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“Just as in Formula One, the best strategists have won before they even get onto the
field. If you are someone who loves intense racing, that can be a disappointment
because winning looks too easy. But if you are interested in how you get to the
position where winning looks easy, then you will find the sport more complex and
subtle than any other yet invented.” Ross Brawn & Adam Parr [1, p. 86]
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1 Introduction

Only a few years after the invention of the automobile in the late 19" century, people started
competing against each other by driving as fast as possible from town to town — motorsport was
born. In the early years of motorsport, the focus was not necessarily on speed but rather on the
technical reliability of the cars. For example, in the 1894 race from Paris to Rouen, only 15 of
102 starters reached their destination after 126 km [2, p. 30]. As a result of the public’s growing
interest in the races, automobile manufacturers themselves soon became involved in motorsport,
recognizing its potential as a showcase for their products performing under extreme conditions.
The statement “Win on Sunday, sell on Monday” originates from this period. In principle, nothing
has changed to this day about the fact that motorsport is mostly a marketing activity, in addition
to the development and testing of new technologies [3, p. 9]. For this reason, it is of great
importance to perform well in the races to be able to promote successes in combination with
the products of the respective brand. To be successful, the teams must exploit all opportunities
that give them an advantage over their competitors. One of the ways to influence the outcome
of races is race strategy, which is the thematic core of this thesis. In the following sections, an
introduction to the background is given.

1.1 Race Strategy in Circuit Motorsport

Motorsport is a diverse field with many vehicle classes and racing series, each with its regulations.
For land vehicles, a distinction can be made between driving along a given route and driving
on circuits [3, p. 2]. In the former case, the participants usually drive from a start point A to an
endpoint B, e.g., from Paris to Dakar in the original Dakar Rally. Thus, they pass most parts of
the route only once. On the other hand, in circuit racing, the participants drive on a closed race
track. The driver who crosses the finish line in the lead after the specified number of laps or
elapsed time wins the race. Consequently, the goal of each race participant is to achieve the
fastest possible lap time on average.

Entering and leaving a race track happens via a pit lane, usually located parallel to the start-finish
straight. Figure 1.1 shows the integration of the pit lane into the layout of the Hockenheimring in
southern Germany. However, the pit lane is not only relevant for accessing the race track. It also
allows the drivers to make a pit stop at the end of each lap. During a pit stop, for example, the
tires or the driver can be changed, or fuel can be refilled. All this impacts the rest of the race,
which is why pit stops are a key element in circuit motorsport. As will become apparent in the
following, race strategy is primarily based on the ability to influence the course of the race by
choosing pit stops wisely.
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Figure 1.1: Layout of the Hockenheimring located in southern Germany based on [4].

The goal of race strategy is to finish the race in the best possible position, which (in the result)
is mostly equivalent to finishing the race in the shortest possible race duration. Race strategy
generally comprises the following aspects, the relevance of which may vary depending on the
regulations of the respective racing series:

* Number and timing of pit stops
« Tires

*  Fuel

* Yellow phases

» Tactical opportunities

« Driving style and vehicle setup

These aspects and the related backgrounds are presented in detail in the following.

Number and Timing of Pit Stops

Various aspects cause the necessity for pit stops. The most dominant one is to provide the
race car with a fresh set of tires. Fresh tires allow the driver to achieve significantly faster lap
times than a worn-out set since racing tires degrade quickly. With combustion-powered cars,
another reason for pit stops is refueling. However, in many sprint racing series, refueling has
been banned in recent years, primarily for safety reasons. Therefore, this aspect applies mainly
to endurance racing. In electric racing series, the cars could theoretically be recharged during pit
stops. However, since this would take a comparatively long time, in the first seasons of the FIA
Formula E Championship (FE), for example, drivers simply swapped cars during a pit stop in the
middle of the race. This has no longer been necessary since the 2018-2019 season due to an
increased battery capacity in the cars. Further reasons for pit stops are repairing broken parts
of the car, changing drivers, or changing the car’s setup. The downside of pit stops is that the
driver loses time relative to his opponents for two reasons. First, the car is stationary as long as
the mechanics work on it. Second, driving through the pit lane is limited to a speed of 60 kmh™!
to 80kmh™! due to safety reasons while the other cars continue the race at full speed. [5]

Finding the best balance between the benefit and expense of making a pit stop is the major task
of a race strategist. Generally speaking, a pit stop in lap [ is beneficial if the sum of the lap times
with a pit Stop tiappitsiop(i) in the remaining laps li,; — I plus the relative time loss due to the pit
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stop t,;; is smaller than the sum of the lap times without a stop tapnopitstop() N the remaining
laps as stated by

ltot ltot

Z tlap|pitstop(i) + tpit < Z tlap|nopitstop(i)- (1 A )
i=l i=l

Consequently, a pit stop gets more appealing if a driver can drive significantly faster lap times
afterward, e.g., because he is on worn-out tires or because the relative pit stop time loss is small,
e.g., due to a yellow flag phase.

The general challenge is that future lap times are hard to estimate because they are subject
to many influences. This ranges from minor influences such as the difficulty of predicting
interactions between drivers with similar performance levels to significant influences such as
yellow flag phases. On the one hand, this means that it is impossible to determine the optimal
race strategy before a race, but that the team must continuously adapt the prepared strategy
to the ever-changing race situation. On the other hand, this implies that the decision for a pit
stop cannot be made separately for each race segment, but only in consideration of the overall
strategy for the race since strategy decisions in later laps influence the future lap times.

Figure 1.2 illustrates the relations from Equation 1.1 using an example that deals with a pit stop
near the end of a race. Since the example is limited to tire degradation, it is sufficient to consider
the corresponding time loss instead of the overall lap times. The starting point is a driver who
drives the 415! lap on tires with an age of 20 laps. In this example, the tires degrade linearly with
0.1slap™!. Thus, the driver suffers a lap time loss due to tire degradation of 2.0s on lap 41, of
2.1s on lap 42, and so on. Adding up these values shows that starting from the end of the 40"
lap until the end of the race after lap 55, the driver loses a total of 40.5 s due to tire degradation.
If the driver instead enters the pits at the end of lap 40 and puts on fresh tires, this initially results
in a time loss of 25s at the end of lap 41. However, the degradation then starts from zero. Thus,
the driver loses only 35.5s until the end of the race, including the pit stop. This gives him an
advantage of 5s over the variant without a pit stop. This example is, of course, highly simplified
since, for example, no interactions with other drivers on the track were taken into account.

40 41— Wwithout pit stop
With pit stop

30

20

10

Cumulative time loss in s

04 T T T T T T T
40 42 44 46 48 50 52 54

Race progress in laps

Figure 1.2: Comparison of the cumulative time losses due to tire degradation with and without making a
pit stop in an example scenario.

Tires

It has already been discussed that a fresh set of tires enables faster lap times than a used
set. Both performance and degradation behavior of racing tires depend primarily on the tire

3
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compound used. In many racing series, there is more than one tire compound to choose from,
resulting in various possible combinations for a race. For example, in the 2019 season of the FIA
Formula 1 Championship (F1), the tire supplier provided three different compounds per race [6,
art. 24.1]: soft, medium, and hard. These, in turn, were selected by the tire supplier from a total
of five compounds available that season, depending on the track characteristics.

In general, a softer tire can transmit higher forces than a harder tire, allowing the driver to
achieve faster lap times. The downside is that a softer tire degrades faster than a harder tire.
This behavior is visualized in Figure 1.3 as an example. The intersection of the corresponding
lines shows that a driver on a soft compound starts to lose time compared to a driver on a hard
compound after approximately seventeen laps. Depending on how many laps remain until the
end of the race and how much time is lost in the pits, it may be advantageous for the driver on
soft tires to make another pit stop to replace them, as shown in the previous example.

—— Soft
Medium
—&— Hard

Lap time loss in slap™*
-
= vl N
| | |

o
3]

0 T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 24

Tire age in laps

Figure 1.3: Visualization of the lap time loss due to tire degradation for three different compounds using
a linear degradation model with example parameters.

In addition to specifying the tire compounds for the pit stops, a race strategist must also determine
which compound the car starts the race with. For example, it must be taken into account that a
softer tire usually comes up to temperature faster than a harder one. This is important at the
start of a race to avoid immediately losing positions due to the initially tight driver field. However,
if an early pit stop becomes necessary due to the softer compound, this can throw the driver
back into traffic and negate the advantage.

Fuel

For combustion-powered cars, a further aspect of race strategy is determining the amount of
fuel to be filled into the car at the start of a race and the amount of fuel to be refilled during pit
stops (if permitted by the regulations). A higher mass of a race car causes slower lap times. This
is because the acceleration forces increase linearly with increasing vehicle mass according to
Newton’s law, whereas the transmittable tire forces do not increase to the same extent due to
wheel load degressivity, and the available engine power stays the same. Since race cars are
built lightweight, fuel mass makes up a considerable part of the total mass of a combustion
car at race start. For example, in F1, every participant is allowed to consume up to 110kg of
fuel per race [6, art. 30.5], which equals about 13 % of the total mass at race start (calculated
based a minimum vehicle mass without fuel of 743 kg in the 2019 season [7, art. 4.1]). The fuel
is burnt during the race and, therefore, the cars get lighter, which results in faster lap times with
increasing race progress.

4
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Determining the optimal fuel quantities for the race start and eventually refueling during pit stops
depends on various factors. If refueling is not permitted, the starting point is that the fuel must
last until the end of the race. If refueling is permitted, it is sufficient if the fuel lasts until the next
pit stop. Based on this, it can be weighed up whether it is faster to drive more efficiently and with
a reduced amount of fuel or with maximum power and higher consumption. This is, of course,
dependent on engine efficiency and track characteristics. For refueling during pit stops, it must
furthermore be considered that the fuel mass to be added affects not only the vehicle mass for
the subsequent driving but also the time it takes to refuel the car and thus the standstill time.

The time advantage from a slightly lower fuel mass at race start quickly adds up throughout a
race. It can be determined by comparing the total time losses in a race due to fuel mass ty,¢ tot-
Based on the formula for a single lap [8, p. 2989], they can be approximately calculated by [8, p.
2989]

Mtyel tot
Bfyel =

ltot

ltot

tfuel,tot = Z ((mfuel,tot - (Z - 1)BfueI)Smass) . (1 -3)
=1

Biel is the fuel consumption per lap, calculated by dividing the total fuel mass for the race
Myel ot DY the number of laps in the race li;. Syass IS the mass sensitivity of the lap time. It is
relatively constant in the range from minimum to maximum fuel mass [9]. Assuming that S;4ss
is 0.03skg™! [10, p. 84] and engine power is unaffected, the advantage of starting with a fuel
mass of 105kg instead of 110kg sums up to almost 4 s in a 50 laps race. When determining the
fuel mass at race start, this result must, of course, be compared to the time disadvantage due to
possibly lower engine power. It is believed that in recent seasons of F1, Mercedes, for example,
has often been able to start with a lower fuel mass without suffering a relevant performance
disadvantage to its competitors due to a more efficient engine [11].

Yellow Phases

In addition to tires and fuel mass, another aspect influences race strategy: various variants of
yellow flags. Due to the battles for position on the track, accidents frequently occur in motorsport
races. After an accident, track marshals must remove the crashed car(s) from the race track. For
them to do this safely, the racing speed must be reduced. Therefore, race control has several
options:

* Yellow flags waved in the affected sector
» Full-course yellow (in different variants)

In case of a minor danger for marshals and drivers, the favorable option is to wave yellow flags
in the affected sector of the race track, indicating to the drivers that they must reduce speed.
From a strategy perspective, the effect is negligible. Full-Course Yellow (FCY) phases are called
out if a significant danger is present and a reduced speed is necessary for the entire race
track. FCY phases thus have a big impact on race strategy. Depending on the regulations of a
racing series, there are different realizations of the concept of FCY. In F1, for example, FCY
phases are distinguished into Virtual Safety Car (VSC) and Safety Car (SC) phases. A VSC
phase prescribes a minimum lap time for every driver which is about 140 % of an unaffected lap
time [12]. In addition, overtaking is forbidden. Since a VSC phase affects all drivers in roughly
the same way, the gaps between them remain more or less constant throughout the phase.

5
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Slight differences occur depending on where on the track a driver is at the start and end of a
VSC phase. For example, if he is in a corner when the phase ends, his speed will be much
closer to the actual race speed than if he were in the middle of a straight, resulting in a smaller
time loss. VSC phases typically last for one to four laps [12]. During an SC phase, a real-world
car drives onto the track in addition to the already reduced speed. It is placed ahead of the race
leader, who must not overtake it. As with the VSC phase, overtaking is prohibited among the
drivers. The SC drives lap times of about 160 % of the normal lap times [12]. Thus, all drivers line
up behind it within one to two laps. This status is favorable in terms of safety. On the downside,
the race is neutralized, i.e., the gaps between the drivers vanish. An SC phase typically lasts for
three to eight laps [12].

In terms of race strategy, it is important to consider that the time lost during a pit stop under VSC
and SC conditions is significantly lower compared to normal race speed. This is because the
time loss depends on the difference between the time needed to get from pit entry to pit exit
when making a pit stop and driving on the race track. Thus, the relative time loss reduces if the
speed on the race track is decreased by a FCY phase, while the speed in the pit lane is always
limited and, therefore, not affected. [13]

Tactical Opportunities

In the context of battles for position, race strategy offers several tactical opportunities. They
are primarily relevant if the attacking driver is fast enough to follow but not to overtake the
driver ahead, e.g., because both competitors have a similar performance level or if the track
characteristic requires a significant lap time advantage for a successful overtaking maneuver. In
such a case, one of the following options can be used to overtake the opponent indirectly [14]:

e Undercut
e Overcut
+ Golong

If both cars are on a similar strategy, attacker A can make an early pit stop to fit a fresh set of
tires known as an undercut. Thus, he can drive faster lap times in the following laps than the
defending driver D on the worn-out tires. A will stay ahead after D’s pit stop if his cumulative
lap time advantage since his pit stop is larger than the gap between the two drivers was before
the pit stops. D can counteract the undercut attempt by coming into the pits directly in the next
lap. Thus, A has only a single fast lap which is often not enough to overtake. There are some
preconditions for the undercut to work out. First, A must not be stuck in traffic after his pit stop
such that he can drive fast lap times. This is known as driving in free air. Second, the new set of
tires must provide enough lap time advantage compared to the old set. Thus, the undercut is
usually applied when A changes from a harder to a softer compound. Third, the gap between D
and A must have been small already before the attempt. Fourth, the pit stop must work smoothly,
as time lost here can hardly be made up on the track. The disadvantage of an undercut attempt
is that A is more vulnerable later in the race due to his early pit stop since his tires are older than
those of the other drivers.

The overcut is similar but works the other way round. It is applied if D changes at first, mostly
from softer to harder tires. In this case, A can delay his pit stop by a few laps and try to drive a
few faster lap times than those of D and thus overtake him. The precondition for this to work is
that A’s tires are in reasonably good condition.
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Go long means that A delays his pit stop for a significant number of laps when D made his
pit stop. Thus, A does not directly gain a position but has much fresher tires at the end of the
race, which could be enough to overtake D in that stage. Again, the precondition is that A’s
tires are in good condition. In addition, this works best if tire degradation stays low for a long
time but increases significantly to the end. Executing go long also leaves the opportunity to
spontaneously reduce the planned number of pit stops by one if tire degradation turns out to be
lower than expected. Thus, A could stay in the lead until the end of the race.

Driving Style and Vehicle Setup

Finally, race strategy is one of the multiple influences on driving style and vehicle setup. Driving
style comprises whether a driver goes as fast as possible or deliberately slows down to save fuel,
reduce tire wear, and preserve the car. In this context, however, factors outside race strategy
must also be taken into account, such as engine durability or limitations due to insufficient
cooling at high temperatures. Therefore, driving style determination is a compromise between
different aspects.

The vehicle setup is mainly tuned from a vehicle dynamics perspective so that the driver has
confidence in the car and achieves the best possible lap times. However, the setup of the
front and rear spoilers, for example, determines downforce and thus influences tire degradation
behavior and top speed, thus overtaking performance on straights. As a result, race strategy
aspects cannot be ignored for vehicle setup decisions to prevent, for example, excessive tire
degradation or a lack of overtaking ability.

Summary
In summary, race strategy comprises the following aspects:

* It determines the number and timing of pit stops, trying to take advantage of
possible benefits from the particular race situation, e.g., yellow phases. Part of this
aspect is using tactical opportunities, such as the undercut.

» It determines the tire compounds fitted to the car during the pit stops.

» It determines the fuel mass at the race start and, if refueling is permitted, the
amounts refueled during pit stops.

» Itis one of the multiple influences on driving style and vehicle setup, as these, in
turn, affect the aspects mentioned above, especially the tire degradation behavior.

1.2 Timekeeping in Circuit Motorsport

Timekeeping comprises the activity of measuring all kinds of time information. This is mainly lap
times, sector times, and pit stop durations in circuit motorsport. In the context of race strategy, lap
times tj,, are the most important data because they combine a wide range of relevant information
in a single number, for example, on driver performance, car performance, tire condition, and
race situation. They are measured by calculating the time delta between a driver’s consecutive
finish line crossings. Summing up the lap times up to a specified lap I results in the race time at
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the end of that lap t,4.c(1) as stated by [8, p. 2988]

[
trace(l) = D tigp(D). (1.4)

i=1

Having the race times of all drivers available, the rank positions can be derived. They are
assigned in the order of ascending race times. The race is finished when the leader crosses
the finish line after completing the specified number of laps (or after a specified elapsed time in
some series). The other drivers have to finish their current lap but must not complete eventually
missing laps, for example, if they were lapped during the race. The final race times are referred
to as race durations later on.

A race track is usually divided into three sectors for more fine-granular analyses. The timekeeper,
therefore, does measure not only lap times but also sector times. This eases the comparison
between different drivers and teams and allows conclusions on a car’s setup. In F1, there are
even more fine-granular sectors known as marshal-sectors. However, these measurements are
not open to the public.

So-called timing boards are used in motorsport to overview the current race state. These boards
show the most important data for all drivers in a compact format. An example is given in Table 1.1.
Gap is the temporal distance to the leader, interval that to the driver ahead. The columns /ap,
sector 1, sector 2, and sector 3 contain the previous lap- and sector times. As soon as a
driver finishes the first sector, this time is entered, and the other two sector times are deleted.
Consequently, it is visible in which track sector each driver is located.

Table 1.1: Example timing board showing the race state for the top five drivers at the beginning of lap 16
in the 2019 Hungarian Grand Prix. Driver abbreviations: VER — Verstappen, HAM — Hamilton,
LEC — Leclerc, VET — Vettel, SAl — Sainz. Compound abbreviations: M — Medium, S — Soft.

Position Initials Gap Interval Lap Sector1 Sector2 Sector3 Compound Stops
1 VER - - 81.844s 29.343s 29.206s 23.083s M 0
2 HAM 2.327s 2.327s 81.899s  29.372s 29.171s - M 0
3 LEC 14.597s 12.422s 82.722s  29.451s 29.679s - M 0
4 VET 16.800s 2.333s 82.748s  29.380s 29.708 s - M 0
5 SAl 36.751s 20.118s 83.486s 29.643s - - S 0

The location of the pit lane next to the start-finish straight has several implications for timekeeping.
If a car drives through the pit lane, it inevitably also passes the finish line. To guarantee consistent
timekeeping, the finish line is either located in front of the first (most race tracks, e.g., Silverstone
in Figure 1.4a) or behind the last pit (some race tracks, e.g., Monaco in Figure 1.4b).

Both adjacent lap times are affected by a pit stop. If the finish line is located in front of the pits,
the lap time of the in-lap (driving into the pits) is affected only slightly, depending on the courses
of race track and pit lane as well as the pit speed limit. In F1, for example, the lap time of the
in-lap mostly rises by 1 s to 3s. However, the in-lap is even slightly faster than a normal lap in
some cases. This is the case for Silverstone, for example, because the race track has two slow
corners in front of the finish line (Figure 1.4a). The lap time of the following lap, known as out-lap
(driving out of the pits onto the track), mostly rises by 15s to 25s in F1. This is mainly due to
driving with the pit speed limit but also due to the standstill time while changing tires. If the finish
line is located behind the last pit, the effects appear the other way round.

During free practice and qualifying sessions, each stint starts and ends in the pit lane. A stint is
defined as the period a car drives on the race track between two pit stops. If the finish line is
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(a) Silverstone Circuit. (b) Circuit de Monaco.

Figure 1.4: Excerpts of the Silverstone and Monaco track maps based on [15]. The pit lanes are shown
in black, the tracks themselves in gray. The blue areas mark the actual pit locations of the
teams.

located in front of the first pit, the timekeeper can not measure a lap time for the out-lap. The
same counts for the in-lap on race tracks with the finish line behind the last pit. In the race,
the drivers line up in front of the start line. It is located differently from the finish line on most
race tracks. At Silverstone, for example, a start in front of the finish line would mean that some
drivers would have to start in a corner, which is disadvantageous compared to the other drivers
(Figure 1.4a). Consequently, the start line of the Silverstone circuit is located behind the finish
line, approximately in the middle of the start-finish straight. As a result of the different positioning
of the start and finish lines, the first lap time of a race can be calculated (from race start until
crossing the finish line for the first time). Still, it is not directly comparable to the following lap
times due to the different distances covered.

1.3 Short Overview of Popular European Circuit Rac-
ing Series

With an estimated 500 million global fans in 2019 [16], the F1 is among the most popular
circuit racing series in the world. Besides, there are many other circuit racing series that are
primarily aimed at the European market, such as FIA Formula E Championship (FE), Deutsche
Tourenwagen Masters (DTM), and FIA World Endurance Championship (WEC). The rules of a
racing series are usually divided into technical and sporting regulations. The governing body of a
series determines them, often the Fédération Internationale de I'’Automobile (FIA). The technical
regulations provide a framework for the car’s development, while the sporting regulations define
how the races are run from a sporting perspective. Therefore, the regulations heavily impact the
importance of race strategy for the racing series.

The FE is a racing series based on fully electric race cars that started in 2014 [17]. The series is
less attractive in terms of race strategy for two reasons. First, the tires have an all-weather tread
and are durable, so they often last the entire race weekend [18] and do not need to be changed
during a race. As the batteries of the cars also last the whole race since the introduction of the
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second-generation cars in the 2018-2019 season, there are almost no more pit stops in FE.
Second, the cars do not burn fuel, and thus their mass does not reduce throughout the race.
Consequently, an intelligent energy management strategy is more critical than a conventional
race strategy for these races.

The DTM is a touring car series sanctioned by the Deutscher Motorsport Bund. Refueling was
banned in the 2012 season [19]. Nevertheless, 2013 and 2014 were seasons in which race
strategy played an important role. In those years, drivers had the choice between two tire
compounds, option (soft) and prime (hard). In addition, a Drag Reduction System (DRS) was
introduced in 2013 [20]. This system reduces a car’s drag by folding down its rear wing flap as
soon as the driver activates it. A driver is only allowed to use DRS if he follows another driver
within a certain time window, mostly 1s. Furthermore, the number of activations per race is
limited. Folding down the rear wing flap increases the maximum speed on straights and thus
eases overtaking maneuvers. At the start of braking for the next corner, the wing is automatically
returned to its default position. Since the 2015 season, race strategy has become less important
again as the drivers have only a single tire compound at their disposal [21, art. 25.1]. In the
2015 and 2016 seasons [21, art. 39.1], and again in the 2020 season [22], strategic freedom
was further restricted by prescribing pit stop windows that allowed pit stops only within certain
laps. The DTM regulations were completely changed for the 2021 season. Cars of the FIA GT3
category, which is a common category in many racing series, are now used. It remains to be
seen whether race strategy will play a greater role again for the future DTM. At least the 2021
season was run with a single tire compound [23].

The WEC is a long-distance championship that has been running in its current form since
2012 [24]. Four different car categories run simultaneously in the races: LMP1, LMP2, GTE
Pro, and GTE Am [25, art. 1.1]. LMP1 and LMP2 include prototypes that are manufactured
specifically for this racing series. The GTE category corresponds to the former GT2 category. It
is divided into professional drivers (GTE Pro) and amateurs (GTE Am). Most of the races are 4 h,
6 h, and 8 h races, with two exceptions: 1000 Miles of Sebring and 24 Hours of Le Mans. Due to
the long race durations, the cars are not only equipped with fresh tires but also refueled during
the pit stops [25, art. 12.2.2]. Furthermore, several drivers share a car, so they also change
during pit stops [25, art. 12.2.2]. Regarding race strategy, the central aspect of such races is to
extend the stints as long as possible to spend as little time as possible in the pit. Stint lengths
are usually determined by the need to refuel, as one set of tires often lasts two to three stints.
A few hours before the end of a race, the strategy engineers plan the final pit stops such that
the cars reach the finish line with only a small amount of fuel left. Given the long durations and
different car categories, a simulation of the course of such races is almost impossible.

Due to the importance of F1 for this thesis, the racing series is presented separately and in more
detail in the next section.

1.4 The FIA Formula 1 Championship

The F1 is the highest class formula racing series in the world. Ten to twelve teams, each with
two drivers, have competed each season in the last decade. A season consists of about 20
races called Grand Prix (GP) on mostly different race tracks. Each driver and team receive
championship points based on their position at the end of a race [6, art. 6.4]. At the end of a
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season, the driver and team with the most points are awarded the drivers’ and constructors’
championships [6, art. 6].

The teams in F1 are equipped with enormous budgets, but there are also significant differences
between them. While Ferrari had 410 million dollars [26] available at the top end, for example,
Force India had to manage with 120 million dollars [27] at the bottom end in the 2018 season. As
a result of that amount of money in the sport, each aspect that helps to improve rank positions
is exploited. Therefore, in conjunction with a high degree of strategic freedom, race strategy is
highly important in this series.

From a strategy point of view, sporting regulations are of primary interest. The number of laps per
race is determined such that the race distance exceeds 305 km [6, art. 5.3]. The only exception
from this rule is the race in Monaco, which covers a distance of only 260 km due to the low
average speed [6, art. 5.3]. Per race weekend, the tire supplier (currently Pirelli) provides two
(up to the 2015 season) or three (since the 2016 season) different tire compounds for dry track
conditions [6, art. 24.1]. Depending on the specific properties of the race track, they are chosen
from a range of four to seven available tire compounds per season, see Table 1.2.

Table 1.2: Overview of available tire compounds in the seasons from 2014 to 2019 as published in [13].
The column names are inspired by the 2019 season compound names to enable comparison
of the compounds over the years. A1 is the hardest compound, and A7 is the softest.

Season A1 A2 A3 A4 A5 A6 A7
2014 Hard Medium Soft Supersoft - - -
2015 Hard Medium Soft Supersoft - - -
2016 Hard Medium Soft Supersoft  Ultrasoft - -
2017 Hard Medium Soft Supersoft  Ultrasoft - -
2018 Superhard Hard Medium Soft Supersoft  Ultrasoft  Hypersoft
2019 - C1 Cc2 C3 - C4 C5

For example, if the tires are heavily stressed on a race track in the 2019 season, C1, C2, and C3
are available for selection, whereas C3, C4, and C5 are provided on less stressful city circuits.
For simplicity, since the 2019 season, instead of the actual compound names C1 to C5, fans
are only shown the relative hardnesses within the selection of the respective race weekend, i.e.,
soft, medium, and hard. Unless stated otherwise, the compound names in this thesis always
refer to the absolute values A1 to A7 as introduced in Table 1.2 to avoid confusion. In addition to
the dry compounds, the teams have two wet compounds available: Intermediate for light and
wet for heavy wet conditions. An important rule in this context is that every driver has to use at
least two different tire compounds per race [6, art. 24.4].

Refueling during pit stops is banned since the 2010 season. Therefore, the cars have to finish a
race with a maximum of 100 kg (2014 to 2016) [28, art. 29.5], 105kg (2017 and 2018) [29, art.
30.5] or 110kg (2019) [6, art. 30.5] of fuel.

At the end of the 2000s, it became obvious that the aerodynamic devices of the cars caused
a lot of dirty air behind them. Due to the generated turbulences, it became harder and harder
to pursue a car ahead in close proximity to overtake it. Therefore, F1 introduced a DRS in the
2011 season. A driver is allowed to activate the system on specified straights if he is less than
1 s behind the car ahead of him [6, art. 21.5]. Different sources estimate the speed advantage
of the DRS to be between 5kmh™ [3, p. 203] and 15 kmh™! [30]. However, overtaking on the
track is still hard due to aerodynamics, which is why undercut and overcut are powerful strategy
elements in F1 [10, p. 79].
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The course of a race weekend is similar to most circuit racing series. In F1, there are three free
practice sessions [6, art. 32]. Usually, the first free practice session is used to find a basic setup
for the car, the second session to perform some stints under simulated race conditions, and the
third session to prepare for the subsequent qualifying. The goal of the qualifying is to determine
the starting order for the race. The driver with the fastest lap time starts in the first position,
followed by the other drivers in the order of ascending qualifying lap times. In F1, the qualifying
is divided into three sessions: Q1, Q2, and Q3 [6, art. 33]. After Q1, the five to six slowest drivers
(depending on the size of the starter field of a specific season) are dismissed. Thus their starting
order is fixed. The same happens after Q2. The starting order of the ten remaining drivers is
determined in Q3. An aspect to mention is that the drivers participating in Q3 must start the race
on the tires they have used to set their fastest lap time in Q2 (except for wet conditions on race
day). Using the tires from Q2 avoids drivers trying to save their tires in Q3 because the fastest
driver should be in pole position. This puts the top ten drivers at a slight disadvantage compared
with the rest of the field, which can choose its tires freely. In the race, the drivers finally compete
against each other. It finishes as soon as a predefined number of laps is completed [6, art. 5.3].

1.5 Motivation and Goal

In this chapter, the possibilities of race strategy to influence the race result were explained. It was
shown why race strategy is an essential aspect of circuit racing when the regulations provide the
necessary strategic freedom. This can be further substantiated by some quotes that show that
wrong race strategy decisions often lead to sub-optimal race results:

“Mercedes has discovered a ‘bug’ in the tool it uses for its Formula 1 virtual safety car calculations,
after concluding its investigation into what went wrong at the Australian Grand Prix” [31]

“Mercedes Formula 1 team boss Toto Wolff says he ‘fully understands’ Ferrari’s unsuccessful
decision to switch Sebastian Vettel to a two-stop strategy in the Spanish Grand Prix” [32]

“Lewis Hamilton swept to a virtually unchallenged win in the 2018 Formula 1 Singapore Grand
Prix as another Ferrari tactical blunder cost Sebastian Vettel the chance of victory” [33]

This raises the question of how race strategy can be determined reasonably and objectively. Big
racing teams, especially those in F1, have entire departments working on this topic. They use
the available data from free practice and qualifying sessions as well as from previous races and
seasons to parameterize simulation models with which they can simulate a race. Thus, they
can prepare a basic race strategy to start with as well as reactions to unforeseen race events.
During the race, they continuously reassess their strategic options based on the race situation
and adjust the strategy if necessary. However, due to the secrecy resulting from the tough
competition, the teams do not publish their methods and models. Consequently, teams with less
budget that compete in smaller racing series cannot profit from that knowledge. Furthermore,
almost no literature can be found on race strategy, which is why the state of the art in racing
teams does not correspond to that in science. Closing this gap and providing a starting point
for future research is the motivation of this thesis. The goal is to develop the methods and tools
necessary to make objective race strategy decisions. For this purpose, it is essential to be able
to evaluate the effects of a decision on the course of a race and, ultimately, the result. Besides
this application, some methods and tools can also be used for related tasks, e.g., in autonomous
racing, as will be shown in the following chapters.
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In the following, the state of the art in four research areas related to the simulation of circuit
races is highlighted. These areas are racing line generation, lap time simulation (LTS), race
simulation (RS), and the automation of race strategy decisions. Afterward, based on the state of
the art and the research goal, the research questions are derived.

2.1 Racing Line Generation

Thematic Background

The goal of race strategy and the driver is to complete every lap, and ultimately the race, as
fast as possible. The driver can influence the lap times by optimizing the trajectory he drives
along the race track. A trajectory is composed of two parts: path and velocity profile. Assuming
that the driver exhausts the vehicle dynamics limits, the optimal velocity profile for a given path
can be calculated. Thus, determining the fastest trajectory can be substituted by determining
the fastest path for a given longitudinal and lateral acceleration potential of the race car, known
as racing line. According to the literature, a racing line can be sufficiently represented by three
basic elements: straights, constant-radius arcs, and clothoids [34, 35]. Nevertheless, a driver
needs lots of experience to recognize and drive the optimal racing line. This line can only be
determined by considering consecutive corners [36, p. 324], or ultimately the race track as a
whole. However, the basic concept behind racing lines can also be explained with a single corner.
Trzesniowski [36, p. 322] distinguishes three different types of lines through a corner, which are
shown in Figure 2.1:

» Classic racing line (maximum radius and mid-corner speed)
* Early apex line (maximum corner entry speed)
» Late apex line (maximum corner exit speed)

The classic racing line follows the largest possible radius R through the corner. This allows to
drive the highest minimum corner speed v, nax at the maximum lateral acceleration of a car
ay max as stated by

Ve,max = 4/ dy,max " R- (2.1)

An early apex means that the driver starts to turn in early and, therefore, reaches the inner
boundary of the track earlier than on the classic racing line. This is the typical line for a driver
who tries to overtake another driver on the inner side of the corner [36, p. 322]. In total, the early
apex line is slower than the other lines. However, the overtaken driver cannot use the speed
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Figure 2.1: Visualization of three different types of lines through a corner: classic racing line, early apex
line, and late apex line based on [36, p. 323].

advantage of another line if the overtaking driver blocks it. A late apex is usually chosen if the
driver tries to maximize the speed at the corner exit, e.g., if it is followed by a long straight.

The choice between those lines is based on race situation and vehicle dynamics limits. The
more longitudinal acceleration potential a car has in relation to its lateral acceleration potential,
for example, the more the ideal line will shift towards a late apex [36, p. 322]. Compared to the
classic racing line, the late apex line allows later braking and earlier acceleration at the expense
of a lower minimum corner speed. This results in a time advantage when the longitudinal force
potential is high, as the car spends less long in the area bounded by the lateral acceleration
potential and longer in the area bounded by the longitudinal acceleration potential [36, p. 323].
Conversely, if the car is stronger in the lateral than in the longitudinal direction, the driver will
prefer the classic racing line to take as much speed as possible through the corner. Apart
from these considerations, additional influences such as different friction potentials (tarmac
differences, wet spots), corner combinations, and traffic on the race track must be considered in
reality [36, p. 322].

Literature

The algorithms used for racing line generation are part of the area of trajectory planning. Some
approaches plan entire trajectories while others plan only paths, so a velocity planner must
accompany them. Paden et al. [37] distinguish three categories: variational methods, graph
search methods, and incremental search methods.

Variational methods are built on a variation of the parameters or control inputs that determine
the vehicle’s movement. For example, if a series of splines represents the path, the algorithm
varies the spline parameters, changing the path on the track to optimize an objective function.
This is used by Braghin et al. [38] to minimize the curvature along the path. Optimal control and
model predictive control are also part of variational methods. In these approaches, the control
inputs of a vehicle model are varied [39-41].

Graph search methods are based on discretizing the possible configuration space, i.e., the track
and, if applicable, the velocity profile. These discretization points are called nodes. Edges, often
splines, then connect the nodes of adjacent layers. Usually, the algorithms directly remove those
edges that violate hard constraints, such as minimum cornering radii or maximum accelerations.
In addition, edges that would cause a collision with static or dynamic objects in the vehicle
surroundings can be removed. Finally, the cost of every edge is calculated based on a given
heuristic. The algorithm then follows the edges with the lowest costs. Popular graph search
methods are Dijkstra [42], A* [43, 44], and D* [45—-47].
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Incremental search methods work similarly to graph search methods. In contrast, however, they
do not discretize the configuration space in fixed intervals but sample it randomly. The sampled
points are then connected to obtain a path or trajectory. The logic for connecting the points must
ensure that the result is drivable in terms of minimum cornering radii and maximum accelerations.
Then, the best variant can be chosen, for example, the fastest one. As a consequence of the
random sampling, the result improves the longer the algorithm runs, making more and more
points available. Thus, early stopping could lead to an unsatisfying result. The principle is used
for RRT [48] and its successors RRT* [49] and RRT* [50], for example.

Many methods published in the field of trajectory planning assume driving at low lateral and
longitudinal accelerations and are therefore not well suited for racing line generation. For example,
due to the high accelerations occurring in motorsport, the otherwise often neglected effects in
the non-linear range of vehicle dynamics should be taken into account in model-based planning
approaches, e.g., the influence of longitudinal and lateral wheel load transfers together with
non-linear tire models. However, some works related to regular road traffic also address the area
of high accelerations since it is relevant, for example, for the planning of evasive maneuvers on
normal roads [51, 52].

Methods used for trajectory planning in racing must keep the car at the limits of handling
throughout the lap. Their goal is to minimize the lap time directly or indirectly while maintaining
the vehicle dynamics limits. Furthermore, the resulting paths and thus the curvature profiles must
be smooth to be driven at high speeds. Geometry-based approaches well fulfill this requirement.
Braghin et al. [38] minimize the curvature along the race track by solving a quadratic optimization
problem that shifts the discretized racing line points between the left and right track boundaries.
They state that the optimal racing line is a compromise, weighted depending on the vehicle
dynamics, between minimum-curvature line and shortest path. Based on this, Cardamone et
al. [53] use a genetic algorithm to optimize the weighting between minimum-curvature line and
shortest path individually for each track segment. The idea of Kapania et al. [54] is quite similar
to that of Braghin et al. [38]. However, it works the other way round: At first, a velocity profile is
generated, followed by a convex optimization of the path.

Apart from geometry-based approaches, many publications in the racing context rely on model-
based optimization approaches such as optimal control and model predictive control. One can
distinguish planners with a limited optimization horizon [55-57], approaches based on learning
model predictive control [58, 59], and globally optimal minimum-lap time planners [60-71]. The
publications in the latter category differ primarily in the level of detail of the models. For example,
Herrmann et al. [62] also take into account a thermodynamic model of the electric powertrain
when determining the optimal trajectory. The optimization over a limited horizon is often chosen
to reduce the computational effort if a planner has to run online on the car. Furthermore, static
and dynamic obstacles can be considered [55]. Learning model predictive control approaches
improve the lap time lap-wise until they reach saturation. Minimum-lap time planners are mostly
too slow for real-time applications, so their main application is offline optimization. They come
closest to the optimal racing line.

A disadvantage of the model-based approaches is that they require detailed vehicle models and,
thus, many well-known parameters. Therefore, other approaches were also investigated. Jain
et al. [72] use Bayesian optimization to compute a racing line, which requires only the center
line and track widths of the race track and the mass and center of gravity position of the car.
However, they find that the approach does not scale well for long tracks with many corners. The
publications by Jeon et al. [73] and Arab et al. [74] are based on RRT . Funke et al. [75], Rizano
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et al. [76, 77], and Glaser et al. [78] work with predefined geometries (e.g., straights, clothoids,
constant-radius arcs) and maneuvers, respectively, that are composed to obtain the final line.

2.2 Lap Time Simulation

Thematic Background

As the name suggests, an LTS is used to calculate the lap time of a race car as accurately
as possible. Therefore, LTS are often used for virtual setup optimization [79, p. 7]. Given the
nature of the problem, LTS is closely related to the field of trajectory planning. In contrast to
standard trajectory planning methods, however, LTS has its focus on fully exploiting the race
car’s longitudinal and lateral acceleration capabilities. The influence of a human driver is not
modeled in most LTS since it is assumed that race drivers can make full use of their car.

Two groups of LTS can be differentiated. The first one, represented by LTS based on steady-state
and quasi-steady-state modeling, acts as a velocity planner for a predefined racing line [79, p.
21], which can be created by an algorithm or from real measurements. The second group is
represented by trajectory planning algorithms that simultaneously optimize path and velocity
profile, mostly based on optimal control and model predictive control methods with transient
simulation models. The three modeling approaches differ in computational speed and accuracy.

As the name suggests, steady-state and quasi-steady-state modeling assumes a steady system
state in all discretization points, i.e., the vehicle states are time-independent. Consequently,
transient effects such as actuator rate limits, yaw inertia, and the delayed response of tire forces
when increasing slip or wheel load are neglected [79, p. 21]. In a steady-state solver, the race
car is modeled as a point mass with maximum longitudinal and lateral accelerations. The race
track consists of two segment types, straights and corners, whereby each corner has a fixed
radius [80, p. 9]. The longitudinal (on straights) and lateral (in corners) acceleration capabilities
of the car are considered separately by the solver [81]. Consequently, combined accelerations,
e.g., when braking into a corner, are not modeled. This and the assumption that every corner
segment is driven with a fixed velocity (due to a single radius) [81] impose limitations on the
simulation accuracy. Steady-state solvers no longer make sense due to the computing power
available today.

Quasi-steady-state solvers are a significant improvement over steady-state solvers. The race
track is represented by small segments, each with a specific curvature [81]. In contrast to a
steady-state solver, it is therefore not necessary to decide for each segment whether it is rather
a straight or a corner when modeling the track (which in the steady-state solver determines
whether it considers purely longitudinal or lateral accelerations in that segment). Consequently,
combined accelerations are considered in the quasi-steady-state solver, which increases the
validity of the simulation result. In the simplest variant, a g-g diagram is used for modeling the
vehicle dynamics [79, p. 21]. It defines the maximum possible longitudinal acceleration for a point
mass as a function of the acting lateral acceleration (and vice versa). Depending on the real
vehicle behavior, different shapes can be used to model the possible combined accelerations,
for example, circle, ellipse, and rhombus. Examples for these shapes are shown in Figure 2.2.
They consider that the positive longitudinal acceleration in most cars is limited by the available
engine power and not by the tires.

A circle will, in general, overapproximate the possible accelerations since the tires usually
cannot transmit equal amounts of longitudinal and lateral force [82, p. 45]. In addition, the

16



2 State of the Art

T 10
w

£

£ 54
C

S

T 0
()

E

8 —5-
©

g

£ —10
2

2 —15
[e]

— I I I I I I I

—-15 —-10 =5 0 5 10 15
Lateral acceleration in ms™2

Figure 2.2: An example g-g diagram showing three possible shapes for modeling the acceleration
relationship: circle, ellipse, and rhombus. The positive longitudinal acceleration is limited by
the engine power and not by the tires.

magnitude of the wheel load transfer differs in longitudinal and lateral directions. A rhombus
is on the conservative side for combined accelerations and thus leaves reserves, e.g., for
controller interventions if the velocity profile is to be driven on an autonomous race car. An ellipse
provides a good compromise for most applications based on these considerations. Instead of
using a g-g diagram, a g-g-v diagram can be used to include a velocity dependency of the
accelerations [83]. This dependency is important for race cars due to aerodynamic downforce
and drag. For increased accuracy, bicycle or two-track models can be employed instead of g-
g diagrams to model vehicle dynamics. They allow, for example, the more accurate consideration
of wheel load transfers and the effect of wheel load degressivity, i.e., the degressive increase of
the tire force potential with increasing wheel load. Furthermore, the powertrain can be modeled
in detail.

The task of the quasi-steady-state solver is to calculate the velocity profile. The most common
quasi-steady-state solver type is forward-backward. Its working principle is visualized in Fig-
ure 2.3. First, the racing line curvature is searched for local maxima. These are assumed to
represent the apexes of corners where the driver uses the full lateral acceleration potential.
Consequently, the maximum possible speed for these points can be derived from the vehicle
dynamics model (marked 1 in the figure). Next, the solver iterates along the discretization points
in forward and backward directions starting from the apexes. For every discretization point,
it determines which share of the lateral acceleration potential is used to keep the car on the
track and derives from the vehicle dynamics model how much longitudinal acceleration potential
remains. In the forward direction, the positive, and in the backward direction, the negative
longitudinal acceleration potential is used to determine the velocity at the next point (marked
2 in the figure). As soon as the forward and backward calculations intersect, the braking point
between the adjacent apexes is determined (marked 3 in the figure). [79, 84, 85]

In transient modeling, the vehicle states are time-dependent. Thus, the states of previous points
affect those of the following points [79, p. 33]. This kind of modeling is usually utilized in optimal
control and model predictive control approaches. The optimization determines the vehicle’s
control inputs to achieve the fastest possible lap time while staying within the track limits [79,
p. 33]. The computational effort is much higher than for the other solver types. For example,
computing the minimum-time trajectory with a two-track model based on an optimal control
approach takes 151 s [86], whereas computing the velocity profile with a quasi-steady-state
approach on a race track more than twice as long on the same hardware takes only 1.2s [9].
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Figure 2.3: Example velocity profile to demonstrate the working principle of a forward-backward solver.

However, the results of transient modeling are more accurate [79, p. 7]. In addition, the racing
line must already be available for the quasi-steady-state approach.

Literature

Having presented the basics of the three modeling types, their use in publications is sum-
marized. The quasi-steady-state-based calculation of lap times is a widely used technique in
motorsport [38, 83, 87-89]. Brayshaw et al. [85] find that a quasi-steady-state solver and a
transient seven-degrees-of-freedom model show similar sensitivities to setup changes. A similar
conclusion is drawn by Kelly [90]. Looking for optimal control and model predictive control ap-
proaches, Casanova et al. [91], and Tavernini et al. [92] use optimal control to study the influence
of different car properties on the time required to perform individual driving maneuvers. The
use of optimal control specifically for LTS was first investigated by Casanova [93] and Kelly [90].
Kelly [90] increases the drivability of the result by adding stability criteria to the objective function.
Timings et al. [94] pursue a similar goal. In addition to model predictive control, they introduce a
compensatory controller to take into account that real drivers cannot perfectly utilize the car’s
maximum potential. Consequently, it is more likely that the simulated lap time can be achieved
in reality. VOIkl [80, 95] combines transient modeling and steady-state solver by outsourcing
the calculations of the transient states into a separate model. Veneri et al. [96] follow a similar
approach by outsourcing vehicle complexity to a quasi-steady-state model that provides a g-g di-
agram for the optimal control problem. In addition to these publications, most of the model-based
optimization approaches listed in Section 2.1 could also be used for LTS [60—66, 70, 71]. Some
of them allow further investigations of different influences on lap times, for example, through a
thermodynamic tire model [71] or friction coefficient differences along the track [60]. The effects
of a thermodynamic tire model on lap times are also analyzed by Kelly et al. [97], and West et
al. [98]. While the former publication only considers the temperature influence on the coefficient
of friction, the latter also considers its influence on tire wear.

In addition to standard methods, special requirements have also been investigated over the years.
Most of the LTS assume a flat track. However, some race tracks have banked corners or steep
inclines and declines. For such cases, Lot et al. [70] as well as Perantoni and Limebeer [99,
100] present how to consider information on elevation and banking angle by using a three-
dimensional representation of the track in lap time minimization problems. LTS can not only be
used to calculate velocity profiles but also to calculate the fuel or energy consumption. Therefore,
Limebeer et al. [101] demonstrate a method to obtain the time-optimal energy management
strategy. Related to this problem, Ebbesen et al. [102] improve the computational speed at the
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price of lower accuracy. Salazar et al. [103] depict a control scheme to follow an offline computed
energy management strategy online on the car. Liu et al. [104] investigate how energy and
thermal constraints can be considered for energy management in FE. Herrmann et al. [105]
describe a velocity planner that minimizes the average lap time of electric race cars, taking into
account a limited amount of energy as well as powertrain limitations. It is based on a sequential
quadratic programming formulation that is continuously solved while driving and can thus react
to deviations in the course of the race, for example, overtaking maneuvers. Optimal control for
LTS for motorcycles instead of cars was also investigated [68, 106].

2.3 Race Simulation

The section on RS is divided. First, the fundamentals of RS are presented. Subsequently, the
modeling of probabilistic effects is discussed more specifically.

2.3.1 Race Simulation Fundamentals
Thematic Background

In contrast to LTS, RS simulate not only a single lap but an entire race. Consequently, long-term
effects, such as tire degradation and mass reduction due to burnt fuel, are no longer negligible,
as is normally the case with LTS. Also, the interactions between drivers must be taken into
account. The exact physical modeling of most effects would be too complex due to the multitude
of influences and would increase computation times so much that a reasonable application
of the RS is hardly possible. One example is the degradation behavior of racing tires, which
depends not only on the thermodynamics of the tire, the brakes, and the track but also on the
forces transmitted and the slip that occurs. Therefore, the concepts available in the literature are
mostly based on empirical models that allow fast computing times and simple parameterization.

Literature

Two sources do not deal with a holistic RS, but pick out specific effects. McLaren [107] provides
an example of how to calculate the influences of reduced fuel mass and time losses due to pit
stops. Farroni et al. [108] investigate tire degradation on a microscopic level by analyzing the
influences of temperature and wear on the coefficient of friction.

The little literature available on holistic RS can be grouped into two approaches: a segment-wise
discretization [109] and a lap-wise discretization [110—-112]. For the segment-wise approach,
Bekker et al. [109] divide the race track into small segments, every of which is responsible for
a defined fraction of lap time and fuel consumption. The segments permit or forbid overtaking
maneuvers depending on their location (i.e., in corners or on straights). Using driver-specific
base lap times and considering effects such as burnt fuel mass and aerodynamic losses when
following closely after another driver allows calculating the time each driver spends in a segment.
Overtaking maneuvers are executed if the attacker is fast enough to overtake the car ahead
before reaching the end of the segment. Pit stops are modeled by adding a time part for the
driving along the pit lane and one for the standstill. The RS presented by Phillips [110] is based
on a lap-wise discretization, i.e., it simulates lap after lap. In every lap, the driver-specific lap
times are determined by adding a base lap time (containing driver and car performance), a time
part depending on the fuel mass, and one depending on the tire age. Additional time parts are
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added to consider grid positions and start from a standstill in the first lap. Summing up all lap
times up to the end of a specified lap results in the race time of that lap, compare Equation 1.4.
The calculated race times of adjacent drivers are compared to check whether the rear driver
is fast enough to overtake. If his race time advantage exceeds a threshold, the maneuver is
successful. Otherwise, a minimum distance is established between the drivers. If a driver is much
faster than the drivers ahead, he can also overtake multiple drivers within a lap. Salminen’s [111]
and Sulsters’ [112] approaches are similar to that by Phillips [110]. However, Sulsters [112]
simplifies the depth of some effects. For example, the pit stop time loss is not track-specific, and
only a single car can be overtaken per driver and lap.

2.3.2 Probabilistic Influences in Race Simulations
Thematic Background

Real races are heavily affected by probabilistic influences, e.g., FCY phases. In RS, such
influences are typically evaluated using Monte Carlo simulations [10, p. 86]. In Monte Carlo
simulations, the random variables included in the models are sampled based on probability
distributions. This method allows drawing conclusions about a quantity of interest after many
trials have been conducted [113, p. vii]. In the present case, the quantity of interest is the
distribution of rank positions at the end of the race. For this distribution to be meaningful, the
probabilistic influences on the race must be modeled realistically.

Literature

Table 2.1 contains a qualitative evaluation of the probabilistic effects in RS that were considered
in the literature.

Table 2.1: Overview and qualitative evaluation of the modeled probabilistic effects in race simulations,
as published in [12]. The more the circle is filled with black, the more detailed the effect was
modeled.

Modeled effect Bekker et al. [109] Phillips [110] Salminen [111] Sulsters [112]

Starting performance
Variability of lap time
Variability of pit stop duration
Accidents and failures

Damaged car

SIPICICIOI
v w00
veow 0w
PG @

Full-course yellow phases

Starting performance comprises the effect that some drivers are, on average, better starters
than others. This depends, for example, on how quickly a driver reacts to the green light and
how well he operates the clutch. Variability of lap time and variability of pit stop duration take
into account that laps, as well as pit stops, cannot be perfectly repeated. Accidents and failures
both result in a retirement of the affected driver(s). However, accidents mostly cause an SC
deployment, whereas failures more often result in a VSC phase, as drivers can still drive the
car off the track. The modeling of these phases in the simulation is summarized under the item
full-course yellow phases. Salminen [111] furthermore takes into account that accidents and
failures do not necessarily lead to retirement but can also result in a damaged car that continues
the race with a slow lap time.
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Bekker et al. [109] include simple models for starting performance and car failures. For the
former, they use a discrete empirical distribution with specific probabilities for each driver-car
combination, yielding a finite number of positions that the driver gains or loses. Failures are
modeled with a uniformly distributed probability per lap, with no distinction between possible
causes. It is also mentioned that the pit stop duration is varied, but this is not further explained.
Phillips [110] considers most of the relevant effects. He models lap time and pit stop duration
variability with driver-specific normal distributions and log-logistic distributions, respectively,
resembling real-world behavior. Salminen [111] is similar to Phillips [110] in general. He neglects
the pit stop duration variability but adds a model to consider damaged cars. In comparison to the
two papers mentioned before, Sulsters [112] focuses on the modeling of accidents and failures.
She applies Bayesian inference to be able to assign a retirement probability to drivers without
failures or accidents in the database.

2.4 Automation of Race Strategy Decisions

Thematic Background

In the context of RS, it is of interest how race strategy decisions are made and how they can be
automated. The investigation of race strategy decisions is part of the field of sports analytics.
Analyzing sports competitions in a retrospective is of great interest to coaches and fans, for
example, as it can help to improve the effectiveness of training and provide fans with deeper
insights into the sport. However, predicting the results of future events makes up the larger
part of the literature. These are mostly two-class (win, lose) or three-class (win, lose, draw)
classification problems depending on the sport. Such information is of value for bookmakers
and betters, for example. Most approaches in the literature are based on machine learning
techniques, e.g., decision trees, artificial neural networks, and support vector machines. They
allow identifying relations and patterns in large amounts of data that are difficult to capture
with other approaches [114, p. 5]. For a deeper introduction to machine learning techniques,
Géron [114] can be recommended. The following presentation of the literature coverage focuses
on the thematic background, i.e., sports analytics.

Literature

The literature deals with three application purposes: analyses that are performed before an
event (e.g., result prediction), after an event (e.g., statistics), and during an event (e.g., as
decision support). Most publications belong to the former two categories. Studies can be
found on (American) football [115-118], greyhound racing [119—-121], horse racing [122—124],
soccer [125-129], swimming [130], basketball [131], hurdle racing [132], javelin throwing [133],
rugby [134], and yacht racing [135]. Some research efforts have also been made to predict results
for more than one sport using the same methodology [136, 137]. In motorsport, most studies
are related to result prediction for the American NASCAR racing series [138-141]. According to
Pfitzner et al. [139], the result position of a NASCAR driver correlates with several features such
as car speed, qualifying speed, and pole position. Allender [141] finds that driver experience and
starting position are the most significant predictors for result position. Another interesting result
is that drivers of multi-car teams tend to achieve better results than those of single-car teams
in NASCAR [140]. With regard to F1, Stoppels [142] and Stergioudis [143] have their focus on
predicting race results with machine learning methods. Especially Stergioudis [143] investigates
lots of possible features in the three categories driver features (e.g., qualifying position, races
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finished), constructors features (e.g., constructors’ championship position, times retired), and
other features (e.g., circuit name, average overtakes per race).

The category of in-event analyses is of more interest for automating race strategy decisions.
Gartheeban et al. [144, 145] investigate how machine learning methods can be used to decide
when to change the pitcher in baseball. Bailey et al. [146], and Sankaranarayanan et al. [147]
work on result prediction in cricket. Their methods allow predictions to be made during an event
based on the course of the competition. The prediction of the strategies of opponent players in
computer games is examined by Weber et al. [148]. Tulabandhula et al. [149] predict the change
in position during a stint in NASCAR races based on whether none, two, or four tires were
changed in the preceding pit stop. Many features are considered as an input for the prediction,
e.g., the current position, the rate of change in position, and the performance of the driver’s
neighborhood. The thesis of Choo [150] is built on the results of Tulabandhula et al. [149]. Liu et
al. [151] published an approach for the automated determination of the electric race strategy in
FE races. It is about making optimal use of the available energy throughout the race and reacting
to unexpected race events. They use artificial neural networks to predict the car’s performance
and Monte Carlo tree search to make the decisions. Aversa et al. [152] analyze problems in
Ferrari’s decision support system, which led to bad decisions in the final race of the 2010 season.

In addition to the publications listed, two sources are in principle relevant to this thesis but
whose implementation is unclear. Therefore, they cannot be used scientifically but should be
mentioned for completeness. For several seasons, Amazon [153] has been producing graphics
that are displayed live during a race and predict, for example, the probability of overtaking in a
battle for position. Unfortunately, details about the underlying machine learning models have
not been made public. Maiza [154] published an online article about the possible use of a
reinforcement learning agent to support race strategy decisions in F1. However, the article lacks
details about the implementation and parameterization of the underlying race simulation, the
exact network architecture, the pre-processing, and the training process. Since the code has not
been published, there is no way to answer these points based on the implementation. In addition,
according to the article, the agent was only applied to a single race, leaving the transferability to
other races unclear.

2.5 Derivation of the Research Questions

Based on the state of the art presented in the previous sections and the research goal outlined
in Section 1.5, the following research questions are posed for this thesis:

1. How should a race simulation be designed to conduct realistic race strategy
studies?

2. How can the necessary parameters for a race simulation be robustly determined
with little knowledge of the exact vehicle, driver, and track characteristics?

3. How can the race strategies of opposing drivers be determined automatically in a
race simulation so that own race strategy decisions can be evaluated objectively?

In the following paragraphs, the scope of these three research questions is explained in more
detail.
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Research Question 1

To be able to evaluate the effects of race strategy decisions on the race result, a comprehensive
RS is needed. Such a simulation allows an objective preparation of different strategies before a
race and supports decisions that must be made quickly during a race. Even after a race, it can be
used to evaluate alternative strategies and learn for future races. Due to the good compromise
between accuracy and computational speed, most available literature sources simulate circuit
races based on empirically motivated models and lap-wise discre