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Channel Polarization: A Method for Constructing
Capacity-Achieving Codes for Symmetric

Binary-Input Memoryless Channels
Erdal Arıkan, Senior Member, IEEE

Abstract—A method is proposed, called channel polarization,
to construct code sequences that achieve the symmetric capacity

of any given binary-input discrete memoryless channel
(B-DMC) . The symmetric capacity is the highest rate achiev-
able subject to using the input letters of the channel with equal
probability. Channel polarization refers to the fact that it is pos-
sible to synthesize, out of independent copies of a given B-DMC

, a second set of binary-input channels
such that, as becomes large, the fraction of indices for which

is near approaches and the fraction for which
is near approaches . The polarized channels
are well-conditioned for channel coding: one need only

send data at rate through those with capacity near and at rate
through the remaining. Codes constructed on the basis of this idea
are called polar codes. The paper proves that, given any B-DMC

with and any target rate , there exists a
sequence of polar codes such that has block-length

, rate , and probability of block error under suc-
cessive cancellation decoding bounded as
independently of the code rate. This performance is achievable by
encoders and decoders with complexity for each.

Index Terms—Capacity-achieving codes, channel capacity,
channel polarization, Plotkin construction, polar codes, Reed–
Muller (RM) codes, successive cancellation decoding.

I. INTRODUCTION AND OVERVIEW

A FASCINATING aspect of Shannon’s proof of the noisy
channel coding theorem is the random-coding method

that he used to show the existence of capacity-achieving code
sequences without exhibiting any specific such sequence [1].
Explicit construction of provably capacity-achieving code
sequences with low encoding and decoding complexities has
since then been an elusive goal. This paper is an attempt to
meet this goal for the class of binary-input discrete memoryless
channels (B-DMCs).

We will give a description of the main ideas and results of the
paper in this section. First, we give some definitions and state
some basic facts that are used throughout the paper.
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A. Preliminaries

We write to denote a generic B-DMC with
input alphabet , output alphabet , and transition probabilities

. The input alphabet will always be
, the output alphabet and the transition probabilities may

be arbitrary. We write to denote the channel corresponding
to uses of ; thus, with

.
Given a B-DMC , there are two channel parameters of pri-

mary interest in this paper: the symmetric capacity

and the Bhattacharyya parameter

These parameters are used as measures of rate and reliability,
respectively. is the highest rate at which reliable commu-
nication is possible across using the inputs of with equal
frequency. is an upper bound on the probability of max-
imum-likelihood (ML) decision error when is used only once
to transmit a or .

It is easy to see that takes values in . Throughout,
we will use base- logarithms; hence, will also take
values in . The unit for code rates and channel capacities
will be bits.

Intuitively, one would expect that iff ,
and iff . The following bounds, proved in
the Appendix, make this precise.

Proposition 1: For any B-DMC , we have

(1)

(2)

The symmetric capacity equals the Shannon capacity
when is a symmetric channel, i.e., a channel for which there
exists a permutation of the output alphabet such that i)

and ii) for all . The bi-
nary symmetric channel (BSC) and the binary erasure channel
(BEC) are examples of symmetric channels. A BSC is a B-DMC

with and
. A B-DMC is called a BEC if for each , either

or . In the latter case,

0018-9448/$25.00 © 2009 IEEE

They are capacity-achieving on binary memoryless symmetric (BMS) channels with low
encoding/decoding complexity [Arı09].

But successive cancellation (SC) decoding performs poorly for small blocks due to
imperfect polarization.
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Channel Polarization

Among all, there are channels for which it is easy to communicate optimally:

Noiseless channels: The output Y determines the input X (i.e., I (X ;Y ) ≈ 1).

Useless channels: The output Y is independent from the input X (i.e., I (X ;Y ) ≈ 0).

Channel polarization is a technique to convert any BMS channel to a mixture of easy channels
+ vanishing fraction of mediocre channels, asymptotically in the block length.

Transmit uniformly distributed information bits over the noiseless channels and set the
inputs of the rest to zeros (the receiver knows their positions).

The technique is lossless in terms of mutual information (required to achieve the capacity).

The technique is of low complexity (there exists an encoder-decoder pair, realizing the
technique with O(N logN) complexity, where N is the block length).
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M. C. Coşkun — Polar-Coded Non-Coherent Communication 5/30



Institute for Communications Engineering Technische Universität München

Channel Polarization

Among all, there are channels for which it is easy to communicate optimally:

Noiseless channels: The output Y determines the input X (i.e., I (X ;Y ) ≈ 1).

Useless channels: The output Y is independent from the input X (i.e., I (X ;Y ) ≈ 0).

Channel polarization is a technique to convert any BMS channel to a mixture of easy channels
+ vanishing fraction of mediocre channels, asymptotically in the block length.

Transmit uniformly distributed information bits over the noiseless channels and set the
inputs of the rest to zeros (the receiver knows their positions).

The technique is lossless in terms of mutual information (required to achieve the capacity).

The technique is of low complexity (there exists an encoder-decoder pair, realizing the
technique with O(N logN) complexity, where N is the block length).
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M. C. Coşkun — Polar-Coded Non-Coherent Communication 5/30



Institute for Communications Engineering Technische Universität München

Channel Polarization

Among all, there are channels for which it is easy to communicate optimally:

Noiseless channels: The output Y determines the input X (i.e., I (X ;Y ) ≈ 1).

Useless channels: The output Y is independent from the input X (i.e., I (X ;Y ) ≈ 0).

Channel polarization is a technique to convert any BMS channel to a mixture of easy channels
+ vanishing fraction of mediocre channels, asymptotically in the block length.

Transmit uniformly distributed information bits over the noiseless channels and set the
inputs of the rest to zeros (the receiver knows their positions).

The technique is lossless in terms of mutual information (required to achieve the capacity).

The technique is of low complexity (there exists an encoder-decoder pair, realizing the
technique with O(N logN) complexity, where N is the block length).
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Encoding

Let V K
1 denote the random information bits to be encoded:

1 For a given set A, map V K
1 onto UA.

2 Set the remaining elements to 0, i.e., UF = 0 (frozen
bits).

3 Apply polar transform of length−N, i.e.,

XN
1 = UN

1 G
⊗ log2 N
2

and transmit XN
1 over the channel after suitable

modulation (the figure assumes w.l.o.g. a binary-input
channel).
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M. C. Coşkun — Polar-Coded Non-Coherent Communication 6/30



Institute for Communications Engineering Technische Universität München

Successive Cancellation Decoding
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where a frame error occurs if ûi 6= ui for any i ∈ A

←→ imperfect channel polarization at
finite-length regime!
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û4

û3
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M. C. Coşkun — Polar-Coded Non-Coherent Communication 7/30



Institute for Communications Engineering Technische Universität München

Imperfect Channel Polarization at Finite-Length Regime
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Choose set A to contain the most reliable K indices.

Any error made by SC decoding cannot be corrected

→ use successive cancellation list
(SCL) decoding to make use of the frozen bits in reliable positions for error-correction!
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Successive List Cancellation Decoding
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 5, MAY 2015 2213

List Decoding of Polar Codes
Ido Tal, Member, IEEE and Alexander Vardy, Fellow, IEEE

Abstract— We describe a successive-cancellation list decoder
for polar codes, which is a generalization of the classic successive-
cancellation decoder of Arıkan. In the proposed list decoder,
L decoding paths are considered concurrently at each decoding
stage, where L is an integer parameter. At the end of the decoding
process, the most likely among the L paths is selected as the
single codeword at the decoder output. Simulations show that
the resulting performance is very close to that of maximum-
likelihood decoding, even for moderate values of L. Alternatively,
if a genie is allowed to pick the transmitted codeword from the
list, the results are comparable with the performance of current
state-of-the-art LDPC codes. We show that such a genie can be
easily implemented using simple CRC precoding. The specific
list-decoding algorithm that achieves this performance doubles
the number of decoding paths for each information bit, and
then uses a pruning procedure to discard all but the L most
likely paths. However, straightforward implementation of this
algorithm requires !(Ln2) time, which is in stark contrast with
the O(n log n) complexity of the original successive-cancellation
decoder. In this paper, we utilize the structure of polar codes
along with certain algorithmic transformations in order to
overcome this problem: we devise an efficient, numerically stable,
implementation of the proposed list decoder that takes only
O(Ln log n) time and O(Ln) space.

Index Terms— List decoding, polar codes, successive cancella-
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I. INTRODUCTION

THE discovery of channel polarization and polar codes by
Arıkan [1] is universally recognized as a major break-

through in coding theory. Polar codes provably achieve
the capacity of memoryless symmetric channels, with low
encoding and decoding complexity. Moreover, polar codes
have an explicit construction (there is no random ensem-
ble to choose from) and a beautiful recursive structure that
makes them inherently suitable for efficient implementation in
hardware [7], [12].

These remarkable properties of polar codes have gen-
erated an enormous interest, see [2], [3], [6], [8], [14],
[15] and references therein. Nevertheless, the impact of polar
coding in practice has been, so far, negligible. Although
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Fig. 1. List-decoding performance for a polar code of length n = 2048
and rate R = 0.5 on the BPSK-modulated Gaussian channel. The code was
constructed using the methods of [15], with optimization for Eb/N0 = 2 dB.

polar codes achieve capacity asymptotically, empirical stud-
ies indicate that for short and moderate block lengths,
successive-cancellation decoding of polar codes does not
perform as well as turbo codes or low density parity-
check (LDPC) codes. As we ponder why, we identify
two possible causes: either the codes themselves are weak at
these lengths, or there is a significant performance gap between
successive-cancellation and maximum-likelihood decoding.
In fact, the two causes are complementary and, as we shall
see, both contribute to the problem.

In this paper, we propose an improvement to the successive-
cancellation decoder of [1], namely, a successive-cancellation
list decoder. Our decoder is governed by a single integer
parameter L, which denotes the list size. As in [1], we decode
the input bits successively one-by-one. However, in the pro-
posed decoder, L decoding paths are considered concurrently
at each decoding stage. Specifically, our decoder doubles the
number of decoding paths for each information bit ui to be
decoded, thus pursuing both ui = 0 and ui = 1 options, and
then uses a pruning procedure to discard all but the L most
likely paths. At the end of the decoding process, the most
likely among the L decoding paths is selected as the decoder
output (thus, in contrast to most list-decoding algorithms in the
literature, the output of our decoder is not a list but a single
codeword).

The performance of the list-decoding algorithm outlined
above is encouraging. For example, Figure 1 shows our
simulation results for a polar code of rate half and length
2048 on a binary-input AWGN channel, under successive-
cancellation decoding and under list decoding. We also include
in Figure 1 a lower bound on the probability of word error
under maximum-likelihood decoding (such a bound can be
readily evaluated in list-decoding simulations). As can be
seen from Figure 1, the performance of our list-decoding algo-
rithm is very close to that of maximum-likelihood decoding,
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SC list (SCL) decoding with CRC and large list-size performs very well and approaches
maximum-likelihood (ML) decoding performance [TV15].

It can also be used to decode other codes (e.g., Reed–Muller codes, PAC codes, etc.).

M. C. Coşkun — Polar-Coded Non-Coherent Communication 9/30



Institute for Communications Engineering Technische Universität München

Successive List Cancellation Decoding
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 5, MAY 2015 2213

List Decoding of Polar Codes
Ido Tal, Member, IEEE and Alexander Vardy, Fellow, IEEE

Abstract— We describe a successive-cancellation list decoder
for polar codes, which is a generalization of the classic successive-
cancellation decoder of Arıkan. In the proposed list decoder,
L decoding paths are considered concurrently at each decoding
stage, where L is an integer parameter. At the end of the decoding
process, the most likely among the L paths is selected as the
single codeword at the decoder output. Simulations show that
the resulting performance is very close to that of maximum-
likelihood decoding, even for moderate values of L. Alternatively,
if a genie is allowed to pick the transmitted codeword from the
list, the results are comparable with the performance of current
state-of-the-art LDPC codes. We show that such a genie can be
easily implemented using simple CRC precoding. The specific
list-decoding algorithm that achieves this performance doubles
the number of decoding paths for each information bit, and
then uses a pruning procedure to discard all but the L most
likely paths. However, straightforward implementation of this
algorithm requires !(Ln2) time, which is in stark contrast with
the O(n log n) complexity of the original successive-cancellation
decoder. In this paper, we utilize the structure of polar codes
along with certain algorithmic transformations in order to
overcome this problem: we devise an efficient, numerically stable,
implementation of the proposed list decoder that takes only
O(Ln log n) time and O(Ln) space.

Index Terms— List decoding, polar codes, successive cancella-
tion decoding.

I. INTRODUCTION

THE discovery of channel polarization and polar codes by
Arıkan [1] is universally recognized as a major break-

through in coding theory. Polar codes provably achieve
the capacity of memoryless symmetric channels, with low
encoding and decoding complexity. Moreover, polar codes
have an explicit construction (there is no random ensem-
ble to choose from) and a beautiful recursive structure that
makes them inherently suitable for efficient implementation in
hardware [7], [12].

These remarkable properties of polar codes have gen-
erated an enormous interest, see [2], [3], [6], [8], [14],
[15] and references therein. Nevertheless, the impact of polar
coding in practice has been, so far, negligible. Although

Manuscript received June 12, 2013; revised October 14, 2014; accepted
November 13, 2014. Date of publication March 5, 2015; date of current ver-
sion April 17, 2015. This work was supported in part by the U.S.-Israel Bina-
tional Science Foundation under Grant 2012016 and in part by the National
Science Foundation under Grant CCF-1116820 and Grant CCF-1405119.
This paper was presented at the 2011 IEEE International Symposium on
Information Theory.

I. Tal is with the Technion—Israel Institute of Technology, Haifa 32000,
Israel (e-mail: idotal@ee.technion.ac.il).

A. Vardy is with the University of California at San Diego, La Jolla,
CA 92093 USA (e-mail: avardy@ucsd.edu).

Communicated by V. Guruswami, Associate Editor for Complexity and
Cryptography.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2015.2410251

Fig. 1. List-decoding performance for a polar code of length n = 2048
and rate R = 0.5 on the BPSK-modulated Gaussian channel. The code was
constructed using the methods of [15], with optimization for Eb/N0 = 2 dB.

polar codes achieve capacity asymptotically, empirical stud-
ies indicate that for short and moderate block lengths,
successive-cancellation decoding of polar codes does not
perform as well as turbo codes or low density parity-
check (LDPC) codes. As we ponder why, we identify
two possible causes: either the codes themselves are weak at
these lengths, or there is a significant performance gap between
successive-cancellation and maximum-likelihood decoding.
In fact, the two causes are complementary and, as we shall
see, both contribute to the problem.

In this paper, we propose an improvement to the successive-
cancellation decoder of [1], namely, a successive-cancellation
list decoder. Our decoder is governed by a single integer
parameter L, which denotes the list size. As in [1], we decode
the input bits successively one-by-one. However, in the pro-
posed decoder, L decoding paths are considered concurrently
at each decoding stage. Specifically, our decoder doubles the
number of decoding paths for each information bit ui to be
decoded, thus pursuing both ui = 0 and ui = 1 options, and
then uses a pruning procedure to discard all but the L most
likely paths. At the end of the decoding process, the most
likely among the L decoding paths is selected as the decoder
output (thus, in contrast to most list-decoding algorithms in the
literature, the output of our decoder is not a list but a single
codeword).

The performance of the list-decoding algorithm outlined
above is encouraging. For example, Figure 1 shows our
simulation results for a polar code of rate half and length
2048 on a binary-input AWGN channel, under successive-
cancellation decoding and under list decoding. We also include
in Figure 1 a lower bound on the probability of word error
under maximum-likelihood decoding (such a bound can be
readily evaluated in list-decoding simulations). As can be
seen from Figure 1, the performance of our list-decoding algo-
rithm is very close to that of maximum-likelihood decoding,

0018-9448 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Duke University. Downloaded on June 24,2020 at 02:17:46 UTC from IEEE Xplore.  Restrictions apply. 

SC list (SCL) decoding with CRC and large list-size performs very well and approaches
maximum-likelihood (ML) decoding performance [TV15].

It can also be used to decode other codes (e.g., Reed–Muller codes, PAC codes, etc.).
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Successive Cancellation List Decoding
Key idea: Each time a decision is needed on ûi , both options, i.e., ûi = 0 and ûi = 1, are
stored. This doubles the number of partial input sequences (paths) at each decoding stage.
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Very similar ideas were applied to RM codes (see, e.g., [Sto02, DS06]).
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Motivating Question
Is it possible to use frozen bits not only for error-correction but also for estimating the
channel state when communicating over unknown fading channels?

Frozen bits are known at the receiver (similar to pilot symbols), which...

... cannot be treated as pilot symbols because of the polar transform before transmitting :(

We propose a pilot-free two-stage polar-coded transmission (PCT) scheme to jointly
estimate the channel state and data...

... where, first, SCL decoding and the polar code constraints are used to estimate the
channel state.

Then, mismatched SCL decoding proceeds with this estimate.

Based on a joint work with Peihong Yuan and Gerhard Kramer (TUM) [YCK21]
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M. C. Coşkun — Polar-Coded Non-Coherent Communication 12/30



Institute for Communications Engineering Technische Universität München

Motivating Question
Is it possible to use frozen bits not only for error-correction but also for estimating the
channel state when communicating over unknown fading channels?

Frozen bits are known at the receiver (similar to pilot symbols), which...

... cannot be treated as pilot symbols because of the polar transform before transmitting :(

We propose a pilot-free two-stage polar-coded transmission (PCT) scheme to jointly
estimate the channel state and data...

... where, first, SCL decoding and the polar code constraints are used to estimate the
channel state. Then, mismatched SCL decoding proceeds with this estimate.

Based on a joint work with Peihong Yuan and Gerhard Kramer (TUM) [YCK21]
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Related Works

A related method to estimate CSI uses the parity-check constraints of a low-density
parity-check (LDPC) code [IHG10]; however, ...

X ... SCL decoding of polar codes naturally provides soft estimates of frozen bits (no
modification required for the decoder).

X ... polar codes are usually used with a high-rate outer code [TV15, 5G21] that can resolve
CSI ambiguities, e.g., the phase ambiguity due to all-one codeword when using QPSK and
Gray labeling [IHG10].

X ... polar codes concatenated with outer CRC codes are very competitive in short block
length regime [CDJ+19], where pilot symbols cost a large overhead [ODS+19].
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M. C. Coşkun — Polar-Coded Non-Coherent Communication 13/30



Institute for Communications Engineering Technische Universität München

Related Works

A related method to estimate CSI uses the parity-check constraints of a low-density
parity-check (LDPC) code [IHG10]; however, ...

X ... SCL decoding of polar codes naturally provides soft estimates of frozen bits (no
modification required for the decoder).

X ... polar codes are usually used with a high-rate outer code [TV15, 5G21] that can resolve
CSI ambiguities, e.g., the phase ambiguity due to all-one codeword when using QPSK and
Gray labeling [IHG10].

X ... polar codes concatenated with outer CRC codes are very competitive in short block
length regime [CDJ+19], where pilot symbols cost a large overhead [ODS+19].
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System Model (PAT)
The input-output relationship of the channel is given by

yi = hixi + ni for i = 1, . . . , `

where xi =
[
x

(p)
i , x

(d)
i

]
∈ X nc , yi ∈ Cnc , Hi ∼ PH and Ni ∼ CN (0, σ2Inc ).

e.g.:

` = 2

nc = 14
|hi |

nc np nd

n = `nc = `(np + nd)
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The input-output relationship of the channel is given by

yi = hixi + ni for i = 1, . . . , ` (1)

where xi = x
(d)
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Mini Example

1

j
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∆
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h = 1h = ?h = ?

` = 1

Repetition code, R = 0.5

w1,w2, . . . 7→ w1,w1,w2,w2, . . .

h ≈ 0.5 or h ≈ −0.5

all one is a valid codeword

symmetric mapping

h · x = −h · −x

h ≈ e
π
2 or h ≈ e−

π
2
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M. C. Coşkun — Polar-Coded Non-Coherent Communication 16/30



Institute for Communications Engineering Technische Universität München

Mini Example

1

j

00

01

10

11

∆

∆

h = 1h = ?

h = ?

` = 1

Repetition code, R = 0.5

w1,w2, . . . 7→ w1,w1,w2,w2, . . .

h ≈ 0.5 or h ≈ −0.5

all one is a valid codeword

symmetric mapping

h · x = −h · −x

h ≈ e
π
2 or h ≈ e−

π
2
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Mini Example

` = 1, A = {4, 6, 7, 8} and F = {1, 2, 3, 5}

A channel estimate is obtained as

ĥ = arg max
h

pY 4
1 |U3

1 ,H1
(y4

1 |000, h)

where pY 4
1 |U3

1 ,H1
(y4

1 |000, h) can be efficiently computed
via SCL decoding with Le = 1 and β = 3 for any h.

A more accurate estimate is

ĥ = arg max
h

pY 4
1 |U3

1 ,U5,H1
(y4

1 |0000, h)

= arg max
h

[
pY 4

1 ,U4|U3
1 ,U5,H1

(y4
1 , 0|0000, h)

+ pY 4
1 ,U4|U3

1 ,U5,H1
(y4

1 , 1|0000, h)
]

where the cost function requires SCL with Le = 2 and
β = 5 for any h.

U1 = 0

U2 = 0

U3 = 0

U4 = V1

U5 = 0

U6 = V2
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General Case

Let hi = rie
jθi where ri ∈ [0,∞) and θi ∈ [0, 2π), i ∈ [`].

Let β be a number of input bits, and let A(β) = A ∩ [β] and F (β) = F ∩ [β] be sets of

information and frozen indices among the first β input bits uβ1 .

1 Estimate the amplitudes ri = |hi | as

r̂i =
(√

2∆
)−1

√
1

nc
‖yi‖2 − 2σ2, i = 1, . . . , `.

2 Use the polar code constraints to estimate the phase as{
θ̂1, . . . , θ̂`

}
= arg max
{θ1,...,θ`}

pY n
1 |UF(β) ,H

`
1

(
yn

1

∣∣∣0, ĥ`1)
= arg max
{θ1,...,θ`}

∑
uA(β)

pY n
1 ,UA(β) |UF(β) ,H

B
1

(
yn

1 , uA(β)

∣∣∣0, ĥ`1)
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Complexity

The search space grows exponentially in the number of diversity branches `. Although
there can be other ways to reduce the complexity, the following observation halves the
search space.

Corollary

Polar-coded modulations with the QPSK and Gray labeling over the channel (1) satisfy

pY n
1 |UF(β) ,H

`
1

(
yn

1

∣∣0, h`1 ) = pY n
1 |UF(β) ,H

`
1

(
yn

1

∣∣0,−h`1 )
for all yn

1 and h`1.
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Outline

1 Overview of Polar Codes and SCL Decoding

2 Joint Channel Estimation and Decoding

3 Numerical Results

4 Conclusions
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Example: Single Block (` = 1, nc = 64)

yi = e jθxi + zi , i = 1, . . . , nc = 64 where θ ∼ U [0, 2π)

No CSIT/CSIR (including the amplitude)

(128, 38) 5G polar code with 6 bits CRC, R = 0.5 bpcu, Pilot-free

Random interleaver

QPSK (Gray)
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Complexity

Table 1: Number of Visited Nodes per Frame at Es/N0 = 1 dB

Method FER Visited Nodes
PAT (np = 14, L = 8) 8.43× 10−3 631

PAT (np = 14, L = 32) 3.16× 10−3 2223
PCT (β = 47, Le = 1, L = 8) 3.36× 10−2 1383
PCT (β = 61, Le = 8, L = 8) 3.20× 10−3 2151

PCT (β = 113, Le = 1, L = 8) 3.50× 10−4 2439
PCT (β = 113, Le = 8, L = 8) 1.00× 10−4 8807

Perfect CSI (L = 8) 2.40× 10−5 631

8 + 8 coarse-fine search for the optimization

θ̂ = arg max
θ

pY n
1 |UFβH

(
yn

1

∣∣0, r̂ e jθ )
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Example: Rayleigh Block-Fading Channel (` = 2, nc = 32)

yi = hixi + ni , i = 1, 2 where Hi ∼ CN (0, 1) and Ni ∼ CN (0, σ2Inc ).

No CSIT/CSIR

(128, 38) 5G polar code with 6 bits CRC, R = 0.5 bpcu, Pilot-free

Random interleaver

QPSK (Gray)

Compared to RCUs [MG11] and MC [PPV10] bounds (see [LOD+20] for details)

(Courtesy of Dr. A. Lancho (Chalmers, MIT))
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Example: Rayleigh Block-Fading Channel (B = 2, nc = 32)
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Outline

1 Overview of Polar Codes and SCL Decoding

2 Joint Channel Estimation and Decoding

3 Numerical Results

4 Conclusions
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Conclusions and Outlook

We presented pilot-free non-coherent transmission, providing gains up to 2 dB over
classical PAT schemes.

Search space grows exponentially with diversity branches → combination with PAT is
promising!

The scheme could be extended to operate over multiple antenna systems, as well as in
combination with high-order modulation.

A tailored code design should lead to interesting optimization problems, where...

... freezing reliable bit positions could improve the channel estimation, and this may be
reflected in an overall performance gain.
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reflected in an overall performance gain.
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Saddlepoint approximation of random–coding bounds.

In Inf. Theory Applic. Workshop (ITA), San Diego, CA, U.S.A., February 2011.
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Channel coding rate in the finite blocklength regime.

IEEE Trans. Inf. Theory, 56(5):2307–2359, May 2010.

N. Stolte.

Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung.

PhD thesis, TU Darmstadt, 2002.
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