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Ensuring Safety of Learning-Based Motion Planners
Using Control Barrier Functions

Xiao Wang

Abstract—Reinforcement learning (RL) has been successfully
applied to sequential decision-making problems, e.g., playing
computer games or solving robotic tasks in simulations. However,
RL methods are not yet ready to be applied to real robotic
systems if safety is a major concern. To address this issue, we
propose a safety layer based on control barrier functions to
ensure the safety for an RL-based motion planner for highway
scenarios with a continuous action space. Our method ensures
legal safety by following traffic rules. Moreover, we propose
a relaxation mechanism so that safety is restored as soon as
possible when other vehicles violate traffic rules and render our
optimization problem infeasible. We evaluate our approach using
a real-world highway dataset and a traffic simulator. Numerical
experiments confirm that an agent equipped with our proposed
safety layer does not cause any accidents during learning and
yet reaches the goal as often as an agent without a safety layer.

Index Terms—Intelligent transportation systems, reinforce-
ment learning, robot safety.

I. INTRODUCTION

REINFORCEMENT learning (RL) offers promising so-
lutions for real-world problems, especially sequential

decision-making tasks in robotics, such as motion planning for
autonomous vehicles [1], [2] or controlling robot manipulators
[3], [4]. However, since RL methods aim to learn an optimal
policy through interaction with the environment, unsafe actions
are likely to be taken, especially during the initial learning
phase. Even for a trained agent, safety is often not verified for
deep RL models due to their black-box property. To apply
RL methods to real autonomous systems, safety has to be
guaranteed during training and deployment.

Our previous work [5] has proposed a safe RL framework
ensuring the safety of a high-level motion planner for au-
tonomous lane changing on highways. However, a low-level
trajectory planner is additionally required for our previous
approach. Moreover, the solution space is limited by the
definition of the high-level action space. In this work, we
aim to develop an RL-based planner that directly calculates
safe control inputs for an autonomous vehicle from its current
state. Although there have been studies on ensuring the safety
of low-level control inputs of a car-following agent [6]–[11],
there is no existing method for guaranteeing the safety of RL-
based low-level motion planners in general highway scenarios.
Figure. 1 shows our framework.
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Fig. 1. Overview of the proposed approach. Our safety layer utilizes control
barrier functions to correct the continuous actions of an RL agent uRL to
safe actions in a minimally invasive fashion (see II-C). In addition, our safety
layer provides a reward term to improve the learning process (see IV-B).

A. Related Work

In the following literature review, we focus on existing work
on safe RL methods and control barrier functions with an
emphasis on motion planning for autonomous vehicles.

1) Safe reinforcement learning: García et al. [12] classified
safe RL approaches into two main categories: by modifi-
cation of the optimization criterion and by verification of
the exploration processes. By modifying the optimization
criterion, such as the worst-case criterion [13], [14] or the
risk-sensitive criterion [15]–[19], as well as using constrained
policy optimization methods [20], [21], the absence of unsafe
actions is not guaranteed, even if risky behaviors are punished
severely.

In contrast, safe actions can always be taken by verifying
the exploration process using external guidance, e.g., using
an additional safety layer to verify the safety of the proposed
actions and correct unsafe actions using a fail-safe controller
[5]. Therefore, the remainder of this literature review focuses
on methods using a verification layer. One approach is to
provide initial knowledge, i.e., initialize the agent using a
verified safe policy and update the agent only if safety
constraints are fulfilled [22], [23]. However, an initial verified
safe policy for the task of autonomous driving is not always
available. Another approach is to provide a shield for the
agent [24], also called safety layer in [5] and safety filter in
[25]. Alshiekh et al. [24] distinguish the shielding approaches
between preemptive shielding, which removes unsafe actions
from the action space before the learning agent [5], [26]–
[29], and post-posed shielding, which corrects an unsafe action
proposed by the agent [10], [25], [30], [31]. The preemptive
shielding method is more suitable for problems with a discrete
action space, since computing the regions of safe action spaces
and incorporating them into the agent model can be intractable.
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Therefore, we utilize the post-posed shielding framework in
this paper.

Among the above-mentioned papers, the closest to ours
is [10], since it also presents an approach to ensure the
safety of an RL-based controller for continuous control tasks
based on control barrier functions. However, it is assumed
in [10] that the safe set is already given and has only one
constraint. Moreover, the authors of [10] only demonstrated
their approach for an inverted pendulum problem as well as a
simple car-following scenario where the acceleration of other
vehicles is known and Gaussian noise is added. In this work,
we will show in detail how to define safe sets with multiple
constraints for highway scenarios as well as how to relax the
optimization problem when the problem becomes infeasible.

2) Control barrier functions: Control barrier functions
originated from the set invariance theory of Nagumo [32]
and were proven and reformulated into a modern version after
many years of research [33]. The core idea of barrier functions
is to guarantee the forward invariance of a set, which can be
chosen to also be a safe set so that safety is ensured for infinite
time.

In the field of vehicle control, barrier functions have been
utilized to solve adaptive cruise control and lane-keeping prob-
lems [6]–[10], which are formulated as quadratic programming
problems. The objectives of the optimization problems contain
soft constraints, such as holding the desired speed, whereas
the hard constraints of the optimization problems are safety
requirements, such as keeping a safe distance to other vehi-
cles. Although the approaches in [6]–[10] have shown good
performance in their experimental setups, they are based on
simplified models, simplified assumptions, or simplified safety
constraints, thus they cannot be applied to general highway
scenarios directly.

More recent works have extended the application of control
barrier functions to more general scenarios [34]–[37]. Choi et
al. [34] used RL to learn the model uncertainty in the control
barrier function and control Lyapunov function constraints,
validated on a bipedal walking robot example. Chen et al.
[35] combined imitation learning and control barrier functions
to learn driving from recorded data with enhanced safety
for generic urban scenarios. Notomista et al. [36] utilized
control barrier functions to enhance safety for a game-theoretic
approach for autonomous car racing. Zeng et al. [37] improved
the previous works by formulating the car racing problem in
a Frenet coordinate system. However, the above-mentioned
works have defined rather simple safety constraints, i.e., based
on relative position and velocity, which are only collision-
free during the planning horizon and thus not invariably
safe1, which could result in an accident beyond the planning
horizon. Instead, we provide a more comprehensive definition
of provably safe constraints based on invariably safe sets [38]
ensuring safety and feasibility under legal assumptions for an
infinite time horizon.

1For the difference between collision-free states and invariably safe states,
please refer to Fig.1 in [38].

B. Contributions

We develop a safe RL approach for highway motion
planning based on control barrier functions [33]. Our main
contributions are:

1) Our method guarantees safety for arbitrary low-level
motion planners for highway driving while minimizing
the interference of the safety layer.

2) We combine an RL-based motion planner with the
proposed safety layer.

3) We improve the learning efficiency of the RL agent by
providing a reward from the safety layer as feedback.

4) We evaluate the proposed approach using a real-world
highway dataset and interactive scenarios in a traffic
simulator.

The remainder of this paper is organized as follows:
Section II presents the required preliminaries. Subsequently,
Section III introduces the safety specifications and the required
constraints including their relaxation when the optimization
problem becomes infeasible due to the illegal behaviors of
other vehicles. The proposed method is then evaluated in real-
world and simulated highway scenarios in Sec. IV. Finally,
we draw our conclusions in Sec. V.

II. PRELIMINARIES

In this section, we introduce our vehicle model, control
barrier functions, and our optimization problem formulation.

A. Vehicle Kinematics in a Frenet Frame

We use the commonly used kinematic single-track model,
which assumes that the two wheels of the front and rear axle
lumped together into a single wheel located at the center of
each axle. The advantage of this model is its simplicity while
still considering the non-holonomic vehicle behavior.

In this work, we formulate the safety constraints with
regard to a Frenet frame aligned with the reference path Γ
of orientation ψΓ(s) (see Fig. 2). The configuration of the
vehicle is described by the longitudinal position s, the lateral
deviation of the reference path d, and the relative orientation
eψ . Furthermore, let us introduce the velocity v, the orientation
ψ, the acceleration in the longitudinal direction along, and
the curvature along the reference path κ(s). The differential
equations of the kinematic single-track model in the Frenet
frame are [39]

ṡ =
v cos eψ

1− κ(s)d
,

ḋ = v sin eψ,

ėψ = ψ̇ − v cos eψ · κ(s)

1− κ(s)d
, (1)

v̇ = along

Furthermore, assuming the maximum absolute acceleration
amax, we consider the friction circle as a constraint limiting
absolute acceleration [39]√

a2
long + (v ψ̇)2 ≤ amax (2)
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Fig. 2. Kinematic single-track model in a Frenet frame. We assume that Γ
corresponds to the centerline of a lane occupied by the ego vehicle.

After introducing the state variables xi as

x1 = s, x2 = d, x3 = eψ, x4 = v

and the input variables ui as

u1 = ψ̇, u2 = along (3)

the kinematic single-track model in the Frenet frame can be
written in state-space form:

ẋ =



x4 cosx3

1− κ(x1)x2

x4 sinx3

−x4 cosx3 κ(x1)

1− κ(x1)x2

0


︸ ︷︷ ︸

f(x)

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

g(x)

[
u1

u2

]
︸ ︷︷ ︸

u

(4)

B. Control Barrier Functions

Definition. (Control Barrier Function). Let us define the
safe set C as the superlevel set of a continuously differentiable
function h : Rn → R, i.e., C = {x ∈ Rn : h(x) ≥ 0}. Given
a nonlinear control-affine system

ẋ = f(x) + g(x)u, (5)

where f and g are locally Lipschitz continuous, x ∈ X ⊂ Rn
is the set of admissible states and u ∈ U ⊂ Rm is the set of
admissible inputs, h is a control barrier function if there exists
an extended class K function α [40] such that:

ḣ(x, u) ≥ −α(h(x)) ⇔ C is invariant. (6)

A simple form of an extended class K function is α(h(x)) =
γ h(x), γ > 0, which we use in this paper. We introduce how
to choose the value of γ in Sec. III-C. To prove the necessity
and sufficiency of condition (6), interested readers are referred
to [7]. To guarantee invariance of safety, we need to define a
safe set C and find the set of control values that render C safe,
i.e., if the system starts inside the safe set C, it will never leave
C.

Let ∗ be a variable; we denote all variables related to the ego
vehicle by ∗ego and all variables related to other vehicles by
∗obs. Specifically, the state variables of all other vehicles are

stacked together and are denoted by xobs. For the task of safe
motion planning on highways, we consider static constraints
specified by h(xego), which only depend on the ego vehicle,
as well as dynamic constraints, which also depend on other
vehicles (see Sec. III-B) and thus can be separated into

h(x) = h(xego) + h(xobs) (7)

To obtain safety constraints on the inputs of the ego vehicle
uego, we need to rewrite (6):

ḣ(xego) =
∂h

∂xego
ẋego

(5)
=

∂h

∂xego
(f(xego) + g(xego)uego)

:= Lfh(xego) + Lgh(xego)uego, (8)

where Lfh(x) = ∂h
∂x f(x) ∈ Rn, Lgh(x) = ∂h

∂x g(x) ∈ Rn×m.
Combining (6), (7), and (8), we have

−Lgh(xego)uego ≤ γh(x) + Lfh(xego) + ḣ(xobs) (9)

We calculate ḣ(xobs) at each time step using worst-case
assumptions.

In this work, we consider C as the intersection of half-spaces
defined by k affine barrier functions with the index i. Stacking
together all constraints in (9), the affine constraint on u then
becomes

Au ≤ b, (10)

where

A = [−Lgh1(x),−Lgh2(x), · · · ,−Lghk(x)]T ∈ Rk·n×m

b = [b1, b2, · · · , bk] ∈ Rk·n,with

bi =

{
γi hi(x) + Lfhi(xego), for static constraints
γi hi(x) + Lfhi(xego) + ḣ(xobs),

for dynamic constraints.

C. Optimization-Based Minimally Invasive Control

Our goal is to modify the action proposed by the RL agent
uRL as little as possible to ensure safety. Considering the affine
constraints on u in (10), we can formulate the optimization
problem as [33]

u(x) = arg min
u∈Rm

1

2
‖u− uRL‖2 (11)

s.t. Au ≤ b,

which can be solved by quadratic programming [41].

III. SAFE HIGHWAY MOTION PLANNING USING CONTROL
BARRIER FUNCTIONS

To formulate safety constraints properly, we first introduce
the safety specifications considered in this work to guarantee
legal safety. Moreover, when other vehicles violate traffic rules
and render our optimization problem infeasible, e.g., due to
illegal cut-ins, we relax the original optimization problem
while restoring safety as soon as possible.
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A. Specifications

We consider the following specifications which are confor-
mant with traffic laws [11], [27]:

1) The ego vehicle has to keep a safe distance to its leading
vehicle; when another vehicle cuts-in in front of the ego
vehicle, the ego vehicle has to recover the safe distance
in a timely manner.

2) The ego vehicle is allowed to change its current lane
only when its longitudinal distance to the leading and
following vehicles in the target lane is larger than the
safe distance.

3) If safety is harmed due to the illegal behavior of other
vehicles, the ego vehicle should try to restore safety as
soon as possible2.

Besides traffic laws, we consider an additional specification
for approaching following vehicles:

4) The ego vehicle has to keep a safe distance to its
following vehicle whenever feasible; when no feasible
solution can be obtained, the ego vehicle is allowed
to violate the safe distance to its following vehicle but
should not collide with it.

In addition, the ego vehicle should satisfy the speed limit
and control limit constraints.

B. Safe Sets

We define the safety constraints based on the invariably safe
sets developed in our previous work [38] as the control barrier
functions.

1) Longitudinal Constraints: We formulate longitudinal
constraints according to specifications 1 and 4. For the leading
vehicle of the ego vehicle, we define

h1 = ∆s− ssafe, (12)

where ∆s and ssafe are the longitudinal distance and safe
distance between the leading vehicle and the ego vehicle,
respectively. Let ∗lead and ∗f denote the states of a leading
and following vehicle, respectively; and let us define

sbrake =
v2

lead

−2amax,lead
− v2

f

−2amax,f
+ δvf , (13)

where δ is the reaction time of the following vehicle, then the
safe distance can be calculated as [42]

ssafe = max(sbrake, 0) (14)

For simplification, we assume δ = 0 and amax,lead = amax,f

in this work. Since a control barrier function has to be contin-
uously differentiable, we have to eliminate the max operator
in (14). We use ssafe = sbrake in (12), since vlead > vf if
ssafe < 0 and thus ∆s will become larger and safer at the

2We show exemplary scenarios where other vehicles violate traffic rules and
how agents equipped with our safety layer response in the video attachment.

next time step, no matter what actions the ego vehicle executes.
Therefore, we obtain

h1 = ∆s− sbrake
(13)
= (15)

slead − llead,rear +
v2

lead

2amax,lead︸ ︷︷ ︸
h1(xlead)

−x1 − lego,front −
x2

4

2amax,ego︸ ︷︷ ︸
h1(xego)

,

where l∗,front and l∗,rear denote the length between the refer-
ence point and the front/rear end of a vehicle.

For the constraint to a following vehicle, we define two
versions of control barrier functions: one is invariably safe,
namely considering the safe distance, which ensures legal
safety for infinite time; when the optimization problem with
the invariably safe constraint becomes infeasible, we relax this
constraint to emergency mode. The invariably safe version can
be obtained similarly to (15):

h2,IS = x1 − lego,rear +
x2

4

2amax,ego︸ ︷︷ ︸
h2(xego)

−sf − lf,front −
v2

f

2amax,f︸ ︷︷ ︸
h2(xf )

(16)

To prevent collision within the planning horizon when legal
assumptions are violated by other vehicles, the emergency
version is defined as

h0
2,CF = ∆s = x1 − lego,rear − sf − lf,front (17)

Since the input relative degree of (17) is two, i.e., we need
to derive (17) twice to obtain inputs, we convert (17) using
high-order control barrier functions [43] to

h1
2,CF = ḣ0

2,CF + γ h0
2,CF ≥ 0

= (x4 cosx3 − vf cos eψ,f) + (18)
γ (x1 − lego,rear − sf − lf,front) ≥ 0

Note that γ here is the coefficient of the zero-order control
barrier function. We show the effect of γ in Sec. III-C1.

2) Lateral Constraints: We consider two kinds of lateral
constraints: one dynamic constraint for other vehicles merging
illegally from other lanes into the current lane of the ego
vehicle; and one static constraint for lane or road boundaries.
The dynamic lateral constraints can be obtained similarly to
(18) as (see Appendix)

h3 = (vobs sin eψ,obs − vego sin eψ,ego) + γ (dobs − dego),

for vehicles from the left,
h4 = (vego sin eψ,ego − vobs sin eψ,obs) + γ (dego − dobs),

for vehicles from the right. (19)

Note that it is not trivial to obtain a worst-case behavior
for lateral dynamics, since it is non-monotonic [44]. For
simplicity, we use ψobs = ψmax and along,obs = 0 as the
control inputs of other vehicles of interest. Although this
bound is not formally correct, our method still ensures legal
safety since constraints (19) are only considered for illegally
merging obstacles. To obtain a more precise bound of the
lateral dynamics, reachability analysis can be applied [45].

For the static lateral constraints, we consider specification 2,
namely if the ego vehicle is legally allowed to change to
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adjacent lanes, we restrict the lateral distance between the
ego vehicle and road boundaries; otherwise, we restrict the
lateral distance between the ego vehicle and lane boundaries.
We denote this distance by dboundary. We focus on highway
scenarios where dboundary is constant. Therefore, we obtain
the static lateral constraints using high-order control barrier
functions as

h5 = −vego sin eψ,ego + γ (dboundary − dego),

for the left road/lane boundary,
h6 = vego sin eψ,ego + γ (dego − dboundary),

for the right road/lane boundary. (20)

3) Speed Limit Constraints: We restrict the velocity of the
ego vehicle according to the speed limit of the current lane.
Furthermore, the ego vehicle is not allowed to drive backward
on a highway. Therefore, we have the following constraints:

h7 = vspeed_limit − v
h8 = v

(21)

4) Control Limit Constraints: We obtain N control limit
constraints by under-approximating the friction circle (2) and
linearizing it into N segments. Here, we choose N = 16
empirically. We denote the coefficients obtained in the lin-
earization by aµ, bµ ∈ RN and the range of the indices of
the constraints by 9 : 9 +N . Then the corresponding control
barrier functions can be formulated as

h9:9+N = aµ vego u1 + u2 − bµ (22)

C. Relaxation of Constraints

Since the constraints in (11) depend on the value of γ,
the optimization problem could become infeasible if γ is not
chosen properly. Therefore, before introducing a relaxation
method when (11) becomes infeasible, we first discuss the
effect of γ to derive its bounds.

1) Effect of γ: We show the effect of γ on safety and
feasibility of the optimization problem (11) in two cases3 and
derive its bounds:

• When the state of the agent is within C, we allow the
agent to move in any direction. However, the step size
of the agent should be restricted such that the agent still
stays within C at the next time step, i.e.,

h(x(t+ 1)) ≈ h(x(t)) + ḣ(x(t))∆t ≥ 0 =⇒

ḣ(x) ≥ −γh(x) ≥ −h(x)

∆t
=⇒

0 < γ ≤ 1

∆t
, for h(x) > 0. (23)

The smaller γ is, the safer the agent stays, but the
constraints in (11) become stricter, which could render
(11) infeasible. We choose γ = 3 for h > 0 as the default
value.

3Note that we assume ḣ(x(t)) stays constant for one time step. To obtain
more precise bounds of γ assuming time-variant ḣ(x(t)), reachability analysis
can be applied [45] in future work.

• When the state of the agent is outside or at the boundary
of the safe set C, the agent should only move towards C,
i.e.,

ḣ(x) ≥ −γh(x) > 0 =⇒ γ > 0, for h(x) ≤ 0. (24)

The larger γ is, the further the agent moves towards C,
thus the safer the agent stays, but the constraints become
stricter, which could render (11) infeasible. We choose
γ = 1

∆t for h ≤ 0 as the default value, such that h(x(t+
1)) ≥ 0.

To summarize, the choice of the value of γ is a tradeoff
between safety and the feasibility of (11).

2) Relaxation of the Optimization Problem: When the
original optimization problem (11) with default γ becomes
infeasible, i.e., when the intersection of constraints (10) is an
empty set, we relax the constraint to the following vehicle
from invariably safe mode (see (16)) to emergency mode (see
(18)). Moreover, we observe that in all cases, infeasibility is
caused by constraints with h ≤ 0 since its γ has a much
larger default value ( 1

∆t ), which means that it is infeasible
for the agent to come back to safe sets within one time step.
We aim to relax constraints with h ≤ 0 (i.e., decrease γ)
while minimizing the time steps for the agent to come back to
safe sets (i.e., maximizing γ within 1

∆t ). We introduce a new
variable y := 1

∆t − γ and convert (11) and (9) into

arg min
u∈Rm,y

1

2
‖u− uRL‖2 +

1

2
y2, (25)

s.t. y ≤ 1

∆t
,

−Lgh(xego)uego + h(x)y ≤ h(x)

∆t
+ Lfh(xego) + ḣ(xobs)

IV. EVALUATION

A. Simulation Environment
1) Dataset: We evaluate the proposed approach on the real-

world highway drone dataset (highD) of naturalistic vehicle
trajectories recorded at six locations with two-lane or three-
lane roads on German highways [46]. The highD dataset
contains 16.5 h (over 45 000 km) of vehicle trajectories with
a time size of ∆t = 0.04 s. We convert the dataset into
3000 scenarios with a duration of 40 s for each scenario. For
each scenario, we randomly choose a vehicle, create a planning
problem using its initial and final states, and remove this
vehicle from the scenario. Furthermore, we randomly split the
scenarios into 70% training set and 30% test set.

2) Training Settings: We build the training environment on
top of CommonRoad-RL [47]. The state space definition is
adopted from [5] and we add five additional features as listed
in Tab. I. The action of the agent is the control inputs of the
vehicle model (3). We terminate the episode when one of the
following binary variables becomes true:
• 1reach_goal = 1 if the ego vehicle reaches the goal area.
• 1collision = 1 if the ego vehicle collides with others.
• 1off_road = 1 if the ego vehicle drives offroad.
• 1time_out = 1 if the duration of the scenario is reached.

In addition, we define 1safe_dist = 1 if the safe distance
between the ego vehicle and its leading vehicle is violated.
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TABLE I
ADDITIONAL FEATURES IN THE STATE SPACE COMPARED TO [5]

Dim. State Description

1-16 - Same as Tab. I in [5]
17 ψego Orientation of the ego vehicle
18 dleft_lane Lateral distance from ego vehicle to left lane
19 dright_lane Lateral distance from ego vehicle to right lane
20 dleft_road Lateral distance from ego vehicle to left of road
21 dright_road Lateral distance from ego vehicle to right of road

With the help of these binary variables, we define a reward
function as follows:

rRL = rreach_goal + rcollision + roff_road + rtime_out (26)
+ rcloser + rsafe_dist,

where each term is further specified as

rreach_goal = 1000 · 1reach_goal,

rcollision = −1000 · 1collision,

roff_road = −1000 · 1off_road,

rtime_out = −200 · 1time_out,

rcloser = 5 [sgoal(k − 1)− sgoal(k)]

+ 5 [dgoal(k − 1)− dgoal(k)],

rsafe_dist = − exp(
slead

ssafe
)1safe_dist,

where sgoal(k) and dgoal(k) denote the longitudinal and lateral
distance between the ego vehicle and the goal region at time
k ∈ N, respectively. Furthermore, slead denotes the current
distance between the ego vehicle and its leading vehicle. The
coefficients of each reward term are chosen empirically using
grid-search over a defined set to maximize the goal-reaching
and minimize the collision and off-road rate.

We optimize the policies using proximal policy optimization
(PPO) [48] due to its superior performance for continuous
control tasks compared to other state-of-the-art algorithms.
Moreover, we use an actor-critic architecture [49] to approx-
imate both the policy and the value function with a shared
neural network to reduce variance. The shared policy and value
network has two hidden layers with 64 neurons each and the
hyperbolic tangent function as its activation function.

B. Results and Discussions

To demonstrate the effect of our safety layer, we train one
agent without control barrier functions (i.e., unsafe agent) and
one agent with control barrier functions (i.e., safe agent) on the
same traffic scenarios. The results are shown in the learning
curves in Fig. 3.

Is the proposed approach safe? Does the safe agent perform
too conservatively?

The learning curves of the collision rate and off-road rate
in Fig. 3 show that the safe agent does not have any accidents
during the entire training, whereas the unsafe agent still had
a collision rate of around 5% and a small variance around
zero for off-road rate after convergence. In addition, the safe

Fig. 3. Learning curves of the unsafe agent, safe agent, and safe agent with
safe reward(28).

agent converged to a slightly higher goal-reaching rate than
the unsafe agent. Therefore, we can conclude that with our
safety layer, the agent performed much more safely, yet not
too conservatively.

Furthermore, the safe agent increased its goal-reaching
rate from 50% to 90% after training. Since the safety layer
constrained the action to the safe area, the RL agent was able
to learn the goal-reaching behavior better without having to
consider safety, which reduces the learning complexity.

In addition, we compare the performance of the safe and un-
safe agents in an example scenario in Fig. 4, where the unsafe
agent collides with its leading vehicle, while the safe agent
brakes in time and reaches the goal at the end. We use Time-
To-Collision (TTC) to measure criticality since it considers the
distance and velocity differences between vehicles:

tTTC =

{
slead−sf
vf−vlead if vf > vlead,

∞ else.
(27)

How does the safety layer affect the performance of the agent
itself during training?

As observed in [5], an agent trained with a safety layer
performed more recklessly when the safety layer is removed
compared to the agent trained without a safety layer, since
it has never experienced a risky situation during learning.
Therefore, to increase the safety of the agent itself as well as
accelerate convergence during learning, we train a third agent
with additional feedback from the safety layer to the agent
through a reward function (i.e., safe agent with safe reward).
The additional reward term of the safety layer is defined as

rsafe = −50
|u1 − u1,RL|

ψ̇max

− 50
|u2 − u2,RL|

amax
(28)
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Fig. 4. An example scenario where the unsafe agent collides with its leading
vehicle whereas the safe agent brakes in time and reaches the goal at the end.

Figure. 3 shows the learning curves of the safe agents
trained with and without rsafe (28). Both agents performed
equally in terms of reaching the goal area. The safe agent
trained without the safe reward achieved a higher reward value
since it was not penalized with an extra negative reward.
However, the learning curves of the absolute value of the
correction term of the actions show that the safe agent with
the safe reward needed much less correction/intervention from
the safety layer compared to the safe agent without the safe
reward. Therefore, the safety of the agent itself was improved
through feedback from the safety layer.

How do the trained agents perform in test scenarios?

To further verify the effect of the proposed method, we
evaluate the best model obtained in each training on the test
scenarios, including the highD test dataset and interactive
scenarios in the SUMO simulator [50]. In addition, we evaluate
the performance of two safe agents when the safety layer is
removed. Table II shows the collision rate, off-road rate, and
goal-reaching rate of all best models on the highD test set and
interactive scenarios in SUMO, respectively. Neither safe agent
has an accident on the test dataset, while still reaching the
goal more often than the unsafe agent in the highD scenarios.
Furthermore, when the safety layer is removed, the safe agent
performed worse than the unsafe agent, whereas the safe agent
with safe reward achieved similar performance to the unsafe
agent, demonstrating the effectiveness of the additional safe
reward.

V. CONCLUSIONS

This paper presents an approach to ensure the safety of
RL-based low-level motion planners for autonomous vehicles

TABLE II
PERFORMANCE ON THE TEST SCENARIOS

Agent Collision
rate

Off-road
rate

Goal-reaching
rate

highD test set

unsafe agent 3.07% 0.70% 83.36%
safe agent 0% 0% 93.22%
safe agent with safe reward 0% 0% 88.11
safe agent in [5] 0% 0% 85.7%

when safety layer is removed

safe agent 29.27% 18.85% 47.74%
safe agent with safe reward 4.33% 0.34% 89.95%
safe agent in [5] 23% 0% 60.7%

interactive scenarios in SUMO

unsafe agent 0.89% 0.04% 88.01%
safe agent 0% 0% 68.78%
safe agent with safe reward 0% 0% 82.42%

when safety layer is removed

safe agent 4.49% 34.16% 35.33%
safe agent with safe reward 0.77% 0.07% 81.75%

in highway scenarios. We define the safety constraints based
on our previously-developed invariably safe sets and utilize
control barrier functions to enforce the invariance of the
safe sets. In addition, safety interference is minimized by
formulating the problem as a quadratic programming problem.
Furthermore, we propose a relaxation mechanism when the
optimization problem becomes infeasible due to the illegal
behavior of other vehicles. We demonstrate our approach in
real-world highway scenarios and show that the RL agent does
not violate any safety constraints during learning. Future work
will integrate our previously-developed online verification
framework [44], [51] to provide a safety guarantee for more
general scenarios.
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APPENDIX
DERIVATION OF (19)

h0
3 = ∆d = dobs − dego

h1
3 = ḣ0

3 + γ h0
3

= (vobs sin eψ,obs − vego sin eψ,ego) + γ (dobs − dego)

h0
4 = ∆d = dego − dobs

h1
4 = ḣ0

4 + γ h0
4

= (vego sin eψ,ego − vobs sin eψ,obs) + γ (dego − dobs).
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