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Abstract

The need for simulations in the field of fluidization technology became more urgent, as
experimental set-ups are expensive and time-consuming. Multiple parameter studies can
be set-up with simulations and due to the increasing computational power over the last
years, the simulation speed increased immensely. The numerical simulation of multiphase
flows regarding fluid-solid flows can be performed with different modeling approaches.

In this thesis, the most common models, i.e., the Two-Fluid Model, CFD-DEM, the
Coarse-Grain method and Multiphase Particle-In-Cell, were used, evaluated and compared
to newly developed solvers. Those developed solvers had the purpose to increase the
accuracy of the results or speed up the numerical simulations. One of the newly developed
solvers aims to bridge the gap between the Two-Fluid Model and CFD-DEM. Opposed to
a solver based on the Multiphase Particle-In-Cell method, using this solver, the particles
are treated in a Eulerian and a Lagrangian way, a hybrid approach. The number of
particles treated in their respective manner is set by a user-defined ratio. With this ratio,
the simulation set-up gains an additional degree of freedom; more particles treated in
a Lagrangian way result in more accurate simulation results, while a higher ratio for a
Eulerian treatment of the particles decreases the simulation time drastically. The solver
was validated with experimental data from literature and compared to solvers using
conventional methods, such as the Two-Fluid Model, CFD-DEM and the Multiphase
Particle-In-Cell method. Depending on the particle properties and size of the reactor,
the newly developed hybrid solver shows advantages in flexibility and therefore the
accuracy and simulation speed can be adjusted based on the number of particles treated
as Lagrangian or Eulerian particles. Further adjustments for the solver can be made, e.g.,
a more sophisticated algorithm for determining the positions of transforming Eulerian to
Lagrangian particles. This could improve the accuracy of the simulation results.

Further modifications for CFD-DEM solvers have been proposed in this thesis to increase
the accuracy of CFD-DEM simulations. Conventional CFD-DEM solvers use a single
grid for calculations of both the fluid phase and the particles. A dual-grid approach was
proposed in literature where another numerical grid is introduced and the calculation of
the fluid phase and Lagrangian particles are decoupled in regards to the numerical grid.
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Problems could arise with the dual-grid approach when the Lagrangian grid is too coarse.
Here, a solver was developed, adding a third grid. On this third grid, important parameters
for the fluid-particle coupling, as well as properties used for results, e.g., particle velocities,
are calculated and mapped onto the fluid or the solid grid. Overall improvements were
visible in terms of accuracy when using the three-grid solver compared to a single-grid
and dual-grid solver. The additional time for the parameter-interpolation due to the third
grid is, however, negligible.

A CFD-DEM simulation was performed to improve the efficiency of fouling mitigation
in an anaerobic fluidized bed membrane bioreactor. First, the solver was validated with
experimental data from literature and in a second step the geometry of the reactor was
modified to increase particle momentum and hence fouling mitigation. Different particle
diameters were investigated, as well as different extents of geometry changes. Depending
on the geometry and particle diameters, a uniform distribution of particle momentum
and therefore fouling mitigation over the whole membrane area is not guaranteed. With
geometry changes of the reactor and the right choice of particle diameter an optimum
uniform fouling mitigation with a low energy input used for fluidizing the particles can
be achieved.
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Kurzzusammenfassung

Der Einsatz von Simulationen im Bereich der Fluidisierungstechnologie wird immer prä-
senter, da experimentelle Aufbauten oft teuer und zeitaufwändig sind. Mehrere Parame-
terstudien können durch Simulationen aufgesetzt werden und durch die steigende Rechen-
kapazität der letzten Jahre ist die Rechengeschwindigkeit ebenfalls stark gestiegen. Die
numerische Simulation von Mehrphasenströmung unter der Berücksichtigung von Fluid-
und Feststoffströmungen kann unter Zuhilfenahme von verschiedenen Modellierungsansät-
zen realisiert werden.

In dieser Arbeit wurden die gängigsten Modelle, wie das Two-Fluid Model, CFD-DEM,
die Coarse-Grain Methode und Multiphase Particle-In-Cell, verwendet, evaluiert und
mit neu entwickelten Solvern verglichen. Diese entwickelten Solver hatten das Ziel die
Genauigkeit der Ergebnisse, sowie die Geschwindigkeit der numerischen Simulation zu
steigern. Einer der neu entwickelten Solver hat das Ziel die Lücke zwischen dem Two-Fluid
Model und CFD-DEM zu füllen. Anders als die Multiphase Particle-In-Cell Methode
werden mit diesem Solver die Feststoffpartikel in einem hybriden Ansatz als Euler und
Lagrange-Partikel berücksichtigt. Mithilfe eines vom Benutzer bestimmten Verhältnisses
kann die Anzahl der Euler oder Lagrange-Partikel festgelegt werden. Mit diesem Verhält-
nis bekommt die Simulationen einen zusätzlichen Freiheitsgrad; mehr Lagrange-Partikel
resultieren in genaueren Ergebnissen, wohingegen mehr Euler-Partikel die Simulationszeit
drastisch verkürzen. Der Solver wurde durch experimentelle Daten aus der Literatur
validiert und mit anderen Solvern verglichen, die herkömmliche Ansätze verwenden, wie
das Two-Fluid Model, CFD-DEM und die Multiphase Particle-In-Cell Methode. Abhängig
von den Partikeleigenschaften und der Reaktordimension zeigte der neu entwickelte Solver
Vorteile im Bereich der Flexibilität und dadurch konnte die Genauigkeit der Ergebnisse
und die Simulationsgeschwindigkeit durch die Anzahl an Euler- und Lagrange-Partikel
eingestellt werden. Um die Genauigkeit der Simulationsergebnisse weiter zu verbessern
kann ein komplexerer Algorithmus zur Positionsbestimmung bei der Transformation von
Euler- zu Lagrange-Partikeln implementiert werden.

Weitere Modifikationen für CFD-DEM Solver wurden in dieser Arbeit erarbeitet, um die
Genauigkeit von CFD-DEM Simulationen zu erhöhen. Konventionelle CFD-DEM Solver
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verwenden ein einzelnes numerisches Rechengitter, um sowohl die Fluid als auch die Fest-
stoffphase zu berechnen. In der Literatur wurde ein dual-grid Ansatz vorgeschlagen, bei
dem ein zusätzliches numerisches Rechengitter eingeführt wird, wodurch die Berechnung
der fluiden und festen Phase auf verschiedenen Rechengittern durchgeführt und damit
entkoppelt wird. Durch Wahl eines zu groben Lagrange-Rechengitters können jedoch
Probleme entstehen. In dieser Arbeit wurde ein Solver entwickelt, bei dem ein drittes
numerisches Rechengitter eingeführt wird. Mithilfe dieses dritten Rechengitters werden
wichtige Parameter für die Kopplung von Fluid und Feststoff, sowie wichtige Vergleich-
sparameter, z.B. Partikelgeschwindigkeiten, berechnet und auf die anderen beiden Fluid-
und Feststoffgitter übertragen. Allgemein wurden Verbesserungen der Genauigkeit der
Simulationsergebnisse durch den Einsatz des three-grid Solvers im Vergleich zu Solvern
mit einem single- und dual-grid beobachtet. Die zusätzliche Simulationszeit bedingt durch
das dritte numerische Rechengitter und die dadurch entstehenden Interpolationen fällt
gering aus und kann vernachlässigt werden.

Simulationen auf Basis von CFD-DEM wurden durchgeführt, um die Effizienz der Ab-
lagerung von Fouling in anaeroben Wirbelschicht-Biomembranreaktoren zu verbessern.
In einem ersten Schritt wurde der Solver mithilfe von experimentellen Daten aus der
Literatur validiert und anschließend wurde die Geometrie des Reaktors modifiziert, um
den Partikelimpuls zu erhöhen und damit auch die Foulingablagerung zu minimieren. Es
wurden verschiedene Partikelgrößen und Geometrien untersucht. Abhängig von der Reak-
torgeometrie und der Partikelgröße kann eine gleichmäßige Verteilung des Partikelimpulses
auf die Membran nicht garantiert werden. Durch eine Änderung der Geometrie und der
Wahl einer passenden Partikelgröße kann ein Optimum aus gleichmäßiger Foulingverhin-
derung mit gleichzeitigem geringen Energieeintrag, der notwendig für die Fluidisierung
der Partikel ist, erreicht werden.
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Nomenclature

Latin Symbols

A area m2

a acceleration m/s2

a modeling parameter -
b parameter for spring theory -
C coefficient -
Co Courant number -
D strain rate tensor 1/s
d diameter m
e coefficient of restitution -
E Young’s modulus kg/(m s2)
F force kgm/s2

F dimensionless drag force -
Ff face flux kg/s
Fr empirical constant -
f factor -
f Liouville equation -
fx interpolation factor -
Ga Galileo number -
g gravitational acceleration m/s2

g0 radial distribution function -
H height m
h height m
h representative grid size m
I moment of inertia kgm2

I unit tensor -
I cell-averaged particle momentum kgm/s
Js dissipation of energy kg/(m s3)
k spring stiffness kg/s2

l impediment length m
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Nomenclature

l length m
m mass kg
M momentum per unit volume kg/(m2 s2)
Mred reduced mass kg
N total number -
n unit vector in normal direction -
n number -
P Power W
P empirical constant -
p pressure kg/(m s2)
Ps modeling parameter -
q function for GCI calculation -
RL ratio of L-Particles to all particles -
R sum of discretized terms -
Re Reynolds number -
r radius m
r refinement factor -
S surface area m2

T stress tensor kg/(m s2)
T torque kgm2/s2

t unit vector in tangential direction -
T diffusion time s
t time s
Ur ratio of terminal velocities -
u velocity m/s
u0 superficial velocity m/s
V volume m3

w blending function for HKL-drag correlation -
x axis coordindate m
y axis coordindate m
z axis coordindate m

Greek Symbols

α volume fraction -
αn empirical constant -
β momentum exchange coefficient kg/(m3 s)
Γ arbitrary diffusivity a.u.
γ blending factor -
γs energy dissipation due to collisions kg/(m s3)
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Nomenclature

∆ difference -
δ difference of solutions -
εd discretization error -
ε volume fraction fluid phase -
ζ bulk viscosity kg/(m s)
η shear viscosity kg/(m s)
η damping coefficient -
θs granular temperature m2/s2

κs granular thermal conductivity kg/(m s)
µf Coulomb friction coefficient -
µfr friction coefficient -
ν Poisson ratio -
ν kinematic viscosity m2/s
ρ density kg/m3

τ viscous stress tensor kg/(m s2)
τ pseudo-time s
τe turnover time of large eddies s
τK Kolmogorov time scale s
τp particle response time s
Φ extensive property a.u.
φ intensive property a.u.
φ angle of internal friction °
ψ sphericity -
ω angular velocity 1/s

Sub- and Superscript

b buoyancy
BD Blended Differencing
bf bubbling fluidization
bg background
bub bubble
c contact
c coarse
CD Central Differencing
CG coarse grain
col collisional
d drag
E Eulerian
EE Eulerian-Eulerian
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Nomenclature

EEL Eulerian-Eulerian-Lagrangian
EL Eulerian-Lagrangian
eff effective
ext extrapolated
f fine
f fluid phase
f face
g gravity
g gas phase
kin kinetic
L Lagrangian
max maximum
mf minimum fluidization
N neighbor cell
n empirical constant
n normal
nc non-contact
norm normalized
ol overlap
orig original
P owner cell
pε exponent
p particle
rel relative
s solid phase
sv surface specific
t tangential
UD Upwind Differencing
vm virtual mass
w wall

Abbreviations

AeMBR Aerobic Membrane Bioreactor
AnMBR Anaerobic Membrane Bioreactor
AnFMBR Anaerobic Fluidized Membrane Bioreactor
CFD Computational Fluid Dynamics
CG Coarse Grain
CPU Central Processing Unit
CV Control Volume
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Nomenclature

D Dual-grid
DPVM Divided Particle Volume Method
DEM Discrete Element Method
DFT Density Functional Theory
DNS Direct Numerical Simulation
FCC Fluid Catalytic Cracking
FDM Finite Difference Method
FEM Finite Element Method
FVM Finite Volume Method
GAC Granular Activated Carbon
GCI Grid Convergence Index
GPU Graphical Processing Unit
H&G Huilin and Gidaspow
HKL Hill-Koch-Ladd
IBM Immersed Boundary Method
LBM Lattice-Boltzmann Method
LPT Lagrangian Particle Tracking
MBR Membrane Bioreactor
MP-PIC Multiphase Particle-In-Cell
PAC Powdered Activated Carbon
PCM Particle Centroid Method
PEPT Positron Emission Particle Tracking
PET Polyethylene Terephtalate
S Single-grid
S&O Syamlal and O’Brien
T Three-level Grid
TFM Two-Fluid Model
TMP Transmembrane Pressure
W&Y Wen and Yu
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1 Introduction

1.1 Motivation

The state of fluidization of particles occurs if the resulting drag force of a fluid flow
through a bed of resting particles equals the weight of said particles. Then, the solid
phase is suspended in the fluid phase and the particle bed behaves like a fluid, hence the
term fluidization. Fluidization can occur between a wide range of fluid and solid phase
combinations, as well as different particle sizes. The average particle size in a fluidized
bed lies between 30 µm and 2 cm [1]. Fluidized beds are used in industrial-scale units
for both catalytic and non-catalytic processes. The first commercial fluidized bed reactor
dates back to the early 1920s when the first operating fluidized bed was utilized for
the process of coal gasification by Winkler known as the High-Temperature-Winkler
process [2]. The most prominent application of a fluidized bed reactor might be the
process of Fluid Catalytic Cracking (FCC) to produce gasoline and other petroleum
products from crude oil. The first FCC units were built in 1942 at the Baton Rouge
Refinery in Louisiana, US by a company which is now known as ExxonMobil [3]. Here,
a fluidized bed of particles is used to carry over energy in form of heat between the
different reactors. Heavier hydrocarbons are cracked down to lower hydrocarbons in
the riser reactor. The employment of the first fluidized bed reactor for an FCC unit
was the beginning of other companies using the fluidization technology incorporating to
industrial-scale chemical processes. In the later years more and more commercial units
with fluidized bed reactors were applied, such as reactors used for naphthalene oxidation
to synthesize phthalic anhydride or polyethylene production plants by Dow Chemical [1, 4,
5]. Also non-catalytic fluidized bed reactors were used for roasting of sulfide ores by BASF,
calcination of lime, dolomite and clay or for power generation [1]. The Synthol process
introduced by Sasol in 1955 employed a fluidized bed reactor combining the Lurgi and the
Fischer-Tropsch process. The Lurgi process was used for synthesis gas production with the
reaction of steam and coke, while the Fischer-Tropsch process converted the synthesis gas
to light oils and gasoline [4]. At first a dense bubbling fluidized bed reactor was used for
this process. A scale-up was performed from a pilot-scale plant to an industrial-scale
unit with a diameter of 7m. While the yield of the pilot-plant was satisfactory, it
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1 Introduction

dropped by 50% in the industrial-scale used unit. Hence, the dense bubbling fluidized
bed was replaced by a circulating fluidized bed to increase heat-exchange and gas-solid
mass transfer rates, resulting to higher yields in the commercial unit. This example
was one of the turning points in the research of fluidized beds and reactors. Before
this, most of the research was done by experiments with rudimentary data capturing
techniques, e.g., simple visual images taken with a camera of a bubbling fluidized bed
or pressure drop measurements [4]. Since the 1950s more attention was paid to more
sophisticated experimental data capturing gadgets, e.g., using X-ray [6] or optical sensors
[7]. Also this was the start of the theoretical research of fluidized beds. Toomey and
Johnstone [8] and Mickley and Fairbanks [9] were the first proposing a two-phase theory
to model bubbling fluidized beds. More and more novel techniques for experimental data
acquisition became available, like Positron Emission Particle Tracking (PEPT) [10] to
track individual particles based on their positions to conclude on their axial and horizontal
velocities on a moving fluidized bed. Also the modeling approaches have been enhanced
to account for emulsion phases and chemical reactions for a better understanding of the
hydrodynamics in the fluidized bed (cf. Foscolo and Gibilaro [11]). Furthermore, mapping
regimes and classification of fluidization types based on particle and fluid properties, as
well as superficial velocities were proposed [12, 13]. The 1990s marked the beginning of
Computational Fluid Dynamics (CFD) to use numerical simulations in order to depict
the hydrodynamics of multiphase flows. CFD provides a far better insight into the
dynamics of a fluidized bed than the modeling approaches proposed so far. The use of
a numerical simulation, e.g., CFD, is extremely computational expensive and was only
possible at this time due to the increasing computing power; computational processors
were increasing in performance and the production costs sank rapidly. Discrete Element
Method (DEM) based approaches coupled with CFD were first proposed by Tsuji et al.
[14] to solve multiphase flows consisting of a fluid and particles. The particles were tracked
individually with a Lagrangian Particle Tracking (LPT) algorithm. More approaches, like
the Two-Fluid Model (TFM), to solve fluid-solid multiphase flows for industrial-scale
geometries were introduced [15]. In recent years, novel experimental techniques were
presented, using magnetic resonance imaging [16] for exact measurements to capture,
for example bubble expansions or bubble rise velocities precisely in three-dimensional
fluidized beds. The work in the numerical simulation of multiphase flow switches to the
use of Graphical Processing Units (GPU) instead of Central Processing Units (CPU) to
increase the simulation speed for a more detailed simulation of particles including chemical
reactions [17, 18].

There exists a vast variety of different software-packages for CFD simulations. The most
used commercial software-packages in the field of academic research and industrial appli-
cation include the ANSYS® framework of CFX® and Fluent®, as well as COMSOL®

Multiphysics. Popular open-source software for the simulation of multiphase flows are for
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1.2 Outline

example MFIX® or the C++ based software OpenFOAM®. Nowadays, the technology
of fluidization of particles is used in many different areas of industrial-scale operations,
e.g., physical, chemical, petrochemical, electrochemical and biochemical operations [19,
20]. Although the study of fluidization processes has been going on for over 100 years,
many uncertainties still have to be unraveled. Due to the increasing computational power
over the last decades, more and more simulations instead of experiments are used to
investigate fluid-solid interactions.

1.2 Outline

This work is focused on the numeric simulation of multiphase flows by means of CFD. The
multiphase flows consist of either a gas-solid or a liquid-solid flow. The main application for
these types of flows in the simulations are fluidized bed reactors. Different models for the
numeric simulation of multiphase flows are used in the following, including Eulerian-Eu-
lerian and Eulerian-Lagrangian approaches with some of their respective sub-models, i.e.,
a Coarse Grain (CG) model and the Multiphase Particle-In-Cell (MP-PIC) method.
All simulations were carried out using the open-source C++ based software package
OpenFOAM® version 4.1 due to its highly modifiable source code and vast CFD com-
munity. Solvers were created and modified to accelerate simulations, make them more
robust and to increase accuracy. Also, simulations were performed to study a novel-reactor
approach using CFD-DEM.

Chapter 2 presents the theoretical work in the study of fluidized bed reactors and the
numerical simulation of multiphase flows. Particular focus is set on the discretization of
the generic transport equation, the simulation of fluid-solid flows using different CFD
approaches, as well as the determination of the drag coefficient to couple the fluid and
solid phases.

Chapter 3 compares the most widely used CFD model for simulating gas-solid flows in a
fluidized bed: TFM, CFD-DEM and MP-PIC. Additionally, a new solver was developed,
combining TFM and CFD-DEM to increase simulation speed and accuracy when necessary
and applicable. The newly developed solver is investigated based on accuracy, robustness
and simulation speed and is compared to TFM, CFD-DEM and MP-PIC. Different types
of fluidized bed reactors from literature are used for validating and comparing the different
approaches. This chapter was published in a similar way in:
D. Hirche, F. Birkholz, O. Hinrichsen, "A hybrid Eulerian-Eulerian-Lagrangian model
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for gas-solid simulations", Chemical Engineering Journal 2019, 377, 119743, DOI
10.1016/j.cej.2018.08.129.

Chapter 4 presents an extended version of a dual-grid approach for CFD-DEM simula-
tions. Here, an additional third grid is introduced to increase the accuracy for the Eulerian
and Lagrangian coupling and to extend the somewhat limited applicability of CFD-DEM
simulation due to the cell-size to particle size requirement to a wider range, while also
increasing the fluid flow resolution. The newly developed three-grid approach is validated
with different fluidized and spouting bed set-ups, both 2D and 3D, and compared to a
conventional single-grid and dual-grid approach. Furthermore, the CG method is applied
to increase the simulation speed. This chapter was published in a similar way in:
D. Hirche, O. Hinrichsen, "Implementation and evaluation of a three-level grid method for
CFD-DEM simulations of dense gas-solid flows", Chemical Engineering Journal Advances
2020, 4, 100048, DOI 10.1016/j.ceja.2020.100048.

Chapter 5 applies CFD to model a fluidized bed in an anaerobic membrane bioreactor
for wastewater treatment. After an initial validation of the used CFD-DEM solver with
experimental data from literature, changes of the reactor geometry are made to enhance
fouling mitigation of the membrane and therefore increase energy efficacy of the overall
process. This project was done in collaboration with the research group of Professor Jia
Wei Chew from the School of Chemical and Biomedical Engineering, Nanyang Technologi-
cal University in Singapore. Funding was received from the Federal Ministry of Education
and Research of Germany (project number 01DP16014) and the Joint Singapore-Germany
Research Project Fund (SGP-PROG3-019). This chapter was published in a similar way
in:
D. Hirche, J.W. Chew, O. Hinrichsen, "CFD-DEM study of geometry changes in an
AnFMBR towards particle momentum", Chemical Engineering Journal 2020, 379, 122336,
DOI 10.1016/j.cej.2019.122336.
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2 Theoretical Background on
Multiphase Flows

Multiphase flows consisting of a fluid and solid phase can be comprised of a gas or
liquid as a continuum. Before discussing the numerical approaches for solving gas-solid
or liquid-solid flows in Computational Fluid Dynamics, the state of fluidization will be
defined.

2.1 Fluidized Bed Reactors

Fluidization describes the process of a fluid flowing through a bed of resting particles
with a certain velocity so that the particles begin to move. A fluid flow through a bed of
resting particles where the velocity is not great enough to fluidize the particles is called
a fixed bed reactor or a flow through a packed bed. When the fluid velocity reaches a
certain threshold, the minimum fluidization velocity umf, the particles are fluidized by
the fluid flow. The term fluidization is used as the fluidized particle bed behaves like a
fluid. This can be best illustrated when an object with a low density is brought into a
fluidized bed. Depending on the intensity of the fluidization, the bed density changes, i.e.,
higher gas velocity equals higher bed gas fraction and therefore lower bed density. So the
object can either float on top of the fluidized particles, sink into the bed or remain in
the initial position. The sunk object can also surface to the top once the fluidization is
stopped as the density of the bed increases. Furthermore, the surface of a fluidized bed
when the reactor is tilted moves according to the tilt angle. A horizontal surface is the
result analog to a liquid tilted in a container [5]. Depending on the fluid properties, fluid
flow velocity and particle properties, certain fluidization states can occur. The particle
size has a higher impact on the fluidization behavior than the density or shape of the
particles [1]. Figure 2.1 gives an overview of different states a fluidized bed can have.
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gas or liquid

fixed bed
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Figure 2.1: Different states of a flow through a particle bed with increasing fluid
velocities for an upward flow (modified from [5]).

Figure 2.1a describes not a state of a fluidized bed, but a fixed bed. Here, the minimum
fluidization velocity is not reached yet by the fluid flow and thus, the particles are still
resting in a particle bed. Once the fluid flow reaches the minimum fluidization velocity
umf, a fluidized state occurs as the particles are suspended in the fluid. At this point the
particles are still resting and therefore this state can not be visually distinguished from the
fixed bed state. A slight increase in the fluid flow results into an expansion of the particle
bed (cf. Figure 2.1b and 2.1c). Here, the fluid and particle properties play an important
role on the different occurring fluidized states of the bed. For liquid-fluidizations, i.e.,
the fluid is comprised of a liquid, the fluidized bed transitions to a smooth expansion
of the bed while with a gas, bubbles begin to form while the bed expands. For certain
types of particles, also a smooth fluidization can occur while using a gaseous flow as a
continuous phase. Bubbles begin to form if a certain fluid flow velocity is exceeded, called
the minimum bubbling velocity ubf. A further increase in fluid flow velocity results in
an increase in bubble size and bubble rise velocity. In the state of slugging fluidization
(cf. Figure 2.1d) the bubble size can occupy the whole cross-sectional area of the reactor.
The turbulent fluidization in Figure 2.1e is characterized by turbulent motions of particle
clusters and bubbles disappear as clear boundaries can not be observed. Furthermore,
entrainment occurs, i.e., carryover of particles out of the reactor.

Particles of different sizes and densities fluidized by air result in different fluidization
behaviors. Geldart [12] summarized experimental findings and correlations to classify
fluidized particles based on their fluidization behavior. The so-called Geldart diagram (cf.
Figure 2.2) is used for the determination of which kind of fluidization will occur based on
the particle-air system.
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Figure 2.2: Powder classification in different groups based on particle properties
(specific surface diameter dp,sv and density difference of solid and gas phase ρp – ρf)
and fluidization behaviors by air (modified from [12]).

The particles are classified in four groups:

Group A: Fluidized beds consisting of particles with a rather small diameter and/or
low density are prone to exhibit an expansion before bubbling occurs when fluidized with
air. Typical particles belonging to the group A Geldart classification include cracking
catalysts.

Group B: Small to medium sized particles with a density of 400 kg/m3 < ρp < 1400 kg/m3

are described by group B. Here, above the point of minimum fluidization bubble formation
starts. Sand is a typical material that can be classified as group B according to this
classification.

Group C: Group C particles according to the Geldart classification are cohesive particles
and have small sizes. They are difficult to fluidize unless additional agents are added or
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2 Theoretical Background on Multiphase Flows

external forces, e.g., in form of a stirrer, are applied. Milk powder can be classified as a
group C particle due to its cohesive property.

Group D: Particulates with large diameters and/or high densities are classified by group
D particles. Bubbling formation occurs and due to the relatively high mass of the particles
and great interstitial velocities during the fluidization, attrition of the particles might be
a problem. Most of the fluidized beds based on this group of particles can be categorized
as spouted fluidized beds. Coffee beans during the process of coffee roasting is a typical
group D particle according to the Geldart classification.

The boundary between Geldart group A and B particles can be found by using the
following correlated quantity equation:

dp
µm
· (ρs – ρf)
kg/m3 = 2.25 · 105. (2.1)

Furthermore, to distinguish group B and D particles, the following equation can be used:

d2p
µm2 ·

(ρs – ρf)
kg/m3 = 109. (2.2)

The boundary between group C and A particles (cf. Figure 2.2) is based on experimental
observation. Besides the Geldart classification, which has become the standard classifica-
tion for fluidized particles, other researchers proposed their own classifications based on
different approaches. The most prominent ones include the classifications according to
the work of Molerus [21] or of Grace [13]. Grace [13] also proposed a regime map for the
operation of different types of fluidized bed reactors. Figure 2.1 depicts a cylindrical or
cuboid reactor shape. In industry several other reactor types are used to satisfy the specific
need. The most prominent reactor types used in the fluidization technology also include
a spouted bed, where a high superficial velocity in a small spacial area is used, usually
in the center bottom of the reactor. A fountain with a high fluid fraction is the result of
this reactor. The area around the spouting inlet can either be fluidized or no fluid can
flow through it. Spouted fluidized beds are commonly used in the coal processing industry
or for granulation of particles [22, 23]. For processes where the particles are needed to
be treated in a separate process or even replaced, the circulating fluidized bed reactor is
the common choice. Here, the superficial velocity is exceeding the terminal velocity and
entrainment of the particles occur. The particles exit the reactor through a defined pipe
and are collected, usually through a cyclone to remove fine powders due to abrasion. In
the next reactor, the particles can be regenerated, treated or even additional particles
can be added before the particles are entering the main reactor again. The process of
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2.1 Fluidized Bed Reactors

Fluid Catalytic Cracking (FCC) uses those kinds of reactors in a commercial scale. A
description of other used reactor types can be found elsewhere [24].

An important parameter for the characterization of a fluidized bed is the minimum
fluidization velocity umf. This velocity marks the boundary between a fixed bed and a
fluidized bed. Figure 2.3 shows a typical graph for determining the minimum fluidization
behavior. Here, the resulting pressure drop ∆p is recorded for different superficial velocities
u0.
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Figure 2.3: Pressure drop-velocity diagram for an arbitrary fluidized bed consisting
of monodisperse particles with indication of fixed bed, fluidized bed and resulting
minimum fluidization velocity umf.

According to the Ergun equation (cf. chapter 2.3.3) the pressure drop increases linear to
the superficial velocity, when the flow through the packed bed is laminar. Once the pressure
drop is equal to the pressure due to the weight of the particle bed, the particles in the fixed
bed begin to move. At this point the transition between a fixed and a fluidized bed occurs.
The velocity needed is called the minimum fluidization velocity. After the fluidization of
particles, a further increase in superficial velocity does not effect the pressure drop, as it
stays constant in the fluidization state. At high superficial velocities, the pressure drop
increases again due to the higher contribution of the fluid flow towards it, the acceleration
of particles and increasing particle-wall collisions. In most cases, entrainment occurs which
is not beneficial for a fluidized bed, unless a pneumatic transport of solid good is needed.
For an ideal particle bed with no cohesion or friction effects, the pressure drop versus
superficial velocity curve is identical for increasing and decreasing velocities. But due to
inter-particle forces the transition between the fixed and fluidized bed requires a higher
energy, i.e., pressure drop according to the maximum in Figure 2.3. A decrease of the
superficial velocity from a fluidized state does not follow the maximum pressure drop, as
the cohesion and friction forces are not present for the decrease in velocity.
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2 Theoretical Background on Multiphase Flows

Compared to other fluid-solid contact reactors, the fluidized bed has its advantages in
the fast mixing process of the particles and the fluid. Mass and heat transfer are very
high, resulting into an almost isothermal condition throughout the fluidized particle
bed. Furthermore, temperature changes due to exo- or endothermic reactions, are easily
handled intrinsically by the fluidized bed because of the high mixing characteristics
between the solid and fluid phase. This also gives a great margin of safety for highly
exothermic reactions or temperature runaways [5]. A common practice for heat removal for
fluidized bed reactors is the implementation of heat exchangers in the form of immersed
pipes. As the heat transfer between the particles and the surrounding fluid, as well as
immersed objects, is very high, the heat exchange surface of the immersed objects can be
smaller than for immersed heat exchangers used in fixed bed reactors.

However, for certain cases the use of a fluidized bed reactor is not beneficial. Considering
the fast mixing process of a fluidized bed and the random motion of particles, the residence
time of particles in the reactor, especially for circulating fluidized beds, is not uniform.
This can lead to unwanted yields and poor conversion for chemical reactions. Furthermore,
a higher energy is needed to fluidize the particles compared to an operation in a fixed
bed. This means, that the fluid flow must exceed the minimum fluidization or even the
minimum bubbling velocity depending on the desired operation state of the fluidized bed.
Due to this relatively high fluid flows, the velocity of the particles is also high. This
results in abrasion of the particles or damages on the reactor walls or immersed objects
like heat exchangers. Circulating and spouted beds with particles of group D according
to the Geldart classification are especially prone to abrasion due to their size, weight and
momentum in the fluidized state.

Most of the common used fluidized beds consist of a solid and gaseous phase. Besides
the gas-solid fluidized bed, liquid-solid fluidized beds are also used, especially due to
the smaller minimum fluidization velocity required to fluidize the particles. A type of
liquid-solid fluidization reactor that has caught recent attention, is used to decrease the
required energy in water pollution removal in Membrane Bioreactors (MBR). MBRs
are mostly used for municipal [25] and industrial wastewater treatment [26, 27]. The
water pollutants include pharmaceuticals, pesticides, solvents, petrochemicals, lubricants
among others [28]. Its potential to remove organic and inorganic compounds from a feed
combining a biological treatment and a filtration process through a membrane was proven
useful in a wide field of areas [29, 30]. The membrane configuration can be external,
i.e., membrane is located outside of the bioreactor or immersed in the reactor. Different
membrane modules can be used for the micro- or ultrafiltration for the wastewater
filtration process. These include tubular, flat sheet and hollow fiber membranes [31]. The
MBR processes can be differentiated into aerobic and anaerobic ones. Using an aerobic
process in an aerobic membrane bioreactor (AeMBR) sludge is activated by aeration. This
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2.1 Fluidized Bed Reactors

process is very energy demanding and the aeration process accounts for over 50% of the
total energy input but has its advantages in terms of handling process flows [32]. Due to
the high amount of energy consumption the anaerobic membrane bioreactor (AnMBR)
was introduced for better energy recovery. Biogas, mostly consisting of methane, is
produced by anaerobic conversion of organic compounds in wastewater and hence, this
process has the potential to perform at an energy neutral or even surplus level [33, 34].
Deposition and precipitation of fouling material onto the membrane layers must be either
inhibited or purged off. An increase of the fouling cake layer results into an increase of the
transmembrane pressure (TMP) and therefore into a higher energy input or no filtration
of wastewater [35]. The aeration in an AeMBR acts as a gas purging routine to mitigate
or scour off existing fouling particulates due to the shear force at the membrane layer [36].
This step is crucial for an economic and energy saving process of wastewater treatment in
an MBR. Other techniques to control membrane fouling can be categorized in physical,
chemical and biological schemes [37]. Aeration with an inert gas, e.g., nitrogen-rich gas,
is also used for fouling control in AnMBR’s, both in a continuous or intermittent way. A
recently newly developed approach is the use of a fluidized bed in an anaerobic fluidized
membrane bioreactor (AnFMBR), where particles, e.g., granular activated carbon (GAC)
[38–40], glass beads [41] or zeolites [42], while GAC is the preferred choice [43], are
introduced in the MBR. Figure 2.4 shows a schematic overview of an AnFMBR with
an immersed membrane in a rectangular reactor.
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Figure 2.4: Schematic overview of a a lab-scale anaerobic membrane bioreactor
used for wastewater treatment with fluidized particles.

An increased wastewater feed stream is introduced to exceed the minimum fluidization
velocity of the particles and a fluidized bed is achieved. Due to the small differences in
density between disperse and continuous phase, as well as the diameter of the particles
being greater than 1mm to avoid clogging of the membrane itself, a homogenous fluidized

11



2 Theoretical Background on Multiphase Flows

bed is formed with almost no bubbles visible. The increased velocity of the fluidized
particles results in a particle momentum which is able to scour off existing fouling on the
membrane. Most of the energy input, however, is used for the fluidization of the particles
as it scales with inlet velocity and pressure drop. Several approaches were made to increase
efficiency of the AnFMBR both experimentally [44, 45] and using numerical simulations
[46–48].
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2.2 Numerical Simulation of Fluid Flows

2.2 Numerical Simulation of Fluid Flows

In this chapter, the numerical formulas are presented for solving fluid flows according to
the Finite Volume Method.

2.2.1 Physical Modeling of Fluid flows

A generic transport equation is needed from which several crucial balances can be derived.
Therefore, an extensive property Φ is considered. The rate of change of this arbitrary
extensive property is based on its time-dependent control volume of the mass Vm(t)
rather than on its control volume V (t). This approach is a Lagrangian consideration
of the property Φ. The movement of the fluid particles is tracked using the Lagrangian
approach rather than the movement of a defined fixed region of fluid particles, which is
called the Eulerian approach. For the later introduced Finite Volume Method (FVM), an
intensive property, i.e., a property independent of the size of the control volume, is needed
[49, 50].

The intensive property φ can be derived from the extensive property by integrating over
the control mass1:

Φ =
∫

Vm(t)
ρφ dV . (2.3)

In order to further derive the generic transport equation, we need to apply the Leibniz’
and the Gauss’s Theorem [51, 52].

The Leibniz’ theorem states a formula to differentiate a definite integral. The differentiated
definite integral is composed of a term considering the change over time of the property
φ and another term taking gains and losses across the bounds of the volume ∂V into
account:

d
dt

∫

V (t)
φ dV =

∂

∂t

∫

V (t)

∂φ

∂t
dV +

∫

∂V (t)
φ (uS · n) dS , (2.4)

where n is the unit vector orthogonal to the surface and pointing outward of the surface
area S enclosed by the volume boundary ∂V (t). uS denotes the moving velocity of the

1 The control mass is taken into account with the inclusion of the respective density ρ.
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boundary ∂V . In the case of non-moving control volumes the moving velocity can be
neglected and the equation reduces to

d
dt

∫

V (t)
φ dV =

∂

∂t

∫

V (t)
φ dV . (2.5)

The Gauss’s theorem, sometimes called the divergence theorem, couples a relation between
a surface and a volume integral. Applied to fluid mechanics, the Gauss theorem states
that if the fluid motion with the velocity u into a control volume is higher than its outflow,
a sink must be present (negative divergence). On the contrary, if the net flux of a control
volume across the boundaries is positive, i.e., the fluid motion into the control volume
across the boundaries is smaller compared to the flow outwards of the control volume, a
source must be present (positive divergence):

∮

S
u · n dS =

∫

V
∇ · u dV . (2.6)

With the application of the Reynolds transport theorem2 it is ensured, that the Lagrangian
equivalent of an extensive value Φ in a mass volume Vm is transformed to a Eulerian
equivalent intensive value φ in a control volume V (t). The Reynolds transport theorem
states that the total rate of change of the extensive property is contributed by two parts.
Firstly, the change of the amount of property in a certain time in a certain control volume
and secondly the increase or decrease of the property due to fluid motion across the
boundaries, more commonly known as the convection flux through the boundary [50]:

(
dΦ
dt

)

Vm

=
d
dt

∫

V (t)
ρφ dV +

∮

∂V (t)
ρφu · n dS . (2.7)

Furthermore, the rate of change of the extensive property Φ is dependent on its volume
and surface-based sources and sinks, SφV and SφS . Hence, Equation (2.7) can be stated as:

d
dt

∫

V (t)
ρφ dV +

∮

∂V (t)
ρφu · n dS =

∫

V (t)
SφV dV +

∮

∂V (t)
SφS · n dS . (2.8)

The surface based source contribution can be expressed based on a diffusion-like equation,
i.e., a gradient approximation, with an arbitrary diffusivity corresponding to the intensive
property Γφ:

SφS = Γφ∇φ (2.9)

with ∇φ being the gradient of the intensive property φ.

2 The Reynolds transport theorem is similiar to the Leibniz’ theorem, as it is a three-dimensional
generalization often applied in fluid mechanics.
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Using the Leibniz’ theorem to the first term of the l.h.s3 and applying the Gauss’s theorem
to both surface integrals yields the integral form of the generic conservation equation for
an arbitrary transported intensive property φ:

∂

∂t

∫

V (t)
ρφ dV +

∫

V (t)
∇ · (ρφu) dV =

∫

V (t)
SφV dV +

∫

V (t)
∇ ·

(
Γφ∇φ

)
dV . (2.10)

The more common way of the generic transport equation in its differential form is depicted
in Equation (2.11) and consists of a temporal, convective, diffusive and a (volumetric)
source term, according to:

∂ (ρφ)
∂t︸ ︷︷ ︸

temporal

+∇ · (ρuφ)
︸ ︷︷ ︸
convective

–∇ ·
(
Γφ∇φ

)

︸ ︷︷ ︸
diffusive

= SV (φ)
︸ ︷︷ ︸
source

. (2.11)

An arbitrary transported quantity is represented by the scalar φ with the prescribed
velocity vector u, the corresponding density of the fluid ρ and the diffusion coefficient
Γφ. Additional sources or sinks affecting the transport of the quantity φ are expressed
by the source term SV (φ). Using the differentiated generic transport equation, several
other equations can be derived which will be used in fluid mechanics. Here, we are only
considering isothermal fluid flows (heat conductivity λ→∞) and hence can derive the
continuity and momentum equation. The continuity equation called also the conservation
of mass is derived from Equation (2.11) by substituting the transported quantity φ by
unity, resulting to:

∂ρ

∂t
+∇ · (ρu) = 0. (2.12)

Here, the diffusion term ∇ ·
(
Γφ∇φ

)
yields zero for φ = 1, as there is no diffusion

effect regarding the transportation of mass. Furthermore, the condition for the source
term SV (φ = 1) = 0 applies, if mass is not created nor transformed to energy. If the
transported quantity in the generic transport equation is replaced by the velocity u, the
resulting equation is commonly known as the conservation of linear momentum or the
momentum balance:

∂ (ρu)
∂t

+∇ · (ρuu) –∇ · T = ρg. (2.13)

The convective transport is described by ∇ · (ρuu) and the diffusive transport of the
momentum can be described by introducing the stress tensor T , yielding the diffusion term
in the momentum balance∇·T . The most common source terms affecting the momentum

3 Here, uS according to Equation (2.4) equals to zero is only valid, if the regarded control volumes do
not change, i.e., a static mesh is considered. When a moving mesh is present, the surface integral
on the r.h.s. of Equation (2.4) has to be included. Hence, the Gauss’s theorem has to be applied to
transform the surface integral to a volume integral.
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for fluid flows are due to gravity ρg. Other source terms can include electromagnetic forces,
surface tension forces and others if applicable [52]. For Newtonian fluids the term ∇ · T
can be split up in a pressure and a shear stress term depending on the viscous part of the
stress tensor τ according to Enwald et al. [53]:

∇ · T =∇ ·
(
–pI + τ

)
= –∇p +∇ · τ . (2.14)

The Newtonian strain-stress relation shows the dependency of the viscous stress from the
bulk viscosity and the shear viscosity, ζ and η, respectively:

τ = ζ (∇ · u) I + 2η
[
D –

1
3
(∇ · u) I

]
. (2.15)

I represents the unit tensor and the strain (deformation) rate tensor D :

D =
1
2

[
∇u + (∇u)T

]
. (2.16)

Stokes’ assumption states that the bulk viscosity ζ can be neglected for most of the fluids,
as it implies that the average normal viscous stress is zero (cf. Panton [54]) and the viscous
part of the stress tensor reduces to:

τ = η
[
∇u + (∇u)T

]
+

2
3
η (∇ · u) I . (2.17)

In regards to incompressible fluids (ρ = const.) the continuity equation from Equa-
tion (2.12) can be further simplified to

∇ · u = 0 (2.18)

and the momentum balance with the introduction of the viscous part of the stress tensor,
the assumption of an incompressible flow with a constant viscosity (η = const.) yields

∂u
∂t

+∇ · uu = –
1
ρ
∇p + g +∇ · ν∇u (2.19)

with the kinematic viscosity ν. These two equations are crucial for determining an
isothermal flow of an incompressible Newtonian fluid.

2.2.2 Finite Volume Method

In order to solve the aforementioned partial differential equations for the conservation
of mass and momentum, they have to be discretized. This means, a continuum problem
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must be approximated into a discrete set of quantities [55]. There exists several different
discretization techniques, such as the Finite Element Method (FEM), Finite Difference
Method (FDM) or the Finite Volume Method (FVM); the latter of which will be used in
this thesis. Each of those discretization techniques uses the same procedure to solve the
apparent problem:

• spatial discretization,

• temporal discretization and

• equation discretization.

In the following, those three steps are explained in reference to the FVM. The spatial
discretization ensures, that the whole range of the system, volume and boundaries, is
covered. This condition is fulfilled by the introduction of three-dimensional inter-connected
cells. The cells are of a general polyhedral shape, e.g., the mostly used hexahedral cells or
tetrahedral cells for more complex geometries, and must not overlap. Each cell represents a
control volume (CV). Two adjacent arbitrary CV’s, here cubic cells, are seen in Figure 2.5.
Both cells are connected through a shared face f . The two centers of each cell, both owner
and neighbor, are located with computational nodes, P and N , respectively. Using FVM
a staggered or collocated approach can be applied. While in the staggered approach the
properties φ are either stored in the cell center or the cell face, the collocated approach
stores all properties φ in the cell center. Here, the collocated approach is used and therefore
the properties are stored in the cell centers of both cells, φP and φN . The value of the
property at the connecting cell face φf is calculated with an interpolation of the property
values of the two adjacent cells, φP and φN . The position vector of a cell center xP and
a cell face center xf are defined, such that the following equations are valid:

∫

VP

(x – xP ) dV != 0 (2.20)

and
∫

Sf

(
x – xf

)
dS != 0. (2.21)

Above equations state the center of the cells and faces to be the geometrical centroid
based on a volume or surface for an arbitrary shape.

Sf represents the outward pointing face area vector normal to the face f . The magnitude of
the face area vector is equal to the area of the face. In the case of Figure 2.5 the numerical
grid is orthogonal, as the connecting vector of the two centroids

−→
PN is parallel to the face
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2 Theoretical Background on Multiphase Flows

Figure 2.5: Two adjacent arbitrary (cubic) cells used in the collocated finite
volume method.

area vector Sf . Non-orthogonal numerical grids are referred to as unstructured and have
the benefit of depicting more complex geometries but more sophisticated interpolation
techniques are required [52, 56].

The temporal discretization includes the definition of a time-step. With a defined size of
a time-step the continuous time is discretized into a finite number, i.e., t =

∑
∆t . The

time-step ∆t might be defined as a constant value or as an adaptive time-step. However,
the adaptive time-step has certain limitations regarding transient simulations.

All equations have some form of the general transport equation according to Equa-
tion (2.11). The following terms must be discretized for the:

• temporal derivative,

• convection term,

• diffusion term and

• source term.

In order to apply the FVM, Equation (2.11) must be first integrated over the control
volume of the cell VP to derive the integral form of the general transport equation:

∫

VP

∂ (ρφ)
∂t

dV +
∫

VP

∇ · (ρuφ) dV –
∫

VP

∇ ·
(
Γφ∇φ

)
dV =

∫

VP

SV (φ) dV . (2.22)
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Temporal derivative

The integration of the temporal derivative over the control volume VP yields:

∫

VP

∂ (ρφ)
∂t

dV =
∂ (ρφ)P
∂t

VP . (2.23)

ρP and φP represent the density and the arbitrary property in the cell center P .

Convection term

The convection term is discretized by integrating over the control volume and applying
the Gauss’s Theorem to transform a volume integral into a surface integral. The surface
integral can then be approximated with the summation of the convective flux of the
property over all enclosed cell faces, according to:

∫

VP

∇ · (ρuφ) dV =
∮

S
(ρuφ)f dS ≈

∑

f
Sf · (ρuφ)f =

∑

f
Ff φf , (2.24)

where Ff is the mass flux through the face f :

Ff = Sf · (ρu)f . (2.25)

Differencing schemes are used to calculate the property φf on the cell face f . These cell
face properties must be calculated when applying the collocated FVM as properties are
only stored in the cell centers. To determine the face value of a property φf , the properties
of the two adjacent cells are required, φP and φN . A flux dependent differencing scheme is
the Upwind Differencing (UD) scheme. The face property φf is dependent on the direction
of the flow:

φUDf =




φP for F ≥ 0

φN for F < 0.
(2.26)

If no flux occurs or the flow direction points towards the neighbor cell, i.e., the fluid is
flowing from the cell P to N and F ≥ 0, the face value of the property is equal to the
property stored in the cell center of the cell itself φN . If the direction of the flux points the
other way, i.e., from the neighbor cell to the considered cell, the face value of the property
is equal to the cell centered property of the neighbor cell, φf = φN . This differencing
scheme is first order accurate and guarantees boundedness. The boundedness, however, is
given at the cost of loss of accuracy due to numerical diffusion [52, 57]. Hence, the solution
can be severely distorted in terms of accuracy.
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A second-order accurate differencing scheme using a linear interpolation approach is the
Central Differencing (CD) scheme. With the assumption of a linear trend of the property φ
between the cell centers P and N , the face value can be determined with the interpolation
factor fx :

φCDf = fxφP + (1 – fx )φN . (2.27)

The interpolation factor fx represents the ratio of the distances of cell-center → face and
cell-center → cell-center, fN and PN , respectively.

fx =
fN
PN

. (2.28)

It has been reported, that boundedness for the CD is not guaranteed for convection-dom-
inated flows [58] resulting to an unphysical behavior.

A blended scheme combining the second order accuracy of CD and the boundedness of the
UD is the Blended Differencing (BD) scheme [59]. The combination consists of a linear
combination of the UD and CD (cf. Equations (2.26) and (2.27)):

φBD
f = (1 – γ)φUDf + γφCDf . (2.29)

γ denotes the blending factor and is bounded between zero and unity, 0 ≤ γ ≤ 1. While
Peric [59] recommends a constant value for γ for all faces of the numerical grid, other
reviews with more sophisticated approaches on the calculation of the blending factor, can
be found in literature [57, 59–61].

Diffusion term

Analog to the convection term, the diffusion term is first integrated over the control
volume VP and then the Gauss’s Theorem is applied. The resulting surface integral is
then approximated by a summation of the corresponding property over the surrounding
cell faces:

∫

VP

∇ ·
(
Γφ∇φ

)
dV =

∮

S

(
Γφ∇φ

)
f
dS ≈

∑

f
Γ
φ
f ∇f φ · Sf . (2.30)

∇f φ denotes the face gradient and can be calculated for orthogonal meshes as:

∇f φ · Sf =
∣∣Sf
∣∣φN – φP

PN
. (2.31)

For non-orthogonal meshes, the full gradient approximation is split up in an orthogonal
contribution and a non-orthogonal correction term (cf. Ferziger and Perić [52]).
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Source term

Due to numerical convergence issues, the source term is linearized in an explicit and
implicit treatment part, according to

SV (φ) = SIφP + SE , (2.32)

where SI and SE represent the implicit and explicit part, respectively.

The integration of the source term over the control volume VP results to:
∫

VP

SV (φ) dV = SIφPVP + SEVP . (2.33)

This treatment is second order accurate.

For steady-state simulations the temporal derivative yields zero, ∂(ρφ)∂t = 0. Considering
transient conditions, the general transport equations must be first integrated over the
control volume VP and over time, yielding the time integration of the spatial discretized
form:

∫ t+∆t

t

∂ (ρφ)
∂t

VP dt =
∫ t+∆t

t
R (φ) dt , (2.34)

withR (φ) representing the discretized terms of the convection, diffusion and source terms
according to Equations (2.24), (2.30) and (2.33):

R (φ) = –
∑

f
Ff φf +

∑

f
Γ
φ
f ∇f φ · Sf + (SIφP + SE )VP . (2.35)

Integrating Equation (2.34) from the limits t to t + ∆t yields4:

ρP
φn+1
P – φn

P
∆t

VP = R (φ) , (2.36)

where the parameter n denotes the time-level, e.g., φn = φ(t) and φn+1 denotes the
property φ at the time-level t + ∆t .

There are several methods that can be applied to derive the interpolation type of equation
for the temporal term. The explicit and implicit Euler methods will be explained in the
following section.

4 Note, that the density in the center of P does not have a corresponding time-level. This is only valid,
if the density is constant over the defined time-period. Otherwise the term should be changed to
ρn+1
P φn+1

P –ρnPφn
P

∆t VP .
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Deriving the temporal term according to the explicit Euler method, values for the property
φ in the convection, diffusion and source terms from the old time-step n are used:

ρP
φn+1
P – φn

P
∆t

VP = R (φn) , (2.37)

According to the explicit Euler approach it is therefore possible to directly derive the
value of the arbitrary property at the new time-step n+1, as the values for R (φn) at the
time-step n are known:

φn+1
P = φn

P +
∆t

ρPVP
R (φn) . (2.38)

This method is first order accurate and a stability criterion exists for the explicit Euler
method. Introducing the Courant-Friedrich-Lewis Number Co, the explicit Euler Method
is unstable for Co > 1. The Courant-Friedrich-Lewis Number Co at the interconnecting
face of two adjacent cells in accordance to Figure 2.5 is defined as:

Co =
uf ∆t
PN

. (2.39)

Co is therefore dependent on the distance between two adjacent cells PN , i.e., the cell sizes
themselves, the chosen time-step ∆t , and the occurring velocities on the interconnecting
face of the two cells uf . While the velocities are not modifiable, as they are given based
on the considered flow problem, the time-step can be reduced. The cell size can be
increased to further lower the Co number and therefore prevent numerical instabilities
and inaccuracies. An increase of the cell size may result in bad resolution of the numerical
grid. Furthermore, a decrease of the time-step has a negative effect on the simulation
time. A smaller time-step results in more equations to be solved until the final time-step
is reached, hence, the simulation time increases and may become unfeasible to operate.

The spatial terms R (φ) can also be discretized implicitly by using the implicit Euler
method. Here, the new values of the arbitrary property are included in the calculation,
resulting to:

φn+1
P = φn

P +
∆t

ρPVP
R
(
φn+1

)
. (2.40)

According to Equation (2.40) the implicit Euler method is first-order accurate. In this case
the Euler method also guarantees boundedness and is numerically stable. Further methods
to discretize the temporal derivative include the backward method, which is second-order
accurate as it uses three time levels n, n+1 and n – 1, or the Crank-Nicolson scheme [62],
which is second-order accurate and bounded.
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2.3 Multiphase Flow Models

Multiscale approaches for the correct prediction of fluid-solid flows exist comprising of
fluid-particle and particle-particle interaction in different levels of detail. Figure 2.6 shows
a brief overview of the three main multiscale models used in engineering. The choice which
model will produce accurate and relatively fast simulation results, depends on a number of
factors. Popular and widely applied models for multiphase-flow consisting of at least one
fluid and solid phase include the Direct Numerical Simulation (DNS), Eulerian-Lagrangian
and Eulerian-Eulerian models.

increasing geometry dimensions, but lower level of detail

DNS DEM TFM

Figure 2.6: Multiscale simulation models used in engineering for fluid-solid flows:
Direct Numerical Simulation (DNS), Discrete Element Model (DEM) and Two-Fluid
Model (TFM).

DNS counts to the most accurate, but computational very expensive simulations. Here,
the particles are fully resolved and equations for the surrounding fluid phase are calculated
on a very fine numerical grid to account for a correct force coupling between the phases.
The fluid flow in the vicinity of the particles is depicted accurately and the shape of each
particle is fully resolved. The immersed boundary method (IBM) is a popular approach
applied to model DNS in fluid-particle flows. IBM was first proposed by Peskin [63, 64] to
model cardiovascular flow problems but has since been applied to arbitrary flow problems
as well. The number of particles for this kind of simulation is usually limited to 1000
because of computational limitations [65]. Due to the high accuracy and high demand of
computational power, this model is usually used for small-scale simulations in order to
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derive models that can later be used for other less computational demanding approaches.
Several drag force models have been derived using DNS [66–69], which were later applied in
Eulerian-Eulerian and Eulerian-Lagrangian approaches. The Eulerian-Lagrangian model
is a faster approach to simulate fluid-solid flows with the sacrifice of accuracy. As the
particles are not fully resolved but rather a Lagrangian Particle Tracking (LPT) is applied,
i.e., the movement of points is tracked, the numerical grid is not as fine as in DNS.
Depending on the used sub-model (cf. Chapter 2.3.2), the number of particles is usually
less than one million [70]. The Eulerian-Eulerian model or the Two-Fluid Model (TFM)
[53, 71] uses an interpenetrating continuum approach for both the solid and the fluid
phase. The solid phase is treated as a fluid. This results in a lack of tracking individual
particles and has the advantage of being almost independent on the number of particles in
a system. Particle-particle interaction, therefore, can not be accounted for correctly and
have to be modeled by stochastic collision models. In this context it is more precise to
talk about a solid phase instead of particles altogether. The TFM is especially suitable for
small particles and high number of particles, in the order of up to one billion or even to
one trillion particles [72]. Larger amounts of particles usually imply greater space scales,
where other more abstract correlation models might be of a better use, although the speed
of TFM is in theory independent of the particle number. Myöhänen and Hyppänen [73]
presented a time and space scale dependent overview approach (cf. Figure 2.7) to choose
between DNS, TFM and Eulerian-Lagrangian models to simulate fluid-particle flows.
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Figure 2.7: Range of application for different multiscale models (modified from
[73]).
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As can be seen, areas exist where multiple approaches can be applicable to simulate the
multiphase-flow problem. However, the level of detail and scale of the geometry defines
which approach is suitable for it [74]. Especially for industrial engineering problems
the Eulerian-Lagrangian approach and TFM approaches are the most common models
applied, while the Eulerian-Lagrangian model and DNS is preferred in scientific research
to model fluid-solid flows in CFD [70]. A grid independency study for both the TFM
and the Eulerian-Lagrangian approach is presented in Appendix A. The TFM and Eule-
rian-Lagrangian model will be discussed in detail in the following.

2.3.1 Two-Fluid Model

The Eulerian-Eulerian approach, also called TFM for the simulation of granular flows, is
based on the work of Anderson and Jackson [72]. Both the fluid and particle phases are
modeled as a continuum. Hence, the particles are not resolved and can not be individually
tracked. Both phases are solved using a momentum and mass balance5 and are coupled
through a momentum exchange, mainly due to drag force. Both phases are solved using the
same time-step. The mass and momentum equation follow the generic transport equation
discussed in Chapter 2.2.1 with the addition of a phase fraction term ε and a term coupling
the interpenetrating phases, the momentum exchange Mf,s. The phase fraction term ε

describes the volumetric fraction of the fluid phase f. The following two equations result
for the mass and momentum equation of the fluid phase:

∂ε

∂t
+∇ · (ε uf) = 0 (2.41)

and

∂ (ε ρf uf)
∂t

+∇ · (ε ρf uf uf) = –ε∇p + ε ρf g +∇ ·
(
ε τ f
)
+ Mf,s. (2.42)

ρf, uf, p and g represent the density and velocity of the fluid phase, the hydrostatic
pressure and the gravitational acceleration, respectively. The viscous stress tensor of the
fluid phase τ f is calculated according to Equation (2.17) for a Newtonian fluid. The phase
fraction of the fluid phase ε obeys a closing condition with the solid phase fraction αs
and therefore the solution of the mass equation for the fluid phase is sufficient and an
additional differential equation for mass regarding the solid phase fraction αs is redundant:

αs = 1 – ε. (2.43)

5 The energy balance has to be included if the system is non-isothermic.
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To ensure a realistic limit of particles in a cell according to the maximum close-packing
of equal spheres, a maximum solid phase fraction αs,max is often introduced. It can be
considered as a maximum compressibility limit for the solid phase. After the solid phase
fraction reaches this value, the solid phase can not be compressed any further, as a further
decrease in local spacing would be physically impossible. This value is dependent on
the material properties, e.g., shape, surface energy, and is set due to empirical findings.
Correlations for the maximum solid phase fraction can be found elsewhere [75]. Commonly,
a maximum solid phase fraction value of αs,max = 0.6 to 0.64 is assumed [76, 77].

As the solid phase is modeled with a continuum approach as well, it is treated as a fluid.
Hence, the momentum equation for the solid phase is analog to the momentum equation
of the fluid phase in Equation (2.42) with the addition of further closure equations for the
solid phase’s internal momentum transfer:

∂ (αs ρs us)
∂t

+∇ · (αs ρs us us) = –αs∇p + αs ρs g –∇ps +∇ ·
(
αs τ s

)
+Ms,f, (2.44)

with the solid phase pressure ps, the viscous stress tensor of the solid phase τ s and
the momentum exchange Ms,f. In order to model the solid phase as a fluid whilst still
maintaining the particulate behavior, additional closure equations are needed. Ding and
Gidaspow [78] proposed the Kinetic Theory of Granular Flow (KTGF) to determine those
equations. The KTGF is a modified version of the Kinetic Theory of Solids by Jenkins
and Savage [79] and Lun et al. [80] and was extended to fluid-solid flows based on first
problem. Formerly, the kinetic stresses, e.g., solid viscosities, had to be guessed for the
simulation. In the KTGF, equations were proposed to calculate those kinetic stresses for
the solid phase. However, this model is used for frictionless ideal spherical particles. Other
models have since been developed to account for the roughness of particles, e.g., Zhao et
al. [81] and Yang et al. [82], but the KTGF proposed by Ding and Gidaspow [78] is still
the most widely applied for fluid-solid simulations [83]. Different correlations exist for
each of the closure equations. Here, the most popular correlations will be presented and
further methods will be mentioned.

Viscous stress tensor

For granular matter the bulk viscosity ζs can not be neglected. Hence, the equation for
the viscous stress tensor of the solid phase τ s reads:

τ s = ηs
[
∇us + (∇us)T

]
–
(
ζs –

2
3
ηs

)
(∇ · us) I. (2.45)
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Closure equations for bulk viscosity ζs and shear viscosity ηs are required to calculate the
viscous stress tensor of the solid phase.

Solid bulk viscosity

If a packing of granular matter gets compressed or loosened, a force of resistance occurs
as a result of the change in viscosity in the bulk solid phase. Lun et al. [80] presented an
equation to calculate the bulk viscosity of the solid phase:

ζs =
4
3
α2sρsdpg0 (1 + e)

√
θs
π
. (2.46)

To determine the solid bulk viscosity, the particle diameter dp, the radial distribution
function g0, the coefficient of restitution e and the granular temperature θs is needed, as
well as the particle concentration αs.

Solid shear viscosity

The solid shear viscosity ηs changes due to collisions and translation of particles. Hence,
the solid shear viscosity can be split up into a collisional and kinetic part, ηs,col and ηs,kin,
respectively:

ηs = ηs,col + ηs,kin. (2.47)

According to Gidaspow [15], the individual components of the solid shear viscosity, namely
the collisional and kinetic part, can be calculated as:

ηs,col =
4
5
αsg0 (1 + e) ρsdp

√
θs
π

(2.48)

and

ηs,kin =
10
96

ρsdp
αsg0 (1 + e)

√
θs
√
π

[
1 +

4
5
αsg0 (1 + e)

]2
. (2.49)

Nieuwland et al. [83] and Syamlal et al. [84] suggested alternative correlations to calculate
the solid shear viscosity, while still maintaining the individual components of a collisional
and kinetic part. Regarding highly dense granular flows, additional stress is attributed
to the solid shear viscosity, as the inter-particle friction forces increase proportionally.
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Therefore, a solid phase friction limit αs,fr is introduced when exceeded the additional
frictional stresses are accounted for. This results to:

ηs =




ηs,col + ηs,kin, if αs < αs,fr

ηs,col + ηs,kin + ηs,fr, if αs ≥ αs,fr.
(2.50)

The frictional stress solid shear viscosity ηs,fr can be calculated according to Johnson and
Jackson [85] with:

ηs,fr = Fr

(
αs – αs,fr

)n
(
αs,max – αs

)P sinφ, (2.51)

where Fr , n and P are empirical constants and φ presents the angle of internal friction.
Ocone et al. [86] give an overview of suitable values for those variables. Other correlations
for the solid shear viscosity due to friction in highly dense granular flows are found in the
works of Syamlal et al. [84] and Schaeffer [87].

Solid phase pressure

The solid phase pressure ps is used, to prevent unreasonable low values of local solid
phase fractions. Lun et al. [80] stated a model for the solid phase pressure consisting of
a kinetic part (first term) and further forces which account for inter-particle collisions
(second term):

ps = αsρsθs + 2g0ρsα2s (1 – e) θs. (2.52)

The kinetic part of the solid phase pressure is proportional to the concentration of particles
αs and the granular temperature θs, hence due to the motion of particles. Inelastic
collisions between particles account for the second part of the solid phase pressure. It
consists of forces mainly due to the repulsive radial distribution function g0 and the
coefficient of restitution of the particles e. Other models were proposed by Syamlal et al.
[84] and Ahmadi and Ma [88].

Analog to the additional term for friction in the solid shear viscosity ηs,fr, the solid phase
pressure exhibits an additional contribution when a highly dense granular flow is present.
Johnson and Jackson [85] proposed an equation for additional solid phase pressure due to
friction ps,fr:

ps,fr = Fr

(
αs – αs,fr

)n
(
αs,max – αs

)P . (2.53)
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The symbols are identical to Equation (2.51).

Radial distribution function

The radial distribution function g0 is a probability function for the collision of particles
and is similar to the radial repulsive function between molecules by Chapman and Cowling
[89]. It was extended to rigid spheres. Ogawa et al. [90] proposed the following equation
based on the work of Alder and Wainwright [91]:

g0 =

[
1 –
(

αs
αs,max

)1/3
]–1

. (2.54)

Several other often used equations for the radial distribution function can be found
elsewhere [15, 92, 93]

Granular temperature

As interpenetrating continua are modeled in the TFM, particles are not simulated, but
rather solid phases. The fluctuation of the individual particles can not be monitored within
a continuum approach. Therefore, a transport equation for the granular temperature will
be solved. The granular temperature θs is a measure to quantify the fluctuation of particle
movement, i.e., kinetic energy of the particulate matter. The granular temperature can
be calculated with:

θs =
1
3
〈u2s 〉, (2.55)

where the brackets define an averaging over velocity space. The transport equation for
the granular temperature is in accordance to Ding and Gidaspow [78]:

3
2

[
∂

∂t
(αsρsθs) +∇ · (αsρsusθs)

]
=
(
–psI + τ s

)
:∇us+∇· (κs∇θs) – γs – Js. (2.56)

In this equation∇· (κs∇θs) represents the diffusion of the fluctuating energy, κ the gran-
ular thermal conductivity, γs the collisional dissipation of energy and Js the dissipation
of energy due to inelastic behavior of particles.

Besides the partial differential equation for the granular temperature, an algebraic formu-
lation can be used for the determination of θs. The algebraic formulation can be applied if
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the dissipation of the granular energy is of a local matter and the convective and diffusive
parts of Equation (2.56) can be neglected [84, 94].

Granular thermal conductivity

The conductivity of fluctuating energy is calculated by [78]:

κs = ρsdp
√
θs ·
(
2α2s g0 (1 + e)

1√
π

+
9
8
√
πg00.5 (1 + e)α2s

+
15
16
√
παs +

25
64
√
π

1
(1 + e) g0

)
.

(2.57)

This effects only small particles, as large particle have a high granular thermal conductivity
and hence, the motion in a molecular space-scale can be neglected [15]. Nieuwland et al.
[83], Syamlal et al. [84], and Hrenya and Sinclair [95] proposed further models to calculate
the granular thermal conductivity.

Collisional dissipation of energy

Colliding particles dissipate energy. This energy is quantified by the collisional dissipation
of energy γs according to Lun et al. [80] and is proportional to the coefficient of restitution
e, the repulsive radial distribution function g0 and the solid phase fraction αs:

γs = 12

√
θ3s
π

(
1 – e2

) α2sρsg0
dp

. (2.58)

According to this equation, highly dense granular material (g0 and αs high) with a high
fluctuation of velocity (θs high) and large coefficients of restitution, results in a great
energy dissipation due to particle collisions. Other equations for the calculation of the
collisional dissipation of energy can be found elsewhere [84, 95].

Generation of granular energy

Due to inelastic behavior, kinetic energy of particles can either increase or decrease the
granular energy. A decrease happens due to dissipation, e.g., collisions and energy loss.
An increase in granular energy can occur due to the momentum exchange with the
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surrounding fluid phase. This generation is quantified by Js and can be calculated by
[96]:

Js = 3βθs –
3
4
β2dp (us – uf)

2

αsρs
√
πθs

. (2.59)

The momentum exchange coefficient is defined by β. Other models can be found in the
works of Lun et al. [80].

Momentum exchange coefficient

The momentum exchange M couples the fluid and the solid phase. Forces interacting with
each other are combined to the momentum exchange either acting from the fluid to the
solid phase Mf,s or vice versa Ms,f. The momentum exchange follows Newton’s third law
according to:

Ms,f = –Mf,s. (2.60)

A momentum exchange coefficient β is introduced to calculate the momentum exchange
depending on the relative velocities of the interpenetrating phases:

Mf,s = β (uf – us) (2.61)

and

Ms,f = β (us – uf) . (2.62)

The momentum exchange coefficient is composed of all the occurring coupling effects, e.g.,
drag, lift, virtual mass, turbulent dispersion. The contribution due to drag can be found
in Chapter 2.3.3 with its derivation of a single particle to a swarm of particles including
several drag models with their application. Drag results in the highest contribution to
the momentum exchange [97, 98] and the virtual mass force can not be neglected for
liquid-solid fluidization processes. The other contributions are of minor magnitude and
can be neglected for dense granular flows [99, 100].

Virtual Mass Force

Any change of the acceleration of a particle in a surrounding fluid causes a corresponding
acceleration to the fluid itself. Hence, a resisting force acts on the particle [101]. This force
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is depending on the mass of the displaced fluid and the acceleration of the particle [102]
and is called the virtual mass force6 Fvm. Zuber [103] proposed the following equation to
quantify the virtual mass force:

Fvm = CvmVp ρf

(
duf
dt

–
dus
dt

)
. (2.63)

The coefficient Cvm can be calculated using empirical models, e.g., by Odar [104] or
Schöneborn [105]. Drew et al. [106, 107] derived a value for the coefficient of Cvm = 0.5
for spherical particles.

Before choosing the TFM approach for the simulation of granular flows, the limitations
of this model must be considered. For example, as the TFM is a continuum approach, the
particles are not resolved. Hence, particle-particle interaction can not be accounted for
correctly and the simulation is heavily dependent on stochastic models [108]. Furthermore,
with the presented equations only one single solid phase can be modeled. This implies,
that the solid phase is consisting of monodisperse particles. In most cases, especially in
industrial-scale applications, the particles are polydisperse. The TFM can be extended
theoretically to infinite additional phases. Simulations for a binary particle size distri-
bution have been successfully performed [109–111]. Additional phases for polydisperse
particles result in an unreasonable high computational work as more and more equations
have to be solved. A promising approach is to include a population balance model to
account for polydispersity of the particles [112]. Another more practical approach is using
an averaged diameter as a particle size, which is often used when simulating large-scale
fluidization reactors. However, the TFM has been used for a wide range of application
from FCC units, food industry to power generation [113–116].

2.3.2 Eulerian-Lagrangian Model

Using this model, a Lagrangian particle tracking (LPT) is applied to determine the
pathways of the individual particles. The particles are described by points and sinks
of momentum rather than resolved particles. The movement of the fluid phase is still
calculated with the Navier-Stokes equations analog to the TFM (cf. Equation (2.42)) with
the inclusion of the momentum exchange term between the fluid phase and the particles
Mf,s. The void fraction ε is not based on a generic transport equation, but rather on the

6 Sometimes also referred to as added or apparent mass force in literature.
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placement of the particles in the numerical grid. The void fraction can be calculated with:

ε = 1 –
1

Vcell

∑

∀p∈cell
Vp. (2.64)

The volume of the individual particle is defined by Vp and the volume of the cell the
particle is located in by Vcell. There are a number of different approaches on how to
evaluate the void fraction for Eulerian-Lagrangian simulation, mostly on how particles
overlapping to neighboring cells are treated. The simplest and most used approach is
the Particle Centroid Method (PCM). Here, the whole particle volume is attributed
to the cell the particle is residing at, regardless of overlapping to other cells. Other
more sophisticated methods on how the determination of the void fraction and the
transformation of Lagrangian to Eulerian values are handled can be found in Appendix B.
As the particles are individually tracked and not comprised of a solid phase treated as a
continuum according to TFM, the momentum exchange has to be based on the properties
of each individual particle. A distinction has to be made between values of the individual
particle and and averaged property of the solid phase based on the cell. E.g., the velocity
of a particle (Lagrangian value) is represented by up and the velocity of the solid phase
based on the cell (Eulerian value) by us. The solid phase velocity can be calculated with
the velocities of the individual particles:

us =
1
np

∑

∀p∈cell
up, (2.65)

where the number of particles located in the cell is defined by np. The momentum exchange
used for the coupling between the fluid and the particles can then be expressed as:

Mf,s =
∑

Ff,p
Vcell |uf – us|

. (2.66)

∑
Ff,p represents the forces of all the particles acting on the fluid phase and vice versa.

Those coupling forces can consist of forces due to drag, buoyancy, lift, pressure gradients,
the Magnus effect and others. As the drag force is the major contribution to the coupling
between the particles and the fluid phase (cf. Chapter 2.3.1), this force will be discussed
exemplarily. Similar to the Eulerian values, the Lagrangian values for the drag force can
be calculated by the momentum exchange coefficient β. Additionally, the relative velocity
between the particle and the surrounding fluid phase is needed, as well as the volume of
the particle:

Fd = β
(
uf – up

) mp
ρp

. (2.67)
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The momentum exchange coefficient can be calculated in the same way as in the TFM with
the exception of using Lagrangian values of the individual particles instead of Eulerian
values of the solid phase.

The translation of the particles can be described by a force and torque balance according
to Newton’s second law of motion (cf. Equations (2.68) and (2.69)):

mp
dup
dt

=
∑

Fp (2.68)

and

Ip
dωp
dt

= Tp. (2.69)

Here, Ip is the moment of inertia, ωp the angular velocity and Tp the torque of the
particle. Fp stands for all the forces acting on the particles including for example gravity
force. Fp can be split up in contact and non-contact forces, Fc and Fnc, respectively. The
non-contact forces include all forces having their origin from the surrounding fluid and
external factors, but also magnetic effects. The contact forces result due to collisions of
particulate matter.

The Eulerian-Lagrangian model has different sub-models differing in simulation speed
and accuracy. The models include the Discrete Phase Model (DPM), Discrete Element
Model (DEM) and Multiphase Particle-In-Cell Model (MP-PIC). Models resulting in a
high accuracy usually require the longest simulation time. Thus, it is detrimental not to
know how resolved the simulation shall be. The degree of accuracy is best described by
the determination of the coupling terms between the fluid phase and the particles. The
following fluid-particle coupling methods can be distinguished regarding an isothermal
flow:

• One-way coupling: external forces act on particles, e.g., gravity and fluid motion,

• Two-way coupling: one-way coupling & particle motion influences the fluid motion
(momentum exchange),

• Four-way coupling: two-way coupling & particle-particle interactions & particle-flu-
id-particle interactions.

Particle-particle interaction mainly consists of particle collisions, but can also include
adhesive, electrostatic and other effects. The term particle-fluid-particle interactions de-
scribes the phenomenon of a relative acceleration of fluid due to a smaller area which
is occupied by particles. This effect contributes to the Navier-Stokes equation with the
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introduction of the void fraction ε in Equation (2.42). Elghobashi [117] proposed a map of
regimes to determine when a one-, two- or four-way coupling shall be used for fluid-particle
flows including turbulences. A modified map of Elghobashi from 1994 [118] is depicted in
Figure 2.8. Here, S/dp represents the ratio between the distance between two neighboring
particles and the diameter of the particles, τp the particle response time, τe the turnover
time of large eddies, τK the Kolmogorov time scale and αs the volume fraction of the
particulate phase.
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Figure 2.8: Regime map for fluid-particle coupling with particle induced turbulence
production or dissipation (modified from [118]).

The map of flow regimes can be split up into a dilute and dense suspension flow at
a volume fraction of the solid phase of 0.001 or an equivalent value of S/dp = 10.
The one-way coupling approach can be applied for very dilute flows, i.e., with a solid
phase volume fraction lower than 1 · 10−6. The particle trajectories are only influenced by
external forces, e.g., the fluid and not vice versa. Hence, the particle motions have no or a
negligible effect on turbulence. Regarding dilute flows in a range of 1 · 10–6 < αs < 1 · 10–3,
the two-way coupling is applied and therefore the momentum exchange between the fluid
and the particles must be considered. Depending on the turnover time of large eddies and
the Kolmogorov time scale, τe and τK respectively, the particles can either enhance the
production of eddies (favorable if τe and τK are low), or enhance the dissipation rate of
turbulence energy (favorable if τe and τK are high). For fluidized bed applications a dense
suspension flow is apparent and therefore a four-way coupling approach must be used. The
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DPM does not include particle-particle interaction, so no four-way coupling approach is
applied. This model is mainly used for highly dilute granular flows. DEM coupled with
CFD (CFD-DEM) is a four-way coupled method taking particle-particle interactions into
account. The MP-PIC method also includes particle-particle interactions, but does not
resolve individual collisions. The last two approaches, DEM and MP-PIC will be discussed
in detail in the following.

2.3.2.1 Discrete Element Model

Cundall and Strack [119] first proposed a model for particle-particle interactions based
on the hard-sphere model. Using the hard-sphere model, no overlap of colliding particles
is possible and the collisions are instantaneous. This is the biggest disadvantage of the
hard-sphere model compared to the soft-sphere model, as only one collision can be
simultaneously considered [120, 121]. Therefore, the hard-sphere model is not suitable
for dense granular flows [122]. The soft-sphere model approaches collisions differently.
Particles can have a minor overlap when collisions occur as the collision is simulated
within a defined time-step. In order to include all acting forces correctly, the spring, slider
and dashpot model was developed (cf. Figure 2.9). As can be seen, the contact forces as a
result of two particles colliding Fc can be further split up in a contact force in normal and
tangential direction, Fc

n and Fc
t , respectively. However, not only particle-particle collisions

contribute to the contact forces, but also particle-wall interactions Fc
w, i.e., particles hitting

a stationary boundary.

Particle i

Particle j

dashpot

spring

(a) Normal direction.

Particle i

Particle j

slider

(b) Tangential direction.

Figure 2.9: Spring, slider and dashpot model for particle contacts in normal (a)
and tangential direction (b) (modified from [123]).

The contact force of colliding particles in normal direction Fc
n can be calculated un-

der consideration of a spring stiffness and a damping effect according to the Hertzian
spring-theory:

Fc
n = –kn∆x b

n,oln – ηnun,rel. (2.70)
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Here, the spring stiffness in normal direction is represented by kn, the length of the
overlap between two colliding particles by ∆xn,ol, b has a value of 1.5 to account for
the Hertzian spring theory, n is the unity vector in normal direction, ηn the damping
coefficient for normal forces and un,rel the relative velocity in normal direction between
the two colliding particles. Analog to Equation (2.70) the contact force in tangential
direction can be described by:

Fc
t = –kt∆xol,tt – ηtut,slip. (2.71)

The parameters used here are directed in tangential direction and the slip velocity ut,slip
is used. The normal spring stiffness is calculated with:

kn =
4
3
√
reff

E
2
(
1 – ν2

) , (2.72)

where E is Young’s modulus and ν the Poisson ratio. The effective radius reff is calculated
for two different sized particles with their respective diameter of d1 and d2 by:

reff = 0.5
d1d2

d1 + d2
. (2.73)

The normal spring stiffness can be further simplified if the particles at hand are monodis-
perse, i.e., di = const. Using this, the effective radius reduces to reff = 0.25dp and the
normal spring stiffness to:

kn =
1
3
√

dp
E

1 – ν2
. (2.74)

With the assumption of a constant coefficient of restitution for both a normal and
tangential contact, as well as an equal time of contact for a normal and tangential collision,
the spring constant in tangential direction kt is proportional to the spring constant in
normal direction kn by [122]:

kt =
2
7
kn. (2.75)

According to the Coulomb friction law, if the tangential force of the contact exceeds the
Coulomb friction force µf|Fc

n|, with µf being the friction coefficient, sliding occurs. The
tangential component of the contact force therefore follows the equation:

Fc
t = min

(
–kt∆xol,tt – ηtut,slip , –µf|F

c
n|t
)
. (2.76)

The damping coefficient for contacts in normal direction ηn is defined by:

ηn = αn
√

Mredkn∆x0.25ol,n . (2.77)
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The parameter αn is an empirical parameter depending on the coefficient of restitution
in normal direction en and can be calculated using the following equation [120, 123]:

αn =





–2 ln en√
π2+ln2en

if 0 < en ≤ 1

2 if en = 0.
(2.78)

The reduced mass for different sized particles Mred is defined with

Mred =
m1m2

m1 +m2
(2.79)

and the equation can be simplified if both particles are of equal mass mp to

Mred = 0.5mp. (2.80)

With both simplifications of same-sized particles and particles with equal masses according
to Equation (2.80) the damping coefficient in Equation (2.77) can be further simplified
to:

ηn = αn
√

0.5mpkn∆x0.25ol,n . (2.81)

The damping coefficient in tangential direction ηt is equal to the damping coefficient in
normal direction ηn according to Hoef et al. [122]. The particle-wall interaction forces can
be calculated accordingly with the assumption that the wall is a stationary hard surface.

With the above equations, particle movement influenced by external forces, surrounding
phases and inter-particle collisions and forces can be calculated according to a soft-sphere
model in DEM. Tsuji et al. [123] were the first coupling DEM with a fluid phase,
called CFD-DEM. This model has since been widely applied for small-scale granular flow
applications ranging from pneumatic transport to highly-packed dense beds [124–130].
Limitations for this model include the increasing computational time with the number of
particles in the system [131]. As more particles are introduced, more collisions have to
be accounted for. Therefore, CFD-DEM is not suitable for a high number of particles.
Approaches to simulate a larger number of particles using a particle tracking method
while still maintaining a reasonable computational time have been proposed and two of
them will be discussed in detail in the following.

2.3.2.2 Coarse Grain Model

In order to make CFD-DEM simulations with a large number of particles more viable in
terms of computational time, Sakai and Koshizuka [132] proposed the Coarse Grain (CG)
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model. Using this model, a defined number of particles are lumped together to a bigger
parcel. This parcel exhibits the same forces as the formerly smaller particles, important
parameters are adjusted to account for the increased diameter and particle-particle colli-
sions occur with the bigger parcels. The number of particles can be drastically reduced
while still maintaining the granular flow. The CG-factor fCG is introduced to quantify
how many particles are merged to a parcel. The CG-factor is dependent on the particle
diameters of the original smaller particles and the bigger CG-particles, dp,orig and dp,CG,
respectively. The CG-factor can then be calculated with

fCG =
dp,CG
dp,orig

. (2.82)

Based on reduction of particle number, this means, that the particle number reduction is
inversely proportional to f 3CG. For example, if particles are merged together to a particle
twice the diameter of the original particle, i.e., fCG = 2, eight original particles are then
represented by one CG-parcel (cf. Figures2.10 and 2.11). This results in a reduction of the
particle number by a factor of eight as well. Certain values have to be adjusted before and
during the simulation in order to ensure a correct fluid dynamic behavior. The velocity of
the CG-parcel up,CG must be modified if the initial velocity of the original particles is not
zero, up,orig 6= 0. For non-zero velocities, the initial velocity of the CG-parcel is adjusted
by:

up,CG =
1

f 3CG

∑

∀p∈cell
up,orig. (2.83)

This means, the average velocity of the merged particles is assigned to the CG-parcel.

up,orig
up,CG

CG method

Figure 2.10: Transformation of translational motion (up,orig) of four particles to a
coarse grained particle modified from [132].

The angular momentum of the CG-parcel is treated in a similar way:

ωp,CG =
1

f 3CG

∑

∀p∈cell
ωp,orig. (2.84)
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ωp,orig
ωp,CG

CG method

Figure 2.11: Transformation of rotational motion (ωp,orig) of four particles to a
coarse grained particle modified from [132].

All particles are assumed to have the same value and direction. The rotational movement,
i.e., the angular momentum ωp,orig, is also assumed to be equal for all merged particles.

The non contact-forces, drag, gravity and buoyancy are all dependent on the particle
diameter. As the particle diameter of a CG-parcel compared to the original particles
differs by a factor of f 3CG, those forces have to be adjusted as well. Therefore, the drag,
gravity and buoyancy force of the CG-parcel are calculated with the following equations:

Fd,CG = f 3CGFd,orig (2.85)

Fg,CG = f 3CGFg,orig (2.86)

Fb,CG = f 3CGFb,orig. (2.87)

The calculation of the particle Reynolds number is done using the original particle
diameter dp,orig and the momentum exchange coefficient is determined accordingly. With
the assumption of equal kinetic energies between the parcel and the group of particles (cf.
Equation (2.88)), the contact forces of the CG-parcel in normal and tangential direction
can be calculated with the use of the CG-factor fCG according to Equations (2.89) and
(2.90).

1
2
mp,CGu2p,CG +

1
2
Ip,CGω

2
p,CG = f 3CG

(
1
2
mp,origu

2
p,orig +

1
2
Ip,origω2p,orig

)
, (2.88)

Fc
n,CG = f 3CGFc

n,orig (2.89)

and

Fc
t,CG = f 3CGFc

t,orig. (2.90)
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The relationship of the small particles and the CG-parcel for the moment of inertia, Ip,orig
and Ip,CG, respectively, considers the transformation of the particle (and parcel) masses
and diameters according to:

mp,CG = f 3CGmp,orig (2.91)

and

dp,CG = fCG dp,orig. (2.92)

Hence, the following relation for the moment of inertia is valid:

Ip,CG = f 5CGIp,orig. (2.93)

The torque of the coarse grained particle cluster Tp,CG follows the relation of:

Tp,CG = f 4CGTp,orig. (2.94)

Other parameters, e.g., particle density, spring stiffness, Young’s modulus, Poisson ratio,
friction coefficients, coefficient of restitution, do not need to be modified and remain
valid. The potential of faster simulation due to a particle reduction using the CG model
is dependent on the CG-factor fCG; a theoretical CG-factor of fCG = 4 would result
in a particle number reduction of 64. The CG-factor can not be arbitrarily chosen. A
couple of limits exist which must be considered for the choice of the CG-factor. Firstly,
the CG-parcels must still comply with cell-to-particle size ratios. This means the parcel
must not exceed the dimensions of the cells of the numerical grid, otherwise the void
fraction determination as well as the calculation of solid phase properties become corrupt.
Furthermore, the number of the resulting parcels must still be in an adequate high number.
If two few parcels exist, then the number of collisions is drastically reduced and hence,
the particle forces become erroneous. As the CG-factor fCG increases, more and more
particles are lumped together to a single parcel. This implies, that the individual values
of the original particles, e.g., velocity or angular momentum, are now represented by a
uniform value of the parcel. This means, that the individuality of particle values is reduced,
which has to be considered before choosing a high CG-factor. Also the CG-factor has to
be an integer number. Otherwise, a defined number of particles will be presented by a
fractional number of CG-parcels.
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2.3.2.3 Multiphase Particle in Cell Model

The TFM with its stochastic determination of particle collisions due to solid phase
pressures and viscous stresses is applicable for monodisperse and a high number of
particles. On the contrary, with CFD-DEM or the Lagrangian method in general, the
individually tracked particles are implicitly coupled with the surrounding fluid phase.
Different properties can be attributed to each of the particles, e.g., density, size and
hardness. This method can be used for small-scale geometries and a moderate number of
particles. A blend between those two models is the multiphase particle-in-cell (MP-PIC)
method proposed by Andrews and O’Rourke [133]. This method is based on the parti-
cle-in-cell method for single-phase flows by Harlow [134] and was extended for multiphase
flows. Here, the particles are tracked individually according to a Lagrangian treatment.
Therefore, polydisperse particles, as well as particles with individual properties, can be
easily simulated. Particle-particle collision are modeled according to stochastic approach
and are not resolved individually. Hence, the computational expensive particle-particle
collisions of DEM are not needed as they are approximated with a stochastic approach
using a particle stress model.

The momentum exchange term in Equation (2.42) is substituted with the interphase
momentum transfer function Mf,s:

Mf,s =
∫∫

f mp

[
β
(
uf – up

)
–

1
ρp
∇p
]
dmp dup. (2.95)

The particle distribution function f follows the Liouville equation to solve the solid phase
hydrodynamics:

∂f
∂t

+∇ ·
(
f up
)
+∇up ·

(
f ap
)
= 0. (2.96)

In Equation (2.96) ap represents the acceleration of the individual particle. As particle-col-
lisions are not resolved using a Lagrangian approach, but rather a continuum approach,
the calculation of the acceleration is also dependent on a solid phase stress tensor τ s
according to:

ap = β
(
uf – up

)
–

1
ρp
∇p + g –

1
αsρs
∇ · τ s (2.97)
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Many different models were proposed to calculate the solid phase stress tensor. Often, a
modified solid stress from Harris and Crighton [135] for an isotropic solid stress is used,
according to:

τ s = Ps
αb
s

αs,max – αs
. (2.98)

Ps and b are modeling parameters that can be adjusted accordingly. The solid phase
fraction αs (Eulerian property) can be calculated by using the particle distribution
function f :

αs =
∫∫

f
mp
ρp

dmp dup. (2.99)

The calculation of particle movements and other properties are analog to the DEM
approach.

Furthermore, the MP-PIC method uses a clustering approach to further reduce the
computational time. As opposed to the CG-method, where particles are lumped together
to a larger parcel, in the MP-PIC method particles with identical properties, e.g., size,
density, velocity and position, are treated as a parcel. For this parcel the above equations
are solved in order to drastically speed-up the simulation [136].

A downside of the MP-PIC method are large numerical errors when using a high degree
of particle-to-parcel ratio. Also, studies have found, that simulations using MP-PIC are
not as accurate as particle-collision resolving CFD-DEM simulations, especially for the
prediction of large particle clusters [137]. Furthermore, the particle stress as a continuum
particle-collision property in a cell is used for all particles or parcels residing in this specific
cell. Particles with different collision parameters, e.g., coefficient of restitution of friction
values, may not be depicted accurately.

Using this approach industrial-scale geometries can be simulated in a reasonable amount
of time [138, 139]. Lu et al. [140] simulated a hopper with a total of over 700 million
particles using MP-PIC. This shows the immense potential of this simulation approach.

43



2 Theoretical Background on Multiphase Flows

2.3.3 Determination of the drag coefficient

Besides the forces acting on a particle described in Chapter 2.3.2, one of the most
important forces in fluid-solid flows is the drag force Fd [141, 142]. First, the drag
force based on a single sphere is discussed and later the exerting drag between the fluid
phase and a particulate system will be presented in detail with focus on widely applied
correlations to predict the drag force.

In the simple case of a single sphere falling in a Newtonian fluid, three different forces
are acting on the particle: the gravitational, buoyancy and drag force. The gravitational
force is acting downwards, while the drag and buoyancy forces are acting upwards. The
drag force is dependent on the cross-sectional area of the falling particle A, the dynamic

pressure on the particle ρf
u2f
2 and the drag coefficient Cd:

Fd = Aρf
u2f
2

1
Cd

. (2.100)

Rayleigh [143] performed a dimensional analysis to the flow problem and concluded that
the drag coefficient is related to the Reynolds number. Lapple and Shepherd [144] collected
several experimental data from different literature contributions [145–161] and averaged
the findings. The resulting diagram of the drag coefficient Cd over the particle Reynolds
number Rep is often called the drag curve. This diagram is depicted in Figure 2.127.

The simplest way to classify the different regimes, is to determine three different areas of
the curve depending on the prevailing type of flow:

• laminar region,

• intermediate region and

• turbulent region.

A more elaborate and finer distinction for the different regions can be found in the review
work of Jones and Clarke [165], where the different regions are (with increasing Reynolds
number):

• perfect laminar flow,

7 The experimental data points for the drag coefficient below Rep = 0.1 are added from Allen [162] to
extend the laminar flow region and illustrate the linear correlation of the drag coefficient according
to Stokes’ Law in Equation (2.101).

44



2.3 Multiphase Flow Models

10−2 100 102 104 106

10−1

100

101

102

103

104

laminar intermediate turbulent

Particle Reynolds number Rep / -

D
ra

g
co

effi
ci

en
t
C

d
/

-

Experiments
Stokes’ Law
Schiller and Naumann

Figure 2.12: Drag curve: drag coefficient Cd depending on the particle Reynolds
number Rep based on the averaged experimental data of Lapple and Shepherd [144]
for all three indicated regimes (laminar, intermediate and turbulent). Stokes’ Law
[163] and the correlation of Schiller and Naumann [164] complement the
experimental data in their respective validated range.

• steady axisymmetric flow regime,

• steady planar-symmetric flow regime,

• unsteady planar-symmetric regime,

• unsteady asymmetric flow regime and

• turbulent wake regime.

At low Reynolds numbers the creeping flow is dominant in the laminar region. The drag
coefficient in this region follows a linear correlation in the double-log diagram. Stokes [163]
proposed the following equation later commonly known as the Stokes’ Law for the linear
correlation in the laminar region:

Cd =
24
Rep

, (2.101)
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which is valid for Rep < 0.5. The particle Reynolds number is defined as:

Rep =
ρfdp

∣∣uf – up
∣∣

ηf
. (2.102)

In the turbulent regime Newton [166] measured a constant value for the drag coefficient
independent of the Reynolds number. The later-called Newton’s law for the drag coefficient
in the Newton regime, i.e., the turbulent region in the range of 1000 < Rep < 200 000
reads as follows:

Cd = 0.44. (2.103)

Many different drag correlations exist for the intermediate region. One of the most widely
applied and accurate drag correlations was proposed by Schiller and Naumann [164], which
was later extended to be applicable for the laminar and turbulent region as well:

Cd =





24
Rep

(
1.0 + 0.15Re0.687p

)
, Rep ≤ 1000

0.44, Rep > 1000.
(2.104)

Note, that the value of the drag coefficient decreases at approximately Rep = 200 000. This
phenomenon is called drag-crisis. Here, the flow around the particle undergoes a critical
change from laminar to turbulent in the boundary layer [167]. Hence, it is difficult to
find a correlation covering the whole range of Reynolds numbers. Most of the correlations
suffice with the sub-critical region below the drag crisis, i.e., Rep < 200 000. The drag of
a single sphere can differ quite significantly from the drag of a particulate system. More
external factors, e.g., superficial velocity of the fluid due to the decreasing void fraction,
have a higher influence on the drag force. In the following selected drag models for the
determination of the drag coefficient for dilute and dense particle flows are presented.

Ergun drag model

Ergun [168] stated a correlation for the pressure drop of a fluid flow through granular
solids. In this publication the solid phase was a packed bed and not a fluidized bed with
moving particulate matter. The semi-empirical pressure drop correlation is valid in all
flow regimes. A derivation from the pressure drop correlation to the momentum exchange
coefficient can be seen in Equation (2.105).

βErgun = 150
(1 – ε)2 ηf

εd2p
+ 1.75 (1 – ε)

ρf
dp

∣∣uf – up
∣∣. (2.105)

Here, two different terms contribute to the momentum exchange coefficient:
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• a viscous part (first term) and

• a kinetic part (second term).

The viscous part is more dominant in viscous flows, i.e., laminar flows with low Reynolds
numbers. At higher velocities or more specifically for turbulent flows, the kinetic part be-
comes more and more important. For turbulent fluidizations the viscous part can become
negligible [169]. As stated above, the Ergun drag model was developed for packed beds.
Hence, this model is partially suitable in regards to simulate the interphase exchange drag
between the fluid and solid phase in a fluidized bed and mostly used for densely-packed
granular flows. The resulting momentum exchange coefficient at different void fractions
and particle Reynolds numbers is depicted in Figure 2.13a. Although the Ergun drag
model is considered for densely packed solid flows, for comparison reasons the region of
the void fraction was extended to ε→ 1.

Wen & Yu drag model

The following semi-empirical drag model proposed by Wen and Yu [170] is more accurate
for dilute granular flows, ε > 0.8 [53, 171]. Here, they proposed a relationship between
the drag coefficient of a particle in a multiparticle system and the drag coefficient of a
single particle, Cd and Cd,s, respectively:

Cd
Cd,s

= f (ε). (2.106)

In this equation f (ε) represents a voidage function and can be expressed as ε–4.65 according
to Richardson and Zaki [172]. The drag coefficient of a single spherical particle can be
calculated according to

Cd,s =
24
Rep

(
1 + 0.15Re0.687p

)
, (2.107)

which is valid for Reynolds numbers of up to 1000. Considering the momentum exchange
coefficient β, the Wen & Yu drag correlation can be expressed as

βWen & Yu =
3
4
Cd

ε (1 – ε)
dp

ρf
∣∣uf – up

∣∣ ε–2.65 (2.108)

and the values for the momentum exchange coefficient for varying void fractions at
different particle Reynolds numbers is seen in Figure 2.13b.
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2 Theoretical Background on Multiphase Flows

Gidaspow drag model

Gidaspow [15, 78] combined the Ergun and Wen & Yu drag correlation in order to get a
drag coefficient applicable for a wide range of flow regimes and granular flows, both dense
and dilute. Therefore, the drag correlation of Ergun is used for dense granular flows at
fluid volume fractions of ε < 0.8 and at increased fluid volume fractions, i.e., more dilute
suspensions, the Wen & Yu correlation is used, according to:

βGidaspow =




150 (1–ε)

2η
εd2p

+ 1.75 (1 – ε) ρfdp

∣∣uf – up
∣∣, ε < 0.8

3
4 Cd

ε (1–ε)
dp ρf

∣∣uf – up
∣∣ ε–2.65, ε ≥ 0.8.

(2.109)

As the drag coefficient Cd of the Wen & Yu correlation is only suitable for Reynolds
numbers of Re < 1000, the Schiller and Naumann [164] correlation is used (cf. Equa-
tion (2.104)).
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(a) Ergun drag model.
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(b) Wen & Yu drag model.

Figure 2.13: Resulting momentum exchange coefficient β depending on the void
fraction ε at different particle Reynolds numbers Rep using the Ergun [168] and Wen
& Yu [170] drag model.

This drag correlation is one of the widely used correlations used for dense granular flow
simulations due to its simplicity and wide applicability [173]. Due to the discontinuity
of the Gidaspow correlation at a fluid volume fraction of ε = 0.8, numerical errors and
divergences can arise. The magnitude of this discontinuity increases with higher particle
Reynolds number Rep as it is depicted in Figure 2.15a. In order to prevent such divergence
issues due to this discontinuity, Huilin and Gidaspow [109] introduced a weighted average
of the drag correlation:

βH&G = φβErgun + (1 – φ) βW&Y, (2.110)
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2.3 Multiphase Flow Models

with the monotonic smoothing function8

φ = 0.5 +
1
π
arctan [150 · 1.75 (0.8 – ε)]. (2.111)

The smoothing function φ is depicted in Figure 2.14a for an arbitrary set-up. By means
of this figure the conceptional use of the smoothing function becomes more apparent as
it ensures three things in total:

• the drag correlation by Wen & Yu is applied for dilute flows (ε > 0.8) and

• in dense particulate regimes, i.e., ε < 0.8, the Ergun drag correlation is used,

• a smooth transition between the Ergun and Wen & Yu drag correlation at the step
point of ε = 0.8 is provided.

Figure 2.14 illustrates the blended transition due to the introduction of the smoothing
function φ of the Huilin & Gidaspow drag model. The Ergun drag model is used for
densely-packed flows and for dilute flows the momentum exchange coefficient is calculated
with the Wen & Yu drag model. The interface between the two drag model at a void
fraction of ε = 0.8 shows a smooth transition between them.

In Figure 2.15 the resulting momentum exchange for both, the Gidaspow and Huilin & Gidaspow
drag model, is depicted. They only differ at a void fraction of ε = 0.8 due to the switch
between the use of the Ergun and Wen & Yu drag model. In view of the occurring dis-
continuity in the Gidaspow drag model, it is recommended to use the Huilin & Gidaspow
drag model to avoid divergences.

8 It must be stated, that in the original publication of Huilin and Gidaspow [109] the equation for the
smoothing function φ is falsely displayed as it shows two errors:

1. the constant 1
π shall be outside of the argument of arctan instead of inside and

2. the switch term in the argument of arctan for the solid volume fraction α at a value of
0.2 should be (α – 0.2) instead of (0.2 – α).

The correct formula for the smoothing function can be found in [174, 175].

49



2 Theoretical Background on Multiphase Flows

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Void fraction ε / -

S
m
o
o
th
in
g
fu
n
ct
io
n
φ
/
-

(a) Smoothing function φ.

0.4 0.5 0.6 0.7 0.8 0.9 1

100

101

102

103

104

Void fraction ε / -

M
o
m

en
tu

m
ex

ch
a
n
ge

co
effi

ci
en

t
β

/
k
g
/(

m
3

s)

Ergun
Wen & Yu
Huilin & Gidaspow

(b) Ergun, Wen & Yu and Huilin & Gidaspow
drag model.

Figure 2.14: Smoothing function φ for different void fraction ε (a) and comparison
of the resulting momentum exchange coefficient β (b) at different void fractions
using the Ergun [168], Wen & Yu [170] and Huilin & Gidaspow [109] drag model.
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(a) Gidaspow drag model.
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(b) Huilin & Gidaspow drag model.

Figure 2.15: Resulting momentum exchange coefficient β depending on the void
fraction ε at different particle Reynolds numbers Rep using the Gidaspow [15, 78]
(a) and Huilin & Gidaspow [109] (b) drag model.

Syamlal & O’Brien drag model

A drag model depending on the terminal velocity of a group of particles used for fixed
and fluidized beds was proposed by Syamlal and O’Brien [176]. The terminal velocity can
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2.3 Multiphase Flow Models

be either calculated with correlations or via experimental measurements. The proposed
momentum exchange coefficient can be calculated as follows:

βS&O =
3
4
ε (1 – ε) ρf

dp
Cd
U 2
r
|us – uf|. (2.112)

The function Ur stands for the ratio of the terminal velocity of a swarm of particles to
the terminal velocity of a single particle. An explicit equation to calculate the function
Ur can be derived from Garside and Al-Dibouni [177]:

Ur = 0.5
(
a – 0.06Rep +

√(
0.06Rep

)2 + 0.12Rep (2b – a) + a2
)
. (2.113)

Here, the function is only dependent on the Reynolds number Rep and the parameters
a and b. The latter parameters represent the laminar and turbulent part of the velocity
ratio Ur and are dependent on the void fraction ε. Both of them are fitting functions and
were derived with a power function similar to the approach of Richardson and Zaki [172].
The parameter a can be calculated as follows:

a = ε4.14. (2.114)

The accuracy of a pair equation to calculate the parameter b was greater than using a
single equation:

b =




0.8ε1.28 if ε ≤ 0.85

ε2.65 if ε > 0.85.
(2.115)

Although with the introduction of a two pair equation, a discontinuity is apparent, this
shows almost no repercussions in terms of numerical stability, but only improvements for
the accuracy. The drag coefficient Cd was adopted from Dalla Valle [178] and adjusted to
fit the momentum exchange coefficient equation in (2.112):

Cd =

(
0.63 + 4.8

√
Ur
Rep

)2

. (2.116)

Figure 2.16 shows the behavior of the momentum exchange coefficient calculated with
the drag model according to Syamlal & O’Brien at varying void fractions and particle
Reynolds numbers.

Hill-Koch-Ladd drag model

A drag model purely based on a simulation approach was proposed by Hill, Koch and Ladd
[179–181] (HKL). Using Direct Numerical Simulations they simulated gas-particle flows
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Figure 2.16: Resulting momentum exchange coefficient β depending on the void
fraction ε at different particle Reynolds numbers Rep using the Syamlal & O’Brien
[176] drag model.

for both fixed beds of ordered and random spherical packings as well as fluidized beds by
means of Lattice-Boltzmann methods. The simulations showed a good agreement towards
experimental data and the drag model was validated covering the whole range of possible
void fractions, except for very dilute flows (single sphere in a fluid), εmin ≤ ε < 1 and
for low to intermediate Reynolds numbers, 0 < Re < 120. The momentum exchange
coefficient for the HKL drag model can be expressed as [182]:

βHKL =
18ηfα (1 – α)2

d2p
F . (2.117)

The dimensional drag force F is a switch function dependent on the Reynolds number9:

F =




F0 + 1

4F1Rep
2 for Rep ≤ 40

F0 + 1
2F3Rep for 40 < Rep < 120,

(2.118)

9 Note, that we use here the boundaries for the switch function of Rep = 40, as opposed to Rep = 20
mentioned by Hill, Koch and Ladd [179–181]. Hill, Koch and Ladd used a modified particle Reynolds
number with the particle radius instead of the particle diameter. Hence, the boundary of the Reynolds
number used in this thesis (dependent on the particle diameter) is twice the Reynolds number used
in the publication of Hill, Koch and Ladd. Furthermore, the prefactor in Equation (2.118) results
according to this definition. For the later introduced extended HKL drag model, this applies as well.
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2.3 Multiphase Flow Models

and the needed parameters F0, F1 and F3, which are all dependent on the solid volume
fraction α:

F0 =





1+3
√

α
2+

135
64 α ln(α)+17.14α

1+0.681α–8.48α2+8.16α3 for α < 0.4

10 α
(1–α)3

for α ≥ 0.4
(2.119)

F1 = 0.11 + 0.00051exp (11.6α) (2.120)

F3 = 0.0673 + 0.212α + 0.0232/ (1 – α)5 . (2.121)

Figure 2.17 shows the resulting drag coefficient with varying Reynolds numbers and
solid volume fractions, respectively. As can be seen, the HKL drag model shows two
discontinuities:

• at a Reynolds number of Rep = 40 (cf. Equation (2.118)) and

• at a solid volume fraction of α = 0.4 (cf. Equation (2.119)).
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Figure 2.17: Resulting drag coefficient Cd depending on the particle Reynolds
number Rep (a) and solid phase volume fraction α (b).

The magnitude of both discontinuities can vary. The discontinuity for the factor F0 based
on the solid volume fraction in Equation (2.119) occurs if the fluidized bed has changing
dense and dilute regions. This happens often considering for example bubbling fluidized
beds. Hence, the probability for the occurrence of the discontinuity is higher for Geldart
particles of type B and to some extent to type A and D as well. On the other hand,
homogenous fluidizations do not show this discontinuity. The occurrence of the second
discontinuity at a Reynolds number of Rep = 40 due to F is dependent on the type of
flow. Considering Equation (2.102) for the particle Reynolds number, fluidized bed systems
with high relative velocities, e.g., spouting fluidized beds, and changing void fractions,
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i.e., rapid change from dilute to dense phases and vice versa, promote the occurrence of
this kind of discontinuity. Several problems arise when applying the HKL drag model.
Firstly, the aforementioned discontinuities at the boundaries of Rep = 40 and α = 0.4.
At those regions the momentum exchange can increase or decrease in a rather significant
amount, where the change at the Reynolds number boundary is of a higher impact. This
phenomena can lead to numerical instabilities when applied to CFD simulations. And
secondly, a problem arises for very dilute flows. The momentum exchange coefficient β in
Equation (2.117) can be expressed based on the drag coefficient Cd as

βHKL =
3
4
Cd

α (1 – α)
dp

ρf
∣∣uf – up

∣∣ (2.122)

with

Cd = 24
(1 – α)2

Rep
F . (2.123)

So for very dilute flows at high Reynolds number, the following applies:

lim
α→0

Rep→∞
Cd ≈ 1. (2.124)

Considering a single sphere in a very dilute flow, the drag coefficient for the HKL drag
model does not converge to a value of 0.44 in Newton’s regime, e.g., high Reynolds numbers
as opposed to Equation (2.103). Benyahia et al. [183] extended the HKL drag correlation
to a wider range of void fractions with the introduction of a blending function to eliminate
the occurring discontinuities and modified the equation to account for the correct drag
force for very dilute flows. This drag model is often called the extended Hill-Koch-Ladd
(extHKL) drag model in literature. The calculation of the momentum exchange coefficient
and the drag coefficient, β and Cd, respectively, is depicted in Equations (2.122) and
(2.123). The dimensionless drag force F is dependent on the degree of turbulence with
the Reynolds number Rep and the solid volume fraction α, according to

F = 1 + 3/16Rep for α ≤ 0.01 and Rep ≤
F2 – 1

3/16 – 1
2F3

(2.125)

F = F0 +
1
4
F1Rep2 for α > 0.01 and Rep ≤

F3 +
√

F 2
3 – 4F1 (F0 – F2)

F1
(2.126)

F = F2 +
1
2
F3Rep otherwise. (2.127)
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The separate contributions for the inertial coefficients F0, F1, F2 and F3 are determined
by

F0 =





(1 – w)
[
1+3
√

α
2+

135
64 α ln(α)+17.14α

1+0.681α–8.48α2+8.16α3

]
+ w

[
10 α

(1–α)3

]
for 0.01 < α < 0.4

10 α
(1–α)3

for α ≥ 0.4

(2.128)

F1 =





√
2
α

40 for 0.01 < α ≤ 0.1

0.11 + 0.00051exp (11.6α) for α > 0.1

(2.129)

F2 =





(1 – w)
[
1+3
√

α
2+

135
64 α ln(α)+17.89α

1+0.681α–11.03α2s+15.41α3s

]
+ w

[
10 α

(1–α)3

]
for 0.01 < α < 0.4

10 α
(1–α)3

for α ≥ 0.4

(2.130)

F3 =




0.9351α + 0.03667 for 0.01 < α < 0.0953

0.0673 + 0.212α + 0.0232/ (1 – α)5 for α ≥ 0.0953

(2.131)

with the blending function w

w = exp (–10 (0.4 – α) /α) . (2.132)

Figure 2.18 compares the drag coefficients based on the HKL and the extHKL drag model
for densely-packed, dilute and very dilute flows, α = 0.5, 0.2 and 0.01, respectively. Three
observations can be made:

1.) both, the HKL and the extHKL drag model, correctly depict the drag coefficient for
a single sphere in the laminar regime (Rep ↓, α → 0) according to Stokes’ Law in
Equation (2.101),

2.) the discontinuity with the HKL drag model at a Reynolds number Rep = 40 vanishes
for the extHKL drag model due to the introduction of the blending function w and

3.) the drag coefficient of the extHKL drag model is correctly predicted for very dilute
flows at high Reynolds numbers according to the drag coefficient of a single sphere
(Cd → 0.44) as opposed to the prediction using the HKL drag model (Cd → 1).
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Figure 2.18: Resulting drag coefficient Cd at various particle Reynolds numbers
Rep using the HKL [179–181] and extHKL drag model [183]. Different flows are
depicted: very diluted, diluted and dense gas-solid flows, α = 0.01, 0.2 and 0.5.
Stokes’ Law and the drag coefficient in the turbulent regime (cf. Equations (2.101)
and (2.103)) are also included.

Figure 2.19 depicts the resulting momentum exchange coefficient at different void fractions
and Reynolds numbers for both the HKL and extHKL drag model. Here, only minimal
distinctions are visible between both drag models. The greatest impact is due to the
introduced blending function w and the adjustment to account for very dilute flows.
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(a) HKL drag model.
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(b) extHKL drag model.

Figure 2.19: Resulting momentum exchange coefficient β depending on the void
fraction ε at different particle Reynolds numbers Rep using the HKL [179–181] and
extHKL [183] drag model.
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Many more models to determine the drag coefficient can be found in literature. The
above listed are the most common and used drag models. Other models were proposed,
e.g., by Gibilaro et al. [184], Arastoopour et al. [185], Plessis [186], Felice [187], the
energy-minimization multiscale (EMMS) approach [115, 188], Beetstra et al. [189], An-
drews and O’Rourke [133] or Tang et al. [69, 190]. Each model has its operation range
in terms of type of fluidization, Geldart classification, gas-solid or liquid-solid flow, type
of reactor, e.g., spouting bed, conical reactor or fluidized bed reactor with a Wurster
tube, type of flow, range of solid fraction, mono-, bi- or polydisperse systems, spherical or
non-spherical particles and many more. Hence, it is important to validate the simulations
with experimental findings to select an appropriate drag model, as the drag force is one
of the most important forces regarding the momentum exchange between the fluid and
the particles [175, 191].
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3 Development of a hybrid
Eulerian-Eulerian-Lagrangian model

Abstract

The simulation of gas-solid flows with CFD software is mostly performed with a Eulerian-Eulerian
or a Eulerian-Lagrangian method. In this work, a solver was developed coupling the Eulerian-
Eulerian and Eulerian-Lagrangian models. The gas phase was still treated in a Eulerian way as
a continuum, while the particles were modeled with the Eulerian and the Lagrangian models.
The number of particles treated as Lagrangian particles was defined by a modifiable parameter.
The solver was validated with experimental data from the literature and compared in terms of
accuracy and execution time to a pure Eulerian-Eulerian, a Eulerian-Lagrangian and an MP-PIC
solver for different Lagrangian particle ratios. Accuracy and solver speed are highly dependent
on the Lagrangian ratio. With this coupled Eulerian-Eulerian-Lagrangian solver, an additional
degree of freedom is introduced with the Lagrangian particle ratio to modify the speed and the
accuracy of the solver.
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3.1 Introduction

3.1 Introduction

Gas-solid multiphase flows, for example in fluidized beds, have a vast field of applications.
Fluidized bed reactors can be found in several industrial applications [192], e.g., in
the chemical industry for fluid catalytic cracking and Fischer-Tropsch synthesis, in the
metallurgical sector for the calcination of ores or in the environmental sector, for example
municipal waste water treatment. It is important to understand the hydrodynamics
of the gas and the particle flow when designing a reactor or optimizing the process
itself. With the help of Computational Fluid Dynamics (CFD), the spatial resolution
of the flows can be achieved. Due to the increasing computational power in recent
years, CFD has become more popular and feasible for multiphase studies [193]. The
multiphase simulation algorithms for gas-solid modeling in CFD are based on different
methods and models. Figure 3.1 gives a brief overview of some gas-solid multiphase
methods and the models they rely on. The Lattice Boltzmann Method (LBM) and
Direct Numerical Simulations (DNS) are not of industrial interest and not considered
in Figure 3.1, as the computational time is too extensive for simulating a fluidized
bed. The Eulerian-Eulerian approach [53, 71, 194] defines two fluid phases, each as a
continuum. In order to model a granular phase as a continuum, the Kinetic Theory
of Granular Flow (KTGF) was proposed by Ding and Gidaspow [78]. They assumed
ideal spherical particles and accounted for the normal impact of particle-particle and
particle-wall collisions [195]. The Eulerian-Lagrangian approach models the gas-phase as
a continuum according to the Eulerian theory, while the granular phase is resolved and
calculated by a Lagrangian Particle Tracking (LPT). The Discrete Phase Model (DPM)
tracks each particle individually according to Newton’s Second Law of Motion, but does
not consider particle-particle collisions. The Multiphase Particle-In-Cell (MP-PIC) [133,
196, 197] method solves the fluid phase with a continuum model (Eulerian approach)
and the motion of the particles is calculated with the Lagrangian approach, while forces
and stresses concerning particle interactions, e.g., drag force or interparticle stresses are
calculated with the continuum approach and then mapped back to the particle’s position.
The most accurate and computationally demanding of the three models presented for the
Lagrangian treatment of particles is the discrete element method (DEM) [119]. With this
method, each particle is resolved individually and the particles undergo a 4-way coupling.
The coupling between the Eulerian method and DEM was proposed by Tsuji et al. [14].
The Coarse Grained Particle Method (CGPM) [132] is a sub-model of the DEM approach,
where the particles are presented as bigger clusters of particles to increase the simulation
speed. In the following work, when speaking of Lagrangian models, we are referring to
DEM.
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gas-solid multiphase CFD modeling

Eulerian-Eulerian 

Approach

Eulerian-Lagrangian 

Approach

DEM
(discrete element model)

DPM
(discrete phase model)

MP-PIC
(multiphase particle-in-cell)

KTGF
(kinetic theory of granular 

flow)

Figure 3.1: Overview of gas-solid multiphase CFD models with a Eulerian-Eulerian
and a Eulerian-Lagrangian approach.

According to Tsuji et al. [14], the advantage of the Eulerian-Eulerian model is the simu-
lation speed and the disadvantage is the lower accuracy as the modeling of the granular
phase is based on several assumptions and simplifications. According to Liu et al. [198] and
Loha et al. [199], the Eulerian-Eulerian model seems to be a good compromise between
simulation speed and accuracy of the results. The Eulerian-Eulerian model is mostly used
for pilot scale plants [61]. However, Zhao et al. [200] showed that the simulation results
with the Eulerian-Eulerian model and the KTGF cannot correctly display fluidization
phenomena for certain fluidized bed set-ups. The Eulerian-Lagrangian model has its advan-
tages in a better accuracy than the Eulerian-Eulerian model due to the fact that particles
are not approximated as a continuum, so the particle-particle and particle-wall collisions
can be better resolved [14]. But the downside of the Lagrangian model is the relatively
slow simulation speed. With an increasing number of particles, the number of equations
to be solved increases proportionally. In this work, we developed a solver, coupling both
the Eulerian-Eulerian and Eulerian-Lagrangian models to a Eulerian-Eulerian-Lagrangian
model. The aim of this new solver was to highlight the advantages of both models: speed
of the Eulerian model and accuracy of the Lagrangian model and to bridge the gap
between lab scale and small pilot scale geometries. The solver was then validated with
experimental data taken from Müller et al. [201, 202] and Link et al. [203]. Furthermore,
the newly developed solver is compared to a Eulerian-Eulerian, a Eulerian-Lagrangian
and an MP-PIC solver in terms of accuracy of the results and execution time.
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3.2 Methodology

Eulerian-Eulerian and Eulerian-Lagrangian simulations differ in how the granular phase
is treated. Figure 3.2 shows a schematic illustration of the treatment of the gas and solid
phase for both approaches.

The geometry to be solved consists of a predefined number of three-dimensional cells
according to the finite volume method (FVM). Although the mesh cells are three dimen-
sional, the simulated flow of both gas and particle phase is of a two-dimensional nature,
when a Eulerian-Eulerian approach is applied. The particle interactions for the Euleri-
an-Eulerian approach are calculated with statistical models, while in the Eulerian-La-
grangian approach all particle interactions are resolved and not approximated. Hence, the
Eulerian-Eulerian model relies on a coarser mesh for an accurate representation of the par-
ticle interactions. The accuracy for the particle interactions for the Eulerian-Lagrangian
model is not dependent on the grid size, except for the averaging of certain parameters
needed for particle-fluid interaction, e.g., solid phase porosity for calculating the drag
force. However, the resolution of the mesh is limited by the minimum size of a single mesh
cell. In regards to a single-flow, a fluid-flow in particular, the resolution and therefore
the minimum cell size are practically not limited. For simulations of multiphase-flows
consisting of at least one granular phase the minimum cell volume is limited by the
volume of the largest particle according to Goniva et al. [204]. It is recommended that
the minimum cell size is many times larger than the volume of the biggest particle, see
section 3.2.2 for further explanation. The accuracy of the Eulerian-Eulerian approach is
dependent on the coarseness of the mesh due to the statistical models used. Therefore the
Eulerian-Eulerian approach is usually used for medium to large scale geometries.
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Figure 3.2: Eulerian-Eulerian and Eulerian-Lagrangian treatment for a 2D
geometry with an FVM method.

Particulate flow is resolved in three dimensions, independent of the number of mesh cells,
with a Lagrangian treatment of the granular phase. This condition is valid as long as the
simulation is solved according to the finite volume method. The characteristic properties of
the particles, e.g., particle velocity up, are calculated separately according to the method
of Lagrangian Particle Tracking (LPT). As opposed to the Eulerian treatment of particles,
the Lagrangian treatment does not average the characteristic particle properties over the
corresponding cell the particles are located in.

In regards to computational effort, the number of equations to be solved for a Euleri-
an-Eulerian model is smaller than for a Eulerian-Lagrangian model, with the exception
of the number of mesh cells being higher than the number of total particles.

3.2.1 Eulerian-Eulerian Model

The most widely applied model for gas-solid CFD simulations is the Eulerian-Eulerian
model. With this approach, both phases, gas and solid, are modeled as separate contin-
uums which are immiscible in each other, as opposed to the Volume-of-Fluid method
(VOF). In regards to the VOF method, the fluids are also immiscible, but a phase
interface occurs between the two fluids, so the phase fractions are either zero or 1. But
with the Eulerian-Eulerian model, there is no phase interface and, therefore, the phases
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can interpenetrate each other. The governing equations for the Eulerian-Eulerian model
are the continuity equation for mass conservation (cf. Equation (3.1)), and the momentum
balance for a two-phase flow (cf. Equation (3.2)) for the fluid. In the following, the system
is considered isothermal, hence the energy equation can be neglected and the density of
the fluid phase is constant for the later simulations.

∂αi
∂t

+∇ · (αiui ) = 0 (3.1)

∂ (αfρfuf)
∂t

+∇ · (αfρfufuf) = –αf∇p + αfρfg +∇ ·
(
αfτ f

)
+ Mf,s (3.2)

The index i describes the two phases present for the Eulerian-Eulerian simulations. In the
case of a gas-solid simulation, those phases are a continuous gas phase g and a disperse
solid phase s .

The governing equations for the solid phase also include the continuity equation for
mass conservation according to Equation (3.1) for the solid phase, i.e., i = s . The
momentum equation for a solid phase, which originates from Ishii and Hibiki [194] and
was reformulated by Enwald et al. [53] to apply to gas-solid flows, is

∂ (αsρsus)
∂t

+∇ · (αsρsusus) = –αs∇p + αsρsg –∇ps +∇ ·
(
αsτ s

)
+ Ms,f. (3.3)

The volume fraction αi describes the volumetric phase fraction of each phase, while the
conditions

0 ≤ αi ≤ 1 (3.4)

and

∑

i
αi = 1. (3.5)

apply to all phase fractions in each cell of the simulation.

Mi ,j defines the momentum exchange term between the phases i and j . The forces that
have an impact on the momentum exchange term Mi ,j are, for example, drag force and
resulting force due to turbulent dispersion. The drag force has in most cases the highest
contribution to the momentum exchange between the fluid and particulate phases. The
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momentum exchange can be calculated with the momentum exchange coefficient β for
the gas-solid and solid-gas interactions, Mf,s and Ms,f, respectively, as

Mf,s = β (uf – us) (3.6)

and

Ms,f = β (us – uf) . (3.7)

Due to the definition of a closure relation, the momentum exchange terms for the gas-solid
and solid-gas interactions are equal when comparing their absolute values.

Many different correlations for the calculation of the momentum exchange coefficient are
proposed in the literature. This work uses the drag correlation proposed by Gidaspow
[15], which is a combination of the correlations proposed by Ergun [168] and Wen and Yu
[170]. The drag correlation proposed by Ergun [168] is used for gas volume fractions lower
than 0.8, while the correlation from Wen and Yu [170] is used for gas volume fractions
greater than 0.8. The momentum exchange coefficient β can be calculated according to
the following equation:

β =




150α

2
sηf

αfd2p
+ 1.75αs

ρf
dp |uf – us|, αf < 0.8

3
4Cd

αfαs
dp ρf|uf – us|α–2.65f , αf ≥ 0.8

(3.8)

The drag coefficient Cd is dependent on the particle Reynolds number Rep

Cd =





24
Rep

(
1.0 + 0.15Re0.687p

)
, Rep ≤ 1000

0.44, Rep > 1000
(3.9)

with the cell-averaged particle Reynolds number for the solid phase Rep, the particle phase
velocity us and the particle diameter dp

Rep =
αfdp|uf – us|ρf

ηf
. (3.10)

The viscous stress tensor is calculated as defined by Enwald et al. [53]

τ i = 2ηiD i +
(
ζi –

2
3
ηi

)
Tr
(
D i

)
I (3.11)

and the strain rate tensor D i as

D i =
1
2

[
∇ui + (∇ui )

T
]
. (3.12)

66



3.2 Methodology

The solid shear viscosity ηs, the solid bulk viscosity ζs, the solid phase pressure ps and the
solid stress tensor τ s are calculated according to the Kinetic Theory of Granular Flow [78].
According to this theory, the solid phase is modeled as a fluid according to the Kinetic
Theory of Dense Gases by Chapman and Cowling [89], but modified to account for the
particulate character of the phase.

The solid shear viscosity ηs is calculated according to Gidaspow [15]

ηs = ρsdp
√
θs ·
(
4
5
αsg0(1 + e)

1√
π
+

1
15
√
πg0(1 + e)α2s

+
1
6
√
παs +

10
96
√
π

1
(1 + e)g0

)
.

(3.13)

Lun et al. [80] defines the bulk viscosity of the solid phase ζs as

ζs =
4
3
α2sρsdpg0 (1 + e)

√
θs
π
. (3.14)

The solid phase pressure ps accounts for a kinetic part and forces due to particle-particle
collisions and was proposed by Lun et al. [80]:

ps = αsρsθs + 2g0ρsα2s (1 – e) θs (3.15)

with the coefficient of restitution for particle-particle collisions e, the equilibrium radial
distribution function g0 and the granular temperature θs. For dense granular flows fric-
tional stress must be included for the solid shear viscosity ηs in Equation (3.13) and
the solid phase pressure ps in Equation (3.15). If the solid volume fraction αs exceeds
a predefined solid volume fraction at which frictional stress is accounted for αs,fr, i.e.,
αs > αs,fr, the frictional stress part is added to both equations to get the new solid phase
pressure ps,fr and solid shear viscosity ηs,fr:

ps,fr = ps + pfr (3.16)

and

ηs,fr = ηs + ηfr. (3.17)

The frictional stress parts for the solid phase pressure ps,fr and the solid shear viscosity
ηs,fr are calculated according to following semi-empirical equations proposed by Johnson
and Jackson [85]:

pfr = Fr

(
αs – αs,fr

)n
(
αs,max – αs

)P (3.18)
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and

ηfr = pfr sinφ. (3.19)

The parameters Fr , n and P are empirical constants, as well as the angle of internal
friction φ and are chosen according to Ocone et al. [86].

The radial distribution function g0 was proposed by Ogawa et al. [90] for dense rigid
spherical particles as

g0 =

[
1 –
(

αs
αs,max

)1/3
]–1

(3.20)

and the granular temperature θs, which is a measure of the particle velocity fluctuation
and the kinetic energy of the random motions of the particles,

θs =
1
3
〈u2s 〉, (3.21)

leading to the transport equation of the granular temperature θs

3
2

[
∂

∂t
(αsρsθs) +∇ · (αsρsusθs)

]
=
(
–psI + τ s

)
:∇us+∇· (κs∇θs) – γs – Js. (3.22)

In the above equation, the term ∇ · (κs∇θs) represents the diffusion of the fluctuating
energy with κs being the granular thermal conductivity:

κs = ρsdp
√
θs ·
(
2α2s g0 (1 + e)

1√
π

+
9
8
√
πg00.5 (1 + e)α2s

+
15
16
√
παs +

25
64
√
π

1
(1 + e) g0

)
(3.23)

γs accounts for the collisional dissipation of energy of the particles [80]

γs = 12

√
θ3s
π

(
1 – e2

) α2sρsg0
dp

. (3.24)

The dissipation of energy occurring from the inelastic behavior of particle-particle colli-
sions is accounted for with Js [96]

Js = 3βθs –
3
4
β2dp (us – uf)

2

αsρs
√
πθs

. (3.25)
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3.2.2 Eulerian-Lagrangian Model

The governing equation for a Eulerian-Lagrangian simulation differs from the equation
for a Eulerian-Eulerian equation as the particles are simulated individually and not
in a Eulerian approach. The equations for the fluid phase follow equation (3.2) and
a single-phase flow for the fluid is assumed. The resulting solid volume fraction for
Eulerian-Lagrangian simulations αs,L due to the existence of particles is calculated with
the total volume of Lagrangian particles in a specified cell

∑
∀p∈cellVp and the volume

of the cell itself Vcell according to Equation (3.26).

αs,L =
1

Vcell

∑

∀p∈cell
Vp (3.26)

The momentum exchange between the gas and particle phases Mf,p has to be modified to
account for all Lagrangian particles:

Mf,p = β
(
uf – up

)
(3.27)

The momentum exchange term Mf,p is further split up into an explicit and an implicit
term due to numerical stability:

Mf,p =
∑

Ff,p
Vcell|uf – up|

· uf –
∑

Ff,p
Vcell|uf – up|

· up (3.28)

up is the cell-averaged velocity of the particles and is calculated according to

up =
1
Np

∑

∀p∈cell
up. (3.29)

The total number of particles in the cell is described by Np and the velocity of the
respective particle p by up. The calculations for the Lagrangian framework are based on
Newton’s Second Law of Motion, specifically the force and torque balances:

mp
dup
dt

=
∑

Fp (3.30)

and

Ip
dωp
dt

= Tp (3.31)

Fp defines the forces acting on the particle. The most significant forces acting on a particle
in a gas-solid fluidized bed are contact forces Fc, drag force Fd, buoyancy force Fb and
gravitational force Fg. Other particle forces, e.g., force due to virtual mass, magnetic or
electrostatic forces are neglected in this work due to their low magnitude in comparison
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to the other forces. The contact force Fc includes all forces due to particle-particle and
particle-wall collisions. Those forces are calculated according to a soft-sphere model [119]
with a spring-slider-dashpot model [123, 205]. A schematic overview of the acting forces
modeled with the spring-slider-dashpot can be seen in Figure 3.3.
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ash
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ot

coupling

Figure 3.3: Spring-slider-dashpot for particle-particle and particle-wall interactions.

The drag force Fd acting on a single particle in a fluidized bed can be calculated with

Fd =
Vpβ

αs,L

(
uf – up

)
(3.32)

The momentum exchange coefficient for the calculation of the drag force β is according
to the Gidaspow correlation [15] (cf. Equation (3.8)). Equations (3.2), (3.8) and (3.32) for
the Eulerian-Lagrangian model are dependent on the volume fractions αi , in particular on
the solid phase fraction for the Eulerian-Lagrangian simulation αs,L. The Lagrangian solid
phase fraction αs,L is calculated with Equation (3.26). Here, the volume of all particles
in a cell is summed up and divided by the cell volume. Different methods can be used to
determine which particles correspond to a specific cell, e.g., the particle center method or
divided volume phase fractions. In the following simulations, the particle center method
is applied. Depending on the position of the particle center, the particle is assigned to the
corresponding cell. The advantage of this method lies in the relatively small computational
effort, while there are two disadvantages which are illustrated in Figure 3.4.
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Figure 3.4: Determination of phase volume fractions of a Eulerian-Lagrangian
simulation with the particle center method. Example with particles ( ) and particle
centers (+) for three different cases:
(a) Particle volume overlapping cells 1, 2, 3 and 4.
(b) Particle volume almost covering cell 3 and overlapping cells 1, 2 and 4.
(c) Cell size is many times larger than particle size.

If the center of a particle lies near a cell boundary, the volume of the particle overlaps
several cells, cf. Figure 3.4a where the volume of the particle overlaps all four cells. In
this case, the gas volume fraction for cells 1, 2 and 4 are zero because the particle center
is located in cell 3. The calculated gas volume fraction covering cell 3 according to the
particle center method is, in this case, higher than the real gas volume fraction as the
whole volume of the particle is used instead of the particle volume in cell 3. The gas
volume fractions in cells 1, 2 and 4 are lower than the real gas volume fractions. Another
disadvantage can be seen in Figure 3.4b where a particle is larger than a cell. The volume
of the particle covers almost the entire volume of cell 3. The calculated gas volume fraction
is close to zero, while the other gas volume fractions are one. The simulated gas velocity
in cell 3 would be very high, but the overall gas flow accuracy would decrease. This is
because when the gas volume fractions of the neighboring cells are equal to zero, the gas
velocity decreases again. Hence, it is important to define a minimum cell size of at least
the greatest particle volume to minimize or even prevent these problems. A better case is
shown in Figure 3.4c. The volume of the cells is far larger than the volume of the greatest
particle. The calculation of the gas volume fraction according to the particle center method
is closer to the actual gas volume fractions. The deviation stems from particles near the
border with the neighboring cells. Since the particle volumes are smaller than the particle
volumes of the other cases, the error of the overlapping volumes is minimized.

It can be seen that with the above equations, the computational effort rises in proportion
to the number of particles in the system for a Eulerian-Lagrangian simulation if the
number of mesh cells compared to the number of particles is negligible. The computational
effort for a Eulerian-Eulerian simulation is proportional to the number of the mesh size
and is not as demanding as for a Eulerian-Lagrangian simulation.
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3.3 Coupling of Eulerian-Eulerian and Lagrangian Models

Simulating a gas-solid two-phase flow with either a Eulerian-Eulerian or a Eulerian-La-
grangian model has advantages and disadvantages in regards to simulation speed and
accuracy. With the following coupling of those two models, the gas phase was still treated
as a continuum and modeled according to the Eulerian approach. The granular phase,
however, was modeled by the Eulerian and the Lagrangian approaches simultaneously. The
open-source C++ based package OpenFOAM®[206], version 4.1, was used as software
for coupling the methods and for performing the simulations.

The term Mf,s in the momentum equation for the gas phase in Equation (3.2) accounts
for the momentum exchange between the gas phase and the Eulerian particle phase. In
order to include the additional momentum exchange between the gas phase, the Eulerian
solid phase and the Lagrangian particles Mf,s+L, Mf,s have to be modified to

Mf,s+L = Mf,s + β

(
uf –

∑
∀p up
Np

)
(3.33)

The momentum equation for the Eulerian solid phase and the momentum exchange term
Ms,f must also be modified. With the addition of the momentum due to particle-particle
collisions, the new momentum exchange term for the Eulerian solid phase with the gas
phase and the Lagrangian particles can be expressed with the following equation:

Ms,f+L = Ms,f +
∑
∀collisionsmp

(
up,t+∆t – up,t

)

Vcell
(3.34)

The term
∑
∀collisions mp(up,t+∆t–up,t)

Vcell
accounts for the volume-specific momentum of the

Lagrangian particles which collide with particles of the Eulerian phase. The particles of
the Eulerian solid phase are, however, not resolved in their positions. Therefore, with the
combination of the Eulerian and Lagrangian treatment of the granular phase, the Eulerian
solid phase will be transformed into pseudo Lagrangian particles (pseudo L-Particles). The
transformed Eulerian solid phase or rather the pseudo L-particles are marked as inactive
but inherit the velocities of the Eulerian solid phase (cf. Figure 3.5). The inactive nature of
the pseudo L-Particles excludes those particles from the calculation in the LPT. Therefore,
the collision detection mechanism by the LPT only detects collisions between Lagrangian
particles and Lagrangian particles, Lagrangian particles and pseudo L-Particles, as well
as Lagrangian particles and the wall. Collisions between pseudo L-particles and pseudo
L-Particles, as well as pseudo L-Particles and the wall will not be considered by the
collision detection mechanism.
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Figure 3.5: Coupling overview of Eulerian and Lagrangian treatment and
introduction of transformed Eulerian particles as pseudo Lagrangian particles.

As the pseudo L-Particles are not considered by the LPT and do not change their spacial
position, the position of the pseudo L-Particles has to be assigned by an algorithm. This
particular algorithm is shown in Figure 3.6. In a first step, the number of cells and the
spatial dimensions of each cell will be read from the simulation. This step assures the
information of the whole simulation geometry and each individual cell. In the next step
with the information of the geometry and cell dimensions as well as the particle diameters
of the Eulerian solid phase, dp,E, all positions of possible transformed Eulerian particles
(E-Particles), i.e., pseudo L-Particles in Figure 3.6, are calculated. Therefore, a hexagonal
closed-packed bed of equal and ideal spheres is assumed. The solid fraction of the particle
bed for this assumption is approximately 0.74 as the maximum value of the bed porosity
for a hexagonal closed-packed bed εmax ≈ 0.26. An illustration of four layers of this
hexagonal closed-packed bed with the information of the geometry and cell dimensions as
well as the Eulerian particle diameter can be seen in Figure 3.7. With this step, all possible
positions of pseudo L-Particles will be stored in a file. This method is chosen to anticipate
any problems of overlapping pseudo L-Particles if a random positioning algorithm were
chosen. Those two steps are performed only once during the simulation, unless a dynamic
mesh is used.

73



3 Development of a hybrid Eulerian-Eulerian-Lagrangian model
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Transforming E-Particles to pseudo L-Particles

Figure 3.6: Schematic overview of algorithm for the transformation of Eulerian
particles to pseudo Lagrangian particles (pseudo L-Particles).

In the third step during the simulation, the particle volume fraction of the Eulerian
solid phase αs is obtained for each cell and the number of Eulerian particles, i.e., pseudo
L-particles, for each cell is calculated with

NE =
Vcell

1/6πd3p,E
· αs (3.35)

At the last step, the number of pseudo L-Particles is assigned to each cell to reach the
required number of Eulerian particles NE and, therefore, the solid phase fraction αs.

Figure 3.7: Positions of four layers for available pseudo L-Particles placed in a
hexagonal closed-pack of ideal spheres.

Before the start of the simulation, the initial bed height is fixed. With the combination of
the Eulerian and Lagrangian treatment of the particles, a ratio has to be defined, declaring
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how many of the particles are simulated according to the Eulerian and the Lagrangian
models. The following ratio RL states the ratio of particles treated as Lagrangian particles,
Np,L, to all particles simulated Np:

RL =
Np,L
Np

(3.36)

If this ratio is equal to 1, then the simulation consists of a pure Eulerian-Lagrangian
simulation as all the granular matter is treated as Lagrangian particles. On the contrary,
with a ratio of RL = 0, all simulated particles are treated as a continuum according to
the Eulerian approach. A predefined ratio of RL = 0.5 equals a simulation with half of
the simulated particles treated as a Eulerian continuum and the other half as Lagrangian
particles. With this additional degree of freedom, the hybridity of the solver can be further
adjusted to increase or decrease the number of Lagrangian particles in the simulation.

Figure 3.8 shows the complete algorithm for the coupled Eulerian-Eulerian-Lagrangian
solver. Before entering the Eulerian loop, the initial parameters, e.g., particle bed height,
bed porosity and Lagrangian particle ratio RL are read. In the next step, the Eulerian
particles (E-particles) are transformed to pseudo L-Particles according to the algorithm
in Figure 3.6. With the RL ratio, a defined number of Lagrangian particles (L-Particles)
is introduced into each cell to reach the desired bed porosity. With the positioning of the
pseudo L-Particles the simulation enters the DEM loop, i.e., the Lagrangian calculations
of the particle tracking algorithm. In this loop, the fluid forces acting on the L-Particles
are calculated and the Lagrangian equations for the L-Particles are solved to get the
new properties, e.g., position, velocity and torque, for those particles. Furthermore, the
momentum exchange between the L-Particles and pseudo L-Particles is summed up
and stored for the later Eulerian loop. The pseudo L-Particles are excluded from those
calculations as their positions and velocities are set by the Eulerian phase properties. If
the DEM cycle time step has reached the time step of the Eulerian loop, the L-Particles
are reinitialized, the DEM loop is left and the Eulerian loop is reentered. With the
new positions of the L-Particles the particle volume fractions of each cell have to be
recalculated. Then, the forces of the L-Particles on the E-Particles and the gas phase can
be determined to solve the Eulerian equations for both the gas and solid phase in the
next step. Before the next time step, the volume fractions of the E- and L-Particles as
well as the velocities are combined to obtain the volume fractions and velocities of those
combined phases and, therefore, the total particle phase. The velocities of the Eulerian
and Lagrangian phase are weighted according to the introduced Lagrangian particle ratio
RL. After an increase in the time step, the E-Particles are transformed to the pseudo
L-Particles again and the Eulerian- and DEM loops start all over until the end time tend
is reached.
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Figure 3.8: Solver algorithm for newly developed Eulerian-Eulerian-Lagrangian
approach with indicated Eulerian-Eulerian and DEM loop.

3.4 Validation of proposed Eulerian-Eulerian-Lagrangian

Solver

A simulation or a proposed model has to be validated with experimental data. Therefore,
two benchmark cases were used to validate the proposed coupled Eulerian-Eulerian-La-
grangian solver: a 2D fluidized bed set-up by Müller et al. [201, 202] and a 3D spouted
fluidized bed with aeration according to Link et al. [203].

3.4.1 2D fluidized bed

The benchmark case according to Müller et al. [201, 202] consisted of a pseudo-2D fluidized
bed. Air was introduced at ambient conditions and the particles studied were poppy seeds.
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The inlet velocity of the gas phase was uniform. The characteristic data for comparison,
i.e., particle velocities and gas volume fractions were obtained via MR measurements by
Müller et al. [201, 202]. A snapshot of the initial fluidization including the formation of a
gas bubble is seen in Figure 3.9.

Figure 3.9: Snapshot of fluidization and bubble formation by Müller et al. [201].

3.4.1.1 Set-up

In order to validate and evaluate the newly developed Eulerian-Eulerian-Lagrangian
solver in terms of accuracy and speed, the benchmark case according to Müller [201,
202] was simulated with a pure Eulerian-Eulerian, a Eulerian-Lagrangian and the pro-
posed Eulerian-Eulerian-Lagrangian solver. The pure Eulerian-Eulerian solver was called
twoPhaseEulerFoam and the Eulerian-Lagrangian solver DPMFoam. The acronym DPM
in the DPMFoam solver stands for Discrete Particle Modelling and is in contrast to the
Discrete Phase Model mentioned in Figure 3.1 a 4-way coupled CFD-DEM solver. The
granular matter in the Eulerian-Eulerian solver is modeled according to KTGF, while
in the Eulerian-Lagrangian solver we used a four-way coupled approach for LPT. The
underlying models and parameters for the Eulerian-Eulerian, Eulerian-Lagrangian and
MP-PIC solvers are listed in Table 3.1. The gas phase in all solvers was modeled in the
same way and the physical properties were also equal.
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Table 3.1: Overview of parameters used in the 2D fluidized bed simulation.

Geometry and Mesh

width / mm 44
height / mm 120
depth / mm 10

cell number in x-direction / - 15
cell number in y-direction / - 37
cell number in z-direction / - 1

Physical Properties

Gas phase Solid phase
particle diameter dp / mm 1.2

density ρf / kg/m3 1.2 density ρs,p / kg/m3 1000
kin. viscosity νf / m2/s 1.5 · 10−5 sphericity ψ / - 1
inlet velocity uf,in / m/s 0.9 coefficient of restitution e / - 0.97

coefficient of friction µfr / - 0.1
EE Simulation EL and MP-PIC Simulation

axial bed height h / mm 30 number of particles Np / - 9240
initial bed porosity ε0 / - 0.64

drag model Gidaspow [15]
simulation time tend / s 50

time step ∆t / s 1 · 10−4

In the developed Eulerian-Eulerian-Lagrangian solver, the ratio of Lagrangian particles to
all simulated particles RL had to be defined before the simulation. For the following valida-
tion according to the benchmark fluidized bed, three different RL-ratios were investigated,
namely RL = 20, 50 and 80%.

3.4.1.2 Results

The measured and time-averaged gas volume fractions αf and axial velocities of the
solid phase us,y were extracted from Müller et al. [201, 202] and compared to the
simulation results of the Eulerian-Lagrangian, Eulerian-Eulerian, MP-PIC and Euleri-
an-Eulerian-Lagrangian solvers with Lagrangian particle ratios of RL = 20, 50 and 80%.
The time-averaging frame for the simulations was 50 s. The experimental and simulated
data were obtained across the horizontal bed and at four specific axial bed heights. The
comparisons of the gas volume fractions αf and the axial velocity of the solid us,y are
shown in Figures 3.10 and3.11.
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Figure 3.10: Comparison of gas volume fraction αf across horizontal bed position x
at two different axial heights of y = 16.4 and 31.2mm with different solvers.
Experimental data is taken from Müller et al. [202]. Eulerian-Lagrangian,
Eulerian-Eulerian models and MP-PIC, as well as the newly developed
Eulerian-Eulerian-Lagrangian model with three different Lagrangian particle ratios
RL = 20, 50 and 80% are used for the solvers.

The least agreement with the experimental data was obtained with the Eulerian-Eulerian
solver. Across the horizontal bed position and at two different axial heights, the gas volume
fraction αf stays uniform at a value of approximately 0.44 (cf. Figure 3.10). Uniform
and homogeneous fluidization with no bubble formation occurrs with this model. On
the contrary, the results from Müller et al. [202] clearly show a non-uniform fluidization
with a higher gas volume fraction in the mid-horizontal position compared to a lower gas
fraction near the walls. Also, the snapshot from Müller et al. [202] of the initial fluidization
in Figure 3.9 displays the existence and formation of gas bubbles. The formation of gas
bubbles agrees with the increasing gas fraction at a larger distance from the bottom at
the mid-horizontal position and the decreasing fraction near the wall, where the particles
accumulate (cf. Figure 3.10b). The Eulerian-Lagrangian method shows the best agreement
with the experimental data compared to the other simulation methods and slightly
overpredicts the gas fraction at y = 31.2mm. The MP-PIC model underpredicts the gas
fraction at a lower axial height compared to the experimental data. At a greater height,
it shows a uniform gas volume fraction across the horizontal bed, like the results from
the Eulerial-Eulerian solver, but at a higher gas fraction. The accuracy of the simulation
results for the Eulerian-Eulerian-Lagrangian solver is highly dependent on the Lagrangian
particle ratio RL, as can be seen in Figure 3.10 for the gas fractions. The higher the
RL-ratio, the more Lagrangian particles are simulated and the more accurate the results
are compared to the experimental data. It cannot be seen that the RL-ratio is a weighting
factor for the results between the Eulerian-Eulerian and Eulerian-Lagrangian simulation.
An RL-ratio of 20% shows slightly non-uniform fluidization at the mid-horizontal position.
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It is safe to conclude that the resulting accuracy of the introduced Lagrangian particles
has an impact on the Eulerian particles as well due to the momentum exchange between
them.
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Figure 3.11: Comparison of axial solid velocity us,y across horizontal bed position
x at two different distances from the bottom at y = 15 and 25mm with different
solvers. Experimental data were taken from Müller et al. [201]. Eulerian-Lagrangian,
Eulerian-Eulerian and MP-PIC models, as well as the newly developed
Eulerian-Eulerian-Lagrangian model with three different Lagrangian particle ratios
RL = 20, 50 and 80% are used for the solvers.

The experimental data for the time-averaged axial velocity of the solid phase us,y has a
positive value at the middle of the horizontal bed position and the particles fall down
near the walls (cf. Figure 3.11). The magnitude of the uprising velocity increases with the
distance from the bottom, while the increase in magnitude of velocity near the walls is not
as high as at the middle of the horizontal position. The axial velocity profile forms two
local minima near the wall and one maximum at the middle of the horizontal position.
At the lower axial height of y = 15mm, the maximum velocity remains almost constant
between the horizontal bed positions of x = 15 and 30mm. As expected, the simulation
results from the Eulerian-Eulerian model show no axial velocity of the solid phase over
the horizontal and the two axial positions. This correlates to a homogeneous fluidized
bed and to the uniform fluidization (cf. Figures 3.10a and 3.10b). These results from
the Eulerian-Lagrangian simulation are in good agreement with the experimental data,
while the flat plateau of the maximum velocity at an axial position of y = 15mm is
not well reproduced. Furthermore, the solver slightly underpredicts the axial velocity at
y = 25mm, but still shows the best agreement towards the experimental data compared
to the other used solvers. The results obtained with the MP-PIC solver indicated that
the axial particle velocity at the lower height was overpredicted. At a greater axial height
the velocity was underpredicted. The accuracy of the Eulerian-Eulerian-Lagrangian solver
increases with the Lagrangian particle ratio RL. If more Lagrangian particles than Eulerian
particles are simulated, the agreement between the simulation results and the experimental
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3.4 Validation of proposed Eulerian-Eulerian-Lagrangian Solver

data increases. An overall better accuracy than the MP-PIC results could be achieved with
a RL-ratio of 80%.

Lastly, the newly developed Eulerian-Eulerian-Lagrangian solver was compared the other
solvers in terms of its execution time for the simulations. Therefore, the execution times
of all used models ti , i.e, Eulerian-Lagrangian tEL, MP-PIC tMP-PIC, Eulerian-Eulerian
tEE and Eulerian-Eulerian-Lagrangian with the three different RL ratios of 20, 50 and
80% tEEL, 0.2, tEEL, 0.5 and tEEL, 0.8, were set in relation to the longest execution time,
namely from the Eulerian-Lagrangian solver. The comparison of these execution time
ratios is illustrated in Figure 3.12.
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Figure 3.12: Comparison of execution times for the benchmark according to Müller
et al. [201, 202] with the different solvers used. Eulerian-Lagrangian (EL), MP-PIC,
Eulerian-Eulerian (EE) and the newly developed Eulerian-Eulerian-Lagrangian
model with three different Lagrangian particle ratios RL = 20, 50 and 80% are used
for the solvers.

The longest execution time is obtained by the Eulerian-Lagrangian simulation, as it
requires the highest computational effort due to the number of individually simulated
particles. The shortest time is achieved with the Eulerian-Eulerian simulation because
the particles are not resolved individually, but modeled as a continuum. The simulation
speed for the MP-PIC solver is faster than the Eulerian-Lagrangian and slower than the
Eulerian-Eulerian solver. The execution time for the Eulerian-Eulerian-Lagrangian solver
increases with increasing Lagrangian particle ratios RL and follows the equation

tEEL (RL) ≈ RL · tEL + tEE. (3.37)
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A short execution time for the Eulerian-Eulerian-Lagrangian solver is used for positioning
and re-initializing the pseudo L-particle, i.e., transformed Eulerian particles. This over-
head time can be seen at the execution times for an RL-ratio of 20 and 80%. For an
RL-ratio of 80%, the overhead time makes up an accumulated amount of 2.7% and for
RL = 20% of 1.8%. The execution time for an RL-ratio of 50% is comparable to the
one of the MP-PIC solver, but smaller than the calculated execution time proposed in
Equation (3.37).

3.4.2 3D spouted fluidized bed with aeration

The following fluidized bed benchmark case of Link et al. [203] represented a 3D spouted
fluidized bed. Monodisperse glass beads were fluidized with air at ambient condition. The
inlet velocity consisted of two different velocities: a background velocity and a spouted
velocity, which has a greater magnitude than the background velocity. Link et al. [203]
measured in this set-up the particle velocities with the method of position emission
particle tracking. The time-averaged particle velocities at different heights are taken for
the validation and comparison of our newly developed solver.

3.4.2.1 Set-up

The dimensions of the simulated geometry are shown in Figure 3.13. The number of
simulated glass bead particles amounts to 44 800 for the Lagrangian simulations, i.e.,
Euler-Lagrange and MP-PIC. The equivalent bed height for the Eulerian solver is cal-
culated with the assumptions of spherical particles and a maximum packing limit of
αmax = 0.64.
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Figure 3.13: Dimensions of simulated geometry according to the experimental data
for a 3D spouted fluidized bed taken from Link et al. [203].

Information about the grid size and the simulation parameters used are listed in Table 3.2.
Link et al. [203] in their simulations use a grid size comparable to the fine mesh in Table
3.2. The accuracy of the Eulerian-Eulerian solver is dependent on statistical models to
describe particle interactions. Therefore, a coarser mesh is preferable. In the following we
performed the simulations with a mesh similar to Link et al. [203] and a coarser mesh,
i.e., a grid size of 14 x 7 x 70 cells. The axial particle velocities us,y are averaged for
an interval of 30 s to obtain time-averaged values applying the same solvers as stated in
section 3.4.1.
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Table 3.2: Overview of parameters used in the 3D spouted fluidized bed with
aeration simulations.

Mesh

coarse mesh fine mesh
cell number in x-direction / - 14 28
cell number in y-direction / - 7 14
cell number in z-direction / - 70 100

Physical Properties

Gas phase Solid phase
density ρf / kg/m3 1.2 particle diameter dp / mm 4.04
kin. viscosity νf / m2/s 1.5 · 10−5 density ρs,p / kg/m3 2526
spouted inlet velocity uf,spout / m/s 90 coefficient of restitution e / - 0.97
background inlet velocity uf,bg / m/s 2.5 coefficient of friction µfr / - 0.1

EE Simulation EL and MP-PIC Simulation

axial bed height h / m 0.33 number of particles Np / - 44 800
initial bed porosity ε0 / - 0.64

drag model Gidaspow [15]
simulation time tend / s 30

time step ∆t / s 5 · 10−5

3.4.2.2 Results

The time-averaged axial particle velocities us,y at axial heights of 0.15 and 0.25m obtained
with the Eulerian-Lagrangian, MP-PIC and the Eulerian-Eulerian solver using a finer and
a coarser mesh are shown in Figure 3.14.
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Figure 3.14: Comparison of time-averaged axial solid velocity us,y across horizontal
bed position x at two different distances from the bottom at y = 0.15 and 0.25m
with different solvers and a coarser (c) and a finer grid size (f). Experimental data is
taken from Link et al. [203]. Eulerian-Lagrangian (EL), Eulerian-Eulerian (EE) and
MP-PIC models are used for the solvers.

The grid size for this set-up was varied because a coarse mesh results in more accurate
data compared to the finer mesh. The higher accuracy of the coarser mesh for the Eule-
rian-Lagrangian solver can be explained with the more accurate cell averaged properties,
in particular for the solid phase fractions, due to the bigger cells in this simulation. The
MP-PIC and the Eulerian-Eulerian solver’s accuracy are dependent on statistical models.
Therefore, bigger cells result in a higher accuracy. This can be seen in the comparison of
the different grid sizes. The results of the finer grid sizes for all used solvers shows a lesser
agreement towards the experimental data compared to the coarser grid size. For example,
the particle bed for the Eulerian-Eulerian does not show a fluidization with a finer mesh,
while the fluidization takes place using a coarser mesh. For both Eulerian-Lagrangian and
MP-PIC solver a fluidization is observed, but the results of the coarser grid sizes agreed
more to the experimental data than the results of the finer grid sizes.

Figure 3.15 shows the influence of the grid size on the execution time for the three solvers
used in this simulation.
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Figure 3.15: Influence of different grid sizes on the execution time for the
Eulerian-Lagrangian, MP-PIC and the Eulerian-Eulerian solver. The execution
times for each solver and grid size are in relation to the highest execution time, i.e.,
the execution time of the Eulerian-Lagrangian solver with the finer mesh tEL,f.

Although the number of cells of the finer mesh almost increases sixfold, the execution time
of the coarser mesh slightly decreases for the Eulerian-Lagrangian model. The number of
particles remain unchanged and the Lagrangian time-step is a fraction of the Eulerian
time-step. Hence, the execution time of the Lagrangian loop accounts for the greatest
amount of the total execution time. The influence of an increase in cells for the MP-PIC
and the Eulerian-Eulerian solver is higher than for the Eulerian-Lagrangian solver. The
simulation of the particles is not as time demanding as for the Eulerian-Lagrangian solver,
therefore, the increase in execution time is due to the higher number of cells.

In the following, we performed simulations with the newly developed Eulerian-Eulerian-La-
grangian solver with the coarser mesh. The time-averaged axial particle velocities us,y at
axial heights of 0.15 and 0.25m for the Eulerian-Lagrangian, MP-PIC, Eulerian-Eulerian,
all with the coarser mesh, and the newly developed solver with three different Lagrangian
particle ratios RL = 20, 50 and 80% are shown in Figure 3.16.
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Figure 3.16: Comparison of axial solid velocity us,y across horizontal bed position
x at two different distances from the bottom at y = 0.15 and 0.25m with different
solvers. Experimental data is taken from Link et al. [203]. Eulerian-Lagrangian,
Eulerian-Eulerian and MP-PIC models, as well as the newly developed
Eulerian-Eulerian-Lagrangian model with three different Lagrangian particle ratios
RL = 20, 50 and 80% are used for the solvers.

The best agreement towards the experimental data is obtained with the results of the
Eulerian-Lagrangian solver for both axial heights. Regarding the results at an axial
height of y = 0.25m, a slight deviation between the wall and the center core of the
spouting area on both sides can be observed. The results from the MP-PIC model slightly
overpredict the axial velocities at the spouting area at the lower axial height, but the
overall agreement towards the experimental data is still high. At a higher axial height,
the MP-PIC model underpredicts the axial particle velocities. The least agreement was
achieved with the Eulerian-Eulerian solver. The axial solid velocities are lower than the
mreasured velocities from the experiments by Link et al. [203]. The results obtained with
our newly developed Eulerian-Eulerian-Lagrangian solver showed a similar trend as in the
2D fluidized bed set-up by Müller et al. [201, 202]: with a higher Lagrangian particle ratio
RL, the axial velocities approximate to the results obtained with the Eulerian-Lagrangian
model, as more Lagrangian particles are modeled. Therefore, the best agreement towards
the experimental data was obtained with a Lagrangian particle ratio of RL = 80%. At this
ratio, the results are more accurate than the results obtained with the MP-PIC model.
Figure 3.17 shows the execution times for simulating the 3D spouted fluidized bed with
the different solvers used.
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Figure 3.17: Comparison of execution times for the benchmark according to Link
et al. [203] with the different solvers used. The solvers were the Eulerian-Lagrangian
(EL), Eulerian-Eulerian (EE) models, MP-PIC and the newly developed
Eulerian-Eulerian-Lagrangian model with three different Lagrangian particle ratios
RL = 20, 50 and 80%.

The Eulerian-Lagrangian solver had the highest execution time, as all the particles were
resolved with a 4-way coupling approach, while the Eulerian-Eulerian solver had the
lowest execution times of all the solvers. The execution time of the MP-PIC solver was
approximately one third of the execution of the Eulerian-Lagrangian solver. The execution
time of the newly developed Eulerian-Eulerian-Lagrangian solver was in accordance to the
proposed equation for the the execution time in Equation (3.37).

3.5 Discussion

The simulation results from the Eulerian-Lagrangian model were the most accurate one
due to the 4-way coupling of the particles. All particle interactions were resolved. The
MP-PIC results showed less accurate results, but the overall accuracy was still very high.
The accuracy is due to the fact of the lagrangian particle tracking and the interpolating of
certain particle properties and forces. The simulation results obtained by the Eulerian-Eu-
lerian model showed uniform fluidization with a time-averaged axial particle velocity of
zero. This is due to the fact that with the KTGF, velocities in the normal direction are
considered for particle-particle and particle-wall collisions, while changes for the tangential
velocities are not taken into account [200]. But with changes in the tangential velocity,
there are also collisions between particles, as well as particles and the wall depending on
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the roughness of the particles. Zhao et al. [81] developed the Kinetic Theory of Rough
Particles to account for the changes in the tangential velocity. They simulated the fluidized
bed according to Müller et al. [201, 202] and obtained better results [200] than with the
KTGF. In this work, we used the Eulerian method with KTGF and therefore it shows
the least agreement towards the experimental data by Müller et al. [201, 202] and Link et
al. [203]. Due to the statistical nature of the underlying models of the Eulerian-Eulerian
approach, a coarser mesh resulted in better results for the 3D fluidized bed by Link et al.
[203]. For the benchmark according to Müller et al. [201, 202] a coarsening of the mesh
had no significant effect on the fluidization behavior obtained with the Eulerian-Eulerian
approach. In respect to the Eulerian-Lagrangian and the MP-PIC approach, we observed
a negative impact on the accuracy of the results with a coarsening of the mesh. In the
simulations performed with the newly developed Eulerian-Eulerian-Lagrangian model the
impact of the Lagrangian particles on the Eulerian solid phase could be seen with the
adjustment of the Lagrangian particle ratio RL: with an increasing ratio, the results
were more accurate and approximated towards the results of the Euler-Lagrange model.
The momentum exchange due to collisions between Lagrangian particles and the pseudo
L-particles between the Lagrangian particles and the Eulerian solid phase has a significant
impact on the accuracy, particularly the bubble formation and the axial solid velocity.

When comparing the MP-PIC model to our newly developed solver in terms of simulation
results, it can be seen that the MP-PIC model overpredicts the axial particle velocities for
both benchmark cases at lower axial heights and underpredicts the velocities at a larger
distance from the bottom. The results for a Lagrangian particle ratio RL = 80% agreed
more with the experimental data than with the results obtained with the MP-PIC model,
but overall the velocities were underpredicted. The results with a ratio RL = 50% and
below had a lesser agreement than the results with the MP-PIC model.

The speed of the coupled Eulerian-Eulerian-Lagrangian model clearly showed that col-
lisions between transformed Eulerian particles, i.e., the pseudo L-Particles, were not
included in the DEM loop. The simulation speed was dependent on the ratio of Lagrangian
particle to all particles RL. The simulation speed of the MP-PIC model is higher than
for the Eulerian-Eulerian-Lagrangian solver with a RL-ratio for equivalent accuracy. The
Lagrangian particle ratio could be adjusted to get more accurate results with the loss at
simulation speed compared to the MP-PIC model. The execution time for this RL-ratio
was still lower than the execution time of the Eulerian-Lagrangian solver.
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3.6 Conclusion

In this study, a solver was developed coupling the Eulerian-Eulerian and Eulerian-La-
grangian models for gas-solid simulations. The treatment of the gas phase remained
unchanged (Eulerian) and the granular matter was simulated with the Eulerian and the
Lagrangian methods. A ratio was introduced to define the number of simulated Eulerian
and Lagrangian particles that could modify the accuracy and simulation speed. To account
for the momentum exchange between the Eulerian solid phase and Lagrangian particles, a
transformation algorithm was introduced to transform the Eulerian particles into inactive
Lagrangian particles. Those inactive Lagrangian particles inherited the properties from
the Eulerian solid phase. The solver was further validated with experimental data from
the literature. Depending on the ratio of introduced Lagrangian particles, the coupled Eu-
lerian-Eulerian-Lagrangian solver showed better results than a Eulerian-Eulerian solver,
while the results of a Eulerian-Lagrangian solver agreed best with experimental data
from the literature. The simulation speed of the coupled solver was also dependent on
the Lagrangian particle ratio and increased with this ratio. The accuracy of this newly
developed solver can be higher than the results obtained with the MP-PIC model for
certain RL-ratios. But the simulation speed decreases accordingly.
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4 Implementation of a three-level grid
method for CFD-DEM simulations

Abstract

The use CFD-DEM for the simulation of dense gas-solid flows comes with limitations based on
the numerical cell size depending on the diameter of the particles. With the introduction of a
multi-grid approach, i.e., the calculation of the fluid phase and the solid phase are done with
two separate meshes, a finer and a coarser one, this limitation can be overcome. In this work, a
three-level grid approach is proposed, in which an additional numerical grid is used to transform
parameters used for the solid-fluid momentum exchange from the Lagrangian to the Eulerian
grid. The resolution of this newly introduced grid lies in between the resolution of the two other
meshes. A conventional single- and dual-grid, as well as the newly introduced three-level grid
approach were validated with experimental data in literature and afterwards compared in terms
of accuracy and simulation speed. A multi-grid approach, dual- or three-level, shows a higher
accuracy than the single-grid method. An additional third grid achieves in almost all cases slightly
better results than the dual-grid method while the increase in simulation time is negligible. A
coarsening of the solid grid has a higher effect on accuracy than the refinement of the fluid grid.
Furthermore, the coarse grain method was implemented to increase simulation speed. Still, the
three-level grid approach requires a deeper understanding in the resolution of the numerical grid
as there are more degrees of freedom for the cell sizes, but an adequate choice of the numerical
grid can drastically improve the simulation accuracy and speed in combination with a coarse
grain method.
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4.1 Introduction

4.1 Introduction

Computational Fluid Dynamics (CFD) as a simulation approach for modeling gas-solid
flows, in particular, fluidized bed [207], has been proven to be accurate in predicting
the hydrodynamics, thermodynamics and chemical reactions of the system [208–213].
Several approaches exist to model gas-solid flows and the most common ones are the
Lattice-Boltzmann Method (LBM), Discrete Element Method [119] coupled with CFD
(CFD-DEM) [14, 123] and the Two-Fluid model (TFM) [53, 71]. While the LBM is
mostly used for the investigation of small-scale systems to derive correlations used for more
abstract models [214], CFD-DEM found its use in the simulation of small- to medium-scale
systems with mostly larger particles [99, 215, 216], e.g., group D particles according to
the Geldart classification [12]. Due to the Eulerian character in the TFM, it is used
for large-scale systems [217, 218], independent of the particle size. Using CFD-DEM the
particles are calculated in a Lagrangian way using DEM and the fluid flow is modeled as a
continuum in a Eulerian way. In order to couple the phases, crucial parameters from both
phases have to be transformed from a Lagrangian parameter to a Eulerian one and vice
versa, e.g., the number of particles (Lagrangian parameter) has to be transformed to a
Eulerian parameter, the void fraction. There exist certain restrictions for the applicability
of CFD-DEM simulations. One of the major restrictions when using CFD-DEM is the
relatively long simulation time compared to the TFM approach when simulating a high
amount of particles [219]. Especially for particles with a small diameter, e.g., Geldart
group B particles, the use of CFD-DEM might not be feasible in terms of simulation
time. A method to increase the simulation speed for CFD-DEM simulations is the so
called coarse grain (CG) method developed by Sakai and Koshizuka [132]. Here, a group
of particles are lumped together to a cluster of particles forming a bigger parcel [220]. The
CG method was applied for multiple geometry scales in literature, e.g., for dense medium
cyclones [221]. Mass and energy conservation in this method is ensured with an introduced
scaling factor. A higher scaling factor results in more particles being lumped together to a
bigger parcel, hence less particles need to be simulated and the simulation speed increases.
Therefore, the level of the scaling factor is limited by applicability and resulting accuracy.
Takabatake et al. [222] used a scaling factor of up to three for a gas-solid spouted bed and
validated their simulations with experiments. They achieved reasonable results regarding
the mixing state. Even higher scaling factors were applied for the simulation of fluidized
beds, e.g. a scaling factor of up to eight [223]. The CG method was also applied for the
simulation of a 3m high circulating fluidized bed reactor [224] and even larger scales with
Geldart group B particles with a scaling factor of approximately 60 [225]. The higher the
scaling factor, the larger the size of the particle cluster. The size of the particles can be
another major problem regarding dense solid flow simulations using CFD-DEM. Peng et
al. [226] proposed a cell-to-particle diameter ratio of at least 3.82 to get accurate simulation
results. But bigger cells result in a worse resolution due to the coarser numerical grid size.
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4 Implementation of a three-level grid method for CFD-DEM simulations

Hence, the choice of an adequate numerical grid size is crucial. The calculations for the
Lagrangian particle tracking, i.e., the particle movement, is at first sight independent of
the numerical grid. Using the finite volume method, the fluid phase is calculated on a
numerical grid consisting of 3D cells. The coupling between the particles and the fluid
phase is done by transforming Lagrangian to Eulerian parameters, e.g., the velocities of
particles residing in a specific cell are averaged to obtain a cell-averaged value used for
the fluid phase calculations. Alobaid et al. [227] proposed a dual-grid method, splitting
a single numerical grid in two separate grids: a finer grid used for the calculation of the
fluid phase and a coarser grid for the Lagrangian particle tracking. The implementation
of a multi-grid method for CFD-DEM simulations can have multiple benefits. The major
advantages are the increasing accuracy of the results, the higher resolution of the obtained
data and the representation of complex or narrow geometries. With a dual-grid approach
the numerical grid gets independent of the particle size, but a mapping of crucial properties
between the two numerical grids becomes necessary, where a conservative interpolation
method with second-order accuracy showed the best results [228]. The dual-grid approach
was applied and validated in several cases, e.g., spouted fluidized beds [229] or jetting
fluidized beds [230].

In the following, a three-level grid approach is proposed, extending the conventional
dual-grid approach by another numerical grid for the calculation and determination of
specific Eulerian parameters from Lagrangian ones. Farzaneh et al. [231] proposed a
three-level grid approach, but in their work they used one grid for the fluid phase and two
grids for two different sized particle phases. In our work, one grid is used for the Lagrangian
particle tracking independent of the particle size. It is shown in detail how a multi-grid
method consisting of two and three numerical grids can result into the aforementioned
advantages. Experimental data from literature is used to validate the multi-grid method
and it will be compared to a conventional CFD-DEM solver. Lastly, the additional time
needed for the mapping due to the third numerical grid will be evaluated.

4.2 Methodology

First, the numerical methods for CFD-DEM are presented and in the second part the
necessity and advantages of a multi-level grid method, as well as, the solving procedures
will be discussed in detail.
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4.2.1 Numerical Methods

The calculation of the fluid motion is based on the continuity equation (cf. Equation (4.1))
and the momentum balance based on the volume-averaged Navier-Stokes equations
(cf. Equation (4.2)):

∂ε

∂t
+∇ · (ε uf) = 0 (4.1)

and

∂ (ε ρf uf)
∂t

+∇ · (ε ρf uf uf) = –ε∇p + ε ρf g +∇ ·
(
ε τ f
)
+ Mf,s. (4.2)

Here, uf represents the velocity, ρf the density and ε the volume fraction of the fluid
phase.

The calculation of the cell-averaged volumetric fraction of the fluid phase ε in CFD-DEM
simulation is dependent on the number of particles residing in the considered cell. There
exist several different methods for the determination of the volumetric volume fraction,
e.g., analytical, porous cube model [215] or diffusion-based models [232, 233]. In the
following simulations the calculation of the volume fraction is done via the Particle
Centroid Method (PCM). According to the PCM the volume of all particles residing
in the considered cell

∑
∀p∈cellVp accounts for the calculation of the volume fraction of

the specific phase:

ε = 1 –
1

Vcell

∑

∀p∈cell
Vp. (4.3)

The stress tensor of the fluid phase τ f is given by Enwald et al. [53]:

τ f = ηf

[
∇uf + (∇uf)

T
]
–
(
ζf –

2
3
ηf

)
(∇ · uf) I. (4.4)

The momentum exchange Mf,s accounts for the coupling forces between the fluid and the
solid phase. In the later numerical implementation, Mf,s is split up into an explicit and
an implicit term due to stability reasons:

Mf,s =
∑

Ff,p
Vcell |uf – us|

· uf –
∑

Ff,p
Vcell |uf – us|

· us, (4.5)

with the cell-averaged velocity of the particulate phase us and the coupling forces between
the fluid and the particle Ff,p. The cell-averaged velocity of the solid phase us is determined
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in accordance to the PCM with the individual velocities of the tracked particles up and
the total number of particles residing in the considered cell np:

us =
1
np

∑

∀p∈cell
up. (4.6)

The coupling forces between the fluid and solid phases consist of the drag, buoyancy
and lift force, among others. According to Papadikis et al. [100] the drag force Fd
was determined as the major parameter for the fluid-particle force coupling. It can
be calculated with the momentum exchange coefficient β, the relative velocity of the
fluid phase and the individual particle

(
uf – up

)
, the mass of the particle mp and the

corresponding density ρp according to

Fd = β
(
uf – up

) mp
ρp

. (4.7)

The determination of the momentum exchange coefficient β can be done according to
different models. One of the most used models is the Gidaspow model [15, 78] which is
a combination of the Ergun correlation [168] for dense gas-solid flows and the correlation
from Wen and Yu [170] for dilute ones:

β =




150 (1–ε)

2η
εd2p

+ 1.75 (1 – ε) ρfdp

∣∣uf – up
∣∣, ε < 0.8

3
4 Cd

ε (1–ε)
dp ρf

∣∣uf – up
∣∣ ε–2.65, ε ≥ 0.8.

(4.8)

The drag coefficient Cd is dependent on the particle Reynolds number Rep:

Cd =





24
Rep

(
1.0 + 0.15Re0.687p

)
, Rep ≤ 1000

0.44, Rep > 1000
(4.9)

and

Rep =
ε dp

∣∣uf – up
∣∣ ρf

η
. (4.10)

Benyahia et al. [183] extended the Hill-Koch-Ladd (HKL) drag correlation [179, 180] from
Lattice-Boltzmann simulations to a wider range of void fractions and particle Reynolds
numbers, the so called extended HKL drag-model, which is another widely used equation
for the calculation of the momentum exchange coefficient:

β =
3
4
Cdα (1 – α) ρf|uf – up|

dp
(4.11)
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with the drag coefficient

Cd = 12
(1 – α)2

Re∗p
F . (4.12)

The dimensionless drag force F is dependent on the degree of turbulence with the adjusted
Reynolds number Re∗p and the solid volume fraction α with α = 1 – ε:

F = 1 + 3/8Re∗p for α ≤ 0.01 and Re∗p ≤
F2 – 1

3/8 – F3
(4.13)

F = F0 + F1Re∗p
2 for α > 0.01 and Re∗p ≤

F3 +
√

F 2
3 – 4F1 (F0 – F2)

2F1
(4.14)

F = F2 + F3Re∗p otherwise, (4.15)

with

Re∗p =
1
2
Rep. (4.16)

The separate contributions for the inertial coefficients F0, F1, F2 and F3 are determined
by

F0 =





(1 – w)
[
1+3
√

α
2+

135
64 α ln(α)+17.14α

1+0.681α–8.48α2+8.16α3

]
+ w

[
10 α

(1–α)3

]
for 0.01 < α < 0.4

10 α
(1–α)3

for α ≥ 0.4

(4.17)

F1 =





√
2
α

40 for 0.01 < α ≤ 0.1

0.11 + 0.00051 exp (11.6α) for α > 0.1

(4.18)

F2 =





(1 – w)
[
1+3
√

α
2+

135
64 α ln(α)+17.89α

1+0.681α–11.03α2s+15.41α3s

]
+ w

[
10 α

(1–α)3

]
for 0.01 < α < 0.4

10 α
(1–α)3

for α ≥ 0.4

(4.19)

F3 =




0.9351α + 0.03667 for 0.01 < α < 0.0953

0.0673 + 0.212α + 0.0232/ (1 – α)5 for α ≥ 0.0953

(4.20)

with

w = exp (–10 (0.4 – α) /α) . (4.21)
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The movement of the particles according to a Lagrangian way is done with the use of
Newton’s second law of motion with a force (cf. Equation (4.22)) and torque balance
(cf. Equation (4.23)).

mp
dup
dt

=
∑

Fp. (4.22)

The torque of the particle Tp is calculated with the moment of inertia Ip and the time
derivative of the angular velocity ωp:

Ip
dωp
dt

= Tp. (4.23)

The forces acting on the considered particle
∑

Fp consist of contact forces Fc including
collisions, non-contact forces Fnc including forces due to gravity and particle-fluid inter-
action forces Ff,p, i.e., drag force Fd (cf. (4.7)), pressure gradient force F∇p , gravity force
Fg and buoyancy force Fb:

F∇p = Vp∇p (4.24)

and

Fg – Fb = Vp
(
ρp – ρf

)
g. (4.25)

The contact force Fc can result from particle-particle collisions, Fc
p, or from particle-wall

collisions, Fc
w. Several models were proposed in literature for the force-displacement [234],

most of them differentiated by linear and non-linear spring and damping models [205]. In
this work, the non-linear model based on the Hertzian theory is used. Each of the above
stated forces is divided according to the soft-sphere and spring, slider and dash-pot model
into a normal and tangential contact force:

Fc = Fc
n + Fc

t (4.26)

with the normal contact force Fc
n and and tangential contact force Fc

t , respectively.
According to the Hertzian spring-theory and the consideration of damping, the normal
contact force can be calculated with

Fc
n = –kn∆x b

n, oln – ηnun, rel. (4.27)

The normal spring stiffness is defined as kn, the overlap between the two colliding particles
is ∆xn, ol, the exponent b for the Hertzian spring theory has a value of 1.5, n represents
the unity vector in normal direction, the damping coefficient for the normal force is ηn
and un, rel defines the relative velocity of the two colliding particles in normal direction
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of the collision. The normal spring stiffness kn is dependent on the effective radius reff,
the Young’s modulus E and the Poisson ratio ν:

kn =
4
3
√
reff

E
2
(
1 – ν2

) . (4.28)

The effective radius can be calculated with the two diameters of the colliding particles d1
and d2:

reff = 0.5
d1d2

d1 + d2
. (4.29)

For uniform particles of the same size, i.e., d1 = d2, the effective radius becomes reff =
0.25dp and Equation (4.28) can be simplified to

kn =
1
3
√

dp
E

1 – ν2
. (4.30)

The damping coefficient for the normal contact force ηn is calculated according to the
heuristically equation by Tsuji et al. [123]:

ηn = αn
√

Mredkn∆x0.25ol (4.31)

with the reduced mass of the two colliding particles Mred

Mred =
m1m2

m1 +m2
(4.32)

and for uniform particles in terms of size and density

Mred = 0.5mp. (4.33)

Equation (4.31) then simplifies to

ηn = αn
√

0.5mpkn∆x0.25ol . (4.34)

The parameter αn is an empirical parameter and is related to the coefficient of restitution
en [120, 123] according to:

αn =





–2 ln en√
π2+ln2en

if 0 < en ≤ 0.8

2 if en = 0.
(4.35)
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The tangential component of the contact force Fc
t can be calculated with the tangential

spring stiffness kt, the tangential overlap ∆xol, t, the unit vector in tangential direction t,
the tangential damping coefficient ηt and the tangential slip velocity ut, slip:

Fc
t = –kt∆xol, tt – ηtut, slip. (4.36)

Furthermore, according to the Coulomb friction law, sliding can occur if the tangential
component of the contact exceeds the Coulomb friction force µf|Fc

n|, with µf being the
friction coefficient. The tangential component of the contact force therefore follows the
equation:

Fc
t = min

(
–kt∆xol, tt – ηtut, slip , –µf|F

c
n|t
)
. (4.37)

A popular method to increase the speed of CFD-DEM simulations is the coarse grain
(CG) model proposed by Sakai and Koshizuka [132]. Here, several smaller particles are
represented by one larger particle. A coarse grain factor fCG is introduced describing the
ratio of the diameter of the larger coarse grain particle to the original smaller particle
dp,CG/dp,orig, therefore, the particle diameter of the larger coarse grain particle can be
calculated with:

dp,CG = fCG dp,orig. (4.38)

The total number of new coarse grain particles is decreased by a value of f 3CG. The
simulation time decreases as well, if the DEM-calculation is the speed determining step,
as the number of Lagrangian equations decreases. With the assumption of the CG model
that all small particles of a parcel shall resemble and evince the same physical properties
and fluid dynamic behavior, several modifications for the Lagrangian equations need to
be made to assure the same magnitude of forces. The forces acting on the coarse grain
particle cluster, i.e., the drag force Fd,CG, gravity force Fg,CG and buoyancy force Fb,CG
are scaled with the the coarse grain factor fCG accordingly:

Fd,CG = f 3CGFd,orig (4.39)

Fg,CG = f 3CGFg,orig (4.40)

Fb,CG = f 3CGFb,orig. (4.41)

It is further assumed that the velocity of the coarse grained particle cluster is equal to
the average velocity of the smaller particles, as well as a uniform angular velocity between
the cluster and small particles, hence:

up,CG =
1

f 3CG

∑

∀p∈cell
up,orig (4.42)
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and

ωp,CG =
1

f 3CG

∑

∀p∈cell
ωp,orig. (4.43)

Accordingly, regarding particle-particle collisions the cluster of small particles is consid-
ered as colliding in an identical way with the requirement of the kinetic energy of the
coarse grain particle lump being equal to the sum of the individual smaller particles:

1
2
mp,CGu2p,CG +

1
2
Ip,CGω

2
p,CG = f 3CG

(
1
2
mp,origu

2
p,orig +

1
2
Ip,origω2p,orig

)
. (4.44)

The contact forces, both in normal and tangential direction, for the cluster of coarse
grained particles, Fc

n,CG and Fc
t,CG, respectively, are f 3CG-times the contact forces of an

original particle, Fc
n and Fc

t :

Fc
n,CG = f 3CGFc

n (4.45)

and

Fc
t,CG = f 3CGFc

t . (4.46)

The moment of inertia of the coarse grained cluster of particles Ip,CG can be calculated
with the assumption of equal velocity between the coarse grained particle cluster and
the individual particles (cf. Equation (4.42)), as well as the following dependencies of
the particle dimensions (cf. Equation (4.38)) and masses of the coarse grained and small
particles on the coarse grain factor fCG:

mp,CG = f 3CGmp,orig. (4.47)

Hence, the following relation for the moment of inertia is valid:

Ip,CG = f 5CGIp,orig. (4.48)

Furthermore, the torque of the coarse grained particle cluster Tp,CG can be expressed
with:

Tp,CG = f 4CGTp,orig. (4.49)

Typically, CFD-DEM simulations are applied for lab- to small scale applications and not
for industrially relevant reactor sizes due to the high amount of particles. The simulation
of industrially relevant scales was formerly limited to the TFM approach, but using a
Lagrangian frame provides more detailed results than the Euler-Euler method [235, 236].
The number of particles with the CG method can be lowered and therefore the simulation
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time drastically reduced using CFD-DEM. Hence, the Euler-Lagrange approach with the
CG method can be extended to a wider range of particle numbers, i.e., geometry scales,
while still including its advantages, e.g., simulating individual particle properties and
cohesion effects.A limitation for the CG method is the limited scaling of the parcels as
the flow structures might not be depicted sufficiently anymore. Radl and Sundaresan
[237] proposed a filtering approach to encounter this limitation. Yet another disadvantage
when using the CG method is the resulting larger particle sizes, as the particle diameter
limits the choice of the numerical grid size. For this special case the implementation of a
multi-grid method can be useful to overcome this restriction.

4.2.2 Numerical solution

A parameter to quantify the stability of transient simulations was proposed by Courant
et al. [238]:

Co = |uf|
∆t

∆xcell
. (4.50)

The Courant number Co describes how many cells a certain variable moves in a predefined
time-step∆t . Depending on the velocity-pressure coupling algorithm the stability criterion
is Co ≤ 1 [52] for the PISO-algorithm (Pressure-Implicit with Splitting of Operators)
[239]. Table 4.1 summarizes the different discretization schemes used in the following
simulations.

Table 4.1: Numerical discretization employed in the simulations.

Type Scheme

Pressure-velocity coupling PISO [239]
Time first-order implicit
Gradient non-limited Gauss linear
Momentum QUICK

4.2.3 Multi-level grid method

A dual-grid method, i.e., using two separate numerical grids for CFD-DEM simulations
was first proposed by Alobaid et al. [227]. Here, the flow of the fluid phase and the particles
is calculated on separate numerical grids, distinguished by their resolution. Important
parameters, e.g., the void fraction ε or the momentum exchange Mf,s, are mapped between
the different sized grids (cf. Figure 4.1), usually with a volume conservative mapping
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method [228]. The numerical grid for the fluid phase has usually more cells than the one
used for the particles and therefore the resolution is higher. The decrease in simulation

solid gridfluid grid compute grid

mapping
properties

mapping
properties

mapping properties

Figure 4.1: Overview of two and three (gray) different grid sizes for CFD-DEM
multi-grid simulations with two exemplary particles indicated.

speed due to more cells and interpolation errors due to the mapping procedure are the
biggest disadvantages of the dual-grid method. The main advantage of a dual-grid method
for CFD-DEM simulations is to overcome the restriction of minimum cell size due to the
requirement of the cells being larger than the particles [228]. The traditional CFD-DEM,
i.e., a single-grid method, can result in difficulties regarding this requirement, as either
the cells are larger than the particles which can result in a poor resolution of the fluid flow
or the cell size is too small for the simulations to result in physically reasonable values or
can have a negative impact on accuracy of the momentum exchange calculation between
the fluid phase and particles. This issue is illustrated in Figure 4.2, as it depicts three
uniform sized spherical particles in a cubic cell with a particle diameter to cell length
of
(
dp/lcell = 0.75

)
. When using the commonly used and fast Particle Centroid Method

(PCM) for void fraction determination [35, 240], a total of four different values for the void
fraction ε can be obtained considering up to three particles are residing in the respected
cell. In the case of particles overlapping the boundary of the cell and therefore the cell
having enough void space to allocate another particle, the volume fraction of the fluid
phase ε can result in a negative value and have a negative impact in numerical stability
and an unphysical behavior. This is usually prevented by introducing a maximum packing
limit serving as a threshold, e.g., for randomly packed spheres εmax = 0.4 [241]. When
applying a maximum packing limit, the volume fraction of the fluid phase ε can have the
following values:
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• ε = 1 if no particles are present,

• ε = 0.78 if one particle is present,

• ε = 0.56 if two particles are present and

• ε = εmax if three or more particles are present.

Figure 4.2: Simplified representation of a cubic cell with three uniform-sized
particles

(
dp/lcell = 0.75

)
. The values of the fluid volume fraction ε with this

dp/lcell-ratio are 1, 0.78, 0.56 and 0.34 for none, one, two and three particles using
PCM.

The momentum exchange coefficient β in Equation (4.7) is highly dependent on the
void fraction [242]. With the simplified assumption that the main contribution to the
momentum exchange term is the drag force FD, it is obvious that the resolution of the
momentum exchange calculated with conventional drag correlations, e.g., Gidaspow [15,
78], Hill-Koch-Ladd (HKL) [179, 180] or the extended HKL model [183], increases if the
particle diameter to cell length ratio dp/lcell decreases, i.e., larger cells or smaller particles.
Figure 4.3 depicts this relationship for the Gidaspow and extended HKL drag model for
different particle Reynolds numbers, if four different values for the void fraction ε can be
achieved due to three possible particles in a numerical cell.

As can be seen, the gradient of the momentum exchange coefficient β becomes greater with
lower void fraction ε, e.g., more particles. At these regions a greater resolution of the void
fraction becomes more important for a correct momentum exchange calculation between
the fluid phase and the particles. Fluidized bed reactors usually operate at a range of
ε = 0.4 to 0.8 [5, 13] and therefore this issue can be crucial for the simulation accuracy.
Furthermore, the gradient of the momentum exchange coefficient increases with higher
particle Reynolds numbers Rep. High particle Reynolds numbers occur for example at high
relative velocities between the fluid phase and particle

∣∣uf – up
∣∣ (cf. Equation (4.10)).

Those high relative velocities often occur in turbulent fluidized beds and in spouted
fluidized beds. In conventional CFD-DEM simulations the volume fraction of the fluid
phase ε is calculated on a single numerical grid and therefore the cell size is limited by
the particle size. The particle size dependency can be overcome with the introduction of
an additional numerical grid to decouple the fluid flow calculations and the Lagrangian
particle tracking.
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(a) Gidaspow drag model.
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(b) Extended HKL drag model with the
modified particle Reynolds number
Re∗p = 0.5Rep.

Figure 4.3: Resulting momentum exchange coefficients β depending on the void
fraction ε and particle Reynolds numbers. Indicated are the maximum packing limit
and the four theoretical void fraction values if dp/lcell = 0.75, i.e., a total of
maximum three particles can reside in the cell.

In this work, three different sizes for the numerical grids are used: a fluid, a solid and a
compute grid. The fluid grid has the highest resolution, where the momentum balance and
the continuity equation for the fluid phase are solved. The solid grid consists of the coarsest
cells. This numerical grid is used to calculate the volume fractions of the solid phase α.
Important parameters to validate and evaluate the simulations are for example the volume
fraction and the velocity of the solid phase, αs and us. Using a dual-grid simulation, the
quality of the resolution for those parameters would be poor, as the numerical grid is
coarse. Therefore, another grid, the compute grid, is introduced. The resolution of this
grid is finer compared to the solid grid, but still satisfies the condition of dp/lcell ≤ 1 to
avoid unphysical values for the volume fraction.

The solving procedure for the three-level grid method is subdivided to the three different
numerical grids according to Figure 4.4. The Lagrangian equations for the calculation of
the particle velocities and movements are solved on the solid grid. The particles with the
new positions and velocities are then mapped onto the compute grid. On this grid the
Lagrangian properties are transformed to Eulerian field values. The resulting Eulerian
fields, i.e., the volume fraction and the velocity of the solid phase, α and us, are then
mapped to the fluid grid along with the force between the fluid phase and particles from
the solid grid Ff,p. The momentum exchange coefficient beta between the fluid and solid
phase used for the determination of Ff,p is not calculated with the Eulerian field values
from the finer compute grid, as the resolution for the solid phase fraction from the compute
grid would be too low. Therefore, with the mapped solid phase fraction α and the solid
phase velocity us from the compute grid, as well as the coupling forces between the fluid
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phase and particles Ff,p from the solid grid, the momentum balance of the fluid phase can
then be solved with those mapped parameters. The resulting new velocity and pressure
field of the fluid phase is then mapped to the solid grid and the iteration loop starts again
until the end time of the simulation is reached. The solving procedure for the dual-grid
method is analogous, with the difference that the Eulerian field values for the solid phase
fraction α and the solid phase velocity us are calculated on the solid grid instead of the
compute grid.
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Start

Calculate Lagrangian equations

Parameters: Ff,p, up and
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Figure 4.4: Solving procedure for the three-grid CFD-DEM simulation.

The simulations for the single-grid method were performed with the solver DPMFoam
from the open-source package OpenFOAM® v4.x [206]. A detailed overview of the used
solver DPMFoam can be found elsewhere [243]. The dual-grid method and the three-level
grid approach were also implemented in OpenFOAM®.

4.3 Results and Discussion

The extended HKL model [183] was used in the following simulations to calculate the drag
coefficient Cd as it was found to be most accurate in preliminary studies. In the following,
the newly developed solver is validated and evaluated with three different experimental
gas-solid fluidized beds:
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• a jet-in fluidized bed by Buijtenen et al. [244],

• a fluidized bed by Penn et al. [245] and

• an incipient fluidized bed with a single jet by Boyce et al. [246].

At last, the simulation time for each of the different approaches, i.e., single-grid, dual-grid
and three-level grid approach will be presented and discussed.

4.3.1 Single-, dual- and three-level grid approach

For each of the three different validation cases, the commonly CFD-DEM approach with
a single grid, a dual-grid and the newly developed three-level grid method is used for com-
parison in terms of simulation accuracy and speed. The smallest cell size of the different
numerical grids used for Lagrangian calculations is chosen to be 1.6-times the particle
diameter [226]. Although Peng et al. [226] proposed this critical cell size ratio specifically
for CFD-DEM simulations using an analytical approach for the void fraction calculation,
here, this threshold is used with the PCM, as we are investigating a multi-level grid
approach. Regarding the dual- and three-level grid method, the cell-to-particle diameter
ratios for the fluid, solid and compute grid are varied to get an optimal ratio for each
grid.

In the following, the names of the simulations based on the different grid sizes used, are
abbreviated according to the ratios of the numerical grid size to the recommendation by
Peng et al. [226]. This means, the name for a simulation has three values for the fluid,
compute and solid grid, i.e., fa -cb-sc , while f, c and s stand for fluid, compute and solid
grid and a, b and c for a refinement ratio, if the value is lower than one, or for a coarsening,
if the value is greater than one. For example, the single-grid approach is abbreviated with
f1-c1-s1 and a dual-grid approach with the coarsening of the solid grid with a factor of
1.5 to its original size is represented by f1-c1-s1.5. The index 1 is in accordance to the
recommendations of Peng et al. [226] using CFD-DEM simulations with PCM, i.e., the
cell size is 3.82 times the particle diameter. The maximum refinement of the compute
grid (index max ) stands for the lower limit of the cell size, i.e., 1.63 times the particle
diameter. Although, Peng et al. [226] explicitly stated the lower limit for the cell size is
only suitable when using an analytical approach for the volume fraction determination,
in our simulations, it is still used as the compute grid is not used to determine the crucial
fluid-particle force Ff,p.
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Figure 4.5: Simulation geometries for the pseudo 2D jet-in fluidized bed from van
Buijtenen et al. [244] (a), the 3D cylindrical fluidized bed from Penn et al. [245] (b)
and the 3D cylindrical incipient fluidized bed with a single jet from Boyce et al.
[246] (c).

4.3.1.0.1 Jet-in fluidized bed Buijtenen et al. [244] measured the particle velocity of
a pseudo 2D jet-in fluidized bed with positron emission particle tracking (PEPT) and
particle image velocimetry (PIV). Figure 4.5a shows the pseudo 2D geometry used for the
simulation. The height of the geometry in the simulation was reduced from 2500mm used
in the experiments to a total height of 600mm. In preliminary studies it was found that
the particle fountain never reached a height of 600mm and therefore the total height of
the geometry in the following simulations was reduced accordingly to decrease simulation
time. Table 4.2 gives a brief overview of the simulation parameters used in the simulations.
Further parameters and properties, e.g., normal or tangential coefficients of restitution,
en and et, respectively, were chosen according to the publication of Buijtenen et al. [244].
An overview of the number of cells in each direction and total number of cells for each
individual simulation case, i.e., single-grid, dual-grid and three-level grid approaches, can
be found in Table S1 in the Supplementary Material.
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Table 4.2: Simulation parameters and properties used for the jet-in fluidized bed
by Buijtenen et al. [244].

Property Value

Particle diameter dp / mm 3
Number of particles np 12 000, 14 000 and 17 000

Particle density ρp / kg/m3 2505

Fluid phase ambient conditions
Background velocity ubg / m/s 4.15
Single jet velocity ujet / m/s 37.25

Numerical grid for single-grid approach
Number of cells in x -direction nx 30
Number of cells in y-direction ny 120
Number of cells in z -direction nz 2

The principle of ergodicity is used to obtain parameters in a dynamic system, i.e., a
fluidized bed, which are comparable over time in a quasi steady-state. Therefore, the
axial particle velocity of the particulate phase us,y is time-averaged over a time-frame of
20 s to obtain the time-averaged axial velocity of the particulate phase ūs,y .

Figure 4.6 shows the experimental obtained time-averaged axial velocity of the solid phase
ūs,y at an axial height of y = 100mm and the corresponding simulation results from the
different single-, dual-grid and three-level grid approaches for a total of 12 000 initially
settled particles.
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Figure 4.6: Comparison of the experimental axial particle velocity ūs,y at a lateral
height of y = 100mm with simulation results of different refinements of grid sizes
using a dual-grid approach (a), three-level grid approach (b) and a single-grid
(f1-c1-s1) including the best results of the dual- and three-level grid for a total of
12 000 particles.

The resulting differences when varying the refinement and coarsening levels of the du-
al-grid approach are presented in Figure 4.6a. A solely refinement of the compute grid
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while not modifying the fluid and compute grid (f1-cmax-s1) shows an improvement of
the resulting maximum axial particle velocity compared to the single grid approach. With
the refinement of the compute grid the accuracy of the volume fraction of the solid phase
and the resolution of the particle velocity is increased, thus leading to a higher overall
accuracy. It can be also noted, that a refinement of the fluid grid and the coarsening of
the solid grid lead to an improvement of the depiction for the solid phase flow behavior
in the near-wall region. However, a coarsening of the solid grid is more beneficial towards
an increase in accuracy than the refinement of the fluid grid. Concluding, the simulation
results with the introduction of a dual-grid approach show a better agreement than the
single-grid approach.

Figure 4.6b shows the effect of modifications to the different numerical grids for the
three-level grid approach. The best agreement towards the experimental data is achieved
when using a refinement of the fluid grid and a coarsening of the solid grid, i.e., f0.5-c1-s1.5,
although all simulations with the three-level grid approach show a very good agreement
in terms of accuracy.

Figure 4.6c compares the single-grid approach (f1-c1-s1) and the results from the du-
al-grid and three-level grid approach with the best cell-size refinement and coarsening
configuration, f1-c1-s1.5 and f0.5-c1-s1.5, respectively. In the core region of the geometry,
where the jet-stream inlet is located, the highest particle velocities are observable in
both experimental data and simulation results. Here, the simulation with the single-grid
approach overpredicts the resulting axial particle velocity. The dual-grid and three-level
approach show a better agreement for the maximum axial particle velocity than the
single-grid approach in regards to the experimental data. The results from the three-level
grid approach depict the experimental values best compared to the other approaches.
Furthermore, in the near-wall region the results from the dual-grid and three-level grid
approach are almost identical to the experimental data, while the single-grid approach
has a higher agreement to the experimental values between the core area and the wall
region. The overprediction of the axial velocity in the annulus region can be explained
by the higher wall-effect in the pseudo 2D simulation compared to the 3D experiment.
Still, the use of a multi-level grid approach shows a significant improvement in respect to
the prediction of the particulate flow behavior than the simulation performed on a single
grid.

The results for the various multi-grid approaches with different refinement and coarsening
levels, as well as the single-grid method compared to the experimental findings from
Buijtenen et al. [244] for a total of 14 000 and 17 000 initial particles are depicted in
Figure 4.7 and Figure 4.8.
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grid simulations.
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Figure 4.7: Comparison of the experimental axial particle velocity ūs,y at a lateral
height of y = 100mm with simulation results of different refinements of grid sizes
using a dual-grid approach (a), three-level grid approach (b) and a single-grid
(f1-c1-s1) including the best results of the dual- and three-level grid for a total of
14 000 particles.
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grid simulations.
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Figure 4.8: Comparison of the experimental axial particle velocity ūs,y at a lateral
height of y = 100mm with simulation results of different refinements of grid sizes
using a dual-grid approach (a), three-level grid approach (b) and a single-grid
(f1-c1-s1) including the best results of the dual- and three-level grid for a total of
17 000 particles.
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The same observations analogies to the simulation with 12 000 particles can be made for
the simulations with 14 000 and 17 000 particles:

• the single-grid approach overpredicts the axial particle velocity in the core of the
fluidized bed,

• a dual-grid method can depict the experimental values better than the single-grid
method and

• the best agreement between the experimental data and the simulation results is
achieved with the three-level grid approach.

The influence of the different refinement levels for the compute grid, i.e., c1 and cmax,
where the volume fraction of the solid phase is calculated and mapped to the fluid grid
and the velocity of the solid phase determined, is depicted in Figure 4.9 for a total of
12 000, 14 000 and 17 000 particles.
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Figure 4.9: Comparison of the experimental axial particle velocity ūs,y at a lateral
height of y = 100mm with simulation results with different compute grid sizes for a
total of 12 000, 14 000 and 17 000 particles.

The best agreement between the experimental data and the simulation results can be
achieved with the refinement levels of f0.5-c1-s1.5. A refinement level of f0.5-cmax-s1.5,
i.e., a cell to particle diameter ratio of 1.6 for the compute grid cells, show a slightly
worse accuracy. For most cases the maximum refinement of the compute grid (cmax)
results in a decrease of the maximum axial particle velocity in the core area. Comparing
the single-grid (f1-c1-s1) and the dual-grid approach with a maximum compute grid
refinement (f1-cmax-s1), it is seen, that for all cases the refinement increases the accuracy
and the experimental data is better depicted. However, an increase in cell-resolution for
the compute grid does not always lead to a better accuracy in this particular case.
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4.3.1.0.2 Fluidized bed with CG The fluidization behavior and bubble dynamics in a
3D cylindrical fluidized bed was investigated by Penn et al. [245] using magnetic resonance
imaging (MRI). Two different sized particles of dp = 1 and 3mm with three different initial
bed heights of H0 = 100, 150 and 200mm were fluidized with up to five different inlet
velocities having a velocity to minimum fluidization velocity ratio of uf/umf = 1.2, 1.5, 2,
3 and 4. The fluid used was air at ambient conditions. Here, for validation purposes, we
are comparing the results of our simulations with the fluidized particles with a diameter
of 1mm. With the greatest settled bed height of 200mm resulting in a total number of
particles of close to seven million, it is obvious that a common CFD-DEM simulation
would not be feasible. Therefore, the CG approach with a factor of four will be applied,
i.e., 64 particles are considered as one parcel. Table 4.3 shows the simulation parameters
used in the following. Due to the CG approach, the maximum number of tracked parcels
can be reduced to approximately 100 000, which is in a reasonable range for a CFD-DEM
simulation.

Table 4.3: Simulation parameters and properties used for the fluidized bed
experiment of Penn et al. [245].

Property Value

Particle diameter dp,CG / mm 4
CG factor 4

Number of particles np,CG 54 150, 81 225 and 108 300
Particle density ρp / kg/m3 1040
Settled bed height H0 / mm 100, 150 and 200

Fluid phase ambient conditions
Inlet velocity ratios uf/umf / m/s 1.2, 1.5, 2, 3 and 4

Velocity at mf umf / m/s 0.25

Additional parameters and properties, e.g., the coefficient of restitution e or coefficient
of friction µ were adapted from Penn et al. [245]. Before presenting and discussing the
simulation results of the different multi-grid approaches, it should be noted, that the
overall geometry for the compute grid was slightly extended, if the compute and solid
grid differed in cell size. At some refinement levels, the bounding domain of the two grids
will not overlap (cf. Figure S1), resulting in a potential incorrect mapping of particles
between the solid and compute grid. Further details and an analysis on the low impact
towards the simulations results, when increasing the geometry of the compute grid, is
given in Figure S2 in the Supplementary Material. The same geometry changes apply for
the validation case based on the experiment of Boyce et al. [246] regarding the single jet
injection in an incipient fluidized bed.
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A comparison of the simulation results using a single-grid approach (f1-c1-s1) with the
experimental data for three different initial settled bed heights is depicted in Figure 4.10.
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Figure 4.10: Simulation results of the normalized bed height H /H0 with different
normalized inlet velocities uf/umf for a single-grid approach (dashed lines) compared
to the experimental data of Penn et al. [245] (marks and lines).

The simulations show an overall good agreement with the experimentally obtained nor-
malized bed heights. The deviations between the normalized bed heights for an initial bed
height of H0 = 150mm at higher inlet velocities are in comparison with the experimental
data higher than with the other initial settled bed heights of H0 = 100 and 200mm. A
qualitative comparison of the experimental data with the single-grid approach and various
multi-grid approaches is depicted in Figure 4.11.
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Figure 4.11: Comparison of experimental values of Penn et al. [245] with
simulation results from the single-grid (f1-c1-s1), dual-grid and three-level grid
approach with different refinement levels.

All single- and multi-level grid approaches slightly underpredict the resulting fluidized
bed heights compared to the experimental finding obtained by Penn et al. [245] for lower
inlet velocities, i.e., uf/umf ≤ 2, and initial bed heights of 100 and 150mm. At higher inlet
velocities, the single- and dual-grid approach overpredict the normalized bed height in the
fluidization state, while the newly introduced three-level grid approach (f0.5-c1-s1.5 and
f0.5-cmax-s1.5) shows a very good agreement with the experimental data. Furthermore, for
an initial settled bed height of 200mm the best results are obtained using the three-level
grid approach. The use of a dual-grid approach results in a reasonable increase in accuracy
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for the fluidization behavior for all simulations, but with the introduction of a third
numerical grid the best agreement towards the experimental data is achieved.

The deviations of the simulation results for various single-grid, dual-grid and three-level
grid approaches from the experimental obtained normalized bed height H /H0 at different
initial settled bed heights and inlet velocities are listed in Table 4.4.

Table 4.4: Deviation of simulation from experimental data regarding the ratio of
expanded bed height to initial height H /H0 for the single-grid (S), dual-grid (D)
and three-level grid approach (T).

Type of grid T T D S D

H /H0 Deviation simulation from exp. data

|uf/umf| Exp. data
f 0.5 0.5 0.5 1 1
c max 1 1 1 1
s 1.5 1.5 1 1 1.5

H0 = 100mm

1.2 1.21 2.1 % 2.1 % 2.4 % 4.5 % 2.3 %
1.5 1.48 13.9 % 13.9 % 15.5 % 15.6 % 13.8 %
2.0 1.61 4.2 % 4.0 % 3.8 % 6.8 % 4.7 %
3.0 1.88 1.2 % 1.1 % 2.5 % 10.6 % 1.9 %
4.0 2.07 0.7 % 2.0 % 3.1 % 4.1 % 2.6 %

H0 = 150mm

1.2 1.19 4.1 % 4.8 % 5.1 % 9.4 % 4.4 %
1.5 1.33 7.7 % 7.3 % 7.2 % 8.0 % 7.4 %
2.0 1.51 0.1 % 2.9 % 3.1 % 8.1 % 3.3 %
3.0 1.64 6.4 % 8.4 % 14.7 % 14.1 % 8.1 %

H0 = 200mm
1.2 1.15 0.1 % 0.5 % 4.5 % 6.4 % 1.8 %
1.5 1.27 1.7 % 2.0 % 7.5 % 16.2 % 2.9 %
2.0 1.34 8.5 % 10.1 % 11.0 % 11.7 % 10.1 %

The use of a single-grid approach (f1-c1-s1) shows the worst agreement towards the
experimental data compared to a dual-grid and three-level grid method. Refining the
fluid grid or coarsening the solid grid increases the accuracy of the simulation results,
but in most cases the coarsening of the solid grid has a more beneficial effect than the
refinement of the fluid grid. The simultaneous refinement of the fluid grid and coarsening of
the fluid grid with maintaining the compute grid as is, i.e., f0.5-c1-s1.5 and f0.5-cmax-s1.5,
show a synergistic effect in improving further the accuracy and therefore lowering the
deviation of the simulation results from the experimental data. All these observations are
in accordance to the findings of the analysis of the jet-in fluidized bed benchmark case.
Furthermore, the refinement of the compute grid up to the recommendations of Peng
et al. [226] (f0.5-cmax-s1.5) has in almost all investigated cases a slightly better agreement
in terms of accuracy towards the experimental data compared to the non refined compute
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4 Implementation of a three-level grid method for CFD-DEM simulations

grid (f0.5-c1-s1.5). However, the highest improvement of the accuracy can be contributed
to the coarsening of the solid grid.

4.3.1.0.3 Single jet injection in an incipient fluidized bed with CG The experimental
set-up as used by Penn et al. [245] was used by Boyce et al. [246] and extended with a
single jet injection hole. While the particles were fluidized, a single jet of air at ambient
conditions was injected (cf. Figure 4.5c) and the bubble dimensions and dynamics were
recorded. Table 4.5 gives an overview of the used simulation parameters. Analogous to
the simulations validated with the experimental set-up by Penn et al. [245] a CG factor
of fCG = 4 is used to reduce the computational costs. The number of cells for each of the
following simulations is listed in Table S2.

Table 4.5: Simulation parameters and properties used for the single jet injection in
an incipient fluidized bed by Boyce et al. [246].

Property Value

Particle diameter dp,CG / mm 4
CG factor 4

Number of particles np,CG 108 300
Particle density ρp / kg/m3 1040
Settled bed height H0 / mm 200

Fluid phase ambient conditions
Background velocity ubg / m/s 0.25
Single jet velocity ujet / m/s 52 and 85

Figures 4.12 and 4.13 show snapshots of the fountain in the fluidized of the experimental
set-up and the simulations with different multi-grid approaches and refinements of each
grid for jet velocities ujet = 52 and 85m/s.

(a) Exp. (b) f1-c1-s1 (c) f0.5-c1-s1 (d) f1-c1-s1.5 (e)

f0.5-c1-s1.5
(f)

f1-cmax-s1
(g)

f0.5-cmax-s1
(h)

f1-cmax-s1.5
(i) f0.5-cmax-
s1.5

Figure 4.12: Instantaneous snapshots of single jet and bubble eruption in an
incipiently fluidized bed with a jet velocity of ujet = 52m/s for the experiment by
Boyce et al. [246] (a). The simulations are performed various multi-grid approaches
(b) to (i).

In the experiments for both jet velocities, a narrow fountain is generated with bubbles
forming and bursting when approaching the freeboard. An increase in the jet velocity
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results into an increase in bubble size in the fountain area. The simulations show quali-
tatively similar fountain shapes in the mid region. Furthermore, bubbles are also formed
and begin to burst near the freeboard in accordance to the experimental observations by
Boyce et al. [246]. The experimental size of the bubble just after the breakoff from the jet
and deviation from the simulation results are presented in Table 4.6.

(a) Exp. (b) f1-c1-s1 (c) f0.5-c1-s1 (d) f1-c1-s1.5 (e)

f0.5-c1-s1.5
(f)

f1-cmax-s1
(g)

f0.5-cmax-s1
(h)

f1-cmax-s1.5
(i) f0.5-cmax-
s1.5

Figure 4.13: Instantaneous snapshots of single jet and bubble eruption in an
incipiently fluidized bed with a jet velocity of ujet = 85m/s for the experiment by
Boyce et al. [246] (a). The simulations are performed various multi-grid approaches
(b) to (i).

At first, it is seen that the coarse grain approach shows a good agreement between the
experimental and simulation results. The used CG factor of fCG = 4 can be used for
this specific setup to increase the simulation speed whilst still maintaining a reasonable
accuracy. In accordance to the visual observations, the bubble size in the experiments
increased with higher jet velocities ujet. The single grid approach (f1-c1-s1) shows the
highest deviation from the experimental results of 28.9 % and 24.3 % for jet-velocities
of 52 and 85m/s, respectively. A refinement of the compute-grid (f1-cmax-s1) results in a
slight decrease in the deviation towards the experimental bubble size. Better results can be
achieved with refining the fluid grid and coarsening the solid grid, i.e., f0.5 and s1.5. The
best agreement between experiment and simulation is obtained with a simultaneously
refinement and coarsening of the fluid and the solid grid, respectively, resulting in a
deviation of less than 5 %. A change of the cell size of the compute grid for those
particular cases has a negligible effect on the accuracy. A comparison of the deviations
for the multi-grid approach while varying the grid sizes of the compute grid, i.e., fx -c1-sy
and fx -cmax-sy , shows an overall improvement of the simulation results when applying a
finer compute grid (cmax) with the exception of the multi-grid approaches of f0.5-s1.5 and
f1-s1.5 at a jet velocity of ujet = 52m/s. A comparison between the multi-grid approaches,
if either the fluid grid is refined (f0.5) or the solid grid is coarsened (s1.5) reveals that
better results are obtained when using a coarsened solid grid instead of a finer fluid grid
in accordance to the findings of Alobaid et al. [227]. This effect is mostly attributed to
the better accuracy in determining and calculating the momentum exchange coefficient β
for the fluid-solid coupling in the momentum balance.
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Table 4.6: Deviation of simulation from experimental data regarding the bubble
volume Vbub for the single-grid (S), dual-grid (D) and three-level grid approach (T).

Type of grid T T D T D T S D

Exp. data Deviation simulation from exp. data

∣∣ujet
∣∣ / m/s Vbub /

10−5m3

f 0.5 0.5 0.5 0.5 1 1 1 1
c 1 max 1 max 1 max 1 max
s 1.5 1.5 1 1 1.5 1.5 1 1

52 2.56 3.4 % 4.1 % 19.6 % 13.3 % 8.6 % 10.6 % 37.5 % 28.9 %
85 3.79 0.3 % 1.4 % 32.9 % 11.2 % 6.1 % 4.9 % 25.3 % 24.3 %
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4.3 Results and Discussion

4.3.2 Simulation speed

Using an additional grid for numerical simulations always involves an increase in sim-
ulation time and resources, as important parameters must be mapped from one mesh
to another. To quantify the additional simulation time needed with the implementation
of a dual-grid and three-level grid method, several cases are set-up and investigated in
terms of execution time used by the mapping process (compute grid), the calculation of
the Lagrangian equations (solid grid) and the Eulerian equations (fluid grid). Figure 4.14
shows the simulation times needed for the jet-in fluidized bed case by Buijtenen et al. [244]
using five different grid-approaches, i.e., single-, dual-grid and three-level grid approach,
for a total number of 12 000 and 17 000 particles.
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Figure 4.14: Resulting fractions of simulation times for the fluid, compute and
solid grid to the total simulation time ti/

∑
ti based on the jet-in fluidized bed with

12 000 and 17 000 particles with different single-, dual-grid and three-level grid
approaches.

It is obvious, that the simulation time increases with a higher number of particles due
to the greater workload of the Lagrangian calculations. The execution time for the
mapping procedures (compute) is zero for the single-grid f1-c1-s1 and for the dual-grid
and three-level grid approaches the time needed is negligible compared to the Eulerian
(fluid) and Lagrangian (solid) calculations. The amount of the mapping time depends
on the number of particles in the system and the cells of the fluid grid. Therefore, with
an increase in total particles and a refinement of the fluid grid (cf. f0.5-c1-s1 for 17 000
particles) the time needed to transfer properties is greatest, but still marginal compared
to the simulation times for the Eulerian and Lagrangian calculations. The fractions of the
time needed to map all necessary properties to the total simulation time is between 0.5
and 1.7%. The refinement of the fluid grid from 1 to 0.5 results in a massive increase of
the simulation time due to the increased workload of the Eulerian calculations caused by
the higher number of cells of said fluid grid. In these simulations the time-step was set
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4 Implementation of a three-level grid method for CFD-DEM simulations

to a constant value, as in this specific cases the Co number did not exceed the numerical
stability criterion being a value of one. But a greater refinement of the numerical grid for
the calculation of the fluid phase can result in an additional large decrease in simulation
speed due to not only the increasing number of computational cells, but a potentially
needed decreased time-step. The smaller time-step originates from the dependency of the
Co number from the cell size. In order to assure a constant Co number with smaller
cells, the time step has to decrease as well (cf. Equation (4.50)) and the simulation speed
therefore slows down. Especially for multiphase flows with high velocities the time-step
needs to be adjusted to assure the numerical stability of Co ≤ 1.

4.4 Conclusion

A conventional CFD-DEM simulation for gas-solid flow using a single-grid for the Eu-
lerian and the Lagrangian equations was compared to a dual-grid method and a newly
proposed three-level approach with the introduction of another numerical grid. Different
experimental gas-solid flows, a 2D jet-in fluidized bed, a 3D cylindrical fluidized bed and a
3D cylindrical fluidized bed with a single jet, were used to validate the simulation results.
Several conclusions can be made:

• the use of a multi-grid approach compared to a single-grid method results in an
increase in accuracy,

• in most cases the three-level grid approach depicts the experimental data better
than the dual-grid approach,

• when using a multi-grid approach, a coarsening of the Lagrangian grid results in a
greater improvement in accuracy than the refinement of the Eulerian grid,

• the increase in simulation time due to the additional mapping subroutines in a
multi-grid approach is negligible,

• with the use of the coarse grain method, the simulation time can be drastically
reduced while still maintaining a suitable cell size for CFD-DEM simulations and

• the limiting factor of the multi-grid approach regarding simulation time is the degree
of refinement of the Eulerian grid.
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4.4 Conclusion

The set-up of a CFD-DEM simulation using a multi-grid approach requires a longer time,
especially for the determination of suitable numerical grids, as two or three numerical
grids have to be chosen. The necessary time needed to map the properties between the
different grids is dependent on the number of particles and the number of cells of the
fluid grid. An inadequate choice of the Eulerian grid can result in an enormous increase
in simulation time with only a slight improvement of the accuracy. Still, the use of a
multi-grid approaches is a promising tool to further increase the accuracy for dense
solid flow simulations when larger particles are present. The use of more sophisticated
methods for the transformation of Lagrangian values to Eulerian field values, e.g., porous
cube model or diffusion-based model, with the use of the multi-level grid approach can
be further investigated in terms of improvement in accuracy and change in simulation
speed.

Further applications, e.g., the consideration of temperature changes or other parameters,
can be made and if needed, calculated on different numerical grids. Therefore, the multi-
grid approach is not limited to a two- or a three-level grid approach. The extension of this
approach to polydisperse or cohesive particles is also possible. The simulation of bidisperse
particles has already been done by Farzaneh et al. [231]. Hence, the polydispersity with
a wide range of particle diameters shall be possible with the introduction of several grids
for predefined particle diameter ranges.
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Supplementary Material

Effect of geometry enlargement

The alteration of the number of numerical cells in a cylindrical geometry results for many
cases in a change in local extension of the numerical cells in radial direction. Figure S1
illustrates this issue, where the solid grid consists of a lesser number of numerical cells,
i.e., bigger cells than the compute grid. A magnified segment of the left side of the cylinder
top view for both grids shows that the compute grid has a slightly higher local extension
of the boundary in the numerical grid compared to the solid grid. When using a mapping
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algorithm involving the transfer of particle properties in a Lagrangian simulation, it is
possible that the position of the mapped particles of the source geometry cannot be
transferred to the target geometry as the spatial boundaries do not always coincide. To
overcome this issue, the geometry of the target (compute grid) was slightly extended. An
increase of 0.2% of the geometry in each spatial direction showed sufficient improvement
to resolve this issue.

close up

compute grid

solid grid

solid grid

compute grid

Figure S1: View on top of numerical grid for the 3D cylindrical geometry for the
solid and compute grid (right) and close up with indicated numerical cells (left).

Possible effects of the geometry enlargement for the compute grid were further studied
to quantify the error introduced by this necessary procedure. Therefore, two set-ups were
used. As a base case the 3D cylindrical fluidized bed by Penn et al. [245] with a CG factor
of four was taken and the numerical refinement or coarsening were specified in accordance
to the case of f1-c1-s1. The geometry of one grid was not enlarged (old mesh) and the
other one was enlarged by a factor of 0.2% in each spatial direction. Figure S2 depicts
the resulting time-averaged volume fractions of the solid phase ᾱs at different heights y
= 50, 75 and 100mm from the old mesh and the enlarged geometry (new mesh).

A symmetrical behavior is observable for all solid volume fractions and axial heights.
Only slight deviations are obvious between the old and the new mesh. Therefore, it can
be concluded that the enlargement of the compute grid by 0.2% in the radial direction
shows no significant impact on the fluid and solid phase flow. The enlargement with this
factor can be used to overcome the issue of possible falsely mapped particle positions from
the solid to the compute grid.
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ᾱ
s

/
-

y = 50 mm (old mesh)

y = 50 mm (new mesh)

y = 75 mm (old mesh)

y = 75 mm (new mesh)

y = 100 mm (old mesh)

y = 100 mm (new mesh)

Figure S2: Resulting time-averaged volume fractions of the solid phase ᾱs at
different heights y from the old numerical grid (old mesh) and the by 0.2% in radial
direction enlarged geometry (new mesh).

Overview of numerical cells used

The number of numerical cells in each spatial direction, i.e., nx , ny and nz for the number
of cells in x -, y- and z -direction, used for the different numerical grids in the simulation
are depicted in Table S1 for the jet-in fluidized bed by van Buijtenen et al. [244]. The
index number represents the index of the simulation name, e.g., the number of cells in
x -direction of the fluid grid in the simulation f0.5-cmax-s1.5 are 60, 36 and 20 for the fluid,
compute and solid grid, respectively.

Table S1: Overview of the numerical cells for each simulation used for the jet-in
fluidized bed by Buijtenen et al. [244].

Index number (mesh) nx ny nz
∑

0.5 60 240 4 57 600
1 30 120 2 7200
1.5 20 80 1 1600
max 36 120 2 8640

Table S2 shows the number of cells used for the 3D cylindrical fluidized bed from Penn
et al. [245] and the 3D cylindrical incipient fluidized bed with a single jet from Boyce
et al. [246]. As opposed to Table S1, here, the spatial direction for x and y correspond to
the inner cuboid according to Figure S1.
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Table S2: Overview of the numerical cells for each simulation used for the 3D
cylindrical fluidized bed from Penn et al. [245] and the 3D cylindrical incipient
fluidized bed with a single jet from Boyce et al. [246].

Index number (mesh) nx a nya nz b
∑c

0.5 18 18 67 79 596
1 9 9 33 9801
1.5 6 6 22 2904
max 14 14 54 37 800

a Number of cells referring to inner cuboid (cf. Figure S1).
b Number of cells in z -direction for whole geometry
c Total number of cells for whole geometry.
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5 CFD-DEM study of an AnFMBR for
fouling mitigation

Abstract

An anaerobic fluidized bed membrane bioreactor (AnFMBR) with granular activated carbon
(GAC) particles as a scouring material was numerically investigated with the use of a CFD-
DEM approach. After validation of the numerical solver, two different shapes of impediments,
i.e., linear decreasing of the gap and linear de-/increasing of the gap, with variable impediment
lengths were introduced to the geometry. The effects of built-in impediments, different fluid inlet
velocities and particle sizes on the hydrodynamics, resulting particle momentum and required
power input were evaluated and compared to the reactor geometry without an impediment. The
disadvantage of reactor geometry without an impediment, i.e., the non-uniform distribution of
particle momentum across the height, can be compensated with the use of built-in impediments
depending on the fluid inlet velocity, particle diameter and impediment lengths. Furthermore,
with the introduction of impediments the maximum achievable particle momentum can be
increased or the optimum of particle momentum in regards to the power input can be shifted
towards lower power inputs. The latter case is especially important for collisional- and scouring-
sensitive membranes. The most promising effect towards particle momentum in terms of uniform
distribution and magnitude was observed with small scouring particles (1.25 and 1.55mm) for
both impediments.
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5.1 Introduction

5.1 Introduction

The importance of wastewater treatment has risen in the past years, especially with the
use of anaerobic membrane bioreactor (MBR) technology. One of the most problematic
issues in membrane bioreactors and for a continuous operation is the occurring fouling
on the membrane [247] as the membrane flux decreases, i.e., lower throughput of filtrated
water, or the transmembrane pressure (TMP) increases [248]. The latter results in a
higher energy requirement for the filtration process. The reasons for the clogging of the
membrane are mostly due to hydrodynamic forces, while the thermodynamic forces are
attributed to the cause of the foulant adhesion onto the membrane [249]. Furthermore,
it was shown experimentally that the chemical potential difference between the permeate
molecules and the particulate layer is mainly responsible for the strength of the fouling
cake resistance [250] and this was later validated by Density Functional Theory (DFT)
simulations [251]. Among others, fouling control depending on the type of fouling consists
of chemical cleaning of the membrane, backwashing of the permeate and scouring by
gas sparging or a solid scouring material [252, 253]. The fouling mitigation through gas
sparging is caused due to shear force [254] and through solid scouring materials due to
mechanical force. The fouling control with the use of a scouring material is realized by
increasing the feed inlet velocity and generating a fluidized bed of the solid particles,
e.g., in an anaerobic fluidized bed membrane bioreactor (AnFMBR). This is a more
energy efficient way than gas sparging [255]. Since smaller particles acts as foulant and
contribute to pore clogging and foulant cake deposition [256], the scouring material has
to be at a bigger scale. Neoh et al. [257] concluded that an AnFMBR is an efficient
way for wastewater treatment with a low energy requirement. Scouring materials used in
literature were zeolites [42], polyethylene terephthalate (PET), powdered activated carbon
(PAC), granular activated carbon (GAC) and others [255]. Depending on the material,
the scouring agents can also have an additional positive effect on fouling mitigation due to
adsorption of organics, e.g., GAC. The addition of GAC particles helps reducing membrane
fouling and therefore long-term operability of an AnFMBR compared to chemical cleaning
[258]. Kim et al. [259] showed that with the use of fluidized GAC particles, fouling was
inhibited and the power consumption in a long term operation was lowered. Wang et al.
[44] presented the effect of fluidized GAC particles on fouling mitigation and the resulting
power consumption with a simple reactor geometry in an AnFMBR. Cahyadi et al. [46]
investigated the hydrodynamics of said AnFMBR using a Eulerian-Eulerian approach.
They found a direct impact on the particle momentum towards the fouling mitigation.
However, a high value of particle momentum can cause damages to sensitive membranes
due to scouring and abrasion of the particles [260]. The axial distribution of the particle
momentum in respect to the membrane height was not uniform according to Cahyadi
et al. [46]. A uniform distribution of the particle momentum is crucial for consistent
fouling mitigation by the means of mechanical scouring. Experiments for the evaluation
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of fouling mitigation with different reactor geometries were conducted, e.g. cylindrical [47],
rectangular shape [35] or cross-flow [261], or with various reactor set-ups, e.g., single and
staged AnFMBR [262]. More complex geometries for the alteration of the fluid dynamics
are not found in literature. The alteration of the fluid dynamics has a direct impact
on the particle movement in an AnFMBR and therefore on the fouling mitigation. The
influence of the geometry especially with built-in impediments can be significant towards
an economic and feasible wastewater treatment with an AnFMBR.

In the following the effect of an alteration of the reactor geometry towards the resulting
particle momentum is studied in detail. First, the numerical methods for the Eulerian-La-
grangian approach and the used closure models for the simulation of an AnFMBR are
stated. Different geometries with built-in impediments are presented and four different
particles sizes of GAC ranging from 1.25 to 2.05mm with different inlet velocities for
fluidization of the particle bed are investigated. The results of the simulation, i.e., resulting
particle momentum and required power input are presented leading to correlations for
the different geometries. The particle momentum is assessed at different heights of the
membrane as well as the total particle momentum acting on the whole membrane.

5.2 Methodology

5.2.1 Numerical Methods

The governing equation for a Eulerian-Lagrangian simulation are the continuity equation
and the momentum balance for the fluid phase according to a Eulerian approach (cf.
Equations (5.1) and (5.2)) and the equations for the lagrangian particle tracking (LPT).
This approach is often called CFD-DEM (computational fluid dynamics coupled with
discrete element method).

The Eulerian approach describes cell-averaged equations for the fluid phase:

∂ε

∂t
+∇ · (ε uf) = 0 (5.1)

∂ (ε ρf uf)
∂t

+∇ · (ε ρf uf uf) = –ε∇p + ε ρf g +∇ ·
(
ε τ f
)
+ Mf,s. (5.2)
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The volume fraction of the fluid phase for Euler-Lagrange simulations ε is calculated with
the total volume of particles in a specified cell and the volume of the cell itself according
to Equation (5.3):

ε = 1 –
1

Vcell

∑

∀p∈cell
Vp. (5.3)

The viscous stress tensor is defined by Enwald et al. [53] as

τ f = ηf

[
∇uf + (∇uf)

T
]
–
(
ζf –

2
3
ηf

)
(∇ · uf) I . (5.4)

Mf,s defines the momentum exchange term between the fluid and particulate phase and
is split up into an explicit and an implicit term due to numerical stability.

Mf,s =
∑

Ff,p
Vcell |uf – us|

· uf –
∑

Ff,p
Vcell |uf – us|

· us (5.5)

us is the cell-averaged velocity of the particles and is calculated according to

us =
1
np

∑

∀p∈cell
up. (5.6)

The total number of particles in a cell is given by np and the velocity of the respective
particle by up. The drag force Fd has the highest contribution to the exchange force
between the fluid and particle Ff,p [97, 98]. The exchange force can be calculated with
the momentum exchange coefficient β:

Ff,p = β
(
uf – up

) mp
ρp

. (5.7)

The density of the particulate phase is denoted with ρp. Many different correlations
for the calculation of the momentum exchange coefficient are proposed in literature [84,
183, 188]. This work uses the drag correlation proposed by Gidaspow [15, 78] which is a
combination of a correlation proposed by Ergun [168] and Wen and Yu [170]. The drag
correlation proposed by Ergun is used for fluid volume fractions lower than 0.8, while
the correlation from Wen and Yu is used for more dilute particle beds. The momentum
exchange coefficient can be calculated according to the following equation:

β =




150 (1–ε)

2ηf
εd2p

+ 1.75 (1 – ε) ρfdp

∣∣uf – up
∣∣, ε < 0.8

3
4 CD

ε (1–ε)
dp ρf

∣∣uf – up
∣∣ ε–2.65, ε ≥ 0.8.

(5.8)
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The drag coefficient CD is dependent on the particle Reynolds number Rep

Cd =





24
Rep

(
1.0 + 0.15Re0.687p

)
, Rep ≤ 1000

0.44, Rep > 1000
(5.9)

with

Rep =
ε dp

∣∣uf – up
∣∣ ρf

ηf
. (5.10)

The calculations for the lagrangian framework are based on Newton’s second law of mo-
tion, specifically the force and torque balances. Particle-particle and particle-wall collision
forces are modeled with a soft-sphere model [14, 119]. The detailed implementation of the
lagrangian framework can be found in literature [243].

The virtual mass force Fvm describes the force occurring when the added mass of the
surrounding fluid phase of a particle is accelerated or decelerated [263, 264]. This force
has a significant impact for liquid-solid fluidization simulations [265, 266] and can not be
neglected. Zuber [103] proposed the following equation for the calculation of the virtual
mass force:

Fvm = CvmVp ρf

(
duf
dt

–
dup
dt

)
. (5.11)

The coefficient Cvm is commonly set to a value of 0.5 as proposed by Drew et al. [106] for
non-deformable and spherical particles.

5.2.2 Geometry and Mesh

The geometry in the simulations is used according to the AnFMBR by Wang et al. [44].
For simplification purposes only the fluidized part of the AnFMBR is used as well as half
of the reactor due to symmetry. Figure 5.1 illustrates the dimensions of the simulated
AnFMBR-geometry with a total height of H = 194mm. Figure 5.1b and c show the
front and side view of the simulation geometry without a built-in impediment with the
corresponding boundaries. The front and back side consists of the wall, the membrane
holder and the active membrane. A symmetry of the reactor is chosen to reduce the
simulation time. The sides of the AnFMBR are surrounded by walls. A uniform fluid inlet
velocity is applied at the bottom, while the outlet has a fixed pressure condition at the
top. The wall, membrane holder and active membrane areas have a no-slip condition for
the fluid-flux and a partial slip condition for particles according to defined restitution
and friction coefficients. Preliminary studies showed that the particle distribution across
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the reactor height was not uniform. Thus, the geometry of the AnFMBR is modified.
Impediments are introduced to alter the flow, both of the fluid and solid phase. Those
impediments consist of an addition to the geometry with a uniform height of 154mm and a
variable horizontal length li . The horizontal lengths of the impediments are varied between
1, 3, 5 and 7mm depending on the used GAC particle sizes, i.e., for an impediment length
li of 7mm the gap between the wall and membrane would be too narrow for particle sizes
of 2.05mm to pass through. Figure 5.2 shows exemplary the side views of the AnFMBR
with two built-in impediments: Impediment 1 and 2. Impediment 1 consists of a linear
decreasing gap to decrease the free cross-section (cf. Figure 5.2a) and therefore increases
the fluid velocity. The smallest free cross-section of the geometry is reached at a height
of 154mm where the active membrane ends. The second impediment, Impediment 2, has
a linear increasing narrowing up to a reactor height of 77mm after which the narrowing
decreases again with the same gradient until it reaches the reactor wall at a height of
154mm (cf. Figure 5.2b). This set-up shall prevent a high degree of particle entrainment
due to an increase in local fluid velocity. The grid size for the simulation is chosen to
satisfy the condition of the volume of a single cell being greater than the particle volume
[204]. Table 5.1 gives an overview of the dimensions of the geometries and the number
of cells used in this study. Due to the inclined impediments the simulation of the flow
has to be resolved in three dimensions, since the geometry consists of two mesh cells in
the y-direction. The grid resolution can not be further refined or else the error of the
calculation for the cell-averaged parameters, e.g., solid velocity or solid volume fraction,
would be too high [267].

Table 5.1: Overview of geometry and mesh dimensions.

Geometry and Mesh

height H / mm 194
width W / mm 89
depth D / mm 9

impediment height 1 h1 / mm 154
impediment height 2 h2 / mm 77
impediment length li / mm 1, 3, 5 and 7
mesh cells in x-direction 18
mesh cells in y-direction 2
mesh cells in z-direction 42
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Figure 5.1: Isometric view of the geometry used in the current study (a), front
view of geometry with active membrane (b) and side view of geometry with
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Figure 5.2: Side views of geometry with built-in impediments 1 (a) and 2 (b) with
indicated impediment lengths li and heights hi .

5.2.3 Simulation parameters

GAC particles are fluidized by a water feed with a uniform inlet velocity at ambient
temperature and pressure. In this simulation four different diameters of GAC particles
dp, namely 1.25, 1.55, 1.85 and 2.05mm are investigated in respect to the efficiency
of membrane fouling mitigation, i.e., resulting particle momentum. Furthermore, the
inlet velocity of the feed is varied to achieve particle velocities. The ratio of the actual
inlet velocity and the velocity at minimum fluidization uf/umf is therefore used as an
additional parameter to investigate the effect of the inlet velocities towards membrane
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fouling mitigation. The velocity at minimum fluidization is dependent on the used particle
diameter and is calculated according to a correlation by Wen and Yu [170] with the particle
Reynolds number at minimum fluidization and Galileo number, Rep,mf and Ga:

Rep,mf =
√

33.72 + 0.0408Ga – 33.7 (5.12)

with the particle Reynolds number at minimum fluidization defined as

Rep,mf =
ρf dp umf

ηf
(5.13)

and the Galileo number as

Ga =
d3p ρf

(
ρp – ρf

)
g

η2f
. (5.14)

For all simulations a uf/umf-ratio ranging from 3 to 11 is used. With greater impediment
lengths and bigger particle sizes, i.e. li ≥ 5mm and dp ≥ 1.85mm, only particles with
a diameter of 1.25 and 1.55mm are simulated to avoid blockage of the particles in the
narrowest gap.

A modified version of the solver DPMFoam from the open source package OpenFOAM®

[206] version 4.1 is used for the following simulations. The validity of the CFD-DEM
solver and the simulation parameters are assured by comparing the simulation results
with experimental data obtained by Wang et al. [44]. Therefore, the time-averaged cell
based particle velocities at five different heights, namely at the height ratios at z/H = 0.41,
0.49, 0.57, 0.64 and 0.72 (cf. Figure 5.1b), are evaluated at different inlet feed velocities
for particle sizes of 1.55 and 1.85mm. The initial number of particles for the simulation
is chosen according to the total mass of the particles in [44]. The foulant concentration in
the experiments were 2 g/L Bentonite and 2 g/L Yeast in deionized water. The permeate
flux was set to a value of 30 L/(m2 h) [44]. Since the permeate flux was insignificant low
compared to the inlet fluidization velocity it was ignored in the following simulations.
Figure 5.3 shows the comparison of the particle velocities for the simulations and the
experimental data.
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Figure 5.3: Comparison of particle velocity us for particle diameters of dp = 1.55
and 1.85mm. Symbols represent experimental data according to Wang et al. [44] and
lines represent simulation results at the following AnFMBR height ratios z/H : 0.41
( and ), 0.49 ( and ), 0.57 ( and ), 0.64 ( and ) and 0.72 ( and ×).

The particle velocities differ with the particle diameter dp and the velocity ratio uf/umf .
For a particle diameter of dp = 1.55mm the particle velocities for the simulations show an
increase for increasing inlet velocities. At greater heights, z/H ≥ 0.72, the particle velocity
(experimental data) at lower feed velocities is zero, as the bed expansion has not reached
the defined height. The overall trend of the particle velocities for the experimental data
and the simulation results are in accordance. The same applies for a particle diameter dp
= 1.85mm. At lower heights, i.e. z/H ≤ 0.49, the particle velocities develop a maximum at
a uf/umf-ratio at approximately 7 for both experimental data and simulation results. With
the comparison of the experimental data and the simulations it can be concluded that the
CFD-DEM solver DPMFoam is validated for the here present liquid-solid fluidization.

For the following simulations the number of particles in the AnFMBR is not constant
for all particle diameters considered in this work. The bed height for settled particles is
assumed to be constant at a height of hs ≈ 68mm with a porosity of ε = 0.38. The total
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number of particles in the AnFMBR Np can be calculated according to the following
formula:

Np =
Vs
Vp

=
(1 – ε) hs LW

1/6 π d3p
. (5.15)

Table 5.2 gives an overview of the total number of particles used in the various simulations
to achieve the desired settled bed height of 68mm, as well as the simulation parameters
and physical properties. Particles hitting the outlet-boundary will be removed from the
simulation geometry and are not reintroduced. The time-steps are chosen to ensure a
stable Courant-Friedrichs-Lewy criterion of Co < 0.1.

Table 5.2: Overview of parameters used in the simulation.

Fluid phase

density ρf / kg/m3 1000
kinematic viscosity νf / m2/s 1 · 10−6

uf/umf-ratios / - 3 to 11
Particle

density ρp / kg/m3 1500
diameter dp / mm 1.25, 1.55, 1.85 and 2.05

number of particles Np / - 32 900, 17 250, 10 000 and 7500
particle-particle restitution coefficient epp / - 0.99
particle-particle friction coefficient µpp / - 0.3
particle-wall restitution coefficient epw / - 0.99
particle-wall friction coefficient µpw / - 0.3

turbulence model standard k -ε [268]
time step fluid ∆tf / s 1 · 10−5

time step particle ∆tp / s 1 · 10−6

5.3 Results

To compare the data obtained from the simulations the key parameters are time-averaged
in order to transfer the transient state of a fluidized bed to a quasi-stationary state. The
key parameters consist of the volume fraction of the fluid phase ε, the velocity of the fluid
and solid phase, uf and us, the pressure drop ∆p and the magnitude of the cell-averaged
particle momentum |Is|. The cell-averaged particle momentum Is is calculated according
to:

Is =
∑

∀p∈cell
upmp. (5.16)
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The required power input is calculated with

P = |uf|A∆p. (5.17)

The key parameters are assessed at three different heights of the geometry, H1, H2 and H3.
They correspond to z/H -ratios of 0.34, 0.57 and 0.79 (cf. Figure 5.1b), i.e., the bottom,
middle and top of the active membrane surface. This ensures the assessment of the particle
momentum for different sections of the active membrane, especially if the active membrane
surface is partially or fully covered by the fluidized bed.

The total simulated time for all studies is 150 s, while in the first five seconds the AnFMBR
is filled with particles and the particles settle with no inlet velocity of the fluid. At the
following 15 s the inlet velocity is set to a specific value to reach the previous defined
uf/umf-ratio. The remaining 130 s are used to time-average the key parameters to achieve
the quasi-stationary state of the fluidized bed. Figure 5.4 compares the time-development
of the area-averaged volume fraction of the fluid at a height of 50mm for uf/umf-ratios of 6
and 10. In the first five seconds the filling and settling take place and the volume fraction
of the fluid decreases as the bed gets denser. Starting from the point of five seconds the
fluid inlet velocity is set to the specific uf/umf-ratio, the particles are fluidized and the
volume fraction of the fluid increases. The gradient for the uf/umf-ratio of 10 is higher
compared to the ratio of 6 because the inlet velocity is higher and the bed becomes more
dilute. After 20 s the volume fraction of the fluid for both values of the uf/umf-ratios seem
to fluctuate around a constant value. At this point the time-averaging is started. In order
to obtain optimal results, the total time averaging frame for the later simulations is set
to 130 s, for a total simulation time of 150 s, to obtain optimal results.
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Figure 5.4: Area-averaged volume fraction of the fluid at a height of 50mm over
time for uf/umf-ratios of 6 and 10. Time intervals between 0 - 5 s indicate the filling
and settling process, 5 - 20 s the development of the fluidized state and the
time-averaging frame starts at a time of 20 s.

The length of the cells in y-direction are not constant over the vertical direction as the gap
between the active membrane and the wall decreases with increasing impediment lengths
li . Therefore, the cell-averaged magnitude of the particle momentum |Is| is normalized in
respect to the cell volume Vcell to get a normalized particle momentum |Is|norm:

|Is|norm =
|Is|
Vcell

. (5.18)

5.3.1 Resulting particle momentum at specific heights

To compare the normalized particle momentum at specific heights of the active membrane
or the membrane itself, the total normalized particle momentum

∑
|Is|norm is evaluated.

Figure 5.5 shows the total normalized particle momentum at three different heights of the
membrane, H1, H2 and H3, for the reactor geometry with no built-in impediments and
Impediment 1 with the specified impediment lengths l1 for GAC particles with different
diameters.

The following observations can be made for the resulting particle momentum at different
uf/umf-ratios for the geometry without an impediment:
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Figure 5.5: Comparison of cell-averaged normalized particle momentum
(magnitude) |Is|norm with corresponding required power input P for particle
diameters dp = 1.25, 1.55, 1.85 and 2.05mm assessed at different heights of the
membrane H1, H2 and H3. The different symbols correspond to the different
impediment lengths of Impediment 1 (no impediment: , 1mm: , 3mm: , 5mm:
and 7mm: ×).
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• a maximum for the particle momentum can be achieved at a specific power input
with a small decline in particle momentum after the maximum is reached

• the maximum achievable particle momentum seems to be independent of the inves-
tigated height Hi

• the particle momentum is not uniformly distributed along the axial height of the
membrane.

The effect of Impediment 1 on the resulting particle momentum can be summarized as
followed:

• for dp = 1.25mm: similar values for the particle momentum for low fluid inlet veloc-
ities compared to the geometry without an impediment and the particle momentum
is still increasing at higher fluid inlet velocities

• for the other particle diameters: a maximum for the particle momentum is reached
at a specific power input and is in most cases higher or almost equal to the value
obtained without an impediment

• the particle momentum has a non-zero value at higher heights and at lower power
inputs compared to no impediment

• an impediment length of l1 = 7mm yields the lowest particle momentum for all
heights and particle diameters.

The results for the AnFMBR with a built-in impediment according to the geometry of
Impediment 2 are shown in Figure 5.6 for different power inputs, particle diameters and
impediment lengths.
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Figure 5.6: Comparison of cell-averaged normalized particle momentum
(magnitude) |Is|norm with corresponding required power input P for particle
diameters dp = 1.25, 1.55, 1.85 and 2.05mm assessed at different heights of the
membrane H1, H2 and H3. The different symbols correspond to the different
impediment lengths of Impediment 2 (no impediment: , 1mm: , 3mm: , 5mm:
and 7mm: ×).

Impediment 2 shows the same effect on the particle momentum as Impediment 1 for
a particle diameter of 1.25 and 1.55mm for an impediment length of 1 and 3mm.
Furthermore the following can be observed:
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• with greater impediment lengths, the particle momentum at height H3 for higher
fluid inlet velocities is higher than with Impediment 1 or without an impediment,
but at lower parts of the active membrane the particle momentum tends to a value
of zero

• more uniform particle momentum across the membrane heights for particle sizes of
1.85 and 2.05mm at lower fluid inlet velocities

• highest achievable particle momentum at H2.

An overview of the findings regarding the geometries with no built-in impediment, Imped-
iment 1 and Impediment 2 regarding the resulting particle momentum at different heights
of the membrane is summarized in Table 5.3.

Table 5.3: Summary of investigated reactor geometries with effect of particle
momentum at different membrane heights.

dp / mm no impediment Impediment 1 Impediment 2

1.25 no uniform distribu-
tion of |Is|,
at H3 no resulting |Is|

higher |Is|max for l1 =
1, 3 and 5mm,
more uniform distribu-
tion at 0.05W for l1 =
3 and 5mm

same as Impediment
1,
better performance for
l2 = 7mm

1.55 no uniform distribu-
tion of |Is|,
at H3 no resulting |Is|

higher |Is|max for l1 =
1 and 3mm,
more uniform distribu-
tion at 0.08W for l1 =
3 and 5mm

less |Is| at lower
heights,
highest |Is|max for
l2 = 7mm at H3

1.85 uniform distribution
of |Is| for P > 0.12W

lower |Is| for all l1, ex-
cept for l1 = 1mm at
H2 and low P at H3,
more uniform distribu-
tion of |Is|

same as Impediment
1, but higher |Is|

2.05 uniform distribution
of |Is| for P > 0.11W,
but declining |Is| at
lower heights

same as dp = 1.85mm same as Impediment
1, but higher |Is|

5.3.2 Resulting particle momentum on whole membrane area

Next, the particle momentum acting on the whole active membrane area, i.e. at y = 0, is
averaged and compared for the reactor geometry without any built-in impediments and
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with Impediment 1 and Impediment 2. The particle momentum for Impediments 1 and 2
for the particle diameter of 1.25 and 1.55mm is shown in Figure 5.7 and for the particle
sizes of 1.85 and 2.05mm in Figure 5.8.
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Figure 5.7: Cell-averaged normalized particle momentum (magnitude) |Is|norm at
the active membrane with corresponding required power input P for particle
diameters dp = 1.25 and 1.55mm for Impediment 1 and Impediment 2. The different
symbols correspond to the different impediment lengths of Impediment 1 and
Impediment 2 (no impediment: , 1mm: , 3mm: , 5mm: and 7mm: ×).
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Figure 5.8: Cell-averaged normalized particle momentum (magnitude) |Is|norm at
the active membrane with corresponding required power input P for particle
diameters dp = 1.85 and 2.05mm for Impediment 1 and Impediment 2. The different
symbols correspond to the different impediment lengths of Impediment 1 and
Impediment 2 (no impediment: , 1mm: , 3mm: , 5mm: and 7mm: ×).

No impediments (symbols in Figures 5.7 and 5.8):

The particle momentum obtained from the simulations near the active membrane area
without an impediment shows for all particle diameters a maximum depending on the fluid
inlet velocity. The resulting momentum with a particle diameter of dp = 1.55mm has in
contrast to the other particle sizes a linear increase with the power input, a maximum
of the particle momentum is not reached yet for the considered inlet fluid velocities. The
maximum of the particle momentum for the greater particles is reached for a power input
of P ≈ 0.11W, while the maximum in particle momentum for dp = 1.25mm is achieved
at P ≈ 0.065W. The maximum particle momentum achievable for a particle diameter
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of dp = 1.25mm is approximately 2 kg/(m2 s) and for the particle diameters of 1.85 and
2.05mm it is more than twice as high.

Impediment 1 (symbols , , and × for l1 = 1, 3, 5 and 7mm):

The highest particle momentum acting on the membrane for all investigated power inputs
is found for the geometry with no impediment for greater particle diameters, i.e., dp =
1.85 and 2.05mm, compared to Impediment 1. The resulting particle momentum for
these particle diameters also decreases with an increase of the impediment length l1.
Comparing the resulting particle momentum for a particle diameter of dp = 1.25mm, it
is obvious that at higher fluid inlet velocities the particle momentum for the impediment
lengths l1 = 3 and 5mm is almost twice the value compared to the momentum obtained
with no impediment. For the impediment lengths l1 = 1 and 7mm the resulting particle
momentum is lower compared to no impediment. The trend of the particle momentum
for the impediment lengths l1 = 3 and 5mm suggests that a maximum is not reached yet
and the total value can still increase with the power input. The particle momentum for
a particle diameter of 1.55mm for the built-in impediments of Impediment 1 develops a
maximum for all investigated impediment lengths l1, while for the impediment lengths
l1 = 3 and 5mm the resulting particle momentum exceeds the particle momentum of the
geometry with no impediment at higher fluid inlet velocities. For the other impediment
lengths, the particle momentum is lower compared to the geometry without a built-in
impediment.

Impediment 2 (symbols , , and × for l2 = 1, 3, 5 and 7mm):

The resulting total particle momentum of the smallest particle size acting on the active
membrane for the geometries of Impediment 2 is for all considered fluid inlet velocities
higher than with no impediment, with the exception of an impediment length l2 =
1mm where the particle momentum is almost identical to the one with no impediment.
A maximum of the particle momentum in regards to the power input exists for all
impediment lengths l2 at P ≈ 0.06W. The particle momentum for an impediment length
of l2 = 3mm, however, has not reached a maximum yet; a higher value may still be
achievable for this geometry set-up. Regarding a particle size of dp = 1.55mm the resulting
particle momentum with impediments is for all investigated fluid inlet velocities lower or
almost at the same range as the particle momentum from no impediment. The simulation
of an impediment length of l2 = 7mm shows a shifted maximum of the particle momentum
towards a lower power input, resulting in a higher particle momentum at lower fluid
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inlet velocities compared to the case of no built-in impediment. The particle momentum
resulting from Impediment 2 with a particle diameter of dp = 1.85mm also shows a
maximum for all investigated impediment lengths. In general, the particle momentum is
lower compared to the particle momentum obtained with no built-in impediment, except
with impediment lengths of l2 = 3 and 5mm at higher fluid inlet velocities (cf. Figure 5.8).
The results for the various impediment lengths for the greatest particle size show that the
particle momentum has a defined maximum at a power input at P ≈ 0.125W, but the
maximum value for the particle momentum is for all impediment lengths lower than the
momentum with no impediment. At higher fluid inlet velocities the achievable particle
momentum with impediments is closer to the value of the particle momentum without an
impediment than at lower fluid inlet velocities.

An overview of the findings regarding the geometries with no built-in impediment, Im-
pediment 1 and Impediment 2 regarding the resulting particle momentum on the whole
active membrane area is summarized in Table 5.4.

Table 5.4: Summary of investigated reactor geometries with effect of particle
momentum acting on whole membrane area.

dp / mm no impediment Impediment 1 Impediment 2

1.25 |Is|max at 0.06W higher |Is|max for l1 =
3 and 5mm

higher |Is|max for l2 =
3, 5 and 7mm

1.55 |Is|max not reached
yet

max for all |Is|,
|Is|max at 0.09W for
l1 = 3mm

max for all |Is|,
better power optimum
at lower fluid veloci-
ties for l2 = 7mm

1.85 |Is|max at 0.1W lower |Is| for all l1 higher |Is|max for l2 =
1 and 3mm

2.05 |Is|max at 0.11W lower |Is| for all l1 lower |Is| for all l2,
but at higher P al-
most equal to no im-
pediment

5.4 Discussion

A change in geometry, in this case the addition of different shaped impediments, can alter
the flow and the resulting particle momentum in an AnFMBR. The particle momentum is
dependent on the number and mass of particles and their velocity. A more dense bed with
a high magnitude of fluctuation in particle velocity is therefore favorable. An increase in
fluid velocity leads to an increase in particle velocity, but on the downside the particle bed
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gets more dilute. Thus, the particle momentum is decreasing at higher fluid inlet velocities.
For these kind of applications a maximum of the particle momentum based on the fluid
inlet velocity or the corresponding required power input can be found. Depending on the
initial particle bed height, the fluidized bed may not cover the whole active membrane
area to mitigate fouling. To increase the fluidized bed height an increase in fluid inlet
velocity is needed which results in a more dilute particle bed. The main disadvantage
for the reactor geometry without an impediment is the uneven lateral distribution of the
particle momentum across the active membrane area: either the membrane is partially
covered by the particle bed, meaning that at greater heights the particle momentum is
zero, or the fluid inlet velocity is further increased to expand the particle bed to cover
the whole active membrane area. The same trend of non-uniform particle distribution was
observed by Wang et al. [35]. The latter case has the problem that with an increase of
the fluid inlet velocity the maximum of the particle momentum has been already passed
and the particle momentum is decreasing again, an optimal power input is therefore not
achievable (cf. Figure 5.5). Hence, an optimal particle momentum based on the required
power input across the lateral length of the membrane for all heights is not possible
with the current set-up. This means, either the fluidized bed is operated at conditions
to achieve a maximum particle momentum acting on the whole membrane, while the
membrane is only partially covered by the particle bed (cf. Figure 5.7 for dp = 1.25mm)
or increasing the fluid inlet velocity to cover the whole membrane while decreasing the
particle momentum and increasing the power input. With the addition of Impediment 1,
linear decrease of the gap between wall and membrane, the fluid velocity increases as the
gap decreases. Therefore, the particle velocity increases and the particle bed gets more
diluted. This is beneficiary for low fluid velocities as the particle bed is covering the active
membrane area at these low velocities while this is not the case for the particle bed of the
geometry without an impediment. At higher fluid inlet velocities the particle momentum
resulting from Impediment 1 surpasses the value of the benchmark for certain impediment
lengths, i.e., l1 = 1 and 3mm. Greater impediment lengths result in too high fluid velocities
due to the narrow gap and the particles get entrained, the particle momentum tends
to a value of zero at greater heights. Impediment 2 was investigated to minimize the
entrainment at higher velocities and greater impediment lengths. Due to the increasing
gap after a height of 77mm of Impediment 2, the fluid velocity decreases and the particles
decelerate, decreasing the probability of entrainment compared to Impediment 1. This can
be best seen when comparing the particle momentum at height H3 for dp = 1.25mm and
an impediment length li = 7mm for Impediment 1 and 2 (cf. Figures 5.5 and 5.6). The
entrainment of particles for Impediment 1 results in a value for the particle momentum
close to zero. Impediment 2 mitigates the particle entrainment as the fluid velocity
decreases at greater heights and therefore the particle momentum at this height has its
highest values. On the downside, the particle momentum of Impediment 2 at the height
H1 tends to zero as the fluid velocity is very high at that height, resulting in a conveying

146



5.5 Conclusion

of the particles. Wang et al. [35] investigated membrane fouling effects of lab-scale and
pilot-scale AnFMBRs and came to the conclusion that while the overall trend was similar,
the fouling mitigation of the pilot-scale AnFMBR had a higher dependency on the spatial
location than with the lab-scale geometry. Those trends were not observed in our lab-scale
AnFMBR simulation. For scale-up purposes the implementation of impediments can alter
the resulting particle momentum, but effects occurring at pilot-scales, e.g., channeling,
should not be ignored.

5.5 Conclusion

We investigated the effect of two different shaped built-in impediments on the hydro-
dynamics of an AnFMBR. Before modifying the geometry of the reactor, a numerical
solver based on a CFD-DEM approach was validated for the reactor geometry without
an impediment based on the experimental data from Wang et al. [44]. After successful
validation of the solver, the reactor geometry was modified to include two different shapes
of impediments. Impediment 1 consists of a linear increasing impediment and Impediment
2 has an inclining and declining impediment. The effect of certain built-in impediments,
e.g., Impediment 1 with l1 = 5mm, dp = 1.55mm and uf/umf = 8, showed a more uniform
axial distribution of the particle momentum across the membrane height. The uniform
particle momentum distribution along the height of the membrane was seen for Impedi-
ment 1 with impediment lengths l1 = 1 and 3mm and particle sizes of 1.85 and 2.05mm
for low and partially for high fluid inlet velocities. Furthermore, with the introduction of
impediments the local maximum achievable particle momentum compared to the reactor
geometry without impediments can be further increased, e.g., Impediment 2, l2 = 7mm,
dp = 1.25 and 1.55mm. However, at these conditions the distribution of the particle
momentum is non-uniform as at the lowest height the particle momentum tends to a value
of zero. Additionally, some specific set-ups are favored for the use of membranes sensitive
to hit of irregular shaped particles as the particle momentum decreased, e.g., using the
configuration of Impediment 2 with l2 = 5mm and dp = 1.55mm. The problem of particle
entrainment at higher velocities and greater impediment lengths for Impediment 1 was
minimized with the introduction of Impediment 2. With the alteration of the geometry
from a simple rectangular shape to a geometry with built-in impediments the resulting
particle momentum of a AnFMBR and therefore the correlated fouling mitigation can be
maximized and more evenly distributed across the whole membrane. The total run-time
of the AnFMBR can be extended due to less fouling at the membrane at a longer period of
time. Further design optimization of the reactor geometry can be achieved by varying the
impediment height h2 in order to get an optimal particle distribution across the membrane
height whilst still maintaining a high resulting particle momentum. This can be crucial for
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an industrial scale wastewater treatment with an AnFMBR to have the longest run-time
for the process itself and few and short cleaning cycles of the membrane.
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6.1 Conclusions

In this thesis, the numerical simulation of liquid-solid flows, in particular for fluidized
beds, was studied by means of CFD in detail. New solvers were developed to increase
the simulation speed, enhance the accuracy of the simulation results and extend the use
of certain methods, e.g., the Coarse Grain (CG) method. All newly developed solvers
were validated with the use of experimental data from literature and compared with
conventional numerical solvers available. Also, CFD-DEM was used to model an anaerobic
fluidized bed membrane reactor (AnFMBR) and improvements were proposed to maximize
fouling mitigation while minimizing the required energy input.

A combination of the popular Eulerian-Eulerian and Eulerian-Lagrangian model was
proposed as a hybrid Eulerian-Eulerian-Lagrangian solver. Here, a user-defined ratio can
be set for the particle treatment. The particles can be simulated according to the Eulerian
treatment with use of the Two-Fluid Model (TFM) or with a Lagrangian treatment
by means of a four-way coupled CFD-DEM approach. If more particles are treated as
a Eulerian solid phase, the simulation speed increases tremendously, but the accuracy
worsens for systems where particle-particle interactions become the dominant factor. On
the other side, a Lagrangian treatment of the particles can lead to higher accuracy but
also longer simulation times. With the use of the hybrid Eulerian-Eulerian-Lagrangian
solver another degree of freedom is introduced to speed up or increase the accuracy of
fluid-solid multiphase flow simulations. The Eulerian solid phase and Lagrangian particles
are coupled by means of momentum exchange. The newly developed solver was validated
with a 2D fluidized bed and a 3D spouted fluidized bed taken from literature. Furthermore,
the performance of the solver in terms of accuracy and simulation speed for different
user-defined ratios for Eulerian or Lagrangian particle treatment (ranging from 20 %
of particles treated as Lagrangian particles up to 80 %) was compared to conventional
solvers using TFM, CFD-DEM and Multiphase Particle-In-Cell (MP-PIC). The accuracy
of the CFD-DEM solver was highest for all investigated simulation set-ups. However,
due to the individual particle tracking, the simulation speed was the lowest compared to
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the other solvers. On the contrary, the solver using TFM performed very well in terms
of simulation speed, but lacked a correct depiction of the experimental data, especially
for larger particles. The accuracy of the results of the MP-PIC solver lies between the
results obtained from the CFD-DEM and TFM solvers, as well as the simulation speed.
Regarding the hybrid Eulerian-Eulerian-Lagrangian solver, the accuracy and speed are
dependent on the ratio set to transform particles to either Lagrangian particles or a
Eulerian phase. In the case of 80 % of particles treated in a Lagrangian way, the results
for all investigated simulations were always more accurate than the results of the MP-PIC
solver, but the simulation time for the hybrid solver was longer than the time used by the
MP-PIC solver. A ratio of 50 % of Lagrangian particles shows almost the same accuracy
and simulation time than the MP-PIC solver, depending on the number of particles. If
the number of particles present is high, then the MP-PIC solver has an advantage in
simulation speed. Concluding, the newly developed hybrid Eulerian-Eulerian-Lagrangian
solver shows great promise for the gap between available models of the Eulerian-Eulerian
and Eulerian-Lagrangian model to balance between accuracy and simulation speed. Better
accuracy can be achieved with the hybrid solver compared to the MP-PIC solver if
particle-collisions are the dominant factor in the system of solid-interactions.

Multi-grid approaches in CFD-DEM, where multiple numerical grids are used for simula-
tions of multiphase flows, were investigated in Chapter 4. Besides the dual-grid approach
from literature, a new method was developed to add another grid to the simulation of
granular flows. Using a single-grid approach can lead to problems in the choice of cell sizes.
For CFD-DEM simulations, the cell size must be larger than the particle size, preferably
the cell size is a multiple of the particle diameter. This can lead to problems regarding the
fluid flow resolutions, as for more accurate momentum exchange determinations a coarser
numerical grid is beneficial, while a finer resolution of the cell sizes is crucial for a correct
depiction of the fluid flow. Hence, a dual-grid approach can be used to decouple the fluid
phase and the particles. The phases are solved on separate numerical grids: a grid with
smaller cells for the fluid flow calculation and a coarser numerical grid for the Lagrangian
particles. Interpolation of important parameters for the coupling between both phases,
e.g., solid phase fraction, must be ensured. A very coarse cell size for the Lagrangian
particles can lead to inaccurate results in regards to low resolution of solid phase properties
for comparison with experimental data. Hence, an additional grid was implemented to
recalculate those parameters and interpolate them to the Eulerian grid. The three-level
grid approach was validated with experimental data of a 2D jet-in fluidized bed, 3D
fluidized bed and a 3D fluidized bed with a single jet from literature. Furthermore, the
new approach was compared to the conventional single-grid and the dual-grid approach.
It was seen, that the use of the third grid results in an increase in accuracy, while the
simulation speed is only slightly decreased due to interpolation calculations between the
three grids. However, it must be noted, that the use of any multi-grid approach requires
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careful consideration on initial cell-sizes for each grid. Still, the newly proposed multi-grid
approach shows great potential for simulations where a single-grid approach cannot be
applied due to cell-size to particle size issues and a dual-grid approach is too inaccurate.

In a joint German-Singaporean research project (01DP16014) an AnFMBR for wastewater
treatment was modeled with a CFD-DEM solver and validated with experimental data
from literature. Different particle sizes (from 1.05 to 2.05mm) of granular activated carbon
as a scouring agent were investigated to gain further insight in the fouling mitigation
efficiency. It was shown, depending on the used particle size, unwanted non-uniform
distributions of the resulting particle momentum on the membrane surface, i.e., fouling
mitigation ability, occur. By use of geometry changes of the reactor (built-in impediments),
a more uniform-distribution of resulting particle momentum was achieved while the re-
quired energy input for fluidizing the particles can be lowered. With different dimensions of
the implemented impediments and fluidization velocities, the resulting particle momentum
can be modified accordingly. A modification of the resulting particle momentum can
be crucial for membranes sensitive for shear, hit or scrape. The most uniform particle
momentum distribution at the membrane surface was obtained for particles with a size of
1.25 and 1.55mm, which show the most promising results in terms of particle momentum,
distribution and required energy.

6.2 Outlook

Regarding the newly developed hybrid Eulerian-Eulerian-Lagrangian solver (cf. Chap-
ter 3), improvements can be made to automatically transform between Eulerian to La-
grangian particles based on a particle concentration threshold. In areas with particle
clusters, i.e., high solid phase fractions, the particle phase should be treated as a continuum
according to the Kinetic Theory of Granular Flow with use of the TFM. This way, the
simulation speed can be drastically increased. For areas where the particle concentration
is low, e.g., bubble phases, spouted areas or turbulent fluidization with a high fluid phase
fraction, the particles can be tracked with a Lagrangian treatment. Furthermore, larger
particles can also be treated as Lagrangian particles, so the particle-contact forces due to
collision can be better depicted than with a Eulerian treatment of the collisions, i.e., a
stochastic treatment.

During the joint German-Singaporean research project to increase the efficiency of wastew-
ater treatment using an AnFMBR, more studies were made to investigate other techniques
for MBRs. One other method to minimize the fouling of a membrane during the operation,
is the use of a vibrating scrubber. Shear force of the induced fluid flow is used to scrub off
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existing fouling particulates. For the CFD simulations a dynamic moving mesh approach
was used to model the vibrating scrubber and parameter studies were made to enhance the
scrubber geometry and positioning for effective fouling mitigation based on the required
energy input. Further studies can be made to extend the scrubbing technique with the
implementation of particles between said scrubber and the membrane. This way, not only
the induced shear force of the fluid is mitigating fouling formation, but also the momentum
of the particles might decrease the presence and deposition of foulant on the membrane as
seen in AnFMBRs. No increase in fluid flow is needed for the fluidization of the particles,
as the movement of the scrubber can induce particle movement. Due to the inertia of
particles, an harmonic motion of particles will be induced to further mitigate fouling. In
order to simulate such an application, a CFD-DEM solver must be coupled with a dynamic
meshing approach. Such a solver already exists in OpenFOAM® version 5.x, called
DPMDyMFoam. Problems arise, when considering the fine resolution of the numerical
grid between the scrubber and the membrane where the potential particles would reside.
Hence, a multi-grid approach must be applied to overcome those boundaries, when using
CFD-DEM. After a successful coupling of the dynamic moving mesh CFD-DEM solver
with the multi-grid approach presented in this thesis, parameter studies can be made,
e.g., size, density, number of particles, to maximize fouling mitigation while minimizing
the required power input, mostly used for the movement of the scrubber.

Furthermore, during this thesis a CFD-DEM solver for catalytic reactions was developed
and validated for a methane reaction in a fluidized bed. This solver can be further en-
hanced to include more chemical reactions where the fluidized bed technology is applicable
(cf. Chapter 1.1). With use of the CG method, larger reactor scales with more catalytic
active particles can be simulated. The solving procedure for the kinetics of the chemical
reaction are, however, the rate determining step for the simulation time. Therefore, special
attention must be paid on the acceleration for solving the chemical reactions, e.g., use of
GPUs instead of CPUs.

Lastly, a basic, but still robust, solver for a gas-liquid-solid flow was developed and
validated with experimental data. This solver can be used to model, for example slur-
ry-reactors. The choice of an adequate void fraction determination method is crucial (cf.
Appendix B). A coupling of the gas-liquid-solid flow solver with the multi-grid approach
might be beneficial for simulation speed, accuracy and further increase in robustness for
the overall solver.
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The results of a numerical simulation need to undergo some further investigation in order
to be used for verification and validation of this data. Ideally, it is done before using the
results of the simulation for further studies. First the terms verification and validation
need to be defined. Generally speaking, verification answers the question "Do we solve the
equations right?", while validation is implicit with the question of "Do we solve the right
equations?" [269–272]. Applied to CFD, a verified simulation comprises of steps necessary
that the partial differential equations are solved accurately, discretized correctly, the code
of the solver is fully functional and a numerical convergence is reached. The verification
process therefore does not require experimental data for comparison as it is purely of a
mathematical and computational matter and hence evaluates the quality of the numerics
being solved. On the other side, for the validation of a numerical simulation the comparison
with experimental data is inevitable. Here, the accuracy of the prediction of the used
equations, i.e., physical models, is compared with the outcomes of experiments: the
numerical model is checked with results of experiments. As an adjustment to the numerics,
e.g., using a different discretization scheme or a finer numerical grid, has an impact on the
numerical results, it is common practice to first conduct the verification of the numerical
code and afterward to verify the computational simulation with experimental data, as
the verification is independent of the result of experiments. After a successful verification
of the code, further changes can be made to the physical models in order to depict the
"real life" physics of the experiment. The validation process is straight forward and done
in several iterations, as experimental data is obtained and compared to the simulation
results. Then, the physical models are adjusted and compared again. The verification
process has multiple ways to get a numerical correct solution. In the following section the
verification process will be limited on the numerical grid independency, as in most cases
the discretization of the numerical equations using different schemes has been already
intensively investigated which discretization scheme is advantageous for specific flow
problems (cf. [61, 273–276]). Hence, the main focus should be on the grid independency
for the verification of the simulation.

An analysis of a numerical grid is a crucial step before using the data obtained by a
numerical simulation in CFD. A numerical grid independency study, also called a mesh
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independency study, is a way to determine if the resolution of the used numerical grid
is sufficiently fine in order to achieve a numerical independency. When a numerical
independency is reached, a further refinement of the numerical grid does not result
in a higher accuracy of the simulation data. Several things must be considered when
a numerical grid independency study is performed. First, for the mesh independency
study, several distinctly resolved meshes must be investigated, usually consisting of three
meshes:

• a coarse grid,

• a medium grid and

• a fine grid.

Multiple approaches for the determination of the different sizes of each grid were proposed
in literature which will be discussed in detail later. More cells in a numerical simulation
set-up result in a higher resolution and in most cases in a higher accuracy. The higher
accuracy in the numerical solution comes with a cost of the need to solve more equations
and hence a longer simulation time. Looking back at the definition of the Co-number
(cf. Equation (2.39)) a decrease of the cell size ∆x , which is inherent performing a grid
refinement, results in a decrease of the time step ∆t if the flow domain does not change and
a uniform Co-number is desired. Therefore, a refinement in the numerical grid shows a vast
decrease in simulation speed. Once a grid independency is reached, a further refinement
does not yield a higher accuracy. Therefore, the simulation results are independent of the
chosen mesh size and discretization errors based on the numerical grid can be excluded.

One widely used method to quantify the discretization error and hence evaluate the grid
convergence, is the Richardson extrapolation [52, 277]. Three different sized grids are
needed to determine the discretization error.

With obtained arbitrary values of interest φ on each of the different sized numerical
grids, φc, φm and φf, corresponding to the values of the coarse, medium and fine grid, the
discretization error for the coarse grid εdc and for the medium grid εdm can be approximated
with:

εdc ≈
φc – φm
f pε
ref – 1

(A.1)

and

εdm ≈
φm – φf
f pε
ref – 1

. (A.2)
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The exponent pε can be calculated using the arbitrary values obtained of all three
numerical grids:

pε =
log φm–φf

φc–φm
log fref

. (A.3)

Here, fref represents the refinement factor of the numerical grids based on the refinement
from the coarse to the medium grid [278], e.g., a refinement factor of fref = 2 means,
the medium level grid comprises of twice the cells as the coarse grid. Accordingly, with
this method a linear scaling is implied and hence, the fine grid has twice the cells of the
medium grid and four times the cells of the coarse grid. Assuming a refinement factor of
fref = 2, the exponent pε can be calculated according to

pε =
log φm–φf

φc–φm
log 2

(A.4)

and the discretization error of the medium sized grid as

εdm ≈
φm – φf
2pε – 1

. (A.5)

The determination of the discretization error using the Richardson extrapolation is only
valid if the solution converges monotonically and the numerical grid is in a uniform way.

Celik et al. [279] proposed a revised method of the Richardson extrapolation to calculate
the so called Grid Convergence Index (GCI). The GCI estimates the numerical uncertainty
of the numerical solution. However, it should be noted that existing model errors are not
accounted for and should be excluded before performing a grid analysis. The GCI method
can be conducted by the following five steps:

1. Definition of a representative grid size

A representative grid size h is defined. The determination of this grid size is dependent
on the type of dimensional set-up of the geometry, i.e., if the numerical grid consists of
2D faces (areas) or 3D cells (volumes). For both cases, the representative grid size h can
be calculated if the dimensions of each cell, or faces for 2D cases, are known:

h2D =


 1
N

N∑

i=1
∆Ai




1/2

(A.6)

155



A Numerical Grid Independency

and

h3D =


 1
N

N∑

i=1
∆Vi




1/3

. (A.7)

Here, the arithmetic mean value of the face areas or the cell volumes is calculated and the
representative grid size h is determined by taking the second or the third root depending
on the unit dimension.

2. Choosing three different sized numerical grids

The simulations are performed on three distinct numerical grids. Each of these grids varies
by the number of cells, i.e., the refinement. A refinement factor r is introduced to quantify
the relation of cells between the examined numerical grids:

r =
hcoarse
hfine

. (A.8)

According to the above equation and the definition of the representative cell size h in
Equations (A.6) and (A.7), the refinement factor has to be larger than one. Empirical
investigations suggest a refinement factor r of at least 1.3 [279]. Furthermore, the refine-
ment should be performed in a systematic way, i.e., a linear increase in cells is preferred.
For example, if the medium grid has twice the number of cells compared to the coarse
grid, then the fine grid should have also twice the cells compared to the medium grid.
This can be also applied to the resulting representative cell size instead of the number of
cells in the numerical grid.

3. Calculation of the apparent order pGCI

With hc, hm and hf corresponding to the representative cell sizes for the coarse, medium
and fine numerical grid, the refinement factors can be calculated as

rmf =
hm
hf

(A.9)

and

rcm =
hc
hm

. (A.10)

The apparent order pGCI can be calculated as:

pGCI =
1

ln (rmf)

∣∣∣∣ln
(∣∣∣∣
δcm
δmf

∣∣∣∣
)
+ q
∣∣∣∣. (A.11)
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δcm and δmf represent the differences between arbitrary solutions φi obtained on the
specific numerical grid i , i.e., δcm = φc –φm and δmf = φm –φf, respectively. The function
of q in Equation (A.11) follows as

q = ln

(
rpGCI
mf – s
rpGCIcm – s

)
(A.12)

with

s = sgn
(
δcm
δmf

)
. (A.13)

In the above stated equation, sgn denotes the signum function returning the sign of its
input. It is apparent, that the function q in Equation (A.12) is an implicit function
corresponding to Equation (A.11). Hence, it is suggested to use an initial guess for q = 0
and apply a fixed-point iteration to obtain the apparent order pGCI [279].

If one of the differences of the obtained solution for the different numerical grids, δcm and
δmf, is close to zero, the convergence of the solution might be of an oscillatory nature and
therefore, the grid convergence index approach above is not suitable. It is recommended
to use further refinements of the numerical grids and repeat the calculation of the GCI.

4. Determination the extrapolated values

Now, the extrapolated values φextmf and φextcm can be calculated using the apparent order:

φextmf =
rpGCI
mf φf – φm
rpGCI
mf – 1

(A.14)

and for the extrapolated value using the coarse and medium resolution numerical grid

φextcm =
rpGCIcm φm – φc
rpGCIcm – 1

. (A.15)

5. Calculation of the error estimates GCI

The approximated relative and extrapolated relative errors, εamf and εextmf , can be deter-
mined with the obtained solutions of the medium and fine grid, φm and φf, and the
extrapolated value from step 4 φextmf :

εamf =
∣∣∣∣
φf – φm
φf

∣∣∣∣ (A.16)
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and

εextmf =

∣∣∣∣∣
φextmf – φf
φextmf

∣∣∣∣∣. (A.17)

In the final step, the grid convergence index for the fine numerical grid GCImf can be
calculated as:

GCImf = 1.25
εamf

rpGCI
mf – 1

. (A.18)

This value indicates the numerical uncertainty of the numerical grid with the fine resolu-
tion. The arbitrary solutions used for comparison of the different sized numerical grids φi
should be chosen according to the underlying flow problem. Generally, it is good practice
to use the pressure drop, pressure or velocities at a certain point for the evaluation of the
GCI. Regarding multiphase flows, especially fluid-solid flows, the volume fraction of one
phase can also be used as the arbitrary value of the solution.

The estimation of the error due to numerical discretization of the grid according to the
above procedure presented by Celik et al. [279] is widely applied for CFD simulations,
including single- and multiphase flow, cf. [280–289].

However, it should be pointed out, that refinement or coarsening ratios can not be varied
arbitrarily for a uniform quadrilateral or hexahedral cell-based numerical grid. This is due
to the fact, that for more complex geometries, e.g., several inlet streams or bends in a
pipe, a fixed ratio for cell-sizes is needed. A numerical grid refinement of certain regions in
the simulation geometry can falsify the value of the GCI. Therefore, this method is more
applicable for simple geometries such as cylinders or cuboids. Another limitation for the
refinement of the numerical cells exists for specific multiphase flow models, in particular
fluid-solid flow models, such as the Two-Fluid model and the Eulerian-Lagrangian model.
Problems arise if the cell size is smaller than a particle in the numerical grid.

The Two-Fluid Model is a continuum based model (cf. Chapter 2.3.1). Hence, a phase
fraction is introduced to distinguish between the two phases. For the particle phase, this
phase fraction represents the volume of a solid phase occupying the considered cell. As
the particle phase has a defined diameter for the particles, a refinement of the numerical
grid when conducting a numerical grid independency study could result in cells being
smaller than the particle diameter defined for the particle phase. This can lead to problems
based on which type of set-up is investigated [290]. Regarding systems where the transient
process is of interest, the distribution of the particles based on the obtained phase fraction
might not be useful as they are not physical. As an example, a cell comprises a solid phase
fraction of 0.5 meaning that 50 % of the cell’s volume is occupied by the particles. If the
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dimensions of the cell are quite small compared to the particles due to the refinement
of the numerical grid independency study, the solid phase looses its physical meaning
and becomes a stochastic value of the dynamic system. In this specific case the principle
of ergodicity1 can be applied. The transient nature of the system is transformed to a
quasi-steady state system. The solid phase fraction in such a case is then viewed as more
of a stochastic probability of the particles. Therefore, a transient consideration of these
particular systems, e.g., the start-up or bubble dynamics of a fluidized bed reactor, is not
possible. Panday et al. [293] suggest as a rule of thumb a cell to particle size of ten, which
has to be adjusted individually.

The cell-size for Eulerian-Lagrangian based models can not be arbitrary refined either.
According to Chapter 2.3.2 the Eulerian-Lagrangian model treats the fluid phase as a
continuum and the particles as Lagrangian trajectories. The numerical calculations of the
fluid phase is done on the numerical cells, while the calculation of particle movement is
almost2 independent on the size, number and shape of the cells. As important parameters
for the coupling of the fluid phase and particles including the phase fractions, as well as
the velocities of the fluid phase and particles, are calculated using the geometric properties
of the cell. The cell size has a defined limit for refinement size. Figure A.1 illustrates this
behavior for different-sized particles located in an allocation of same-sized cells.

Three different scenarios are depicted above. Figure A.1a shows a particle smaller than
the surrounding cell and the particle is fully immersed in the cell without overlapping to
adjacent cells. The particle is fully embodied in the volume of the cell and the volume
occupied by the particle does not approach nor exceed the cell’s volume. In this specific
case no issues should arise when transforming Eulerian to Lagrangian properties and vice
versa, e.g., calculating the solid phase fraction. A further refinement of the cell might be
possible. If this scenario is existing for the finest resolution, then the grid independency
study can be performed. In the second scenario, Figure A.1b, the particle is the same
size as in A.1a but the position of the particle is in a way that parts of it overlap into
neighboring cells. This case can implicate issues regarding the calculation of the phase

1 The term ergodicity stems from Ludwig Boltzmann [291] and is used in the field of statistically
physics. It says that a dynamical system can be statistically averaged with a sufficient sized data
set in order to represent the quasi-stationary state of the aforementioned system [292]. Regarding
gas-solid flows, the principle of ergodicity and the application of it allow for a dynamic and transient
system to average it and obtain a quasi-steady state system. This then can be used for comparison
or further investigations.

2 It should be noted that the term almost distinguishes the pure Lagrangian approach and the
Eulerian-Lagrangian approach. Regarding the Lagrangian approach, only the particle movement
is considered due to external forces, e.g., gravity. The Eulerian-Lagrangian approach also includes
interactions between the fluid phase and the particles. In order to evaluate the coupling between the
two phases correctly, it is mandatory to transform Eulerian properties to Lagrangian properties and
vice versa. Hence, the term almost applies that the Lagrangian approach is independent on the cells
of the numerical grid, but coupled with the fluid phase a coherence exists between the cells and the
Lagrangian particles which must not be neglected.
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(a) Particle smaller than cell
and not overlapping adjacent
cells. Further refinement
possible.

(b) Particle smaller than cell
and overlapping. Further
refinement might be possible.

(c) Particle bigger than cell.
Further refinement not
possible.

Figure A.1: Different scenarios for particle sizes and positions for an arbitrary cell
allocation and consequences for a further grid refinement due to a grid independency
study.

fraction or the solid phase velocities depending on the applied method to determine the
parameters. In this case it is not recommended to use the widely applied Particle Centroid
Method (PCM) but a more sophisticated one according to Appendix B. If another choice
of a more sophisticated phase fraction determination like the Divided Particle Volume
Model (DPVM) is not feasible due to unfavorable high calculation times, the problem at
hand can be bypassed by increasing the cell-to-particle ratio. As this solution strategy can
not be applied in most cases, due to loss in fluid flow resolution or incapability to model
certain complex geometries, the use of another phase fraction determination approach
becomes inevitable. A further refinement of the numerical grid is almost not possible.
Figure A.1c shows a particle which is bigger than the underlying cell. In this case the
PCM method can not be applied as the phase fraction for the solid phase would lead
an unphysical value of higher than one. The use of the more precise DPVM accounts for
a more accurate contribution of the particle volume to the adjacent cells, but the solid
phase fraction for the underlying cell yields one. This can lead to numerical instabilities
according to the momentum balance used to calculate the fluid velocity as the fluid phase
fraction tends to zero, ε → 0. A further refinement of the numerical grid for a grid
independency study is not possible.

In conclusion, contrary to single- or multiphase flows with only fluids, the cell refinement
due to grid independency studies for multiphase flows with particles modeled by TFM or
CFD-DEM can not be performed arbitrarily. Careful consideration has to be paid to the
resulting relation of cell to particle sizes. Overlapping particles or particles being bigger
than the cell itself can lead to unphysical behavior. An upper limit for the maximum cell
refinement exists for these simulation models.
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B Transformation of Lagrangian to
Eulerian Values

The fluid phase is discretized due to the mesh resolution, meaning the number of numerical
grid cells. The Lagrangian particles are allocated as resolved points with a defined radius
or shape and therefore independent of the numerical grid. Hence, the momentum exchange
term between the fluid phase and the particles is approximated on a cell-level, i.e., only
particles residing in a specific cell contribute to the momentum exchange to the fluid-cell
and an interpolation or a transformation between Lagrangian properties and values to
cell-based values is needed. The transformation of those values also involves errors in the
numerical simulations depending on the cell size and the transformation procedure. The
cell size can not be arbitrarily decreased for a better resolution of a two-phase flow using
the Eulerian-Lagrangian model due to the hard restriction that the cell size has to be
bigger than the particle size (cf. Appendix A). A method for transforming Lagrangian
to Eulerian values and hence determining the void fraction1 shall conserve the mass of
all particles, can be used for a grid independency study and yields smooth transitions of
the void fraction within a particle bed [294]. Several approaches exist on how the particle
properties can be transformed from a Lagrangian type to a cell-based numerical grid. The
most common ones include:

• the Particle Centroid Method,

• the Divided Particle Volume Method [295, 296],

• the Porous Cube Model [215],

• the Porous Sphere Model [297, 298] and

1 The procedure for the determination of the void fraction from Lagrangian values applies in a similar
way to the transformation to Eulerian solid phase velocities and momenta. Each Lagrangian particle
velocity is attributed to the Eulerian grid as a fraction by using the solid phase fraction. The Eulerian
momentum can be calculated with the solid phase velocity and the mass of all particles in the fluid
cell. The mass of all particles in the fluid cell is again calculated with the Eulerian solid phase
concentration.
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• the Diffusion Based Model [232, 233].

Each of the mentioned models can be used to determine the volume fraction of particles
residing in the cells of a numerical grid. Using this information, the momentum exchange
term can be calculated. However, it shall be stated that this approach of using the volume
fraction to determine the momentum exchange is only valid for constant density of the
particles. The determination of the volume fraction is independent of the density and
therefore the mass dependent momentum of each particle is falsely calculated using
this method. Therefore, when simulating non-uniform dense particles the mass of each
individual particle must be included to account for density differences.

B.1 Particle Centroid Method

One of the most used methods to calculate the solid phase porosity in CFD-DEM
simulations is the Particle Centroid Method (PCM) [226]. The methodology of the PCM
states that the solid phase volume fraction corresponding to a specific cell consists of the
sum of the volumes of particles residing in said cell. The definition of the local placement
of the particle and therefore the allocation to the respective cell is based on the position of
the particle center. This means if the center of a particle is located in the spatial extent of
a numerical cell, the volume of the regarding particle is accounted for the calculation of the
solid phase fraction determination of the cell. First, this determination procedure has the
advantages of being easy to implement in terms of a low complexity of code programming
and hence a fast calculation for the solid phase fraction. The main disadvantage of this
algorithm can be best explained with Figure B.1. Here, five (2D-)particles are allocated
in a numerical grid consisting of nine computational (2D-)cells.

One of the particles is located with the total volume (or area) in one fluid cell, while
the other four particles straddle neighboring cells. A higher gray gradient of the cell
indicates a higher Eulerian solid phase fraction computed according to PCM. As only
the particle center is defining to which cell the particle volume is attributed to, errors
for the accurate void fraction determination occur. On the one hand, the four cells 2, 3,
4 and 7 are not attributed with a particle concentration as no particle center is located
in each of the cells, although particle fractions are residing in those cells. On the other
hand for an accurate representation cell 5 should have a higher solid phase concentration
than calculated as more particle segments should be accounted to cell 5. Cells 1, 6 and 8
show a higher particle concentration than an actual representation would have suggested.
The calculation of PCM is prone to an inaccurate determination of the void fraction if
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1 2 3

4 5 6

7 8 9

Figure B.1: Colored cells with increasing gray gradient color for increasing solid
phase concentration for different positioned particles using the Particle Centroid
Method (PCM).

particles straddle neighboring cells. This error becomes higher when the cell-to-particle
ratio decreases, i.e., the probability for particles overlapping to other cells increases.

The advantages, however, are manifold. The PCM is a simple approach and therefore
the computational implementation is of a minor effort. The computational cost for the
determination of the void fraction is low as only the particle position and the corresponding
cell need to be determined; no additional calculations of particle segments and algorithms
to locate the neighboring cells are needed. The disadvantage of overlapping particles can
be neglected for dense granular flows and if the cell-to-particle ratio is high. Then, a high
number of particles resides in a cell. The fraction of the overlapping particle volume to
adjacent cell is marginal compared to the total volume of particles residing in the main
cell. Hence, the magnitude of erroneous contributed particle volumes is negligible.

B.2 Divided Particle Volume Method

The Divided Particle Volume Method (DPVM) is a more sophisticated method for the
determination of the void fraction. An analytical approach is used to calculate the volume
fraction of a particle in each corresponding cell with:

Vp,i =
∫∫∫

dV . (B.1)

The distance between the particle center and the cell center is determined. Afterward,
the neighboring cells in which parts of the particle volume are residing in are located.
In a final step each individual volume segment is calculated according to Equation (B.1)
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and attributed to the corresponding cell. A more detailed description of the mathemat-
ically equation can be found in [299]. Figure B.2 depicts an arbitrary particle and nine
fluid cells. The gray gradients correspond to the calculated solid phase fractions using

(a) Divided Particle Volume Method (DPVM). (b) Corresponding particle volume segments.

Figure B.2: Colored cells with increasing gray gradient color for increasing solid
phase concentration for different positioned particles using the Divided Particle
Volume Method (DPVM) (a) and corresponding particle segments divided by the
corresponding cells (b).

DPVM. The different overlapping volume parts of the particle are correctly attributed
to the corresponding cells. Figure B.2b shows the segmented particle. This method for
the void fraction determination is the most computational demanding. The analytical
Equation (B.1) must be first discretized in order to solve it numerically. The higher the
discretization, the more accurate is the resulting particle volume segments, but this also
brings along a higher calculation time. Furthermore, in contrary to PCM, not only one
cell the particle is residing in must be located, but also the neighboring cells the particle
overlaps to must be determined. A maximum of 27 cells in total have to be located in
a 3D simulation using this method. For each cell the particle volume segments have to
be calculated and attributed to the solid phase fraction of the cell. This implies a high
amount of I/O-data and therefore a long computational time. In an arbitrary simulation
with 100 000 particles this process alone could take up to 10 s per Lagrangian time-step
[294]. The advantage of the DPVM is the most accurate determination of the void fraction
compared to all other methods. No particle segments are falsely or incorrectly attributed
to other cells. Modifications of the DPVM to enhance the calculation speed have been
proposed in literature, e.g., Khawaja et al. [300] proposed a method using the DPVM but
approximating the particles as cubes. Using this method, the calculation of the particle
volume segments is much faster than calculating the volumes according to Equation (B.1).
However, the determination of the corresponding neighboring cells remains the same. More
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precise methods to determine to void fraction than the PCM but less computational
expensive are discussed in the following.

B.3 Porous Cube Model

A simpler and faster model but not as accurate as DPVM is the Porous Cube Model
proposed by Link et al. [215]. Here, a particle is transformed to an imaginary porous
cube. The length of the cube can be set arbitrarily but is mostly set as a multiple of the
particle diameter. The volume of the particle is evenly distributed to the cells which are
straddled by the cube. Figure B.3 shows two different scenarios of a particle residing in
a numerical grid where the Porous Cube Model is applied with different cube lengths. In
the left scenario an ideal constellation between particle position, cell and cube length is
depicted. Using the PCM, the volume of the particle would be assigned to any of the cells
6, 7, 10 or 11. In this case the Porous Cube Model will assign a quarter of the particle
volume to each of the aforementioned cells exactly as the DPVM but with a fraction
of the computational time. The second scenario on the right side of Figure B.3 shows
an unfavorable constellation of particle positions, cube length and cell size. Here, the
imaginary porous cube straddles twelve cells (from 1 to 12). Those cells are each assigned
a twelfth of the particle volume for the void fraction determination, although the cells 1,
5 and 9 are not intersected by the particle. Only a little fraction of the cube overlaps with
this cells, but the assigned particle volume is equal to the volume assigned to, for example
cell 7. This cell would have been assigned the majority part of the particle volume when
using DPVM.

The fast calculation and easy implementation are two big advantages of the Porous Cube
Model. As the particle volumes are equally distributed to the cells straddled by the porous
cube, a smoother transition of values in the void fraction fields are guaranteed as opposed
to simulations using PCM or DPVM. On the other side, another tuning parameter needs
to be set: the length of the porous cube. A priori parameter studies should be made
to find the optimum cube length for further simulations. Furthermore, the unfavorable
constellation in Figure B.3b shows that this model can yield highly inaccurate results
for the void fraction in certain scenarios. This problem can be neglected if highly dense
granular flows with small particles are present and moderate lengths of the porous cube
are chosen. A modification of this method will be next discussed.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) Ideal constellation.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(b) Unfavorable constellation.

Figure B.3: Colored cells with increasing gray gradient color for increasing solid
phase concentration for different positioned particles using the Porous Cube Model
in an ideal (a) and unfavorable constellation of particle position (b).

B.4 Porous Sphere Model

The Porous Sphere model uses an imaginary sphere as a shape [297, 298]. Figure B.4
shows an ideal and an unfavorable constellation for the void fraction determination using
the Porous Sphere model.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) Ideal constellation.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(b) Unfavorable constellation.

Figure B.4: Colored cells with increasing gray gradient color for increasing solid
phase concentration for different positioned particles using the Porous Sphere Model
in an ideal (a) and unfavorable constellation of particle position (b).

Simulations and validation of this model have shown, that the use of the Porous Sphere
Model results in a higher accuracy than the Porous Cube Model while maintaining an
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equal fast computational time. The higher accuracy results due to the identical shape of
the imaginary sphere and the particle as opposed to the particle and a cube. The other
advantages and drawbacks are similar to the Porous Cube Model.

B.5 Diffusion Based Model

The Diffusion Based Model [232, 233] uses a different approach. It combines the PCM
with a diffusion equation to calculate the solid phase fraction. The solid phase fraction αs
is determined by solving the following diffusion equation:

∂αs
∂τ

=∇2αs. (B.2)

The pseudo-time τ is calculated with the time-step of the simulation and a unit diffusion
coefficient. As an initial condition for the partial differential equation, the solid phase
volume fraction is initialized using the PCM:

αs,0 = αPCMs . (B.3)

With this initial condition Equation (B.2) is solved until the pseudo-time τ reaches a
predefined diffusion time T . Sun and Xiao [232] suggest a diffusion time depending on the
particle diameter of T = 9d2p . The diffusion equation is discretized by pseudo-timesteps
and a pseudo-timestep of ∆τ = T/8 is recommended by the authors. Figure B.5 shows
an exemplary scenario of a particle with surrounding cells. The cells are colored with
different gray gradients according to the calculated solid phase volume fraction using the
Diffusion Based Model.

A higher diffusion coefficient or a longer pseudo-time results in a wider distribution of
the solid phase concentration field. This approach is rather quick compared to DPVM
and the Porous Cube or Sphere Model, as the solid phase fraction field is initialized with
PCM and a diffusion equation is solved and no adjacent cells need to be located. If the
numerical grid is highly resolved, i.e., a high number of cells, the Diffusion Based Model
can be slower compared to the other models. The diffusion equation is solved for all cells,
regardless if particles reside in the cells or not. Hence, with a higher number of particles,
more diffusion equations have to be solved. The biggest advantage using this model is the
smooth transition between the solid phase fraction across neighboring cells.
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Figure B.5: Colored cells with increasing gray gradient color for increasing solid
phase concentration for different positioned particles using the Diffusion Based
Model.
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