
©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

Experimental Evaluation of Downlink Scheduling
Algorithms using OpenAirInterface

Răzvan-Mihai Ursu, Arled Papa, Wolfgang Kellerer
Chair of Communication Networks, Technical University of Munich
razvan.ursu@tum.de, arled.papa@tum.de, wolfgang.kellerer@tum.de

Abstract—Programmability and softwarization advocate the
emerging era of open-source platforms, which embraced by
both industry and academia is foreseen as a vital pillar in
the construction of next generation mobile networks. Such a
valuable open-source project is OpenAirInterface (OAI), which
provides a standard compliant mobile network infrastructure,
merely based on general purpose hardware computers. While
OAI is nowadays widely used by industry and research institutes
in proof-of-concept or commercial wireless testbeds, an analysis of
the complex functions within the platform is yet to be performed
in a large scale. We believe that further research is required to
demystify the capabilities of existing tools and present guidelines
that alleviate the enhancement and development of additional
features. In this context, in this work we shed light on one of
the crucial components of any mobile system, namely resource
scheduling, while providing an analysis of the available code and
instructions to ease the development of new scheduling algorithms
based on OAI. Moreover, we demonstrate a performance eval-
uation of up to 10 UEs for existing and newly implemented
scheduling algorithms. Results show, that the development of
additional algorithms in OAI is achievable and the experimental
behavior follows the theory. Our implementation and observations
can serve as a basis for research in the field, and foster the
elaboration of theoretical concepts and emerging 5G solutions in
practical testbeds.

Index Terms—Scheduling, SD-RAN, 5G, OAI, Performance.

I. INTRODUCTION

Programmability and softwarization are foreseen as the
main drivers of next generation networks. The ever-growing
demand for communication systems providing high reliability,
capable of maintaining extremely low latencies and achieving
tremendous high throughput, pose significant challenges for
existing one-size-fits-all mobile architectures. Therefore, novel
solutions such as software-defined networking (SDN) and
network slicing (NS) constitute the basis for the development,
operation and management of new emerging 5G and beyond
mobile network architectures.

In the radio access network (RAN), in particular, soft-
warization solutions such as SDN referred to as SD-RAN,
have been embraced by both industry and academia. Rakuten,
Inc. [1] and O-RAN [2] for instance, envision the concept of
programmability and virtualization as the main drivers in the
5G/6G era. The concept of open-source programmable code
base alleviates the collaboration among industries and fosters
immense progress in the mobile community. Additionally,
academia plays a major role, as it complements industry with
the possibility of researching existing and new developed

theories in systems similar to commercial products, narrowing
the gap between theory and practice.

OpenAirInterface (OAI) [3] and srsLTE [4] are two examples
of academia-based projects, which have gained significant
traction in the last couple of years. Both platforms implement
the 4G and 5G protocol stack for the user equipment (UE),
eNodeB (eNB), gNodeB (gNB), as well as the core network
(CN) with ability to operate on general-purpose x86 proces-
sors. Leveraging the linux kernel and linux ip protocol stack,
together with off-the-shelf software-defined radios (SDRs) [5]
they provide a fully fledged mobile network compliant with
3GPP standardization. The development and wide availability
of the aforementioned platforms has, in turn, led to the emer-
gence of SD-RAN platforms such as FlexRAN [6] and 5G-
EmPOWER [7], that advocate the important concepts of NS in
RAN, while providing control over eNBs/gNBs. Both projects
are relevant and extremely important for both academia and
industry, nonetheless in this work we will further focus our
analysis on OAI, as the only system that provides further
support with respect to NS and 5G implementation concepts.

As aforementioned, OAI aligned with FlexRAN, support a
programmable interface for all the radio access network (RAN)
functionalities 1. Such functionalities vary from statistics col-
lection and monitoring to NS, handover and medium access
control (MAC) scheduling to name a few. Although, NS is
triggering vast amount of research [8], [9], MAC scheduling
still remains one of the most important elements of any mobile
system. Utilizing FlexRAN, depending on network conditions,
policies can be enforced to the eNBs/gNBs in order to enhance
the network capabilities. In that regard, scheduling algorithms
that allow for such adjustments become extremely important.
However, while there exist a plethora of theoretical papers on
MAC scheduling, the practical aspect is often neglected. For
instance, currently OAI only provides 3 traditional scheduling
algorithms, namely round robin (RR), proportional fair (PF)
and maximum channel quality indicator (MT). Given the
traction that OAI is receiving, as well as the plethora of works
based on this platform, an analysis of existing capabilities
and research on extension possibilities becomes extremely
interesting.

In this work, we aim at demystifying such concerns and
intent to construct a basis for practical research within OAI.
Our contributions lie, therefore, in:

1https://mosaic5g.io/apidocs/flexran/



1) Diversifying existing traditional scheduling algorithms
provided by OAI and extending the range of options
by implementing scheduling algorithms that allow adjust-
ments depending on network conditions.

2) Providing, to the best of our knowledge, the first in
depth analysis and comparison of scheduling capabilities
in the OAI platform, while demonstrating experimentally
throughput analysis for up to 10 UEs.

3) Identifying some of the challenges of implementing
scheduling algorithms within OAI and providing guide-
lines for future development.

4) Publishing the full implementation of the new algorithms
to further foster experimentation in the field. 2

The work is structured as follows: Section II provides a
broad overview of the most important theoretical aspects of
scheduling and mobile network open-source platforms. Section
III presents the system design of OAI, as well as the code
structure of MAC scheduling algorithms. The design imple-
mentation of the new algorithms developed within scope of
this work are presented in Section IV. Section V provides
an experimental analysis and performance evaluation of all
scheduling algorithms within OAI. Finally, the paper is con-
cluded in Section VI while discussing the main findings of this
work.

II. RELATED WORK

The development and establishment of OpenAirInterface [3]
and srsLTE [4] has triggered vast ongoing research in the
mobile community. The aforementioned platforms, provide
enormous capabilities and offer the possibility to re-program
mobile network functionalities. This has led to the emergence
of prototypes in fields such as software-defined radio access
networks (SD-RAN) [6], [7], network slicing (NS) [10] and
cloud radio access network (C-RAN) [11].

Even though all the aforementioned fields are of high impor-
tance to next generation networks, one of the principle func-
tionalities of radio access networks (RANs) remains the MAC
scheduling, which in turn constitutes the basis for techniques
such as C-RAN and SD-RAN. For instance, state-of-the-
art solutions providing NS consider hierarchical scheduling,
where within each slice traditional scheduling algorithms are
performed [8], [9].

While scheduling has been an actively researched topic from
a theoretical point of view [12], [13], [14], practical implemen-
tations of large scale in academia were missing until recently.
With the development of OAI and srsLTE, an emergence of
experimental research has been initiated. However, as observed
by [15], both srsLTE and OAI can only provide analysis for
a limited amount of UEs, due to software design choices, or
expensive hardware equipment. To cater for this issue, in this
work we utilize the oaisim NFAPI simulator 3 extending
experimentation up to 10 UEs.

2https://gitlab.eurecom.fr/razvanursu/openairinterface5g-mac-scheduling/-
/tree/mosaic5g-oai-sim

3https://gitlab.eurecom.fr/mosaic5g/mosaic5g/-/wikis/tutorials/l2-sim

FlexRAN
controller

OAI simFlexRAN
agent

FlexRAN
protocol

(TCP)

Core
Network

Software

UEs

schedule_ulsch_p

eNB_dlsch_ulsch_scheduler
schedule_PCH
schedule_RA

schedule_SRS

schedule_SR
& schedule_CSI

schedule_ue_spec_br
schedule_ue_spec

Allocate Ressources

Downlink / Uplink

(Control channel) 

UE0 UE1
...

UE9

L2-NFAPI protocol

(UDP)

Figure 1: System model architecture based on OAI simulator
tool. It contains functionalities within the eNB/gNB with
FlexRAN agent related capabilities and in turn connects to the
core network, while providing service to UEs using the NFAPI
tool.

Works [16], [17], also analyze the performance of OAI while
explaining software characteristics. Nonetheless, they mainly
focus on evaluating and improving the computational intensity
of the functions corresponding to the network and LTE layer-
specific calculations.

Similarly to our work, authors in [18] develop a scheduling
algorithm for vehicle to everything communications based on
OAI. Yet they only provide evaluations for that particular
scheduler. Differently, we not only provide guidelines and
development details for the additional schedulers, but also
demystify the performance of existing algorithms within OAI.
To the best of our knowledge, this work provides the largest
scale performance analysis of OAI using oaisim for up to
10 UEs, considering multiple scheduling algorithms.

III. SYSTEM MODEL

In this section we will describe in more detail, the system
characteristics of OAI and clarify the functionalities of the
blocks that have been modified in order to develop the proposed
algorithms.

A. OAI Channel Model

OAI introduces a 3GPP compliant channel model based on
a time slotted system, where a slot duration corresponds to 1
ms, known as the transmission time interval (TTI) in LTE. The
eNB/gNB serves user equipments (UEs) at each slot. Given an
available system bandwidth, a set R of R physical resource
blocks (PRBs) is available, where each PRB has a duration of
0.5 ms and 180 kHz with a subcarrier spacing of 15 kHz.
Resources are allocated to UEs on a resource block group
(RBG) basis, with a granularity of 2 PRBs. To facilitate the
decision making process of schedulers, channel statistics are
transmitted towards the eNB/gNB referred to as channel quality



Algorithm 1 WRR
UE id ← 0
Ensure that all UEs in UE list require at least 1 PRB.
Advance the current RBG, so that it is free.
Set the weights for the UEs.
while UE list is not empty do

if there are available RBGs then
Assign the current RBG to UE UE id.
Decrease the number of available RBs by the size of the RBG.
if UE UE id does not need PRBs or UE UE id has already received more

PRBs than its weight then
Eliminate UE id from the list.

else
Increase UE id.

end if
else

Break;
end if
Advance the current RBG so that it points to a free RBG.

end while

indicator (CQI). Such messages are retrieved by the physical
uplink control channel (PUCCH). Every RBG is associated
to a specific CQI value per UE. This is latter mapped to
a modulation and coding scheme (MCS), which in turn is
translated to a transport block size (TBS). TBS is the total
size in bits that can be transmitted by the UE according to
3GPP standardization [19].

OAI can be operated both utilizing real wireless hardware
i.e., software-defined radios (SDRs) or in a simulation mode
known as oaisim, that introduces a physical layer abstraction.
Given the fact that scaling the network utilizing SDRs is both
expensive and hard to maintain [15], in this work we focus on
oaisim, where the wireless channel can be emulated by being
able to control the CQI value. This allows not only to test our
algorithm by still going through the OAI protocol stack, but
also fosters reproducibility of the measurements.

B. OAI downlink scheduling

The main components of our system can be observed in Fig.
1. The function eNB_dlsch_ulsch_scheduler handles
most of the scheduling tasks: it refreshes the list of active
UEs and it configures the timers for HARQ synchronous
and asynchronous retransmissions. Each of the scheduling
algorithms is implemented as part of the pre_processor.c
and gets called in the schedule_ue_spec as
eNB->pre_processor_dl.dl. This is just a wrapper
for a call to the dlsch_scheduler_pre_processor
function, which retrieves the list of the UEs to be scheduled
UE_to_sched, the maximum number of UEs that can be
scheduled for each TTI, the number of remaining RBGs
(n_rbg_sched), the RBG allocation mask (which has a 1 if
an RBG hasn’t yet been assigned and 0 if the RBG has already
been assigned) and a pointer to the algorithm’s data. Further,
the run method of the default_sched_dl_algo_t
class is called, and the pre-processor starts.

After the HARQ retransmissions are served, the buffer
size of all UEs are read, and, with the help of the
find_nb_rb_DL function, the number of needed PRBs
(rb_required[UE_id]) is calculated, dependenting on the
CQI reported for this UE and of the corresponding MCS. After
all aforementioned steps, the scheduling algorithm calculates

Algorithm 2 DRR
UE id ← 0
Ensure that all UEs in UE list require at least 1 PRB.
Advance the current RBG, so that it is free.
Set the quantums for the UEs.
while UE list is not empty do

if UE UE id requires PRBs then
Increase the deficit counter of UE UE id by its quantum.
while the deficit counter of UE UE id > 1 and UE UE id needs resources

do
Assign 1 RBG to UE UE id.
Decrease the number of required resources by the number of allocated

PRBs.
Decrease the deficit counter by the number of allocated PRBs.

end while
if the end of list has been reached: then

Set UE id to 0.
else

Increase UE id by 1.
end if

end if
if there are no available RBGs then

Break;
end if
Advance the current RBG so that it points to a free RBG.

end while

Algorithm 3 PQ
UE id ← 0
Ensure that all UEs in UE list require at least 1 PRB.
Advance the current RBG, so that it is free.
while there are available RBGs and The UE list is not empty do

Find the UE UE id with the largest buffer size.
Assign to UE UE id the minimum between the needed and the available number

of RBGs, starting with the current RBG.
Eliminate the UE id with the highest buffer size from the list.
Advance the RBG indicator so that it points to a free RBG.

end while

according to the selected policy how many PRBs are to be
assigned to each UE, and then the RBG mask is unset for the
already allocated RBGs.

The scheduling algorithm is chosen based on the config
file of the eNB/gNB, however it can alternatively be changed
on runtime with instructions received from the FlexRAN
controller through. 4

IV. IMPLEMENTATION

For the implementation of MAC scheduling algorithms,
the mosaic5g-oai-sim branch 5 has been utilized. While
the round-robin (RR), maximum CQI (MT) and proportional
fair (PF) schedulers were already implemented, additionally
a weighted round-robin (WRR), deficit round-robin (DRR)
and a buffer length based priority queue (PQ) scheduler were
implemented within the scope of this work. The main challenge
while developing new algorithms remains the time constraint,
which demands the scheduling to be performed within 1 ms
for 4G and below 1 ms for 5G. That said, for algorithms to
present a practical use need to perform in a timely manner.

The algorithms have been implemented using the C program-
ming language and the high level pseudo-codes are presented
in Alg. 1, Alg. 2 and Alg. 3, respectively. The WRR portrayed
in Alg. 1 works similarly to the classical RR, where a weight
w is assigned to each UE, which corresponds to the amount of
PRBs that each UE can be allocated. In our case this weight

4https://mosaic5g.io/apidocs/flexran/
5https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/mosaic5g-oai-sim



corresponds to 6 PRBS per UE. Once this weight has been
reached, the UE will be skipped by the allocation procedure.

Alternatively, DRR shown in Alg. 2 performs based on user-
specific quantums. A deficit counter, initialized with 0 and
persistent between rounds, as well as a quantum gets associated
with each UE. While the list of UEs is not empty and while
there are still resources to be allocated, an iteration through
all of the UEs is performed and if the UE needs resources, its
deficit counter is increased by the quantum value. Once the UE
gets served, and for every allocated PRB, the deficit counter
decreases by 1. The service for that UE terminates either when
all of the required resources have been allocated or when the
deficit counter ≤ 1. The algorithm then continues with the next
UE and, if the end of the list is reached, the algorithm starts
from the beginning in a circular fashion. In our evaluations,
the quantums are distributed to UEs as follows: {2, 3, 4}. For
a larger number of UEs, this pattern is repeated.

Finally, PQ presented in Alg. 3 assigns resources to UEs
based on their current buffer status, while prioritizing UEs
whose buffer is larger. In that manner, a certain average buffer
size is maintained, aiming at guaranteeing a desired delay.
Such an algorithm is especially important for low latency
applications.

V. PERFORMANCE EVALUATION

The setup of our performance evaluation is depicted in
Fig. 1. Each block corresponds to an OAI entity that can run
on a single PC. In our case, the core network runs on separate
single PC, whereas the FlexRAN-enabled eNB/gNB and UEs
run on the same PC according to the oaisim infrastructure.

Apart from the 3 algorithms provided by OAI, the other
3 own developed ones have been evaluated with respect to
the achieved throughput while varying the number of UEs
between 3, 7 and 10. Through the nature of oaisim, the
number of UEs is easily scalable and tests can be conducted
for, theoretically, up to 255 UEs. The evaluations consist of
200 s, where scheduling is performed in a ms base, whereas
average of 1 s are recorded. For every measurement point, 20
repetitions have been conducted and confidence intervals of
95% have been drawn in order to capture the effectiveness of
the measurements. The algorithms have been divided into 2
groups, namely starvation free i.e., RR, WRR, DRR, PF and
starvation algorithms i.e., MT and PQ. In total there are 25
PRBs reserved for scheduling, representing a 5 MHz system.
Results in the following are presented considering these two
groups separately to provide fairness in their comparison.

The traffic has been generated by iperf TCP traffic, with
the client running in the core network PC, whereas the server
runs on the UE side. For measuring the traffic, all packets are
captured using tcpdump, and are post-processed to retrieve
the measured throughput and perform the analysis. As the
throughput is depending on the CQI (higher CQI means better
channel quality and more bits transmitter per each RB), with
the help of a telnet client in oaisim, we control the CQI of
each user and change its values in a controllable and repeatable
manner ranging from 1 to 15 during the 200 s measurements.

(a) Sum throughput and CQI evolution over time for 3 UEs.

(b) Average UE throughput.

Figure 2: Overall throughput evolution for 3 UEs for starvation
free algorithms.

Figure 2a presents the CQI evolution that we used in our
experiment.

A. Throughput Analysis Starvation Free Algorithms

The initial results for our evaluation performance are por-
trayed in Fig. 2 for 3 UEs. Fig. 2a demonstrates the evolution of
the throughput and CQI values as a sum of all UEs, whereas
Fig. 2b portrays the individual UE throughputs. In order to
avoid visual clutters, only results for the mean throughput of
7 and 10 UEs are presented and depicted in Fig. 3.

From the results portrayed in Fig. 2, we notice that generally
all the algorithms follow the evolution of the CQI values. Given
that CQI represents the channel quality, that is the main factor
that drives the throughput achieved by UEs. In that regard,
higher CQI values translate to higher achievable throughputs
and vice versa, as correctly captured by the figure.

An interesting observation is reflected in the comparison
among RR and PF scheduler. While PF achieves slightly higher
throughputs at specific time instances i.e., t = 80 s, t = 100 s,
in general it behaves similarly to RR. The intuition behind this
result lies in the implementation specifics of PF within OAI.
The average throughput calculation of each UE follows the
equation: thr ue[UE id] = (1−a)× thr ue[UE id]+a×b,
where UE id corresponds to the specific UE, a stands for the
window size of calculation i.e., 200 ms in our case, whereas b
refers to the current TBS size. If we recall the traditional PF
scheduler, for every UE, a coefficient is calculated based on
the current UE throughput and the average achieved through-
put, where the UE with the highest coefficient receives the
resources. A similar approach is followed in OAI, with the



Figure 3: Mean throughput for 7 and 10 individual UEs depicted for various starvation free algorithms.

Figure 4: Coefficient calculation evolution for the proportional fair scheduler depending on CQI changes.

difference that the coefficient is calculated as b
thr ue[UE id] . In

other words, the coefficient is based on the current achievable
TBS and not the achieved throughput. When the CQI values
remain constant for a relative long time compared to the time
instance of average throughput calculation i.e., 200 ms, that
leads to coefficients being equal to 1. In that case, all UEs are
treated equally which is as well the case for RR schedulers.
Alternatively, when a CQI change occurs, an exponential
evolution of the coefficient is observed. For instance, a jump in
the CQI from 3 to 15, leads to a jump in the TBS from 56 to
776 bits. Analytically, this leads to an exponential evolution:
thr ue(n∆t) = 776 − 720 ×

(
199
200

)n
, where ∆t = 1ms. A

record for this exponential evolution and coefficient is depicted
in Fig. 4, which is observed also in throughput results presented
in Fig. 2a, where the PF scheduler records a higher throughput.

Furthermore, Fig. 2a illustrates similar behavior for WRR
and RR. However, since the weight for the WRR has been set
to 6 PRB per UE, with 6 reflecting the maximum PRBs each
UE can receive, the overall sum throughput recorded for the
RR scheduler is larger given a total of 25 PRBs, compared to
18 PRBs utilized for WRR. This effect is also portrayed with
the large variances for the measurements observed with WRR,
which nonetheless gets smaller with more UEs as portrayed in
Fig. 3, since in that case all 25 PRBs are utilized. Additionally,
Fig. 2b shows that for the DRR scheduler the UE with the
higher quantums receives more of the resources i.e., UE 3
in our case. Consequently, DRR and RR record a different
throughput behavior. Overall, the results demonstrate that the
added algorithms behave as expected.

B. Throughput Analysis Starvation Algorithms

Similar to the case of starvation free algorithms, results are
presented for the starvation algorithms, namely MT and PQ.
Results with respect to sum and individual UE throughput for
3 UEs are presented in Fig. 5a and Fig. 5b, whereas results of
individual UE throughput for 10 UEs are presented in Fig. 6.

As demonstrated in Fig. 5a, similarly to the starvation free
algorithms, the recorded throughput follows the CQI patterns.
In general, the MT scheduler outperforms the PQ scheduler
as the main objective is to maximize the throughput. On the
other hand, the PQ scheduler decides on the resource allocation
based on the buffer size. In other words, UEs with the largest
buffer size are prioritized for the scheduling. Such kind of
scheduler is extremely important for instance for delay critical
applications, where each packet delay matters. Given that we
assume a full buffer scenario, the priority queue distributes
the resources in a more uniform manner, which is even more
visible in Fig. 6, where results for more UEs are presented.

VI. CONCLUSION AND DISCUSSION

In this paper we have investigated the potentials of cur-
rent open-source available platforms in the context of MAC
scheduling. By taking OAI as an example, we demystify
the capabilities of existing algorithms, while extending the
range available schedulers with additional ones. Our results
demonstrate compatibility with theoretical models. Moreover,
our findings confirm that controlling the resource scheduling
can be realized by adjusting weights or quantums, achieving
easily configurable throughput performance.



(a) Sum throughput and CQI evolution over time for 3 UEs. (b) Average UE throughput.

Figure 5: Overall throughput evolution for 3 UEs for starvation algorithms.

Figure 6: Mean throughput for 10 UEs - starvation algorithms.

While investigating the deployment and performance of
scheduling algorithms in OAI, in this section we would like
to discuss the decision of implementing scheduling algorithms
such as WRR, DRR and PQ. Initially, we would like to empha-
size the importance of implementation of various scheduling
algorithms in 5G, given the heterogeneous characteristics of
applications. That said, specific applications would require
distinct schedulers to achieve the optimal performance. More-
over, following the trend of next generation networks towards
softwarization and programmability, scheduling algorithms that
allow for policy re-configurations with respect to resource
allocation, for instance through weights or quantums, depend-
ing on network conditions become extremely relevant. Thus,
enhancing OAI with the aforementioned schedulers constitutes
the basis for further extensions and improvements of OAI
leveraging SD-RAN and network slicing.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support in parts by
the Bavarian Ministry of Economic Affairs, Regional Develop-
ment and Energy as part of the project ”5G Testbed Bayern mit
Schwerpunktanwendung eHealth” and in parts by the Federal
Ministry of Education and Research of Germany (BMBF) in
the programme of ”Souverän. Digital. Vernetzt.” joint project
6G-life, project identification number 16KISK002.

REFERENCES

[1] Rakuten. (2020) How elegant software can make 5G networks more
resilient. [Online]. Available: https://rakuten.today/blog/5g-network-
reliability-lightreading.html

[2] O-RAN Alliance e.V. (2019) Operator Defined Open and Intelligent
Radio Access Networks. [Online]. Available: https://www.o-ran.org/

[3] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet, “OpenAirInterface: A flexible platform for 5G research,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, 2014.

[4] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “srsLTE: an open-source platform for LTE
evolution and experimentation,” in Proceedings of the Tenth ACM
International Workshop on Wireless Network Testbeds, Experimental
Evaluation, and Characterization, 2016.

[5] Ettus Research. USRP B210. [Online]. Available: https://www.ettus.
com/all-products/ub210-kit/

[6] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-
vasilis, “Flexran: A flexible and programmable platform for software-
defined radio access networks,” in Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies,
2016, pp. 427–441.

[7] E. Coronado, S. N. Khan, and R. Riggio, “5G-EmPOWER: A software-
defined networking platform for 5G radio access networks,” IEEE
Transactions on Network and Service Management, vol. 16, no. 2, pp.
715–728, 2019.

[8] C.-Y. Chang, N. Nikaein, and T. Spyropoulos, “Radio access network
resource slicing for flexible service execution,” in IEEE Conference on
Computer Communications Workshops (INFOCOM), 2018.

[9] A. Papa, M. Klugel, L. Goratti, T. Rasheed, and W. Kellerer, “Opti-
mizing dynamic RAN slicing in programmable 5G networks,” in IEEE
International Conference on Communications (ICC), 2019, pp. 1–7.

[10] A. Oliveira and T. Vazão, “Adapting priority schemes to achieve network
slice isolation,” in Proceedings of the 35th Annual ACM Symposium on
Applied Computing, 2020, pp. 1164–1171.

[11] A. M. Alba, A. Basta, J. H. G. Velásquez, and W. Kellerer, “A realistic
coordinated scheduling scheme for the next-generation RAN,” in IEEE
Global Communications Conference (GLOBECOM), 2018, pp. 1–7.

[12] H. Fattah and C. Leung, “An overview of scheduling algorithms in
wireless multimedia networks,” IEEE Wireless Communications, vol. 9,
no. 5, pp. 76–83, 2002.

[13] H. Chaskar and U. Madhow, “Fair scheduling with tunable latency: a
round-robin approach,” IEEE/ACM Transactions on Networking, vol. 11,
no. 4, pp. 592–601, 2003.

[14] J. C. R. Bennett and H. Zhang, “Hierarchical packet fair queueing
algorithms,” SIGCOMM Comput. Commun. Rev., vol. 26, no. 4,
p. 143–156, Aug. 1996. [Online]. Available: https://doi.org/10.1145/
248157.248170

[15] F. Gringoli, P. Patras, C. Donato, P. Serrano, and Y. Grunenberger, “Per-
formance assessment of open software platforms for 5G prototyping,”
IEEE Wireless Communications, vol. 25, no. 5, pp. 10–15, 2018.

[16] Y. Y. Chun, M. H. Mokhtar, A. A. A. Rahman, and A. K. Samingan,
“Performance study of lte experimental testbed using openairinterface,”
in 2016 18th International Conference on Advanced Communication
Technology (ICACT), 2016, pp. 617–622.

[17] A. Virdis, N. Iardella, G. Stea, and D. Sabella, “Performance analysis of
openairinterface system emulation,” in 2015 3rd International Conference
on Future Internet of Things and Cloud, 2015, pp. 662–669.

[18] J. Manco, G. G. Baños, J. Härri, and M. Sepulcre, “Prototyping V2X
Applications in Large-Scale Scenarios using OpenAirInterface,” in 2020
IEEE Vehicular Networking Conference (VNC). IEEE, 2020, pp. 1–4.

[19] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-advanced for mobile
broadband. Academic press, 2013.


