Chair of Renewable and Sustainable Energy Systems TUM School of Engineering and Design Technical University of Munich

Long-term investment in low-carbon energy systems resilient to climate change Case study for Colombia and Peru

S. Bazan Santos, A. Cadavid Isaza, C.Tubella

Background

- Peru and Colombia aim to continue developing towards a lower-carbon energy mix
- Both countries have great potential in renewable energy generation, evident specially in photovoltaics and hydropower
- Increasing effects on rainfall variability adversely affect hydroelectric power generation, responsible of >50% of total current electricity generation

Questions for a sustainable future:

- What is the **cost-optimal investment** in renewable energy technologies to achieve a low-carbon energy system (-95% CO2 emissions) from 2019 to 2050?
- How does the **climate variability affect** the transition to renewable energies due its effect on hydroelectric power?

Long-term investment planning with *urbs*

Model overview

Modeling method	Linear programming	Model Nodes Colombia
Time scope	30 years (2019-2050)	NORTHHWEST
Time steps	hourly	
Spatial scope	Multi-regional	SOUTH
Optimization goal	Minimal costs	0 200 400 600 800 1000 km

Chair of Renewable and Sustainable Energy Systems

Scenario	Description
Base	Cost-optimal investment planning for timefra
RE	CO2 emissions are reduced by 90% for 203
Niña	Variability in hydroelectric power generation
Niña	Variability in hydroelectric power generation

ame 2019 - 2050 0, 95% for 2040 and 2050 due to climate pattern 'La Niña' due to climate pattern 'El Niño'

