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Chapter 1

Introduction

In this master’s thesis we use different approaches and methods to analyze the Sachs

dataset (Sachs et al. (2005)). The Sachs dataset consists of 14 measurements of human

T-cells. In each of these experiments, external influence was applied to certain phosphory-

lated proteins and phospholipids. In addition, these variables influence each other, mak-

ing graphical models a useful approach for the analysis. Given the generation of the data

from 14 different experiments, methods based on mixture densities are also a promising

approach we are pursuing.

In the next chapter we will introduce the theoretical background on which the work of

the following chapters is based. In the third chapter, we will introduce the Sachs dataset

and and briefly explain the biochemical effects behind the data. We also explain the

necessary preprocessing we need to apply to the data before the following chapters. In the

fourth chapter, we will start by modeling the entire data set consisting of all experiments

as pooled data. For this purpose, we first use a multivariate Gaussian approach, then

work with a vine copula model and finally with D-vine regression models introduced

by Kraus and Czado (2017). In the fifth chapter, we first use Gaussian mixture models

and later vine copula mixture models introduced by Sahin and Czado (2021) to find

substructures in the Sachs dataset. Especially the results of the vine copula mixture

models are analyzed in greater detail, as they are a major part of this thesis. In the sixth

chapter, we focus on the causal analysis of the data. In every experiment and thus in every

single observation, external influence was applied to the measurements. It is therefore a

particularly exciting idea to be able to build models where all external influences are

removed. To do this, we fit D-Vine regression models on certain subsets where specific

variables were not influenced. Since Gaussian models are commonly used in previous

research, we allow different marginals and copulas and discuss the Gaussian results to

them of non-Gaussian copula based D-vine models.
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Chapter 2

Theoretical background

2.1 Marginal distributions

We would like to start by defining all marginal distributions used in this thesis and giving

their probability density functions f. Except for the multivariate normal distribution, all

distributions are univariate. To get a better understanding of the distributions, we will

additionally plot the densities of all univariate distributions except from the χ2 distribu-

tion (which has only one parameter, and which we do not use in VCMM but for tests)

with mean = 2 and variance = 3.

Definition 2.1 (Univariate normal distribution). A random variable X ∈ R follows the

univariate normal distribution, if its probability density function in x is

f(x;µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
. (2.1)

with mean µ ∈ R and variance σ ∈ R+. Then we denote X ∼ N (µ, σ2). The special

case of N (0, 1) - i.e. µ = 0 and σ = 1 - is called the standard normal distribution. The

distribution function of N (0, 1) is denoted as Φ(x) and the density as φ(x).

Definition 2.2 (Multivariate normal distribution). A random vector X = (X1, ..., Xd)
T ∈

Rd follows the multivariate normal distribution, if the probability density function of X in

x is

f(x;µ,Σ) =
1√

(2π)ddet(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (2.2)

with mean vector µ = (µ1, ..., µd)
T ∈ Rd and variance matrix Σ ∈ Rd×d with det Σ 6= 0.

Then we denote X ∼ Nd(µ,Σ).

2



CHAPTER 2. THEORETICAL BACKGROUND 3

Definition 2.3 (Gamma distribution). A random variable X ∈ R+ is gamma distributed,

if its probability density function in x is given by

f(x; a, λ) =
λa

Γ(a)
xa−1e−λx (2.3)

for parameters a ∈ R and λ ∈ R. The gamma-function Γ and more detailed information

about the gamma distribution can be found in Czado et al. (2011).

Definition 2.4 (χ2-distribution). A random variable X ∈ R+ is χ2-distributed, if its

probability density function in x is given by

f(x; k) =
xk/2−1e−x/2

2k/2Γ(k/2)
(2.4)

with k ∈ N degrees of freedom. The χ2-distribution is a special case of the gamma distri-

bution, as one can set a = k
2

and λ = 1
2
.

Definition 2.5 (Student’s t distribution). A random variable X ∈ R follows the Student’s

t distribution, if its probability density function in x is given by

f(x; ν) =
Γ
(
ν+1

2

)
√
νπ + Γ

(
ν
2

) (1 +
x2

ν

)− ν+1
2

(2.5)

with ν ∈ R+ degrees of freedom. In this definition the expected value is E [X] = 0. By

transforming x = (x̃− µ) in the density function a location parameter can be added.

Definition 2.6 (Logistic distribution). A random variable X ∈ R follows a logistic dis-

tribution, if its probability density function in x is given by

f(x;µ, s) =
e−(x−µ)/s

s (1 + e−(x−µ)/s)
2 (2.6)

with mean µ ∈ R and scale parameter s ∈ R+.

Definition 2.7 (Log-normal distribution). A random variable X ∈ R follows a log-

normal distribution, if the random variable Y = ln(X) is normal distributed. This leads

to a probability density function of X in x

f(x;µ, σ2) =
1

x
√

2πσ2
exp

(
−(ln(x)− µ)2

2σ2

)
(2.7)
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with parameters µ ∈ R and σ ∈ R+.

Definition 2.8 (Log-logistic distribution). A random variable X ∈ R follows a log-logistic

distribution, if the random variable Y = ln(X) follows a logistic distribution. This leads

to a probability density function of X in x

f(x;α, β) =
(β/α)(x/α)β−1

(1 + (x/α)β)2 exp

(
−(ln(x)− µ)2

2σ2

)
(2.8)

with scale parameter α ∈ R+ and shape parameter β ∈ R+.

Definition 2.9 (Skew Student-t distribution). According to Fernandez et al. (1996) a

random variable X ∈ R is skew t distributed, if its probability density function in x is

given by

f(x;µ, τ 2, ν, γ) = 2

Γ

(
ν + 1

2

)
Γ
(ν

2

)√
πν

τ

γ +
1

γ[
1 +

τ 2(x− µ)2

ν

{
γ2I(−∞,0)(x− µ) +

1

γ2
I[0,∞)(x− µ)

}]1− ν
2

(2.9)

with location parameter µ ∈ R, scale parameter τ ∈ R+, degrees of freedom ν ∈ R+ (i.e.

the shape parameter) and skewness parameter γ ∈ R+. There are also other definitions

of the skew students t distribution that use fewer parameters (for example in Azzalini et

al. (2013)). However, we use this skew t distribution with four parameters in the models

later.

Definition 2.10 (Skew normal distribution). According to Azzalini et al. (2013) a random

variable X ∈ R is skew t distributed, if its probability density function in x is given by

f(x;µ, τ 2, α) =
2

τ
φ

(
x− µ
τ

)
Φ

(
α
x− µ
τ

)
(2.10)

with location parameter µ ∈ R, scale parameter τ ∈ R+, and slant parameter α ∈ R. φ and

Φ are the density and distribution function of the univariate standard normal distribution.
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(a) Univariate normal distribution (b) Gamma distribution

(c) Student’s t distribution (d) Log-normal distribution

(e) Logistic distribution (f) Log-logistic distribution

(g) Skew Student-t distribution (h) Skew normal distribution

Figure 2.1: Density functions of different distributions with E [X] = 2 and Var [X] = 3.
The red and green lines in the skew Student-t distribution have parameters γ = 0.25
(red) and γ = 1.5 (green) and in the skew normal distribution α = 0.5 (red) and α = 1.5
(green).
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2.2 Copulas

In this chapter we introduce the basics of copulas, which are a good way to model mul-

tivariate distributions. If not stated differently the following definitions and concepts can

be found in Czado (2019).

2.2.1 Introduction to copulas

Definition 2.11 (Probability integral transform (PIT)). Let X be a continuous random

variable following a distribution F and let x be an observed value of X. Then u := F (x)

is called the probability integral transform (PIT) at x.

Furthermore the random variable U := F (X) follows a uniform distribution, as it

holds for every u ∈ [0, 1]:

P (U ≤ u) = P (F (X) ≤ u) = P
(
X ≤ F−1(u)

)
= F

(
F−1(u)

)
= u

Definition 2.12 (x-scale, u-scale, z-scale). Let X = (X1, ..., Xd)
T ∈ Rd be random vector

following a multivariate distribution F . Furthermore let Fj be the corresponding marginal

distribution functions for j = 1, ..., d and let Φ be the cumulative distribution function

of the standard normal distribution N (0, 1). We can create the random vectors U =

(U1, ..., Ud)
T := (F1(X1), ..., Fd(Xd))

T and Z = (Z1, ..., Zd)
T := (Φ−1(U1), ...,Φ−1(Ud))

T
,

s.t. for all j = 1, ..., d, Uj is uniform and Zj is standard normal distributed.

If x is now an observed value of X, then we analyze this observation with x on x-scale,

with u on u-scale and with z on z-scale.

Definition 2.13 (Copula and copula density). A d-dimensional copula C is a multivariate

distribution function

C : [0, 1]d → [0, 1]

with uniformly distributed marginals. By partial differentiation we can obtain the copula

density c for u ∈ [0, 1]d:

c(u1, ..., ud) =
∂d

∂1, ..., ∂d
C(u1, ..., ud) (2.11)

Theorem 2.14 (Sklar’s Theorem). It was proven by Sklar (1959), that for a X =

(X1, ..., Xd)
T ∈ Rd random vector following a multivariate distribution F with marginal
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distribution functions Fj for j = 1, ..., d, the joint distribution function can be expressed

as

F (x1, ..., xd) = C (F1(x1), ..., Fd(xd)) (2.12)

for some d-dimensional copula C. Let c be the copula density of C, then the density f of

F is given by

f(x1, ..., xd) = c (F1(x1), ..., Fd(xd)) f1(x1)...fd(xd). (2.13)

It also holds for the inverse: the copula C for a multivariate distribution F with

marginal distribution functions Fj for j = 1, ..., d can be expressed as

C(u1, ..., ud) = F
(
F−1

1 (u1), ..., F−1
d (ud)

)
(2.14)

and the copula density c is given by

c(u1, ..., ud) =
f
(
F−1

1 (u1), . . . , F−1
d (ud)

)
f1(F−1

1 (u1))...fd(F
−1
d (ud))

. (2.15)

In later chapters, we will measure the dependence of variables more than once us-

ing Kendall’s τ , which was developed by Kendall (1938). Kendall’s τ has the advantage

over other dependence measures that it is rank-based and thus invariant to monotone

transformations of the marginals.

Definition 2.15 (Kendall’s tau). Let X1 and X2 be two continuous random variables and

let (X11, X12) and (X21, X22) be independent and identically distributed copies of (X1, X2).

The Kendall’s τ between (X1, X2) is defined as

τ(X1, X2) = P((X11 −X21)(X12 −X22) > 0)− P((X11 −X21)(X12 −X22) < 0)

Theorem 2.16 (Kendall’s tau expressed in terms of the copula). Let (X1, X2) be two

continuous random variables following the joint distribution F and the marginal distribu-

tions F1 and F2 respectively. Let for these the copula C be defined as in Equation 2.14.

Then Kendall’s τ can be expressed as

τ(X1, X2) = 4

∫
[0,1]2

C(u1, u2)dC(u1, u2)− 1

The proof for this theorem can be found in Czado (2019).

Definition 2.17 (Upper and lower tail dependence). Let (X1, X2) be two continuous

random variables following the joint distribution F and the marginal distributions F1 and



CHAPTER 2. THEORETICAL BACKGROUND 8

F2 respectively. Let for these the copula C be defined as in Equation 2.14. Then we call

λupper = lim
t→1−

P
(
X2 > F−1

2 (t)|X1 > F−1
1 (t)

)
= lim

t→1−

1− 2t+ C(t, t)

1− t

the uppertail dependence coefficient and

λlower = lim
t→0+

P
(
X2 ≤ F−1

2 (t)|X1 ≤ F−1
1 (t)

)
= lim

t→0+

C(t, t)

t

the lower tail dependence coefficient.

Definition 2.18 (Rotated copulas). Let c(·, ·) be the density of a bivariate copula. The

densities of its (counterclockwise) rotations are given by

90◦ : c90(u1, u2) = c(1− u2, u1)

180◦ : c180(u1, u2) = c(1− u1, 1− u2)

270◦ : c270(u1, u2) = c(u2, 1− u1)

Theorem 2.19 (Conditional copula). Let C be a copula. Then the conditional copula is

given by

C1,...,m|m+1,...,d(u1, ..., um|vm+1, ..., vd) =
∂d−m

∂m+1, ..., ∂d
C(u1, ..., ud)|um+1=vm+1,...,ud=vd .

Proof: With Equation (2.11) we can show

C1,...,m|m+1,...,d(u1, ..., um|vm+1, ..., vd) =

∫ u1

0

...

∫ um

0

c(v1, ..., vd)dv1...dvm

=

∫ u1

0

...

∫ um

0

∂d

∂1, ..., ∂d
C(v1, ..., vm, vm+1, ..., vd)dv1...dvm

=
∂d−m

∂m+1, ..., ∂d
C(u1, ..., ud)|um+1=vm+1,...,ud=vd .

(2.16)
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2.2.2 Bivariate copulas

In this subchapter we want to introduce the bivariate copulas, which will be used directly

in the following chapters, or which will be used to construct multivariate copulas using

vine tree structures.

Example 2.20 (Bivariate independence copula). Let U1 and U2 be independent random

variables following a uniform distribution on [0, 1].Then the bivariate independence copula

is defined as

C(u1, u2) = P(U1 ≤ u1, U2 ≤ u2) = u1u2. (2.17)

The following bivariate Gaussian and bivariate Student’s t copula are elliptical copulas.

With Equation (2.14) these copulas can be easily constructed.

Example 2.21 (Bivariate Gaussian copula). Let ΦR be the bivariate standard normal

distribution function with zero mean vector, unit variance and correlation ρ. Then the

bivariate Gaussian copula is given by

C(u1, u2;R) = Φρ

(
Φ−1(u1),Φ−1(u2)

)
. (2.18)

Example 2.22 (Bivariate Student’s t copula). Let t(·, ·; ν, ρ) be the density of the bivariate

Student’s t distribution function with ν degrees of freedom, zero mean, and correlation ρ.

Let Tν be the univariate Student’s t distribution function with ν degrees of freedom and

zero mean and tν be its density. Then the bivariate Student’s t copula is given by

C(u1, u2; ν, ρ) =

∫ u1

0

∫ u2

0

t(T−1
ν (v1), T−1

ν (v2); ν, ρ)

tν(T−1
ν (v1))tν(T−1

ν (v2))
dv1dv2

=

∫ T−1
ν (u1)

−∞

∫ T−1
ν (u2)

−∞
t(x1, x2; ν, ρ)dx1dx2

(2.19)

Definition 2.23 (Bivariate Archimedean copula). Let φ : [0, 1]→ [0,∞] be a continuous,

strictly monotone decreasing, and convex function with φ(1) = 0. Then

C(u1, u2) = φ[−1](φ(u1) + φ(u1))

is with the pseudo inverse function φ[−1] : [0,∞]→ [0, 1] a copula.

φ[−1](t) :=

{
φ−1(t) , 0 ≤ t ≤ φ(0)

0 , φ(0) ≤ t ≤ ∞
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We call C a bivariate Archimedean copula with generator φ.

Example 2.24 (Bivariate Clayton copula). The bivariate Clayton copula is defined as

C(u1, u2; δ) = (u−δ1 + u−δ2 − 1)−
1
δ

with dependence parameter 0 < δ <∞.

Example 2.25 (Bivariate Gumbel copula). The bivariate Gumbel copula is defined as

C(u1, u2; δ) = exp
(
−
(
(− log u1)δ + (− log u2)δ

)− 1
δ

)
with dependence parameter δ ≥ 1.

Example 2.26 (Bivariate Frank copula). The bivariate Frank copula is defined as

C(u1, u2; δ) = −1

δ
log

(
1− (1− e−δu1)(1− e−δu2)

(1− e−δ)

)
with dependence parameter δ ∈ [−∞,∞] \ {0}.

Example 2.27 (Bivariate Joe copula). The bivariate Joe copula is defined as

C(u1, u2; δ) = 1−
(
(1− u1)δ + (1− u2)δ − (1− u1)δ(1− u2)δ

)− 1
δ

with dependence parameter δ ≥ 1.

Example 2.28 (Bivariate BB1 copula). Assume the function η(s) = η
(BB1)
δ,θ (s) = (1 +

s
1
δ )−

1
θ . Then the bivariate BB1 copula is defined as

C(u1, u2; δ, θ) = η(η−1(u1) + η−1(u2))

with parameters δ ≥ 1 and θ > 0.

Example 2.29 (Bivariate BB7 copula). Assume the function η(s) = η
(BB7)
δ,θ (s) = 1− (1−

(1 + s)−
1
δ )

1
θ . Then the bivariate BB7 copula is defined as

C(u1, u2; δ, θ) = η(η−1(u1) + η−1(u2))

with parameters δ > 0 and θ ≥ 1.
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2.2.3 Vine copulas

Definition 2.30 (Graph). A graph G = (V , E) is a pair of a set of nodes V and a set of

edges E ⊂ V × V.

Definition 2.31 (Path and Cycle). Consider a graph G = (V , E) with |V| ≥ 2. A path

in G is a sequence of (at least two) nodes X1, ..., Xd ∈ V, such that there is an edge

(Xi, Xi+1) ∈ E for all i = 1, ..., d− 1. A cycle is a path X1, ..., Xd with X1 = Xd.

Definition 2.32 (Tree). Consider a graph G = (V , E). If any two nodes X, Y ∈ V are

connected by a unique path, then we call G a tree.

Definition 2.33 (Regular (R-) vine tree sequence). The seqence of trees T = (T1, ..., Td−1)

is a regular vine tree sequence on d elements if:

(i) Tj = (Vj, Ej) is a tree for all j = 1, ..., d− 1 .

(ii) T1 = (V1, E1) has node set V1 = {1, ..., d}.

(iii) For j ≥ 2, Tj = (Vj, Ej) has node set Vj = Ej−1.

(iv) For all j = 2, ..., d− 1, it holds |a ∩ b| = 1, if {a, b} ∈ Ej.

Example 2.34 (Four dimensional R-vine tree sequence). The following seqence of trees

T = (T1, ..., Td−1) is a R-vine tree sequence:

T1 : V1 = {1, 2, 3, 4}
E1 = {{1, 2}, {2, 3}, {3, 4}}

T2 : V2 = {{1, 2}, {2, 3}, {3, 4}}
E2 = {{{1, 2}, {2, 3}}, {{2, 3}, {3, 4}}}

T3 : V3 = {{{1, 2}, {2, 3}}, {{2, 3}, {3, 4}}}
E3 = {{{{1, 2}, {2, 3}}, {{2, 3}, {3, 4}}}}

Definition 2.35 (Complete union, conditioning set and conditioned sets). The complete

union of an edge e ∈ Ei is defined by

Ae = {j ∈ V1|∃e1 ∈ E1, ..., ei ∈ Ei s.t. j ∈ e1 ∈ ... ∈ ei ∈ e}.
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The conditioning set of an edge e = {a, b} is given by

De = Aa ∩ Ab,

and the conditioned sets of are given by

Ce,a = Aa \De and Ce,b = Ab \De.

Definition 2.36 (Pair copula). Let e = {a, b} ∈ Ei be an edge. Then we abbreviate the

copula CCe,aCe,b;De with Ce and its density cCe,aCe,b;De with ce. We call Ce a pair copula.

Definition 2.37 (C- and D-vine tree sequence). We call a R-vine seqence T = (T1, ..., Td−1)

� C-vine sequence, if in each tree Ti there is a node r ∈ Vi (which we call root node),

s.t. |{e ∈ Ei|r ∈ e}| = d− i.

� D-vine sequence, if we have |{e ∈ Ei|n ∈ e}| ≤ 2 for each node n ∈ Vi.

Definition 2.38 (R-vine distribution). Consider a d-dimensional random vector X =

(X1, ..., Xd) with distribution F . It has a regular vine distribution, if there is a triplet

(F , T ,B), for which the following holds:

(i) F = (F1, ..., Fd) is a vector of continuous invertible marginal distribution functions.

For each i = 1, ..., d, Fi is the marginal distribution of Xi.

(ii) T = (T1, ..., Td−1) is a R-vine tree sequence.

(iii) B = {Ce|e inEi, i = 1, ..., d− 1} is a set of pair copulas.

(iv) Ce ∈ B, which is the copula associated with the conditional distribution of XCe,a and

XCe,b given XDe = xDe, does not depend on the specific value of xDe.

Theorem 2.39 (Existence of a R-vine distribution). Let (F , T ,B) be a triplet , which

fullfilles (i)-(iii) of Definition 2.38. Then there is a unique d dimensional distribution F

with density

f1,...,d (x1, ..., xd) = f1(x1) · ... · fd(xd)

·
d−1∏
i=1

∏
e∈Ei

cCe,aCe,b;De
(
FCe,a|De

(
xCe,a |xDe

)
, FCe,b|De

(
xCe,b|xDe

))
,

(2.20)
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s.t. for each e = {a, b} ∈ Ei the distribution function of XCe,a and XCe,b given XDe = xDe

is given by

FCe,aCe,b;De
(
xCe,a , xCe,b|xDe

)
= CCe,aCe,b;De

(
FCe,a|De

(
xCe,a |xDe

)
, FCe,b|De

(
xCe,b |xDe

))
.

The proof for Theorem (2.39) can be found in Bedford and Cooke (2002).
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2.3 Clustering

2.3.1 Mixture models

Definition 2.40 (Mixture model). Assume a d-dimensional random vector X = (X1, ..., Xd)
T

following a distribution with density

f(x;η) =

g∑
j=1

πjfj(x;ψj) (2.21)

in a realisation x = (x1, ..., xd)
T , where g ∈ N, πj ∈ (0, 1) for j = 1, ..., g and

∑g
j=1 πj = 1.

Then we call g the number of components, πj the mixture weights (or mixing propor-

tions), fj(x;ψj) the density of the jth component and f a mixture density. The parameter

η = (η1, ..., η1)T with ηj = (πj,ψj)
T for j = 1, ..., g contains all model parameters.

The parameters and the densities of the different components of mixture densities

can be defined in may different ways. In the following chapters, we will often use the

vine copula mixture model and the Gaussian mixture model. In the vine copula mixture

model the densities of the components are densities of R-vine distributions, i.e. they are

of the form given in Equation (2.20). In a vine copula mixture model the parameter ψj

contain both the copula parameters and the marginal parameters of the jth component.

In the Gaussian mixture model the densities of the components are multivariate Gaussian

distributions as defined in Equation (2.2) i.e. it holds fj(x;ψj) = Nd(x;µj,Σj). At this

point we should familiarize ourselves with the parameterization of the covariance matrices

Σj in multivariate normal distributions. We can write the covariance matrix of a compo-

nent j in the form Σj = λjDjAjD
T
j , where λj = det(Σj)

1
d ∈ R, Dj ∈ Rd×d is the matrix

of eigenvectors of Σj and Aj ∈ Rd×d is a diagonal matrix. λj controls the volume, Aj

the shape and Dj the orientation. Now one can estimate λj, Aj and Dj for each cluster

separately or use the same for all clusters, which means less computational effort and

fewer parameters, but also less flexibility. This results in various characterizations, which

are listed in Table 2.1. More details on the parameterizations of GMMs can be found in

Celeux and Govaert (1995). More details on the vine copula mixture models can be found

in Sahin and Czado (2021).
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Identfier Parameterizations Distribution Volume Shape Orientation
EII λI Spherical equal equal
VII λjI Spherical variable equal
EEI λA Diagonal equal equal coordinate axes
VEI λjA Diagonal variable equal coordinate axes
EVI λAj Diagonal equal variable coordinate axes
VVI λjAj Diagonal variable variable coordinate axes
EEE λDADT Ellipsoidal equal equal equal
EEV λDjAD

T
j Ellipsoidal equal equal variable

VEV λjDjAD
T
j Ellipsoidal variable equal variable

VVV λjDjAjD
T
j Ellipsoidal variable variable variable

Table 2.1: Parameterisations of the within-component covariance matrix Σj. (Source:
Scrucca L. et al. 2016, p.8)
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2.3.2 Model selection

After we have fitted different models with the data, we want to compare these. In this

subsection we will therefore discuss different ways of finding the best model. At first

we consider the Kullback-Leibler information criterion (KLIC) of Kullback and Leibler

(1951), the Akaike information criterion (AIC) of Akaike (1973) and the Bayesian infor-

mation criterion (BIC) of Schwarz (1978). Subsequently, we deal with approaches from

test theory, which are the likelihood ratio test and the Vuong test of Vuong (1989).

Definition 2.41 (Kullback-Leibler information criterion). Let X be a random vector

following the true distribution with density h0 and E0 the expected value with respect to

the true distribution h0(x). f(x | θ̂) in the approximation to h0(x) with the estimated

parameter θ̂.

KLIC(h0, f, θ̂) = E0 [log h0(X)]− E0

[
log f(X | θ̂)

]
(2.22)

The KLIC measures the ”distance” between the true distribution and our modeled

distribution. The obvious goal is to minimize this distance. As the first term is constant,

we can reduce this approach to maximizing E0

[
log f(X | θ̂)

]
. Since the true distribution

is unknown we can not compute expected value, but approximate the it with the observed

data. This leads to the method of maximum likelihood estimation (MLE).

Since the maximum likelihood estimator only considers the fit and does not take into

account any other information about the model or the data, comparison criteria like the

AIC and the BIC were established. Both consist of the log-likelihood and a penalty term,

which penalizes the number of parameters in the model to prevent overfitting. The BIC

also uses the sample size of the dataset.

Definition 2.42 (Akaike information criterion). Let f(X | θ̂) be the density of our model

with the estimate θ̂ of θ to the observations xi, i = 1, ..., n. k is the number of parameters

i.e. the dimension of θ. Then the Akaike information criterion is given by

AIC = −2
n∑
i=1

log f(X | θ̂) + 2k (2.23)

Definition 2.43 (Bayesian information criterion). Let f(X | θ̂) be the density of our

model with the estimate θ̂ of θ to the observations xi, i = 1, ..., n. k is the number of

parameters i.e. the dimension of θ. Then the Bayesian information criterion is given by

BIC = −2
n∑
i=1

log f(X | θ̂) + log(n)k (2.24)
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Clearly one minimizes the AIC or BIC to find the best-fitting parameter θ̂ for θ.

Besides the straight approaches of simply choosing the model with the highest like-

lihood or the smallest AIC or BIC, one could compare models by testing whether the

advantage that one model has over the other is significant. For this reason, we would now

like to study the Likelihood Ratio Test (LRT) following McLachlan (1987) and the Vuong

test following Vuong (1989).

Likelihood Ratio Test Let Θ be a parameter space and X be a random vector with

density functions f(· | θ),θ ∈ Θ. Furthermore let Θ0 ⊂ Θ and Θ1 = Θ\Θ0 be subspaces.

Then the LRT tests the hypothesis

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1.

Therefore we compute the maximum likelihood estimators θ̂ for θ under θ ∈ Θ and θ̂0

for θ under θ ∈ Θ0 and the test statistic

λ(x) = 2 log

[
f(x | θ̂)

f(x | θ̂0)

]
= 2 log

[
supθ∈Θ f(x | θ)

supθ∈Θ0
f(x | θ)

]
(2.25)

The log and the multiplication with 2 is necessary, so that statistic is under the null

hypothesis asymptotically chi-square distributed with degrees of freedom df = dim(θ̂)−
dim(θ̂0) as shown by Wilks (1938).

Besides Wilks theorem, in the context of classification problems and latent class mod-

els, the asymptotic distribution of the test statistic λ can be assesed by bootstraping it.

We will do this in the applied chapters below to find the optimal number of components

g ∈ N for a mixture model:

(i) Therefore we start with fitting two models f0(· | θ̂0) and f1(· | θ̂1) under the null

hypotheses H0 : g = g0 vs. the alternative H1 : g = g1 for g1 = g0 + 1 to the full

observed data x
∼obs

.

(ii) We compute the LRT statistic λobs for the models based on the observed data x
∼obs

.

(iii) Then we assume H0 holds and sample independently from f0(· | θ̂0) datasets x
∼b

,

b = 1, ..., B .

(iv) For each of these bootstrap-datasets x
∼b

we fit one model under H0 and one under

H1 and compute the LRT statistic λb for them.
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(v) Finally the p-value of the test is the quantile of λobs of the ordered bootstrap replica-

tions λb, b = 1, ..., B. I.e. if there are j bootstrap replications λb, b = 1, ..., B smaller

than λobs, then it holds p-value=
j

B + 1
.

Vuong Test Let X be a random vector following a true distribution with density h0.

Let E0 be the expected value regarding the true density h0. Assume we have fitted two

models f(· | θ̂f ) and g(· | θ̂g) with the unique maximum likelihood estimates θ̂f and

θ̂g, which are interior points of Θf and Θg. Furthermore logf and logg must be in h0-

almost all x twice continuously differentiable on Θf and Θg and the respective derivatives

are in h0-almost all x dominated by h0 integrable functions. Also in h0-almost all x are

(log f(x | ·))2 and (log g(x | ·))2 dominated by h0-integrable functions. More details and

explanations on these regularity conditions can be found in Vuong (1989).

Then the Vuong test tests the hypothesis

H0 : E0

[
log

f(X | θ̂f )
g(X | θ̂g)

]
= 0

meaning the models are equivalent against

H1 : E0

[
log

f(X | θ̂f )
g(X | θ̂g)

]
> 0

meaning the model f is better then model g , or

H2 : E0

[
log

f(X | θ̂f )
g(X | θ̂g)

]
< 0

meaning the model g is better then model f .

For the unadjusted Vuong test we go the following steps:

(i) For all observations xi , i = 1, .., n we compute mi = log
[
f(Xi|θ̂f )

g(Xi|θ̂g)

]
.

(ii) We compute

LRn(θ̂f , θ̂g) =
n∑
i=1

mi (2.26)

(iii) We compute ω̂2 = 1
n

∑n
i=1

(
mi − 1

n
LRn(θ̂f , θ̂g)

)2

(iv) Compute the test statistic

ν =
LRn(θ̂f , θ̂g)√

nω̂2
(2.27)
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(v) In Vuong (1989) it is shown, that under regularity conditions

1

n
LRn(θ̂f , θ̂g)

a.s.−−→ E0

[
log

f(X | θ̂f )
g(X | θ̂g)

]

and

ω̂2 a.s.−−→ var0

[
log

f(X | θ̂f )
g(X | θ̂g)

]
.

Furthermore and most important it is shown for nonnested but also for overlapping

models, that ν is asymptoticaly standard normal distributed under H0. For that

reason we can now reject H0 in favor of H1, if ν > Φ−1(1− a
2
), or reject H0 in favor

of H2, if ν < Φ−1(1− a
2
).

For the adjusted Vuong test we change the log-likelihood ratio by adding a term

penalizing the number of parameters and the number of observations:

˜LRn(θ̂f , θ̂g) = LRn(θ̂f , θ̂g)−Kn(f, g) (2.28)

Let k1 = dim(θ̂f ) and k2 = dim(θ̂g) be the numbers of parameters in f and g. Then

two possible correction factors are the Akaike correction KA
n = k1 − k2 and the Schwarz

correction KS
n = log(n)

2
(k1 − k2). These are inspired by the AIC and the BIC. Due to the

division by n it is obvious, that

ν̃ =
˜LRn(θ̂f , θ̂g)√

nω̂2

follows the same asymptotical distribution as the unadjusted ν under H0. I.e. ν̃ ∼ N (0, 1).

Therefore the last step of adjusted Vuong test is similar to the unadjusted.
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2.4 Modeling densities with directed acyclic graphs

In Chapter 2.2.3 we have already introduced graphs, pathes and cycles. In this chapter we

introduce more basic graph terminology and explain how directed acyclic graphs can be

used to model densities. The most of the following definitions and concepts can be found

in Peters et al. (2017) and Koller and Friedman (2009).

Definition 2.44 (Directed edge and directed graph). Consider a graph G = (V , E) with

X, Y ∈ V. A pair of nodes can be connected by a directed or undirected edge. We say that

there is an undirected edge between two nodes X and Y if (X, Y ) ∈ E and (Y,X) ∈ E.

Analogous we say that there is an directed edge between X and Y if (X, Y ) ∈ E and

(Y,X) 6∈ E, or (Y,X) ∈ E and (X, Y ) 6∈ E. We call G a directed graph, if all its edges are

directed.

Definition 2.45 (Parent and child nodes). Consider a graph G = (V , E) with X, Y ∈ V.

If (X, Y ) ∈ E and (Y,X) 6∈ E, then we call X a patent node of Y and Y a child node of

X. We call π (Y ) the set of parent nodes of Y .

Definition 2.46 (Directed Acyclic Graph (DAG)). A graph G = (V , E) is called a Directed

Acyclic Graph (DAG), if it is a directed graph and it contains no cycles.

Given this background, we are now using DAGs for modeling densities: Let V =

{X1, ..., Xd} be a set of random variables with a joint density f1,...,d. Now consider the

decomposition

f1,. . . ,d (x1, . . . , xd) = fd|1,...,d−1 (xd|x1, ..., xd−1) f1,...,d−1 (x1, ..., xd−1)

= ... =

[
d∏
i=2

fi|1,...,i−1 (xi|x1, ..., xi−1)

]
f1(x1)

(2.29)

which has already been discussed by Czado (2019), among others. Now we find sets

Pi ⊂ {1, ..., i− 1} such that

f(xi|x1, ..., xi−1) = f (xi|{xj : j ∈ Pi})

for all i = 1, ..., d and define π (Xi) = {Xj : j ∈ Pi}. Due to the Markov assumptions it

does not have to be π (Xi) = {X1, ..., Xi−1} for i = 1, ..., d.

Thus, we can construct a DAG on a set of random variables. The topological order

of the random variables can be optimized mathematically or with prior knowledge. We
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are doing both in the Chapters 4.3 and 6. In these chapters we are working with D-vine

copula regression models as previously Czado and Scharl (2021) did, and whose concept

was first developed for by Kraus and Czado (2017). There the conditional density of a

random variable Xi, given its parent nodes π (Xi) = {X(i)
1 , ..., X

(i)
di
}, is

f (xi|π (Xi) = π (xi)) =

[
di−2∏
k=1

ci,k;1:k−1

]
· ci,di · f (xi)

with ci,di = ci,di

(
F (xi), F (x

(i)
di

)
)

and

ci,k;1:k−1 = ci,k;1:k−1

(
Fi|1:k−1

(
xi|x(i)

1 , ..., x
(i)
di

)
, Fk|1:k−1

(
xk|x(i)

1 , ..., x
(i)
di

))
.

When we apply it later, the order of the D vine is not fixed and is estimated from the

data. Still, we fix the corresponding parent sets.



Chapter 3

The Sachs dataset

3.1 Introduction and short biological background

In the following chapters, we are working with the ”Sachs Protein Data” dataset. This was

first analyzed by Sachs et al. (2005) and consists of measurements of multiple phospho-

rylated protein and phospholipid components in human immune system cells. The initial

goal was to find signaling relationships and to model them with Bayesian networks.

To better evaluate the results of the following chapters, we need an understanding

of the biological background of the data. The data are from 14 experiments in which

human naive (i.e. inactive) CD4 T-lymphocytes were activated with anti-CD3 and anti-

CD28 antibodies and infused with different activators or inhibitors. Only in experiments

8 and 9 no anti-CD3/CD28 was used, but the molecule phorbol 12-myristate 13-acetate

(PMA) which activates protein kinase C (PKC) and the molecule b2 cyclic adenosine

monophosphate β2 cAMP which activates PKA. All reagents act as activators or inhibitors

on the various phosphoproteins and -lipids, which are available as variables in the dataset.

Table 3.1 shows which reagents were used as stimulants in the experiments, and which

variables are influenced directly by the stimulants. In Table 3.2 is explicitely shown, which

reagent influences which observed variable.

In the experiments, the cell reactions were stopped after 15 minutes and then the 11

phosphorylated proteins and phospholipids were measured simultaneously by multivariate

flow cytometry in each cell. Thus, the individual observations are independent. The value

of a variable is the quantitative amount of the respective molecules measured in the cell.

The variables describe proteins and lipids that were phosphorylated at different sites (i.e.

a phosphoryl group was attached to a specific amino acid). Serine (S), threonine (T) and

tyrosine (Y) are considered here. However, which variable is phosphorylated at which

position does not play an explicit role in the further master thesis. Therefore, reference is

22
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Exp. Stimulation Directly influenced variables
1. Anti-CD3/CD28 plcg (+), praf (+), pmek (+), p4442 (+), PKC (+)
2. Anti-CD3/CD28, ICAM-2 plcg (+), praf (+), pmek (+), p4442 (+), PKC (+)
3. Anti-CD3/CD28, akt-inhibitor plcg (+), praf (+), pmek (+), p4442 (+), PKC (+), pakts473 (-)
4. Anti-CD3/CD28, G0076 plcg (+), praf (+), pmek (+), p4442 (+), PKC (+/-)
5. Anti-CD3/CD28, Psitectorigenin plcg (+), praf (+), pmek (+), p4442 (+), PKC (+), PIP2 (-)
6. Anti-CD3/CD28, U0126 plcg (+), praf (+), pmek (+/-), p4442 (+/-), PKC (+)
7. Anti-CD3/CD28, LY294002 plcg (+), praf (+), pmek (+), p4442 (+), PKC (+), pakts473 (+)
8. PMA PKC (+)
9. β 2camp PKA (+)
10. Anti-CD3/CD28, ICAM-2, akt-inhib plcg (+), praf (+), pmek (+), p4442 (+), PKC (+), pakts473 (-)
11. Anti-CD3/CD28, ICAM-2, G0076 plcg (+), praf (+), pmek (+), p4442 (+), PKC (+/-)
12. Anti-CD3/CD28, ICAM-2, Psitectorigenin plcg (+), praf (+), pmek (+), p4442 (+), PKC (+), PIP2 (-)
13. Anti-CD3/CD28, ICAM-2, U0126 plcg (+), praf (+), pmek (+/-), p4442 (+/-), PKC (+)
14. Anti-CD3/CD28, ICAM-2, LY294002 plcg (+), praf (+), pmek (+), p4442 (+), PKC (+), pakts473 (+)

Table 3.1: Stimulations used in the different experiments, as well as the variables, that
are biochemically activated (+) or inhibited (-) by the stimulations. Variables directly
influenced by the stimulants in opposite ways, are marked with (+/-).

Reagent Influence on
Anti-CD3/CD28 plcg (+), praf (+), pmek (+), p4442 (+), PKC (+)
ICAM-2
β2 cAMP PKA (+)
akt-inhibitor pakts473 (-)
U0126 pmek (-), p4442 (-)
PMA PKC (+)
G06976 PKC (-)
Psitectorigenin PIP2 (-)
LY294002 pakts473 (+)

Table 3.2: Known biological effects of the reagents employed. Intercellular adhesion
molecule–2 (ICAM-2) overall stimulated the cell, with no specific perturbation on the
measured molecules. (Source: Sachs et al. 2005, p.525)

made to Sachs et al. (2005) and more detailed literature on biochemistry.

Since experiments 3-7 and 10-14 differ only by the additional intervention of the pro-

tein intercellular adhesion molecule 2 (ICAM-2), we might expect the results of these

experiments to have similarities. Moreover, for the same reason, the observations of ex-

periment 2 might have similarities with experiments 10-14. As described earlier, PMA

activates PKC and G06976 inhibits PKC. This could cause experiment 8 to produce partic-

ularly different results compared to experiments 4 and 11. Also, experiment 9, which also

did not use anti-CD3 and anti-CD28, may have unique features. We will investigate this

question during the clustering in Chapter 5.

Not only do the activators and inhibitors used in the experiments influence the mea-

sured molecules (ie. variables), but they also influence each other. For example, pmek is

the quantitative amount of mitogen-activated protein kinase kinase 1 and 2. As a kinase
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kinase, this enzyme catalyzes the phosphorylation of proteins to mitogen-activated pro-

tein kinase 1 and 3, which was measured as variable p4442. Such relationships between

variables exist partly directly, as just described, and partly indirectly via unmeasured

variables. These relationships have been extensively explored and resulted in the consent

graph shown in Figure 3.1.

Figure 3.1: Consent DAG of the Sachs data. Arcs correspond to direct or indirect bio-
chemical influences.
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3.2 Data preprocessing

We are working with all 14 experiments and all 11 variables of the Sachs dataset. But

instead of the original data, we apply the logarithm to all variables to receive the log-data.

In the resulting 14-experiment-dataset we now have 1523 observations for which at least

one variable equals zero. These would lead to zero-inflated margins as we can see especially

for the variables PKC or pjnk, so we delete these observations. Therefore the final dataset

(the log-data with removed zeros), with which we are working, has 14 experiments, 11

variables and a total of 10149 observations. In Figure 3.2 we can see pairwise scatter plots

and empirical marginal densities of the resulting dataset.
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Figure 3.2: Pairwise scatter plots and empirical marginal densities of the log-data with
zeros removed



Chapter 4

Analysis of full pooled data

In this chapter we would like to understand the dataset just discussed better. For sim-

plicity, we do now not take into account that the data come from different experiments.

This will be addressed in the next chapter with clustering. From Figure 3.1 one could

assume that an approach with Gaussian distribution - apart from the clear multimodality

of the variable PIP2 - would be reasonable. For this reason we will start with a multivari-

ate Gaussian analysis. Later in this chapter we will also use Vine copulas and marginals

different from the Gaussian marginal to create a joint distribution.

4.1 Multivariate Gaussian analysis

First we would like to get an insight into how correlated the variables are with one

another. To do this, we consider the coefficient Kendall’s Tau. The results are shown in

Figure 4.1. Green means the variables are more or less uncorrelated, red means they are

very correlated (positively or negatively).

We can see that the variable pairs praf and pmek, as well as p4442 and pakts473

and PKC with P38 are positively correlated with Kendall’s Tau values between 0.587 -

0.66. Besides the pairs PIP2 and PIP3 and PIP2 and plcg all other pairs of variables have

absolute Kendall’s Tau values below 0.3 what we interpret as weak correlation.

We now consider a multivariate Gaussian model for all d = 11 variables. Thus, we

assume the data is N11(µ,Σ) distributed. For the full probability density function see

equation (2.2). For our data, µ and Σ can be easily estimated and are given by

27
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Figure 4.1: Empirical Kendall’s τ of the variables for the pooled Sachs data.

µ̂ =



4.096

3.794

2.887

4.126

2.820

3.035

4.022

6.106

2.694

3.765

3.457
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and

Σ̂ =



1.091 1.213 0.597 0.447 0.002 0.122 0.444 −0.510 0.225 0.470 0.208

1.213 1.755 0.879 0.676 −0.045 0.214 0.706 −0.718 0.379 0.694 0.457

0.597 0.879 1.826 1.159 0.136 0.383 0.680 −0.806 0.535 0.810 0.506

0.447 0.676 1.159 2.418 0.627 0.308 0.516 −0.561 0.420 0.591 0.389

0.002 −0.045 0.136 0.627 0.923 −0.053 −0.058 0.099 −0.081 −0.097 −0.165

0.122 0.214 0.383 0.308 −0.053 0.993 0.817 0.093 0.278 0.315 0.315

0.444 0.706 0.680 0.516 −0.058 0.817 1.080 −0.208 0.362 0.567 0.405

−0.510 −0.718 −0.806 −0.561 0.099 0.093 −0.208 1.680 −0.483 −0.723 −0.501

0.225 0.379 0.535 0.420 −0.081 0.278 0.362 −0.483 1.050 0.879 0.626

0.470 0.694 0.810 0.591 −0.097 0.315 0.567 −0.723 0.879 1.223 0.738

0.208 0.457 0.506 0.389 −0.165 0.315 0.405 −0.501 0.626 0.738 1.458



.

However, the estimated mean vector and the covariance matrix alone do not give us

information on how well the multivariate Gaussian model fits the data. The question is

to what extent specific properties of the data are captured by this model. To do this, we

sample 10149 data points (as many as our observed dataset has) with this multivariate

distribution and plot them against the measured data. For sampling the data we use the

mvtnorm package of Hothorn (2014) in R. The determinant of the covariance matrix is

0.039. If the determinant was very close to zero, we would have numerical problems when

sampling due to the necessary inversion of the covariance matrix. However, this is not the

case here.

In Figure 4.2 we can see the pairs plots of the observed dataset in the lower triangle and

the dataset sampled from the multivariate Gaussian Model in the upper triangle. If the

distribution of the two datasets were identical, then the plots in the upper triangle would

be the plots from the lower mirrored over the diagonal. There are some pairs of variables

like praf and plcg or PIP3 and p4442, for which the sampled data look like the original

observed data. These bivariate relationships were well covered by the model. However,

there are many pairs of variables for which the multivariate Gaussian model approach

obviously does not fit. The specifics of the variable pair praf and pmek or almost all

variables to PKC cannot be handled with this model. For this reason, we will work with

a vine copula model in the following section. In this model, those relations such as praf

and pmek will be better taken into account.
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Figure 4.2: Pairs plots of observed dataset (lower triangle) and dataset sampled from the
multivariate Gaussian Model (upper triangle).
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4.2 Vine copula based analysis

We will now fit a vine copula model. For this we allow as candidates for the marginal

distribution the normal, log-normal, logistic, log-logistic, gamma, t-fix, skew-normal and

skew-t distribution. For the copula families we allow Gaussian, t, Clayton, Gumbel, Frank,

Joe, BB1, BB6, BB8 copulas and their rotations as definined in Definition 2.18.

First, we estimate the marginal distributions to obtain the u-scale data. The results

of this estimation are shown in Table 4.1. The marginal families and the parameters were

fitted by optimizing the AIC. This means, we take the number of parameters into account.

It is interesting that almost throughout skew distributions were chosen. Figure 4.3 shows

the histograms and the curves of the estimated densities.

Variable Family Parameters Marginal Loglikelihood
PIP3 skew-t (2.821, 0.961, 23.909, 0.898) -13951.23
plcg skew-t (2.887, 1.390, 5.062, 1.390) -16872.77
PIP2 skew-normal (4.145, 1.563, 0.756) -18766.96
PKC skew-t (2.687, 1.067, 4.157, 1.016) -14295.35
PKA skew-t (6.220, 9.896, 2.008, 0.886) -14706.29
P38 skew-t (3.790, 1.988, 2.250, 1.504) -13612.65
pjnk logistic (3.460, 0.665) -16179.19
praf skew-t (4.113, 1.087, 4.848, 1.407) -14281.63

pmek skew-t (3.909, 3.797, 2.111, 1.670) -15857.25
p4442 skew-t (3.035, 0.998, 13.161, 0.964) -14322.43

pakts473 skew-t (4.035, 1.069, 5.321, 1.554) -14014.56

Table 4.1: Marginal family and parameter estimates for the pooled Sachs data.

The results are mixed. We see a very good fit for some variables, but very poor results

for others like plcg, PIP2 or PKA. Problems here are often multimodality as it is well seen

especially for PIP2. However, this is indicative of a mixture distribution with multiple

components. Therefore, we will discuss this problem in the clustering chapter.

This gives us now a marginal distribution for each variable, so that for each observation

xi,j, j = 1, ..., d we can compute the pseudo copula data ui,j = F̂j(xi,j) for i = 1, ..., n.

With this, we transform the data to u-scale. The result is shown in Figure 4.4. If we look

at the plots on the diagonal of Figure 4.4, the variables plcg, PIP2 or PKA are particularly

striking, as their plots look the least uniform for them. This is not surprising, as for these

the marginal distributions did not fit ideally as we have seen just before.

With this data we can now fit a vine copula model. We use the R library VineCopula

of Nagler et al. (2019). The structure is left open as R-Vine. As explained above, we use
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Figure 4.3: Histograms and estimated parametric densities according to Table 4.1 for all
11 variables of the pooled Sachs data.
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the copula families Gaussian, t, Clayton, Gumbel, Frank, Joe, BB1,BB6,BB8 and their

rotations. Due to the size, we do not include a table with the estimated parameters here.

But in Figure 4.5 we can see the vine tree structure of the first two trees.

In the previous section, we finally sampled data from the discussed model. We then

examined the results in a pairs plot. However, the results were mixed and but not satis-

factory for some pairs of variables. Here we would like to proceed analogously and see if

the vine copula model can deal with more specifics from the data. Therefore we sample

again 10149 data points (as many as our observed dataset has) from this distribution and

compare them to the measured data. However, it makes sense to compare the data directly

on u-scale, because we have the contour data available in addition to the pairs plots and

we would transform the data with the same marginal distributions to the x-scale. The

observed data on u-scale are shown before in Figure 4.4; the sampled data in Figure 4.6.

Comparing Figure 4.4 and Figure 4.6, we immediately see that this model suits the

data much better. Especially for e.g. the variable-pairs praf and pmek or PKC and P38

the results are better. Nevertheless, the characteristics of e.g. PKA to almost all other vari-

ables have not yet been sufficiently reproduced. As already mentioned, problems already

occurred when transforming the data from x-scale to u-scale, because, for example, the

multimodality of some variables cannot be captured by our candidate marginal distribu-

tions when considering the entire pooled data without taking the individual experiments

into account. We expect that these problems will no longer occur after clustering into

multiple components.
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Figure 4.4: Normalized contours on the z-scale and pairs plots on the u-scale of the pooled
data.
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(a) Tree 1

(b) Tree 2

Figure 4.5: Estimated vine tree structures of the first two trees of the vine copula model
of the pooled data.
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Figure 4.6: Normalized contours on the z-scale and pairs plots on the u-scale of the
simulated data. Simulation is based on the estimated vine copula model of the pooled
data.
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4.3 Directed acyclic graphs

In the previous sections we used a multivariate Gaussian distribution and a vine copula

model to fit the distribution of the data. Another approach to model the density are

directed acyclic graphs (DAG). We want to fit three DAG model, by using the consent

graph, which was introduced in Chapter 3.1. We use the vinereg library by Nagler and

Kraus (2021). The corresponding D-vine regression models were introduced by Kraus and

Czado (2017). For each variable except PIP3 (which has no parent nodes) we estimate a

regression D-vine considering the parent nodes. For the first model (given in Table 4.3),

we transform the data to u-scale by fitting Gaussian margins, and then allow only the

Gaussian copula family as well as the indepencence copula. We denote this model as

MGaussCGauss. In the second model (given in Table 4.4) we transfom the data to u-scale

by the margins, we have already fitted in the previous section in Table 4.1. But in the

second model we still use only the Gaussian copula family as well as the indepencence

copula for the regressin D-vines (MParCGauss). In the third model (given in Table 4.5),

we use again all the parametric margins fitted in Chapter 4.2 and we allow all parametric

copula families (MParCPar).

We start with fitting the Gaussian marginal distributions, which we will use for the

first model. The results are given in Table 4.2.

Variable Family Parameters Marginal Loglikelihood
PIP3 normal 2.82, 0.961 -13994.331
plcg normal 2.887, 1.351 -17454.730
PIP2 normal 4.126, 1.555 -18880.995
PKC normal 2.694, 1.025 -14648.882
PKA normal 6.106, 1.296 -17032.228
P38 normal 3.765, 1.106 -15422.559
pjnk normal 3.457, 1.207 -16312.928
praf normal 4.096, 1.044 -14840.097

pmek normal 3.794, 1.325 -17255.844
p4442 normal 3.035, 0.997 -14365.586

pakts473 normal 4.022, 1.039 -14791.794

Table 4.2: Parameter estimates for normal marginal distributions to the pooled Sachs
data.

Besides the variables PKC and pakts473, the same arcs were modeled and except from

the variable p4442 the order of the variables in the D-vines similar. While comparing

the second and the third model, we can see that of course, the values of the copula-

loglikelihood, -AIC and -BIC are better in the third model with fewer restrictions regard-

ing the copula families. On the other hand, it is very interesting that the values of the
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copula-loglikelihood, -AIC and -BIC are better in the first model than in the second. The

reason for this effect is that we fitted the first model only with the data at u-scale, which

we had calculated exclusively with gaussian margins, while we dropped this restriction

for the second model.

In the previous section, we finally sampled data from the discussed models. As we

have fitted the D-vine regression models to the pooled data on u-scale, it would once

again make sense to also compare the results from the sampling with the original data

on u-scale. The sampling itself is not as trivial as from the previously discussed models.

Here we apply the corresponding algorithm of Bevacqua et al. (2017) sequentially for all

nodes respectively. The results are shown in Figure 4.7, Figure 4.8 and Figure 4.9.

We have to compare the results from the D-vine regression models shown in Figures

4.7, 4.8 and 4.9 to the original data on u-scale shown previously in Figure 4.4. It will also

be interesting to compare them to the sampling results from the vine copula model of

the last subchapter shown in Figure 4.6. It is interesting, that the three D-vine regression

models have the same parent nodes for almost each node, but the order of the regression

D-vines is different for the variable p4442. The D-vine regression models are optimized

with respect to the AIC.

As one can see, the data sampled from the third model with all parametric copula

families have on the one hand many similarities with the original data, which are not

equally clear in the limited models with only the Gaussian copula family. Since one can

not catch the effect of upper or lower tail dependence with copulas of the Gaussian family,

these models have problems capturing the specifics of the data. The larger model from

Table 4.5 has no Gaussian copulas at all. However, since we define the DAG through the

consent graph, we also see properties of the original data that were not even captured by

the D-vine regression model with all parametric copula families. For example, if we look

at the three variables praf, pmek and plcg, we see that the relationship between praf

and pmek is very well modeled. This is due to the fact that in the model the variable

pmek depends on praf, PKC andPKA. In contrast, the relationship between praf and plcg

or pmek and plcg, which is clearly visible in Figure 4.4, was not captured by our model,

since plcg for example only indirectly influences praf via the node PKC. And through PKC

and praf then pmek. This is also interesting when comparing the simulated data of the

D-vine regression model to those of the vine copula model shown in Figure 4.6, where the

correlations of praf and plcg or pmek and plcg are better visible. Again, the reason is

that in the D-vine regression model we fixed the graph, whereas in the vine copula model

it was estimated from the data.
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Variable D-vine order Copula loglik Copula AIC Copula BIC
plcg PIP3 55.626 -109.252 -102.026
PIP2 plcg, PIP3 2965.669 -5925.338 -5903.663
PKC plcg, PIP2 2680.441 -5354.883 -5333.207
PKA PKC 686.261 -1370.522 -1363.297
P38 PKC, PKA 6148.889 -12291.779 -12270.103
pjnk PKC, PKA 2332.515 -4659.031 -4637.356
praf PKA, PKC 1498.523 -2991.046 -2969.371

pmek praf, PKC, PKA 9232.084 -18452.167 -18408.816
p4442 pmek, PKA 1200.909 -2395.818 -2374.143

pakts473 p4442, PKA 5334.243 -10662.486 -10640.81
Σ 32135.16 -64212.322 -64002.792

Variable Pair copula Family Parameters Tau
plcg plcg, PIP3 gaussian 0.104 0.067
PIP2 PIP2, plcg gaussian 0.551 0.372

plcg, PIP3 gaussian 0.104 0.067
PIP2, PIP3; plcg gaussian 0.436 0.287

PKC PKC, plcg gaussian 0.386 0.252
plcg, PIP2 gaussian 0.551 0.372
PKC, PIP2; plcg gaussian 0.066 0.042

PKA PKA, PKC gaussian -0.295 -0.191
P38 P38, PKC gaussian 0.776 0.566

PKC, PKA gaussian -0.295 -0.191
P38, PKA; PKC gaussian -0.387 -0.253

pjnk pjnk, PKC gaussian 0.506 0.338
PKC, PKA gaussian -0.295 -0.191
pjnk, PKA; PKC gaussian -0.173 -0.111

praf praf, PKA gaussian -0.377 -0.246
PKA, PKC gaussian -0.295 -0.191
praf, PKC; PKA gaussian 0.087 0.055

pmek pmek, praf gaussian 0.877 0.680
praf, PKC gaussian 0.210 0.135
PKC, PKA gaussian -0.295 -0.191
pmek, PKC; praf gaussian 0.202 0.129
praf, PKA; PKC gaussian -0.335 -0.217
pmek, PKA; praf, PKC gaussian -0.148 -0.094

p4442 p4442, pmek gaussian 0.162 0.104
pmek, PKA gaussian -0.352 -0.229
p4442, PKA; pmek gaussian 0.16 0.102

pakts473 pakts473, p4442 gaussian 0.789 0.579
p4442, PKA gaussian 0.084 0.053
pakts473, PKA; p4442 gaussian -0.124 -0.079

Table 4.3: MGaussCGauss - pooled data: Summary of the D-vine regression model fitted to
the pooled data with Gaussian margins, using only the Gaussian copula family and the
indepencence copula.
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Variable D-vine order Copula loglik Copula AIC Copula BIC
plcg PIP3 65.103 -128.207 -120.982
PIP2 plcg, PIP3 2777.391 -5548.782 -5527.107
PKC plcg, PIP2 2239.298 -4472.597 -4450.921
PKA PKC 266.239 -530.477 -523.252
P38 PKC, PKA 4623.152 -9240.304 -9218.628
pjnk PKC, PKA 1476.262 -2946.524 -2924.848
praf PKA, PKC 766.946 -1527.891 -1506.216

pmek praf, PKC, PKA 6604.347 -13196.695 -13153.344
p4442 PKA, pmek 805.02 -1604.04 -1582.365

pakts473 p4442, PKA, PIP3 5414.014 -10816.027 -10772.677
Σ 25037.772 -50011.544 -49780.34

Variable Pair copula Family Parameters Tau
plcg plcg, PIP3 gaussian 0.113 0.072
PIP2 PIP2, plcg gaussian 0.524 0.351

plcg, PIP3 gaussian 0.113 0.072
PIP2, PIP3; plcg gaussian 0.439 0.289

PKC PKC, plcg gaussian 0.312 0.202
plcg, PIP2 gaussian 0.524 0.351
PKC, PIP2; plcg gaussian 0.136 0.087

PKA PKA, PKC gaussian -0.226 -0.145
P38 P38, PKC gaussian 0.752 0.542

PKC, PKA gaussian -0.226 -0.145
P38, PKA; PKC gaussian -0.160 -0.102

pjnk pjnk, PKC gaussian 0.455 0.301
PKC, PKA gaussian -0.226 -0.145
pjnk, PKA; PKC gaussian -0.075 -0.048

praf praf, PKA gaussian -0.280 -0.180
PKA, PKC gaussian -0.226 -0.145
praf, PKC; PKA gaussian 0.128 0.082

pmek pmek, praf gaussian 0.821 0.613
praf, PKC gaussian 0.183 0.117
PKC, PKA gaussian -0.226 -0.145
pmek, PKC; praf gaussian 0.146 0.093
praf, PKA; PKC gaussian -0.249 -0.160
pmek, PKA; praf, PKC gaussian -0.035 -0.023

p4442 p4442, PKA gaussian 0.194 0.124
PKA, pmek gaussian -0.263 -0.169
p4442, pmek; PKA gaussian 0.215 0.138

pakts473 pakts473, p4442 gaussian 0.795 0.585
p4442, PKA gaussian 0.194 0.124
PKA, PIP3 gaussian 0.042 0.027
pakts473, PKA; p4442 gaussian -0.110 -0.070
p4442, PIP3; PKA gaussian -0.064 -0.041
pakts473, PIP3; p4442, PKA gaussian -0.021 -0.014

Table 4.4: MParCGauss - pooled data: Summary of the D-vine regression model fitted to
the pooled data, using only the Gaussian copula family and the indepencence copula. The
marginal distributions given in Table 4.1 were used.
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Variable D-vine order Copula loglik Copula AIC Copula BIC
plcg PIP3 81.774 -161.549 -154.324
PIP2 plcg, PIP3 4264.177 -8518.354 -8482.228
PKC plcg 1141.21 -2280.42 -2273.195
PKA PKC 865.729 -1729.458 -1722.232
P38 PKC, PKA 6794.476 -13578.951 -13542.826
pjnk PKC, PKA 2744.762 -5479.523 -5443.397
praf PKA, PKC 1722.171 -3436.341 -3407.441

pmek praf, PKC, PKA 9782.278 -19544.555 -19472.304
p4442 PKA, pmek 1641.93 -3273.861 -3237.735

pakts473 p4442, PKA, PIP3 6729.569 -13437.137 -13357.661
Σ 35768.076 -71440.149 -71093.343

Variable Pair copula Family Rotation Parameters Tau
plcg plcg, PIP3 clayton 180 0.141 0.066
PIP2 PIP2, plcg bb7 0 1.967, 0.071 0.362

plcg, PIP3 clayton 180 0.141 0.066
PIP2, PIP3; plcg bb8 0 2.431, 0.882 0.327

PKC PKC, plcg joe 0 1.489 0.216
PKA PKA, PKC joe 90 1.337 -0.160
P38 P38, PKC bb8 0 3.686, 0.991 0.581

PKC, PKA joe 270 1.337 -0.16
P38, PKA; PKC bb8 270 1.151, 0.981 -0.069

pjnk pjnk, PKC bb7 0 1.687, 0.165 0.316
PKC, PKA joe 270 1.337 -0.16
pjnk, PKA; PKC t 0 0.021, 13.489 0.013

praf praf, PKA bb8 270 1.432, 0.983 -0.178
PKA, PKC joe 90 1.337 -0.16
praf, PKC; PKA joe 0 1.148 0.078

pmek pmek, praf bb8 0 4.852, 0.989 0.662
praf, PKC bb8 0 1.364, 0.990 0.160
PKC, PKA joe 270 1.337 -0.160
pmek, PKC; praf bb7 0 1.145, 0.052 0.099
praf, PKA; PKC bb8 270 1.266, 0.985 -0.118
pmek, PKA; praf, PKC joe 270 1.072 -0.040

p4442 p4442, PKA t 0 0.244, 3.360 0.157
PKA, pmek joe 90 1.375 -0.175
p4442, pmek; PKA bb8 0 1.233, 0.996 0.112

pakts473 pakts473, p4442 bb8 0 6.941, 0.786 0.633
p4442, PKA t 0 0.244, 3.360 0.157
PKA, PIP3 clayton 0 0.066 0.032
pakts473, PKA; p4442 t 0 -0.071, 6.862 -0.045
p4442, PIP3; PKA bb8 90 1.187, 0.724 -0.032
pakts473, PIP3; p4442, PKA bb8 90 1.108, 0.843 -0.028

Table 4.5: MParCPar - pooled data: Summary of the D-vine regression model fitted to
the pooled data, using all parametric copula families. The marginal distributions given in
Table 4.1 were used.
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Figure 4.7: MGaussCGauss - pooled data: Normalized contours and pairs plots as well as
Kendall’s τ of the simulated data on u-scale. Simulation is based on the estimated D-
vine regression model with only the Gaussian copula family and the indepencence copula
allowed.
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Figure 4.8: MParCGauss - pooled data: Normalized contours and pairs plots as well as
Kendall’s τ of the simulated data on u-scale. Simulation is based on the estimated D-
vine regression model with only the Gaussian copula family and the indepencence copula
allowed.



CHAPTER 4. ANALYSIS OF FULL POOLED DATA 44

Figure 4.9: MParCPar - pooled data: Normalized contours and pairs plots as well as
Kendall’s τ of the simulated data on u-scale. Simulation is based on the estimated D-vine
regression model of the pooled data with all parametric copula families.



Chapter 5

Clustering

After analyzing the pooled data in the previous chapter, we will focus on the clustering of

the data in this chapter. Therefore we will first work with Gaussian mixture models and

later with vine copula mixture models. Since the data come from 14 different experiments,

a central question is obviously to what extent the data from the specific experiments are

identified by a specific cluster.

5.1 Gaussian mixture models (GMM)

5.1.1 Optimal number of components selection

We will first focus on the optimal number of clusters. Based on this, we will then select a

model and analyze it in more detail. We will focus on the differences between clusters i.e.

for GMMs obviously the differences in mean vectors and differences between the covariance

matrices.

We fit the GMMs using the mclust package (Scrucca et al. (2016)) in R. To ensure the

replicability of the calculations, all calculations were performed with the seed key 111. In

Figure 5.1 the BIC values of different Gaussian mixture models up to g=25 components

are plotted depending on the parametrization of the covariance matrix and their number

of components. The specifications of the models and the meaning of e.g. VVV have already

been discussed in detail in the chapter of the theoretical background.

The top 3 models based on the BIC are VVV 16 with -228679, VVV 17 with -228757

and VVV 13 with -228893. But the differences are extrem small: When switching from

the model with 13 clusters to the model with 16 clusters, the BIC improves by a factor

of only 0.000935, i.e. not even a whole permille. So we need to investigate whether the

better BIC value of the 16 cluster VVV model is reliable or random: the final GMM also

45
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Figure 5.1: BIC values of Gaussian mixture models regarding their number of components
and their parametrization of the covariance matrix.

depends on the random starting values, which we control with the seed key. If the BIC

improvement of the 16 cluster model is reliable, then similar results should be obtained

even if the starting conditions are changed, i.e. if the seed key is changed. If the seed 112

is used, then the 16 cluster VVV model is not even under the best three models. With

a seed of 113 it is only the third-best model and with a seed of 9999 it is again only the

third-best model.

For this reason, we do not want to rely on the BIC alone. There are different ways to

find the optimal number of clusters. There are besides the usage of prior information or

the optimization of the likelihood or of information criteria like the BIC, also approaches

from test theory. We now use the likelihood ratio test, using the function mclustBoot-

strapLRT from the R package mclust (Scrucca et al.(2016)). Here we test step by step

whether the likelihood advantage of a model with g1 = g0 + 1 components is significant

compared to a model with only g0 components. Since we already recognized in Figure 5.1

that the VVV models always perform better than the models with other parametrization

of the covariance matrix, we only test VVV models. Here we do not work with the theo-

retical distribution, but we bootstrap the test statistic. Normally one chooses B = n, i.e.

one generates as many bootstrap samples as observations in the original dataset. If we
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want to test models with up to g=26 components, this means for our specific case that

for each 10149 bootstrap samples 26 mixture models have to be fitted. This makes 263874

models. Since this could lead to major runtime issues for the VCMMs in the next chapter

we would like to compare the results of several tests at this point: We run the parametric

likelihood ratio test with up to 26 components for B ∈ {500, 1000, 2000, 10149} and report

the results in Table 5.1.

Number of LRTS P-Value LRTS P-Value LRTS P-Value LRTS P-Value
Components B = 500 500 1000 1000 2000 2000 10149 10149

1 vs 2 26850.67 0.002 29889.08 0.001 29888.92 0.001 29889.63 0.001
2 vs 3 18289.98 0.002 15252.13 0.001 15252.54 0.001 15251.35 0.001
3 vs 4 4092.68 0.002 4092.62 0.001 4090.46 0.001 4091.41 0.001
4 vs 5 2500.52 0.002 2214.49 0.001 2504.83 0.001 2501.87 0.001
5 vs 6 3050.09 0.002 3012.15 0.001 2793.17 0.001 3048.81 0.001
6 vs 7 1639.36 0.002 1669.94 0.001 1955.78 0.001 821.41 0.001
7 vs 8 1139.62 0.002 1473.55 0.001 1205.66 0.001 2256.05 0.001
8 vs 9 2953.27 0.002 1060.19 0.001 821.95 0.001 1361.34 0.001
9 vs 10 1421.28 0.002 1051.06 0.001 1014.35 0.001 586.51 0.001
10 vs 11 131.27 0.595 2922.65 0.001 3374.15 0.001 709.17 0.001
11 vs 12 2460.91 0.002 1336.35 0.001 934.61 0.001 2800.57 0.001
12 vs 13 516.40 0.002 139.16 0.244 449.71 0.001 594.06 0.001
13 vs 14 752.99 0.002 643.83 0.001 567.74 0.001 819.86 0.001
14 vs 15 780.02 0.002 681.58 0.001 691.74 0.001 324.65 0.001
15 vs 16 888.59 0.002 427.27 0.001 410.52 0.001 899.73 0.001
16 vs 17 922.52 0.002 1122.22 0.001 2420.87 0.001 1996.90 0.001
17 vs 18 276.51 0.002 712.57 0.001 454.20 0.001 1236.69 0.001
18 vs 19 802.48 0.002 138.92 0.536 700.89 0.001 -961.03 0.025
19 vs 20 414.20 0.002 1075.14 0.001 119.12 0.947 1097.85 0.001
20 vs 21 759.19 0.002 324.72 0.001 553.81 0.001 1025.03 0.001
21 vs 22 803.12 0.002 1173.40 0.001 951.70 0.001 365.23 0.001
22 vs 23 95.06 0.387 565.27 0.001 287.33 0.001 125.92 0.644
23 vs 24 403.85 0.002 588.98 0.001 203.37 0.012 706.05 0.001
24 vs 25 158.96 0.285 522.47 0.001 463.56 0.001 269.51 0.001
25 vs 26 680.55 0.002 313.25 0.001 422.79 0.001 348.85 0.001

Table 5.1: Likelihood Ratio Test for GMM up to 26 components. All p-values are results
from the bootstrap and not theoretical. Values below 0.001 are rounded up. P-values over
0.05 are printed bold. Note that 0.002 is the lowest possible p-value for B = 500.

The results of the bootstrapped likelihood ratio tests in Table 5.1 are not convincing.

We first note that each test recommends a different number of components. If one test

finds that the likelihood improvement between two models is not significant, there are

always at least two other tests that find this likelihood improvement to be very significant

and have p-values ≤ 0.001. Therefore our assumption that likelihood ratio tests with

B ≤ 10149 come to similar results and that we can reduce B in favor of runtime cannot

be confirmed here. Second the likelihood improvements are only for models with high

components not significant. In Figure 5.1 we see that the BIC values stabilize from about
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9 to 10 components. Only the LRT with B = 500 finds that the likelihood increase between

models 10 and 11 is not significant. However, in the test with B = 10149, which should be

the most reliable, is the first non-significant likelihood improvement between models 22

and 23. To prevent overfitting we would like to work with as few components (and thus

parameters) as possible. We also know that the data comes from 14 different experiments,

so a model with 22 components has most likely too many components. Third, in the LRT

with B = 10149 we see a negative likelihood increase when comparing models 18 and 19.

Thus, the fit of the models decreases. Nevertheless though the bootstrapping a p-value

< 0.05 is calculated. This raises clear doubts about the reliability of the results. Since no

clear answer to the question of the optimal cluster can be given, and we also have the goal

to find out to what extent the data from the specific experiments are split into specific

clusters again, we will now continue to work with the 13 cluster VVV model, which has

also always performed well with respect to the BIC. We have to consider that a GMM

might be the wrong approach for our data. This would explain why, according to LRT, so

many components are needed. In the next chapter we will adress this question by using a

different approach.

Now that we have calculated the likelihood ratio test statistics for the 10149 bootstrap

samples, we would like to visualize the results of Wilks (1938). It was shown that statistic

is under the null hypothesis (here: H0 : g = 13) asymptotically chi-square distributed

with degrees of freedom df = dim(θ̂) − dim(θ̂0). Now in our specific case the 13 cluster

model has 13 covariance matrices with 112 as well as 13 mean vectors with 11 parameters

each. The 14 cluster model has 14 of each. So we come to df = 132. In Figure 5.2 the

corresponding empirical distribution function is shown in black and the theoretical cdf in

blue. We can see, that there is a not negligible difference between the curves.
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Figure 5.2: Theoretical cumulative distribution function of the χ2-distribution with 132
degrees of freedom in blue and the ecdf of the test statistic of the 10149 bootstrap LRT
in black.
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5.1.2 Analysis of the clusters

One question we already asked at the beginning of the clustering chapter was how sharp

the observations from the 14 experiments are split into specific clusters. We would like to

investigate this question now. To do this, we calculate the percentage of the observations

from the experiments, that were classified to a specific cluster. This means we create a

table, with the experiments on the x-axis and the clusters on the y-axis. Then we look at

the number of observations from one experiment assigned to a specific cluster and divide

it by the total number of observations in this experiment. The sum of all entries in one

column adds up to 1. The result is shown in Figure 5.3. For better readability it is shown

as a heatmap.

Figure 5.3: Percentage of observations in an experiment assigned to the clusters.

Some experiments are represented very well by exactly one cluster. For these, which

include for example experiments E4, E6, E9 and E11, the clusters identify the exper-

iments very well. It may be helpful to consider the biological background of the data

to explain this pattern. Experiments E3-E7 and E10-E14 were perturbed with the same

stimulations (see Table 3.1), but in experiments E10-E14 the stimulation ICAM-2 was
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additionally applied. Here, for example, it is apparent that G0076, which was applied

only in experiments E4 and E11, is clearly recognized in the data. Regarding the other

well recognized experiments, we do not see such a pattern. For this reason, we would now

like to better understand how similar the clusters are to each other. Since in a GMM

each cluster is defined by its mean and a covariance matrix, we have to check the mean

values. If an experiment breaks down into several specific clusters, but the mean values

are far apart, then it may be that an experiment itself breaks down into two or more

components. The reason for this could be unobserved variables or peculiarities within one

or more experiments.

Figure 5.4: Euclidean distance between the clusters means of the GMM g=13

In Figure 5.4 we can see, that the smallest Euclidean distance is between the means

of cluster C12 and C13 with a value of 0.98. The second smallest is between the means of

cluster C4 and C7 with a value of 1.08. Also interesting is what we can see with cluster C8.

It has by far the largest euclidean distance to the means of all other clusters. The reason

for this is, that cluster C8 represents with 0.885 of the observations from experiment E4

very exactly this experiment.

Besides the clusters means we should also discuss the differences between the clusters
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covariance matrices. We simply consider the difference of the matrices in the spectral

norm, which is the matrix norm derived from the Euclidean norm. Let A ∈ Rn×m be

a matrix and λmax(·) be the largest eigenvalue of a matrix. Then the spectral norm in

defined as ||A||2 = max ||Ax||2||x||2 =
√
λmax(ATA) for x ∈ Rm. By the definition of a norm,

we know that the spectral norm of the difference of two covariance matrices is greater

than 0, but less than the sum of the spectral norms of the individual matrices. For this

reason, we need to normalize by this factor. Therefore we do not consider ||Σi−Σj||2, but
||Σi − Σj||2
||Σi||2 + ||Σj||2

which takes values between 0 and 1. In Figure 5.5. we can see the results.

Figure 5.5: Normalized differences in covariance matrices of GMM g=13

In Figure 5.4 we saw, that especially the clusters C12 and C13 and the clusters C4

and C7 have mean values very close to each other. For this reason we are particularly

interested in these clusters, whether they are also similar in the covariance matrix. This

is clearly not the case for clusters C4 and C7, as they have one of the highest distances

in the sense of the normalized spectral norm of the covariance matrices. This distance

is indeed smaller for clusters C12 and C13, but in comparison to the others it is neither

remarkably high nor remarkable low.
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5.1.3 Data simulation

In the previous chapters we finally simulated data from the discussed models and com-

pared the results in pairs plots. Here we want to proceed the same way and simulate 10149

datapoints from the distribution of the gmm with 13 components. The results are shown

in Figure 5.6. If the two datasets were sampled from the identical same distribution they

would -most likely- look like if they have been mirrored on the diagonal. We can see that

the results of the mixture model are much better then the results from the multivariate

Gaussian model, which we discussed in the previous chapter. Still we have seen in this

section, that there are issues and the Gaussian mixture model fits not perfectly to the

data. For that reason we will now continue with vine copula mixture models.
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Figure 5.6: Pairs plots of observed dataset (lower triangle) and dataset sampled from the
13 component Gaussian mixture model (upper triangle).
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5.2 Vine copula mixture models (VCMM)

5.2.1 VCMMs for the Sachs data

Now we are considering vine copula mixture models according to Sahin and Czado (2021).

We describe them with VCMM(g,C,M), where g stands for the number of clusters, C

for the allowed copula families and M for the allowed marginal distributions. For that

reason we work with different settings regarding the allowed copula families and marginal

distributions. If a copula family is included, it means that all its rotations (which are 0,

90, 180 and 270 degrees) are also allowed.

C ∈ {NC,LC} with NC = {Gaussian}
and LC = {Gaussian, t,Clayton,Gumbel,Frank, Joe,BB1,BB6,BB8}

M ∈ {NM, SM,LM} with NM = {normal},
SM = {normal, log normal, logistic, log logistic, gamma, t fix}
where t-fix is the Student t distribution with fixed df=3.

LM = SM ∪ {skew normal, skew t} =

= {normal, log normal, logistic, log logistic, gamma, t fix, skew normal, skew t}

In Figure 5.7 the BIC values of different VCMMs are plotted, depending on their

number of components as well as their allowed copula families and marginal distributions.

We can see, that the models with the large set of copula families (LC) and the large

set of marginal distributions (LM) have the best BIC and log-likelihood values. We would

like to understand these models better and examine in Table 5.2 how often the different

marginals are used. The two skew distributions were by far the most frequently used in

the LM-models, but the normal distribution and the logistic distribution were also used

regularly. In the two SM-models the logistic, the normal and the gamma distribution were

used the most often.
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Figure 5.7: BIC values of vine copula mixture models with different parametrizations.

norm log-norm logis log-logis gamma t-fix skew-norm skew-t
VCMM(13,LC,SM) 0.30 0.03 0.37 0.07 0.08 0.14 0.00 0.00
VCMM(14,LC,SM) 0.30 0.03 0.35 0.08 0.08 0.16 0.00 0.00
VCMM(2,LC,LM) 0.00 0.00 0.18 0.00 0.00 0.00 0.09 0.73
VCMM(3,LC,LM) 0.00 0.00 0.18 0.00 0.00 0.00 0.21 0.61
VCMM(4,LC,LM) 0.05 0.00 0.18 0.00 0.00 0.02 0.20 0.55
VCMM(5,LC,LM) 0.02 0.00 0.16 0.00 0.00 0.02 0.22 0.58
VCMM(6,LC,LM) 0.05 0.00 0.11 0.00 0.00 0.03 0.27 0.55
VCMM(7,LC,LM) 0.05 0.00 0.18 0.00 0.00 0.01 0.23 0.52
VCMM(8,LC,LM) 0.02 0.00 0.12 0.02 0.01 0.01 0.26 0.55
VCMM(9,LC,LM) 0.06 0.00 0.13 0.02 0.00 0.04 0.28 0.46
VCMM(10,LC,LM) 0.05 0.00 0.11 0.00 0.02 0.04 0.36 0.43
VCMM(11,LC,LM) 0.05 0.01 0.09 0.02 0.00 0.02 0.37 0.44
VCMM(12,LC,LM) 0.08 0.00 0.11 0.02 0.02 0.05 0.28 0.46
VCMM(13,LC,LM) 0.10 0.01 0.13 0.00 0.03 0.06 0.28 0.38
VCMM(14,LC,LM) 0.08 0.02 0.14 0.01 0.03 0.05 0.30 0.39
VCMM(15,LC,LM) 0.07 0.00 0.15 0.01 0.02 0.04 0.30 0.41

Table 5.2: percentages of the marginal distribution families utilized in different VCMMs.
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5.2.2 Simulation setup for number of components selection

A first and important question in the choice of the number of components for the VCMM

is, how reliable the metrics we use are. That is whether the BIC or the also computed

integrated completed likelihood (ICL, see Biernacki et al. (2000)) recommend the model

that is closest to the true model. To check this we use the following setup: Due to the

running times, we reduce the dataset to the four variables PIP3, PKA, p4442 and pakts473

instead of the 11 we are normally working with. Then we fit a 2 and a 6 component VCMM

with large set of copula families (LC) and the large set of marginal distributions (LM)

to this reduced, four dimensional dataset. With different seeds we sample 100 datasets

with 200 observations each from this 2-component VCMM. For each of these datasets

we fit VCMMs with up to 8 components. The VCMM algorithm optimizes the marginal

parameters and the pair copula parameters by maximizing the log-likelihood. As the log-

likelihood is basically a sum with as many terms as we have observations, we can reduce

the running time perceptible by working with the smaller datasets. For the resulting

models we compute the mean value of the loglik, BIC and ICL. We do this, because this

way we don’t have the problems that the models depends so much on the random initial

clustering. We do the same for the 6-component VCMM where we sample 100 datasets

with 600 observations each and fit models with up to 12 components.

The results are shown in Figure 5.8 and Figure 5.9. We can see that for both, the 2- and

the 6-component VCMM, the loglik gets much better for models with more components,

but it grows slower with higher number of components. The likelihood ratio test works

with this fact. For both the 2- and the 6-component VCMM, the BIC and the ICL clearly

find the right number of components.
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Figure 5.8: Log-likelihood (left), BIC and ICL (right) mean values for VCMM models
fitted to datasets simulated from a 2-component VCMM. Only the the four variables
PIP3, PKA, p4442 and pakts473 of the Sachs dataset were used to fit the VCMM sampled
from.

Figure 5.9: Log-likelihood (left), BIC and ICL (right) mean values for VCMM models
fitted to datasets simulated from a 6-component VCMM. Only the the four variables
PIP3, PKA, p4442 and pakts473 of the Sachs dataset were used to fit the VCMM sampled
from.
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5.2.3 Likelihood ratio test and Vuong test

Now we want to specify a number of components. Since the variation of the BIC values

between the models, which differ only in the number of clusters, is small, we use selected

tests again. We again use the likelihood ratio test and the Vuong test, which have been

explained in Chapter 2.3.2. Due to the runing time we do not bootstrap the LRT this

time, but use Wilks theorem (Wilks, 1938), which we have already visualized in the last

subchapter. That means we calculate the p-values theoretically with the χ2-distribution.

The results are shown in Table 5.3.

Number of LRTS df marginal copula p-value 5% quantile of
components df df certain χ2-distribution

2 vs. 3 5009.84 107 35 72 <1.11e-16 132.14
3 vs. 4 8578.30 76 32 44 <1.11e-16 97.35
4 vs. 5 1853.34 97 41 56 <1.11e-16 120.99
5 vs. 6 2040.85 94 36 58 <1.11e-16 117.63
6 vs. 7 -1408.32 92 30 62 > 1 - 1.11e-16 115.39
7 vs. 8 1207.18 111 43 68 <1.11e-16 136.60
8 vs. 9 830.93 57 23 34 <1.11e-16 75.62
9 vs. 10 3493.39 104 36 68 <1.11e-16 128.80
10 vs. 11 1416.43 96 39 57 <1.11e-16 119.87
11 vs. 12 -45.02 71 30 41 > 1 - 1.11e-16 91.67
12 vs. 13 1796.29 46 11 35 <1.11e-16 62.83
13 vs. 14 387.46 82 40 42 <1.11e-16 104.14
14 vs. 15 -792.38 118 40 78 > 1 - 1.11e-16 144.35

Table 5.3: Likelihood ratio test for VCMM(g,LC,LM) up to 15 components. All p-values
are theoretical results from the asymptotic χ2-distribution. To provide comparability with
the results from the mclust package p-value = 1− cdfχ2 is shown. The differences of the
exact p-values to 0 or 1 are smaller then the machine precision. The fifth column shows
the theoretical threshold over which the LRTS must lie, so that the increase in likelihood
is significant at level α = 0.05.

First we need to make clear what the likelihood ratio test is here testing for: We assume

two models VCMM(g,LC,LM) and VCMM(g+1,LC,LM) to be fitting equally good in the

sense of the likelihood. In this case we would choose the models with less components.

Now the LRT tests, if the likelihood of the one model is perceptible better than the

likelihood of the other model. Up to VCMM(6,LC,LM), there are always large likelihood

impovements of the models with more clusters over the models with less clusters. But

for the likelihood ratio test of VCMM(6,LC,LM) against VCMM(7,LC,LM) this does not

hold anymore. Based on the results of the likelihood ratio test, we should choose the 6

cluster model instead of the 7 cluster model.

In addition, we would like to apply the unadjusted and adjusted Vuong test here.
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Again, we calculate the p-values theoretically. The test statistic of the Vuong test ν is

standard normal distributed. The results are shown in Table 5.4.

Number of Unadjusted unadjusted Akaike Akaike Schwarz Schwarz
components Vuong ν p-value adjusted ν adjusted p adjusted ν adjusted p

2 vs. 3 -23.12 0 -22.13 0 -18.56 0
3 vs. 4 -35.14 0 -34.52 0 -32.27 0
4 vs. 5 -10.36 1.89e-25 -9.28 8.86e-21 -5.36 8.864e-21
5 vs. 6 -14.86 2.92e-50 -13.49 8.65e-42 -8.55 8.651e-42
6 vs. 7 8.56 1 9.68 1 13.72 1
7 vs. 8 0.94 0.825 1.97 9.76e-01 5.70 0.976
8 vs. 9 -4.32 7.87e-06 -3.73 9.74e-05 -1.59 9.741e-05
9 vs. 10 -14.83 4.82e-50 -13.95 1.68e-44 -10.76 1.682e-44
10 vs. 11 -7.70 6.77e-15 -6.66 1.40e-11 -2.89 1.399e-11
11 vs. 12 0.22 0.588 0.93 0.824 3.49 0.824
12 vs. 13 -9.79 6.28e-23 -9.29 7.89e-21 -7.48 7.89e-21
13 vs. 14 -2.79 0.003 -1.61 0.054 2.66 0.054
14 vs. 15 4.73 0.999 6.14 1 11.23 1

Table 5.4: Vuong Test for VCMM(g,LC,LM) up to 15 components. All p-values are theo-
retical results from the standard normal distribution. P-values below 1e-100 are rounded
to 0.

We have to remember what the p-value tells us here: p-values < 0.05 suggest to choose

the model with more components, p-values > 0.95 suggest to choose the model with less

components, otherwise we assume that the models are equally good. In this case the

VCMM(6,LC,LM) is strongly recommended over the VCMM(7,LC,LM). Also seems the

VCMM(7,LC,LM) to have a significantly better likelihood than the VCMM(8,LC,LM).

Up to model VCMM(6,LC,LM), always the models with more components seem to be

significantly better fitting to the data then the models with less components. The models

with 11 and 12 clusters seem to be equally good fitting.

We can therefore summarize, that in addition to the model VCMM(13,LC,LM), which

has the best BIC, the model VCMM(6,LC,LM) is also interesting for closer examination.

Therefore, we now want to check with a Vuong test whether the improvement of the

likelihood is significant when using the 13 cluster model instead of the 6 cluster model:

We compute the statistics: unadjusted ν = −28.41 with p-value = 7.75e−178, and Schwarz

adjusted ν = −7.67 with p-value = 8.71e− 15. The Schwarz adjusted Vuong test is more

interesting in this case, as the different number of parameters has more impact here. For

both the unadjusted and the Schwarz adjusted Vuong test, the VCMM(13,LC,LM) is

significantly better, then the VCMM(6,LC,LM).
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5.2.4 Analysis of the mixture weights

We recall Equation (2.9), which defines the density of a mixture model with g ∈ N
components. The π

(g)
j -values for j = 1, ..., g play an important role. If the π

(g)
j -value for a

component is close to zero, the density of this component hardly matters for the model.

Since it holds
∑g

j=1 π
(g)
j = 1, we know that on average π

(g)
j ≈ 1/g for j = 1, ..., g. Now

consider this in a context where we want to specify the number of components for a

model. If several models have very similar values with respect to other criteria like log-

likelihood or BIC, it could make sense to set a threshold α ∈ (0, 1/g) under which we

omit component j as soon as π
(g)
j < α.

In Figure 5.7 we saw two local minima with respect to the BIC values. For this reason,

the VCMMs with 6 and 13 clusters and their neighborhoods are particularly interesting.

For that reason Table 5.5 shows (only for these interesting cases g ∈ {6, 7, 13, 14}) the

π
(g)
j -values from the models VCMM(g,LC,LM) and their means 1/g.

Component 6 7 13 14
1 0.281 0.191 0.170 0.027
2 0.140 0.139 0.070 0.060
3 0.056 0.053 0.030 0.038
4 0.181 0.202 0.030 0.120
5 0.164 0.174 0.038 0.060
6 0.178 0.121 0.080 0.151
7 0.120 0.015 0.015
8 0.061 0.058
9 0.171 0.142
10 0.142 0.086
11 0.069 0.069
12 0.050 0.048
13 0.073 0.073
14 0.053
1/g 0.167 0.143 0.077 0.071

Table 5.5: Estimated π
(g)
j -Values for the 6,7,13 and 14 component VCMMs. Values with

π
(g)
j < 0.5 ∗ 1/g are printed bold.

It is interesting that although the BIC difference between the 12 component VCMM

and the 13 component VCMM is large, also for the 13 component VCMM exceptionally

small π
(13)
j -values occur. The same applies for the 6 component VCMM, which has a

remarkably small π
(13)
3 value for cluster 3. We want to investigate these peculiarities by

comparing the results with Figure 5.10 and Figure 5.11. In which we can see how the

different experiments were divided into the clusters. In Figure 5.10 is shown, how many
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percent of observations in an experiment is assigned to the specific VCMM(6,LC,LM)-

clusters. The sum of all entries in one column adds up to 1. For better readability it is

shown as a heatmap. The same holds for Figure 5.11 with the VCMM(13,LC,LM).

Figure 5.10: Percentage of observations in an experiment assigned to the
VCMM(6,LC,LM)- clusters.

In VCMM(6,LC,LM), cluster C3 matches experiment E6 very closely. Thus for this

model, we dismiss the threshold approach described above for our specific case, since

the small π
(6)
j -values are due to the specifics of individual experiments. While cluster C7

of the VCMM(13,LC,LM) matches experiment E9 very closely, clusters C3 and C4 are

very heterogeneous. Clearly it would not make sense to leave out all components with

π
(13)
j < 0.5 ∗ 1/g due to cluster C7. However, we should check what Figure 5.11 would

look like, if we create from VCMM(13,LC,LM) a new model with fixed π
(13∗)
3 = π

(13∗)
4 =

0. This would effectively be an 11 component VCMM, but since it is not created and

optimized by the VCMM algorithm we dont want to call it VCMM(11,LC,LM). After

setting π
(13∗)
3 and π

(13∗)
4 to zero, we need to adjust all other π

(13∗)
j -values proportionally,

so that
∑13

j=1 π
(13∗)
j = 1 still holds. Therefore we set π

(13∗)
j :=

π
(13)
j

1−π(13)
3 −π(13)

4

. We can now

use the resulting 11 component VCMM to re-cluster the data. The result can be seen in

Figure 5.12 analogous to Figure 5.11.

Obviously clusters C3 and C4 are empty now. The observations in these clusters have

been split to the other clusters without significantly changing the results shown in Figure

5.11. I.e. the experiments that were previously very specifically assigned to one cluster

are still so. This is good and shows that the threshold approach described above can be

helpful when working with vine copula mixture models.

Before we move on to the next topic, we would like to address one last question

regarding the mixture weights: In CM-step 1 of the VCMM algorithm, the πj are calculated
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Figure 5.11: Percentage of observations in an experiment assigned to the
VCMM(13,LC,LM)- clusters.

via the maximum likelihood method given the updated posterior probabilities of the

observations. Thus, it is non-trivial, but likely in view of the previous results of our

analysis, that the size of πj is directly related to the number of observations assigned

to this cluster. In this case, one could possibly interpret the mixture weights as the

theoretical size of the cluster. For completeness, we should check this assumption for the

full interpretability of the VCMM results. In Figure 5.13 and 5.14 we see the relative size

of the VCMM(6,LC,LM)- and VCMM(13,LC,LM)-clusters (ie. the number of observations

in the respective cluster divided by the total number of observations 10149), as well as

the πj for the respective cluster. The lines are obviously very similar, confirming our

assumption.



CHAPTER 5. CLUSTERING 64

Figure 5.12: Percentage of observations in an experiment assigned to clusters of the
the adjusted π

(13∗)
j model derived from the VCMM(13,LC,LM). It is basically the

VCMM(13,LC,LM), but π
(13∗)
3 = π

(13∗)
4 = 0 were set to zero manually and all other

π
(13∗)
j -values have been adjusted proportionally.
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Figure 5.13: Percentage of observations in assigned to the VCMM(6,LC,LM)-clusters and

mixture weights π
(6)
j of the respective clusters.

Figure 5.14: Percentage of observations in assigned to the VCMM(13,LC,LM)-clusters

and mixture weights π
(13)
j of the respective clusters.
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5.2.5 Results of the VCMMs and their biological context

In Figures 5.10 and 5.11 we have already seen the percentage of observations in an exper-

iment assigned to the specific VCMM clusters. We would like to discuss these figures in

more detail: Both models recognize the same experiments well as distinct clusters. These

experiments which are assigned as a whole to a cluster are experiments E3, E4, E5, E6,

E9 and E11. The clusters C11 and C13 from VCMM(13,LC,LM) were merged to cluster

C2 from VCMM(6,LC,LM). Clusters C7 and C10 from VCMM(13,LC,LM) were largely

merged to cluster C4 from VCMM(6,LC,LM). Experiment E6 always stands separately

and does not share a cluster with any other experiment in both models.

Exp. Stimulation Directly influenced variables
1. Anti-CD3/CD28 plcg (+), praf (+), pmek (+), p4442 (+), PKC (+)
2. Anti-CD3/CD28, ICAM-2 plcg (+), praf (+), pmek (+), p4442 (+), PKC (+)
3. Anti-CD3/CD28, akt-inhibitor plcg (+), praf (+), pmek (+), p4442 (+), PKC (+), pakts473 (-)
4. Anti-CD3/CD28, G0076 plcg (+), praf (+), pmek (+), p4442 (+), PKC (+/-)
5. Anti-CD3/CD28, Psitectorigenin plcg (+), praf (+), pmek (+), p4442 (+), PKC (+), PIP2 (-)
6. Anti-CD3/CD28, U0126 plcg (+), praf (+), pmek (+/-), p4442 (+/-), PKC (+)
7. Anti-CD3/CD28, LY294002 plcg (+), praf (+), pmek (+), p4442 (+), PKC (+), pakts473 (+)
8. PMA PKC (+)
9. β 2camp PKA (+)
10. Anti-CD3/CD28, ICAM-2, akt-inhib plcg (+), praf (+), pmek (+), p4442 (+), PKC (+), pakts473 (-)
11. Anti-CD3/CD28, ICAM-2, G0076 plcg (+), praf (+), pmek (+), p4442 (+), PKC (+/-)
12. Anti-CD3/CD28, ICAM-2, Psitectorigenin plcg (+), praf (+), pmek (+), p4442 (+), PKC (+), PIP2 (-)
13. Anti-CD3/CD28, ICAM-2, U0126 plcg (+), praf (+), pmek (+/-), p4442 (+/-), PKC (+)
14. Anti-CD3/CD28, ICAM-2, LY294002 plcg (+), praf (+), pmek (+), p4442 (+), PKC (+), pakts473 (+)

Table 5.6: Stimulations used in the different experiments, as well as the variables, that
are biochemically activated (+) or inhibited (-) by the stimulations. Variables directly
influenced by the stimulants in opposite ways, are marked with (+/-).

In Table 5.6 we can see 4 peculiarities, that could possibly help to explain the results:

(i) In the experiments E3-E7 and E10-E14, there is one pair each in which another

common stimulation was used in addition to anti-CD3/CD28.

(ii) Experiments E2 and E10-E14 have the similarity that always anti-CD3/CD28 and

ICAM-2 were used. However, we know that ICAM-2 has no specific direct but only

indirect effect on the measured variables.

(iii) Experiments E8 and E9 are the only ones where anti-CD3/CD28 was not applied.

(iv) Some reagents affect the same variables. These are anti-CD3/CD28, PMA and

G06976 with effect on PKC, anti-CD3/CD28 and U0126 on pmek and p4442, and

akt-inhibitor and LY294002 on pakts473.

Regarding these points, we would now like to discuss our results:
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(i) Reagent G0076, which was applied in experiment E4 and E11, has an exceptional

effect. Experiment E4 and E11 are together in one cluster in the 6 component model. And

in the 13 component model they are not, but both are assigned to an individual cluster.

We cannot see this in the other pairs: The experiments E10, E12, E13 and E14 are all split

across several clusters, but all across the same. These were not identified by the VCMM.

(ii) Experiments E2 and E10-E14 were not assigned to a specific cluster, but they

were all distributed to the same multiple clusters. The observations of these experiments

are in cluster C1 and C6 in the 6 component model, and cluster C1, C2, C6 and C9 in

the 13 component model. This suggests that the data of these experiments have some

common features. However, we know from Chapter 3 that the drug ICAM-2 was used

here as a ”general perturbation” (Sachs et al. (2005), p.525) and the molecules directly

affected by it were not measured for this data set. Thus, we detect the effect of ICAM-2

in the data only indirectly.This would be a likely explanation for the fact that the affected

experiments, while all split similar, were not split into one or more experiment-specific

clusters in either model discussed here.

(iii) The effect of the β 2camp used in experiment E9 seems to be very individual for

the variables considered, because in both models the observations of E9 have been assigned

very uniquely to exactly one cluster. This is different for PMA used in experiment E8. It

is interesting that the observations of experiment E8 were partitioned very similarly to

the experiments in which ICAM-2 was also used (ie. the experiments discussed in (ii)).

Further biochemical analysis would be necessary to determine whether PMA produces

similar effects on hidden variables.

(iv) Anti-CD3/CD28 and PMA both activate PKC, whereas G06976 inhibits PKC. The

observations of experiments E4 and E11, in which G06976 was applied, were very precisely

assigned to one cluster. This suggests that the data points in which PKC was inhibited have

strong features that were clearly found by the VCMM algorithm. In contrast, experiment

E8 in which PMA was used was not identified as one cluster. U0126 was applied in

experiments E6 and E13. While experiment E6 matches with a single cluster in each of

the models discussed here, we see no particularities in experiment E13 - or similarities

to experiment E6. The data from these experiments seem not to behave any more or

less differently to experiments E8 and E9 (the only in which anti-CD3/CD28 was not

applied) than other experiments. When we compare experiment E3, where akt-inhibitor

was applied, to experiment E7, where LY294002 was applied, we have the following setting:

Both have influence on the variable pakts473, but in exactly different ways: LY294002

activates pakts473 and as the name suggests akt-inhibitor inhibits it. Nevertheless these

observations from these experiments were split very similarly in both models, as we can
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see for VCMM(6,LC,LM) in cluster 4 and for VCMM(13,LC,LM) in cluster C10. Thus,

the data have notable similarities.
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5.2.6 VCMM performance at optimal initial conditions

In the previous subchapter, we have discussed in detail how the observations of the differ-

ent experiments are split among the VCMM clusters. At this point, it would be interesting

to know what result would be obtained, if the VCMM algorithm had the optimal (i.e. the

true) partitioning of observations to the experiments at some iteration. This could help us

to understand what is feasible. That means we fit a 14 component VCMM, skipping the

initial clustering and using the true partitioning to the experiments as initial clustering

instead. The results are shown in Figure 5.15.

Figure 5.15: Percentage of observations in an experiment assigned to the clusters of a 14
component VCMM, fitted to the true experiment partitioning as initial clustering.

As expected, high values are noted on the diagonal. Apart from this the similarity

to the results in Figure 5.10 and 5.11 is remarkable: Again, E3-E6 and E9 and E11 are

exactly the experiments that were very accurately identified by this model. In contrast,

experiments E10 and E12-E14 have again all been split into different clusters, but together

into the same clusters. In addition, experiments E1 andE 7 were once again clustered on

the same clusters. This result supports our assumption that the VCMM(6,LC,LM) and
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VCMM(13,LC,LM) models, which we discussed in more detail before, already produced

very good results.
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5.2.7 Vine tree structures

(a) Cluster 1 Tree 1 (b) Cluster 2 Tree 1 (c) Cluster 3 Tree 1

(d) Cluster 4 Tree 1 (e) Cluster 5 Tree 1 (f) Cluster 6 Tree 1

(g) Cluster 1 Tree 2 (h) Cluster 2 Tree 2 (i) Cluster 3 Tree 2

(j) Cluster 4 Tree 2 (k) Cluster 5 Tree 2 (l) Cluster 6 Tree 2

Figure 5.16: Vine tree structures of the clusters of VCMM(6,LC,LM). The variables cor-
respond to: 1=praf, 2=pmek, 3=plcg, 4=PIP2, 5=PIP3, 6=p4442, 7=pakts473, 8=PKA,
9=PKC,10=P38, 11= pjnk



CHAPTER 5. CLUSTERING 72

(a) Cluster 1 Tree 1 (b) Cluster 2 Tree 1 (c) Cluster 3 Tree 1

(d) Cluster 4 Tree 1 (e) Cluster 5 Tree 1 (f) Cluster 6 Tree 1

(g) Cluster 7 Tree 1 (h) Cluster 8 Tree 1 (i) Cluster 9 Tree 1

(j) Cluster 10 Tree 1 (k) Cluster 11 Tree 1 (l) Cluster 12 Tree 1

(m) Cluster 13 Tree 1

Figure 5.17: Vine tree structures of the first trees of the clusters of VCMM(13,LC,LM).
The variables correspond to: 1=praf, 2=pmek, 3=plcg, 4=PIP2, 5=PIP3, 6=p4442,
7=pakts473, 8=PKA, 9=PKC,10=P38, 11= pjnk
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(a) Cluster 1 Tree 2 (b) Cluster 2 Tree 2 (c) Cluster 3 Tree 2

(d) Cluster 4 Tree 2 (e) Cluster 5 Tree 2 (f) Cluster 6 Tree 2

(g) Cluster 7 Tree 2 (h) Cluster 8 Tree 2 (i) Cluster 9 Tree 2

(j) Cluster 10 Tree 2 (k) Cluster 11 Tree 2 (l) Cluster 12 Tree 2

(m) Cluster 13 Tree 2

Figure 5.18: Vine tree structures of the second trees of the clusters of VCMM(13,LC,LM).
The variables correspond to: 1=praf, 2=pmek, 3=plcg, 4=PIP2, 5=PIP3, 6=p4442,
7=pakts473, 8=PKA, 9=PKC,10=P38, 11= pjnk
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5.2.8 Data simulation

In the previous chapters, we finally simulated data from the discussed best fitting models,

and compared the simulated data to our observations. We want to do the same here, by

again simulating 10149 data points from the VCMM(6,LC,LM) and VCMM(13,LC,LM).

Figure 5.19: Pairs plots of observed dataset (lower triangle) and dataset sampled from the
VCMM(6,LC,LM) (upper triangle).
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Figure 5.20: Pairs plots of observed dataset (lower triangle) and dataset sampled from the
VCMM(13,LC,LM) (upper triangle).

The results are shown in Figure 5.19 and Figure 5.20. If the datasets were sampled

from the identical same distribution they would -most likely- look like if they have been

mirrored on the diagonal. We can see that the results of the VCMMs are better then

the results from the GMM. Still we can see, that there are for both models differences

between the original and the simulated data. Overall, Figure 5.19 and 5.20 alone do

not clearly indicate which of the models is better, because for some variable pairs the

VCMM(6,LC,LM) seems to fit better, and for some variables the VCMM(13,LC,LM)

seems to recover more characteristics.



Chapter 6

Causal Analysis

In this chapter we are at first fitting D-vine regression models (see Kraus and Czado

(2017)) to different groups of the Sachs dataset. In the second step, we then combine these

to obtain causal D-vine regression models and sample data from them afterwards. In the

following subchapter we will compare the causal models with the D-vine regression models

fitted simply to the entire pooled data set in Chapter 4.3. Subsequent to this, we analyze

how all the discussed D-vine regression models handle the tails of the distributions, which

shows, that the choice of the used copula families - or restrictions of these lead to different

results. Finally and as an outlook we apply vine copula mixture models to selected causal

datasets to see if substructures exist within them.

6.1 D-Vine regression model fitting

In Table 3.1 we have seen, that the data comes from 14 different experiments, in which

different stimulations were applied. These stimulations have direct influence on specific

variables. Still the variables also influence each other, as illustrated in Figure 3.1. We

call the DAG from Figure 3.1 the consent graph. These influences are resulting from

biochemical processes within the observed T-cells, and are well researched. The biological

background was discussed in short manner in the previous chapters, but it can be found

in more depth in Sachs et al. (2005).

In this chapter we will apply causal analysis, by dividing the dataset in groups with

only these observations, which have not been influenced directly for a specific variable. It

should be noted, that there are groups of variables like praf, plcg, pmek or p4442, which

are all influenced in the same experiments. Another such group are the variables PIP3,

P38 and pjnk, which are influenced in no experiment directly.

At first we fit marginal distributions to the variables of interest of the specific group.

76
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Here we allow for some models only the univariate normal distribution, and for others

all the parametric marginal distributions we have already worked with in the previous

chapters. With these we then transform the data (of the specific group) to u-scale. To these

observations on u-scale we are fitting D-vine regression models with the vinereg library

by Nagler and Kraus (2021). In a first step, we work with data transformed by Gaussian

margins, and then allow only the Gaussian copula family as well as the indepencence

copula for the D-vine regression. Inviews of the Gaussian margins and the Gaussian copula

families, we call these models MGaussCGauss. For a second model we use all the parametric

margins, we have already worked with in the previous chapters, but still restrict the copula

families to the Gaussian copula family as well as the indepencence copula, therefore we

describe it as MParCGauss. In a third model class, we then use again all the parametric

margins and we also allow all parametric copula families, which we denote as MParCPar.

In all the models we use the topological order induced by the consent graph, which is

given by PIP3, plcg, PIP2, PKC, PKA, P38, pjnk, praf, pmek, p4442, pakts473.

6.1.1 Variable plcg

Since PIP3 has no parent, we do not fit a D-vine regression model for it, but start with

the variable plcg which is a child node of PIP3.
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(a) Gaussian marginal parameter estimates:

Variable Family Parameters Estimated with data Sample Marginal
from experiments size loglikelihood

PIP3 normal 2.641, 1.001 8, 9 1028 -1459.97
plcg normal 3.034, 0.7 8, 9 1028 -1091.108

(b) MGaussCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression
D-vine with Gaussian margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

plcg PIP3 105.355 -208.711 -203.776 8, 9 1028

(c) MGaussCGauss (causal): Copulas fitted for the regression D-vine with Gaussian
margins and Gaussian copulas :

Variable Pair copula Family Parameters Tau
plcg plcg, PIP3 gaussian 0.431 0.284

Table 6.1: MGaussCGauss (causal): Estimation results with regard to the margins (panel
a), the copula-loglikelihood (panel b) and the copula parameters (panel c). Only the
observations of the Sachs data, which have not been directly perturbed in plcg have been
used.
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(a) Parametric marginal families and parameter estimates:

Variable Family Parameters Number of Estimated with data Sample Marginal
parameters from experiments size loglikelihood

PIP3 normal (2.641, 1.001) 2 8, 9 1028 -1459.97
plcg t-fix (3.050, 0.462) 2 8, 9 1028 -1031.63

(b) MParCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

plcg PIP3 99.275 -196.55 -191.615 8, 9 1028

(c) MParCGauss (causal): Copulas fitted for the regression D-vine with parametric
margins and Gaussian copulas:

Variable Pair copula Family Parameters Tau
plcg plcg, PIP3 gaussian 0.424 0.279

(d) MParCPar (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and parametric copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

plcg PIP3 219.967 -435.934 -426.063 8, 9 1028

(e) MParCPar (causal): Copulas fitted for the regression D-vine with parametric margins
and parametric copulas:

Variable Pair copula Family Rotation Parameters Tau
plcg plcg, PIP3 bb8 0 1.914, 0.999 0.334

Table 6.2: MParCGauss (causal) + MParCPar (causal): Estimation results with regard to
the margins (panel a), the copula-loglikelihood (panel b and d) and the copula parameters
(panel c and e). Only the observations of the Sachs data, which have not been directly
perturbed in plcg have been used.
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6.1.2 Variable PIP2

(a) Gaussian marginal parameter estimates:

Variable Family Parameters Estimated with data Sample Marginal
from experiments size loglikelihood

PIP3 normal 2.875, 0.971 1-4, 6-11, 13-14 8738 -12141.029
plcg normal 3.045, 1.351 1-4, 6-11, 13-14 8738 -15029.257
PIP2 normal 4.346, 1.387 1-4, 6-11, 13-14 8738 -15259.27

(b) MGaussCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression
D-vine with Gaussian margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

PIP2 plcg, PIP3 2660.696 -5315.392 -5294.166 1-4, 6-11, 13-14 8738

(c) MGaussCGauss (causal): Copulas fitted for the regression D-vine with Gaussian
margins and Gaussian copulas :

Variable Pair copula Family Parameters Tau
PIP2 PIP2, plcg gaussian 0.546 0.368

plcg, PIP3 gaussian 0.053 0.034
PIP2, PIP3; plcg gaussian 0.472 0.313

Table 6.3: MGaussCGauss (causal): Estimation results with regard to the margins (panel
a), the copula-loglikelihood (panel b) and the copula parameters (panel c). Only the
observations of the Sachs data, which have not been directly perturbed in PIP2 have
been used.
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(a) Parametric marginal families and parameter estimates:

Variable Family Parameters Number of Estimated with data Sample Marginal
parameters from experiments size loglikelihood

PIP3 skew-t (2.876, 0.971, 23.888, 0.881) 4 1-4, 6-11, 13-14 8738 -12095.24
plcg skew-t (3.053, 1.413, 4.632, 1.421) 4 1-4, 6-11, 13-14 8738 -14500.60
PIP2 normal (4.346, 1.387) 2 1-4, 6-11, 13-14 8738 -15259.27

(b) MParCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

PIP2 plcg, PIP3 2194.22 -4382.44 -4361.214 1-4, 6-11, 13-14 8738

(c) MParCGauss (causal): Copulas fitted for the regression D-vine with parametric
margins and Gaussian copulas:

Variable Pair copula Family Parameters Tau
PIP2 PIP2, plcg gaussian 0.478 0.318

plcg, PIP3 gaussian 0.056 0.036
PIP2, PIP3; plcg gaussian 0.461 0.305

(d) MParCPar (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and parametric copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

PIP2 plcg, PIP3 3758.478 -7508.957 -7480.655 1-4, 6-11, 13-14 8738

(e) MParCPar (causal): Copulas fitted for the regression D-vine with parametric margins
and parametric copulas:

Variable Pair copula Family Rotation Parameters Tau
PIP2 PIP2, plcg joe 0 2.002 0.356

plcg, PIP3 clayton 180 0.091 0.043
PIP2, PIP3; plcg bb8 0 3.826, 0.688 0.354

Table 6.4: MParCGauss (causal) + MParCPar (causal): Estimation results with regard to
the margins (panel a), the copula-loglikelihood (panel b and d) and the copula parameters
(panel c and e). Only the observations of the Sachs data, which have not been directly
perturbed in PIP2 have been used.
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6.1.3 Variable PKC

(a) Gaussian marginal parameter estimates:

Variable Family Parameters Estimated with data Sample Marginal
from experiments size loglikelihood

plcg normal 3.024, 0.661 9 155 -155.177
PIP2 normal 4.213, 1.138 9 155 -239.523
PKC normal 1.388, 0.984 9 155 -216.887

(b) MGaussCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression
D-vine with Gaussian margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

PKC 0 0 0 9 155

Table 6.5: MGaussCGauss (causal): Estimation results with regard to the margins (panel
a) and the copula-loglikelihood (panel b). Only the observations of the Sachs data, which
have not been directly perturbed in PKC have been used.
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(a) Parametric marginal families and parameter estimates:

Variable Family Parameters Number of Estimated with data Sample Marginal
parameters from experiments size loglikelihood

plcg t-fix (3.039, 0.460) 2 9 155 -149.296
PIP2 skew-normal (4.247, 1.152, 0.718) 3 9 155 -238.33
PKC skew-normal (1.364, 1.010, 8.669) 3 9 155 -193.89

(b) MParCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

PKC 0 0 0 9 155

(c) MParCPar (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and parametric copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

PKC PIP2 1.311 -0.622 2.421 9 155

(d) MParCPar (causal): Copulas fitted for the regression D-vine with parametric
margins and parametric copulas:

Variable Pair copula Family Rotation Parameters Tau
PKC PKC, PIP2 joe 270 1.157 -0.082

Table 6.6: MParCGauss (causal) + MParCPar (causal): Estimation results with regard to
the margins (panel a), the copula-loglikelihood (panel b and c) and the copula parameters
(panel d). Only the observations of the Sachs data, which have not been directly perturbed
in PKC have been used.
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6.1.4 Variable PKA

(a) Gaussian marginal parameter estimates:

Variable Family Parameters Estimated with data Sample Marginal
from experiments size loglikelihood

PKC normal 2.714, 1.012 1-8, 10-14 9994 -14302.386
PKA normal 6.107, 1.304 1-8, 10-14 9994 -16833.374

(b) MGaussCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression
D-vine with Gaussian margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

PKA PKC 713.791 -1425.582 -1418.373 1-8, 10-14 9994

(c) MGaussCGauss (causal): Copulas fitted for the regression D-vine with Gaussian
margins and Gaussian copulas :

Variable Pair copula Family Parameters Tau
PKA PKA, PKC gaussian -0.306 -0.198

Table 6.7: MGaussCGauss (causal): Estimation results with regard to the margins (panel
a), the copula-loglikelihood (panel b) and the copula parameters (panel c). Only the
observations of the Sachs data, which have not been directly perturbed in PKA have
been used.
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(a) Parametric marginal families and parameter estimates:

Variable Family Parameters Number of Estimated with data Sample Marginal
parameters from experiments size loglikelihood

PKC skew-t (2.708, 1.055, 4.104, 1.035) 4 1-8, 10-14 9994 -13929.14
PKA skew-t (6.221, 9.842, 2.008, 0.880) 4 1-8, 10-14 9994 -14526.86

(b) MParCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

PKA PKC 282.082 -562.164 -554.955 1-8, 10-14 9994

(c) MParCGauss (causal): Copulas fitted for the regression D-vine with parametric
margins and Gaussian copulas:

Variable Pair copula Family Parameters Tau
PKA PKA, PKC gaussian -0.234 -0.15

(d) MParCPar (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and parametric copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

PKA PKC 870.333 -1738.666 -1731.456 1-8, 10-14 9994

(e) MParCPar (causal): Copulas fitted for the regression D-vine with parametric margins
and parametric copulas:

Variable Pair copula Family Rotation Parameters Tau
PKA PKA, PKC joe 90 1.345 -0.163

Table 6.8: MParCGauss (causal) + MParCPar (causal): Estimation results with regard to
the margins (panel a), the copula-loglikelihood (panel b and d) and the copula parameters
(panel c and e). Only the observations of the Sachs data, which have not been directly
perturbed in PKA have been used.
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6.1.5 Variable P38

(a) Gaussian marginal parameter estimates:

Variable Family Parameters Estimated with data Sample Marginal
from experiments size loglikelihood

PKC normal 2.694, 1.025 1-14 10149 -14648.882
PKA normal 6.106, 1.296 1-14 10149 -17032.228
P38 normal 3.765, 1.106 1-14 10149 -15422.559

(b) MGaussCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression
D-vine with Gaussian margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

P38 PKC, PKA 6148.889 -12291.779 -12270.103 1-14 10149

(c) MGaussCGauss (causal): Copulas fitted for the regression D-vine with Gaussian
margins and Gaussian copulas :

Variable Pair copula Family Parameters Tau
P38 P38, PKC gaussian 0.776 0.566

PKC, PKA gaussian -0.295 -0.191
P38, PKA; PKC gaussian -0.387 -0.253

Table 6.9: MGaussCGauss (causal): Estimation results with regard to the margins (panel
a), the copula-loglikelihood (panel b) and the copula parameters (panel c). Only the
observations of the Sachs data, which have not been directly perturbed in P38 have been
used.
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(a) Parametric marginal families and parameter estimates:

Variable Family Parameters Number of Estimated with data Sample Marginal
parameters from experiments size loglikelihood

PKC skew-t (2.687, 1.067, 4.157, 1.016) 4 1-14 10149 -14295.35
PKA skew-t (6.220, 9.896, 2.008, 0.886) 4 1-14 10149 -14706.29
P38 skew-t (3.790, 1.988, 2.250, 1.504) 4 1-14 10149 -13612.65

(b) MParCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

P38 PKC, PKA 4623.152 -9240.304 -9218.628 1-14 10149

(c) MParCGauss (causal): Copulas fitted for the regression D-vine with parametric
margins and Gaussian copulas:

Variable Pair copula Family Parameters Tau
P38 P38, PKC gaussian 0.752 0.542

PKC, PKA gaussian -0.226 -0.145
P38, PKA; PKC gaussian -0.16 -0.102

(d) MParCPar (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and parametric copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

P38 PKC, PKA 6794.476 -13578.951 -13542.826 1-14 10149

(e) MParCPar (causal): Copulas fitted for the regression D-vine with parametric margins
and parametric copulas:

Variable Pair copula Family Rotation Parameters Tau
P38 P38, PKC bb8 0 3.686, 0.991 0.581

PKC, PKA joe 270 1.337 -0.16
P38, PKA; PKC bb8 270 1.151, 0.981 -0.069

Table 6.10: MParCGauss (causal) + MParCPar (causal): Estimation results with regard to
the margins (panel a), the copula-loglikelihood (panel b and d) and the copula parameters
(panel c and e). Only the observations of the Sachs data, which have not been directly
perturbed in P38 have been used.
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6.1.6 Variable pjnk

(a) Gaussian marginal parameter estimates:

Variable Family Parameters Estimated with data Sample Marginal
from experiments size loglikelihood

PKC normal 2.694, 1.025 1-14 10149 -14648.882
PKA normal 6.106, 1.296 1-14 10149 -17032.228
pjnk normal 3.457, 1.207 1-14 10149 -16312.928

(b) MGaussCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression
D-vine with Gaussian margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

pjnk PKC, PKA 2332.515 -4659.031 -4637.356 1-14 10149

(c) MGaussCGauss (causal): Copulas fitted for the regression D-vine with Gaussian
margins and Gaussian copulas :

Variable Pair copula Family Parameters Tau
pjnk pjnk, PKC gaussian 0.506 0.338

PKC, PKA gaussian -0.295 -0.191
pjnk, PKA; PKC gaussian -0.173 -0.111

Table 6.11: MGaussCGauss (causal): Estimation results with regard to the margins (panel
a), the copula-loglikelihood (panel b) and the copula parameters (panel c). Only the
observations of the Sachs data, which have not been directly perturbed in pjnk have been
used.
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(a) Parametric marginal families and parameter estimates:

Variable Family Parameters Number of Estimated with data Sample Marginal
parameters from experiments size loglikelihood

PKC skew-t (2.687, 1.067, 4.157, 1.016) 4 1-14 10149 -14295.35
PKA skew-t (6.220, 9.896, 2.008, 0.886) 4 1-14 10149 -14706.29
pjnk logistic (3.460, 0.665) 2 1-14 10149 -16179.19

(b) MParCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

pjnk PKC, PKA 1476.262 -2946.524 -2924.848 1-14 10149

(c) MParCGauss (causal): Copulas fitted for the regression D-vine with parametric
margins and Gaussian copulas:

Variable Pair copula Family Parameters Tau
pjnk pjnk, PKC gaussian 0.455 0.301

PKC, PKA gaussian -0.226 -0.145
pjnk, PKA; PKC gaussian -0.075 -0.048

(d) MParCPar (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and parametric copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

pjnk PKC, PKA 2744.762 -5479.523 -5443.397 1-14 10149

(e) MParCPar (causal): Copulas fitted for the regression D-vine with parametric margins
and parametric copulas:

Variable Pair copula Family Rotation Parameters Tau
pjnk pjnk, PKC bb7 0 1.687, 0.165 0.316

PKC, PKA joe 270 1.337 -0.16
pjnk, PKA; PKC t 0 0.021, 13.489 0.013

Table 6.12: MParCGauss (causal) + MParCPar (causal): Estimation results with regard to
the margins (panel a), the copula-loglikelihood (panel b and d) and the copula parameters
(panel c and e). Only the observations of the Sachs data, which have not been directly
perturbed in pjnk have been used.
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6.1.7 Variable praf

(a) Gaussian marginal parameter estimates:

Variable Family Parameters Estimated with data Sample Marginal
from experiments size loglikelihood

PKC normal 2.433, 0.915 8, 9 1028 -1366.871
PKA normal 6.461, 0.655 8, 9 1028 -1023.593
praf normal 3.242, 0.704 8, 9 1028 -1097.672

(b) MGaussCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression
D-vine with Gaussian margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

praf PKC 1.72 -1.44 3.495 8, 9 1028

(c) MGaussCGauss (causal): Copulas fitted for the regression D-vine with Gaussian
margins and Gaussian copulas :

Variable Pair copula Family Parameters Tau
praf praf, PKC gaussian -0.058 -0.037

Table 6.13: MGaussCGauss (causal): Estimation results with regard to the margins (panel
a), the copula-loglikelihood (panel b) and the copula parameters (panel c). Only the
observations of the Sachs data, which have not been directly perturbed in praf have been
used.
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(a) Parametric marginal families and parameter estimates:

Variable Family Parameters Number of Estimated with data Sample Marginal
parameters from experiments size loglikelihood

PKC skew-t (2.432, 0.953, 4.628, 0.862) 4 8, 9 1028 -1340.88
PKA skew-t (6.473, 0.669, 7.566, 1.555) 4 8, 9 1028 -970.96
praf skew-t (3.255, 0.717, 6.211, 1.202) 4 8, 9 1028 -1075.40

(b) MParCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

praf PKC, PKA 13.554 -21.108 -6.302 8, 9 1028

(c) MParCGauss (causal): Copulas fitted for the regression D-vine with parametric
margins and Gaussian copulas:

Variable Pair copula Family Parameters Tau
praf praf, PKC gaussian -0.061 -0.039

PKC, PKA gaussian 0.142 0.091
praf, PKA; PKC gaussian -0.046 -0.029

(d) MParCPar (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and parametric copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

praf PKC, PKA 25.073 -42.146 -22.404 8, 9 1028

(e) MParCPar (causal): Copulas fitted for the regression D-vine with parametric margins
and parametric copulas:

Variable Pair copula Family Rotation Parameters Tau
praf praf, PKC clayton 90 0.096 -0.046

PKC, PKA bb8 180 1.272, 0.957 0.104
praf, PKA; PKC frank 0 -0.31 -0.034

Table 6.14: MParCGauss (causal) + MParCPar (causal): Estimation results with regard to
the margins (panel a), the copula-loglikelihood (panel b and d) and the copula parameters
(panel c and e). Only the observations of the Sachs data, which have not been directly
perturbed in praf have been used.
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6.1.8 Variable pmek

(a) Gaussian marginal parameter estimates:

Variable Family Parameters Estimated with data Sample Marginal
from experiments size loglikelihood

PKC normal 2.433, 0.915 8, 9 1028 -1366.871
PKA normal 6.461, 0.655 8, 9 1028 -1023.593
praf normal 3.242, 0.704 8, 9 1028 -1097.672

pmek normal 2.586, 1.043 8, 9 1028 -1501.829

(b) MGaussCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression
D-vine with Gaussian margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

pmek PKC, praf, PKA 144.491 -278.982 -254.305 8, 9 1028

(c) MGaussCGauss (causal): Copulas fitted for the regression D-vine with Gaussian
margins and Gaussian copulas :

Variable Pair copula Family Parameters Tau
pmek pmek, PKC gaussian 0.388 0.254

PKC, praf gaussian -0.058 -0.037
praf, PKA indep 0
pmek, praf; PKC gaussian 0.267 0.172
PKC, PKA; praf gaussian 0.132 0.084
pmek, PKA; PKC, praf gaussian 0.151 0.097

Table 6.15: MGaussCGauss (causal): Estimation results with regard to the margins (panel
a), the copula-loglikelihood (panel b) and the copula parameters (panel c). Only the
observations of the Sachs data, which have not been directly perturbed in pmek have
been used.
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(a) Parametric marginal families and parameter estimates:

Variable Family Parameters Number of Estimated with data Sample Marginal
parameters from experiments size loglikelihood

PKC skew-t (2.432, 0.953, 4.628, 0.862) 4 8, 9 1028 -1340.88
PKA skew-t (6.473, 0.669, 7.566, 1.555) 4 8, 9 1028 -970.96
praf skew-t (3.255, 0.717, 6.211, 1.202) 4 8, 9 1028 -1075.40

pmek skew-t (2.593, 1.111, 4.026, 0.799) 4 8, 9 1028 -1458.15

(b) MParCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

pmek PKC, praf, PKA 143.342 -274.683 -245.071 8, 9 1028

(c) MParCGauss (causal): Copulas fitted for the regression D-vine with parametric
margins and Gaussian copulas:

Variable Pair copula Family Parameters Tau
pmek pmek, PKC gaussian 0.331 0.215

PKC, praf gaussian -0.061 -0.039
praf, PKA gaussian -0.054 -0.035
pmek, praf; PKC gaussian 0.318 0.206
PKC, PKA; praf gaussian 0.139 0.089
pmek, PKA; PKC, praf gaussian 0.171 0.109

(d) MParCPar (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and parametric copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

pmek praf, PKC, PKA 313.688 -609.376 -564.958 8, 9 1028

(e) MParCPar (causal): Copulas fitted for the regression D-vine with parametric margins
and parametric copulas:

Variable Pair copula Family Rotation Parameters Tau
pmek pmek, praf joe 0 1.752 0.295

praf, PKC clayton 90 0.096 -0.046
PKC, PKA bb8 180 1.272, 0.957 0.104
pmek, PKC; praf bb8 180 1.505, 0.98 0.199
praf, PKA; PKC frank 0 -0.31 -0.034
pmek, PKA; praf, PKC bb8 180 1.207, 0.965 0.084

Table 6.16: MParCGauss (causal) + MParCPar (causal): Estimation results with regard to
the margins (panel a), the copula-loglikelihood (panel b and d) and the copula parameters
(panel c and e). Only the observations of the Sachs data, which have not been directly
perturbed in pmek have been used.
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6.1.9 Variable p4442

(a) Gaussian marginal parameter estimates:

Variable Family Parameters Estimated with data Sample Marginal
from experiments size loglikelihood

PKA normal 6.461, 0.655 8, 9 1028 -1023.593
pmek normal 2.586, 1.043 8, 9 1028 -1501.829
p4442 normal 3.131, 0.976 8, 9 1028 -1433.533

(b) MGaussCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression
D-vine with Gaussian margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

p4442 PKA, pmek 155.235 -304.47 -289.664 8, 9 1028

(c) MGaussCGauss (causal): Copulas fitted for the regression D-vine with Gaussian
margins and Gaussian copulas :

Variable Pair copula Family Parameters Tau
p4442 p4442, PKA gaussian 0.482 0.32

PKA, pmek gaussian 0.179 0.115
p4442, pmek; PKA gaussian 0.072 0.046

Table 6.17: MGaussCGauss (causal): Estimation results with regard to the margins (panel
a), the copula-loglikelihood (panel b) and the copula parameters (panel c). Only the
observations of the Sachs data, which have not been directly perturbed in p4442 have
been used.
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(a) Parametric marginal families and parameter estimates:

Variable Family Parameters Number of Estimated with data Sample Marginal
parameters from experiments size loglikelihood

PKA skew-t (6.473, 0.669, 7.566, 1.555) 4 8, 9 1028 -970.96
pmek skew-t (2.593, 1.111, 4.026, 0.799) 4 8, 9 1028 -1458.15
p4442 skew-normal (3.130, 0.976, 0.870) 3 8, 9 1028 -1428.85

(b) MParCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

p4442 PKA, pmek 140.876 -275.751 -260.945 8, 9 1028

(c) MParCGauss (causal): Copulas fitted for the regression D-vine with parametric
margins and Gaussian copulas:

Variable Pair copula Family Parameters Tau
p4442 p4442, PKA gaussian 0.457 0.302

PKA, pmek gaussian 0.184 0.118
p4442, pmek; PKA gaussian 0.063 0.04

(d) MParCPar (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and parametric copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

p4442 PKA, pmek 225.232 -440.464 -415.787 8, 9 1028

(e) MParCPar (causal): Copulas fitted for the regression D-vine with parametric margins
and parametric copulas:

Variable Pair copula Family Rotation Parameters Tau
p4442 p4442, PKA bb7 0 1.729, 0.109 0.314

PKA, pmek bb8 180 1.313, 0.978 0.131
p4442, pmek; PKA frank 0 0.627 0.069

Table 6.18: MParCGauss (causal) + MParCPar (causal): Estimation results with regard to
the margins (panel a), the copula-loglikelihood (panel b and d) and the copula parameters
(panel c and e). Only the observations of the Sachs data, which have not been directly
perturbed in p4442 have been used.
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6.1.10 Variable pakts473

(a) Gaussian marginal parameter estimates:

Variable Family Parameters Estimated with data Sample Marginal
from experiments size loglikelihood

PIP3 normal 4.176, 1.257 1-2, 4-6, 8-9, 11-13 6795 -10500.41
PKA normal 5.931, 1.462 1-2, 4-6, 8-9, 11-13 6795 -12223.191
p4442 normal 3.06, 1.054 1-2, 4-6, 8-9, 11-13 6795 -10001.389

pakts473 normal 4.176, 1.121 1-2, 4-6, 8-9, 11-13 6795 -10417.916

(b) MGaussCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression
D-vine with Gaussian margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

pakts473 p4442, PKA, PIP3 3781.127 -7552.253 -7518.133 1-2, 4-6, 8-9, 11-13 6795

(c) MGaussCGauss (causal): Copulas fitted for the regression D-vine with Gaussian
margins and Gaussian copulas :

Variable Pair copula Family Parameters Tau
pakts473 pakts473, p4442 gaussian 0.781 0.571

p4442, PKA indep
PKA, PIP3 gaussian 0.08 0.051
pakts473, PKA; p4442 gaussian -0.308 -0.2
p4442, PIP3; PKA gaussian -0.058 -0.037
pakts473, PIP3; p4442, PKA gaussian 0.062 0.039

Table 6.19: MGaussCGauss (causal): Estimation results with regard to the margins (panel
a), the copula-loglikelihood (panel b) and the copula parameters (panel c). Only the
observations of the Sachs data, which have not been directly perturbed in pakts473 have
been used.
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(a) Parametric marginal families and parameter estimates:

Variable Family Parameters Number of Estimated with data Sample Marginal
parameters from experiments size loglikelihood

PIP3 skew-t (2.727, 0.944, 19.930, 0.918) 4 1-2, 4-6, 8-9, 11-13 6795 -9807.9
PKA t-fix (6.282, 0.760) 2 1-2, 4-6, 8-9, 11-13 6795 -11021.34
p4442 skew-t (3.060, 1.056, 12.358, 0.954) 4 1-2, 4-6, 8-9, 11-13 6795 -9969.96

pakts473 skew-t (4.200, 1.137, 7.140, 1.643) 4 1-2, 4-6, 8-9, 11-13 6795 -9918.73

(b) MParCGauss (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and Gaussian copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

pakts473 p4442, PKA, PIP3 3498.433 -6984.866 -6943.922 1-2, 4-6, 8-9, 11-13 6795

(c) MParCGauss (causal): Copulas fitted for the regression D-vine with parametric
margins and Gaussian copulas:

Variable Pair copula Family Parameters Tau
pakts473 pakts473, p4442 gaussian 0.781 0.57

p4442, PKA gaussian 0.079 0.05
PKA, PIP3 gaussian 0.05 0.032
pakts473, PKA; p4442 gaussian -0.24 -0.154
p4442, PIP3; PKA gaussian -0.062 -0.04
pakts473, PIP3; p4442, PKA gaussian 0.028 0.018

(d) MParCPar (causal): Copula-loglikelihood, -AIC and -BIC for the regression D-vine
with parametric margins and parametric copulas:

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

pakts473 p4442, PKA, PIP3 4686.65 -9355.299 -9293.884 1-2, 4-6, 8-9, 11-13 6795

(e) MParCPar (causal): Copulas fitted for the regression D-vine with parametric margins
and parametric copulas:

Variable Pair copula Family Rotation Parameters Tau
pakts473 pakts473, p4442 bb6 0 1.414, 2.009 0.596

p4442, PKA t 0 0.154, 5.188 0.098
PKA, PIP3 clayton 0 0.056 0.027
pakts473, PKA; p4442 bb8 270 1.55, 0.942 -0.183
p4442, PIP3; PKA clayton 270 0.069 -0.034
pakts473, PIP3; p4442, PKA clayton 180 0.03 0.015

Table 6.20: MParCGauss (causal) + MParCPar (causal): Estimation results with regard to
the margins (panel a), the copula-loglikelihood (panel b and d) and the copula parameters
(panel c and e). Only the observations of the Sachs data, which have not been directly
perturbed in pakts473 have been used.
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6.2 Model summary

After fitting these different (sub-)models on the corresponding data sets, we now want to

combine them into causal models for all 11 variables. These causal models are given in

the following Tables.
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Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

plcg PIP3 105.355 -208.711 -203.776 8, 9 1028
PIP2 plcg, PIP3 2660.696 -5315.392 -5294.166 1-4, 6-11, 13-14 8738
PKC 0 0 0 9 155
PKA PKC 713.791 -1425.582 -1418.373 1-8, 10-14 9994
P38 PKC, PKA 6148.889 -12291.779 -12270.103 1-14 10149
pjnk PKC, PKA 2332.515 -4659.031 -4637.356 1-14 10149
praf PKC 1.720 -1.440 3.495 8, 9 1028

pmek PKC, praf, PKA 144.491 -278.982 -254.305 8, 9 1028
p4442 PKA, pmek 155.235 -304.470 -289.664 8, 9 1028

pakts473 p4442, PKA, PIP3 3781.127 -7552.253 -7518.133 1-2, 4-6, 8-9, 11-13 6795

Variable Pair copula Family Parameters Tau
plcg plcg, PIP3 gaussian 0.431 0.284
PIP2 PIP2, plcg gaussian 0.546 0.368

plcg, PIP3 gaussian 0.053 0.034
PIP2, PIP3; plcg gaussian 0.472 0.313

PKA PKA, PKC gaussian -0.306 -0.198
P38 P38, PKC gaussian 0.776 0.566

PKC, PKA gaussian -0.295 -0.191
P38, PKA; PKC gaussian -0.387 -0.253

pjnk pjnk, PKC gaussian 0.506 0.338
PKC, PKA gaussian -0.295 -0.191
pjnk, PKA; PKC gaussian -0.173 -0.111

praf praf, PKC gaussian -0.058 -0.037
pmek pmek, PKC gaussian 0.388 0.254

PKC, praf gaussian -0.058 -0.037
praf, PKA indep 0
pmek, praf; PKC gaussian 0.267 0.172
PKC, PKA; praf gaussian 0.132 0.084
pmek, PKA; PKC, praf gaussian 0.151 0.097

p4442 p4442, PKA gaussian 0.482 0.320
PKA, pmek gaussian 0.179 0.115
p4442, pmek; PKA gaussian 0.072 0.046

pakts473 pakts473, p4442 gaussian 0.781 0.571
p4442, PKA indep 0
PKA, PIP3 gaussian 0.080 0.051
pakts473, PKA; p4442 gaussian -0.308 -0.200
p4442, PIP3; PKA gaussian -0.058 -0.037
pakts473, PIP3; p4442, PKA gaussian 0.062 0.039

Table 6.21: MGaussCGauss (causal): Node-wise summary of all copulas fitted for the causal
D-vine regression model. The set of feasible copula families was restricted to Gaussian
and independence copulas only. For the transformation on u-scale only Gaussian margins
were used.
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Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

plcg PIP3 102.407 -202.814 -197.879 8, 9 1028
PIP2 plcg, PIP3 2194.220 -4382.44 -4361.214 1-4, 6-11, 13-14 8738
PKC 0 0 0 9 155
PKA PKC 282.082 -562.164 -554.955 1-8, 10-14 9994
P38 PKC, PKA 4623.152 -9240.304 -9218.628 1-14 10149
pjnk PKC, PKA 1476.262 -2946.524 -2924.848 1-14 10149
praf PKC, PKA 13.554 -21.108 -6.302 8, 9 1028

pmek PKC, praf, PKA 143.342 -274.683 -245.071 8, 9 1028
p4442 PKA, pmek 140.876 -275.751 -260.945 8, 9 1028

pakts473 p4442, PKA, PIP3 3498.433 -6984.866 -6943.922 1-2, 4-6, 8-9, 11-13 6795

Variable Pair copula Family Parameters Tau
plcg plcg, PIP3 gaussian 0.424 0.279
PIP2 PIP2, plcg gaussian 0.478 0.318

plcg, PIP3 gaussian 0.056 0.036
PIP2, PIP3; plcg gaussian 0.461 0.305

PKA PKA, PKC gaussian -0.234 -0.150
P38 P38, PKC gaussian 0.752 0.542

PKC, PKA gaussian -0.226 -0.145
P38, PKA; PKC gaussian -0.160 -0.102

pjnk pjnk, PKC gaussian 0.455 0.301
PKC, PKA gaussian -0.226 -0.145
pjnk, PKA; PKC gaussian -0.075 -0.048

praf praf, PKC gaussian -0.061 -0.039
PKC, PKA gaussian 0.142 0.091
praf, PKA; PKC gaussian -0.046 -0.029

pmek pmek, PKC gaussian 0.331 0.215
PKC, praf gaussian -0.061 -0.039
praf, PKA gaussian -0.054 -0.035
pmek, praf; PKC gaussian 0.318 0.206
PKC, PKA; praf gaussian 0.139 0.089
pmek, PKA; PKC, praf gaussian 0.171 0.109

p4442 p4442, PKA gaussian 0.457 0.302
PKA, pmek gaussian 0.184 0.118
p4442, pmek; PKA gaussian 0.063 0.040

pakts473 pakts473, p4442 gaussian 0.781 0.570
p4442, PKA gaussian 0.079 0.050
PKA, PIP3 gaussian 0.050 0.032
pakts473, PKA; p4442 gaussian -0.240 -0.154
p4442, PIP3; PKA gaussian -0.062 -0.040
pakts473, PIP3; p4442, PKA gaussian 0.028 0.018

Table 6.22: MParCGauss (causal): Node-wise summary of all copulas fitted for the causal
D-vine regression model. The set of feasible copula families was restricted to Gaussian
and independence copulas only.
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Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

plcg PIP3 219.967 -435.934 -426.063 8, 9 1028
PIP2 plcg, PIP3 3758.478 -7508.957 -7480.655 1-4, 6-11, 13-14 8738
PKC PIP2 1.311 -0.622 2.421 9 155
PKA PKC 870.333 -1738.666 -1731.456 1-8, 10-14 9994
P38 PKC, PKA 6794.476 -13578.951 -13542.826 1-14 10149
pjnk PKC, PKA 2744.762 -5479.523 -5443.397 1-14 10149
praf PKC, PKA 25.073 -42.146 -22.404 8, 9 1028

pmek praf, PKC, PKA 313.688 -609.376 -564.958 8, 9 1028
p4442 PKA, pmek 225.232 -440.464 -415.787 8, 9 1028

pakts473 p4442, PKA, PIP3 4686.650 -9355.299 -9293.884 1-2, 4-6, 8-9, 11-13 6795

Variable Pair copula Family Rotation Parameters Tau
plcg plcg, PIP3 bb8 0 1.914, 0.999 0.334
PIP2 PIP2, plcg joe 0 2.002 0.356

plcg, PIP3 clayton 180 0.091 0.043
PIP2, PIP3; plcg bb8 0 3.826, 0.688 0.354

PKC PKC, PIP2 joe 270 1.157 -0.082
PKA PKA, PKC joe 90 1.345 -0.163
P38 P38, PKC bb8 0 3.686, 0.991 0.581

PKC, PKA joe 270 1.337 -0.160
P38, PKA; PKC bb8 270 1.151, 0.981 -0.069

pjnk pjnk, PKC bb7 0 1.687, 0.165 0.316
PKC, PKA joe 270 1.337 -0.160
pjnk, PKA; PKC t 0 0.021, 13.489 0.013

praf praf, PKC clayton 90 0.096 -0.046
PKC, PKA bb8 180 1.272, 0.957 0.104
praf, PKA; PKC frank 0 -0.310 -0.034

pmek pmek, praf joe 0 1.752 0.295
praf, PKC clayton 90 0.096 -0.046
PKC, PKA bb8 180 1.272, 0.957 0.104
pmek, PKC; praf bb8 180 1.505, 0.98 0.199
praf, PKA; PKC frank 0 -0.310 -0.034
pmek, PKA; praf, PKC bb8 180 1.207, 0.965 0.084

p4442 p4442, PKA bb7 0 1.729, 0.109 0.314
PKA, pmek bb8 180 1.313, 0.978 0.131
p4442, pmek; PKA frank 0 0.627 0.069

pakts473 pakts473, p4442 bb6 0 1.414, 2.009 0.596
p4442, PKA t 0 0.154, 5.188 0.098
PKA, PIP3 clayton 0 0.056 0.027
pakts473, PKA; p4442 bb8 270 1.55, 0.942 -0.183
p4442, PIP3; PKA clayton 270 0.069 -0.034
pakts473, PIP3; p4442, PKA clayton 180 0.030 0.015

Table 6.23: MParCPar (causal): Node-wise summary of all copulas fitted for the causal
D-vine regression model. The set of feasible copula families was all parametric copula
families.
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6.3 Sampling

Again we want to sample n = 10149 (which is the sample size of the pooled data) data

from the models, which is shown in Figures 6.2, 6.3 and 6.4. Since we have fitted the causal

D-vine regression models to the data on u-scale, it makes sense to compare the results

from the sampling to the original data und u-scale. The original (pooled) data shown

in Figure 6.1 is transformed to u-scale by the marginal distributions given in Table 4.1.

Analogous to Chapter 4.3, the sampled data here are generated by applying sequentially

the corresponding algorithm of Bevacqua et al. (2017) to all nodes from Tables 6.21, 6.22

and 6.23.

Here, the differences between the original and the simulated data are particularly

interesting, as they provide information about the result of our causal analysis. We pay

particular attention to two criteria, the strength of Kendall’s τ (i) and the tail dependence

(ii):

(i)a The first variables that we notice are those that are very strongly correlated in the

pooled data: These are praf-pmek (τ praf−pmekorig = 0.66), p4442-pakts473

(τ p4442−pakts473
orig = 0.65) and PKC-P38 (τPKC−P38

orig = 0.59). For the latter two, the cor-

relation in the causal models are similarly strong with τ p4442−pakts473
MGaussCGauss

= 0.53,

τ p4442−pakts473
MParCGauss

= 0.55 and τ p4442−pakts473
MParCPar

= 0.58, as well as τPKC−P38
MGaussCGauss

= 0.57,

τPKC−P38
MParCGauss

= 0.54 and τPKC−P38
MParCPar

= 0.59, respectively. However, it is special that

the correlation between praf and pmek is much lower with τ praf−pmekMGaussCGauss
= 0.14,

τ praf−pmekMParCGauss
= 0.18 or τ praf−pmekMParCPar

= 0.21. This cannot be due to the fact that the

variables in the graph we have given only indirectly affect each other. Instead, ac-

cording to Table 6.23, the dependence of pmek and praf was explicitly measured in

a bivariate copula. This bivariate copula is an unrotated Joe copula with only one

parameter, i.e. the parameter is already defined by the correlation (and could be

estimated through inversion of Kendalls tau).

(i)b Similarly interesting is the high correlation (τ plcg−PIP2
MParCPar

= τ plcg−PIP2
MGaussCGauss

= 0.45 and

τ plcg−PIP2
MParCGauss

= 0.4) of plcg and PIP2 in our model, which is much higher than the

correlation of these variables (τ plcg−PIP2
orig = 0.34) in the pooled data. Also, this must

come explicitly from the data of our causal analysis, since in our model with all

parametric copula families PIP2 depends directly on plcg. For the all parametric

Model, the bivariate copula of PIP2 and plcg is a Joe copula with one parameter

as shown in Table 6.23. For the two other models it is of course a Gaussian copula.

(i)c Another large difference in the strength of correlation is between the variables plcg
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and PKC: the simulated data have correlations of τ plcg−PKCMParCPar
= −0.038, τ plcg−PKCMParCGauss

=

0.01 and τ plcg−PKCMGaussCGauss
= −0.027, while the correlation in the original data is only

τ plcg−PKCorig = 0.16. In our model with all parametric copula families PKC only depends

on PIP2, which itself depends on plcg, so these variables are connected indirectly.

In both Gaussian models PKC has no parent nodes (ie. its independet of the other

variables), which leeds to the τ -value of almost zero.

(i)d The same holds for the pair plcg and PIP3: plcg was simulated via PIP3, but the

correlation in the simulated data is τ plcg−PIP3
MParCPar

= 0.34, τ plcg−PIP3
MParCGauss

= τ plcg−PIP3
MGaussCGauss

=

0.28 respectively, whereas in the original data it is only τ plcg−PIP3
orig = 0.079. This is

very interesting and seems to come from the fitting with the causal data, in which

the ignored external influences on plcg lead to a stronger correlation.

(ii)a The comparison of tail dependence is also interesting, but only possible for the D-

vine regression model with all parametric copulas and not for the Gaussian models:

while in many cases the tail dependence of the simulated data is similar to that of

the original data, there are mostly no tail dependencies identifiable for the variable

praf or pakts473.

(ii)a A particularly interesting pair is pmek - PKC: in the original data, these are upper tail

dependent, while in the simulated data they are lower tail dependent. The variable

pmek was generated (among other) by PKC.
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Figure 6.1: Normalized contour and pairs plots as well as Kendall’s τorig of the pooled
data on u-scale. The data is transformed by the marginal distributions given in Table 4.1.
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Figure 6.2: MGaussCGauss (causal): Normalized contours and pairs plots as well as
Kendall’s τ of the simulated data on u-scale. The data is simulated from the causal
D-vine regression model given in Table 6.21.
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Figure 6.3: MParCGauss (causal): Normalized contours and pairs plots as well as Kendall’s
τ of the simulated data on u-scale. The data is simulated from the causal D-vine regression
model given in Table 6.22.
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Figure 6.4: MParCPar (causal): Normalized contours and pairs plots as well as Kendall’s τ
of the simulated data on u-scale. The data is simulated from the causal D-vine regression
model given in Table 6.23.
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6.4 Comparison of pooled and causal models

In this chapter we want to compare the three models fitted to the causal data: One

with Gaussian margins and Gaussian copula familes only (MGaussCGauss); one with more

parametric margins but Gaussian copula families only (MParCGauss) and finally one with

more parametric margins and copula families (MParCPar). We did the same in chapter

4.3 with the pooled data. Therefore we want to compare now the three pairs of models

with the same specifications.

The MGaussCGauss-models differ in the nodes PKC and praf regarding their parent

nodes. In the model for the causal data, PKC has no parent nodes anymore, while it has

two in the model for the pooled data. On the other hand, in all the following nodes,

where PKC is a parent node according to the consent graph, it is directly connected to the

respective regression variable in the regrssion D-vine. Besides that, the models also differ

in the nodes pmek and p4442 in the order of the respective regression D-vines.

In the MParCGauss-models, we see similar results: Again PKC has no parent nodes in

the model for the causal data and two parent nodes in the model for the pooled data.

Beides that, again PKC seems to have strong influence on the variables, whose parent node

it is itself.

For the MParCPar-models, PKC has plcg as parent node in the model fitted to the

pooled data and PIP2 as parent node in the model fitted to the causal data. Besides that,

the only change in the regression D-vines is the different order of PKC and PKA in the node

praf. Regarding the DAG, this makes the models very similar. Another interesting fact

regarding the MParCPar-models is for example the large difference in correlation between

plcg-PIP3 in the node plcg, and between pmek-praf in the node of pmek.

In Table 6.24 we have the AIC on the original scale, i.e. on x-scale. This means we are

takting the marginal likelihoods into account. One can clearly see, that the AIC is getting

lower with less restrictions on the margins and the copula families. The AIC values from

the D-vine regression models fitted to the pooled data is not comparible to them of the

causal D-vine regression models, since they are mainly (besides the variables P38 and

pjnk) fitted to different datasets with different sample sizes.
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Node MGaussCGauss MParCGauss MParCPar MGaussCGauss MParCGauss MParCPar
pooled pooled pooled causal causal causal

plcg 62792.87 61535.79 61502.45 4901.45 4788.39 4555.27
PIP2 94740.77 93655.14 90685.57 79555.72 79347.78 76221.26
PKC 96620.33 95419.56 94611.74 1231.17 1175.03 1174.41
PKA 61995.70 57488.80 56289.82 60853.94 56365.84 55189.33
P38 81921.56 76012.28 71673.63 81921.56 76012.28 71673.63
pjnk 91335.04 87435.14 84902.14 91335.04 87435.14 84902.14
praf 90057.37 85062.65 83154.20 6986.83 6777.37 6756.33

pmek 109109.90 105116.30 98768.48 9716.95 9448.10 9113.40
p4442 94917.50 88191.90 86522.08 7625.44 7462.17 7297.46

pakts473 109715.40 103205.00 100583.90 78749.56 74478.99 72108.56

Table 6.24: Nodewise AIC on original scale.
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Variable D-vine order Copula loglik Copula AIC Copula BIC Sample size
plcg PIP3 55.626 -109.252 -102.026 10149
PIP2 plcg, PIP3 2965.669 -5925.338 -5903.663 10149
PKC plcg, PIP2 2680.441 -5354.883 -5333.207 10149
PKA PKC 686.261 -1370.522 -1363.297 10149
P38 PKC, PKA 6148.889 -12291.779 -12270.103 10149
pjnk PKC, PKA 2332.515 -4659.031 -4637.356 10149
praf PKA, PKC 1498.523 -2991.046 -2969.371 10149

pmek praf, PKC, PKA 9232.084 -18452.167 -18408.816 10149
p4442 pmek, PKA 1200.909 -2395.818 -2374.143 10149

pakts473 p4442, PKA 5334.243 -10662.486 -10640.81 10149

(a) MGaussCGauss - pooled

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

plcg PIP3 105.355 -208.711 -203.776 8, 9 1028
PIP2 plcg, PIP3 2660.696 -5315.392 -5294.166 1-4, 6-11, 13-14 8738
PKC 0 0 0 9 155
PKA PKC 713.791 -1425.582 -1418.373 1-8, 10-14 9994
P38 PKC, PKA 6148.889 -12291.779 -12270.103 1-14 10149
pjnk PKC, PKA 2332.515 -4659.031 -4637.356 1-14 10149
praf PKC 1.720 -1.440 3.495 8, 9 1028

pmek PKC, praf, PKA 144.491 -278.982 -254.305 8, 9 1028
p4442 PKA, pmek 155.235 -304.470 -289.664 8, 9 1028

pakts473 p4442, PKA, PIP3 3781.127 -7552.253 -7518.133 1-2, 4-6, 8-9, 11-13 6795

(b) MGaussCGauss - causal

Variable Pair copula Tau
plcg plcg, PIP3 0.067
PIP2 PIP2, plcg 0.372

plcg, PIP3 0.067
PIP2, PIP3; plcg 0.287

PKC PKC, plcg 0.252
plcg, PIP2 0.372
PKC, PIP2; plcg 0.042

PKA PKA, PKC -0.191
P38 P38, PKC 0.566

PKC, PKA -0.191
P38, PKA; PKC -0.253

pjnk pjnk, PKC 0.338
PKC, PKA -0.191
pjnk, PKA; PKC -0.111

praf praf, PKA -0.246
PKA, PKC -0.191
praf, PKC; PKA 0.055

pmek pmek, praf 0.680
praf, PKC 0.135
PKC, PKA -0.191
pmek, PKC; praf 0.129
praf, PKA; PKC -0.217
pmek, PKA; praf, PKC -0.094

p4442 p4442, pmek 0.104
pmek, PKA -0.229
p4442, PKA; pmek 0.102

pakts473 pakts473, p4442 0.579
p4442, PKA 0.053
pakts473, PKA; p4442 -0.079

(c) MGaussCGauss - pooled

Variable Pair copula Tau
plcg plcg, PIP3 0.284
PIP2 PIP2, plcg 0.368

plcg, PIP3 0.034
PIP2, PIP3; plcg 0.313

PKC

PKA PKA, PKC -0.198
P38 P38, PKC 0.566

PKC, PKA -0.191
P38, PKA; PKC -0.253

pjnk pjnk, PKC 0.338
PKC, PKA -0.191
pjnk, PKA; PKC -0.111

praf praf, PKC -0.037

pmek pmek, PKC 0.254
PKC, praf -0.037
praf, PKA 0
pmek, praf; PKC 0.172
PKC, PKA; praf 0.084
pmek, PKA; PKC, praf 0.097

p4442 p4442, PKA 0.320
PKA, pmek 0.115
p4442, pmek; PKA 0.046

pakts473 pakts473, p4442 0.571
p4442, PKA 0
PKA, PIP3 0.051
pakts473, PKA; p4442 -0.200
p4442, PIP3; PKA -0.037
pakts473, PIP3; p4442, PKA 0.039

(d) MGaussCGauss - causal

Table 6.25: Overview of the pooled and causal MGaussCGauss-models.
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Variable D-vine order Copula loglik Copula AIC Copula BIC Sample size
plcg PIP3 65.103 -128.207 -120.982 10149
PIP2 plcg, PIP3 2777.391 -5548.782 -5527.107 10149
PKC plcg, PIP2 2239.298 -4472.597 -4450.921 10149
PKA PKC 266.239 -530.477 -523.252 10149
P38 PKC, PKA 4623.152 -9240.304 -9218.628 10149
pjnk PKC, PKA 1476.262 -2946.524 -2924.848 10149
praf PKA, PKC 766.946 -1527.891 -1506.216 10149

pmek praf, PKC, PKA 6604.347 -13196.695 -13153.344 10149
p4442 PKA, pmek 805.020 -1604.040 -1582.365 10149

pakts473 p4442, PKA, PIP3 5414.014 -10816.027 -10772.677 10149

(a) MParCGauss - pooled

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

plcg PIP3 102.407 -202.814 -197.879 8, 9 1028
PIP2 plcg, PIP3 2194.22 -4382.44 -4361.214 1-4, 6-11, 13-14 8738
PKC 0 0 0 9 155
PKA PKC 282.082 -562.164 -554.955 1-8, 10-14 9994
P38 PKC, PKA 4623.152 -9240.304 -9218.628 1-14 10149
pjnk PKC, PKA 1476.262 -2946.524 -2924.848 1-14 10149
praf PKC, PKA 13.554 -21.108 -6.302 8, 9 1028

pmek PKC, praf, PKA 143.342 -274.683 -245.071 8, 9 1028
p4442 PKA, pmek 140.876 -275.751 -260.945 8, 9 1028

pakts473 p4442, PKA, PIP3 3498.433 -6984.866 -6943.922 1-2, 4-6, 8-9, 11-13 6795

(b) MParCGauss - causal

Variable Pair copula Tau
plcg plcg, PIP3 0.072
PIP2 PIP2, plcg 0.351

plcg, PIP3 0.072
PIP2, PIP3; plcg 0.289

PKC PKC, plcg 0.202
plcg, PIP2 0.351
PKC, PIP2; plcg 0.087

PKA PKA, PKC -0.145
P38 P38, PKC 0.542

PKC, PKA -0.145
P38, PKA; PKC -0.102

pjnk pjnk, PKC 0.301
PKC, PKA -0.145
pjnk, PKA; PKC -0.048

praf praf, PKA -0.180
PKA, PKC -0.145
praf, PKC; PKA 0.082

pmek pmek, praf 0.613
praf, PKC 0.117
PKC, PKA -0.145
pmek, PKC; praf 0.093
praf, PKA; PKC -0.160
pmek, PKA; praf, PKC -0.023

p4442 p4442, PKA 0.124
PKA, pmek -0.169
p4442, pmek; PKA 0.138

pakts473 pakts473, p4442 0.585
p4442, PKA 0.124
PKA, PIP3 0.027
pakts473, PKA; p4442 -0.070
p4442, PIP3; PKA -0.041
pakts473, PIP3; p4442, PKA -0.014

(c) MParCGauss - pooled

Variable Pair copula Tau
plcg plcg, PIP3 0.279
PIP2 PIP2, plcg 0.318

plcg, PIP3 0.036
PIP2, PIP3; plcg 0.305

PKC

PKA PKA, PKC -0.150
P38 P38, PKC 0.542

PKC, PKA -0.145
P38, PKA; PKC -0.102

pjnk pjnk, PKC 0.301
PKC, PKA -0.145
pjnk, PKA; PKC -0.048

praf praf, PKC -0.039
PKC, PKA 0.091
praf, PKA; PKC -0.029

pmek pmek, PKC 0.215
PKC, praf -0.039
praf, PKA -0.035
pmek, praf; PKC 0.206
PKC, PKA; praf 0.089
pmek, PKA; PKC, praf 0.109

p4442 p4442, PKA 0.302
PKA, pmek 0.118
p4442, pmek; PKA 0.040

pakts473 pakts473, p4442 0.570
p4442, PKA 0.050
PKA, PIP3 0.032
pakts473, PKA; p4442 -0.154
p4442, PIP3; PKA -0.040
pakts473, PIP3; p4442, PKA 0.018

(d) MParCGauss - causal

Table 6.26: Overview of the pooled and causal MParCGauss-models.
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Variable D-vine order Copula loglik Copula AIC Copula BIC Sample size
plcg PIP3 81.774 -161.549 -154.324 10149
PIP2 plcg, PIP3 4264.177 -8518.354 -8482.228 10149
PKC plcg 1141.210 -2280.420 -2273.195 10149
PKA PKC 865.729 -1729.458 -1722.232 10149
P38 PKC, PKA 6794.476 -13578.951 -13542.826 10149
pjnk PKC, PKA 2744.762 -5479.523 -5443.397 10149
praf PKA, PKC 1722.171 -3436.341 -3407.441 10149

pmek praf, PKC, PKA 9782.278 -19544.555 -19472.304 10149
p4442 PKA, pmek 1641.930 -3273.861 -3237.735 10149

pakts473 p4442, PKA, PIP3 6729.569 -13437.137 -13357.661 10149

(a) MParCPar - pooled

Variable D-vine order Copula Copula Copula Estimated with data Sample
loglik AIC BIC from experiments size

plcg PIP3 219.967 -435.934 -426.063 8, 9 1028
PIP2 plcg, PIP3 3758.478 -7508.957 -7480.655 1-4, 6-11, 13-14 8738
PKC PIP2 1.311 -0.622 2.421 9 155
PKA PKC 870.333 -1738.666 -1731.456 1-8, 10-14 9994
P38 PKC, PKA 6794.476 -13578.951 -13542.826 1-14 10149
pjnk PKC, PKA 2744.762 -5479.523 -5443.397 1-14 10149
praf PKC, PKA 25.073 -42.146 -22.404 8, 9 1028

pmek praf, PKC, PKA 313.688 -609.376 -564.958 8, 9 1028
p4442 PKA, pmek 225.232 -440.464 -415.787 8, 9 1028

pakts473 p4442, PKA, PIP3 4686.650 -9355.299 -9293.884 1-2, 4-6, 8-9, 11-13 6795

(b) MParCPar - causal

Variable Pair copula Family Tau
plcg plcg, PIP3 clayton 0.066
PIP2 PIP2, plcg bb7 0.362

plcg, PIP3 clayton 0.066
PIP2, PIP3; plcg bb8 0.327

PKC PKC, plcg joe 0.216
PKA PKA, PKC joe -0.160
P38 P38, PKC bb8 0.581

PKC, PKA joe -0.160
P38, PKA; PKC bb8 -0.069

pjnk pjnk, PKC bb7 0.316
PKC, PKA joe -0.160
pjnk, PKA; PKC t 0.013

praf praf, PKA bb8 -0.178
PKA, PKC joe -0.160
praf, PKC; PKA joe 0.078

pmek pmek, praf bb8 0.662
praf, PKC bb8 0.160
PKC, PKA joe -0.160
pmek, PKC; praf bb7 0.099
praf, PKA; PKC bb8 -0.118
pmek, PKA; praf, PKC joe -0.040

p4442 p4442, PKA t 0.157
PKA, pmek joe -0.175
p4442, pmek; PKA bb8 0.112

pakts473 pakts473, p4442 bb8 0.633
p4442, PKA t 0.157
PKA, PIP3 clayton 0.032
pakts473, PKA; p4442 t -0.045
p4442, PIP3; PKA bb8 -0.032
pakts473, PIP3;

p4442, PKA bb8 -0.028

(c) MParCPar - pooled

Variable Pair copula Family Tau
plcg plcg, PIP3 bb8 0.334
PIP2 PIP2, plcg joe 0.356

plcg, PIP3 clayton 0.043
PIP2, PIP3; plcg bb8 0.354

PKC PKC, PIP2 joe -0.082
PKA PKA, PKC joe -0.163
P38 P38, PKC bb8 0.581

PKC, PKA joe -0.160
P38, PKA; PKC bb8 -0.069

pjnk pjnk, PKC bb7 0.316
PKC, PKA joe -0.160
pjnk, PKA; PKC t 0.013

praf praf, PKC clayton -0.046
PKC, PKA bb8 0.104
praf, PKA; PKC frank -0.034

pmek pmek, praf joe 0.295
praf, PKC clayton -0.046
PKC, PKA bb8 0.104
pmek, PKC; praf bb8 0.199
praf, PKA; PKC frank -0.034
pmek, PKA; praf, PKC bb8 0.084

p4442 p4442, PKA bb7 0.314
PKA, pmek bb8 0.131
p4442, pmek; PKA frank 0.069

pakts473 pakts473, p4442 bb6 0.596
p4442, PKA t 0.098
PKA, PIP3 clayton 0.027
pakts473, PKA; p4442 bb8 -0.183
p4442, PIP3; PKA clayton -0.034
pakts473, PIP3;

p4442, PKA clayton 0.015

(d) MParCPar - causal

Table 6.27: Overview of the pooled and causal MParCPar-models.
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(a) MGaussCGauss - pooled (b) MGaussCGauss - causal

(c) MParCGauss - pooled (d) MParCGauss - causal

(e) MParCPar - pooled (f) MParCPar - causal

Figure 6.5: Normalized contours and pairs plots as well as Kendall’s τ for the simulated
data of the different models on u-scale.
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6.5 Quantile sampling

In this section, we want to find out, which impact the choice of the margins and the

feasible copula families has on the tails. Therefore, we apply the following steps: First we

generate data for a variable U (1) without parent nodes by sampling it uniform (i). Then

we fix first the values of the 0.05- and later the 0.95-quantile (ii). Then we sample the

child nodes of U (1) given the 0.05- or 0.95-quantiles (iii). For this child node then fix again

the value of the 0.05- and later the 0.95-quantile (iv), and sample its child node again

only given the corresponding quantiles. We repeat this procedure (v) until we sample the

last node of the DAG (vi)(which has no childnodes).

(i) Sample the first node U (1) ∼ uniform(0, 1)

(ii) Fix quantiles û
(1)
0.05 := q0.05(U (1)) and û

(1)
0.95 := q0.95(U (1))

(iii) Sample child node U
(2)
0.05|U (1) = û

(1)
0.05 and U

(2)
0.95|U (1) = û

(1)
0.95

(iv) Fix quantiles û
(2)
0.05 := q0.05(U

(2)
0.05) and û

(2)
0.95 := q0.95(U

(2)
0.95)

(v) ....

(vi) Sample child node U
(d)
0.05|U (1) = û

(1)
0.05, ..., U

(d−1) = û
(d−1)
0.05

and U
(d)
0.95|U (1) = û

(1)
0.95, ..., U

(d−1) = û
(d−1)
0.95

By appling this method to every node of a DAG model, we generate data that can be

helpfull to understand how the tails are modeled. In Figures 6.6 to 6.9, we see histograms

of the variable pakts473 (which is the last node in the topological order of the consent

graph). The results shown in Figures 6.6 to 6.9 are generated by applying the method

described above to the D-vine regression models discussed in the previous chapters. The

most important and obvious result we see in the figures is that the choice of pair copulas

has a large impact on the tails. It does matter for the tails with which pair copulas the

D-vine regression models are fitted.
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(a) 0.05 quantile - pooled (b) 0.05 quantile - causal

(c) 0.95 quantile - pooled (d) 0.95 quantile - causal

Figure 6.6: Empirical density plots for the sampling of 10149 points each of variable
pakts473 on u-scale. For the sampling different models were used: Red: MGaussCGauss;
Green: MParCGauss; Blue: MParCPar.
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(a) 0.05 quantile - pooled (b) 0.05 quantile - causal

(c) 0.95 quantile - pooled (d) 0.95 quantile - causal

Figure 6.7: Histograms for the sampling of 10149 points each of variable pakts473 on x-
scale. For the transformation the respective distributions from Tables 4.1 and 4.2 as well
as 6.19 (a) and 6.20 (a) were used. For the sampling different models were used: Red:
MGaussCGauss; Green: MParCGauss; Blue: MParCPar.
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(a) 0.05 quantile - MGaussCGauss (b) 0.95 quantile - MGaussCGauss

(c) 0.05 quantile - MParCGauss (d) 0.95 quantile - MParCGauss

(e) 0.05 quantile - MParCPar (f) 0.95 quantile - MParCPar

Figure 6.8: Empirical density plots for the sampling of 10149 points each of variable
pakts473 on u-scale. The models were fitted on different data sets: Red: causal; Green:
pooled.
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(a) 0.05 quantile - MGaussCGauss (b) 0.95 quantile - MGaussCGauss

(c) 0.05 quantile - MParCGauss (d) 0.95 quantile - MParCGauss

(e) 0.05 quantile - MParCPar (f) 0.95 quantile - MParCPar

Figure 6.9: Histograms for the sampling of 10149 points each of variable pakts473 on x-
scale. For the transformation the respective distributions from Tables 4.1 and 4.2 as well
as 6.19 (a) and 6.20 (a) were used. The models were fitted on different data sets: Red:
causal; Green: pooled.
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6.6 VCMM clustering on causal data

In the previous sections, we used the causal data to fit D-vine regression models. Now

we want to understand the causal datasets better and analyze if there are substructures

within these. Examplary we can see the causal datasets for the variables p4442 and P38

on x-scale in Figure 6.10. While the causal dataset of p4442 consists of the experiments

8 and 9 and has a sample size of 1028, the variable P38 has not been perturbed in any

experiment, i.e. the causal dataset for P38 has 10149 observations from experiments 1-14.

Figure 6.10 supports the assumption that there may be substructures in the causal data.

Therefore we are now working with the vine copula mixture models again. The algorithm

from the library vineclust by Sahin (2021) allows us to specify a vine structure to be

used in all clusters.

(a) p4442 (b) P38

Figure 6.10: Causal datasets of p4442 and P38 on x-scale. The sample sizes are 1028 and
10149.

From the consent graph we get 1-3 parent nodes for each variable (except PIP3),

therefore the causal datasets contain 2-4 variables each. For a two variable dataset there

is only one possible vine structure. For a three variable dataset, there are three possible

vine structures, which are all D-vines, but of which one is problematic: As shown in

Kraus and Czado (2017) the corresponding conditional distribution function for a D-vine

structure can be expressed in a closed form if and only if the response Y is a leaf node.

This means, if the child node is connected to the other two variables by more than one

arc, then numeric integration is necessary. We have the same problem for the four variable

datasets, as there are 12 D-vines and 12 C-vines possible, of which for only 6 D-vines and
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6 C-vines the corresponding conditional distribution function has a closed form solution

as explained by Tepegjozova et al. (2021).

For that reason we are focussing here on the two examples of the variables p4442 and

P38. We fit VCMMs to the datasets, while we fix the vine structures to the respective

two structures that do not require numeric integration. In Figures 6.11 and 6.12 the BIC

values of different VCMMs are plotted, depending on their number of components as well

as their D-vine structures, which have fixed fixed.

Figure 6.11: BIC values of vine copula mixture models for variable p4442 with different
D-vine structures and numbers of components.

It is clear, that for the variable p4442 the VCMM with four components and the

D-vine structure p4442-PKA-pmek has the best BIC and for the variable P38 the VCMM

with six components and the D-vine structure P38-PKC-PKA has the best BIC.Since our

simulation setup in Chapter 5.2.2 and e.g. Figure 5.6, which looks rather similar to Figure

6.11, we assume that this estimation of the number of components based on the BIC is

reliable.

It should be mentioned here, that besides the D-vine regression model MGaussCGauss

- pooled, in every of the previously fitted D-vine models the structure p4442-PKA-pmek

was chosen in the node p4442. The same holds for the structure P38-PKC-PKA, which was

chosen in every previously fitted D-vine models for the node P38.

Since the D-vine structures are fixed, it makes no sense to plot the vine structures.

Instead, we give an overview of the copulas used in the model with p4442-PKA-pmek and
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Figure 6.12: BIC values of vine copula mixture models for variable P38 with different
D-vine structures and numbers of components.

four clusters in Table 6.28, and analogously for the model with P38-PKC-PKA and six

clusters in Table 6.29.
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Cluster Variables Family Rotation Parameters Tau
(Weight)

1 p4442, PKA Joe 180 1.6 0.251
(0.218) PKA, pmek Frank 0 -0.792 -0.087

p4442, pmek; PKA Frank 0 -0.437 -0.048
2 p4442, PKA Joe 0 1.688 0.277

(0.165) PKA, pmek Frank 0 0.903 0.099
p4442, pmek; PKA Clayton 90 -0.143 -0.067

3 p4442, PKA Frank 0 -1.814 -0.195
(0.404) PKA, pmek Gaussian 0 0.109 0.069

p4442, pmek; PKA Clayton 180 0.03 0.015
4 p4442, PKA BB8 0 1.608, 0.965 0.217

(0.213) PKA, pmek Gumbel 180 1.082 0.076
p4442, pmek; PKA Joe 270 -1.057 -0.032

Table 6.28: Structure of the VCMM to the dataset in which p4442 has not been perturbed.
The vine structure of p4442-PKA-pmek was fixed.

Cluster Variables Family Rotation Parameters Tau
(Weight)

1 P38, PKC BB1 0 0.467, 1.207 0.328
(0.161) PKC, PKA Clayton 180 0.086 0.041

P38, PKA; PKC Clayton 180 0.03 0.015
2 P38, PKC Gumbel 0 14.59 0.931

(0.069) PKC, PKA Joe 180 1.048 0.027
P38, PKA; PKC Joe 180 1.025 0.014

3 P38, PKC BB8 0 1.34, 0.999 0.16
(0.114) PKC, PKA Gaussian 0 0.019 0.012

P38, PKA; PKC Gaussian 0 -0.019 -0.012
4 P38, PKC BB8 0 3.098, 0.991 0.521

(0.259) PKC, PKA Joe 180 1.109 0.059
P38, PKA; PKC Frank 0 0.569 0.063

5 P38, PKC BB8 180 2.444, 0.794 0.266
(0.338) PKC, PKA Gaussian 0 -0.068 -0.043

P38, PKA; PKC Clayton 270 -0.084 -0.04
6 P38, PKC BB6 0 2.48, 2.862 0.806

(0.058) PKC, PKA Joe 180 1.024 0.014
P38, PKA; PKC Joe 90 -1.025 -0.014

Table 6.29: Structure of the VCMM to the dataset in which P38 has not been perturbed.
The vine structure of P38-PKC-PKA was fixed.
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Conclusion

In this master thesis, we approached the investigation of the Sachs dataset from different

directions. First of all, we started with an analysis of the full pooled data. After the

multivariate Gaussian approach, which did not sufficiently fit the features of the data,

we started with a vine copula model and D-vine regression models. For them we allowed

Gaussian and non-Gaussian marginal distributions and different parametric copula family

sets. When sampling data, the vine copula model approach seemed to perform best. But

this was also due to greater flexibility, as we already specified the graph for all D-vine

regression models.

Pooled data: In the clustering chapter, we always used different tools, such as informa-

tion criteria in Chapters 5.1.1, 5.2.1 and 5.2.2 and methods from test theory in Chapters

5.1.1 and 5.2.3, to find the best number of components. The analysis showed that the

Gaussian mixture model approach did not fit the data properly, while the vine copula

mixture models performed much better due to their flexibility. With the VCMMs, we

were able to separate the observations of certain experiments very precisely from those

of other experiments. With the VCMMs it was possible to find known substructures in

the data. Since the VCMMs were the special focus of this thesis, we analyzed not only

the Sachs data with the VCMMs, but also certain properties of the VCMMs themselves:

For example, we investigate the VCMMs with respect to the interpretability of mixture

weights. Also we studied in the simulation setup how reliable the known information

criteria are for VCMMs.

Causal data: In the last chapter we fitted causal models. Again we allowed different

marginal distributions and copulas, while we were espicially working with D-vine regres-

sion models. This allowed us to build models, of which we can expect, that all external

influences are removed. In this chapter we also showed that the choice of copula fami-

lies plays a major role. The MParCPar-models had lower nodewise AIC values then the

123
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MParCGauss-models, which had lower AIC values then the only Gaussian models. Already

the fitted copula families in the MParCPar-models, where we set the fewest restrictions

beforehand, show that tail dependence is important for this data set. Therefore, we finally

sampled data specifically in the 0.05 and 0.95 quantiles, where it became apparent that

the tails were modeled different by the models with only Gaussian copula families. One

question that could not be definitely clarified in this master’s thesis is how homogeneous

the causal datasets themselves are. For example, in the last chapter, applying VCMMs to

those showed that substructures may exist here as well. For example, the analysis with

VCMMs reliably suggested a division of the causal dataset of variable p4442 into four

components.
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