,:,k 2-D slice of a 3-D tensor A.

k Number of available indices for action selection.

t Discrete time steps denote the time steps {0, ..., n}.
s′ s′ is the next iterative successor state of s.

π′ π′ is the next iterative successor policy over π.

Table 7.6: The Index Notation.

Operators

|A| The cardinality length or size of set A.

||a||2 The ℓ2 norm of vector a.

||a||p The ℓp norm of vector a.
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□′ Returns a rescaled vector with values ranging between [0, 1] given a
vector a or matrix A via a′ = a−min(a)

max(a)−min(a) .
maxa (a) Returns the maximum value given a vector a or matrix A .

argmaxa (a) Returns an index value of a at the maximum value given a vector a
or matrix A.

mina (a) Returns the maximum value given a vector a or matrix A.

argmina (a) Returns an index value of a at the minimum value given a vector a
or matrix A.

softmax (a) Transforms input values of vector or matrix a in value range [0, 1]
via [ea1 , ea2 , ..., eal ]T /

∑l
i=1 e

ai .

det(A) Determinant of matrix A.

diag(A) Returns the diagonal vector given of matrix A.

ln (a) Natural logarithm of a as an inverse function of the exponential
function exp (a).

exp (a) ea, where e ≈ 2.71828 is the base of the natural logarithm.

sign (a) Returns the sign of a variable a.

µ (a) Returns the mean of a 1-D vector a.

µ̃ (a) Returns the median of a 1-D vector a.

σ2 (a) Returns the variance of a 1-D vector a.

σ (a) Returns the standard deviation of a 1-D vector a.
.= Equality relationship (true by definition).

≊ approximately equal.

∈ scalar is an element of a set, e.g. a ∈ A.

⊂ subset of a set, e.g. a ⊂ R.

Table 7.7: The Operator Notation.
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Functions

d(a,b) = ||a− b||2 The Euclidean distance of vector a.

f : A→ B A function f with numerical space A and the range of numerical
space B.

f(x, θ) A function of vector x parameterized by θ.

1(x; cond) The conditional indicator function.

Table 7.8: The Function Notation.

Calculus

f ′(a), df
dx(a) Derivative of f : R→ R at input point a.

δf
δx (a) The partial derivative of f : Rn → R at input point a.

∇f ′(a) ∈ Rn Gradient of f : Rn → R at input a.

∇f ′(A) ∈ Rm×n Matrix derivatives of f : Rm×n → R with input matrix A.

∇f(A) Tensor derivatives f with input tensor A.

Table 7.9: The Sub- and Superscript Notation.

Linear Algebra

A⊤ Transpose of matrix A.

det(A) Determinant of matrix A.

A⊙B Element-Wise (Hadamard-Schur) Product of Matrices A and B.

[A,B] Concatenation of matrices A and B does depend on dimensions
and concatenation axis.

tr(A) Trace of matrix A.

e(i) The i-th standard basis vector (a one-hot vector).

Table 7.10: The Linear Algebra Operational Notation.
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Probability Theory

P [X = x] A probability that a random variable X takes on the value x.

X ∼ p(x) A random variable X is chosen with the distribution p(x) .=
P [X = x].

E [X] The expectation value of a random variable X, i.e. E [X] =∑
x p (x)x.

σ̄ = Std [f(x)] The standard deviation of a random variable 1
N

∑N−1
i=0 (xi − µ)2.

σ̄2 = V ar [f(x)] The variance of a random variable
√

( 1
N

∑N−1
i=0 (xi − µ)2).

Π = {π0, ..., πi} A policy which short-term for a probability distribution
{P (y0|x0), ..., P (yi|xi)} over an action index sequence.

Y = {y0, ..., yi} A learned or calculated decision sequence output cf. “policy" Π =
{π0, ..., πi}.

p(Y |X) A probability distribution defining the mapping of a specific input
sequence X to an output sequence Y of decision variables.

p (s′, r|s, a) The probability of transition to state s′ with reward r, from state s
and action a.

p (s′|s, a) The probability of transition to state s′ from state s and action a.

r (s, a, s′) The expected immediate reward on transition from s to s′ under
action a.

Table 7.11: The Probability & Combinatorics & Information Theory Notation.

Machine Learning

A An action space.

S A state space.

P (x,y) A data-generating distribution function.

U(x,y) A uniformly distributed data generating function.

F The hypothesis search space.

C(θ,x,Π) A cost function depending on learned parameters θ, selected decision
matrix x or policy Π .

Pu(0,1)(G) =
Pu(0,1)({(x,y)})

The set of graph samples with uniformly distributed coordinates
between (0,1).

X The set of training problem distributions containing the training
examples.
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V The set of validation problem distributions containing the training
examples.

T The set of testing problem distributions containing the training
examples.

B The set of batches that is a subset of training, validation or test set
examples from X .

P∗ The set of solution paths (node index sequences) that minimize or
maximize a combinatorial problem.

α, β The learning step-size parameters.

γ A discount-rate parameter.

δt The temporal-difference error at t (a random variable).

ϵ The probability of taking a random action in an ϵ-greedy policy.

λ A decay-rate factor.

µ (s) The on-policy distribution over states.

µ The |S|-vector of the µ (s).

Table 7.12: The Machine Learning Notation.

Routing Specific Metrics

D A O-D square Rn×n matrix.

E A ETA square Rn×n matrix.

Table 7.13: The Routing Specific Notation.
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A.1 Publications

Generally, this thesis summarizes the work done in the following publications:
• [Hamzehi et al., 2019], “Combinatorial Reinforcement Learning of Linear Assignment

Problems,”
• [Hamzehi et al., 2021b], “Distance-Based Neural Combinatorial Optimization for Context-

based Route Planning,”
• [Hamzehi et al., 2021a], “Approximate Collaborative Fleet Routing with a Pointer Genera-

tion Neural Network Approach,”
• [Selmair et al., 2021], “Evaluation of Algorithm Performance for Simulated Square and

Non-Square Logistic Assignment Problems,” and
• the Master Thesis of David Gackstetter with the Title: “Anticipative Fleet Reallocation

using Multi-Agent Deep Reinforcement Learning”.
A summary of the results can be found in Chapter 7, “Conclusions & Future Research”.

A.2 Stochastic Error Metrics

MAE(sx∗ , sx) = 1
N
·

N−1∑
i=0
|sx∗ − sx| (A.1)

MSE(sx∗ , sx) = 1
N
·

N−1∑
i=0

(sx − sx∗)2 (A.2)

MAPE[%](sx∗ , sx) = 1
N
· |sx − sx∗ |

sx∗
(A.3)

RMSE(sx∗ , sx) =

√√√√ 1
N
·

N−1∑
i=0

(sx − sx∗)2 (A.4)
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RMSPE[%](sx∗ , sx) =

√√√√ 1
N
·

N−1∑
i=0

(sx − sx∗)2 (A.5)

MEDE[%](sx∗ , sx) = µ̃(sx)− µ̃(sx∗) (A.6)

MEDPE[%](sx∗ , sx) = µ̃(sx)− µ̃(sx∗)
max [µ̃(sx)− µ̃(sx∗)] (A.7)

A.3 Symmetric and Asymmetric Origin Demand Distance Matrices

DS =



d11 d12 d13 d14 d15

d21 d22 d23 d24 d25

d31 d32 d33 d34 d35

d41 d42 d43 d44 d45

d51 d52 d53 d53 d55



DA =



d11 d12 d13 d14 d15

d21 d22 d23 d24 d25

d31 d32 d33 d34 d35

d41 d42 d43 d44 d45

d51 d52 d53 d53 d55


A.4 Combinatorial Complexity

Many challenges that appear in modern ODMs originate from multi-objective decision making
problems which are traditionally known as shortest-path and maximum flow or transport problems.
Well-known examples here are euclidean-shortest path problems such as TSPs [Applegate et al.,
2006b; Held and Karp, 1970; Shaw, 1998; Ropke and Pisinger, 2006] and knapsack [Pisinger,
1999], VRPs and assignment problems such as MWMs and dynamic (time-based) scheduling
[Erdmann et al., 2019]. In detail, within mobility services TSPs can be classified as single
vehicle shortest-path problems and the extended versions of multi-vehicle route optimization such
as VRPs and MWMs. Traditionally, such problems can be grouped to the term combinatorial
optimization, which are extensively researched within the OR domain and logistic management.
Combinatorial optimization problems as such, typically are characterized by the presents of
features such as Geo-locations, driving directions, and target route locations within a road
network. The mathematical problem formulations have in common to be based on a graph
representation for modeling road segments, junctions and the present vehicles which is unified by
the term environment state in this thesis. The same problem structures also apply to robotics
and automation logistics within a production plant, where the difference mostly are fixed and
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less complex environment structures, however, with more strict time constraints for optimization.
Generally, the domain of combinatorial planning problems has been proven to be solvable in
polynomial computation time and therefore is called NP-complete/hard [Papadimitriou, 1977;
Karp, 1975, pp. 237–244, 45–68]. As such, the problem combinatorial and feature complexity
seems to be unsolvable for short computation times or rather termed non-scalable for large
problem sizes as present in large-scale fleet management. This also applies to the VRP which is
a problem where multiple TSPs must be solved to route each individual vehicle through a couple
of locations and back to the depot. By extending the VRP with time windows, multiple drivers,
resources and range capacities the problem can be characterized increasingly complex. Generally,
the family of NP-hard problems also contains scheduling problems where time windows must be
optimized in the correct combinatorial order. And additionally, there are other combinatorial
problems such as called knapsack problems, where a combination sequence of different items
of different sizes must be optimized to fit in a container of fixed size, which is again NP-hard
[Pisinger, 2005, p. 1]. This means that depending of the number of input items, the time for
calculating a solution takes polynomial time in the number of inputs.

As a signature routing problem example, Figure 1a shows a symmetric TSP, where each
indexed circle represents a location with xy-coordinates. The xy-coordinate values are sampled
within an identity square [0, 1]. Further, the values that adhere at the graph edges or links are
the cost of traversing the link individually. The node indexed with the number 0 is called the
depot node which is equally the origin and terminal node of a valid route. By calculating the
distances for all route possibilities, one can observe, that the shortest-path is the node sequence
⟨02310⟩ with a total distance (summed link distances) of 9 + 8 + 5 + 3 = 25 as depicted in
Figure 1b. The problem complexity however increases when more location nodes are added to
the problem formulation. The example in Figure 1a contains six possible routes. However, for
ten locations the number of routes increases to (9− 1)! = 362880 without the depot node. For 20
locations, the number of possible routes increases to (20 − 1)! = 1.2e17. Finding the solution
therefore is computationally intractable and would take an enormous amount of for exhaustive
search algorithms.

Second, Figures 2a shows the same graph, however this time as directed with symmetric node
degrees and symmetric adjacency [Erdős and Rényi, 1963]. For the directed graph the distances
for a node tuple such as node 0 to node 1 do not equal bidirectionally. This further increases
the graph complexity for finding the solution as shortest-path node sequence ⟨03120⟩, that is
depicted in Figure 2b. This shows that the global optimal solution might be different when
considering different directions.

Note. In real routing problem scenarios, there is a distance or cost matrix that contains the
distances or travel times for all travel connections. Usually, travel times, vehicle speeds and costs
are functions of distances between all connections and therefore location tuples. However, for real
application scenarios there is a need for realistic distance matrices for TSPs, VRPs and other
variants [Flood, 1956; Clarke and Wright, 1964]. Thus, the issue of modeling asymmetry
in distance and time matrices must be included as follows. From literature it is known that
the solution of symmetric problems are not comparable of those for more realistic asymmetric
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(b) Solution Undirected Symmetric TSP with Sym-
metric Adjacency.

Figure 1: Symmetric TSP Graphs.
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(a) Problem Directed Asymmetric TSP with Symmet-
ric Adjacency.
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(b) Solution Directed Asymmetric TSP with Symmet-
ric Adjacency.

Figure 2: Asymmetric TSP Graphs.
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(a) A problem visualization of a TSP with asymmetric
adjacency.
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(b) A solution visualization of a TSP with asymmetric
adjacency.

Figure 3: Symmetric/Undirected and Asymmetric/Directed Planar 2D Euclidean TSP Graphs.

graph problems. Furthermore, it is known that methods that normally are used for calculating
symmetric graph solutions usually deteriorate or even stop working when given an asymmetric
problem statement [Rodríguez and Ruiz, 2010].

Third, Figures 3a shows the graph as directed asymmetric graph with asymmetric adjacency
[Erdős and Rényi, 1963]. Here, some directions are missing or infeasible which is denoted by
∞ costs adhering to the links.

Figures 4a shows a symmetric bipartite graph with set of three vehicle nodes V = {v0, ..., vi−1},
colored in blue and with denoted by the index [1, 2, 3]. Besides the vehicle nodes Figure 4a
depicts a set of three request nodes R = {r0, ..., rj−1}, colored in orange with index [4, 5, 6]. The
solution of the maximum cardinality matching problem where the solution is the tuple sequence
(1, 5), (2, 4), (3, 6). Furthermore, Figure 4b shows how the symmetric maximum cardinality
matching problem with the bipartite graph in Figure 4a can be converted to a TSP shortest-path
tour. The target here is to find the shortest weighted route that contains all locations visits. In
other words, the longest sequence (with maximum cardinality) that minimizes the route cost is
desired. The solution sequence further can be modeled by incorporating a source and sink node
tuple (0, 7), colored in gray hexagons, where the solution sequence is ⟨015243670⟩.

Generally, the matching or TSP COP becomes more complex if vehicle and request node
imbalances can occur as visualized in Figures 5a and 5b. This increased variability of appearing
graph structures therefore requires for constraint modeling. For instance, Figure 5a shows an
matching graph with imbalanced node distribution. Furthermore, the graph in Figure 5a shows
an graph with imbalanced vehicle and request nodes.

In order to find the maximal set that contains the maximum amount of valid edges E in the
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(a) Vehicle-Request Matching.
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(b) Max Flow and Optimal Transport.

Figure 4: Converting a vehicle-request graph to a TSP tour. In general, the MWM can be illustrated
as special problem of the max flow problem family.

matching or assignment set M denoted by M ⊆ E , it is required to model some additional
constraints to prevent duplicate matchings/assignments. This is called valid and perfect cardinality
matching. If there are additional edge weight, the graph problem becomes a maximum or minimum
cardinality weighted matching problem, where the task is to find the maximum amount of edges
with least (minimal) costs or highest (maximal) costs.

For instance, there is a matching conflict for the nodes with indices 4 and 7 in Figure 5a and
for the nodes with indices 1, 2, 3, and 8 in Figure 5b.

Generally, Figure 6 shows simple way of solving a weighted cardinality matching problem with
a Greedy heuristic approach. The Greedy heuristic always matches the nearest neighboring
node as shown in Figure 6. Obviously, this approach does not guarantee to find the global
optimum and therefore it does not find the maximum and perfect matching. The reason is that
the greedy solution of some special instances for balanced graphs, result in duplicate matchings
when assigning the nearest neighbors, as shown in Figure 6. If a resolving constraint is modeled
that solves this conflict, the result is still not perfect since one node has to take a suboptimal
assignment. Generally, this constraint modeling problem is depending on the individual edge
cost distribution.

One of the rawest forms of the euclidean-planar TSP within unit square (i.e. x, y-coordinates
are within the value range of [0, 1]2 and symmetric edges can be seen in Figure 1a. Here, the
goal is to find the minimal-weighted that is the shortest route or path with least cost, called
Hamiltonian Cycle which visits every location once, e.g. see for the visualization in Figure 1b.

Definition 26 (Hamiltonian Cycle (Round Trip)): A Hamiltonian Cycle is a cycle route in an
undirected graph that passes though each node exactly once [Plotkin, 2010, p. 9].
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(a) Demand supply imbalance |V| > |R|.
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(b) Demand supply imbalance |R| > |V|.

Figure 5: Demand and supply occurrence imbalances with vehicle-request matching.
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Figure 6: Sub-optimality of Greedy Heuristic Assignments.
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Definition 27 (Symmetric Traveling Salesman Problem): Given an undirected complete,
weighted, euclidean-planar and symmetric graph, the TSP is the problem of finding a minimum-
weighted or minimum-cost Hamiltonian Cycle [Plotkin, 2010, p. 9].

A.5 Symmetric Euclidean-Planar TSP

Figure 1a further shows an example TSP, where each indexed circle represents a location with
uniformly distributed xy-coordinates within unit identity square [0, 1]. Further, the values that
adhere at the graph edges or links are the cost of traversing the link individually. The node
indexed with the number 0 is called the depot node which is equally the origin and terminal node
of a valid route.

Given a sample graph G = (N , E) with a set of nodes and edges, term symmetric thereby
refers to the definition of the triangle inequality.
Definition 28 (Triangle Inequality (Route Distance Symmetry)): The triangle inequality states
that for any triplet of nodes i, j and k the edge weights or costs between satisfy

wi,j ≤ wi,k + wk,j ∀i, j, k ∈ N . (A.8)

Hereby, a weighted edge refers to the cost of traveling between pair of nodes. In other words,
equation (A.8) defines that there is no faster detour route than selecting the direct way from i to
j. Generally, one cannot expect to find good approximation and solution algorithms for general
TSP graphs which is stated by the well-known theorem as follows:
Theorem 1. No polynomial time algorithm exists that approximates and solves a TSP within a
constant factor unless P = NP [Plotkin, 2010, p. 10].

In reality when dealing with real road networks, the triangle inequality is generally violated
when facing one-way streets and other directional limitations. Thus, the TSP problem formulation
can become even more complex as visualized in Figures 7a and 7b.

A.6 MWBM and Pickup Drop-Off / Delivery Problems (PDP)

Alongside the TSP there is another combinatorial optimization problem called VRP where
multiple TSP are solved dependently. Initially appeared in a publication by [Dantzig and
Ramser, 1959, pp. 80–91] the goal is to find the optimal set of routes for a fleet of vehicles which
traverse a graph in order to visit or deliver a given set of different customers, as visualized in
Figure 8b. Again, since finding the solution to one TSP already is NP-hard/complete, finding
multiple-optimal solutions for the VRP is again NP-hard/complete [Toth and Vigo, 2002,
pp. 1–26].

Both TSP and VRP can be unified as shortest path problems, which in general can be seen
as finding the minimal weighted tree among a network. Thus the formulation of both can be
abstracted to a so-called optimal transport or maximum cardinality/closure optimization which
is characterized by the max-flow min-cut theorem. In the further sections this will be called
MWM problem, which will be introduced next.
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(a) A problem visualization of a TSP with asymmetric
adjacency.
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(b) A solution visualization of a TSP with asymmetric
adjacency.

Figure 7: Symmetric undirected and asymmetric directed planar 2D Euclidean TSP Graphs.

(a) A general visualization of a TSP with depot node. (b) A general visualization of a VRP with depot node.

Figure 8: Extension visualization from TSP graphs to VRP graphs.
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A.7 Maximum Weighted Matching

Another more general formulation of TSPs and VRPs is the MWM Problem, which involves
finding the maximum and feasible flow through a network. Based on the TSP formulation,
the formulation can be transferred to the MWM formulation by introducing a sink (0) and
source node (7) to the overall node distribution, visualized in Figures 9a and 9b. Since the
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(a) Vehicle-request matching problem with sub-
optimal solution.
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(b) Max Flow and Optimal Transport.

Figure 9: Converting a vehicle-request graph to a TSP tour.

MWM formulation can be defined in a linear programming scheme, it is possible to apply linear
programming solvers to solve TSPs, VRPs and MWMs. However, the exponentially increasing
combinatorial complexity during combinatorial optimization does not allow for optimal scalability,
especially when solving many large-scale graph instances with many nodes and edges in repetitive
manner. In more detail, this characteristic of combinatorial optimization problems will be
addressed in the next paragraph.
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Figure 10: Benchmarked algorithms the resulting solution errors, Overview of Figure 10 (higher mean
objective cost means worse solution quality) Part 1.
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Figure 11: Benchmarked algorithms the resulting solution errors (higher mean objective cost means
worse solution quality) Part 2.
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Figure 12: Benchmarked algorithms the resulting solution errors (higher mean objective cost means
worse solution quality) Part 3.
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Figure 13: Benchmarked algorithms the resulting solution errors (higher mean objective cost means
worse solution quality) Part 4.
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