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Networks

Problem description:

Picking random objects in not-known positions is still a complex task for robotic applications in
industrial scenarios [1]. As a matter of facts, market ready systems for solving this issue (e.g.
Keyence® Robot Vision) can be come expensive. Therefore, if this task need to be implemented in
Small Medium Enterprises (SMEs), which represent the 99% of the European businesses [2], it could
become difficult for the companies. Fortunately, other solutions which rely on new developments in
Artificial Intelligence (AI) and grasping strategies based on object shape detection can be employed.
These leverage different sensors and open-source AI algorithms based on Neural Networks (NN) to
detect objects and then generate point where gripping can happen [1].

Therefore, in this master thesis you will delve in this topic and try to came up with your solution for
bin picking trying to leverage open source methodologies. However, for making the technology more
affordable and compelling to SMEs you will integrate new user input sensors (e.g. Tracepen�) and
camera technologies (e.g. Basler� 2D camera) which could reduce the barrier of adoptions of the
technology. More specifically, you will use neural networks for identifying parts with object detection
and then estimate grasping poses based on the object geometry and the operator input. Your research
should prefer robustness and speed so an appropriate neural network architecture should be chosen.
Therefore, your objectives can be summarized as follows:

Tasks:

� Literature research in bin picking technologies for identifying approaches with NN
� Choice of a hardware and software architecture for the bin picking framework considering user input
through the Tracepen

� Integration of the architecture on a real manufacturing cell
� Test and evaluate against existing technologies using known metrics from the manufacturing domain
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Abstract

Universal bin-picking is a necessary skill for robots, but still challenging. In this
master thesis, a robot grasping point estimation leveraging neural network and op-
erator input is proposed for industrial application scenario. Initially, the background
of the topic is introduced. State of the art robot end effector design, bin-picking
approaches, and robot manipulation are then reviewed. Next, methodologies of this
thesis are elaborated in details - dataset processing, neural network training, and
a robot teaching device TracePen™. Finally, performances of the proposed robot
grasping point estimation approach are evaluated. Overall 82.24% success rate of
suction point prediction is realised for vacuum gripper.
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Chapter 1

Introduction

1.1 Background

Universal bin picking is still challenging and unsolved, but very practical for fac-
tory automation, warehouse automation, household robots and so on [1]. Robots
with robust grasping ability help supply parts in manufacturing, pick-and-place in
warehouses, and provide service in daily lives [1].

Current bin picking solutions mainly aim at grasping daily life objects, such as mug,
bowl, fruit, food packing box, can, which can be applied to home service robots,
and warehouse automation. Some methods target specifically home decluttering
such as bed-making [2] and textile pickup [3]. The robots used to evaluate the bin
picking systems are mostly robot arms/manipulators, but humanoid robots are also
employed [4]. Nevertheless, research on robotic bin picking for industrial scenarios
is relatively blank and challenging[5].

Normally, the robot manipulator moves to a certain pose given by a human user
via a control panel or other user interfaces to pick up an object. However, it only
works when the type and pose of the object never change, which is infeasible in the
real world. Since 1980s, researchers started analyzing the object properties such as
shape, geometries, and dynamics to compute mathematical and physical models [6].
These analytical approaches analyzed force closure and stability of a grasp, modeled
a task, and compared grasps performances[6]. However, simple picking and placing
by force closure grasps is far not enough for the tasks in the real-world [6]. Besides,
modeling a task is difficult, and complex computations are required to find a grasp
for the task[6]. The divergence between mathematical models and real objects is
also problematic [7]. Furthermore, the solutions are often not robust to new objects
and new tasks[6]. Therefore, researching on empirical methods that mimic human
behavior is a growing trend for robotic grasp to improve generality of a grasp method
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and avoid complex computations[6].

In the last five years, empirical learning-based robot grasping approaches attract
much attention, due to the fact that Convolutional Neural Networks (CNNs) pro-
vide a promising performance for various applications such as pose estimation, im-
age/video recognition, voice recognition, and natural language processing [8]. Intu-
itively, humans observe and locate the objects by eyes, and then their hands reach
the object to pick up. Therefore, learning-based approaches rely on camera ob-
servations of the objects to be grasped, and then processing the observed images
by algorithms, e.g. artificial neural network, and finally actuating the robot ma-
nipulator to perform the grasping operation. The whole process imitates natural
operations of human-beings. The empirical methods can be categorized as model-
based and model-free methods [9]. Model-based approaches utilize specific object
knowledge, e.g. CAD models, or pose estimation of objects. Model-free approaches
directly map observations to grasping pose [9].

Apart from CNN, fully convolutional networks (FCNs) also have deployment in the
fields of image segmentation and object detection due to their scaling and pixel-wise
discrimination abilities [10]. It was proven that FCN is also beneficial for robot
grasping [1]. Moreover, transfer learning is also employed to adopt weights of pre-
vious trained models as initialization for training the grasping prediction networks
[2], [11].

1.2 Requirements

The Siemens project that this thesis work for has following requirements:

1. The bin picking framework should be validated on a Universal Robot (UR) 10.

2. Using 2D cameras or low-cost 3D cameras.

3. A no coding device - TracePen™ - should be leveraged to gain operator input.

4. Using a modular gripper consisting of a vacuum gripper and a parallel jaw.

5. Open source technology is preferable.

1.3 Thesis Outline

The main contributions of this thesis are:

1. A grasping pose estimation framework leveraging the deep learning method and
operator input by the TracePen™.
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2. An industrial robotic grasping dataset.

3. A robotic bin-picking system via Robot Operating System (ROS).

The thesis outline are as follows:

1. Chapter 1 introduces the background of robot grasping/bin picking, and explains
some requirements for the thesis.

2. Chapter 2 reviews state of the art of main technologies related to the thesis - the
end effector of the robot, vision system for robotics, and the robot actuation.

3. Chapter 3 presents methodologies concentrating on learning based approach to
predict grasping pose.

4. Chapter 4 describes experiments where the methodologies are implemented.

5. Chapter 5 discusses several valuable points discovered from the thesis work.

6. Chapter 6 summaries the thesis and expect future work.
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Chapter 2

State of the Art

This chapter firstly reviews the design of robot end effector used for grasping. Next,
two main types of robotic grasping approaches - analytic and learning-based ap-
proach - are studied in detail, and then published datasets and typical neural net-
work architectures for learning-based methods are investigated. Lastly, the robot
kinematics of actuation is introduced.

2.1 End Effector

The end effector of a robot, also called gripper, has functions similar to human hand
- grasping, holding, and placing an object. Humanoid robots are usually mounted
with hands with five fingers [4]. For robot manipulators in industrial scenarios,
grippers are mainly categorized into suction gripper, vacuum gripper, and parallel
jaw (also called two-fingers in some literature), as shown in Figure 2.1(a) [12]. The
suction gripper is good at grasping objects with a flat surface, or textile (e.g. cloth)
by suctioning air between the gripper pad and the object [12]. Vacuum gripper
is the most widely used in industries. Its principle is the same as that of suction
gripper, but the vacuum is stronger to generate negative pressure to make the object
surface tightly stick to the pad [12]. Parallel jaw is capable of picking stereoscopic
objects when contact surface between the gripper and the object cannot be well
formed. The grasping point estimation needs to be more accurate with the parallel
jaw, because the jaw may cause collision while picking [12].

Fan et al. [13] designed a customized parallel-jaw with curved fingertips, in order to
enlarge the contact area between the object and the jaw. The grasp is more stable
when picking up curved objects without a large flat surface.

In recent years, multi-gripper in a combination of two or three grippers gains pop-
ularity, in order to be more robust to pick objects with various size, shape, and
texture. Zeng et al. [14] deployed a multi-functional gripper consisting of a parallel-
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(a) Vacuum gripper (left), suction grip-
per (middle), parallel jaw (right)[12].

(b) Muti-functional Gripper [14].

Figure 2.1: Gripper Types

jaw and a suction gripper with Multi-Affordance estimation, as shown in Figure 2.1.
Fujita at al. [12] employed three grippers including one more vacuum gripper with
a gripper switch strategy.

2.2 Vision System for Robotic Grasping

Visual sensor is of great significance on robots for perceiving external environments.
In the field of robotic grasping, the visual perception data is necessary for the robot
to observe the objects to be grasped, and the formats can be RGB, RGB-D, depth
data, point cloud, etc. The robotic grasping estimation system then processes the
perception data via various algorithms to estimate object pose, or predict robot
grasping pose. The algorithms develop from analytic approaches to learning-based
approach explained in details in the following.

2.2.1 Analytic Approaches

In the past four decades, analytic approaches were investigated to perform bin-
picking tasks. Spenrath et al. [15] determined gripping point by heuristic search.
A gripping library was firstly established by experts including geometric models
of the gripper and workpieces, and the gripping points. The workpiece models in
the format of point cloud were obtained by 3D sensors such as a camera or a laser
scanner. The elements in the library constituted a search tree. A heuristic function
was designed to calculate local cost of a node in the tree, and estimated cost for
exploring to a final node. Raw gear shafts were used to assess the system, and the
robot picked up 245 parts successfully. The author also concluded that depth first
search reduced both computation time and collision. Nevertheless, this method is
only able to pick up known objects that are available in the library. Furthermore,
the final search tree world be very large for complex tasks.

Lin et al. [16] proposed a framework to estimate 6D object pose based on RANdom
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SAmple Consensus (RANSAC) algorithm and Perspective-n-point (P-n-P) algo-
rithm. The observed single RGB image was matched with 3D meshes from database
via keypoints. The author chose the keypoint feature, rather than edge or optical
flow that are variant to orientation and scale. Features on the 2D observed image
were extracted by Rotated BRIEF (ORB) algorithm, and filtered by RANSAC. The
2D-to-3D correspondences were then computed by the P-n-P algorithm to estimate
the object pose. However, the feature extraction is dependent on the types of objects
and application scenarios.

2.2.2 Learning based Approaches

Learning-based approaches (also called data-driven or empirical methods) become
prevalent nowadays due to the advents of CNN. Model-based empirical methods
usually contains three steps: object pose estimation, grasp pose prediction, and
motion planning. In contrast, model-free empirical methods skip the object pose
estimation step, and directly predict grasp pose from visual perception data [9].
Supervised learning and reinforcement learning are mainly employed to train the
network.

Model-based Methods

Fujita et al. [12] deployed a bin-picking framework using a multi-gripper strategy.
The multi-gripper combines a two-finger gripper, a suction gripper, and a vacuum
gripper. As illustrated in Figure 2.2, the point cloud data and primitive shape
models were matched to estimate item shape and pose by a deep neural network
(DNN). According to the object sparseness, a gripper switching strategy was applied:
the suction and the vacuum gripper should be used if the bin is crowded, due to the
fact that the two-finger gripper possibly causes collision. The picking point of the
suction and the vacuum gripper was determined to be close to mass center of the
fitted primitive shape. The grasp point of the two-finger was predicted by a Fast
Graspability Estimation (FGE). The system was tested by two robot manipulators
installed on two sliders with RGB-D cameras and force sensors mounted in the robot
manipulators (called eye-in-hand or hand-eye).

Model-free Methods

Compared to model-based approaches, model-free methods do not estimate the ob-
ject pose, but directly predict grasping point according to visual observations. Zeng
et al. [14] provided a promising bin picking solution using fully convolutional neural
network with multi-view RGB-D images, and won the first place in stow task of the
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Figure 2.2: Flowchart of the bin-picking system [12]. The item shape and pose are
estimated by matching the primitive shape models with the detected item images.
Based on the estimated object pose, a Fast Graspability Estimation (FGE) method
proposes grasp points.

Amazon Robotics Challenge 2017. The tasks are picking up from a bin, and then
recognizing the object to classify.

Four motion primitives as visualized in Figure 2.3 - suction down, suction side,
grasp down, flush grasp - were defined to pick an object up by a multi-functional
gripper combining a parallel jaw and a suction gripper. Suction and grasp affordance
predictions were performed by fully convolutional residual networks (FC-ResNet-
101) respectively to rank the probabilities of grasp success for the motion primitives,
as interpreted in Figure 2.4. The suction proposal is a 3D position with its surface
normal, and a confidence score. The suction contact area with the object should
be plane and near the mass center. The grasp proposal is a 3D position and an
orientation around the gripper’s vertical axis, which is 4 Degree of Freedom (DoF).
In addition, the suction and grasp affordances predicted by the FC-ResNets in this
method were compared with results of analytic algorithms that compute variance of
surface normal for suction, and detect hill-like geometric features for grasping.

After grasping, category recognition was performed by a two-stream convolutional
neural network (ConvNet) computing features of observed images and product im-
ages. It matched observed images and candidate product images to find semantic
image correspondences of the two domains.

The strategy of this method is acting first, then see, which makes object recognition
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Figure 2.3: Four motion primitives. [14]

Figure 2.4: Two models were trained respectively for suction and grasping [14].
They directly map from visual perception to grasp proposals.

easier because picking up the object firstly from the cluttered bin. It is beneficial
for scenarios, where no specific object is required to be picked up.

Morrison et al. [5] proposed a generative grasp synthesis approach to predict pose
and quality of grasps pixel-wisely using a two-fingered gripper. They augmented
the Cornell Grasp Dataset (CGD) and Jacquard Dataset by rotating, zooming, and
cropping as their training dataset. As illustrated in Figure 2.5, the grasp represen-
tation g̃ compromises center pixel position (u, v) of contact points between the two
jaws and the object, an orientation angle Φ̃ around z axis, and the gripper width w̃.
Next, four grasp images - grasp quality image, cosine angle image, sine angle image,
and grasp width image - are generated based on the inpainted depth images, and
then they are fed to the Generative Grasping CNN (GG-CNN) to directly estimate
the grasp pose at pixel level.

Fan et al. [13] presented a two-levels framework for robust bin picking with a cus-
tomized parallel-jaw (as introduced in Section 2.1). The low level is a optimization-
based planner with iterative surface fitting (ISF). ISF has two steps: iteratively
matching correspondence points on the object surface by nearest neighbor search and
outlier/duplication removal, and surface fitting to optimize gripper transformation
and finger displacement. The planner searches iteratively the jaw transformation in
a local region to minimize surface fitting error, so that the grasp pose fits the object
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(a) Grasp Representation[5]. (b) Generated training images[5].

Figure 2.5: Training Data of GG-CNN[5].

Figure 2.6: RCNN-ISF pipeline. [13]

surface. While the search of the planner is local, the result is significantly dependent
on initialization of ISF algorithm. Therefore, a learning-based explorer learns a de-
sired region to initialize the planner by a region-based convolutional neural network
(R-CNN). The pipeline of the R-CNN is that a region proposal block proposing
potential region of interest (ROI) is fed to a CNN to extract features. Next, regions
with the features are classified by Support Vector Machine (SVM), and bounding
boxes are refined to acquire the object position. The input to the framework is
the point cloud of the object captured by two stereo cameras (IDS Ensenso® N35).
The R-CNN was pre-trained by AlexNet and improved by additional objects of 25
different types.

Mahler et al. [17] proposed grasp success probability estimation by Grasp Quality
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Figure 2.7: GQ-CNN trained on Dex-Net 2.0. [17]

Convolutional Neural Network (GQ-CNN), based on 3D objects meshes and depth
images. A parallel jaw was deployed. Initially, hundreds of grasps were generated for
each object based on uniformly sampled contact points on the whole object surface
and a random direction from friction cone. These generated antipodal grasps were
grasp candidates. Rendered depth images (point clouds) were then synthesized from
meshes mainly based on uniformly and randomly sampled object shape, pose, and
camera pose. Finally, Matching the grasp candidates and the depth images yields
grasp images that fed to GQ-CNN to rank the candidates, as illustrated in Figure
2.7. An ABB YUMI robot arm with an eye-to-hand (camera installed overhead)
configuration was employed to conduct experiments and evaluate performance.

Datasets

Most of the data used in bin picking solutions are household objects. Almost each
solution created its own dataset. There is still no very common dataset in the field
of bin picking. Cornell Grasp Dataset (CGD) is a relatively popular manually an-
notated dataset for robotic grasp detection [9]. Figure 2.8 shows samples of CGD.
It contains 885 images, 885 point clouds and about 8019 labelled grasps for 240 dif-
ferent object types from different views [18], such as fruit, beverage can, toothpaste,
bowl, mobil phone, ect. The background is a white board.

To the best knowledge of the author, two industrial bin picking datasets were pro-
posed in recent years: Fraunhofer IPA Bin-Picking dataset[19] and ROBI (Reflective
Objects in Bins) dataset[20]. The former[19] comprises eight objects from Sileane
dataset and two novel industrial parts - a ring screw and a gear shaft, as shown in
Figure2.9. The data was generated both in a synthetic way and in real-world. It
concludes 520 annotated point clouds and the corresponding depth image in real
world, and 206000 synthetic scenes. The synthetic data was generated by import-
ing the CAD models of each object with various positions and random orientations
to the bin incrementally, which means starting from one object in the bin, to a



2.2. VISION SYSTEM FOR ROBOTIC GRASPING 17

Figure 2.8: Samples of Cornell Grasp Dataset [18].

pre-defined limit. Notably, the bin was cleared and the objects were dropped again
after each scene recording. The real world data was captured by an Ensenso® N20-
1202-16-BL stereo camera. The number of objects in the bin decreased after each
recording starting from a full bin. The 6D poses were annotated by Iterative Closest
Point (ICP) algorithm to fit the CAD model to the object in the bin.

Figure 2.9: Fraunhofer industrial bin-picking Dataset [19].

ROBI[20] includes seven reflective mental parts that diameters vary from 76.2 mm
to 24.5 mm. RGB images and depth maps were recorded for each part from multiple
spherical views in two scenes (parts fully piled in the bin, and multiple parts without
severe overlapping in the bin, as shown in Figure 2.10). Two stereo cameras - a
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Ensenso® N35 and a RealSense® D415 - were used to capture the scenes. The scenes
models were then reconstructed by two methods - a traditional TSDF (Truncated
Signed Distance Function) fusion and a probabilistic fusion approach. The results
show that the probabilistic fusion has better reconstruction performance than TSDF
fusion for each object and camera. In addition, the reconstruction performance is
dependent on the accuracy of depth data. Both probabilistic fusion and TSDF
fusion show better performance with data captured by Ensenso® N35 than that by
RealSense® D415. The ground truth annotations are 6D poses of visible parts with
visibility scores.

Figure 2.10: ROBI: seven reflective parts in two scenes. [20]

Zeng et al. [14] trained models over a densely human-labeled dataset including 1837
RGB-D heatmaps with suction and grasp labels. The grasp labels were augmented
by jittering within 1.6 cm.

Some datasets also leveraged other available datasets. Dex-Net 1.0 [21] contains
13252 3D mesh models from different sources. Dex-Net 2.0 [17] contains over 6.7
million rendered depth images with grasp pixel position and orientation based on
1500 3D meshes from Dex-Net 1.0. Hundreds parallel-jaw grasps were sampled over
the whole surface of each object. The grasps were then aligned with the rendered
point cloud of objects in stable poses to generate 32 × 32 grasp images.

Neural Networks

Convolutional Neural Network (CNN) is the backbone of machine learning in com-
puter vision. In the last ten years, some typical CNNs were created and of great
progress such as AlexNet, VGG, ResNet. The neural networks of most robot grasp
methods reviewed in this report were built based on these typical CNNs.

In 2012, AlexNet [22] used Local Response Normalization (LRN) to improve gener-
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(a) AlexNet. (b) VGG 16 & VGG19. (c) Residual Block of ResNet.

Figure 2.11: Typical CNNs.

alization. It contains five convolutional layers with ReLu activation function, and
three fully connected layers, as visualized in Figure 2.11 (a). The input dimension is
256 × 256 × 3. VGG [23], introduced in 2014, consists of convolutional layers, fully
connected layers, and softmax, with up to 19 layers, as visualized in Figure 2.11
(b). In 2015, ResNet [24] significantly increased the layers depth up to 154 layers
by residual block as interpreted in Figure 2.11 (c). It combines VGG and residual
network that skips/shortcuts the connections between layers to solve vanishing or
exploding gradients during backpropagation.

In 2015, Long et al. [25] presented fully convolutional neural network for Semantic
Segmentation. Convolutional neural networks only take fixed dimensional input, due
to the neurons number of the fully connected layers. In contrast, fully convolutional
neural networks take arbitrary size images as input, and output the corresponding
size, due to the lack of fully connected layers.

Fan et al. [13] deployed a region-based CNN to predict a potential grasp region. It
fine-tuned the pre-trained AlexNet model with the new collected data. Zeng et al.
[14] modifed a ResNet101 with fully convolutional layers to reduce the number of
parameters and give dense prediction. RGB-D data was fed to estimate suction and
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Figure 2.12: FC-GQ-CNN. The convolutional layers highlighted blue were converted
from original fully connected layers of GQ-CNN. [10]

horizontal grasp affordance as mentioned in Section 2.2.2.

Mahler et al. [17] proposed a Grasp Quality Convolutional Neural Network (GQ-
CNN) trained on Dex-Net 2.0 to predict probability of grasp success based on depth
images and sampled grasps. Satish et al. [10] modified the GQ-CNN to fully convolu-
tional GQ-CNN (FC-GQ-CNN) to improve speed by converting the fully connected
layers of GQ-CNN into convolutional layers, as illustrated in Figure 2.12. It is not
necessary to sample grasp poses over the object surface, due to the fact that fully
convolutional neural network (FCN) gives dense pixel-wise grasp estimation. Fur-
thermore, FCN has fewer parameters without fully connected layers. Therefore, the
FC-GQ-CNN is faster than sample-based GQ-CNN.

2.2.3 Machine Learning Basics

Artificial Neurons

Artificial neurons and neural networks are built by mimicking humans’ neurons.
Figure 2.13 (a) presents the basic element of neural network in deep learning -
artificial neuron,

y = σ

[
w1 w2 . . . wd

]

x1
x2
...
xd

+ b

 = σ
(
wTx+ b

)
[45] (2.1)

where x ∈ Rd refer to input tensors (e.g. vector or image), w ∈ Rd represent
weights, b ∈ R is a scalar number, referring to bias. σ(·) is an activation function, y
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(a) Basic Element - Neuron [46]. (b) Multi-layer Neurons [45].

Figure 2.13: Artificial Neurons.

is output.

Multiple neurons consist of a layer, and multiple layers comprise a neural network,
usually including an input layer, an output layer, and several hidden layers, as
visualized in Figure 2.13 (b). The purpose of building a neural network is to learn a
map (parameters w, b) between input and real output to estimate unknown output
given input [46]. The type of activation function σ(·), the number of layers and how
the neurons connected with each other form a structure/architecture of a neural
network. These are hyper-parameters tuned by the human and cannot be learned.

Activation Function

The first neural network in history is a linear perception by Rosenblatt in 1957, using
linear activation function and no hidden layers only for linear tasks [46]. Nowadays,
the neural networks usually use nonlinear activation functions and hidden layers
to solve complicated tasks in the real world. If the activation function is linear,
then the chain connection between multiple layers is meaningless, because the affine
functions chain is equivalent to a single affine function [46].

Activation function maps summed weighted and biased input to the output, and
governs which neuron to be activated and how much it is activated, as its name
suggests. An activation function should be generally nonlinear, differentiable for
training, and easily calculating to reduce complexity [46].

Rectified Linear Units (ReLU) is a common activation function,

f(x) = max(0, x) =

{
0 for x ≤ 0

x for x > 0
[46] (2.2)
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Figure 2.14: Rectified Linear Units (ReLU).

It works like an electrical diode - the neuron is activated only when x > 0, otherwise
the value of this neuron does not pass on to next layer, and the neuron is dead
[46]. Besides, ReLU is simple in mathematics, so it saves computation time [46]. In
practice, ReLU is usually a default choice in most cases. Other activation functions
are then considered if ReLU does not work well.

Softmax is another popular activation function especially applied in multi-class clas-
sification tasks [46],

a = [ai] ∈ RK

σi(a) =
eai∑K
k=1 e

ak
for i = 1, . . . , K

K∑
i=1

σi(a) = 1

[46] (2.3)

where a is a set of classes, σi(a) is the probability of the class ai, and probabilities
sum of all classes equal to 1. In addition, Softmax is often the output layer for
classification problems to output probability values.

Loss Function

Loss function (or cost function) L represents the precision of estimated output ŷi
compared to the ground truth value yi. It is a criteria to measure the performance of
the network estimation. For regression tasks, L1 Loss, andL2 Loss are widely used,

L1 Loss: L1 =
N∑
i=1

|yi − ŷi|

L2 Loss: L2 =
N∑
i=1

(yi − ŷi)
2

[45] (2.4)
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L1 loss sums the absolute difference between the predicted value and the actual
value. L2 loss calculates the sum of the Euclidean distance between the predicted
value and the actual value, so it is also called mean square error (MSE) if averaging
that sum.

For classification problem, Cross Entropy Loss LCE is typical. It evaluates the
distance between the predicted probability distribution obtained by training and
the true probability distribution of the available training set.

LCE = − 1

N

N∑
i=1

yaii log2 (ŷ
ai
i ) [45] (2.5)

Optimization Algorithms for Machine Learning

The goal is to learn the weights w that minimize the loss function, which turned
into an optimization problem. Assume an objective function L (θ;x;y), and x,y
are variables, find a parameter θ that minimize L (θ),

arg θ = min
θ
L (θ;x;y) [46] (2.6)

Due to the fact that the system is nonlinear, the numerical minimization problem
has no closed-form solutions [46]. Gradient descent is an intuitive method to reach
the goal step by step. It is commonly used for optimization of neural network [47].
Usual gradient-based optimization algorithms conclude Stochastic Gradient Descent
(SGD), Momentum, Nesterov accelerated Gradient, Adaptive Gradient Algorithm
(Adagrad), Adadelta, Root Mean Square Propagation (RMSprop), Adaptive Mo-
ment Estimation (Adam), AdaMax, Nadam [47].

Stochastic Gradient Descent (SGD) is the fundamental. It randomly takes n samples
from the whole training set as a mini-batch iteratively, and then calculate ∇θL and
update θ for each mini batch,

θj+1 = θj − η · ∇θj
L
(
θ;x(i:i+n); y(i:i+n)

)
[47] (2.7)

where x refer to training samples, and y refer to the labels, η is step size at each
update or called learning rate, j is iteration index.

Nevertheless, optimization problem encounters six main difficulties:

1. stochastic gradient.

2. ill conditioning.

3. saddle point/plateau.



24 CHAPTER 2. STATE OF THE ART

4. sensitive to step size.

5. local minimum.

6. vanishing gradient.

Therefore, variants of the optimization techniques are proposed to improve.

Momentum is a significant modification of SGD. It reduces noise in stochastic gra-
dient, decreases oscillation and accelerates convergence by adding a factor related
to the previous step,

∆θj = γ∆θj−1 + η∇θL(θ)[47]

θj+1 = θj −∆θj[47]
(2.8)

where γ∆θj−1 is a momentum part, γ is momentum factor, 0 ≤ γ < 1, and η∇θL(θ)
is a gradient part.

So far, the learning rate is fixed and tuned manually. However, if the constant
learning rate is too small, the convergence is slow. If it is too large, then there
might be oscillation around local minimum [46]. Therefore, other methods such as
AdaGrad, AdaDelta, RMSprop, and Adam, are employed to adaptively schedule
the learning rate [47].

Among them, Adam [49] is usually a default optimizer in practice to do backpropa-
gation. The pseudo-code of Adam algorithm is summarized in Figure 2.15. Assume
gt,i is the partial derivative/gradient of the objective function L w.r.t. the parameter
θ at time step t,

gt = ∇θtL (θt) [49] (2.9)

Adam employs not only the first moment estimate - exponential moving averages of
the gradient mt, and the second moment estimate - the squared gradient vt, where
the hyper-parameters β1, β2 ∈ [0, 1) control the exponential decay rates of these
moving averages, g2t means gt ⊙ gt,

mt = β1mt−1 + (1− β1) gt[47]

vt = β2vt−1 + (1− β2) g
2
t [47]

(2.10)

However, mt and vt are biased towards zero at initial steps or if β1 and β2 ≈ 1,
because they are initialized as zeros. Accordingly, bias-corrected moments estimates
m̂t, v̂t are applied,

m̂t =
mt

1− βt
1

[47]

v̂t =
vt

1− βt
2

[47]
(2.11)
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Figure 2.15: Pseudo-Code of Adam Optimization Algorithm [48].

Finally, the parameter θt updates as follows,

θt+1 = θt −
η√
v̂t + ϵ

m̂t[47] (2.12)

Convolutional Neural Network

Figure 2.13(b) visualizes a fully connected network. Every neuron in a layer is con-
nected to all neurons in the next layer, which generates a huge number of parameters.
Convolutional neural network (CNN) proves promising performance especially in im-
age processing [50]. It is capable of abstracting local features by deploying a two
dimensional digital filter sliding over the input image [50]. Cross-Correlation (also
called convolution in machine learning libraries) is usually implemented in practice,
which is equivalent to flipped commutative convolution [49],

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n)[49] (2.13)

the two-dimensional filter K is also called kernel, or filter matrix, I is a two-
dimensional input image, and S is output in the next layer. S aggregates dot
products between the kernel and a part of the image. Figure 2.16 demonstrates a
simple convolution over an image - a 4 × 3 input convolves a 2 × 2 kernel results
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Figure 2.16: An example of 2-D convolution [49].

in a 3 × 2 output.

2.2.4 Summary of Current Approaches

Significant information of the learning-based methods reviewed above are summa-
rized in the Table 2.1.

2.3 Actuation

Robot kinematics considers robot motion, without considering forces and joint torque
of dynamics, As written in [28]. In robot motion, Cartesian space (also called
workspace, task space) and joint space (also called configuration space) define robot
movement in two different reference coordinates. Forward kinematics solves position
and orientation of the end effector according to joint angle values in the joint space.
In contrast, inverse kinematics computes joint angles given a desired end effector
pose in the Cartesian space.
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2.3.1 Inverse Kinematics

Inverse Kinematic problem can be written as:

q = κ−1(ξE)[28] (2.14)

where q is joint angles vector, and ξE is the desired pose of end effector in Cartesian
space.

In simple cases, the problem can be solved by analyzing geometry of the robot ma-
nipulator and algebraic calculation, which is called closed form or analytic solution
[28]. However, in the real world, the robot manipulators usually have more than
three joints, so the closed form solution does not always exist. Therefore, numeric
approach is more common. It iteratively minimizes the error between the forward
kinematics result and the desired pose [28]. Notably, the solution is not unique [28].
It is possible that different joint angles vectors lead to the same end effector pose.

2.3.2 Motion Planning

Motion planning is a critical research topic for autonomous robots [29]. The robot
executes planned motions to perform tasks in the workspace in real world [29].
Automatic motion planning solves a collision-free path from robot current state to
a goal state by interpolating points between the two states [30]. It also considers
robotic kinematic constraints and computation complexity of the algorithm [29].

The basic motion planning problem is formulated as follows:
- A rigid robot moves in a 2 dimensional or 3 dimensional Euclidean space (also
called workspace) [29].
- Fixed rigid objects are placed in the workspace, called obstacles. Geometric rela-
tionships between the obstacles and the robot are known [29].
- The robot motion has kinematic constraints due to the mechanical and electronic
designs, such as robot pose, maximal speed, acceleration [30].
- The goal is - planning a sequence of positions and orientations of the robot in
the workspace, so that the robot reaches a goal pose from an initial pose, without
crashing obstacles [29]. Report error if no feasible path found [29].

Recent motion planning algorithms are mostly sampling-based [30]. Sampling-based
motion planning samples the state space of the robot that refers to all possibilities
of robot configuration in the workspace [31]. The samples are then connected from a
start state to a goal state to propose a collision-free path satisfying constraints [31].
Sampling strategies are various, such as Probabilistic Roadmap (PRM), and Tree-
based Planners [31]. PRM samples randomly the state space and builds a roadmap
in the free space that is similar to a city street map [31]. Tree-based planners start
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with a root node at the robot start state, and then expand towards to the goal [31].
Except from sampling-based approaches, other algorithms such as Control-based
Methods, Potential Fields, Randomized Planning, are also available [31].

Kinematics Libraries

Hundreds of open source kinematics libraries are available [32] to optimize robot
motion planning using various algorithms. For instance, Kinematics and Dynamics
library (KDL) [33] and IKFast Kinematics Solver [34] are widely used. The Open
Motion Planning Library (OMPL) [31] and Pilz industrial motion planner [35] are
state-of-the-art algorithms offering promising solutions. The OROCOS KDL solves
inverse kinematic problems by iteratively solving linear least squares problem [36].
It showed 85% average success rate and less than 2.4 milliseconds average planning
time [36]. The success rate is not high, and the KDL is not robust enough. IKFast is
a powerful inverse kinematics solver. It automatically analyses complex kinematic
chain for common patterns, so that an analytic solution can be found [37]. It is
also capable of finding extremely stable solutions in microseconds [37]. OMPL is a
collection of sampling-based motion planning algorithms [31]. Pilz industrial motion
planner [35] was presented at Moveit Workshop by Pilz Automation in 2019. It is
capable of checking collision with the environment model. In this thesis, the inverse
kinematic problem is solved via an open source software - MoveIt , incorporating
motion planning, manipulation, 3D perception, kinematics, control and navigation
[38]. It integrates various kinematic solvers as plugins. The implementation of robot
motion planning in MoveIt will be elucidated in Chapter 4.
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Chapter 3

Methodologies

This chapter initially introduces how an industrial robotic grasp dataset is generated
for this thesis, and then data preprocessing preparing for network training. Secondly,
basics of neural network is reviewed. The network architecture applied in the thesis
is then investigated in detail. Additionally, training pipelines of suction model and
grasp model are illustrated respectively. Thirdly, calibration methods of a robot
online teaching device - Tracepen™- are explicated.

3.1 Dataset

First of all, a data collection method with eye-in-hand camera configuration is pro-
posed. Subsequently, captured data format and ground truth labeling is introduced.
Last but not least, pre-process of raw data for neural network training is elaborated
in detail.

3.1.1 Data Collection

Single or multiple parts are placed on a work table surface or in a bin. A camera
is mounted on the end effector (eye-in-hand as shown in Figure 3.1). A robot
trajectory that moves a constant distance at each step is feasible to capture the part
from different views. However, in that way only one pose of the object is captured,
because the camera orientation does not change. Therefore, it is necessary to create a
trajectory that position and orientation change simultaneously, so that every face of
the object can be captured. The movement trajectory is dome-shaped as visualized
in Figure 3.2. The robot poses along the dome trajectory should be generated
based on ellipsoid formulas and fitted to the robot coordinate system, as following
equations 3.1 to 3.3:
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Figure 3.1: Eye-in-Hand Camera Setup. Cameras are mounted on the robot end
effector, and move along with the robot motion.

x = a× sin θ × sinϕ+ x0 (3.1)

y = −b× sin θ × sin θ + y0 (3.2)

z = c× cos θ + z0 (3.3)

where a, b, c are ellipsoid parameters that are the farthest points along x, y, z axis
respectively. θ is zenith angle, and ϕ is azimuth angle. θ and ϕ should be defined
according to the robot workspace and the data requirement. In this case, θ =
175◦, ϕ = 45◦. (x0, y0, z0) is the initial position of the camera.

3.1.2 Data Format

Color images, depth images, and the pose of end effector (in the format of homo-
geneous transformation matrix) are captured at each step of the dome trajectory,
as visualized in Figure 3.3. Color images are only for better visualization to hu-
mans, and unused for robot grasping estimation. Depth images are deployed to
predict robot grasp points. Depth image is the input data format that many robotic
bin-picking approaches [5] [12] [14] used, and they achieved promising performances.
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Figure 3.2: Robot Dome Trajectory to Scan around the Part.

(a) Color Image Exam-
ple 1: Housing.

(b) Depth Image Exam-
ple 1: Housing.

(c) Camera Pose of Example
1.

(d) Color Image Exam-
ple 2: Support Gear-
wheel.

(e) Depth Image Exam-
ple 2: Support Gear-
wheel.

(f) Camera Pose of Example
2.

Figure 3.3: Raw Color & Depth Images Examples.

To author’s understanding, depth image is employed instead of color image for the
following reasons:

1) the object physical structure is more interesting for the bin-picking tasks, for
instance, flatness, thickness, height. These properties decide how this object can
be picked up successfully. It is of difference from classification problems using
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computer vision, such as semantic segmentation and object detection, of which
color information is essential to recognize.

2) It is more difficult to train the network if the objects have strong color gradients
[42].

3) The trained network could be sensitive to colors. The performance would de-
crease, for example if color of background - bin or table surface, changes.

Nevertheless, in the work of thesis, I found that low cost depth cameras have fatal
flaw - tiny objects are invisible under the depth camera. Moreover, depth perception
of reflective parts often failed.

The amount of data including real-world data and augmented data (introduced in
the following Section 3.1.4) is summarized in Table 3.1 and Table 3.2 for suction
training and grasp training respectively. In total, 1464 data is deployed to train
suction model and 240 data is used to validate. The grasp model is trained with
679 data, and validated with 60 data.

Table 3.1: Data Distribution for Suction Model Training & Validation

Part Name Part Size(mm)
Data Amount
for Training

Data Amount
for Validation

Data Amount
for Test

Housing 78×40×30 366 60 60
Gearwheel 130×130×25 366 60 60

Support Gearwheel 108×108×4 122 20 20
Baseplate 190×140×5 366 60 54
Motor 28×28×45 244 40 40

Total 1464 240 234

Table 3.2: Data Distribution for Grasp Model Training

Part Name Part Size(mm)
Data Amount
for Training

Data Amount
for Validation

Data Amount
for Test

Housing 78×40×30 291 30 30
Gear Wheel 130×130×25 170 10 10

Motor 28×28×45 218 20 20

Total 679 60 60

3.1.3 Label

The ground truth of grasps is manually labeled using a label software called LabelMe
[43]. Figure 3.4 presents suction and grasp labels, and the label file consists of
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coordinates of label points in the image. The suction point represents a suctionable
area for the vacuum gripper, which should be close to the center of mass and flat.
The anti-podal grasp points are grasping contact points between the parallel-jaw
and the object, represented by two end points of a straight line.

Suction labels have 3 groups: suctionL, suctionM, suctionS, representing the vacuum
gripper with a large, a medium, and a small size of pad respectively. Grasp labels
have two groups: graspI, and graspO, standing for parallel-jaw gripper outside and
inside gripping respectively.

(a) Suction Label. (b) Grasp Label. (c) Label Format.

Figure 3.4: Label Examples.

3.1.4 Data Processing (Training Dataset Generation)

The data captured as in the Section 3.1.1 must be processed before feeding to the
neural network. In this thesis, a suction model and a grasp model are to be trained,
so the data should be processed correspondingly. The processed data is augmented
to enlarge the dataset.
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Data for Training Suction Model

The suction model prediction is the 3D position of the vacuum gripper - S = (x, y, z).
Initially, the raw depth frames are converted into depth images in range of (0, 255).
The depth images are then center cropped in the label point (for instance, the suc-
tionL label shown in the Figure 3.4). Next, the cropped depth images are normalized
in (0, 1), which is beneficial for the neural network to learn the model parameters.
Furthermore, the labels loaded for training should also be the processed label im-
ages, instead of the label coordinates in label files shown Figure 3.4 (c). The neural
network architecture planned to employ in this thesis predicts pixel-wisely, which
will be elucidated in details in the next section, so the labels should be also densely
labeled images according to the labeled suction point. Figure 3.5 visualizes depth
images, cropped depth images, and position label images. The white circles in the
Figure 3.5(c) and (f) are the labeled suctionable areas. The diameter of the suc-
tionable areas are dependent on the label groups - suctionL: 15 pixels, suctionM:
20 pixels, and suctionS: 15 pixels. These pixel values correspond 4.5mm, 6mm, and
4.5mm of length in the real world respectively.

(a) Depth Image: Housing. (b) Cropped Depth Im-
age: Housing.

(c) Croppped Position
Label Image: Housing.

(d) Depth Image: Support Gearwheel. (e) Cropped Depth
Image: Support Gear-
wheel.

(f) Croppped Position
Label Image: Support
Gearwheel.

Figure 3.5: Depth Images & Position Label Images Examples.
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Data for Training Grasp Model

The data processing for grasp model is more complicated than that for suction
model, because the grasp model should predict not only the grasp position, but
also an orientation. Therefore, the label images consists of position images, and
angle images. As illustrated in Figure 3.6, two types of label are possible according
to collected data - L1L2, andL3L4. In the image coordinate x − y, the rotation
angle θ around z axis is calculated by slope s of the label straight line L1L2, L1 =
(x1, y1), L2 = (x2, y2),

s =
y2 − y1
x2 − x1

θ = arctan(s)
(3.4)

Figure 3.6: Grasp Angle Calculation.

The rectangle areas P1,P2 shown in Figure 3.6 generated based on the label points
are graspable. The four vertices of the rectangleP1: P1 (xP1, yP1) , P2 (xP2, yP2) , P3 (xP3, yP3) ,
P4(xP4, yP4) are calculated from label points L1, L2, and d is half of the rectangle
side length,

xPi = xi + j · d · sin(θ)
yPi = yi + k · d · cos(θ)

(3.5)

where i ∈(1, 4), when i = 1 or 3, j = 1 k = −1, and when i = 2 or 4, j = −1 k = 1.

The four vertices of the rectangleP2: P5 (xP5, yP5) , P6 (xP6, yP6) , P7 (xP7, yP7) , P8(xP8, yP8)
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are calculated from label points L3, L4,

xPi = xi + j · d · cos
(π
2
− ∥θ∥

)
yPi = yi + j · d · sin

(π
2
− ∥θ∥

) (3.6)

where i ∈ (5, 8), when i = 5 or 7, j = −1, and when i = 6 or 8, j = 1. The position
label image is generated by drawing a rectangle like P1 and P2, to be a graspable
area, as shown in Figure 3.7.

(a) Position Image,
when θ > 0.

(b) Position Image,
when θ < 0.

Figure 3.7: Position Images.

The angle images would be more complex. The raw rotation angle around z axis
θ ∈

(
−π

2
, π
2

)
. However, the angle image has discontinuity around −π

2
and π

2
, if the

raw angle is used to generate angle image. Figure 3.8 presents that the rotation
angles around −π

2
and π

2
are close, but the encoding by raw angle image values is

of great difference. The discontinuity is difficult for the neural network to learn
the object orientation [5]. Furthermore, if sine and cosine function are utilized to
encode the orientation, it is still discontinuous, because sin π

2
= 1, cos π

2
= 0, but

sin
(
−π

2

)
= −1, cos

(
−π

2

)
= 0. sin θ still has discontinuity around −π

2
and π

2
, and

using only cos θ cannot distinguish the sign of the angle value. Therefore, in order
to solve the discontinuity and represent the orientation uniquely, sin (2θ) , cos (2θ)
are deployed [5]. For instance, when θ = π

3
, sin (2θ) = 0.866, cos (2θ) = −0.5. A

unique θ can be deduced from sin (2θ) and cos (2θ). As illustrated in Figure 3.9,
sin (2θ) determines that the sign of the angular value must be positive, and cos (2θ)
clarifies the angular value |2θ| = 2π

3
. Therefore, 2θ = 2π

3
and θ = π

3
.
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(a) θ around −π
2 , the

angle label encoded by
raw angular value.

(b) θ around π
2 , the

angle label encoded by
raw angular value.

Figure 3.8: Orientation Discontinuity. The angular values of θ = −π
2
or θ = π

2
are

of big difference, even though they are actually very close.

(a) sin (2θ) , θ ∈
(
−π

2 ,
π
2

)
. (b) cos (2θ) , θ ∈

(
−π

2 ,
π
2

)
.

Figure 3.9: Angle Representation. The orientation θ is represented by sin (2θ) and
cos (2θ), in order to solve discontinuity and deduce an unique angle back.

The sin (2θ) images and the cos (2θ) images are visualized in Figure 3.10. Only for
image visualization purpose, the negative angle trigonometric function values are
setup positive. Figure 3.10 (a) shows sin (2θ) images when the rotation angle θ
varies from around 0 → π

2
→ −π

2
→ 0. The |sin (2θ)| has maximal value 1, when

2θ = ±π
2
, and |sin (2θ)| has minimal value 0, when 2θ = 0,±π. Thus, the sin (2θ)

image has a label with a maximal pixel value, when when θ = ±π
4
, and the sin (2θ)

image has a label with a minimal pixel value, when when θ = 0,±π
2
. The cos (2θ)

images are similar, varying from around 0 → π
2
→ −π

2
→ 0, as presented in Figure
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3.10 (b).

(a) sin (2θ) images, θ ∈
(
−π

2 ,
π
2

)
. At begining, θ starts at around π

2 , decreases to 0 in the middle
of the third row, and then keeps dropping until −π

2 in the end.

(b) cos (2θ) images, θ ∈
(
−π

2 ,
π
2

)
. θ changes in the same way as in (a) above.

Figure 3.10: Angle Label Images.

Data Augment

Data augmentation is a common technique to enlarge the dataset. It modifies data
collected from real world by geometric transformations, flipping, color modification,
cropping, rotation, noise injection and random erasing [44]. In the thesis, the pro-
cessed training data for suction model is augmented by vertical flipping, because
information of the object on one side is fully captured by the dome trajectory as
shown in Figure 3.2, and the information from the other side lacks. Figure 3.11
represents processed data, the label image of a motor, and their augmentation by
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vertical flipping.

(a) Processed Depth
Image.

(b) Processed Label
Image (Label Group:
suctionM).

(c) Augmented Depth
Image.

(d) Augmented Label
Image (Label Group:
suctionM).

Figure 3.11: Data Augmentation.

The training data for grasp model can be also augmented in this way. The depth
image and the position label image can be directly vertical flipped as suction data.
Nevertheless, the rotation angle must be calculated again based on the geometry
relationship, when flipping the sine and cosine angle images. Thus, the angle label
encoding is different from the angle encoding before flipping.

3.2 Neural Network

Convolutional Neural Network (CNN) is a common and promising solution for com-
puter vision tasksc [8]. In order to avoid grasps sampling and speed up computation
time as introduced in Section 2.2.2, a variant of CNN - Fully Convolutional Neural
Network (FCNN) is initially taken into consideration in this thesis. A CNN can be
converted to a FCNN in two ways: firstly, directly training the FCNN without fully
connected layers given pixel-wisely labeled dataset; secondly, training the CNN with
normal dataset (not densely labeled), and then convert the fully connected layers of
the trained model to convolutional layers [10].

3.2.1 Network Architecture

A fully convolutional neural network (FNN) is applied in the thesis, inspired by [5].
The reasons for using FNN are:

1. Arbitrary size of images can be fed to the network, which is more flexible than
normal convolutional neural network (CNN) with a fixed input size. Convolu-
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tional neural network contains fully connected layers whose neuron numbers are
dependent on the input scale. Therefore, the network architecture has to be
modified if the input size varies.

2. FCNN takes densely labeled images as input, and also predicts grasp quality
pixel-wisely. On the contrary, the robotic grasping methods using CNN must
firstly sample grasp candidates over images or point clouds, and then rank the
grasp success probability of the candidates by the CNN, such as Dex-Net 2.0 [17].
Therefore, generating grasp candidates can be skipped with FCNN.

3. Compared to CNN (usually millions parameters), the parameter number of FCNN
is much fewer (tens of thousands), due to the lack of fully connected layers and
shared parameters. It leads to faster training and running speed, which is bene-
ficial in industrial application scenarios.

Figure 3.12 illustrates the network architecture in details. Nine convolutional layers
are deployed including the output layer. ReLU activation function, as elucidated
in Section 2.2.3, is applied after each convolutional layer. Other techniques such as
padding, stride, pooling, dilation, and upsampling are also employed. In the first
layer, 16 kernels in the size of 11× 11 are used, which means the input depth image is
passed into 16 independent channels. Padding extends the image with zeros around
the image [46], as shown in Figure 3.13. When padding = 5, five rows and five
columns zeros are padded all around the 156 × 156 image, so it outputs a 166 × 166
image. Stride defines how many steps the kernel moves between each convolution
[46]. When stride is 2, the kernel scans over the image and moves 2 steps each time.
Max pooling is a common technique to downsample the image [46]. It replaces a
slice with a pixel of maximal value in the slice, so the feature maps’ dimensions are
reduced. Figure 3.14 demonstrates max pool with 2 × 2 filters and stride 2. The
dimension of the input is halved. Dilated convolution (dilation) is a modification
of convolution applied to input signals with a dilation distance larger than 1. It
increases the receptive field on the image, so that the receptive field becomes larger
than the kernel size [46]. Upsampling interpolates two-dimensionally between pixels
on the image [46]. It has different modes that determines values of the interpolated
pixels. For instance, bilinear upsampling interpolates new pixels whose values are
linearly related to the old pixels between two old pixels [51]. Bilinear interpolation
is used in this FCNN architecture. Finally, the last layer is also a convolutional
layer, instead of a fully connected layer in normal CNN, so the FCNN output is
pixel-wise suction quality images. The pixel value represents the suction quality, so
the position of which pixel value is the largest is the predicted suction point with
best suction quality (the red point shown in the output image of Figure 3.12).
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Figure 3.12: FNN Architecture. It consists of nine convolutional layers without fully
connected layer.
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Figure 3.13: Zero-Padding. Padding zeros all around the image to enlarge size of
image, so that pixels near edges can also be processed.

Figure 3.14: 2 × 2 Max Pooling. The maximal value in each 2 × 2 slice is kept to
represent the slice [50].

3.2.2 Training Pipeline

The models for grasping with parallel-jaw and suction with vacuum gripper are
trained respectively to predict suctionable point and anti-podal grasp pose. The
suction prediction is a position in 3D space S = (x, y, z), and the grasp prediction
is 4 degree of freedom (DoF) G = (x, y, z, θ) consisting of 3D position and rotation
angle θ around z axis.

Training for Suction Position Prediction

The suction model has one input channel, and one suction position groudtruth chan-
nel. Figure 3.15 illustrated the training and validation pipeline of the suction model.
The raw depth image is preprocessed by cropping around the labeled suction center
point, and the pixel values are normalized in the range of (0, 1), as demonstrated
in the Section 3.1.4. The cropped Region of Interest (ROI) of depth images in the
format of numpy array is input to the Xavier initialized neural network. The mean
square error (MSE, or L2 norm) ℓ (x, y), as elaborated in Section 2.2.3, is applied
to compute the loss between the neural network output x and the target position
label image y,
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Figure 3.15: Training Pipeline of Suction Model. The blue part shows training of .
The part in green validates trained models from training part by selecting the model
with minimal validation loss.

ln = (xn − yn)
2 ,

ℓ (x, y) = mean (L) ,

L = {l1, . . . , lN}⊤ .
[22] (3.7)

where xn, yn are pixel values of x, y respectively, N is the batch size.

Backpropagation is the most popular learning algorithm to train the neural network.
It computes the gradient of loss function L based on the optimization algorithms like
gradient descent elucidated in Section 2.2.3, in order to learn the network weights
and minimize the loss (deviation between the network output and the ground truth).
The network is trained with 1464 training data using Adam optimizer with a learning
rate of 0.001, and validated with 240 validation data.

Examples of preprocessed input images, and the corresponding ground truth images
fed to neural network training are visualized in Figure 3.5. The pixel position with
maximal value on the grasp image will be the proposed as the suction point, because
the pixel value represents the grasping quality (higher the pixel value, better the
quality). The training should be validated by comparing the output grasp images
processed by the trained models with the ground truth labeled images to select a
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final trained model with the lowest validation error.

Training for Grasp Pose Prediction

The training of grasp model takes processed depth images as input, and has three
output channels - position label images, cosine images, and sine images. The position
image represents quality of the grasp point aligned with the tool center point (TCP)
of the jaws. The sine image and cosine image indicate the rotation angle of the
parallel jaw. The training and validation pipeline of grasp model is similar to the
suction model as illustrated in Figure 3.16.

Figure 3.16: Training Pipeline of Grasp Model. Two more channels representing
parallel jaw’s orientation are added comparing with training of suction model.

The processed depth images are fed to the neural network. The mean square er-
rors (MSEs) are computed from the network estimation and the position and angle
ground truth. The gradient of the loss is back propagated to update parameters
of the network. Each iteration over the all training data results in a trained model
(one iteration is known as an epoch). The trained models, of which the number
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depends on the number of epochs, are validated by validation data that is unseen
during training stage. The models are trained with 679 training data, using Adam
optimizer with a learning rate of 0.001, and validated with 60 validation data. Com-
puting the loss between the trained models estimation and ground truth, the model
with minimal validation error is selected.

3.3 TracePen™

TracePen™ [53] is a handheld, no coding device using StreamVR tracking developed
by Wandelbots®. It allows human operators without programming skills to quickly
and easily teach the robot by moving the trace pen and showing the path. The
Tracepen™ system mainly consists of a trace pen and two lighthouse stations as
illustrated in the Figure 3.17. The installed lighthouse stations record the position
and orientation of the pen tip in the TracePen™ coordinate P . The coordinate
might be located around one of the stations, which is unknown to users. Thus, a
calibration between TracePen™ coordinate P and robot coordinate R is necessary,
in order to make the robot follows the TracePen™ trajectory.

Figure 3.17: A TracePen syatem with UR 10 robot. Two lighthouse stations track
pose of the TracePen tip.
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Overall, three coordinates are deployed in the bin-picking system - TracePen™ co-
ordinate P , robot coordinate R, and image coordinate I. The transformations
between these three coordinate systems are required. The methods to transform
between these coordinates are elucidated in the following.

3.3.1 TracePen™ Calibration in Robot Coordinate

During calibration, the trace pen is inserted to an adapter mounted on the end
effector, provided by the Wandelbots® company, as shown in Figure 3.18. With
known geometry of the adapter, the robot and trace pen system can record positions
of the same point in the two coordinates for calibration.

(a) Robot and TracePen Calibration Overview. (b) Robot and TracePen Configu-
ration for Calibration.

Figure 3.18: Robot and TracePen Calibration

A three point calibration method [54] is employed to calibrate the orientation be-
tween P and R. Based on the calibrated orientation relationship, the translation
between P and R can be deduced via a point. A middle workpiece coordinate U
is assumed to sample the three points M1,M2,M3. The coordinates of the three
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points Umi, (i = 1, 2, 3) in U are:

Um1 = [0, 0, 0, 1]T (3.8)

Um2 = [xu2, 0, 0, 1]
T (3.9)

Um3 = [xu3, yu3, 0, 1]
T (3.10)

The coordinates of the three points Rmi, (i = 1, 2, 3) in R can be obtained from robot
states:

Rm1 = [xr1, yr1, zr1, 1]
T (3.11)

Rm2 = [xr2, yr2, zr2, 1]
T (3.12)

Rm3 = [xr3, yr3, zr3, 1]
T (3.13)

Assume homogeneous transformation from workpiece coordinate U to robot coordi-
nate R is UTR, then

Umi =
UTR ×Rmi (i = 1, 2, 3) (3.14)

Usually a homogeneous transformation matrix representation in roll-pitch-yaw (ϕ, θ, ψ)
angles is:

UTR =


cϕcθ cϕsθsψ − sϕcψ cϕsθcψ + sϕsψ x
sϕcθ sϕsθsψ + cϕcψ sϕsθcψ − cϕsψ y
−sθ cθsψ cθcψ z
0 0 0 1

 [54] (3.15)

where x, y, z, ϕ, θ, ψ are 6 independent variables to be solved and c is cosine, s stands
for sine.

Substitute 3.8, 3.11 and 3.15 to 3.14,
xu2 cosϕ cos θ + x = xr2
xu2 sinϕ cos θ + y = yr2
−xu2 sin θ + z = zr2

. [54] (3.16)

Solve 3.16,
ϕ = atan 2 (yr2 − y, xr2 − x) ,

θ = atan 2

(
z − zr2,

(yr2 − y)

sinϕ

)
.
[54] (3.17)

Substitute 3.9, 3.12 and 3.15 to 3.14,
xu3cϕcθ + yu3(cϕsθsψ − sϕcψ) + x = xr3
xu3 sϕcθ + yu3( sϕsθsψ + cϕcψ) + y = yr3

−xu3 sθ + yu3cθsψ + z = zr3

[54] (3.18)
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Solve 3.18,
ψ = atan 2 (MS,MC) [54] (3.19)

where,

MS =
S1 −MC cosϕ

F1

,

MC =
F2S1 − F1S2

F2 cosϕ+ F1 sinϕ
,

F1 = cos2 θ + sinϕ sin θ,

F2 = cosϕ/ sin θ,

S1 = yr3 − cos θ · z + zr3 − y,

S2 = xr3 − cosϕ cot θ (z + zr3)− x.

[54] (3.20)

Once θ, ϕ, ψ are solved, the rotation matrix URR from U to R is obtained. In
addition, the trace pen system records the position and orientation of the trace pen
tip in the trace pen coordinate system P . Similarly as above, the rotation matrix
PRU from P to U can be computed as well. Thus, the transformation matrix PRR

from P to R is calculated,
PRR = PRU × URR (3.21)

Next, the translation [x, y, z, 1]T from P to R can be calculated via a point based
on the 3× 3 rotation matrix. Given a point in P and in R:

Pm4 = [xp4, yp4, zp4, 1]

Rm4 = [xr4, yr4, zr4, 1]
(3.22)

The relationship between P and R is,

Rmi =
PTR × Pmi (i = 1, 2, 3, 4, ...) (3.23)

Substitute 3.22 to 3.23,
xr4
yr4
zr4
1

 =


x

PRR y
z

0 0 0 1




xp4
yp4
zp4
1

 (3.24)

In which, PRR represents a 3× 3 transformation matrix.

Solve 3.24,
x = xr4 − PRR(1, 1 : 3)×

[
xp4 yp4 zp4

]
y = yr4 − PRR(2, 1 : 3)×

[
xp4 yp4 zp4

]
z = zr4 − PRR(3, 1 : 3)×

[
xp4 yp4 zp4

] (3.25)
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So far, the homogeneous transformation matrix PTR from trace pen coordinate P to
robot coordinate R is solved. The trace pen pose in the robot coordinate system can
be then calculated by multiplying the transformation matrix with the trace pen pose
in the trace pen coordinate system, as Equation 3.23. Thus, the robot is capable of
following the trace pen position given by the operator.

3.3.2 TracePen™ in Image Coordinate

In the thesis, the trace pen touches a suctionable/graspable area over the object
that is the input Region of Interest (RoI) to the neural network. In other words,
the position of the trace pen tip should be the center of the input image RoI.
Therefore, the tracepen pose in robot coordinate attained in the Section 3.3.1 should
be transformed to the image coordinate via camera intrinsics and camera pose in
the robot coordinate.

The camera intrinsics representation:

K =

 fx 0 cx
0 fy cy
0 0 1

 [23] (3.26)

Usually, it is deterministic and given for a camera. In some cases, camera intrinsics
calibration using a chessboard is necessary.

The real-time camera pose in the robot coordinate CTR can be inquired by the real-
time end effector pose ETR and fixed transformation from end effector to the camera
CTE determined by camera installation,

CTR = CTE × ETR (3.27)

So far, the trace pen position in the image coordinate PI = (x, y, 0) is calculated
from the trace pen position in the robot coordinate PR as,

PI =


0

K 0
0

0 0 0 1

× CTR × PR (3.28)

Inverse Transformation

After the prediction of neural network, the predicted grasp point GI = (xI , yI , 0) in
the image coordinate must be transformed to the robot coordinateGR = (xR, yR, zR),
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so that the robot goes to this position to pick. This transformation can be easily
realized by inversing the transformations 3.28 above,

GR = ITR ×GI (3.29)
ITR = (RTI)

−1 (3.30)

RTI =


0

K 0
0

0 0 0 1

× CTR (3.31)

Due to the fact that the image loses depth information (z value of GI is 0), zR is
determined by distance between the point on the object and the camera calculated
from camera depth stream, and the distance between the camera and gripper tip.
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Chapter 4

Implementation

This chapter clarifies conducted experiments to implement methodologies in Chapter
3. Initially, Universal Robot (UR) 10 with a modular gripper is modeled, and the
robot motion configuration is considered. Next, a bin-picking pipeline is illustrated
in detail. Neural network training using Pytorch is then elaborated. Lastly, camera
extrinsic calibration with respect to robot is explained.

4.1 Hardware Setup

The methodologies in Chapter 3 were implemented on a Universal Robot (UR) 10
with a low cost RGB-D camera - Intel® RealSense™ D435i mounted on end effector.
A WandelBots TracePen™ was applied to propose a region of interest (ROI) by
operator. The neural networks were trained on a server with a Nvidia GTX 2060
graphics card. The robot motion is realized in ROS noetic, and computations of
TracePen™ position and suction/grasp point predictions are implemented in ROS
foxy.

4.2 Robot Motion Planning

Universal Robot (UR) 10 was applied to conduct robotic bin-picking. The robot mo-
tion was controlled via the middle ware - Robot Operating System (ROS). Therefore,
building a robot model and configuring robot controlling are required.

4.2.1 Robot Model with Grippers

The UR 10 model in the format of XML Macros (xacro) is provided by the robot
company. The xacro model describes dynamic and kinematic properties of the robot.
The UR 10 robot has 6 joints as illustrated in Figure 4.1. Each joint angles is limited
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Figure 4.1: 6 Joints of UR 10 robot: A: Base, B: Shoulder, C: Elbow and D, E, F:
Wrist 1, 2, 3 [55].

in the range from −360◦ to +360◦ [55]. Significantly, from practical experience, it is
easier to find an effective kinematic solution if limiting the joint angles, though the
default joint limits have overlapped ranges (from −360◦ to 0◦ is the same as from 0◦

to 360◦ in the joint space). The joint angles should be at least limited in the range
of 2π depending on the real application scenario. In the thesis, the robot should
move within space on a work table. Therefore, the joint limits were configured as
listed in the Table 4.1.

Table 4.1: Joint Limits. The joints are limited based on the robot work range to
improve success rate of looking for kinematic solutions.

Joint Name Limit(in rad)
Shoulder Pan Joint (2.094, 2.16)
Shoulder Lift Joint (−π, π)

Elbow (1.0472, π)
Wrist 1 (2.9, 2π)
Wrist 2 (−π, π)
Wrist 3 (−π, π)

Additionally, in the bin-picking system, the robot achieves picking and placing with
the help of grippers. As reviewed in the Section 2.1, multi-gripper gained popularity
in recent years to adopt to different picking tasks. Thus, a modular gripper com-
prising a parallel jaw and a vacuum gripper with 3 different size (Large: 30 mm,
Medium: 10 mm, Small: 6 mm), was employed. The designed grippers model was



54 CHAPTER 4. IMPLEMENTATION

connected to the end effector of the robot, constructing a robot with grippers model
as visualized in Figure 4.2.

(a) The tool center point
(TCP) at center tip of two
jaws.

(b) TCP at tip of the vacuum
gripper.

(c) TCP at camera surface.

Figure 4.2: UR 10 Robot with a Modular Gripper Model.

4.2.2 Planning Groups

In order to control the robot movement, robot kinematic chains must be defined
to plan trajectories from a current state to a desired goal state. Basically, it is an
inverse kinematic problem mentioned in Section 2.3.1 to solve joint angles in joint
space from given goal pose in the workspace (Cartesian space). Three planning
groups were defined for three kinematic chains, as shown in Figure 4.2: 1) base
link → center tip of parallel jaw. 2) base link → tip of vacuum gripper. 3) base
link → camera. The former two planning groups compute kinematic solutions for
goal poses of parallel jaw and vacuum gripper respectively. The last planning group
makes capturing sensor data in a desired pose possible. They are named by the
author as tcp, tcp s (s stands for suction), tcp c (c stands for camera) respectively.

4.2.3 Robot Motion Planning Configuration

The open source software - MoveIt is adopted to realize robot motion planning as
mentioned in Section 2.3.2. MoveIt Setup Assistant [39] is a user interface to
configure the robot to be used with MoveIt, as shown in Figure 4.3. First of all,
a robot model in the format of Unified Robot Description Format (URDF) should
be loaded, then a self-collision matrix that defines pairs of links that are always
in collision, impossible to collide, and adjacent links, can be generated based on
the model information. These pairs of links are free from collision checking, so it
saves processing time of collision check when planning. Virtual Joints refer to
joints connecting the robot to world, so its parent frame must be world, and it is
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a fixed joint. Planning Groups are essential in motion planning. A set of joints
(kinematic chain on a robot) are defined to plan motions and check collisions by
kinematic solvers. Multiple planning groups can be defined for different motion
chains on a robot. Especially for humanoid robots, each leg and each arm should
be a kinematic chain. In the thesis, three planning groups - tcp, tcp s, tcp c are
defined as described in Section 4.2.2. Robot Poses set up poses via joint angles.
End Effector is defined as a special group, if internal motions happen in the end
effector. Passive Joints refer to unactuated joints that cannot be controlled. 3D
Perception, Simulation, and ROS Control tabs seem to be setups for sensors in
simulation, generate URDF in gazebo simulation, and simulated control respectively,
but they are not deployed in this work. After these configurations, a ROS package
comprising a set of launch and config files is generated, which is required for motion
planning using MoveIt.

Figure 4.3: Moveit Setup Assistant User Interface [39].

With the configuration package, the robot can be manipulated via MoveIt Python/C++
interface [40], or a ROS Visualization - RViz [41] that is a useful debug tool, as vi-
sualized in Figure 4.4 . In RViz, the MoveIt motion planning is loaded as a plugin.
Next, the robot must be configured in Global Options tab and Motion Planning
tab within the Display subwindow on the upper left, such as setting up fixed frame,
planning scene. In the motion planning plugin subwindow on the bottom left, a
planning group should be selected from the previous defined planning groups. Fi-
nally, set a goal state, plan the path, and execute. Furthermore, these configurations
can also be done via Python/C++ interface in scripts. The desired robot pose can
be given by joint angles or desired position and orientation of the end effector.
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Figure 4.4: RViz. The motion planning plugin is framed in red.

4.3 Bin-picking System

This section firstly elaborates design of a robotic bin-picking pipeline via ROS. The
Pytorch implementation for neural network training is then described. Next, gripper
manipulation via ROS action is explained. Lastly, camera extrinsic calibration for
determining camera pose related to robot is elucidated.

4.3.1 Bin-picking Pipeline

In the bin-picking system, the trace pen was implemented to leverage operator input,
and trained neural networks predict suction/grasp points. The trace pen pose was
calibrated to the robot coordinate system as stated in the Section 3.3. Figure 4.5
briefly introduces the bin-picking flow. An experienced operator inputs a region of
interest (ROI) on the object via a TracePen™. The robot then goes to a pre-grasp
pose above the ROI, and camera stream starts to capture visual data. Next, the
visual data is fed to a trained model to predict a robot suction/grasp pose. Last but
not least, the robot goes to the suction/grasp pose, activating the modular gripper
to pick up the object.

The bin-picking pipeline is more specifically illustrated in the Figure 4.6. In total
three main nodes are employed. The node Action Manager for robot movement is in
ROS 1 noetic, because stability is the most significant for robot motion in the real
world. Other nodes for computation are in ROS 2 foxy, due to the fact that ROS
2 provides better real-time capability. A ROS bridge is necessary to connect ROS
1 and ROS 2. Initially, an operator touches the object surface with the trace pen,
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Figure 4.5: Bin-picking Flow.

leveraging operator’s expert knowledge to provide a potential suctionable/graspable
region. The trace pen position in robot coordinate (published as \tracepeninR topic)
is acquired by the trace pen calibration matrix PTR. The robot with a camera then
goes to around 30 mm above the trace pen position, which is pre-grasp position.
The planning group, introduced in the Section 4.2.1, is tcp c in this stage. In
this pre-grasp position, the camera (RGB-D RealSense™) starts depth streams and
captures an depth image over the object. Besides, the trace pen position is also
transformed to the image coordinate via camera intrinsics and camera pose based
on robot coordinate, as elucidated in Section 3.3.2. The captured depth image in
the pre-grasp pose is center cropped according to the trace pen position in the
image. The cropped depth images in the format of array are then fed to the trained
pytorch neural network models. Subsequently, the suction model predicts a suction
point SI = (xI , yI , 0) in the image. In addition, the grasp model predicts a grasp
pose GI = (xI , yI , 0, θ). Comparing pixel values of the suction point and the grasp
point, the point with larger pixel value is proposed as a robot picking point. The
points (xI , yI) of SI , GI in the image coordinate must be again transformed back
to the robot coordinate SR, GR, as described in the Section 3.3.2. The z value of
SR, GR is calculated from distance (queried from the camera depth frame) between
the camera and the predicted grasp point, and the length from camera to tcp or
tcp s. Meanwhile, the Action Manager subscribes the topic \grasppointinR to move
the gripper (tcp or tcp s) to the grasp position. Next, the gripper action is triggered
to activate vacuum gripper or the parallel jaw to pick. Finally, the robot lifts up,
moves to a placing position, goes downwards to place the object.

4.3.2 Pytorch Implementation for Network Training

The neural network training was realized by Pytorch - an open source machine learn-
ing framework [55]. Figure 4.7 demonstrates the Pytorch implementation pipeline.
There are four main classes. The Dataset is a customized dataset class to generate a
dataset with input images and label images. The Model class defines architecture of
the neural network, such as type and number of layers, type of activation function,
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Figure 4.6: Bin-picking Pipeline. Operator input via trace pen → Go to pre-grasp
pose → Capture depth image, run model to predict grasp position → Go to grasp
position → Pick → Place.

kernel size. In the train class, the loaded model is trained with the loaded dataset
with an optimizer (e.g. Adam, Stochastic Gradient Decent). Next, validation data is
processed by trained models. Mean Sqaure Error (MSE) is again computed between
predictions from trained model and label images to select a model. Finally, the
model is run in Run model class to process any test data and estimate grasp points.
Notably, Each class has two versions - one for suction estimation, and another one
for grasp prediction, though the responsibilities of every class are the same.

Figure 4.7: Pytorch Implementation Pipeline.
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4.3.3 Gripper Manipulation

The modular gripper was manipulated by a ROS Action. The Action Manager
node illustrated in the Figure 4.6 sends gripping goals listed in the Table 4.2 as
a client. The gripper server node executes the action, sends feedback and result
back. Table 4.2 presents five defined messages for manipulating parallel jaw, and
two messages for activating the vacuum gripper. InsideGrip represents that the two
jaws start with closing, and then open. In contrast, OutsideGrip means the two jaws
start with opening, and then close. The other three parameters define the speed,
force, and distance of jaws motion. Moreover, ActivateModule message activates
the vacuum, and ModuleStrength defines how much suction the vacuum should be.

Figure 4.8: Gripper Action Flow.

Table 4.2: Action Goal
Message Name Datatype Range Unit Comment
InsideGrip bool 0:off, 1:on n.a. Parallel Jaw
OutsideGrip bool 0:off, 1:on n.a. Parallel Jaw

Speed Int8 2 - 120 mm/s Parallel Jaw
Force Int8 1 - 10 N Parallel Jaw

Distance Int8 0 - 40 mm Parallel Jaw
ActivateModule bool 0:off, 1:on n.a. Vacuum Gripper
ModuleStrength UInt8 0 - 255 n.a. Vacuum Gripper

4.3.4 Camera Extrinsic Calibration

A lost-cost 3D camera - RealSense™D435i - was mounted on the robot (eye-in-hand),
as visualized in Figure 3.1. Thus, the camera pose relative to the robot must be
figured out. MoveIt developed a Hand-Eye Calibration Plugin [56] to calibrate eye-
in-hand and eye-to-hand extrinsics. Calibration is performed by detecting corners
of chessboard, ArUco marker, or ChArUco marker, as shown in Figure 4.9. Using
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ArUco allows occlusion or partial views, so it is more versatile than chessbord pat-
terns [57]. However, ChArUco marker combines chessboard and ArUco marker, and
provides much more accurate corners comparing with the ArUco marker corners
[57].

(a) 9 × 7 Chessboard
Example.

(b) 3 × 4 ArUco Marker
Example.

(c) 8 × 6 ChArUco
Marker Example.

Figure 4.9: Patterns for Calibration. Chessboard + ArUco Marker → ChArUco
Marker [57].

In order to obtain a precise calibration result, samples must be from different views.
A promising strategy is as follows:

1. Rotate around x, y, z axes respectively, in a direction (e.g. clockwise).

2. Rotate around x− y, y − z, x− z axes respectively, in a direction.

3. Rotate around x− y − z axis, in a direction.

4. Repeat step 1, 2, 3, in the opposite direction (e.g. anti-clockwise).

5. Repeat step 1, 2, 3, 4 to gain more samples if necessary.

Figure 4.10 shows the interface of the Hand-Eye Plugin. In the toolbar Target,
parameters of the ArUco or ChArUco marker should be defined, and the Camera
Image topic and Camera Info topic must be selected. Next, in the toolbar Context,
sensor configuration (eye-in-hand or eye-to-hand) and various frames are set up.
Finally, in the toolbar Calibrate, samples are recorded and then camera pose is
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solved. The number of samples should be at least 12 - 15 sampled with the strategy.

(a) Target. (b) Context. (c) Calibration.

Figure 4.10: MoveIt Hand-Eye Calibration Plugin [56].
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Chapter 5

Evaluation

Chapter 5 evaluates the robot grasping point estimation framework proposed in
the master thesis. Firstly, training results of neural networks for suction prediction
and grasp prediction are illustrated respectively. The selected trained models are
then tested with more test data to evaluate performances. Lastly, the Tracepen™
calibration precision is assessed briefly and qualitatively.

5.1 Training Results

The neural networks were trained for suction prediction and grasp prediction respec-
tively. The training and validation of suction model cost around 4 minutes. Figure
5.1 visualizes the training loss and validation loss for suction model with 70 epochs.
The training loss decreases from 0.01355 at beginning to 0.0018341 at epoch 50. In
the first 10 epochs, the loss decreases dramatically, and oscillates afterwards. The
validation loss is also reduced from 0.3962 at the first epoch to 0.1536 at the last
epoch. Although the training loss does not obviously decline after around 30 epochs,
the validation loss keeps dropping off. It is possible that the validation loss could
be even smaller if more training data would be available.

The training losses and validation losses for grasp model consist of position loss,
sine loss, and cosine loss, which represent losses of position images, sine images, and
cosine images respectively as the names indicate. Figure 5.2 presents the training
loss and validation loss that are sums of the three losses with 45 epochs. The training
loss diminishes from 0.2455 to about 0.1272 in the last several epochs. However, the
validation loss is much larger, starts from 5.9 and finally oscillates at around 4.5. It
indicates that the model is not trained well enough to process new data. Figure 5.3
and Figure 5.4 show specific position loss, sine loss, and cosine loss of training and
validation respectively. The position training loss descends from 0.07013 to 0.02194
at epoch 42. The position validation loss falls from 1.924 to 0.7576. The sine loss
and cosine loss of training go down from 0.07936 and 0.09605 to 0.05173 and 0.05223
respectively, whereas the sine loss and cosine loss of validation fluctuate around 1.7
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Figure 5.1: Training Loss & Validation Loss of Suction Model for Usage of the
Vacuum Gripper. The training loss decreases dramatically, and then oscillates. The
validation loss keeps falling.

Figure 5.2: Training Loss & Validation Loss of Grasp Model for Usage of Parallel-
jaw. The training loss reduces to around 0.1272, whereas the validation loss is
obviously large, oscillating at 4.5.

and 2. Thus, the position prediction still needs improvement, and the angle pre-
diction is not robust to new data at all. The main reason could be: the grasping
data size is too small (only 739 data as introduced in Section 3.2.2) to train a model
with good performances. Besides, the angle estimation is more difficult than posi-
tion estimation, because the sine and cosine images are of great difference at every
single angle, which leads to angle prediction training requires even much more data
than position prediction training. Therefore, further evaluation is conducted on the
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vacuum suction model only.

Figure 5.3: Grasp Training Losses - Position Loss (left), Sine Loss (middle), Cosine
Loss (right).

Figure 5.4: Grasp Validation Losses - Position Loss (left), Sine Loss (middle), Cosine
Loss (right).

5.2 Test Results

A trained model at epoch 50 is selected as final suction model from in total 70
models, because it has relatively low training loss and also low validation loss. In
order to further test performance of the selected model, test data from captured
dataset in Section 3.1.1 is fed to the trained neural network to propose suction
points. Examples of input test data is shown in Figure 5.5. The outputs from model
prediction are still images that indicate suction quality. The output suction quality
images are then evaluated to find a point with best suction quality. The point with
maximal pixel value is finally proposed as the suction point, because the suction
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quality is represented by the pixel value. Figure 5.6 presents the corresponding
prediction results. A suction proposal is regarded as success, if the predicted suction
point is within area of the label. Table 5.1 summarizes success rates of suction point
prediction for test data of five parts from dataset. Average success rate accounts
for 85.65%, calculating by number of success predictions divided by total number of
test data as listed in Table 3.1.

(a) Example of Test
Data: Housing.

(b) Example of Test
Data: Baseplate.

(c) Example of Test
Data: Gearwheel.

(d) Example of Test
Data: Support Gear-
wheel.

(e) Example of Test
Data: Motor.

Figure 5.5: Examples of Input Test Data.

Table 5.1: Suction Success Rate of Test Data from Dataset.
Part Name Success Rate
Housing 81%

Gearwheel 91.4%
Support Gearwheel 100%

Baseplate 79.6%
Motor 85%

Average 85.65%
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(a) Example of Test
Result: Housing.

(b) Example of Test
Result: Baseplate.

(c) Example of Test
Result: Gearwheel.

(d) Example of Test
Result: Support Gear-
wheel.

(e) Example of Test
Result: Motor.

Figure 5.6: Examples of Test Results. The dots represent predicted suction points.

Moreover, more test data is captured via a depth camera and Tracepen™ when the
robot system is running. As the bin-picking pipeline elaborated in Section 4.3.1,
the calibrated trace pen firstly pointed a suctionable area on the object based on
experiences of the operator, then the robot goes to a pre-grasp pose above the
suggested suction area and captures depth images. Samples from depth stream
according to trace pen input are visualized in Figure 5.7. Subsequently, the trained
model is run to process depth frames, and finally predicts suction points.

Figure 5.8 shows model prediction results from fed test data in Figure 5.7. The
red dots in the suction quality images are estimated suction points. The predicted
suction points for gearwheel, and housing are located within the label area on the
object plane surface, whereas one of 45 predictions for motor is obviously out of the
object and eight predictions are close to the object edge and lie out of label area.
The prediction for motor is not robust enough because its size is small comparing
with other parts. Moreover, seven of 23 support gearwheel predictions are out of
the label area. Lastly, only three of 18 predictions for base plate are successful,
but others are far deviated from human desired suction areas. A potential reason
could be that only straight edges of the base plate is contained in training data,
as presented in Figure 5.5 (b), while captured data for testing in Figure 5.7 mainly



5.2. TEST RESULTS 67

includes a curved edge. The suction prediction success rates for the five parts are
summarized in Table 5.2. Average success rate accounts for 79.7%.

Figure 5.7: Test Data captured via the Bin-picking System. In order from beginning
to end - Baseplate, Support Gearwheel, Gearwheel, Housing, Motor, separated by
blue lines.

Figure 5.8: Test Results. Prediction from the trained model. The red dots represent
predicted suction points.

Comparing Table 5.1 with Table 5.2, prediction success rate for support gearwheel is
100% whe testing with data from dataset, whereas it reduced dramatically to 70%
with data captured from bin-picking system. Considering training data amount
of support gearwheel is minimal (only 122 data listed in Table 3.1), it indicates
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that prediction for this part could be overfitting. More training data is available
for housing and gearwheel, so their predictions show better robustness with unseen
data.

Table 5.2: Suction Success Rate of Test Data captured via Robot Bin-picking Sys-
tem.

Part Name Success Rate
Housing 100%

Gearwheel 100%
Support Gearwheel 70%

Baseplate 16.7%
Motor 80%

Average 79.7%

In summary, overall success rate of test data in dataset and test data captured by
bin-picking system comprises 82.24%. Small data volume leads to overfitting, i.e.
prediction for new data is much worse that that for data in dataset. On the contrary,
more training data improves robustness. Notably, the prediction success rate drops
drastically if new features that is not included in training data appears in test data.

In addition, a grasp prediction model is also selected, though the training perfor-
mance requires improvement. The trained model takes grasp test data as visualized
in Figure 5.9 as input, and outputs grasp position quality image, angle images (sine
image and cosine image clarify an angular value.) as presented in Figure 5.10. The
grasp position estimation is correct, while sine and cosine estimation does not per-
form well. It is of difficulty to deduce the orientation angle from the sine and cosine
prediction outputs. The main reason is that data amount for grasping training is
too small (739 data in total as summarized in Section 3.1.2).

(a) Housing. (b) Gearwheel. (c) Motor.

Figure 5.9: Examples of Test Data for Grasping Model.
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(a) Housing Posi-
tion Image.

(b) Housing Sine
Image.

(c) Housing Cosine
Image.

(d) Gearwheel Po-
sition Image.

(e) Gearwheel Sine
Image.

(f) Gearwheel Co-
sine Image.

(g) Motor Position
Image.

(h) Motor Sine Im-
age.

(i) Motor Cosine
Image.

Figure 5.10: Examples of Test Data for Grasping Model. The grasp position pre-
diction proposes grasp candidates, while the rotation angles cannot be estimated by
output sine and cosine images.

5.3 TracePen™

The TracePen™ system works by tracking the trace pen. Notably, the recorded pen
pose could be affected by environment. For example, if many irrelevant objects
especially reflective ones are in the perceptual domain of stations. Moreover, the
precision of recorded trace pen pose is the highest if the pen is located in the center
of station’s perceptual domain. Otherwise, the recorded poses are imprecise. It also
influences the trace pen calibration elaborated in Section 3.3, because the calibration
matrix was calculated based on three recorded points. As a result, the calibrated
trace pen position in robot coordinate is 100% precise in some area on the work
table, as presented in Figure 5.11 (a). The point transformed to image coordinate
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(elaborated in Section 3.3.2) is exactly on the pen tip. However, the pen tip position
in image can be deviated as visualized in Figure 5.11 (b). Notably, the two stations
should be installed in the way that included angle between them is larger than 120◦.

(a) Precise Transformed Tracepen Po-
sition.

(b) Deviated Transformed Tracepen
Position.

Figure 5.11: Calibrated Tracepen Tip Position. The red dot is position of pen tip
transformed to robot coordinate and finally to image coordinate.
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Chapter 6

Discussion

This chapter discusses notable points found during the work of thesis - data size,
label design, gripper switch, data collection view, data distribution, distance mea-
surement.

In the thesis, the performance of training the neural network is very restricted by
the data amount. The industrial robotic grasp dataset generated during the thesis
is small comparing with usual data volume for deep learning approaches. The main
reason is that capturing real-world data with robot, and manually label cost much
time. Especially for the grasp model training, data size is far fewer than enough, due
to time limitation. An attempted but not made idea to enlarge the dataset is that
generating synthetic data, for instance, using blender. It is a usual way to generate
dataset in published robotic bin-picking approaches. Nevertheless, author’s knowl-
edge about computer aided design software is limited and automatically generating
depth images using Blender is more difficult than handling color images. Thus, this
idea has not been realized yet, but it is feasible.

In addition, the label shape of suction is designed as circular, because suction pads
are round. Nonetheless, according to prediction results, the circular shape dose not
play a part, because predicted suctionable areas are always square-shaped. To the
knowledge of author, the reason should be the kernel of convolution is usually a
square slice, e.g. 3 × 3, 5 × 5, 7 × 7, 11 × 11. Consequently, the input image
is processed in small square units during operations in the neural network. In a
circular edge unit containing both a suctionable area and an unsuctionable area, a
main feature is extracted to represent this unit.

Moreover, expert knowledge about how to pick up the parts and which gripper is
better to pick, is necessary. Especially the gripper switching strategy (comparing
predicted suction quality and predicted grasp quality, choosing the gripper with
predicted higher quality) is highly dependent on the labeled ground truth. Usually,
an object with a flat surface is better to be suctioned by the vacuum gripper. In
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contrast, parallel-jaw is expert in grasping bumpy objects. However, which gripper is
more suitable to pick which object is still uncertain, which requires more bin-picking
experiments. Accordingly, in the thesis, the suction and grasp position labels are
set to the same pixel values that represent the same gripping quality. If expert
knowledge about gripper switch strategy is available, pixel values of labels can be
set up to different levels to stand for different gripping quality.

Furthermore, an advantage of collected data for this thesis, compared to data used
in other published bin-pick approaches, is that the object is scanned from various
poses via camera moving with robot. On the contrary, data in other methods are
captured in a fixed pose, usually from above view, for instance, Dex-Net 2.0 [17].
Therefore, the trained models over data collected from different views are not so
sensitive to the camera installation pose of eye-to-hand configuration, and camera
movement pose of eye-in-hand configuration.

Additionally, data distribution regarding objects is also a point worth considering.
When collecting data for the thesis, more data is captured for objects with more
different faces to show the objects’ structure completely. Consequently, data amount
for each object is not even, and depends on complexity of the object structure.
Another possibility is that making data distribution for each object even, so that
performance of grasping point prediction is not of much difference for each object.

Besides, the z value of grasping pose in bin-picking pipeline that represents distance
to trace pen point on the object is mainly obtained from depth camera stream.
When the trace pen point in the image coordinate is exactly on the pen tip, the
distance from depth camera might be not very precise, due to occlusion of the pen
upper part. Thus, a more stable way to measure distance to the object is necessary.

Lastly, it is possible that size of industrial parts is tiny, for example, the largest
side of the part is smaller than 35mm. In this case, it is of difficulty to capture its
depth image via a depth camera (e.g. RealSense™D435i in this thesis). Therefore,
the author would suggest considering other data formats fed to network training like
mesh and point cloud, because they could present more information of the parts.
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Chapter 7

Conclusion

In summary, the thesis introduces background and requirements of the topic, and
then reviews state of the art about robot end effector design, robotic grasping pose
estimation approaches mainly using deep learning technique, and robot actuation
methods. Significantly, methodologies of the thesis are elaborated in detail - indus-
trial bin-picking dataset collection and generation methods, neural networks train-
ing, and usage of a Tracepen™ system with robot. Next, implementation of robot
motion and bin-picking system are elucidated. Finally, performances of trained
neural networks and Tracepen™ input precision are evaluated, and some thoughts
inspired through the thesis work are discussed.

The work of the master thesis is concluded as follows:

1. An elliptic robot trajectory for automatic data collection from various views.

2. Dataset generation.

3. Investigation of neural networks’ architecture, training and validation of fully
convolutional neural networks via Pytorch over the dataset.

4. Integration of the Tracepen™ system into the robot system.

5. Robot configuration for using Robot Operating System (ROS).

6. High-level robot control through ROS.

7. A bin-picking system constructed in ROS.

8. Camera configuration.

The results show that a robotic grasp framework based on fully convolutional neural
networks (FCN) provides a feasible solution. It is verified that FCN architecture
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saves training and running time. Fast speed is also a highlight of FCN compared to
normal convolutional neural network (CNN).

In the future, the dataset should be enlarged to support network training by cap-
turing more real-world data and generating synthetic data. An automatic labeling
tool is a good idea to speed up the data ground truth labeling. Besides, a more
robust distance measurement method is necessary for both bin-picking execution
and data automatic labeling. Furthermore, other neural network architectures such
as fully convolutional ResNet 101 [14], GQ-CNN [17] fully convolutional GQ-CNN
[10], are worth investigating. Lastly, other input data formats are of consideration,
to improve robotic bin-picking system’s capability of dealing with tiny parts.
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Appendix A

Appendix

A.1 Automatic Labeling

It is possible to develop an automatic labeling tool to label all images captured from
one dome trajectory by once manual label, because in one recording the object is
static and labels of captured different images should be the same point on the object
in real world. The idea is illustrated in Figure A.1. Camera intrinsic K is available,
and homogeneous transformation matrix Ti in representation of camera poses are
recorded at each step. Manually labeling one image, so a pixel coordinate of the
label L1 = (x1, y1) is obtained. Origin of pixel coordinate (0, 0) is 2D located on
the upper left of the image. Camera coordinate C usually lies in the camera in the
3D workspace, so in this case it is a moving coordinate system. Origin of the robot
base coordinate R is the fixed robot base.

The labeled 2D pixel coordinate L1 with its depth value z1 multiplies with inverse of
homogeneous camera intrinsic matrix (projection matrix) P−1 leads to a 3D position
in the camera coordinate L1C ,

L1C = P−1 · (x1, y1, z1)T (A.1)

The position L1C is then transformed to robot base coordinate R by multiplying
inverse of the recorded camera pose T−1

1 in this step,

L1R = T−1
1 · L1C (A.2)

To label a new image based on the labeled pixel coordinate, the label point in static
robot base coordinate L1R should multiply a new camera pose T2 recorded when
capturing the new image, so the label position L2C in a new camera coordinate is
obtained,

L2C = T2 · L1R (A.3)

Lastly, multiplying that position with camera intrinsic P , the label point in the
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Figure A.1: Automatic Generation of Labels.

space is marked in the new image,

L2 = P · L2C (A.4)

Unfortunately, this idea has not been realized in this thesis yet, because the depth
values of pixel coordinates are not saved when recording the dataset.
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