
Technische Universität München

Department of Mathematics

Master’s Thesis

EM algorithm and its extensions for Gaussian
and vine copula mixture models

Ka Wing Ho

Supervisor: Prof. Claudia Czado

Advisor: Prof. Claudia Czado, Özge Sahin

Submission Date: December 15, 2021

I assure the single handed composition of this master’s thesis only supported by declared resources.

Garching,

Acknowledgement

I would like to express my gratitude to my thesis supervisor Prof. Claudia Czado, that I have this valuable

opportunity to write my master’s thesis at the Chair of Mathematical Statistics. In the last six months, we had

a lot of meetings and she can always give me useful advice and feedback, so that I can keep working on and

improve my thesis. Furthermore, I would like to thank my advisor Özge Sahin very much for all the guidance,

her support and help in the programming for simulation. Every time I ask her questions about the thesis

through email, she always replies me very soon with useful answers, even in the evening and on non-working

days. Last but not least, I thank my family and my friends for their constant support on my thesis and my

study in TUM.

Abstract

In the 21th century, the importance of finite mixture models in the statistical analysis of data keeps increasing,

so that the number of articles on mixture model applications appearing in the statistical and general scientific

literature increases steadily, for example, cluster analysis, unsupervised pattern recognition, speech recognition,

medical imaging and other applications.

The expectation and maximization (EM) algorithm is a well-known and convenient way for parameter esti-

mation in mixture models. However, the EM algorithm is an iterative algorithm requiring starting values.

Di↵erent starting values for the EM algorithm can significantly impact the resulting solution. In addition

to initialization strategies, the extensions of EM algorithm with di↵erent iteration processes from classic EM

algorithm also a↵ect the resulting solution. Furthermore, the majority of finite mixture models cannot capture

clusters, which are non-elliptical and asymmetric tail dependencies. Due to the higher flexibility of vine copulas,

the vine copula mixture model (VCMM) algorithm proposed by Sahin and Czado [2021] is more suitable for

modelling Non-Gaussian multivariate data with clusters.

This thesis aims to study the performance of the classic Gaussian mixture model (GMM) algorithm and the

vine copulas mixture model (VCMM) algorithm with di↵erent EM algorithms and initialization strategies for

clustering data with di↵erent characteristics and real data sets. According to our results, clustering Gaussian

data with GMM algorithm using di↵erent EM algorithms and initialization strategies both have a significant

e↵ect on classification rate. For the best fit, we recommend the expectation/conditional maximisation either

(ECME) algorithm together with the optimization method Nelder-Mead and initialization by k-means clus-

tering. However, the is not the case in VCMM algorithm. For clustering data with various characteristics

and real data sets by VCMM algorithm, di↵erent EM algorithms don’t a↵ect the performance regarding to

classification rate for clustering significantly, but computation time. We found that heuristic based optimiza-

tion method (Nelder-Maad) is taking more time than with gradient based optimization method (BFGS) in

many situations. Moreover, we found that some initialization strategies for VCMM algorithm outperform

other strategies for clustering data with di↵erent characteristics. The result is summarised as a flow chart

in the Figure 3.3.19 and the recommendation of the initialization strategy for data clustering in the Figure

3.3.20 and 3.3.21. Lastly, we show how the VCMM algorithm improves the clustering fit over GMM in two

data sets and the performance of the selected models from the Figure 3.3.20 for clustering the two real data sets.

Contents

1 Introduction 1

2 Theoretical Background 1

2.1 Parameter Estimation Techniques . 1

2.1.1 Maximum Likelihood Estimation . 1

2.1.2 The Classical Expectation-Maximization (EM) Algorithm 3

2.1.3 Extensions of the EM Algorithm . 7

2.2 Optimization . 12

2.3 Copulas . 13

2.3.1 Concept of Copulas . 14

2.3.2 Vine Copulas . 25

2.4 Mixture Models . 27

2.4.1 Mixture Model Formulation and Parameter Estimation 27

2.4.2 Multivariate Gaussian Mixture Models (GMM) . 32

2.4.3 Vine Copula Mixture Models (VCMM) . 35

2.5 Clustering using Gaussian Mixture Models . 39

2.5.1 Characteristics of clusters in model based Gaussian mixture modelling 39

2.5.2 Issues of singularity and clusters collapse in Gaussian mixture modelling for ECME . . 44

2.6 Performance measures . 48

3 Simulation study 50

3.1 EM Algorithm for GMM algorithm . 50

3.1.1 Data simulation and the experiment setup . 50

3.1.2 Result visualisation and the performance . 61

3.2 EM Algorithm and initialization strategies for GMM algorithm 70

3.3 EM Algorithm and initialization strategies for VCMM algorithm 78

3.3.1 Data simulation and the experiment setup . 78

3.3.2 Result visualisation and the performance . 90

4 Real data sets 119

4.1 Introduction to the real data set . 119

4.2 Introduction to the modelling methods for clustering . 123

4.3 Result and performance of clustering . 124

5 Conclusion 131

A Appendices 132

A Appendix for Section 3.2 GMM Algorithm . 132

A.1 Box plots of the classification rate . 132

A.2 Box plots of the normalised BIC . 133

A.3 Box plots of the computation time . 134

B Appendix for Section 3.3 VCMM Algorithm . 135

B.1 Abbreviation for marginal distributions . 135

B.2 Abbreviation for copula families . 135

B.3 Box plots of the classification rate . 136

B.4 Box plots of the normalised BIC . 141

B.5 Box plots of the computation time . 146

B.6 Ranking of the performance of EM algorithms and initialization strategies 151

C Appendix for Section 4 Real data sets . 158

C.1 Estimated vine copula model for AIS data . 158

C.2 Estimated vine copula model for BCW data . 160

C.3 Pair plots of AIS data with initialization and final clustering 162

C.4 Pair plots of BCW data with initialization and final clustering 167

References 172

1

1 Introduction

This thesis consists of five parts. In Chapter 2, we give the necessary theoretical background, Chapter 3 con-

tains the simulation studies, Chapter 4 does the clustering for real data sets, Chapter 5 concludes.

More specifically, Chapter 2 mainly introduces the mathematical definitions, theory and methods used through-

out the thesis. Chapter 2 consists of six subsections. In Section 2.1, we introduce maximum likelihood esti-

mation and discuss in detail the expectation maximization (EM) algorithm and its extensions. In Section

2.2, the method of Lagrange multipliers for solving optimization problems is introduced. Section 2.3 gives an

overview of copulas and vine copulas. The formulation for the Gaussian mixture model (GMM) and the vine

copulas mixture model (VCMM) and their corresponding steps for EM algorithms are presented in Section

2.4. Section 2.5 describes the characteristics for clusters in model based Gaussian mixtures. Further we discuss

modelling issues we encounter some times when we implement the extension of EM algorithm - ECME. Section

2.6 discusses some performance measures used in the simulation study for performance assessment.

Chapter 3 shows the required steps of how the simulation experiments are implemented. There are three sub-

sections in Section 3. In Section 3.1, four data settings following a Gaussian mixture model are generated for

testing the performance of GMM algorithm by using di↵erent EM algorithms. In Section 3.2, we will use the

same data settings as in the Section 3.1 for performance assessment with di↵erent initialization strategies. In

the last Section 3.3, data sets for nine di↵erent settings are generated to assess the performance of the VCMM

algorithm, with using di↵erent EM algorithms and initialization strategies and the best initialization strategy

is suggested for the data with di↵erent characteristics.

In Chapter 4, two real data sets with two clusters are classified by GMM and VCMM algorithm, di↵erent EM

algorithms and initialization strategies for performance assessment.

We will conclude the thesis in Chapter 5.

2 Theoretical Background

In this chapter, we will introduce mathematical concepts, definitions and theories used in the simulation studies.

2.1 Parameter Estimation Techniques

In this section, we will introduce some methods for parameter estimation in statistical modelling. Maximum

likelihood estimation is a well-known approach to do so, but it is quite challenging on data in the presence

of missing variables, for example, mixture models. Because our paper mainly focus on mixture models, EM

algorithm and its extension as the iterative algorithms will be introduced and used for the parameter estimation

in this thesis.

2.1.1 Maximum Likelihood Estimation

We begin by assuming that X 2 Rp is the random vector and the corresponding random sample matrix X =

[x1, x2, ..., xn] 2 Rp⇥n of n independent and identically distributed (i.i.d.) observations being realizations

of X is given. Furthermore, it is assumed that X follows cumulative distribution function (cdf) F (x; ✓) with

probability density function (pdf) f(x; ✓) with corresponding parameters ✓. The parameter ✓ = [✓1, ✓2, ...,

✓k]T 2 ⇥ is a vector of unknown parameters needed to be estimated and ⇥ denotes the parameter space.

In statistics, maximum likelihood estimation (MLE) is one of the common technique to estimate the

2 2 THEORETICAL BACKGROUND

parameter ✓ of the (pdf), by maximizing the likelihood of the realization of the sample. Intuitively, the

estimated value of the parameter by the MLE is the one most likely to have produced the sample or observations.

The likelihood function is defined as

L(✓ | x) = L(✓ | x1,x2, ...,xn) :=
nY

i=1

f(xi | ✓),

or equivalently the corresponding log-likelihood function given by

l(✓ | x) = l(✓ | x1,x2, ...,xn) :=
nX

i=1

ln(f(xi | ✓)). (2.1.1)

Based on the definition of the MLE mentioned above, the estimated parameter ✓̂MLE can be denoted as

✓̂MLE = argmax✓2⇥ l(✓ | x1,x2, ...,xn).

Since the logarithm is a monotonic function, the maximum of log-likelihood function occurs at the same value

of ✓ as the maximum of likelihood.

We can obtain the estimated parameter ✓̂MLE by taking the first derivative of the log-likelihood function with

respect to ✓, and finding out the solution of the following equation by setting the values of the partial derivatives

vector to the zero vector.

@l(✓ | x)
@✓

= 0

Because the log-likelihood function leads to a summation structure for which it is easier to take the derivatives,

we prefer to maximize the log-likelihood function instead of likelihood function.

Example 2.1.1 (MLE of univariate normal distribution)

The probability density function of univariate normal distribution with mean µ and variance �2 is:

f(x) =
1

�
p
2⇡

exp

�1

2

✓
x� µ

�

◆2!

Suppose that x1, x2, ..., xn represents n random samples (i.i.d) from an univariate normal distribution with

mean µ and variance �2. The likelihood for the samples with ✓ = (µ,�2) is given by

L(✓ | x) = L(µ,�2 | x1, x2, ..., xn)

=
nY

i=1

1

�
p
2⇡

exp

�1

2

✓
xi � µ

�

◆2!
=

✓
1

�
p
2⇡

◆n

exp

� 1

2�2

nX

i=1

(xi � µ)2
!

and the corresponding log-likelihood is

l(✓ | x) = lnL(✓ | x) = �n

2
ln (2⇡)� n ln� � 1

2�2

nX

i=1

(xi � µ)2. (2.1.2)

In order to obtain the estimated mean µ̂, we can maximize the log-likelihood by taking the first derivative with

respect to µ and then set to 0.

@l

@µ
= � 1

2�2

nX

i=1

(xi � µ)2 = 0

Solving this equation, we get

µ̂ =

Pn
i=1 xi

n

2.1 Parameter Estimation Techniques 3

Similarly, to obtain the estimated �̂, we take the first derivatives of the log-likelihood with respect to � and

then set to 0. We have
@l

@�
= �n

�
+

nX

i=1

(xi � µ)2��3 = 0.

Solving this equation, we get

�̂
2 =

Pn
i=1 (xi � µ̂)2

n
.

Maximum likelihood estimation has many advantages and works in many situations. However, the limitation

of maximum likelihood estimation is that we assume the data used for parameter estimation is fully observable.

In other words, if we have missing data and/or latent variables, which are unobserved or hidden variables

influencing other random variables, then computing a maximum likelihood estimate becomes hard. [Murphy,

2012] In Section 2.1.2, another approach for parameter estimation in the presence of latent variables called

expectation-maximization (EM) algorithm is introduced.

2.1.2 The Classical Expectation-Maximization (EM) Algorithm

The expectation-maximization is a method for deriving an iterative procedure, called EM algorithm, to maxi-

mize the likelihood function in the situation of missing data and/or latent variables.

We let the complete data consists of ycomp = (x, z), where x denotes the observed but incomplete data and z

denotes the unobserved or missing data. The complete-data log likelihood is then denoted by l(✓;x, z), where

✓ is the unknown parameter vector for which we wish to find the ML estimate. In the presence of missing

data, estimating the parameters by MLE is di�cult. Since the complete data ycomp is not observed, evaluation

and maximization of complete-data log likelihood l are not possible. In this situation, the EM algorithm is an

useful method to solve this problem.

In general, the EM algorithm attempts to maximize l(✓ | ycomp), which is the log-likelihood function of the

complete data, iteratively, by replacing the complete data log likelihood by its conditional expectation given

the observed data x. Because the iteration repeats an expectation step (E step) followed by a maximization

step (M step), that is the reason why it is named expectation-maximization (EM) algorithm and it is defined

as follows:

E-step: The E-step of the EM algorithm computes the expected value of l(✓ | Ycomp = (X,Z)) given the

observed data x, and the current parameter estimate ✓old. In particular, we define

Q(✓ | ✓old) := E[l(✓ | Ycomp) | ✓old,X = x]

=

Z
l(✓ | ycomp = (x, z)) p(z | ✓old,x) dz,

where p(z | ✓old,x) is the conditional density for the missing data Z given the observed data x, and assuming

✓ = ✓old.

M-step: The M-step of the EM algorithm chooses ✓new to be any value of ✓ that maximizes Q(✓ | ✓old). That
is

Q(✓new | ✓old) � Q(✓ | ✓old),

or equivalently, the ✓new can be denoted as

✓new := argmax✓ Q(✓ | ✓old).

More specifically, on the first iteration, we first let ✓old to be some initial value of ✓. After one E and M-step

is carried out, we set ✓old = ✓new. The two steps will be repeated until the stopping conditions fulfills. Two

stopping conditions will be introduced in the following:

4 2 THEORETICAL BACKGROUND

Stopping condition 1 : Convergence of parameter estimation ✓

The EM algorithm stops if two successive estimate di↵er smaller by a prespecified ✏, such that

k✓new � ✓oldk < ✏ (2.1.3)

Stopping condition 2 : Convergence of log-likelihood l(✓ | x)
The EM algorithm stops when the relative change of the log-likelihood between two successive iterations is

smaller than a prespecified ✏, such that

l(✓new | x)� l(✓old | x)
l(✓old | x) < ✏ (2.1.4)

At that time, we can conclude that ✓new is the optimal estimate of the EM process.

Example 2.1.2 (Missing Data in an Univariate Normal Sample)

Suppose x := (y1, ..., yn)T is n i.i.d. samples from univariate nominal distribution with mean µ and vari-

ance �2. In Example 2.1.1, the log-likelihood was derived in Equation (2.1.2). However, in this example, we

want to perform the EM algorithm instead. To do so, we assume the complete data is ycomp = (x, z) :=

(y1, ..., yn, yn+1, ..., ym)T , so that z := (yn+1, ..., ym)T are missing, where ycomp are assumed to be i.i.d.

E-step: The E step of the EM algorithm computes the expected value of l(✓ | ycomp = (x,Z)) given the

observed data x and the current parameter estimate ✓old = (µold,�
2
old). We first compute l(✓ | ycomp):

l(✓ | ycomp = (x, z)) = �m

2
ln (2⇡)� m

2
ln�2 � 1

2�2

mX

i=1

(yi � µ)2

= �m

2
ln (2⇡)� m

2
ln�2 � 1

2�2

mX

i=1

y
2
i +

µ

�2

mX

i=1

yi �
mµ

2

2�2

= �m

2
ln (2⇡)� m

2
ln�2 � mµ

2

2�2
� 1

2�2

nX

i=1

y
2
i +

mX

i=n+1

y
2
i

!

+
µ

�2

nX

i=1

yi +
mX

i=n+1

yi

!

Since

E[Yi | x,✓obs] =

8
<

:
yi i = 1, ..., n

µold i = n+ 1, ...,m

E[Y 2
i | x,✓obs] =

8
<

:
y
2
i i = 1, ..., n

µ
2
old + �

2
old i = n+ 1, ...,m,

we have
Q(✓ | ✓old) := E[l(✓ | x,Z) | x,✓old]

= �m

2
ln (2⇡)� m

2
ln�2 � mµ

2

2�2
� 1

2�2

nX

i=1

y
2
i �

(m� n)

2�2
(µ2

old + �
2
old)

+
µ

�2

nX

i=1

yi �
(m� n)µoldµ

�2

We define

S1(µold) = (m� n)µold +
nX

i=1

yi

and

S2(µold,�
2
old) := (m� n)(�2

old + µ
2
old) +

nX

i=1

y
2
i .

2.1 Parameter Estimation Techniques 5

) Q(✓ | ✓old) = �
m

2
ln (2⇡)� m

2
ln�2 � mµ

2

2�2
� 1

2�2
S2(µold,�

2
old) +

µ

�2
S1(µold) (2.1.5)

M-step: The M-step of the EM algorithm chooses ✓new to be any value of ✓ that maximizes Q(✓ | ✓old). The
✓new can be denoted as

✓new := argmax✓ Q(✓ | ✓old). (2.1.6)

The M step here, taking the derivatives with respect to µ and �2 separately, does not maximize Q(✓ | ✓old) over
the parameter space ⇥ jointly, which is the definition of the M step in the classical EM algorithm. Therefore,

this method is actually ECM algorithm which will be introduced later. But, at this moment, we regard this as

a standard EM algorithm because this is the way how people estimate the parameters by EM algorithm.

To get µnew needed in Equation (2.1.6), take the derivatives of Q(✓ | ✓old) with respect to µ and set to 0:

S1(µold)

�2
� mµ

�2
= 0

µnew =
S1(µold)

m

=

Pn
i=1 yi + (m� n)µold

m
(2.1.7)

To get �2
new needed in Equation (2.1.6), take the derivatives of Q(✓ | ✓old) with respect to �2 and set to 0:

� m

2�2
+

1

2(�2)2
S2(µold,�

2
old)�

µ

(�2)2
S1(µold) +

mµ
2

2(�2)2
= 0

�m�2 + S2(µold,�
2
old)� 2µS1(µold) +mµ

2 = 0

�m�2 + S2(µold,�
2
old)� 2mµ

2 +mµ
2 = 0

=) �
2
new =

S2(µold,�
2
old)

m
� µ

2

=

Pn
i=1 y

2
i + (m� n)(�2

old + µ
2
new)

m
� µ

2
new (2.1.8)

To illustrate the application of the EM algorithm to this type of problem, we now apply it to the following

random data set. Here, there are m = 15 observations, but 5 of them are missing which are indicated by NA,

thus observed number n = 10.

y = {5, 3, 10, 0,�4, 5, 6, 3,�5, 7,NA,NA,NA,NA,NA}

We assume that the observations follow normal distribution, so we can apply the expression in Equation (2.1.7)

and Equation (2.1.8) to estimate its mean µ and variance �2. Also, we choose µ
(0) = 10 and �2(0) = 10 as the

initial values for the iteration and the stopping condition 1 from Equation (2.1.3) is used. Table 2.1.1 shows

the convergence results of applying EM to this problem and we can know that, as iteration t increases, the

| µ(t) � µ
(t�1) | and | �2(t) � �2(t�1) | in each iteration tend to 0, so that µ

(t) and �2(t) converge. Therefore,

we can conclude that, by the EM algorithm, the estimated µ̂ ⇡ 3 and estimated �̂2 ⇡ 20.4 are the optimal

estimate of EM process.

Actually, each EM step monotonically increases the likelihood function. This is the reason why repeating EM

steps until convergence can maximize the likelihood function. To prove this, the definition of the E-step and

M-step can be used. In the M-step, ✓new is chosen to maximizes Q(✓ | ✓old), that is

Q(✓new | ✓old) � Q(✓ | ✓old) 8✓.

And ✓ can be chosen as ✓old, such that

Q(✓new | ✓old) � Q(✓old | ✓old).

6 2 THEORETICAL BACKGROUND

Table 2.1.1: The EM iteration values for Example 2.1.2

Iteration t µ
(t) | µ(t) � µ

(t�1) | �
2(t) | �2(t) � �2(t�1) |

0 10 - 10 -

1 5.333333 4.666667 27.82222 17.82222

2 3.777778 1.555555 24.08395 3.73827

3 3.259259 0.518519 21.76241 2.32154

4 3.08642 0.172839 20.86907 0.89334

5 3.028807 0.057613 20.55802 0.31105

6 3.009602 0.019205 20.45286 0.10516

7 3.003201 0.006401 20.41764 0.03522

8 3.001067 0.002134 20.40588 0.01176

9 3.000356 0.000711 20.40196 0.00392

10 3.000119 0.000237 20.40065 0.00131

In the E-step, we defined Q(✓ | ✓old) :=
R
l(✓ | ycomp) p(z | ✓old,x) dz. So, we have

Z
l(✓new | ycomp) p(z | ✓old,x) dz �

Z
l(✓old | ycomp) p(z | ✓old,x) dz,

which implies Z
[l(✓new | ycomp)� l(✓old | ycomp)] p(z | ✓old,x) dz � 0

In the Section 2.1.1, log-likelihood function l(✓ | x) is defined as ln[
Qn

i=1 f(xi | ✓)]. For simplicity, we define

l(✓ | y) as ln p(ycomp | ✓), where p(ycomp | ✓) is the probability density function of complete data ycomp.
Z

ln

p(ycomp | ✓new)
p(ycomp | ✓old)

�
p(z | ✓old,x) dz � 0

By lnx x� 1 for all x � 0 with equality if and only if x = 1, we have
Z

p(ycomp | ✓new)
p(ycomp | ✓old)

� 1

�
p(z | ✓old,x) dz � 0

()
Z

p(ycomp | ✓new)
p(ycomp | ✓old)

� 1

�
p(ycomp | ✓old)
p(x | ✓old)

dz � 0

() 1

p(x | ✓old)

Z
[p(ycomp | ✓new)� p(ycomp | ✓old)] dz � 0

Since
R
p(ycomp | ✓) dz =

R
p(x, z | ✓) dz = p(x | ✓),

p(x | ✓new)� p(x | ✓old) � 0

=) L(✓new | x) � L(✓old | x)

We can see that, in the M-step, finding a ✓ by maximizing Q(✓ | ✓old) over ✓ is equivalent to maximize the

likelihood function L(✓ | x) over ✓, such that

Q(✓new | ✓old) � Q(✓old | ✓old) 8✓ =) L(✓new | x) � L(✓old | x) (2.1.9)

This is the reason why the EM algorithm works, such that each iteration increasing the likelihood.

In this section, we have shown that the advantages of the EM algorithm: 1) In the presence of missing data

and/or latent variables, the complete-data maximum likelihood estimation is often computationally simple. 2)

Its convergence is stable, because of each iteration increasing the likelihood. However, the classic EM algorithm

also has its limitations, for example, when the associated complete-data maximum likelihood estimation itself is

complicated, EM is less attractive because the M-step is computationally unattractive. [Meng and Rubin, 1993]

In the next Section 2.1.3, some extensions of the EM algorithm improving its limitations will be introduced.

2.1 Parameter Estimation Techniques 7

2.1.3 Extensions of the EM Algorithm

In this section, further modifications and extensions to the EM algorithm are considered. In particular, we focus

on 1. Expectation Conditional Maximization (ECM) algorithm, 2. multi-cycle ECM (MCECM) algorithm and

3. Expectation/Conditional Maximization Either (ECME) algorithm.

1. The Expectation Conditional Maximization (ECM) Algorithm

In the M step of the classical EM algorithm, it is required to choose ✓new which maximizes Q(✓ | ✓old). In the

Example 2.1.2, we want to choose µ, �2 together to maximize Q(✓ | ✓old). Actually, we just can do it numer-

ically because a analytic solution to maximize a function for 2 parameters or more does not exist in general.

The M step in the Example 2.1.2, taking the derivatives with respect to µ and �2 separately (or fixing the µ

to estimate the �2), cannot really maximize Q(✓ | ✓old) over the parameter space ⇥, which is the definition

of the M step in the classical EM algorithm. Strictly speaking, the method shown in the example is not the

classical EM algorithm. Because of the convenience of finding a analytic solution, people do the so-called ”EM

algorithm” in that way and we still call it ”EM algorithm”.

Due to the limitation of the classical EM algorithm in the M step, Meng and Rubin [1993] proposed a mod-

ification of the EM algorithm called expectation conditional maximization (ECM) algorithm. In the ECM

algorithm, the M step is replaced by several computationally simpler conditional maximization (CM) steps.

Each CM-step maximizes Q(✓ | ✓old) found on the preceding E-step subject to the constraints on ✓. compared

to the classic EM algorithm, ECM algorithm is often faster, simpler and more stable for maximization in the

M step, because the CM maximization are over smaller dimensional spaces.

More precisely, the expectation conditional maximization (ECM) algorithm at iteration t + 1 is defined as

follows:

E-step: The E step in the classic EM algorithm and the ECM algorithm are exactly the same. Compute the

expected value of l(✓ | ycomp = (x,Z)) given the observed data x, and the current parameter estimate ✓(t):

Q(✓ | ✓(t)) := E[l(✓ | x,Z) | ✓(t),x]

CM-steps: The M step in the ECM algorithm is replaced by S > 1 steps and each step is called CM step, so

that there are S CM steps in each iteration. At the sth CM-step of the (t + 1)th iteration, ✓(t+
s
S) is chosen

to maximize Q(✓ | ✓(t)) which is subject to the constraint gs(✓) = gs(✓(t+
s�1
S)), or equivalently, the ✓(t+

s
S) is

defined as

✓(t+
s
S) := argmax✓ Q(✓ | ✓(t))

subject to gs(✓) = gs(✓
(t+ s�1

S))

where G = {gs(✓), s = 1, ..., S} is a set of S preselected functions. Thus, ✓(t+
s
S) satisfies

Q(✓(t+
s
S) | ✓(t)) � Q(✓ | ✓(t)) for all ✓ 2 {✓ 2 ⇥ : gs(✓) = gs(✓

(t+ s�1
S))}. (2.1.10)

where ⇥ is parameter space.

In the final CM-step of the (t + 1)th iteration, the value ✓(t+
S
S) = ✓(t+1), is taken to be the input on the

(t+ 2)th iteration.

8 2 THEORETICAL BACKGROUND

From Equation (2.1.10), we know that

Q(✓(t+1) | ✓(t)) � Q(✓(t+
S�1
S) | ✓(t))

� Q(✓(t+
S�2
S) | ✓(t))

...

� Q(✓(t) | ✓(t))

As noted before from Equation (2.1.9) in the Section 2.1.2 that each EM step monotonically increases the

likelihood function, we have

L(✓(t+1) | x) � L(✓(t) | x).

We can conclude that the likelihood function monotonically increases in each iteration for the ECM algorithm.

Therefore, the ECM algorithm still works like the classical EM algorithm, even faster, more stable.

Now, we are going to show more detail about the implementation of the ECM algorithm. Firstly, we need to

decide the number of S CM steps and the order of the parameters that we are going to update in each CM

step, but there is no rule to choose it. Normally, S is equal to the number of parameters because ideally we

want to update all the parameters once in each iteration. Also, we partition the parameter ✓ into subvectors

✓ = {✓1, ...,✓S} in order to decide the order of the parameters which will be updated in each step. According

to the sub-vectors ✓ = {✓1, ...,✓S}, ✓1 will be updated first by maximization with respect to ✓1, with all other

parameters held fixed and so on and so fort. Basically, G = {gs(✓), s = 1, ..., S} is just chosen for setting other

parameters constant as the constraints in an optimization problem in each CM step. More detail will be in the

Example 2.1.3.

Example 2.1.3 (Missing Data in an Univariate Normal Sample (ECM))

In the Example 2.1.2, we showed the steps for the missing data in an univaiate normal sample using the classical

EM algorithm. Here, we are going to show you the typical steps of the ECM algorithm for this problem and

the di↵erence between the classical EM algorithm and the ECM algorithm.

E step of EM, ECM at iteration t+ 1

E step of the ECM algorithm and the EM algorithm are the same. From Equation (2.1.5), we have

Q(✓ | ✓(t)) := E[l(✓ | x,Z) | ✓(t),x]

= �m

2
ln�2 � 1

2�2
S
(t)
2 +

µ

�2
S
(t)
1 �

mµ
2

2�2
+ constant,

where S
(t)
1 =

Pn
i=1 yi + (m� n)µ(t) and S

(t)
2 =

Pn
i=1 y

2
i + (m� n)(�2(t) + µ

(t)2).

M step of EM at iteration t+ 1

Recalling from Equation (2.1.6), the M-step of the EM algorithm chooses ✓(t+1) = (µ(t+1)
,�

2(t+1)
) that maxi-

mizes Q(✓ | ✓(t)). That is
✓(t+1) := argmax✓ Q(✓ | ✓(t)).

As we mentioned, we just can solve this optimization problem numerically when there are more than 1 param-

eters. Therefore, no analytic solution can be found.

CM step of ECM at iteration t+ 1

Recalling that in normal distribution, there are two parameters with µ and �2. Therefore, we just have two

ways to partition them because the order is also taking into account, so that we have case 1 : ✓1 = µ, ✓2 = �
2

and case 2 : ✓1 = �
2, ✓2 = µ. Also, due to S = 2, the M step can be replaced by 2 CM steps.

2.1 Parameter Estimation Techniques 9

Case 1 : ✓1 = µ, ✓2 = �
2

CM-step 1: Due to ✓1 = µ, the CM-step 1 is to choose µ(t+ 1
2) by maximizing Q(✓ | ✓(t)) subject to g1(µ,�2) =

g1(µ(t)
,�

2(t)), where g1(µ,�2) is some selected functions and we will select it a bit later. Therefore, µ(t+ 1
2) can

be denoted as
µ
(t+ 1

2) := argmaxµ Q(✓ | ✓(t))

= argmaxµ

✓
�m

2
ln�2 � 1

2�2
S
(t)
2 +

µ

�2
S
(t)
1 �

mµ
2

2�2
+ constant

◆

subject to g1(µ,�
2) = g1(µ

(t)
,�

2(t))

and other parameters keep constant, so that the ”updated” variance is denoted as �2(t+
1
2) := �

2(t).

Now, we would like to choose some constraints g1(µ,�2) = g1(µ(t)
,�

2(t)) to make the above optimization can

be solved easily, at least by taking the derivatives. The easiest way is to set the parameters other than µ to

constant, such that �2 = �
2(t). Formally, g1(µ,�2) = �

2 and the conditional optimization problem can be

written as

µ
(t+ 1

2) := argmaxµ

✓
�m

2
ln�2(t) � 1

2�2(t)
S2

(t) +
µ

�2(t)
S1

(t) � mµ
2

2�2(t)
+ constant

◆

Taking the derivatives with respect to µ and set to 0, we get

µ
(t+ 1

2) =
S1

(t)

m

=

Pn
i=1 yi + (m� n)µ(t)

m
.

CM-step 2: Similarly, the CM-step 2 is to choose �2(t+1)
(or �2(t+

2
2)) by maximizing Q(✓ | ✓(t+ 1

2)) subject

to g2(µ,�2) = g2(µ(t+ 1
2),�2(t+

1
2)), where g2(µ,�2) = µ, so that parameters other than �2 can keep constant.

In this case, �2(t+1)
can be defined as

�
2(t+1)

:= argmax�2

�m

2
ln�2 � 1

2�2
S2

(t+ 1
2) +

µ
(t+ 1

2)

�2
S1

(t+ 1
2) � m(µ(t+ 1

2))
2

2�2
+ constant

!
.

and other parameters keep constant, so that the ”updated” mean is denoted as µ
(t+1) := µ

(t+ 1
2). Taking the

derivatives with respect to �2 and set to 0, we get

�
2(t+1)

=
S2

(t+ 1
2)

m
� (µ(t+ 1

2))
2

=

Pn
i=1 y

2
i + (m� n)(�2(t+

1
2) + (µ(t+ 1

2))
2
)

m
� (µ(t+ 1

2))
2
.

You may notice that the expressions for µ and �2 that we found above are the same in the Example 2.1.2, just

the notations di↵erent. As we mentioned the M steps in that example, fixing the µ to estimate the �2, cannot

really maximize Q(✓ | ✓old) over the parameter space ⇥, which is the definition of the M step in the classical

EM algorithm. Actually, the method used in the Example 2.1.2 is the ECM algorithm.

For S = 2, we have 2 di↵erent orders to update the parameters. This time, we try to update �2 first and then

µ.

Case 2 : ✓1 = �
2
, ✓2 = µ

The computational steps are exactly the same as the case 1. Just the order is di↵erent. So, the steps are

skipped here:

CM-step 1:

�
2(t+

1
2) :=

S2
(t)

m
� (µ(t))

2

=

Pn
i=1 y

2
i + (m� n)(�2(t) + (µ(t))

2
)

m
� (µ(t))

2

µ
(t+ 1

2) := µ
(t)

10 2 THEORETICAL BACKGROUND

CM-step 2:

µ
(t+1) :=

S1
(t+ 1

2)

m

=

Pn
i=1 yi + (m� n)µ(t+ 1

2)

m

�
2(t+1)

:= �
2(t+

1
2)

In general, assume that there are S parameters in a model. If we just want to update 1 parameter in each CM

step, we totally have S! di↵erent orders to implement the CM steps. You may be interested in whether the order

a↵ects the performance of the parameter estimation. van Dyk and Meng [1997] mentioned that the order that

the CM-steps are performed is trivial to change and generally a↵ects how fast the algorithm converges and it

is impossible to find an ”optimal” order choosing or grouping-choosing rule that will be universally applicable,

which means the order of performing CM steps a↵ecting the performance of the parameter estimation.

2. The Multi-cycle Expectation Conditional Expectation (MCECM) Algorithm MCECM algo-

rithm is an extension of ECM algorithm. In the ECM algorithm, E step is just performed once before all the

CM steps. But, in the MCECM algorithm, E step is performed before each CM step. Meng and Rubin [1993]

mentioned that in some cases, the computation of an E-step may be much cheaper than computation of the

CM-steps. Performing an E-step before each CM-step may result in larger increases in likelihood function L

per iteration since Q is being updated more often. This is the reason why MCECM may be a better extension

of ECM.

Suppose there are S CM steps in each iteration. In MCECM, since E step is performed before each CM step

and a cycle is defined by one E step followed by one CM step, where each iteration involves S cycles. This

is how multi-cycle Expectation Conditional Expectation is named. More precisely, multi-cycle Expectation

Conditional Expectation (MCECM) algorithm at the sth of iteration t+ 1 is defined as follows:

E-step: The E step of the MCECM algorithm in the sth cycle of iteration t + 1 is to compute the expected

value of l(✓ | ycomp = (x,Z)) given the observed data x, and the parameter estimate in the (s � 1)th cycle

✓(t+
s�1
S):

Q(✓ | ✓(t+
s�1
S)) := E[l(✓ | x,Z) | ✓(t+

s�1
S)

,x]

CM-step: The M step of the MCECM algorithm in the sth cycle of iteration t + 1 is to choose ✓(t+
s
S) to

maximize Q(✓ | ✓(t+ s�1
S)) which is subject to the constraint gs(✓) = gs(✓(t+

s�1
S)), or equivalently, the ✓(t+

s
S)

is defined as

✓(t+
s
S) := argmax✓ Q(✓ | ✓(t+

s�1
S))

subject to gs(✓) = gs(✓
(t+ s�1

S))

where G = {gs(✓), s = 1, ..., S} is a set of S preselected functions. Thus, ✓(t+
s
S) satisfies

Q(✓(t+
s
S) | ✓(t+

s�1
S)) � Q(✓ | ✓(t+

s�1
S)) for all ✓ 2 {✓ 2 ⇥ : gs(✓) = gs(✓

(t+ s�1
S))}. (2.1.11)

where ⇥ is parameter space.

In the final Sth cycle of the (t + 1)th iteration, the value ✓(t+
S
S) = ✓(t+1), is taken to be the input on the

(t+ 2)th iteration.

From Equation (2.1.11), we know that in the sth cycle of MCECM,

Q(✓(t+
s
S) | ✓(t+

s�1
S)) � Q(✓(t+

s�1
S) | ✓(t+

s�1
S)).

2.1 Parameter Estimation Techniques 11

In the Section 2.1.2 from Equation (2.1.9), we have mentioned that EM algorithm monotonically increases the

likelihood function, because Q(✓new | ✓old) � Q(✓old | ✓old) results in L(✓new | x) � L(✓old | x). Therefore,

this inequality leads to

L(✓(t+
s
S) | x) � L(✓(t+

s�1
S) | x).

Hence, the multi cycle ECM algorithm monotonically increases the likelihood function L, after each cycle.

Because each iteration consists of S cycles, likelihood function L also increases in each iteration.

3. The Expectation/Conditional Maximisation Either (ECME) ECME is another extension of ECM

algorithm proposed by Liu and Rubin [1994]. They found that this extension is nearly always faster the both

the EM and ECM algorithms in terms of the number of iterations. The full name of the ECME algorithm is Ex-

pectation/Conditional Maximisation Either. McLachlan and Krishnan [2007] explained that the ”either” refers

to the fact that, some or all of the CM-steps of the ECM algorithm are replaced by steps that conditionally

maximize the actual incomplete-data log likelihood function and not the Q function. Therefore, in the ECME

algorithm, each CM step either maximizes the conditional expectation of the complete data log likelihood Q

or the actual log likelihood function l(✓ | x) from Equation (2.1.1), subject to the same constraints G on ✓ like

in the ECM algorithm.

More precisely, the Expectation/Conditional Maximisation Either (ECME) algorithm at iteration t+ 1 is de-

fined as follows:

E-step: The E step in the classic EM algorithm, the ECM algorithm and the ECME algorithm are exactly

the same. Compute the expected value of l(✓ | ycomp = (x,Z)) given the observed data x, and the current

parameter estimate ✓(t):

Q(✓ | ✓(t)) := E[l(✓ | x,Z) | ✓(t),x]

The M step in the ECME algorithm is replaced by S > 1 steps. Here, we suppose that, in the first (S � 1)

steps, the conditional expectation of the complete data log likelihood is maximised and in the last step, the

actual log likelihood function l(✓ | x) from Equation (2.1.1) is maximised.

CM-steps with conditional expectation: At the sth CM-step of the (t + 1)th iteration, ✓(t+
s
S) is chosen

to maximize Q(✓ | ✓(t)) which is subject to the constraint gs(✓) = gs(✓(t+
s�1
S)), or equivalently, the ✓(t+

s
S) is

defined as
✓(t+

s
S) := argmax✓ Q(✓ | ✓(t))

subject to gs(✓) = gs(✓
(t+ s�1

S))

where G = {gs(✓), s = 1, ..., S � 1} is a set of S � 1 preselected functions. Thus, ✓(t+
s
S) satisfies

Q(✓(t+
s
S) | ✓(t)) � Q(✓ | ✓(t)) for all ✓ 2 {✓ 2 ⇥ : gs(✓) = gs(✓

(t+ s�1
S))}. (2.1.12)

where ⇥ is parameter space.

After (S � 1) CM steps with conditional expectation have been performed, the actual log likelihood function

l(✓ | x) from Equation (2.1.1) will be maximised in the Sth step.

CM-step with actual log likelihood:

✓(t+
S
S) := argmax✓ l(✓ | x)

subject to gS(✓) = gS(✓
(t+S�1

S))

where gS is a preselected function. Thus, ✓(t+
s
S) satisfies

l(✓(t+
S
S) | x) � l(✓ | x) for all ✓ 2 {✓ 2 ⇥ : gS(✓) = gS(✓

(t+S�1
S))}. (2.1.13)

12 2 THEORETICAL BACKGROUND

In the final CM-step of the (t + 1)th iteration, the value ✓(t+
S
S) = ✓(t+1), is taken to be the input on the

(t+ 2)th iteration.

From Equation (2.1.13), we know that

l(✓(t+
S
S) | x) � l(✓(t+

S�1
S) | x)

=) L(✓(t+
S
S) | x) � L(✓(t+

S�1
S) | x). (2.1.14)

From Equation (2.1.12), we know that

=) Q(✓(t+
S�1
S) | ✓(t)) � Q(✓(t+

S�2
S) | ✓(t))

� Q(✓(t+
S�3
S) | ✓(t))

...

� Q(✓(t) | ✓(t))

From Equation (2.1.9) in the Section 2.1.2 that each EM step monotonically increases the likelihood function,

we have

L(✓(t+
S�1
S) | x) � L(✓(t) | x). (2.1.15)

Combining Equation (2.1.14) and (2.1.15), we have

L(✓(t+1) | x) � L(✓(t) | x).

We can conclude that the likelihood function monotonically increases in each iteration for the ECME algorithm.

2.2 Optimization

In this section, the method of Lagrange multipliers for solving optimization problem is introduced. This strat-

egy is needed to solve the analytical solution for mixture model by using EM algorithm in the later section.

For the case of only one constraint and only two choice variables, consider the optimization problem

maximize over (x, y) 2 R2 : m(x, y)

subject to : n(x, y) = 0

The Lagrangian function is defined by

L(x, y,�) = m(x, y)� �n(x, y)

where � is called Lagrange multiplier. The optimization problem can be solved by getting the solution of the

equation:

rx,y,�L(x, y,�) = 0

Example 2.2.1 (Optimization problem with single constraint)

Suppose we want to maximize m(x, y) = x+y subject to the constraint x2+y
2 = 1. Formally, the optimization

problem can be expressed as
maximize over (x, y) 2 R2 : x+ y

subject to : x2 + y
2 = 1

For the method of Lagrange multipliers, the constraint n(x, y) is

n(x, y) = x
2 + y

2 � 1 = 0.

So, we have the Lagrangian function

L(x, y,�) = m(x, y)� �n(x, y)

= x+ y + �(x2 + y
2 � 1).

2.3 Copulas 13

Now, we can calculate the gradient:

rx,y,�L(x, y,�) =
✓
@L
@x

,
@L
@y

,
@L
@�

◆

= (1 + 2�x, 1 + 2�y, x2 + y
2 � 1)

We set the gradient to 0 and we have a system of equations:

8
>><

>>:

1 + 2�x = 0

1 + 2�y = 0

x
2 + y

2 � 1 = 0

By the first two equations, we have

x = y = � 1

2�
, � 6= 0

Substituting into the last equation we have:

1

4�2
+

1

4�2
� 1 = 0

=) � = ± 1p
2

So, the stationary points, such that function’s derivative is zero, of L are
 p

2

2
,

p
2

2
,� 1p

2

!
and

�
p
2

2
,�
p
2

2
,
1p
2

!
.

Plugging in the stationary points to the objective function f(x, y) yields

f

 p
2

2
,

p
2

2

!
=
p
2 and f

�
p
2

2
,�
p
2

2

!
= �
p
2.

Thus the constrained maximum is
p
2 and the constrained minimum is �

p
2.

In the Figure 2.2.1, this shows you the illustration of the constrained optimization problem. The colourful

plane represents function m(x, y) = x+y. The colour near warm colour, like red, the value of m(x, y) is higher.

The colour near cold colour, like blue, the value of m(x, y) is lower. Also, the black circle on the ground is the

function x
2 + y

2 = 1. Therefore, the black circle inside the colour plane shows the value of m(x, y) subject to

the constraint x
2 + y

2 = 1. When the coordinate is
⇣p

2
2 ,

p
2
2 ,� 1p

2

⌘
, the value of m(x, y) reaches the highest

value in the black circle and when the coordinate is
⇣
�

p
2
2 ,�

p
2
2 ,

1p
2

⌘
, the value of m(x, y) reaches the lowest

value in the black circle.

2.3 Copulas

We know that if (Z1, Z2) follows a bivariate Gaussian distribution, Z1 and Z2 also follow univariate Gaussian

distributions. How about the only if situation ? If Z1 and Z2 both follow univariate Gaussian distributions, does

(Z1, Z2) follows a bivariate Gaussian distribution ? The answer is no, because we don’t know the dependency

between Z1 and Z2. Bivariate Gaussian distribution is a common and symmetric distribution which allows

us to have a symmetric dependency, that the value of Z1 is larger (smaller) and the value of Z2 has higher

chance to get larger (smaller) and vice versa. However, in the real world cases, it is not always reasonable to

fit the data with a Gaussian distribution. What if the case of asymmetric dependency or the variables don’t

follow normal distribution ? Copulas are flexible distribution functions which are more suitable to model data

with particular or special distribution, especially for those distributions with asymmetric dependency between

variables. Therefore, in this section, we are going to introduce the concept of copulas and vine copulas and the

definitions and theories presented will follow Czado [2019]. Also, the related proofs are mostly skipped.

14 2 THEORETICAL BACKGROUND

Figure 2.2.1: Illustration of the constrained optimization problem in Example 2.2.1

2.3.1 Concept of Copulas

Copula is a special multivariate distribution function and the marginal distribution of each variable for a Cop-

ula is uniform on the interval [0, 1]. Here is the definition of the Copula and its density:

Definition 2.3.1 (Copula and copula density)

A d-dimensional copula C is a multivariate distribution function

C : [0, 1]d ! [0, 1]

with uniformly distributed marginals and it is given by

C(u1, ..., ud) := P (U1 u1, ..., Ud ud)

where U1, U2, ..., Ud are the variables uniformly distributed. The corresponding copula density denote by c can

be obtained by partial di↵erentiation, i.e.

c(u1, ..., ud) :=
@
d

@u1...@ud
C(u1, ..., ud) for all u in [0, 1]d

Example 2.3.1 (Independence Copula and Comonotonicity copula)

Independence Copula

Let U1, U2, ..., Ud be independent and random variables follow uniform distribution on [0, 1]. The independence

Copula is

C(u1, u2, ..., ud) = P (U1 u1, ..., Ud ud)

= P (U1 u1) · · ·P (Ud ud)

= u1u2 · · ·ud.

2.3 Copulas 15

Figure 2.3.1: The scatter plot of the 500 data generated from independence copula (left) and comonotonicity

copula (right)

Comonotonicity Copula

Let U1, U2, ..., Ud be completely dependent that U1 = U2 = · · · = Ud. The comonotonicity copula is

C(u1, u2, ..., ud) = P (U1 u1, ..., Ud ud)

= P (U1 u1, ..., U1 ud)

= P (U1 min{u1, u2, ..., ud})

= min{u1, u2, ..., ud}.

The illustations of the bivariate independence copula and bivariate comonotonicity copula are shown in the

Figure 2.3.1.

If we want to model the dependence among random variables using Copula, we need to transform the random

variables to uniformly distributed first. For this, we use the probability integral transform:

Definition 2.3.2 (Probability integral transform)

Let X be a continuous random variable following distribution function F and x is an observed value of X, then

the transformation u := F (x) is called the Probability integral transform (PIT) at x. Furthermore, the random

variable X ⇠ F after probability integral transform follows uniform distribution, such that U := F (X), since

P (U u) = P (F (X) u) = P (X F
�1(u)) = F (F�1(u)) = u

We suppose that X = (X1, ..., Xd)T is a d-dimensional continuous random variable and the corresponding

marginal distribution functions are Fj , such that Xj ⇠ Fj , j = 1, ..., d. We can construct so called copula data

(U1, ..., Ud) which is uniformly distributed by using probability integral transform, such that

(U1, ..., Ud) = (F1(X1), ..., Fd(Xd)).

The resulting data is called as in u-scale or copula-scale.

Normally, we don’t know the distribution of the data we have. We use the empirical distribution function

instead to construct the Copula data:

Definition 2.3.3 (Empirical distribution function)

16 2 THEORETICAL BACKGROUND

Let x1, ..., xn be an i.i.d. sample from a distribution function F , then the empirical distribution function is

defined as

F̂ (x) :=
1

n+ 1

nX

i=1

1{xix} for all x,

where F̂ is also called estimated marginal distributions.

Assume that we have the data {(xi1, xi2, i = 1, .., n)}. We can transform the data to the copula data by using

the estimated marginal distributions F̂j , j = 1, 2:

(ui1, ui2) := (F̂1(xi1), F̂2(xi2)) for i = 1, ..., n. (2.3.1)

Now, we are going to show an important theory called Sklar’s Theorem by Sklar [1959] that we can construct

the multivariate distribution of X1, X2, ..., Xd by the marginal distributions Fj(x) and the copula C.

Definition 2.3.4 (Sklar’s Theorem)

Let X be a d-dimensional random vector with joint distribution function F and marginal distribution function

Fi, i = 1, ..., d, then the joint distribution function can be expressed as

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd))

with associated density or probability mass function

f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))f1(x1)...fd(xd)

for some d-dimensional copula C with copula density c. For absolutely continuous distributions, the copula

C is unique. The inverse also holds: the copula corresponding to a multivariate distribution function F with

marginal distribution functions Fi for i = 1, ..., d can be expressed as

C(u1, ..., ud) = F (F�1
1 (u1), ..., F

�1
d (ud)) (2.3.2)

and its copula density or probability mass function is determined by

c(u1, ..., ud) =
f(F�1

1 (u1), ..., F
�1
d (ud))

f1(F
�1
1 (u1)...fd(F

�1
d (ud))

Using the inverse of Sklar’s Theorem (2.3.2), bivariate Gaussian copula and bivariate Student’s t copula be-

longing to elliptical copulas can be constructed easily.

Example 2.3.2 (Bivariate Gaussian copula)

The bivariate Gaussian copula can be constructed by using the bivariate normal distribution with zero mean

vector, unit variances, and correlation ⇢, and the inverse of Sklar’s Theorem (2.3.2). It is given by

C(u1, u2; ⇢) := �2(�
�1
1 (u1),�

�1
1 (u2); ⇢)

where �(·) is the distribution function of a standard normal N(0, 1) distribution and �2(·, ·; ⇢) is the bivariate

normal distribution function with zero means, unit variances, and correlation ⇢.

Example 2.3.3 (Bivariate Student’s t copula)

The bivariate Student’s t copula can be constructed by using the bivariate Student’s t distribution with v

degrees of freedom, zero mean, and correlation ⇢, and the inverse of Sklar’s Theorem (2.3.2). It is given by

C(u1, u2; v, ⇢) := T2,v(T
�1
v (u1), T

�1
v (u2); v, ⇢)

where Tv(·) is the the distribution function of Student’s t with degrees of freedom v and T2,v(·, ·; v, ⇢) is the

the bivariate Student’s t distribution function with degrees of freedom v and correlation ⇢.

2.3 Copulas 17

Now, we would like to introduce other well known copulas called bivariate Archimedean copulas not belonging

to elliptical copulas. The copulas are not constructed by using the inverse of Sklar’s Theorem (2.3.2) and the

definition of bivariate Archimedean copulas is shown in the following:

Definition 2.3.5 (Bivariate Archimedean copulas)

Let ⌦ be the set of all continuous, strictly monotone decreasing, and convex functions ' : I ! [0,1] with

'(1) = 0. Let ' 2 ⌦, then

C(u1, u2) = '
[�1]('(u1) + '(u2))

is a copula. C is called a bivariate Archimedean copula with generator '. Is '(0) =1, the generator is called

strict. Here '[�1] is the pseudo-inverse of ', which is defined as '[�1] : [0,1]! [0, 1] with

'
[�1](t) :=

8
<

:
'
�1(t) , 0 t '(0)

0 ,'(0) t 1

By choosing the suitable generator ', bivariate Archimedean copulas can be structured and some examples

of parametric bivariate Archimedean copulas with a single parameter are shown in the Example 2.3.4 For the

Archimedean copulas with two parameters, please refer to Czado [2019] for more details.

Example 2.3.4 (Parametric bivariate Archimedean copulas with a single parameter)

Bivariate Clayton copula

The bivariate Clayton copula is given by

C(u1, u2; �) := (u��
1 + u

��
2 � 1)�

1
�

where the parameter of dependence � 2 (0,1) and the generator function ' is given by

'(x) =
1

�
(x�� � 1),

Bivariate Gumbel copula

The bivariate Gumbel copula is given by

C(u1, u2; �) := exp

n
�
⇥
(�log(u1))

� + (�log(u2))
�
⇤ 1

�

o

where the parameter of dependence � 2 [1,1] and the generator function ' is given by

'(x) = (�log(x))�

Bivariate Frank copula

The bivariate Frank copula is given by

C(u1, u2; �) := �
1

�
log

✓
1 +

(exp(��u1)� 1)(exp(��u2)� 1)

exp(��)� 1

◆

where the parameter of dependence � 2 R/{0} and the generator function ' is given by

'(x) = �log(exp(��x)� 1

exp(��)� 1
),

Bivariate Joe copula

The bivariate Joe copula is given by

C(u1, u2; �) := 1� ((1� u1)
� + (1� u2)

� � (1� u1)
�(1� u2)

�)
1
�

where the parameter of dependence � 2 [1,1] and the generator function ' is given by

'(x) = �log(1� (1� x)�)

18 2 THEORETICAL BACKGROUND

You may find that the parameters of dependence in elliptical copulas and Archimedean copulas are di↵erent.

In the Gaussian copula and Student’s t copula, parameters of dependence is correlation ⇢ 2 [�1, 1]. But, in

the Archimedean copulas, the parameters of dependence are di↵erent and they have even di↵erent domains.

In order to make the parameters of dependence consistent in di↵erent copulas for better comparison, we would

like to introduce another measure for the dependency between two variables called Kendall rank correlation co-

e�cient or Kendall’s tau that we can use this measure only to represent the dependency for each of the copulas.

Definition 2.3.6 (Kendall’s tau)

The Kendall’s ⌧ between the continuous random variables X1 and X2 is defined as

⌧(X1, X2) = P ((X11 �X21)(X12 �X22) > 0)� P ((X11 �X21)(X12 �X22) < 0),

where (X11, X12) and (X21, X22) are independent and identically distributed copies of (X1, X2).

Definition 2.3.7 (Concordant, discordant and extra pairs)

Let (X1, X2) be two continuous random variables and {xi1, xi2, i = 1, ..., n} are the corresponding samples.

Then, (xj1, xj2) and (xk1, xk2) are called concordant pairs when

(xj1 � xk1)(xj2 � xk2) > 0,

and called discordant pairs when

(xj1 � xk1)(xj2 � xk2) < 0,

and called extra x1 pair or extra x2 pair when

xj1 = xk1 or xj2 = xk2

Definition 2.3.8 (Estimate of Kendall’s tau)

Let Nc be the number of concordant pairs, Nd be the number of discordant pairs, N1 be the number of extra x1

pairs, and N2 be the number of extra x2 pairs of random sample xi1, xi2, i = 1, ..., n from the joint distribution

of (X1, X2). Then an estimate of Kendall’s ⇢ is given by

⌧̂ =
Nc �Ndp

Nc +Nd +N1 ⇥
p
Nc +Nd +N2

The properties and interpretation way for Pearson correlation ⇢ and Kendall’s ⌧ are quite similar and they are

shown in the following: (1) The value of Kendall’s ⌧ is between -1 and 1. (2) ⌧ = 1 indicates a perfect positive

monotonous relation between two variables. (3) ⌧ = 0 indicates a perfect positive monotonous relation. (4)

⌧ = �1 indicates a perfect negative monotonous relation. (5) If two variables are independent, ⌧ = 0, but the

reverse does not always hold.

We have mentioned that Kendall’s tau can be used solely to represent the dependency for each of the copulas.

Also, Table 2.3.1 shows the relationship between Kendall’s ⌧ and copula parameters for di↵erent bivariate

copula.

Example 2.3.5 (Simulation of the copula data for single parameter copula families)

In the Example 2.3.5, the scatter plots of 500 data simulated from 6 introduced bivariate copulas with single

parameter for di↵erent dependency levels are shown in Figure 2.3.2. Kendall’s tau ⌧ = 0.2, ⌧ = 0.5 and ⌧ = 0.8

represent the weak, middle and strong dependency level respectively. For the weak dependency level (⌧ = 0.2),

the scatter plots look like independence copula, whose Kendall’s tau is 0. As the dependency level increases,

2.3 Copulas 19

Table 2.3.1: Kendall’s ⌧ and copula parameters for di↵erent bivariate copula families with single parameter

and Student’s t copula

Family Kendall’s ⌧ Range of ⌧

Gaussian ⌧ = 2
⇡arcsin(⇢) [-1,1]

Student’s t ⌧ = 2
⇡arcsin(⇢) [-1,1]

Gumbel ⌧ = 1� 1
� [0,1]

Clayton ⌧ = �
�+2 [0,1]

Frank ⌧ = 1� 4
� + 4D1(�)

� with D1(�) =
R �
o

x/�
ex�1dx (Debye function) [-1,1]

Joe
⌧ = 1 +

⇣
�2+2�+2ln(2)+ (1

�)+ (
2+�
2�)+�

�2+ (�)

⌘

[0,1]
with Euler constant � = 0.57721 and digamma function (x)

the tail dependencies for each copula can be observed easier. We can see that Gaussian, Student’s t and Frank

are copulas with symmetric tails and Clayton, Gumbel and Joe are copulas with asymmetric tails. For stronger

dependency level (⌧ = 0.5 or 0.8), we can see the tail dependence easier and we will talk about this later after

the introduction of tail dependence coe�cient.

Definition 2.3.9 (Upper and lower tail dependence coe�cient)

Suppose we have continuous random X1 and X2 with marginal distributions F1 and F2 respectively. The upper

tail dependence coe�cient of a bivariate distribution with copula C is defined as

�
upper = lim

t!1�
P (X2 > F

�1
2 |X1 > F

�1
1) = lim

t!1�

1� 2t+ C(t, t)

1� t

and the lower tail dependence coe�cient is

�
lower = lim

t!0+
P (X2 F

�1
2 |X1 F

�1
1) = lim

t!0+

C(t, t)

t

Tail dependence coe�cient is a measure for the dependency level between extreme values of two random vari-

ables. We say random variables (X1, X2) are upper tail dependent when �upper > 0 and upper tail independent

when �upper = 0. Similarly, �lower
> 0 means lower tail dependent and �lower = 0 means lower tail indepen-

dent. For example, for strong upper tail dependence between random variables (X1, X2), we can expect that

when the value of X1 is very large, very likely the value of X2 is very large too.

The Table 2.3.2 shows you the tail dependence coe�cients of di↵erent bivariate copula families in terms of their

copula parameters. We can know that Student’s t copula is tail dependent and Clayton copula is upper tail

dependent and lower tail independent and so on. The result is quite consistent to the corresponding scatter

plots in Figure 2.3.2. For example, for Clayton, there are quite a lot of points around the value 0 of u1 and u2

in the lower tail. Compared to the lower tail, there are just a few point around the value 1 in the upper tail.

Therefore, Clayton copula is upper tail dependent and not lower tail dependent.

In the Table 2.3.1, you may notice that for some of the copula families, just the positive value of the Kendall’s

tau is well defined, for example, Gumbel, Clayton and Joe which are asymmetric copulas. Therefore, we would

like to define rotated copulas which allow us to model negative correlation between two variables for those

asymmetric copulas.

Definition 2.3.10 (Rotated Copulas)

The counterclockwise rotations of the copula density c(u1, u2) are given by

20 2 THEORETICAL BACKGROUND

(a) Gaussian, ⌧=0.2 (b) Gaussian, ⌧=0.5 (c) Gaussian, ⌧=0.8

(d) Student’s t, ⌧=0.2, v=3 (e) Student’s t, ⌧=0.5, v=3 (f) Student’s t, ⌧=0.8, v=3

(g) Clayton, ⌧=0.2 (h) Clayton, ⌧=0.5 (i) Clayton, ⌧=0.8

2.3 Copulas 21

(j) Gumbel, ⌧=0.2 (k) Gumbel, ⌧=0.5 (l) Gumbel, ⌧=0.8

(m) Frank, ⌧=0.2 (n) Frank, ⌧=0.5 (o) Frank, ⌧=0.8

(p) Joe, ⌧=0.2 (q) Joe, ⌧=0.5 (r) Joe, ⌧=0.8

Figure 2.3.2: Scatter plots of the 500 data simulated from di↵erent copulas with single parameter for weak

(⌧=0.2), middle (⌧=0.5) and strong (⌧=0.8) dependence.

22 2 THEORETICAL BACKGROUND

Table 2.3.2: Tail dependence coe�cients of di↵erent bivariate copula families with single parameter

Family Upper tail dependence Lower tail dependence

Gaussian 0 0

Student’s t 2tv+1

⇣
�
p
v + 1

q
1�⇢
1+⇢

⌘
2tv+1

⇣
�
p
v + 1

q
1�⇢
1+⇢

⌘

Gumbel 2-21/� 0

Clayton 0 2�1/�

Frank 0 0

Joe 2-21/� 0

• 90 degrees : c90(u1, u2) = c(1� u2, u1)

• 180 degrees : c180(u1, u2) = c(1� u1, 1� u2)

• 270 degrees : c270(u1, u2) = c(u2, 1� u1)

After defining the rotated copulas, we can for example extend the Clayton copula to a copula with a full range

of Kendall’s tau values by defining

c
extended
clayton (u1, u2; ⌧) :=

8
<

:
cclayton(u1, u2) , if ⌧ > 0

cclayton,90(u1, u2) or cclayton,270(u1, u2) , if ⌧ 0

Example 2.3.6 (Simulation of the rotated copula data for Clayton)

In the Example 2.3.6, the scatter plots of 500 data simulated from Clayton and its rotated copulas with

Kendall’s tau (⌧ = 0.8) are shown in the Figure 2.3.3.

After the introduction of the characteristics of di↵erent bivariate copulas, now we would like to talk about the

parameter estimation for bivariate copula models. Assume that we have the copula data u = {(ui1, ui2), i =

1, .., n} following bivariate copula C with parameter ✓. Then, we can use maximum likelihood estimation

(MLE) introduced in Section 2.1.1 to estimate the parameter of the copula C. The likelihood function is given

by

l(✓;u) =
nY

i=1

c(ui1, ui2; ✓),

and the estimated parameter can be found by maximizing the likelihood. The maximum likelihood estimator

✓̂MLE is given by

✓̂MLE = argmax✓2⇥

nY

i=1

c(ui1, ui2; ✓).

where c is the density function of the copula C and ⇥ denotes the parameter space.

From the Definition (2.3.4) (Sklar’s Theorem), we know that we can construct the multivariate distribution

by the marginal distributions and the copula and we know how to fit the bivariate copula data by a bivariate

copula. Now, the question is whether we can fit the data with three dimension by bivariate copulas, or even

higher dimension data. Luckily, a multivariate density function can be decomposed into di↵erent pair copulas

and marginal distributions. Therefore, the answer is feasible. Now, we will start with some definitions used in

the pair copula decomposition in three dimensions.

Definition 2.3.11 (Conditional densities and distribution functions of bivariate distribution)

2.3 Copulas 23

(a) Clayton, ⌧=0.8, 0
�
rotation (b) Clayton, ⌧=0.8, 90

�
rotation

(c) Clayton, ⌧=0.8, 180
�
rotation (d) Clayton, ⌧=0.8, 270

�
rotation

Figure 2.3.3: Scatter plots of the 500 data simulated from Clayton copula and its rotated copulas for ⌧ = 0.8.

24 2 THEORETICAL BACKGROUND

The conditional density and distribution function of X1 given X2 = x2 can be rewritten as

f1|2(x1|x2) = c12(F1(x1), F2(x2))f1(x1)

F1|2(x1|x2) =
@

@u2
C12(F1(x1), u2)|u2=F2(x2)

=
@

@F2(x2)
C12(F1(x1), F2(x2))

= C1|2(F1(x1), F2(x2)) = C1|2(u1|u2)

where C1|2(u1|u2) =
@
@u2

C12(u1, u2).

Definition 2.3.12 (Simplifying assumption)

When the simplifying assumption is satisfied, the copula density associated with the conditional distribution

of (X1, X3) given X2 = x2 is given by for any x2 2 R

c1,3;2(u1, u3;x2) = c1,3;2(u1, u3) for u1 2 [0, 1], u3 2 [0, 1].

Theorem 2.3.13 (A pair copula construction in three dimensions)

Let X1, X2 and X3 be random variables. The density function and marginal distribution are denoted as fi and

Fi respectively and the conditional distribution function of Xi given Xj is denoted by Fi|j . Their joint density

is given by f(x1, x2, x3). Suppose that the simplifying assumption for copulas in the Definition (2.3.12) holds.

A pair copula construction of an arbitrary three dimensional density is given as following recursions:

f(x1, x2, x3) = c1,3;2(F1|2(x1|x2), F3|2(x3|x2))⇥ c2,3(F2(x2), F3(x3))

⇥ c1,2(F1(x1), F2(x2))f3(x3)f2(x2)f1(x1)

where c1,3;2 denotes the copula density associated with the conditional distribution of (X1, X3) given X2 = x2.

From this construction we see that the joint three dimensional density can be expressed in terms of bivariate

copulas and conditional distribution functions. However this construction is not unique, since

f(x1, x2, x3) = c1,2;3(F1|3(x1|x3), F2|1(x2|x2))⇥ c1,3(F1(x1), F3(x3))

⇥ c2,3(F2(x2), F3(x3))f3(x3)f2(x2)f1(x1)

and
f(x1, x2, x3) = c2,3;1(F2|1(x2|x1), F3|1(x3|x1))⇥ c1,3(F1(x1), F3(x3))

⇥ c1,2(F1(x1), F2(x2))f3(x3)f2(x2)f1(x1)

are two di↵erent construction.

Theorem 2.3.14 (Pair copula construction of a joint parametric density in three dimensions)

A parametric pair copula construction in three dimensions specifies a three dimensional density with copula

parameter vector ✓ = (✓1,2, ✓2,3, ✓1,2;3)T modelling the dependence and marginal densities and distributions are

given by fj , Fj , j = 1, 2, 3 respectively with marginal parameter vector � = (�1, �2, �3)T .

f(x1, x2, x3) = c1,3;2(F1|2(x1|x2; �1, �2, ✓1,2), F3|2(x3|x2; �3, �2, ✓2,3); ✓1,3;2)

⇥ c2,3(F2(x2; �2), F3(x3; �3); ✓2,3)

⇥ c1,2(F1(x1; �1), F2(x2; �2), ; ✓1,2) f3(x3; �3) f2(x2; �2) f1(x1; �1)

where c1,3;2(·, ·; ✓1,3;2), c1,2(·, ·; ✓1,2), c2,3(·, ·; ✓2,3) are arbitrary parametric bivariate copula densities.

2.3 Copulas 25

2.3.2 Vine Copulas

In the last section, we have introduced some basic concepts of the copula and the characteristics of di↵erent

bivariate copulas. Also, we have shown that a distribution with 3 variables can be constructed by using bivari-

ate copulas only and importantly, the construction is not unique. Therefore, we would like to introduce vine

copulas which use tree structure in graph theory to represent the particular pair copula construction in higher

dimensions. [Czado, 2019]

Here shows you the related definitions of the vine copula and the definitions presented follow Czado [2019] :

Definition 2.3.15 (Regular (R-) vine tree sequence)

The set of trees V = (T1, ..., Td�1) is a regular vine tree sequence on d elements if:

(1) Each tree Tj = (Nj , Ej) is connected, i.e. for all nodes a, b 2 Tj , j = 1, ..., d � 1, there exists a path

n1, ..., nk ✓ Nj with a = n1, b = nk.

(2) T1 is a tree with node set N1 = {1, ..., d} and edge set E1.

(3) For j 2, Tj is a tree with node set Nj = Ej�1 and edge set Ej .

(4) For j = 2, ..., d� 1 and {a, b} 2 Ej it must be hold that |a \ b| = 1.

Remark 2.3.16 (Proximity condition)

The property (4) in the Definition (2.3.15) is called the proximity condition. It ensures that if there is an edge

e connecting a and b in tree Tj , j � 2, then a and b (which are edges in Tj�1) must share a common node in Tj�1.

Definition 2.3.17 (Complete union and conditioned sets)

For any edge e 2 Ei define the set

Ae := {j 2 N1 | 9e1 2 E1, .., ei�1 2 Ei�1 such that j 2 e1 2 ... 2 ei�1 2 e}.

The set Ae is called the complete union of the edge e. The conditioning set De of an edge e = {a, b} is defined

by

De := Aa \Ab

and the conditioned sets Ce,a and Ce,b are given by

Ce,a := Aa \De, Ce,b := Ab \De and Ce := Ce,a [Ce,b.

We often abbreviate each edge e = (Ce,a, Ce,b;De) in the vine tree sequence by

e = (ea, eb;De).

Definition 2.3.18 (Regular vine distribution)

The joint distribution F for the d dimensional random vector X = (X1, ..., Xd) has a regular vine distribution,

if we can specify a triplet (F ,V,B) such that:

(1) Marginal distributions: F = (F1, ..., Fd) is a vector of continuous invertible marginal distribution func-

tions, representing the marginal distribution functions of the random variable Xi, i = 1, ..., d.

(2) Regular vine tree sequence: V is an R-vine tree sequence on d elements.

26 2 THEORETICAL BACKGROUND

(3) Bivariate copulas: The set B = {Ce|e 2 Ei; i = 1, ..., d� 1}, where is a symmetric bivariate copula with

density. Here Ei is the edge set of tree Ti in the R-vine tree sequence V.

(4) Relationship between R-vine tree sequence V and the set B of bivariate copulas: For each e 2
Ei, i = 1, .., d � 1, e = [a, b], Ce is the copula associated with the conditional distribution of XCe,a and

XCe,b given XDe = xDe . Further Ce(., .) does not depend on the specific value of xDe .

Definition 2.3.19 (Pair copula and copula density associated with edge e)

We will denote the copula Ce corresponding to edge e by CCe,aCe,b;De and the corresponding density by

cCe,aCe,b;De , respectively. This copula is also called a pair copula.

Definition 2.3.20 (Existence of a regular vine distribution)

Assume that (F ,V,B) satisfy the properties (1)–(3) of the Definition (2.3.18), then there is a unique d dimen-

sional distribution F with density

f1,..,d(x1, ..., xd) = f1(x1) · · · fd(xd)
d�1Y

i=1

Y

e2Ei

cCe,aCe,b;De(FCe,a|De
(xCe,a |xDe), FCe,b|De

(xCe,b |xDe)),

such that for each e 2 Ei, i = 1, ..., d � 1, with e = {a, b} we have for the distribution function of XCe,a and

XCe,b given XDe = xDe

FCe,aCe,b|De
(xCe,a , xCe,b |xDe) = Ce(FCe,a|De

(xCe,a |xDe), FCe,b|De
(xCe,b |xDe)).

Further the one dimensional marginal distributions of F are given by Fi(xi), i = 1, ..., d. The proof is skipped

here. For more details, please refer to Bedford and Cooke [2002] and Czado [2019].

Example 2.3.7 (3-dimensional vine copula)

In the Figure 2.3.4, the vine tree sequence V has two tree level T1 and T2. The node set N1 = {1, 2, 3} and the

edge set E1 = {{2, 1}, {1, 3}} are contained in the first tree T1. In the Definition (2.3.15) (3), we know that for

second tree T2, the node set N2 = E1. Therefore, in the second tree level, the node set N2 is {{2, 1}, {1, 3}}.
According to the Definition (2.3.17), we can know the edge set of the second tree E2 = {{2, 3; 1}}. The reason

is in the following: Since Aa = {1, 2} and Ab = {1, 3}, the conditioning set De = {1}. The conditioned sets

Ce,a and Ce,b are {2}, {3} respectively. Therefore, the edge E2 can be represent by {{2, 3; 1}}.

In the first tree T1, the number of nodes is the number of the variables of the density function. In our case, we

have 3 nodes because we construct a 3 dimensional density. Also, the number inside the node represents the

corresponding variable, for example, 2 means X2 and 3 means X3. According to the Definition (2.3.18) (4),

the edge between two nodes represents the pair copula associated with the corresponding nodes. For example,

the edge 2,1 in the first tree represents the copula density c1,2 (or c2,1). You can observe that the edge set in

the vine copula is exactly the same as the subscript of the copula density c2,3;1, c1,3 and c1,2. So, each pair

copula construction can be represented by a particular vine tree structure.

By the Definition (2.3.20), the following pair copula construction of a 3 dimensional density

f(x1, x2, x3) = c2,3;1(F2|1(x2|x1), F3|1(x3|x1))⇥ c1,3(F1(x1), F3(x3))

⇥ c1,2(F1(x1), F2(x2))f3(x3)f2(x2)f1(x1)

can be represented by the vine copula tree structure in the Figure 2.3.4.

2.4 Mixture Models 27

Figure 2.3.4: An example of 3-dimensional vine copula

2.4 Mixture Models

To ease the explanation, we discuss the ECM algorithm and each CM steps just updates 1 parameter ✓ by maxi-

mization with respect to ✓, with all other parameters held fixed. In total, we have S CM steps for each iteration.

In the previous Section 2.3, we have introduced copulas for data modelling with more flexibility. But, including

simple Gaussian distribution, they are uni-modal distributions that there is only one peak (single highest value)

in the probability density function. But in reality, more often the data that we are trying to model follows

multi-modal distribution that there appears more than one peaks in the distribution.

Example 2.4.1 (Distribution of Exam Scores)

Suppose a teacher gives a test to his class. Some of the students studied very hard, while some of them didn’t

study at all. After marking the exam, the teacher creates a histogram of the test scores. It follows a multi-modal

distribution with one peak around low scores for the students who studied a lot and another peak around high

scores for the students who didn’t study in the Figure 2.4.1. We can clearly see that there are two bell shapes

in the histogram. The data can probably be modelled by two normal distributions with di↵erent means and

variances. We refer to such a model as a mixture of Gaussian. In general, it is called mixture model if

the data can be modelled in terms of a mixture of several components, where each component has a simple

parametric form.

2.4.1 Mixture Model Formulation and Parameter Estimation

Formally, a general mixture model with K components for a random vector X = (X1, ..., Xp)T has a density

given by

f(x | ⌘) =
KX

k=1

⇡kfk(x | k) (2.4.1)

with the mixture weights ⇡k satisfying ⇡k � 0 for all k and
PK

k=1 ⇡k = 1. The probability density function

fk(x | k) with the parameter k is called the k
th mixture component of the mixture density f(x | ⌘),

and ⇡k is called the mixing proportion. The parameters in a general mixture model are denoted as ⌘ =

{ 1, ..., K ,⇡1, ...,⇡K} 2 ⇥ where ⇥ denotes the parameter space.

Example 2.4.2 (Mixture of univariate Gaussian distributions)

The Figure 2.4.2 shows an example of a mixture using univariate Gaussian distribution with 3 components and

its probability density function is in the following:

f(x | ⌘) = 0.2 f1(x | �2, 0.5) + 0.3 f2(x | 1, 2) + 0.5 f3(x | 4, 1)

28 2 THEORETICAL BACKGROUND

Figure 2.4.1: A histogram of test scores. It is clearly a multimodal distribution with two peaks, also called

bi-modal distribution.

where fk(x | µk,�k
2) denotes as a normal density with mean µk and variance �k2 and is given by

fk(x | µk,�k
2) =

1

�k

p
2⇡

e
�(x�µk)

2/2�2
k for k = 1, 2, 3.

Intuitively, for each sample, there is a probability with 0.2 generated from a Gaussian with mean -2 and variance

0.5, a probability with 0.3 generated from a Gaussian with mean 1 and variance 2 and a probability with 0.5

generated from a Gaussian with mean 4 and variance 1.

Assuming that X = [x1,x2, ...,xn] 2 Rp⇥n is a data matrix with n columns i.i.d. observations generated from

the mixture model given in Equation (2.4.1). We are going to estimate the parameters ⌘ by the observations

xi using maximum likelihood estimation. The likelihood function of the n observations is given by

L(⌘ | x) :=
nY

i=1

f(xi | ⌘).

Then, the log-likelihood function can be expressed as

l(⌘ | x) := ln

nY

i=1

f(xi | ⌘)
!

=
nX

i=1

ln

KX

k=1

⇡kfk(xi | k)

!
.

The problem of parameter estimation for mixture model can be formulated as

max
⌘2⇥

l(⌘ | x) =
nX

i=1

ln

KX

k=1

⇡kfk(xi | k)

!

subject to ⇡k � 0 8k and
KX

k=1

⇡k = 1

(2.4.2)

The di�culty of solving this optimization problem is to maximize the summation inside the logarithm of

objective function. Unfortunately, there is no analytical solution for this optimization problem (2.4.2) by

simply taking the derivatives and setting to 0. However, if you don’t want to solve it numerically, the good

news is that we still may get a closed-form solution by using the EM algorithm.

2.4 Mixture Models 29

Figure 2.4.2: An example of a univariate mixture of Gaussian model with 3 components. red dashed line:

density of N (�2, 0.5). Green dashed line: density of N (1, 2). Blue dashed line: density of N (4, 1). Black line:

density of the Gaussian mixture.

The EM algorithm cannot be applied to solve the mixture model directly. On the contrary, EM algorithm

handles this issue by introducing the latent variables. In mixture model, each sample just can be generated

by 1 component, but we don’t know which component. So, we regard the mixture components as the latent

variable z, which is not observable.

Example 2.4.3 (Distribution of exam scores (continued))

In the Example 2.4.1, we know the test scores of all students. However, we cannot randomly pick a score and

know whether it is from a hard-working student. So, the students who studied so hard and the students who

didn’t study at all are latent variables.

Suppose that the number of component K in the mixture model is known and define a random variable Z =

(Z1, ..., Zk)T 2 RK , that each Zk 2 {0, 1} and only one of the element is equal to one and the others are zero.

Intuitively, Z is somehow like a state variable to record which component is taken for that sample. For the only

component we take, we set it to be 1, while others are set to be 0. The probability of choosing component k is

the mixing proportion ⇡k. Therefore, Z follows a multinomial distribution over K category with the probability

of the mixing proportion ⇡ = (⇡1, ...,⇡K) and exactly 1 trail, such that Z ⇠ Multinomial(⇡1, ...,⇡K). Recall

that the probability mass function for multinomial random variable is

p(z) =
n!

z1! · · · zk!
p1

z1 · · · pkzk ,

supported on z = (z1, z2, ..., zk) where each zi is a non-negative integer and their sum is n. In our case, n is

1 and zk! = 1 8k, where zk = {0, 1}. Thus, we can write the probability P (Z = z) = p(z) as

p(z) = ⇡1
z1 · · ·⇡kzk =

KY

k=1

⇡k
zk .

And suppose that the conditional density of X at x given the latent vector Z = ek 2 Rk is fk(x | k) in

Equation (2.4.1), such that

p(x | Z = ek) = fk(x | k) (2.4.3)

30 2 THEORETICAL BACKGROUND

where ek denotes the k
th column K ⇥ K identity matrix and Equation (2.4.3) can be also written as

p(x | z) =
KY

k=1

f(x | k)
zk .

Thus, the joint probability mass function of X and Z is

p(x, z) = p(z)p(x | z) =
KY

k=1

⇡
zk
k f(x | k)

zk .

Example 2.4.4 (Mixture of univariate Gaussian distributions (continued))

In Example 2.4.2, the latent variables Z, the random samples X and their distributions can be expressed as in

the following expression:

Z = (Z1, Z2, Z3) ⇠Multinomial(0.2, 0.3, 0.5) =) p(z) = (0.2)z1(0.3)z2(0.5)z3

X | z = (1, 0, 0) ⇠ N (�2, 0.5) =) p(x | z = (1, 0, 0)) = fN (x | �2, 0.5)

X | z = (0, 1, 0) ⇠ N (1, 2) =) p(x | z = (0, 1, 0)) = fN (x | 1, 2)

X | z = (0, 0, 1) ⇠ N (4, 1) =) p(x | z = (0, 0, 1)) = fN (x | 4, 1)

p(x | z) = (fN (x | �2, 0.5))z1(fN (x | �2, 0.5))z2(fN (x | �2, 0.5))z3 .

p(x, z) = p(z)p(x | z) = (0.2fN (x | �2, 0.5))z1(0.3fN (x | �2, 0.5))z2(0.5fN (x | �2, 0.5))z3

where the red, green and blue dashed lines in the Figure 2.4.2 represent component 1, 2 and 3 respectively.

After introduction of the latent variable Z, we now have a new joint distribution for X1, ...,Xn and their

latent variable vector Z1, ...,Zn. As the latent variable Z is unobservable, the complete data is (z,x) and the

incomplete data is x. In the EM algorithm, we want to maximize the log-likelihood function of the complete

data. The likelihood of the complete data is given by

L(⌘ | x, z) :=
nY

i=1

p(xi, zi) =
nY

i=1

KY

k=1

⇡
zik
k f(xi | k)

zik ,

where zik represents the k
th element of zi = (zi1, ..., z

i
K). Again the latent variables are collected in a vector

z = (zt
1, ..., z

t
n)

t.So that, the log-likelihood can be written as

l(⌘ | x, z) :=
nX

i=1

ln(p(xi, zi)) =
nX

i=1

KX

k=1

zik ln(⇡kf(xi | k)).

After getting the log-likelihood function, the following EM steps can be implemented:

E-step: Computes the expected value of l(⌘ | x,Z) given the observed data x and the current parameter

estimate ⌘old. So that,

Q(⌘ | ⌘old) = E[l(⌘ | x,Z) | ⌘old,x]

=
nX

i=1

KX

k=1

E[Zik | ⌘old,x] ln(⇡kf(xi | k)).

where ⌘old = { 1, ..., K ,⇡1, ..,⇡K} is the parameter values at current iteration and E[ln(⇡kf(xi | k)) |
⌘old,x] = ln(⇡kf(xi | k)) since E[f(X) | X] = f(X). We denote the expectation of the latent variable given

2.4 Mixture Models 31

the samples as rik and we have

E[Zik | ⌘old,x] := r
old
ik = 1 p(Zik = 1 | xi) + 0 p(Zik = 0 | xi) = p(Zik = 1 | xi)

= p(Zi = ek | xi)

=
p(Zi = ek,xi)

p(xi)

=
p(Zi = ek)p(xi | Zi = ek)PK
j=1 p(Z = ej)p(xi | Zi = ej)

=
⇡
old
k f(xi | old

k)
PK

j=1 ⇡
old
j f(xi | old

j)
for i = 1, ..., n and k = 1, ...,K (2.4.4)

where ⇡old
, old are the parameters values at current iteration. Thus,

Q(⌘ | ⌘old) =
nX

i=1

KX

k=1

r
old
ik ln(⇡kf(xi | k)) (2.4.5)

M-step: The updated parameters ⌘new can be obtained by maximizing Q(⌘ | ⌘old) with respect to ⌘:

⌘new := argmax⌘ Q(⌘ | ⌘old).

subject to ⇡k � 0 8k and
KX

k=1

⇡k = 1
(2.4.6)

In mixture model, the optimization problem is subject to some constraints with ⇡. To get ⇡k, the maximiza-

tion cannot be achieved simply by taking the derivatives with respect to the parameters ⇡k and then set to

zero. Here, we use the method of Lagrange multipliers introduced in the Section 2.2 to solve this optimization

problem with constrains.

For the optimization problem (2.4.6), the Lagrangian function is given by

L =
nX

i=1

KX

k=1

r
old
ik ln(⇡kf(xi | k)) + �(

KX

k=1

⇡k � 1)

Taking the derivatives with respect to ⇡k and then set to 0:

@L
@⇡k

=

Pn
i=1 r

old
ik

⇡k
+ � = 0

⇡k can be solved as

⇡k = �
Pn

i=1 r
old
ik

�
.

Then, taking the derivatives with respect to � and then set to 0:

@L
@�

=
KX

k=1

⇡k � 1 = 0

KX

k=1

⇡k = 1 (2.4.7)

Plugging in ⇡k = �
PN

i=1 roldik

� in Equation (2.4.7):

KX

k=1

�
PN

i=1 r
old
ik

�

!
= 1

�
KX

k=1

NX

i=1

r
old
ik = � (2.4.8)

32 2 THEORETICAL BACKGROUND

Plugging in the expression for roldik in Equation (2.4.8):

�
KX

k=1

nX

i=1

⇡
old
k f(x | ✓oldk)

PK
j=1 ⇡

old
j f(x | ✓oldj)

!
= �

() �
NX

i=1

1 = �

() � = �n

Thus, we showed that updated mixing proportions are given by

⇡k =

Pn
i=1 r

old
ik

n
for k = 1, ...,K (2.4.9)

About updating the remaining parameters, new
t is the root of the following equation by setting the values of

the partial derivatives to zero.

nX

i=1

KX

k=1

r
old
ik

@ ln f(xi | k)

@ t
= 0 for t = 1, ...,K (2.4.10)

A wonderful characteristic of the EM algorithm is that the solution of Equation (2.4.10) often exists in analytic.

Gaussian mixture model is one of the example and it will be demonstrated in detail in the next Section 2.4.2.

Other than the EM or ECM algorithm, we have introduced two more extensions called MCECM and ECME

in the Section 2.1.3. Because the steps for the extension are quite similar to the EM or ECM algorithm, in

order to avoid content repetition, we will introduce them with the example of GMM in the next Section 2.4.2.

2.4.2 Multivariate Gaussian Mixture Models (GMM)

In this section, we are going to show you the parameter estimation for GMM by the EM algorithm and its

extensions. We follow the approaches introduced in Section 2.3.1, since the GMM is just a special case of

mixture models and specifying the probability density function f(x | k) in Equation (2.4.1) as multivariate

normal density at x 2 Rp. As mentioned before, the analytic of GMM exists in the M-step also.

Recalling that the probability density function of multivariate normal distribution with mean µ 2 Rp and

covariance matrix ⌃ 2 Rp⇥p is:

f(x | k) = fN (x | µ,⌃) =

✓
1

(2⇡)k|⌃|

◆ 1
2

exp

✓
�1

2
(x� µ)T⌃�1(x� µ)

◆
(2.4.11)

Based on Equation (2.4.1), a Gaussian mixture model with K components can be written as

p(x | ⌘) =
KX

k=1

⇡k fN (x | µk,⌃k)

with the ⇡k � 0, 8k and
PK

k=1 ⇡k = 1. The parameters in the Gaussian mixture model is collected in ⌘ =

{⇡1, ...,⇡K ,µ1, ...,µK ,⌃1, ...,⌃K} 2 ⇥ where ⇥ denotes the parameter space. Now, we can make use of the

derived expressions in E and M steps in the previous section.

E-step: From Equation (2.4.5), we can get the expected value of l(⌘ | x,Z) given the observed data x and

the current parameter estimate ⌘old denoted as Q(⌘ | ⌘old).

Q(⌘ | ⌘old) =
nX

i=1

KX

k=1

r
old
ik ln(⇡kfN (xi | µk,⌃k))

where the expectation of the latent variable given the samples denoted as roldik is given by Equation (2.4.4) and

we have

r
old
ik =

⇡
old
k fN (xi | µold

k ,⌃
old
k)

PK
j=1 ⇡

old
j fN (xi | µold

j ,⌃old
j)

for i = 1, ..., n and k = 1, ...,K (2.4.12)

2.4 Mixture Models 33

M-step: The updated parameters ⌘new can be obtained by maximizing Q(⌘ | ⌘old) with respect to ⌘, where

⌘ = {⇡1, ...,⇡K ,µ1, ...,µK ,⌃1, ...,⌃K}.

⌘new := argmax⌘

nX

i=1

KX

k=1

r
old
ik ln(⇡kfN (xi | µk,⌃k))

!
.

subject to ⇡k � 0 8k and
KX

k=1

⇡k = 1

(2.4.13)

The mixing proportion ⇡k is found in Equation (2.4.9) and it is

⇡k =

Pn
i=1 r

old
ik

n
for k = 1, ...,K (2.4.14)

We can now update the remaining parameters µj , j = 1, ...,K by taking the first derivatives of Q(⌘ | ⌘old)
with respect to µj and set to zero. Then, we have

nX

i=1

KX

k=1

r
old
ik

@ ln fN (xi | µk,⌃k)

@µj
= 0 ()

nX

i=1

r
old
ij

1

fN (xi | µj ,⌃j)

@fN (xi | µj ,⌃j)

@µj
= 0 ()

nX

i=1

r
old
ij

fN (xi | µj ,⌃j)

fN (xi | µj ,⌃j)

@(� 1
2 (xi � µj)T⌃

�1
j (xi � µj))

@µj
= 0 ()

nX

i=1

r
old
ij

@((xi � µj)T⌃
�1
j (xi � µj))

@(xi � µj)
= 0

Since @wTAw
@w = 2Aw if w doesn’t depend on A and A is symmetric and ⌃

�1
k is symmetric, we have

nX

i=1

r
old
ij 2⌃�1

j (xi � µj) = 0

nX

i=1

r
old
ij (xi � µj) = 0

nX

i=1

r
old
ij xi �

nX

i=1

r
old
ij µj = 0

µj =

Pn
i=1 r

old
ij xiPn

i=1 r
old
ij

for j = 1, ...,K (2.4.15)

Similarly, for ⌃j ,

nX

i=1

KX

k=1

r
old
ik

@ ln fN (xi | µk,⌃k)

@⌃j
= 0

nX

i=1

KX

k=1

r
old
ik

@

@⌃j

✓
�1

2
ln |⌃k|�

1

2
(xi � µk)

T
⌃

�1
k (xi � µk)

◆
= 0

Since @ ln |A|
@A = A�1 if A is a symmetric matrix, ABC = tr(BCA) if ABC is a scalar and we know

(xi � µk)T⌃
�1
k (xi � µk) is a scalar, we have

nX

i=1

r
old
ij ⌃

�1
j +

nX

i=1

KX

k=1

r
old
ik

@

@⌃j

�
tr(⌃�1

k (xi � µk)(xi � µk)
T
�
= 0

34 2 THEORETICAL BACKGROUND

Since @tr(A�1xxT)
@A = �A�1xxTA�1 if A is a symmetric matrix, we have

nX

i=1

r
old
ij ⌃

�1
j �

nX

i=1

r
old
ij

�
⌃

�1
j (xi � µj)(xi � µj)

T
⌃

�1
j

�
= 0

nX

i=1

r
old
ij �

nX

i=1

r
old
ij ⌃

�1
j (xi � µj)(xi � µj)

T = 0

⌃j =

Pn
i=1 r

old
ij (xi � µj)(xi � µj)TPn

i=1 r
old
ij

for j = 1, ...,K (2.4.16)

For simplicity, the steps for the EM or ECM algorithm at a single iteration can be summarised as follows :

EM or ECM E step :

rij =
⇡jfN (xi | µj ,⌃j)PK

J=1 ⇡JfN (xi | µJ ,⌃J)
for i = 1, ..., n and j = 1, ...,K

EM or ECM CM step 1:

⇡j =

Pn
i=1 rij

n
for j = 1, ...,K

EM or ECM CM step 2:

µj =

Pn
i=1 rijxiPn
i=1 rij

for j = 1, ...,K

EM or ECM CM step 3:

⌃j =

Pn
i=1 rij(xi � µj)(xi � µj)TPn

i=1 rij
for j = 1, ...,K

Now, we would like to show you the steps of the parameter estimation for GMM by the MCECM algorithm.

Recalling that in MCECM, E step is performed before each CM step and a cycle is defined by one E step

followed by one CM step, where each iteration involves S cycles. Because there are total 3 di↵erent parameters

for each cluster in GMM, each iteration includes 3 cycles. Also, each cycle contains one E step and one M step.

More precisely, the steps for the MCECM algorithm at a single iteration are defined as follows (Because of

the high similarity, we can mostly make use of the expressions derived in the GMM algorithm for EM algorithm):

Cycle 1

MCECM E step 1: The E step of the MCECM algorithm is the same as the EM or ECM algorithm. From

the Equation (2.4.12), the expectation of the latent variable rij is given by

rij =
⇡jfN (xi | µj ,⌃j)PK

J=1 ⇡JfN (xi | µJ ,⌃J)
for i = 1, ..., n and j = 1, ...,K

MCECM CM step 1: The CM step 1 of the MCECM algorithm is the same as maximizing Q(⌘ | ⌘old) with
respect to ⇡k for the optimization problem (2.4.13). From the Equation (2.4.14), the mixing proportion ⇡j is

given by

⇡j =

Pn
i=1 rij

n
for j = 1, ...,K

Cycle 2

MCECM E step 2: This E step is exactly the same as MCECM E step 1. The only di↵erence is that the

mixing proportion ⇡j used in the calculation of the rij is updated in the CM step 1.

rij =
⇡jfN (xi | µj ,⌃j)PK

J=1 ⇡JfN (xi | µJ ,⌃J)
for i = 1, ..., n and j = 1, ...,K

MCECM CM step 2: Similarly, the CM step 2 of the MCECM algorithm is the same as maximizing

Q(⌘ | ⌘old) with respect to µj for the optimization problem (2.4.13). From the Equation (2.4.15), the mean µj

is given by

µj =

Pn
i=1 rijxiPn
i=1 rij

for j = 1, ...,K

2.4 Mixture Models 35

Cycle 3

MCECM E step 3: This E step is exactly the same as MCECM E step 2. Similarly, the only di↵erence is

that the mean µj used in the calculation of the rij is updated in the CM step 2.

rij =
⇡jfN (xi | µj ,⌃j)PK

J=1 ⇡JfN (xi | µJ ,⌃J)
for i = 1, ..., n and j = 1, ...,K

MCECM CM step 3: Similarly, the CM step 3 of the MCECM algorithm is the same as maximizing

Q(⌘ | ⌘old) with respect to ⌃j for the optimization problem (2.4.13). From the Equation (2.4.16), the mixing

proportion ⌃j is given by

⌃j =

Pn
i=1 rij(xi � µj)(xi � µj)TPn

i=1 rij
for j = 1, ...,K

Finally, the steps of the parameter estimation for GMM by the ECME algorithm will be introduced here. Re-

calling that the assumption for the ECME algorithm made in the Section 2.1.3, the di↵erence between ECME

and ECM algorithms is that in the last CM step in ECME, the actual log likelihood function l(⌘ | x) from

Equation (2.1.1) is maximised. More precisely, the steps for the ECME algorithm at a single iteration are

defined as follows (Because of the high similarity, we can mostly make use of the expressions derived in the

GMM algorithm for EM algorithm):

ECME E step : The E step of the ECME algorithm is the same as the EM or ECM algorithm. From the

Equation (2.4.12), the expectation of the latent variable rij is given by

rij =
⇡jfN (xi | µj ,⌃j)PK

J=1 ⇡JfN (xi | µJ ,⌃J)
for i = 1, ..., n and j = 1, ...,K

ECME CM step 1: The CM step 1 of the ECME algorithm is the same as maximizing Q(⌘ | ⌘old) with

respect to ⇡j for the optimization problem (2.4.13). From the Equation (2.4.14), the mixing proportion ⇡j is

given by

⇡j =

Pn
i=1 rij

n
for j = 1, ...,K

ECME CM step 2: Similarly, the CM step 2 of the ECME algorithm is the same as maximizing Q(⌘ | ⌘old)
with respect to µj for the optimization problem (2.4.13). From the Equation (2.4.15), the mean µj is given by

µj =

Pn
i=1 rijxiPn
i=1 rij

for j = 1, ...,K

ECME CM step 3: This step is the only di↵erence with EM or ECM algorithm, because the actual log

likelihood function l(✓ | x) from Equation (2.1.1) is maximised with respect to ⌃j here, such that

max
⌃j

l(⌘ | x) =
nX

i=1

ln

KX

k=1

⇡kfN (xi | µk,⌃k)

!
for j = 1, ...,K

Because there is no analytic solution to maximise this actual log likelihood function, we have to get the solution

numerically.

2.4.3 Vine Copula Mixture Models (VCMM)

In the Section 2.3, we have shown that copulas are more flexible distribution functions and therefore are more

suitable to model complex data with clusters. In this section, we are going to extend the mixture model with

the pair copula density and show you the parameter estimation for the vine copula mixture models (VCMM)

by the EM algorithm and its extensions. For this section, we mainly follow Sahin and Czado [2021].

For simplicity, we would like to start with the vine copula mixture model formulation for 3 dimensions and 2

components as an example. From Equation (2.4.1), a mixture model with 2 components for a random vector

X = (X1, X2, X3)T has a density given by

f(x | ⌘) = ⇡1f1(x | 1) + ⇡2f2(x | 2) (2.4.17)

36 2 THEORETICAL BACKGROUND

(a) Component 1 (b) Component 2

Figure 2.4.3: Vine copula model of the density functions in the mixture model with two components

with the mixture weights ⇡1,⇡2 satisfying ⇡1,⇡2 � 0 and ⇡1 + ⇡2 = 1. The parameters in the mixture model

are denoted as ⌘ = { 1, 2,⇡1,⇡2}.

An example taken from Sahin and Czado [2021], suppose that the 3 dimensional density function f1, f2 in the

mixture model can be constructed by pair copulas and follow the vine copula model in the Figure 2.4.3.

According to the Definition 2.3.26, the pair copula construction of the density of component 1 f1 with the

corresponding copula parameter ✓ and the marginal parameter � is given as:

f1(x | 1) = c(1)2,3;1(F(1)2|1(x2|x1;�2(1),�1(1),✓(1)1,2), F(1)3|1(x3|x1;�3(1),�1(1),✓(1)1,3);✓(1)2,3;1)

⇥ c(1)1,2(F1(1)(x1;�1(1)), F2(1)(x2;�2(1));✓(1)1,2)

⇥ c(1)1,3(F1(1)(x1;�1(1)), F2(1)(x3;�3(1));✓(1)1,3)

⇥ f3(1)(x3;�3(1)) f2(1)(x2;�2(1)) f1(1)(x1;�1(1))

(2.4.18)

where the subscript (1) refers to the second component marker, ✓(1)1,2,✓(1)1,3,✓(1)2,3;1 are the parameters

for the copula density c(1)1,2, c(1)1,3, c(1)2,3;1 respectively, �1(1),�2(1),�3(1) are the parameters for the marginal

density f1(1), f2(1), f3(1) and marginal distribution F1(1), F2(1), F3(1) respectively. Also, 1 = (�1,✓1), where

�1 = (�1(1),�2(1),�3(1)) and ✓1 = (✓(1)1,2,✓(1)1,3,✓(1)2,3;1).

Similarly, the pair copula construction of the density of component 2 f2 with the corresponding copula parameter

✓ and the marginal parameter � is given as:

f2(x | 2) = c(2)1,2;3(F(2)1|3(x1|x3;�1(2),�3(2),✓(2)1,3), F(2)2|3(x2|x3;�2(2),�3(2),✓(2)2,3);✓(2)1,2;3)

⇥ c(2)2,3(F2(2)(x2;�2(2)), F3(2)(x3;�3(2));✓(2)2,3)

⇥ c(2)1,3(F1(2)(x1;�1(2)), F3(2)(x3;�3(2));✓(2)1,3)

⇥ f3(2)(x3;�3(2)) f2(2)(x2;�2(2)) f1(2)(x1;�1(2))

(2.4.19)

where the subscript (2) refers to the first component marker, ✓(2)1,3,✓(2)2,3,✓(2)1,2;3 are the parameters for

the copula density c(2)1,3, c(2)2,3, c(2)1,2;3 respectively, �1(2),�2(2),�3(2) are the parameters for the marginal

density f1(2), f2(2), f3(2) and marginal distribution F1(2), F2(2), F3(2) respectively. Also, 2 = (�2,✓2), where

�2 = (�1(2),�2(2),�3(2)) and ✓2 = (✓(2)1,3,✓(2)2,3,✓(2)1,2;3). Note that although we call ✓ as copula parameter,

we need this to determine conditional distribution function Fa|b, so the copula parameter is one of the param-

eters in Fa|b.

For more details about the formulation for the general vine copula mixture model, please refer to Sahin and

Czado [2021].

2.4 Mixture Models 37

Now, we need to use EM algorithm and its extension to estimate the following parameters: mixture weights ⇡,

copula parameter ✓ and marginal parameter � for two components. We start with ECM algorithm and make

use of the derived expressions in E and M steps in the previous section.

EM or ECM E-step: From Equation (2.4.5), we can get the expected value of l(⌘ | x,Z), denoted as

Q(⌘ | ⌘old), given the observed data x and the current parameter estimate ⌘old.

Q(⌘ | ⌘old) =
nX

i=1

2X

k=1

r
old
ik ln(⇡kfk(xi | k))

where the expectation of the latent variable given the samples denoted as roldik is given by Equation (2.4.4) and

we have

r
old
ik =

⇡
old
k fk(xi | old

k)
P2

j=1 ⇡
old
j fj(xi | old

j)
for i = 1, ..., n and k = 1, 2 (2.4.20)

For the M step, the updated parameters ⌘new can be obtained by maximizing Q(⌘ | ⌘old) with respect to ⌘,

where ⌘ = { 1, 2,⇡1,⇡2}, 1 = {�1,✓1} and 2 = {�2,✓2}

⌘new := argmax⌘

nX

i=1

2X

k=1

r
old
ik ln(⇡kfk(xi | k)

!
.

subject to ⇡1,⇡2 � 0 and ⇡1 + ⇡2 = 1

(2.4.21)

EM or ECM CM-step 1 (Mixture weights):

The mixing proportion ⇡k is found in Equation (2.4.9) and it is

⇡k =

Pn
i=1 r

old
ik

n
for k = 1, 2 (2.4.22)

EM or ECM CM-step 2 (Pair copula parameters): We now need to update the copula parameters ✓1,✓2
of the 2 components by maximizing Q(⌘ | ⌘old) with respect to ✓1,✓2 respectively.

✓j := argmax✓j

nX

i=1

2X

k=1

r
old
ik ln(⇡kfk(xi | �k,✓k)

!
for j = 1, 2 (2.4.23)

However, there is no analytic solution for the optimization problem (2.4.23). For this optimization, we can use

the R function RVineSeqMLE in the R package VineCopula to estimate the pair-copula parameters ✓1,✓2 by

using maximum likelihood estimation (MLE) with weights roldik (compare to Equation (2.4.23).

EM or ECM CM-step 3 (Marginal parameters): We now want to update the marginal parameters �1,�2
of the 2 components by maximizing Q(⌘ | ⌘old) with respect to �1,�2 respectively.

�j := argmax�j

nX

i=1

2X

k=1

r
old
ik ln(⇡kfk(xi | �k,✓k)

!
for j = 1, 2 (2.4.24)

Because there is no analytic solution for the optimization problem (2.4.24), we have to get the solution numer-

ically.

Now, we would like to show you the steps of the parameter estimation for VCMM by the MCECM algorithm.

Recalling that in MCECM, E step is performed before each CM step and a cycle is defined by one E step

followed by one CM step.

Cycle 1

MCECM E step 1: The E step of the MCECM algorithm is the same as the EM or ECM algorithm. From

the Equation (2.4.20), the expectation of the latent variable rij is given by

rik =
⇡
old
k fk(xi | old

k)
P2

j=1 ⇡
old
j fj(xi | old

j)
for i = 1, ..., n and k = 1, 2

38 2 THEORETICAL BACKGROUND

MCECM CM step 1 (Mixture weights): The CM step 1 of the MCECM algorithm is the same as

maximizing Q(⌘ | ⌘old) with respect to ⇡k for the optimization problem (2.4.21). From the Equation (2.4.22),

the mixing proportion ⇡j is given by

⇡j =

Pn
i=1 rij

n
for j = 1, 2

Cycle 2

MCECM E step 2: This E step is exactly the same as MCECM E step 1. The only di↵erence is that the

mixing proportion ⇡j used in the calculation of the rij is updated in the CM step 1.

rij =
⇡jfj(xi | j)P2

J=1 ⇡JfJ(xi | J)
for i = 1, ..., n and j = 1, 2

MCECM CM step 2 (Pair copula parameters): Similarly, the CM step 2 of the MCECM algorithm is

the same as maximizing Q(⌘ | ⌘old) with respect to ✓1,✓2 for the optimization problem (2.4.21). From the

Equation (2.4.23), the copula parameters ✓1,✓2 are given by

✓j := argmax✓j

nX

i=1

2X

k=1

rik ln(⇡kfk(xi | �k,✓k)
!

for j = 1, 2 (2.4.25)

Again, there is no analytic solution for the optimization problem (2.4.25). We again use the R function

RVineSeqMLE with specified weights in the R package VineCopula to estimate the pair-copula parameters ✓1,✓2.

Cycle 3

MCECM E step 3: Similarly, the E step is exactly the same as MCECM E step 2. The only di↵erence is

that the copula parameters ✓1,✓2 used in the calculation of the rij is updated in the CM step 2.

rij =
⇡jfj(xi | j)P2

J=1 ⇡JfJ(xi | J)
for i = 1, ..., n and j = 1, 2

where 1 = {�1,✓1} and 2 = {�2,✓2}.

MCECM CM step 3 (Marginal parameters): Similarly, the CM step 3 of the MCECM algorithm is

the same as maximizing Q(⌘ | ⌘old) with respect to �1,�2 for the optimization problem (2.4.21). From the

Equation (2.4.24), the marginal parameters �1,�2 are given by

�j := argmax�j

nX

i=1

2X

k=1

rik ln(⇡kfk(xi | �k,✓k)
!

for j = 1, 2 (2.4.26)

Because there is no analytic solution for the optimization problem (2.4.26), we have to get the solution numer-

ically.

Finally, the steps of the parameter estimation for VCMM by the ECME algorithm will be introduced here. Re-

calling that the assumption for the ECME algorithm made in the Section 2.1.3, the di↵erence between ECME

and ECM algorithms is that in the last CM step in ECME, the actual log likelihood function l(✓ | x) from

Equation (2.1.1) is maximised.

ECME E step : The E step of the ECME algorithm is the same as the EM or ECM algorithm. From the

Equation (2.4.20), the expectation of the latent variable rij is given by

rik =
⇡
old
k fk(xi | old

k)
P2

j=1 ⇡
old
j fj(xi | old

j)
for i = 1, ..., n and k = 1, 2

ECME CM step 1 (Mixture weights): The CM step 1 of the ECME algorithm is the same as maximizing

Q(⌘ | ⌘old) with respect to ⇡j for the optimization problem (2.4.21). From the Equation (2.4.22), the mixing

proportion ⇡j is given by

⇡j =

Pn
i=1 rij

n
for j = 1, 2

2.5 Clustering using Gaussian Mixture Models 39

ECME CM step 2 (Pair copula parameters): Similarly, because there is no analytic solution for the

optimization problem (2.4.25), we prefer using the R function RVineSeqMLE to estimate the pair-copula pa-

rameters. Theoretically, we want to update the copula parameters ✓1,✓2 of the 2 components by maximizing

Q(⌘ | ⌘old) with respect to ✓1,✓2 respectively.

✓j := argmax✓j

nX

i=1

2X

k=1

rik ln(⇡kfk(xi | �k,✓k)
!

for j = 1, 2

ECME CM step 3 (Marginal parameters): In the last CM step of the ECME, instead of maximizing

Q(⌘ | ⌘old), we here maximise the actual log likelihood function l(⌘ | x) from Equation (2.1.1) with respect to

the marginal parameters �1,�2, such that

�j := max
�j

l(⌘ | x) =
nX

i=1

ln

2X

k=1

⇡kfk(xi | �k,✓k)
!

for j = 1, 2

Because there is no analytic solution to maximise this actual log likelihood function l(⌘ | x), we have to get

the solution numerically.

2.5 Clustering using Gaussian Mixture Models

In this section, we would like to investigate how the parameters of the Multivariate Gaussian Mixture Model

(GMM) determine the shape of generated samples in each cluster in 3 dimensional space, especially the covari-

ance matrix ⌃. After that, the characteristics of Gaussian mixture models used in the R package mclust for

model-based clustering will be introduced.

2.5.1 Characteristics of clusters in model based Gaussian mixture modelling

In the Section 2.4.2, we know that the parameters of the GMM contain the mixture weight ⇡, mean µ and

covariance matrix ⌃. The mixture weight ⇡ decides the expected number of samples in each cluster, mean µ

decides the location of centre of each cluster, where Gaussian distribution is symmetric about the mean, and

covariance matrix ⌃ decides the level of dispersion or shape of the samples. Banfield and Raftery [1993] have

considered a parametrization of the covariance matrix in terms of its eigenvalue decomposition based on the

distribution, volume, shape and orientation of each component in the mixture model :

⌃k = �kDkAkDk
T
, (2.5.1)

where scalar �k defines the volume, rotation matrix Dk is an orthogonal matrix which defines its orientation

and shape matrix Ak is a diagonal matrix with determinant 1 which defines its shape. In the following, we will

illustrate how the values of each parameter a↵ect the shape of the generated samples.

Scalar �k

The value of �k decides the volume of each cluster. The larger the value is, the bigger the cluster is. The reason

behind is quite simple. If we consider �1 is 1 and DkAkDk
T is an identity matrix I3, the covariance matrix

⌃1 results in an identity matrix I3. Therefore, the variance of the generated samples in each coordinate axis

is the same with value 1. Because of the same dispersion level of the generated samples in each coordinate

axis, this results in a ball shape in the Figure 2.5.1. If we choose the value of �2 as 3, the covariance matrix

⌃2 results in 3I3 and the variance of the generated samples in each coordinate axis is larger. The generated

sample in cluster 2 has higher level of dispersion, so that the volume of cluster 2 is larger. The Figure 2.5.2

with a larger ball, compared to the Figure 2.5.1, proofs our statement.

Shape matrix Ak

As mentioned before, shape matrix Ak is a diagonal matrix with determinant 1 deciding its shape. In order to

illustrate the shapes with di↵erent values of Ak, suppose that the scalar �3 = 1, rotation matrix is D3 = I3

40 2 THEORETICAL BACKGROUND

Figure 2.5.1: The scatter plot and pairs plot of generated data from multivariate Gaussian distribution with

mean µ1 = [0, 0, 0]T , covariance matrix ⌃1 = I3

Figure 2.5.2: The scatter plot and pairs plot of generated data from multivariate Gaussian distribution with

mean µ2 = [0, 0, 0]T , covariance matrix ⌃2 = 3I3

2.5 Clustering using Gaussian Mixture Models 41

Figure 2.5.3: The scatter plot and pairs plot of generated data from multivariate Gaussian distribution with

mean µ3 = [0, 0, 0]T , covariance matrix ⌃3 =

2

64
1 0 0

0 3 0

0 0 1
3

3

75

and shape matrices A3 is

2

64
1 0 0

0 3 0

0 0 1
3

3

75 respectively. Therefore, ⌃3 is the same as A3. From ⌃3, we can know

that the variance of the generated samples is di↵erent for di↵erent coordinate axes. The higher the variance,

the more the spread of the data. Because the variance for x1, x2 and x3 axis are 1, 3 and 1
3 respectively, we

can expect that compared to the Figure 2.5.1, the generated samples spread the same level in x1 axis, more in

the x2 axis and less in x3 axis. In other words, the shape of the generated data along x2 axis is longer, along

x3 axis is shorter, so the shape becomes more elliptical, compared to the ball shape in the Figure 2.5.1. The

Figure 2.5.3 proofs our statement.

Rotation matrix Dk

The rotation matrix Dk determines the orientation of the corresponding shape. Di↵erent dimensional spaces

have their own rotation matrix. Because this paper mainly focuses on 3 dimensional space, just the 3 dimen-

sional rotation matrix will be introduced. Each 3D rotation matrix Dk can be decomposed further as

Dk = Dk
z(↵)Dk

y(�)Dk
x(�)

=

2

64
cos ↵ �sin ↵ 0

sin ↵ cos ↵ 0

0 0 1

3

75

2

64
cos � 0 sin �

0 1 0

�sin � 0 cos �

3

75

2

64
1 0 0

0 cos � �sin �
0 sin � cos �

3

75 .

where ↵,� and � represent yaw, pitch, and roll angles following the Figure 2.5.4 [Ellis et al., 2014]. Also,

0 degree means no orientation changes, because Dk
z(0),Dk

y(0),Dk
x(0) are just identity matrices. Positive

degrees mean the object rotates along the arrow and negative degrees mean the object rotates along the opposite

direction of the arrow.

Suppose that the scalar �4 = 1, shape matrixA4 is

2

64
1 0 0

0 3 0

0 0 1
3

3

75 and the rotation matrixD4 isD4
z(45�)D4

y(0)D4
x(0).

Compared to the Figure 2.5.3, we can expect that the volume and the shape are exactly the same, because

the scalar �4 and the shape matrix A4 are the same as �3 and A3 respectively. However, the orientation is

di↵erent because the rotation matrix D4 is D4
z(45�) and not an identity matrix. So, it is expected that the

generated samples will rotate about the yaw axis by 45 degrees anticlockwise, which is shown in the Figure 2.5.5.

42 2 THEORETICAL BACKGROUND

Figure 2.5.4: The position of all three axes for describing the angle of its rotations

Table 2.5.1: Table : The characteristics of the clusters in di↵erent models defined in the mclust package

Model Expression Distribution Volume Shape Orientation

EII �I Spherical Equal Equal -

VII �kI Spherical Variable Equal -

EEI �A Diagonal Equal Equal Coordinate axes

VEI �kA Diagonal Variable Equal Coordinate axes

EVI �Ak Diagonal Equal Variable Coordinate axes

VVI �kAk Diagonal Variable Variable Coordinate axes

EEE �DADT Ellipsoidal Equal Equal Equal

EVE �DAkDT Ellipsoidal Equal Variable Equal

VEE �kDADT Ellipsoidal Variable Equal Equal

VVE �kDAkDT Ellipsoidal Variable Variable Equal

EEV �DkADk
T Ellipsoidal Equal Equal Variable

VEV �kDkADk
T Ellipsoidal Variable Equal Variable

EVV �DkAkDk
T Ellipsoidal Equal Variable Variable

VVV �kDkAkDk
T Ellipsoidal Variable Variable Variable

After introduction of the relationship between the shape of the generated samples and the parameters in the

decomposition of the covariance matrix, we would like to introduce some models describing the di↵erence of

clusters in Gaussian mixture model. In the Table 2.5.1 [Scrucca et al., 2016], this shows you di↵erent charac-

teristics of the clusters in di↵erent models, which is used in the R package mclust for model-based clustering.

Because just models EEV, VEV, EVV and VVV will be used in the simulation, we just focus on these 4 models.

About the name of the Model, E means ”Equal” and U means ”Unequal” or ”Variable”. Also, the first, second

and the last alphabets represent Volume �k, Shape Ak and Orientation Dk respectively. Suppose that we have

a Gaussian mixture model EEV with 2 clusters. Those 2 clusters have the same volume and shape, but di↵erent

orientation. Therefore, the covariance matrix for cluster 1 and 2 can be represented by ⌃1 = �D1AD1
T and

⌃2 = �D2AD2
T respectively.

Example 2.5.1 (Visualization of simulated samples from the Gaussian Mixture Model EEV, VEV,

EVV and VVV)

In the Figure 2.5.6, scatter plots of the 1000 generated data for EEV, VEV, EVV and VVV of Gaussian mixture

2.5 Clustering using Gaussian Mixture Models 43

Table 2.5.2: The value of the parameters used in the visualization of simulated samples shown in the Figure

2.5.6.

Gaussian mixture model type

(a) EEV (b) VEV (c) EVV (d) VVV

⌃1
Covariance matrix

�D1AD1
T

�1D1AD1
T

�D1A1D1
T

�1D1A1D1
T

of component 1

⌃2
Covariance matrix

�D2AD2
T

�2D2AD2
T

�D2A2D2
T

�2D2A2D2
T

of component 2

⌃2
Covariance matrix

�D3AD3
T

�3D3AD3
T

�D3A3D3
T

�3D3A3D3
T

of component 3

�,�1
Scalar, Scalar

1 0.5 1 0.5
of component 1

�2
Scalar

- 2 - 2
of component 2

�3
Scalar

- 1 - 1
of component 3

D1
Rotation matrix

↵ = 0°,� = 0°, � = 0°
of component 1

D2
Rotation matrix

↵ = 45°,� = 0°, � = 0°
of component 2

D3
Rotation matrix

↵ = �45°,� = 0°, � = 0°
of component 3

A,A1

2

64
4 0 0

0 1
4 0

0 0 1

3

75

2

64
4 0 0

0 1
4 0

0 0 1

3

75

2

64
4 0 0

0 1
4 0

0 0 1

3

75

2

64
4 0 0

0 1
4 0

0 0 1

3

75
Shape matrix

of component 1

A2 - -

2

64
1 0 0

0 1 0

0 0 1

3

75

2

64
1 0 0

0 1 0

0 0 1

3

75
Shape matrix

of component 2

A3 - -

2

64
10 0 0

0 1
10 0

0 0 1

3

75

2

64
10 0 0

0 1
10 0

0 0 1

3

75
Shape matrix

of component 3

44 2 THEORETICAL BACKGROUND

Figure 2.5.5: The scatter plot and pairs plot of generated data from multivariate Gaussian distribution with

mean µ4 = [0, 0, 0]T , scalar �4 = 1, shape matrix A4 =

2

64
1 0 0

0 3 0

0 0 1
3

3

75

and rotation matrix D4 = D4
z(45�)

models are shown and the corresponding parameters used are based on the Table 2.5.2. Also, orange, green

and purple cluster represent the Custer 1,2 and 3 respectively. Figure 2.5.6 (a) EEV shows that the volume

and shape of those 3 clusters are quite similar, just the orientations are di↵erent. In the Figure 2.5.6 (b) VEV,

the shape of those clusters basically are the same as EEV, but the volumes are di↵erent. In the Figure 2.5.6

(c) EVV, the green cluster becomes a green ball and the purple cluster becomes more elliptical. Therefore, the

shapes for those clusters are di↵erent. In the Figure 2.5.6 (d) VVV, the shapes are basically the same as EVV,

but the volumes are di↵erent.

(a) EEV (b) VEV (c) EVV (d) VVV

Figure 2.5.6: Scatter plot of the 1000 generated data from the Clustering Gaussian mixture models (EEV,

EVV, VEV and VVV) in case of three groups in three dimensions assuming the specifications given in the

Table 2.5.2

2.5.2 Issues of singularity and clusters collapse in Gaussian mixture modelling for ECME

After the introduction of how the covariance matrix in the Multivariate Gaussian Mixture Model (GMM)

determine the shape of generated samples, in this section, we will try to investigate singularity and cluster

collapse issues that leads to error or spurious solutions (non-interesting solutions) after implementation of the

2.5 Clustering using Gaussian Mixture Models 45

ECME algorithm involving the maximization of the actual log-likelihood function. Firstly, we will introduce

the geometric meaning of eigenvalues of covariance matrix. After that, singularity and cluster collapse issues

will be introduced. Finally, a solution to avoid these issues will be given.

Geometric interpretation of the eigenvalues of covariance matrix

In the last Section 2.5.1, we have mentioned that the shape of the cluster depends fully on the shape matrix

A which is a diagonal matrix with determinant 1. Also, the values on the diagonal determine the variances of

the generated samples in di↵erent coordinate axes. If shape matrix A is an identity matrix I3, we can expect

that the shape of the generated samples is a sphere. If the shape matrix A is something else, we can expect

that it is like a ellipse or even a French loaf.

Other than the shape matrix A, there is another value showing the shape of the samples, which is eigenvalue.

Here is the definition of the eigenvalue : Let B be a square matrix (or linear transformation). A number b is

called an eigenvalue of B if there exists a non-zero vector u such that

Bu = bu (2.5.2)

where the vector u is called an eigenvector associated with this eigenvalue b. Now, we would like to find out

the eigenvalue a of a shape matrix A. Equation (2.5.2) can be written as

(A� bI)u = Au� bu = 0, (2.5.3)

and we know that b is an eigenvalue b when Equation (2.5.3) has a non-trivial solution. Therefore, Equation

(2.5.3) has a non-trivial solution when

det(A� bI) = 0.

In our case, as shape matrix A is a three dimensional diagonal matrix, we have

(a11 � b)(a22 � b)(a33 � b) = 0.

where a11, a22, a33 are the entries of the diagonal of shape matrix A. Solving this equation, we have the

eigenvalues b1, b2, b3
b1 = a11 or b2 = a22 or b3 = a33,

which means the eigenvalues of the shape matrix A are the diagonal entries of the shape matrix A. Therefore,

the eigenvalues are exactly the variances of the generated samples in di↵erent coordinate axes. Furthermore,

from Equation (2.5.1), with � = 1, we have

⌃ = DADT
,

which is a shape matrix A change after applying a rotation D to it. Not surprisingly, we expect that the

eigenvalues of DADT keep the same as A because just the orientation changes and the shape remains the

same. The proof is in the following: From Equation (2.5.2) and multiplying rotation matrix D on the right,

we have

DAu = bDu.

Because D�1D = I, we have
DAD�1Du = bDu

DAD�1(Du) = b(Du)

where the vector Du is the eigenvector associated with the eigenvalue b of DAD�1. Therefore, the eigenval-

ues remains the same after applying a rotation matrix. If the volume scalar � is not 1, the new eigenvalue of

⌃ = �DADT is �b. Because the volume scalar is applied to all the eigenvalues, the volume becomes bigger if

� > 1 and smaller if � < 1, but the shape remains the same.

Convergence at critical points for mixture modelling

In Section 2.1.3, we have introduced that ECME algorithm are iterative methods to estimate the covariance

46 2 THEORETICAL BACKGROUND

Figure 2.5.7: Illustration The global and local maximum (Left) and the saddle point (Right).

by maximizing the actual log-likelihood until convergence. Because there is no analytical solution there, it

is required to do optimization numerically. Normally, the optimization algorithm will coverage to the critical

point of the log-likelihood function which the derivative of the function is equal to zero. Actually, critical

points refer to the maximum and minimum and saddle point. Since the log-likelihood function in general can

be non-convex, it is common to have more than one maximum points, often a lot. In the Figure 2.5.7 (Left)

[Heal, 2020], it shows that a function can have more than one maximums.

However, some of the local maximums that the algorithm converges to may lead to the spurious solutions

which we don’t want. Also, the saddle point shown in the Figure 2.5.7 (Right) is a point which is not a local

maximum or minimum, but the derivative is zero. Although you may think that saddle point is not a problem

for the algorithm, because it seems like it is easy to find another point with higher value of log-likelihood, most

of the time, the algorithm is stuck at a saddle point and the value of log-likelihood stays the same. Based on

our stopping condition in Equation (2.1.4), the algorithm stops near the saddle point before they get to the

right solution.

Singularity issues in mixture modelling

One significant problem associated with the maximum likelihood and leading to error is the singularity issue.

In GMM, the singularity issue makes some eigenvalues of the covariance close to 0, such that the determinant of

the covariance is also close to 0. Here is the reason why this issue leads to an error: In the ECME algorithm, our

purpose is to maximize the actual likelihood or log-likelihood of the density. From Equation (2.4.11), we know

that the probability density function of multivariate normal distribution with mean µ 2 Rp and covariance

matrix ⌃ 2 Rp⇥p is

fN (x | µ,⌃) =

✓
1

(2⇡)k|⌃|

◆ 1
2

exp

✓
�1

2
(x� µ)T⌃�1(x� µ),

◆

and from the following theory: (Determinant is the product of eigenvalues) Let B be a n ⇥ n matrix and

�1, ...,�n be the eigenvalues of B, we have

det(B) = �1�2 · · ·�n. (2.5.4)

Obviously, if one of the eigenvalues �1, ...,�n tends to 0 for one suitable sample point x, |⌃| ! 0 too. As

we know that a singular square matrix whose determinant is 0 does not have a matrix inverse. Therefore,

if |⌃| ! 0, ⌃�1 may not exist and this will lead to an error. The Figure 2.5.8 [Bishop, 2006] shows you

the illustration of singularity issue in one dimension. We can see that there is a single data point fitted to a

2.5 Clustering using Gaussian Mixture Models 47

Figure 2.5.8: Illustration of singularity issue happens to Gaussian mixture model

Gaussian and the variance of the associated distribution Gaussian is very close to 0. When the variance is close

to 0, the inverse of the variance may not exist and it will lead to an error.

Clusters collapse issue in mixture modelling

Another problem associated with the maximum likelihood and leading to spurious solutions is the cluster col-

lapse issue. For two mixture components in a mixture model, clusters collapse issue is that the EM algorithm

converges at a saddle point leading to a non-interesting solution : The volume of one of the cluster shrinks to

almost 0, such that the determinant of covariance matrix is almost 0, because at least one of the eigenvalues

of the covariance is close to 0.

The Figure 2.5.9 shows you the illustration of the estimated clusters of Gaussian mixture model with the cluster

collapse issue. The dark red represents the contour plot of 95% confidence region and the black point represents

the mean of the cluster. We can see that the volume of the cluster like a straight line shrinks to almost 0 with

the eigenvalues of the covariance matrix 22.4, 1.43 and 8.29⇥ 10�16 and determinant of the covariance matrix

1.56 ⇥ 10�14, such that no sample points are classified to belong to this cluster. The covariance matrix of

the elliptical cluster is actually the covariance of all the sample points, because all the samples belong to this

cluster.

Solution for avoiding mentioned issues in simulation

After a brief introduction of singularity and cluster collapse issues, now, we would like to suggest a solution to

avoid these problems in simulation and explain the reason why it works.

In our simulation part, our purpose is to get the results from a certain amount of replications without singu-

larity and cluster collapse issues. Therefore, one of the method to solve this problem is to remove replications

which might have spurious solutions. [Dang et al., 2017]

The replication is removed when the following conditions are fulfilled:

�l(⌃
(t)
k) < 10�20 for l = 1, ..., d , t = 1, 2, 3, ... and k = 1, ...,K (2.5.5)

or
minl=1,...,d �l(⌃

(t)
k)

maxl=1,...,d �l(⌃
(t)
k)

< 10�10 for t = 1, 2, 3, ... and k = 1, ...,K (2.5.6)

where �l(⌃
(t)
k) is the lth eigenvalues of the estimated covariance of cluster k at tth iteration of the considered

replication. [Garćıa-Escudero et al., 2015] [Dang et al., 2017] Intuitively, once one of the eigenvalues of the

48 2 THEORETICAL BACKGROUND

Figure 2.5.9: Illustration of cluster collapse issue happens to Gaussian mixture model.

estimated covariance is too small, we remove this replication and start a new one. Because the determinant

is the product of the eigenvalues, removal of the replication result based on the above conditions can avoid

the estimation of covariance with determinant close to 0. We know that the one of the obvious indicator of

singularity and clusters collapse issue happening to GMM is that the determinant of estimated covariance is 0.

This is reason why the proposed solution works.

2.6 Performance measures

In this section, we will introduce some measures that we will use in the simulation part for result visualization

for mixture model parameter estimation. The replication R below refers to the number of replications after

removing the replications with spurious solutions.

Mean number of iterations

It measures the average needed number of iterations for the replications of the experiment. The definition

of the iteration for EM algorithm and its extension please refers to the Section 2.4.2. The mean number of

iterations is defined as here :

Ī :=

PR
i=1 Ii

R

where Ii is the number of iterations needed at replication i. In terms of the perspective of the mean iteration

number, the lower the needed mean iteration number, the better the algorithm’s performance.

However, the mean number of iterations doesn’t reflect the actual computation time (seconds). We need to

measure the total computation time (seconds) for time e�ciency assessment.

Mean computation time (seconds)

It measures the average total needed computation time (seconds) for the replications of the experiment. The

mean total computation time (seconds) is defined as here :

T̄ :=

PR
i=1 Ti

R

where Ti is the total computation time (seconds) in seconds for replication i. For time e�ciency prospective,

2.6 Performance measures 49

we choose the algorithm with the shortest mean total computation time (seconds).

Other than the time e�ciency, we use the following measures for performance assessment about goodness of

fit and clustering:

Bayesian information criterion (BIC)

The Bayesian information criterion (BIC) is a criterion for model selection or algorithms selection in our case

and the one with the lowest BIC is adopted. The BIC was developed by Schwarz (1978) and it is given by

BIC(⌘) = kln(n)� 2l(⌘̂|x),

where k is the the number of parameters estimated, n is the total number of observations and l(⌘̂|x) is the

log-likelihood introduced in Equation (3.1.1) with estimated parameter ⌘̂ which is the output of the Algorithm

1. For GMM parameter estimation, k is determined by K(d + (d+1)d
2) + (K � 1), where K is the number of

components in GMM and d is the dimension of each sample. In our experiment with 3 dimension and 2 clus-

ters, the total number of parameters estimated is 19. The model with the lowest BIC(⌘) is the preferred model.

Normalised Bayesian information criterion (BIC)

In our experiment setting, the number of samples n generated are 100 or 500. From Equation (3.1.1), we know

that the log-likelihood is the summation of n terms. Therefore, it implies that the BIC for 500 samples must

be higher than 100 samples. In order to have an appropriate comparison of the BIC for di↵erent number of

samples n. We prefer to use the normalised BIC and it is defined as follows :

BIC(⌘)

n
=

kln(n)� 2l(⌘̂|x)
n

Classification rate

Firstly, we would like to introduce how generated samples are finally grouped into clusters after parameter

estimation from EM and its extension. From Equation (2.4.4), we know that the E step for the algorithm is to

compute the expectation of the latent variable given samples for GMM, such that

E[Zik | ⌘,x] := rik = 1 p(Zik = 1 | xi) + 0 p(Zik = 0 | xi)

= p(Zik = 1 | xi) for i = 1, ..., n and k = 1, ...,K

where p(Zik = 1 | xi) is the probability of sample xi to be in clusters k,k = 1, ...,K. Also, from Equation

(2.4.12), the E step, such that

rik =
⇡kfN (xi | µk,⌃k)PK
j=1 ⇡jfN (xi | µj ,⌃j)

for i = 1, ..., n and k = 1, ...,K

is actually computing the probability of being each cluster for sample xi. Therefore, after the algorithm con-

verges, the E step will be additionally implemented using the estimated parameters to do the clustering for

each sample. All observations i which have max
k0=1,..,k

rik0 = rik will be put in Cluster k.

The classification rate is also called the Rand index by Rand [1971] and it is defined as here :

Rand index : Given a set of n element S = {o1, ..., on} and two partitions of S to compare, X = {X1, ..., Xr},
a partition of S into r subsets, and Y = {Y1, ..., Ys}, a partition of S into s subsets, the Rand index is given by

Rand index =
a+ b

Number of unordered pairs in S
=

a+ b�n
2

�

where a is the number of pairs of elements in S that are in the same subset in X and in the same subset in Y ,

b is the number of pairs of elements in S that are in di↵erent subset in X and in di↵erent subset in Y .

Example 2.6.1 (Calculation of the Rand index)

50 3 SIMULATION STUDY

Suppose we have a data set with 4 elements S = {A,B,C,D}. The correct cluster is X = {1, 1, 1, 2}, i.e.
cluster 1 consists of {A,B,C} and cluster 2 of {D}. Also, the clustering result from the EM algorithm is

Y = {1, 1, 2, 2}, i.e. cluster 1 = {A,B} and cluster 2 = {C,D}.

To calculate the Rand index, we need to list out every possible unordered pair in the dataset of four elements:

{A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C,D}. There are 6 unordered pairs which is equal to
�4
2

�
.

Now, we need to calculate a, which represents the number of unordered pairs in S that belong to the same

cluster in X and in the same subset in Y : {A,B}. In this case, a is 1.

Then, we need to calculate b, which represents the number of unordered pairs in S that belong to di↵erent

cluster in X and Y : {A,D}, {B,D}. In this case, b is 2.

Therefore, we can calculate the Rand index:

Rand index =
1 + 2

6
= 0.5

Also, the classification rate is 0.5.

3 Simulation study

In this chapter, we will use di↵erent EM algorithms presented in the Section 2.1 to estimate the parameters

for the simulated data from the Gaussian mixture model (GMM) and vine copula mixture models (VCMM)

in order to assess the performance, strengths and restrictions of di↵erent EM algorithms.

3.1 EM Algorithm for GMM algorithm

In the Section 2.3, the formulation of Gaussian mixture model and its parameter estimation steps for di↵erent

EM algorithms are introduced. Now, our main goal is to carry out simulation studies or experiments to

compare the performance of di↵erent EM algorithms for the Gaussian mixture model. The brief procedure of

the experiment is in the following:

Step 1: Generate data for simulation.

Step 2: Decide on the type of EM algorithm and the order of the CM steps for testing.

Step 3: Decide on the starting values and stopping condition for the EM algorithms.

Step 4: Perform the simulation in R.

Step 5: Remove the replication results from spurious solutions.

Step 6: Create visualizations of the performance measures.

Step 7: Analyse and compare the results.

The detail for each step is given in the subsection:

3.1.1 Data simulation and the experiment setup

Step 1: Generate data for simulation.

In this step, we would like to generate some data from the Gaussian mixture model to test di↵erent EM algo-

rithms. Because it is possible that the performance of di↵erent EM algorithms varies for a Gaussian mixture

model with di↵erent number of samples, mean and covariance matrix, we would like to set up di↵erent scenarios

/ experiments in order to find out the corresponding characteristics, strengths and restrictions of di↵erent EM

algorithms.

3.1 EM Algorithm for GMM algorithm 51

Table 3.1.1: The basic set up of Gaussian mixture model in each experiment

Code of Number Mean Covariance matrix

Experiment of samples (n) of 2 clusters of 2 clusters

EEV.emu.100 100 Equal EEV, ⌃k = �DkADk
T

VEV.emu.100 100 Equal VEV, ⌃k = �kDkADk
T

EVV.emu.100 100 Equal EVV, ⌃k = �DkAkDk
T

VVV.emu.100 100 Equal VVV, ⌃k = �kDkAkDk
T

EEV.umu.100 100 Unequal EEV, ⌃k = �DkADk
T

VEV.umu.100 100 Unequal VEV, ⌃k = �kDkADk
T

EVV.umu.100 100 Unequal EVV, ⌃k = �DkAkDk
T

VVV.umu.100 100 Unequal VVV, ⌃k = �kDkAkDk
T

EEV.emu.500 500 Equal EEV, ⌃k = �DkADk
T

VEV.emu.500 500 Equal VEV, ⌃k = �kDkADk
T

EVV.emu.500 500 Equal EVV, ⌃k = �DkAkDk
T

VVV.emu.500 500 Equal VVV, ⌃k = �kDkAkDk
T

EEV.umu.500 500 Unequal EEV, ⌃k = �DkADk
T

VEV.umu.500 500 Unequal VEV, ⌃k = �kDkADk
T

EVV.umu.500 500 Unequal EVV, ⌃k = �DkAkDk
T

VVV.umu.500 500 Unequal VVV, ⌃k = �kDkAkDk
T

In our experiments, the dimension of each sample d is 3 and number of clusters K is 2. The Table 3.1.1 shows

the basic set up for di↵erent experiments. For example, in experiment EEV.emu.100, 100 samples in total

are generated from the Gaussian mixture model with the same mean in each cluster and di↵erent covariance

matrix following the model type EEV in each cluster, which we introduced in the previous Section 2.5.1. For

simplicity, just the models EEV, VEV, EVV and VVV are used in our simulation. Actually, the real data are

mostly with di↵erent orientations. Therefore, we expect that the simulation result from these four models are

more appropriate for the envisioned real data applications.

Other than the basic set up in the Table 3.1.1, we still need to decide the value of the mean vector µk, covari-

ance matrix ⌃k and the rest of the needed parameters, for example, mixing proportion ⇡k and so on. Details

are shown in Table 3.1.2 and (3.1.3. Also, the correlation matrices of the covariance matrices mentioned in

Table 2.4.3) are shown in Table 3.1.4. You can see that di↵erent strength levels of correlation are included in

each of the correlation matrix.

Example 3.1.1 (The process of data generation and visualization of simulated data from the

Gaussian mixture model for di↵erent model types)

Let’s take the experiment VVV.emu.100 as an example. Assume the number of samples is 100, the means

of 2 clusters are equal and the covariance matrices of 2 clusters are following model type VVV. We generate

100 samples and the probability of generating each sample from N (µ1,⌃1 = �D1AD1
T) is ⇡1 and from

N (µ2,⌃2 = �D2AD2
T) is ⇡2. We use the values given in the Table 3.1.3 to show the calculation of the needed

52 3 SIMULATION STUDY

Table 3.1.2: The parameter values used in the data simulation for Gaussian mixture model

Notation Name Value

n Sample size 100 or 500

d Dimension of each sample 3

K Total number of components 2

⇡1 Mixing proportion of component 1 0.4

⇡2 Mixing proportion of component 2 0.6

Mean of 2 clusters : Equal

µ1 Mean vector of component 1 (1.12 1.63 1.95)T

µ2 Mean vector of component 2 (1.12 1.63 1.95)T

Mean of 2 clusters : Unequal

µ1 Mean vector of component 1 (1.12 1.63 1.95)T

µ2 Mean vector of component 2 (-1.80 1.50 1.13)T

parameters in the following:

⇡1 = 0.4, ⇡2 = 0.6

µ1 = µ2 = [1.12 1.63 1.95]T

⌃1 = �1D1A1D1
T ⇡ 1

2

64
0 �0.423 0.906

�0.5 0.785 0.366

�0.866 �0.453 �0.211

3

75

2

64
1 0 0

0 1
6 0

0 0 6

3

75

2

64
0 �0.423 0.906

�0.5 0.785 0.366

�0.866 �0.453 �0.211

3

75

T

⇡

2

64
4.958 1.935 �1.117
1.935 1.156 �0.090
�1.117 �0.090 1.052

3

75

where D1 =

2

64
cos 90° �sin 90° 0

sin 90° cos 90° 0

0 0 1

3

75

2

64
cos 120° 0 sin 120°

0 1 0

�sin 120° 0 cos 120°

3

75

2

64
1 0 0

0 cos 65° �sin 65°
0 sin 65° cos 65°

3

75

⇡

2

64
0 �0.423 0.906

�0.5 0.785 0.366

�0.866 �0.453 �0.211

3

75

⌃2 = �2D2A2D2
T ⇡ 2

2

64
0.25 �0.276 0.928

�0.433 0.825 0.362

�0.866 �0.492 0.087

3

75

2

64
4 0 0

0 1
4 0

0 0 1

3

75

2

64
0.25 �0.276 0.928

�0.433 0.825 0.362

�0.866 �0.492 0.087

3

75

T

⇡

2

64
2.261 �0.308 �1.503
�0.308 2.103 2.860

�1.503 2.860 6.136

3

75

where D2 =

2

64
cos 120° �sin 120° 0

sin 120° cos 120° 0

0 0 1

3

75

2

64
cos 120° 0 sin 120°

0 1 0

�sin 120° 0 cos 120°

3

75

2

64
1 0 0

0 cos 100° �sin 100°
0 sin 100° cos 100°

3

75

⇡

2

64
0.25 �0.276 0.928

�0.433 0.825 0.362

�0.866 �0.492 0.087

3

75

For the experiment VVV.emu.100, we generate 100 samples from Cluster 1

N

0

B@

2

64
1.12

1.63

1.95

3

75 ,

2

64
4.958 1.935 �1.117
1.935 1.156 �0.090
�1.117 �0.090 1.052

3

75

1

CA with probability 0.4

3.1 EM Algorithm for GMM algorithm 53

Table 3.1.3: The value of the parameters used in the data simulation for Gaussian mixture model (Continued),

where ↵,� and � represent yaw, pitch, and roll angles following the Figure 2.5.4 (Katherine et al., 2014) in the

Section 2.5.

Gaussian mixture model type

EEV VEV EVV VVV

⌃1
Covariance matrix

�D1AD1
T

�1D1AD1
T

�D1A1D1
T

�1D1A1D1
T

of component 1

⌃2
Covariance matrix

�D2AD2
T

�2D2AD2
T

�D2A2D2
T

�2D2A2D2
T

of component 2

�,�1
Scalar, Scalar

1 1 1 1
of component 1

�2
Scalar

- 2 - 2
of component 2

D1
Rotation matrix

↵ = 90°,� = 120°, � = 65°
of component 1

D2
Rotation matrix

↵ = 120°,� = 120°, � = 100°
of component 2

A,A1

2

64
1 0 0

0 1
6 0

0 0 6

3

75

2

64
1 0 0

0 1
6 0

0 0 6

3

75

2

64
1 0 0

0 1
6 0

0 0 6

3

75

2

64
1 0 0

0 1
6 0

0 0 6

3

75
Shape matrix

of component 1

A2 -

2

64
4 0 0

0 1
4 0

0 0 1

3

75 -

2

64
4 0 0

0 1
4 0

0 0 1

3

75
Shape matrix

of component 2

Gaussian mixture Covariance matrix Covariance matrix

model type of component 1, ⌃1 of component 2, ⌃2

EEV ⇡

2

64
4.958 1.935 �1.117
1.935 1.156 �0.090
�1.117 �0.090 1.052

3

75 ⇡

2

64
5.243 1.870 0.290

1.870 1.088 0.496

0.290 0.496 0.836

3

75

VEV ⇡

2

64
4.958 1.935 �1.117
1.935 1.156 �0.090
�1.117 �0.090 1.052

3

75 ⇡

2

64
10.486 3.741 0.579

3.741 2.176 0.992

0.579 0.992 1.671

3

75

EVV ⇡

2

64
4.958 1.935 �1.117
1.935 1.156 �0.090
�1.117 �0.090 1.052

3

75 ⇡

2

64
1.130 �0.154 �0.751
�0.154 1.051 1.430

�0.751 1.430 3.068

3

75

VVV ⇡

2

64
4.958 1.935 �1.117
1.935 1.156 �0.090
�1.117 �0.090 1.052

3

75 ⇡

2

64
2.261 �0.308 �1.503
�0.308 2.103 2.860

�1.503 2.860 6.136

3

75

54 3 SIMULATION STUDY

Table 3.1.4: The corresponding correlation matrices of the covariance matrices mentioned in Table 2.4.3), where

the background colour of the text represents di↵erent strengths of the correlation, -0.082 is low, -0.489 is

medium and 0.808 is high.

Gaussian mixture Correlation matrix Correlation matrix

model type of component 1, R1 of component 2, R2

EEV ⇡

2

64
1 0.808 -0.489

0.808 1 -0.082

-0.489 -0.082 1

3

75 ⇡

2

64
1 0.783 0.138

0.783 1 0.520

0.138 0.520 1

3

75

VEV ⇡

2

64
1 0.808 -0.489

0.808 1 -0.082

-0.489 -0.082 1

3

75 ⇡

2

64
1 0.783 0.138

0.783 1 0.520

0.138 0.520 1

3

75

EVV ⇡

2

64
1 0.808 -0.489

0.808 1 -0.082

-0.489 -0.082 1

3

75 ⇡

2

64
1 -0.141 -0.404

-0.141 1 0.796

-0.404 0.796 1

3

75

VVV ⇡

2

64
1 0.808 -0.489

0.808 1 -0.082

-0.489 -0.082 1

3

75 ⇡

2

64
1 -0.141 -0.404

-0.141 1 0.796

-0.404 0.796 1

3

75

and Cluster 2

N

0

B@

2

64
1.12

1.63

1.95

3

75 ,

2

64
2.261 �0.308 �1.503
�0.308 2.103 2.860

�1.503 2.860 6.136

3

75

1

CA with probability 0.6.

The generated samples are plotted as a 3D scatter plot and pair plot and the orange dots are from Cluster 1

and green dots are from Cluster 2. The plots of all the data simulations are shown in the Figure 3.1.1 and

Figure 3.1.2. By comparing the scatter plots, we can see that the overlapping level between 2 clusters is higher

for each model type with equal mean. Also, if 2 scatters are not coloured, it is quite hard to observe there are

2 clusters in EEV and VEV. Oppositely, it is clearer to see there are 2 clusters in EVV and VVV. Therefore,

we can expect that the result of the performance on classification rate is higher on 1) the unequal mean cases

and data settings 2) EVV and VVV.

Step 2: Decide on the EM algorithms and the CM steps order for testing.

In Section 2, we have introduced di↵erent EM algorithms for parameter estimation, for example, classical

EM, ECM, ECME and MCECM. As we mentioned, it is impossible to find a analytic solution to maximize a

function for 2 parameters or more at the same time. Strictly speaking, we don’t really use the classical EM

algorithm for mixture model parameters estimation. Therefore, we prefer to use the ECM, ECME or MCECM

algorithms to update one parameter in each CM step. Because we decide to update each parameter once in

each iteration, there are di↵erent orders to update the parameters. Although there is no rule which orders

reach better performance, for simplicity, we just consider the typical order to update the parameters, such that

⇡, followed by µ and then ⌃ will be updated accordingly in each iteration.

Apart from the order, the optimization method is also needed to be chosen in the ECME algorithm because

di↵erent methods a↵ect the performance of parameter estimation when maximizing the actual log-likelihood.

In the experiment, two optimization methods, Nelder-Mead and BFGS are used to perform the optimization.

In the Table 3.1.5, the selection of the EM algorithms and CM steps order for testing is shown. Order

= {✓1, ✓2, ✓3} means that the order of updating in CM steps is ✓1, then ✓2 and followed by ✓3. For the

3.1 EM Algorithm for GMM algorithm 55

(a) 3D scatter plot : EEV.emu.100 (b) Pairs plot : EEV.emu.100 (c) 3D scatter plot : EEV.umu.100 (d) Pairs plot : EEV.umu.100

(e) 3D scatter plot : VEV.emu.100 (f) Pairs plot : VEV.emu.100 (g) 3D scatter plot : VEV.umu.100 (h) Pairs plot : VEV.umu.100

(i) 3D scatter plot : EVV.emu.100 (j) Pairs plot : EVV.emu.100 (k) 3D scatter plot : EVV.umu.100 (l) Pairs plot : EVV.umu.100

(m) 3D scatter plot : VVV.emu.100 (n) Pairs plot : VVV.emu.100 (o) 3D scatter plot : VVV.umu.100 (p) Pairs plot : VVV.umu.100

Figure 3.1.1: 3D Scatter plots and the corresponding pairs plots of 100 simulated data generated from a

Gaussian Mixture Model with di↵erent model types: EEV, VEV, EVV, VVV. The orange and green colour

refer to the points in Cluster 1 and 2 respectively.

56 3 SIMULATION STUDY

(a) 3D scatter plot : EEV.emu.500 (b) Pairs plot : EEV.emu.500 (c) 3D scatter plot : EEV.umu.500 (d) Pairs plot : EEV.umu.500

(e) 3D scatter plot : VEV.emu.500 (f) Pairs plot : VEV.emu.500 (g) 3D scatter plot : VEV.umu.500 (h) Pairs plot : VEV.umu.500

(i) 3D scatter plot : EVV.emu.500 (j) Pairs plot : EVV.emu.500 (k) 3D scatter plot : EVV.umu.500 (l) Pairs plot : EVV.umu.500

(m) 3D scatter plot : VVV.emu.500 (n) Pairs plot : VVV.emu.500 (o) 3D scatter plot : VVV.umu.500 (p) Pairs plot : VVV.umu.500

Figure 3.1.2: 3D Scatter plots and the corresponding pairs plots of 500 simulated data generated from a

Gaussian Mixture Model with di↵erent model types: EEV, VEV, EVV, VVV. The orange and green colour

refer to the points in Cluster 1 and 2 respectively.

3.1 EM Algorithm for GMM algorithm 57

Table 3.1.5: Selection of the EM algorithms and CM steps order for testing

Order Code ECM ECME ECME MCECM

= {✓1, ✓2, ✓3} of order (Nelder-Mead) (BFGS)

{⇡,µ,⌃} 123 X X X X

Table 3.1.6: The selected starting values of the parameters for the EM algorithm used in the data simulation

for Gaussian mixture model

Notation Name Value

⇡1 Mixing proportion of component 1 0.55

⇡2 Mixing proportion of component 2 0.45

µ1 Mean vector of component 1 (2 0 1)T

µ2 Mean vector of component 2 (0 2 1)T

⌃1 Covariance matrix of component 1

2

64
5.431 �1.487 �0.651
�1.488 7.870 0.524

�0.651 0.524 6.151

3

75

⌃2 Covariance matrix of component 2

2

64
4.015 1.431 1.325

1.431 1.476 1.593

1.325 1.593 2.719

3

75

convenience of showing the updating order in the graph, the code 1, 2 and 3 represents ⇡, µ and ⌃ respectively.

Therefore, the code of order 123 represents that the updating order in CM step is {⇡,µ,⌃}.

Step 3: Decide on the starting values and stopping condition for the EM algorithms.

Since the EM algorithm and its extensions are all iterative algorithms, we need to decide the starting values of

the parameters that we are going to estimate. Their initial values are denoted as ⌘(0) = {⇡(0)
1 ,⇡

(0)
2 ,µ(0)

1 ,µ(0)
2 ,

⌃
(0)
1 ,⌃

(0)
2 }. In each experiment and simulation, we use the same set of the parameters ⇡ and ⌃ of the Gaussian

mixture model as the starting values and the chosen values should not be too close or too far from the true

values. The selected starting values are shown in the Table 3.1.6.

Other than the starting values, the stopping condition is also needed in order to terminate the algorithm when

it converges. Theoretically, the log-likelihood increases at each iteration of the EM algorithms. Therefore, the

stopping condition 2 from Equation (2.1.4) is used and we select the prespecified ✏ as 0.001 here. Formally, the

condition can be expressed as follows:

l(⌘(t))� l(⌘(t�1)

l(⌘(t�1)
< 0.001, for t = 1, 2, ...

where the the actual incomplete data log-likelihood for ⌘ = (⇡1,⇡2,µ1,µ2,⌃1,⌃2) is given by

l(⌘) := l(⌘ | x) =
nX

i=1

ln

2X

k=1

⇡kfN (xi | µk,⌃k)

!
(3.1.1)

and l(⌘(0)) represents the value of the actual log-likelihood with the starting values of the parameters and t is

number of iterations ranging from 1 to the iteration when it terminates.

Step 4: Perform the simulation in R.

Each experiment shown in the Table 3.1.1 will be repeated for 100 times, which means that the replication

58 3 SIMULATION STUDY

for each experiment R is 100. However, the replication results from spurious solutions will be excluded in the

needed 100 replications. More detail will be given in Step 5. The detailed steps of the algorithms for parameter

estimation for a single replication is shown in the Algorithm (1).

3.1 EM Algorithm for GMM algorithm 59

Algorithm 1 The ECM, ECME and MCECM algorithm for GMM for a single replication
Input:

1. d-dimensional n samples xi = (xi,1, ..., xi,d)T 2 Rd
, i = 1, ..., n.

2. Total number of component K.

3. Starting values of the parameters ⌘(0) = {⇡(0)
1 , ...,⇡

(0)
K ,µ(0)

1 , ...,µ(0)
K ,⌃

(0)
1 , ...,⌃

(0)
K }

4. The used EM algorithm, denoted as method 2 {ECM, ECME, MCECM}.
Output:

1. The estimated parameters ⌘̂ = {⇡̂1, ..., ⇡̂K , µ̂1, ..., µ̂K , ⌃̂1, ..., ⌃̂K}.
2. A clustering partition of the samples.

3. Number of iterations, Total computation time, Log-likelihood, BIC, Classification rate.

1: iteration t 0

2: while t = 0 or relative change of the log-likelihood l(⌘(t))�l(⌘(t�1)
l(⌘(t�1)

< 0.001 do

3: iteration t t+ 1

4: ⇡
(update)
k ⇡

(t�1)
k ,µ(update)

k µ(t�1)
k ,⌃

(update)
k ⌃

(t�1)
k for k = 1, ...,K

5:

6: The ECM algorithm

7: if method = ECM then

8: E step (Calculate the expected complete data log-likelihood)

9: r
(update)
ik ⇡(update)

k N (xi|µ(update)
k ,⌃(update)

k)
PK

j=1 ⇡
(update)
j N (xi|µ(update)

j ,⌃(update)
j)

for i = 1, ..., n and k = 1, ...,K.

10: CM step (Maximize the expected complete data Log-likelihood)

11: ⇡
(update)
k

Pn
i=1 r(update)

ik
n for k = 1, ...,K

12: µ(update)
k

Pn
i=1 r(update)

ik xiPn
i=1 r(update)

ik

for k = 1, ...,K

13: ⌃
(update)
k =

Pn
i=1 r(update)

ik (xi�µ(update)
k)(xi�µ(update)

k)T
Pn

i=1 r(update)
ik

for k = 1, ...,K

14:

15: The ECME algorithm

16: else if method = ECME then

17: E step (Calculate the expected complete data log-likelihood)

18: r
(update)
ik ⇡(update)

k N (xi|µ(update)
k ,⌃(update)

k)
PK

j=1 ⇡
(update)
j N (xi|µ(update)

j ,⌃(update)
j)

for i = 1, ..., n and k = 1, ...,K.

19: CM step 1 (Maximize the expected complete data Log-likelihood)

20: ⇡
(update)
k

Pn
i=1 r(update)

ik
n for k = 1, ...,K

21: µ(update)
k

Pn
i=1 r(update)

ik xiPn
i=1 r(update)

ik

for k = 1, ...,K

22: CM step 2 (Maximize the actual log-likelihood)

23: ⌃
(update)
k argmax⌃k

Pn
i=1 ln

⇣PK
k=1 ⇡

(update)
k fN (xi | µ(update)

k ,⌃
(update)
k)

⌘
for k = 1, ...,K

24:

25: The MCECM algorithm

26: else if method = MCECM then

27: E step (Calculate the expected complete data log-likelihood)

28: r
(update)
ik ⇡(update)

k N (xi|µ(update)
k ,⌃(update)

k)
PK

j=1 ⇡
(update)
j N (xi|µ(update)

j ,⌃(update)
j)

for i = 1, ..., n and k = 1, ...,K.

29: CM step (Maximize the expected complete data log-likelihood)

30: ⇡
(update)
k

Pn
i=1 r(update)

ik
n for k = 1, ...,K

31: E step (Calculate the expected complete data log-likelihood)

32: r
(update)
ik ⇡(update)

k N (xi|µ(update)
k ,⌃(update)

k)
PK

j=1 ⇡
(update)
j N (xi|µ(update)

j ,⌃(update)
j)

for i = 1, ..., n and k = 1, ...,K.

33: CM step (Maximize the expected complete data log-likelihood)

34: µ(update)
k

Pn
i=1 r(update)

ik xiPn
i=1 r(update)

ik

for k = 1, ...,K

60 3 SIMULATION STUDY

Figure 3.1.3: The number of replications removed from the GMM simulation to reach 100 replications

35: E step (Calculate the expected complete data log-likelihood)

36: r
(update)
ik ⇡(update)

k N (xi|µ(update)
k ,⌃(update)

k)
PK

j=1 ⇡
(update)
j N (xi|µ(update)

j ,⌃(update)
j)

for i = 1, ..., n and k = 1, ...,K.

37: CM step (Maximize the expected complete data log-likelihood)

38: ⌃
(update)
k =

Pn
i=1 r(update)

ik (xi�µ(update)
k)(xi�µ(update)

k)T
Pn

i=1 r(update)
ik

for k = 1, ...,K

39: end if

40:

41: ⇡
(t)
k ⇡

(update)
k ,µ(t)

k µ(update)
k ,⌃

(t)
k ⌃

(update)
k for k = 1, ...,K

42: ⌘(t) {⇡(t)
1 , ...,⇡

(t)
K ,µ(t)

1 , ...,µ(t)
K ,⌃

(t)
1 , ...,⌃

(t)
K }

43: end while

44:

45: ⌘̂ {⇡(t)
1 , ...,⇡

(t)
K ,µ(t)

1 , ...,µ(t)
K ,⌃

(t)
1 , ...,⌃

(t)
K }

46:

Step 5: Remove the replication results from spurious solutions

In the Section 2.5.2, we have proposed a solution to tackle the issues of singularity and cluster collapse. When

the condition from Equation (2.5.5) or (2.5.6) is fulfilled, the replication is stopped and removed immediately

and start a new one, until 100 valid replications are completed.

Figure 3.1.3 is a line plot showing the total number of replications removed from the GMM simulation to reach

100 replications. We can see that, comparing the same number of samples, equal mean experiment setting leads

to spurious solutions more than di↵erent mean experiment setting. For the equal mean experiment setting, it is

more di�cult to separate the simulated data into 2 clusters. Therefore, the clusters collapse issue introduced in

the Section 2.5.2 happens easily, so that all simulated data tend to be classified into 1 cluster only. Also, com-

paring the same mean (emu) or di↵erent mean (umu), a sample size of n = 500 leads more often spurious results

compared to n = 100. Last but not least, for the experiment setting emu.500, there are about 400 spurious

solutions that the sample generated from VVV and 800 spurious solutions that the sample generated from EVV.

3.1 EM Algorithm for GMM algorithm 61

3.1.2 Result visualisation and the performance

Step 6: Create visualization of the performance measures

The graphs for result visualization are shown in Step 7.

Step 7: Analyse and compare the results.

The output of the algorithm shown above is not only the estimated parameters, but also other performance

measures, for example mean number of iterations, mean computation time (seconds), mean log-likelihood, mean

BIC, mean classification rate. In order to analyse the result, it is more convenient for us to show the results

for each algorithm in a graph, for example, line-plot, box-plot to compare the result with regard to the mean

or median. The discussion of the result is in the following:

1. Mean number of iterations

We evaluate the clustering performance about iteration of the selected algorithms by visualizing the mean

number of iterations and mean total computation time per simulation replication in line plots. For 100 ob-

servations, Figure 3.1.4 (a) and 3.1.4 (b) show that among the selected algorithms, ECME requires iterations

for each type of Gaussian clustering models. compared to ECME, ECM and MCECM require more iterations.

The experiment result proves the following statement that ECME can have a substantially faster convergence

rate than either EM or ECM, measured using the number of iterations [Liu and Rubin, 1994]. Secondly, we

expect that the mean number of iteration for MCECM should be lower than ECM, because Meng and Rubin

[1993] mentioned that performing an E-step before each CM-step may result in larger increases in likelihood

function L per iteration since Q is being updated more often. However, according to our experiment result,

MCECM requires similar number of iterations like ECM. Last but not least, in the Figure 3.1.4, we can also

see that for each type of the Gaussian clustering models, scenarios with di↵erent means require more numbers

of iterations than scenarios with same cluster means. The reason behind is that it is quite di�cult to separate

the clusters in the scenario of same means. The log-likelihood cannot be improved so much by updating the

parameters in each step. Therefore, the mean number of iteration in the case of sme means is less than the case

of di↵erent means. For 500 observations, Figure 3.1.4 (c) and 3.1.4 (d) show that the result is quite similar to

100 observations. However, the needed mean number of iteration for EEV and VEV is almost the same around

3 to 4 times for all algorithms.

62 3 SIMULATION STUDY

(a) µ1 = µ2, n = 100 (b) µ1 6= µ2, n = 100

(c) µ1 = µ2, n = 500 (d) µ1 6= µ2, n = 500

Figure 3.1.4: The mean number of iterations for the EM algorithms over 100 replications with n = 100 in

the Figure (a) and (b) and n = 500 in the Figure (c) and (d) generated from di↵erent types of the Gaussian

clustering models.

3.1 EM Algorithm for GMM algorithm 63

(a) EEV.emu.100 (b) EEV.umu.100 (c) EEV.emu.500 (d) EEV.umu.500

(e) VEV.emu.100 (f) VEV.umu.100 (g) VEV.emu.500 (h) VEV.umu.500

(i) EVV.emu.100 (j) EVV.umu.100 (k) EVV.emu.500 (l) EVV.umu.500

(m) VVV.emu.100 (n) VVV.umu.100 (o) VVV.emu.500 (p) VVV.umu.500

Figure 3.1.5: Box plots of the number of iterations for the EM algorithms over 100 replications with sample

size n = 100 and 500 generated from di↵erent types of the Gaussian clustering models.

64 3 SIMULATION STUDY

2. Mean total computation time

About the mean total computation time, Figure 3.1.6 shows that among the selected algorithms, ECM and

MCECM require the shortest time, just less than 0.04 seconds and ECME requires much longer time, at least

about 25 seconds. It makes sense because ECME needs to implement the optimization numerically and ECM

and MCECM have the analytic to maximize the Q in the E step. Also, compared 100 to 500 observations, it is

obvious to see that, for ECME, the required mean total computation time for 500 observations is much higher

than 100 observations. For ECM and MCECM, the required time remains similar. The reason is basically the

same as mentioned before.

(a) µ1 = µ2, n = 100 (b) µ1 6= µ2, n = 100

(c) µ1 = µ2, n = 500 (d) µ1 6= µ2, n = 500

Figure 3.1.6: The mean total computation time (seconds) of EM algorithms over 100 replications with n = 100

in the Figure (a) and (b) and n = 500 in the Figure (c) and (d) generated from di↵erent types of the Gaussian

clustering models.

3.1 EM Algorithm for GMM algorithm 65

(a) EEV.emu.100 (b) EEV.umu.100 (c) EEV.emu.500 (d) EEV.umu.500

(e) VEV.emu.100 (f) VEV.umu.100 (g) VEV.emu.500 (h) VEV.umu.500

(i) EVV.emu.100 (j) EVV.umu.100 (k) EVV.emu.500 (l) EVV.umu.500

(m) VVV.emu.100 (n) VVV.umu.100 (o) VVV.emu.500 (p) VVV.umu.500

Figure 3.1.7: Box plots of the computation time (seconds) of the EM algorithms over 100 replications with

sample size n = 100 and 500 generated from di↵erent types of the Gaussian clustering models.

66 3 SIMULATION STUDY

3. Classification rate

The results of the classification rate per simulation are shown by using a box plot. For 100 and 500 obser-

vations, Figure 3.1.8 show that the median of classification rate in the scenario of di↵erent mean is obviously

higher than the scenario of same mean. It makes a lot of sense because in the Figure 3.1.1 and 3.1.2, the level

of overlapping between two clusters for the same mean is higher than di↵erent mean. Also, we expected that

the classification rate is higher in EVV and VVV, but the result here doesn’t show that.

For 100 observations, for the scenario of same mean, ECME.Nelder-Mead has the highest median of classification

rate in VEV, EVV and VVV, and the second highest median of classification rate in EEV. Oppositely, ECM

has the lowest median of classification rate in all 4 Gaussain clustering models. For the scenario of di↵erent

mean, it seems that ECME.BFGS has the best performance because it leads to the highest classification rate

among all 4 algorithms. However, there is not a clear pattern which algorithm is the worst for classification rate,

because for each scenario, the worst algorithm is di↵erent. Last but not least, except EEV.emu and VEV.emu,

the classification rate for 500 observations is higher than for 100 observations. According to the Figure 3.1.1

and 3.1.2, we can see that other than EEV.emu and VEV.emu, there are more samples for 500 observations

in non-overlapping area than for 100 observations. Therefore, this is the reason why the classification rate

improves in 500 observations.

3.1 EM Algorithm for GMM algorithm 67

(a) EEV.emu.100 (b) EEV.umu.100 (c) EEV.emu.500 (d) EEV.umu.500

(e) VEV.emu.100 (f) VEV.umu.100 (g) VEV.emu.500 (h) VEV.umu.500

(i) EVV.emu.100 (j) EVV.umu.100 (k) EVV.emu.500 (l) EVV.umu.500

(m) VVV.emu.100 (n) VVV.umu.100 (o) VVV.emu.500 (p) VVV.umu.500

Figure 3.1.8: Box plots of the classification rate for the EM algorithms over 100 replications with sample

size n = 100 and 500 generated from di↵erent types of the Gaussian clustering models.

68 3 SIMULATION STUDY

4. Normalised BIC

About the value of the normalised BIC and for 100 observations, the Figure 3.1.9 shows that for the scenario

of same mean, the median value of the BIC for ECME.Nelder-Mead is the lowest and for ECM is the highest

in all 4 Gaussian clustering models. Theoretically, the model with the lowest BIC or higher classification rate

is preferred. Therefore, the BIC value and the classification rate shown in the Figure 3.1.8 and 3.1.9 match

this model selection rule basically, that the algorithms with higher classification rate have lower BIC and vice

versa. For the scenario of di↵erent mean, ECME.Nelder-Mead seems to have the lowest BIC and MCECM has

the highest BIC in all 4 Gaussian clustering models.

(a) EEV.emu.100 (b) EEV.umu.100 (c) EEV.emu.500 (d) EEV.umu.500

(e) VEV.emu.100 (f) VEV.umu.100 (g) VEV.emu.500 (h) VEV.umu.500

(i) EVV.emu.100 (j) EVV.umu.100 (k) EVV.emu.500 (l) EVV.umu.500

(m) VVV.emu.100 (n) VVV.umu.100 (o) VVV.emu.500 (p) VVV.umu.500

Figure 3.1.9: Box plots of the normalised BIC of the EM algorithms over 100 replications with sample size

n = 100 and 500 generated from di↵erent types of the Gaussian clustering models.

3.1 EM Algorithm for GMM algorithm 69

Ranking of the performance for each EM algorithm

The Figure 3.1.7 shows the ranking of the EM algorithms regarding the performance for GMM algorithm. In

this paper, we focus on clustering more, so we regard the higher mean classification rate as better performance.

If the mean classification rate is the same, the lower mean normalised BIC and shorter mean computation time

are preferred. For each scenario, we can see that the mean classification rate and mean normalised BIC are

mostly very similar among di↵erent EM algorithms, but the mean computation time varies as we mentioned

before. In particular, in EVV.umu.100, VVV.umu.100 and VVV.umu.500, MCECM, ECM and ECM perform

the worst respectively and their classification rates are at least 5% less than the third ranking methods. Because

we don’t know which GMM data being clustered in the real situation, for better or more stable clustering per-

formance, we would suggest using ECME.Nelder.Mead and ECME.BFGS for clustering with GMM algorithm.

Table 3.1.7: The ranking of the EM algorithms regarding the performance for GMM algorithm, where the algo-

rithm with 1) higher mean classification rate, 2) lower mean normalised BIC and 3) shorter mean computation

time for 100 replications is considered to be the better performance and the priority is given by (1) > (2) >

(3).

Code of Ranking Algorithm Classification Normalised Computation time Code of Ranking Algorithm Classification Normalised Computation time

experiment rate BIC (Seconds) experiment rate BIC (Seconds)

EEV.emu.100

1 MCECM 0.52 9.4 0.023

EEV.emu.500

1 MCECM 0.52 8.9 0.0226

2 ECM 0.51 9.4 0.0191 2 ECM 0.51 8.9 0.0121

3 ECME.Nelder.Mead 0.51 9.4 28.8 3 ECME.BFGS 0.51 8.9 56.1

4 ECME.BFGS 0.51 9.4 50.7 4 ECME.Nelder.Mead 0.51 8.9 103

EEV.umu.100

1 ECM 0.89 10.4 0.0211

EEV.umu.500

1 ECM 0.93 9.9 0.0276

2 MCECM 0.88 10.4 0.0288 2 MCECM 0.93 9.9 0.0449

3 ECME.Nelder.Mead 0.88 10.4 29.6 3 ECME.Nelder.Mead 0.92 9.9 141

4 ECME.BFGS 0.88 10.4 42.7 4 ECME.BFGS 0.92 9.9 153

VEV.emu.100

1 ECM 0.51 10.8 0.013

VEV.emu.500

1 ECME.BFGS 0.51 10.3 82.3

2 MCECM 0.51 10.8 0.0222 2 ECME.Nelder.Mead 0.51 10.3 94.2

3 ECME.Nelder.Mead 0.51 10.8 24.1 3 ECM 0.50 10.3 0.012

4 ECME.BFGS 0.51 10.8 40.9 4 MCECM 0.50 10.3 0.0205

VEV.umu.100

1 ECM 0.75 11.6 0.027

VEV.umu.500

1 ECME.BFGS 0.87 11.0 158

2 ECME.BFGS 0.75 11.6 25.6 2 ECME.Nelder.Mead 0.87 11.0 164

3 ECME.Nelder.Mead 0.74 11.6 31.1 3 ECM 0.86 11.0 0.0374

4 MCECM 0.72 11.6 0.0315 4 MCECM 0.86 11.0 0.0597

EVV.emu.100

1 ECME.Nelder.Mead 0.55 9.6 25.9

EVV.emu.500

1 ECME.BFGS 0.58 9.2 115

2 MCECM 0.53 9.7 0.0236 2 ECME.Nelder.Mead 0.58 9.2 136

3 ECME.BFGS 0.53 9.7 45.9 3 MCECM 0.57 9.2 0.0461

4 ECM 0.52 9.7 0.0155 4 ECM 0.55 9.2 0.0276

EVV.umu.100

1 ECM 0.93 10.5 0.0314

EVV.umu.500

1 ECM 0.96 10.0 0.0272

2 ECME.Nelder.Mead 0.93 10.5 28 2 ECME.BFGS 0.96 10.0 93.5

3 ECME.BFGS 0.93 10.5 29.7 3 ECME.Nelder.Mead 0.96 10.0 124

4 MCECM 0.84 10.6 0.032 4 MCECM 0.95 10.0 0.0478

VVV.emu.100

1 MCECM 0.55 11.0 0.0247

VVV.emu.500

1 ECME.BFGS 0.61 10.5 124

2 ECME.Nelder.Mead 0.55 11.0 26.5 2 ECME.Nelder.Mead 0.61 10.5 142

3 ECME.BFGS 0.54 11.0 32.4 3 MCECM 0.60 10.5 0.0454

4 ECM 0.53 11.0 0.0218 4 ECM 0.58 10.5 0.0247

VVV.umu.100

1 MCECM 0.74 11.7 0.0389

VVV.umu.500

1 MCECM 0.89 11.1 0.0752

2 ECME.BFGS 0.74 11.7 20.4 2 ECME.Nelder.Mead 0.83 11.2 171

3 ECME.Nelder.Mead 0.74 11.7 38.3 3 ECME.BFGS 0.82 11.2 115

4 ECM 0.69 11.8 0.0339 4 ECM 0.75 11.3 0.0448

70 3 SIMULATION STUDY

3.2 EM Algorithm and initialization strategies for GMM algorithm

In the previous Section 3.1, the simulation is done by a particular and fixed starting value. As log-likelihood

function for mixture model is a non-convex optimization problem, the point to which the EM algorithm con-

verges depends on the initial value [Jin et al., 2016]. Therefore, a poor set of starting values for the EM

algorithm can significantly impact the the quality of the resulting solution [Shireman et al., 2017]. In this

section, we will try to use di↵erent initialization strategies to perform our simulation for di↵erent GMM models.

The basic set up of the experiment is almost the same as the last simulation, but we just implement EEV.umu.500,

VEV.umu.500, EVV.umu.500 and VVV.umu.500 this time, which is the experiment setting - Unequal mean of

2 clusters and n = 500 generated samples. The parameters of the GMM for generating samples is the same as

before shown in the Table 3 in the last section.

About the starting value of the EM algorithm, we will try ”True” and 5 di↵erent initialization strategies.

”True” means using the true parameters for generating samples as the starting values, so that we can know

what is the best performance we can have through di↵erent EM algorithms. For initialization strategies, we

use 5 strategies, called ”Random”, ”Kmeans”, ”Hierarchical”, ”Kmeans (scale)” and ”Hierarchical (scale)”, to

decide the starting values. Basically, all the initialization strategies separate the generated samples into two

groups first. Then, the starting value of mean and covariance of each cluster are the sample mean and the

sample covariance of each cluster respectively. ”Kmeans” is a well-known K-Means Clustering [Hartigan and

Wong, 1979]. ”Hierarchical” is an agglomerative hierarchical clustering based on the parameterization of VVV

model [Fraley, 1998]. Also, the methods with ”(scale)” means that the data is applied to the function scale

in R for standardization before application of the initialization strategies. The Table 3.2 summarises the used

initialization strategies.

Table 3.2.1: The summary of the initialization strategies used.

Initialization R package R function Brief description

strategies

Random - -
Separate the samples into 2 groups with the same

number randomly.

Kmeans stat kmeans
Minimize a Euclidean distance between the cluster

center and the samples of the cluster.

Hierarchical mclust hcVVV

Agglomerative is a ”bottom-up” approach: each

observation starts in its own cluster, and pairs of

clusters are merged as one moves up the hierarchy,

based on the maximum likelihood for a VVV model.

Kmeans stat kmeans Data is applied to the function scale for standardization

(scale) - scale before application of the function kmeans.

Hierarchical mclust hcVVV Data is applied to the function scale for standardization

(scale) - scale before application of the function hcVVV.

Example 3.2.1 (Visualization of 500 simulated data set generated from the Gaussian mixture

model, the initialization clustering by di↵erent initialization strategies)

The Figure 3.2.1 shows the true clustering of the scatter plots for each data setting. As mentioned before, if

the scatters are not coloured, it is quite hard to observe there are 2 clusters in EEV and VEV. Oppositely, it

is clearer to see there are 2 clusters in EVV and VVV. Therefore, we can divide them into two groups, such

3.2 EM Algorithm and initialization strategies for GMM algorithm 71

True cluster

(a) EEV.umu.500 (b) EEV.umu.500 (c) VEV.umu.500 (d) VEV.umu.500

(e) EVV.umu.500 (f) EVV.umu.500 (g) VVV.umu.500 (h) VVV.umu.500

Figure 3.2.1: The scatter plots and the corresponding pairs plots of 500 simulated data generated from the

Gaussian Mixture Model for model types: EEV, VEV, EVV and VVV. The orange and green colour refer to

the points in Cluster 1 and 2 respectively.

that 1. Better separated (EVV and VVV) and 2. Worse separated (EEV and VEV).

Because we use di↵erent initialisation strategies in the GMM algorithm, the visualisations of the 500 generated

data after initialization clustering by di↵erent strategies are shown also in the Figure 3.2.2 and Figure 3.2.3. We

can see that all initialisation strategies give us di↵erent result of initialisation clustering. Also, from the scatter

plots of initializing clustering in the Figure 3.2.2 and Figure 3.2.3, we know that the true cluster is with some

level of overlapping, but apart from the ”random” case, the scatter plots for all other initialisation strategies do

not show any level of the overlapping. It implies that ”Kmeans”, ”Hierarchical” and their ”(scale)” strategies

cannot classify the overlapping scatters.

72 3 SIMULATION STUDY

EVV.umu.500

(a) Random (50.0%) (b) Kmeans (60.5%) (c) Kmeans scale (53.4%) (d) Hierarchical (57.9%) (e) Hierarchical scale (51.5%)

(f) Random (91.9%) (g) Kmeans (92.3%) (h) Kmeans scale (52.9%) (i) Hierarchical (58.4%) (j) Hierarchical scale (51.5%)

VEV.umu.500

(k) Random (49.9%) (l) Kmeans (55.3%) (m) Kmeans scale (50.5%) (n) Hierarchical (55.8%) (o) Hierarchical scale (52.2%)

(p) Random (82.3%) (q) Kmeans (78.2%) (r) Kmeans scale (50.6%) (s) Hierarchical (77.9%) (t) Hierarchical scale (52.2%)

Figure 3.2.2: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for model type EEV, Figure 3.2.1 (a) and VEV, Figure 3.2.1 (c). The blue and pink colour refer to

the points from di↵erent clusters. The number inside the round bracket is the classification rate, compared to the

true cluster. First row : EEV.umu.500 (Initializing clustering), second row : EEV.umu.500 (Final clustering),

third row : VEV.umu.500 (Initializing clustering) and fourth row : VEV.umu.500 (Final clustering).

3.2 EM Algorithm and initialization strategies for GMM algorithm 73

EVV.umu.500

(a) Random (50.4%) (b) Kmeans (73.3%) (c) Kmeans scale (52.6%) (d) Hierarchical (69.7%) (e) Hierarchical scale (51.6%)

(f) Random (95.7%) (g) Kmeans (96.5%) (h) Kmeans scale (95.7%) (i) Hierarchical (96.5%) (j) Hierarchical scale(95.7%)

VVV.umu.500

(k) Random (50.0%) (l) Kmeans (57.4%) (m) Kmeans scale (51.5%) (n) Hierarchical (69.2%) (o) Hierarchical scale (52.5%)

(p) Random (90.5%) (q) Kmeans (93.0%) (r) Kmeans scale (91.2%) (s) Hierarchical (90.5%) (t) Hierarchical scale (91.2%)

Figure 3.2.3: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for model type EVV, Figure 3.2.1 (e) and VVV, Figure 3.2.1 (g). The blue and pink colour refer to

the points from di↵erent clusters. The number inside the round bracket is the classification rate, compared to the

true cluster. First row : EVV.umu.500 (Initializing clustering), second row : EVV.umu.500 (Final clustering),

third row : VVV.umu.500 (Initializing clustering) and fourth row : VVV.umu.500 (Final clustering).

74 3 SIMULATION STUDY

Discussion of the result

1. Scatter plots after initializing and final clustering

The Figure 3.2.2 and Figure 3.2.3 also show the scatter plots with the classification rate after final clustering.

You can see that for a particular initialization strategy, the classification rate increases after final clustering,

which means the GMM algorithm improves the clustering performance after using initialization strategy.

2. Number of replications removed for ECME.BFGS

The Table 3.2.2 shows the total number of replications removed of ECME.BFGS algorithm with di↵erent initial-

ization strategies. The strategies with ”(scale)” lead to obviously lower replications removed than the strategies

without ”(scale)”. Also, for each strategies, EVV leads to the most conditions from Equation (2.5.5) or (2.5.6)

obviously and there are over 300 removed replications for EVV and the corresponding strategy ”Kmeans” and

”Hierarchical”. For the algorithm with over 300 removed replications, the simulation cannot be finished, so

there is no performance measures information for EVV and ”Kmeans” and ”Hierarchical”. Note that there are

no any replications removed for other EM algorithm.

The result of the performance measures, including mean computation time, mean normalised BIC and mean

classification rate, for each EM algorithm and its extension with di↵erent initialization strategies is shown in

the Table 3.2.3. A simple analysis is given in the following:

3. Mean computation time

The result is quite regular. For each initialization strategy, the mean total computation time needed in de-

scending order is in the following : ECME.Nelder.Mead > ECME.BFGS > MCECM > ECM. The reason is

in the following : 1) There are analytical solutions in ECM and MCECM and ECME involves solving the

optimization problem numerically. So, ECME takes more time. 2) MCECM requires E step before each M

step and ECM just require a step in each iteration. So, MCECM takes more time than ECM. 3) ECME.BFGS

is a gradient based numerical method and the gradient function is given to the R code. ECME.Nelder.Mead

takes longer time than ECME.BFGS.

4. Mean normalised BIC

We can see that the di↵erence of mean normalised BIC among each algorithm is quite small. I think this results

from the normalisation of the BIC. However, you can also observe that a small change in normalised BIC lead

to a bigger di↵erence in classification rate. Also, recalling that the algorithms with the lowest normalised BIC

is adopted. For each initialization strategies and model type, ECME.Nelder algorithm always leads to the

lowest normalised BIC.

5. Mean classification rate

”Kmeans” outperforms all other strategies with the highest mean classification rate for EEV, VEV and EVV.

Also, in VVV, it is quite unexpected that ”Random” outperforms all other strategies for ECME quite a lot.

Furthermore, for each initialization strategy, the ECME.Nelder algorithm outperforms the other EM algorithms

for each data model type. Last but not least, the strategies Kmeans outperforms Kmeans (scale) and Hierar-

chical outperforms Hierarchical (scale) for all the data sets.

3.2 EM Algorithm and initialization strategies for GMM algorithm 75

Table 3.2.2: The number of replications removed to reach 50 convergent replications by using ECME.BFGS

algorithm with di↵erent initialization strategies, where the green and red colour represent the best and the

worst initialization strategies for each EM algorithm respectively .

Starting values Initialization strategies

True Random Kmeans Kmeans Hierarchical Hierarchical

(scale) (scale)

EEV 47 22 120 44 89 48

VEV 34 26 200 68 132 49

EVV 44 182 >300 116 >300 218

VVV 30 101 152 52 214 117

Ranking of the performance for each EM algorithm and initialization strategy

The Table 3.2.4 shows the ranking of the performance of EM algorithms and the initialization strategies by

GMM algorithm. The same as before, the algorithm with 1) higher classification rate, 2) lower normalised BIC

and 3) shorter computation time is considered to be the better performance and the priority is given by (1) >

(2) > (3).

Firstly, apart from data setting EVV, we can see that the mean classification rates vary with di↵erent EM

algorithms and initialization strategies. Secondly, EM algorithms and the initialization strategies in the top 7

performance can perform better in EVV and VVV than in EEV and VEV. It varies our previous statement,

that the data with better separation can be clustered more accurately with a suitable method. Thirdly, some

methods always perform better for each data settings which are already highlighted in the table with di↵erent

colours, for example, ECME.Nelder.Mead (Kmeans), ECME.Nelder.Mead (Hierarchical) and so on. This im-

plies that, there are some clustering methods likely performing better, no matter how the characteristics of the

data generated from di↵erent Gaussian mixture models.

According to the result from the four data settings, for the best fit, ECME.Nelder.Mead with Kmeans or

ECME.Nelder.Mead with Hierarchical are recommended for clustering with GMM algorithm. For shorter com-

putation time and good fit, MCECM with Kmeans is recommended.

76 3 SIMULATION STUDY

Table 3.2.3: Mean value of the performance measures for each EM algorithm and its extension with di↵erent

starting values and initialization strategies for 50 replications for GMM algorithm, where the green and red

colour represent the best and the worst initialization strategies for each EM algorithm respectively.

Starting value Initialization strategies

Data Performance Algorithm True Random Kmeans Kmeans Hierarchical Hierarchical

Setting measures (scale) (scale)

EEV Computation time

ECM 0.018 0.011 0.033 0.037 0.039 0.041

ECME.BFGS 29 47 87 35 58 47

ECME.Nelder.Mead 62 219 208 167 213 201

MCECM 0.011 0.020 0.040 0.042 0.035 0.046

VEV Computation time

ECM 0.007 0.007 0.036 0.039 0.032 0.015

ECME.BFGS 41 36 165 74 134 55

ECME.Nelder.Mead 63 117 261 245 261 179

MCECM 0.011 0.013 0.056 0.045 0.049 0.027

EVV Computation time

ECM 0.018 0.031 0.022 0.032 0.026 0.031

ECME.BFGS 30 136 - 40 - 37

ECME.Nelder.Mead 58 238 155 225 146 233

MCECM 0.011 0.049 0.030 0.059 0.029 0.046

VVV Computation time

ECM 0.006 0.018 0.035 0.022 0.022 0.021

ECME.BFGS 36 132 83 41 56 31

ECME.Nelder.Mead 59 268 197 203 198 222

MCECM 0.011 0.038 0.044 0.030 0.041 0.040

EEV Normalised BIC

ECM 9.9 10.3 10.1 10.3 10.2 10.2

ECME.BFGS 9.9 10.3 10.2 10.3 10.3 10.3

ECME.Nelder.Mead 9.9 10.2 10.0 10.2 10.1 10.1

MCECM 9.9 10.3 10.1 10.2 10.1 10.2

VEV Normalised BIC

ECM 11.0 11.3 11.0 11.2 11.1 11.2

ECME.BFGS 11.0 11.3 11.0 11.2 11.1 11.3

ECME.Nelder.Mead 11.0 11.2 11.0 11.1 11.0 11.1

MCECM 11.0 11.3 11.0 11.1 11.0 11.2

EVV Normalised BIC

ECM 9.9 10.2 9.9 10.2 9.9 10.1

ECME.BFGS 9.9 10.0 - 10.5 - 10.5

ECME.Nelder.Mead 9.9 10.0 9.9 10.1 9.9 10.0

MCECM 9.9 10.1 9.9 10.1 9.9 10.1

VVV Normalised BIC

ECM 11.1 11.6 11.4 11.5 11.3 11.5

ECME.BFGS 11.1 11.2 11.3 11.6 11.5 11.6

ECME.Nelder.Mead 11.1 11.2 11.2 11.4 11.2 11.4

MCECM 11.1 11.4 11.3 11.5 11.2 11.4

EEV Classication rate

ECM 0.94 0.59 0.74 0.58 0.70 0.67

ECME.BFGS 0.94 0.60 0.68 0.58 0.60 0.55

ECME.Nelder.Mead 0.94 0.72 0.82 0.64 0.78 0.69

MCECM 0.94 0.63 0.76 0.60 0.72 0.68

VEV Classication rate

ECM 0.88 0.56 0.76 0.64 0.73 0.56

ECME.BFGS 0.88 0.55 0.75 0.61 0.68 0.56

ECME.Nelder.Mead 0.88 0.62 0.80 0.72 0.79 0.64

MCECM 0.88 0.55 0.79 0.69 0.78 0.58

EVV Classication rate

ECM 0.96 0.84 0.96 0.78 0.96 0.84

ECME.BFGS 0.96 0.96 - 0.59 - 0.58

ECME.Nelder.Mead 0.97 0.95 0.96 0.88 0.96 0.91

MCECM 0.97 0.88 0.96 0.82 0.96 0.88

VVV Classication rate

ECM 0.93 0.69 0.74 0.64 0.82 0.66

ECME.BFGS 0.93 0.87 0.74 0.56 0.59 0.54

ECME.Nelder.Mead 0.93 0.92 0.84 0.72 0.89 0.74

MCECM 0.93 0.76 0.82 0.64 0.86 0.69

3.2 EM Algorithm and initialization strategies for GMM algorithm 77

Table 3.2.4: The top 7 performance of EM algorithms and the initialization strategies for GMM algorithm,

where the algorithm with 1) higher classification rate, 2) lower normalised BIC and 3) shorter computation

time is considered to be the better performance and the priority is given by (1) > (2) > (3). *The separation

here refers to the level of separation whether the two clusters can be observed easily if the dots are not coloured

or marked.

Data setting Ranking Algorithm Initialization Classification Normalised Computation time

strategy rate BIC (Seconds)

EEV (Worse separation)

1 ECME.Nelder.Mead Kmeans 0.82 10.0 208

2 ECME.Nelder.Mead Hierarchical 0.78 10.1 213

3 MCECM Kmeans 0.76 10.1 0.040

4 ECM Kmeans 0.74 10.1 0.33

5 MCECM Hierarchical 0.72 10.1 0.035

6 ECME.Nelder.Mead Random 0.72 10.2 219

7 ECM Hierarchical 0.70 10.2 0.039

VEV (Worse separation)

1 ECME.Nelder.Mead Kmeans 0.80 11.0 261

2 MCECM Kmeans 0.79 11.0 0.056

3 ECME.Nelder.Mead Hierarchical 0.79 11.0 261

4 MCECM Hierarchical 0.78 11.0 0.049

5 ECM Kmeans 0.76 11.0 0.036

6 ECM Hierarchical 0.73 11.1 0.032

7 ECME.Nelder.Mead Kmeans scale 0.72 11.1 245

EVV (Better separation)

1 ECM Kmeans 0.96 9.9 0.022

2 ECM Hierarchical 0.96 9.9 0.026

3 MCECM Hierarchical 0.96 9.9 0.029

4 MCECM Kmeans 0.96 9.9 0.030

5 ECME.Nelder.Mead Hierarchical 0.96 9.9 146

6 ECME.Nelder.Mead Kmeans 0.96 9.9 155

7 ECME.BFGS Random 0.96 10.0 136

VVV (Better separation)

1 ECME.Nelder.Mead Random 0.92 11.2 268

2 ECME.Nelder.Mead Hierarchical 0.89 11.2 198

3 ECME.BFGS Random 0.87 11.2 132

4 MCECM Hierarchical 0.86 11.2 0.041

5 ECME.Nelder.Mead Kmeans 0.84 11.2 197

6 ECM Hierarchical 0.82 11.3 0.022

7 MCECM Kmeans 0.82 11.3 0.044

78 3 SIMULATION STUDY

3.3 EM Algorithm and initialization strategies for VCMM algorithm

In Section 2.4.3, the formulation of the vine copula mixture model (VCMM) and the corresponding steps of EM

algorithm and its extension are introduced. After the simulation studies for GMM, in this section, our main

goal is to compare the performance of di↵erent EM algorithms and initialisation strategies for the algorithm of

vine copula mixture model clustering (VCMM) proposed by Sahin and Czado [2021]. In that research paper,

ECM algorithm is used for the parameter estimation only. In our simulation studies, basically, we will generate

di↵erent data sets and then use the algorithm to implement classification. On top of that, the algorithm will be

amended a bit for the assessment of di↵erent EM algorithms, numerical optimization methods and initialisation

strategies, in order to assess the performance under di↵erent setting. More details will be given in the following

steps:

Step 1: Generate data for simulation.

Step 2: Decide on the EM algorithms and the CM steps order in the VCMM algorithm.

Step 3: Decide on the initialization strategies for the VCMM algorithm.

Step 4: Decide on the marginal distribution and copula families for modelling in the VCMM algorithm.

Step 5: Perform the simulation in R.

Step 6: Create visualizations of the performance measures.

Step 7: Analyse and compare the results.

The detail for each step is given in the following subsection:

3.3.1 Data simulation and the experiment setup

Step 1: Generate data for simulation.

In this step, we would like to generate some data from the vine copula mixture model to test di↵erent EM

algorithms. Compared to the Gaussian mixture model, the vine copula mixture model allows modelling the

data much more flexible, as it allows di↵erent univariate marginal distribution and asymmetric dependency.

Therefore, we would like to not only generate Gaussian data, but also generate the non-Gaussian data to assess

the performance of di↵erent EM algorithms and initialization strategies under VCMM.

In our experiments, we generate data from four settings following the ways from Sahin and Czado [2021] in

their section of simulation studies. In each of the setting, the dimension of each sample d is 3 and number of

clusters K is 2. The Table 3.3.1 shows the basic set up for the data generation. Also, about the characteristics

of the generated data set, data sets for setting 1 are generated from the mixture model of vine copulas with

Non-Gaussian pair copulas and Non-Gaussian margins, data sets for setting 2, 8 and 9 are from the mixture

model of vine copulas with Non-Gaussian pair copulas and Gaussian or Non-Gaussian margins, data sets for

setting 3 are from the mixture model of vine copulas with Gaussian copulas and Gaussian margins and the

data sets for setting 4, 5, 6 and 7 are from the mixture model of multivariate skew t distributions with di↵erent

degrees of freedom. The overview of the nine settings are shown in the Table 3.3.2.

The generated data sets for settings 1, 2, 3, 8 and 9 actually follow the vine copula mixture model introduced

in the Section 2.4.3. Recalling from Equation (2.4.17), a mixture model with 2 components and 3 dimensions

has a density given by

f(x | ⌘) = 0.4 f1(x | 1) + 0.6 f2(x | 2)

where the parameters ⌘ in the mixture model are denoted as ⌘ = { 1, 2,⇡1,⇡2} and recalling from Equation

3.3 EM Algorithm and initialization strategies for VCMM algorithm 79

Table 3.3.1: The parameter values used in the nine settings of data simulation

Notation Name Value

n Sample size
500 (For all settings) and

1000 (For setting 1, 3, 5, 6, 7)

d Dimension of each sample 3

K Total number of components 2

⇡1 Mixing proportion of component 1 0.4

⇡2 Mixing proportion of component 2 0.6

Table 3.3.2: The overview of the characteristics of the nine settings of data simulation

Type of mixture model Marginal distribution
Dependency relationship

(Copula family)

Setting 1 VCMM Non-Gaussian Non-Gaussian

Setting 2 VCMM Gaussian and Non-Gaussian Non-Gaussian

Setting 3 VCMM (= Multivariate Gaussian) Gaussian Gaussian

Setting 4 Mixture of multivariate skew t Skew t -

Setting 5 Mixture of multivariate skew t Skew t -

Setting 6 Mixture of multivariate skew t Skew t -

Setting 7 Mixture of multivariate skew t Skew t -

Setting 8 VCMM Gaussian and Non-Gaussian Non-Gaussian

Setting 9 VCMM Gaussian and Non-Gaussian Non-Gaussian

(2.4.18), (2.4.19), the f1(x | 1) and f2(x | 2) for each data set are given in the following:

f1(x | 2) = c(2)1,3;2(F(2)1|2(x1|x2;�1(2),�2(2),✓(2)1,2), F(2)3|2(x3|x2;�3(2),�2(2),✓(2)2,3);✓(2)1,3;2)

⇥ c(2)2,3(F2(2)(x2;�2(2)), F3(2)(x3;�3(2));✓(2)2,3)

⇥ c(2)1,2(F1(2)(x1;�1(2)), F2(2)(x2;�2(2));✓(2)1,2)

⇥ f3(2)(x3;�3(2)) f2(2)(x2;�2(2)) f1(2)(x1;�1(2))

Setting 1, 8 and 9

f2(x | 2) = c(2)1,2;3(F(2)1|3(x1|x3;�1(2),�3(2),✓(2)1,3), F(2)2|3(x2|x3;�2(2),�3(2),✓(2)2,3);✓(2)1,2;3)

⇥ c(2)2,3(F2(2)(x2;�2(2)), F3(2)(x3;�3(2));✓(2)2,3)

⇥ c(2)1,3(F1(2)(x1;�1(2)), F3(2)(x3;�3(2));✓(2)1,3)

⇥ f3(2)(x3;�3(2)) f2(2)(x2;�2(2)) f1(2)(x1;�1(2))

Setting 2 and 3

f2(x | 2) = c(2)1,3;2(F(2)1|2(x1|x2;�1(2),�2(2),✓(2)1,2), F(2)3|2(x3|x2;�3(2),�2(2),✓(2)2,3);✓(2)1,3;2)

⇥ c(2)2,3(F2(2)(x2;�2(2)), F3(2)(x3;�3(2));✓(2)2,3)

⇥ c(2)1,2(F1(2)(x1;�1(2)), F2(2)(x2;�2(2));✓(2)1,2)

⇥ f3(2)(x3;�3(2)) f2(2)(x2;�2(2)) f1(2)(x1;�1(2))

In particular, for setting 1, 2, 3, 8 and 9 of the marginal distribution F and the associated marginal parameters

� are shown in the Table 3.3.4. Also, the bivariate copula families c used and the associated copula parameters

✓ are shown in the Figure 3.3.1.

The setting 4, 5, 6 and 7 are generated by the mixture of multivariate skew t distributions with two clusters

and the density is given by

80 3 SIMULATION STUDY

Setting 4, 5, 6 and 7

0.4 ST (x | µ1,⌃1,�1, v1) + 0.6 ST (x | µ2,⌃2,�2, v2).

where ST (. | µ,⌃,�, v) is the density of multivariate skew t distributions, µ1 and µ2 are location vectors, ⌃1

and ⌃2 are scale matrices, �1 and �2 are skewness vectors and v1 and v2 are degrees of freedom for cluster 1

and 2 respectively. Also, the parameters used for data simulation in mixture of multivariate skew t distributions

are shown in the Table 3.3.3.

Cluster 1 Cluster 2

µ1 ⌃1 �1 v1 µ2 ⌃2 �2 v2

Setting 4 (1, 1, 0)T

2

64
2 1 1

1 2 1

1 1 2

3

75 (4,�4, 4)T 8 (�2,�2,�2)T

2

64
2 1 1

1 2 1

1 1 2

3

75 (�4, 4, 4)T 10

Setting 5 (1, 1, 0)T

2

64
2 1 1

1 2 1

1 1 2

3

75 (4,�4, 4)T 3 (�2,�2,�2)T

2

64
2 1 1

1 2 1

1 1 2

3

75 (�4, 4, 4)T 3

Setting 6 (1, 1, 0)T

2

64
2 1 1

1 2 1

1 1 2

3

75 (4,�4, 4)T 3 (�4.5, 1, 0)T

2

64
3 �1 �1
�1 3 �1
�1 �1 3

3

75 (�4, 4, 4)T 3

Setting 7 (1, 1, 0)T

2

64
0.5 0.1 0.1

0.1 0.5 0.1

0.1 0.1 0.5

3

75 (4,�4, 4)T 3 (�5,�5,�5)T

2

64
50 �1 �1
�1 3 �1
�1 �1 3

3

75 (�4, 4, 4)T 3

Table 3.3.3: The parameters used for data simulation in the mixture of multivariate skew t distributions for

each cluster.

Cluster 1 Cluster 2

F1(1)(�1(1)) F2(1)(�2(1)) F3(1)(�3(1)) F1(2)(�1(2)) F2(2)(�2(2)) F3(2)(�3(2))

Setting 1
llogis(1.5, 1.25) exp(0.1) lnorm(0.1, 1.3) lnorm(2.5, 0.5) logis(5, 3) exp(0.05)

(6.41,doesn’t exist) (10,10) (2.57,5.41) (13.80,7.36) (5,9.64) (20,20)

Setting 2
N (1, 2) exp(0.2) lnorm(0.8, 0.8) lnorm(1.5, 0.4) N (18, 5) exp(0.2)

(1,2) (5,5) (3.06,2.90) (4.85,2.02) (18,5) (5,5)

Setting 3
N (0, 2) N (1, 2) N (1, 2) N (0, 2) N (1, 2) N (�2, 2)
(0,2) (1,2) (1,2) (0,2) (1,2) (-2,2)

Setting 8
N (20, 25) N (15, 10) lnorm(2.3, 0.8) lnorm(3, 0.4) logis(8, 10) �(0.5, 1)

(20,25) (15,10) (13.74,13.051) (21.76,9.06) (8,32.15) (0.5,0.71)

Setting 9
N (20, 25) N (15, 10) lnorm(0, 0.3) lnorm(3, 0.4) logis(8, 10) �(0.5, 1)

(20,25) (15,10) (1.05,0.32) (21.76,9.06) (8,32.15) (0.5,0.71)

Table 3.3.4: The parameters of the univariate marginal distributions for each dimension and cluster. The

abbreviation for the marginal distributions : N (µ,�): normal distribution with mean µ and standard deviation

�. exp(�): exponential distribution with rate parameter �. lnorm(µ,�): log-normal distribution with mean

µ and standard deviation � on the logarithmic scale. logis(l, s): logistic distribution with location parameter

l and scale parameter s. llogis(↵,�): log-logistic distribution with shape parameter ↵ and scale parameter

�. �(↵,�): gamma distribution with shape parameter ↵ and rate parameter �. The mean and the standard

deviation of the univariate marginal distributions are given inside the parenthesis (mean, standard deviation)

below the abbreviation.

Example 3.3.1 (Visualization of sample data sets from the vine copula mixture model)

3.3 EM Algorithm and initialization strategies for VCMM algorithm 81

(a) Setting 1, 8 and 9 (First Cluster) (b) Setting 1, 8 and 9 (Second Cluster)

(c) Setting 2 (First Cluster) (d) Setting 2 (Second Cluster)

(e) Setting 3 (First Cluster) (f) Setting 3 (Second Cluster)

Figure 3.3.1: Vine tree structure of simulated data from the vine copula mixture model for Setting 1, 8 and 9

: (a), (b), Setting 2 : (c), (d) and Setting 3 : (e), (f). A capital letter at an edge refers to the bivariate copula

family: BB1: BB1 copula, C: Clayton, SC: Survival Clayton, F: Frank, G: Gumbel, SG: Survival Gumbel, J:

Joe copula and N : Gaussian copula. The true parameter value and corresponding Kendall’s ⌧ of the pair

copula are given inside the parenthesis (parameter(s)/Kendall’s ⌧).

82 3 SIMULATION STUDY

Table 3.3.5: The characteristics of the clusters in nine settings of data simulation. *The separation here refers

to the level of separation whether the two clusters can be observed easily if the dots of each cluster are not

coloured or marked. **The overlap here refers whether the two clusters can be separated by a plane almost

completely.

Characteristics of clusters

Setting
Shape Separation* Overlap** Volume

(Elliptical / Skew elliptical / Non elliptical) (Well / Not well) (Overlapping / Non-overlapping) (Similar / Di↵erent / Very di↵erent)

1 Non elliptical Well separated Non-overlapping Di↵erent

2 Non elliptical Not well separated Overlapping Similar

3 Elliptical Well separated Overlapping (X shape) Similar

4 Elliptical / Skew elliptical Not well separated Overlapping Similar

5 Skew elliptical Not well separated Overlapping Di↵erent

6 Skew elliptical Well separated Non-overlapping Similar

7 Skew elliptical Well separated Non-overlapping Very di↵erent

8 Non elliptical Well separated Non-overlapping Di↵erent

9 Non elliptical Well separated Overlapping (X shape) Similar

This example will show you the visualisations of each data settings and the scatter plots for 500 and 1000

samples are shown in the Figure 3.3.2, 3.3.3 and 3.3.4. According to the scatter plots for the sample data, we

can conclude four di↵erent characteristics of the clusters for each data setting, including shapes, separation,

overlap and volumes and the conclusion is shown in the Table 3.3.5. Note that the separation here is not

exactly the same as overlap. Separation here refers to the level of separation whether the two clusters can be

observed easily if the dots are not coloured or marked. Also, the overlap here refers whether the two clusters

can be separated by a plane almost completely. Therefore, for data setting 3 and 9, even the clusters are

heavily overlapping like a ”X”, but they are still well separated, because we can observe that the data consists

of two clusters clearly. The last characteristics volume classifies the size di↵erence between two clusters. In

data setting 7, the size di↵erence of the clusters is much bigger than other data settings, so its characteristics

volume is classified as ”Very di↵erent”.

Table 3.3.6: Selection of the EM algorithms, optimization methods for marginal parameter � and their CM

steps order for testing.

Algorithm Parameter update

(Optimization method for �) CM step 1 CM step 2 CM step 3

ECM (Nelder-Mead) ⇡ ✓ �

ECM (BFGS) ⇡ ✓ �

MCECM (Nelder-Mead) ⇡ ✓ �

MCECM (BFGS) ⇡ ✓ �

ECME (Nelder-Mead) ⇡ ✓ �

ECME (BFGS) ⇡ ✓ �

Step 2: Decide on the EM algorithms and the CM steps order in the VCMM algorithm

In our experiment, we will use 3 EM algorithms including ECM, MCECM and ECME algorithm to estimate

the parameters in the vine copula mixture model. As mentioned in the Section 2.4.3, the parameters that

we need to estimate are mixing proportion ⇡, copula parameter ✓ and marginal parameter �. For mixing

proportion ⇡, we can estimate it by using the Equation (2.4.20). Also, we have no analytical solution for the

copula parameter ✓, so we can use the R function RVineSeqMLE in the R package VineCopula to estimate the

pair-copula parameters by maximization likelihood estimation (MLE) which uses L-BFGS-B to estimate the

copula parameters. For marginal parameter �, there is no analytical solution for estimation and two numerical

optimization methods of which Nelder-Mead is a heuristic search optimization without derivatives and BFGS is

gradient based optimization method are used for marginal parameter estimation. In the experiment, each EM

3.3 EM Algorithm and initialization strategies for VCMM algorithm 83

True cluster (n = 500)

(a) Setting 1 (b) Setting 1 (c) Setting 2 (d) Setting 2

(e) Setting 3 (f) Setting 3

(g) Setting 4 (h) Setting 4 (i) Setting 5 (j) Setting 5

Figure 3.3.2: The scatter plots and the corresponding pairs plots of 500 simulated data generated from setting

1 to 5. The orange and green colour refer to the points in Cluster 1 and 2 respectively.

84 3 SIMULATION STUDY

True cluster (n = 500)

(a) Setting 6 (b) Setting 6 (c) Setting 7 (d) Setting 7

(e) Setting 8 (f) Setting 8 (g) Setting 9 (h) Setting 9

Figure 3.3.3: The scatter plots and the corresponding pairs plots of 500 simulated data generated from setting

6 to 9. The orange and green colour refer to the points in Cluster 1 and 2 respectively.

3.3 EM Algorithm and initialization strategies for VCMM algorithm 85

True cluster (n = 1000)

(a) Setting 1 (b) Setting 1 (c) Setting 3 (d) Setting 3

(e) Setting 5 (f) Setting 5

(g) Setting 6 (h) Setting 6 (i) Setting 7 (j) Setting 7

Figure 3.3.4: The scatter plots and the corresponding pairs plots of 1000 simulated data generated from setting

1, 3, 5, 6 and 7. The orange and green colour refer to the points in Cluster 1 and 2 respectively.

86 3 SIMULATION STUDY

algorithm is used with two di↵erent optimization methods to estimate the marginal parameter �, so we study

six algorithms in total. About the order of the CM steps, we just follow the steps shown in the Section 2.4.3.

Basically, the parameters update in each CM step follows the order : Mixing proportion ⇡ > Copula parameter

✓ > Marginal parameter �. The overview of the selection of the EM algorithms, optimization methods for

marginal parameter and their CM steps in our experiment are shown in the Table 3.3.6.

Step 3: Decide on the initialization strategies for the VCMM algorithm

In Sahin and Czado [2021], ”Kmeans (scale)” is used for the initialization. Here, we use further initialization

strategies which were already introduced in the last Section 3.2. They are ”Random”, ”Kmeans”, ”Hierarchi-

cal”, ”Kmeans (scale)” and ”Hierarchical (scale)”.

Step 4: Decide on the marginal distribution and copula families for modelling in the VCMM

algorithm

VCMM algorithm is a very flexible modelling method, because it can model many combinations of marginal

distribution, copula family and pair copula construction. Here is a brief introduction for the flexibility of the

VCMM algorithm:

1. Pair copula construction (Vine tree structure)

In the Theorem 2.3.18 (A pair copula construction in three dimensions), we have mentioned that there are 3

di↵erent ways for copula construction to model di↵erent relationship between the variables:

f(x1, x2, x3) = c1,3;2(F1|2(x1|x2), F3|2(x3|x2))⇥ c2,3(F2(x2), F3(x3))

⇥ c1,2(F1(x1), F2(x2))f3(x3)f2(x2)f1(x1)

f(x1, x2, x3) = c1,2;3(F1|3(x1|x3), F2|1(x2|x2))⇥ c1,3(F1(x1), F3(x3))

⇥ c2,3(F2(x2), F3(x3))f3(x3)f2(x2)f1(x1)

f(x1, x2, x3) = c2,3;1(F2|1(x2|x1), F3|1(x3|x1))⇥ c1,3(F1(x1), F3(x3))

⇥ c1,2(F1(x1), F2(x2))f3(x3)f2(x2)f1(x1)

2. Marginal distribution F

In the VCMM algorithm, we will select 7 di↵erent candidates for the marginal distribution: 1. Gaussian dis-

tribution, 2. Log-normal distribution, 3. Exponential distribution, 4. Log-logistic distribution, 5. Logistic

distribution, 6. Gamma distribution and 7. Student’s t distribution with degrees of freedom 3.

3. Copula family c

In the VCMM algorithm, we will use the following copula families :

Gaussian copula, Student’s t copula, Gumbel copula, Clayton copula, Frank copula, Joe copula, BB1 copula,

BB6 copula, BB8 copula and their rotated copulas with 90�, 180�, 270� degrees.

In our simulation studies, we will use 2 di↵erent modelling methods which allow the use of di↵erent marginal

distributions and copula families. The detail is shown in the Table 3.3.7.

Table 3.3.7: The overview of the marginal distribution and copula families used for the modelling in VCMM

algorithm. *All refers to the marginal distributions and copula families mentioned above in step 4.

Modelling method Marginal distribution Copula family Pair copula construction

Gaussian VCMM Gaussian Gaussian Determined by the VCMM algorithm

General VCMM All* All* Determined by the VCMM algorithm

3.3 EM Algorithm and initialization strategies for VCMM algorithm 87

Step 5: Perform the simulation in R

Each experiment shown in the Table 2.1.9 will be repeated for 50 times, which means that the replication for

each experiment R is 50. The detail of the VCMM algorithm is not shown here. For more information, please

refer to Sahin and Czado [2021] for the VCMM algorithm and the Section 2.4.2 in this thesis for the E and

CM steps of the EM algorithms for parameter estimation.

88 3 SIMULATION STUDY

Table 3.3.8: Abbreviations for the studied experiments

Abbreviations Setting Initialization Modelling Sample size (n)

strategies method

1.R.Gau.n 1 Random Gaussian VCMM 500 and 1000

1.K.Gau.n 1 Kemans Gaussian VCMM 500 and 1000

1.H.Gau.n 1 Hierarchical Gaussian VCMM 500 and 1000

1.KS.Gau.n 1 Kemans (scale) Gaussian VCMM 500 and 1000

1.HS.Gau.n 1 Hierarchical (scale) Gaussian VCMM 500 and 1000

2.R.Gau.n 2 Random Gaussian VCMM 500

2.K.Gau.n 2 Kemans Gaussian VCMM 500

2.H.Gau.n 2 Hierarchical Gaussian VCMM 500

2.KS.Gau.n 2 Kemans (scale) Gaussian VCMM 500

2.HS.Gau.n 2 Hierarchical (scale) Gaussian VCMM 500

3.R.Gau.n 3 Random Gaussian VCMM 500 and 1000

3.K.Gau.n 3 Kemans Gaussian VCMM 500 and 1000

3.H.Gau.n 3 Hierarchical Gaussian VCMM 500 and 1000

3.KS.Gau.n 3 Kemans (scale) Gaussian VCMM 500 and 1000

3.HS.Gau.n 3 Hierarchical (scale) Gaussian VCMM 500 and 1000

4.R.Gau.n 4 Random Gaussian VCMM 500

4.K.Gau.n 4 Kemans Gaussian VCMM 500

4.H.Gau.n 4 Hierarchical Gaussian VCMM 500

4.KS.Gau.n 4 Kemans (scale) Gaussian VCMM 500

4.HS.Gau.n 4 Hierarchical (scale) Gaussian VCMM 500

5.R.Gau.n 5 Random Gaussian VCMM 500 and 1000

5.K.Gau.n 5 Kemans Gaussian VCMM 500 and 1000

5.H.Gau.n 5 Hierarchical Gaussian VCMM 500 and 1000

5.KS.Gau.n 5 Kemans (scale) Gaussian VCMM 500 and 1000

5.HS.Gau.n 5 Hierarchical (scale) Gaussian VCMM 500 and 1000

6.R.Gau.n 6 Random Gaussian VCMM 500 and 1000

6.K.Gau.n 6 Kemans Gaussian VCMM 500 and 1000

6.H.Gau.n 6 Hierarchical Gaussian VCMM 500 and 1000

6.KS.Gau.n 6 Kemans (scale) Gaussian VCMM 500 and 1000

6.HS.Gau.n 6 Hierarchical (scale) Gaussian VCMM 500 and 1000

7.R.Gau.n 7 Random Gaussian VCMM 500 and 1000

7.K.Gau.n 7 Kemans Gaussian VCMM 500 and 1000

7.H.Gau.n 7 Hierarchical Gaussian VCMM 500 and 1000

7.KS.Gau.n 7 Kemans (scale) Gaussian VCMM 500 and 1000

7.HS.Gau.n 7 Hierarchical (scale) Gaussian VCMM 500 and 1000

8.R.Gau.n 8 Random Gaussian VCMM 500

8.K.Gau.n 8 Kemans Gaussian VCMM 500

8.H.Gau.n 8 Hierarchical Gaussian VCMM 500

8.KS.Gau.n 8 Kemans (scale) Gaussian VCMM 500

8.HS.Gau.n 8 Hierarchical (scale) Gaussian VCMM 500

9.R.Gau.n 9 Random Gaussian VCMM 500

9.K.Gau.n 9 Kemans Gaussian VCMM 500

9.H.Gau.n 9 Hierarchical Gaussian VCMM 500

9.KS.Gau.n 9 Kemans (scale) Gaussian VCMM 500

9.HS.Gau.n 9 Hierarchical (scale) Gaussian VCMM 500

3.3 EM Algorithm and initialization strategies for VCMM algorithm 89

Abbreviations Setting Initialization Modelling Sample size (n)

strategies method

1.R.Gen.n 1 Random General VCMM 500 and 1000

1.K.Gen.n 1 Kemans General VCMM 500 and 1000

1.H.Gen.n 1 Hierarchical General VCMM 500 and 1000

1.KS.Gen.n 1 Kemans (scale) General VCMM 500 and 1000

1.HS.Gen.n 1 Hierarchical (scale) General VCMM 500 and 1000

2.R.Gen.n 2 Random General VCMM 500

2.K.Gen.n 2 Kemans General VCMM 500

2.H.Gen.n 2 Hierarchical General VCMM 500

2.KS.Gen.n 2 Kemans (scale) General VCMM 500

2.HS.Gen.n 2 Hierarchical (scale) General VCMM 500

3.R.Gen.n 3 Random General VCMM 500 and 1000

3.K.Gen.n 3 Kemans General VCMM 500 and 1000

3.H.Gen.n 3 Hierarchical General VCMM 500 and 1000

3.KS.Gen.n 3 Kemans (scale) General VCMM 500 and 1000

3.HS.Gen.n 3 Hierarchical (scale) General VCMM 500 and 1000

4.R.Gen.n 4 Random General VCMM 500

4.K.Gen.n 4 Kemans General VCMM 500

4.H.Gen.n 4 Hierarchical General VCMM 500

4.KS.Gen.n 4 Kemans (scale) General VCMM 500

4.HS.Gen.n 4 Hierarchical (scale) General VCMM 500

5.R.Gen.n 5 Random General VCMM 500 and 1000

5.K.Gen.n 5 Kemans General VCMM 500 and 1000

5.H.Gen.n 5 Hierarchical General VCMM 500 and 1000

5.KS.Gen.n 5 Kemans (scale) General VCMM 500 and 1000

5.HS.Gen.n 5 Hierarchical (scale) General VCMM 500 and 1000

6.R.Gen.n 6 Random General VCMM 500 and 1000

6.K.Gen.n 6 Kemans General VCMM 500 and 1000

6.H.Gen.n 6 Hierarchical General VCMM 500 and 1000

6.KS.Gen.n 6 Kemans (scale) General VCMM 500 and 1000

6.HS.Gen.n 6 Hierarchical (scale) General VCMM 500 and 1000

7.R.Gen.n 7 Random General VCMM 500 and 1000

7.K.Gen.n 7 Kemans General VCMM 500 and 1000

7.H.Gen.n 7 Hierarchical General VCMM 500 and 1000

7.KS.Gen.n 7 Kemans (scale) General VCMM 500 and 1000

7.HS.Gen.n 7 Hierarchical (scale) General VCMM 500 and 1000

8.R.Gen.n 8 Random General VCMM 500

8.K.Gen.n 8 Kemans General VCMM 500

8.H.Gen.n 8 Hierarchical General VCMM 500

8.KS.Gen.n 8 Kemans (scale) General VCMM 500

8.HS.Gen.n 8 Hierarchical (scale) General VCMM 500

9.R.Gen.n 9 Random General VCMM 500

9.K.Gen.n 9 Kemans General VCMM 500

9.H.Gen.n 9 Hierarchical General VCMM 500

9.KS.Gen.n 9 Kemans (scale) General VCMM 500

9.HS.Gen.n 9 Hierarchical (scale) General VCMM 500

90 3 SIMULATION STUDY

3.3.2 Result visualisation and the performance

Step 6: Create visualization of the performance measures

The graphs for result visualization are shown in Step 7.

Step 7: Analyse and compare the results

1. Scatter plots after initializing and final clustering

Setting 1, n = 500

(a) Random (49.9%) (b) Kmeans (51.1%) (c) Kmeans scale (54.2%) (d) Hierarchical (67.2%) (e) Hierarchical scale (60.5%)

(f) Random (95.3%) (g) Kmeans (62.0%) (h) Kmeans scale (62.8%) (i) Hierarchical (99.2%) (j) Hierarchical scale (82.9%)

(k) Random (60.9%) (l) Kmeans (62.4%) (m) Kmeans scale (60.9%) (n) Hierarchical (62.4%) (o) Hierarchical scale (60.9%)

Figure 3.3.5: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for setting 1 with sample size 500. The blue and pink colour refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster. For

final clustering, the EM algorithm reaching the highest classification rate is used here. First row : Initializing

clustering, second row : Final clustering by General VCMM and third row : Final clustering by Gaussian

VCMM.

3.3 EM Algorithm and initialization strategies for VCMM algorithm 91

Setting 2, n = 500

(a) Random (50.2%) (b) Kmeans (78.5%) (c) Kmeans scale (67.2%) (d) Hierarchical (85.6%) (e) Hierarchical scale (84.2%)

(f) Random (60.5%) (g) Kmeans (90.8%) (h) Kmeans scale (91.6%) (i) Hierarchical (90.8%) (j) Hierarchical scale (89.7%)

(k) Random (51.2%) (l) Kmeans (81.0%) (m) Kmeans scale (51.2%) (n) Hierarchical (81.0%) (o) Hierarchical scale (81.0%)

Figure 3.3.6: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for setting 2 with sample size 500. The blue and pink colour refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster. For

final clustering, the EM algorithm reaching the highest classification rate is used here. First row : Initializing

clustering, second row : Final clustering by General VCMM and third row : Final clustering by Gaussian

VCMM.

92 3 SIMULATION STUDY

Setting 3, n = 500

(a) Random (50.1%) (b) Kmeans (59.8%) (c) Kmeans scale (56.1%) (d) Hierarchical (60.7%) (e) Hierarchical scale (54.8%)

(f) Random (50.3%) (g) Kmeans (64.7%) (h) Kmeans scale (58.6%) (i) Hierarchical (69.7%) (j) Hierarchical scale (61.4%)

(k) Random (89.4%) (l) Kmeans (88.0%) (m) Kmeans scale (88.0%) (n) Hierarchical (88.0%) (o) Hierarchical scale (89.1%)

Figure 3.3.7: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for setting 3 with sample size 500. The blue and pink colour refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster. For

final clustering, the EM algorithm reaching the highest classification rate is used here. First row : Initializing

clustering, second row : Final clustering by General VCMM and third row : Final clustering by Gaussian

VCMM.

3.3 EM Algorithm and initialization strategies for VCMM algorithm 93

Setting 4, n = 500

(a) Random (49.9%) (b) Kmeans (83.6%) (c) Kmeans scale (81.6%) (d) Hierarchical (84.2%) (e) Hierarchical scale (78.5%)

(f) Random (51.2%) (g) Kmeans (85.6%) (h) Kmeans scale (85.6%) (i) Hierarchical (85.3%) (j) Hierarchical scale (85.9%)

(k) Random (65.2%) (l) Kmeans (87.3%) (m) Kmeans scale (87.6%) (n) Hierarchical (88.3%) (o) Hierarchical scale (87.3%)

Figure 3.3.8: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for setting 3 with sample size 500. The blue and pink colour refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster. For

final clustering, the EM algorithm reaching the highest classification rate is used here. First row : Initializing

clustering, second row : Final clustering by General VCMM and third row : Final clustering by Gaussian

VCMM.

94 3 SIMULATION STUDY

Setting 5, n = 500

(a) Random (49.9%) (b) Kmeans (75.9%) (c) Kmeans scale (75.0%) (d) Hierarchical (64.5%) (e) Hierarchical scale (77.0%)

(f) Random (79.1%) (g) Kmeans (77.6%) (h) Kmeans scale (77.6%) (i) Hierarchical (69.2%) (j) Hierarchical scale (77.9%)

(k) Random (53.0%) (l) Kmeans (53.0%) (m) Kmeans scale (53.0%) (n) Hierarchical (53.0%) (o) Hierarchical scale (53.0%)

Figure 3.3.9: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for setting 5 with sample size 500. The blue and pink colour refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster. For

final clustering, the EM algorithm reaching the highest classification rate is used here. First row : Initializing

clustering, second row : Final clustering by General VCMM and third row : Final clustering by Gaussian

VCMM.

3.3 EM Algorithm and initialization strategies for VCMM algorithm 95

Setting 6, n = 500

(a) Random (50.0%) (b) Kmeans (98.0%) (c) Kmeans scale (98.0%) (d) Hierarchical (94.9%) (e) Hierarchical scale (94.5%)

(f) Random (97.6%) (g) Kmeans (99.2%) (h) Kmeans scale (99.6%) (i) Hierarchical (97.2%) (j) Hierarchical scale (98.4%)

(k) Random (98.0%) (l) Kmeans (98.4%) (m) Kmeans scale (98.8%) (n) Hierarchical (80.7%) (o) Hierarchical scale (64.3%)

Figure 3.3.10: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for setting 6 with sample size 500. The blue and pink colour refer to the points from di↵erent clusters.

The number inside the round bracket is the classification rate, compared to the true cluster. For final clustering,

the EM algorithm reaching the highest classification rate is used here. First row : Initializing clustering, second

row : Final clustering by General VCMM and third row : Final clustering by Gaussian VCMM.

96 3 SIMULATION STUDY

Setting 7, n = 500

(a) Random (49.9%) (b) Kmeans (51.5%) (c) Kmeans scale (93.0%) (d) Hierarchical (98.4%) (e) Hierarchical scale (96.8%)

(f) Random (96.1%) (g) Kmeans (90.8%) (h) Kmeans scale (97.6%) (i) Hierarchical (97.2%) (j) Hierarchical scale (96.9%)

(k) Random (94.9%) (l) Kmeans (96.5%) (m) Kmeans scale (96.5%) (n) Hierarchical (96.5%) (o) Hierarchical scale (96.5%)

Figure 3.3.11: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for Setting 7 with sample size 500. The blue and pink colour refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster. For

final clustering, the EM algorithm reaching the highest classification rate is used here. First row : Initializing

clustering, second row : Final clustering by General VCMM and third row : Final clustering by Gaussian

VCMM.

3.3 EM Algorithm and initialization strategies for VCMM algorithm 97

Setting 8, n = 500

(a) Random (50.0%) (b) Kmeans (50.6%) (c) Kmeans scale (53.8%) (d) Hierarchical (85.3%) (e) Hierarchical scale (57.1%)

(f) Random (99.6%) (g) Kmeans (97.6%) (h) Kmeans scale (76.2%) (i) Hierarchical (99.2%) (j) Hierarchical scale (75.9%)

(k) Random (93.0%) (l) Kmeans (94.2%) (m) Kmeans scale (94.2%) (n) Hierarchical (91.2%) (o) Hierarchical scale (94.2%)

Figure 3.3.12: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for Setting 8 with sample size 500. The blue and pink colour refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster. For

final clustering, the EM algorithm reaching the highest classification rate is used here. First row : Initializing

clustering, second row : Final clustering by General VCMM and third row : Final clustering by Gaussian

VCMM.

98 3 SIMULATION STUDY

Setting 9, n = 500

(a) Random (50.0%) (b) Kmeans (50.2%) (c) Kmeans scale (52.9%) (d) Hierarchical (63.2%) (e) Hierarchical scale (55.6%)

(f) Random (90.5%) (g) Kmeans (50.0%) (h) Kmeans scale (90.5%) (i) Hierarchical (50.3%) (j) Hierarchical scale (88.0%)

(k) Random (89.4%) (l) Kmeans (50.6%) (m) Kmeans scale (50.6%) (n) Hierarchical (50.6%) (o) Hierarchical scale (63.0%)

Figure 3.3.13: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for Setting 9 with sample size 500. The blue and pink colour refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster. For

final clustering, the EM algorithm reaching the highest classification rate is used here. First row : Initializing

clustering, second row : Final clustering by General VCMM and third row : Final clustering by Gaussian

VCMM.

3.3 EM Algorithm and initialization strategies for VCMM algorithm 99

Setting 1, n = 1000

(a) Random (50.0%) (b) Kmeans (52.7%) (c) Kmeans scale (55.3%) (d) Hierarchical (71.0%) (e) Hierarchical scale (51.2%)

(f) Random (98.8%) (g) Kmeans (80.9%) (h) Kmeans scale (65.0%) (i) Hierarchical (99.0%) (j) Hierarchical scale (54.5%)

(k) Random (63.8%) (l) Kmeans (64.9%) (m) Kmeans scale (64.8%) (n) Hierarchical (64.8%) (o) Hierarchical scale (58.8%)

Figure 3.3.14: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for setting 1 with sample size 1000. The blue and pink colour refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster. For

final clustering, the EM algorithm reaching the highest classification rate is used here. First row : Initializing

clustering, second row : Final clustering by General VCMM and third row : Final clustering by Gaussian

VCMM.

100 3 SIMULATION STUDY

Setting 3, n = 1000

(a) Random (50.0%) (b) Kmeans (55.9%) (c) Kmeans scale (53.9%) (d) Hierarchical (56.5%) (e) Hierarchical scale (50.8%)

(f) Random (86.5%) (g) Kmeans (57.3%) (h) Kmeans scale (60.3%) (i) Hierarchical (59.9%) (j) Hierarchical scale (62.5%)

(k) Random (86.6%) (l) Kmeans (85.6%) (m) Kmeans scale (85.6%) (n) Hierarchical (86.5%) (o) Hierarchical scale (86.1%)

Figure 3.3.15: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for setting 3 with sample size 1000. The blue and pink colour refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster. For

final clustering, the EM algorithm reaching the highest classification rate is used here. First row : Initializing

clustering, second row : Final clustering by General VCMM and third row : Final clustering by Gaussian

VCMM.

3.3 EM Algorithm and initialization strategies for VCMM algorithm 101

Setting 5, n = 1000

(a) Random (50.0%) (b) Kmeans (76.2%) (c) Kmeans scale (74.9%) (d) Hierarchical (51.7%) (e) Hierarchical scale (71.4%)

(f) Random (59.0%) (g) Kmeans (71.4%) (h) Kmeans scale (72.0%) (i) Hierarchical (50.6%) (j) Hierarchical scale (70.1%)

(k) Random (51.6%) (l) Kmeans (51.5%) (m) Kmeans scale (51.5%) (n) Hierarchical (51.5%) (o) Hierarchical scale (51.5%)

Figure 3.3.16: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for setting 5 with sample size 1000. The blue and pink colour refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster. For

final clustering, the EM algorithm reaching the highest classification rate is used here. First row : Initializing

clustering, second row : Final clustering by General VCMM and third row : Final clustering by Gaussian

VCMM.

102 3 SIMULATION STUDY

Setting 6, n = 1000

(a) Random (50.0%) (b) Kmeans (99.6%) (c) Kmeans scale (52.0%) (d) Hierarchical (98.4%) (e) Hierarchical scale (89.4%)

(f) Random (99.0%) (g) Kmeans (98.2%) (h) Kmeans scale (99.6%) (i) Hierarchical (99.4%) (j) Hierarchical scale (98.2%)

(k) Random (92.7%) (l) Kmeans (97.2%) (m) Kmeans scale (98.2%) (n) Hierarchical (97.2%) (o) Hierarchical scale (69.4%)

Figure 3.3.17: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for Setting 6 with sample size 1000. The blue and pink colour refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster. For

final clustering, the EM algorithm reaching the highest classification rate is used here. First row : Initializing

clustering, second row : Final clustering by General VCMM and third row : Final clustering by Gaussian

VCMM.

3.3 EM Algorithm and initialization strategies for VCMM algorithm 103

Setting 7, n = 1000

(a) Random (50.0%) (b) Kmeans (56.1%) (c) Kmeans scale (94.2%) (d) Hierarchical (99.2%) (e) Hierarchical scale (97.2%)

(f) Random (98.4%) (g) Kmeans (98.6%) (h) Kmeans scale (98.2%) (i) Hierarchical (97.8%) (j) Hierarchical scale (98.2%)

(k) Random (95.9%) (l) Kmeans (96.8%) (m) Kmeans scale (96.8%) (n) Hierarchical (96.7%) (o) Hierarchical scale (96.8%)

Figure 3.3.18: The scatter plots of initializing clustering and final clustering by using di↵erent initialization

strategies for Setting 7 with sample size 1000. The blue and pink colour refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster. For

final clustering, the EM algorithm reaching the highest classification rate is used here. First row : Initializing

clustering, second row : Final clustering by General VCMM and third row : Final clustering by Gaussian

VCMM.

104 3 SIMULATION STUDY

The Figure 3.3.5 - 3.3.18 show you the scatter plots of initializing clustering and final clustering by using di↵er-

ent initialization strategies for each data setting. In the scatter plots 3.3.2, 3.3.3 and 3.3.4, we know that there

are totally no overlapping data in data setting 1 and 8. However, after initializing clustering with Kmeans, the

data cannot be clustered accurately and Hierarchical can do better than Kmeans. We think that the reason

is that Kmeans cannot cluster the non-Gaussian data well, even if the data are not overlapping. Also, for

data setting 1, 5, 7 and 8, the Table 3.3.5 shows the volumes of two clusters are not similar. The initializing

clustering with Kmeans (scale) for those data settings can cluster better than Kmeans. In particular, for data

7, the volume of the two clusters are very di↵erent and it turns out that the classification rate with Kmeans

(scale) is much better than Kmeans.

For the result with the classification rate after final clustering with General VCMM, you can observe that for

a particular initialization strategy, the classification rate mostly increases after final clustering, which means

the General VCMM algorithm improves the clustering performance after using initialization strategy. It proves

that the high flexibility of General VCMM can do clustering better than well-known clustering methods.

2. Comparison of the result for di↵erent data settings

The result of the performance measures, including mean computation time, mean normalised BIC and mean

classification rate, for each EM algorithm with di↵erent initialization strategies are shown in the Table 3.3.9,

3.3.10 and 3.3.11 respectively. We can see that for a particular initialization strategy, the normalised BIC and

classification rate perform usually similar within di↵erent EM algorithms, but there is a great di↵erence in com-

putation time. In the table 3.3.9, the EM algorithms with heuristic based optimization method (Nelder-Maad)

is taking more time than with gradient based optimization method (BFGS) in many situations. This could

be due to the fact that VCMM might have a nonlinear objective function with many local optima, making

heuristic approaches convergence time longer. Also, for General VCMM, for a particular initialization strategy,

ECME.BFGS requires more computation time than ECM.BFGS and MCECM.BFGS.

For a particular EM algorithm, the performance can vary a lot by using di↵erent initialization strategies.

Therefore, regarding to the accuracy of clustering, the way of initialization for EM algorithm is the key factor.

Also, we can see that, in many cases, random definitely requires longer computation times than other methods.

After initializing clustering with random, we just can get the 50% accuracy of clustering, which is definitely

lower than others. Although it cannot improve after initializing clustering, it still tries to find the best partition

while taking too much time.

Also, we would like to analyse and discuss the classification rate of di↵erent data settings based on the four

characteristics mentioned in the Table 3.3.5, for example, shape, separation, overlap and volume. Because

our main goal is to assess the performance for data clustering, we will focus on the classification rate here for

assessment.

Separation

For data setting 1, 3, 6, 7, 8 and 9, the two clusters are well separated, where the two clusters can be observed

easily even the dots are not marked. You can see that the classification rate with General VCMM and Ran-

dom can reach over 84%. Although classification rate after initializing cluster is just 50%, the performance

after General and Gaussian VCMM turns out to be surprisingly good. Also, in particular, for data setting 1,

8, where the data generated from VCMM model and non-overlapping, although Random performs very well,

Hierarchical performs more often better.

Overlap

For data setting 3 and 9, the two clusters are overlapping like a ”X”. In the Figure 3.3.2 (e) and 3.3.3 (g), you

can see that the two clusters are heavily overlapping, but well separated. According to the result of classifi-

3.3 EM Algorithm and initialization strategies for VCMM algorithm 105

cation rate of General VCMM, random outperforms all other initialization strategies for the ”X” cluster. For

the data settings with overlapping clusters and not good separation, such as 2, 4 and 5, Kmeans performs the

best.

Volume

Recalling in the Example 3.3.1, the volumes of two clusters are not similar for data setting 1, 5, 7 and 8 and the

initializing clustering with Kmeans (scale) for those data settings can cluster better than Kmeans. The result in

the Table 3.3.11 shows that after final clustering with General VCMM, for data setting 1, 5, 7, the classification

rate of Kmeans (scale) is not better than Kmeans. However, for the data setting 7 with very di↵erent volumes

of clusters, the performances of Kmeans (scale) is better than Kmeans and Hierarchical (scale) is at least as

good as Hierarchical.

Shape

The shape of the data settings can be separated into 3 groups, which are elliptical, skew elliptical and non

elliptical. For data setting 4, its characteristics is in between elliptical and skew elliptical, because the degrees

of freedoms for each cluster are quite high which are 8 and 10 respectively. For a particular EM algorithm

and initialization strategy, we can see that the Gaussian VCMM can perform better than General VCMM

for data setting 3 and 4 with elliptical cluster. For data setting 1, 2, 8 and 9 with non elliptical cluster, the

General VCMM can perform better than Gaussian VCMM. For data setting 5, 6 and 7 with skew elliptical

cluster, the General VCMM can perform mostly better than Gaussian VCMM, except data setting 9 (1000

samples) clustered by ECM or MCECM with Kmeans. Also, for data setting 4, 5, 6 generated from mixture of

skew t distribution without very di↵erent volumes of clusters, Kmeans outperform other initialization strategies.

Summary and recommendation

Here is the summary and recommendation, according to the analysis and discussion above:

• For clustering with VCMM algorithm, the process of parameter estimation by di↵erent EM algorithms doesn’t

change the accuracy much.

• The EM algorithms with Neldar-Mead is taking more time than with BFGS in many situations. For gen-

eral VCMM, ECM.BFGS or MCECM.BFGS are recommended due to shorter required computation time.

• For non elliptical and skew elliptical data, General VCMM for clustering is performing better than Gaussian

VCMM as expected.

• In general, random requires longer computation time.

• For the clusters with good separation, random as an initialization strategy is a good choice for initial clus-

tering. More specifically, for the shape of the clusters like a ”X”, Random is the best choice. Also, for

the data without any overlap, Hierarchical is the best choice.

• For the clusters with overlap and not good separation, Kmeans is suggested.

• For the clusters with very di↵erent volumes, standardization first before applying General VCMM is sug-

gested.

106 3 SIMULATION STUDY

• For data generated from skew elliptical with similar / small di↵erent volumes of clusters, General VCMM

with Kmeans is preferred.

3.3 EM Algorithm and initialization strategies for VCMM algorithm 107

Table 3.3.9: Mean value of the computation time for each EM algorithm and its extension with di↵erent

initialization strategies for 50 replications, where green and red colour represent the best and the worst

initialization strategies for each EM algorithm respectively.

General VCMM Gaussian VCMM

Setting Performance Algorithm Random Kmeans Hierarchical Kmeans Hierarchical Random Kmeans Hierarchical Kmeans Hierarchical

(Sample size) measures (scale) (scale) (scale) (scale)

VCMM (Non elliptical)

1 (500) Computation time

ECM.Nelder.Mead 217 124 92 95 97 144 110 77 102 80

ECM.BFGS 186 97 84 73 77 134 92 67 89 72

ECME.Nelder.Mead 269 139 154 110 145 87 85 67 69 66

ECME.BFGS 181 85 117 70 96 73 67 54 59 55

MCECM.Nelder.Mead 210 124 95 93 103 147 106 77 99 83

MCECM.BFGS 167 94 84 71 76 137 91 65 91 73

1 (1000) Computation time

ECM.Nelder.Mead 324 453 130 201 201 235 186 131 175 159

ECM.BFGS 285 347 113 164 170 211 164 112 155 143

ECME.Nelder.Mead 370 416 183 209 218 120 124 96 110 106

ECME.BFGS 307 298 163 165 170 107 105 88 98 95

MCECM.Nelder.Mead 296 456 128 173 190 236 177 126 163 153

MCECM.BFGS 285 341 112 160 158 217 159 115 153 138

2 (500) Computation time

ECM.Nelder.Mead 157 70 71 110 90 143 103 77 94 64

ECM.BFGS 88 61 74 89 79 108 82 56 74 49

ECME.Nelder.Mead 180 102 129 177 137 148 99 71 103 64

ECME.BFGS 98 88 109 144 114 129 84 62 89 57

MCECM.Nelder.Mead 130 73 72 107 83 146 97 68 95 60

MCECM.BFGS 85 61 72 88 79 113 83 57 78 50

8 (500) Computation time

ECM.Nelder.Mead 104 214 59 115 145 64 74 39 71 60

ECM.BFGS 86 168 47 89 121 53 61 33 59 50

ECME.Nelder.Mead 117 279 87 150 196 43 61 36 61 55

ECME.BFGS 105 229 73 118 147 38 52 33 53 48

MCECM.Nelder.Mead 103 224 55 117 143 62 72 37 69 58

MCECM.BFGS 441 1105 48 101 121 55 62 33 59 50

9 (500) Computation time

ECM.Nelder.Mead 123 156 111 167 140 88 88 72 96 80

ECM.BFGS 98 116 84 118 97 82 75 68 90 74

ECME.Nelder.Mead 141 206 173 178 170 52 85 57 84 75

ECME.BFGS 119 150 128 137 124 48 74 53 75 66

MCECM.Nelder.Mead 117 161 111 169 139 85 84 71 96 76

MCECM.BFGS 98 115 85 116 100 76 76 61 83 67

VCMM (Multivariate Gaussian)

3 (500) Computation time

ECM.Nelder.Mead 114 93 78 67 66 68 79 63 98 82

ECM.BFGS 121 94 82 67 62 59 73 58 85 70

ECME.Nelder.Mead 118 79 89 70 66 80 83 70 108 93

ECME.BFGS 121 77 82 73 62 78 83 72 96 83

MCECM.Nelder.Mead 104 88 75 64 67 55 73 57 90 75

MCECM.BFGS 111 93 80 68 64 53 70 55 81 67

3 (1000) Computation time

ECM.Nelder.Mead 191 153 154 111 153 87 144 99 152 132

ECM.BFGS 194 161 155 117 151 87 145 99 154 132

ECME.Nelder.Mead 185 131 147 119 150 77 137 101 132 123

ECME.BFGS 192 142 148 122 157 76 135 100 137 127

MCECM.Nelder.Mead 171 155 146 111 152 77 137 95 148 123

MCECM.BFGS 175 163 148 116 150 76 140 95 150 125

Mixture of multivariate skew t

4 (500) Computation time

ECM.Nelder.Mead 161 50 50 50 56 127 47 64 51 65

ECM.BFGS 158 45 42 42 49 116 43 57 47 59

ECME.Nelder.Mead 177 55 58 58 66 142 60 76 51 74

ECME.BFGS 166 46 47 45 54 146 48 64 51 74

MCECM.Nelder.Mead 166 44 42 44 54 124 42 59 41 65

MCECM.BFGS 155 42 42 42 50 115 41 60 41 56

5 (500) Computation time

ECM.Nelder.Mead 360 103 100 92 112 43 55 54 54 60

ECM.BFGS 297 86 86 77 105 42 54 53 52 59

ECME.Nelder.Mead 436 113 108 111 127 56 59 60 58 62

ECME.BFGS 360 100 92 97 120 66 68 70 62 72

MCECM.Nelder.Mead 324 99 98 87 113 38 52 50 51 56

MCECM.BFGS 272 88 85 79 103 38 56 54 51 56

5 (1000) Computation time

ECM.Nelder.Mead 748 159 221 138 217 73 86 86 87 100

ECM.BFGS 615 138 187 123 206 72 87 85 86 99

ECME.Nelder.Mead 751 166 215 162 220 85 84 87 84 102

ECME.BFGS 636 143 188 144 198 99 95 99 89 111

MCECM.Nelder.Mead 689 155 206 139 217 69 83 80 84 94

MCECM.BFGS 523 133 178 118 197 64 79 77 79 89

6 (500) Computation time

ECM.Nelder.Mead 233 49 63 50 101 57 22 28 28 28

ECM.BFGS 204 40 54 42 84 55 21 26 25 26

ECME.Nelder.Mead 215 73 93 71 119 77 31 34 37 35

ECME.BFGS 187 59 72 59 99 73 28 32 38 34

MCECM.Nelder.Mead 228 50 65 51 101 51 23 27 28 28

MCECM.BFGS 200 41 53 43 87 50 21 25 23 27

6 (1000) Computation time

ECM.Nelder.Mead 495 92 135 112 163 79 32 47 34 43

ECM.BFGS 364 65 112 85 140 75 30 44 35 43

ECME.Nelder.Mead 345 137 182 161 194 87 40 46 46 46

ECME.BFGS 294 119 175 137 177 96 43 49 46 49

MCECM.Nelder.Mead 445 94 141 108 168 70 30 42 33 45

MCECM.BFGS 361 79 143 101 152 73 38 44 33 42

7 (500) Computation time

ECM.Nelder.Mead 265 125 47 85 45 145 56 18 37 17

ECM.BFGS 214 87 38 69 36 128 52 17 25 14

ECME.Nelder.Mead 294 185 72 119 105 75 48 25 33 22

ECME.BFGS 249 146 57 94 52 72 45 25 36 22

MCECM.Nelder.Mead 269 123 47 82 45 141 57 18 29 16

MCECM.BFGS 224 90 38 71 36 128 51 17 25 14

7 (1000) Computation time

ECM.Nelder.Mead 465 736 344 545 349 248 1004 87 44 25

ECM.BFGS 315 206 72 133 61 239 92 31 42 24

ECME.Nelder.Mead 1166 1536 565 176 106 97 66 35 47 28

ECME.BFGS 412 552 448 639 329 259 645 372 45 27

MCECM.Nelder.Mead 517 679 362 540 278 248 970 247 44 24

MCECM.BFGS 343 258 73 139 71 1014 147 149 155 88

108 3 SIMULATION STUDY

Table 3.3.10: Mean value of the normalised BIC for each EM algorithm and its extension with di↵erent initialization

strategies for 50 replications, where green and red colour represent the best and the worst initialization strategies for

each EM algorithm respectively.

General VCMM Gaussian VCMM

Setting Performance Algorithm Random Kmeans Hierarchical Kmeans Hierarchical Random Kmeans Hierarchical Kmeans Hierarchical

(Sample size) measures (scale) (scale) (scale) (scale)

VCMM (Non elliptical)

1 (500) Normalised BIC

ECM.Nelder.Mead 16.76 17.98 16.59 17.99 17.74 20.03 19.95 19.74 19.90 19.82

ECM.BFGS 16.70 17.99 16.57 17.99 17.70 20.00 19.95 19.74 19.91 19.82

ECME.Nelder.Mead 16.74 17.97 16.57 18.01 17.77 19.92 19.93 19.70 19.90 19.79

ECME.BFGS 16.74 18.02 16.54 18.02 17.69 19.97 19.94 19.70 19.90 19.81

MCECM.Nelder.Mead 16.79 17.98 16.59 17.98 17.76 20.01 19.94 19.74 19.90 19.82

MCECM.BFGS 16.74 17.99 16.57 17.98 17.70 20.01 19.94 19.74 19.90 19.82

1 (1000) Normalised BIC

ECM.Nelder.Mead 16.50 17.22 16.50 17.80 17.71 19.93 19.88 19.66 19.86 19.83

ECM.BFGS 16.50 17.28 16.48 17.72 17.70 19.93 19.88 19.68 19.90 19.86

ECME.Nelder.Mead 16.49 17.53 16.51 17.82 17.78 19.87 19.88 19.66 19.86 19.83

ECME.BFGS 16.49 17.51 16.48 17.76 17.74 19.92 19.92 19.66 19.89 19.86

MCECM.Nelder.Mead 16.53 17.22 16.49 17.82 17.71 19.94 19.88 19.66 19.86 19.84

MCECM.BFGS 16.48 17.28 16.48 17.72 17.70 19.96 19.90 19.68 19.88 19.88

2 (500) Normalised BIC

ECM.Nelder.Mead 13.96 13.15 13.17 13.24 13.18 14.67 14.24 14.31 14.52 14.28

ECM.BFGS 13.97 13.16 13.16 13.24 13.17 14.67 14.24 14.31 14.52 14.28

ECME.Nelder.Mead 13.78 13.13 13.14 13.18 13.19 14.69 14.23 14.31 14.50 14.28

ECME.BFGS 13.88 13.12 13.16 13.24 13.17 14.69 14.23 14.31 14.50 14.28

MCECM.Nelder.Mead 13.98 13.15 13.16 13.24 13.18 14.65 14.24 14.31 14.52 14.28

MCECM.BFGS 13.98 13.16 13.16 13.24 13.17 14.66 14.24 14.31 14.52 14.28

8 (500) Normalised BIC

ECM.Nelder.Mead 17.67 18.69 17.26 18.92 18.40 19.92 19.92 19.90 19.96 19.95

ECM.BFGS 17.67 18.68 17.26 18.95 18.36 19.92 19.92 19.90 19.96 19.95

ECME.Nelder.Mead 17.60 18.72 17.26 18.96 18.36 19.91 19.91 19.90 19.96 19.95

ECME.BFGS 17.56 18.65 17.26 18.92 18.41 19.91 19.91 19.90 19.96 19.96

MCECM.Nelder.Mead 17.73 18.68 17.26 18.91 18.42 19.92 19.92 19.90 19.96 19.95

MCECM.BFGS 17.73 18.67 17.26 18.89 18.38 19.92 19.92 19.90 19.96 19.95

9 (500) Normalised BIC

ECM.Nelder.Mead 14.65 16.00 15.32 15.46 15.59 16.68 17.35 16.83 16.99 17.05

ECM.BFGS 14.60 15.99 15.32 15.46 15.62 16.68 17.37 16.83 16.99 17.05

ECME.Nelder.Mead 14.57 15.95 15.20 15.67 15.55 16.56 17.28 16.80 16.98 17.00

ECME.BFGS 14.58 15.95 15.24 15.49 15.50 16.61 17.28 16.80 16.98 17.00

MCECM.Nelder.Mead 14.65 15.95 15.32 15.46 15.59 16.73 17.35 16.83 17.02 17.08

MCECM.BFGS 14.58 15.99 15.32 15.50 15.61 16.73 17.35 16.86 17.02 17.08

VCMM (Multivariate Gaussian)

3 (500) Normalised BIC

ECM.Nelder.Mead 12.10 12.39 12.30 12.41 12.38 12.01 12.14 12.06 12.16 12.14

ECM.BFGS 12.10 12.40 12.30 12.41 12.38 12.01 12.14 12.06 12.16 12.14

ECME.Nelder.Mead 12.13 12.38 12.29 12.40 12.38 12.06 12.15 12.06 12.15 12.14

ECME.BFGS 12.12 12.38 12.29 12.40 12.38 12.06 12.15 12.06 12.15 12.14

MCECM.Nelder.Mead 12.08 12.39 12.30 12.41 12.37 12.01 12.14 12.06 12.16 12.14

MCECM.BFGS 12.08 12.39 12.30 12.41 12.38 12.01 12.14 12.06 12.16 12.14

3 (1000) Normalised BIC

ECM.Nelder.Mead 12.01 12.32 12.18 12.32 12.28 11.95 12.06 12.00 12.07 12.02

ECM.BFGS 12.01 12.32 12.18 12.31 12.27 11.95 12.06 12.00 12.07 12.02

ECME.Nelder.Mead 12.04 12.31 12.17 12.30 12.26 11.99 12.08 12.00 12.08 12.02

ECME.BFGS 12.04 12.31 12.17 12.30 12.26 11.99 12.08 12.00 12.08 12.02

MCECM.Nelder.Mead 12.01 12.32 12.18 12.31 12.27 11.95 12.06 12.00 12.07 12.02

MCECM.BFGS 12.01 12.32 12.18 12.32 12.27 11.95 12.06 12.00 12.07 12.02

Mixture of multivariate skew t

4 (500) Normalised BIC

ECM.Nelder.Mead 10.97 10.79 10.81 10.78 10.80 10.84 10.78 10.78 10.77 10.78

ECM.BFGS 10.97 10.79 10.81 10.79 10.80 10.84 10.77 10.78 10.77 10.78

ECME.Nelder.Mead 10.97 10.79 10.81 10.79 10.80 10.84 10.77 10.78 10.77 10.78

ECME.BFGS 10.97 10.79 10.80 10.79 10.80 10.84 10.77 10.78 10.77 10.78

MCECM.Nelder.Mead 10.97 10.79 10.81 10.78 10.80 10.84 10.78 10.78 10.77 10.78

MCECM.BFGS 10.97 10.79 10.81 10.78 10.80 10.84 10.77 10.78 10.77 10.78

5 (500) Normalised BIC

ECM.Nelder.Mead 12.16 12.08 12.10 12.08 12.08 12.12 12.12 12.10 12.12 12.12

ECM.BFGS 12.17 12.08 12.10 12.08 12.08 12.13 12.12 12.10 12.12 12.12

ECME.Nelder.Mead 12.17 12.08 12.10 12.08 12.09 12.12 12.12 12.11 12.12 12.13

ECME.BFGS 12.17 12.08 12.10 12.08 12.08 12.12 12.12 12.11 12.12 12.13

MCECM.Nelder.Mead 12.17 12.08 12.10 12.08 12.08 12.13 12.12 12.10 12.12 12.12

MCECM.BFGS 12.17 12.08 12.10 12.08 12.09 12.13 12.12 12.10 12.12 12.12

5 (1000) Normalised BIC

ECM.Nelder.Mead 12.09 12.02 12.05 12.02 12.01 12.12 12.12 12.12 12.12 12.12

ECM.BFGS 12.09 12.02 12.05 12.02 12.01 12.12 12.12 12.12 12.12 12.12

ECME.Nelder.Mead 12.08 12.01 12.05 12.02 12.01 12.12 12.12 12.12 12.12 12.12

ECME.BFGS 12.08 12.01 12.04 12.01 12.01 12.12 12.12 12.12 12.12 12.12

MCECM.Nelder.Mead 12.10 12.02 12.05 12.02 12.01 12.12 12.12 12.12 12.12 12.12

MCECM.BFGS 12.10 12.01 12.05 12.02 12.01 12.12 12.12 12.12 12.12 12.12

6 (500) Normalised BIC

ECM.Nelder.Mead 13.49 13.32 13.41 13.38 13.38 14.36 14.35 14.36 14.37 14.42

ECM.BFGS 13.47 13.32 13.41 13.38 13.38 14.36 14.35 14.36 14.37 14.42

ECME.Nelder.Mead 13.47 13.32 13.41 13.38 13.38 14.38 14.35 14.36 14.36 14.42

ECME.BFGS 13.53 13.32 13.41 13.38 13.38 14.38 14.34 14.36 14.35 14.42

MCECM.Nelder.Mead 13.48 13.32 13.41 13.38 13.38 14.37 14.35 14.36 14.36 14.42

MCECM.BFGS 13.47 13.32 13.41 13.38 13.38 14.37 14.35 14.36 14.37 14.42

6 (1000) Normalised BIC

ECM.Nelder.Mead 13.35 13.26 13.29 13.30 13.30 14.41 14.44 14.47 14.46 14.50

ECM.BFGS 13.33 13.26 13.29 13.31 13.30 14.41 14.46 14.47 14.44 14.50

ECME.Nelder.Mead 13.34 13.26 13.29 13.31 13.30 14.41 14.44 14.47 14.46 14.50

ECME.BFGS 13.36 13.26 13.29 13.30 13.30 14.41 14.45 14.47 14.44 14.50

MCECM.Nelder.Mead 13.36 13.26 13.29 13.31 13.30 14.41 14.44 14.47 14.46 14.50

MCECM.BFGS 13.35 13.26 13.29 13.31 13.30 14.41 14.46 14.47 14.44 14.50

7 (500) Normalised BIC

ECM.Nelder.Mead 14.11 14.40 13.92 13.92 13.93 14.76 14.80 14.70 14.78 14.70

ECM.BFGS 14.07 14.41 13.92 13.92 13.93 14.75 14.80 14.70 14.78 14.70

ECME.Nelder.Mead 14.10 14.06 13.92 13.92 13.93 14.74 14.76 14.70 14.74 14.70

ECME.BFGS 14.11 14.06 13.92 13.92 13.93 14.74 14.74 14.70 14.74 14.70

MCECM.Nelder.Mead 14.09 14.38 13.92 13.92 13.93 14.76 14.80 14.70 14.78 14.70

MCECM.BFGS 14.04 14.41 13.92 13.92 13.92 14.76 14.80 14.70 14.78 14.70

7 (1000) Normalised BIC

ECM.Nelder.Mead 13.84 14.06 13.79 13.82 13.79 14.73 14.72 14.78 14.86 14.70

ECM.BFGS 13.83 14.06 13.80 13.82 13.79 14.73 14.72 14.78 14.82 14.70

ECME.Nelder.Mead 13.84 13.83 13.79 13.82 13.79 14.70 14.72 14.78 14.76 14.70

ECME.BFGS 13.90 13.85 13.80 13.82 13.79 14.67 14.72 14.78 14.76 14.70

MCECM.Nelder.Mead 13.85 14.06 13.79 13.82 13.79 14.73 14.72 14.78 14.85 14.70

MCECM.BFGS 13.82 14.06 13.80 13.82 13.79 14.73 14.72 14.78 14.82 14.70

3.3 EM Algorithm and initialization strategies for VCMM algorithm 109

Table 3.3.11: Mean value of the classification rate for each EM algorithm and its extension with di↵erent

initialization strategies for 50 replications, where green and red colour represent the best and the worst

initialization strategies for each EM algorithm respectively. Remark : the classification rate close to the best

value (within 3%) is highlighted as orange .

General VCMM Gaussian VCMM

Setting Performance Algorithm Random Kmeans Hierarchical Kmeans Hierarchical Random Kmeans Hierarchical Kmeans Hierarchical

(Sample size) measures (scale) (scale) (scale) (scale)

Data generation : VCMM (Non elliptical)

1 (500) Classification rate

ECM.Nelder.Mead 0.872 0.597 0.934 0.610 0.637 0.592 0.599 0.724 0.589 0.611

ECM.BFGS 0.885 0.596 0.942 0.610 0.647 0.594 0.598 0.724 0.589 0.612

ECME.Nelder.Mead 0.879 0.602 0.940 0.601 0.628 0.604 0.606 0.730 0.593 0.617

ECME.BFGS 0.875 0.584 0.944 0.600 0.647 0.620 0.603 0.725 0.593 0.615

MCECM.Nelder.Mead 0.868 0.597 0.937 0.611 0.634 0.587 0.598 0.723 0.590 0.613

MCECM.BFGS 0.880 0.596 0.943 0.610 0.649 0.588 0.597 0.723 0.590 0.613

1 (1000) Classification rate

ECM.Nelder.Mead 0.931 0.778 0.924 0.628 0.630 0.582 0.601 0.735 0.589 0.586

ECM.BFGS 0.930 0.765 0.927 0.644 0.634 0.582 0.601 0.736 0.586 0.584

ECME.Nelder.Mead 0.930 0.709 0.923 0.628 0.619 0.596 0.605 0.735 0.595 0.590

ECME.BFGS 0.932 0.709 0.927 0.640 0.623 0.602 0.601 0.735 0.592 0.588

MCECM.Nelder.Mead 0.923 0.778 0.924 0.626 0.631 0.586 0.601 0.735 0.588 0.586

MCECM.BFGS 0.935 0.767 0.927 0.644 0.634 0.584 0.601 0.736 0.587 0.583

2 (500) Classification rate

ECM.Nelder.Mead 0.627 0.894 0.865 0.861 0.863 0.532 0.811 0.765 0.621 0.777

ECM.BFGS 0.625 0.889 0.871 0.863 0.870 0.532 0.811 0.765 0.621 0.777

ECME.Nelder.Mead 0.659 0.889 0.870 0.870 0.856 0.519 0.808 0.764 0.621 0.775

ECME.BFGS 0.645 0.889 0.871 0.863 0.869 0.519 0.807 0.765 0.621 0.775

MCECM.Nelder.Mead 0.621 0.894 0.866 0.862 0.863 0.546 0.811 0.764 0.616 0.776

MCECM.BFGS 0.619 0.889 0.871 0.863 0.870 0.544 0.811 0.764 0.617 0.776

8 (500) Classification rate

ECM.Nelder.Mead 0.862 0.650 0.991 0.608 0.732 0.907 0.905 0.899 0.892 0.888

ECM.BFGS 0.861 0.654 0.990 0.602 0.745 0.907 0.905 0.899 0.892 0.888

ECME.Nelder.Mead 0.900 0.648 0.990 0.603 0.752 0.870 0.881 0.893 0.874 0.867

ECME.BFGS 0.912 0.658 0.990 0.611 0.743 0.866 0.882 0.892 0.874 0.862

MCECM.Nelder.Mead 0.843 0.654 0.990 0.607 0.726 0.906 0.905 0.900 0.892 0.887

MCECM.BFGS 0.843 0.656 0.990 0.614 0.738 0.906 0.905 0.900 0.892 0.887

9 (500) Classification rate

ECM.Nelder.Mead 0.847 0.564 0.699 0.756 0.685 0.722 0.576 0.645 0.634 0.606

ECM.BFGS 0.860 0.562 0.700 0.756 0.678 0.722 0.575 0.645 0.634 0.606

ECME.Nelder.Mead 0.877 0.569 0.728 0.731 0.698 0.664 0.580 0.639 0.622 0.608

ECME.BFGS 0.878 0.573 0.720 0.757 0.708 0.690 0.580 0.639 0.620 0.608

MCECM.Nelder.Mead 0.847 0.569 0.699 0.757 0.685 0.726 0.576 0.645 0.631 0.603

MCECM.BFGS 0.867 0.561 0.700 0.750 0.679 0.726 0.576 0.637 0.631 0.603

Data generation : VCMM (Multivariate Gaussian)

3 (500) Classification rate

ECM.Nelder.Mead 0.821 0.575 0.678 0.537 0.560 0.857 0.756 0.824 0.743 0.759

ECM.BFGS 0.821 0.570 0.677 0.537 0.558 0.857 0.756 0.824 0.743 0.759

ECME.Nelder.Mead 0.792 0.573 0.678 0.535 0.557 0.820 0.746 0.824 0.747 0.756

ECME.BFGS 0.799 0.572 0.680 0.536 0.557 0.821 0.746 0.824 0.747 0.756

MCECM.Nelder.Mead 0.835 0.575 0.677 0.537 0.563 0.865 0.756 0.824 0.740 0.760

MCECM.BFGS 0.835 0.571 0.677 0.537 0.560 0.865 0.756 0.824 0.741 0.760

3 (1000) Classification rate

ECM.Nelder.Mead 0.850 0.558 0.713 0.528 0.587 0.877 0.787 0.844 0.772 0.825

ECM.BFGS 0.850 0.559 0.713 0.528 0.587 0.876 0.787 0.844 0.772 0.825

ECME.Nelder.Mead 0.816 0.550 0.714 0.530 0.593 0.839 0.770 0.844 0.768 0.826

ECME.BFGS 0.816 0.550 0.714 0.529 0.593 0.839 0.770 0.844 0.768 0.825

MCECM.Nelder.Mead 0.851 0.559 0.713 0.528 0.588 0.877 0.787 0.844 0.776 0.825

MCECM.BFGS 0.851 0.559 0.713 0.528 0.587 0.877 0.787 0.844 0.776 0.825

Data generation : Mixture of multivariate skew t

4 (500) Classification rate

ECM.Nelder.Mead 0.535 0.826 0.796 0.805 0.774 0.578 0.833 0.818 0.829 0.807

ECM.BFGS 0.535 0.826 0.797 0.804 0.774 0.578 0.827 0.814 0.825 0.803

ECME.Nelder.Mead 0.538 0.824 0.796 0.803 0.772 0.590 0.826 0.811 0.824 0.794

ECME.BFGS 0.541 0.825 0.796 0.804 0.774 0.590 0.826 0.812 0.825 0.793

MCECM.Nelder.Mead 0.535 0.826 0.796 0.805 0.774 0.568 0.831 0.818 0.829 0.803

MCECM.BFGS 0.535 0.826 0.796 0.805 0.774 0.568 0.826 0.811 0.825 0.803

5 (500) Classification rate

ECM.Nelder.Mead 0.556 0.755 0.677 0.746 0.705 0.520 0.521 0.522 0.522 0.521

ECM.BFGS 0.557 0.756 0.678 0.746 0.707 0.520 0.522 0.522 0.522 0.521

ECME.Nelder.Mead 0.560 0.753 0.679 0.746 0.705 0.521 0.522 0.522 0.522 0.523

ECME.BFGS 0.563 0.753 0.679 0.746 0.708 0.521 0.522 0.522 0.522 0.523

MCECM.Nelder.Mead 0.545 0.756 0.677 0.747 0.708 0.520 0.521 0.522 0.522 0.521

MCECM.BFGS 0.542 0.755 0.677 0.746 0.707 0.520 0.521 0.522 0.522 0.521

5 (1000) Classification rate

ECM.Nelder.Mead 0.601 0.756 0.664 0.744 0.701 0.520 0.520 0.520 0.520 0.520

ECM.BFGS 0.602 0.756 0.662 0.744 0.700 0.520 0.520 0.520 0.520 0.520

ECME.Nelder.Mead 0.624 0.754 0.664 0.742 0.702 0.520 0.521 0.520 0.521 0.520

ECME.BFGS 0.626 0.754 0.663 0.742 0.703 0.520 0.521 0.520 0.521 0.520

MCECM.Nelder.Mead 0.574 0.757 0.662 0.744 0.701 0.520 0.521 0.520 0.521 0.520

MCECM.BFGS 0.573 0.756 0.662 0.744 0.700 0.520 0.521 0.520 0.521 0.520

6 (500) Classification rate

ECM.Nelder.Mead 0.905 0.987 0.939 0.958 0.960 0.599 0.970 0.856 0.927 0.835

ECM.BFGS 0.918 0.987 0.939 0.958 0.960 0.599 0.970 0.856 0.927 0.835

ECME.Nelder.Mead 0.918 0.987 0.939 0.958 0.961 0.556 0.969 0.855 0.926 0.832

ECME.BFGS 0.897 0.987 0.939 0.958 0.960 0.546 0.969 0.855 0.925 0.832

MCECM.Nelder.Mead 0.912 0.987 0.939 0.958 0.960 0.615 0.969 0.855 0.927 0.833

MCECM.BFGS 0.914 0.987 0.939 0.958 0.960 0.615 0.969 0.856 0.927 0.833

6 (1000) Classification rate

ECM.Nelder.Mead 0.948 0.988 0.973 0.974 0.974 0.554 0.971 0.876 0.929 0.840

ECM.BFGS 0.959 0.988 0.973 0.968 0.974 0.554 0.970 0.876 0.927 0.840

ECME.Nelder.Mead 0.955 0.988 0.973 0.973 0.974 0.528 0.971 0.881 0.931 0.837

ECME.BFGS 0.949 0.988 0.973 0.974 0.975 0.528 0.970 0.880 0.929 0.837

MCECM.Nelder.Mead 0.945 0.988 0.973 0.968 0.974 0.555 0.971 0.882 0.929 0.839

MCECM.BFGS 0.950 0.988 0.973 0.968 0.974 0.554 0.970 0.881 0.927 0.839

7 (500) Classification rate

ECM.Nelder.Mead 0.937 0.834 0.974 0.980 0.971 0.909 0.947 0.954 0.953 0.954

ECM.BFGS 0.949 0.830 0.974 0.980 0.972 0.909 0.947 0.954 0.953 0.954

ECME.Nelder.Mead 0.946 0.939 0.975 0.980 0.972 0.918 0.939 0.954 0.951 0.954

ECME.BFGS 0.946 0.935 0.975 0.980 0.972 0.918 0.940 0.954 0.951 0.954

MCECM.Nelder.Mead 0.946 0.840 0.974 0.980 0.972 0.909 0.946 0.954 0.953 0.954

MCECM.BFGS 0.958 0.830 0.975 0.980 0.972 0.909 0.946 0.954 0.953 0.954

7 (1000) Classification rate

ECM.Nelder.Mead 0.973 0.898 0.980 0.974 0.980 0.938 0.958 0.950 0.952 0.957

ECM.BFGS 0.974 0.899 0.978 0.974 0.980 0.938 0.958 0.950 0.951 0.957

ECME.Nelder.Mead 0.974 0.969 0.980 0.974 0.980 0.947 0.958 0.950 0.950 0.956

ECME.BFGS 0.960 0.960 0.978 0.974 0.980 0.947 0.958 0.951 0.950 0.956

MCECM.Nelder.Mead 0.973 0.898 0.979 0.974 0.980 0.938 0.958 0.950 0.951 0.956

MCECM.BFGS 0.976 0.899 0.978 0.974 0.980 0.938 0.957 0.950 0.950 0.956

110 3 SIMULATION STUDY

3. Paired t test for the comparison between General VCMM and Gaussian VCMM

In the last summary part, we have recommended using General VCMM over Gaussian VCMM for clustering

non-elliptical and skew elliptical data. Now, we would like to use paired t test for normalised BIC and classifi-

cation rate to prove our statement with some statistical evidences and the hypotheses are formally defined below:

H0 : � 0 versus H1 : � > 0

For classification rate :

� = General VCMM - Gaussian VCMM

For normalised BIC :

� = Gaussian VCMM - General VCMM

The Table 3.3.12 shows the p value of the paired t test based on independent replications for the di↵erence in

the performance measures normalised BIC, classification rate between General VCMM and Gaussian VCMM.

P value close to 0 means General VCMM better than Gaussian VCMM. The value smaller than 0.05 is high-

lighted with green colour. Other than data setting 3 and 4 with elliptical clusters, the p values for normalised

BIC or classification rate are mostly smaller than 0.05, which means General VCMM is more preferred. This

is what we recommended before. However, the p values for classification rate in data setting 8 are a bit weird.

Other than Hierarchical, the paired t test with p values close to 1 suggests that there is no di↵erence between

General VCMM and Gaussian VCMM. Although we focus more on classification rate for clustering, in general,

General VCMM still outperforms Gaussian VCMM in many cases and we cannot know the characteristics of

each cluster easily. So, General VCMM is still recommended.

3.3 EM Algorithm and initialization strategies for VCMM algorithm 111

Table 3.3.12: The p-value of the one sided paired t-test comparing the mean of performance measures by using

General VCMM and Gaussian VCMM. green indicates the p-value smaller than 0.05 that we can conclude

the performance using General VCMM is better than Gaussian VCMM with significance level of 0.05.

Normalised BIC Classification rate

Setting Algorithm Random Kmeans Hierarchical Kmeans Hierarchical Random Kmeans Hierarchical Kmeans Hierarchical

(Sample size) (scale) (scale) (scale) (scale)

Data generation : VCMM (Non elliptical)

1 (500)

ECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.560 0.000 0.030 0.074

ECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.551 0.000 0.026 0.030

ECME.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.589 0.000 0.223 0.216

ECME.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.909 0.000 0.255 0.047

MCECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.515 0.000 0.028 0.105

MCECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.512 0.000 0.028 0.027

1 (1000)

ECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.056 0.052

ECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.022

ECME.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.086 0.106

ECME.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.058

MCECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.054 0.051

MCECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.022

2 (500)

ECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ECME.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ECME.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MCECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MCECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 (500)

ECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.937 1.000 0.000 1.000 1.000

ECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.940 1.000 0.000 1.000 1.000

ECME.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.128 1.000 0.000 1.000 1.000

ECME.BFGS 0.000 0.000 0.000 0.000 0.000 0.034 1.000 0.000 1.000 1.000

MCECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.980 1.000 0.000 1.000 1.000

MCECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.980 1.000 0.000 1.000 1.000

9 (500)

ECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.732 0.005 0.000 0.002

ECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.752 0.004 0.000 0.003

ECME.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.714 0.000 0.000 0.000

ECME.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.630 0.000 0.000 0.000

MCECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.633 0.005 0.000 0.001

MCECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.781 0.001 0.000 0.002

Data generation : VCMM (Multivariate Gaussian)

3 (500)

ECM.Nelder.Mead 1.000 1.000 1.000 1.000 1.000 0.977 1.000 1.000 1.000 1.000

ECM.BFGS 1.000 1.000 1.000 1.000 1.000 0.977 1.000 1.000 1.000 1.000

ECME.Nelder.Mead 0.999 1.000 1.000 1.000 1.000 0.922 1.000 1.000 1.000 1.000

ECME.BFGS 0.989 1.000 1.000 1.000 1.000 0.833 1.000 1.000 1.000 1.000

MCECM.Nelder.Mead 1.000 1.000 1.000 1.000 1.000 0.990 1.000 1.000 1.000 1.000

MCECM.BFGS 1.000 1.000 1.000 1.000 1.000 0.991 1.000 1.000 1.000 1.000

3 (1000)

ECM.Nelder.Mead 1.000 1.000 1.000 1.000 1.000 0.977 1.000 1.000 1.000 1.000

ECM.BFGS 1.000 1.000 1.000 1.000 1.000 0.978 1.000 1.000 1.000 1.000

ECME.Nelder.Mead 0.966 1.000 1.000 1.000 1.000 0.841 1.000 1.000 1.000 1.000

ECME.BFGS 0.966 1.000 1.000 1.000 1.000 0.843 1.000 1.000 1.000 1.000

MCECM.Nelder.Mead 1.000 1.000 1.000 1.000 1.000 0.978 1.000 1.000 1.000 1.000

MCECM.BFGS 1.000 1.000 1.000 1.000 1.000 0.978 1.000 1.000 1.000 1.000

Data generation : Mixture of multivariate skew t

4 (500)

ECM.Nelder.Mead 1.000 0.985 0.997 0.874 0.981 1.000 0.849 0.994 1.000 1.000

ECM.BFGS 1.000 0.986 0.998 0.910 0.991 1.000 0.555 0.944 0.984 0.994

ECME.Nelder.Mead 1.000 0.967 0.998 0.908 0.992 1.000 0.564 0.911 0.986 0.964

ECME.BFGS 1.000 0.967 0.996 0.922 0.987 1.000 0.559 0.914 0.982 0.950

MCECM.Nelder.Mead 1.000 0.988 0.998 0.845 0.989 1.000 0.731 0.992 1.000 0.993

MCECM.BFGS 1.000 0.990 0.998 0.853 0.982 1.000 0.506 0.896 0.983 0.993

5 (500)

ECM.Nelder.Mead 0.997 0.000 0.385 0.001 0.004 0.002 0.000 0.000 0.000 0.000

ECM.BFGS 0.991 0.000 0.338 0.000 0.002 0.003 0.000 0.000 0.000 0.000

ECME.Nelder.Mead 1.000 0.000 0.302 0.000 0.004 0.001 0.000 0.000 0.000 0.000

ECME.BFGS 1.000 0.000 0.309 0.000 0.002 0.000 0.000 0.000 0.000 0.000

MCECM.Nelder.Mead 0.999 0.000 0.362 0.001 0.002 0.015 0.000 0.000 0.000 0.000

MCECM.BFGS 1.000 0.000 0.373 0.001 0.004 0.021 0.000 0.000 0.000 0.000

5 (1000)

ECM.Nelder.Mead 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ECM.BFGS 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ECME.Nelder.Mead 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ECME.BFGS 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MCECM.Nelder.Mead 0.107 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MCECM.BFGS 0.135 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

6 (500)

ECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000

ECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000

ECME.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000

ECME.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000

MCECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000

MCECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000

6 (1000)

ECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000

ECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000

ECME.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000

ECME.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000

MCECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000

MCECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000

7 (500)

ECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.119 1.000 0.000 0.003 0.000

ECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.033 1.000 0.000 0.003 0.000

ECME.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.065 0.533 0.000 0.002 0.000

ECME.BFGS 0.000 0.000 0.000 0.000 0.000 0.060 0.688 0.000 0.002 0.000

MCECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.041 1.000 0.000 0.003 0.000

MCECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.006 1.000 0.000 0.003 0.000

7 (1000)

ECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.000 0.000 0.000

ECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.000 0.000 0.000

ECME.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000

ECME.BFGS 0.000 0.000 0.000 0.000 0.000 0.055 0.373 0.000 0.000 0.000

MCECM.Nelder.Mead 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.000 0.000 0.000

MCECM.BFGS 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.000 0.000 0.000

112 3 SIMULATION STUDY

4. Ranking of the performance for each EM algorithm and initialization strategy

The full tables for the ranking of the performance of EM algorithms and the initialization strategies for the nine

data set by General VCMM and Gaussian VCMM algorithm are shown in the Appendix B.6. For better and

more convenient comparison, four subsets of the ranking table of the data setting with similar characteristics

are shown in this part, where the Table 3.3.13 shows the ranking of data setting 4, 5, 6 (Multivariate skew t

distribution (Two clusters without big volume di↵erence)), the Table 3.3.14 shows the ranking of data setting

3 and 9 (Well separated with the ”X” shape), the Table 3.3.15 shows the ranking of data setting 1 and 8 (Well

separated without overlap (Except Gaussian and skew t distribution)) and the last Table 3.3.16 shows the

ranking of data setting 7 (Two clusters with big volume di↵erence).

Data setting 4, 5, 6 (Multivariate skew t distribution (Two clusters without big volume di↵erence)

The Table 3.3.13 shows Kmeans outperforms other initialization strategies with data following skew t distri-

bution. For General VCMM, the performances of di↵erent EM algorithms with Kmeans are similarly very

good and MCECM.Nelder.Mead with Kmeans reaches the highest classification rate in that 5 simulations.

Also, the characteristics of data setting 4 is in between elliptical and skew elliptical. The Gaussian VCMM

with ECM.Nelder.Mead and Kemans performs the best with 83.3% classification rate, which is higher than the

classification rate 82.6% for General VCMM with the best method.

Data setting 3 and 9 (Well separated with the ”X” shape)

The Table 3.3.14 shows Random outperforms other initialization strategies for those clusters like a ”X” shape.

Recalling that data setting 3 is Gaussian data. The classification rate for Gaussian VCMM with the best

method can be higher than General VCMM. We can see that for both General VCMM and Gaussian VCMM,

MCECM.Nelder.Mead and MCECM.BFGS perform the best. For data setting 9 with non-Gaussian data,

ECME.BFGS with Random for General VCMM perform the best.

Data setting 1 and 8 (Well separated without overlap (Except Gaussian and skew t distribution))

The Table 3.3.15 shows the EM algorithms with Random or Hierarchical are the top 12 performance for data

setting 1 and 8. In particular, EM algorithms with Hierarchical perform the best data setting 1 with 500

sample sizes and data setting 8. And EM algorithms with Random perform the best data setting 1 with 1000

sample size. Basically, we don’t have a best method to cluster all data in this group. However, you can see

that the di↵erence of classification rate between di↵erent EM algorithms with Random and MCECM.BFGS

with Hierarchical in data setting 1 with 1000 sample sizes are smaller than 1% only. So, we will suggest using

Hierarchical to cluster data in this group. Comparing the classification rate with di↵erent EM algorithms for

data setting 1, 8, ECME.BFGS / MCECM.BFGS with Hierarchical should be a good choice.

Data setting 7 (Two clusters with big volume di↵erence)

The Table 3.3.16 shows the Kmeans scale and Hierarchical scale perform the best in data setting 7 with sample

size 500 and 1000 respectively, which verify our previous statement that standardization first before applying

General VCMM is suggested for the clusters with very di↵erent volumes. However, the performances be-

tween Kmeans scale and Hierarchical scale in data setting 7 with sample size 500 and 1000 are quite di↵erent

respectively. We have no suggestion which one to use after standardization. Also, Hierarchical without stan-

dardization is the second best initialization strategy for both setting. According to the simulation result here,

Hierarchical without standardization may be also a good choice.

3.3 EM Algorithm and initialization strategies for VCMM algorithm 113

Table 3.3.13: The top 10 performance of EM algorithms and the initialization strategies for data setting 4, 5,

6, where the algorithm with 1) higher classification rate, 2) lower normalised BIC and 3) shorter computation

time is considered to be the better performance and the priority is given by (1) > (2) > (3).

General VCMM Gaussian VCMM

Setting Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

(Sample size) strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

Characteristics : Multivariate skew t distribution (Two clusters without big volume di↵erence)

4 (500)

1 MCECM.BFGS Kmeans 0.826 10.79 42 1 ECM.Nelder.Mead Kmeans 0.833 10.78 47

2 MCECM.Nelder.Mead Kmeans 0.826 10.79 44 2 MCECM.Nelder.Mead Kmeans 0.831 10.78 42

3 ECM.BFGS Kmeans 0.826 10.79 45 3 MCECM.Nelder.Mead Kmeans scale 0.829 10.77 40

4 ECM.Nelder.Mead Kmeans 0.826 10.79 50 4 ECM.Nelder.Mead Kmeans scale 0.829 10.77 51

5 ECME.BFGS Kmeans 0.825 10.79 46 5 ECM.BFGS Kmeans 0.827 10.77 43

6 ECME.Nelder.Mead Kmeans 0.824 10.79 55 6 MCECM.BFGS Kmeans 0.826 10.77 41

7 MCECM.BFGS Kmeans scale 0.805 10.78 42 7 ECME.BFGS Kmeans 0.826 10.77 48

8 MCECM.Nelder.Mead Kmeans scale 0.805 10.78 44 8 ECME.Nelder.Mead Kmeans 0.826 10.77 60

9 ECM.Nelder.Mead Kmeans scale 0.805 10.78 50 9 MCECM.BFGS Kmeans scale 0.825 10.77 41

10 ECM.BFGS Kmeans scale 0.804 10.79 42 10 ECM.BFGS Kmeans scale 0.825 10.77 47

5 (500)

1 ECM.BFGS Kmeans 0.756 12.08 86 1 ECME.Nelder.Mead Hierarchical scale 0.523 12.13 62

2 MCECM.Nelder.Mead Kmeans 0.756 12.08 99 2 ECME.BFGS Hierarchical scale 0.523 12.13 72

3 MCECM.BFGS Kmeans 0.755 12.08 88 3 MCECM.Nelder.Mead Hierarchical 0.522 12.10 50

4 ECM.Nelder.Mead Kmeans 0.755 12.08 103 4 ECM.BFGS Hierarchical 0.522 12.10 53

5 ECME.BFGS Kmeans 0.753 12.08 100 5 ECM.Nelder.Mead Hierarchical 0.522 12.10 54

6 ECME.Nelder.Mead Kmeans 0.753 12.08 113 6 MCECM.BFGS Hierarchical 0.522 12.10 54

7 MCECM.Nelder.Mead Kmeans scale 0.747 12.08 87 7 ECME.Nelder.Mead Hierarchical 0.522 12.11 60

8 ECM.BFGS Kmeans scale 0.746 12.08 77 8 ECME.BFGS Hierarchical 0.522 12.11 70

9 MCECM.BFGS Kmeans scale 0.746 12.08 79 9 MCECM.Nelder.Mead Kmeans scale 0.522 12.12 51

10 ECM.Nelder.Mead Kmeans scale 0.746 12.08 92 10 MCECM.BFGS Kmeans scale 0.522 12.12 51

5 (1000)

1 MCECM.Nelder.Mead Kmeans 0.757 12.02 155 1 MCECM.BFGS Kmeans 0.521 12.12 79

2 MCECM.BFGS Kmeans 0.756 12.01 133 2 MCECM.BFGS Kmeans scale 0.521 12.12 79

3 ECM.BFGS Kmeans 0.756 12.02 138 3 MCECM.Nelder.Mead Kmeans 0.521 12.12 83

4 ECM.Nelder.Mead Kmeans 0.756 12.02 159 4 ECME.Nelder.Mead Kmeans 0.521 12.12 84

5 ECME.BFGS Kmeans 0.754 12.01 143 5 ECME.Nelder.Mead Kmeans scale 0.521 12.12 84

6 ECME.Nelder.Mead Kmeans 0.754 12.01 166 6 MCECM.Nelder.Mead Kmeans scale 0.521 12.12 84

7 MCECM.BFGS Kmeans scale 0.744 12.02 118 7 ECME.BFGS Kmeans scale 0.521 12.12 89

8 ECM.BFGS Kmeans scale 0.744 12.02 123 8 ECME.BFGS Kmeans 0.521 12.12 95

9 ECM.Nelder.Mead Kmeans scale 0.744 12.02 138 9 MCECM.BFGS Random 0.520 12.12 64

10 MCECM.Nelder.Mead Kmeans scale 0.744 12.02 139 10 MCECM.Nelder.Mead Random 0.520 12.12 69

6 (500)

1 ECM.BFGS Kmeans 0.987 13.32 40 1 ECM.BFGS Kmeans 0.970 14.35 21

2 MCECM.BFGS Kmeans 0.987 13.32 41 2 ECM.Nelder.Mead Kmeans 0.970 14.35 22

3 ECM.Nelder.Mead Kmeans 0.987 13.32 49 3 ECME.BFGS Kmeans 0.969 14.34 28

4 MCECM.Nelder.Mead Kmeans 0.987 13.32 50 4 MCECM.BFGS Kmeans 0.969 14.35 21

5 ECME.BFGS Kmeans 0.987 13.32 59 5 MCECM.Nelder.Mead Kmeans 0.969 14.35 23

6 ECME.Nelder.Mead Kmeans 0.987 13.32 73 6 ECME.Nelder.Mead Kmeans 0.969 14.35 31

7 ECME.Nelder.Mead Hierarchical scale 0.961 13.38 119 7 MCECM.Nelder.Mead Kmeans scale 0.927 14.36 28

8 ECM.BFGS Hierarchical scale 0.960 13.38 84 8 MCECM.BFGS Kmeans scale 0.927 14.37 23

9 MCECM.BFGS Hierarchical scale 0.960 13.38 87 9 ECM.BFGS Kmeans scale 0.927 14.37 25

10 ECME.BFGS Hierarchical scale 0.960 13.38 99 10 ECM.Nelder.Mead Kmeans scale 0.927 14.37 28

6 (1000)

1 ECM.BFGS Kmeans 0.988 13.26 65 1 MCECM.Nelder.Mead Kmeans 0.971 14.44 30

2 MCECM.BFGS Kmeans 0.988 13.26 79 2 ECM.Nelder.Mead Kmeans 0.971 14.44 32

3 ECM.Nelder.Mead Kmeans 0.988 13.26 92 3 ECME.Nelder.Mead Kmeans 0.971 14.44 40

4 MCECM.Nelder.Mead Kmeans 0.988 13.26 94 4 ECME.BFGS Kmeans 0.970 14.45 43

5 ECME.BFGS Kmeans 0.988 13.26 119 5 ECM.BFGS Kmeans 0.970 14.46 30

6 ECME.Nelder.Mead Kmeans 0.988 13.26 137 6 MCECM.BFGS Kmeans 0.970 14.46 38

7 ECME.BFGS Hierarchical scale 0.975 13.30 177 7 ECME.Nelder.Mead Kmeans scale 0.931 14.46 46

8 ECM.Nelder.Mead Kmeans scale 0.974 13.30 112 8 ECME.BFGS Kmeans scale 0.929 14.44 46

9 ECME.BFGS Kmeans scale 0.974 13.30 137 9 MCECM.Nelder.Mead Kmeans scale 0.929 14.46 33

10 ECM.BFGS Hierarchical scale 0.974 13.30 140 10 ECM.Nelder.Mead Kmeans scale 0.929 14.46 34

114 3 SIMULATION STUDY

Table 3.3.14: The top 10 performance of EM algorithms and the initialization strategies for data setting 3 and

9, where the algorithm with 1) higher classification rate, 2) lower normalised BIC and 3) shorter computation

time is considered to be the better performance and the priority is given by (1) > (2) > (3).

General VCMM Gaussian VCMM

Setting Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

(Sample size) strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

Characteristics : Well separated with the ”X” shape

3 (500)

1 MCECM.Nelder.Mead Random 0.835 12.08 104 1 MCECM.BFGS Random 0.865 12.01 53

2 MCECM.BFGS Random 0.835 12.08 111 2 MCECM.Nelder.Mead Random 0.865 12.01 55

3 ECM.Nelder.Mead Random 0.821 12.10 114 3 ECM.BFGS Random 0.857 12.01 59

4 ECM.BFGS Random 0.821 12.10 121 4 ECM.Nelder.Mead Random 0.857 12.01 68

5 ECME.BFGS Random 0.799 12.12 121 5 MCECM.BFGS Hierarchical 0.824 12.06 55

6 ECME.Nelder.Mead Random 0.792 12.13 118 6 MCECM.Nelder.Mead Hierarchical 0.824 12.06 57

7 ECME.BFGS Hierarchical 0.680 12.29 82 7 ECM.BFGS Hierarchical 0.824 12.06 58

8 ECME.Nelder.Mead Hierarchical 0.678 12.29 89 8 ECM.Nelder.Mead Hierarchical 0.824 12.06 63

9 ECM.Nelder.Mead Hierarchical 0.678 12.30 78 9 ECME.Nelder.Mead Hierarchical 0.824 12.06 70

10 MCECM.Nelder.Mead Hierarchical 0.677 12.30 75 10 ECME.BFGS Hierarchical 0.824 12.06 72

3 (1000)

1 MCECM.Nelder.Mead Random 0.851 12.01 171 1 MCECM.BFGS Random 0.877 11.95 76

2 MCECM.BFGS Random 0.851 12.01 175 2 MCECM.Nelder.Mead Random 0.877 11.95 77

3 ECM.Nelder.Mead Random 0.850 12.01 191 3 ECM.Nelder.Mead Random 0.877 11.95 87

4 ECM.BFGS Random 0.850 12.01 194 4 ECM.BFGS Random 0.876 11.95 87

5 ECME.Nelder.Mead Random 0.816 12.04 185 5 MCECM.Nelder.Mead Hierarchical 0.844 12.00 95

6 ECME.BFGS Random 0.816 12.04 192 6 MCECM.BFGS Hierarchical 0.844 12.00 95

7 ECME.Nelder.Mead Hierarchical 0.714 12.17 147 7 ECM.Nelder.Mead Hierarchical 0.844 12.00 99

8 ECME.BFGS Hierarchical 0.714 12.17 148 8 ECM.BFGS Hierarchical 0.844 12.00 99

9 MCECM.Nelder.Mead Hierarchical 0.713 12.18 146 9 ECME.BFGS Hierarchical 0.844 12.00 100

10 MCECM.BFGS Hierarchical 0.713 12.18 148 10 ECME.Nelder.Mead Hierarchical 0.844 12.00 101

9 (500)

1 ECME.BFGS Random 0.878 14.58 119 1 MCECM.BFGS Random 0.726 16.73 76

2 ECM.Nelder.Mead Random 0.877 14.57 141 2 MCECM.Nelder.Mead Random 0.726 16.73 85

3 MCECM.BFGS Random 0.867 14.58 98 3 ECM.BFGS Random 0.722 16.68 82

4 ECM.BFGS Random 0.860 14.60 98 4 ECM.Nelder.Mead Random 0.722 16.68 88

5 MCECM.Nelder.Mead Random 0.847 14.65 117 5 ECME.BFGS Random 0.690 16.61 48

6 ECM.Nelder.Mead Random 0.847 14.65 123 6 ECME.Nelder.Mead Random 0.664 16.56 52

7 MCECM.Nelder.Mead Kmeans scale 0.757 15.46 169 7 ECM.BFGS Hierarchical 0.645 16.83 68

8 ECME.BFGS Kmeans scale 0.757 15.49 137 8 MCECM.Nelder.Mead Hierarchical 0.645 16.83 71

9 ECM.BFGS Kmeans scale 0.756 15.46 118 9 ECM.Nelder.Mead Hierarchical 0.645 16.83 72

10 ECM.Nelder.Mead Kmeans scale 0.756 15.46 167 10 ECME.BFGS Hierarchical 0.639 16.80 53

Table 3.3.15: The top 12 performance of EM algorithms and the initialization strategies for data setting 1 and

8, where the algorithm with 1) higher classification rate, 2) lower normalised BIC and 3) shorter computation

time is considered to be the better performance and the priority is given by (1) > (2) > (3).

General VCMM Gaussian VCMM

Setting Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

(Sample size) strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

Characteristics : Well separated without overlap (Except Gaussian and skew t distribution)

1 (500)

1 ECME.BFGS Hierarchical 0.944 16.54 117 1 ECME.Nelder.Mead Hierarchical 0.730 19.70 67

2 MCECM.BFGS Hierarchical 0.943 16.57 83 2 ECME.BFGS Hierarchical 0.725 19.70 54

3 ECM.BFGS Hierarchical 0.942 16.57 84 3 ECM.BFGS Hierarchical 0.724 19.74 67

4 ECME.Nelder.Mead Hierarchical 0.940 16.57 154 4 ECM.Nelder.Mead Hierarchical 0.724 19.74 77

5 MCECM.Nelder.Mead Hierarchical 0.937 16.59 95 5 MCECM.BFGS Hierarchical 0.723 19.74 65

6 ECM.Nelder.Mead Hierarchical 0.934 16.59 92 6 MCECM.Nelder.Mead Hierarchical 0.723 19.74 77

7 ECM.BFGS Random 0.885 16.70 186 7 ECME.BFGS Random 0.620 19.97 73

8 MCECM.BFGS Random 0.880 16.74 167 8 ECME.Nelder.Mead Hierarchical scale 0.617 19.79 66

9 ECME.Nelder.Mead Random 0.879 16.74 269 9 ECME.BFGS Hierarchical scale 0.615 19.81 55

10 ECME.BFGS Random 0.875 16.74 181 10 MCECM.BFGS Hierarchical scale 0.613 19.82 73

11 ECM.Nelder.Mead Random 0.872 16.76 217 11 MCECM.Nelder.Mead Hierarchical scale 0.613 19.82 83

12 MCECM.Nelder.Mead Random 0.868 16.79 210 12 ECM.BFGS Hierarchical scale 0.612 19.82 72

1 (1000)

1 MCECM.BFGS Random 0.935 16.48 285 1 ECM.BFGS Hierarchical 0.736 19.68 112

2 ECME.BFGS Random 0.932 16.49 307 2 MCECM.BFGS Hierarchical 0.736 19.68 115

3 ECM.Nelder.Mead Random 0.931 16.50 324 3 ECME.BFGS Hierarchical 0.735 19.66 88

4 ECME.Nelder.Mead Random 0.930 16.49 370 4 ECME.Nelder.Mead Hierarchical 0.735 19.66 96

5 ECM.BFGS Random 0.930 16.50 285 5 MCECM.Nelder.Mead Hierarchical 0.735 19.66 126

6 MCECM.BFGS Hierarchical 0.927 16.48 112 6 ECM.Nelder.Mead Hierarchical 0.735 19.66 131

7 ECM.BFGS Hierarchical 0.927 16.48 113 7 ECME.Nelder.Mead Kmeans 0.605 19.88 124

8 ECME.BFGS Hierarchical 0.927 16.48 163 8 ECME.BFGS Random 0.602 19.92 107

9 MCECM.Nelder.Mead Hierarchical 0.924 16.49 128 9 ECM.BFGS Kmeans 0.601 19.88 164

10 ECM.Nelder.Mead Hierarchical 0.924 16.50 130 10 MCECM.Nelder.Mead Kmeans 0.601 19.88 177

11 ECME.Nelder.Mead Hierarchical 0.923 16.51 183 11 ECM.Nelder.Mead Kmeans 0.601 19.88 186

12 MCECM.Nelder.Mead Random 0.923 16.53 296 12 MCECM.BFGS Kmeans 0.601 19.90 159

8 (500)

1 ECM.Nelder.Mead Hierarchical 0.991 17.26 59 1 ECM.BFGS Random 0.907 19.92 53

2 ECM.BFGS Hierarchical 0.990 17.26 47 2 ECM.Nelder.Mead Random 0.907 19.92 64

3 MCECM.BFGS Hierarchical 0.990 17.26 48 3 MCECM.BFGS Random 0.906 19.92 55

4 MCECM.Nelder.Mead Hierarchical 0.990 17.26 55 4 MCECM.Nelder.Mead Random 0.906 19.92 62

5 ECME.BFGS Hierarchical 0.990 17.26 73 5 ECM.BFGS Kmeans 0.905 19.92 61

6 ECME.Nelder.Mead Hierarchical 0.990 17.26 87 6 MCECM.BFGS Kmeans 0.905 19.92 62

7 ECME.BFGS Random 0.912 17.56 105 7 MCECM.Nelder.Mead Kmeans 0.905 19.92 72

8 ECME.Nelder.Mead Random 0.900 17.60 117 8 ECM.Nelder.Mead Kmeans 0.905 19.92 74

9 ECM.Nelder.Mead Random 0.862 17.67 104 9 MCECM.BFGS Hierarchical 0.900 19.90 33

10 ECM.BFGS Random 0.861 17.67 86 10 MCECM.Nelder.Mead Hierarchical 0.900 19.90 37

11 MCECM.Nelder.Mead Random 0.843 17.73 103 11 ECM.BFGS Hierarchical 0.899 19.90 33

12 MCECM.BFGS Random 0.843 17.73 441 12 ECM.Nelder.Mead Hierarchical 0.899 19.90 39

3.3 EM Algorithm and initialization strategies for VCMM algorithm 115

Table 3.3.16: The top 20 performance of EM algorithms and the initialization strategies for data setting 7,

where the algorithm with 1) higher classification rate, 2) lower normalised BIC and 3) shorter computation

time is considered to be the better performance and the priority is given by (1) > (2) > (3).

General VCMM Gaussian VCMM

Setting Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

(Sample size) strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

Characteristics : Two clusters with big volume di↵erence

7 (500)

1 ECM.BFGS Kmeans scale 0.980 13.92 69 1 ECM.BFGS Hierarchical scale 0.954 14.70 14

2 MCECM.BFGS Kmeans scale 0.980 13.92 71 2 MCECM.BFGS Hierarchical scale 0.954 14.70 14

3 MCECM.Nelder.Mead Kmeans scale 0.980 13.92 82 3 MCECM.Nelder.Mead Hierarchical scale 0.954 14.70 16

4 ECM.Nelder.Mead Kmeans scale 0.980 13.92 85 4 ECM.BFGS Hierarchical 0.954 14.70 17

5 ECME.BFGS Kmeans scale 0.980 13.92 94 5 MCECM.BFGS Hierarchical 0.954 14.70 17

6 ECME.Nelder.Mead Kmeans scale 0.980 13.92 119 6 ECM.Nelder.Mead Hierarchical scale 0.954 14.70 17

7 MCECM.BFGS Hierarchical 0.975 13.92 38 7 ECM.Nelder.Mead Hierarchical 0.954 14.70 18

8 ECME.BFGS Hierarchical 0.975 13.92 57 8 MCECM.Nelder.Mead Hierarchical 0.954 14.70 18

9 ECME.Nelder.Mead Hierarchical 0.975 13.92 72 9 ECME.Nelder.Mead Hierarchical scale 0.954 14.70 22

10 ECM.BFGS Hierarchical 0.974 13.92 38 10 ECME.BFGS Hierarchical scale 0.954 14.70 22

11 ECM.Nelder.Mead Hierarchical 0.974 13.92 47 11 ECME.Nelder.Mead Hierarchical 0.954 14.70 25

12 MCECM.Nelder.Mead Hierarchical 0.974 13.92 47 12 ECME.BFGS Hierarchical 0.954 14.70 25

13 MCECM.BFGS Hierarchical scale 0.972 13.92 36 13 ECM.BFGS Kmeans scale 0.953 14.78 25

14 ECM.BFGS Hierarchical scale 0.972 13.93 36 14 MCECM.BFGS Kmeans scale 0.953 14.78 25

15 MCECM.Nelder.Mead Hierarchical scale 0.972 13.93 45 15 MCECM.Nelder.Mead Kmeans scale 0.953 14.78 29

16 ECME.BFGS Hierarchical scale 0.972 13.93 52 16 ECM.Nelder.Mead Kmeans scale 0.953 14.78 37

17 ECME.Nelder.Mead Hierarchical scale 0.972 13.93 105 17 ECME.Nelder.Mead Kmeans scale 0.951 14.74 33

18 ECM.Nelder.Mead Hierarchical scale 0.971 13.93 45 18 ECME.BFGS Kmeans scale 0.951 14.74 36

19 MCECM.BFGS Random 0.958 14.04 224 19 ECM.BFGS Kmeans 0.947 14.80 52

20 ECM.BFGS Random 0.949 14.07 214 20 ECM.Nelder.Mead Kmeans 0.947 14.80 56

7 (1000)

1 ECM.BFGS Hierarchical scale 0.980 13.79 61 1 ECME.Nelder.Mead Kmeans 0.958 14.72 66

2 MCECM.BFGS Hierarchical scale 0.980 13.79 71 2 ECM.BFGS Kmeans 0.958 14.72 92

3 ECME.Nelder.Mead Hierarchical scale 0.980 13.79 106 3 ECME.BFGS Kmeans 0.958 14.72 645

4 MCECM.Nelder.Mead Hierarchical scale 0.980 13.79 278 4 MCECM.Nelder.Mead Kmeans 0.958 14.72 970

5 ECME.BFGS Hierarchical scale 0.980 13.79 329 5 ECM.Nelder.Mead Kmeans 0.958 14.72 1004

6 ECM.Nelder.Mead Hierarchical 0.980 13.79 344 6 ECM.BFGS Hierarchical scale 0.957 14.70 24

7 ECM.Nelder.Mead Hierarchical scale 0.980 13.79 349 7 ECM.Nelder.Mead Hierarchical scale 0.957 14.70 25

8 ECME.Nelder.Mead Hierarchical 0.980 13.79 565 8 MCECM.BFGS Kmeans 0.957 14.72 147

9 MCECM.Nelder.Mead Hierarchical 0.979 13.79 362 9 MCECM.Nelder.Mead Hierarchical scale 0.956 14.70 24

10 ECM.BFGS Hierarchical 0.978 13.80 72 10 ECME.BFGS Hierarchical scale 0.956 14.70 27

11 MCECM.BFGS Hierarchical 0.978 13.80 73 11 ECME.Nelder.Mead Hierarchical scale 0.956 14.70 28

12 ECME.BFGS Hierarchical 0.978 13.80 448 12 MCECM.BFGS Hierarchical scale 0.956 14.70 88

13 MCECM.BFGS Random 0.976 13.82 343 13 ECM.Nelder.Mead Kmeans scale 0.952 14.86 44

14 ECM.BFGS Kmeans scale 0.974 13.82 133 14 ECME.BFGS Hierarchical 0.951 14.78 372

15 MCECM.BFGS Kmeans scale 0.974 13.82 139 15 ECM.BFGS Kmeans scale 0.951 14.82 42

16 ECME.Nelder.Mead Kmeans scale 0.974 13.82 176 16 MCECM.Nelder.Mead Kmeans scale 0.951 14.85 44

17 MCECM.Nelder.Mead Kmeans scale 0.974 13.82 540 17 ECME.BFGS Kmeans scale 0.950 14.76 45

18 ECM.Nelder.Mead Kmeans scale 0.974 13.82 545 18 ECME.Nelder.Mead Kmeans scale 0.950 14.76 47

19 ECME.BFGS Kmeans scale 0.974 13.82 639 19 ECM.BFGS Hierarchical 0.950 14.78 31

20 ECM.BFGS Random 0.974 13.83 315 20 ECME.Nelder.Mead Hierarchical 0.950 14.78 35

116 3 SIMULATION STUDY

5. The summary of the best initialization strategy and EM algorithm for clustering data setting

1 - 9.

According to the results we have from the VCMM simulation, we know that some initialization strategies per-

form better for the data with some particular characteristics. The best initialization strategy and initialization

strategy is summarised as a flow chart in the Figure 3.3.19. The red rectangular box with curved edge is the

start of data clustering. Then, you will follow the arrow with a suitable condition to go to other boxes. The

orange rectangular boxes refer to the characteristics of the data and the green diamond boxes refer to best

initialization strategies and the EM algorithm with the best performance which are the end of the flow chart.

Figure 3.3.19: The summary of the best initialization strategy and EM algorithm for clustering data setting 1

- 9.

3.3 EM Algorithm and initialization strategies for VCMM algorithm 117

6. Selection of the EM algorithm and initialization strategy for clustering data without charac-

teristics information

We have mentioned that some initialization strategies perform better for the data with some particular char-

acteristics. However, we cannot know the shape, overlap and volume of each cluster clearly if the clusters are

not marked. Therefore, in general, we cannot choose the best initialization strategy for clustering real data set

with unknown data characteristics.

We can calculate the BIC value for each initialization strategy and choose the one with lowest BIC and that

one probably gives us the best classification rate, but it can probably leads to a very high computation time

if the the data is high-dimensional. In order to save some computation time, we would suggest two better

initialization strategies according to our simulation result and choose the one with lower BIC. Also, we know

that random outperforms other initialization strategies for those clusters like a ”X” shape and ”X” shape still

can be observed easily for three dimensional data.

Based on these two selection’s principle, we have come up with two flow charts in the Figure 3.3.20 and 3.3.21

to select the suitable initialization strategy for general VCMM and Gaussian VCMM algorithm respectively.

The flow chart is basically similar to the one above. The only di↵erence is that the green rectangular boxes

refer to the final decision of the initialization strategy which are the end of the flow chart.

In the Figure 3.3.20 and 3.3.21, we know that if the data has the ”X” shape, we recommend random with

ECM.Nelder.Mead and MCECM.BFGS for general VCMM and Gaussian VCMM respectively. The result

is from the Table 3.3.14 and the EM algorithms topping or almost topping in the list are selected. If the

data doesn’t look like ”X” shape, for general VCMM, we have suggested Hierarchical or Kmeans (scale) with

ECM.BFGS / MCECM.BFGS. The selection of the EM algorithms is because of shorter required computation

time that we mentioned before. In the Table 3.3.11, except data setting 3,9 with ”X” shape, we know that

Hierarchical performs quite well in data setting 1,2,4,6-8 and Kmeans (scale) perform quite well in data setting

4-7. More importantly, we know that the clusters in data setting 7 have larger volume or scale di↵erence and

real data set usually have this characteristics. So, Hierarchical and Kmeans (scale) is selected. For Gaussian

VCMM, EM algorithms with BFGS are selected as we mentioned that it take less time than Nelder.Mead.

Also, except data setting 3,9 with ”X” shape, Kmeans performs well in data setting 1,2,4-8 and Hierarchical

performs quite well in data setting 1,4,5,7 and they don’t have worst performance. So, Kmeans and Hierarchical

are selected.

118 3 SIMULATION STUDY

Figure 3.3.20: The selection of the initialization strategy for general VCMM algorithm.

Figure 3.3.21: The selection of the initialization strategy for Gaussian VCMM algorithm.

119

Table 4.0.1: The overview of the real data sets we used for assessment.

Notation Name AIS BCW

n Sample size 202 569

d Dimension of each sample 5 4

(Variables used) (LBM, Wt, BMI, EBC and PBF) (PSE, ES, EC and ECP)

K Total number of clusters 2 2

⇡1 Mixing proportion of cluster 1 0.495 0.594

(Name of cluster 1) (Female) (Benign)

⇡2 Mixing proportion of cluster 2 0.505 0.406

(Name of cluster 2) (Male) (Malignant)

4 Real data sets

In Section 3 simulation study, we have generated di↵erent data sets to assess the performance of Gaussian

mixture model (GMM) and vine copula mixture model (VCMM) algorithm with di↵erent EM algorithms and

initialization strategies. However, the data for simulation is just 3 dimensions and generated by GMM, VCMM

and mixture of multivariate skew t. The real data is probably more complicated, for example, higher dimension,

more clusters, following special distributions, more outliers and so on. Therefore, in this section, we just follow

the real data sets and the selected variables used in Sahin and Czado [2021] to test the performance of VCMM

algorithm : 1. Australian Institute of Sport data set, 2. Breast Cancer Wisconsin Diagnostic data set. The

Table 4.0.1 shows you the general overview of two real data sets and more details will be given in the Section 4.1.

4.1 Introduction to the real data set

Australian Institute of Sport (AIS)

Australian Institute of Sport (AIS) data set contains 13 information of 202 athletes, including the sex of the

athletes, the sport of the athletes and 11 di↵erent body and blood measurements. There are in total 102 male

and 100 female athletes in the data set. We would like to use VCMM algorithm to identify the gender of the

athletes, based on 5 selected information of the athletes, which are lean body mass (LBM), weight (Wt), body

mass index (BMI), white blood cell count (WBC), and percentage of body fat (PBF). The data is available in

the R package DAAG and the data is called ais.

The pairwise scatter plots of the subset of AIS data are shown in the Figure 4.1.1. The orange and green dots

represent the observation for female and male athletes respectively. From the panels of the Figure 4.1.1 (a),

you can see that the two clusters are separated the most between PBF and LBM, which means there are a

significant di↵erent between male and female for those measurements. In the diagonal of the Figure 4.1.1 (a),

the marginal distributions for each cluster are shown. For all variables, the values near the center (median)

appear more frequently than values at the tails. Also, the marginal distributions between male and female are

quite similar for WBC. For PBF with female, it shows a positive skew that tail is on the right. In the Figure

4.1.1 (b), (c) and (d), we can see the dependency between each variable. From the normalized contour plots,

we can know that the dependency between the same pair of variables is usually quite similar in females and

males and the associated Kendall’s tau too, except there are more di↵erences between WBC and PBF. Also,

we can see the non-Gaussian dependence patterns in many pair of variables, and asymmetric tail dependence

between LBM and Wt.

120 4 REAL DATA SETS

Breast Cancer Wisconsin Diagnostic (BCW)

Breast Cancer Wisconsin Diagnostic (BCW) is a data set from UCI Machine Learning Repository containing

30 features of cell nuclei from breast mass and the classification of breast cancer: malignant (cancer) or be-

nign (not cancer). Ten features, such as size, shape and regularity, are computed for each cell nucleus from

a breast mass. The mean, standard error, and extreme value (mean of the three largest values) of each of 10

nuclear parameters is reported for a total of 30 features. There are in total 569 patients, including 212 malig-

nant and 357 benign. With the selection of 4 features, perimeter standard error (PSE), extreme smoothness

(ES), extreme concavity (EC), and extreme concave points (ECP), we would like to use VCMM algorithm to

classify the status of the breast mass. The data is available in the R package dslabs and the data is called brca.

The pairwise scatter plots of the subset of the BCW data are shown in the Figure 4.1.2. The orange and

green dots represent the observation for benign and malignant respectively. Same as the AIS data, for all

variables, the values near the center (median) appear more frequently than values at the tails. Apart from ES,

the distributions are skewed at a particular level. In particular, EC with malignant and PSE show a positive

skew that the tail is on the right. About the dependency, it is quite similar between the same pair of variables

in benign and malignant, but some of them the strength are quite di↵erent, for example, ES and EC. Also,

some of the pairs show the asymmetric tail dependency, for example, the pair of EC and ECP shows the strong

asymmetric tail dependency.

4.1 Introduction to the real data set 121

(a) True cluster (b) Pairs plot (Copula data)

(c) Pairs plot for females (Copula data) (d) Pairs plot for males (Copula data)

Figure 4.1.1: The pairwise scatter plot of the subset of AIS data (top left) with orange dots for observations of

females and green dots for males. Pairs plots of all data (top right), females (bottom left) and males (bottom

right), where lower: pairs plots of copula data with the values of Kendall’s tau, diagonal: histogram of copula

margins, upper: normalized contour plots.

122 4 REAL DATA SETS

(a) True cluster (b) Pairs plot (Copula data)

(c) Pairs plot for benign (Copula data) (d) Pairs plot for malignant (Copula data)

Figure 4.1.2: The pairwise scatter plot of the subset of BCW data (top left) with orange dots for observations

of benign and green dots for malignant. Pairs plots of all data (top right), benign (bottom left) and malignant

(bottom right), where lower: pairs plots of copula data with the values of Kendall’s tau, diagonal: histogram

of copula margins, upper: normalized contour plots.

4.2 Introduction to the modelling methods for clustering 123

4.2 Introduction to the modelling methods for clustering

1. Modelling methods used for clustering

In this section, four modelling methods will be used for clustering and the overview is shown in the Table 4.2.1.

GMM is the Algorithm (1) used in the Section 3.1 and 3.2. General VCMM and Gaussian VCMM are the

algorithms used in the Section 3.3. The new modelling method called General VCMM (Copula with single

parameter) is used here and the only di↵erence is that just the copula families with one parameter are used for

modelling, including Gaussian, Student t, Frank, Clayton, Gumbel and Joe copula and their rotated copulas.

And all other factors keep same as General VCMM, for example, marginal distributions used for modelling,

CM steps order for EM algorithms.

Table 4.2.1: The overview of the modelling method, the associated marginal distribution and copula families

used for clustering. *For marginal distribution, ”All” refers to 1. Gaussian distribution, 2. Log-normal

distribution, 3. Exponential distribution, 4. Log-logistic distribution, 5. Logistic distribution, 6. Gamma

distribution and 7. Student’s t distribution with degrees of freedom 3.3. For copula family, ”All” refers to

Gaussian copula, Student’s t copula, Gumbel copula, Clayton copula, Frank copula, Joe copula, BB1 copula,

BB6 copula, BB8 copula and their rotated copulas with 90�, 180�, 270� degrees.

Modelling method Marginal distribution Copula family Pair copula construction

GMM Gaussian - -

General VCMM All* All* Determined by the VCMM algorithm

General VCMM
All*

Copula with single parameter
Determined by the VCMM algorithm

(Copula with single parameter) and Student’s t copula

Gaussian VCMM Gaussian Gaussian Determined by the VCMM algorithm

2. The combination of the modelling methods, EM algorithms and initialisation strategies

used for clustering

For each data set, we have in total 110 ways for clustering, including 4 VCMM algorithms, 1 GMM algorithm,

5 initialisation stragties and 6 EM algorithms for VCMM and 4 EM algorithms for GMM. The details of each

item are shown in the Table 4.2.2.

Table 4.2.2: The combination of the modelling method, EM algorithm and initialisation strategy used for each

real data set clustering.

Modelling method EM algorithm Initialisation Number of

strategy combinations

1. ECM.Nelder.Mead 1. Random

90

1. General VCMM 2. ECM.BFGS 2. Kmeans

2. General VCMM 3. ECME.Nelder.Mead 3. Kmeans scale

(Copula with single parameter) 4. ECME.BFGS 4. Hierarchical

3. Gaussian VCMM 5. MCECM.Nelder.Mead 5. Hierarchical scale

6. MCECM.BFGS

1. GMM

1. ECM 1. Random

20

2. ECME.Nelder.Mead 2. Kmeans

3. ECME.ECME 3. Kmeans scale

4. MCECM 4. Hierarchical

5. Hierarchical scale

Total : 110

124 4 REAL DATA SETS

4.3 Result and performance of clustering

1. Comparison of the result with di↵erent methods for clustering

In the Table 4.3.1, it shows the performance of clustering AIS and BCW data, that the mean for 50 replications

of the performance measure with di↵erent modelling methods, EM algorithms and initialisation strategies. Also,

the pair plots and associated classification rates after initialising and final clustering are shown in Appendix

C.3 and C.4. From the clustering results for the AIS data set, we observe the following:

• For a particular initialization strategy, the normalised BIC and classification rate perform usually similar

within di↵erent EM algorithms, but there is a great di↵erence in computation time.

• Mostly, the EM algorithms with Neldar-Mead is taking more time than with BFGS.

• For General VCMM and General VCMM (Copula with single parameter), the performance varies quite much

with di↵erent initialization strategy.

• For each of the initialization strategy, General VCMM (Copula with single parameter) performs mostly better

than General VCMM.

• Gaussian VCMM performs better than GMM.

• For each modelling method other than GMM, Hierarchical (scale) usually leads to the best classification rate.

• Apart from Gaussian VCMM, the classification rate after final clustering is always higher or very similar to

the classification rate after initialising clustering for a particular initialization strategy.

Also, from the clustering results of BCW data set, we can observe the following:

• For a particular initialization strategy, the normalised BIC and classification rate perform usually similar

within di↵erent EM algorithms, but there is a great di↵erence in computation time.

• Mostly, the EM algorithms with Neldar-Mead is taking more time than with BFGS.

• Random requires longer computation time.

• For General VCMM and General VCMM (Copula with single parameter), the performance varies quite much

with di↵erent initialization strategy.

• In terms of normalised BIC, General VCMM and General VCMM (Copula with single parameter) performs

always better than Gaussian VCMM.

• For General VCMM and General VCMM (Copula with single parameter), Hierarchical (scale) always leads

to the best classification rate.

• Apart from Gaussian VCMM, the classification rate after final clustering is always higher or very similar to

the classification rate after initialising clustering for a particular initialization strategy.

Combining the observations for AIS and BCW data set above, we can conclude the following:

• Although di↵erent EM algorithms mostly don’t a↵ect the performance for clustering significantly, there is a

significant e↵ect on the running time needed.

• The EM algorithms with Neldar-Mead is taking more time than with BFGS.

• The starting value / initialization strategy for the EM algorithm is the key factor of the performance of the

clustering.

• The general VCMM improves the clustering performance after initialization strategy.

4.3 Result and performance of clustering 125

• The more complex of the model, it doesn’t have to lead to a better result / better fit for clustering.

• For clustering of non-Gaussian data, more flexible method like General VCMM with a suitable initialization

strategy is more recommended than Gaussian mixture model.

• For real data set, Hierarchical (scale) is suggested as an initialization strategy.

126 4 REAL DATA SETS

Table 4.3.1: The mean for 50 replications of the performance measure for each EM algorithm and its extension

with di↵erent initialization strategies for data set of AIS and BCW, where the green and red colour represent

the best and the worst initialization strategies for each EM algorithm respectively and ”-” represents not

available as the conditions (2.5.5) or (2.5.6) is fulfilled for GMM algorithm.

AIS

General VCMM Gaussian VCMM

Performance Algorithm Random Kmeans Hierarchical Kmeans Hierarchical Algorithm Random Kmeans Hierarchical Kmeans Hierarchical

measures (scale) (scale) (scale) (scale)

Computation time

ECM.Nelder.Mead 402 83 219 393 640 ECM.Nelder.Mead 352 550 227 557 256

ECM.BFGS 386 53 149 219 303 ECM.BFGS 268 392 155 362 164

ECME.Nelder.Mead 478 218 464 683 914 ECME.Nelder.Mead 787 882 378 950 452

ECME.BFGS 502 120 203 359 527 ECME.BFGS 524 632 265 660 356

MCECM.Nelder.Mead 345 81 232 413 488 MCECM.Nelder.Mead 371 549 210 582 256

MCECM.BFGS 413 42 149 236 277 MCECM.BFGS 247 348 159 367 151

Normalised BIC

ECM.Nelder.Mead 25.60 25.87 24.21 24.70 23.92 ECM.Nelder.Mead 23.06 23.57 23.57 23.57 23.57

ECM.BFGS 25.81 25.87 24.21 24.70 23.92 ECM.BFGS 23.06 23.57 23.57 23.57 23.57

ECME.Nelder.Mead 25.76 26.00 24.21 24.01 23.92 ECME.Nelder.Mead 23.06 23.57 23.57 23.57 23.57

ECME.BFGS 25.86 26.00 24.21 23.52 23.92 ECME.BFGS 23.06 23.57 23.57 23.57 23.57

MCECM.Nelder.Mead 25.82 25.87 24.21 24.70 23.92 MCECM.Nelder.Mead 23.06 23.57 23.57 23.57 23.57

MCECM.BFGS 25.81 25.87 24.21 24.70 23.92 MCECM.BFGS 23.06 23.57 23.57 23.57 23.57

Classification rate

ECM.Nelder.Mead 0.580 0.753 0.914 0.790 0.924 ECM.Nelder.Mead 0.658 0.914 0.905 0.905 0.914

ECM.BFGS 0.576 0.753 0.914 0.790 0.924 ECM.BFGS 0.658 0.914 0.905 0.905 0.914

ECME.Nelder.Mead 0.572 0.775 0.914 0.905 0.924 ECME.Nelder.Mead 0.658 0.914 0.905 0.905 0.914

ECME.BFGS 0.602 0.775 0.914 0.914 0.924 ECME.BFGS 0.658 0.914 0.905 0.905 0.914

MCECM.Nelder.Mead 0.602 0.753 0.914 0.790 0.924 MCECM.Nelder.Mead 0.658 0.914 0.905 0.905 0.914

MCECM.BFGS 0.576 0.753 0.914 0.790 0.924 MCECM.BFGS 0.658 0.914 0.905 0.905 0.914

General VCMM (Copula with single parameter) GMM

Performance Algorithm Random Kmeans Hierarchical Kmeans Hierarchical Algorithm Random Kmeans Hierarchical Kmeans Hierarchical

measures (scale) (scale) (scale) (scale)

Computation time

ECM.Nelder.Mead 372 104 222 383 538 ECM 0.331 0.034 0.100 0.076 0.263

ECM.BFGS 599 56 169 213 295 MCECM 0.134 0.047 0.464 0.091 0.268

ECME.Nelder.Mead 383 254 452 648 1003 ECME.Nelder.Mead - 103 263 109 77

ECME.BFGS 699 106 301 321 496 ECME.BFGS - - - - -

MCECM.Nelder.Mead 346 78 244 395 593

MCECM.BFGS 486 51 154 229 272

Normalised BIC

ECM.Nelder.Mead 25.75 25.85 23.83 25.03 23.85 ECM 23.56 24.28 23.56 24.28 23.81

ECM.BFGS 26.44 25.85 23.86 25.03 23.85 MCECM 23.56 24.28 23.56 24.28 23.81

ECME.Nelder.Mead 25.70 25.79 23.86 24.13 23.85 ECME.Nelder.Mead - 24.33 24.14 24.34 24.24

ECME.BFGS 26.46 25.79 23.86 23.65 23.85 ECME.BFGS - - - - -

MCECM.Nelder.Mead 25.75 25.85 23.86 25.03 23.85

MCECM.BFGS 26.46 25.85 23.83 25.03 23.85

Classification rate

ECM.Nelder.Mead 0.569 0.753 0.924 0.821 0.924 ECM 0.652 0.767 0.652 0.760 0.712

ECM.BFGS 0.616 0.753 0.924 0.821 0.924 MCECM 0.652 0.767 0.652 0.767 0.712

ECME.Nelder.Mead 0.589 0.767 0.924 0.897 0.924 ECME.Nelder.Mead - 0.753 0.870 0.699 0.862

ECME.BFGS 0.606 0.767 0.924 0.914 0.924 ECME.BFGS - - - - -

MCECM.Nelder.Mead 0.569 0.753 0.924 0.821 0.924

MCECM.BFGS 0.606 0.753 0.924 0.821 0.924

BCW

General VCMM Gaussian VCMM

Performance Algorithm Random Kmeans Hierarchical Kmeans Hierarchical Algorithm Random Kmeans Hierarchical Kmeans Hierarchical

measures (scale) (scale) (scale) (scale)

Computation time

ECM.Nelder.Mead 255 111 384 55 112 ECM.Nelder.Mead 327 124 267 102 101

ECM.BFGS 420 66 232 61 74 ECM.BFGS 286 109 237 85 86

ECME.Nelder.Mead 532 304 260 106 165 ECME.Nelder.Mead 355 143 307 153 148

ECME.BFGS 302 125 155 73 108 ECME.BFGS 326 134 294 122 133

MCECM.Nelder.Mead 635 153 367 55 111 MCECM.Nelder.Mead 336 118 266 97 108

MCECM.BFGS 349 66 249 52 91 MCECM.BFGS 296 104 246 84 92

Normalised BIC

ECM.Nelder.Mead -6.98 -7.07 -7.16 -7.21 -7.24 ECM.Nelder.Mead -6.61 -6.26 -6.61 -6.60 -6.61

ECM.BFGS -6.90 -7.07 -7.11 -7.21 -7.24 ECM.BFGS -6.61 -6.26 -6.61 -6.60 -6.61

ECME.Nelder.Mead -7.02 -7.10 -7.15 -7.21 -7.24 ECME.Nelder.Mead -6.61 -6.26 -6.61 -6.60 -6.61

ECME.BFGS -6.98 -7.09 -7.15 -7.21 -7.24 ECME.BFGS -6.61 -6.26 -6.61 -6.60 -6.61

MCECM.Nelder.Mead -6.87 -7.07 -7.16 -7.21 -7.24 MCECM.Nelder.Mead -6.61 -6.26 -6.61 -6.60 -6.61

MCECM.BFGS -6.87 -7.07 -7.15 -7.21 -7.24 MCECM.BFGS -6.61 -6.26 -6.61 -6.60 -6.61

Classification rate

ECM.Nelder.Mead 0.499 0.621 0.814 0.851 0.869 ECM.Nelder.Mead 0.784 0.685 0.776 0.797 0.784

ECM.BFGS 0.499 0.621 0.814 0.851 0.869 ECM.BFGS 0.784 0.685 0.776 0.797 0.784

ECME.Nelder.Mead 0.504 0.636 0.822 0.851 0.869 ECME.Nelder.Mead 0.784 0.685 0.776 0.797 0.784

ECME.BFGS 0.499 0.636 0.822 0.851 0.869 ECME.BFGS 0.784 0.685 0.779 0.797 0.784

MCECM.Nelder.Mead 0.500 0.621 0.814 0.851 0.869 MCECM.Nelder.Mead 0.784 0.685 0.771 0.797 0.784

MCECM.BFGS 0.499 0.621 0.822 0.851 0.869 MCECM.BFGS 0.784 0.685 0.776 0.797 0.784

General VCMM (Copula with single parameter) GMM

Performance Algorithm Random Kmeans Hierarchical Kmeans Hierarchical Algorithm Random Kmeans Hierarchical Kmeans Hierarchical

measures (scale) (scale) (scale) (scale)

Computation time

ECM.Nelder.Mead 604 131 241 218 162 ECM 0.080 0.088 0.073 0.095 0.039

ECM.BFGS 428 67 138 147 135 MCECM 0.104 0.098 0.099 0.125 0.060

ECME.Nelder.Mead 267 267 183 281 214 ECME.Nelder.Mead - - - - -

ECME.BFGS 545 117 98 199 143 ECME.BFGS - - - - -

MCECM.Nelder.Mead 517 141 300 154 147

MCECM.BFGS 389 73 159 138 128

Normalised BIC

ECM.Nelder.Mead -7.04 -7.07 -7.09 -7.10 -7.08 ECM -6.10 -6.10 -6.44 -6.44 -6.44

ECM.BFGS -6.98 -7.08 -7.09 -7.12 -7.14 MCECM -6.10 -6.10 -6.44 -6.44 -6.44

ECME.Nelder.Mead -7.00 -7.10 -7.10 -7.11 -7.08 ECME.Nelder.Mead - - - - -

ECME.BFGS -7.06 -7.08 -7.10 -7.12 -7.12 ECME.BFGS - - - - -

MCECM.Nelder.Mead -7.04 -7.07 -7.09 -7.14 -7.08

MCECM.BFGS -7.00 -7.08 -7.09 -7.12 -7.11

Classification rate

ECM.Nelder.Mead 0.510 0.618 0.701 0.837 0.878 ECM 0.681 0.681 0.781 0.784 0.784

ECM.BFGS 0.511 0.618 0.699 0.828 0.869 MCECM 0.681 0.681 0.781 0.784 0.784

ECME.Nelder.Mead 0.507 0.630 0.748 0.828 0.878 ECME.Nelder.Mead - - - - -

ECME.BFGS 0.508 0.628 0.748 0.828 0.866 ECME.BFGS - - - - -

MCECM.Nelder.Mead 0.509 0.618 0.703 0.839 0.875

MCECM.BFGS 0.511 0.618 0.701 0.828 0.872

4.3 Result and performance of clustering 127

Table 4.3.2: The best estimated vine copula model for the data set AIS and BCW with the highest classification

rate and smallest normalised BIC. The variable encoding is given as follows: (AIS) 1: LBM, 2: Wt, 3: BMI,

4: WBC, 5: PBF and (BCW) 1: PSE, 2: ES, 3: EC and 4: ECP. For marginal distributions (Left column),

the estimated marginal distributions and parameters for each cluster are shown. For vine tree structure (Right

column), the first and second tree level of the estimated vine copula models are shown here. The number 1,5

represents the edge of the tree level, letter N is the abbreviation of the copula and the true parameter value

and corresponding Kendall’s ⌧ of the pair copula are given inside the parenthesis (parameter(s)/Kendall’s ⌧)

near the letter. The meaning of the abbreviation for marginal distribution and copula families is shown in the

appendix B.1 and B.2.

Marginal distributions Vine tree structure

Variable Cluster 1 Cluster 2
Cluster 1 Cluster 2

Tree 1 Tree 2 Tree 1 Tree 2

AIS

General VCMM (Copula with single parameter) (Hierarchical)

Classification rate : 92.4% Normalised BIC : 23.83

1 llogis(12.42, 55.34) lnorm(4.3, 0.13) 2,5 C(1.53/0.43) 1,5;2 R90G(-3.38/-0.7) 2,1 SG(9.87/0.9) 3,1;2 R90G(-1.32/-0.24)

2 N (68.59, 12.29) lnorm(4.4, 0.14) 2,1 T(0.94,6.26/0.78) 3,1;2 N(-0.25/-0.16) 3,2 N(0.83/0.62) 5,2;3 C(0.2/0.09)

3 lnorm(3.09, 0.12) llogis(18.22, 23.46) 3,2 N(0.87/0.67) 4,2;3 R270C(0/0) 5,3 T(0.64,11.61/0.45) 4,3;5 R270C(-0.17/-0.08)

4 lnorm(1.93, 0.24) lnorm(1.93, 0.26) 4,3 F(1.56/0.17) 5,4 F(2.53/0.26)

5 �(11.04, 0.62) snorm(8.81, 2.28, 4.3)

BCW

General VCMM (Copula with single parameter) (Hierarchical scale)

Classification rate : 87.8% Normalised BIC : -7.08

1 snorm(2.01, 0.74, 2.4) sstd(4.45, 2.5, 4.36, 2.79) 4,1 F(0.59/0.07) 2,1;4 R270C(-0.19/-0.08) 2,1 N(-0.3/-0.19) 3,1;2 SC(0.13/0.06)

2 �(39.12, 313.49) llogis(12.5, 0.14) 4,2 SG(1.27/0.22) 3,2;4 R270G(-1.05/-0.04) 3,2 SG(1.44/0.31) 4,2;3 SJ(1.11/0.06)

3 snorm(0.16, 0.12, 190.82) sstd(0.48, 0.19, 7.18, 1.94) 4,3 T(0.77,30/0.56) 4,3 SG(1.82/0.45)

4 N (0.07, 0.03) sstd(0.19, 0.04, 9.8, 1.41)

2. The best estimated vine copula model for VCMM algorithm

The best estimated vine copula model with the highest classification rate and smallest normalised BIC for AIS

and BCW is shown in the Table 4.3.2. For AIS data set, General VCMM (Copula with single parameter) with

Hierarchical performs the best with 92.4% classification rate. As the same as expected before, the variable

WBC for both clusters is fitted by the same distribution, which is log-normal distribution with the same mean

and very similar standard deviation. For PBE female data with a positive skew, it is fitted by skew normal

distribution. About the estimated vine tree structure pairs with large Kendall’s tau, the pair between LBM

and Wt for male is fitted by survival Gumbel with asymmetric tail. However, the female data is finally fitted

by symmetric t copula, where the asymmetry level of tail for the female data is not as high as male. For the

pair between Wt and BMI, the female and male data are both fitted by Gaussian copula.

Also, for BCW data set, General VCMM (Copula with single parameter) with Hierarchical scale performs the

best with 87.8% classification rate. Due to the skewness of variables PSE and EC, the estimated marginal

densities for PSE and EC are finally fitted by skew normal distribution and skew Student’s t distribution

respectively. About the strong dependency with asymmetric tail between EC and ECP, female data is fitted

by symmetric t copula and male data is fitted by survival Gumbel with asymmetric tail.

For other VCMM models and initialisation strategies, the estimated vine copula models are shown in the Ap-

pendix C.2.

3. Vuong test for the comparisons between VCMM model and Gaussian model

In the last part, we have concluded that for clustering non-Gaussian data, it is more recommended to use

General VCMM. We still would like to determine whether there is enough statistical evidence to support our

suggestion. Therefore, Voung test with BIC correction [Vuong, 1989] [Desmarais and Harden, 2013] is used

128 4 REAL DATA SETS

Table 4.3.3: The z statistics of the the Vuong test with BIC correction, where the colour yellow , orange ,

green , blue represent z �1.65,�1.65 < z 0, 0 < z 1.65 and 1.65 < z respectively. (-1.65 / 1.65 is

the z statistics at the significance level of 0.05.) Also, ”-” represents not available as the conditions (2.5.5) or

(2.5.6) is fulfilled for GMM algorithm.

Initialization strategies Initialization strategies

Algorithm Random Kmeans Hierarchical Kmeans Hierarchical Random Kmeans Hierarchical Kmeans Hierarchical

(scale) (scale) (scale) (scale)

AIS BCW

General VCMM and Gaussian VCMM

ECM.Nelder.Mead 12.012 10.720 2.931 5.212 1.806 -3.681 -6.212 -5.423 -5.664 -6.083

ECM.BFGS 12.812 10.720 2.932 5.212 1.806 -2.904 -6.212 -4.738 -5.665 -6.077

ECME.Nelder.Mead 12.606 10.288 2.931 1.899 1.806 -4.365 -6.452 -5.393 -5.663 -6.124

ECME.BFGS 13.911 10.288 2.932 -0.253 1.806 -3.678 -6.625 -5.357 -5.664 -6.082

MCECM.Nelder.Mead 14.442 10.720 2.931 5.212 1.806 -2.680 -6.212 -5.453 -5.665 -6.082

MCECM.BFGS 12.812 10.720 2.932 5.212 1.806 -2.684 -6.212 -5.440 -5.664 -6.082

General VCMM (Copula with single parameter) and Gaussian VCMM

ECM.Nelder.Mead 12.649 10.602 1.251 6.249 1.425 -4.538 -6.595 -5.072 -5.467 -5.123

ECM.BFGS 15.929 10.602 1.422 6.249 1.425 -3.782 -6.582 -5.069 -5.672 -5.708

ECME.Nelder.Mead 12.152 9.464 1.422 2.578 1.425 -4.179 -6.674 -4.992 -5.548 -5.123

ECME.BFGS 16.296 9.464 1.422 0.343 1.425 -4.643 -6.745 -4.952 -5.669 -5.548

MCECM.Nelder.Mead 12.650 10.601 1.422 6.249 1.425 -4.421 -6.595 -5.150 -5.775 -5.127

MCECM.BFGS 16.308 10.602 1.251 6.248 1.425 -4.023 -6.582 -5.070 -5.671 -5.669

General VCMM and GMM

ECM 9.681 8.989 2.828 2.279 0.438 -6.953 -7.563 -6.880 -6.950 -7.439

MCECM 10.528 8.972 2.829 2.283 0.438 -6.686 -7.558 -6.871 -6.948 -7.426

ECME.Nelder.Mead - 8.014 0.330 -1.567 -1.642 - - - - -

ECME.BFGS - - - - - - - - - -

here to determine whether the model fits the data statistically significantly better than the another one.

We follow the formula in the paper ”Testing for zero inflation in count models: Bias correction for the Vuong

test” [Desmarais and Harden, 2013] to calculate the z statistics of the the Vuong test with BIC correction. The

Table 3.2.2 shows the z statistics of the the Vuong test between three pairs of models: 1. General VCMM and

Gaussian VCMM, 2. General VCMM (Copula with single parameter) and Gaussian VCMM and 3. General

VCMM and GMM. The interpretation of the z statistics is in the following:

• z �1.65 : The first model is preferred with significance level of 0.05.

• � 1.65 < z 0 : The first model is preferred, but not significantly.

• 0 < z 1.65 : The second model is preferred, but not significantly.

• 1.65 < z : The second model is preferred with significance level of 0.05.

For data BCW, all the z statistics are smaller than -1.65, so we can conclude that General VCMM / General

VCMM (Copula with single parameter) is preferred significantly over Gaussian VCMM or GMM with signifi-

cance level of 0.05. This is what we can expect because the high flexibility of VCMM algorithm should fit the

BCW data with non-Gaussian data better. However, For data AIS, most algorithms are with z statistics larger

1.65, which means the Gaussian VCMM or GMM are preferred. Note that the BIC value tends to select a model

that reasonably approximates the density. However, the model does not always give a good clustering partition.

Such model examples can be found in Punzo and McNicholas [2016] and Scrucca et al. [2016]. Although the

result in Vuong test with BIC correction is out of our expectation, referring to the Table 4.3.1, the classifica-

tion rate of general VCMM and General VCMM (Copula with single parameter) with Hierarchical (scale) is

still higher than Gaussian VCMM. For clustering non-Gaussian data, general VCMM is still more recommended.

4. Ranking of the performance for each modelling method

4.3 Result and performance of clustering 129

The Table 4.3.4 shows the ranking of the performance of EM algorithms and the initialization strategies for

AIS and BCW data set by VCMM and GMM algorithm. As we mentioned before, based on the result from real

data sets, we recommend using Hierarchical scale as the initialization strategy. With regard to classification

rate, the methods with top ranking here are using Hierarchical scale. Also, among the EM algorithms with

Hierarchical scale, you can see that needed computation time of MCECM.BFGS is mostly the least. Therefore,

we would recommend using general VCMM with MCECM.BFGS and Hierarchical scale for clustering non

Gaussian data.

Table 4.3.4: The top 8 and bottom 4 performance of EM algorithms and the initialization strategies for the data

set of AIS and BCW by using VCMM and GMM algorithm, where the algorithm with 1) higher classification

rate, 2) lower normalised BIC and 3) shorter computation time is considered to be the better performance and

the priority is given by (1) > (2) > (3).

AIS

General VCMM Gaussian VCMM

Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

1 MCECM.BFGS Hierarchical scale 0.924 23.92 277 1 MCECM.BFGS Hierarchical scale 0.914 23.57 151

2 ECM.BFGS Hierarchical scale 0.924 23.92 303 2 ECM.BFGS Hierarchical scale 0.914 23.57 164

3 MCECM.Nelder.Mead Hierarchical scale 0.924 23.92 488 3 ECM.Nelder.Mead Hierarchical scale 0.914 23.57 256

4 ECME.BFGS Hierarchical scale 0.924 23.92 527 4 MCECM.Nelder.Mead Hierarchical scale 0.914 23.57 256

5 ECM.Nelder.Mead Hierarchical scale 0.924 23.92 640 5 MCECM.BFGS Kmeans 0.914 23.57 348

6 ECME.Nelder.Mead Hierarchical scale 0.924 23.92 914 6 ECME.BFGS Hierarchical scale 0.914 23.57 356

7 ECME.BFGS Kmeans scale 0.914 23.52 359 7 ECM.BFGS Kmeans 0.914 23.57 392

8 ECM.BFGS Hierarchical 0.914 24.21 149 8 ECME.Nelder.Mead Hierarchical scale 0.914 23.57 452

27 ECM.Nelder.Mead Random 0.580 25.60 402 27 MCECM.Nelder.Mead Random 0.658 23.06 352

28 ECM.BFGS Random 0.576 25.81 386 28 ECM.Nelder.Mead Random 0.658 23.06 371

29 MCECM.BFGS Random 0.576 25.81 414 29 ECME.BFGS Random 0.658 23.06 524

30 ECME.Nelder.Mead Random 0.572 25.76 478 30 ECME.Nelder.Mead Random 0.658 23.06 787

General VCMM (Copula with single parameter) GMM

Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

1 MCECM.BFGS Hierarchical 0.924 23.83 154 1 ECME.Nelder.Mead Hierarchical 0.870 24.14 263

2 ECM.Nelder.Mead Hierarchical 0.924 23.83 222 2 ECME.Nelder.Mead Hierarchical scale 0.862 24.24 77

3 MCECM.BFGS Hierarchical scale 0.924 23.85 272 3 ECM Kmeans 0.767 24.28 0.034

4 ECM.BFGS Hierarchical scale 0.924 23.85 295 4 MCECM Kmeans 0.767 24.28 0.047

5 ECME.BFGS Hierarchical scale 0.924 23.85 496 5 MCECM Kmeans scale 0.767 24.28 0.091

6 ECM.Nelder.Mead Hierarchical scale 0.924 23.85 538 6 ECM Kmeans scale 0.760 24.28 0.076

7 MCECM.Nelder.Mead Hierarchical scale 0.924 23.85 593

8 ECME.Nelder.Mead Hierarchical scale 0.924 23.85 1003

27 ECME.BFGS Random 0.606 26.46 699

28 ECME.Nelder.Mead Random 0.589 25.70 383

29 MCECM.Nelder.Mead Random 0.569 25.75 346

30 ECM.Nelder.Mead Random 0.569 25.75 372

BCW

General VCMM Gaussian VCMM

Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

1 ECM.BFGS Hierarchical scale 0.869 -7.24 74 1 MCECM.BFGS Kmeans scale 0.797 -6.60 84

2 MCECM.BFGS Hierarchical scale 0.869 -7.24 91 2 ECM.BFGS Kmeans scale 0.797 -6.60 85

3 ECME.BFGS Hierarchical scale 0.869 -7.24 108 3 MCECM.Nelder.Mead Kmeans scale 0.797 -6.60 97

4 MCECM.Nelder.Mead Hierarchical scale 0.869 -7.24 111 4 ECM.Nelder.Mead Kmeans scale 0.797 -6.60 102

5 ECM.Nelder.Mead Hierarchical scale 0.869 -7.24 112 5 ECME.BFGS Kmeans scale 0.797 -6.60 122

6 ECME.Nelder.Mead Hierarchical scale 0.869 -7.24 165 6 ECME.Nelder.Mead Kmeans scale 0.797 -6.60 153

7 MCECM.BFGS Kmeans scale 0.851 -7.21 52 7 ECM.BFGS Hierarchical scale 0.784 -6.61 86

8 ECM.Nelder.Mead Kmeans scale 0.851 -7.21 55 8 MCECM.BFGS Hierarchical scale 0.784 -6.61 92

27 ECM.Nelder.Mead Random 0.499 -6.98 255 27 MCECM.Nelder.Mead Kmeans 0.685 -6.26 118

28 ECME.BFGS Random 0.499 -6.98 392 28 ECM.Nelder.Mead Kmeans 0.685 -6.26 124

29 ECM.BFGS Random 0.499 -6.90 420 29 ECME.BFGS Kmeans 0.685 -6.26 134

30 MCECM.BFGS Random 0.499 -6.87 349 30 ECME.Nelder.Mead Kmeans 0.685 -6.26 143

General VCMM (Copula with single parameter) GMM

Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

1 ECM.Nelder.Mead Hierarchical scale 0.878 -7.08 162 1 ECM Hierarchical scale 0.784 -6.44 0.039

2 ECME.Nelder.Mead Hierarchical scale 0.878 -7.08 214 2 MCECM Hierarchical scale 0.784 -6.44 0.060

3 MCECM.Nelder.Mead Hierarchical scale 0.875 -7.08 147 3 ECM Kmeans scale 0.784 -6.44 0.095

4 MCECM.BFGS Hierarchical scale 0.872 -7.11 128 4 MCECM Kmeans scale 0.784 -6.44 0.125

5 ECM.BFGS Hierarchical scale 0.869 -7.14 135 5 ECM Hierarchical 0.781 -6.44 0.073

6 ECME.BFGS Hierarchical scale 0.866 -7.12 143 6 MCECM Hierarchical 0.781 -6.44 0.125

7 MCECM.Nelder.Mead Kmeans scale 0.839 -7.14 154

8 ECM.Nelder.Mead Kmeans scale 0.837 -7.10 218

27 ECM.Nelder.Mead Random 0.510 -7.04 604

28 MCECM.Nelder.Mead Random 0.509 -7.04 517

29 ECME.BFGS Random 0.508 -7.06 545

30 ECME.Nelder.Mead Random 0.507 -7.00 267

130 4 REAL DATA SETS

5. The performance of the selected models in the flow chart 3.3.20

In the flow chart 3.3.20, we have came up with a way to select the suitable initialisation strategies for data

clustering without characteristics information for general VCMM algorithm. We try to apply the method there

to see how the performances for the real data set AIS and BCW are.

The real data set is not three dimensional and we haven’t defined what ”X” shape in higher dimensional data

is, so we select the path that the data has no ”X” shape. Then, for general VCMM algorithm, we should

compare the BIC value of Hierarchical and Kmeans (scale) with ECM.BFGS or MCECM.BFGS and select the

lower BIC. In order to save time, we don’t try both and just take ECM.BFGS instead. Actually, from our

simulation reuslt, the times needed for ECM.BFGS and MCECM.BFGS are quite similar.

According to the Table 4.3.1, the initialisation strategies with lower BIC for ECM.BFGS is Hierarchical and

Kmeans (scale) for AIS and BCW respectively. The performances of the selected model and the best ranking

model are shown in the Table 4.3.5. Although the classification rate of the selected model is not as good as the

best ranking model, the di↵erence of the classification rate is just less than 2% for both real data set AIS and

BCW. Therefore, we think that by the flow chart proposed in the Figure 3.3.20, we still can choose a suitable

initialisation strategy and EM algorithm for data clustering with general VCMM algorithm.

Table 4.3.5: The performances of the selected model and the best ranking model for general VCMM. *The

model is selected by the lower BIC value, so the total computation time is equal to the summation of the

computation time of the two models.

AIS

Selected model Best ranking model

Initialisation strategy Hierarchical Hierarchical (scale)

EM algorithm ECM.BFGS MCECM.BFGS

Total computation time (seconds) 149 (+219) = 368* 277

Normalised BIC 24.21 23.92

Classification rate 0.914 0.924

BCW

Selected model Best ranking model

Initialisation strategy Kmeans (scale) Hierarchical (scale)

EM algorithm ECM.BFGS ECM.BFGS

Total computation time (seconds) 61 (+232) = 293* 74

Normalised BIC -7.21 -7.24

Classification rate 0.851 0.869

131

5 Conclusion

In this master thesis, we aim at assessing the performance of the iterative algorithm - Gaussian mixture model

(GMM) algorithm and vine copula mixture model (VCMM) algorithm for clustering simulated data with dif-

ferent characteristics and real data. In particular, we focus on the influence on the performance by using

di↵erent versions of EM algorithms for parameter estimation of the GMM and VCMM algorithms with various

initialisation strategies and optimization.

The simulation studies show that a particular initialisation strategy, using di↵erent expectation and maximiza-

tion (EM) algorithms for parameter estimation of VCMM doesn’t impact the classification rate significantly,

but this is not the case for GMM algorithm. For di↵erent sets of Gaussian simulated data, GMM algorithm

with maximisation either (ECME) algorithm and the optimization method Nelder-Mead perform mostly the

best with regard to classification rate. Using the best and the worst EM algorithm in GMM algorithm can lead

to almost 30% di↵erence in classification rate. However, the di↵erence is much smaller in VCMM algorithm

and it is just from 0% to 5%.

Although there is no significant e↵ect on the performance regarding to classification rate for VCMM with dif-

ferent EM algorithms and optimization, it does a↵ect the computation time. We found that generally, heuristic

based optimization method (Nelder-Maad) takes more time than with gradient based optimization method

(BFGS). Also, di↵erent initialisation strategies do have the strong e↵ect on clustering accuracy. We have found

that there is usually a strategy outperforming others on the classification rate for simulated data with di↵erent

characteristics and we can summarise it as a flow chart, for example, the best strategy for clustering data

with the clusters like a ”X” is ”Random”, for data with large volume di↵erence of clusters is standardization

first and so on. However, the flow chart cannot be used directly for data clustering without characteristics

information. So, we proposed a way to select a the initialization strategy by comparing the BIC value of two

suggested strategies and the one with lower BIC is selected.

Lastly, we have tried the selected model for clustering two sets of real data with general VCMM algorithm and

the clustering accuracy is almost as good as the best ranking model where the di↵erence of the classification

rate is just less than 2%.

132 A APPENDICES

A Appendices

A Appendix for Section 3.2 GMM Algorithm

A.1 Box plots of the classification rate

(a) EEV Random (b) VEV Random (c) EVV Random (d) VVV Random

(e) EEV Kmeans (f) VEV Kmeans (g) EVV Kmeans (h) VVV Kmeans

(i) EEV Kmeans (Scale) (j) VEV Kmeans (Scale) (k) EVV Kmeans (Scale) (l) VVV Kmeans (Scale)

(m) EEV Hierarchical (n) VEV Hierarchical (o) EVV Hierarchical (p) VVV Hierarchical

(q) EEV Hierarchical (Scale) (r) VEV Hierarchical (Scale) (s) EVV Hierarchical (Scale) (t) VVV Hierarchical (Scale)

Figure A.1: Box plots of the classification rate for the EM algorithms for di↵erent initialization strategies

over 50 replications with n = 500 generated from di↵erent types of the Gaussian clustering models

A Appendix for Section 3.2 GMM Algorithm 133

A.2 Box plots of the normalised BIC

(a) EEV Random (b) VEV Random (c) EVV Random (d) VVV Random

(e) EEV Kmeans (f) VEV Kmeans (g) EVV Kmeans (h) VVV Kmeans

(i) EEV Kmeans (Scale) (j) VEV Kmeans (Scale) (k) EVV Kmeans (Scale) (l) VVV Kmeans (Scale)

(m) EEV Hierarchical (n) VEV Hierarchical (o) EVV Hierarchical (p) VVV Hierarchical

(q) EEV Hierarchical (Scale) (r) VEV Hierarchical (Scale) (s) EVV Hierarchical (Scale) (t) VVV Hierarchical (Scale)

Figure A.2: Box plots of the normalised BIC of the EM algorithms for di↵erent initialization strategies over

50 replications with n = 500 generated from di↵erent types of the Gaussian clustering models

134 A APPENDICES

A.3 Box plots of the computation time

(a) EEV Random (b) VEV Random (c) EVV Random (d) VVV Random

(e) EEV Kmeans (f) VEV Kmeans (g) EVV Kmeans (h) VVV Kmeans

(i) EEV Kmeans (Scale) (j) VEV Kmeans (Scale) (k) EVV Kmeans (Scale) (l) VVV Kmeans (Scale)

(m) EEV Hierarchical (n) VEV Hierarchical (o) EVV Hierarchical (p) VVV Hierarchical

(q) EEV Hierarchical (Scale) (r) VEV Hierarchical (Scale) (s) EVV Hierarchical (Scale) (t) VVV Hierarchical (Scale)

Figure A.3: Box plots of the total omputation time of the EM algorithms for di↵erent initialization strategies

over 50 replications with n = 500 generated from di↵erent types of the Gaussian clustering models

B Appendix for Section 3.3 VCMM Algorithm 135

B Appendix for Section 3.3 VCMM Algorithm

B.1 Abbreviation for marginal distributions

N (µ,�): normal distribution with mean µ and standard deviation �.

exp(�): exponential distribution with rate parameter �.

lnorm(µ,�): log-normal distribution with mean µ and standard deviation � on the logarithmic scale.

logis(l, s): logistic distribution with location parameter l and scale parameter s.

llogis(↵,�): log-logistic distribution with shape parameter ↵ and scale parameter �.

�(↵,�): gamma distribution with shape parameter ↵ and rate parameter �.

t3(µ,�): Student’s t distribution with mean parameter µ, standard deviation parameter �, and degrees of

freedom 3.

snorm(µ,�,�): Skewed normal distribution with with location parameter µ, scale parameter �, skewness pa-

rameter �.

sstd(µ,�,↵,�): Skewed student’s t distribution with location parameter µ, scale parameter �, shape parameter

↵ (Degrees of freedom), skewness parameter �.

B.2 Abbreviation for copula families

Table B.1: The abbreviation for copula families with di↵erent degrees of rotation.

Copula
Degrees of rotation (Anticlockwise)

0� 90� 180� 270�

Copulas with symmetric tail

Gaussian N - - -

Student t T - - -

Frank F - - -

Copulas with asymmetric tail

Clayton C R90C R180C R270C

Gumbel G R90G R180G R270G

Joe J R90J R180J R270J

BB1 BB1 R90BB1 R180BB1 R270BB1

BB6 BB6 R90BB6 R180BB6 R270BB6

BB8 BB8 R90BB8 R180BB8 R270BB8

136 A APPENDICES

B.3 Box plots of the classification rate

1.R.Gen.500 1.K.Gen.500 1.KS.Gen.500 1.H.Gen.500 1.HS.Gen.500

1.R.Gau.500 1.K.Gau.500 1.KS.Gau.500 1.H.Gau.500 1.HS.Gau.500

1.R.Gen.1000 1.K.Gen.1000 1.KS.Gen.1000 1.H.Gen.1000 1.HS.Gen.1000

1.R.Gau.1000 1.K.Gau.1000 1.KS.Gau.1000 1.H.Gau.1000 1.HS.Gau.1000

2.R.Gen.500 2.K.Gen.500 2.KS.Gen.500 2.H.Gen.500 2.HS.Gen.500

2.R.Gau.500 2.K.Gau.500 2.KS.Gau.500 2.H.Gau.500 2.HS.Gau.500

Figure B.1: Box plots of the classification rate for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 1 and 2.

B Appendix for Section 3.3 VCMM Algorithm 137

3.R.Gen.500 3.K.Gen.500 3.KS.Gen.500 3.H.Gen.500 3.HS.Gen.500

3.R.Gau.500 3.K.Gau.500 3.KS.Gau.500 3.H.Gau.500 3.HS.Gau.500

3.R.Gen.1000 3.K.Gen.1000 3.KS.Gen.1000 3.H.Gen.1000 3.HS.Gen.1000

3.R.Gau.1000 3.K.Gau.1000 3.KS.Gau.1000 3.H.Gau.1000 3.HS.Gau.1000

Figure B.2: Box plots of the classification rate for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 3.

138 A APPENDICES

4.R.Gen.500 4.K.Gen.500 4.KS.Gen.500 4.H.Gen.500 4.HS.Gen.500

4.R.Gau.500 4.K.Gau.500 4.KS.Gau.500 4.H.Gau.500 4.HS.Gau.500

5.R.Gen.500 5.K.Gen.500 5.KS.Gen.500 5.H.Gen.500 5.HS.Gen.500

5.R.Gau.500 5.K.Gau.500 5.KS.Gau.500 5.H.Gau.500 5.HS.Gau.500

5.R.Gen.1000 5.K.Gen.1000 5.KS.Gen.1000 5.H.Gen.1000 5.HS.Gen.1000

5.R.Gau.1000 5.K.Gau.1000 5.KS.Gau.1000 5.H.Gau.1000 5.HS.Gau.1000

Figure B.3: Box plots of the classification rate for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 4 and 5.

B Appendix for Section 3.3 VCMM Algorithm 139

6.R.Gen.500 6.K.Gen.500 6.KS.Gen.500 6.H.Gen.500 6.HS.Gen.500

6.R.Gau.500 6.K.Gau.500 6.KS.Gau.500 6.H.Gau.500 6.HS.Gau.500

6.R.Gen.1000 6.K.Gen.1000 6.KS.Gen.1000 6.H.Gen.1000 6.HS.Gen.1000

6.R.Gau.1000 6.K.Gau.1000 6.KS.Gau.1000 6.H.Gau.1000 6.HS.Gau.1000

7.R.Gen.500 7.K.Gen.500 7.KS.Gen.500 7.H.Gen.500 7.HS.Gen.500

7.R.Gau.500 7.K.Gau.500 7.KS.Gau.500 7.H.Gau.500 7.HS.Gau.500

Figure B.4: Box plots of the classification rate for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 6 and 7.

140 A APPENDICES

7.R.Gen.1000 7.K.Gen.1000 7.KS.Gen.1000 7.H.Gen.1000 7.HS.Gen.1000

7.R.Gau.1000 7.K.Gau.1000 7.KS.Gau.1000 7.H.Gau.1000 7.HS.Gau.1000

8.R.Gen.500 8.K.Gen.500 8.KS.Gen.500 8.H.Gen.500 8.HS.Gen.500

8.R.Gau.500 8.K.Gau.500 8.KS.Gau.500 8.H.Gau.500 8.HS.Gau.500

9.R.Gen.500 9.K.Gen.500 9.KS.Gen.500 9.H.Gen.500 9.HS.Gen.500

9.R.Gau.500 9.K.Gau.500 9.KS.Gau.500 9.H.Gau.500 9.HS.Gau.500

Figure B.5: Box plots of the classification rate for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 7, 8 and 9.

B Appendix for Section 3.3 VCMM Algorithm 141

B.4 Box plots of the normalised BIC

1.R.Gen.500 1.K.Gen.500 1.KS.Gen.500 1.H.Gen.500 1.HS.Gen.500

1.R.Gau.500 1.K.Gau.500 1.KS.Gau.500 1.H.Gau.500 1.HS.Gau.500

1.R.Gen.1000 1.K.Gen.1000 1.KS.Gen.1000 1.H.Gen.1000 1.HS.Gen.1000

1.R.Gau.1000 1.K.Gau.1000 1.KS.Gau.1000 1.H.Gau.1000 1.HS.Gau.1000

2.R.Gen.500 2.K.Gen.500 2.KS.Gen.500 2.H.Gen.500 2.HS.Gen.500

2.R.Gau.500 2.K.Gau.500 2.KS.Gau.500 2.H.Gau.500 2.HS.Gau.500

Figure B.6: Box plots of the normalised BIC for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 1 and 2.

142 A APPENDICES

3.R.Gen.500 3.K.Gen.500 3.KS.Gen.500 3.H.Gen.500 3.HS.Gen.500

3.R.Gau.500 3.K.Gau.500 3.KS.Gau.500 3.H.Gau.500 3.HS.Gau.500

3.R.Gen.1000 3.K.Gen.1000 3.KS.Gen.1000 3.H.Gen.1000 3.HS.Gen.1000

3.R.Gau.1000 3.K.Gau.1000 3.KS.Gau.1000 3.H.Gau.1000 3.HS.Gau.1000

Figure B.7: Box plots of the normalised BIC for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 3.

B Appendix for Section 3.3 VCMM Algorithm 143

4.R.Gen.500 4.K.Gen.500 4.KS.Gen.500 4.H.Gen.500 4.HS.Gen.500

4.R.Gau.500 4.K.Gau.500 4.KS.Gau.500 4.H.Gau.500 4.HS.Gau.500

5.R.Gen.500 5.K.Gen.500 5.KS.Gen.500 5.H.Gen.500 5.HS.Gen.500

5.R.Gau.500 5.K.Gau.500 5.KS.Gau.500 5.H.Gau.500 5.HS.Gau.500

5.R.Gen.1000 5.K.Gen.1000 5.KS.Gen.1000 5.H.Gen.1000 5.HS.Gen.1000

5.R.Gau.1000 5.K.Gau.1000 5.KS.Gau.1000 5.H.Gau.1000 5.HS.Gau.1000

Figure B.8: Box plots of the normalised BIC for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 4 and 5.

144 A APPENDICES

6.R.Gen.500 6.K.Gen.500 6.KS.Gen.500 6.H.Gen.500 6.HS.Gen.500

6.R.Gau.500 6.K.Gau.500 6.KS.Gau.500 6.H.Gau.500 6.HS.Gau.500

6.R.Gen.1000 6.K.Gen.1000 6.KS.Gen.1000 6.H.Gen.1000 6.HS.Gen.1000

6.R.Gau.1000 6.K.Gau.1000 6.KS.Gau.1000 6.H.Gau.1000 6.HS.Gau.1000

7.R.Gen.500 7.K.Gen.500 7.KS.Gen.500 7.H.Gen.500 7.HS.Gen.500

7.R.Gau.500 7.K.Gau.500 7.KS.Gau.500 7.H.Gau.500 7.HS.Gau.500

Figure B.9: Box plots of the normalised BIC for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 6 and 7.

B Appendix for Section 3.3 VCMM Algorithm 145

7.R.Gen.1000 7.K.Gen.1000 7.KS.Gen.1000 7.H.Gen.1000 7.HS.Gen.1000

7.R.Gau.1000 7.K.Gau.1000 7.KS.Gau.1000 7.H.Gau.1000 7.HS.Gau.1000

8.R.Gen.500 8.K.Gen.500 8.KS.Gen.500 8.H.Gen.500 8.HS.Gen.500

8.R.Gau.500 8.K.Gau.500 8.KS.Gau.500 8.H.Gau.500 8.HS.Gau.500

9.R.Gen.500 9.K.Gen.500 9.KS.Gen.500 9.H.Gen.500 9.HS.Gen.500

9.R.Gau.500 9.K.Gau.500 9.KS.Gau.500 9.H.Gau.500 9.HS.Gau.500

Figure B.10: Box plots of the normalised BIC for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 7, 8 and 9.

146 A APPENDICES

B.5 Box plots of the computation time

1.R.Gen.500 1.K.Gen.500 1.KS.Gen.500 1.H.Gen.500 1.HS.Gen.500

1.R.Gau.500 1.K.Gau.500 1.KS.Gau.500 1.H.Gau.500 1.HS.Gau.500

1.R.Gen.1000 1.K.Gen.1000 1.KS.Gen.1000 1.H.Gen.1000 1.HS.Gen.1000

1.R.Gau.1000 1.K.Gau.1000 1.KS.Gau.1000 1.H.Gau.1000 1.HS.Gau.1000

2.R.Gen.500 2.K.Gen.500 2.KS.Gen.500 2.H.Gen.500 2.HS.Gen.500

2.R.Gau.500 2.K.Gau.500 2.KS.Gau.500 2.H.Gau.500 2.HS.Gau.500

Figure B.11: Box plots of the computation time for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 1 and 2.

B Appendix for Section 3.3 VCMM Algorithm 147

3.R.Gen.500 3.K.Gen.500 3.KS.Gen.500 3.H.Gen.500 3.HS.Gen.500

3.R.Gau.500 3.K.Gau.500 3.KS.Gau.500 3.H.Gau.500 3.HS.Gau.500

3.R.Gen.1000 3.K.Gen.1000 3.KS.Gen.1000 3.H.Gen.1000 3.HS.Gen.1000

3.R.Gau.1000 3.K.Gau.1000 3.KS.Gau.1000 3.H.Gau.1000 3.HS.Gau.1000

Figure B.12: Box plots of the computation time for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 3.

148 A APPENDICES

4.R.Gen.500 4.K.Gen.500 4.KS.Gen.500 4.H.Gen.500 4.HS.Gen.500

4.R.Gau.500 4.K.Gau.500 4.KS.Gau.500 4.H.Gau.500 4.HS.Gau.500

5.R.Gen.500 5.K.Gen.500 5.KS.Gen.500 5.H.Gen.500 5.HS.Gen.500

5.R.Gau.500 5.K.Gau.500 5.KS.Gau.500 5.H.Gau.500 5.HS.Gau.500

5.R.Gen.1000 5.K.Gen.1000 5.KS.Gen.1000 5.H.Gen.1000 5.HS.Gen.1000

5.R.Gau.1000 5.K.Gau.1000 5.KS.Gau.1000 5.H.Gau.1000 5.HS.Gau.1000

Figure B.13: Box plots of the computation time for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 4 and 5.

B Appendix for Section 3.3 VCMM Algorithm 149

6.R.Gen.500 6.K.Gen.500 6.KS.Gen.500 6.H.Gen.500 6.HS.Gen.500

6.R.Gau.500 6.K.Gau.500 6.KS.Gau.500 6.H.Gau.500 6.HS.Gau.500

6.R.Gen.1000 6.K.Gen.1000 6.KS.Gen.1000 6.H.Gen.1000 6.HS.Gen.1000

6.R.Gau.1000 6.K.Gau.1000 6.KS.Gau.1000 6.H.Gau.1000 6.HS.Gau.1000

7.R.Gen.500 7.K.Gen.500 7.KS.Gen.500 7.H.Gen.500 7.HS.Gen.500

7.R.Gau.500 7.K.Gau.500 7.KS.Gau.500 7.H.Gau.500 7.HS.Gau.500

Figure B.14: Box plots of the computation time for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 6 and 7.

150 A APPENDICES

7.R.Gen.1000 7.K.Gen.1000 7.KS.Gen.1000 7.H.Gen.1000 7.HS.Gen.1000

7.R.Gau.1000 7.K.Gau.1000 7.KS.Gau.1000 7.H.Gau.1000 7.HS.Gau.1000

8.R.Gen.500 8.K.Gen.500 8.KS.Gen.500 8.H.Gen.500 8.HS.Gen.500

8.R.Gau.500 8.K.Gau.500 8.KS.Gau.500 8.H.Gau.500 8.HS.Gau.500

9.R.Gen.500 9.K.Gen.500 9.KS.Gen.500 9.H.Gen.500 9.HS.Gen.500

9.R.Gau.500 9.K.Gau.500 9.KS.Gau.500 9.H.Gau.500 9.HS.Gau.500

Figure B.15: Box plots of the computation time for the EM algorithms using di↵erent initialization strategies

for 50 replications from settings 7, 8 and 9.

B Appendix for Section 3.3 VCMM Algorithm 151

B.6 Ranking of the performance of EM algorithms and initialization strategies

Table B.2: The ranking of the performance of EM algorithms and initialization strategies for VCMM algorithm,

where the algorithm with 1) higher classification rate, 2) lower normalised BIC and 3) shorter computation

time is considered to be the better performance and the priority is given by (1) > (2) > (3).

General VCMM Gaussian VCMM

Setting Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

(Sample size) strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

1 (500)

1 ECME.BFGS Hierarchical 0.944 16.54 117 1 ECME.Nelder.Mead Hierarchical 0.730 19.70 67

2 MCECM.BFGS Hierarchical 0.943 16.57 83 2 ECME.BFGS Hierarchical 0.725 19.70 54

3 ECM.BFGS Hierarchical 0.942 16.57 84 3 ECM.BFGS Hierarchical 0.724 19.74 67

4 ECME.Nelder.Mead Hierarchical 0.940 16.57 154 4 ECM.Nelder.Mead Hierarchical 0.724 19.74 77

5 MCECM.Nelder.Mead Hierarchical 0.937 16.59 95 5 MCECM.BFGS Hierarchical 0.723 19.74 65

6 ECM.Nelder.Mead Hierarchical 0.934 16.59 92 6 MCECM.Nelder.Mead Hierarchical 0.723 19.74 77

7 ECM.BFGS Random 0.885 16.70 186 7 ECME.BFGS Random 0.620 19.97 73

8 MCECM.BFGS Random 0.880 16.74 167 8 ECME.Nelder.Mead Hierarchical scale 0.617 19.79 66

9 ECME.Nelder.Mead Random 0.879 16.74 269 9 ECME.BFGS Hierarchical scale 0.615 19.81 55

10 ECME.BFGS Random 0.875 16.74 181 10 MCECM.BFGS Hierarchical scale 0.613 19.82 73

11 ECM.Nelder.Mead Random 0.872 16.76 217 11 MCECM.Nelder.Mead Hierarchical scale 0.613 19.82 83

12 MCECM.Nelder.Mead Random 0.868 16.79 210 12 ECM.BFGS Hierarchical scale 0.612 19.82 72

13 MCECM.BFGS Hierarchical scale 0.649 17.70 76 13 ECM.Nelder.Mead Hierarchical scale 0.611 19.82 80

14 ECME.BFGS Hierarchical scale 0.647 17.69 96 14 ECME.Nelder.Mead Kmeans 0.606 19.93 85

15 ECM.BFGS Hierarchical scale 0.647 17.70 77 15 ECME.Nelder.Mead Random 0.604 19.92 87

16 ECM.Nelder.Mead Hierarchical scale 0.637 17.74 97 16 ECME.BFGS Kmeans 0.603 19.94 67

17 MCECM.Nelder.Mead Hierarchical scale 0.634 17.76 103 17 ECM.Nelder.Mead Kmeans 0.599 19.95 110

18 ECME.Nelder.Mead Hierarchical scale 0.628 17.77 145 18 MCECM.Nelder.Mead Kmeans 0.598 19.94 106

19 MCECM.Nelder.Mead Kmeans scale 0.611 17.98 93 19 ECM.BFGS Kmeans 0.598 19.95 92

20 MCECM.BFGS Kmeans scale 0.610 17.98 71 20 MCECM.BFGS Kmeans 0.597 19.94 91

21 ECM.BFGS Kmeans scale 0.610 17.99 73 21 ECM.BFGS Random 0.594 20.00 134

22 ECM.Nelder.Mead Kmeans scale 0.610 17.99 95 22 ECME.BFGS Kmeans scale 0.593 19.90 59

23 ECME.Nelder.Mead Kmeans 0.602 17.97 139 23 ECME.Nelder.Mead Kmeans scale 0.593 19.90 69

24 ECME.Nelder.Mead Kmeans scale 0.601 18.01 110 24 ECM.Nelder.Mead Random 0.592 20.03 144

25 ECME.BFGS Kmeans scale 0.600 18.02 69 25 MCECM.BFGS Kmeans scale 0.590 19.90 91

26 ECM.Nelder.Mead Kmeans 0.597 17.98 124 26 MCECM.Nelder.Mead Kmeans scale 0.590 19.90 99

27 MCECM.Nelder.Mead Kmeans 0.597 17.98 124 27 ECM.Nelder.Mead Kmeans scale 0.589 19.90 102

28 MCECM.BFGS Kmeans 0.596 17.99 94 28 ECM.BFGS Kmeans scale 0.589 19.91 89

29 ECM.BFGS Kmeans 0.596 17.99 97 29 MCECM.BFGS Random 0.588 20.01 137

30 ECME.BFGS Kmeans 0.584 18.02 85 30 MCECM.Nelder.Mead Random 0.587 20.01 147

1 (1000)

1 MCECM.BFGS Random 0.935 16.48 285 1 ECM.BFGS Hierarchical 0.736 19.68 112

2 ECME.BFGS Random 0.932 16.49 307 2 MCECM.BFGS Hierarchical 0.736 19.68 115

3 ECM.Nelder.Mead Random 0.931 16.50 324 3 ECME.BFGS Hierarchical 0.735 19.66 88

4 ECME.Nelder.Mead Random 0.930 16.49 370 4 ECME.Nelder.Mead Hierarchical 0.735 19.66 96

5 ECM.BFGS Random 0.930 16.50 285 5 MCECM.Nelder.Mead Hierarchical 0.735 19.66 126

6 MCECM.BFGS Hierarchical 0.927 16.48 112 6 ECM.Nelder.Mead Hierarchical 0.735 19.66 131

7 ECM.BFGS Hierarchical 0.927 16.48 113 7 ECME.Nelder.Mead Kmeans 0.605 19.88 124

8 ECME.BFGS Hierarchical 0.927 16.48 163 8 ECME.BFGS Random 0.602 19.92 107

9 MCECM.Nelder.Mead Hierarchical 0.924 16.49 128 9 ECM.BFGS Kmeans 0.601 19.88 164

10 ECM.Nelder.Mead Hierarchical 0.924 16.50 130 10 MCECM.Nelder.Mead Kmeans 0.601 19.88 177

11 ECME.Nelder.Mead Hierarchical 0.923 16.51 183 11 ECM.Nelder.Mead Kmeans 0.601 19.88 186

12 MCECM.Nelder.Mead Random 0.923 16.53 296 12 MCECM.BFGS Kmeans 0.601 19.90 159

13 ECM.Nelder.Mead Kmeans 0.778 17.22 453 13 ECME.BFGS Kmeans 0.601 19.92 105

14 MCECM.Nelder.Mead Kmeans 0.778 17.22 456 14 ECME.Nelder.Mead Random 0.596 19.87 120

15 MCECM.BFGS Kmeans 0.767 17.28 341 15 ECME.Nelder.Mead Kmeans scale 0.595 19.86 110

16 ECM.BFGS Kmeans 0.765 17.28 347 16 ECME.BFGS Kmeans scale 0.592 19.89 98

17 ECME.BFGS Kmeans 0.709 17.51 298 17 ECME.Nelder.Mead Hierarchical scale 0.590 19.83 106

18 ECME.Nelder.Mead Kmeans 0.709 17.53 416 18 ECM.Nelder.Mead Kmeans scale 0.589 19.86 175

19 MCECM.BFGS Kmeans scale 0.644 17.72 160 19 ECME.BFGS Hierarchical scale 0.588 19.86 95

20 ECM.BFGS Kmeans scale 0.644 17.72 164 20 MCECM.Nelder.Mead Kmeans scale 0.588 19.86 163

21 ECME.BFGS Kmeans scale 0.640 17.76 165 21 MCECM.BFGS Kmeans scale 0.587 19.88 153

22 MCECM.BFGS Hierarchical scale 0.634 17.70 158 22 ECM.Nelder.Mead Hierarchical scale 0.586 19.83 159

23 ECM.BFGS Hierarchical scale 0.634 17.70 170 23 MCECM.Nelder.Mead Hierarchical scale 0.586 19.84 153

24 MCECM.Nelder.Mead Hierarchical scale 0.631 17.71 190 24 ECM.BFGS Kmeans scale 0.586 19.90 155

25 ECM.Nelder.Mead Hierarchical scale 0.630 17.71 201 25 MCECM.Nelder.Mead Random 0.586 19.94 236

26 ECM.Nelder.Mead Kmeans scale 0.628 17.80 201 26 ECM.BFGS Hierarchical scale 0.584 19.86 143

27 ECME.Nelder.Mead Kmeans scale 0.628 17.82 209 27 MCECM.BFGS Random 0.584 19.96 217

28 MCECM.Nelder.Mead Kmeans scale 0.626 17.82 173 28 MCECM.BFGS Hierarchical scale 0.583 19.88 138

29 ECME.BFGS Hierarchical scale 0.623 17.74 170 29 ECM.BFGS Random 0.582 19.93 211

30 ECME.Nelder.Mead Hierarchical scale 0.619 17.78 218 30 ECM.Nelder.Mead Random 0.582 19.93 235

152 A APPENDICES

General VCMM Gaussian VCMM

Setting Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

(Sample size) strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

2 (500)

1 ECM.Nelder.Mead Kmeans 0.894 13.15 70 1 ECM.BFGS Kmeans 0.811 14.24 82

2 MCECM.Nelder.Mead Kmeans 0.894 13.15 73 2 MCECM.BFGS Kmeans 0.811 14.24 83

3 ECME.BFGS Kmeans 0.889 13.12 88 3 MCECM.Nelder.Mead Kmeans 0.811 14.24 97

4 ECME.Nelder.Mead Kmeans 0.889 13.13 102 4 ECM.Nelder.Mead Kmeans 0.811 14.24 103

5 ECM.BFGS Kmeans 0.889 13.16 61 5 ECME.Nelder.Mead Kmeans 0.808 14.23 99

6 MCECM.BFGS Kmeans 0.889 13.16 61 6 ECME.BFGS Kmeans 0.807 14.23 84

7 MCECM.BFGS Hierarchical 0.871 13.16 72 7 ECM.BFGS Hierarchical scale 0.777 14.28 49

8 ECM.BFGS Hierarchical 0.871 13.16 74 8 ECM.Nelder.Mead Hierarchical scale 0.777 14.28 64

9 ECME.BFGS Hierarchical 0.871 13.16 109 9 MCECM.BFGS Hierarchical scale 0.776 14.28 50

10 ECME.Nelder.Mead Hierarchical 0.870 13.14 129 10 MCECM.Nelder.Mead Hierarchical scale 0.776 14.28 60

11 ECM.BFGS Hierarchical scale 0.870 13.17 79 11 ECME.BFGS Hierarchical scale 0.775 14.28 57

12 MCECM.BFGS Hierarchical scale 0.870 13.17 79 12 ECME.Nelder.Mead Hierarchical scale 0.775 14.28 64

13 ECME.Nelder.Mead Kmeans scale 0.870 13.18 177 13 ECM.BFGS Hierarchical 0.765 14.31 56

14 ECME.BFGS Hierarchical scale 0.869 13.17 114 14 ECME.BFGS Hierarchical 0.765 14.31 62

15 MCECM.Nelder.Mead Hierarchical 0.866 13.16 72 15 ECM.Nelder.Mead Hierarchical 0.765 14.31 77

16 ECM.Nelder.Mead Hierarchical 0.865 13.17 71 16 MCECM.BFGS Hierarchical 0.764 14.31 57

17 MCECM.Nelder.Mead Hierarchical scale 0.863 13.18 83 17 MCECM.Nelder.Mead Hierarchical 0.764 14.31 68

18 ECM.Nelder.Mead Hierarchical scale 0.863 13.18 90 18 ECME.Nelder.Mead Hierarchical 0.764 14.31 71

19 MCECM.BFGS Kmeans scale 0.863 13.24 88 19 ECME.BFGS Kmeans scale 0.621 14.50 89

20 ECM.BFGS Kmeans scale 0.863 13.24 89 20 ECME.Nelder.Mead Kmeans scale 0.621 14.50 103

21 ECME.BFGS Kmeans scale 0.863 13.24 144 21 ECM.BFGS Kmeans scale 0.621 14.52 74

22 MCECM.Nelder.Mead Kmeans scale 0.862 13.24 107 22 ECM.Nelder.Mead Kmeans scale 0.621 14.52 94

23 ECM.Nelder.Mead Kmeans scale 0.861 13.24 110 23 MCECM.BFGS Kmeans scale 0.617 14.52 78

24 ECME.Nelder.Mead Hierarchical scale 0.856 13.19 137 24 MCECM.Nelder.Mead Kmeans scale 0.616 14.52 95

25 ECME.Nelder.Mead Random 0.659 13.78 180 25 MCECM.Nelder.Mead Random 0.546 14.65 146

26 ECME.BFGS Random 0.645 13.88 98 26 MCECM.BFGS Random 0.544 14.66 113

27 ECM.Nelder.Mead Random 0.627 13.96 157 27 ECM.BFGS Random 0.532 14.67 108

28 ECM.BFGS Random 0.625 13.97 88 28 ECM.Nelder.Mead Random 0.532 14.67 143

29 MCECM.Nelder.Mead Random 0.621 13.98 130 29 ECME.BFGS Random 0.519 14.69 129

30 MCECM.BFGS Random 0.619 13.98 85 30 ECME.Nelder.Mead Random 0.519 14.69 148

3 (500)

1 MCECM.Nelder.Mead Random 0.835 12.08 104 1 MCECM.BFGS Random 0.865 12.01 53

2 MCECM.BFGS Random 0.835 12.08 111 2 MCECM.Nelder.Mead Random 0.865 12.01 55

3 ECM.Nelder.Mead Random 0.821 12.10 114 3 ECM.BFGS Random 0.857 12.01 59

4 ECM.BFGS Random 0.821 12.10 121 4 ECM.Nelder.Mead Random 0.857 12.01 68

5 ECME.BFGS Random 0.799 12.12 121 5 MCECM.BFGS Hierarchical 0.824 12.06 55

6 ECME.Nelder.Mead Random 0.792 12.13 118 6 MCECM.Nelder.Mead Hierarchical 0.824 12.06 57

7 ECME.BFGS Hierarchical 0.680 12.29 82 7 ECM.BFGS Hierarchical 0.824 12.06 58

8 ECME.Nelder.Mead Hierarchical 0.678 12.29 89 8 ECM.Nelder.Mead Hierarchical 0.824 12.06 63

9 ECM.Nelder.Mead Hierarchical 0.678 12.30 78 9 ECME.Nelder.Mead Hierarchical 0.824 12.06 70

10 MCECM.Nelder.Mead Hierarchical 0.677 12.30 75 10 ECME.BFGS Hierarchical 0.824 12.06 72

11 MCECM.BFGS Hierarchical 0.677 12.30 80 11 ECME.BFGS Random 0.821 12.06 78

12 ECM.BFGS Hierarchical 0.677 12.30 82 12 ECME.Nelder.Mead Random 0.820 12.06 80

13 MCECM.Nelder.Mead Kmeans 0.575 12.39 88 13 MCECM.BFGS Hierarchical scale 0.760 12.14 67

14 ECM.Nelder.Mead Kmeans 0.575 12.39 93 14 MCECM.Nelder.Mead Hierarchical scale 0.760 12.14 75

15 ECME.Nelder.Mead Kmeans 0.573 12.38 78 15 ECM.BFGS Hierarchical scale 0.759 12.14 70

16 ECME.BFGS Kmeans 0.572 12.38 77 16 ECM.Nelder.Mead Hierarchical scale 0.759 12.14 82

17 MCECM.BFGS Kmeans 0.571 12.39 93 17 MCECM.BFGS Kmeans 0.756 12.14 70

18 ECM.BFGS Kmeans 0.570 12.40 94 18 ECM.BFGS Kmeans 0.756 12.14 73

19 MCECM.Nelder.Mead Hierarchical scale 0.563 12.37 67 19 MCECM.Nelder.Mead Kmeans 0.756 12.14 73

20 MCECM.BFGS Hierarchical scale 0.560 12.38 64 20 ECM.Nelder.Mead Kmeans 0.756 12.14 79

21 ECM.Nelder.Mead Hierarchical scale 0.560 12.38 66 21 ECME.BFGS Hierarchical scale 0.756 12.14 83

22 ECM.BFGS Hierarchical scale 0.558 12.38 62 22 ECME.Nelder.Mead Hierarchical scale 0.756 12.14 93

23 ECME.BFGS Hierarchical scale 0.557 12.38 62 23 ECME.BFGS Kmeans scale 0.747 12.15 96

24 ECME.Nelder.Mead Hierarchical scale 0.557 12.38 66 24 ECME.Nelder.Mead Kmeans scale 0.747 12.15 108

25 MCECM.Nelder.Mead Kmeans scale 0.537 12.41 64 25 ECME.Nelder.Mead Kmeans 0.746 12.15 83

26 ECM.Nelder.Mead Kmeans scale 0.537 12.41 67 26 ECME.BFGS Kmeans 0.746 12.15 83

27 ECM.BFGS Kmeans scale 0.537 12.41 67 27 ECM.BFGS Kmeans scale 0.743 12.16 85

28 MCECM.BFGS Kmeans scale 0.537 12.41 68 28 ECM.Nelder.Mead Kmeans scale 0.743 12.16 98

29 ECME.BFGS Kmeans scale 0.536 12.40 73 29 MCECM.BFGS Kmeans scale 0.741 12.16 81

30 ECME.Nelder.Mead Kmeans scale 0.535 12.40 70 30 MCECM.Nelder.Mead Kmeans scale 0.740 12.16 90

B Appendix for Section 3.3 VCMM Algorithm 153

General VCMM Gaussian VCMM

Setting Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

(Sample size) strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

3 (1000)

1 MCECM.Nelder.Mead Random 0.851 12.01 171 1 MCECM.BFGS Random 0.877 11.95 76

2 MCECM.BFGS Random 0.851 12.01 175 2 MCECM.Nelder.Mead Random 0.877 11.95 77

3 ECM.Nelder.Mead Random 0.850 12.01 191 3 ECM.Nelder.Mead Random 0.877 11.95 87

4 ECM.BFGS Random 0.850 12.01 194 4 ECM.BFGS Random 0.876 11.95 87

5 ECME.Nelder.Mead Random 0.816 12.04 185 5 MCECM.Nelder.Mead Hierarchical 0.844 12.00 95

6 ECME.BFGS Random 0.816 12.04 192 6 MCECM.BFGS Hierarchical 0.844 12.00 95

7 ECME.Nelder.Mead Hierarchical 0.714 12.17 147 7 ECM.Nelder.Mead Hierarchical 0.844 12.00 99

8 ECME.BFGS Hierarchical 0.714 12.17 148 8 ECM.BFGS Hierarchical 0.844 12.00 99

9 MCECM.Nelder.Mead Hierarchical 0.713 12.18 146 9 ECME.BFGS Hierarchical 0.844 12.00 100

10 MCECM.BFGS Hierarchical 0.713 12.18 148 10 ECME.Nelder.Mead Hierarchical 0.844 12.00 101

11 ECM.Nelder.Mead Hierarchical 0.713 12.18 154 11 ECME.BFGS Random 0.839 11.99 76

12 ECM.BFGS Hierarchical 0.713 12.18 155 12 ECME.Nelder.Mead Random 0.839 11.99 77

13 ECME.Nelder.Mead Hierarchical scale 0.593 12.26 150 13 ECME.Nelder.Mead Hierarchical scale 0.826 12.02 123

14 ECME.BFGS Hierarchical scale 0.593 12.26 157 14 MCECM.Nelder.Mead Hierarchical scale 0.825 12.02 123

15 MCECM.Nelder.Mead Hierarchical scale 0.588 12.27 152 15 MCECM.BFGS Hierarchical scale 0.825 12.02 125

16 MCECM.BFGS Hierarchical scale 0.587 12.27 150 16 ECME.BFGS Hierarchical scale 0.825 12.02 127

17 ECM.BFGS Hierarchical scale 0.587 12.27 151 17 ECM.Nelder.Mead Hierarchical scale 0.825 12.02 132

18 ECM.Nelder.Mead Hierarchical scale 0.587 12.28 153 18 ECM.BFGS Hierarchical scale 0.825 12.02 132

19 MCECM.Nelder.Mead Kmeans 0.559 12.32 155 19 MCECM.Nelder.Mead Kmeans 0.787 12.06 137

20 ECM.BFGS Kmeans 0.559 12.32 161 20 MCECM.BFGS Kmeans 0.787 12.06 140

21 MCECM.BFGS Kmeans 0.559 12.32 163 21 ECM.Nelder.Mead Kmeans 0.787 12.06 144

22 ECM.Nelder.Mead Kmeans 0.558 12.32 153 22 ECM.BFGS Kmeans 0.787 12.06 145

23 ECME.Nelder.Mead Kmeans 0.550 12.31 131 23 MCECM.Nelder.Mead Kmeans scale 0.776 12.07 148

24 ECME.BFGS Kmeans 0.550 12.31 142 24 MCECM.BFGS Kmeans scale 0.776 12.07 150

25 ECME.Nelder.Mead Kmeans scale 0.530 12.30 119 25 ECM.Nelder.Mead Kmeans scale 0.772 12.07 152

26 ECME.BFGS Kmeans scale 0.529 12.30 122 26 ECM.BFGS Kmeans scale 0.772 12.07 154

27 MCECM.Nelder.Mead Kmeans scale 0.528 12.31 111 27 ECME.BFGS Kmeans 0.770 12.08 135

28 ECM.BFGS Kmeans scale 0.528 12.31 117 28 ECME.Nelder.Mead Kmeans 0.770 12.08 137

29 ECM.Nelder.Mead Kmeans scale 0.528 12.32 111 29 ECME.Nelder.Mead Kmeans scale 0.768 12.08 132

30 MCECM.BFGS Kmeans scale 0.528 12.32 116 30 ECME.BFGS Kmeans scale 0.768 12.08 137

4 (500)

1 MCECM.BFGS Kmeans 0.826 10.79 42 1 ECM.Nelder.Mead Kmeans 0.833 10.78 47

2 MCECM.Nelder.Mead Kmeans 0.826 10.79 44 2 MCECM.Nelder.Mead Kmeans 0.831 10.78 42

3 ECM.BFGS Kmeans 0.826 10.79 45 3 MCECM.Nelder.Mead Kmeans scale 0.829 10.77 40

4 ECM.Nelder.Mead Kmeans 0.826 10.79 50 4 ECM.Nelder.Mead Kmeans scale 0.829 10.77 51

5 ECME.BFGS Kmeans 0.825 10.79 46 5 ECM.BFGS Kmeans 0.827 10.77 43

6 ECME.Nelder.Mead Kmeans 0.824 10.79 55 6 MCECM.BFGS Kmeans 0.826 10.77 41

7 MCECM.BFGS Kmeans scale 0.805 10.78 42 7 ECME.BFGS Kmeans 0.826 10.77 48

8 MCECM.Nelder.Mead Kmeans scale 0.805 10.78 44 8 ECME.Nelder.Mead Kmeans 0.826 10.77 60

9 ECM.Nelder.Mead Kmeans scale 0.805 10.78 50 9 MCECM.BFGS Kmeans scale 0.825 10.77 41

10 ECM.BFGS Kmeans scale 0.804 10.79 42 10 ECM.BFGS Kmeans scale 0.825 10.77 47

11 ECME.BFGS Kmeans scale 0.804 10.79 45 11 ECME.BFGS Kmeans scale 0.825 10.77 51

12 ECME.Nelder.Mead Kmeans scale 0.803 10.79 58 12 ECME.Nelder.Mead Kmeans scale 0.824 10.77 51

13 ECM.BFGS Hierarchical 0.797 10.81 42 13 MCECM.Nelder.Mead Hierarchical 0.818 10.78 59

14 ECME.BFGS Hierarchical 0.796 10.80 47 14 ECM.Nelder.Mead Hierarchical 0.818 10.78 64

15 MCECM.Nelder.Mead Hierarchical 0.796 10.81 42 15 ECM.BFGS Hierarchical 0.814 10.78 57

16 MCECM.BFGS Hierarchical 0.796 10.81 42 16 ECME.BFGS Hierarchical 0.812 10.78 64

17 ECM.Nelder.Mead Hierarchical 0.796 10.81 50 17 MCECM.BFGS Hierarchical 0.811 10.78 59

18 ECME.Nelder.Mead Hierarchical 0.796 10.81 58 18 ECME.Nelder.Mead Hierarchical 0.811 10.78 76

19 ECM.BFGS Hierarchical scale 0.774 10.80 49 19 ECM.Nelder.Mead Hierarchical scale 0.807 10.78 65

20 MCECM.BFGS Hierarchical scale 0.774 10.80 50 20 MCECM.BFGS Hierarchical scale 0.803 10.78 56

21 ECME.BFGS Hierarchical scale 0.774 10.80 54 21 ECM.BFGS Hierarchical scale 0.803 10.78 59

22 MCECM.Nelder.Mead Hierarchical scale 0.774 10.80 54 22 MCECM.Nelder.Mead Hierarchical scale 0.803 10.78 65

23 ECM.Nelder.Mead Hierarchical scale 0.774 10.80 56 23 ECME.Nelder.Mead Hierarchical scale 0.794 10.78 74

24 ECME.Nelder.Mead Hierarchical scale 0.772 10.80 66 24 ECME.BFGS Hierarchical scale 0.793 10.78 74

25 ECME.BFGS Random 0.541 10.97 166 25 ECME.Nelder.Mead Random 0.590 10.84 142

26 ECME.Nelder.Mead Random 0.538 10.97 177 26 ECME.BFGS Random 0.590 10.84 146

27 MCECM.BFGS Random 0.535 10.97 155 27 ECM.BFGS Random 0.578 10.84 116

28 ECM.BFGS Random 0.535 10.97 158 28 ECM.Nelder.Mead Random 0.578 10.84 127

29 ECM.Nelder.Mead Random 0.535 10.97 161 29 MCECM.BFGS Random 0.568 10.84 115

30 MCECM.Nelder.Mead Random 0.535 10.97 166 30 MCECM.Nelder.Mead Random 0.568 10.84 124

154 A APPENDICES

General VCMM Gaussian VCMM

Setting Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

(Sample size) strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

5 (500)

1 ECM.BFGS Kmeans 0.756 12.08 86 1 ECME.Nelder.Mead Hierarchical scale 0.523 12.13 62

2 MCECM.Nelder.Mead Kmeans 0.756 12.08 99 2 ECME.BFGS Hierarchical scale 0.523 12.13 72

3 MCECM.BFGS Kmeans 0.755 12.08 88 3 MCECM.Nelder.Mead Hierarchical 0.522 12.10 50

4 ECM.Nelder.Mead Kmeans 0.755 12.08 103 4 ECM.BFGS Hierarchical 0.522 12.10 53

5 ECME.BFGS Kmeans 0.753 12.08 100 5 ECM.Nelder.Mead Hierarchical 0.522 12.10 54

6 ECME.Nelder.Mead Kmeans 0.753 12.08 113 6 MCECM.BFGS Hierarchical 0.522 12.10 54

7 MCECM.Nelder.Mead Kmeans scale 0.747 12.08 87 7 ECME.Nelder.Mead Hierarchical 0.522 12.11 60

8 ECM.BFGS Kmeans scale 0.746 12.08 77 8 ECME.BFGS Hierarchical 0.522 12.11 70

9 MCECM.BFGS Kmeans scale 0.746 12.08 79 9 MCECM.Nelder.Mead Kmeans scale 0.522 12.12 51

10 ECM.Nelder.Mead Kmeans scale 0.746 12.08 92 10 MCECM.BFGS Kmeans scale 0.522 12.12 51

11 ECME.BFGS Kmeans scale 0.746 12.08 97 11 ECM.BFGS Kmeans scale 0.522 12.12 52

12 ECME.Nelder.Mead Kmeans scale 0.746 12.08 111 12 ECM.BFGS Kmeans 0.522 12.12 54

13 MCECM.Nelder.Mead Hierarchical scale 0.708 12.08 113 13 ECM.Nelder.Mead Kmeans scale 0.522 12.12 54

14 ECME.BFGS Hierarchical scale 0.708 12.08 120 14 ECME.Nelder.Mead Kmeans scale 0.522 12.12 58

15 ECM.BFGS Hierarchical scale 0.707 12.08 105 15 ECME.Nelder.Mead Kmeans 0.522 12.12 59

16 MCECM.BFGS Hierarchical scale 0.707 12.09 103 16 ECME.BFGS Kmeans scale 0.522 12.12 62

17 ECM.Nelder.Mead Hierarchical scale 0.705 12.08 112 17 ECME.BFGS Kmeans 0.522 12.12 68

18 ECME.Nelder.Mead Hierarchical scale 0.705 12.09 127 18 MCECM.Nelder.Mead Kmeans 0.521 12.12 52

19 ECME.BFGS Hierarchical 0.679 12.10 92 19 ECM.Nelder.Mead Kmeans 0.521 12.12 55

20 ECME.Nelder.Mead Hierarchical 0.679 12.10 108 20 ECME.Nelder.Mead Random 0.521 12.12 56

21 ECM.BFGS Hierarchical 0.678 12.10 86 21 MCECM.BFGS Kmeans 0.521 12.12 56

22 MCECM.BFGS Hierarchical 0.677 12.10 85 22 MCECM.Nelder.Mead Hierarchical scale 0.521 12.12 56

23 MCECM.Nelder.Mead Hierarchical 0.677 12.10 98 23 MCECM.BFGS Hierarchical scale 0.521 12.12 56

24 ECM.Nelder.Mead Hierarchical 0.677 12.10 100 24 ECM.BFGS Hierarchical scale 0.521 12.12 59

25 ECME.BFGS Random 0.563 12.17 360 25 ECM.Nelder.Mead Hierarchical scale 0.521 12.12 60

26 ECME.Nelder.Mead Random 0.560 12.17 436 26 ECME.BFGS Random 0.521 12.12 66

27 ECM.BFGS Random 0.557 12.17 297 27 ECM.Nelder.Mead Random 0.520 12.12 43

28 ECM.Nelder.Mead Random 0.556 12.16 360 28 MCECM.Nelder.Mead Random 0.520 12.13 38

29 MCECM.Nelder.Mead Random 0.545 12.17 324 29 MCECM.BFGS Random 0.520 12.13 38

30 MCECM.BFGS Random 0.542 12.17 272 30 ECM.BFGS Random 0.520 12.13 42

5 (1000)

1 MCECM.Nelder.Mead Kmeans 0.757 12.02 155 1 MCECM.BFGS Kmeans 0.521 12.12 79

2 MCECM.BFGS Kmeans 0.756 12.01 133 2 MCECM.BFGS Kmeans scale 0.521 12.12 79

3 ECM.BFGS Kmeans 0.756 12.02 138 3 MCECM.Nelder.Mead Kmeans 0.521 12.12 83

4 ECM.Nelder.Mead Kmeans 0.756 12.02 159 4 ECME.Nelder.Mead Kmeans 0.521 12.12 84

5 ECME.BFGS Kmeans 0.754 12.01 143 5 ECME.Nelder.Mead Kmeans scale 0.521 12.12 84

6 ECME.Nelder.Mead Kmeans 0.754 12.01 166 6 MCECM.Nelder.Mead Kmeans scale 0.521 12.12 84

7 MCECM.BFGS Kmeans scale 0.744 12.02 118 7 ECME.BFGS Kmeans scale 0.521 12.12 89

8 ECM.BFGS Kmeans scale 0.744 12.02 123 8 ECME.BFGS Kmeans 0.521 12.12 95

9 ECM.Nelder.Mead Kmeans scale 0.744 12.02 138 9 MCECM.BFGS Random 0.520 12.12 64

10 MCECM.Nelder.Mead Kmeans scale 0.744 12.02 139 10 MCECM.Nelder.Mead Random 0.520 12.12 69

11 ECME.BFGS Kmeans scale 0.742 12.01 144 11 ECM.BFGS Random 0.520 12.12 72

12 ECME.Nelder.Mead Kmeans scale 0.742 12.02 162 12 ECM.Nelder.Mead Random 0.520 12.12 73

13 ECME.BFGS Hierarchical scale 0.703 12.01 198 13 MCECM.BFGS Hierarchical 0.520 12.12 77

14 ECME.Nelder.Mead Hierarchical scale 0.702 12.01 220 14 MCECM.Nelder.Mead Hierarchical 0.520 12.12 80

15 ECM.Nelder.Mead Hierarchical scale 0.701 12.01 217 15 ECME.Nelder.Mead Random 0.520 12.12 85

16 MCECM.Nelder.Mead Hierarchical scale 0.701 12.01 217 16 ECM.BFGS Hierarchical 0.520 12.12 85

17 MCECM.BFGS Hierarchical scale 0.700 12.01 197 17 ECM.Nelder.Mead Kmeans 0.520 12.12 86

18 ECM.BFGS Hierarchical scale 0.700 12.01 206 18 ECM.Nelder.Mead Hierarchical 0.520 12.12 86

19 ECME.Nelder.Mead Hierarchical 0.664 12.05 215 19 ECM.BFGS Kmeans scale 0.520 12.12 86

20 ECM.Nelder.Mead Hierarchical 0.664 12.05 221 20 ECM.BFGS Kmeans 0.520 12.12 87

21 ECME.BFGS Hierarchical 0.663 12.04 188 21 ECME.Nelder.Mead Hierarchical 0.520 12.12 87

22 MCECM.BFGS Hierarchical 0.662 12.05 178 22 ECM.Nelder.Mead Kmeans scale 0.520 12.12 87

23 ECM.BFGS Hierarchical 0.662 12.05 187 23 MCECM.BFGS Hierarchical scale 0.520 12.12 89

24 MCECM.Nelder.Mead Hierarchical 0.662 12.05 206 24 MCECM.Nelder.Mead Hierarchical scale 0.520 12.12 94

25 ECME.BFGS Random 0.626 12.08 636 25 ECME.BFGS Random 0.520 12.12 99

26 ECME.Nelder.Mead Random 0.624 12.08 751 26 ECME.BFGS Hierarchical 0.520 12.12 99

27 ECM.BFGS Random 0.602 12.09 615 27 ECM.BFGS Hierarchical scale 0.520 12.12 99

28 ECM.Nelder.Mead Random 0.601 12.09 748 28 ECM.Nelder.Mead Hierarchical scale 0.520 12.12 100

29 MCECM.Nelder.Mead Random 0.574 12.10 689 29 ECME.Nelder.Mead Hierarchical scale 0.520 12.12 102

30 MCECM.BFGS Random 0.573 12.10 523 30 ECME.BFGS Hierarchical scale 0.520 12.12 111

B Appendix for Section 3.3 VCMM Algorithm 155

General VCMM Gaussian VCMM

Setting Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

(Sample size) strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

6 (500)

1 ECM.BFGS Kmeans 0.987 13.32 40 1 ECM.BFGS Kmeans 0.970 14.35 21

2 MCECM.BFGS Kmeans 0.987 13.32 41 2 ECM.Nelder.Mead Kmeans 0.970 14.35 22

3 ECM.Nelder.Mead Kmeans 0.987 13.32 49 3 ECME.BFGS Kmeans 0.969 14.34 28

4 MCECM.Nelder.Mead Kmeans 0.987 13.32 50 4 MCECM.BFGS Kmeans 0.969 14.35 21

5 ECME.BFGS Kmeans 0.987 13.32 59 5 MCECM.Nelder.Mead Kmeans 0.969 14.35 23

6 ECME.Nelder.Mead Kmeans 0.987 13.32 73 6 ECME.Nelder.Mead Kmeans 0.969 14.35 31

7 ECME.Nelder.Mead Hierarchical scale 0.961 13.38 119 7 MCECM.Nelder.Mead Kmeans scale 0.927 14.36 28

8 ECM.BFGS Hierarchical scale 0.960 13.38 84 8 MCECM.BFGS Kmeans scale 0.927 14.37 23

9 MCECM.BFGS Hierarchical scale 0.960 13.38 87 9 ECM.BFGS Kmeans scale 0.927 14.37 25

10 ECME.BFGS Hierarchical scale 0.960 13.38 99 10 ECM.Nelder.Mead Kmeans scale 0.927 14.37 28

11 ECM.Nelder.Mead Hierarchical scale 0.960 13.38 101 11 ECME.Nelder.Mead Kmeans scale 0.926 14.36 37

12 MCECM.Nelder.Mead Hierarchical scale 0.960 13.38 101 12 ECME.BFGS Kmeans scale 0.925 14.35 38

13 ECM.BFGS Kmeans scale 0.958 13.38 42 13 MCECM.BFGS Hierarchical 0.856 14.36 25

14 MCECM.BFGS Kmeans scale 0.958 13.38 43 14 ECM.BFGS Hierarchical 0.856 14.36 26

15 ECM.Nelder.Mead Kmeans scale 0.958 13.38 50 15 ECM.Nelder.Mead Hierarchical 0.856 14.36 28

16 MCECM.Nelder.Mead Kmeans scale 0.958 13.38 51 16 MCECM.Nelder.Mead Hierarchical 0.855 14.36 27

17 ECME.BFGS Kmeans scale 0.958 13.38 59 17 ECME.BFGS Hierarchical 0.855 14.36 32

18 ECME.Nelder.Mead Kmeans scale 0.958 13.38 71 18 ECME.Nelder.Mead Hierarchical 0.855 14.36 34

19 MCECM.BFGS Hierarchical 0.939 13.41 53 19 ECM.BFGS Hierarchical scale 0.835 14.42 26

20 ECM.BFGS Hierarchical 0.939 13.41 54 20 ECM.Nelder.Mead Hierarchical scale 0.835 14.42 28

21 ECM.Nelder.Mead Hierarchical 0.939 13.41 63 21 MCECM.BFGS Hierarchical scale 0.833 14.42 27

22 MCECM.Nelder.Mead Hierarchical 0.939 13.41 65 22 MCECM.Nelder.Mead Hierarchical scale 0.833 14.42 28

23 ECME.BFGS Hierarchical 0.939 13.41 72 23 ECME.BFGS Hierarchical scale 0.832 14.42 34

24 ECME.Nelder.Mead Hierarchical 0.939 13.41 93 24 ECME.Nelder.Mead Hierarchical scale 0.832 14.42 35

25 ECM.BFGS Random 0.918 13.47 204 25 MCECM.BFGS Random 0.615 14.37 50

26 ECME.Nelder.Mead Random 0.918 13.47 215 26 MCECM.Nelder.Mead Random 0.615 14.37 51

27 MCECM.BFGS Random 0.914 13.47 200 27 ECM.BFGS Random 0.599 14.36 55

28 MCECM.Nelder.Mead Random 0.912 13.48 228 28 ECM.Nelder.Mead Random 0.599 14.36 57

29 ECM.Nelder.Mead Random 0.905 13.49 233 29 ECME.Nelder.Mead Random 0.556 14.38 77

30 ECME.BFGS Random 0.897 13.53 187 30 ECME.BFGS Random 0.546 14.38 73

6 (1000)

1 ECM.BFGS Kmeans 0.988 13.26 65 1 MCECM.Nelder.Mead Kmeans 0.971 14.44 30

2 MCECM.BFGS Kmeans 0.988 13.26 79 2 ECM.Nelder.Mead Kmeans 0.971 14.44 32

3 ECM.Nelder.Mead Kmeans 0.988 13.26 92 3 ECME.Nelder.Mead Kmeans 0.971 14.44 40

4 MCECM.Nelder.Mead Kmeans 0.988 13.26 94 4 ECME.BFGS Kmeans 0.970 14.45 43

5 ECME.BFGS Kmeans 0.988 13.26 119 5 ECM.BFGS Kmeans 0.970 14.46 30

6 ECME.Nelder.Mead Kmeans 0.988 13.26 137 6 MCECM.BFGS Kmeans 0.970 14.46 38

7 ECME.BFGS Hierarchical scale 0.975 13.30 177 7 ECME.Nelder.Mead Kmeans scale 0.931 14.46 46

8 ECM.Nelder.Mead Kmeans scale 0.974 13.30 112 8 ECME.BFGS Kmeans scale 0.929 14.44 46

9 ECME.BFGS Kmeans scale 0.974 13.30 137 9 MCECM.Nelder.Mead Kmeans scale 0.929 14.46 33

10 ECM.BFGS Hierarchical scale 0.974 13.30 140 10 ECM.Nelder.Mead Kmeans scale 0.929 14.46 34

11 MCECM.BFGS Hierarchical scale 0.974 13.30 152 11 MCECM.BFGS Kmeans scale 0.927 14.44 33

12 ECM.Nelder.Mead Hierarchical scale 0.974 13.30 163 12 ECM.BFGS Kmeans scale 0.927 14.44 35

13 MCECM.Nelder.Mead Hierarchical scale 0.974 13.30 168 13 MCECM.Nelder.Mead Hierarchical 0.882 14.47 42

14 ECME.Nelder.Mead Hierarchical scale 0.974 13.30 194 14 MCECM.BFGS Hierarchical 0.881 14.47 44

15 ECM.BFGS Hierarchical 0.973 13.29 112 15 ECME.Nelder.Mead Hierarchical 0.881 14.47 46

16 ECM.Nelder.Mead Hierarchical 0.973 13.29 135 16 ECME.BFGS Hierarchical 0.880 14.47 49

17 MCECM.Nelder.Mead Hierarchical 0.973 13.29 141 17 ECM.BFGS Hierarchical 0.876 14.47 44

18 MCECM.BFGS Hierarchical 0.973 13.29 143 18 ECM.Nelder.Mead Hierarchical 0.876 14.47 47

19 ECME.BFGS Hierarchical 0.973 13.29 175 19 ECM.Nelder.Mead Hierarchical scale 0.840 14.50 43

20 ECME.Nelder.Mead Hierarchical 0.973 13.29 182 20 ECM.BFGS Hierarchical scale 0.840 14.50 43

21 ECME.Nelder.Mead Kmeans scale 0.973 13.31 161 21 MCECM.BFGS Hierarchical scale 0.839 14.50 42

22 ECM.BFGS Kmeans scale 0.968 13.31 85 22 MCECM.Nelder.Mead Hierarchical scale 0.839 14.50 45

23 MCECM.BFGS Kmeans scale 0.968 13.31 101 23 ECME.Nelder.Mead Hierarchical scale 0.837 14.50 46

24 MCECM.Nelder.Mead Kmeans scale 0.968 13.31 108 24 ECME.BFGS Hierarchical scale 0.837 14.50 49

25 ECM.BFGS Random 0.959 13.33 364 25 MCECM.Nelder.Mead Random 0.555 14.41 70

26 ECME.Nelder.Mead Random 0.955 13.34 345 26 MCECM.BFGS Random 0.554 14.41 73

27 MCECM.BFGS Random 0.950 13.35 361 27 ECM.BFGS Random 0.554 14.41 75

28 ECME.BFGS Random 0.949 13.36 294 28 ECM.Nelder.Mead Random 0.554 14.41 79

29 ECM.Nelder.Mead Random 0.948 13.35 495 29 ECME.Nelder.Mead Random 0.528 14.41 87

30 MCECM.Nelder.Mead Random 0.945 13.36 445 30 ECME.BFGS Random 0.528 14.41 96

156 A APPENDICES

General VCMM Gaussian VCMM

Setting Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

(Sample size) strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

7 (500)

1 ECM.BFGS Kmeans scale 0.980 13.92 69 1 ECM.BFGS Hierarchical scale 0.954 14.70 14

2 MCECM.BFGS Kmeans scale 0.980 13.92 71 2 MCECM.BFGS Hierarchical scale 0.954 14.70 14

3 MCECM.Nelder.Mead Kmeans scale 0.980 13.92 82 3 MCECM.Nelder.Mead Hierarchical scale 0.954 14.70 16

4 ECM.Nelder.Mead Kmeans scale 0.980 13.92 85 4 ECM.BFGS Hierarchical 0.954 14.70 17

5 ECME.BFGS Kmeans scale 0.980 13.92 94 5 MCECM.BFGS Hierarchical 0.954 14.70 17

6 ECME.Nelder.Mead Kmeans scale 0.980 13.92 119 6 ECM.Nelder.Mead Hierarchical scale 0.954 14.70 17

7 MCECM.BFGS Hierarchical 0.975 13.92 38 7 ECM.Nelder.Mead Hierarchical 0.954 14.70 18

8 ECME.BFGS Hierarchical 0.975 13.92 57 8 MCECM.Nelder.Mead Hierarchical 0.954 14.70 18

9 ECME.Nelder.Mead Hierarchical 0.975 13.92 72 9 ECME.Nelder.Mead Hierarchical scale 0.954 14.70 22

10 ECM.BFGS Hierarchical 0.974 13.92 38 10 ECME.BFGS Hierarchical scale 0.954 14.70 22

11 ECM.Nelder.Mead Hierarchical 0.974 13.92 47 11 ECME.Nelder.Mead Hierarchical 0.954 14.70 25

12 MCECM.Nelder.Mead Hierarchical 0.974 13.92 47 12 ECME.BFGS Hierarchical 0.954 14.70 25

13 MCECM.BFGS Hierarchical scale 0.972 13.92 36 13 ECM.BFGS Kmeans scale 0.953 14.78 25

14 ECM.BFGS Hierarchical scale 0.972 13.93 36 14 MCECM.BFGS Kmeans scale 0.953 14.78 25

15 MCECM.Nelder.Mead Hierarchical scale 0.972 13.93 45 15 MCECM.Nelder.Mead Kmeans scale 0.953 14.78 29

16 ECME.BFGS Hierarchical scale 0.972 13.93 52 16 ECM.Nelder.Mead Kmeans scale 0.953 14.78 37

17 ECME.Nelder.Mead Hierarchical scale 0.972 13.93 105 17 ECME.Nelder.Mead Kmeans scale 0.951 14.74 33

18 ECM.Nelder.Mead Hierarchical scale 0.971 13.93 45 18 ECME.BFGS Kmeans scale 0.951 14.74 36

19 MCECM.BFGS Random 0.958 14.04 224 19 ECM.BFGS Kmeans 0.947 14.80 52

20 ECM.BFGS Random 0.949 14.07 214 20 ECM.Nelder.Mead Kmeans 0.947 14.80 56

21 MCECM.Nelder.Mead Random 0.946 14.09 269 21 MCECM.BFGS Kmeans 0.946 14.80 51

22 ECME.Nelder.Mead Random 0.946 14.10 294 22 MCECM.Nelder.Mead Kmeans 0.946 14.80 57

23 ECME.BFGS Random 0.946 14.11 249 23 ECME.BFGS Kmeans 0.940 14.74 45

24 ECME.Nelder.Mead Kmeans 0.939 14.06 185 24 ECME.Nelder.Mead Kmeans 0.939 14.76 48

25 ECM.Nelder.Mead Random 0.937 14.11 265 25 ECME.BFGS Random 0.918 14.74 72

26 ECME.BFGS Kmeans 0.935 14.06 146 26 ECME.Nelder.Mead Random 0.918 14.74 75

27 MCECM.Nelder.Mead Kmeans 0.840 14.38 123 27 ECM.BFGS Random 0.909 14.75 128

28 ECM.Nelder.Mead Kmeans 0.834 14.40 125 28 MCECM.BFGS Random 0.909 14.76 128

29 ECM.BFGS Kmeans 0.830 14.41 87 29 MCECM.Nelder.Mead Random 0.909 14.76 141

30 MCECM.BFGS Kmeans 0.830 14.41 90 30 ECM.Nelder.Mead Random 0.909 14.76 145

7 (1000)

1 ECM.BFGS Hierarchical scale 0.980 13.79 61 1 ECME.Nelder.Mead Kmeans 0.958 14.72 66

2 MCECM.BFGS Hierarchical scale 0.980 13.79 71 2 ECM.BFGS Kmeans 0.958 14.72 92

3 ECME.Nelder.Mead Hierarchical scale 0.980 13.79 106 3 ECME.BFGS Kmeans 0.958 14.72 645

4 MCECM.Nelder.Mead Hierarchical scale 0.980 13.79 278 4 MCECM.Nelder.Mead Kmeans 0.958 14.72 970

5 ECME.BFGS Hierarchical scale 0.980 13.79 329 5 ECM.Nelder.Mead Kmeans 0.958 14.72 1004

6 ECM.Nelder.Mead Hierarchical 0.980 13.79 344 6 ECM.BFGS Hierarchical scale 0.957 14.70 24

7 ECM.Nelder.Mead Hierarchical scale 0.980 13.79 349 7 ECM.Nelder.Mead Hierarchical scale 0.957 14.70 25

8 ECME.Nelder.Mead Hierarchical 0.980 13.79 565 8 MCECM.BFGS Kmeans 0.957 14.72 147

9 MCECM.Nelder.Mead Hierarchical 0.979 13.79 362 9 MCECM.Nelder.Mead Hierarchical scale 0.956 14.70 24

10 ECM.BFGS Hierarchical 0.978 13.80 72 10 ECME.BFGS Hierarchical scale 0.956 14.70 27

11 MCECM.BFGS Hierarchical 0.978 13.80 73 11 ECME.Nelder.Mead Hierarchical scale 0.956 14.70 28

12 ECME.BFGS Hierarchical 0.978 13.80 448 12 MCECM.BFGS Hierarchical scale 0.956 14.70 88

13 MCECM.BFGS Random 0.976 13.82 343 13 ECM.Nelder.Mead Kmeans scale 0.952 14.86 44

14 ECM.BFGS Kmeans scale 0.974 13.82 133 14 ECME.BFGS Hierarchical 0.951 14.78 372

15 MCECM.BFGS Kmeans scale 0.974 13.82 139 15 ECM.BFGS Kmeans scale 0.951 14.82 42

16 ECME.Nelder.Mead Kmeans scale 0.974 13.82 176 16 MCECM.Nelder.Mead Kmeans scale 0.951 14.85 44

17 MCECM.Nelder.Mead Kmeans scale 0.974 13.82 540 17 ECME.BFGS Kmeans scale 0.950 14.76 45

18 ECM.Nelder.Mead Kmeans scale 0.974 13.82 545 18 ECME.Nelder.Mead Kmeans scale 0.950 14.76 47

19 ECME.BFGS Kmeans scale 0.974 13.82 639 19 ECM.BFGS Hierarchical 0.950 14.78 31

20 ECM.BFGS Random 0.974 13.83 315 20 ECME.Nelder.Mead Hierarchical 0.950 14.78 35

21 ECME.Nelder.Mead Random 0.974 13.84 1166 21 ECM.Nelder.Mead Hierarchical 0.950 14.78 87

22 ECM.Nelder.Mead Random 0.973 13.84 465 22 MCECM.BFGS Hierarchical 0.950 14.78 149

23 MCECM.Nelder.Mead Random 0.973 13.85 517 23 MCECM.Nelder.Mead Hierarchical 0.950 14.78 247

24 ECME.Nelder.Mead Kmeans 0.969 13.83 1536 24 MCECM.BFGS Kmeans scale 0.950 14.82 155

25 ECME.BFGS Kmeans 0.960 13.85 552 25 ECME.BFGS Random 0.947 14.67 259

26 ECME.BFGS Random 0.960 13.90 412 26 ECME.Nelder.Mead Random 0.947 14.70 97

27 ECM.BFGS Kmeans 0.899 14.06 206 27 ECM.BFGS Random 0.938 14.73 239

28 MCECM.BFGS Kmeans 0.899 14.06 258 28 ECM.Nelder.Mead Random 0.938 14.73 248

29 MCECM.Nelder.Mead Kmeans 0.898 14.06 679 29 MCECM.Nelder.Mead Random 0.938 14.73 248

30 ECM.Nelder.Mead Kmeans 0.898 14.06 736 30 MCECM.BFGS Random 0.938 14.73 1014

B Appendix for Section 3.3 VCMM Algorithm 157

General VCMM Gaussian VCMM

Setting Ranking Algorithm Initialization Classification Normalised Computation Ranking Algorithm Initialization Classification Normalised Computation

(Sample size) strategy rate BIC time (Seconds) strategy rate BIC time (Seconds)

8 (500)

1 ECM.Nelder.Mead Hierarchical 0.991 17.26 59 1 ECM.BFGS Random 0.907 19.92 53

2 ECM.BFGS Hierarchical 0.990 17.26 47 2 ECM.Nelder.Mead Random 0.907 19.92 64

3 MCECM.BFGS Hierarchical 0.990 17.26 48 3 MCECM.BFGS Random 0.906 19.92 55

4 MCECM.Nelder.Mead Hierarchical 0.990 17.26 55 4 MCECM.Nelder.Mead Random 0.906 19.92 62

5 ECME.BFGS Hierarchical 0.990 17.26 73 5 ECM.BFGS Kmeans 0.905 19.92 61

6 ECME.Nelder.Mead Hierarchical 0.990 17.26 87 6 MCECM.BFGS Kmeans 0.905 19.92 62

7 ECME.BFGS Random 0.912 17.56 105 7 MCECM.Nelder.Mead Kmeans 0.905 19.92 72

8 ECME.Nelder.Mead Random 0.900 17.60 117 8 ECM.Nelder.Mead Kmeans 0.905 19.92 74

9 ECM.Nelder.Mead Random 0.862 17.67 104 9 MCECM.BFGS Hierarchical 0.900 19.90 33

10 ECM.BFGS Random 0.861 17.67 86 10 MCECM.Nelder.Mead Hierarchical 0.900 19.90 37

11 MCECM.Nelder.Mead Random 0.843 17.73 103 11 ECM.BFGS Hierarchical 0.899 19.90 33

12 MCECM.BFGS Random 0.843 17.73 441 12 ECM.Nelder.Mead Hierarchical 0.899 19.90 39

13 ECME.Nelder.Mead Hierarchical scale 0.752 18.36 196 13 ECME.Nelder.Mead Hierarchical 0.893 19.90 36

14 ECM.BFGS Hierarchical scale 0.745 18.36 121 14 ECME.BFGS Hierarchical 0.892 19.90 33

15 ECME.BFGS Hierarchical scale 0.743 18.41 147 15 ECM.BFGS Kmeans scale 0.892 19.96 59

16 MCECM.BFGS Hierarchical scale 0.738 18.38 121 16 MCECM.BFGS Kmeans scale 0.892 19.96 59

17 ECM.Nelder.Mead Hierarchical scale 0.732 18.40 145 17 MCECM.Nelder.Mead Kmeans scale 0.892 19.96 69

18 MCECM.Nelder.Mead Hierarchical scale 0.726 18.42 143 18 ECM.Nelder.Mead Kmeans scale 0.892 19.96 71

19 ECME.BFGS Kmeans 0.658 18.65 229 19 ECM.BFGS Hierarchical scale 0.888 19.95 50

20 MCECM.BFGS Kmeans 0.656 18.67 1105 20 ECM.Nelder.Mead Hierarchical scale 0.888 19.95 60

21 ECM.BFGS Kmeans 0.654 18.68 168 21 MCECM.BFGS Hierarchical scale 0.887 19.95 50

22 MCECM.Nelder.Mead Kmeans 0.654 18.68 224 22 MCECM.Nelder.Mead Hierarchical scale 0.887 19.95 58

23 ECM.Nelder.Mead Kmeans 0.650 18.69 214 23 ECME.BFGS Kmeans 0.882 19.91 52

24 ECME.Nelder.Mead Kmeans 0.648 18.72 279 24 ECME.Nelder.Mead Kmeans 0.881 19.91 61

25 MCECM.BFGS Kmeans scale 0.614 18.89 101 25 ECME.BFGS Kmeans scale 0.874 19.96 53

26 ECME.BFGS Kmeans scale 0.611 18.92 118 26 ECME.Nelder.Mead Kmeans scale 0.874 19.96 61

27 ECM.Nelder.Mead Kmeans scale 0.608 18.92 115 27 ECME.Nelder.Mead Random 0.870 19.91 43

28 MCECM.Nelder.Mead Kmeans scale 0.607 18.91 117 28 ECME.Nelder.Mead Hierarchical scale 0.867 19.95 55

29 ECME.Nelder.Mead Kmeans scale 0.603 18.96 150 29 ECME.BFGS Random 0.866 19.91 38

30 ECM.BFGS Kmeans scale 0.602 18.95 89 30 ECME.BFGS Hierarchical scale 0.862 19.96 48

9 (500)

1 ECME.BFGS Random 0.878 14.58 119 1 MCECM.BFGS Random 0.726 16.73 76

2 ECME.Nelder.Mead Random 0.877 14.57 141 2 MCECM.Nelder.Mead Random 0.726 16.73 85

3 MCECM.BFGS Random 0.867 14.58 98 3 ECM.BFGS Random 0.722 16.68 82

4 ECM.BFGS Random 0.860 14.60 98 4 ECM.Nelder.Mead Random 0.722 16.68 88

5 MCECM.Nelder.Mead Random 0.847 14.65 117 5 ECME.BFGS Random 0.690 16.61 48

6 ECM.Nelder.Mead Random 0.847 14.65 123 6 ECME.Nelder.Mead Random 0.664 16.56 52

7 MCECM.Nelder.Mead Kmeans scale 0.757 15.46 169 7 ECM.BFGS Hierarchical 0.645 16.83 68

8 ECME.BFGS Kmeans scale 0.757 15.49 137 8 MCECM.Nelder.Mead Hierarchical 0.645 16.83 71

9 ECM.BFGS Kmeans scale 0.756 15.46 118 9 ECM.Nelder.Mead Hierarchical 0.645 16.83 72

10 ECM.Nelder.Mead Kmeans scale 0.756 15.46 167 10 ECME.BFGS Hierarchical 0.639 16.80 53

11 MCECM.BFGS Kmeans scale 0.750 15.50 116 11 ECME.Nelder.Mead Hierarchical 0.639 16.80 57

12 ECME.Nelder.Mead Kmeans scale 0.731 15.67 178 12 MCECM.BFGS Hierarchical 0.637 16.86 61

13 ECME.Nelder.Mead Hierarchical 0.728 15.20 173 13 ECM.BFGS Kmeans scale 0.634 16.99 90

14 ECME.BFGS Hierarchical 0.720 15.24 128 14 ECM.Nelder.Mead Kmeans scale 0.634 16.99 96

15 ECME.BFGS Hierarchical scale 0.708 15.50 124 15 MCECM.BFGS Kmeans scale 0.631 17.02 83

16 ECM.BFGS Hierarchical 0.700 15.32 84 16 MCECM.Nelder.Mead Kmeans scale 0.631 17.02 96

17 MCECM.BFGS Hierarchical 0.700 15.32 85 17 ECME.Nelder.Mead Kmeans scale 0.622 16.98 84

18 ECM.Nelder.Mead Hierarchical 0.699 15.32 111 18 ECME.BFGS Kmeans scale 0.620 16.98 75

19 MCECM.Nelder.Mead Hierarchical 0.699 15.32 111 19 ECME.BFGS Hierarchical scale 0.608 17.00 66

20 ECME.Nelder.Mead Hierarchical scale 0.698 15.55 170 20 ECME.Nelder.Mead Hierarchical scale 0.608 17.00 75

21 MCECM.Nelder.Mead Hierarchical scale 0.685 15.59 139 21 ECM.BFGS Hierarchical scale 0.606 17.05 74

22 ECM.Nelder.Mead Hierarchical scale 0.685 15.59 140 22 ECM.Nelder.Mead Hierarchical scale 0.606 17.05 80

23 MCECM.BFGS Hierarchical scale 0.679 15.61 100 23 MCECM.BFGS Hierarchical scale 0.603 17.08 67

24 ECM.BFGS Hierarchical scale 0.678 15.62 97 24 MCECM.Nelder.Mead Hierarchical scale 0.603 17.08 76

25 ECME.BFGS Kmeans 0.573 15.95 150 25 ECME.BFGS Kmeans 0.580 17.28 74

26 MCECM.Nelder.Mead Kmeans 0.569 15.95 161 26 ECME.Nelder.Mead Kmeans 0.580 17.28 85

27 ECME.Nelder.Mead Kmeans 0.569 15.95 206 27 MCECM.BFGS Kmeans 0.576 17.35 76

28 ECM.Nelder.Mead Kmeans 0.564 16.00 156 28 MCECM.Nelder.Mead Kmeans 0.576 17.35 84

29 ECM.BFGS Kmeans 0.562 15.99 116 29 ECM.Nelder.Mead Kmeans 0.576 17.35 88

30 MCECM.BFGS Kmeans 0.561 15.99 115 30 ECM.BFGS Kmeans 0.575 17.37 75

158 A APPENDICES

C Appendix for Section 4 Real data sets

C.1 Estimated vine copula model for AIS data

Table C.1: The result of the fitted vine copula model for the AIS data by using di↵erent VCMM algorithms and

initialization strategies. The variable encoding is given as follows: (AIS) 1: LBM, 2: Wt, 3: BMI, 4: WBC,

5: PBF. For marginal distributions (Left column), the estimated marginal distributions and parameters for

each cluster are shown. For vine tree structure (Right column), the first and second tree level of the estimated

vine copula models are shown here. The number 1,5 represents the edge of the tree level, letter N is the

abbreviation of the copula and the true parameter value and corresponding Kendall’s ⌧ of the pair copula are

given inside the parenthesis (parameter(s)/Kendall’s ⌧) near the letter. The meaning of the abbreviation for

marginal distribution and copula families is shown in the appendix B.1 and B.2.

Marginal distributions Vine tree structure

Variable Cluster 1 Cluster 2
Cluster 1 Cluster 2

Tree 1 Tree 2 Tree 1 Tree 2

AIS

General VCMM (Random)

Classification rate : 60.2% Normalised BIC : 25.82

1 snorm(70.79, 11.85, 0.61) llogis(9.28, 59.85) 1,5 R90J(-3.35/-0.56) 2,5;1 SBB8(4.43,0.82/0.51) 2,1 BB1(1.5,2.16/0.74) 3,1;2 N(-0.18/-0.12)

2 N (79.54, 10.06) llogis(8.58, 70.85) 2,1 N(0.99/0.91) 3,1;2 R90G(-1.14/-0.12) 3,2 N(0.89/0.69) 4,2;3 SC(0.04/0.02)

3 �(183.87, 7.97) snorm(22.96, 3.32, 1.67) 3,2 N(0.79/0.58) 4,2;3 R90C(-0.07/-0.03) 3,4 F(1.49/0.16) 5,4;3 SG(1.09/0.08)

4 llogis(7.34, 6.83) �(16.14, 2.26) 4,3 J(1.26/0.13) 5,3 F(2.45/0.26)

5 snorm(11.98, 4.4, 142.37) snorm(14.54, 6.73, 268.28)

General VCMM (Copula with single parameter) (Random)

Classification rate : 61.6% Normalised BIC : 26.44

1 snorm(70.17, 11.75, 0.65) llogis(9.1, 59.53) 1,5 R90J(-3.52/-0.57) 2,5;1 F(-0.08/-0.01) 2,1 SG(4.02/0.75) 3,1;2 N(-0.27/-0.17)

2 snorm(77.51, 11.35, 2.97) �(21.87, 0.3) 2,1 F(23.02/0.84) 3,1;2 SC(0.27/0.12) 3,2 N(0.9/0.71) 5,2;3 F(-0.79/-0.09)

3 N (22.93, 1.78) llogis(12.35, 22.59) 3,2 N(0.76/0.54) 4,2;3 SC(0/0) 3,4 F(1.36/0.15) 5,4;3 SG(1.08/0.07)

4 llogis(7.32, 6.8) �(16.21, 2.27) 4,3 G(1.2/0.17) 5,3 F(2.74/0.28)

5 sstd(11.23, 4.93, 4.27, 146.43) snorm(14.88, 6.99, 121.58)

Gaussian VCMM (Random)

Classification rate : 65.8% Normalised BIC : 23.06

1 N (67.69, 13.37) N (61.37, 11.71) 2,3 N(0.88/0.68) 1,3;2 N(-0.16/-0.1) 1,5 N(-0.34/-0.22) 2,5;1 N(0.99/0.91)

2 N (74.14, 14.32) N (76.08, 13.26) 1,2 N(1/0.94) 5,2;1 N(0.97/0.83) 2,1 N(0.95/0.81) 3,1;2 N(-0.19/-0.12)

3 N (22.38, 2.46) N (23.68, 3.13) 5,1 N(-0.33/-0.22) 4,1;5 N(0.14/0.09) 3,2 N(0.85/0.65) 4,2;3 N(0.05/0.03)

4 N (7.03, 1.84) N (7.2, 1.73) 5,4 N(0.23/0.15) 4,3 N(0.27/0.18)

5 N (8.8, 1.97) N (19.36, 4.35)

General VCMM (Kmeans)

Classification rate : 77.5% Normalised BIC : 26.00

1 snorm(56.44, 7.22, 0.6) snorm(78.08, 7.62, 83.9) 3,4 SC(0.24/0.11) 2,4;3 R90C(-0.02/-0.01) 2,1 G(3.36/0.7) 3,1;2 N(-0.31/-0.2)

2 sstd(66.86, 9.67, 8.29, 0.75) snorm(87.38, 10.26, 160.5) 2,1 SJ(3.77/0.6) 3,1;2 N(-0.2/-0.13) 3,2 BB8(4.39,0.85/0.53) 5,2;3 N(0.04/0.03)

3 lnorm(3.08, 0.1) sstd(24.82, 3.22, 3.03, 1.59) 3,2 N(0.83/0.62) 5,2;3 SC(0.25/0.11) 5,3 G(1.71/0.42) 4,3;5 R270C(-0.26/-0.12)

4 lnorm(1.9, 0.24) lnorm(1.98, 0.26) 5,3 SC(0.97/0.33) 5,4 SBB8(2.58,0.79/0.28)

5 snorm(15.11, 7.16, 164.59) sstd(10.39, 4.85, 3.2, 176.82)

General VCMM (Copula with single parameter) (Kmeans)

Classification rate : 76.7% Normalised BIC : 25.79

1 snorm(56.35, 7.17, 0.58) snorm(78.41, 7.87, 92.25) 3,4 SC(0.27/0.12) 2,4;3 F(-0.47/-0.05) 2,1 G(3.23/0.69) 3,1;2 F(-2.45/-0.26)

2 snorm(66.64, 9.15, 0.67) snorm(87.47, 10.33, 133.42) 2,1 SJ(3.79/0.6) 3,1;2 R90C(-0.25/-0.11) 3,2 G(1.99/0.5) 5,2;3 R90C(-0.01/-0.01)

3 lnorm(3.07, 0.1) sstd(24.84, 3.18, 3.09, 1.58) 3,2 N(0.83/0.62) 5,2;3 SC(0.27/0.12) 5,3 F(4.87/0.45) 4,3;5 R270G(-1.06/-0.06)

4 lnorm(1.9, 0.24) lnorm(1.97, 0.26) 5,3 SC(0.92/0.31) 5,4 C(0.35/0.15)

5 snorm(15.03, 7.1, 231.11) sstd(10.84, 7.86, 2.42, 118.25)

Gaussian VCMM (Kmeans)

Classification rate : 91.4% Normalised BIC : 23.57

1 N (56.33, 8.89) N (74.68, 9.72) 2,5 N(0.61/0.42) 1,5;2 N(-0.98/-0.87) 2,1 N(0.99/0.9) 3,1;2 N(-0.28/-0.18)

2 N (69.02, 12.71) N (81.89, 11.86) 2,1 N(0.94/0.78) 3,1;2 N(-0.14/-0.09) 3,2 N(0.83/0.62) 5,2;3 N(0.23/0.15)

3 N (22.32, 3.02) N (23.69, 2.46) 3,2 N(0.87/0.67) 4,2;3 N(-0.01/0) 5,3 N(0.65/0.45) 4,3;5 N(-0.15/-0.1)

4 N (7.1, 1.69) N (7.12, 1.91) 4,3 N(0.23/0.15) 5,4 N(0.36/0.23)

5 N (17.79, 5.28) N (8.59, 2.16)

C Appendix for Section 4 Real data sets 159

Marginal distributions Vine tree structure

Variable Cluster 1 Cluster 2
Cluster 1 Cluster 2

Tree 1 Tree 2 Tree 1 Tree 2

AIS

General VCMM (Hierarchical)

Classification rate : 91.4% Normalised BIC : 24.21

1 t3(55.42, 6.12) lnorm(4.3, 0.13) 2,1 N(0.94/0.77) 5,1;2 N(-0.86/-0.66) 2,1 N(0.99/0.9) 3,1;2 F(-2.13/-0.23)

2 llogis(9.14, 68.41) lnorm(4.39, 0.14) 3,4 F(1.57/0.17) 2,4;3 F(-0.41/-0.05) 3,2 N(0.81/0.6) 5,2;3 C(0.2/0.09)

3 llogis(13.2, 22.04) llogis(19.93, 23.36) 2,3 N(0.88/0.68) 5,3;2 N(0.18/0.11) 5,3 N(0.58/0.39) 4,3;5 R270C(-0.17/-0.08)

4 lnorm(1.93, 0.24) lnorm(1.93, 0.26) 5,2 SBB8(3.78,0.88/0.5) 5,4 F(2.67/0.28)

5 �(11.31, 0.63) snorm(8.63, 2.14, 4.08)

General VCMM (Copula with single parameter) (Hierarchical)

Classification rate : 92.4% Normalised BIC : 23.83

1 llogis(12.42, 55.34) lnorm(4.3, 0.13) 2,5 C(1.53/0.43) 1,5;2 R90G(-3.38/-0.7) 2,1 SG(9.87/0.9) 3,1;2 R90G(-1.32/-0.24)

2 N (68.59, 12.29) lnorm(4.4, 0.14) 2,1 T(0.94,6.26/0.78) 3,1;2 N(-0.25/-0.16) 3,2 N(0.83/0.62) 5,2;3 C(0.2/0.09)

3 lnorm(3.09, 0.12) llogis(18.22, 23.46) 3,2 N(0.87/0.67) 4,2;3 R270C(0/0) 5,3 T(0.64,11.61/0.45) 4,3;5 R270C(-0.17/-0.08)

4 lnorm(1.93, 0.24) lnorm(1.93, 0.26) 4,3 F(1.56/0.17) 5,4 F(2.53/0.26)

5 �(11.04, 0.62) snorm(8.81, 2.28, 4.3)

Gaussian VCMM (Hierarchical)

Classification rate : 90.5% Normalised BIC : 23.57

1 N (56.27, 8.9) N (74.56, 9.74) 2,5 N(0.62/0.42) 1,5;2 N(-0.98/-0.86) 2,1 N(0.99/0.9) 3,1;2 N(-0.28/-0.18)

2 N (69, 12.77) N (81.77, 11.85) 2,1 N(0.94/0.79) 3,1;2 N(-0.14/-0.09) 3,2 N(0.83/0.63) 5,2;3 N(0.2/0.13)

3 N (22.31, 3.04) N (23.68, 2.45) 3,2 N(0.87/0.67) 4,2;3 N(-0.01/-0.01) 5,3 N(0.63/0.44) 4,3;5 N(-0.16/-0.1)

4 N (7.08, 1.69) N (7.14, 1.91) 4,3 N(0.23/0.15) 5,4 N(0.37/0.24)

5 N (17.85, 5.27) N (8.62, 2.17)

General VCMM (Kmeans scale)

Classification rate : 91.4% Normalised BIC : 23.52

1 logis(55.22, 3.77) lnorm(4.32, 0.12) 2,5 F(6.06/0.52) 1,5;2 N(-0.99/-0.9) 2,1 SG(6.35/0.84) 3,1;2 R90C(-0.42/-0.17)

2 N (66.92, 10.53) snorm(83.75, 11.59, 1.72) 2,1 SG(3.56/0.72) 3,1;2 N(-0.25/-0.16) 3,2 BB8(4.87,0.87/0.58) 5,2;3 N(0.23/0.15)

3 lnorm(3.08, 0.11) sstd(24.17, 2.81, 4.67, 1.95) 3,2 N(0.85/0.65) 4,2;3 R270C(0/0) 5,3 BB8(4.07,0.82/0.48) 4,3;5 R90J(-1.16/-0.08)

4 lnorm(1.92, 0.24) lnorm(1.95, 0.26) 4,3 F(1.16/0.13) 5,4 SBB8(6,0.42/0.3)

5 N (17.18, 5.82) sstd(9.46, 3.66, 3.8, 5.55)

General VCMM (Copula with single parameter) (Kmeans scale)

Classification rate : 91.4% Normalised BIC : 23.65

1 logis(55.22, 3.77) lnorm(4.32, 0.12) 2,5 F(6.06/0.52) 1,5;2 N(-0.99/-0.9) 2,1 SG(6.35/0.84) 3,1;2 R90C(-0.48/-0.19)

2 N (66.92, 10.53) snorm(83.75, 11.59, 1.72) 2,1 SG(3.56/0.72) 3,1;2 N(-0.25/-0.16) 3,2 G(2.24/0.55) 5,2;3 C(0.25/0.11)

3 lnorm(3.08, 0.11) sstd(24.17, 2.81, 4.67, 1.95) 3,2 N(0.85/0.65) 4,2;3 R270C(0/0) 5,3 G(1.79/0.44) 4,3;5 N(-0.07/-0.05)

4 lnorm(1.92, 0.24) lnorm(1.95, 0.26) 4,3 F(1.16/0.13) 5,4 T(0.41,30/0.27)

5 N (17.18, 5.82) sstd(9.46, 3.66, 3.8, 5.55)

Gaussian VCMM (Kmeans scale)

Classification rate : 90.5% Normalised BIC : 23.57

1 N (56.27, 8.9) N (74.56, 9.74) 2,5 N(0.62/0.42) 1,5;2 N(-0.98/-0.86) 2,1 N(0.99/0.9) 3,1;2 N(-0.28/-0.18)

2 N (69, 12.77) N (81.77, 11.85) 2,1 N(0.94/0.79) 3,1;2 N(-0.14/-0.09) 3,2 N(0.83/0.63) 5,2;3 N(0.2/0.13)

3 N (22.31, 3.04) N (23.68, 2.45) 3,2 N(0.87/0.67) 4,2;3 N(-0.01/-0.01) 5,3 N(0.63/0.44) 4,3;5 N(-0.16/-0.1)

4 N (7.08, 1.69) N (7.14, 1.91) 4,3 N(0.23/0.15) 5,4 N(0.37/0.24)

5 N (17.85, 5.27) N (8.62, 2.17)

General VCMM (Hierarchical scale)

Classification rate : 92.4% Normalised BIC : 23.92

1 llogis(12.36, 55.59) lnorm(4.31, 0.13) 2,5 SBB8(4.07,0.82/0.48) 1,5;2 T(-0.92,3.56/-0.74) 2,1 SG(10.7/0.91) 3,1;2 R270G(-1.27/-0.21)

2 N (68.68, 12.13) lnorm(4.4, 0.14) 2,1 BB1(1.05,2.81/0.77) 3,1;2 N(-0.24/-0.15) 3,2 N(0.83/0.63) 5,2;3 N(0.26/0.17)

3 llogis(14.4, 21.97) llogis(17.89, 23.49) 3,2 N(0.87/0.67) 4,2;3 F(-0.27/-0.03) 5,3 G(1.78/0.44) 4,3;5 R270C(-0.16/-0.08)

4 �(18, 2.54) lnorm(1.93, 0.26) 4,3 F(1.55/0.17) 5,4 F(2.58/0.27)

5 �(10.82, 0.61) snorm(8.74, 2.23, 4.24)

General VCMM (Copula with single parameter) (Hierarchical scale)

Classification rate : 92.4% Normalised BIC : 23.85

1 llogis(12.36, 55.59) lnorm(4.31, 0.13) 2,1 T(0.94,5.09/0.77) 5,1;2 R270G(-3.87/-0.74) 2,1 SG(10.7/0.91) 3,1;2 R270G(-1.27/-0.21)

2 N (68.68, 12.13) lnorm(4.4, 0.14) 3,4 F(1.55/0.17) 2,4;3 F(-0.27/-0.03) 3,2 N(0.83/0.63) 5,2;3 N(0.26/0.17)

3 llogis(14.4, 21.97) llogis(17.89, 23.49) 2,3 N(0.87/0.67) 5,3;2 SC(0.39/0.16) 5,3 G(1.78/0.44) 4,3;5 R270C(-0.16/-0.08)

4 �(18, 2.54) lnorm(1.93, 0.26) 5,2 C(1.4/0.41) 5,4 F(2.58/0.27)

5 �(10.82, 0.61) snorm(8.74, 2.23, 4.24)

Gaussian VCMM (Hierarchical scale)

Classification rate : 91.4% Normalised BIC : 23.57

1 N (56.33, 8.89) N (74.68, 9.72) 2,5 N(0.61/0.42) 1,5;2 N(-0.98/-0.87) 2,1 N(0.99/0.9) 3,1;2 N(-0.28/-0.18)

2 N (69.02, 12.71) N (81.89, 11.86) 2,1 N(0.94/0.78) 3,1;2 N(-0.14/-0.09) 3,2 N(0.83/0.62) 5,2;3 N(0.23/0.15)

3 N (22.32, 3.02) N (23.69, 2.46) 3,2 N(0.87/0.67) 4,2;3 N(-0.01/0) 5,3 N(0.65/0.45) 4,3;5 N(-0.15/-0.1)

4 N (7.1, 1.69) N (7.12, 1.91) 4,3 N(0.23/0.15) 5,4 N(0.36/0.23)

5 N (17.79, 5.28) N (8.59, 2.16)

160 A APPENDICES

C.2 Estimated vine copula model for BCW data

Table C.2: The result of the fitted vine copula model for BCW data by using di↵erent VCMM algorithms and

initialization strategies. The variable encoding is given as follows: (BCW) 1: PSE, 2: ES, 3: EC and 4: ECP.

For marginal distributions (Left column), the estimated marginal distributions and parameters for each cluster

are shown. For vine tree structure (Right column), the first and second tree level of the estimated vine copula

models are shown here. The number 1,5 represents the edge of the tree level, letter N is the abbreviation of

the copula and the true parameter value and corresponding Kendall’s ⌧ of the pair copula are given inside

the parenthesis (parameter(s)/Kendall’s ⌧) near the letter. The meaning of the abbreviation for marginal

distribution and copula families is shown in the appendix B.1 and B.2.

Marginal distributions Vine tree structure

Variable Cluster 1 Cluster 2
Cluster 1 Cluster 2

Tree 1 Tree 2 Tree 1 Tree 2

BCW

General VCMM (Random)

Classification rate : 50.4% Normalised BIC : -7.02

1 lnorm(1.04, 0.59) sstd(2.4, 1.47, 3.42, 4.25) 4,2 T(0.41,8.73/0.27) 1,2;4 F(0.69/0.08) 3,2 F(4.21/0.4) 4,2;3 SJ(1.21/0.11)

2 �(42.86, 358.15) lnorm(�1.95, 0.14) 4,1 BB8(3.45,0.96/0.53) 3,1;4 R270G(-1.15/-0.13) 4,1 BB8(3.61,0.93/0.52) 3,1;4 F(-0.67/-0.07)

3 snorm(0.23, 0.17, 296.73) snorm(0.32, 0.22, 315.76) 4,3 SBB8(6,0.88/0.65) 4,3 F(13.63/0.74)

4 snorm(0.09, 0.06, 1.9) snorm(0.13, 0.06, 1.85)

General VCMM (Copula with single parameter) (Random)

Classification rate : 51.1% Normalised BIC : -7.00

1 sstd(3.44, 2.85, 2.98, 5.46) snorm(2.14, 0.85, 2.33) 3,2 T(0.42,22.14/0.28) 4,2;3 SJ(1.09/0.05) 4,2 T(0.67,9.46/0.47) 1,2;4 R90C(-0.22/-0.1)

2 �(55.5, 416.91) snorm(0.13, 0.03, 1.69) 4,1 SC(1.29/0.39) 3,1;4 SC(0.08/0.04) 4,1 G(1.46/0.31) 3,1;4 F(0.69/0.08)

3 snorm(0.25, 0.19, 192.62) snorm(0.31, 0.23, 8.48) 4,3 F(22.07/0.83) 4,3 F(17.45/0.79)

4 snorm(0.12, 0.07, 1.41) snorm(0.1, 0.06, 2.19)

Gaussian VCMM (Random)

Classification rate : 78.4% Normalised BIC : -6.61

1 N (2, 0.69) N (4.69, 2.61) 4,2 N(0.45/0.3) 1,2;4 N(-0.07/-0.05) 2,1 N(-0.24/-0.16) 3,1;2 N(-0.01/-0.01)

2 N (0.13, 0.02) N (0.14, 0.02) 4,1 N(0.15/0.1) 3,1;4 N(-0.01/-0.01) 3,2 N(0.44/0.29) 4,2;3 N(0.27/0.18)

3 N (0.17, 0.11) N (0.49, 0.2) 4,3 N(0.84/0.63) 4,3 N(0.55/0.37)

4 N (0.08, 0.04) N (0.19, 0.05)

General VCMM (Kmeans)

Classification rate : 63.6% Normalised BIC : -7.10

1 sstd(6.18, 2.76, 3.28, 114.46) snorm(2.15, 0.8, 2.16) 3,2 SG(1.69/0.41) 4,2;3 C(0.27/0.12) 4,2 T(0.58,14.54/0.39) 1,2;4 R270J(-1.09/-0.05)

2 N (0.14, 0.02) lnorm(�2.04, 0.18) 4,1 F(4.03/0.39) 3,1;4 N(-0.01/-0.01) 4,1 SC(0.78/0.28) 3,1;4 R270C(-0.06/-0.03)

3 logis(0.4, 0.1) sstd(0.24, 0.19, 15.92, 244.39) 4,3 SBB8(5.36,0.92/0.65) 4,3 SBB8(6,0.91/0.67)

4 N (0.18, 0.06) snorm(0.1, 0.06, 1.62)

General VCMM (Copula with single parameter) (Kmeans)

Classification rate : 63.0% Normalised BIC : -7.10

1 sstd(6.56, 2.76, 3.29, 124.58) snorm(2.22, 0.87, 2.32) 3,2 SG(1.74/0.42) 4,2;3 SJ(1.19/0.1) 4,2 T(0.58,17.02/0.39) 1,2;4 R270J(-1.09/-0.05)

2 N (0.13, 0.02) �(32.13, 243.51) 4,1 F(3.83/0.37) 3,1;4 C(0.14/0.06) 4,1 SC(0.79/0.28) 3,1;4 R270C(-0.07/-0.04)

3 snorm(0.42, 0.18, 1.3) sstd(0.25, 0.2, 10.23, 317.63) 4,3 SG(2.63/0.62) 4,3 F(12.2/0.72)

4 logis(0.19, 0.03) snorm(0.1, 0.06, 1.63)

Gaussian VCMM (Kmeans)

Classification rate : 68.5% Normalised BIC : -6.26

1 N (5.8, 2.72) N (2.14, 0.77) 3,1 N(0.2/0.13) 2,1;3 N(-0.26/-0.17) 4,2 N(0.59/0.4) 1,2;4 N(-0.07/-0.04)

2 N (0.14, 0.02) N (0.13, 0.02) 3,2 N(0.58/0.39) 4,2;3 N(0.28/0.18) 4,1 N(0.39/0.26) 3,1;4 N(0.05/0.03)

3 N (0.43, 0.17) N (0.23, 0.2) 4,3 N(0.81/0.6) 4,3 N(0.86/0.66)

4 N (0.19, 0.05) N (0.1, 0.05)

C Appendix for Section 4 Real data sets 161

Marginal distributions Vine tree structure

Variable Cluster 1 Cluster 2
Cluster 1 Cluster 2

Tree 1 Tree 2 Tree 1 Tree 2

BCW

General VCMM (Hierarchical)

Classification rate : 82.2% Normalised BIC : -7.15

1 snorm(2.04, 0.74, 2.25) lnorm(1.47, 0.45) 4,1 BB8(1.59,0.87/0.15) 2,1;4 R90J(-1.08/-0.04) 2,1 R90C(-0.38/-0.16) 3,1;2 SC(0.19/0.09)

2 �(37.47, 293.68) �(38.33, 266.39) 4,2 T(0.46,9.34/0.3) 3,2;4 F(-0.38/-0.04) 3,2 C(1.53/0.43) 4,2;3 SJ(1.1/0.05)

3 sstd(0.19, 0.16, 7.49, 84.9) sstd(0.46, 0.19, 9.25, 1.26) 4,3 SBB8(5.71,0.9/0.65) 4,3 BB1(1.87,1.22/0.58)

4 snorm(0.08, 0.04, 1.22) logis(0.19, 0.03)

General VCMM (Copula with single parameter) (Hierarchical)

Classification rate : 74.8% Normalised BIC : -7.10

1 snorm(2.04, 0.72, 2) sstd(5.49, 2.92, 3.31, 125.19) 4,1 F(1.62/0.18) 2,1;4 R90J(-1.06/-0.03) 3,2 C(1.35/0.4) 4,2;3 SJ(1.21/0.11)

2 lnorm(�2.06, 0.17) �(41.71, 296.14) 4,2 T(0.54,9.03/0.36) 3,2;4 T(-0.05,21.79/-0.03) 4,1 J(1.29/0.14) 3,1;4 F(-0.8/-0.09)

3 sstd(0.21, 0.18, 7.98, 308.6) snorm(0.45, 0.18, 1.21) 4,3 F(11.19/0.69) 4,3 SG(2.42/0.59)

4 snorm(0.09, 0.05, 1.46) logis(0.19, 0.03)

Gaussian VCMM (Hierarchical)

Classification rate : 77.9% Normalised BIC : -6.61

1 N (2.03, 0.71) N (4.77, 2.64) 4,1 N(0.19/0.12) 2,1;4 N(-0.08/-0.05) 3,1 N(-0.15/-0.09) 4,1;3 N(0.31/0.2)

2 N (0.13, 0.02) N (0.14, 0.02) 4,2 N(0.47/0.31) 3,2;4 N(0.01/0) 3,2 N(0.44/0.29) 4,2;3 N(0.27/0.17)

3 N (0.17, 0.11) N (0.5, 0.19) 4,3 N(0.84/0.64) 4,3 N(0.52/0.35)

4 N (0.08, 0.04) N (0.19, 0.05)

General VCMM (Kmeans scale)

Classification rate : 85.1% Normalised BIC : -7.21

1 sstd(4.24, 2.52, 4.32, 3.07) sstd(2.05, 0.87, 6.97, 2.55) 3,2 F(1.85/0.2) 4,2;3 SJ(1.11/0.06) 4,1 SC(0.2/0.09) 2,1;4 R270C(-0.19/-0.09)

2 llogis(13.05, 0.15) �(42.24, 342.35) 4,1 N(0.39/0.26) 3,1;4 F(-1.37/-0.15) 4,2 C(0.44/0.18) 3,2;4 T(-0.06,19.8/-0.04)

3 lnorm(�0.8, 0.35) snorm(0.14, 0.11, 351.6) 4,3 F(4.27/0.41) 4,3 SBB8(4.22,0.95/0.59)

4 snorm(0.19, 0.04, 1.87) snorm(0.07, 0.03, 0.85)

General VCMM (Copula with single parameter) (Kmeans scale)

Classification rate : 83.9% Normalised BIC : -7.14

1 lnorm(1.29, 0.52) sstd(2.04, 0.86, 6.36, 2.48) 3,2 F(2.2/0.23) 4,2;3 R90J(-1.05/-0.03) 4,2 C(0.43/0.18) 1,2;4 R90C(-0.19/-0.09)

2 llogis(12.78, 0.15) �(43.58, 354.61) 4,1 N(0.43/0.28) 3,1;4 F(-1.17/-0.13) 4,1 G(1.09/0.08) 3,1;4 N(-0.1/-0.07)

3 lnorm(�0.84, 0.39) snorm(0.15, 0.11, 178.44) 4,3 F(5.19/0.47) 4,3 T(0.77,30/0.56)

4 snorm(0.18, 0.04, 1.55) snorm(0.07, 0.03, 0.81)

Gaussian VCMM (Kmeans scale)

Classification rate : 79.7% Normalised BIC : -6.00

1 N (4.64, 2.66) N (2.05, 0.76) 2,1 N(-0.31/-0.2) 3,1;2 N(-0.02/-0.01) 4,1 N(0.16/0.1) 2,1;4 N(-0.12/-0.08)

2 N (0.15, 0.02) N (0.13, 0.02) 3,2 N(0.32/0.21) 4,2;3 N(0.17/0.11) 4,2 N(0.4/0.26) 3,2;4 N(-0.02/-0.01)

3 N (0.5, 0.19) N (0.17, 0.11) 4,3 N(0.47/0.31) 4,3 N(0.83/0.62)

4 N (0.19, 0.04) N (0.08, 0.04)

General VCMM (Hierarchical scale)

Classification rate : 86.9% Normalised BIC : -7.24

1 snorm(1.99, 0.73, 2.37) lnorm(1.36, 0.48) 4,1 F(0.51/0.06) 2,1;4 R270C(-0.15/-0.07) 2,1 N(-0.28/-0.18) 3,1;2 SC(0.1/0.05)

2 �(40.23, 322.64) llogis(12.03, 0.14) 4,2 SG(1.27/0.22) 3,2;4 F(-0.39/-0.04) 3,2 SG(1.42/0.29) 4,2;3 SJ(1.16/0.08)

3 snorm(0.15, 0.12, 346.35) sstd(0.48, 0.19, 7.12, 1.9) 4,3 SBB8(4.22,0.96/0.6) 4,3 SG(1.77/0.44)

4 N (0.07, 0.03) sstd(0.19, 0.04, 9.19, 1.46)

General VCMM (Copula with single parameter) (Hierarchical scale)

Classification rate : 87.8% Normalised BIC : -7.08

1 snorm(2.01, 0.74, 2.4) sstd(4.45, 2.5, 4.36, 2.79) 4,1 F(0.59/0.07) 2,1;4 R270C(-0.19/-0.08) 2,1 N(-0.3/-0.19) 3,1;2 SC(0.13/0.06)

2 �(39.12, 313.49) llogis(12.5, 0.14) 4,2 SG(1.27/0.22) 3,2;4 R270G(-1.05/-0.04) 3,2 SG(1.44/0.31) 4,2;3 SJ(1.11/0.06)

3 snorm(0.16, 0.12, 190.82) sstd(0.48, 0.19, 7.18, 1.94) 4,3 T(0.77,30/0.56) 4,3 SG(1.82/0.45)

4 N (0.07, 0.03) sstd(0.19, 0.04, 9.8, 1.41)

Gaussian VCMM (Hierarchical scale)

Classification rate : 78.4% Normalised BIC : -6.61

1 N (2.03, 0.73) N (4.73, 2.64) 4,2 N(0.44/0.29) 1,2;4 N(-0.11/-0.07) 2,1 N(-0.27/-0.17) 3,1;2 N(-0.04/-0.02)

2 N (0.13, 0.02) N (0.15, 0.02) 4,1 N(0.17/0.11) 3,1;4 N(-0.03/-0.02) 3,2 N(0.41/0.27) 4,2;3 N(0.25/0.16)

3 N (0.17, 0.11) N (0.5, 0.19) 4,3 N(0.83/0.63) 4,3 N(0.51/0.34)

4 N (0.08, 0.04) N (0.19, 0.05)

162 A APPENDICES

C.3 Pair plots of AIS data with initialization and final clustering

Initializing clustering

Random (50.2%)

Final clustering

(General VCMM)

Random (60.2%)

Final clustering

(General VCMM (Copula with single pa-

rameter))

Random (61.6%)

Final clustering

(Gaussian VCMM)

Random (65.8%)

Copula data for cluster 1 after

initializing clustering

Copula data for cluster 1 after

final clustering

(General VCMM)

Copula data for cluster 1 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 1 after

final clustering

(Gaussian VCMM)

Copula data for cluster 2 after

initializing clustering

Copula data for cluster 2 after

final clustering

(General VCMM)

Copula data for cluster 2 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 2 after

final clustering

(Gaussian VCMM)

Figure C.1: The pairwise scatter plot of the subset of AIS data and its u data for each cluster, after initializing

clustering with Random (First column), final clustering by general VCMM (Second column), General VCMM

(Copula with single parameter) (Third column) and Gaussian VCMM (Fourth column) with Random and

the EM algorithm reaching the highest classification rate. Di↵erent colours refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster.

C Appendix for Section 4 Real data sets 163

Initializing clustering Kmeans

(71.9%)

Final clustering

(General VCMM)

Kmeans (77.5%)

Final clustering

(General VCMM (Copula with single pa-

rameter))

Kmeans (76.7%)

Final clustering

(Gaussian VCMM)

Kmeans (91.4%)

Copula data for cluster 1 after

initializing clustering

Copula data for cluster 1 after

final clustering

(General VCMM)

Copula data for cluster 1 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 1 after

final clustering

(Gaussian VCMM)

Copula data for cluster 2 after

initializing clustering

Copula data for cluster 2 after

final clustering

(General VCMM)

Copula data for cluster 2 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 2 after

final clustering

(Gaussian VCMM)

Figure C.2: The pairwise scatter plot of the subset of AIS data and its u data for each cluster, after initializing

clustering with Kmeans (First column), final clustering by general VCMM (Second column), General VCMM

(Copula with single parameter) (Third column) and Gaussian VCMM (Fourth column) with Kmeans and

the EM algorithm reaching the highest classification rate. Di↵erent colours refer to the points from di↵erent

clusters. The number inside the round bracket is the classification rate, compared to the true cluster.

164 A APPENDICES

[!htbp]

Initializing clustering

Kmeans scale (68.1%)

Final clustering

(General VCMM)

Kmeans scale (91.4%)

Final clustering

(General VCMM (Copula with single pa-

rameter))

Kmeans scale (91.4%)

Final clustering

(Gaussian VCMM)

Kmeans scale (90.5%)

Copula data for cluster 1 after

initializing clustering

Copula data for cluster 1 after

final clustering

(General VCMM)

Copula data for cluster 1 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 1 after

final clustering

(Gaussian VCMM)

Copula data for cluster 2 after

initializing clustering

Copula data for cluster 2 after

final clustering

(General VCMM)

Copula data for cluster 2 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 2 after

final clustering

(Gaussian VCMM)

Figure C.3: The pairwise scatter plot of the subset of AIS data and its u data for each cluster, after initializing

clustering with Kmeans scale (First column), final clustering by general VCMM (Second column), General

VCMM (Copula with single parameter) (Third column) and Gaussian VCMM (Fourth column) with Kmeans

scale and the EM algorithm reaching the highest classification rate. Di↵erent colours refer to the points from

di↵erent clusters. The number inside the round bracket is the classification rate, compared to the true cluster.

C Appendix for Section 4 Real data sets 165

Initializing clustering

Hierarchical (85.3%)

Final clustering

(General VCMM)

Hierarchical (91.4%)

Final clustering

(General VCMM (Copula with single pa-

rameter))

Hierarchical (92.4%)

Final clustering

(Gaussian VCMM)

Hierarchical (90.5%)

Copula data for cluster 1 after

initializing clustering

Copula data for cluster 1 after

final clustering

(General VCMM)

Copula data for cluster 1 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 1 after

final clustering

(Gaussian VCMM)

Copula data for cluster 2 after

initializing clustering

Copula data for cluster 2 after

final clustering

(General VCMM)

Copula data for cluster 2 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 2 after

final clustering

(Gaussian VCMM)

Figure C.4: The pairwise scatter plot of the subset of AIS data and its u data for each cluster, after initializ-

ing clustering with Hierarchical (First column), final clustering by general VCMM (Second column), General

VCMM (Copula with single parameter) (Third column) and Gaussian VCMM (Fourth column) with Hierar-

chical and the EM algorithm reaching the highest classification rate. Di↵erent colours refer to the points from

di↵erent clusters. The number inside the round bracket is the classification rate, compared to the true cluster.

166 A APPENDICES

Initializing clustering

Hierarchical scale (81.3%)

Final clustering

(General VCMM)

Hierarchical scale (92.4%)

Final clustering

(General VCMM (Copula with single pa-

rameter))

Hierarchical scale (92.4%)

Final clustering

(Gaussian VCMM)

Hierarchical scale (91.4%)

Copula data for cluster 1 after

initializing clustering

Copula data for cluster 1 after

final clustering

(General VCMM)

Copula data for cluster 1 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 1 after

final clustering

(Gaussian VCMM)

Copula data for cluster 2 after

initializing clustering

Copula data for cluster 2 after

final clustering

(General VCMM)

Copula data for cluster 2 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 2 after

final clustering

(Gaussian VCMM)

Figure C.5: The pairwise scatter plot of the subset of AIS data and its u data for each cluster, after initializing

clustering with Hierarchical scale (First column), final clustering by general VCMM (Second column), General

VCMM (Copula with single parameter) (Third column) and Gaussian VCMM (Fourth column) with Hierar-

chical scale and the EM algorithm reaching the highest classification rate. Di↵erent colours refer to the points

from di↵erent clusters. The number inside the round bracket is the classification rate, compared to the true

cluster.

C Appendix for Section 4 Real data sets 167

C.4 Pair plots of BCW data with initialization and final clustering

Initializing clustering

Random (51.1%)

Final clustering

(General VCMM)

Random (50.4%)

Final clustering

(General VCMM (Copula with single pa-

rameter))

Random (51.1%)

Final clustering

(Gaussian VCMM)

Random (78.4%)

Copula data for cluster 1 after

initializing clustering

Copula data for cluster 1 after

final clustering

(General VCMM)

Copula data for cluster 1 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 1 after

final clustering

(Gaussian VCMM)

Copula data for cluster 2 after

initializing clustering

Copula data for cluster 2 after

final clustering

(General VCMM)

Copula data for cluster 2 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 2 after

final clustering

(Gaussian VCMM)

Figure C.6: The pairwise scatter plot of the subset of Breast Cancer Wisconsin Diagnostic data and its u data for

each cluster, after initializing clustering with Random (First column), final clustering by general VCMM (Sec-

ond column), General VCMM (Copula with single parameter) (Third column) and Gaussian VCMM (Fourth

column) with Random and the EM algorithm reaching the highest classification rate. Di↵erent colours refer to

the points from di↵erent clusters. The number inside the round bracket is the classification rate, compared to

the true cluster.

168 A APPENDICES

Initializing clustering

Kmeans (62.8%)

Final clustering

(General VCMM)

Kmeans (63.6%)

Final clustering

(General VCMM (Copula with single pa-

rameter))

Kmeans (63.0%)

Final clustering

(Gaussian VCMM)

Kmeans (68.5%)

Copula data for cluster 1 after

initializing clustering

Copula data for cluster 1 after

final clustering

(General VCMM)

Copula data for cluster 1 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 1 after

final clustering

(Gaussian VCMM)

Copula data for cluster 2 after

initializing clustering

Copula data for cluster 2 after

final clustering

(General VCMM)

Copula data for cluster 2 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 2 after

final clustering

(Gaussian VCMM)

Figure C.7: The pairwise scatter plot of the subset of Breast Cancer Wisconsin Diagnostic data and its u data for

each cluster, after initializing clustering with Kmeans (First column), final clustering by general VCMM (Sec-

ond column), General VCMM (Copula with single parameter) (Third column) and Gaussian VCMM (Fourth

column) with Kmeans and the EM algorithm reaching the highest classification rate. Di↵erent colours refer to

the points from di↵erent clusters. The number inside the round bracket is the classification rate, compared to

the true cluster.

C Appendix for Section 4 Real data sets 169

Initializing clustering

Kmeans scale (82.2%)

Final clustering

(General VCMM)

Kmeans scale (85.1%)

Final clustering

(General VCMM (Copula with single pa-

rameter))

Kmeans scale (83.9%)

Final clustering

(Gaussian VCMM)

Kmeans scale (79.7%)

Copula data for cluster 1 after

initializing clustering

Copula data for cluster 1 after

final clustering

(General VCMM)

Copula data for cluster 1 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 1 after

final clustering

(Gaussian VCMM)

Copula data for cluster 2 after

initializing clustering

Copula data for cluster 2 after

final clustering

(General VCMM)

Copula data for cluster 2 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 2 after

final clustering

(Gaussian VCMM)

Figure C.8: The pairwise scatter plot of the subset of Breast Cancer Wisconsin Diagnostic data and its

u data for each cluster, after initializing clustering with Kmeans scale (First column), final clustering by

general VCMM (Second column), General VCMM (Copula with single parameter) (Third column) and Gaussian

VCMM (Fourth column) with Kmeans scale and the EM algorithm reaching the highest classification rate.

Di↵erent colours refer to the points from di↵erent clusters. The number inside the round bracket is the

classification rate, compared to the true cluster.

170 A APPENDICES

Initializing clustering

Hierarchical (68.5%)

Final clustering

(General VCMM)

Hierarchical (82.2%)

Final clustering

(General VCMM (Copula with single pa-

rameter))

Hierarchical (74.8%)

Final clustering

(Gaussian VCMM)

Hierarchical (77.9%)

Copula data for cluster 1 after

initializing clustering

Copula data for cluster 1 after

final clustering

(General VCMM)

Copula data for cluster 1 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 1 after

final clustering

(Gaussian VCMM)

Copula data for cluster 2 after

initializing clustering

Copula data for cluster 2 after

final clustering

(General VCMM)

Copula data for cluster 2 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 2 after

final clustering

(Gaussian VCMM)

Figure C.9: The pairwise scatter plot of the subset of Breast Cancer Wisconsin Diagnostic data and its u

data for each cluster, after initializing clustering with Hierarchical (First column), final clustering by gen-

eral VCMM (Second column), General VCMM (Copula with single parameter) (Third column) and Gaussian

VCMM (Fourth column) with Hierarchical and the EM algorithm reaching the highest classification rate. Di↵er-

ent colours refer to the points from di↵erent clusters. The number inside the round bracket is the classification

rate, compared to the true cluster.

C Appendix for Section 4 Real data sets 171

Initializing clustering

Hierarchical scale (84.5%)

Final clustering

(General VCMM)

Hierarchical scale (86.9%)

Final clustering

(General VCMM (Copula with single pa-

rameter))

Hierarchical scale (87.8%)

Final clustering

(Gaussian VCMM)

Hierarchical scale (78.4%)

Copula data for cluster 1 after

initializing clustering

Copula data for cluster 1 after

final clustering

(General VCMM)

Copula data for cluster 1 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 1 after

final clustering

(Gaussian VCMM)

Copula data for cluster 2 after

initializing clustering

Copula data for cluster 2 after

final clustering

(General VCMM)

Copula data for cluster 2 after

final clustering

(General VCMM (Copula with single pa-

rameter))

Copula data for cluster 2 after

final clustering

(Gaussian VCMM)

Figure C.10: The pairwise scatter plot of the subset of Breast Cancer Wisconsin Diagnostic data and its

u data for each cluster, after initializing clustering with Hierarchical scale (First column), final clustering by

general VCMM (Second column), General VCMM (Copula with single parameter) (Third column) and Gaussian

VCMM (Fourth column) with Hierarchical scale and the EM algorithm reaching the highest classification rate.

Di↵erent colours refer to the points from di↵erent clusters. The number inside the round bracket is the

classification rate, compared to the true cluster.

172 REFERENCES

References

J. D. Banfield and A. E. Raftery. Model-based gaussian and non-gaussian clustering. Biometrics, 49(3):803–821,

1993. doi: https://doi.org/10.2307/2532201.

T. Bedford and R. M. Cooke. Vines : a new graphical model for dependent random variables. Annals of

Statistics, 30(4):1031–1068, 2002. doi: https://doi.org/10.1214/aos/1031689016.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York, 2006. URL https:

//www.springer.com/gp/book/9780387310732#aboutAuthors.

C. Czado. Analyzing Dependent Data with Vine Copulas - A Practical Guide With R. Springer International

Publishing, 2019. doi: https://doi.org/10.1007/978-3-030-13785-4.

U. J. Dang, A. Punzo, S. I. Paul D. McNicholas, and R. P. Browne. Multivariate response and parsimony

for gaussian cluster-weighted models. Journal of Classification volume, 34:4–34, 2017. URL https://

link.springer.com/article/10.1007/s00357-017-9221-2.

B. A. Desmarais and J. J. Harden. Testing for zero inflation in count models: Bias correction for the vuong

test. Stata Journal, 13(4):810–835, 2013. doi: https://doi.org/10.1177/1536867X1301300408.

K. Ellis, S. Godbole, S. Marshall, G. Lanckriet, J. Staudenmayer, and J. Kerr. Identifying active travel behaviors

in challenging environments using gps, accelerometers, and machine learning algorithms. Frontiers in Public

Health, 2(36), 2014. doi: https://doi.org/10.3389/fpubh.2014.00036.

C. Fraley. Algorithms for model-based gaussian hierarchical clustering. SIAM Journal on Scientific Computing,

57(1):270–281, 1998. doi: https://doi.org/10.1137/S1064827596311451.

L. A. Garćıa-Escudero, A. Gordaliza, C. Matrán, and A. Mayo-Iscar. Avoiding spurious local maximizers in

mixture modeling. Statistics and Computing, 25:619–633, 2015. doi: https://doi.org/10.1007/s11222-014-

9455-3.

J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm. Journal of the Royal

Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979. doi: https://doi.org/10.2307/2346830.

N. Heal. Agile, hackathons, and the danger of local maxima, 2020. URL https://medium.com/swlh/agile-

hackathons-and-the-danger-of-local-maxima-4c2255e8f63b.

C. Jin, Y. Zhang, S. Balakrishnan, M. J. Wainwright, and M. Jordan. Local maxima in the likelihood of

gaussian mixture models: Structural results and algorithmic consequences. Neural Information Processing

Systems (NIPS), 2016. URL https://arxiv.org/abs/1609.00978.

C. Liu and D. B. Rubin. The ecme algorithm: A simple extension of em and ecm with faster monotone

convergence. Biometrika, 81(4):633–648, 1994. doi: https://doi.org/10.2307/2337067.

G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions, Second Edition. Wiley, 2007. doi:

https://doi.org/10.1002/9780470191613.

X.-L. Meng and D. B. Rubin. Maximum likelihood estimation via the ecm algorithm: A general framework.

Biometrika, 80(2):267–278, 1993. doi: https://doi.org/10.2307/2337198.

K. P. Murphy. Machine Learning : A Probabilistic Perspective. The MIT Press, 2012.

A. Punzo and P. D. McNicholas. Parsimonious mixtures of multivariate contaminated normal distributions.

Biometrical Journal, 58(6):1506–1537, 2016. doi: https://doi.org/10.1002/bimj.201500144.

W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical

Association, 66(336):846–850, 1971. doi: https://doi.org/10.2307/2284239.

REFERENCES 173

Ö. Sahin and C. Czado. Vine copula mixture models and clustering for non-gaussian data. Econometrics

and Statistics, 2021. ISSN 2452-3062. doi: https://doi.org/10.1016/j.ecosta.2021.08.011. URL https:

//www.sciencedirect.com/science/article/pii/S2452306221001052.

L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery. mclust 5: Clustering, classification and density estimation

using gaussian finite mixture models. The R Journal, 8(1):205–233, 2016. doi: https://doi.org/10.32614/

RJ-2016-021.

E. Shireman, D. Steinley, and M. J. Brusco. Examining the e↵ect of initialization strategies on the performance

of gaussian mixture modeling. Behavior Research Methods volume, 49(1):282–293, 2017. doi: https://doi.org/

10.3758/s13428-015-0697-6.

A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut Statistique de

l’Universit e de Paris, 8:229–231, 1959.

D. A. van Dyk and X.-L. Meng. On the orderings and groupings of conditional maximizations within ecm-type

algorithms. Journal of Computational and Graphical Statistics, 6(2):202–223, 1997. doi: https://doi.org/

10.2307/1390931.

Q. H. Vuong. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57(2):

307–333, 1989. doi: https://doi.org/10.2307/1912557.

