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Polar Codes

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009 3051

Channel Polarization: A Method for Constructing
Capacity-Achieving Codes for Symmetric
Binary-Input Memoryless Channels

Erdal Arikan, Senior Member, IEEE

Abstract—A method is proposed, called channel polarization, A. Preliminaries
to construct code sequences that achieve the symmetric capacity R . . .
I(W) of any given binary-input discrete memoryless channel e Write W = & — Y to denote a generic B-DMC with
(B-DMC) TV, The symmetric capacity is the highest rate achiev- input alphabet X', output alphabet ', and transition probabilities
able subject to using the input letters of the channel with equal W (y|z), z € X,y € V. The input alphabet X' will always be
probability. Channel polarization refers to the fact that it is pos- {0, 1}, the output alphabet and the transition probabilities may

@ They are capacity-achieving on binary memoryless symmetric (BMS) channels with low
encoding/decoding complexity [Ari09].
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@ They are capacity-achieving on binary memoryless symmetric (BMS) channels with low
encoding/decoding complexity [Ari09].

@ But successive cancellation (SC) decoding performs poorly for small blocks due to
imperfect polarization.
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Among all, there are channels for which it is easy to communicate optimally:
o Noiseless channels: The output Y determines the input X (i.e., /(X;Y) ~ 1).
@ Useless channels: The output Y is independent from the input X (i.e., /(X;Y) =~ 0).

Channel polarization is a technique to convert any BMS channel to a mixture of easy channels
+ vanishing fraction of mediocre channels, asymptotically in the block length.
@ Transmit uniformly distributed information bits over the noiseless channels and set the
inputs of the rest to zeros (the receiver knows their positions).
@ The technique is lossless in terms of mutual information (required to achieve the capacity).

@ The technique is of low complexity (there exists an encoder-decoder pair, realizing the
technique with O(N log N) complexity, where N is the block length).
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Encoding

Let V< denote the random information bits to be encoded:
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Encoding

Let V< denote the random information bits to be encoded:

@ For a given set A, map V)< onto Uy4.
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Encoding

Let V{< denote the random information bits to be encoded:

@ For a given set A, map VX onto Uy4.
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Encoding

Let V{< denote the random information bits to be encoded:

@ For a given set A, map VX onto Uy4.

@ Set the remaining elements to 0, i.e., Ur = 0 (frozen
bits).

@ Apply polar transform of length—N, i.e.,
X = uey e
and transmit X}V over the channel after suitable

modulation (the figure assumes w.l.0.g. a binary-input
channel).
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Successive Cancellation Decoding

uy AN
~ /A\
uo 7 \
7/ \
I A
~ 7\ 7\
u3 AR AR
[(EREED SERED) EREERY
Ug “\ II \\ II \\ II \\
1 AN ) 1. \
(0,1,1,1)
n uj if ieF
u = Af— PP
' fi vV, 0;7Y) if i€ A

f (v ﬁi—l) 2 ) 0 if pyn ui-1y, (1 ;7o) > pyn -1, (v ;7 t1)
VL 1 otherwise

where a frame error occurs if {; # u; for any i € A
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n uj if ieF
u = Af— PP
' fi vV, 0;7Y) if i€ A

f (v ﬁi—l) 2 ) 0 if pyn ui-1y, (1 ;7o) > pyn -1, (v ;7 t1)
VL 1 otherwise

where a frame error occurs if {; # u; for any i € A +— imperfect channel polarization at
finite-length regime!
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Imperfect Channel Polarization at Finite-Length Regime
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index i (sorted and normalized by 1/N)

@ Choose set A to contain the most reliable K indices.
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Imperfect Channel Polarization at Finite-Length Regime
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@ Choose set A to contain the most reliable K indices.

@ Any error made by SC decoding cannot be corrected— use successive cancellation list
(SCL) decoding to make use of the frozen bits in reliable positions for error-correction!
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Successive List Cancellation Decoding

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 5, MAY 2015 213

List Decoding of Polar Codes

Ido Tal, Member, IEEE and Alexander Vardy, Fellow, IEEE

Abstract—We describe a successive-cancellation list decoder
for polar codes, which is a ization of the classic i
cancellation decoder of Arikan. In the proposed list decoder,
L decoding paths are considered concurrently at each decoding
stage, where L is an integer parameter. At the end of the decoding
process, the most likely among the L paths is selected as the
single codeword at the decoder output. Simulations show that
the resulting performance is very close to that of maximum-
likelihood decoding, even for moderate values of L. Alternatively,
if a genie is allowed to pick the transmitted codeword from the w0k
list, the results are comparable with the performance of current .
state-of-the-art LDPC codes. We show that such a genie can be w15 20 25
easily implemented using simple CRC precoding. The specific Signal-to-noise ratio [dB]
list-decoding algorithm that achieves this performance doubles

the number of decodi"g paths for each information bit, and Fig. 1 List-decoding performance for a polar code of length n = 2048
then uses a pruning procedure to discard all but the L most and rale R = 0.5 on the BPSK-modulated Gaussian channel. The code was
likely paths. However, straighlforward implementation of this constucted using the methods of [15], with optimization for Ej/No =2dB,

Legend:

e Successsive cancellation

—— List decoding (L =2)

o List decoding (L —8)
—o- List decoding (L= 16)

ok —— List decoding (L =32)

‘Word error rate

—— ML decoding bound

30

@ SC list (SCL) decoding with CRC and large list-size performs very well and approaches
maximum-likelihood (ML) decoding performance [TV15].
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Abstract—We describe a successive-cancellation list decoder
for polar codes, which is a ization of the classic i
cancellation decoder of Arikan. In the proposed list decoder,
L decoding paths are considered concurrently at each decoding
stage, where L is an integer parameter. At the end of the decoding
process, the most likely among the L paths is selected as the
single codeword at the decoder output. Simulations show that
the resulting performance is very close to that of maximum-
likelihood decoding, even for moderate values of L. Alternatively,
if a genie is allowed to pick the transmitted codeword from the 104f
list, the results are comparable with the performance of current .
state-of-the-art LDPC codes. We show that st a genie can be 10 15 20 25
easily implemented using simple CRC precoding. The specific Signal-to-noise ratio [dB]
list-decoding algorithm that achieves this performance doubles
the number of decodi"g paths for each information bit, and Fig. 1 List-decoding performance for a polar code of length n = 2048
then uses a pruning procedure to discard all but the L most and rale R = 0.5 on the BPSK-modulated Gaussian channel. The code was
likely paths. However, straightforward implementation of this constructed using the methods of [15], with optimization for E;/Ny = 2dB.
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Legend:
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—— List decoding (L =2)

o List decoding (L —8)
—o- List decoding (L= 16)

ok —+— List decoding (L =32)

‘Word error rate

—— ML decoding bound

30

@ SC list (SCL) decoding with CRC and large list-size performs very well and approaches
maximum-likelihood (ML) decoding performance [TV15].

@ It can also be used to decode other codes (e.g., Reed—Muller codes, PAC codes, etc.).
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Successive Cancellation List Decoding
Key idea: Each time a decision is needed on {;, both options, i.e., i; =0 and &; =1, are
stored. This doubles the number of partial input sequences (paths) at each decoding stage.
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Successive Cancellation List Decoding
Key idea: Each time a decision is needed on {;, both options, i.e., i; =0 and &; =1, are
stored. This doubles the number of partial input sequences (paths) at each decoding stage.

/\ L=4

@ When the number of paths exceeds a predefined list size L, discard the least likely paths.
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Successive Cancellation List Decoding
Key idea: Each time a decision is needed on {;, both options, i.e., i; =0 and &; =1, are
stored. This doubles the number of partial input sequences (paths) at each decoding stage.

@ When the number of paths exceeds a predefined list size L, discard the least likely paths.

o After N-th stage, 0 = arg max pyw -1y, (7', ul 7 |uy) = arg max Pr(y]N|u}).
uleLly P ulely
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Successive Cancellation List Decoding
Key idea: Each time a decision is needed on {;, both options, i.e., i; =0 and &; =1, are
stored. This doubles the number of partial input sequences (paths) at each decoding stage.

@ When the number of paths exceeds a predefined list size L, discard the least likely paths.

o After N-th stage, 0 = arg max pyw -1y, (7', ul 7 |uy) = arg max Pr(y]N|u}).
uleLly P ulely

@ Very similar ideas were applied to RM codes (see, e.g., [Sto02, DS06]).
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© Joint Channel Estimation and Decoding
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Motivating Question

@ Is it possible to use frozen bits not only for error-correction but also for estimating the
channel state when communicating over unknown fading channels?
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Motivating Question
@ Is it possible to use frozen bits not only for error-correction but also for estimating the
channel state when communicating over unknown fading channels?

o Frozen bits are known at the receiver (similar to pilot symbols), which...

e ... cannot be treated as pilot symbols because of the polar transform before transmitting :(

@ We propose a pilot-free two-stage polar-coded transmission (PCT) scheme to jointly
estimate the channel state and data...

o ... where, first, SCL decoding and the polar code constraints are used to estimate the
channel state. Then, mismatched SCL decoding proceeds with this estimate.

Based on a joint work with Peihong Yuan and Gerhard Kramer (TUM) [YCK21]
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Related Works

@ A related method to estimate CSI uses the parity-check constraints of a low-density
parity-check (LDPC) code [IHG10]; however, ...
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v ... SCL decoding of polar codes naturally provides soft estimates of frozen bits (no
modification required for the decoder).

v’ ... polar codes are usually used with a high-rate outer code [TV15, 5G21] that can resolve
CSI ambiguities, e.g., the phase ambiguity due to all-one codeword when using QPSK and
Gray labeling [IHG10].
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@ A related method to estimate CSI uses the parity-check constraints of a low-density
parity-check (LDPC) code [IHG10]; however, ...

v ... SCL decoding of polar codes naturally provides soft estimates of frozen bits (no
modification required for the decoder).

v’ ... polar codes are usually used with a high-rate outer code [TV15, 5G21] that can resolve
CSI ambiguities, e.g., the phase ambiguity due to all-one codeword when using QPSK and
Gray labeling [IHG10].

v’ ... polar codes concatenated with outer CRC codes are very competitive in short block
length regime [CDJ"19], where pilot symbols cost a large overhead [ODS™19].
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System Model (PAT)

@ The input-output relationship of the channel is given by
yi = hix; + n; for I.:].,...,e

where x; = [x-(p),xi(d)} € X", y; € C™, H; ~ Py and N; ~ CN(0,021,,).

| e
1 L =2
|hi | | B
| ' n. =14
ne L Mp ng "

n=/{n. = {(n, + ng)
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System Model (PCT)

@ The input-output relationship of the channel is given by
yi = hix; + n; for i=1,...,¢ (1)

where x; = x¥) € X"y, € C™, H; ~ Py and N; ~ CN(0,02l,.).

i

i e.g.:

(=2
| hi| v

' n. =14

Ne ng

¥ - - - -

n=1/_n.=/{ny
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Mini Example

j e /=1
@ Repetition code, R =0.5

Wi, Wo,... — Wi, Wi, Wo, Wo, ...
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J e /=1
10 ' 00 @ Repetition code, R =0.5
Rininin ainieiieielnt Sl ¢--- Wi, Wa, ... — Wi, Wi, Wo, Wo,. ..
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e |
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Mini Example

e /=1
@ Repetition code, R =0.5

Wi, Wo,... — Wi, Wi, Wo, Wo, ...

@ h~05or h~ —0.5

M. C. Coskun — Polar-Coded Non-Coherent Communication

16/30



LA

°
Z Institute for Communications Engineering

Technische Universitat Miinchen m

Mini Example

e /=1
@ Repetition code, R =0.5

Wi, Wo, ...

@ h~05or h~ —0.5

o all one is a valid codeword

= Wi, Wi, W, Wo, ...

e symmetric mapping

e h-x=—h-—x
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Mini Example

J 0 /=1
10 L 3 00 @ Repetition code, R =0.5
777*:. 77777777777777 1‘777 Wi, Wo, ... — W1, Wi, Wo, Wo,...
1 1 @ h~050r h~ —05
| : o all one is a valid codeword
% % 1 e symmetric mapping
| | e h-x=—-h-—x
o : 7777777777777 o’l P
11 | 101
| |
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Mini Example

J
10 | 00
[ ]
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| — 1
U o
11: 101
h=7

e /=1
@ Repetition code, R =0.5

Wi, Wo,... — Wi, Wi, Wo, Wo, ...
@ hx~0b5bor h~—-05

o all one is a valid codeword

e symmetric mapping

e h-x=—h-—x

ol

ol

@ h~ez orh=xe
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Mini Example

(=1 A=1{4,6,7,8 and F = {1,2,3,5}

m

s =
Il I
0

.

s &
] 1
< o
——D

v

S8
| I
s o

—D

v

IS
[
SO

—D
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Mini Example

(=1 A=1{4,6,7,8 and F = {1,2,3,5}

@ A channel estimate is obtained as

h=arg max Py|us, H (yi'|00o, h)

where pysys p, (y11000, h) can be efficiently computed
via SCL decoding with L, =1 and 3 = 3 for any h.

U=V

Us =0

Us = V>

U =Vs

Ug = Vg

N I
I @
I =
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Mini Example
e (=1 A=1{4,6,7,8} and F ={1,2,3,5}
@ A channel estimate is obtained as

h=arg max Py|us, H (yi'|00o, h)

where pysys p, (y11000, h) can be efficiently computed
via SCL decoding with L, =1 and 3 = 3 for any h.

@ A more accurate estimate is
h = arg max Py#|u3,us, 1, (¥1'10000, h)
=arg hmax [PY;‘,U4|U§,U5,H1(Yfa 0/0000, h)

+ Py U U3, Us, Hy (v1,1]0000, h)]

where the cost function requires SCL with L. = 2 and
B =5 for any h.

U=V

Us =0

Us = V2

U =Vs

Ug = Vg

N I
T @
I =
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General Case

o Let h; = r;e/% where r; € [0,00) and 6; € [0,27), i € [{].
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o Let B be a number of input bits, and let A®) = AN [B] and F(®) = F N [A] be sets of
information and frozen indices among the first 8 input bits ulﬁ.
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o Let h; = r;e/% where r; € [0,00) and 6; € [0,27), i € [{].

o Let 8 be a number of input bits, and let A(®) = AN [B] and F(#

information and frozen indices among the first 8 input bits ulﬁ.

@ Estimate the amplitudes r; = |h;]| as

h=(v2n) Ty lvilr—20% =1
c

) = F N [B] be sets of

2
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General Case

o Let h; = r;e/% where r; € [0,00) and 6; € [0,27), i € [{].

o Let B be a number of input bits, and let A®) = AN [B] and F(®) = F N [A] be sets of
information and frozen indices among the first 8 input bits ulﬁ.

@ Estimate the amplitudes r; = |h;]| as

—1 1
“:(\sz) il =202 i=1. 0
c

@ Use the polar code constraints to estimate the phase as

{él,...,ég}—arg Max Pypiy_ s He (yl ’0 hz>
{61,....6¢}

n e
- ?gg m;>}< Z PY?U 40 1Uroy HE (}/1 A )O’ hl)
veensfed oy
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Complexity

@ The search space grows exponentially in the number of diversity branches ¢. Although
there can be other ways to reduce the complexity, the following observation halves the
search space.

Polar-coded modulations with the QPSK and Gray labeling over the channel (1) satisfy

¢ ¢
PY?IU gy, HE (7 ]0,hy) = PY2IU (s, HE (7|0, —h1)

for all y" and hf.
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Outline

© Numerical Results
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Example: Single Block (¢ =1, n. = 64)

oy =e% 4z, i=1,...,n.=64where § ~U][0,2r)

@ No CSIT/CSIR (including the amplitude)

@ (128,38) 5G polar code with 6 bits CRC, R = 0.5 bpcu, Pilot-free
@ Random interleaver

e QPSK (Gray)
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Example: Single Block (¢ =1, n. = 64)

101! <~

E . g B=47le=1 B=61,L.=8
I . B=113,Le=1 B=113,Le =8
i \\ | --- PAT n, =14 -e- Perfect CSI
| N -

N
, ¢ \
1072 >, = =

I A |

. — \\ ]
[ ' N 1

L - > ~ N

L N N
[ . \\ 1

\
10_3 - \\ \\\ —
- L N .
- \ \ -
- A \ -
| \ \ -
B \\ AY -
B \ \\ -
® N
AY | | \

—4 |
10 -1 0 1 2 3

E,/N in dB
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101! <

- ~ 1 | p=47Le=1 B=61L=8
B ] B=113,Le =1 B=113,L. =8
- s --- PAT n, =14 -e- Perfect CSI
i . i
N
* N
1072 1 ~ &
- ~ AN -
[ N\ \ 1
x B . :
o i ¥ ]
L \\ \
i . s i
\
10_3 - \\ \\\
B e \
- \\ \
B \ \\ i
L » \ |
\\ N
- * \\ -
\
\ \
10—4 | | |
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Example: Single Block (¢ =1, n. = 64)

107" & <~
10*2@\
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1073 | s
—4
10779 0

E,/N in dB

8- B=47,Lc=1 —— =61,L. =8
B=113,Lc =1 B=113,l. =8
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T HHHL;

FER

103

10~4
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Example: Single Block (¢ =1, n. = 64)

10714
—B8— f=47,le=1 —4— =061,L.=8
: —— B=113,lc=1—6— 3 =113,L. = 8
--- PAT np, =14 -e- Perfect CSI
x
10~
o
L
[T
1073
10~4

E,/N in dB

M. C. Coskun — Polar-Coded Non-Coherent Communication 22/30



{ H
; Institute for Communications Engineering Technische Universitit Miinchen

Complexity

Table 1: Number of Visited Nodes per Frame at E;/No =1 dB

Method FER Visited Nodes

PAT (n, = 14, L = 8) 8.43x 1073 631
PAT (n, = 14, L = 32) 3.16 x 1073 2223
PCT (B=47,L.=1,L=8) 336x1072 1383
PCT (=61, L.=8 L=8) 3.20x103 2151
PCT (3=113,L.=1,L=8) 3.50x107* 2439
PCT (3=113,L.=8,L=8) 1.00x 107* 8807
Perfect CSI (L = 8) 2.40 x 1075 631

8 + 8 coarse-fine search for the optimization

é = arg en'laX pY1"\Uf;3H (yf O, Feff))
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Example: Rayleigh Block-Fading Channel (¢ =2, n. = 32)
e y;=hix;+mn;, i=12where H;~CN(0,1) and N; ~CN(0,02l,).
o No CSIT/CSIR
@ (128,38) 5G polar code with 6 bits CRC, R = 0.5 bpcu, Pilot-free

@ Random interleaver
e QPSK (Gray)
e Compared to RCUs [MG11] and MC [PPV10] bounds (see [LOD*20] for details)
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Example: Rayleigh Block-Fading Channel (¢ =2, n. = 32)
o yi=hix;+mn;, i=12where H; ~CN(0,1) and N; ~ CN(0,021,,).
o No CSIT/CSIR
@ (128,38) 5G polar code with 6 bits CRC, R = 0.5 bpcu, Pilot-free
e Random interleaver
e QPSK (Gray)

e Compared to RCUs [MG11] and MC [PPV10] bounds (see [LOD*20] for details)
(Courtesy of Dr. A. Lancho (Chalmers, MIT))
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Example: Rayleigh Block-Fading Channel (¢ =2, n. = 32)
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Example: Rayleigh Block-Fading Channel (¢ =2, n. = 32)

101,

1072 | s
o i i
i - i
L -

10731

—al |
10 4 6 8 10 12 14 16 18
E./No in dB

—a— f=47,Le=1
=113l =1
PAT n, =7
RCUs

- @-

B =61,Le =8
B =113,L. =8
Perfect CSI
MC

M. C. Coskun — Polar-Coded Non-Coherent Communication




{ °
'E ? . —— - . e
Institute for Communications Engineering Technische Universitat Miinchen
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Example: Rayleigh Block-Fading Channel (¢ =2, n. = 32)
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Example: Rayleigh Block-Fading Channel (¢ =2, n. = 32)
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Example: Rayleigh Block-Fading Channel (B = 2, n. = 32)
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Outline

@ Conclusions
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Conclusions and Outlook

@ We presented pilot-free non-coherent transmission, providing gains up to 2 dB over
classical PAT schemes.
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Conclusions and Outlook

@ We presented pilot-free non-coherent transmission, providing gains up to 2 dB over
classical PAT schemes.

@ Search space grows exponentially with diversity branches — combination with PAT is
promising!

@ The scheme could be extended to operate over multiple antenna systems, as well as in
combination with high-order modulation.

@ A tailored code design should lead to interesting optimization problems, where...

o ... freezing reliable bit positions could improve the channel estimation, and this may be
reflected in an overall performance gain.
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