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Evaluation of the stimulated emission rate of
semiconductors with no k selection rule
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Introduction

For the case of high impurity concentration in semiconductors the
k selection rule will not be valid any longer. Lasher and Stern (LS)
[1] have given an integral expression for the stimulated emission
rate in a direct semiconductor when (i) the transitions occur between
parabolic bands, (ii) the k selection is not valid, and (iii) the optical
matrix element can be taken as independent from energy. These
assumptions seem to be justified if the semiconductor has a high
concentration of shallow impurities, merging with the adjacent band,
and for moderate carrier densities, which are in the order of some
10"® cm 3 for GaAs. Further papers of Hwang [2] and Casey and
Stern [3] take into consideration the influence of band edge tailing
and energy dependent matrix elements, the first of which dominates
for low band filling and the second dominates for very high band
filling. Marinelli (M) [4] and Unger [5] have given analytical approxi-
mation formulae for the LS stimulated emission rate.

In this paper we give the exact solution of the LS integral by ex-
panding the difference between the LS- and M-integrals into a
series which is rapidly converging for the room temperature case.
Constant transition probabilities between parabolic bands and no
k selection rule are assumed. Finalli/ is given a brief discussion of
how the incorporation of an energy dependent transition probability
could be possible.

1. Method

After LS [1] the stimulated emission rate per unit volume (for unit
frequency interval and per stimulating photon) is given by the
integral

r(AEY=C | E4(AE—E)! (f,~£) dE ™)

AE is the photon energy minus the band gap energy; the Fermi
distributions in the conduction band and valence band are

_ 1
f°_1+exp [(E=F,)/kT] 2)

_ 1
=3 +exp [(E+F,—AE)/kT]

(3)

F. is the quasi-Fermi level in the conduction band minus the con-
duction band edge energy, F, is the valence band edge energy
minus the quasi-Fermi level in the valence band. C is a constant,
which for Zn acceptors in GaAs has the value

C=26x1023cm 3s ' meV 3 [1].

To evaluate the integral (1) we use the substitution

2F
=2=_ 4
X=3F 1 4 (4)
and obtain
1 +1 R
C"rst(A.‘:')=ZAE2 [ V1—x2g(x)dx (5)
-1
with
sinh a
gx)= (6)

cosh a + cosh (bx+c)
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a=(F,+F,—AE)/2kT @
b=AE/2kT ®)
c=(F,—F;)/2kT 9)

Now we proceed in the following way: First we expand the function
g in a series and then, after an interchange of the summation sign
and the integration sign, we integrate term by term and consequently
obtain a series expansion of the integral solution. The two functions
J/1—x* and g(x) constituting the integrand are defined in the
whole z-plane and have analytic properties which allow the evalua-
tion of the integral by contour integration [6].

The function g (z) is meromorphic. It's only singularities (except at
infinity) are simple poles at

=—1; +1

u
z,,_v=[;4a—c+(2v+1)1ti]/b{ (10)

v=...-2;-1;0;1;2...

By Mittag- Leffler's Theorem [7] we can expand the function g (z)
in a series, each term of which corresponds to one of the poles Z,,
in the finite part of the z-plane, and obtain

9 ( 1- 1 >
- — +
u :Z:i 1 v =Z—: x /‘b 2=, 2,

Introducing this series expansion into eq. (5) and interchanging
summation and integration we obtain

_ sinh a
cosh a—cosh ¢

9(2) (1)

C ' (AE)=A+ ¥ 2 8,,+C,.) (12)

u=t1 v=-o
with
1., sinh a o
= [t — 1—x*d
A 4AE cosha+cosh ¢ J, l/ X
13
o, sinh a 3
8 cosh a+cosh ¢
1, ., 1 2 /1-x2
- _ — 14
B,, 4AE b 1 x—7., dx 14)
1 5 1 +1 o
=——Af*—— 1-x*d
Civ=—g7 A bz, _§1 x
; (15)
=T A2
8 ubz,

The term A is identical to the approximation for C ~'r, (AE) of
Marinelli [4]. This approximation is allowed when g(x) can be
approximated by g (0) in the interval [—1, +1]. The physical con-
dition for the validity of the approximation is AE<2kT.

Now we compute the B, , by contour integration in the complex
z-plane. First of all we consider the function V1 — 22 which is multi-
valued and has branch points at z=—1 and at z=+1. For the
intended contour integration it is useful to cut the z-plane by a
branch line from z=—1 to z=+1 along the real axis. For |x|<1 and
y approaching zero |/1—2z2 is real and has opposite sign above and
below the real axis. We introcuce the function

w(z)=)/1-7°

(16)
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by making the additional convention that for |x|<1 just above the
branch cut the positive sign of the square root is valid. From this
choice it follows that the real part of w (z) has the same sign as the
imaginary part of z, whereas the imaginary part of w(z) and the
real part of z have opposite sign. Furthermore we note the useful
relations

w(=2)=-w(z) and w(z*)=—-w*(2)

Let us now determine the contour of integration. Figure 1 shows the
z-plane, cut between the branch points —1 and +1 of w(z), the
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Figure 1:
Contour for evaluation of B8, |
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Figure 2:
Spectral dependence of the stimulated emission rate for 2x10'® ¢cm 3 p-doped
GaAs after eq. (20) with sum extended to v=10 @ containing only the v=0
term@and calculated from Marinelli's approximation [4] @
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pole z, , and the contour of integration, involving an infinitesimal
small semicircle around z=—1, a line along the real axis from
z=—1to z=R (between z=—1 and z= +1 above the branch cut),
a circle with radius R and a line going back from z=R to z=—1
(between z=+1 and z= —1 below the branch cut). Since in eq. (13)
the positive sign of the square root has to be choosen, the interval
of integration in eq. (13) corresponds to the integration from z= —1
to z=+1 above the branch cut (orin the opposite direction below
the branch cut). Hence the part of the contour integral from z= +1
to z=—1 below the branch cut, then along the semicircle around
z=—1 and back to z=+1 above the branch cut, yields twice the
value of the real integral from x=—1 to x=+1. That part of the
contour integral which is along the real axis from z=+1 to z=R is
cancelled out by the integral along the same line but in the opposite
direction. The rest of the contour integral is performed along the
circle with the radius R. To make this part vanishing when R goes
to infinity, we use the following procedure: We multiply the inte-
grand by the function k2/(k2+2z2). Then we let go R to infinity,
and with this contour we calculate the integral. Afterwards, by a
subsequent limiting process, we let go « to infinity, too. In this way
we get from eq. (13)

an

AE? K2 w(2)
B —_25 _x
“Y 8ub Jm ¢ K*+2% z—2,,

The integral is easily computed by Cauchy's integral formula and
yields

2
B =™ \im

_ z, kw (i) —ik*w (2, ,)
T A

2, 2
Ktz

(18)

We let k—oc and obtain

B _ mAE?

u~"—TlIF (Z,,‘v—iw (Z‘”)) (19)

We now sum the terms B, and C, ; and since according to eq. (10)

Z“.,v,1 =z:‘v
it is also useful to combine the terms with the indices v and —v—1.
We obtain
nAE? sinh a
“r. (AE)= -
C e (AF) 8 cosh a+cosh ¢
AE2 x
- (S(z,,)—=S(z-..)) (20)
4b ZO ! !
with
1 -
S(2)=n [(Tz—z—l—z) Re {z} -2 Im {[/1 —z?}] (21)
The square root in eq. (20) obeys the convention
sign Im {}/1—2z%} = —sign Re {z} (22)

2. Discussion

The series expansion eq. (20) gives the exact solution of the integral
in eq. (1). At room temperature a very good approximation is
obtained even when the series expansion is broken off after a few
steps. Figure 2 shows the spectral dependence of the stimulated
emission rate for p-doped material with net hole concentration
Po=2x10"8 cm ™2 and different electron densities n. The result for
summing up to v=10 is exact within four digits. For comparison
the result of Marinelli's approximation is plotted as well as for
n=8x10"® cm 2 the result obtained by breaking the summation in
eq. (20) after v=0.

The incorporation of an energy dependent transition probability
according to [2, 3] could be possible as follows: Such energy
dependence yields an additional factor in the integral (5) which is
a sum of terms of the form P (x) - (x—z) "™ where P(x) is a poly-
nomial with the order “equal or less m”. The way of computation
is now straighforward when in egs. (11) to (15) the m-fold poles
at z; are considered as well.
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