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Abstract

The ability to accurately determine the position of an agent in an unknown environment
is of crucial importance for the Simultaneous Localization And Mapping (SLAM) problem.
Better localization and odometry estimates lead to improved map generation. This map
forms the basis of most robot navigation stacks and is essential for driving without human
interference. With the increase in automation along with the use of robotics, there is an
increased need to refine the SLAM related methodologies. While indoor navigation usually
lacks access to reliable Global Positioning System (GPS) data, it has the advantage of
having a known building model in most cases. This extra level of information can be
exploited to boost the quality of both the localization and mapping modules. As the real
environment usually differs significantly from the theoretical model, a methodology that is
resilient to outliers and scan model differences is proposed. This approach is added on
top of Lidar Odometry And Mapping (LOAM) and also made open source to the public.
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Chapter 1

Introduction

With the ever-increasing demand for automation, robots have become quite common over
time. Some are relatively static such as robotic arms where they are free to move, but the
base remains in almost the same position. On the contrary, some robots need to navigate
actively around in an unknown environment. This navigation requires a solution to the
so-called SLAM problem. It is only possible if the robot can perceive its surroundings
using sensors that can either be active (e.g., Light Detection And Ranging (LiDAR), radar)
or passive (e.g., Inertial Measurement Unit (IMU), camera).

Navigation may be indoor, outdoor, or hybrid, depending on the environment. The type
of navigation environment determines/limits the type of sensors used. For example, for
outdoor navigation, GPS may be a viable option, but for indoor navigation, it may not
be feasible as GPS requires direct sight to at least four satellites, three for determining
the 3-Dimensional (3D) position and one for correcting the satellite time. Obstructions
may lead to degradation of the localization accuracy at best and complete failure at worst.
There are various Indoor Positioning System (IPS) alternatives to overcome this limitation
that rely on radio signals such as from BlueTooth or Wireless Fidelity (Wi-Fi). Other modes
include acoustic, light and magnetic field signals [CURRAN et al., 2011, LOPEZ-DE-TERUEL

et al., 2017] to name a few. The downside is that this requires additional strategically
placed sensors, which can drive up the cost of the navigation stack. In certain cases,
they might be unavoidable, but in the case of most modern architecture, where Building
Information Modeling (BIM) is available, the environment model can either supplement or
completely replace the IPS depending upon the localization accuracy requirements. The
main advantage is that it leverages existing information and requires no additional sensors.
This thesis mainly aims at developing a robust methodology that utilizes BIM model to
improve SLAM accuracy even in cases where there are significant differences between
the LiDAR scan and the reference model.

1.1 Simultaneous Localization And Mapping

Simultaneous Localization And Mapping (SLAM), first coined by [H. F. DURRANT-WHYTE

et al., 1996], is a well studied[PARKER, 2000, H. DURRANT-WHYTE and BAILEY, 2006,
DORIGO et al., 2014] problem, albeit a difficult one. It is the process of concurrently
determining the position of an agent in an unknown environment while creating/updating
its map given some data from sensors. Solving the SLAM problem is a highly non-linear
problem that appears to be circular. If the map of an environment is known, localizing is
straightforward. Similarly, if the exact position of the agent is known, creating a high fidelity

1
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Figure 1.1: SLAM classification based on software architecture [KUZMIN, 2018]

map is also quite facile. In reality, neither the map nor the exact position of the agent is
known. Nonetheless, there exist many methodologies to approximately solve both at the
same time. They can generally be classified as shown in fig. 1.1 depending on how these
techniques approach the problem:

- Backend methods: These methods perform the SLAM computation when all
the data for sensors has been collected. They are more resilient to errors and
depend on probabilistic models to correct bad observations. Though they can work
independently, they are usually accompanied by frontend methods.

· Filtering methods: One of the oldest approaches for tackling the SLAM prob-
lem. Some notable examples are Extended Kalman Filter (EKF) [JULIER and
UHLMANN, 1997] which is the extension of Kalman Filter (KF) for non-linear
problems, particle methods [GRISETTI et al., 2007] and Sparse Extended Infor-
mation Filter (SEIF) [EUSTICE et al., 2005] to name a few. These approaches
are rarely used nowadays apart from particle filters.

· Graph methods: As the name suggest, the observations are stored in form of
a graph [THRUN and MONTEMERLO, 2006] which is later optimized to compute
the transversed path. Additional constraints such as loop closure [LATIF et al.,
2013] can greatly reduce the errors in the final solution.

· Data driven methods: These methods depend mainly upon advances in
machine learning and neural networks. They can either aid classical techniques
like EKF [CHOI et al., 2007] and graph SLAM [NASEER et al., 2015] or be
completely independent [TATENO et al., 2017].

- Frontend methods: These methods mainly depend on energy / error minimization
algorithms. If the underlying data comes from highly precise sensors, they can be
used independently. Otherwise, they are paired up with backend methods where
they act as a prior.

2



Figure 1.2: BIM lifecycle [“Planung: BIM-Modelle von Jansen Stahlsystemen”, 2021]

· Scan matching methods: They operate by matching subsequent scans com-
ing from the sensors such as LiDAR. Some examples are ICP [ARUN et al.,
1987] and Iterative Dual Correspondence (IDC) [LU and MILIOS, 1997].

· Feature matching methods: Unlike scan matching algorithms, these methods
do not try to match all the scan data but rather extract distinct features from
the environment and match those. Some examples are Scale Invariant Feature
Transform (SIFT) [LOWE, 2004] and Speeded Up Robust Features (SURF) [BAY

et al., 2006].

· Data driven methods: Like backend methods, machine learning is also being
used for frontend methods [WANG and SOLOMON, 2019, H. YANG et al., 2020,
C. CHEN et al., 2020].

1.2 Lidar Odometry And Mapping

Lidar Odometry And Mapping (LOAM) [J. ZHANG and SINGH, 2014] is state of the art
algorithm that uses LiDAR sensor for solving the SLAM problem. It belongs to the feature
matching methods discussed above. It computes edge and surface features for each scan
and finds correspondences in subsequent scans. By performing this process iteratively,
odometry is estimated, which is used in the mapping process. This thesis builds on top of
this algorithm and is discussed later in more detail.

3



1.3 Building Information Modeling

The term Building Information Modeling (BIM) was first used in a modern sense in a 1985
paper published in the later year [RUFFLE, 1986]. Despite being explored early on, it
did not become popular till years later due to restrictive computer hardware availability.
Nowadays, it is a common technique for managing and optimizing construction projects. It
is quite different from standard Computer Aided Design (CAD) models as it is multifaceted
in nature (fig. 1.2). It stores building information hierarchically and allows for better
coordination among different groups. If the BIM model also include time information, it
is known as 4D BIM [HOLNESS, 2008], 3 dimensions representing the CAD model while
4th dimension represents time. In such a case, BIM model can be queried for a time-
dependent environment model and used in the SLAM computation rather than the finished
model.

1.4 Thesis Overview

After briefly discussing SLAM, BIM and LOAM, it is now possible to present a concrete
overview of this thesis. As already mentioned before, most modern buildings have a BIM
model or CAD model at the very least. This thesis proposes a robust methodology for
integrating the environment model into the LOAM framework.

The point cloud obtained from the LiDAR sensor is first preprocessed by clustering similar
points together. For clustering, the points are placed in voxels of defined size. For each
point, surface normal is computed using the neighbor’s information. Then, points are
clustered together within each voxel using normals and curvature as a similarity parameter.
The number of clusters per voxel and minimum cluster size is also pre-defined. These
parameters control the retained detail and act as the first outlier rejection step.

The points are then iteratively projected onto the environment model. This projection is
the foundation of the optimization problem, which is solved later. For loss function, robust
kernels [HUBER, 1992, BELAGIANNIS et al., 2015] are used instead of l2−loss which acts
as a second outlier rejection step by reducing the impact of outliers.

The clustered point cloud is then formulated as classical ICP problem with the point-to-
plane metric using the environment model as reference. Point to mesh features set is
again filtered out at every iteration of ICP if the distance exceeds the set threshold acting
as a third outlier rejection step.

This optimization step is then added to the LOAM problem, and the weights are set
proportional to the cardinality of the edge, surface, and mesh features, respectively. The
optimization problem is then solved and evaluated for improvement.

ICP is a local refinement algorithm. The optimization may get stuck in local minima if the
initial guess is too far from the ground truth. Multiple global registration algorithms are
tested to tackle this problem. After evaluating their performance and robustness, a recent

4



deep learning approach, namely Deep Global Registration (DGR) [CHOY et al., 2020], is
selected for global registration.

1.5 Research Objectives

As mentioned at the start of this chapter, the main objective is to robustly integrate the BIM
model into the LOAM algorithm to improve the SLAM accuracy. Specifically, the approach
should deal with the following questions:

1. What useful information can be extracted from the BIM model?

2. How can the extracted information be integrated into LOAM algorithm?

3. In what ways can the effect of noise/outliers be minimized? How does it stack up
against the base algorithm?

4. Is it possible to run the methodology in real-time? What part of the algorithm
contributes the most to execution time?

5. Can the approach generalize to environments where the scan differs significantly
from the model?

1.6 Reading Guide

The minimum theoretical background necessary for understanding this thesis is discussed
in chapter 2. Literature review and related methodologies are covered in chapter 3.
Chapter 4 presents the methodology developed while working on this thesis. It also
includes design decisions and other details about why a specific technique was chosen.
Results and comparative study with other similar algorithms are done in chapter 5. Finally,
in chapter 6, a general critique is presented along with recommendations and conclusion.
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Chapter 2

Theoretical Background

This chapter discusses the theoretical background necessary to understand the proposed
methodology in this thesis properly. It briefly covers efficient nearest neighbors search
using a k-D tree, estimation of the surface normal of a point cloud, voxelization, gradient-
based optimization, automatic differentiation, ICP, robust loss functions, fast point to mesh
projections using Bounding Volume Hierarchies (BVH) and neural networks.

2.1 K-Nearest Neighbors

K-Nearest Neighbors (K-NN) is a local classification and regression algorithm. It depends
on a simple paradigm: the input is similar to its neighbors. Depending upon the number of
neighbors k, the input is classified using the majority. Therefore, it is common to have k as
an odd number to resolve ties. Nonetheless, even values of k can be used with additional
metrics such as distance to break ties. For regression, simple arithmetic mean can be
used. Consider the fig. 2.1. Depending upon the selection of parameter k, the unknown
circular input I can be classified. So, for example, if k = 3, input I belongs to the star class
as 2/3 of its neighbors belong to the star class. On the contrary, if it is chosen that k = 5,
the input I belongs to the square class(3/5). It is important to select a reasonable value of
k, as too small or too big of a value can negatively affect the classification/regression.

Sequentially searching for neighbors is of complexity O(n) where n is the total number
of points in the search domain. This search becomes computationally expensive for
large datasets and therefore requires efficient handling. There exist many acceleration
strategies to reduce the computational complexity of the nearest neighbor search. One of
the most common ones is a k-D tree [BENTLEY, 1975].

2.1.1 K-D Tree

K-D trees are a direct extension of binary trees in k dimensions. It recursively partitions
the search space based on the median along a particular axis and creates the binary
tree. This partitioning reduces the complexity of the nearest neighbor search from O(n) to
amortized O(log n). Building a k-D tree also requires some additional work. If a suitable
algorithm is used for computing the median [M. BLUM et al., 1973], building a k-D tree
takes O(n log n).

Figure 2.2 shows exactly how the dataset is partitioned in the example presented in fig. 2.1.
While a k-d tree does accelerate nearest neighbor queries, it should be remembered that
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Figure 2.1: With k = 3, the target belongs to the star class while with k = 5, it belongs to
the square class. In case of regression, the neighbors property are averaged (adapted
from AJANKI, 2007)
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Algorithm 2.1: Normal Estimation
1 Inputs: P = poin ts , k = number o f neighbors
2 Output: Normals
3 begin
4 normals = { }
5 for p in P:
6 neighbors = knn_kdtree ( p , P, k )
7 p = sum( neighbors ) / k
8

9 / / Compute the covar iance mat r i x
10 p̂ = neighbors − p
11 cov = ( p̂ * p̂ . t ranspose ( ) ) / k
12

13 / / Compute the eigen values using s i n g u l a r
14 / / value decomposit ion
15 U, V = svd ( cov )
16

17 / / Smal lest eigen value corresponds to
18 / / the normal vec to r
19 normals . push ( min (U) )
20 end
21 return normals
22 end

they suffer from the curse of dimensionality. As the number of dimensions increases, it
becomes harder to rule out possible matches, which leads to a degradation in performance.
There have been multiple efforts [INDYK and MOTWANI, 1998 BERCHTOLD et al., 1998 KUO

and SLOAN, 2005] to resolve the issue some of which relax the condition of exact neighbors
in favor of approximate ones. One of the most prominent algorithms for approximate
neighbors search is Fast Library for Approximate Nearest Neighbors (FLANN) [MUJA and
LOWE, 2009] which is extensively used in this thesis.

2.2 Normal Estimation

There are many ways to compute the surface normals given a point cloud. One of the
simplest and popular one is using Principal Component Analysis (PCA) for computing the
covariance matrix of each point by considering k neighbors. It can be computed using the
following equation:

C =
1

k

k∑
i=1

(pi − p) · (pi − p)T (2.1)

where k is number of neighbors, pi is the point under consideration and p is the mean
of the k neighbors. The covariance matrix can then be decomposed using eigenvalue
decomposition to get the three eigenvectors.

C · −→vj = λj · −→vj j ∈ {0, 1, 2} (2.2)
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Figure 2.3: Three different scenarios depicting normal computation with k = 4

The smallest eigenvalue represents the normal vector. The whole procedure is summarized
in Algorithm 2.1

The normals obtained using Singular Value Decomposition (SVD) may not have a con-
sistent sign. A normal vector in the negative direction can also be a valid candidate.
To ensure that all the signs are consistent, a post-processing step is necessary, which
considers the origin of the point cloud. The curvature σ of each point in the point cloud
can also be computed using the already calculated eigenvectors λ:

σ =
λ0

λ0 + λ1 + λ2
(2.3)

Where λ0 represents the smallest eigenvector, λ1 and λ2 are eigenvectors along the fitted
plane. A 2D view of a 3D wall is shown in fig. 2.3 where normals are computed using the
mentioned technique.

2.3 Voxelization

Voxelization is the process of storing data in a discrete grid. Each point that lies within
the voxel is grouped together. The shape of the grid can vary. Two of the most common
branches are:

- Cartesian grid: The voxels are represented by a cartesian grid of uniform size,
i.e., all the cells have the same size. The empty voxels may be removed from the
transversal path. Figure 2.4 shows voxelization in 2D using a uniform cartesian grid

- Quadtree: Rather than using equally sized voxels, it is possible to recursively
subdivide the parent voxel into four equal parts [SAMET, 1984]. This process is
applied recursively until each child voxel contains only one point or if the maximum
depth d is reached (fig. 2.5).

For the cartesian grids, the controlling parameter is the cell size, whereas, for the quadtree,
it is the tree depth. Both voxelization techniques are easily extendable into 3D, in which
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Figure 2.4: Left: Voxelization using cartesian grid; Right: Empty voxels removed

Figure 2.5: Quad tree voxelization with: Left: d = 4, each voxel contains a single element;
Right: d = 3, maximum depth is reached

case, the cell becomes a cuboid. The 3D variant of quadtree is known as octree [MEAGHER,
1982]. As the name suggests, quadtree and octree are represented by tree graphs, with
each non-leaf node containing 4 and 8 children, respectively. One of the common uses
of voxelization is as a down-sampling filter where the points within the same voxel are
merged and represented by a single point at their centroid. There exist more intelligent
alternatives for merging the points.

2.4 Gradient Based Optimization

Optimization is one of the most frequently encountered problems in engineering. It involves
refining design variables x based on some criteria such that the objective function f(x) is
minimized. Maximization problem are posed as g(x) = −f(x). If the objective function is
continuous and differentiable, gradient-based methods are preferred. Convex problems
are quite easy to solve and guarantee convergence to global optima. In reality, it is rarely
the case, and therefore, for non-convex, finding global optima is not always possible. One
of the most frequent classes of such problems is minimizing the sum of squared error
which is encountered everywhere, from simple curve fitting to robotics to machine learning.
Some of the commonly used gradient-based algorithms are briefly discussed below. Note
that they are all dependent on the quality of the initial guess.
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Figure 2.6: Oscillatory behavior of gradient descent algorithm (adapted from LEÓN, 2021)

2.4.1 Gradient descent

It is one of the most basic approaches to solve the multi-variable optimization problem
[HADAMARD, 1908]. The general idea is relatively straightforward: iteratively step in the
opposite direction of the gradient. As gradient points towards the local ascent direction,
moving in the other direction should lead towards the minima, thus the name gradient
descent. One of the main problems of this algorithm is that it can easily get stuck in
local minima. Even for quadratic problems, it tends to oscillate a lot, as shown in fig. 2.6.
Mathematically, the iterative update procedure is given by:

xn+1 = xn − γn∇F (xn) , n ≥ 0 (2.4)

where xn is the current value of the design variables, xn+1 is the next estimate, γn is
the learning rate at each iteration and ∇F (xn) is the Jacobian at the current point. The
learning rate γ can be static as well as dynamic. For example, it can be computed using
line search or trust-region methods [BARZILAI and BORWEIN, 1988]:

γn =

∣∣∣(xn − xn−1)
T [∇F (xn)−∇F (xn−1)]

∣∣∣
∥∇F (xn)−∇F (xn−1)∥2

(2.5)

The convergence rate of gradient descent is linear.

2.4.2 Newtons Method

Newtons methods is another method for optimizing a multi-variable objective function. For
finding the solution, it not only utilizes the Jacobian matrix but also the Hessian matrix
(second derivatives). The Hessian matrix represent the curvature information. The iterative
approach to updating the design variables is given by:

xn+1 = xn − ∇F (xn)

∇2F (xn)
, n ≥ 0 (2.6)
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Figure 2.7: Faster convergence with Newtons method (adapted from LEÓN, 2021)

where ∇2F (xn) is the Hessian matrix at the current point. The rest of the entities are
same as that of gradient descent (eq. (2.4)).

The convergence rate of Newton’s method is quadratic, though it is also more expensive
due to the computation of the Hessian matrix.

2.4.3 Levenberg–Marquardt algorithm

The earlier two methods discussed are used for general optimization. In a case where
the underlying objective function represents a non-linear least square problem, Leven-
berg–Marquardt algorithm [MORÉ, 1978] is preferable as it is more robust and faster. It is
a combination of gradient descent and Newton’s method. The parameter update equation
is as follows:

xn+1 = xn − ∇F (xn)

∇2F (xn) + λI
, n ≥ 0, λin0, inf (2.7)

Where λ is the damping term, when λ is 0, the problem becomes equivalent to Newton’s
method. On the contrary, as λ increases, the problem becomes closer and closer to
gradient descent. As the form of the objective function is known (sum of squared errors), it
is possible to approximate the Hessian matrix rather than computing it exactly.

2.5 Automatic Differentiation

The optimization methods discussed above are dependent on the computation of gradients.
It is possible to evaluate the analytical derivatives but the main problem is that it is only
limited to simpler functions and requires hand calculations. An alternative to this is
numerical differentiation, the simplest of which is of the form:

f ′ (x) ≈ f (x+ h)− f (x)

h
(2.8)
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As limh→0, the approximation reaches the true value. The main problem with this approach
is that the quality of the gradient depends upon the value of h as it can never be made
smaller than machine precision. At first, setting h to the smallest possible value might seem
reasonable, but in fact, it also degrades the accuracy as machines have finite precision
and truncate mantissa whenever it exceeds the underlying type limits. For example, under
IEEE standard 754 [KAHAN, 1996], 64 bit floats are represented as represented in table 2.1.
Due to this finite memory conundrum, h somewhere in-between gives the best possible
accuracy and is problem-dependent. Another downside of numerical differentiation is
that it scales badly with the number of dimensions (O(n)) and becomes computationally
expensive.

Table 2.1: IEEE-754 float 64 representation

Bits
Sign 1
Exponent 11
Mantissa 53 a

a 52 bits are stored explicitly. In binary, the leading digit can either be 0 or 1. By deciding to not store
leading 0 (which makes lead digit always 1), 53 bits can be saved in place of 52 bits

To overcome the limitations of both the aforementioned methods, another technique exists,
namely automatic differentiation, which computes exact derivatives, is cheap to evaluate,
and does not suffer from numerical issues. It requires more involved implementation but is
well worth the effort. It is based on dual numbers and primarily has two modes: forward
and reverse. Both of these modes depend mainly on the chain rule of differentiation.

2.5.1 Dual Numbers

Dual numbers are an extension of real numbers into a hyper-complex plane. They are
represented as follows:

D = a+ bϵ (2.9)

with property ϵ is really small such that ϵ2 = 0. Addition and subtraction are pretty
straightforward and done component wise. Multiplication and division are commutative.
Multiplication between 2 dual numbers D0 and D1 is as follows:

D0 ∗D1 = (a0 + b0ϵ)(a1 + b1ϵ) (2.10)

= a0a1 + (a0b1 + a1b0)ϵ+ b0b1ϵ
2 (2.11)

= a0a1 + (a0b1 + a1b0)ϵ (2.12)

Similarly, division can be carried out by multiplying and dividing the fraction by the denomi-
nator conjugate value. Using the duality property, exact derivatives of analytical functions
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can be computed using the Taylor series approximation. Consider the Taylor series of a
general function f (a) around the point bϵ:

f (a+ bϵ) = f (a) +
f ′ (a)

1!
(bϵ) +

f ′′ (a)

2!
(bϵ)2 +

f ′′′ (a)

3!
(bϵ)3 + · · · (2.13)

Once again, using the property ϵ2 = 0, all higher-order terms cancel out.

f (a+ bϵ) = f (a) + bϵf ′(a) (2.14)

Therefore, in order to evaluate any function and its derivative at a, switching to dual number
arithmetic and evaluating at a+ ϵ (b = 1) instead leads to the real part representing f (a)

while the dual part representing f ′(a) as per eq. (2.14).

2.5.2 Examples

Consider the following two examples:

- With f (x) = x3 + 1, substituting in x+ ϵ leads to:

f (x) = x3 + 1

f (x+ ϵ) = (x+ ϵ)3 + 1

= x3 + 3x2ϵ+ 3xϵ2 + ϵ3 + 1

= x3 + 1 +
(
3x2

)
ϵ

Indeed the real part x3 + 1 represents the initial function while the dual part 3x2

represents its derivative.

- A slightly more involved example is that of f (x) = sinx:

f (x) = sinx

= x− x3

3!
+

x5

5!
− x7

7!
+ · · · Taylor series expansion

f (x+ ϵ) = x+ ϵ− (x+ ϵ)3

3!
+

(x+ ϵ)5

5!
− (x+ ϵ)7

7!
+ · · ·

= x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+

(
1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

)
ϵ

= sinx+ (cosx) ϵ

All other trigonometric functions have a similar procedure to compute the automatic
derivatives.

In general, the methodology in the last example holds up for most analytical functions.
With the ability to compute derivatives when the function is evaluated, it is now possible to
integrate it with the gradient-based optimization technique discussed in section 2.4.
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Derivatives propogated forward

Figure 2.8: Computational graph of automatic differentiation with respect to x in forward
mode for eq. (2.15) with w1 = x, w2 = y and ẇ5 = ∂f/∂x (adapted from BERLAND, 2007a)

2.5.3 Forward Mode

In the forward mode, the independent variables are fixed and propagated forward. Consider
the following function:

f (x, y) = xy + sinx (2.15)

Here, the independent variable are x and y. Recursive substitution leads to the following:

z = f (x, y)

= xy + sinx

= w1w2 + sinw1 (2.16)

= w3 + w4

= w5

So, for example, if the derivative of f(x, y) with respect to x is required, following steps will
be performed (as per eq. (2.16)).

Table 2.2: Forward mode decomposition of eq. (2.15) with respect to x

Substitutions Derivatives ∂/∂x Derivatives simplified
w1 = x ẇ1 = 1 1
w2 = y ẇ2 = 0 0
w3 = w1 · w2 ẇ3 = ẇ1 · w2 + w1 · ẇ2 y
w4 = sinw1 ẇ4 = cosw1 · ẇ1 cosx
w5 = w3 + w4 ẇ5 = ẇ3 + ẇ4 y + cosx
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Derivatives propogated backward

Figure 2.9: Computational graph of automatic differentiation in reverse mode for eq. (2.15)
with w1 = x, w2 = y, w̄1 = ∂f/∂x and w̄2 = ∂f/∂y (adapted from BERLAND, 2007b)

As w5 = z = f(x, y), the derivative ∂f/∂x is equal to ẇ5. For forward mode, the time
complex is O(ninput) and requires constant space.

2.5.4 Reverse Mode

Reverse mode is a bit more complicated. It relies heavily on the multi-variable chain
rule. The dependent variables are fixed and propagated in the reverse direction. The
main advantage is that it is only dependent on the number of outputs, therefore a single
backward pass computes derivatives in case of eq. (2.15) results in both ∂f/∂x and
∂f/∂y.

Table 2.3: Reverse mode decomposition of eq. (2.15) with w reused from table 2.2

Substitutions Derivatives Derivatives simplified
w̄5 = ∂w5/∂w5 1 1
w̄4 = w̄5 · ∂w5/∂w4 w̄5 1
w̄3 = w̄5 · ∂w5/∂w3 w̄5 1
w̄2 = w̄3 · ∂w3/∂w2 w̄3 · w1 x
w̄1 = w̄3 · ∂w3/∂w1 + w̄4 · ∂w4/∂w1 w̄3 · w2 + w̄4 · cosw1 y + cosx

As w1 and w2 correspond to x and y, therefore ∂f/∂x and ∂f/∂y are equal to w̄1 and
w̄2 respectively. In a single pass, both of the derivatives are obtained. It is therefore
of complexity O(noutput) and also requires additional space of O(noperations) to store the
intermediate results. Many derivatives often share almost similar interior paths, so they
can be cached to avoid recomputation. The choice of when to use forward or reverse
mode can be inferred by their computational complexity. When the number of inputs is
low compared to outputs, the forward mode is preferable. Similarly, the reverse mode is
favored if the number of outputs is greater.
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Algorithm 2.2: ICP
1 Inputs: S = source po in ts , T = ta rge t , n = max_ i te ra t ions , eps =

e r r o r to le rance
2 Output: Transformat ion Mat r i x
3 begin
4 / / Create kd− t ree i f T i s po in t c loud .
5 / / Otherwise , BVH i n case of mesh .
6 / / Should be cached i f t a r g e t does not change
7 T_fas t = acce le ra te_d is tance_quer ies (T )
8

9 / / I d e n t i t y mat r i x
10 t rans form = I
11

12 for i t t in range ( max_ i te ra t ion ) :
13 / / Use automat ic d i f f e r e n t i a t i o n (section 2.5 ) i f poss ib le
14 cost , jacob ian = compute_cost_auto_di f f (S , T_fas t )
15 i f cost < eps :
16 return t rans form
17 f i
18

19 / / Otherwise , update the source po in t c loud
20 t rans form = minimize_cost ( cost , jacob ian )
21 S = t rans form * S
22 end
23 return t rans form
24 end

2.6 Iterative Closest Point

Iterative Closest Point (ICP) [Y. CHEN and MEDIONI, 1992] is a pretty popular algorithm
used for aligning a source point cloud to a similar target shape (point set registration). The
target itself may be a point cloud or a continuous mesh. ICP works by iteratively aligning
the source to the target by minimizing the cost function. Usually, the cost function is based
on the sum of squared distance between the source (l − 2 norm) and the target. The
algorithm comprises the following steps:

- Pre-process the target shape for efficient distance queries by using a k-D tree
(section 2.1.1) and using Bounding Volume Hierarchy (BVH) (section 2.8). The
former is enough if the target is just a point cloud, but both are required if the target
is a mesh.

- For each point in the source point cloud, find the closest association in the target.
This step is usually done by finding a point on the target closest to the source point.

- Using the source and associated points set, find an isometric transformation matrix
that minimizes the cost function.

- Apply the isometric transformation to the source point cloud.

- Repeat from the association step iteratively until convergence (which might not be
the global minima).
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Figure 2.10: ICP aligning a point cloud to a continuous surface

The pseudo-code is presented in Algorithm 2.2. As ICP is a local refinement method, it is
highly dependent on the quality of the initial guess. Even when the source and the target
match exactly, there is no guarantee that the optimization will reach the global minima if
the starting estimate is too far away. Another serious problem is the ability to deal with
outliers. ICP generally performs adversely in the case of relatively many outliers as l − 2

norm-based error increases quadratically with distance. This effect of outliers makes the
optimization get stuck in local minima.

2.7 Robust loss functions

To guide the optimization properly and make it comparatively robust to outliers, better loss
functions are needed instead of the l2 norm. There exist many such functions of which
Huber loss [HUBER, 1992] is the most common one. It is a mixture of l1 and l2 loss used
for robust regression. It can mathematically be represented using:

Lδ (y, f (x)) =

1
2(y − f(x))2 for |y − f(x)| ≤ δ

δ
(
|y − f(x)| − 1

2δ
)
, otherwise

(2.17)

Where δ is the scale parameter. It affects the transition point of Huber loss from l2 to
l1 loss. One of the caveats on using the formulation in eq. (2.17) is that it can only be
differentiated once. If a smoother approximation is required, the following form can be
used [CHARBONNIER et al., 1997]:
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Figure 2.11: Huber loss at different values of δ compared to l2 loss

Lδ (y, f (x)) = δ2

√
1 +

(
(y − f(x))

δ

)2

− 1

 (2.18)

It can be differentiated infinitely (C∞ function) and might be used in schemes that require
higher-order differentiability.

2.8 Bounding Volume Hierarchy

Bounding Volume Hierarchy (BVH) are a famous acceleration structure for speeding up
intersection tests that are useful for efficient distance queries from a point to a mesh. A
naïve way of checking where a ray intersects the given set of primitives is to sequentially
go through all of them and select the closest one. Unsurprisingly, the computational
complexity of this sequential approach is O(n) where n is the number of primitives. This
approach might be a reasonable option if the intersection test is required sparsely, but
in most cases, where the test is performed often, it is better to create the proper data
structure.

BVH wraps all primitives into a bounding volume (usually Axis Alligned Bounding Box
(AABB)) and recursively applies the same procedure to the leaf node primitives until the
termination criterion is met. Figure 2.12 shows a simple case where different primitives are
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Figure 2.12: Left:BVH of an arbitrary set of primitives; Right: Corresponding transversal
tree

wrapped using the mentioned methodology. This strategy reduces the search complexity
down to O log n. Finding the optimal BVH is an NP-hard problem [HAVRAN, 2000] and
therefore tackled with heuristics. One such widespread technique is surface area heuristics
[MACDONALD and BOOTH, 1990], which tries to minimize the surface area for most
primitives, thus reducing the probability of an arbitrary ray hitting a specific AABB.

For distance computations, the process is as follows:

- Given a query point pq, use the underlying k-D tree to find the closest point pc.

- Create a bounding box from center point pq to pc.

- Use BVH to find intersecting bounding boxes recursively until the primitives are
found.

- Find the closest primitive using the intersection test.

The underlying BVH should also contain the k-D tree to efficiently look up the nearest
neighbor for best performance.

2.9 Neural Networks

As the name suggests, neural networks are a collection of artificial neurons. They are
modeled after how human brains work in theory. According to the universal approximation
theorem [HORNIK et al., 1989], they can approximate any function given enough neurons
(and layers) though they might not generalize. This property allows them to represent
arbitrarily complex functions provided enough data is available. With the increase in
computational power, neural networks have become the de facto standard for most
complicated problems that cannot be programmed explicitly. Such issues include image
recognition, data processing, classification problems, and natural language processing, to
name a few. The general architecture of a simple neural network is shown in fig. 2.13.

The problem at hand determines the number of inputs and outputs. The internal hidden
layers are a design parameter. Increasing the number of inner layers makes it possible to
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Figure 2.13: Architecture of a general neural network: The circles represent the neurons
while the arrows depict connectivity and weights

learn more complicated problems. Too few hidden layers cause the network not to learn
appropriately and have high errors. On the flip side, too many internal layers cause the
network to over-fit the data, thus losing the ability to generalize to unseen situations. There
are many heuristics to determine the near-optimum number of layers [KARSOLIYA, 2012]
though there exists no method to compute such a number in a general setting.

To train the network, data is collected, associating inputs to outputs. The weights are
initialized to random, and the result is predicted using the inputs. The predicted results are
then compared to the actual outputs, and the loss is propagated back to update the internal
weights. This backpropagation relies heavily on automatic differentiation discussed earlier
in section 2.5. Machine learning and neural networks are vast fields. There are plenty of
resources [GOODFELLOW et al., 2016 GÉRON, 2019 BURKOV, 2019...] that discuss these
concepts in more detail.

21





Chapter 3

Related Work

This chapter gives a general overview of recent techniques for utilizing the BIM / CAD
model into the SLAM problem. These approaches are grouped depending upon how they
use the underlying environment model.

3.1 Occupancy Grid Methods

Accurate localization is a core requirement for autonomous driving. This has propelled the
research immensely towards this direction in the robotics community during the past few
decades. There exist plenty of methods to solve this problem that are relatively accurate
and robust. Initial efforts developed methods that were pretty simple such as EKF [JULIER

and UHLMANN, 1997] for non-linear systems and histogram filters [BURGARD et al., 1996].
These methods suffer from high errors. To solve this issue, probabilistic approaches based
on particle filters such as Monte Carlo localization [FOX et al., 2001] were introduced.
These approaches commonly model static parts of the environment in the form of an
occupancy grid [ELFES, 1987]. In such a representation, rather than storing the obstacles
in a continuous form, they are discretized and placed in discrete cells. The resolution of
the cells is directly related to that of underlying sensors. As shown in fig. 3.1, a continuous
environment is converted into any occupancy grid. This discretization makes the problem
comparatively simpler for estimating states approximately [THRUN, 2002].

This concept can easily be extended into 3D [ELFES, 1989] using a voxel grid. Due to
their simplicity and widespread use in the robotics community, such as Robot Operating

Figure 3.1: Left: Top view of an arbitrary house; Right: Equivalent 2D occupancy grid
representation at ground level. Note that the obstacles above agent height are not included
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Figure 3.2: Time dependent maps proposed for integration with ROS [FOLLINI et al., 2021]

System (ROS) [STANFORD ARTIFICIAL INTELLIGENCE LABORATORY ET AL., 2020], a lot of
approaches utilize the environment model in this form. For example, PRIETO et al., 2020
in order to evaluate the construction progress, use BIM model to extract the 2D floor plan
directly if the underlying model contains the curve representation. In cases where such
information is not available, the Boundary Representation (B-Rep) of the rooms is used to
approximate the 2D map. This 2D floor plan is then used to generate the 2D occupancy
grid. This information is then further used for navigation and later for comparison with the
collected data 1. Similar approaches have been conducted in the past that utilize the 2D
map for evaluating construction progress and accuracy [BHATLA et al., 2012, PĂTRĂUCEAN

et al., 2015, ARMENI et al., 2016].

A similar method is proposed by FOLLINI et al., 2021 which is summarized in fig. 3.2. One
of the main differences between this and the aforementioned method is that this method
aims at integration with ROS stack while generating time-dependent maps.

Naturally, there are 3D extensions as well. Recently, MOURA et al., 2021 proposed a
procedure for integrating BIM model into google cartographer [HESS et al., 2016]. Apart
from being used in localization, analogous methods have also been explored in navigation
and path planning [LIN et al., 2013, XU et al., 2017, KARIMI et al., 2021, X. LIU et al.,
2021].

3.2 Feature Based Methods

As the name suggests, these methods do not simply discretize the environment but
rather use mesh features to improve the SLAM accuracy. One of the most popular ways

1The data is collected from the center point of each bounding volume
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Figure 3.3: Using publicly available maps to align point cloud to buildings [VYSOTSKA and
STACHNISS, 2016]

Figure 3.4: Dynamically updating map over the course of four days [BONIARDI et al., 2019]

is to match the point cloud to these mesh features using one of the variants of ICP.
VYSOTSKA and STACHNISS, 2016 proposed a pose graph-based SLAM algorithm for
outdoor navigation that indirectly incorporated building information. Leveraging publicly
available maps and extracting building information and road networks (as shown in fig. 3.3)
leads to notable error reduction.

Another approach that integrates CAD floor plans into graph-based SLAM is BONIARDI

et al., 2019. For matching points and mesh features, generalized ICP is used along with
robust kernels to reduce errors. One of the main features presented is that of long-term
navigation. In most realistic scenarios, the environment is dynamic and may change
significantly over time. A static map built with all past observations will be outdated and
potentially lead to wrong correspondences. To fix this issue, the approach proposed by
[BONIARDI et al., 2019] updates the built map. To this end, the built map is matched to the
reading from LiDAR scan, and a probabilistic model is used to prune the outdated data in
case of discrepancies. Figure 3.4 shows the methodology in action.
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Figure 3.5: Matching source to target point cloud using Deep Closest Point (DCP) [WANG

and SOLOMON, 2019]

A recent study [OELSCH et al., 2021] builds on top of the state-of-the-art LOAM algorithm.
Rather than using the BIM model of the environment, it leverages a reference object
with a known position in the global frame. By utilizing corner and surface features from
LOAM and mesh features from points to mesh correspondences, it poses SLAM as a joint
optimization problem. This problem is then solved to boost the localization precision. One
distinct feature is that it works in a 3D setting, making it viable for aerial robots.

3.3 Deep Learning Methods

With the increase in computational power and advances in machine learning, deep
learning techniques have become increasingly popular. There is quite a lot of variety
depending upon how they utilize the model. They can generally be grouped into three
broad categories: 2D to 2D, 2D to 3D, and 3D to 3D. The former two groups are mainly for
cameras, whereas the last group deals with LiDAR sensors. Primarily, 3D to 3D methods
for global registration will be discussed. There are, of course, hybrid approaches as
well. For example, H. BLUM et al., 2020 uses a Convolutional Neural Network (CNN) to
achieve foreground and background segmentation of the camera images of the perceived
environment, which is then propagated to perform selective localization using ICP on the
point cloud obtained from LiDAR.

[YIN et al., 2018] introduced LocNet to search scans in a prior global map by introducing a
rotational invariance technique and learning the environment representation. One limitation
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Figure 3.6: Comparison of DGR with DCP [CHOY et al., 2020]

of this approach is that it cannot generalize to unknown environments. Pointnetvlad [UY

and LEE, 2018] overcame this limitation by learning global descriptors from the point cloud.
Global registration usually requires a global descriptor to have encoded local features.
PCAN [W. ZHANG and XIAO, 2019] improves on Pointnet by introducing an attention
network to evaluate the relative significance of each local feature. This score is then used
to give more importance to relevant features, thereby significantly improving the accuracy.

A deep learning alternative to the standard ICP is DCP [WANG and SOLOMON, 2019]. It
improved on the accuracy by using a three-part network: point cloud embedding network,
transformer-based layer, and a SVD layer. By using DCP for the initial alignment and
standard ICP for fine-tuning (fig. 3.5), the solution converged to the global optima in really
challenging situations.2

DGR CHOY et al., 2020 further improved the accuracy of DCP by utilizing the geometric
features obtained by Fully Convolutional Geometric Features (FCGF) [CHOY et al., 2019]
proposed by the same authors. Figure 3.6 shows the superior performance of this
approach compared to its predecessor. This approach trains on two popular public
datasets: Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI)
dataset and 3DMatch dataset. The voxel size selected for training FCGF is 30 cm and 5 cm

2A brief overview of deep learning techniques in SLAM is given by [C. CHEN et al., 2020] in more detail
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respectively. This choice of size means that the final localization of DGR is dependent on
this parameter as well.

3.4 Conclusions From Literature Review

After going through multiple approaches, an appropriate direction must be selected. Taking
a look at the famous KITTI benchmark for odometry, the best performing LiDAR based
algorithms are Visual Lidar Odometry And Mapping (V-LOAM) [J. ZHANG and SINGH,
2015] and LOAM [J. ZHANG and SINGH, 2014] respectively. The former incorporated
visual odometry into the latter framework to improve accuracy. As V-LOAM is a superset
of LOAM, any methodology developed on the base algorithm LOAM should be extendable
to the other. Therefore, LOAM is selected as the base algorithm for SLAM computations.
As already discussed in this chapter, there are multiple ways to integrate the BIM / CAD
into the SLAM calculations. A methodology that is fast, robust, and compatible with LOAM
is required.

Global localization algorithms are more expensive than local refinement methods. As
agent navigation is a continuous process, i.e., the agent cannot physically teleport from
one point to another in real life, robust local refinement methods should be able to handle
the registration process given that the two consecutive scans happen relatively close in
space. Therefore, solving a global registration problem is not necessary at every iteration.
Nonetheless, there is still a need for such an algorithm when the agent starts in an
unknown environment to compute the approximate initial pose. Chapter 4 discusses in
detail more of the design decisions and how to extend LOAM algorithm to incorporate the
environment model to improve accuracy robustly.
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Chapter 4

Methodology

To robustly integrate the BIM model into the LOAM framework, the main contribution is
added to the odometry part as increased localization accuracy leads to better mapping
quality as well. An overview of the proposed methodology is shown in fig. 4.1. Section 4.1
goes over how the LiDAR scan is acquired, how the environment model requirements,
and the overall underlying assumptions. The main odometry module is discussed in detail
in section 4.2. As the suggested approach requires a reasonable initial estimate of the
global pose of the agent to match mesh features, a robust deep learning methodology is
employed, which is briefly illustrated in section 4.3. The mapping part of LOAM benefits
directly from better odometry estimates though the internal working remains unchanged
as explained in section 4.4. Collectively, the approach proposed in this thesis is referred to
as Model Aware Lidar Odometry And Mapping (MA-LOAM).

4.1 Data Acquisition

To use the proposed approach, there are two main requirements, namely:

- An environment model should be present to extract the mesh features. In case it is
missing, the methodology is equivalent to the standard LOAM implementation and
therefore cannot benefit it.

- A series of LiDAR scans are available that have at least some overlap between
adjacent scans so that they can be associated with each other. If there is no overlap,
the odometry estimate might still converge if the scans are not too far away and have
a relatively high degree of association to the environment model.

Approach
Self Contribution

LOAM Unchanged

LiDAR
Point Cloud

Global
Registration

Odometry
Estimation

Map
Generation

Transform
Integration

t = 0

1Hz
Undistorted Pt  

10 Hz
Transform

10 Hz
Transform Output

1 Hz
Map Output

1 Hz
Transform

t = 1...

Initial
Transform

Figure 4.1: An overview of the proposed methodology
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Raw Point Cloud Pose Estimate

Self Contribution

LOAM Unchanged

Figure 4.2: Pipeline for integrating BIM model into LOAM to improve odometry estimate

The LiDAR point cloud can be structured or unstructured depending upon the scan
pattern. The proposed methodology works for both the cases though mainly the former
is explored as LOAM itself extracts corner and surface features considering the point
cloud is structured. As for the environment model, the algorithm is generally insensitive to
scan model differences as outliers rejection is addressed at multiple levels throughout the
odometry pipeline. This rejection allows for using models that are significantly different
than the actual scan, given that the relatively more prominent features (like walls, ceiling,
etc.) are somewhat observable.

4.2 Odometry

In this thesis, the most significant contribution is towards improving the odometry estimates.
Figure 4.2 shows a general outline of the odometry pipeline. The algorithm extracts corner
and surface features similar to LOAM. The mesh features are extracted robustly using a
methodology similar to that of TAZIR et al., 2018. The main difference is that here, it is
used as a preprocessing step to cluster points that are similar in a given vicinity. More
details are presented in relevant sections.

4.2.1 Scan Registration

The point cloud coming from the LiDAR sensor is first preprocessed before being passed
to the feature extraction pipeline. Points that lie too close or are too far away to the LiDAR
sensor are removed as these points are considered to be of low fidelity as shown in fig. 4.3.
As edge and surface features assume that the point cloud is structured, the point cloud is
sorted into separate scan lines based on their azimuth angle ϕ relative to the LiDAR frame.
Figure 4.4 depicts this process where the points are associated to ϕ0, ϕ1 or ϕ2 depending
upon their angle. Some LiDAR sensors have scan lines at equidistant angles, in which
case, it is quite trivial to assign points to a scan line. If they are not equidistant and the
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Figure 4.3: Points inside region of interest, that is, between rmin and rmax are retained.
Left: Raw scan for LiDAR sensor; Right: Scan after filtering points outside region of
interest
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Figure 4.4: Points with almost the same azimuth angle ϕ are associated to separate scan
lines SLi
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sensor specification is available (scan lines angles are usually fixed and specified), the
points can be associated with the nearest azimuth angle of the sensor. Lastly, a clustering
algorithm can be used in a general case where only the number of scan lines are available.

4.2.2 Mesh Features Extraction

Extracting mesh features FM is much more involved than edge and planer surface features
(denoted using FE and FS). Using all the points from the scan does not add much extra
value compared to a more intelligent approach that uses only a subset of important points.
Worse still, the dense point cloud can potentially contain many outliers and can thus lead
to wrong associations. One standard methodology to downsample the point cloud is
to use a voxel grid filter. That is, all points that lie within the same voxel are collapsed
to a single point at their collective centroid (as shown in fig. 4.5, case A, simple). This
naïve downsampling can lead to a loss in detail and, therefore, poor feature extraction. To
avoid this, the proposed algorithm starts by taking the registered scan (from section 4.2.1)
and putting them inside a 3D cartesian voxel grid as described in section 2.3. Then, the
empty voxels are removed. Concurrently, the surface normals are estimated using the
methodology discussed in section 2.2 using a specified number of nearest neighbors.
Now, instead of collapsing all the points within the voxel, the points are clustered based
on their normals using k-means clustering. Points that are part of the same cluster are
collapsed together, thus preserving the extra detail (as depicted in fig. 4.5, case A, k-
means). The normals of two different surfaces may point in the same direction. If the points
are then collapsed using k-means clustering, the features can be lost for some cases (e.g.,
fig. 4.5, case B, k-means). If the voxel size is small, this approximation still works well in
practice, but in case the details must be preserved, more advanced plane based clustering
algorithms [SHAO et al., 2013, Z.-M. YANG et al., 2015, L.-M. LIU et al., 2017] can be used
to preserve the detail. For example, the k-proximal plane clustering takes into account the
proximity of the fitted plane along with the surface normals computed somewhat similar to
the eigenvalue-based methodology already discussed in section 2.2. The result is shown
in fig. 4.5, case B. It is also possible to fit higher-order shapes to account for curvature,
for example, but the slight improvement in accuracy usually does not justify the extra
computational effort. One of the main reasons is that at a small voxel size (∼ 10cm), a
linear approximation (plane) is not too different from a higher-order estimate.

To remove the outliers originating from random noise, clusters with cardinality below a
certain threshold can be dropped. So far, to collapse the points, clustering algorithms
are used. Usually, the optimal number of clusters is unknown and must be determined
algorithmically. To this end, silhouette coefficient [ROUSSEEUW, 1987] is used given by:

s(i) =


1− a(i)/b(i), if a(i) < b(i)

0, if a(i) = b(i)

b(i)/a(i)− 1, if a(i) > b(i)

(4.1)
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Figure 4.5: Different clustering techniques employed to retain features; Case A: A simple
collapse results in loss of detail. Collapsing based on k-means clustering applied to
surface normals works well in most cases; Case B: A case where k-means based on
surface normals might lead to a loss in detail. A more advanced technique like k-proximal
planes might be used to retain the features

Or in a more concrete fashion:

s(i) =
b(i)− a(i)

max{a(i), b(i)} (4.2)

where a represents the mean distance of any point i to its own cluster where as b represents
the smallest mean distance to cluster that i does not belong to. Mathematically, they are
given by:

a(i) =
1

|CI | − 1

∑
j∈CI ,i̸=j

d(i, j) (4.3)

b(i) = min
J ̸=I

1

|CJ |
∑
j∈CJ

d(i, j) (4.4)

In the case of a single cluster, the metric is set arbitrarily to zero. As this clustering metric
can be computed for two clusters and more, the case of a single cluster as an optimum
is handled explicitly. If the silhouette score indicates that two clusters are optimum, then
those clusters are merged within a set epsilon. These clustered points computed using the
said methodology form the basis of finding mesh features correspondences. Figure 4.6
shows the process of collapsing points on an actual LiDAR scan. Additionally, there
can be scenarios where the number of mesh features is too high. In that case, mesh
features originating from small clusters can be dropped while taking into account the
relative distance of the cluster from the LiDAR sensor.
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Figure 4.6: Estimated normals of a planer surface: Points belonging to the same voxel
have same colored normals. The collapsed point cloud is shown using flat square

4.2.3 Edge And Surface Features Extraction

The procedure for extracting the edge and surface features (FE and FS) is the same as
the original method proposed in LOAM. Let i be a point belonging to a specific scan
line. As the LiDAR scanner rotates in a particular direction, that is, either clockwise or
counterclockwise, S will contain half of the points on each side of the point i. The local
smoothness of the point i can be computed using1:

c =
1

|S| ·
∥∥∥XL

(k,i)

∥∥∥
∥∥∥∥∥∥

∑
j∈S,j ̸=i

(
XL

(k,i) −XL
(k,j)

)∥∥∥∥∥∥ (4.5)

The same process is repeated for the rest of the points in the scan. If the same number of
neighbors are used for all the points, the cardinality term |S| may be dropped from eq. (4.5).
The points are then sorted based on their c value. A high c value indicates an abrupt
change in spatial coordinates, thus representing corner features. On the contrary, a low
value of c indicates plane surfaces, thus indicating surface features. The scan is divided
into multiple sub-regions to avoid features cluttered in space, usually 4 or 6. This division
allows the features to be more uniformly distributed. Furthermore, each sub-region can
only provide two edge and four planer surface features. Hence, a feature is dropped if its c

value is outside a threshold range (as it indicates a poor feature) or the maximum number
of feature points is already selected. Special care is also taken to avoid planer surface
features that lie on a plane parallel to the LiDAR sensor laser. Similarly, edge features that
might occur due to occlusion are also dropped. This process is shown in fig. 4.7. Finally,
despite the c score, surrounding points to an already selected point are not considered

1Similar to LOAM, the notation XL
(k,i) means an arbitrary point i in scan k in the LiDAR frame L. World

frame is represented using W

33



LiDAR

A

B

LiDAR

A

B

Figure 4.7: In both the cases, feature A is reliable where as feature B is considered
unreliable; Left: Surface feature B is considered bad because it is parallel to LiDAR laser;
Right: Corner feature B is unreliable as it is occluded. Moving the LiDAR sensor will
change its position; Adapted from J. ZHANG and SINGH, 2014

Figure 4.8: A sample indoor point cloud generated by a LiDAR scanner. The red cubes
represent the edge features where as the green spheres represent plane surface features.
Note that the surface features are twice as many as the corner features by choice

valid. It should be noted that these features are not necessarily temporally stable for data
coming from an actual LiDAR scan even when the agent is not moving. The main reason
for this is sensor noise, as minute differences can affect the c value of points, thus leading
to different features. Nonetheless, this feature extraction is shown on an actual scan in
fig. 4.8.

4.2.4 Joint Optimization

Finding good and reliable features constitutes the first half of the approach. The methodol-
ogy discussed in this subsection deals with finding reliable correspondences in subsequent
scans and formulating an optimization problem to solve for relative pose estimates. The
process of finding correspondences is discussed below:
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(a) Given a mesh feature j, find the nearest neighbor
vertex n with distance d. Construct an AABB of
length, width and height d, then compute intersection
with the environment AABB tree (not shown to avoid
cluter)

(b) Ideally, only the green highlighted edges must
be queried for nearest point to mesh correspon-
dence. The point l forms the correspondence pair
(j, l) which is then used in the joint optimization

Figure 4.9: Finding a mesh correspondence point l for a mesh feature j using k-D tree for
nearest neighbor search and AABB for intersection tests

- Mesh correspondences: With FM already computed, they must be matched to
the available environment model. For that, the environment is stored inside a BVH
namely an AABB tree. The corresponding k-D tree is also constructed to accelerate
the neighbor’s search. Collectively, both the acceleration structures along with the
environment model are represented using M. At each time step, the feature set FM

is re-projected using the currently estimated transform. This projected feature set
is denoted using F̃M. Let i be a point in F̃M. For each point, i, transform it from
the local to the global frame using the past computed local transforms. This point is
represented by j. For all points j, find the closest point l on M. This feature pair (j, l)
forms the correspondence of i. This process is shown in fig. 4.9. The cost function
is then to find a local transformation (rotation R and translation T ) that minimizes the
following distance:

dM =
(
RW X̃

L
(k,i) + TW

)
− X̄

W
(k,l) (4.6)

Where RW and TW are the currently estimated transformation to convert a point
from the LiDAR frame to the world frame.

- Edge correspondences: Similarly, with edge features FE computed, correspon-
dence must be selected. Let i be a point in the re-projected edge feature set F̃E .
Let j be the closest point (using k-D tree) of i in the current re-projected point cloud
P̄. Let l be the nearest neighbor in two consecutive scans of j. This feature pair
(j, l) forms the correspondence of i. It is explicitly made sure that both j and l are
indeed corner features using eq. (4.5). The cost function is then to find a local
transformation that minimizes the following distance:
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dE =

∣∣∣(X̃L
(k+1,i) − X̄

L
(k,j)

)
×
(
X̃

L
(k+1,i) − X̄

L
(k,l)

)∣∣∣∣∣∣X̄L
(k,j) − X̄

L
(k,l)

∣∣∣ (4.7)

- Surface correspondences: Finally, to define a planer surface feature, a point i
is selected from the re-projected surface feature set F̃S . Similar to edge features,
the closest point j is selected from P̄. Then, two more closest points l and m are
selected. Point l is the closest neighbor of i in the same scan as j while m is the
nearest neighbor in two consecutive scans of j. Similar to edge features, eq. (4.5) is
used to ascertain the validity of the selected points. The cost function can then be
formulated as:

dS =

∣∣∣∣∣∣
(
X̃

L
(k+1,i) − X̄

L
(k,j)

)((
X̄

L
(k,j) − X̄

L
(k,l)

)
×
(
X̄

L
(k,j) − X̄

L
(k,m)

)) ∣∣∣∣∣∣∣∣∣(X̄L
(k,j) − X̄

L
(k,l)

)
×
(
X̄

L
(k,j) − X̄

L
(k,m)

)∣∣∣ (4.8)

With the ability to compute the correspondences for all mesh, edge, and surface features,
it is now possible to pose a joint optimization problem to solve for the actual local transfor-
mation of the sensor in between the scans. Rather than using Euler angles, quaternions
are the preferred choice as they are not prone to the problem of gimbal locking. Special
care is taken to parameterize the quaternions such that there are only three degrees
of freedom instead of four by ensuring that the magnitude of the resultant quaternion
is always 1. This parameterization avoids adding an extra optimization parameter while
simultaneously ensuring that the quaternion is always normalized. The joint optimization
problem using eq. (4.6), eq. (4.7) and eq. (4.8) that correspond to mesh, edge and surface
features then becomes:

f (Q,T ) =
λM|FM|

ΛC

∑
i∈FM

ρ
(
∥dM (Q,T )i∥2

)
+

λE |FE |
ΛC

∑
i∈FE

ρ
(
∥dE (Q,T )i∥2

)
+

λS |FS |
ΛC

∑
i∈FS

ρ
(
∥dS (Q,T )i∥2

) (4.9)

where ρ is the selected loss function (for e.g. Huber loss, section 2.7), |F| represents the
cardinality of a feature set and λ represent lagrange multiplier allowing different weights
for different features. Lastly, ΛC is the normalizing factor computed using:

ΛC = λM|FM|+ λE |FE |+ λS |FS | (4.10)

Alternatively, the terms |F| and ΛC might be dropped altogether to directly control the
feature contributions using just the lagrange multipliers. If the value of dM for a certain
mesh feature is above a certain threshold distance, it is dropped from the optimization
problem. The eq. (4.9) is finally solved using the Levenberg-Marquardt algorithm described
in section 2.4.3 to obtain the relative pose estimate.
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4.3 Global Registration

The methodology discussed in section 4.2 is dependent upon mesh features to improve
the odometry estimates. To match a mesh feature, the estimated position of the agent in
the global frame is required. This estimate does not need to be exact, but the closer it
is to the ground truth, the more reliably mesh features can be computed. For this global
registration, Deep Global Registration (DGR) is used.

The approach is carefully selected after testing multiple methodologies. Most standard
global registration techniques do not generalize well to an arbitrary environment. DGR
trained on KITTI dataset performs reasonably well. As DGR is a global registration
technique that is trained on a 30 cm voxel grid for the said dataset, the global pose estimate
is near the actual poses but not precise. To refine this estimate, the initial global pose
estimate is used as a prior for a local refinement method, namely the cluster ICP already
discussed in the odometry module.

4.4 Mapping

The mapping module is unchanged from the LOAM implementation. At the end of each
odometry iteration, a pose estimate is produced along with an undistorted point cloud. The
mapping module takes these and stores them in world coordinates. While the odometry
estimation is performed at 10Hz, the mapping process happens at a lower rate of 1Hz.
The features are extracted similar to that described in the odometry estimate. The main
difference is that here, the mesh features are not considered. The mapping module
also considers 10 times more features to align the pose estimates. The point cloud is
stored in a voxel grid of 10m areas, and correspondences are found using the eigenvalue
decomposition of the covariance matrix of the surrounding points. For an edge feature,
the eigenvalue will be dominant in only one direction, whereas it will be dominant in two
directions for a planer surface feature. The cost function is based on eq. (4.7) and eq. (4.8)
and solved using Levenberg-Marquardt algorithm with robust loss functions. A voxel grid
filter of size 5 cm is used to avoid storing all the points.
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Chapter 5

Testing And Validation

This section performs a validation study to ensure that the proposed methodology works
well in practice. The results are then compared to the standard LOAM approach as well
as cluster ICP and evaluated for improvement. The test cases are also run when there are
significant differences between the LiDAR scan and the actual environment model. The
limitations of the proposed methodology are also illustrated. Finally, a computational time
study is conducted by changing the voxel size to match the mesh features.

5.1 Experimental Setup

The experiments and validation require access to LiDAR scans as well as the actual
ground truth location of the agent. For this end, the whole environment is simulated
in Gazebo [KOENIG and HOWARD, 2004] allowing virtual LiDAR scans as well as the
absolute poses of the agent. The LiDAR sensor used for all scans is Velodyne VLP-16.
Furthermore, normally distributed noise is added to the scan values to reflect reality better.
The implementation makes extensive use of functionality provided by ROS1 and the PCL
library2. For the LOAM algorithm, publicly available implementation3 is used as a starting
point. The proposed methodology is added on top of it. The optimization problem is
formulated and solved using Ceres solver4. The full implementation of this thesis is also
publicly available5. Evo-tools [GRUPP, 2017] are used to compare the odometry estimates.
In cases where the transformation between the odometry and world frame is available,
the trajectories are compared without any alignment. Otherwise, Umeyama alignment
[UMEYAMA, 1991] is used to determine the translation and rotation without scale variation.

5.2 Hyperparameters

The proposed methodology has multiple hyperparameters that can affect performance
significantly. They are not changed in all the experiments unless explicitly specified.
Finetuning is possible and can potentially lead to better results, but it is avoided for
an unbiased evaluation of the proposed methodology. Table 5.1 shows the values of
these hyperparameters used for the experiments, along with a brief description. The
hyperparameters of LOAM are unchanged and used directly without any modification.

1https://github.com/ros/ros
2https://github.com/PointCloudLibrary/pcl
3https://github.com/HKUST-Aerial-Robotics/A-LOAM
4https://github.com/ceres-solver/ceres-solver
5https://github.com/darkscyla/MA-LOAM
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Table 5.1: List of hyperparameters and their values for showcased experiments

Parameter Value Description

dM th 2m Maximum threshold distance above which mesh fea-
ture is dropped

nnn 10 Number of nearest neighbors to consider for normal
computation

nFM 2 Maximum mesh features to retain per voxel
npt min 2 Minimum points required for a cluster to be valid
lvox 0.25m Size of the voxel
ϵmerge 0.25 Norm difference below which normals of two different

clusters maybe merged
λE 1.0 Weight for edge / corner features
λS 1.0 Weight for planer surface features
λM 0.5 Weight for mesh features
nFM max ∞ Maximum number of mesh features to retain globally.

Low cardinailty clusters can be dropped in favor of
more dominant features

5.3 Haus FZK

The environment model is shown in fig. 5.1a. This environment model is also used for
LiDAR collisions. Similarly, fig. 5.1b illustrate the environment model without the furniture.
This environment is simulated directly in Gazebo while a pre-computed trajectory (fig. 5.1c)
is played to obtain the LiDAR scans. The cases can be divided into two categories
depending on which model is used for mesh correspondences.

5.3.1 Case A: Same models

In this case, the same model (fig. 5.1a) is used for both the collision and mesh corre-
spondences. This case is pretty straightforward and presented just for demonstration. A
standard ICP algorithm should also be able to handle such cases as there are no scan
model differences. The trajectory shown in fig. 5.1c is utilized to obtain the LiDAR scans
which are then used to evaluate the performance of MA-LOAM, cluster ICP and LOAM.

Figure 5.2 shows the estimated paths by respective algorithms. As there are no scan
model differences along with the lack of dynamic elements, it is the ideal scenario for ICP
algorithms. This is also verified by fig. 5.2.

Even though cluster ICP performs pretty well in this ideal case, it tends to exhibit oscillatory
behavior in general. Also, it is worthwhile to note that the maximum error of cluster ICP is
also relatively higher than MA-LOAM.
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(a) Environment model of Haus FZK with furniture. This
model is used for LiDAR collisions as well

(b) Environment model of Haus FZK without any furni-
ture

(c) Agent trajectory for environment Haus FZK. The agent moves around the house and returns to almost the
same position. This trajectory is used as a baseline, and results are compared to the estimated path of the
odometry algorithm. The trajectory length is ∼54m. The average translational speed is around 1m/s while
the rotational speed is around 0.5 rad/s

Figure 5.1: Haus FZK: Environment models along with the agent trajectory
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(a) Path estimated by MA-LOAM
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(c) Path estimated by standard LOAM

Figure 5.2: Haus FZK, Case A: Comparison of the agent path estimated by different
algorithms when collision and mesh correspondences model is the same

41



Table 5.2: Haus FZK, Case A: Error statistics for different algorithms when the collision
and mesh correspondences model is the same

Error Metric MA-LOAM Cluster ICP LOAM

T
ra

n
sl
a
ti
on

(m
) ϵmax 5.9068 × 10−1 1.0983 3.5747

ϵmean 5.9768× 10−2 2.8855 × 10−2 1.2260
ϵmedian 1.5303× 10−2 9.7140 × 10−3 1.0199
ϵmin 4.0700× 10−4 1.8400 × 10−4 1.6656× 10−1

ϵRMSE 1.2959× 10−1 8.0500 × 10−2 1.4896
ϵSSE 3.4661× 101 1.3654 × 101 4.8395× 103

ϵσ 1.1498× 10−1 7.5150 × 10−2 8.4606× 10−1

R
ot
a
ti
on

(d
eg
)

ϵmax 5.1192 8.7111 3.2931× 101

ϵmean 8.2105× 10−1 4.6259 × 10−1 1.4803× 101

ϵmedian 3.7943× 10−1 5.4208 × 10−2 1.3513× 101

ϵmin 3.5400× 10−3 1.6990 × 10−3 1.5414
ϵRMSE 1.4108 1.1421 1.6918× 101

ϵSSE 4.1083× 103 2.7484 × 103 6.2428× 105

ϵσ 1.1473 1.0442 8.1920

5.3.2 Case B: Different models

The earlier case is straightforward where the collision and mesh correspondences model
are the same. To make it more challenging, fig. 5.1a is used for collisions while fig. 5.1b is
used for mesh correspondences. Due to the lack of furniture, there will be outliers as well.

An avid reader might note that the results of standard LOAM are the same as before as
shown in fig. 5.3c. This result is expected as changing model for mesh correspondences
does not affect LOAM that does not consider mesh feature. A quantitative error analysis is
presented in table 5.3.

Apart from the minimum and maximum errors, the other metrics are pretty close for
MA-LOAM and cluster ICP. Even this environment is not challenging enough as there is
not much difference between the two models apart from furniture, which is also scarce.
More complicated scenarios are explored in the next section, mainly by increasing the
scan model differences and adding dynamic elements.

5.4 Office EG

This environment is based on an office building ground floor. The robot trajectory is
different for each case; therefore, it is not shown. Figure 5.4a shows the environment
model used for mesh correspondences while fig. 5.4b illustrates what the office looks
like after putting the furniture. As the transformation between odometry and world frame
is unknown, Umeyama alignment is used to compare the results. Different cases are
discussed below.
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Figure 5.3: Haus FZK, Case B: Comparison of the agent path estimated by different
algorithms when the collision and mesh correspondences model is different
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(a) Empty office model which is used for mesh correspondences. The doors and windows are filtered
out and not used for feature matching

(b) Actual office with furniture leading to significant differences with environment in fig. 5.4a

(c) Office after a heavy disaster

Figure 5.4: Office EG: Different environment models for office EG
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Table 5.3: Haus FZK, Case B: Error statistics for different algorithms when the collision
and mesh correspondences model is different

Error Metric MA-LOAM Cluster ICP LOAM

T
ra

n
sl
a
ti
on

(m
) ϵmax 5.3914 × 10−1 1.2476 3.5747

ϵmean 1.5582× 10−1 1.4841 × 10−1 1.2260
ϵmedian 1.4352× 10−1 1.4345 × 10−1 1.0199
ϵmin 2.7050× 10−3 5.0400 × 10−4 1.6656× 10−1

ϵRMSE 1.9054 × 10−1 1.9189× 10−1 1.4896
ϵSSE 7.4646× 101 7.4269 × 101 4.8395× 103

ϵσ 1.0966 × 10−1 1.2164× 10−1 8.4606× 10−1

R
ot
a
ti
on

(d
eg
)

ϵmax 7.2590 1.8810× 101 3.2931× 101

ϵmean 1.7124 1.7706 1.4803× 101

ϵmedian 1.2611 1.2157 1.3513× 101

ϵmin 1.5882× 10−2 1.1530 × 10−3 1.5414
ϵRMSE 2.1619 2.6484 1.6918× 101

ϵSSE 9.6091 × 103 1.4148× 104 6.2428× 105

ϵσ 1.3196 1.9696 8.1920

Case A: Empty office with people

This case is primarily focused on adding dynamic elements to the environment. The
collision and mesh correspondences model is the same (fig. 5.4a). In addition, humans
are also walking around, adding dynamic noise. The error statistics are presented in
table 5.4. MA-LOAM performs reasonably well compared to the other two approaches. As
there are no scan model differences, the estimated trajectory of cluster ICP and MA-LOAM
are quite close to each other.

Table 5.4: Office EG, Case A: Error statistics for different algorithms when the collision
and reference model are the same. Additionally, humans are also walking around to add
dynamic elements to the environment

Error Metric MA-LOAM Cluster ICP LOAM

T
ra

n
sl
a
ti
on

(m
) ϵmax 1.0384 × 10−1 1.7403× 10−1 1.1292× 101

ϵmean 2.4164 × 10−2 2.6378× 10−2 2.7997
ϵmedian 1.9869 × 10−2 2.0447× 10−2 1.8646
ϵmin 1.6610 × 10−3 2.2520× 10−3 6.0991× 10−2

ϵRMSE 2.8346 × 10−2 3.2922× 10−2 3.7740
ϵSSE 1.6415 2.2143 2.9098× 104

ϵσ 1.4819 × 10−2 1.9700× 10−2 2.5308

R
ot
a
ti
on

(d
eg
)

ϵmax 4.2922 5.3872 7.0657× 101

ϵmean 6.2659× 10−1 6.2347 × 10−1 3.2584× 101

ϵmedian 4.4893 × 10−1 4.5178× 10−1 2.4573× 101

ϵmin 1.0578 × 10−2 1.6155× 10−2 7.6808
ϵRMSE 8.4693× 10−1 8.3714 × 10−1 3.6960× 101

ϵSSE 1.4654× 103 1.4317 × 103 2.7908× 106

ϵσ 5.6980× 10−1 5.5865 × 10−1 1.7445× 101
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5.4.1 Case B: Furnished office without people

This scenario focuses on significant scan model differences. For the LiDAR collisions,
fig. 5.4b is used while for the mesh correspondences, fig. 5.4a is used. Similar to previous
cases, the performance is evaluated for MA-LOAM, cluster ICP and LOAM.

With the increase in scan model differences, the proposed approach, namely MA-LOAM
performs better. As shown in fig. 5.5b, the estimated path by cluster ICP is quite rough
and oscillatory compared to the computed trajectory of MA-LOAM in fig. 5.5a. Table 5.5
shows errors compared to the ground truth using Umeyama alignment.

Table 5.5: Office EG, Case B: Error statistics for different algorithms when the actual office
is furnished while the reference model is empty

Error Metric MA-LOAM Cluster ICP LOAM

T
ra

n
sl
a
ti
on

(m
) ϵmax 4.0650 × 10−1 5.4152× 10−1 1.8398

ϵmean 1.0304 × 10−1 1.0684× 10−1 6.7989× 10−1

ϵmedian 8.1748× 10−2 8.0983 × 10−2 6.7188× 10−1

ϵmin 1.8232× 10−2 1.0430 × 10−2 1.9383× 10−1

ϵRMSE 1.2204 × 10−1 1.2845× 10−1 7.3924× 10−1

ϵSSE 3.1127 × 101 3.4484× 101 1.1421× 103

ϵσ 6.5396 × 10−2 7.1306× 10−2 2.9021× 10−1

R
ot
a
ti
on

(d
eg
)

ϵmax 8.1035 1.4002× 101 3.3953× 101

ϵmean 1.4361 1.5278 1.7376× 101

ϵmedian 1.1152 1.1699 1.7040× 101

ϵmin 4.5200 × 10−2 6.5393× 10−2 4.1859
ϵRMSE 1.7890 1.9872 1.8794× 101

ϵSSE 6.6892 × 103 8.2533× 103 7.3820× 105

ϵσ 1.0668 1.2708 7.1621

The error metrics favor the proposed methodology and estimate paths closer to the ground
truth. The estimated trajectory also directly affects the mapping part of the SLAM algorithm,
which for this case is LOAM, though that is not the focus of this thesis.

5.4.2 Case C: Office after a disaster without people

This instance is pivoted around adding heavy noise to the collision model. After experi-
encing a disaster, the office contains numerous objects not present in the model used for
mesh correspondences. Specifically, fig. 5.4c is used for collisions while fig. 5.4a is utilized
for mesh correspondences. Table 5.6 presents the translational and rotational errors of
the computed trajectories for each algorithm.

5.4.3 Case D: Office after a disaster with people

This scenario focuses on where the office building experienced a heavy disaster leading
to broken furniture and other obstacles. Also, humans are simulated to add dynamic
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(a) Path estimated by MA-LOAM
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(c) Path estimated by standard LOAM

Figure 5.5: Office EG, Case B: Comparison of the agent path estimated by different
algorithms when the actual office is furnished while the reference model is empty
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Table 5.6: Office EG, Case C: Error statistics for different algorithms when the office
experienced a heavy disaster with no dynamic elements

Error Metric MA-LOAM Cluster ICP LOAM

T
ra

n
sl
a
ti
on

(m
) ϵmax 4.1128 × 10−1 9.7541× 10−1 4.0452

ϵmean 1.3666 × 10−1 1.9965× 10−1 1.6032
ϵmedian 1.2988 × 10−1 1.4740× 10−1 1.2784
ϵmin 7.6810 × 10−3 1.0346× 10−2 4.8978× 10−1

ϵRMSE 1.5186 × 10−1 2.6079× 10−1 1.9003
ϵSSE 6.2500 × 101 1.8431× 102 9.7865× 103

ϵσ 6.6239 × 10−2 1.6779× 10−1 1.0203

R
ot
a
ti
on

(d
eg
)

ϵmax 1.8692 × 101 3.4266× 101 4.1218× 101

ϵmean 3.3606 4.3719 2.3818× 101

ϵmedian 2.5363 2.7548 2.3605× 101

ϵmin 2.0239 × 10−1 3.2532× 10−1 4.3415
ϵRMSE 4.2352 5.9046 2.5624× 101

ϵSSE 4.861 × 104 9.4482× 104 1.7793× 106

ϵσ 2.5775 3.9687 9.4478

elements to the environment. Both these factors lead to increased complexity for solving
the SLAM problem. Once again, for mesh correspondences, model in fig. 5.4a is used.
For the LiDAR collision, fig. 5.4c is utilized for scans.

With the increased complexity of the given scenario, the advantage of the proposed
methodology is self-evident. In a dynamic environment with significant differences between
the collision and mesh correspondences model, MA-LOAM outperforms the other two
approaches. This is also validated by the statistics in table 5.7.

Table 5.7: Office EG, Case D: Error statistics for different algorithms when the office
experienced a heavy disaster and people are walking

Error Metric MA-LOAM Cluster ICP LOAM

T
ra

n
sl
a
ti
on

(m
) ϵmax 4.4241 × 10−1 1.1671 6.6541

ϵmean 1.5684 × 10−1 2.4801× 10−1 3.1568
ϵmedian 1.3766 × 10−1 1.6296× 10−1 2.7186
ϵmin 9.7460 × 10−3 1.0186× 10−2 6.1980× 10−1

ϵRMSE 1.8121 × 10−1 3.3269× 10−1 3.5940
ϵSSE 8.0417 × 101 2.7106× 102 3.1634× 104

ϵσ 9.0766 × 10−2 2.2175× 10−1 1.7181

R
ot
a
ti
on

(d
eg
)

ϵmax 2.0050 × 101 3.7562× 101 5.1889× 101

ϵmean 4.5449 5.3570 3.1333× 101

ϵmedian 3.7739 3.9197 3.0081× 101

ϵmin 3.2762× 10−1 2.4966 × 10−1 6.0391
ϵRMSE 5.5577 7.4653 3.2698× 101

ϵSSE 7.5646 × 104 1.3649× 105 2.6184× 106

ϵσ 3.1988 5.1994 9.3501
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(b) Path estimated by cluster ICP
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(c) Path estimated by standard LOAM

Figure 5.6: Office EG, Case D: Comparison of the agent path estimated by different
algorithms
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Looking at table 5.7, the performance of the proposed MA-LOAM remains consistent
even for complicated situations. The scan model differences and dynamic elements have
adverse effects on the other two algorithms.

5.5 Mapping

So far, the results have been presented in detail for the odometry part, as the main
contribution of this thesis is in that direction. Nonetheless, the mapping result of one of the
cases (section 5.4.2) is shown just for completeness. For mapping, the path estimated by
the odometry module is further optimized, and scans are stitched together to create the
final map of the environment.

(a) Mapping result of MA-LOAM

(b) Mapping result of LOAM

Figure 5.7: Sample of map generated by MA-LOAM and LOAM
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Figure 5.7 shows the computed maps by two different approaches. The maps are color-
coded using their height. The estimated maps should correspond to fig. 5.4c. Ideally,
improving odometry estimates should also increase the mapping accuracy. To compare
the map with the ground truth, the computed map is aligned with the environment model
using the standard ICP algorithm. Then, the average distance of the point cloud to the
underlying environment model is computed. Notice that the cluster ICP has no mapping
part; therefore, its estimated map is not shown. MA-LOAM performs marginally better in
mapping as shown in table 5.8.

Table 5.8: Mapping accuracy of different approaches: The generated map is aligned to the
environment model using standard ICP with an overlap of 90%

Max Distance (m) Error Metric (m) MA-LOAM LOAM

0.1
ϵmean 1.1298 × 10−2 1.3464× 10−2

ϵσ 4.3421× 10−2 4.1858 × 10−2

∞ ϵmean 4.9799 × 10−1 4.9863× 10−1

ϵσ 1.9246 1.9290

5.6 Global Registration

The final element of the proposed pipeline is global registration. As discussed earlier,
a reasonable initial pose estimate is required to compute the mesh features. In a case
where the initial pose is far from the ground truth, the proposed methodology fails. This is
shown in fig. 5.8. Of course, LOAM which does not depend upon any mesh features, is
not influenced by this wrong pose estimate.
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Figure 5.8: Failure of MA-LOAM due to wrong initial pose estimate

For this purpose, different global registration techniques are explored. Unsurprisingly,
traditional approaches usually fail to produce a reasonable estimate in cases of partial
overlap. The case of DGR is more nuanced. While DGR is able to produce a reasonable
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pose estimate for the Haus FZK cases (section 5.3), it fails for the Office EG cases
(section 5.4). The underlying model used for this purpose is trained on the KITTI data
provided in the official implementation. Furthermore, the model is not retrained and is
used as-is. A quantitative analysis of different approaches for Haus FZK is depicted in
table 5.9.

Table 5.9: Global registration using different algorithms

Ground Truth DGRa FGRb RANSACb
m

6.0000 6.0614 5.9426 9.0468
1.5000 1.6082 4.0503 3.1602

5.8800× 10−1 4.7943× 10−1 1.4725 3.3565

ϵtransl 1.6515 × 10−1 2.6999 4.4389

d
eg

0 1.2570 0 −1.6495× 102

0 −9.5035× 10−1 0 1.1508× 101

0 3.4026× 10−1 0 −4.9065× 101

ϵrot 1.6143 0 1.6161× 102

aWith FCGF and voxel size of 30 cm
bUsing Fast Point Feature Histogram (FPFH)

Note that the RANSAC algorithm is based on random selection and can produce different
results given the same input. From table 5.9, it is evident that DGR is able to generalize to
unknown environments without the need for retraining. The pose estimate is close to the
ground truth but still has a relatively high error. In order to refine the estimate, cluster ICP
can be used. Nonetheless, it should be used with caution as it may fail and can lead to
completely unusable results as shown in fig. 5.8.

5.7 Computational Time Analysis

There are a lot of hyperparameters that can affect the computational performance of
MA-LOAM. This section limits itself to just the voxel size as it is the primary parameter
determining the total number of features. The number of features per voxel is limited to
a maximum of 3. Table 5.10 shows the time required to solve the complete odometry
problem for a particular timestamp.

Table 5.10: Average computational time required for computing the mesh features and
solving odometry at a single timestamp. Decreasing voxel size increases the number of
features thus leading to more time consumed for odometry. As a reference, for the same
scenario, |FE | ≈ 180 and |FS | ≈ 300

Voxel Size (m) ∼ |FM| ∼ TFM(ms) ∼ Ttotal(ms)

1 350 20 90
0.5 990 16 120
0.25 2600 14 190
0.1 4700 13 350
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Figure 5.9: Effect of voxel size on computational time and the number of mesh features

When plotted onto a graph and quadratically interpolated in between the points, fig. 5.9
is obtained. As expected, as the voxel size increases, the number of retained mesh
features decreases, leading to a reduction in computational time. If the confidence in the
environment model is high, i.e., when the reality is close to the reference model, the weight
of the mesh features λM can be increased in eq. (4.9) as the voxel size is increased.
Larger voxels should result in more prominent features being retained while the fine detail
is lost. The selection of only large features might be beneficial to reduce the effect of
random noise.
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Chapter 6

Conclusion And Outlook

This section wraps up and goes over the key findings of this thesis, along with their
limitations. Furthermore, some proposals for future work are presented.

6.1 Findings

This thesis mainly dealt with robustly integrating the environment model into the LOAM
framework. In the beginning, in section 1.5, particular questions were posed to define the
outline more concretely. They shall now be addressed explicitly here:

1. What useful information can be extracted from the BIM model?
BIM model, contrary to the standard CAD model, contains semantic information as
well. This extra level of information allows for specific elements to be filtered out. For
example, dynamic elements such as doors and windows might be discarded as they
do not add valuable information for feature matching. Similarly, elements that are not
visible to the sensor, such as glass, can also be filtered out. The BIM model can also
contain temporal information, in which case a time-dependent environment model
can be obtained. Otherwise, the entire environment model can be used.

There are two ways to extract the information from this environment model. A
common method is using Poisson sampling and discretizing the environment given
the maximum number of sampling points. The other method avoids this discretization
and directly uses the geometric information available. In this thesis, both forms are
used. When computing the mesh features for MA-LOAM, the environment model
is not discretized but instead used directly to find the closest point on the mesh.
Conversely, when using DGR for the initial global pose estimate, the environment is
sampled using the said Poisson distribution. The main reason is that the underlying
neural network of DGR expects two point clouds and not a continuous model of the
environment.

2. How can the extracted information be integrated into LOAM algorithm?
The extracted mesh features from the LiDAR along with the environment model
(stored inside a BVH along with the corresponding k-D tree) are used to find point-
to-mesh correspondences pairs. These pairs are then formulated as robust distance
loss and added to the cost function as already discussed in eq. (4.6) and eq. (4.9).
These mesh features are added directly to the odometry module. Better odometry
estimates lead to better map quality, thus improving both.
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3. In what ways can the effect of noise/outliers be minimized? How does it stack up
against the base algorithm?
The effect of outliers on the joint optimization can be adverse. In order to mitigate
this, special care is taken to reduce the outlier’s effect. For example, when clustering
the points in section 4.2.2, if the cluster size is smaller than a threshold, the cluster
is not considered valid and therefore dropped. In the joint optimization (eq. (4.9)),
robust loss functions are used to reduce the effect of outliers. Also, if the distance
between the correspondence pair exceeds a certain threshold for any features, it is
removed. These techniques combined seem to tolerate outliers reasonably well.

4. Is it possible to run the methodology in real-time? What part of the algorithm
contributes the most to execution time?
Addressing this objective is more complex. As already shown in section 5.7, the
execution time is dependent upon many hyperparameters. Limiting the discussion
to only the voxel size, it is possible to run the odometry module at 10Hz if a large
voxel size is selected. The downside is that a large voxel size usually leads to lower
odometry accuracy. To limit the mesh features, perhaps a fixed number of features
can be selected from the computed feature set FM based on a fitness criterion
such as giving importance to features that originated from large clusters or point
descriptors. Usually, most of the time is spent solving the optimization problem.

5. Can the approach generalize to environments where the scan differs significantly
from the model?
The approach can adapt to scan model differences as shown in figs. 5.3a, 5.5a
and 5.6a. Nonetheless, it still assumes that the scale of the environment model is
similar to the actual building. The minimization problem does not correct or account
for scale differences. Also, differences that are smaller in scale, like a scaffold, are
easy to reject. However, bigger differences like false ceilings and partition walls not
in the design model are harder to handle. Nonetheless, the distance-based rejection
method proposed in this thesis explicitly deals with such a scenario.

6.2 Contributions

The work in this thesis integrated the BIM model into SLAM computations. The salient
contributions are as follows:

- A robust strategy is proposed to extract mesh features from a dense point cloud
using voxel grids and an unsupervised clustering algorithm. This approach preserves
the finer details in the point cloud while removing redundant and unreliable points.
The methodology is similar to that of TAZIR et al., 2018. The main difference is that it
is used as a pre-processing step to extract the mesh features and not for matching
two point clouds.
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- An approach for integrating the mesh features into the LOAM framework is presented.
The cost function is modeled as a joint optimization problem that considers the corner,
surface, and mesh features. This joint optimization is similar to OELSCH et al., 2021
but differs significantly in the computation of mesh features and the weighting strategy
used for the optimization.

- To limit the maximum number of features used, a selection strategy is proposed
based on the cluster size and their distance from the sensor. This method allows
to speed up the optimization as there are fewer features while also reducing the
number of outliers.

- As the proposed approach requires a reasonable estimate of the initial pose in the
global frame, DGR CHOY et al., 2020 is employed with minor changes and integrated
into the odometry pipeline.

- The full implementation of this thesis is open-source and available publicly1.

6.3 Outlook

There are many areas of improvement that the proposed approach can benefit from. As
the list of improvements is rather exhaustive, only some of the crucial improvements are
mentioned.

6.3.1 Loop closure

Currently, there is no loop closure technique employed to detect revisits. Currently, most of
the famous SLAM frameworks are graph-based and utilize loop closure (such as google-
cartographer, ORB-SLAM, LSD-SLAM) to reduce errors. Each loop closure detection
allows adding an extra constraint between the poses in the detected loop. This loop
closure reduces the drift in the long term, thus allowing better odometry estimates. This
feature is particularly useful in cases where only a partial or no environment model is
available.

6.3.2 Optimal Feature Weights

In the proposed approach, a feature weighting is suggested in eq. (4.9). For most cases,
all the Lagrangian multipliers are set to 1. A better weighting strategy can be developed. At
the very least, a comparative study can reveal what values work best in different scenarios.
Then, this process can be automated to change weights on the fly.

1https://github.com/darkscyla/MA-LOAM
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6.3.3 Fitness Strategy for Mesh Features

As already discussed (table 5.10), the number of mesh features is usually way higher than
the counterpart edge and surface features. A fitness strategy can be developed to select
only the high fitness score points. To this end, standard point descriptors such as SIFT,
SURF, or ORB might be used. This scoring will come with two significant benefits. The
first one, of course, is allowing only the use of a subset of points making the computations
way faster. The second benefit is having another outlier rejection step, as a low fitness
score will indicate a poor feature.

6.3.4 Model Preprocessing Stage

The methodology proposed extracts the environment from the BIM model and uses it for
point-to-mesh feature correspondences. This process can be significantly sped up without
loss in accuracy if the environment model can be simplified while retaining the essential
details. More often than not, the tiny details in the environment model do not add any
extra value as the LiDAR sensor has limited sensitivity. For example, a sub-millimeter
feature observed even from a relatively near position will not appear as more than a single
point. Retaining such a feature only adds to the computational complexity and does not
improve localization accuracy. A suitable computational geometry algorithm such as vertex
clustering [LOW and TAN, 1997] or incremental decimation [SHEKHAR et al., 1996, HOPPE,
1996, GARLAND and HECKBERT, 1997] can be employed and investigated to improve the
computational time.

6.4 Conclusion

This thesis proposed a robust methodology to integrate the BIM model into the LOAM
framework. In addition to the standard edge and surface features of LOAM, mesh features
are added, and correspondences are found using the underlying environment model.
Special care is taken to remove and reduce the effect of outliers on the whole optimization.
One of the main limitations of the proposed methodology is a reasonable initial global
pose estimate. In a case where the estimated pose is far from reality, the optimization fails
and cannot recover in most cases.

While the proposed algorithm can be improved in many areas, the enhancement in
the accuracy is still quite notable. By utilizing the extra level of information, i.e., the
environment model, odometry can be better estimated. This enhancement, in turn,
improves cartography as well. Special attention is given to utilizing appropriate data
structures to avoid costly lookups. As the mesh features require a reasonable global
pose estimate, an appropriate deep learning methodology DCP is selected among other
alternatives based on its performance and ability to generalize to new environments.
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Using the proposed methodology offers multiple advantages. Most modern buildings have
a corresponding CAD or BIM model, meaning that no additional cost or effort is required
for acquiring the building plan. Therefore, odometry estimates can be improved without
any charge. Furthermore, for some cases, additional sensors may be placed to accurately
determine the agent’s position depending on the localization requirements. In such cases,
the proposed approach can supplement the current pose estimate, thus requiring fewer or
potentially no additional sensors at all. The methodology proposed reduces the overall
drift for the agent’s trajectory. MA-LOAM also seems to perform reasonably well in an
environment with dynamic elements. Scan and mesh correspondences model differences
are also tolerated pretty well. As most environment models do not contain furniture and
multiple other details, the mesh correspondence model will always be different from reality.
The ability to deal with such differences allows the proposed approach to work in a variety
of scenarios. Lastly, the proposed methodology is entirely open source. This should allow
interested individuals to quickly try out the methodology and evaluate the fitness for their
use case.
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Appendix A

Hardware / Setup

The proposed approach is tested on the following machine:

- CPU: Intel Core i7 9750H

- RAM: 32 GB

- GPU: RTX 2060

- OS: Linux 20.04 running on WSL Windows 11

GPU was initially used to simulate the LiDAR scans, but due to a known bug in Gazebo
simulator1, it is was dropped and is no longer used for any computations. This problem
is shown in fig. A.1. The optimization problem is solved solely on the CPU as well. The
proposed algorithm should perform better in cases where simultaneously running the
simulation is not necessary, for example, a real LiDAR scanner or pre-recorded data.

(a) LiDAR scan computed using CPU

(b) LiDAR scan computed using GPU

Figure A.1: CPU and GPU return different results for the same scan. The CPU version is
actually correct while the GPU version is distorted as the underlying environment is axis
aligned

1See here
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