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Abstract

Constrained optimization problems with non-convex cost function are ubiquitous in science and en-

gineering. One class of methods to solve such optimization problems are so-called metaheurisitics. A

particularly interesting subclass of metaheuristics are consensus-based optimization (CBO) methods.

The topic of this thesis is the devlopment and analysis of a CBO method for non-convex opti-

mization problems constrained on hypersurfaces (e.g. the sphere). We refer to the CBO method as

KV-CBO as it is based on the Kuramoto and Vicsek models. A CBO method is a zero-order method

in which many particles are placed on the graph of the cost function. The particles collaborate with

each other in order to find the global minimizer of the cost function. This collaboration is modeled

with a coupled system of stochastic differential equations which allows us to analyse it with tools from

mean-field theory and PDE theory. We prove the well-posedness of the model, derive the mean-field

equation and investigate the convergence of its solution towards the global minimizer. We further dis-

cuss implementation aspects and numerical experiments for common benchmark functions and three

important machine learning problems: robust PCA, phase-retrieval, and reconstruction of neural nets.

In summary: in this thesis we analyse a CBO method for non-convex optimization problems

constrained on hypersurfaces. We discuss the strengths and weaknesses of the method, and provide a

proof of concept that it can be used to solve real-world problems.
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Zusammenfassung

Optimierungsprobleme unter Nebenbedingungen und mit nicht-konvexer Kostenfunktion sind allge-

genwärtig in den Natur- und Ingenieurwissenschaften. Eine Klasse von Methoden um solche Opti-

mierungsprobleme näherungsweise zu lösen sind sogenannte Metaheuristiken. Eine interessante Teilk-

lasse von Metaheuristiken sind Konsensbasierte Optimierungsmethoden (CBO).

In dieser Dissertation entwicklen wir eine CBO Methode um nicht-konvexe Optimierungsprobleme

näherungsweise zu lösen. Dabei sind die Nebenbedingungen so, dass das Minimum auf einer gegebenen

Hyperfläche (z.B. der Sphäre) liegt. Die hier entwickelte Methode bezeichnen wir mit KV-CBO weil

diese auf den sogenannten Kuramoto und Vicsek Modellen basiert. Eine CBO Methode ist eine Opti-

mierungsmethode nullter Ordnung. In einer CBO Methode werden viele Partikel auf dem Graphen der

Kostenfunktion positioniert. Die Partikel kommunizieren untereinander um gemeinsam das globale

Minimum der Kostenfunktion zu finden. Mathematisch wird so eine Dynamik mit einem gekoppel-

ten System von stochastischen Differentialgleichungen beschrieben. Dies erlaubt es uns die Methode

mit Hilfsmittels auf der mean-field Theorie und der Theorie der partiellen Differentialgleichungen

zu untersuchen. Wir beweisen, dass das Modell korrektgestellt ist, leiten die mean-field Gleichung

her und untersuchen die Konvergenz ihrer Lösung gegen das globale Minimum der Kostenfunktion.

Weiter diskutieren wir eine Reihe numerischer Experimente für bekannte Benchmarkfunktionen. Wir

betrachten auch die Anwendbarkeit auf das robust PCA Problem, das Phasenproblem und das Rekon-

struieren von neuronalen Netzen.

Zusammengefasst: in dieser Dissertation analysieren wir eine CBO Methode für nicht-konvexe

Kostenfunktionen auf Hyperflächen. Es werden die Stärken und Schwächen der Methode besprochen

und wir zeigen, dass die Methode für praktische Anwendungen benutzt werden kann.

7



8



Contents

Notation 11

1 Introduction 15

2 Consensus-based Optimization in Euclidean Space 19

2.1 Particle swarm optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Consensus-based optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Anisotropic noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Strong and weak solutions of SDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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Notation

Parameters/ constants and cost function:

E , E , E cost function, its maximum and minimum

E, E, E regularized cost function, its maximum and minimum

c1, c2, c3, c4 see definition 3.1.1

V ? global minimizer of E (not necessarily unique)

d dimension of the Euclidean space Rd

T time horizon

λ coupling constant

σ diffusion constant

α temparature parameter

Cα see (3.54)

Cα see (3.54)

Cσ,d see (5.45)

Cσ see (6.91)

Differential geometry (see section 3.4):

Γ hypersurface

γ level set function

Γδ neighborhood of Γ

ΠΓ(v) projection onto Γ

PΓ(v) projection onto orthogonal complement of v ∈ Γ

TvΓ tangent plane at v ∈ Γ

n(v) outward unit normal at v ∈ Γ

d(v) distance function

Sd−1 unit sphere in Rd

∂i partial derivative w.r.t ith variable

∂Γ,i ith component of the tangential gradient on Γ

∇ gradient (w.r.t the space variable)

∇2 Hessian
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∆ Laplace operator (or Laplacian)

∇Γ tangential gradient on Γ

∆Γ Laplace Beltrami operator on Γ

Particle system and mean-field equation:

V it = V i(t) ith particle at time t

ρNt empirical measure, see (3.45)

V α(ρNt ) consensus point of the particles, see (3.46)

CΓ correction term for the isotropic model, see (3.44)

CaniΓ correction term for the anisotropic model, see (6.94)

‖V (N)
t ‖1 1-norm of the particles, see (3.55)

‖V (N)
t ‖∞ ∞-norm of the particles, see (3.56)

ρt(v) = ρ(t, v) solution of the mean-field equation

V α(ρt) consensus point for ρt

Measure theory and probability/ statistics:

(Ω,A, P ) probability space

P(Γ) probability measures on Γ

Pp(Γ) probability measures on Γ with bounded pth moment

Pac(Γ) absolutely continuous probability measures on Γ

ρ⊗N tensorized probability measure, see section 2.2

Bt Brownian motion

A infinitesimal generator or σ-algebra

law law/ distribution of a random variable or stochastic process

∼ distributed as

U(Γ) uniform distribution on Γ

N (µ, σ2) normal (or Gaussian) distribution

Nd d-dimensional normal (or Gaussian) distribution

E expected value/ expecation

E normalized expected value/ expecation, see (5.56)

V variance

# push forward

BRd Borel σ-algebra on Rd

δv Dirac delta concentrated at v

Wp Wasserstein p-norm

Π set of couplings between two probability measures

〈·, ·〉 dual pairing (or inner product)

Function classes
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Ck([0, T ]) k times continuously differntiable functions [0, T ]→ R
Ck([0, T ],Rd) k times continuously differntiable functions [0, T ]→ Rd

C∞c (Rd) smooth functions with compact support Rd → R
Ck,γ(Rd) Hölder contiuous functions in Ck with Hölder exponent γ

C0,1(Rd) Lipschitz continuous functions

Lp(Rd) Lebesgue space for p ∈ [1,∞],

measurable functions f : Rd → R s.t.
∫
Rd |f(x)|pdx <∞

Lp(µ) Lebesgue space for p ∈ [1,∞] and measure µ,

measurable functions f : Rd → R s.t.
∫
Rd |f(x)|pdµ(x) <∞

Hk(Rd) Sobolev space for k ∈ [0,∞]

(Hk(Rd))′ dual space of Hk(Rd)
Lp([0, T ];X) Bochner space, see definition 5.2.1

W 1,p,q see theorem 5.2.1

Miscellaneous

R+ positive reals

| · | Euclidean norm

‖ · ‖p p-norm for p ∈ [1,∞] (for p = 2 we write | · |)
‖ · ‖F Frobenius norm

v ⊗ w tensor product vwT

Id d× d identity matrix

Tr trace

: A : B = Tr(ATB), see (2.45)

det determinant

supp support of a function or measure

rank rank of a matrix

[N ] set {1, ..., N}
· dot product (inner product in Rd)
H Heaviside function

Hε regularized Heaviside function

Dδ cap, see (5.46)

D̃δ interior of the cap, see (5.49)

Bd1 (0) unit ball {x ∈ Rd | |x| ≤ 1}
esssup essential supremum

essinf essential infimum

∗ Khatri-Rao product, see (6.70)

vec vecotrization of a matrix

∇2
h discretized Hessians
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Abbreviations

ODE ordinary differential equation

PDE partial differential equation

SDE stochastic differential equation

SVD singular value decomposition

PCA principal component analysis

iid independent and identically distributed

ae almost everywhere

wrt with respect to

rhs right hand side

lhs left hand side

st such that

iff if and only if
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Chapter 1

Introduction

An important problem in many disciplines of science, engineering and economics is global optimization.

Global optimization, that is, the problem of finding the gloabl optimum of a given cost function E
is ubiqutous and includes problems like finding the shortest possible route between a given list of

cities (see Traveling Salesman Problem), finding the optimal shape of a wing of an airplane (see shape

optimization), and finding the optimal allocation of scarce resources (e.g. organs, see [Pardalos and

Romeijn, 2009]). Optimization plays an important role in Lagrangian mechanics, signal processing

(e.g. compressed sensing, phase-retrieval), operations research (e.g. supply chain management) and

machine learning to name just a few areas of application.

In short: optimization problems are everywhere, and the development of a mathematical theory

to understand them and practical algorithms to solve them is of high importance.

0 /2

1/2

1

Figure 1.1: The Rastrigin function is an important benchmark function

In this thesis we will analyse a consensus-based optimization method on hypersurfaces (e.g. the

sphere). We first start with some general remarks about optimization problems, before restricting

ourselves to the subproblem of optimization on hypersurfaces, see [Absil and Hosseini, 2017] for

practical applications of this subproblem.

First, global optimization can be substituted with global minimization or global maximization, as

the problem of minimizing a cost function E is equivalent to maximizing the negative −E , with the
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same set of minimizers. We here consider only global minimization. Second, optimization problems

only make sense for real-valued cost functions, otherwise we could not compare the function values

of two distinct inputs. More precisely: given a cost function E : X 7→ R for some general set X, the

optimization problem is about finding the element x? ∈ X such that E(x?) ≤ E(x) for all x ∈ X. This

problem is also stated as

Find x? ∈ X such that x? ∈ arg min
x∈X
E(x) (1.1)

where arg min is the subset of X for which the cost function takes minimal values, see figure 1.1 for an

example of a cost function with X = [0, π] and x? = π/2. We refer to x? as the minimizer and E(x?)

as the minimum. Third, the optimization problem (1.1) is not solvable (NP-hard) in general. Fourth,

in this thesis we consider non-convex constrained optimization problems where the cost function is

non-convex and the constraint is such that the solution lies on a given hypersurface.

A standard method to solve problem (1.1) is the famous gradient descent method. This method

proceeds as follows: starting with an initial value x0 ∈ Rd it moves in the direction of steepest descent.

The direction of steepest descent is given by the negative gradient −∇E(x0) ∈ Rd. The GD method

thus computes

x1 = x0 − η∇E(x0) (1.2)

where η > 0 is a step size (or learning rate). This process is then repeated for x1, x2, x3, ... until no fur-

ther improvement in the function values is achieved. Some advantages of the gradient descent method

are its simplicity and popularity. Disadvantages include the fact that it requires the computation of

the gradient of the cost function which could be expensive or impossible to compute, and the lack of

convergence proofs towards a global minimizer. The latter is a particular problem for non-convex cost

functions with many local minimizers, as the Rastrigin function in figure 1.1.

Figure 1.2: The Rastrigin function on S2. For 5 particles we plotted the trajectories with the corre-
sponding starting positions in yellow.

A different class of optimization methods are the so-called metaheuristics, see [Back et al., 1997],

[Gendreau and Potvin, 2010] and [Blum and Roli, 2003]. Numerous metaheuristics have been con-

16



sidered for global optimization. One of the most prominent metaheuristics is ant colony optimization

(ACO), see [Dorigo and Blum, 2005], [Dorigo and Di Caro, 1999]. Other important metaheuristics

include hill climbing (HC), evolutionary programming (EP), scatter search (ScS), simulated annealing

(SimA), random search (RS), tabu search (TS), genetic algorithms (GA), particle swarm optimization

(PSO) and consensus-based optimization (CBO).

In general metaheuristics are not well understood. Most metaheuristics can not be analysed

rigorously as they lack a formal mathematical description. For CBO methods (and PSO as we will

see in the next chapter) the situation is different. A CBO model starts with many particles V i0 (also

known as agents, players or algorithms) for i = 1, ..., N , where the subscript 0 denotes time t = 0.

The particles are placed on the graph of the cost function. They all know their corresponding function

value E(V i0 ), and they can communicate among each other. The particles than play a game in which

they try to collectively find the global minimizer of the cost function. Eventually the particles reach

consensus where they believe the global minimizer is, see figure 1.2. As the method does not require

the computation of gradients of the cost function it is a derivative-free optimization method, see [Audet

and Hare, 2017], [Conn et al., 2009] and [Larson et al., 2019] for introductions to the topic.

In more mathematical terms, a CBO method is a system of first order stochastic differential

equations (SDE) complemented with suitable inital data V i0 sampled from some probability density,

say V i0 ∼ U(Sd−1). This allows for a rigorous mathematical analysis. In this thesis we carry out this

analysis for a particular CBO model, namely the Kuramoto-Vicsek CBO model or KV-CBO.

Contributions

In this thesis we analyse a consensus-based optimization model, the so-called Kuramoto-Vicsek CBO

model or KV-CBO model for short, for global optimization problems constrained on a hypersurface

Γ ⊂ Rd. We discuss implementation issues and real-world applications. The thesis is self-contained

and is based on the publications [Fornasier et al., 2020], [Fornasier et al., 2021a] and [Fornasier et al.,

2021b]. Chapters 5 and 6 and the appendix contain unpublished work. More precisely: in chapter 5

we argue that the assumptions needed in the convergence proof of the original publication are very

strict and propose different assumptions that are easy to satisfy. The presented convergence proof is

a significant simplification of the original proof. In chapter 6 we discuss the applicability of the KV-

CBO method to the problem of reconstructing neural nets. Further, the appendix includes detailed

proofs for the anisotropic KV-CBO model that have not been published in this detail in the original

publication.

In Chapter 2 we explain the basic concepts and ideas from CBO theory in Euclidean space, and give

an overview of important publications. We lay the groundwork for the rest of the thesis and motivate

the connection between CBO and PSO. The reader already familiar with CBO may start with chapter

3.
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In Chapter 3 we introduce the class of cost functions that we consider in this thesis. We further

discuss the popular Kuramoto and Vicsek models that describe collective synchronization phenomena.

These models motivate the KV-CBO model on Sd−1. We further generalize the model to hypersurfaces

Γ ⊂ Rd and discuss the well-posedness of the model.

In Chapter 4 we derive the mean-field equation of the KV-CBO model and prove its well-posedness.

The main result of this chapter is the proof of a mean-field limit result, that is, as the number of

particles N → ∞ the empirical measure converges toward the solution of the mean-field equation (a

PDE). The results in this chapter are proved for general compact hypersurfaces Γ.

In Chapter 5 we prove the main theorem of this thesis, namely the convergence of the consensus

point V α(ρt) toward the global minimizer V ? of the cost function. We discuss the conditions on the

initial density ρ0 and the coefficients of the KV-CBO model needed to achieve this convergence. In

this chapter we restrict ourselves to the sphere Γ = Sd−1.

In Chapter 6 we discuss implementation aspects of the KV-CBO model, including descritization and

acceleration aspects. We further present the Matlab package which can be downloaded from GitHub

and discuss important applications in machine learning (robust PCA, phase retrieval, reconstruction

of neural nets). We set a high value on reproducibility of the numerical experiments. Whenever

possible, the exact Matlab scripts to reproduce the results can be downloaded from GitHub. In this

chapter we restrict ourselves to the sphere Γ = Sd−1.

In the Appendix we give important definitions of stochastic calculus for the readers convienience.

We further present detailed proofs of the KV-CBO model with anisotropic (componentwise) noise for

the special case Γ = Sd−1. Last, we discuss common benchmark functions (Rastrigin, Ackley, Alpine,

Schaffer, Solomon, Lévi, Xin-She Yang random, Griewank) that are included in the Matlab package.
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Chapter 2

Consensus-based Optimization in

Euclidean Space

In this section we give an overview of CBO models in Euclidean space. This serves as a motivation

for the technically more complicated case of CBO models on hypersurfaces which are the main object

of interest in this thesis. The discussion of the Euclidean case is important as it allows us to intro-

duce basic concepts and ideas needed throughout this thesis. These include among others stochastic

differential equations (SDE), empirical density, consensus of particles, propagation of chaos, McKean

process, Fokker-Planck equation, mean-field equation and mean-field limit. These ideas are sketched

in this section and will be made precise in chapter 4 on the mean-field limit. CBO models have first

been introduced in the two pioneering publications [Pinnau et al., 2017] and [Carrillo et al., 2018],

which we will outline in this chapter. The reader already familiar with CBO methods may skip this

chapter.

2.1 Particle swarm optimization

We start this chapter with a short introduction about particle swarm optimization (PSO). PSO

methods have been introduce in [Kennedy and Eberhart, 1995], [Kennedy, 1997] (see also [Kennedy,

2010], [Poli et al., 2007]) and fall in the class of metaheuristics. Particle swarm optimization methods

provide an interesting link to consensus-based optimization and open promising directions for further

research. The standard PSO method can be understood as a discretization of a second (!) order

system of SDEs with solution (Xi
t , V

i
t ) ∈ Rd×2 for i ∈ [N ], where Xi

t and V it are the position and

velocity of the ith particle at time t ≥ 0 respectively. CBO methods are a special case of PSO,

they can be recovered in the so-called zero-inertia limit. We refer to the publications [Grassi et al.,

2021], [Grassi and Pareschi, 2021] and [Cipriani et al., 2021] (see also [Huang, 2021]) which we now

briefly outline.

Let E : Rd → R a cost function we wish to minimize. For simplicity we assume E to be smooth and
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Figure 2.1: Depiction of particles (in red) and velocities (black arrows). The minimum of the cost
function is located in the center of the image (dark blue).

have a unique global minimizer. We now introduce N particles with position Xi
0 ∈ Rd and velocity

V i0 ∈ Rd, where the subscript 0 denotes the iteration n = 0 (the time). These initial positions and

velocities are chosen randomly, see figure 2.1. The original (time-discrete) PSO method updates the

positions and velocities asXi
n+1 = Xi

n + V in+1

V in+1 = V in + c1R
n
1 (Y in −Xi

n) + c2R
n
2 (Y n −Xi

n)
(2.1)

where c1, c2 are the acceleration coefficients, Rn1 , R
n
2 are two d-dimensional diagonal matrices with

entires sampled from a uniform distribution in [0, 1]. Further Y in is the local best position (also known

as personal best position, see also [Totzeck and Wolfram, 2020]) found by particle i up to iteration n,

and Y n is the global best position found by all the N particles up to iteration n. The local and global

best are defined as

Y i0 = Xi
0, Y in+1 =

Y in if E(Xi
n+1) ≥ E(Xi

n)

Xi
n+1 if E(Xi

n+1) < E(Xi
n)

(2.2)

and Y 0 = arg mini∈[N ]{E(Xi
0)}

Y n+1 = arg mini∈[N ]{E(Xi
n+1), E(Y n)}

(2.3)

respectively.

It is then shown that (2.1) is a discretization of the (time continuous) second order systemdXi
t = V it dt

dV it = λ1(Y it −Xi
t)dt+ λ2(Y t −Xi

t)dt+ σ1D(Y it −Xi
t)dB

1,i
t + σ2D(Y t −Xi

t)dB
2,i
t

(2.4)
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where B1,i
t , B2,i

t are Borwnian motions for the particle i, λk = ck/2 and σk = ck/2
√

3 for k = 1, 2,

and D(Y it −Xi
t) and D(Y t −Xi

t) are diagonal matrices with entries Y it −Xi
t respectivley Y t −Xi

t .

Introducing inertia m, regularizing the global best with Xα(ρNt ) and dropping the local best terms

Y it for simplicity (no memory) yields the systemdXi
t = V it dt

mdV it = −γV it dt− λ(Xi
t −Xα(ρNt ))dt+ σD(Xα(ρNt )−Xi

t)dB
2,i
t

(2.5)

where γ = (1−m) and Xα(ρNt ) is the regularized global best defined as

Xα(ρNt ) =

∑N
i=1X

i
te
−αE(Xit)∑N

i=1 e
−αE(Xit)

(2.6)

for a given parameter α� 1. In [Cipriani et al., 2021] it is shown that in the zero inertia limit m→ 0

the PSO system (2.5) is equivalent to

dXi
t = −λ(Xi

t −Xα(ρNt ))dt+ σD(Xi
t −Xα(ρNt ))dBit. (2.7)

This is the anisotropic CBO model that we discuss below, see (2.27). Note that this is a first (!) order

system, and thus a significant simplification of the second order PSO system.

2.2 Consensus-based optimization

The global optimization problem considered in [Pinnau et al., 2017] is

Find X? ∈ Rd such that X? = arg min
Rd
E (2.8)

where E ∈ Cb(Rd) is a given cost function. The first step in any CBO model is sampling the initial

particles Xi
0 ∼ ρ0 iid for i ∈ [N ] from a common probability distribution ρ0 ∈ P(Rd). This is also

denoted as (X1
0 , ..., X

N
0 ) ∼ ρ⊗N0 . We evaluate the cost function E at these locations and form a first

guess for the location of the (unknown) global minimizer X? as

Xα =

∑N
i=1X

i
0e
−αE(Xi0)∑N

i=1 e
−αE(Xi0)

∈ Rd (2.9)

where α � 1 is the so-called temperature parameter. The consensus point Xα is thus a weighted

averaged mean of the particles Xi
0 where the weight function is given by x 7→ e−αE(x). This means that

particles Xi
0 ∈ Rd with large function values E(x) have a very small weight, they are less important

than the particles with small function values. The consensus point Xα is thus a convex combination

of the particles, where the weight is determined by the function value of the particle. We generalize
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Figure 2.2: Left: weight function x 7→ e−αx for different values of α. For a large value of α the weights
drops steeply. Right: one-dimensional Brownian motion in [0, 1] with variance σ = 0.2.

the definition (2.9) by introducing the empirical measure

ρNt =
1

N

N∑
i=1

δXit (2.10)

which is a very rough object (it is a sum of Dirac delta functions). Now we can define the consensus

point at time t ∈ [0, T ] as

Xα(ρNt ) =

∫
Rd xe

−αE(x)dρNt (x)∫
Rd e

−αE(x)dρNt (x)
=

∑N
i=1X

i
te
−αE(Xit)∑N

i=1 e
−αE(Xit)

∈ Rd. (2.11)

In a CBO model we want the particles Xi
t to move towards the consensus point Xα(ρNt ) in a ran-

dom trajectory. [Pinnau et al., 2017] modeled this with the coupled system of stochastic differential

equations

dXi
t = −λ(Xi

t −Xα(ρNt ))Hε(E(Xi
t)− E(Xα(ρNt )))dt︸ ︷︷ ︸

drift term

+σ|Xi
t −Xα(ρNt )|dBit︸ ︷︷ ︸
diffusion term

(2.12)

for all i ∈ [N ] where Bit is the Brownian motion of the ith particle (each particle has its own Bownian

motion). Further Hε is a smooth regularized version of the Heaviside function H : R → R where

H(x) = 1 for x > 0 and H(x) = 0 else. The N equations in this system of SDEs are coupled through

the consensus point Xα(ρNt ).

The system of equations (2.12) is difficult to understand at first. We therefore motivate it for a particle

Xi
t for which the function value is larger than the function value of the consensus point, that is, let Xi

t

a particle with E(Xi
t) > E(Xα(ρNt )). In this case we want the particle to move towards the consensus

point. The regularized Heaviside function gives Hε(E(Xi
t)−E(Xα(ρNt ))) = 1 and the equation for Xi

t
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is

dXi
t = −λ(Xi

t −Xα(ρNt ))dt (2.13)

where we assumed σ = 0 for simplicity. This is an equation of motion (ẋ = f(x)) for the particle

Xi
t moving in the direction of the vector Xα(ρNt ) − Xi

t , that is, Xi
t moves towards Xα(ρNt ) as de-

sired. If on the other hand the particle has a smaller function value than the consensus point, that

is, E(Xi
t) < E(Xα(ρNt )), we do not want the particle to move towards Xα(ρNt ). In this case the

regularized Heaviside function is zero and consequently there is no drift term. Assuming again the

case of σ 6= 0 we see that the particle Xi
t moves in a random trajectory. The randomness plays a

crucial role as it allows the particle to explore the cost function. We note that the randomness is

larger when the particle is further away from the consensus point. In other words: the diffusion term

σ|Xi
t −Xα(ρNt )|dBit favours exploration.

If the particles reach a stationary state dXi = 0 for all i ∈ [N ] with Xi = Xj for all i 6= j, we say that

the particles have reached consensus. If the particles have reached a stationary state but are not all at

the same location, then the particles have reached non-uniform consensus. We say that macroscopic

consensus is reached when the probability distribution of the particles ρt converges, in a way to be

made precise, to a Dirac delta as t → ∞, that is, ρt → δx̂ for some x̂ ∈ Rd. This is equivalent to

V (ρt) → 0 and E(ρt) → x̂ as t → ∞, where V and E denote the variance and expected value of ρt

respectively. Usually it is clear from the context whether we talk about microscopic or macroscopic

consensus, and therefore only use the term consensus to refer to both. It is not at all obvious if and

when particles driven by a given CBO model form consensus or not. We will discuss this issue in later

chapters.

The CBO model (2.12) is very difficult or even impossible to analyse. An idea to make the analysis

tractable is to employ techniques from kinetic theory. The intention is to find a mean-field equation

that describes the evolution of the probability distribution of the particles. As the name suggests, a

mean-field equation is an equation for the average of the particles.

How to derive a mean-field equation for the CBO model (2.12)? A standard approach is to consider

the dynamics of the, say, first marginal of the empirical measure ρNt , which we denote by ρt, and make

the propagation of chaos assumption ρNt ≈ ρ⊗Nt . This means that we assume the empirical density

to be approximately tensorized, that is, the particles at time t are approximately independent. It

is important to note that this assumption can only hold approximately: the particles, driven by a

coupled (!) system of SDEs, can not be independent at any time t > 0. However, in the large particle

limit N → ∞, any fixed number of particles k ∈ N are approximately independent. Hence, we can

formally (!) apply the law of large numbers

1

N

N∑
i=1

Xi
te
−αE(Xit) ≈

∫
Rd
xe−αE(x)dρt(x),

1

N

N∑
i=1

e−αE(Xit) ≈
∫
Rd
e−αE(x)dρt(x) (2.14)

23



which implies

Xα(ρNt ) ≈ Xα(ρt). (2.15)

The fact that the consensus point of the empirical measure Xα(ρNt ) is approximated by the consensus

point of the first marginal Xα(ρt) decouples the original CBO model. The CBO model (2.12) formally

simplifies to

dXt = −λ(Xt −Xα(ρt))Hε(E(Xt)− E(Xα(ρt)))dt+ σ|Xt −Xα(ρt)|dBt (2.16)

where ρt = law(Xt) is the law or probability distribution of the stochastic process Xt. This SDE

is a nonlinear McKean process or McKean SDE. This is not a standard SDE: the evolution of its

solution X depends on the microscopic location Xt as well as the macroscopic probability distribution

ρt = law(Xt). This type of equation is also called distribution dependent SDE. The well-posedness of

such SDEs has been investigated in [Mishura and Veretennikov, 2020]. The solution X of the McKean

SDE is a stochastic process with unknown distribution ρt = law(Xt).

An equation for the probability distribution ρt(x) = ρ(t, x) is given by

∂tρt = ∇ · (µ(ρt)ρt) + ∆(κ(ρt)ρt) (2.17)

where

µ(ρt)(x) = λ(x−Xα(ρt))Hε(E(x)− E(Xα(ρt))), κ(ρt)(x) =
σ2

2
|x−Xα(ρt)|2 (2.18)

for x ∈ Rd, see section 2.5. Further ∇ = ∇x and ∆ = ∆x denote the gradient and Laplacian wrt the

space variable. The first term ∇ · (µ(ρt)ρt) is the convection term and the second term ∆(κ(ρt)ρt) is

the diffusion term, corresponding to the drift and diffusion terms of the McKean SDE respectively.

Hence, the equation is a convection-diffusion equation. We refer to equation (2.17) as the mean-field

equation (also known as Fokker-Planck equation, mean-field PDE or the PDE ).

Convection-diffusion equations, and the special case of Fokker-Planck equations, are classes of

equations that can take very different forms. The Fokker-Planck equation (2.17) is a particularly

complex equation: it is non-linear and non-local in the convection and diffusion part, where the non-

locality comes from the integrals in the definition of the consensus point Xα(ρNt ), see (2.11). This

raises several open analytical and numerical problems.

Let us summarize the last few paragraphs. We wanted to derive a mean-field equation for the CBO

model (2.12). To this end we made the propagation of chaos assumption ρNt ≈ ρ⊗Nt , which allowed us

to use the law of large numbers to simplify the expression for the consensus point Xα(ρNt ). This led to

the decoupled McKean process (2.16) for which we can derive a mean-field equation of Fokker-Planck

type given by (2.17). We will make this precise in chapter 4.
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Now that we have a mean-field equation for the probability distribution ρt = law(Xt), we are left with

two problems: 1) proving that the solution ρt converges to a Dirac delta δx̂ (macroscopic consensus),

and 2) proving that x̂ is close to the global minimizer X? of E . In [Pinnau et al., 2017] these problems

have been investigated for the special case σ = 0 and Hε ≡ 1. For the first problem it is shown that

for a suitable initial probability distribution ρ0, the solution of the mean-field equation ρt converges

to a Dirac delta δx̂. This was done by showing that

V (ρt) = e−2λtV (ρ0) (2.19)

implying the monotonic decay of the variance V (ρt)→ 0. Further it is shown that E(ρt)→ x̂.

For the second problem it is shown that under suitable smoothness conditions on the cost function

E the consensus point Xα(ρt) converges to a point that is in the neighbourhood of the global minimizer

X?, and that this neighbourhood can be made arbitrarily small by choosing α� 1 sufficiently large.

Around the same time [Pinnau et al., 2017] was published a second pioneering publication appeared,

see [Carrillo et al., 2018]. The authors study a simpler CBO model given by

dXi
t = −λ(Xi

t −Xα(ρNt ))dt+ σ|Xi
t −Xα(ρNt )|dBit (2.20)

for i ∈ [N ], which corresponds to (2.12) with the regularized Heaviside function Hε = 1. We note

that the authors were not able to derive the McKean process (2.16) rigorously, and consequently also

the derivation of the Fokker-Plank equation is only formal, see [Carrillo et al., 2018, remark 3.2] (see

also [Huang and Qiu, 2021] for a qualitative result and [Fornasier et al., 2021c]).

2.3 Anisotropic noise

The CBO models considered thus far all have isotropic noise, that is, every component of the d-

dimensional Brownian motion is scaled with the same number σ|Xi
t − Xα(ρNt )|. In this section we

explain why this is not desirable and present an alternative, see [Carrillo et al., 2020].

We start with a simple example of a monoparticle SDE to illustrate that the drift and diffusion

parameters depend to the dimension d of the Euclidean space. This dimension dependence is a prob-

lem for the CBO models when we consider high dimensional optimization problems that often arise

in applications.

The problem is illustrated with the monoparticle SDE

dXt = −λ(Xt −X?)dt+ σ|Xt −X?|dBt, X0 = x0 (2.21)

where X?, x0 ∈ Rd are given vectors. This SDE corresponds to a shifted version of the CBO model

(2.20) with only one particle N = 1 and no consensus point Xα. By Dynkin’s formula (respectively
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Itô’s formula, see section 2.5 and example 2.6.1) we have

d

dt
E|Xt −X?|2 = −(2λ− dσ2)E|Xt −X?|2 (2.22)

which implies that the parameters need to satisfy the condition 2λ > dσ2 in order to achieve
d
dtE|Xt − X?|2 < 0 which is necessary for the convergence of Xt to X?. This condition on the

parameters λ and σ is not desirable as it involves a strong dependence on the dimension d. If d grows,

the corresponding λ needs to be large, or the corresponding σ needs to be chosen small. We will see

later that a large λ is not desirable (see remark 5.3.1).

We now replace the isotropic noise with anisotropic or component-wise noise, that is, we consider the

monoparticle SDE

dXt = −λ(Xt −X?) + σD(Xt −X?)dBt, X0 = x0 (2.23)

where

D(Xt −X?) := diag(Xt −X?) ∈ Rd×d (2.24)

is a diagonal matrix with the components of Xt − X? ∈ Rd on its diagonal (note that the entries

can be negative). In this new model each component of the d-dimensional Brownian motion Bt is

multiplied by the corresponding coordinate of Xt −X?, that is,

σD(Xt −X?)dBt = σ

d∑
k=1

(Xt −X?)k(dBt)kek. (2.25)

where ek is the kth standard basis vector in Rd and (dBt)k is the kth coordinate of the d-dimensional

Brownian motion. Hence, if the kth coordinate of Xt is far away from the kth coordinate of X?, then

the kth coordinate of the Brownian motion will be scaled with a larger number (in absolute value),

resulting in a stronger random exploration in this one direction.

Applying Dynkin’s formula yields

d

dt
E|Xt −X?|2 = −2λE|Xt −X?|2 + σ2E(

d∑
k=1

(Xt −X?)2
k) = −(2λ− σ2)E|Xt −X?|2. (2.26)

Now the condition on the parameters is 2λ > σ2. Hence the explicit dimension dependence is removed.

This finishes the discussion of the monoparticle SDE (2.21).

In chapter 6 we will see that the anisotropic version of the KV-CBO method performs significantly

better than the isotropic version in numerical tests, see figure 6.2.

The CBO model (2.20) with anisotropic noise reads as

dXi
t = −λ(Xi

t −Xα(ρNt ))dt+ σD(Xi
t −Xα(ρNt ))dBit (2.27)
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and the mean-field equation for ρt(x) = ρ(t, x) is

∂tρt = ∇ · (µ(ρt)ρt) +
σ2

2

d∑
k=1

∂kk((x−Xα(ρt))
2
kρt) (2.28)

where the drift term is given by µ(ρt)(x) = λ(x − Xα(ρt)) as before. In the next chapter we will

derive the KV-CBO model with isotropic and anisotropic noise. In chapter 5 we will then derive

similar conditions on the parameters λ and σ in order to guarantee convergence, see (5.53) and

(6.177) respectively.

The treatment of the anisotropic KV-CBO model is technically more difficult as the mean-field

equation is more complicated, see (6.124).

2.4 Strong and weak solutions of SDEs

In this section we give an introduction to strong and weak solutions of SDEs, and provide a classical

result about existence and uniqueness of such solutions. This result is important for the investigation

of the well-posedness of the KV-CBO model. We refer to [Baldi, 2017] and [Durrett, 2018].

We consider a general SDE of the form

dXt = λ(Xt, t)dt+ σ(Xt, t)dBt, X0 = x0, a.e. (2.29)

where the drift and diffusion coefficients are measurable functions λ : Rd × [0, T ] → Rd and σ :

Rd × [0, T ] → Rd×d′ respectively, and x0 ∈ Rd is a given vector. The solution X : [0, T ] → Rd is

a stochastic process on some probability space (which we neglect for simplicity, see section 3.3). As

usual we write Xt = X(t).

Definition 2.4.1 (Weak solution). If ∃ a Brownian motion B on some probability space (Ω,A, P )

with filtration F , and a stochastic process X that satisfies (2.29), then (X,B,Ω,A, P,F) is a weak

solution of (2.29).

It is important to note that here we can choose the Brownian motion B, as well as the probability

space (Ω,A, P ) and the filtration F . If for the chosen (B,Ω,A, P,F) we find a stochastic process X

that solves the SDE, then we call X a weak solution. We note that a weak solution of an SDE is not

comparable with a weak solution of a PDE (we do not consider weak formulations of SDEs).

The notion of a strong solution requires the SDE (2.29) to be solved ∀ Brownian motions on a com-

mon (!) probability space (Ω,A, P ) with filtration F . The existence of strong solutions implies the

existence of weak solutions.

Definition 2.4.2 (Strong solution). If ∀ Brownian motions B on some probability space (Ω,A, P )
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with filtration F there exists a stochastic process X that satisfies (2.29), then (X,B,Ω,A, P,F) is a

strong solution of (2.29).

As a consequence of these different notions of solutions of SDE, we have to consider different no-

tions of uniqueness either. These will be uniqueness in distribution (also known uniqueness in

law) for weak solutions and pathwise uniqueness for strong solutions. Let X(i) for i = 1, 2 be

two weak solutions. We have uniqueness in distribution if the corresponding pushforwards of X(i)

equal, that is, (X(1))#P
(1) = (X(2))#P

(2). For strong solutions (X(i), B,Ω,A, P,F) the appropri-

ate notion of uniqueness is pathwise uniquenss which is given if X(i) are indistinguishable, that is,

P (X(1) = X(2) on [0, T ]) = 1.

Pathwise uniqueness implies uniqueness in distribution. This implication is however not straight-

forward as it requires to compare solutions defined on different probability spaces and driven by

different Brownian motions.

The existence and uniqueness theory for SDEs relies on the coefficients satisfying a local Lipschitz

condition and a linear growth condition. The former allows us to use a similar proving technique as

in the famous Picard-Lindelöf theorem from ODE theory. The following theorem is a classical result

and can be found in [Durrett, 2018, Thm 3.1, Ch. 5] which proves the existence of a global pathwise

unique strong solution if a local martingale property is satisfied. We however are only interested in

local solutions here.

Theorem 2.4.1. Let the coefficient functions σ, λ be locally Lipschitz continuous, that is, for any

n <∞ there is a constant Kn such that

|σij(x)− σij(y)| ≤ Kn|x− y|, |λi(x)− λi(y)| ≤ Kn|x− y| (2.30)

for all |x|, |y| ≤ n. Then the SDE

dXt = λ(Xt)dt+ σ(Xt)dBt (2.31)

has a local (!) pathwise unique strong solution up to some finite time T .

2.5 Itô’s formula

In this section we will introduce Itô’s formula from stochastic calculus. This formula is the stochastic

analogue of the chain rule from calculus df(x) = f ′(x)dx which no longer holds for stochastic processes

due to the quadratic variation of Brownian motion, that is, in general df(Bt) 6= f ′(Bt)dBt where Bt

is a Brownian motion.

We will first introduce Itô’s formula for a scalar function and then generalize it to multi-dimensional

functions. We always consider functions f that only depend on space and not on time.
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We start with an example that illustrates that the chain rule does not hold for stochastic processes.

The fundamental theorem of calculus states that for a continuous function f ′ ∈ C([0, T ]) with an

indefinite integral f we have∫ T

0

f ′(x) dx = f(T )− f(0) or df(x) = f ′(x)dx. (2.32)

We now consider the stochastic integral
∫
f ′(Bt)dBt for f ′(x) = x. To this end we let ∆k denote

a partition of the interval [0, T ], that is, ∆k = {0 = tk1 < tk2 ≤ ... ≤ tkk−1 < tkk = T}, with |∆k| =

supi∈[k−1] |tki+1 − tki | → 0 as k →∞. The stochastic integral is given by

∫ T

0

Bt dBt = lim
|∆k|→0

k−1∑
i=1

Btki (Btki+1
−Btki ) (2.33)

= lim
|∆k|→0

1

2

k−1∑
i=1

(B2
tki+1
−B2

tki
)− (Btki+1

−Btki )2. (2.34)

With the quadratic variation of the Brownian motion

lim
|∆k|→0

k−1∑
i=1

(Btki+1
−Btki )2 = T (2.35)

we thus get ∫ T

0

Bt dBt =
1

2
(B2

T − T ). (2.36)

We observe that (2.32) does not hold with f(x) = x2/2. Instead we have

df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)dt (2.37)

which can be written in integral form as

f(BT ) = f(0) +

∫ T

0

f ′(Bt) dBt +
1

2

∫ T

0

f ′′(Bt) dt. (2.38)

This is the most basic example of Itô’s formula.

We now generalize this result to multidimensional functions and general stochastic processes Xt.

Since we are only interested in the differential form df(Xt) we will no longer state the equivalent

integral form.

Theorem 2.5.1 (Itô’s formula (one-dimensional, no time-dependence)). Let f ∈ C2(R) and

dXt = λ(t,Xt)dt+ σ(t,Xt)dBt (2.39)
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be a stochastic process for t ∈ [0, T ] and Xt ∈ R. Then we have

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2. (2.40)

With the differential rules (dt)2 = 0, dBtdt = 0 and dB2
t = dt this can be written as

df(Xt) =
(
f ′(Xt)λ(t,Xt) +

1

2
f ′′(Xt)σ

2(t,Xt)
)
dt+ f ′(Xt)σ(t,Xt)dBt (2.41)

for t ∈ [0, T ].

We note that (2.37) follows from (2.41) by choosing λ = 0 and σ = 1. We further note that in (2.41)

only the function f ∈ C2(R) is differentiated, not the drift or diffusion coefficients.

We now introduce the generalization of Itô’s formula to high-dimensional functions. As above, we

only consider functions f that do not depend on time, the coefficient functions however have a time-

dependence.

Theorem 2.5.2 (Itô’s formula (multi-dimensional, no time dependence)). Let f ∈ C2(Rd,R) and

dXt = λ(t,Xt)dt+ σ(t,Xt)dBt, X0 = x (2.42)

be a stochastic process for t ∈ [0, T ] and Xt ∈ Rd. Here, the drift and diffusion coefficients are multi-

variate functions λ : [0, T ]× Rd → Rd, σ : [0, T ]× Rd → Rd×d′ and Bt is a d′-dimensional Brownian

motion. Then

df(Xt) =

(
∇f(Xt) · λ(t,Xt) +

1

2
Tr(σ(t,Xt)

T∇2f(Xt)σ(t,Xt))

)
dt+∇f(Xt) · σ(t,Xt)dBt (2.43)

where σk is the k-th row of the matrix σ, ∇ = ∇x is the gradient and ∇2 = ∇2
x the Hessian. We can

write the trace term as

Tr(σ(t,Xt)
T∇2f(Xt)σ(t,Xt)) =

d∑
k,l=1

(∇2f(Xt))klσk(t,Xt)σl(t,Xt)
T . (2.44)

Sometimes the notation : defined as A : B = Tr(ATB) is used to simplify the trace term, that is,

Tr(σ(t,Xt)
T∇2f(Xt)σ(t,Xt)) = ∇2f(Xt) : (σ(t,Xt)

Tσ(t,Xt)) (2.45)

is used.

An other important formula in stochastic calculus is the Dynkin’s formula. This formula is closely

related to Itô’s formula and is briefly outlined in the following. Taking the conditional expected value

of the integral version of (2.43) and using the martingale property of Brownian motion (the integral

30



over the last term on the rhs of (2.43) = 0) yields

E(f(Xt)|X0 = x) = f(x) + E(

∫ t

0

Af(Xs) ds) (2.46)

where A is the infinitesimal generator of the stochastic process X given by

Af(x) = ∇f(x) · λ(t, x) +
1

2
Tr(σ(t, x)T∇2f(x)σ(t, x)) (2.47)

for any sufficiently smooth test function f . This is Dynkin’s formula and can also be written as

d

dt
E(f(Xt)|X0 = x) = E(Af(Xt)). (2.48)

2.6 The Fokker-Planck equation

We now come to the derivation of the Fokker-Planck equation (see [Öttinger, 1996]) corresponding

to the stochastic process dXt = λ(t,Xt)dt + σ(t,Xt)dBt in 1D, which we later generalize to higher

dimensions. The Fokker-Planck equation, also known as Kolmogorov forward equation, describes the

evolution of the probability density function ρt(x) = ρ(x, t) of the stochastic process Xt with initial

data X0 ∼ ρ0 for ρ0 ∈ P(Rd) and is crucial for the analysis carried out in this thesis.

In order to derive the Fokker-Planck equation for the general stochastic process Xt we introduce

the transition probability p(s, z, t, x) of jumping from position z at time s to position x at time t > s.

We set

ρt(x) = p(s, z, t, x). (2.49)

Assume that Xt = x for some time t. We are now interested in the conditional expected value

f(Xt+∆t) for some small ∆t > 0 and test function f . With the transition probability from above we

have

E(f(Xt+∆t) | Xt = x) =

∫
Rd
f(y)p(t, x, t+ ∆t, y) dy. (2.50)

Since we are interested in the time evolution of the transition probability p it makes sense to consider

the infinitesimal generator of the stochastic process X defined as

Af(x) = lim
∆t→0

E(f(Xt+∆t) | Xt = x)− f(x)

∆t
. (2.51)

The expected value of Af(x) is given by∫
Af(x)p(s, z, t, x) dx (2.52)
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and our aim is to derive an equation for ρt(x) = p(s, z, t, x). With (2.51) we can rewrite (2.52) as∫
Af(x)p(s, z, t, x) dx

=

∫
lim

∆t→0

1

∆t

∫
f(y)p(t, x, t+ ∆t, y)p(s, z, t, x) dy − f(x)p(s, z, t, x) dx

(2.53)

= lim
∆t→0

1

∆t

∫
f(y)p(s, z, t+ ∆t, y) dy −

∫
f(x)p(s, z, t, x) dx (2.54)

where we have used the Chapman–Kolmogorov theorem in the last step. Renaming the integration

variable y as x the last expression is recognized as a partial derivative with respect to time∫
Af(x)p(s, z, t, x) dx =

∫
f(x)∂tp(s, z, t, x) dx. (2.55)

Taking the adjoint operator of A and requiring the above equation to hold for all test functions f we

get A?p(s, z, t, x) = ∂tp(s, z, t, x). Which can be written in terms of the probability density ρt as

∂tρt(x) = A?ρt(x) (2.56)

which is the Fokker-Planck equation or Kolmogorov forward equation of the stochastic process X. It

remains to make the adjoint of the infinitesimal generator explicit. In (2.47) we have already derived

A which in 1D simplifies to

Af(x) = λ(t, x)f ′(x) +
σ2(t, x)

2
f ′′(x). (2.57)

The adjoint of A can easily be found by an application of integration by parts

A?ρt(x) = −(λ(t, x)ρt(x))′ +
1

2
(σ2(t, x)ρt(x))′′ (2.58)

which yields the Fokker-Planck equation

∂tρt(x) = λ(t, x)f ′(x) +
σ2(t, x)

2
f ′′(x). (2.59)

In Rd the Fokker-Planck equation takes the form

∂tρt(x) = −∇x · (λ(t, x)ρt(x)) +
1

2

d∑
k,l=1

∇2
x(σk(t, x)σl(t, x)T ρt(x)). (2.60)

Example 2.6.1. Now we can compute the derivative d
dtE|Xt −X?|2 where Xt is the solution of the

monoparticle SDE from section 2.3, that is,

dXt = −λ(Xt −X?)dt+ σ|Xt −X?|dBt. (2.61)
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In this case the infinitesimal generator is given by

Af(x) = −λ(Xt −X?) · ∇f(x) +
σ2

2
|Xt −X?|2∆f(x) (2.62)

and we have f(x) = |x−X?|2, ∇f(x) = 2(x−X?) and ∆f(x) = 2d, which implies

d

dt
E|Xt −X?|2 = (−2λ+ σ2d)E|Xt −X?|2. (2.63)

2.7 Wasserstein distance

An important tool in CBO theory is the Wasserstein distance Wp on the space Pp(X) of Borel

probability measures with finite pth moment for 1 ≤ p <∞, see [Villani, 2009] and [Ambrosio et al.,

2008] for a detailed discussion. If Pp(X) is equipped with the Wasserstein distance Wp it is also

refered to as Wasserstein space. In this thesis the important exponents are p = 1 and p = 2. In the

former case the Wasserstein distance W1 is also known as Kantorovich–Rubinstein distance or Earth

Mover’s distance. With Hölders inequality it can be shown that

W1 ≤W2 (2.64)

that is, the Wasserstein-1 distance is the weakest Wasserstein distance.

For a Polish space (X, d) with metric d and two probability measures µ, ν ∈ Pp(X) we define the

Wasserstein distance as

W p
p (µ, ν) := inf

{∫
X×X

d(x, y)p dπ(µ, ν)

}
(2.65)

where the infimum is taken over all π ∈ Π(µ, ν), the collection of all Borel probability measures on

X × X with marginals µ and ν in the first and second component respectively. The Wasserstein

distance can also be expressed as

W p
p (µ, ν) = inf

{
E
(
d(X,Y )p

)}
(2.66)

where the infimum is taken over all random variables X,Y with law(X) = µ and law(Y ) = ν. This

immediately implies

W p
p (µ, ν) ≤ E

(
d(X,Y )p

)
. (2.67)

We need the probability measures to have finite pth moment to ensure that the Wasserstein distance

is bounded. The distance that we will use is the usual Euclidean distance d(x, y) = |x − y| and the

space X = Rd.
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An important fact about the Wasserstein-1 distance is the following dual representation

W1(µ, ν) = sup
Lip(ψ)≤1

{∫
X

ψ d(µ− ν)

}
(2.68)

where the supremum is taken over all ψ ∈ C(X,R) with Lipschitz constant ≤ 1.

2.8 Laplace’s principle

In this section we discuss Laplace’s principle from large deviation theory (see [Dembo and Zeitouni,

2010] and [Miller, 2006]). We state two versions of Laplace’s principle: qualitative and quantitative.

The former is a convergence result of − 1
α log ‖e−αE‖L1(ρ0) towards the global minimizer of E as α→∞.

The latter also gives a convergence rate in terms of α and d. In chapter 5 we will prove a variant of

Laplace’s principle for the solution of the mean-field equation of the KV-CBO model, see lemma 5.4.4.

We remind the reader of the equivalent notations

‖e−αE‖L1(ρ0) =

∫
Rd
e−αE(v)dρ0(v) = Ev∼ρ0(e−αE(v)) (2.69)

for a probability measure ρ0.

Lemma 2.8.1 (Laplace’s principle (qualitative version)). Let ρ0 ∈ Pac(Rd) an absolutely continuous

measure with respect to the Lebesgue measure on Rd and E ∈ C2(Rd,R+). Then we have

lim
α→∞

− 1

α
log ‖e−αE‖L1(ρ0) = inf

v∈supp(ρ0)
E(v). (2.70)

The validity of the result can be seen as follows. Taking the exponential on the left hand side

yields

exp
(
− 1

α
log ‖e−αE‖L1(ρ0)

)
=

(∫
Rd
e−αE(v) dρ0(v)

)−1/α

=
1

‖e−E‖Lα(ρ0)
. (2.71)

With ‖ · ‖Lα → ‖ · ‖L∞ we then find

lim
α→∞

1

‖e−E‖Lα(ρ0)
=

1

‖e−E‖L∞(ρ0)
= essinfv∈supp(ρ0) e

E(v) (2.72)

which finishes our simple argument.

The proof of the following quantitative version of Laplace’s principle can be found in [Ha et al.,

2021, Proposition 3.1].

Lemma 2.8.2 (Laplace’s principle (quantitative version)). Let E ∈ C2(Rd,R+) a cost function with

global minimizer X? such that

det(∇2E(X?)) > 0. (2.73)
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Let further ρ0 ∈ Pac(Rd) an absolutely continuous measure with respect to the Lebesgue measure on

Rd and with density f . The density f is assumed to satisfy the following conditions

1. f is compactly supported,

2. f is continuous at X?, and

3. f(X?) > 0.

Then the following result with convergence rate holds

lim
α→∞

− 1

α
log ‖e−αE‖L1(ρ0) = inf

v∈supp(ρ0)
E(v) +

d

2

logα

α
+O(1/α). (2.74)

Let us finish this chapter with an important remark.

Remark 2.8.1. Laplace’s principle will play an important role in chapter 5 when we proof the opti-

mization results of the KV-CBO method. The principle suggests that a large value for α is desirable.

On the one hand this is correct, as a large value for α increases the approximation properties of the

method, see theorem 5.4.2. On the other hand a large value for α quickly deteriorates other estimates

in the convergence proof as many of the estimates involve a constant Cα = O(eα).

2.9 Summary

We have discussed the basics of CBO theory in Euclidean space and the connection to PSO. We have

introduced basic concepts needed throughout this thesis. These include among others: consensus

point, Itô’s formula, Fokker-Planck equation, Laplace’s principle and Wasserstein distance. Further,

we have discussed the important distinction between isotropic and anisotropic noise.
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Chapter 3

The Kuramoto-Vicsek Model

This chapter discusses the derivation and well-posedness of the KV-CBO model on the sphere and

then generalize it to hypersurfaces Γ. The model is based on the Kuramoto and Vicsek models that

describe respectively collective synchronization phenomena and collective behaviour of self-propelled

particles with a fixed speed. Both have numerous applications in the natural sciences. We introduce

the class of cost functions that we consider throughout the thesis and introduce the anisotropic version

of the model. The final models can be found in (3.43) (isotropic) and (3.50) (anisotropic) below.

This chapter is based on joint work of Massimo Fornasier, Hui Huang, Lorenzo Pareschi and myself

and has been published in [Fornasier et al., 2020], [Fornasier et al., 2021b].

3.1 Constrained optimization and cost functions

Let us start with a brief recap of what a CBO model is: a CBO model is a system of coupled SDEs. The

solutions V it = V i(t) ∈ Rd to the N equations are refered to as particles. The particles move in random

trajectories and are expected to reach consensus at a location close to the global minimizer of the

given cost function E , that is, V α(ρNT ) ≈ V ? for a finite (!) time horizon T ∈ (0,∞). Differently from

the previous chapter we here consider constrained optimization problems on a compact hypersurface

Γ ⊂ Rd

Find V ? ∈ Γ such that V ? = arg min
Γ
E (3.1)

where the cost function is minimized over a compact hypersurface Γ ⊂ Rd. The compactness of Γ is

crucial. It allows for a rigorously derivation of the mean-field equation of the CBO model (which the

authors of [Carrillo et al., 2018] could not show for their CBO model in Rd). See also [Borghi et al.,

2021] for a treatment of constrained consensus-based optimization.

Before discussing the derivation of the model we first define the class of cost functions which we

consider. Concerning the terminology: In the literature a cost function is also called cost functional,

objective function, target function or energy. We however stick to the former terminology of cost
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function.

Definition 3.1.1 (Class of cost functions). Let c1, c2, c3, c4 be positive constants. A cost function E
belongs to the class C(c1, c2, c3, c4) if the following conditions are satisfied

1. E(v) ∈ [0,∞) for all v ∈ Γ,

2. E ∈ C2(Rd,R+),

3. |∇E| ≤ c1,

4. |∇2E|, |∆E| ≤ c2,

5. For any v ∈ Γ there exists a global minimizer V ? ∈ Γ of E such that

|v − V ?| ≤ c3|E(v)− E(V ?)|c4 (3.2)

where E(V ?) = E,

6. E is locally Lipschitz continuous.

In order to apply the quantitative version of Laplace’s principle, see (2.8.2) an additional condition is

needed, namely

det(∇2E(V ?)) > 0 (3.3)

for any global minimizer V ?.

The first condition is not surprising: if the function were not bounded from below the minimiza-

tion problem would not make sense. When the function is bounded by a negative constant, say

E ∈ [c,∞) for some c < 0 where the constant is known, we can simply consider the shifted cost

function E = E − c ∈ [0,∞).

The second, third and fourth conditions are technical requirements needed to later prove the conver-

gence of the method. For the numerical implementation such a smoothness assumption is however

not required. Actually, the main motivation for investigating CBO models is that they are zero order

methods, that is, do not rely on costly computations of gradients or Hessians of the cost function.

As the CBO model only uses function evaluations, the numerical implementation of the CBO can

for example be applied to functions which are only piecewise continuous. We note however that the

well-posedness of the KV-CBO model is only guaranteed for locally Lipschitz continuous cost functions.

The fifth condition requires the cost function to be contained in a convex envelope, see figure 3.1

below. If the function value E(v) for some v ∈ Γ is close to the global minimum E then v must be

close to one of the global minimizers V ?. For a small constant c4 > 0 the convex envelope is flat, for

a large constant c4 > 0 it is steep. This conditions is also known as coercivity condition or inverse

continuity assumption (ICA).
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Figure 3.1: The cost function E can have multiple local minima. Here the Rastrigin function on S1 is
shown. The particles are shown in red, the consensus point in green.

An important benchmark cost function is the famous Rastrigin function

ER(v) = Ad+ |v|2 −A
d∑
i=1

cos(2πvi) (3.4)

for all v ∈ Rd. The Rastrigin function satisfies all the conditions from above, see lemma 6.2.1.

3.2 The Kuramoto and Vicsek models

In this section we discuss the classical and generalized Kuramoto model and the Vicsek model, see [Stro-

gatz, 2000] and [Acebron et al., 2005]. The classical Kuramoto model describes collective synchroniza-

tion phenomena of a large population of coupled phase oscillators. Building on the terminology from

the beginning of this chapter we can think of these phase oscillators as particles on the 1-dimensional

sphere S1. The Kuramoto model has surprisingly many applications, it models biological, physical,

chemical and social phenomena. We list a few of these applications below. The generalized Kuramoto

model is a version of the classical Kuramoto model that operates in arbitrary dimensions d and its

derivation relies on the introduction of a complex-valued order parameter. Closely related to the Ku-

ramoto model is the Vicsek model which models the evolution of a collection of self-driven particles

that move in Rd and have constant speed of 1, that is, their velocity is an element of Sd−1.

A glimpse into the fascinating world of synchronization phenomena:

• Social: At the end of a good concert the audience applauds to show the musicians that they liked

the concert. Since everybody has an individual clapping frequency the rhythm of the applause

appears incoherent, at first. But, already after a very short time a remarkable phenomenon is

observed: the auditorium claps in unison. Possibly thousands or tens of thousands of spectators

have locked to a common frequency and now clap in synchrony.

• Physics: A Josephson junction is a device that consists of two or more coupled superconduc-

tors separated by a thin insulating barrier. Connecting a large number N of them allows to
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produce a large effective output power proportional to N2, provided their oscillation frequency

in synchronized. The collective behaviour of Josephson junction arrays can be modelled with

the Kuramoto model.

• Medicine: The heart rate is controlled by electrical impulses of large networks of pacemaker

cells. The collective firing of these pacemaker cells causes the heart to contract. In order for

the heart to beat in a steady and regular rhythm the pacemaker cells need to lock to a common

frequency. Physical activity and emotional thrill requires the pacemaker cells to change their

firing frequency coherently to change the heart rate. The synchronization of the firing rate of

pacemaker cells can be described with the Kuramoto model.

θi

r ψ

θi

r
ψ

θi

Figure 3.2: Phase-oscillators and order parameter at different times.

A first step to modelling synchronization phenomena is to consider each member of the population

as a phase oscillator ϑit = ϑi(t) with a given fixed individual natural frequency ωi ∼ g(ω) where g is

a symmetric probability distribution which we assume to have zero mean without loss of generality.

Here i ∈ [N ] and the superscript t ∈ [0, T ] denotes time.

[Kuramoto, 1975] proved that the long-term dynamics of any system of weakly coupled, nearly

identical phase oscillators follows the equation

d

dt
ϑi = ωi +

N∑
j=1

Kij(ϑ
j − ϑi) (3.5)

for an interaction function K to be chosen. The Kuramoto model 1 corresponds to the choice of

mean-field coupling of the phase differences

Kij(ϑ
j − ϑi) =

λ

N
sin(ϑj − ϑi) (3.6)

where λ ≥ 0 is the coupling constant. For λ < λc where λc is a critical coupling constant, we call the

system weakly coupled, whereas for λ > λc we call it strongly coupled. The factor 1/N ensures that

1MATLAB implementation is available at https://blogs.mathworks.com/cleve/2019/08/26/

kuramoto-model-of-synchronized-oscillators/
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the model is well-behaved in the large particle limit or continuum limit N → ∞. We can measure

synchronization of the system with the complex-valued order parameter

reiψ =
1

N

N∑
j=1

eiϑ
j

(3.7)

where r = r(t) measures the coherence, and ψ = ψ(t) is the average phase, see figure 3.2. Multiplying

the order parameter with e−iϑ
j

and comparing imaginary parts yields

d

dt
ϑi = ωi + λr sin(ψ − ϑi). (3.8)

In this equation each oscillator appears to be uncoupled, however they still interact through the quan-

tities ψ and r. More precisely: the phase of the oscillator ϑi moves towards the mean phase ψ, rather

than towards the phase of any other oscillator ϑj .

We can further observe an interesting behaviour in the effective coupling strength λr: if the oscilla-

tors become more coherent, that is r grows, the effective coupling strength also increases, hence the cou-

pling becomes even stronger and more oscillators are attracted. For coupling constants λc < λ <∞,

those oscillators with |ωi| < λr are phase-locked, that is, d
dtϑ

i = 0, while those with |ωi| > λr are

drifting and move out of synchrony.

In higher dimensional spaces Rd we can generalize the classical Kuramoto model with ωi = 0 as

d

dt
V it =

λ

N

N∑
j=1

PΓ(V it )V jt (3.9)

for V it ∈ Γ and Γ = Sd−1 where PΓ(V it ) = I − V it ⊗ V it is the projection onto the orthogonal com-

plement of V it and the time derivative is applied component wise, that is, ( ddtV
i
t )k = d

dt (V
i
t )k for k ∈ [d].

With

V t =
1

N

N∑
i=1

V it (3.10)

the model can be rewritten as
d

dt
V it = λPΓ(V it )V t. (3.11)

We now prove that this model is a generalization of the classical Kuramoto model if the natural

frequencies are zero ωi = 0. To this end we set V it = (cosϑit, sinϑ
i
t)
T and consider the equation for

the first component of (3.9), that is,

d

dt
cosϑi =

λ

N

N∑
j=1

(cosϑj − 〈V it , V
j
t 〉 cosϑi) (3.12)
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where 〈V it , V
j
t 〉 = cosϑit cosϑjt + sinϑit sinϑjt which further gives

d

dt
cosϑi =

λ

N

N∑
j=1

(cosϑj − (cosϑj cos2 ϑi + sinϑi sinϑj cosϑi)) (3.13)

=
λ

N

N∑
j=1

sinϑi(cosϑj sinϑi − sinϑj cosϑi) (3.14)

where we have used 1− cos2 ϑi = sin2 ϑi.

With
d

dt
cosϑi = − sinϑi

d

dt
ϑi (3.15)

this simplifies to

d

dt
ϑi =

λ

N

N∑
j=1

− cosϑj sinϑi + sinϑj cosϑi =
λ

N

N∑
j=1

sin(ϑj − ϑi) = λ sin(ψ − ϑi). (3.16)

Hence we recover the classical Kuramoto model (3.5), (3.6).

So far we have motivated synchronization phenomena and discussed a famous model for such phe-

nomena which we have generalized to arbitrary dimensions d in the case when there are no natural

frequencies.

Some 20 years after the original work of Kuramoto [Vicsek et al., 1995] proposed a model for

self-driven particles with a constant absolute velocity (speed) motivated by applications in biology,

e.g. the collective motion of certain bacteria. As the authors wrote: ”The only rule of the model

is: at each time step a given particle driven with a constant absolute velocity assumes the average di-

rection of motion of the particles in its neighborhood of radius r with some random perturbation added”.

The discrete Vicsek model, translated to our notations, reads asXi
t+∆t = Xi

t + v∆t(cosϑit, sinϑ
i
t)
T

ϑit+∆t = 1
N

∑
j K(Xi

t −X
j
t )ϑjt + ηit

(3.17)

with the kernel function

K(x) =

1, |x| < τ

0, |x| ≥ τ
(3.18)

where τ > 0 is a given threshold, v > 0 is a given fixed length (we consider v = 1), and ηit ∼ U [−π, π]

is uniformly distributed noise.

Introducing the notation V it = (cosϑit, sinϑ
i
t)
T the continuous version of the Vicsek model can be
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rewritten as dXi
t = V it dt

dV it = PΓ(V it ) 1
N

∑
j K(Xi

t −X
j
t )V jt + σPΓ(V it ) ◦ dBit

(3.19)

where ◦ denotes the Stratonovich form of the SDE (see appendix) and we introduced the diffusion

coefficient σ ≥ 0. The initial positions and velocities are chosen randomly according to a common

distribution on Rd (for Xi
t) and Sd−1 (for V it ) respectively.

We can reformulate this system in Itô’s form asdXi
t = V it dt

dV it = −PΓ(V it )( 1
N

∑
j K(Xi

t −X
j
t )(V it − V

j
t ))dt+ σPΓ(V it )dBit − σ2

2 (d− 1)
V it
|V it |2

dt
(3.20)

where we have used PΓ(V it )V it = 0. This is the formulation of the original Vicsek model that is best

suited for our purposes. We refer to [Bolley et al., 2012] for the derivation of the mean-field limit of

this model. Further important theoretical results for the Vicsek model were obtained in [Degond and

Motsch, 2008], [Gamba and Kang, 2016], [Degond et al., 2015] and [Figalli et al., 2018].

In the following we will establish the connection between the Vicsek and the Kuramoto model. The

Kuramoto model is a deterministic model for the particles V i ∈ Sd−1 where only the natural frequen-

cies ωi and the initial particles are chosen randomly. The Vicsek model on the other hand is stochastic

and is a second order system. Here, the particles are moving in Euclidean space Rd, not on the sphere

as in the Kuramoto model.

Choosing the interaction kernel K = 1 eliminates the Xi
t ’s from the second equation of (3.20), and

the system reduces to

dV it = −λPΓ(V it )(V it − V t)dt+ σPΓ(V it )dBit −
σ2

2
(d− 1)

V it
|V it |2

dt. (3.21)

The deterministic version (σ = 0) of this model equals the Kuramoto model derived above, see (3.11).

We will see later that choosing the initial particles on the sphere Sd−1 has the desirable property that

they stay on the sphere for all time t ∈ [0,∞).

We summarize the few paragraphs from above: the Kuramoto model describes the collective behaviour

of coupled oscillators that eventually lock to a common frequency provided their individual natural

frequency ωi was not too large. The Kuramoto model is not (!) a CBO model. The oscillators do not

form consensus, they perpetually move around on the sphere. The model (3.21) does not involve a

cost function to be minimized.

Let us now incorporate a cost function E into the model.
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At time t = 0 the only information available to the particles are the function evaluations at the

initial positions, that is, E(V i0 ) for i ∈ [N ]. From this information we form a guess of the (unknown)

position of the global minimizer V ? of E , and then, instead of moving towards the average V t as in the

model (3.21) the particles move towards this guess. There are many possibilities to form such a guess,

e.g. one could just choose arg mini∈[N ] E(V i0 ). This would however pose a problem in the derivation

of the mean-field equation as not all particles would be similar/ interchangeable.

The guess is chosen as

V α(ρNt ) =

∑N
i=1 V

i
t e
−αE(V it )∑N

i=1 e
−αE(V it )

=

∫
Rd ve

−αE(v)dρNt (v)∫
Rd e

−αE(v)dρNt (v)
(3.22)

where

ρNt =
1

N

N∑
i=1

δV it (3.23)

is the empirical measure of the particles at time t, δV it is the Dirac delta, and α� 1 is the temperature

parameter to be chosen. This choice is motivated by Laplace’s principle, see section 2.8.

The consensus point (3.22) only involves function evaluations at a fixed time t but ignores previous

function evaluations at time t̃ < t. It is however possible to incorporate memory mechanisms into the

CBO model, see section 2.1 (PSO).

V i
t

T
V i

t

S1

Figure 3.3: The particle V it moves in the direction PΓ(V it )V α(ρNt ) (black arrow). The consensus point
is shown in green.

With the consensus point from above the model (3.21) takes the form

dV it = λPΓ(V it )V α(ρNt )dt+ σPΓ(V it )dBit −
σ2

2
(d− 1)

V it
|V it |2

dt (3.24)

where we have used PΓ(V it )V it = 0. It is important that each particle has its own Brownian motion.
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System (3.24) is not yet the final KV-CBO model on the sphere. We want the particles that

are far away from the consensus point V α(ρNt ) to have a stronger random component. More pre-

cisely: if |V it − V α(ρNt )| is large then the particle should further explore the cost function E (have

large diffusion). The hope is that the particle finds a location (e.g. a basin) where the cost function

attains much smaller function values than all the other particles have found so far. If on the other

hand |V it −V α(ρNt )| is small, that is, the particle is already very close to the consensus point, then the

stochastic component should be small and eventually vanish completely so that the particles can reach

consensus. We choose the scale for the Brownian motion as σ|V it − V α(ρNt )|, see (2.20). However,

other choices are also be possible (see anisotropic model below).

The KV-CBO model on the sphere Γ = Sd−1 is given by

dV it = λPΓ(V it )V α(ρNt )dt+ σ|V it − V α(ρNt )|PΓ(V it )dBit + CΓ(V it , V
α(ρNt )dt (3.25)

where

CΓ(V it , V
α(ρNt ) = −σ

2

2
(d− 1)|V it − V α(ρNt )|2 V it

|V it |2
(3.26)

is the correction term which guarantees that the particles stay on Γ if initially chosen there.

Before extending this model to general compact hypersurfaces Γ we first define the particles/

empirical measure in terms of random variables/ functions/ measures.

3.3 A measure theoretical perspective

So far we have interpreted the particles as vectors in Rd, that is, V it ∈ Rd for each t ∈ [0, T ]. This

is definitely a handy short notation that we will use throughout this thesis, but it does not reflect

what is really happing. In more rigorous terms the particle V i is a stochastic process (= a collection

of random variables indexed by time) on some probability space (Ωi,Ai, P i) for i ∈ [N ]. With the

Kolmogorov extension theorem (see appendix) we can find a common probability space for all the

particles (Ω,A, P ).

Hence, a particle V i is a stochastic process

V i : [0, T ]× (Ω,A, P )→ Rd (3.27)

and V it is a random variable

V it : (Ω,A, P )→ Rd (3.28)

for each time t ∈ [0, T ]. We define the probability distribution or law of the particle V it as the
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pushforward measure

µit(A) := (V it )#P (A) = P ◦ (V it )−1(A) = P (V it ∈ A), A ∈ BRd (3.29)

where BRd is the Borel σ-algebra on Rd and µit ∈ P(Rd) is a probability measure on Rd. We often use

the equivalent notations

µit = law(V it ) and V it ∼ µit. (3.30)

An alternative approach is to interpret the particle V i as a random function

V i : (Ω,A, P )→ C([0, T ],Rd). (3.31)

In this case we can similarly define the law as the pushforward measure µi = (V i)#P which yields

µit = (V it )#P . We have µi ∈ P(C([0, T ],Rd)), respectively µit ∈ P(Rd).

For the empirical measure we proceed similarly: ρN is a random measure on some probability space

(Ω′,A′, P ′)

ρN : (Ω′,A′, P ′)→ P(C([0, T ],Rd)), ρN =
1

N

N∑
i=1

δV i . (3.32)

We remind that the empirical measure is a very complex object. It is a random measure (where the

randomness comes from the fact that the particles are stochastic processes) and as a sum of Dirac

delta functions it is a very rough object and we can not expect any smoothness.

For the probability distribution of ρN we have law(ρN ) ∈ P(P(C([0, T ],Rd))). For each t ∈ [0, T ]

we have

ρNt : (Ω′,A′, P ′)→ P(Rd), ρNt =
1

N

N∑
i=1

δV it (3.33)

and law(ρNt ) ∈ P(P(Rd)). The consensus point V α is a random function

V α(ρNt ) : (Ω′,A′, P ′)→ C([0, T ],Rd), V α(ρNt ) =

∑N
i=1 V

ie−αE(V i)∑N
i=1 e

−αE(V i)
(3.34)

and its probability distribution is an element of P(C([0, T ],Rd)). For a fixed t ∈ [0, T ] we have

law(V α(ρNt )) ∈ P(Rd). See [Huang and Qiu, 2021] for the notations introduced here.

We note that the particles are defined on the same probability space (Ω,A, P ). The empirical

measure however has a different probability space (Ω′,A′, P ′). It would be interesting to understand

the relation between the two probability spaces.
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3.4 From the sphere to hypersurfaces

In this section, which is based on [Demlow and Dziuk, 2007], we generalize the KV-CBO model from

the sphere Sd−1 to general compact hypersurfaces Γ ⊂ Rd. We first set up the definitions from dif-

ferential geometry. For an introduction to stochastic calculus on manifolds we refer to [Émery and

Meyer, 1989], [Itô, 1950] and [Hsu, 2002].

Let Γ be a connected, smooth, compact hypersurface without boundary embedded in Rd, that is,

Γ ⊂ Rd, dim(Γ) = d− 1 and ∂Γ = ∅. Such a hypersurface Γ can be written as the level set of a (non

unique) function γ : Rd → R
Γ = {v ∈ Rd | γ(v) = 0}. (3.35)

The Jordan-Brouwer separation theorem states that Γ separates Rd into two connected components:

the interior and the exterior. We choose the function γ such that γ < 0 on the interior and γ > 0 on

the exterior. In order to introduce the gradient, divergence, and Laplace-Beltrami operator on Γ we

further assume that there is an open neighborhood Γδ of width δ > 0 around Γ such that γ ∈ C3(Γδ).

We define the outward unit normal

n(v) =
∇γ(v)

|∇γ(v)|
(3.36)

for v ∈ Γ. This definition is independent of the choice of γ.

The projection onto the tangent plane TvΓ for v ∈ Γ is given by

PΓ(v) = I − n(v)⊗ n(v). (3.37)

It follows immediately that PΓ(v)n(v) = 0 and PΓ(v)w · n(v) = 0 for all w ∈ Rd. We further define

the projection ΠΓ as

ΠΓ(v) = v − d(v)n(v) (3.38)

for v ∈ Γδ, where d(v) is the distance of v to Γ. It is easily seen that ΠΓ(v) ∈ Γ. Here we require δ > 0

to be sufficiently small such that the decomposition v = ΠΓ(v) + d(v)n(v) is unique. The distinction

between PΓ and ΠΓ is important: PΓ takes an element of the hypersurface v ∈ Γ as input, so that

PΓ(v) projects any element w ∈ Rd onto the tangent plane TvΓ. On the other hand, ΠΓ projects

a vector in the tube Γδ orthogonally onto Γ. The latter projection plays an imortant role in the

numerical implementation of the method: due to numerical errors the particles will not stay exactly

on Γ and hence need to be projected back. For the sphere we have ΠΓ(v) = v/|v|.
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With ΠΓ we can extend a function Φ ∈ C∞(Γ) to Rd by setting

φ(v) =

Φ(ΠΓ(v)), v ∈ Γδ

0, v ∈ Rd \ Γδ′
(3.39)

where Γδ′ is a slightly larger neighborhood than Γδ. The region Γδ′ \Γδ is used to smoothly bring the

function value to 0. That is we extend Φ constantly in normal direction. The function φ is a smooth

function (as a composition of smooth functions) and φ ∈ C∞c (Rd).

It is easily seen that ΠΓ(v) = ΠΓ(λv) for all λ ∈ R sufficiently small such that λv ∈ Γδ. From this

we conclude that φ is 0-homogeneous φ(λv) = λ0φ(v) = φ(v). Since φ is a constant extension of Φ in

normal direction we conclude

n(v) · ∇φ(v) = 0 (3.40)

from which we further get

Tr(∇2φ(v)T (n(v)⊗ n(v))T ) = 0. (3.41)

We define the tangential gradient, Hessian and Laplace-Beltrami operator of Φ as
∇ΓΦ(v) := ∇φ(v) = ∇Φ(ΠΓ(v))

∇2
ΓΦ(v) := ∇2φ(v) = ∇2Φ(ΠΓ(v))

∆ΓΦ(v) := ∆φ(v) = ∆Φ(ΠΓ(v))

(3.42)

for v ∈ Γδ. We stress: n(v) · ∇ΓΦ(v) = 0, hence ∇ΓΦ(v) ∈ TvΓ.

3.5 KV-CBO model on hypersurfaces

In this section we state the final KV-CBO model with isotropic noise on general compact hypersur-

faces. The anisotropic model is stated only for the special case Γ = Sd−1. Extending the analysis of

the anisotropic model to general compact hypersurfaces is open.
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Isotropic KV-CBO model on hypersurfaces

The KV-CBO model with isotropic noise on a compact hypersurface Γ is given by

dV it = λPΓ(V it )V α(ρNt )dt+ σ|V it − V α(ρNt )|PΓ(V it )dBit + CΓ(V it , V
α(ρNt ))dt (3.43)

where V i0 ∼ ρ0 iid for i ∈ [N ], ρ0 ∈ P(Γ) is a common probability distribution, and

CΓ(V it , V
α(ρNt )) = −σ

2

2
|V it − V α(ρNt )|2∆γ(V it )∇γ(V it ) (3.44)

where γ defines the hypersurface, see (3.35). The empirical measure ρNt and consensus point

V α(ρNt ) are given by

ρNt =

N∑
i=1

δV it (3.45)

and

V α(ρNt ) =

∑N
i=1 V

i
t e
−αE(V it )∑N

i=1 e
−αE(V it )

=

∫
Rd ve

−αE(v)dρNt (v)∫
Rd e

−αE(v)dρNt (v)
(3.46)

for t ∈ [0, T ] respectively.

Example 3.5.1 (Special case Γ = Sd−1). For Γ = Sd−1 we can choose γ(v) = |v| − 1. Then

∇γ(v) = v/|v| and the outward unit normal is given by n(v) = v
|v| . The Hessian and Laplacian are

given by

∇2γ(v) =
1

|v|
Id −

v ⊗ v
|v|3

, ∆γ(v) = Tr(∇2γ(v)) =
d− 1

|v|
. (3.47)

The correction term is given by

CΓ(V it , V
α(ρNt )) = −σ

2

2
(d− 1)|V it − V α(ρNt )|2 V it

|V it |2
(3.48)

as in (3.26).

Motivated by the findings for the CBO models in Euclidean space (see section 2.3), we now

introduce a version of the KV-CBO model with anisotropic (component-wise) Brownian motion. More

precisely: we replace the isotropic noise term σPΓ(V it )|V it − V α(ρNt )|dBit by the anisotropic noise

σPΓ(V it )D(V it − V α(ρNt ))dBit := σ

d∑
k=1

PΓ(V it )(V it − V α(ρNt ))k(dBit)kek. (3.49)

We analyse the anisotropic KV-CBO model in the appendix.
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Anisotropic KV-CBO model on the sphere

The KV-CBO model with anisotropic noise on Γ = Sd−1 is given by

dV it = λPΓ(V it )V α(ρNt )dt+ σPΓ(V it )D(V it − V α(ρNt ))dBit + CaniΓ (V it , V
α(ρNt ))dt (3.50)

where the correction term is given by

CaniΓ (V it , V
α(ρNt )) = −σ

2

2
|V it − V α(ρNt )|2 V it

|V it |2
− σ2

2
D(V it − V α(ρNt ))2 V it

|V it |2

+ σ2|D(V it − V α(ρNt ))V it |2
V it
|V it |4

.

(3.51)

We conclude this section with a few remarks.

Remark 3.5.1.

1. The KV-CBO model can be understood as a single SDE

dV
(N)
t = λ(V

(N)
t )dt+ σ(V

(N)
t )dBt (3.52)

in the high-dimensional space RNd. Here V
(N)
t ∈ RNd is a vector with the particles V it ∈ Rd

stacked on top of each other for i ∈ [N ].

2. The particles V it are vectors in the Euclidean space Rd that will later be shown to stay on Γ for

all time. Deriving and analyzing a CBO model on hypersurfaces where the dynamics is defined

instrinsically on the hypersurface is an open problem.

3. The integral form of (3.50) is given by

V it = V i0 + λ

∫ t

0

PΓ(V iτ )V α(ρNτ ) dτ + σ

∫ t

0

|V iτ − V α(ρNτ )|PΓ(V iτ ) dBiτ

+

∫ t

0

CΓ(V iτ , V
α(ρNτ )) dτ.

(3.53)

3.6 Stability estimates for the consensus point

In this section we collect some stability estimates and a linear growth condition for the consensus

point respectively the regularized consensus point. These stability estimates play an important role

in the rest of this thesis, in particular for the proof of the well-posedness of the KV-CBO model.

Let the regularized cost function E : Rd → R satisfy the following properties
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1. E(v) = E(v) for all v ∈ Γδ,

2. E is globally Lipschitz continuous with constant L > 0,

3. E is bounded.

We use the following convention throughout the thesis: regularized coefficient functions, cost func-

tions, constants etc. are all written in bold. For example: the regularized version of the cost function

E will be denoted as E, the regularized version of the consensus point V α(ρNt ) will be denoted as

Vα(ρNt ), and so forth.

A lot of the estimates that we will derive in this section involve the constant

Cα = eα(E−E) (3.54)

where E = supΓ E and E = infΓ E.

We introduce the following notations

‖V (N)
t ‖1 =

N∑
i=1

|V it | (3.55)

and

‖V (N)
t ‖∞ = sup

i∈[N ]

|V it | (3.56)

where V
(N)
t ∈ RNd, see remark 3.5.1.

Lemma 3.6.1. Let V it and V̂ it be two independent sets of particles with empirical measures ρNt and

ρ̂Nt respectively. Then the estimate

|Vα(ρ̂Nt )−Vα(ρNt )| . ‖V
(N)
t − V̂ (N)

t ‖1
N

(3.57)

where the constant is given by C = Cα + 2αLC2
α‖V̂

(N)
t ‖∞, holds.

Proof. We introduce the notation ωj = e−αE(V jt ) for readability and decompose the difference of the

consensus points as

Vα(ρ̂Nt )−Vα(ρNt ) =

∑
j V̂

j
t ω̂j∑

j ω̂j
−
∑
j V

j
t ωj∑

j ωj
=

∑
j V̂

j
t ω̂j

∑
j ωj −

∑
j V

j
t ωj

∑
j ω̂j∑

j ω̂j
∑
j ωj

. (3.58)

With this we can rewrite

Vα(ρNt )−Vα(ρ̂Nt ) =

∑
j(V

j
t − V̂

j
t )ωj∑

j ωj
+

∑
j V̂

j
t (ωj − ω̂j)∑
j ωj

+

∑
j V̂

j
t ωj

∑
j(ω̂j − ωj)

(
∑
j ωj)(

∑
j ω̂j)

. (3.59)
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The first term on the right hand side of (3.59) can be bounded as

|I1| ≤
Cα

N
‖V (N)

t − V̂ (N)
t ‖1 (3.60)

where we have used ωj ≤ e−αE and ωj ≥ e−αE . The second term on the right hand side of (3.59) can

be bounded as

|I2| ≤
αLCα

N

N∑
j=1

|V̂ jt ||V
j
t − V̂

j
t | =

αLCα

N
‖V̂ (N)

t ‖∞‖V (N)
t − V̂ (N)

t ‖1 (3.61)

where we have used the mean value theorem and the Lipschitz assumption of E, that is,

|ωj − ω̂j | ≤ αe−αE |E(V jt )− E(V̂ jt )| ≤ αLe−αE |V jt − V̂
j
t |. (3.62)

The third term on the right hand side of (3.59) can be bounded as

|I3| ≤
∑
j |V̂

j
t |e−αE

∑
j |ω̂j − ωj |

|
∑
j ωj ||

∑
j ω̂j |

≤ αLC2
α

N
‖V̂ (N)

t ‖∞‖V (N)
t − V̂ (N)

t ‖1 (3.63)

where we have used (3.62).

Thus we conclude that

max{|I2|, |I3|} ≤
αLC2

α

N
‖V̂ (N)

t ‖∞‖V (N)
t − V̂ (N)

t ‖1. (3.64)

which finishes the proof.

Lemma 3.6.2. Let ρ, ρ̂ ∈ Pc(Rd) two probability measures with compact support and 1 ≤ p < ∞.

The distance of the regularized consensus points are bounded by

|Vα(ρ)−Vα(ρ̂)| .Wp(ρ, ρ̂) (3.65)

where Wp is the p-Wasserstein distance.

Proof. We have

Vα(ρ)−Vα(ρ̂) =

∫
Rd ve

−αE(v) dρ(v)

‖e−αE‖L1(ρ)
−
∫
Rd v̂e

−αE(v̂) dρ̂(v̂)

‖e−αE‖L1(ρ̂)
(3.66)

=

∫∫
Rd×Rd

ve−αE(v)

‖e−αE‖L1(ρ)
− v̂e−αE(v̂)

‖e−αE‖L1(ρ̂)︸ ︷︷ ︸
:=h(v)−h(v̂)

dπ(v, v̂) (3.67)

where π ∈ Π(ρ, ρ̂) is an arbitrary coupling of ρ and ρ̂. Similarly as in (3.58) we can write the integrand
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as

h(v)− h(v̂) =
(v − v̂)e−αE(v̂)

‖e−αE‖L1(ρ)︸ ︷︷ ︸
=:I1

+
v̂(e−αE(v) − e−αE(v̂))

‖e−αE‖L1(ρ)︸ ︷︷ ︸
=:I2

+
v̂e−αE(v̂)

‖e−αE‖L1(ρ)
− v̂e−αE(v̂)

‖e−αE‖L1(ρ̂)︸ ︷︷ ︸
:=I3

(3.68)

where the last two terms on the right hand side can be rewritten as

I3 =
v̂e−αE(v̂)

‖e−αE‖L1(ρ)
− v̂e−αE(v̂)

‖e−αE‖L1(ρ̂)
(3.69)

=
v̂e−αE(v̂)

∫
e−αE(v̂) dρ̂(v̂)

‖e−αE‖L1(ρ)‖e−αE‖L1(ρ̂)
−
v̂e−αE(v̂)

∫
e−αE(v) dρ(v)

‖e−αE‖L1(ρ̂)‖e−αE‖L1(ρ)
(3.70)

=
v̂e−αE(v̂)

∫∫
Rd×Rd(e−αE(v̂) − e−αE(v))dπ(v, v̂)

‖e−αE‖L1(ρ)‖e−αE‖L1(ρ̂)
. (3.71)

We have

|I1| ≤ Cα|v − v̂|, |I2| ≤ αCαL|v̂||v − v̂| (3.72)

and

|I3| ≤ αC2
αL|v̂|

∫∫
Rd×Rd

|v − v̂|dπ(v, v̂). (3.73)

Now we use the fact that the measures have compact support which allows us to bound the p-th

moments as

max

{∫
Rd
|v|pdρ(v),

∫
Rd
|v̂|pdρ̂(v̂)

}
<∞ . (3.74)

Collecting the above estimates, we obtain

|Vα(ρ)−Vα(ρ̂)| ≤ Cα

∫∫
Rd×Rd

|v − v̂|dπ(v, v̂) + αCαL

∫∫
Rd×Rd

|v̂||v − v̂|dπ(v, v̂)

+ αC2
αL

∫
Rd
|v̂|dρ̂(v̂)

∫∫
Rd×Rd

|v − v̂|dπ(v, v̂)

(3.75)

≤ C
(∫∫

Rd×Rd
|v − v̂|pdπ(v, v̂)

) 1
p

(3.76)

where C depends only on Cα and α,L. Optimizing over all couplings π ∈ Π(ρ, ρ̂) finishes the proof.

Lemma 3.6.3. Let V
(N)
t ∈ RdN be a set of N particles and ρNt the corresponding empirical measure.

Then the following linear growth condition holds

|Vα(ρNt )| ≤ Cα

N
‖V (N)

t ‖1. (3.77)

We further have

|Vα(ρt)| ≤ Cα

∫
Rd
|v| dρt(v). (3.78)
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In the next section we will show that the particles stay on Γ if initially chosen there. Let us assume

that this result is already known. Then the following lemma holds.

Lemma 3.6.4. Let V ∈ C([0, T ],Γ) be a particle driven by the KV-CBO model and denote the

probability distribution of V by ρ ∈ C([0, T ],P(Γ)). Then the map t 7→ V α(ρt) is Lipschitz continuous,

that is,

|V α(ρt)− V α(ρs)| . |t− s|. (3.79)

Proof. Let s, t ∈ [0, T ] with s < t, then

|V α(ρt)− V α(ρs)| .W2(ρt, ρs) ≤ (E|Vt − Vs|2)1/2 (3.80)

where we have used (3.65) and (2.67).

We further have

E|Vt − Vs|2 . E
∣∣ ∫ t

s

λPΓ(Vτ )V α(ρτ ) dτ
∣∣2 + E

∣∣ ∫ t

s

σ|Vτ − V α(ρτ )|PΓ(Vτ ) dBτ
∣∣2

+ E
∣∣ ∫ t

s

σ2

2
|Vτ − V α(ρτ )|2∇γ(Vτ )∆γ(Vτ ) dτ

∣∣2 (3.81)

. |t− s|2 + E
( ∫ t

s

|Vτ − V α(ρτ )|2 dτ
)

+ E
( ∫ t

s

|Vτ − V α(ρτ )|2 dτ
)2

(3.82)

where we have used the integral form of the KV-CBO model in the first step and Itô’s isometry (see

appendix) in the second step. Noting that τ 7→ |Vτ − V α(ρτ )|2 is a continuous function on a compact

domain further yields

E|Vt − Vs|2 . |t− s|2. (3.83)

Combining (3.80) and (3.83) finishes the proof.

Remark 3.6.1. In the following chapter we will prove another stability estimate on the consensus

point, see lemma 4.4.1. This lemma is not reported here as it requires knowledge of mean-field theory

which we are going to discuss in the next chapter.

3.7 Well-posedness

In this section we prove the well-posedness of the KV-CBO model with isotropic noise (3.43). The

corresponding proof for the anisotropic model can be found in the appendix.

The mathematician Jacques Hadamard proposed the following conditions for a mathematical model

to be well-posed : there exists a solution, the solution is unique, and it depends continuously on the

initial data. A mathematical model could be given by a linear PDE with suitable initial and boundary

conditions, e.g. the Laplace equation with Dirichlet boundary conditions. In our case, however, the
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mathematical model to investigate is much more complex than a linear PDE. We want to show the

well-posedness of a particle system given by a coupled system of non-linear, non-local SDEs. In

this thesis we call a CBO model well-posed iff there exists a pathwise unique strong solution for any

initial probability distribution ρ0 ∈ P(Γ). It is important that the initial probability distribution is

supported on Γ.

To prove the well-posedness of the KV-CBO model we need to prove that 1) the coefficient func-

tions are well-defined for any V
(N)
t we might plug in, and 2) that the conditions from theorem 2.4.1,

namely the local Lipschitz condition of the coefficient functions, are satisfied. This theorem then guar-

antees the existence of a pathwise unique local (!) strong solution. With Itô’s formula this solution

can be shown to stay on Γ for some finite time t̃ > 0. Hence the theorem can be applied a second

time in order to extent the local solution a little bit. Repeating this process yields a global solution.

Let us now consider Γ = Sd−1 to illustrate the problem in showing the well-posedness. In this case

∆γ and ∇γ in the definition of the correction term are given by ∆γ(v) = (d−1)/|v| and ∇γ(v) = v/|v|.
So, if v = 0 these functions blow-up. Hence the correction term is not well-defined at the origin. Fur-

ther, we see that also the projection PΓ(v) = I − v ⊗ v/|v|2 is not well-defined for v = 0 (what is the

projection onto the orthogonal complement of the zero vector?). In this context we sometimes use

the expression PΓ has a singularity at the origin. In order to have well-defined coefficient functions

we need the particles, driven by Brownian motion (!), to stay away from the origin v = 0.

The proof of the well-posedness of the KV-CBO model thus requires the introduction of a regular-

ized KV-CBO model with coefficient functions equal to the original coefficient functions for function

values on Γ. Outside the tube Γδ, however, the regularized coefficient functions have no singularities

and no blow-up points.

We regularize PΓ, ∇γ, and ∆γ with appropriate operators P1, P2, and P3 respectively. Let

P1 : Rd → Rd×d, P2 : Rd → R and P3 : Rd → Rd be maps with bounded derivatives such that

P1(v) = PΓ(v), P2(v) = ∆γ(v) and P3(v) = ∇γ(v) for all v ∈ Γδ where Γδ is an open neighbourhood

of Γ, see section 3.4. The regularized KV-CBO model is given by

dV it = λP1(V it )Vα(ρNt )dt+ σ|V it −Vα(ρNt )|P1(V it )dBit + CΓ(V it ,V
α(ρNt ))dt (3.84)

where

CΓ(V it ,V
α(ρNt )) = −σ

2

2
|V it −Vα(ρNt )|2P2(V it )P3(V it ). (3.85)

Lemma 3.7.1. Let V
(N)
t , V̂

(N)
t ∈ RNd be two sets of N independent particles in Rd with corresponding

empirical measures ρNt , ρ̂
N
t . Then the coefficient functions of the regularized KV-CBO model

ai(V
(N)
t ) = λP1(V it )Vα(ρNt ), (3.86)

bi(V
(N)
t ) = σ|V it −Vα(ρNt )|P1(V it ), (3.87)
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ci(V
(N)
t ) = Cγ(V it ,V

α(ρNt )) = −σ
2

2
|V it −Vα(ρNt )|2P2(V it )P3(V it ) (3.88)

are locally Lipschitz continuous for all i ∈ [N ].

Proof. We have (see (3.57))

|Vα(ρ̂Nt )−Vα(ρNt )| ≤
(

Cα

N
+

2αLC2
α

N
‖V̂ (N)

t ‖∞
)
‖V (N)

t − V̂ (N)
t ‖1. (3.89)

From this stability estimate we can easily deduce the local Lipschitz conditions. We note that the

appearance of the factor ‖V̂ (N)
t ‖∞ is what makes the Lipschitz condition local. For any set of particles

V̂
(N)
t there is a neighbourhood such that ‖V̂ (N)

t ‖∞ is just a constant.

Let us now show the local Lipschitz condition for the coefficient ai(V
(N)
t ). We have

|ai(V (N)
t )− ai(V̂ (N)

t )| . ‖V (N)
t − V̂ (N)

t ‖1 (3.90)

by (3.57). For bi(V
(N)
t ) the condition follows similarly. For ci(V

(N)
t ) we first note that P2, P3 have

bounded derivatives, hence we can bound

|ci(V (N)
t )− ci(V̂ (N)

t )| .
∣∣|V it −Vα(ρNt )|2 − |V̂ it − V̂

α
(ρNt )|2

∣∣ (3.91)

where we have used

|P2(V it )P3(V it )| ≤ ‖∇P2‖∞‖∇P3‖∞|V it |2 . ‖V (N)
t ‖∞. (3.92)

Further we note that V
(N)
t 7→ |V it −Vα(ρNt )|2 is a polynomial and hence is locally Lipschitz continuous.

This finishes the proof.

We have proven that the coefficient functions of the regularized KV-CBO model satisfy a local

Lipschitz condition. These are the main ingredients to prove the well-posedness of the original, non-

regularized KV-CBO model (3.43). We proceed as follows: we first deduce that the regularized model

is well-posed, then we prove that the particles stay on Γ if they were initially chosen there, that is,

V i0 ∼ ρ0 implies that V it ∈ Γ for all t > 0 and i ∈ [N ]. This implies that the regularized and the

orginal model coindice for initial particles V i0 ∼ ρ0.

We now prove the well-posedness. We remind the reader that here a strong solution is a strong

solution of an SDE (not a PDE), see section 2.4.

Theorem 3.7.1 (Well-posedness). The KV-CBO model (3.43) is well-posed, that is, for every initial

probability distribution ρ0 ∈ P(Γ) there is a pathwise unique strong solution.
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Proof. The regularized model (3.84) has locally Lipschitz continuous coefficients, which implies the

existence of a pathwise unique local (!) strong solution by theorem 2.4.1. Let us assume that this

local solution stays in a small tube around Γ, that is, V it ∈ Γδ. This allows us to apply Itô’s formula

to prove that the solution stays on Γ (not just in a small neighbourhood around Γ).

Let γ the level set function that defines the Hypersurface Γ. An application of the multivariate Itô’s

formula yields

dγ(V it ) = ∇γ(V it ) · (ai(V (N)
t ) + ci(V

(N)
t ))dt+

1

2

d∑
k,l=1

∂2
klγ(V it )bik(V

(N)
t )⊗ bil(V (N)

t )dt

+∇γ(V it ) · bi(V (N)
t )dBit

(3.93)

where bik is the kth row of bi given by

bik(V
(N)
t ) = σ|V it −Vα(ρNt )|

(
eTk − ∂kγ(V it )∇γ(V it )T

)
. (3.94)

We now simplify the double sum on the right hand side of (3.93) by first noting

bik(V
(N)
t )⊗ bil(V (N)

t ) (3.95)

= σ2|V it −Vα(ρNt )|2
(
eTk − ∂kγ(V it )∇γ(V it )T

)
⊗
(
eTl − ∂lγ(V it )∇γ(V it )T

)
(3.96)

= σ2|V it −Vα(ρNt )|2
(
δk,l − ∂lγ(V it )∂kγ(V it )

)
(3.97)

where we have used that ∇γ(V it )T ⊗∇γ(V it )T = |∇γ(V it )|2 = 1. This allows us to rewrite

1

2

∑
k,l

∂2
klγ(V it )bik(V

(N)
t )⊗ bil(V (N)

t ) (3.98)

=
σ2

2
|V it −Vα(ρNt )|2

∑
k,l

∂2
klγ(V it )

(
δk,l − ∂lγ(V it )∂kγ(V it )

)
(3.99)

=
σ2

2
|V it −Vα(ρNt )|2

(
∆γ(V it )−

∑
k

(∂k∇γ(V it ) · ∇γ(V it ))∂kγ(V it )

)
(3.100)

=
σ2

2
|V it −Vα(ρNt )|2

(
∆γ(V it )−

∑
k

∂k|∇γ(V it )|2∂kγ(V it )

)
(3.101)

=
σ2

2
|V it −Vα(ρNt )|2∆γ(V it ) (3.102)

where we have used |∇γ(V it )| = 1 in the last step.
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This allows us to rewrite (3.93) as

dγ(V it ) = ∇γ(V it ) · (ai(V (N)
t ) + ci(V

(N)
t ))dt+

σ2

2
|V it −Vα(ρNt )|2∆γ(V it )dt

+∇γ(V it ) · bi(V (N)
t )dBit

(3.103)

= ∇γ(V it ) · ci(V (N)
t )dt+

σ2

2
|V it −Vα(ρNt )|2∆γ(V it )dt (3.104)

where we have used that

∇γ(V it ) · ai(V (N)
t ) = λ∇γ(V it )︸ ︷︷ ︸

∈T
V it

Γ

·P1(V it )Vα(ρNt )︸ ︷︷ ︸
∈T⊥

V it

Γ

= 0 (3.105)

and

∇γ(V it ) · bi(V (N)
t )dBit = σ|V it −Vα(ρNt )| ∇γ(V it )︸ ︷︷ ︸

T
V it

Γ

·P1(V it )dBit︸ ︷︷ ︸
T⊥
V it

Γ

= 0. (3.106)

We can further simplify the expression on the rhs of (3.104) by noting

∇γ(V it ) · ci(V (N)
t ) = −σ

2

2
|V it −Vα(ρNt )|2∇γ(V it ) ·P2(V it )P3(V it ) (3.107)

= −σ
2

2
|V it −Vα(ρNt )|2∆γ(V it ) (3.108)

where we have used that P2 = ∆γ and ∇γ(V it ) ·P3 = |∇γ(V it )|2 = 1.

This finally yields

dγ(V it ) = 0. (3.109)

Hence γ(V it ) = γ(V i0 ) = 0 for the local solution V it , which ensures that the particles stay on Γ until

some finite time. With theorem 2.4.1 we can extend the pathwise unique local strong solution from

above to a pathwise unique global solution, which finishes the proof.
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3.8 Summary

In this chapter we introduced the class of cost function that we consider throughout this thesis. The

most important assumption is the coercivity condition (or inverse continuity assumption) which states

that the cost function is embedded in a convex envelope. We then introduced the Kuramoto and Vicsek

models and derived the Kuramoto-Vicsek CBO model (KV-CBO) on general compact hypersurfaces.

The KV-CBO model aims at solving optimization problems constrained (!) on hypersurfaces. We

introduced the isotropic as well as the anisotropic model. We collected and proved some stability

estimates of the (regularized) consensus point. These were essential for proving the well-posedness (=

existence of a pathwise unique strong solution) of the particle system.
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Chapter 4

The Mean-Field Limit

The KV-CBO model is a system of coupled non-linear, non-local SDEs which makes its analysis dif-

ficult. In this chapter we derive the mean-field equation of the KV-CBO model and prove that its

solution ρt is approximated by the empirical measure ρNt in the large particle limit N → ∞. This

mean-field limit result justifies the analysis of the KV-CBO model on the macroscopic level. Hence,

we move from a microscopic description (particle system) to a macroscopic description (PDE). This

will play a crucial role in the following chapter 5 on optimization. The mean-field equation is a deter-

ministic PDE with initial data given by ρ0. The fact that the particles are constrained on a compact

hypersurface allows for a rigorous derivation of the mean-field equation which is a major advantage

over the CBO model studied in [Carrillo et al., 2018] (see remark 3.2) where the mean-field equation

is only postulated.

This chapter is based on joint work of Massimo Fornasier, Hui Huang, Lorenzo Pareschi and myself

and has been published in [Fornasier et al., 2020], [Fornasier et al., 2021b].

4.1 The coupling method

In this section we introduce the coupling method, see [Sznitman, 1991]. The coupling method is

the essential tool needed to prove the main result of this chapter: the mean-field limit result of the

KV-CBO model, see theorem 4.4.1. The basic idea behind a mean-field limit of a particle system is to

derive an equation for the evolution of the probabiliy distribution of the particles and then showing

that, in the large particle limit N →∞, its solution ρt(v) = ρ(t, v) is approximated by the empirical

measure ρNt of the particles.

Let us make this more precise.
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Definition 4.1.1 (Mean-field limit). Let V it for i = 1, ..., N be the solutions of a given particle system

with initial data sampled from ρ⊗N0 . Let further ρt denote the solution of the mean-field equation

corresponding to the particle system with initial data ρ(0, v) = ρ0(v). A mean-field limit result is a

result of the following form

ρN0
N→∞−→ ρ0 ⇒ ρNt

N→∞−→ ρt (4.1)

for all t ∈ [0, T ]. In words: If, given that the initial data of the particle system approximates the

initial data for the mean-field equation, we can prove that the empirical measure of the particle system

approximates the solution of the mean-field equation at time t, then we say that a mean-field limit

result holds.

The convergence in (4.1) is the weak convergence of measures, that is, for ρNt , ρt ∈ P(Rd) we define

ρNt
N→∞−→ ρt :⇔ sup

t∈[0,T ]

E|〈ρNt − ρt, φ〉|2
N→∞−→ 0 ∀φ ∈ C1

b (Rd) (4.2)

where 〈·, ·〉 denotes the dual pairing 〈ρt, φ〉 =
∫
φ(v) dρt(v),

〈ρNt , φ〉 = 1
N

∑N
i=1 φ(V it ).

(4.3)

We note that we need to consider the expected value of |〈ρNt − ρt, φ〉|2 because the empirical measure

ρNt is a random measure (as the particles V it are random variables, see section 3.3).

Let us outline how the mean-field limit result (4.1) for the KV-CBO model will be shown. The

starting point is the propagation of chaos assumption. With this assumption we can derive the

mean-field dynamic. The mean-field dynamic is an auxiliary monoparticle (!) SDE with distribution-

dependant coefficients (also known as McKean process or McKean SDE). We denote its solution with

V . Taking N iid copies of solutions of the mean-field dynamic V
i

allows to prove the following

convergence result

sup
t∈[0,T ]

E|V it − V
i

t|2
N→∞−→ 0. (4.4)

The proof of this result is not difficult and essentially relies on Itô’s formula and Gronwall’s inequality

(the exponent 2 is chosen to apply Itô’s formula to | · |2). The convergence result (4.4) can be shown

to be equivalent to the desired mean-field limit result (4.1), (4.2), see below.

Finally, we need to show that the propagation of chaos assumption that we started with actually

holds. This last step will follow with a lemma from [Sznitman, 1991], see lemma 4.1.1 which we report

here for readability. This finishes the outline of this section.

Let us continue with the discussion about the coupling method.

The initial particles in the KV-CBO model are chosen iid (hence chaotic) V i0 ∼ ρ0 for a common

probability distribution ρ0 ∈ P(Γ). At time t > 0 this independence is destroyed as the particles are
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driven by a coupled (!) system of SDEs. This has the undesirable consequence that we can not longer

apply the law of large numbers. The idea of the propagation of chaos assumption is that in the large

particle limit N →∞ any k ∈ N fixed particles V it are approximately independant for all t > 0, hence

independence or chaos propagates in time. Let µNt ∈ M(RdN ) denote the joint distribution of the

particles, then the propagation of chaos assumption is satisfied iff there is a measure µt ∈M(Rd) such

that for any fixed k > 1 we have

lim
N→∞

〈µNt , φ1 ⊗ ...⊗ φk ⊗ 1⊗ ...⊗ 1〉 = Πk
i=1〈µt, φi〉 ∀φi ∈ Cb(Rd) (4.5)

for all t ∈ [0, T ]. Here φ1⊗...⊗φN ∈ Cb(RdN ) is defined as φ1⊗...⊗φN (v1, ..., vN ) = φ1(v1)·...·φN (vN )

and

〈µNt , φ1 ⊗ ...⊗ φN 〉 =

∫
φ1(v1) · ... · φN (vN ) dµNt (v1, ..., vN ). (4.6)

We note that [Sznitman, 1991, Definition 2.1] used definition (4.5) without time dependence, and

refered to a sequence of symmetric measures {µN}N∈N as µ-chaotic iff the above limit holds. We note

that the particles are interchangeable, that is, for any permutation σ ∈ SN we have

〈µNt , φ1 ⊗ ...⊗ φN 〉 = 〈µNt , φσ(1) ⊗ ...⊗ φσ(N)〉. (4.7)

The joint distribution µNt is then called symmetric.

If the particles were iid with common probability distribution µt then the joint distribution could

be factorized as µNt = µ⊗Nt and

〈µNt , φ1 ⊗ ...⊗ φN 〉 = ΠN
i=1〈µt, φi〉 (4.8)

would hold for any N . In this sense (4.5) is a generalization of independence of random variables.

Assuming propagation of chaos holds the KV-CBO model decouples into the mean-field dynamic

dV t = λPΓ(V t)V
α(ρt)dt+ σ|V t − V α(ρt)|PΓ(V t)dBt + CΓ(V t, V

α(ρt))dt (4.9)

where the coefficients are distribution dependent with ρt = law(V t). This equation is a monoparticle

SDE and does not involve the empirical measure ρNt anymore.

Let us now show the equivalence of (4.2) and (4.4). For all φ ∈ C1
b (Rd) we have

E|〈ρNt − ρt, φ〉|2 = E
∣∣∣∣ 1

N

N∑
i=1

φ(V it )−
∫
φ(v)dρt(v)

∣∣∣∣2 (4.10)

≤ 2E
∣∣∣∣ 1

N

N∑
i=1

φ(V it )− 1

N

N∑
i=1

φ(V
i

t)

∣∣∣∣2 + 2E
∣∣∣∣ 1

N

N∑
i=1

φ(V
i

t)−
∫
φ(v)dρt(v)

∣∣∣∣2 (4.11)
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= 2E
∣∣φ(V 1

t )− φ(V
1

t )
∣∣2 + 2E

∣∣∣∣ 1

N

N∑
i=1

φ(V
i

t)−
∫
φ(v)dρt(v)

∣∣∣∣2 (4.12)

where we have used the symmetry of the particles in the third step. We conclude with the mean-value

theorem and the law of large numbers.

Once we have proved the mean-field limit result (4.4) we are left to verify that the propagation

of chaos assumption that we started with actually holds. This gap is closed with [Sznitman, 1991,

Proposition 2.2 i)] which we report below for simplicity.

Lemma 4.1.1. Let µ ∈ C([0, T ],P(Rd)). The sequence {µNt }N∈N of symmetric probability measures

satisfies the propagation of chaos assumption (4.5) iff the empirical measure ρN converges in distri-

bution to the constant random variable µ.

Proof. Let us first assume that {µNt }N∈N satisfies the propagation of chaos assumption (for k = 2).

For φ ∈ Cb(Rd) we have

E|〈ρNt − µt, φ〉|2 = E|〈ρNt , φ〉|2 − 2E〈ρNt , φ〉〈µt, φ〉+ |〈µt, φ〉|2 (4.13)

=
1

N2

N∑
i,j=1

E(φ(V it )φ(V jt ))− 2

N
〈µt, φ〉

N∑
i=1

E(φ(V it )) + |〈µt, φ〉|2. (4.14)

The symmetry of the probability measure µNt yields

E(φ(V it )) = E(φ(V 1
t )), E(φ(V it )φ(V jt )) = E(φ(V 1

t )φ(V 2
t )) (4.15)

from which we get

E|〈ρNt − µt, φ〉|2 =
1

N
E(φ(V 1

t )2) +
N − 1

N
E(φ(V 1

t )φ(V 2
t ))

− 2〈µt, φ〉E(φ(V 1
t )) + |〈µt, φ〉|2.

(4.16)

With the propagation of chaos assumption we further find

lim
N→∞

E(φ(V 1
t )) = lim

N→∞
〈µNt , φ⊗ 1⊗ ...⊗ 1〉 = 〈µt, φ〉 (4.17)

lim
N→∞

E(φ(V 1
t )φ(V 2

t )) = lim
N→∞

〈µNt , φ⊗ φ⊗ 1⊗ ...⊗ 1〉 = 〈µt, φ〉2. (4.18)

Hence

lim
N→∞

E|〈ρNt − µt, φ〉|2 = 0 (4.19)

which finishes the proof of this implication.
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Let us now show the reverse. We want to show that

|〈µNt , φ1 ⊗ ...⊗ φk ⊗ 1⊗ ...⊗ 1〉 −Πk
i=1〈µt, φi〉|

≤ |〈µNt , φ1 ⊗ ...⊗ φk ⊗ 1⊗ ...⊗ 1〉 − 〈µNt ,Πk
i=1〈ρNt , φi〉〉|

+ |〈µNt ,Πk
i=1〈ρNt , φi〉〉 −Πk

i=1〈ρt, φi〉|

(4.20)

approaches zero as N → ∞. For the second term on the right hand side this follows from the

assumption that ρNt converges in distribution to µt. In that case we have

〈µNt ,Πk
i=1〈ρNt , φi〉〉 −Πk

i=1〈ρt, φi〉 = Πk
i=1E〈ρNt − µt, φi〉 → 0 (4.21)

for all φi ∈ Cb(Rd). With symmetry we can rewrite the first term on the rhs as

|〈µNt , φ1 ⊗ ...⊗ φk ⊗ 1⊗ ...⊗ 1〉 − 〈µNt ,Πk
i=1〈ρNt , φi〉〉| (4.22)

=
∣∣〈µNt , 1

N !

∑
σ∈SN

φ1(V
σ(1)
t ) · ... · φk(V

σ(k)
t )−Πk

i=1〈ρNt , φi〉〉
∣∣ (4.23)

≤ sup
V it ∈Rd

∣∣ 1

N !

∑
σ∈SN

φ1(V
σ(1)
t ) · ... · φk(V

σ(k)
t )−Πk

i=1〈ρNt , φi〉
∣∣. (4.24)

We can rewrite the second term in the parantheses as

Πk
i=1〈ρNt , φi〉 =

1

Nk

( N∑
j=1

Πk
i=1φi(V

j
t ) +

∑
j∈Sk,N

Πk
i=1φi(V

j
t )
)

(4.25)

where Sk,N is the set of k-tupels with elements from {1, ..., N}.

Now (4.24) can further be bounded by

sup
V it ∈Rd

∣∣ 1

N !

∑
σ∈SN

φ1(V
σ(1)
t ) · ... · φk(V

σ(k)
t )− 1

Nk

N∑
j=1

Πk
i=1φi(V

j
t )
∣∣+
∣∣ 1

Nk

∑
j∈Sk,N

Πk
i=1φi(V

j
t )
∣∣ (4.26)

≤ sup
V it ∈Rd

∣∣ ∑
σ∈SN

φ1(V
σ(1)
t ) · ... · φk(V

σ(k)
t )

(
φk+1(V

σ(k+1)
t ) · ... · φN (V

σ(N)
t )

N !
− 1

Nk

)∣∣ (4.27)

+
∣∣ 1

Nk

∑
j∈Sk,N

Πk
i=1φi(V

j
t )
∣∣ (4.28)

≤Mk

(
(
(N − k)!

N !
− 1

Nk
)

N !

(N − k)!
+

1

Nk
(Nk − N !

(N − k)!
)

)
(4.29)

= 2Mk(1− N !

Nk(N − k)!
)→ 0 (4.30)

where we assumed ‖φi‖∞ ≤M .
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4.2 Well-posedness of the mean-field dynamic

In this section we prove the well-posedness of the mean-field dynamic. Following the same argument

as in the proof of theorem 3.7.1 we find dγ(V t) = 0, that is, V t stays on the hypersurface Γ for all

t > 0. This introduces a measure ρt ∈ P(Γ) such that ρt = law(V t). We note however that the

mean-field dynamic is defined in the ambient space Rd.

Theorem 4.2.1. The mean-field dynamic

dV t = λPΓ(V t)V
α(ρt)dt+ σ|V t − V α(ρt)|PΓ(V t)dBt + CΓ(V t, V

α(ρt))dt (4.31)

is well-posed, that is, there is a pathwise unique strong solution for any initial probability distribution

ρ0 ∈ P(Γ).

The proof relies on the Leray-Schauder fixed point theorem [Gilbarg and Trudinger, 2015, Chapter

10].

Theorem 4.2.2 (Leray-Schauder). Let B a Banach space and T : B×[0, 1]→ B a mapping satisfying

the following properties

1. T is compact,

2. T (ξ, 0) = 0 for all ξ ∈ B,

3. ‖ξ‖B <∞ for all (ξ, ϑ) ∈ B × [0, 1] with T (ξ, ϑ) = ξ.

Then the mapping T1 defined as T1(ξ) = T (ξ, 1) has a fixed point T1(ξ?) = ξ?.

Proof. Let ξ ∈ C([0, T ],Rd) and consider the SDE

dV
ξ

t = λP1(V
ξ

t )ξtdt+ σ|V ξt − ξt|P1(V
ξ

t )dBt −
σ2

2
|V ξt − ξt|2P2(V

ξ

t )P3(V
ξ

t )dt. (4.32)

with initial data V
ξ

0 ∼ ρ0 for ρ0 ∈ P(Γ) (the superscript indicates that the solution depends on ξ).

The well-posedness of (4.32) follows from the fact that it has locally Lipschitz continuous coefficients

(see lemma 3.7.1) and ξ does not depend on V
ξ
. By the same argument as in theorem 3.7.1 it can

be shown that V
ξ

t ∈ Γ for all t > 0. The probability distribution of V
ξ

thus introduces a random

measure ρξ ∈ C([0, T ],P(Γ)) with

ρξt = law(V
ξ

t ). (4.33)

This allows us to use the operators PΓ, ∇γ and ∆γ instead of the regularized operators P1, P2 and P3.

In the following we prove the existence of a unique (!) ξ? ∈ C([0, T ],Rd) such that ξ? = V α(ρξ
?

).

In this case (4.32) is exactly the mean-field dynamic (4.9). We will use the Leray-Schauder theorem

to prove the existence of a fixed point of

T : C([0, T ],Rd)× [0, 1]→ C([0, T ],Rd), (ξ, ϑ) 7→ ϑV α(ρξ). (4.34)

66



The uniqueness does not follow with the Leray-Schauder theorem and has to be shown differently.

Once we have shown the existence of a unique fixed point the well-posedness of the mean-field dynamic

follows from the well-posedness of (4.32).

Compactness of T : In Lemma 3.6.4 we proved the Hölder continuity of t 7→ V α(ρξt ) with coefficient

1/2, that is,

|V α(ρξt )− V α(ρξs)| . |t− s|1/2. (4.35)

Thus T (ξ, ϑ) = ϑV α(ρξ) ∈ C0,1/2([0, T ],Rd) for all ξ ∈ C([0, T ],Rd) and ϑ ∈ [0, 1]. The compactness

of T now follows from the fact that C0,1/2([0, T ],Rd) is compactly embedded in C([0, T ],Rd), see [Alt,

2016, 10.6].

Existence of fixed point of T : We now show the two remaining properties from the Leray-Schauder

theorem (theorem 4.2.2). The property T (ξ, 0) = 0 is obviously fulfilled. For the other property we

chose (ξ, ϑ) such that T (ξ, ϑ) = ξ to get

‖ξ‖C([0,T ],Rd) = sup
t∈[0,T ]

|ξt| = sup
t∈[0,T ]

|ϑV α(ρξt )| ≤ sup
t∈[0,T ]

ϑCα

∫
Γ

|v|dρξt (v) <∞ (4.36)

where we have used the compactness of Γ (from which it follows that the continuous function | · |
admits its maximum on Γ). By the Leray-Schauder theorem there exists ξ? ∈ C([0, T ],Rd) such that

V α(ρξ
?

) = ξ?.

Uniqueness of the fixed point ξ?: Suppose there are two distinct fixed points of T which we denote as

ξ?,1, ξ?,2. The corresponding processes and densities are denoted as V
ξ?,i

t and ρξ
?,i

t respectively. We

further denote

Zt = V
ξ?,1

t − V ξ
?,2

t . (4.37)

With the integral represntation of (4.32) we get

Zt − Z0 = λ

∫ t

0

PΓ(Zs)(ξ
?,1
s − ξ?,2s )ds+ σ

∫ t

0

|Zs − (ξ?,1s − ξ?,2s )|PΓ(Zs)dBs

− σ2

2

∫ t

0

|Zs − (ξ?,1s − ξ?,2s )|2
(
∆γ(V

ξ?,1

t )∇γ(V
ξ?,1

t )−∆γ(V
ξ?,2

t )∇γ(V
ξ?,2

t )
)
ds

(4.38)

from which we further conclude

E|Zt|2 . E|Z0|2 + E
∣∣∣∣ ∫ t

0

λPΓ(Zs)(ξ
?,1
s − ξ?,2s )ds

∣∣∣∣2 + E
∣∣∣∣σ ∫ t

0

|Zs − (ξ?,1s − ξ?,2s )|PΓ(Zs)dBs

∣∣∣∣2
+ E

∣∣∣∣σ2

2

∫ t

0

|Zs − (ξ?,1s − ξ?,2s )|2
(
∆γ(V

ξ?,1

t )∇γ(V
ξ?,1

t )−∆γ(V
ξ?,2

t )∇γ(V
ξ?,2

t )
)
ds

∣∣∣∣2
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. E|Z0|2 + E
(∫ t

0

|ξ?,1s − ξ?,2s |ds
)2

+ E
(∫ t

0

|Zs − (ξ?,1s − ξ?,2s )|2ds
)

+ E
(∫ t

0

|Zs − (ξ?,1s − ξ?,2s )|2ds
)2

where we have used Itô’s isometry (see appendix), the mean-value theorem to bound |∆γ(V
ξ?,1

t )∇γ(V
ξ?,1

t )−
∆γ(V

ξ?,2

t )∇γ(V
ξ?,2

t )| and the fact that ‖PΓ‖∞, ‖∇γ‖∞, ‖∆γ‖∞ are bounded (note that γ is smooth,

see section 3.4).

We further have

E
(∫ t

0

|Zs − (ξ?,1s − ξ?,2s )|2ds
)2

≤ C(t)

∫ t

0

E|Zs − (ξ?,1s − ξ?,2s )|2ds (4.39)

.
∫ t

0

E|Zs|2ds+

∫ t

0

|ξ?,1s − ξ?,2s |2ds (4.40)

and according to (3.80) the following estimate holds

|ξ?,1s − ξ?,2s |2 = |V α(ρξ
?,1

s )− V α(ρξ
?,2

s )|2 .W 2
2 (ρξ

?,1

s , ρξ
?,2

s ) . E|Zs|2. (4.41)

Combining the estimates from above yields

E|Zt|2 . E|Z0|2 +

∫ t

0

E|Zs|2ds. (4.42)

Since E|Z0|2 = 0 we conclude with Gronwall’s inequality that E|Zt|2 = 0 for all t > 0. Hence

Zt = V
ξ?,1

t − V ξ
?,2

t = 0. With the well-posedness of (4.32) we conclude that the fixed point ξ? is

unique. This completes the proof.

4.3 The mean-field equation

In this section we will derive the mean-field equation for the KV-CBO model and prove its well-

posedness. The mean-field equation is a non-linear, non-local deterministic PDE. We apply Dynkin’s

formula with a test function φ ∈ C∞c (Rd) to the mean-field dynamic. This yields

d

dt

∫
Rd
φ(v) dρt(v) =

∫
Rd
∇φ(v) · λPΓ(v)V α(ρt) +

σ2

2
|v − V α(ρt)|2∆φ(v) dρt(v) (4.43)

where we have used ∇φ(v) · n(v) = 0, Tr(∇2φ(v)Tn(v)n(v)T ) = 0, see (3.40), (3.41). With the

definitions of the differential operators ∇Γ, ∆Γ, and by using test functions Φ ∈ C∞(Γ) (see (3.39))
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we arrive at the weak formulation of the mean-field equation

d

dt

∫
Γ

Φ(v) dρt(v) =

∫
Γ

∇ΓΦ(v) · λPΓ(v)V α(ρt) +
σ2

2
|v − V α(ρt)|2∆ΓΦ(v) dρt(v). (4.44)

Here, we have used the fact that ρt ∈ P(Γ) (we have denoted the restriction of ρt to Γ again by ρt).

The strong formulation of the mean-field equation on Γ is given by (4.45) below. We remark that

the derivation of the strong formulation follows with a simple application of the integration by parts

formula and using dρt(v) = ρt(v)dv. For the KV-CBO with anisotropic noise the derivation of the

strong formulation is much more complicated, see appendix on page 141.

In the following theorem we prove the well-posedness of the mean-field equation from which the

propagation of chaos assumption follows, see lemma 4.1.1.

Theorem 4.3.1. The mean-field equation

∂tρt = −λ∇Γ · (PΓ(v)V α(ρt)ρt) +
σ2

2
∆Γ(|v − V α(ρt)|2ρt) (4.45)

is well-posed, that is, there is a unique weak solution for any initial probability distribution ρ0 ∈ P(Γ).

Proof. Existence: The mean-field dynamic has pathwise unique strong solutions, see theorem 4.2.1.

Hence there exists a strong solution V t for the initial data V 0 ∼ ρ0. Further V t induces a weak

solution ρt = law(V t) of (4.43) and (4.44) which finishes the existence proof.

Uniqueness: Let ρ1
t and ρ2

t two weak solutions of (4.45) with the same initial data ρ0. We interpret

these weak solutions as measures in Rd concentrated on Γ, that is, ρit ∈M(Rd) with supp(ρit) ⊂ Γ.

We construct two linear (!) stochastic processes V
i

t corresponding to ρit with common initial data

V 0 ∼ ρ0 as follows

dV
i

t = λP1(V
i

t)V
α(ρit)dt+ σ|V it − V α(ρit)|P1(V

i

t)dBt

− σ2

2
|V it − V α(ρit)|2P2(V

i

t)P3(V
i

t).
(4.46)

We denote the law of these stochastic processes with µit, that is, law(V
i

t) = µit. Here Pi are the

regularized operators from section 3.7. We do not regularize the consensus point as it depends on the

measure ρit ∈ P(Γ) which is known to stay on Γ (for µit this is not yet known). We stress that the

above SDE is linear because the consensus point depends on ρit (not on µit = law(V
i

t)).

On the one hand the measures µit are unique weak solutions of the corresponding linear Fokker-Planck
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equation

d

dt

∫
Rd
φ(v) dµit(v) =

∫
Rd
∇φ(v) ·

(
λP1(v)V α(ρit)−

σ2

2
|v − V α(ρit)|2P2(v)P3(v)

+
σ2

2
|v − V α(ρit)|2∇2φ(v) : P1(v)

)
dµit(v).

(4.47)

On the other hand the measures ρit are assumed to be weak solutions of the mean-field equation (4.45),

hence they are solutions of (compare with (4.43))

d

dt

∫
Rd
φ(v) dρit(v) =

∫
Rd
∇φ(v) ·

(
λPΓ(v)V α(ρit)−

σ2

2
|v − V α(ρit)|2∆γ(v)∇γ(v)

+
σ2

2
|v − V α(ρit)|2∇2φ(v) : PΓ(v)

)
dρit(v).

(4.48)

Hence we conclude µit = ρit for i = 1, 2. Hence, also µit are concentrated on Γ, and we see that (4.46)

is equal to the mean-field dynamic for which we have already shown the existence of pathwise unique

strong solutions. Thus, V
1

t = V
2

t a.s and consequently µ1
t = µ2

t . Thus ρ1
t = µ1

t = µ2
t = ρ2

t , which

finishes the proof.

4.4 Mean-field limit

In this section we will prove the main theorem of this chapter: the mean-field limit result for the

KV-CBO model. We will see that this result holds with convergence rate N−1, that is, the approx-

imation error between the empirical measure and the solution of the mean-field equation increases

with rate N−1 as the number of particles grows. We note that this convergence rate is independent of

the dimension d and we therefore do not observe a curse of dimensionality phenomenon, see [Fournier

and Guillin, 2015].

We stress that the compactness of Γ is crucial for the rigorous proof of the mean-field limit result.

This rigorous proof is a major asset of the KV-CBO model over other CBO models in Euclidean space.

Let us first prove a stability estimate on the consensus point V α.

Lemma 4.4.1. Let ρ ∈ C([0, T ],P(Γ)) and V
i

t ∼ ρt, i ∈ [N ] iid copies of solutions of the mean-field

dynamic (4.9). Then

sup
t∈[0,T ]

E|V α(ρNt )− V α(ρt)|2 . N−1 (4.49)

where ρNt is the empirical measure of V
i

t.

Proof. We start by estimating

|V α(ρNt )− V α(ρt)| =
∣∣∣∣∑N

i=1 V
i

te
−αE(V

i
t)∑N

i=1 e
−αE(V

i
t)
−
∫
Rd ve

−αE(v)dρt(v)∫
Rd e

−αE(v)dρt(v)

∣∣∣∣ (4.50)
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≤
∣∣∣∣ 1
N

∑N
i=1 V

i

te
−αE(V

i
t) −

∫
Rd ve

−αE(v)dρt(v)

1
N

∑N
i=1 e

−αE(V
i
t)

∣∣∣∣+

∣∣∣∣
∫
Rd ve

−αE(v)dρt(v)

1
N

∑N
i=1 e

−αE(V
i
t)
−
∫
Rd ve

−αE(v)dρt(v)∫
Rd e

−αE(v)dρt(v)

∣∣∣∣.
We have

1

N

N∑
i=1

e−αE(V
i
t),

∫
Rd
e−αE(v)dρt(v) ≥ e−αE (4.51)

and ∫
Rd
ve−αE(v)dρt(v) . e−αE (4.52)

where we have used the compactness of Γ. With (x+y)2 ≤ 2(x2 +y2) for x, y ≥ 0 we further estimate

|V α(ρNt )− V α(ρt)|2 ≤ 2e2αE
∣∣∣∣ 1

N

N∑
i=1

V
i

te
−αE(V

i
t) −

∫
Rd
ve−αE(v)dρt(v)

∣∣∣∣2

+ 2e2α(2E−E)

∣∣∣∣ 1

N

N∑
i=1

e−αE(V
i
t) −

∫
Rd
e−αE(v)dρt(v)

∣∣∣∣2.
(4.53)

To estimate the expected value of the first term on the right hand side we introduce

Z
i

t = V
i

te
−αE(V

i
t) −

∫
Rd
ve−αE(v)dρt(v) (4.54)

and note E(Z
j

t ) = 0 (because V
i

t ∼ ρt) and E(Z
i

tZ
k

t ) = 0 for any i 6= k (because V
i

t are iid, hence

independent). Now we can rewrite

E
∣∣∣∣ 1

N

N∑
i=1

V
i

te
−αE(V

i
t) −

∫
Rd
ve−αE(v)dρt(v)

∣∣∣∣2

= E
∣∣∣∣ 1

N

N∑
i=1

Z
i

t

∣∣∣∣2 =
1

N2
E
∣∣∣∣ N∑
i,k=1

Z
i

tZ
k

t

∣∣∣∣ =
1

N2
E
∣∣∣∣ N∑
i=1

|Zit|2
∣∣∣∣ =

1

N
E|Z1

t |2
(4.55)

which we can bound with

E|Z1

t |2 ≤ 2E|V 1

t e
−αE(V

1
t )|2 + 2

∣∣ ∫
Rd
ve−αE(v)dρt(v)

∣∣2 ≤ 4CΓe
−2αE (4.56)

where we have used that V
1

t ∈ Γ and |v| ≤ CΓ for all v ∈ Γ and some CΓ > 0. Similarly we find

E
∣∣∣∣ 1

N

N∑
i=1

e−αE(V
i
t) −

∫
Rd
e−αE(v)dρt(v)

∣∣∣∣2 ≤ 4e−2αE

N
. (4.57)

We arrive at

E|V α(ρNt )− V α(ρt)|2 . N−1 (4.58)
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which completes the proof.

Theorem 4.4.1 (Mean-field limit). Let V it denote the KV-CBO particles and V
i

t iid copies of solutions

of the mean-field dynamic (4.9) with common probability distribution ρt = law(V
i

t). Assume further

that the initial data and the Brownian motions are the same, that is, V i0 = V
i

0 and Bit = B
i

t. Then

sup
t∈[0,T ]

E|V it − V
i

t|2 . N−1 (4.59)

for all i ∈ [N ]. We note that the constant in . depends on the dimension d.

Proof. The particles V it and V
i

t are solutions to the SDEs

dV it = λPΓ(V it )V α(ρNt )dt+ σ|V it − V α(ρNt )|PΓ(V it )dBit + CΓ(V it , V
α(ρNt ))dt (4.60)

and

dV
i

t = λPΓ(V
i

t)V
α(ρt)dt+ σ|V it − V α(ρt)|PΓ(V

i

t)dB
i

t + CΓ(V
i

t, V
α(ρt))dt (4.61)

where CΓ is the usual correction term CΓ(V,W ) = −σ
2

2 |V −W |
2∆γ(V )∇γ(V ) as defined in (3.84).

The fact that the driving Brownian motions are the same yields the following SDE for the difference

of of the corresponding particles

d(V it − V
i

t) = λ

(
PΓ(V it )V α(ρNt )− PΓ(V

i

t)V
α(ρt)

)
dt

+ σ

(
|V it − V α(ρNt )|PΓ(V it )− |V it − V α(ρt)|PΓ(V

i

t)

)
dBit (4.62)

+

(
CΓ(V it , V

α(ρNt ))− CΓ(V
i

t, V
α(ρt))

)
dt

An application of Itô’s formula with f(x) = |x|2, ∇f(x) = 2x, and ∆f(x) = 2Id yields

d|V it − V
i

t|2 = 2λ(V it − V
i

t) ·
(
PΓ(V it )V α(ρNt )− PΓ(V

i

t)V
α(ρt)

)
dt (4.63)

+ 2(V it − V
i

t) ·
(
CΓ(V it , V

α(ρNt ))− CΓ(V
i

t, V
α(ρt))

)
dt+ σ2Tr(σi · σi)dt

+ 2σ(V it − V
i

t) ·
(
|V it − V α(ρNt )|PΓ(V it )− |V it − V α(ρt)|PΓ(V

i

t)

)
dBit

where

σi = |V it − V α(ρNt )|PΓ(V it )− |V it − V α(ρt)|PΓ(V
i

t). (4.64)

We now bound the terms on the right hand side. To this end we rely on the stability estimates of the

consensus point and the linear growth condition from section 3.6 and lemma 4.4.1. We denote the

empirical measure of the iid copies V
i

t by ρNt .
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We estimate the first term on the right hand side of (4.63) as

2λ(V it − V
i

t) ·
(
PΓ(V it )V α(ρNt )− PΓ(V

i

t)V
α(ρt)

)
(4.65)

≤ 2λ|V it − V
i

t|
∣∣∣∣PΓ(V it )

(
V α(ρNt )− V α(ρNt )

)
+
(
PΓ(V it )− PΓ(V

i

t)
)
V α(ρNt ) + PΓ(V

i

t)
(
V α(ρNt )− V α(ρt)

)∣∣∣∣ (4.66)

≤ 2λ‖PΓ‖∞|V it − V
i

t|
N∑
k=1

|V kt − V
k

t |
N

+ 2λCΓ‖∇PΓ‖∞|V it − V
i

t|2

+ 2λ‖PΓ‖∞|V it − V
i

t||V α(ρNt )− V α(ρt)|

(4.67)

.
N∑
i=1

|V it − V
i

t|2

N
+ |V it − V

i

t|2 + |V α(ρNt )− V α(ρt)|2 (4.68)

where we have used the stability estimate (3.57)

|V α(ρNt )− V α(ρNt )| .
∑N
k=1 |V kt − V

k

t |
N

(4.69)

and the linear growth condition (3.77)

|V α(ρNt )| . ‖V
(N)
t ‖1
N

≤ CΓ. (4.70)

We estimate the second term on the right hand side of (4.63) as

2(V it − V
i

t) ·
(
CΓ(V it , V

α(ρNt ))− CΓ(V
i

t, V
α(ρt))

)
dt (4.71)

≤ σ2|V it − V
i

t| ·
∣∣∣∣|V it − V α(ρNt )|2∆γ(V it )∇γ(V it )− |V it − V α(ρNt )|2∆γ(V

i

t)∇γ(V
i

t)

+ |V it − V α(ρNt )|2∆γ(V
i

t)∇γ(V
i

t)− |V it − V α(ρNt )|2∆γ(V
i

t)∇γ(V
i

t)

+ |V it − V α(ρNt )|2∆γ(V
i

t)∇γ(V
i

t)− |V
i

t − V α(ρt)|2∆γ(V
i

t)∇γ(V
i

t)

∣∣∣∣
(4.72)

. σ2|V it − V
i

t| ·
∣∣∣∣‖∆γ‖∞|∇γ(V it )−∇γ(V

i

t)|+
(
|V it − V α(ρNt )|2 − |V it − V α(ρNt )|2

)
+
(
|V it − V α(ρNt )|2 − |V it − V α(ρt)|2

)∣∣∣∣ (4.73)

. σ2|V it − V
i

t| ·
∣∣∣∣|V it − V it|+ |V α(ρNt )− V α(ρNt )|2 + |V α(ρNt )− V α(ρt)|2

∣∣∣∣ (4.74)

. |V it − V
i

t|2 +

N∑
i=1

|V it − V
i

t|2

N
+ |V α(ρNt )− V α(ρt)|2. (4.75)

We denote the kth row of σi and PΓ by σik and P kΓ respectively, and estimate the third term on the
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right hand side of (4.63) as

Tr(σi · σi) =

d∑
k=1

(σik · σik) ≤
d∑
k=1

∣∣∣∣|V it − V α(ρNt )|P kΓ (V it )− |V it − V α(ρt)|P kΓ (V
i

t)

∣∣∣∣2 (4.76)

≤
d∑
k=1

∣∣∣∣|V it − V α(ρNt )|P kΓ (V it )− |V it − V α(ρNt )|P kΓ (V
i

t)

+ |V it − V α(ρNt )|P kΓ (V
i

t)− |V it − V α(ρNt )|P kΓ (V
i

t)

+ |V it − V α(ρNt )|P kΓ (V
i

t)− |V
i

t − V α(ρt)|P kΓ (V
i

t)

∣∣∣∣2.
(4.77)

.
d∑
k=1

(∣∣V it − V it∣∣2 +
∣∣|V it − V α(ρNt )| − |V it − V α(ρNt )|

∣∣2
∣∣|V it − V α(ρNt )| − |V it − V α(ρt)|

∣∣2) (4.78)

.
d∑
k=1

(
|V it − V

i

t|2 + |V α(ρNt )− V α(ρNt )|2 + |V α(ρNt )− V α(ρt)|2
)

(4.79)

. d|V it − V
i

t|2 +

∑N
i=1 d|V it − V

i

t|2

N
+ d|V α(ρNt )− V α(ρt)|2 (4.80)

where we have used the stability estimate (3.57) and Jensen’s inequality in the last line.

We do not need to further estimate the fourth term on the right hand side of (4.63) (the coefficient

of dBit), because the expected value of this term vanishes anyway due to the martingale property of

Brownian motion.

Writing (4.63) in integral form, taking the expectation and collecting the above estimates thus

yields

E|V it − V
i

t|2 . E|V i0 − V
i

0|2 +

∫ t

0

E|V is − V
i

s|2ds+

∫ t

0

∑N
i=1 E|V is − V

i

s|2

N
ds+

+

∫ t

0

E|V α(ρNs )− V α(ρs)|2 ds
(4.81)

L.4.4.1

. E|V i0 − V
i

0|2 +

∫ t

0

sup
i∈[N ]

E|V is − V
i

s|2ds+ TN−1. (4.82)

With Gronwall’s lemma we find

sup
i∈[N ]

E|V it − V
i

t|2 . N−1 (4.83)

where we have used that E|V i0 − V
i

0|2 = 0. This finishes the proof.
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4.5 Summary

The main result of this chapter is the mean-field limit result for the KV-CBO model, see theorem

4.4.1. A mean-field limit result is a statement about the convergence of the empirical measure ρNt

towards the solution ρt of the mean-field equation in the large particle limit N →∞. The convergence

rate is N−1 and thus independent of the dimension d. The mean-field equation is a nonlinear, nonlocal

deterministic PDE. We have proved the mean-field limit result with the coupling method, which relies

on the propagation of chaos assumption and the introduction of an auxiliary monoparticle SDE, the

mean-field dynamic. We have proved the well-posedness of the mean-field dynamic and the mean-field

equation. The rigorous derivation of the mean-field equation and the proof of the mean-field limit

result relied on the compactness of the hypersurface Γ.
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Chapter 5

Optimization

In this chapter we prove the main result of this thesis, namely the convergence of the consensus point

V α(ρt) towards a global minimizer V ? of the cost function E for the special case Γ = Sd−1. Here

V α(ρt) is the consensus point corresponding to the mean-field solution ρt, see theorem 5.4.2. As

discussed in chapter 3, the cost function E ∈ C2(Rd,R+) needs to satisfy the ceorcivity condtion

|v − V ?| ≤ c3|E(v)− E(V ?)|c4 (5.1)

which implies that it is enclosed in a convex envelope, see definition 3.1.1 on page 38. Further, we

impose (strict) conditions on the distribution ρt and the coefficients of the KV-CBO model, see section

5.3. The analysis will be carried out on the macroscopic level only, that is, instead of analyzing the orig-

inal particle system and the corresponding empirical measure ρNt we analyse its mean-field solution ρt.

This chapter is based on joint work of Massimo Fornasier, Hui Huang, Lorenzo Pareschi and myself

and has been published in [Fornasier et al., 2021a]. The proof discussed here is slighty different from

the original proof: the conditions on the distribution and coefficient are different, and many (but not

all) of the estimates are much sharper and no longer involve the constant Cα = O(eα). Further the

proof is significantly simpler than the orginal.

5.1 Calculus on the sphere

In the following lemma we collect some technical results about the gradient, Hessian and Laplacian of

the weight function e−αE(·) on the sphere Γ = Sd−1. We refer to section 3.4 for differential geometry

results on general hypersurfaces, and to page 141 in the appendix for integration by parts formulas

on the sphere. As usual ∂i denotes the partial derivative with respect to the ith variable, and ∂Sd−1,i
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denotes the ith component of the tangential gradient on the sphere ∇Sd−1 , that is.
∂iφ = (∇φ)i

∂Sd−1,iΦ = (∇Sd−1Φ)i = (∇(Φ ◦ΠSd−1))i

∂2
Sd−1,ijΦ = (∇2

Sd−1Φ)ij = (∇2(Φ ◦ΠSd−1))ij

(5.2)

for i, j ∈ [d], where ΠSd−1(v) = v/|v|.

Lemma 5.1.1 (Weight function on the sphere). Let v ∈ Γ = Sd−1.

For the gradient of the weight function we have

∇e−αE(v) = −αe−αE(v)∇E(v) ∈ Rd

∂ie
−αE(v) = −αe−αE(v)∂iE(v)

∇Sd−1e−αE(v) = −αe−αE(v)PSd−1(v)∇E(v) ∈ Rd

∂Sd−1,ie
−αE(v) = ∂ie

−αE(v) − viv · ∇e−αE(v).

(5.3)

For the Hessian of the weight function we have

∇2e−αE(v) = −αe−αE(v)(−α∇E(v)⊗∇E(v) +∇2E(v)) ∈ Rd×d

∂2
ije
−αE(v) = −αe−αE(v)(−α∂iE(v)∂jE(v) + ∂2

ijE(v))

∂2
Sd−1,iie

−αE(v) = ∂2
iie
−αE(v) − 2

∑d
j=1 ∂

2
ije
−αE(v)vjvi − v · ∇e−αE(v) + 2v2

i v · ∇e−αE(v)

−vi∂ie−αE(v) + v2
i∇2e−αE(v) : v ⊗ v.

(5.4)

For the Laplace-Beltrami operator of the weight function we have∆e−αE(v) = α2e−αE(v)|∇E(v)|2 − αe−αE(v)∆E(v) ∈ R,

∆Sd−1e−αE(v) = ∆e−αE(v) − (d− 1)v · ∇e−αE(v) − (v ⊗ v) : ∇2e−αE(v) ∈ R.
(5.5)
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5.2 Regularity of the mean-field solution

In chapter 4 we have shown the well-posedness of the mean-field equation in the sense that there is a

unique weak solution ρt ∈ P(Sd−1) for every initial distribution ρ0 ∈ P(Sd−1). That is, the solution

of the mean-field equation was always a probability measure (not a function). The main result of this

chapter however requires a higher regularity of the solution ρt. In this section we will proof that the

solution is in L2(Sd−1) if the initial distribution is. The proof is based on a Picard iteration argument

and requires the Aubin-Lions theorem which we introduce below.

Let us first introduce the Lebesgue, Soboloev and Bochner spaces on Sd−1.

Definition 5.2.1. Let p ∈ [1,∞] and (X, ‖ · ‖X) a Banach space. We define
L2(Sd−1) := {f : Sd−1 → R measureable | ‖f‖L2(Sd−1) <∞},

H1(Sd−1) := {f ∈ L2(Sd−1) | ‖f‖H1(Sd−1) <∞},

Lp([0, T ], X) := {u : [0, T ]→ X | ‖u‖Lp([0,T ],X) <∞}

(5.6)

where the norms are defined as‖f‖2L2(Sd−1) :=
∫
Sd−1 |f(v)|2dv,

‖f‖H1(Sd−1) := ‖f‖L2(Sd−1) + ‖∇Sd−1f‖L2(Sd−1),
(5.7)

and

‖u‖Lp([0,T ],X) :=


∫ T

0
‖u(t)‖pXdt, for p <∞

esssupt∈[0,T ] ‖u(t)‖X , for p =∞.
(5.8)

We further define the dual space H1(Sd−1)′ := L(H1(Sd−1),R) as the space of continuous linear

functionals on H1(Sd−1). The norm is given by

‖f‖H1(Sd−1)′ = sup
‖ψ‖

H1(Sd−1)
≤1

|〈f, ψ〉|. (5.9)

Theorem 5.2.1 (Aubin-Lions, [Roub́ıček, 2013]). Let p ∈ (1,∞), q ∈ [1,∞], V1 a separable and

reflexive Banach space, V2 a Banach space, V3 a metrizable locally convex Hausdorff space. Let further

V1 ⊂ V2 be compactly embedded, and V2 ⊂ V3 continuously embedded. Then the space

W 1,p,q([0, T ];V1, V3) := {u ∈ Lp([0, T ];V1

∣∣ ∂tu ∈ Lq([0, T ];V3))} (5.10)

is compactly embedded in Lp([0, T ];V2), that is, every sequence {ρn}n∈N ⊂W 1,p,q([0, T ];V1, V3) has a

converging subsequence {ρnk}k∈N with

ρnk → ρ ∈ Lp([0, T ];V2)) (5.11)
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as k →∞.

Theorem 5.2.2. Let ρ0 ∈ L2(Sd−1). Then there exists a unique weak solution of the mean-field

equation (4.45) with the following regularityρ ∈W 1,2,2([0, T ];H1(Sd−1), H1(Sd−1)′)

ρ ∈ L∞([0, T ];L2(Sd−1)).
(5.12)

Proof. The proof follows the same argument as in [Albi et al., 2017, Theorem 2.4]. The unique-

ness of a weak solution has been shown in theorem 4.3.1. For the proof of the existence we use

a Picard iteration argument, see [William A. Adkins, 2012] to construct a sequence {ρn}n∈N ⊂
W 1,2,2([0, T ];H1(Sd−1), H1(Sd−1)′) for which the Aubin-Lions theorem guarantees the existence of

a subsequence {ρnk}k∈N such that ρnk → ρ ∈ L2([0, T ];L2(Sd−1)) as k → ∞. The function ρ is then

shown to be a weak solution of the mean-field equation with the desired regularity.

We set the first iterate ρ1 of the Picard iteration to the initial data ρ0, that is,

ρ1(t, v) := ρ0(v), t ∈ [0, T ] (5.13)

and consider for n ≥ 1 the linear equation∂tρ
n+1
t = −λ∇Sd−1 · (PSd−1(v)V α(ρnt )ρn+1

t ) + σ2

2 ∆Sd−1(|v − V α(ρnt )|2ρn+1
t )

ρn+1(0, v) = ρ0(v)
(5.14)

where

ρn ∈ L∞([0, T ];L2(Sd−1)) ∩ L2([0, T ];H1(Sd−1)). (5.15)

This PDE has a unique weak solution ρn+1 since

PSd−1(v)V α(ρnt ), |v − V α(ρnt )|2 ∈ L∞(Sd−1). (5.16)

Multiplying both sides of (5.14) with ρn+1
t and using integration by parts yields

1

2

d

dt
‖ρn+1
t ‖2L2(Sd−1) = λ

∫
Sd−1

PSd−1(v)V α(ρnt )ρn+1
t · ∇Sd−1ρn+1

t dv

− σ2

2

∫
Sd−1

∇Sd−1(|v − V α(ρnt )|2ρn+1
t ) · ∇Sd−1ρn+1

t dv.

(5.17)

The first term on the right hand side can be bounded as

λ

∫
Sd−1

PSd−1(v)V α(ρnt )ρn+1
t · ∇Sd−1ρn+1

t dv

≤ λ
∫
Sd−1

|ρn+1
t ||∇Sd−1ρn+1

t | dv
(5.18)
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≤ λε2

2
‖ρn+1
t ‖2L2(Sd−1) +

λ

2ε2
‖∇Sd−1ρn+1

t ‖2L2(Sd−1) (5.19)

where we have used the Cauchy-Schwarz inequality in the first step and Young’s inequality ab ≤
ε2a2

2 + b2

2ε2 in the second.

The second term can be bounded as

− σ2

2

∫
Sd−1

∇Sd−1(|v − V α(ρnt )|2ρn+1
t ) · ∇Sd−1ρn+1

t dv

= −σ2

∫
Sd−1

(v − V α(ρnt ))ρn+1
t · ∇Sd−1ρn+1

t dv − σ2

2

∫
Sd−1

|v − V α(ρnt )|2|∇Sd−1ρn+1
t |2 dv

(5.20)

≤ −σ2

∫
Sd−1

(v − V α(ρnt ))ρn+1
t · ∇Sd−1ρn+1

t dv (5.21)

= σ2

∫
Sd−1

V α(ρnt )ρn+1
t · ∇Sd−1ρn+1

t dv (5.22)

≤ σ2ε2

2
‖ρn+1
t ‖2L2(Sd−1) +

σ2

2ε2
‖∇Sd−1ρn+1

t ‖2L2(Sd−1) (5.23)

where we have used that v is the outward normal and thus v · ∇Sd−1ρn+1
t (v) = 0. Remark: this step

would not have worked on general hypersurfaces Γ 6= Sd−1.

Combining the above estimates we find

1

2

d

dt
‖ρn+1
t ‖2L2(Sd−1) −

1

ε2
‖∇Sd−1ρn+1

t ‖2L2(Sd−1) . ε2‖ρn+1
t ‖2L2(Sd−1) (5.24)

from which we deduce with Gronwall’s inequality

‖ρn+1
t ‖2L2(Sd−1) +

∫ T

0

‖∇Sd−1ρn+1
t ‖2L2(Sd−1)dt . 1. (5.25)

We further conclude  esssupt∈[0,T ] ‖ρn+1
t ‖L2(Sd−1) <∞,∫ T

0
‖ρn+1
t ‖2H1(Sd−1)dt <∞

(5.26)

hence

ρn+1 ∈ L∞([0, T ];L2(Sd−1)) ∩ L2([0, T ];H1(Sd−1)). (5.27)

In order to apply the Aubin-Lions theorem it remains to show that

∂tρ
n+1 ∈ L2([0, T ];H1(Sd−1)′). (5.28)
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This follows with

‖∂tρn+1
t ‖H1(Sd−1)′

= sup
‖ψ‖

H1(Sd−1)
≤1

|〈∂tρn+1
t , ψ〉| (5.29)

= sup
‖ψ‖

H1(Sd−1)
≤1

∣∣〈λPSd−1(v)V α(ρnt )ρn+1
t − σ2

2
∇Sd−1(|v − V α(ρnt )|2ρn+1

t ),∇Sd−1ψ

〉∣∣ (5.30)

. λ‖ρn+1
t ‖L2(Sd−1) +

σ2

2
‖∇ρn+1

t ‖L2(Sd−1) (5.31)

where we have used the boundedness of the coefficient functions (5.16). We further find∫ T

0

‖∂tρn+1
t ‖2H1(Sd−1)′ dt ≤

∫ T

0

2λ‖ρn+1
t ‖2L2(Sd−1) + σ2‖∇ρn+1

t ‖2L2(Sd−1) dt <∞ (5.32)

which finishes the proof of (5.28).

So far we have constructed a sequence

{ρn}n∈N ⊂W 1,2,2([0, T ];H1(Sd−1), H1(Sd−1)′) (5.33)

for which the Aubin-Lions theorem guarantees the existence of a subsequence {ρnk}k∈N such that

ρnk → ρ ∈ L2([0, T ];L2(Sd−1)) (5.34)

as k →∞. As the spaces W 1,2,2 and L∞([0, T ];L2(Sd−1)) are Banach spaces the limit function ρ also

belongs to those spaces, proving (5.12).

It remains to show that ρ solves the mean-field equation (in the weak sense). To this end we first

note that the mean-value theorem yields

max
t∈[0,T ]

‖ρn‖L2(Sd−1) . ‖∂tρn‖L2([0,T ];H1(Sd−1)′) + ‖ρn‖L2([0,T ];H1(Sd−1)) <∞ (5.35)

from which we deduce ρn ∈ C([0, T ];L2(Sd−1)). From this we see that the weak formulation of the

lhs of (5.14) converges to the lhs of the weak formulation of the mean-field equation (see (4.44))

d

dt

∫
Sd−1

∣∣Φ(v)(ρnkt (v)− ρt(v))
∣∣2dv → 0. (5.36)

For the rhs we find

λ

∫
Sd−1

∣∣Φ(v)(PSd−1(v)V α(ρnkt )ρnk+1
t − PSd−1(v)V α(ρt)ρt) · ∇Sd−1Φ(v)

∣∣2dv (5.37)

.
∫
Sd−1

∣∣V α(ρnkt )ρnk+1
t − V α(ρt)ρt)

∣∣2dv (5.38)
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.
∫
Sd−1

∣∣V α(ρnkt )ρnk+1
t − V α(ρnkt )ρt

∣∣2 +
∣∣V α(ρnkt )ρt − V α(ρt)ρt

∣∣2dv (5.39)

.
∫
Sd−1

∣∣ρnk+1
t − ρt

∣∣2dv +

∫
Sd−1

∣∣ρnkt − ρt∣∣2dv → 0 (5.40)

for the convection part and similarly∫
Sd−1

∣∣|v − V α(ρnkt )|2ρnk+1
t − |v − V α(ρt)|2ρt

∣∣→ 0 (5.41)

for the diffusion part which finishes the proof.

5.3 Conditions on the distribution and coefficients

In this section we discuss the conditions on the distribution ρt and the coefficients of the KV-CBO

model needed to prove the convergence of the consensus point V α(ρt) towards the global minimizer

V ?. The conditions on the cost function E (definition 3.1.1) have already been discussed on many

occasions and will not be treated here.

Let us start with an important remark.

Remark 5.3.1 (Conditions from definition 5 in [Fornasier et al., 2021a]). In [Fornasier et al., 2021a]

the following (complicated) conditions

C2max{1,c4}
α

(
V (ρ0) +

λCT
λϑ− 4CαCσ,d

δ(d−2)/4

)min{1,c4}/2
+ εc4 <

δ − ϑ
C?

, (5.42)

V (ρ0) +
λCT

λϑ− 4CαCσ,d
δ(d−2)/4 ≤ min

{
‖e−αE‖2L1(ρ0)

T
,
‖e−αE‖4L1(ρ0)

Tλ2
,

3

8

}
, (5.43)

λϑ− 4CαCσ,d > 0 (5.44)

are assumed to hold.

Here CT = supt∈[0,T ] ‖ρt‖L2(Sd−1), δ ∈ (0, 2) (see (5.46) below), ϑ ∈ (0, 2) and C? = O(eα) where

α � 1 is the temperature parameter. The other constants are the same as in this thesis, that is,

Cα = eα(E−E), T is the time horizon, λ is the coupling constant and

Cσ,d = (d− 1)σ2/2. (5.45)

Further, c4 is the exponent from the coercivity condition (5.1) and ε is the approximation error from

lemma 5.4.4 below. This lemma implies that ε can only be small if α is large (see (2.74) for the

convergence rate).

The number on the right hand side of (5.42) is in the order of O(1/eα). Hence the condition can
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only be satisfied if ε and the initial variance V (ρ0) on the left hand side are very small. More precisely:

if we assume ε = 0, c4 = 1 and λCT
λϑ−4CαCσ,d

δ(d−2)/4 = 0 (which is not possible), then (5.42) implies

V (ρ0) = O(e−6α).

In other words: the above conditions can only be satisfied if the variance V (ρ0) is zero and E(ρ0)

is equal to the global minimizer V ?.

Remark 5.3.2. From the condition (5.43) we further see that a large coupling constant λ or a large

(or even infinite) time horizon T are undesirable as they make the initial variance V (ρ0) much smaller.

We further note that condition (5.44) implies λ = O(eα).

The above remarks show that the optimization result of the KV-CBO model is not a global but

rather a local optimization result, that is, convergence to the global minimizer is guaranteed if we

have a-priori knowledge about its location. To make this locality condition more precise we define

the cap

Dδ = {v ∈ Sd−1 | − 1 ≤ 〈v, V ?〉 ≤ −1 + δ} (5.46)

for some fixed constant δ ∈ (0, 2) and assume the density ρt to have most of its mass outside the cap

Dδ and thus close to V ?, that is, we assume

sup
t∈[0,T ]

‖ρt‖L2(Dδ) ≤ ε0 (5.47)

for some ε0 = ε0(δ) ≥ 0. Here we need ρt ∈ L2(Sd−1) which is given if the initial distribution has this

regularity.

Figure 5.1: Schematic depiction of the cap Dδ (orange boundary) and the set D̃δ (orange fill). Dδ is
a region of Sd−1 opposed to the global minimizer, that is, V ? 6∈ Dδ. It is larger if δ ∈ [0, 2] is larger.
The expected value and consensus points are expected to stay within the green area.

An other condition for the distribution is

VT := sup
t∈[0,T ]

V (ρt) ≤ min

{
‖e−αE‖2L1(ρ0)

T
,
‖e−αE‖4L1(ρ0)

Tλ2

}
. (5.48)
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This is a technical assumption that can not be easily motivated. We therefore just make a few re-

marks about it. We first note that since E ≥ 0 the weight e−αE ≤ 1 is bounded from above and

‖e−αE‖L1(ρ0) ≤ 1.

We further assume the initial distribution to be chosen such that the expected value and the

consensus point are reasonably close to V ? and stay reasonably close for any time t ≥ 0. To make

this more precise we introduce the set

D̃δ = {v ∈ Bd1 (0) | ΠSd−1(v) ∈ Dδ} (5.49)

where Bd1 (0) is the ball in Rd with radius r = 1 around the origin and ΠSd−1(v) = v
|v| is the projection

onto the boundary of Bd1 (0). We now assume

E(ρt), V
α(ρt) ∈ Bd1 (0) \

(
D̃δ ∪Bd1/2(0)

)
(5.50)

for all t ∈ [0, T ]. This allows us to find a good (large) lower bound on the inner product of the expected

value and the consensus point, that is,

E(ρt) · V α(ρt) ≥ C1 (5.51)

for a strictly positive constant C1 ∈ (0, 1]. An estimate of this form is necessary for the convergence

proof.

So far, we have discussed the conditions on the distribution ρt. Additionally, the coefficients α, σ, λ

of the KV-CBO model need to satisfy certain conditions to guarantee convergence to the global min-

imizer. These conditions are reported below and will be used in the following sections to show the

monotonic decay of the variance V (ρt).

Let us summarize the conditions for the initial distribution and the coefficients. These conditions are

assumed to hold in the rest of this chapter. The condition ρ0 ∈ Pac(Sd−1) is needed to apply Laplace’s

principle.

Definition 5.3.1. Let δ ∈ (0, 2) and ρ0 ∈ Pac(Sd−1) ∩ L2(Sd−1) the initial distribution. We assume
supt∈[0,T ] ‖ρt‖L2(Dδ) ≤ ε0,

E(ρt) · V α(ρt) ≥ C1 ∀t ∈ [0, T ],

VT := sup
t∈[0,T ]

V (ρt) ≤ min

{
‖e−αE‖2

L1(ρ0)

T ,
‖e−αE‖4

L1(ρ0)

Tλ2

}
.

(5.52)
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For the coefficients α, σ, λ and δ we assume∃ϑ > 0 s.t. C1 + 5/8− C2/2− (2− δ) ≥ ϑ > 0,

λϑ− 4Cσ,d > 0
(5.53)

where C1 > 0 is the constant from (5.51) and C2 is the constant from lemma 5.4.3 below.

5.4 Convergence towards the global minimizer

In this section we prove the main result of this chapter, namely the convergence towards the global

minimizer V ?. As mentioned above this convergence result is a local optimization result as we assume

a-priori knowledge about the location of V ?. We start with some technical estimates.

We can relate the variance and the expected value by noting

2V (ρt) =

∫
Sd−1

|v − E(ρt)|2 dρt(v) = 1− 2E(ρt) ·
∫
Sd−1

v dρt(v) + |E(ρt)|2 (5.54)

which yields the important equality

2V (ρt) = 1− |E(ρt)|2. (5.55)

From this we can easily conclude that |E(ρt)| ≥ 1/2 once the variance V (ρt) ≤ 3/8. Further, we

observe that maxV (ρt) = 1/2 and that this maximum is attained by the uniform density on Sd−1. In

this case we can also find a sharp estimate on the integral
∫
Sd−1 |v −E(ρt)|2 dρt(v) where

E(ρt) =
E(ρt)

|E(ρt)|
(5.56)

is the normalized expected value, that is,∫
Sd−1

|v −E(ρt)|2 dρt(v) = 2(1− |E(ρt)|)
(5.55)

=
4V (ρt)

1 + |E(ρt)|
≤ 8

3
V (ρt). (5.57)

We can further estimate |E(ρt)− V ?|2 = 2(1−E(ρt) · V ?) ≤ 2(2− δ),

|V α(ρt)− V ?|2 = 2(1− V α(ρt) · V ?) ≤ 3− δ
(5.58)

where we have used that E(ρt) ·V ? ≥ −1 + δ and V α(ρt) ·V ? ≥ |V α(ρt)|(−1 + δ) and |V α(ρt)| ≥ 1/2.

In the next lemma we bound integrals that involve the consensus point V α(ρt). We will use a

simple but important trick to bound the weight e−αE independent of α. This trick will also be used
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in the next chapter when we discuss the numerical implementation of the KV-CBO model, see (6.8).

Lemma 5.4.1. The following estimates hold
∫
Sd−1 |V α(ρt)|2 dρt(v) ≤ 2V (ρt),∫
Sd−1 |v − V α(ρt)|2 dρt(v) ≤ 4V (ρt).

(5.59)

Proof. Let us assume that the global minimizer V ? ∈ supp(ρt). An application of Jensen’s inequality

allows us to bound the first integral in (5.59) as∫
Sd−1

|V α(ρt)|2 dρt(v) ≤
∫
Sd−1

|v|2e−α(E(v)−E(V ?))∫
Sd−1 e−α(E(w)−E(V ?)) dρt(w)

dρt(v). (5.60)

Noting that e−α(E(v)−E(V ?)) ≤ 1 for all v ∈ Sd−1 and e−α(E(w)−E(V ?)) = 1 for at least one w ∈ Sd−1

(the global minimizer V ?) finishes the proof of the first estimate.

For the second estimate we proceed similarly. An application of Jensen’s inequality to the convex

function φ(w) = |v − w|2 yields

∫
Sd−1

|v − V α(ρt)|2dρt(v) ≤
∫
Sd−1

∫
Sd−1 |v − w|2e−αE(w)dρt(w)

‖e−αE‖L1(ρt)
dρt(v) (5.61)

≤
∫
Sd−1

∫
Sd−1

|v − w|2 dρt(w)dρt(v) (5.62)

=

∫
Sd−1

∫
Sd−1

|v − E(ρt)|2 + |w − E(ρt)|2 dρt(w)dρt(v) (5.63)

≤ 4V (ρt). (5.64)

From this we further find ∫
Sd−1

|v − V α(ρt)| dρt(v) ≤ 2V (ρt)
1/2. (5.65)

If the variance of ρt converges to zero the consensus point and the expected value both converge

to the sphere and their inner product to one. In the next lemma we prove this rigorously.

Lemma 5.4.2. The following estimates hold
1− 4V (ρt) ≤ |V α(ρt)|2 ≤ 1,

2V (ρt) = 1− |E(ρt)|2,

E(ρt) · V α(ρt) ≥ V (ρt) + |E(ρt)|2+|V α(ρt)|2
2 − 2V (ρt).

(5.66)
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Proof. We have

1− |V α(ρt)|2 =

∫
Sd−1(1− |V α(ρt)|2)e−αE(u)dρt(u)

‖e−αE‖L1(ρt)
≤ 4V (ρt) (5.67)

where we have used (5.59). The other direction follows easily with Jensen’s inequality.

The second statement has already been shown above, see (5.55).

For the thrid statement we find∫
Sd−1

|v − V α(ρt)|2 dρt(v) =

∫
Sd−1

|v − E(ρt) + E(ρt)− V α(ρt)|2 dρt(v) (5.68)

= 2V (ρt) + |E(ρt)|2 − 2E(ρt) · V α(ρt) + |V α(ρt)|2 (5.69)

where we have used that ∫
Sd−1

〈v − E(ρt),E(ρt)− V α(ρt)〉 dρt(v) = 0. (5.70)

Hence

E(ρt) · V α(ρt) = V (ρt) +
|E(ρt)|2 + |V α(ρt)|2

2
− 1

2

∫
Sd−1

|v − V α(ρt)|2 dρt(v) (5.71)

≥ V (ρt) +
|E(ρt)|2 + |V α(ρt)|2

2
− 2V (ρt). (5.72)

We now prove the monotonic decay of the variance of ρt. Let us first derive an expression for

the time derivative of the variance. Starting with a solution V t ∼ ρt of the mean-field dynamic (4.9)

where E(ρt) = E(V t) and applying Dynkin’s formula (with f(v) = v) we find an expression for the

time derivative of the expected value d
dtE(ρt). With (5.55) we find

d

dt
V (ρt) = −E(ρt) ·

d

dt
E(ρt). (5.73)

and further

d

dt
V (ρt) = −E(ρt) ·

∫
Sd−1

λPSd−1(v)V α(ρt)− Cσ,d|v − V α(ρt)|2v dρt(v). (5.74)

Already here we are made aware of the importance of a large (positive) bound on the inner product

E(ρt) · V α(ρt).
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Lemma 5.4.3. The following estimate holds∫
Sd−1

|E(ρt)− v|2|v − V α(ρt)|2 dρt(v) ≤ 16ε0C
1/2
3 δ(d−2)/4 + 4(2− δ)V (ρt) + 2C2V (ρt) (5.75)

for positive constants C2 = C2(δ) and C3 = C3(d).

Proof. We have
|v − V α(ρt)|2 = |v − V ?|2 + 2〈v − V ?, V ? − V α(ρt)〉+ |V α(ρt)− V ?|2,

2〈v − V ?, v? − V α(ρt)〉 ≤ 4|V ? −E(ρt)|+ 4|E(ρt)− V α(ρt)|,

|V α(ρt)− V ?|2 ≤ 2|V α(ρt)−E(ρt)|2 + 2|E(ρt)− V ?|2.

(5.76)

With these estimates we find∫
Sd−1

|E(ρt)− v|2|v − V α(ρt)|2 dρt(v)

≤
∫
Sd−1

|E(ρt)− v|2|v − V ?|2 dρt(v) (5.77)

+ 2V (ρt)

(
4|V α(ρt)−E(ρt)|+ 4|E(ρt)− V ?|+ 2|V α(ρt)−E(ρt)|2 + 2|E(ρt)− V ?|2

)
.

The terms in the parentheses can be bounded by C2 . 2(2− δ) where we have used (5.58).

The integral ∫
Sd−1

|E(ρt)− v|2|v − V ?|2 dρt(v) (5.78)

on the right hand side of (5.77) is split into two integrals, one over the cap Dδ and one over Sd−1 \Dδ.

For the first integral we use ρ ∈ L∞([0, T ];L2(Sd−1)) (see theorem 5.2.2) to bound∫
Dδ
dρt(v) ≤ ‖ρt‖L2(Dδ)vol(Dδ)

1/2 ≤ ‖ρt‖L2(Dδ)C
1/2
3 δ(d−2)/4 (5.79)

where we have used the following formula for the volume of the cap

vol(Dδ) =
1

2
adI2δ−δ2

(
d− 1

2
,

1

2

)
≤ C πd/2

Γ(d/2)

(d− 1)1/2

d− 2
δ(d−2)/2 ≤ C3δ

(d−2)/2 (5.80)

where ad is the area of a unit ball, Ix(a, b) is the regularized incomplete beta function and Γ is the

Gamma function.

Thus ∫
Dδ

|E(ρt)− v|2|v − V ?|2 dρt(v) ≤ 16

∫
Dδ

dρt(v) ≤ 16ε0C
1/2
3 δ(d−2)/4. (5.81)
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For the second integral we find∫
Sd−1\Dδ

|E(ρt)− v|2|v − V ?|2 dρt(v) ≤ 4(2− δ)V (ρt). (5.82)

where we have used the identity |v − V ?|2 = 2(1− 〈v, V ?〉) ≤ 2(2− δ) for all v ∈ Sd−1/Dδ.
Combining the above estimates finishes the proof.

In the next theorem we show the monotonic decay of the variance provided λϑ > 4Cσ,d. The decay

is exponential, but only converges to zero if ε0 = 0.

Theorem 5.4.1 (Monotonic decay of the variance). We have

V (ρt) ≤ V (ρ0)e−(λϑ−4Cσ,d)t +
4λε0C

1/2
3 δ(d−2)/4

λϑ− 4Cσ,d
. (5.83)

Proof. With the polarization propertiesv · E(ρt) = |E(ρt)|2+1
2 − |v−E(ρt)|2

2 ,

v · V α(ρt) = |V α(ρt)|2+1
2 − |v−V

α(ρt)|2
2

(5.84)

we can estimate the first term on the right hand side of (5.74) as

− λ
∫
Sd−1

E(ρt) · PSd−1(v)V α(ρt) dρt(v) (5.85)

= −λE(ρt) · V α(ρt) + λ

∫
Sd−1

(v · E(ρt))(v · V α(ρt)) dρt(v) (5.86)

= −λE(ρt) · V α(ρt)

+ λ

∫
Sd−1

|E(ρt)|2 + 1

2
v · V α(ρt) dρt(v)− λ

∫
Sd−1

|v − E(ρt)|2

2
v · V α(ρt) dρt(v)

(5.87)

= −λE(ρt) · V α(ρt) + λ
|E(ρt)|2 + 1

2
E(ρt) · V α(ρt)− λ

∫
Sd−1

|v − E(ρt)|2

2
v · V α(ρt) dρt(v) (5.88)

≤ −λC1V (ρt)− λ
∫
Sd−1

|v − E(ρt)|2

2
v · V α(ρt) dρt(v) (5.89)

where we have used equality (5.55) and the bound E(ρt) · V α(ρt) ≥ C1 in the last step.

The integral on the right hand side of (5.89) can be bounded by

− λ
∫
Sd−1

|v − E(ρt)|2

2
v · V α(ρt) dρt(v)

= −λ
∫
Sd−1

|v − E(ρt)|2

2

|V α(ρt)|2 + 1

2
dρt(v) +

λ

4

∫
Sd−1

|v − E(ρt)|2|v − V α(ρt)|2 dρt(v)

(5.90)

≤ −5λ

8
V (ρt) +

λ

4

∫
Sd−1

|v − E(ρt)|2|v − V α(ρt)|2 dρt(v). (5.91)
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With lemma 5.4.3 we can further bound the integral term on the right hand side.

For the second term on the right hand side of (5.74) we find

Cσ,d

∫
Sd−1

|v − V α(ρt)|2v · E(ρt) dρt(v) ≤ 4Cσ,dV (ρt). (5.92)

Combining these estimates and using (5.53) yields

d

dt
V (ρt) ≤ −

(
λϑ− 4Cσ,d

)
V (ρt) + 4λε0C

1/2
3 δ(d−2)/4. (5.93)

An application of Gronwall’s inequality finishes the proof.

We now prove a variant of Laplace’s principle for the mean-field solution. Here we need the third

condition from definition 5.3.1. For a discussion about Laplace’s principle for ρ0 ∈ Pac(Rd) we refer

to chapter 2.

Lemma 5.4.4 (Laplace’s principle for the mean-field solution). Let ρ0 ∈ Pac(Sd−1) ∩ L2(Sd−1) and

ρ ∈ L∞([0, T ];L2(Sd−1)) the mean-field solution of the KV-CBO model. Then

lim
α→∞

− 1

α
log ‖e−αE‖L1(ρt) = E (5.94)

for all t ∈ [0, T ].

Proof. We first show
d

dt
‖e−αE‖2L1(ρt)

≥ −b1(α)V (ρt)− b2(α)λV (ρt)
1/2 (5.95)

where b1(α), b2(α) are bounded in [0, 1] and tend to zero as α→∞.

To see this, we apply Dynkin’s formula to the function φ(v) = e−αE(v). This yields

d

dt

∫
Sd−1

e−αE(v)dρt(v) =

∫
Sd−1

λPSd−1(v)V α(ρt) · ∇Sd−1e−αE(v)

+
σ2

2
|v − V α(ρt)|2∆Sd−1e−αE(v) dρt(v).

(5.96)

The first term on the right hand side can be estimated as

λ

∫
Sd−1

PSd−1(v)V α(ρt) · ∇Sd−1e−αE(v) dρt(v) (5.97)

= −αλ
∫
Sd−1

e−αE(v)PSd−1(v)V α(ρt) · ∇E(v)dρt(v) (5.98)

≥ −αλc1e−αE
∫
Sd−1

|PSd−1(v)V α(ρt)| dρt(v) (5.99)

≥ −αλc1e−αEV (ρt)
1/2 (5.100)
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where we have used the bound on |∇E| (see definition 3.1.1) and the estimate from lemma 5.4.1.

For the second term on the right hand side of (5.96) we get

σ2

2

∫
Sd−1

|v − V α(ρt)|2∆Sd−1e−αE(v) dρt(v) (5.101)

≥ σ2

2

∫
Sd−1

|v − V α(ρt)|2
(
− αc2 − α(d− 1)c1 − α2c21 − αc2

)
e−αE(v) dρt(v) (5.102)

≥ −2σ2αe−αE(2c2 + (d− 1)c1 + αc21)V (ρt) (5.103)

where we have used the bounds from lemma 5.1.1 to find

∆Sd−1e−αE(v) = ∆e−αE(v) − (d− 1)v · ∇e−αE(v) − v ⊗ v : ∇2e−αE(v) (5.104)

=
(
α2|∇E(v)|2 − α∆E(v)

)
e−αE(v) + α(d− 1)e−αE(v)v · ∇E(v)

+ αe−αE(v)
(
v ⊗ v :

(
− α∇E(v)⊗∇E(v) +∇2E(v)

)) (5.105)

≥
(
− α∆E(v) + α(d− 1)v · ∇E(v)− α2|∇E(v)|2 − α|∇2E(v)|

)
e−αE(v) (5.106)

≥
(
− αc2 − α(d− 1)c1 − α2c21 − αc2

)
e−αE(v). (5.107)

Combining the inequalities (5.100) and (5.103) yields

1

2

d

dt
‖e−αE‖2L1(ρt)

= ‖e−αE‖L1(ρt)
d

dt
‖e−αE‖L1(ρt)

≥ −2σ2αe−2αE(2c2 + (d− 1)c1 + αc21)V (ρt)− αλc1e−2αEV (ρt)
1/2

=: −b1(α)V (ρt)− b2(α)λV (ρt)
1/2 (5.108)

where b1(α), b2(α)→ 0 as α→∞, which finishes the proof of (5.95).

From this and definition 5.3.1 we follow

‖e−αE‖2L1(ρt)
≥ ‖e−αE‖2L1(ρ0) − b1(α)

∫ T

0

V (ρs)ds− b2(α)λ

∫ T

0

V (ρs)
1/2ds (5.109)

≥ ‖e−αE‖2L1(ρ0) − b1(α)VTT − b2(α)λV1/2

T T (5.110)

≥ ‖e−αE‖2L1(ρ0) − b1(α)‖e−αE‖2L1(ρ0) − b2(α)‖e−αE‖2L1(ρ0) (5.111)

≥ ‖e−αE‖2L1(ρ0)(1− b1(α)− b2(α)). (5.112)

Hence

− 1

α
log ‖e−αE‖L1(ρt) ≤ −

1

α
log ‖e−αE‖L1(ρ0) −

1

2α
log (1− b1(α)− b2(α)) (5.113)

and with Laplace’s principle and the fact that b1(α) and b2(α) approach zero as α → ∞ we further
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see that for any ε > 0 we can find α0 = max{α1, α2} such that

∣∣− 1

α
log ‖e−αE‖L1(ρt) − E

∣∣
≤
∣∣− 1

α
log ‖e−αE‖L1(ρ0) − E

∣∣+
∣∣ 1

2α
log (1− b1(α)− b2(α))

∣∣ ≤ ε (5.114)

which finishes the proof.

We now prove the main theorem of this thesis. So far we have shown the monotonic decay of the

variance of the mean-field solution. It remains to show that under certain conditions the correpsonding

consensus point V α(ρT ) for the final time T is a good approximation of the global minimizer V ? we

wish to find. We note that the approximation bounds in the theorem below are not sharp in general.

In fact it seems like the estimates are only sharp for the special case ε0 = 0 and ε = 0 (resp. α =∞).

In the next chapter we will see that from a numerical point of view the approximation properties

of the KV-CBO method are much better than indicated by the estimates below. This gives hope that

sharper estimates can be found.

Theorem 5.4.2. There is an α0 � 1 such that the following approximation estimates hold|E(ρt)− V ?| ≤ c32c4−1
(
(2Cα)c4V (ρt)

c4/2 + εc4
)
,

|V α(ρt)− V ?| ≤ 3V (ρt)
1/2 + c32c4−1

(
(2Cα)c4V (ρt)

c4/2 + εc4
) (5.115)

for any α > α0 and all t ∈ [0, T ].

Proof. With e−αE(v) ≤ 1 and the dual representation of the 1-Wasserstein distance W1 (see (2.68))

we find∣∣∣∣‖e−αE‖L1(ρt) − e
−αE(E(ρt))

∣∣∣∣ =

∣∣∣∣ ∫
Rd
e−αE(v)d(ρt(v)− δE(ρt)(v))

∣∣∣∣ ≤W1(ρt, δE(ρt)). (5.116)

With W1 ≤W2 and

W 2
2 (ρt, δE(ρt)) ≤

∫
Sd−1

|v −E(ρt)|2 dρt(v)
(5.57)

≤ 8

3
V (ρt) (5.117)

this can further be bounded by∣∣∣‖e−αE‖L1(ρt) − e
−αE(E(ρt))

∣∣∣ ≤ 2V (ρt)
1/2. (5.118)

We arrive at∣∣∣∣− 1

α
log ‖e−αE‖L1(ρt) − E(E(ρt))

∣∣∣∣ =
1

α

∣∣∣∣log ‖e−αE‖L1(ρt) −
1

α
log(e−αE(E(ρt)))

∣∣∣∣ (5.119)

≤ eαE

α

∣∣∣‖e−αE‖L1(ρt) − e
−αE(E(ρt))

∣∣∣ (5.120)

≤ 2CαV (ρt)
1/2 (5.121)
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where we have used the Lipschitz continuity of the logarithm on [1,∞).

Now let ε > 0. Lemma 5.4.4 implies the existence of some α0 � 1 such that

− 1

α
log ‖e−αE‖L1(ρt) − E ≤ ε (5.122)

for all α > α0. Combined with the bounds from above and the coercivity condition we find

|E(ρt)− V ?|

≤ c3 |E(E(ρt))− E|c4
(5.123)

≤ c32c4−1

∣∣∣∣(E(E(ρt)) +
1

α
log ‖e−αE‖L1(ρt))

c4 + (
−1

α
log ‖e−αE‖L1(ρt) − E)c4

∣∣∣∣ (5.124)

≤ c32c4−1|(2Cα)c4V (ρt)
c4/2 + εc4 |. (5.125)

To prove the second estimate we need to bound |V α(ρt)−E(ρt)|.

We have

|V α(ρt)−E(ρt)|2 =

∫
Sd−1

|V α(ρt)− v|2 dρt(v) + 2

∫
Sd−1

〈V α(ρt)− v, v −E(ρt)〉dρt(v)

+

∫
Sd−1

|v −E(ρt)|2dρt(v)

(5.126)

≤ 4V (ρt) + 2V (ρt) +
8

3
V (ρt) (5.127)

≤ 9V (ρt) (5.128)

where we have used

|V α(ρt)− E(ρt)|2 =

∫
Sd−1

|V α(ρt)− v|2dρt(v) + 2

∫
Sd−1

〈V α(ρt)− v, v − E(ρt)〉dρt(v)

+

∫
Sd−1

|v − E(ρt)|2dρt(v)

(5.129)

≤ 4V (ρt) + 2(|E(ρt)|2 − 1) + 2V (ρt) (5.130)

= 4V (ρt). (5.131)

and

2

∫
Sd−1

〈V α(ρt)− v, v −E(ρt)〉dρt(v)

= 2V α(ρt) · E(ρt)
(
1− 1

|E(ρt)|
)
− 2 + 2E(ρt) ·E(ρt)

(5.132)

≤ −|V α(ρt)− E(ρt)|2
(
1− 1

|E(ρt)|
)
− 2(1− |E(ρt)|) (5.133)
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≤ |V α(ρt)− E(ρt)|2 − 2V (ρt) (5.134)

≤ 2V (ρt). (5.135)

This finishes the proof.

5.5 Summary

In this chapter we proved the main result of this thesis, namely the convergence of the consensus

point V α(ρt) towards the global minimizer V ? of the cost function for the special case Γ = Sd−1. Here

ρt is the solution of the mean-field equation of the KV-CBO model at time t. Important theoretical

steps in the convergence proof were the establishment of mean-field solutions with L2-regularity and

the proof of Laplace’s principle for those mean-field solutions. Further we proved technical estimates

for the integral of the norm of the consensus point and expected value with which we proved the

monotonic decay of the variance V (ρt).

The convergence proof is a local optimization result in the sense that it requirs a-priori knowledge

about the location of the global minimizer. We have discussed the conditions on the distribution and

the coefficients of the KV-CBO model needed to achieve the convergence to the global minimizer.
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Chapter 6

Applications

This chapter deals with the implementation of the KV-CBO model and discusses some real world ap-

plications. We test the resulting discrete KV-CBO method for different cost functions, among which

we have the Rastrigin function which is a well-known benchmark function in non-convex optimiza-

tion. We also test the method for three real world applications: robust computation of principal

components, the phase retrieval problem, and the reconstruction of single-layer neural nets. The first

problem is inherently defined on the sphere, whereas the latter two have to be reformulated as an

optimization problem constrained over the sphere. We start the chapter with a discussion on imple-

mentation aspects of the KV-CBO model like discretization and possible speed-ups. In section 6.2

we make some general remarks about our testing methodology (including reproducibility) and further

discuss numerical tests for the Rastrigin function. A Matlab implementation of the KV-CBO method

can be download from GitHub 1. In section 6.2 we will see that the anisotropic method is more stable

than the isotropic method, see figure 6.2. In the subsequent numerial tests we will therefore only

consider the anisotropic method.

This chapter is based on joint work of Massimo Fornasier, Hui Huang, Lorenzo Pareschi and myself

and has been published in [Fornasier et al., 2021a] and [Fornasier et al., 2021b]. The adaptation of

the KV-CBO method to find multiple consensus points is unpublished, see section 6.5.

6.1 Implementation aspects

In this section we discuss discretization of the KV-CBO model, some technical problems concerning

sampling initial particles from a high-dimensional sphere and stable computation of the consensus

point for large values of α. We further discuss an accelerated method and adaptivity of the parameters.

1https://github.com/PhilippeSu
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Discretization

Let tn = n∆t an equidistant discretization of the time interval [0, T ] where ∆t is a fixed time step.

Throughout this chapter we denote by V in the approximation of V it at time tn = n∆t. A one step

time discretization of the KV-CBO model can be written in the general form

V in+1 = V in + Φ(∆t, V in, V
i
n+1, ξ

i
n) (6.1)

for a given discretization function Φ where ξin are independent random variables. In this thesis we

only consider Brownian motions, that is, ξin = ∆Bin where ∆Bin ∼ N (0,∆t) iid. However the study

of different stochastic processes could be interesting for future works.

As numerical efficiency of the method is crucial we choose a simple explicit discretization scheme.

Explicit method have the disadvantage of not being norm-preserving, that is, |V in+1|2 6= |V in|2 in

general. In [Fornasier et al., 2021a, L. 2] it is shown that equality holds iff Φ(∆t, V in, V
i
n+1, ξ

i
n) is

orthogonal to V in+1 +V in. If we use an explicit method we have to project the computed particle back

to the hypersurface after each time step, see algorithm 1.

We discretize the isotropic KV-CBO model (3.43)

dV it = λPΓ(V it )V α(ρNt )dt+ σ|V it − V α(ρNt )|PΓ(V it )dBit + CΓ(V it , V
α(ρNt ))dt (6.2)

with an (explicit) Euler-Maruyama scheme, see [Platen, 1999] and [Hairer et al., 2006]. In this case

the function Φ is independent of V in+1 and takes the form

Φ(∆t, V in, ·,∆Bin) = λ∆tPΓ(V in)V αn + σ|V in − V αn |PΓ(V in)∆Bin

− (d− 1)σ2∆t

2

|V in − V αn |2V in
|V in|2

.
(6.3)

For the anisotropic KV-CBO model (3.50) the discretization function Φ takes the form

Φ(∆t, V in, ·,∆Bin) = λ∆tPΓ(V in)V αn + σPΓ(V in)D(V in − V αn )∆Bin (6.4)

− σ2

2
∆t

(
|V in − V αn |2

|V in|2
+
D(V in − V αn )2

|V in|2
− 2
|D(V in − V αn )V in|2

|V in|4

)
V in. (6.5)

Sampling the initial particles

A common probability distribution to sample from is the uniform distribution U(Sd−1). Sampling from

this distribution is easy to implement. Let ξ ∼ N (0, Id) a sample from the d-dimensional standard

normal distribution. Then the distribution of the normalized vector ξ/|ξ| is uniform on Sd−1. This is

not obvious and we refer to [Muller, 1959], [Marsaglia et al., 1972] for the details.

Of course we can also choose a different initial distribution, e.g., a von Mises-Fisher distribution.
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Stable computation of the consensus point

The naive computation of the consensus point is numerically unstable for large values of α. More

precisely: the weights e−αE(V in) are very close to zero for many particles, hence the denominator of

the consensus point V αn will be very close to zero

N∑
i=1

e−αE(V in) ≈ 0 (6.6)

causing a blow up. This problem can be overcome with an elegant numerical trick (see Lemma 5.4.1

where we have used the same trick for V α(ρt)). Let V ?n the particle with the lowest energy

V ?n = arg min
i∈[N ]

E(V in). (6.7)

Now we can rewrite the consensus point in a numerically stable way as

V αn =

∑N
i=1 V

i
ne
−α(E(V in)−E(V ?n ))∑N

i=1 e
−α(E(V in)−E(V ?n ))

. (6.8)

Since there is at least one particle with V in = V ?n the denominator is now bounded from below by

≥ 1. Hence there is no numerical instability anymore. We note that the computation of V ?n has linear

cost and thus does not affect the overall cost of the method. We note further that the efficieny of the

KV-CBO method highly depends on the computational cost for evaluating the cost function E(V in).

An efficient implementation of the latter is of high importance.

Stopping criteria

The KV-CBO method is an iterative method and therefore we need to define and discuss reasonable

stopping criteria. The simplest such stopping criteria is to set a maximum number of iterations nT .

However it might be smarter to stop the method earlier in order to save computational effort. Let

ε > 0 a given threshold which may be chosen as, say, ε = 10−4. Then the following stoping conditions

make sense

1. maximum number of iterations reached n = nT

2. particles have nearly reached consensus
1

N

N∑
i=1

|V in − V αn | ≤ ε

3. variance of the particles is sufficiently small
1

N
|V in − V n|2 ≤ ε

4. consensus point did not change much in the last p iterations |V αn+1 − V αn−p| ≤ ε

5. function value for the consensus point did

not change much in the last p iterations |E(V αn+1)− E(V αn−p)| ≤ ε.
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Algorithm 1: general KV-CBO method on hypersurfaces

Input: E(·), N , ρ0 ∈ P(Γ), α, σ, ∆t, stopping criterion

1 Set n = 0 (number of iterations)

2 Sample initial particles V i0 ∼ ρ0 iid for all i ∈ [N ]

3 while stopping criterion is not met do

4 Increment iteration counter n← n+ 1

5 Generate ∆Bin independent normal random vectors N (0,∆t)

6 Compute the consensus point V αn

7 Evolve particles Ṽ in+1 ← V in + Φ(∆t, V in, V
i
n+1,∆B

i
n)

8 Project particles to the hypersurface V in+1 ← ΠΓ(Ṽ in+1)

Output: Consensus point V αn

Accelerated method

The KV-CBO method requires a lot of computations. From the theoretical chapters we know that

the approximation error decay as 1/N where N is the number of particles. Thus we would expect the

number of particles to be rather large, however in practice the number of particles does not need to

be excessively large. In section 6.3 e.g. we only use N = 500 particles (and a batch size M = 50) in

dimension d ≈ 3000. Nevertheless we want to find ways to make the method more efficient. We now

discuss three strategies to do so: discarding particles, using random batches for the computation of

the consensus point, and using parallelization.

It makes sense to start with a large number of particles N0 = N . However, when the particles

get closer and closer to each other (they are close to consensus) it does not make sense to evolve all

N0 particles. This leads to the idea of reducing the number of particles by discarding some of them

depending on the empirical variance of the swarm. For the particles V i for i ∈ [Nn] we define the

empirical variance

Σn =
1

Nn

Nn∑
i=1

∣∣V i − V n∣∣2, V n =
1

Nn

Nn∑
i=1

V i. (6.9)

We then choose the new number of particles Nn+1 as

Nn+1 = max{[[Nn (1 + µ ((Σn+1 − Σn)/Σn))]], Nmin} (6.10)

where µ ∈ [0, 1] and Nmin are parameters to be chosen. For µ = 0 we do not discard any particles.

For µ = 1 the number of particles discarded is maximal. In this case we also need to set a minimum

number of particles. We should not discard particles in every iteration, but instead only , say, every

` = 10 iterations to avoid fluctuations.

Another strategy to accelerate the method is to use random batches to compute the consensus
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point V αn . Let JM a random batch of size M < N , that is, a subset of M distinct indices from

{1, ..., N}, where the batch size might be chosen as M = N/5. Now we compute the consensus point

as

V αn =

∑
i∈JM V ine

−α(E(V in)−E(V ?n ))∑
i∈JM e−α(E(V in)−E(V ?n ))

. (6.11)

Another way of making the method faster is by using parallelization, that is, distributing the

evaluation of the particles to multiple processors that run in parallel. More precisely: once the

consensus point V αn is available, the evaluation of the particles V in 7→ V in+1 is uncoupled and can thus

be performed on different processors. After one time step the new particles need to be garthered in

order to compute the new consensus point V αn+1. This last step can not be done in parallel.

Adaptive parameters

Before discussing ways how to adapt parameters let us first discuss a way to reduce the number

of parameters. Consider the discretization (6.3). We note that the three computational parameter

σ, λ,∆t can be reduced if we rescale time as τ := λ∆t. In this case σ2∆t in the third term on the

right hand side of (6.3) is given by σ2∆t = ν2τ where ν2 := σ2/λ. We thus only have to choose the

time scale τ and the diffusion parameter ν, that is, instead of the three parameters σ, λ,∆t we only

have to set two parameters ν, τ . For simplicity we keep the original notation and set

λ := 1 (6.12)

in (6.3). Nevertheless, the choice of the parameters in the KV-CBO method (as for any metaheuristic)

is still tricky.

Now we discuss a few techniques to adapt the parameters α and σ. We keep the time step constant

and note that a small time step makes the particles slower, a large time step makes them faster.

Figure 6.1: The Rastrigin function on S2. The global minimizer V ? is at the north pole.

Let us make a few general remarks about adaptivity of parameters. First, any adaptive method
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requires the choice of initial values. Finding these initial values is not at all obvious and requires yet

another heuristic. Second, one can invent uncountable heuristics to achieve a reduction or increase of

a certain parameter. Any of these heuristics may work well in one case, but may fail for another. Some

heuristics may require an upper/ lower bound which adds yet another level of complexity. Third, one

has to decide how frequent one wants to adapt a certain parameter. One could adapt the parameter

every single iteration or every, say, 10th iteration. Fourth, how many of the parameters do we want

to adapt? Only the α? or only the σ? or maybe both? This is a highly compley problem as it is

not clear how these parameters influence each other. Fifth, in principle one can distinguish between

adapting a parameter based on its value in the current time step or based on a given statistic of the

swarm (e.g. the variance)? Sixth, one can choose to adapt a given parameter in a deterministic way

or randomly. E.g. one may choose the σ as a random variable with decreasing variance.

In short: the problem of how to choose the parameters is open and a lot more theoretical under-

standing is needed to answer it satisfactorily. In practice usually the simple schemes work best.

Let us now discuss practical methods to adapt parameters. From the theoretical chapters we know

that the diffusion parameter σ has to be small to achieve consensus. It therefore makes sense to start

with a relatively large σ0 which we adaptively reduce until a certain minimum value σmin ≥ 0 is

reached. Possible strategies includeσn+1 = max{σn/τ, σmin},

σn+1 = max{σn/(σ0 log(n+ 1)), σmin}
(6.13)

where τ > 1 is a given parameter, say, τ = 1.05.

For the parameter α we know from the theoretical part that it should be large to achieve a good

accuracy. Possible strategies for adapting the α include

αn+1 =
(n+ 1)αmax

nT
. (6.14)

We note that a too large α might not be desirable as it makes the method a greedy method : for large

α the consensus point is essentially the particle with the lowest cost V α = arg mini∈[N ] E(V i).

Gradient-KV-CBO method

It is possible to combine the KV-CBO method with the Gradient Descent method. By doing so the

method is no longer a zero order method. In [Fornasier et al., 2021b] the following (computationally

trackable) idea is proposed: randomly choose one particle every `th iteration and perform a gradient

descent search with this particle, where the step size hn is chosen with a backtracking line search
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Figure 6.2: Isotropic vs. Anisotropic noise: phase transition matrix for the Rastrigin function in
d = 5, see experiment_isoVsAniso folder.

method which is iterated until the Armijo condition or sufficient decrease conditon

E(vn − h0
n∇Sd−1E(vn)) ≤ E(vn)− ch0

n|∇Sd−1E(vn)|2 (6.15)

is met, see [Absil et al., 2008].

The rationale is that a single particle can, at best, find a local minimizer in one time step. With

the backtracking approach from above we expect the particle to arrive at this local minimizer. The

cost for this adaptation is negligible. The benetit is that we may arrive at minimizer we may not have

found otherwise.

We may choose the initial step h0
n = 1 and c = 10−4. If the condition is satisfied we set hn = h0

n,

otherwise we set h1
n = τh0

n with, say, τ = 1/2 and check again whether the condition is satisfied.

6.2 The KV-CBO package

In this section we discuss the KV-CBO package 2 and make some general remarks about numerical

tests and performance measures used. We consider the Rastrigin function

ER(v) = Ad+ |v|2 −A
d∑
i=1

cos(2πvi) (6.16)

for v ∈ Rd (see page 39 for a graph of ER on the circle S1) to illustrate how the KV-CBO package can

be used. The package however contains many more common benchmark functions (Rastrigin, Ackley,

Alpine, Schaffer, Solomon, Lévi, XSY random & Griewank) as well as cost functions from the real

world applications that we discuss in the following sections. We choose the Rastrigin function as main

benchmark function because it is highly complex and can be shown to satisfy all the conditions on

the cost function from defintion 3.1.1.

2https://github.com/PhilippeSu
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Algorithm 2: Variant of the isotropic KV-CBO method on the sphere

Input: E(·), N , M , α, σ, ∆t, µ, stopping criterion

1 Set N0 = N (number of particles) and n = 0 (number of iterations)

2 Sample initial particles V i0 ∼ U(Sd−1) iid for i ∈ [N0]

3 Compute the variance Σ0 of V i0

4 while stopping criterion is not met do

5 Increment iteration counter n← n+ 1

6 Generate ∆Bin independent normal random vectors N (0,∆t)

7 if M ≤ Nn then

8 Select a random batch JM ⊂ {1, ..., N} with |JM | = M

9 Compute V αn as in (6.11)

10 else

11 Compute V αn as in (6.8)

12 Use Euler-Maruyama method to evolve the particles

Ṽ in+1 ← V in + λ∆tPΓ(V in)V αn + σ|V in − V αn |PΓ(V in)∆Bin −
(d− 1)σ2∆t

2

|V in − V αn |2V in
|V in|2

13 Project particles to the sphere V in+1 ← Ṽ in+1/|Ṽ in+1|
14 Compute the variance Σn+1 of V in+1

15 Update the number of particles Nn+1 ← [[Nn (1 + µ ((Σn+1 − Σn)/Σn))]]

16 Discard Nn −Nn+1 samples (chosen uniformly at random)

17 (optional) adapt parameters

18 (optional) use a gradient descent step

Output: Consensus point V αn

Lemma 6.2.1 (Properties of Rastrigin Function). The following properties hold

1. the global minimizer of ER is V ? = 0 and ER(V ?) = 0,

2. ER is symmetric ER(−v) = ER(v),

3. we have

|v − V ?|2 ≤ |ER(v)− ER(V ?)| ≤ 2
√
d(a+Aπ)|v − V ?| (6.17)

for all v ∈ Rd.

Proof. We observe that

ER(v) = |v|2 +A(

d∑
i=1

1− cos(2πvi)) ≥ |v|2 ≥ 0 (6.18)
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and ER(0) = 0. Thus, the global minimizer of ER is attained at the origin. With the mean value

theorem we further have

ER(v)− ER(v?) = ∇ER(c) · (v − v?) (6.19)

for some c ∈ [v?, v]. We can bound the norm of |∇ER(c)| as

|∇ER(c)| = |2c+ 2πA sin(2πc)| ≤ 2
√
da+ 2πA

√
d (6.20)

which concludes the proof.

Let us start with a few general remarks about the numerical tests in this chapter.

In all the numerical tests we know the location of the global minimizer V ?. We can thus evaluate if the

KV-CBO method was successful for a given cost function and a given set of parameters by checking

whether or nor the distance of the final consensus point V αnT to V ? is smaller than a given tolerance ε.

This of course raises again the question of which error norm and tolerance to choose. In this chapter

we will always use the 2-norm | · | and the tolerance is ε = 0.05, that is, we call a run successful if

|V αnT − V
?| ≤ 0.05. (6.21)

Here V αnT always denotes the final consensus point, even thought the maximum number of iterations

nT may not have been reached because another stopping criterion was satisfied.

As the success of the method depends on many parameters it makes sense to compare the success

rates for different sets of parameters. For example: we may plot the average error in time for different

numbers of particles N . We may also compute so-called phase transition matrices to easily visualize

the success rates for two varying parameters, say, the time step ∆t and the diffusion parameter σ, see

figure 6.2 .

Figure 6.3: Rastrigin function in d = 20 for N = 100 particles and 100 runs. Average error in yellow,
error for the run with the best/ worst final error in blue/ red, see experiment_Error_Time folder.
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Some remarks on the reproducibility of the numerical results.

All of the numerical tests have been performed on a MacBook Pro from 2017 with an Intel Core i7 pro-

cessor running under macOS Catalina (10.15.7, 64 Bit). We used Matlab version 9.10 (R2021a) with

the following toolboxes: Image Processing Toolbox (Version 11.3), Signal Processing Toolbox (Version

8.6) and Statistics and Machine Learning Toolbox (Version 12.1). The code can be downloaded from

GitHub https://github.com/PhilippeSu/KV-CBO/PhD. Whenever possible we have included the ex-

act m-files needed to reproduce the numerical experiments in this chapter. Hence, the reader can

reproduce the results without having to do any/ much programming herself. For example: the plot

from figure 6.2 can be reproduced by running the script in the folder experiment_isoVsAniso as

indicated in the caption.

rotation angle ϑ k = 0 k = 100

ϑ = 0 success rate 100% 100%
avg error 1.5e-6 1.0e-6
std. dev. 4.47e-7 6.1e-7

ϑ = π/4 success rate 50% 100%
avg error 8.8e-2 0
std. dev. 0.945 0

Table 6.1: Rastrigin function in d = 5 with the global minimizer V ? rotated by ϑ in all di-
rections from the north pole. k is the parameter from the von Mises-Fisher distribution, see
experiment_rotatedMin.

Let us now discuss the main components of the software package. The user should first execute

the m-file import kvcbo.m which adds the path to Matlab. The main code can be found in the

folder kvcbo, the main files are KVCBO.m and KuramotoIteration.m. The folder cost functions

contains the implementation of some benchmark cost functions (all have a separate folder) and the

file setUpClass.m. The folder ext contains third party scripts. The experiments folders contain the

scripts to reproduce the numerical experiments from this chapter.

Further, the folder cost functions/Rastrigin contains two files: KVCBOparamForRastrigin.m and

RastriginCostFunction.m. The former contains the parameters for the KVCBO method for the Ras-

trigin function and the latter contains the implementation of the Rastrigin function, that is, (6.16).

The code can be used in the following way.

First, we call

[costfunction, KVCBOparam] = setUpClass.Rastrigin(d); (6.22)
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for a given dimension d. This returns the implemenation of the cost function and the list of parameters.

Second, we call the KV-CBO method

[Va, info] = KVCBO(costfunction, KVCBOparam); (6.23)

This returns the final consensus point Va ∈ Rd and the list info with relavant statistics for each

iteration of the KV-CBO method. This list can then be used to plot many statistics (e.g. error,

variance) of the run, see example1.m.

Remark 6.2.1. The scripts HyperSphere.m and InvHyperSphere.m return the spherical/ euclidean

coordinates of the vector we input. The spherical coordinates ϑ ∈ Rd−1 for a vector v ∈ Rd are given

by 

v1 = r cos(ϑ1)

v2 = r sin(ϑ1) cos(ϑ2)
...

vd−1 = r sin(ϑ1) · · · · · sin(ϑd−2) cos(ϑd−1)

vd = r sin(ϑ1) · · · · · sin(ϑd−1).

(6.24)

We conclude this section with a list of parameters of the KV-CBO method and a short explanation.

Parameter Possible assignment Explanation

N integer number of particles
M M ≤ N batch size
Nmin 0 < Nmin ≤ N minimum number of particles, see (6.10)
µ 0 ≤ µ ≤ 1 for the discaring of particles, see (6.10)
α α� 1 temperature parameter for V α

mode ’anisotropic’, ’isotropic’ mode for the noise level
σ σ > 0 diffusion parameter
dt dt > 0 time step ∆t
λ λ > 0 coupling constant, fixed to λ = 1, see (6.12)

logicV a list of parameters to compute the consensus point
initData list of parameters for the initial particles
stopCond list of parameters for the stopping condition

out list of parameters to control output
adapt list of parameters to control adaptation of computation

parameters, see (6.13) and (6.14)

Table 6.2: Parameters for the KV-CBO method, see KVCBOparamForRastrigin.m
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6.3 Robust principal component analysis

In this section we consider the first of three real world applications of the KV-CBO method. Robust

PCA (principal component analysis) is also known as robust subspace fitting and robust subspace de-

tection. To explain the idea let Q = {x(i) ∈ Rd : i = 1, ...,P} a centered point cloud in the Euclidean

space Rd. The goal of PCA is to find the n(< d) directions of maximal variation of the point cloud

Q. In other words: the n directions that capture the geometry of the point cloud best. We consider

only the case n = 1 here, but note that extending the method to find higher dimensional subspaces

n > 1 is a highly interesting open problem.

For n = 1 Pythagoras theorem yields

|x(i)|2 = |Pvx(i)|2 + |Pv⊥x(i)|2 (6.25)

where Pv = vvT and Pv⊥ = I−vvT , see figure 6.4. This shows that maximizing |vvTx(i)|2 is equivalent

to minimizing |Pv⊥x(i)|2. We thus arrive at the following constrained minimization problem

V ? = arg min
v∈Sd−1

P∑
i=1

|Pv⊥x(i)|2 (6.26)

where V ? is the principal component we wish to find. Note that this optimization problem is naturally

constrained on the sphere.
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Figure 6.4: Left: point cloud with a clearly visible principal component and a few outliers. Right:
schematic depiction of (6.25). The blue dot is one ot the data points x(i), the blue shaded resp. gray
line has length |Pvx(i)| resp. |Pv⊥x(i)|.

The above standard approach however has a shortcoming. To illustrate this shortcoming let

xout ∈ Q be an outlier in the point cloud Q, that is, a point for which the distance |Pv⊥xout| is much

larger than for all (or most) of the other points in Q. Now, according to the above optimization prob-

lem the distance |Pv⊥xout| is squared which makes it even larger. This is a problem because now the

contribution of this one outlier xout to the cost function is very strong. The principal component will

be tilted towards this one outlier and thus not describe the true geometry of the point cloud. In other
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words: the quadratic weight function weights the outlier much stronger than the inliers, resulting in

a principal component that does not capture the geometry of the point cloud.

This is the motivation to consider the robust PCA problem. We want to find a way to weight the

outliers less strongly. There are many methods that try to solve this problem. One of the best is

the Fast Median Subspace method (FMS), see [Lerman and Maunu, 2017]. This method will be the

benchmark method for the KV-CBO method. The robust PCA method that we propose is given by

Algorithm 3: robust PCA with KV-CBO

Input: p ∈ (0, 2], Q = {x(i) ∈ Rd | i ∈ [P]}, parameters for KV-CBO method

1 Set

Ep(v) :=

P∑
i=1

|(I − v ⊗ v)x(i)|p =

P∑
i=1

(
|x(i)|2 − |〈x(i), v〉|2

)p/2
(6.27)

2 V αnT ← KV-CBO(Ep)
Output: V αnT (Guess for the principal component of Q)

We note that for p < 1 and a point cloud with many outliers (6.27) is a difficult non-convex cost

function, see figure 6.5. The cost function Ep is not differentiable for p < 2, hence the assumptions

for the KV-CBO method are not satisfied and we would need to consider the cost function Ep,δ(v) =∑P
i=1

(
|x(i)|2− |〈x(i), v〉|2 + δ

)p/2
for some small δ > 0 instead. We however choose δ = 0 and stick to

the original cost function as the differentiablity of the cost function is important only in the theoretical

developments not for the numerical implementation.
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Figure 6.5: P = 200 data points sampled from the Haystack model. Top: 5% outliers and the
corresponding cost function for p = 2, 1, 1

2 . Bottom: 95% outliers. Increasing the number of outliers
and reducing the p makes the cost function very rough. Note also how the position of the global
minimizer is shifted as we change p.
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Figure 6.6: Same setup as above in d = 3 with 95% outliers

Artificial data from Haystack model

In this section we analyse algorithm 3 for a point cloud sampled from the Haystack model, see [Ler-

man et al., 2015] and compare the results with popular benchmark methods: FMS (Fast Median

Subspace), SVD (Singular Value Decomposition) and GD (Gradient descent for (6.27)). We note that

the output of algorithm 3 is one (!) vector in Rd, hence we can only expect to recover one dimensional

subspaces. Recovering higher dimensional subspaces with the KV-CBO is an interesting open problem.

Let us first discuss the Haystack model to generate the data. We distinguish between inliers/outliers

and cellwise contamination/ casewise contamination. Cellwise contamination represents the noise in

the inliers that causes them to not lie exaclty on the 1-dimensional subspace we wish to recover.

Casewise contamination on the other hand represents true outliers, that is, data points that could be

scattered all around the ambient Euclidean space Rd.
We choose the subspace W to recover uniformly at random, that is, W ∼ U(Sd−1) and sample the

inliers from a Gaussian with rank-1 covariance matrix Σin = W ⊗W which we then perturb with

Gaussian noise in the ambient space Rd

x
(i)
in ∼ N (0,Σin + 10−4Id) (6.28)

for i = 1, ...,Pin. The outliers are sampled from a Gaussian with a full-rank covariance matrix

x
(i)
out ∼ N (0, Id/d) (6.29)

for i = 1, ...,Pout. This choice for the covariance matrix implies E|x(i)
in |2 ≈ E|x(i)

out|2. Hence we can not

detect the outliers by computing the norm of the data points and disguarding those data points that

have a suspiciously large norm. The point cloud Q is thus given by

Q := {x(i)
in | i = 1, ...,Pin} ∪ {x(i)

out | i = 1, ...,Pout}. (6.30)

As a first numerical test we consider a point cloud Q without contamination, that is, no noise in

the inliers and no outliers. In this case the (unknown) subspace W can be reconstructed with a

simple application of SVD. In table 6.3 we report the success rate, the average error and the standard
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deviation for various methods. For KV-CBO and GD we used the cost function (6.27) with p = 2.

The ambient dimension is d = 100 and the results are averaged over 20 runs. For GD we used a very

simple implementation: xk ← xk − η∇Sd−1E2(xk) for η = 0.001, followed by a normalization. We see

that all 4 methods can reconstruct the unknown subspace W . The accuracy of the reconstruction of

FMS 3 and SVD are the highest, for the KV-CBO method it is the lowest.

Remark 6.3.1. It is important to note that the KV-CBO method uses many more function evaluation

than GD. Roughly, the former uses O(M × nT ) function evaluations whereas the latter uses O(2nT ).

Therefore, the two methods should not be compared against each other in terms of efficiency. As for

the effectivness: we refer to table 6.4 for numerical evidence of the higher effectiveness of the KV-CBO

method over GD.

KV-CBO FMS SVD GD

0% outliers success rate 100% 100% 100% 100%

no noise avg/ std 2.3e-3/ 2.3e-3 4.8e-16/1e-16 4.8e-16/1e-16 1.1e-6/ 2.6e-7

Table 6.3: Average distance to W for a point cloud Q without contamination, see folder
experiment_robustPCAHaystack.

As a second numerical test we consider the point cloudQ with contamination. We set the total number

of points to P = Pin + Pout = 200 and chose the number of outliers Pout as a certain percentage of

P ranging from 0% to 95%. Again, the ambient dimension is d = 100, and the results are averaged

over 20 runs, see table 6.4. For the point cloud with 95% outliers only the KV-CBO method is able

to reconstruct the vector W reliably.

Real data: robust computation of eigenfaces

In this section we apply algorithm 3 to real data. The point cloud Q is now a subset of P = 420

pictures of faces from the 10K US Adult Faces database [Bainbridge et al., 2013]. Each picture is

rescaled to 64× 45 pixels and converted to grayscale, hence the ambient dimension is d = 2880. The

point cloud is centered (subtraction of the mean). The principal direction of a point cloud of faces

is (after resizing to 64 × 45) a so-called eigenface (similarly to eigenvector). Roughly speaking, an

eigenface is the average face of a point cloud of faces. An eigenface does not look like a real face of

a person, but it nevertheless has clearly visible features of a face (eyes, nose, ears, mouth). In figure

6.8 we report the eigenfaces couputed with different methods.

It should be noted that the faces from this database do not (!) lie close to a 1-dimensional subspace.

They are scattered much more in the ambient space Rd. In other words: the situation in this example

is not comparable to the situation depicted in figure 6.5 (top row).

3https://twmaunu.github.io/FMS/ (last accessed 09.12.2021)
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KV-CBO FMS SVD GD

0% outliers success rate 100% 100% 100% 0%

avg/ std 3.1e-3/ 8.7e-3 7.0e-4/ 5.9e-5 7.0e-4/ 5.9e-5 1.1e-1/ 2.3e-3

25% outliers success rate 100% 100% 100% 0%

avg/ std 1.1e-3/ 3.8e-4 4.7e-3/ 1.0e-3 4.7e-3/ 1.0e-3 9.2e-2/ 2.8e-3

50% outliers success rate 95% 100% 100% 0%

avg/ std 5.1e-3/ 1.6e-2 1.0e-2/ 1.03-3 1.0e-2/ 1.03-3 6.9e-2/ 5.0e-3

75% outliers success rate 100% 100% 100% 35%

avg/ std 1.6e-3/ 3.1e-4 2.5e-2/ 4.8e-3 2.5e-2/ 4.8e-3 2.5e-1/ 3.1e-1

95% outliers success rate 100% 0% 0% 15%

avg/ std 6.4e-3/ 6.7e-3 2.0e-1/ 1.2e-1 2.0e-1/ 1.2e-1 1.4e-1/ 9.1e-2

Table 6.4: Average distance to W for a point cloud with contamination. For KV-
CBO and GD we considered the cost function (6.27) with p = 1/2, see folder
experiment_robustPCAHaystack.

In [Lerman et al., 2015, Faces in a Crowd] and [Basri and Jacobs, 2003] it is argued that the

dimension of the best fitting subspace should be chosen as 9 (and not 1). We nevertheless apply

algorithm 3 to compute the eigenface, which we report in figure 6.8. As in the previous numerical tests

we also compute the eigenface with SVD, FMS and GD. For GD we use the ManOpt 4 implementation

[Boumal et al., 2014].

Remark 6.3.2 (Reproducibility). The eigenfaces reported in this thesis are not exactly reproducable

by the reader. Even though the 10K US Adult Faces database is available to anyone upon request, the

precise subset of P = 420 pictures that we chose are not available to the reader. Choosing a different

subset of faces will yield (slightly) different results.

Figure 6.7: Some faces from the 10K US Adult Faces database and one outlier.

4https://www.manopt.org/
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(a) (b) (c) (d)

Figure 6.8: Eigenfaces without outliers: (a) SVD, (b) KV-CBO (algorithm 3 with p = 2), (c) FMS,
(d) GD for (6.27) with p = 2, see folder experiment_robustPCAEigenfaces.

The eigenfaces computed with the various methods are visually inseperable. We quantify the simi-

larities with different well-known measures: peak signal-to-noise ratio (PSNR), signal-to-noise ratio

(SNR), and structural similarity index (SSIM). The former two measures are expressed in decibel

(dB), the latter is a number in [0, 1]. The quality is higher if the measures are larger. The PSNR for

the pictures A,B ∈ Rn×m is defined as

PSNR(A,B) = 10 log10

(
max(A) max(B)

MSE(A,B)

)
(6.31)

where A is the reference picture, and MSE is the mean-squared error defined as

MSE(A,B) =
1

nm

n∑
i=1

m∑
j=1

|Aij −Bij |2. (6.32)

The SNR is defined as

SNR(A,B) = 10 log10

(
|A|2

|B|2

)
. (6.33)

The SSIM is defined as

SSIM(A,B) = `(A,B)c(A,B)s(A,B) (6.34)

where 
`(A,B) = 2µAµB/(µ

2
A + µ2

B),

c(A,B) = 2σAσB/(σ
2
A + σ2

B),

s(A,B) = σAB/(σAσB)

(6.35)

and µA, µB are the means of A, B respectively, σA, σB are the standard deviations, and σAB is the

covariance of A and B. The function ` is the luminance distortion, c is the contrast distortion, and s

the structure comparison function, see [Hore and Ziou, 2010].

The reference image is always the eigenface for the point cloud without outliers computed with SVD,
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that is, picture (a) in figure 6.8. The PSNR and SNR ratio of a picture with itself is ∞. The SSIM

of a picture with itself is 1. The image quality is considered excellent if the PSNR > 50dB.

SVD KV-CBO FMS GD

PSNR ∞ 55.5564 ∞ ∞

no outliers SNR ∞ 49.2491 ∞ ∞

SSIM 1 0.9994 1 1

Table 6.5: Some well-known quality measures for the eigenfaces from figure 6.8.

We now add some outliers to the point cloud of faces and again compute the eigenfaces. The results

are reported in figure 6.9 and in table 6.6.

(a) (b) (c) (d)

Figure 6.9: Eigenfaces with 5 outliers: (a) SVD, (b) KV-CBO (algorithm 3 with p = 1/2), (c) FMS,
(d) GD for (6.27) with p = 1/2, see folder experiment_robustPCAEigenfaces. We note the black
spot between the eyes of eigenface (b).

6.4 The phase-retrieval problem

The phase retrieval problem is an important problem in applied physics, engineering and mathematics.

The available literature on the topic is as impressive as the list of applications. Important applications

of the phase retrieval problem include optical imaging [Shechtman et al., 2015], [Walther, 1963], astron-

omy [Dainty and Fienup, 1987], crystallography [Elser et al., 2018], speech recognition [Balan et al.,

2006], short-time Fourier transform analysis [Jaganathan et al., 2016], quantum mechanics [de Gos-

son, 2021], differential geometry [Bianchi et al., 2002], mixed linear regression [Chen and Womersley,

2018], [Chen et al., 2014], interferometry [Demanet and Jugnon, 2017] and ptychography [Pfeiffer,

2018]. The phase-retrieval problem is similar to the problem of training an artificial neuron with

quadratic activation. According to [Candès et al., 2013b] ”one of the first important applications of
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SVD KV-CBO FMS GD

PSNR 16.0589 22.9605 22.5370 22.5370

5 outliers SNR 10.3222 16.2871 16.0017 16.0017

SSIM 0.6310 0.8666 0.8515 0.8515

PSNR 12.6117 17.1769 15.0549 15.0549

10 outliers SNR 6.8398 11.4453 9.7404 9.7404

SSIM 0.4388 0.7027 0.6312 0.6312

PSNR 11.6133 13.4478 13.0934 13.0934

15 outliers SNR 5.7614 7.9917 7.6647 7.6647

SSIM 0.3662 0.5224 0.4995 0.4995

Table 6.6: Quality measures for the eigenfaces from figure 6.9.

phase retrieval is X-ray crystallography, and today this may very well be the most important appli-

cation”.

In many physical applications one can only measure the squared magnitude of the Fourier transform

of the underlying (unknown) signal z ∈ Cd. The phase is lost. Since the phase encodes important

information about the signal x, see [Jaganathan et al., 2015, Fig. 1] for a nice illustrative example,

reconstructing or retrieving the phase from the (known) measurements is of utmost importance.

In mathematical terms this problem can be formulated as follows. For known measurements

y ∈ RM the phase retrieval problem is given by

Find z ∈ Cd such that ym = |〈fm, z〉|2 for m = 1, ...,M (6.36)

where fm ∈ Cd is the mth column of the M point discrete Fourier transform matrix, that is, fmn =(
e−

2πi
M

)(m−1)(n−1)
/
√
M for 1 ≤ n,m ≤M .

The conditions ym = |〈fm, z〉|2 do not suffice to reconstruct the signal z uniquely. For any vector z

satisfying the conditions, the rotated vector zeiφ for φ ∈ [0, 2π) also satisfies the conditions. Hence we

can never uniquely recover the signal z (independent of the number of available measurements M). In

the real setting this means that we can only reconstruct the signal up to sign and the phase-retrieval

problem may as well be called the sign-retrieval problem. Thus, the solution set {±z} is non-convex

which makes the phase-retrieval problem a non-convex quadratic programme. We further note that

the problem is NP-hard in general, [Pardalos and Vavasis, 1991].
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Generalized phase-retrieval problem

In the following we study a different variant of the phase-retrieval problem. We consider only real

signals z ∈ Rd, and the measurement vectors are sampled uniformly from the sphere, that is, am ∼
U(Sd−1) iid for m = 1, ...,M . Thus, we consider the following variant of the phase retrieval problem:

assume quadratic measurements

ym = |〈am, z〉|2, m = 1, ...,M (6.37)

where ym are the known, measured intensities, am ∈ Rd are known measurement vectors, and z ∈ Rd

is the unknown signal we wish to recover.

This problem can be rewritten in matrix form as ym = |(Az)m|2 for y ∈ RM , and A ∈ RM×d, that

is, we store the measurement vectors am row-wise in the matrix A. The difficulty of the phase-retrieval

problem is that the signs sign(Az) ∈ RM are not available. If they were available we could reconstruct

z by solving an (overdetermined) linear system of equations.

In order to align the reconstructed signal z? with the original signal z we apply a rotation to the

former, that is, we multiply with sign(z · z?) ∈ {±1}, see figure 6.10. This is of course only possible

because in the numerical tests we consider here the original signal z is known.

The measurement vectors am are iid samples from the sphere and thus form a frame in the ambient

Euclidean space. This property is important for the well-posedness of the phase-retrieval problem.

In fact [Balan et al., 2006, Th. 2.2] has shown that in the real case the phase-retrieval problem has

a unique solution (up to sign) if the measurement vectors form a frame, that is, there are positive

constants C1 ≤ C2 such that

C1|x|2 ≤
M∑
m=1

|〈am, x〉|2 ≤ C2|x|2 (6.38)

for all x ∈ Rd, and the number of measurements M is ≥ 2d− 1. It would be interesting to investigate

the KV-CBO method for other (possibly deterministic and complex) measurement vectors.

Figure 6.10: Gaussian signal (left) and smooth signal (right) in d = 128, and the corresponding rotated
reconstructed signals. The original signals and the reconstruction are visually inseparable.
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Noisy phase model

Below we test the KV-CBO method also for the phase-retrieval problem with noisy measurements.

To this end we introduce the noisy phase model from [Chen et al., 2018] given by

ym = |〈am, z〉|2 + ηm, m = 1, ...,M (6.39)

for a noise vector η with Gaussian components, that is, ηm ∼ N (0, σ2), where the variance σ will

be chosen such that a certain SNR is achieved. Alternatively this model can be written as ym ∼
N (|〈am, z〉|2, σ2). In order to prevent negative noisy measurements we set ym ← max(ym, 0). Let

z ∈ Rd a given signal that we wish to reconstruct, and ym given noisy measurements. We chose the

variance such that

σ2 =
|y|2

10SNR/10
(6.40)

where SNR ranges from 10 to 90 with a step of 10. Then, the SNR of the noiseless measurement

vector and the noise vector η is exactly equal to the prescribed SNR. In principle it also makes sense

to investigate the robustness of a phase-retrieval algorithm for the so-called noisy magnitude model

ym = |〈am, z〉+ ηm|2. However we here only consider the noisy phase model (6.39).

Benchmark algorithms

In the following we first discuss common methods to solve the phase-retrieval problem. Then we dis-

cuss how the phase-retrieval problem can be reformulated as an optimization problem on the sphere

and how the KV-CBO method can be used to solve it. We use the well-known PhasePack 5 pack-

age (see [Chandra et al., 2017]) for the numerical tests. The KV-CBO package contains the folder

experiment phaseRetrieval into which the user should download the PhasePack package in order

to reproduce the results reported here, see the test files experiment phaseRetrieval 1/2.m (which

are adaptations of code developed by my colleague Oleh Melnyk).

The first algorithms to tackle the phase-retrieval problem were the Gerchberg-Saxton [Gerchberg,

1972] (see also [Bendory et al., 2017]) and Fienup [Fienup, 1982] algorithms. Other popular algorithms

for phase-retrieval include PhaseMax [Goldstein and Studer, 2018], [Bahmani and Romberg, 2017],

PhaseLamp [Dhifallah et al., 2017], PhaseLift [Candès et al., 2013a], [Candès et al., 2013b], Truncated

Amplitude Flow [Wang et al., 2018], Wirtinger Flow [Candès et al., 2014] and Truncated Wirtinger

Flow [Chen and Candes, 2015]. In the following we benchmark our adoption of the KV-CBO method

(see algorithm 5 below) against Wirtinger Flow, Gerchberg-Saxton, PhaseMax and PhaseLift. We

start with a brief explanation of these methods. All of these benchmark methods are iterative methods.

We denote the initial guess by z0 ∈ Rd and the iterates by zk ∈ Rd.

5https://github.com/tomgoldstein/phasepack-matlab
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Figure 6.11: Success rates in terms of number of measurementsM for a Gaussian signal in d = 20 (left),
d = 64 (middle) and d = 128 (right). We have used the same parameters in all three experiments, see
experiment_phaseRetrieval folder.

Wirtinger Flow

For real signals and measurement vectors (as we consider here) the Wirtinger Flow algorithm essen-

tially performs a gradient descent search for the cost function

f(zk) =
1

2M

M∑
m=1

∣∣|〈am, zk〉|2 − ym∣∣2, zk ∈ Rd. (6.41)

The starting point (initial guess) z0 ∈ Rd is chosen with the optimal spectral initialization method,

that is, z0 is the (properly scaled) leading eigenvector of the symmetric positive semi-definite matrix

ATdiag(y)A ∈ Rd×d. We note that the rows of A are given by the measurement vectors transposed aTm.

The step size is chosen adaptively and is inversely proportional to the norm of the initial guess z0. More

precisely: the step size in the kth iteration is given by µk/2|z0|2, where µk = min{1− e−k/k0 , µmax}
and [Candès et al., 2014] chose values of k0 around 330, and values of µmax around 0.4.

The final algorithm is given by the iteration

zk+1 = zk −
µk+1

2|z0|2
∇f(zk), ∇f(zk) =

2

M

M∑
m=1

(
|〈am, zk〉|2 − ym

)
(ama

T
m)zk. (6.42)

In [Candès et al., 2014, III/A] the Wirtinger Flow algorithm is analysed in the complex case, that is,

the signal is complex and the measurement vectors are complex Gaussians. In this setup the algorithm

is shown to converge to z at a geometric rate. Further, the cost function f : Cd → R maps the complex

numbers into the reals and is therefore not holomorphic and consequentely not complex differentiable.

Nevertheless, the expression from (6.42) can still be interpreted as a Wirtinger derivative, hence the

name of the method.

Gerchberg-Saxton

The Gerchberg-Saxton algorithm (1972) has been designed to solve the Fourier phase-retrieval prob-

lem, that is, the task of recovering a signal from the magnitude of its Fourier transform, see (6.36). In

this setting it is identical to the well-known Fienup algorithm (1982). In fact, both algorithms consist
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of four steps that can be summarized as follows: in the kth iteration, transform the current guess

zk ∈ Cd to the Fourier domain, incorporate the known measurements y ∈ RM , transform back to the

object domain and compute the next iterate zk+1 ∈ Cd. The Gerchberg-Saxton and Fienup algorithms

only differn in the last step. The Fienup algorithm solves the Fourier phase-retrieval problem with

additional constraints on the (unknown) signal z, e.g. non-negativity z ≥ 0. The Gerchberg-Saxton

algorithm on the other hand only aims at finding a solution that satisfies the measurement constraints

(in the Fourier domain). Thus the Fienup algorithm is a generalization of the Gerchberg-Saxton al-

gorithm, and, since we do not consider constraints in the object domain in (6.37), we may as well use

the Fienup algorithm as benchmark method. The Gerchberg-Saxton and Fienup algorithms belongs

to the class of alternating projection algorithms. Algorithms from this class have the desirable error-

reduction property, that is, the error can be shown to be monotonically non-increasing.

As explained above, we here do not consider the Fourier phase-retrieval problem. Instead we

consider the problem of recovering a real signal z from squared magnitudes of Az where A ∈ RM×d is

a real matrix, see (6.37). The Gerchberg-Saxton (and Fienup) algorithm can, of course, be transfered

to this setting, see algorithm 4 below.

What remains to discuss is the choice of the initial guess z0. In the original publication Gerchberg

and Saxton chose the initial guess z0 randomly. We however use the same initialization method as for

the Wirtinger-Flow algorithm, that is, the optimal spectral initialization method explained above.

Algorithm 4: Gerchberg-Saxton

Input: measurement matrix A ∈ RM×d, linear measurements ym = |〈am, z〉| for m = 1, ...,M ,

initial guess z0, max. number of iterations nT

1 for k = 0 to nT do

2 Zk = Azk

3 Z ′k = y � sign(Zk) (element wise multplication)

4 Solve least squares problem

Az′k = Z ′k (6.43)

5 zk+1 = z′k
Output: reconstructed signal znT ≈ ±z

PhaseMax

The PhaseMax algorithm pursues again a different approach as the two previous algorithms. It is

based on a convex relaxation of the original phase-retrieval problem which is given by a constrained

convex optimization problem. By introducing a quadratic barrier function this constrained problem

is reformulated as an unconstrained problem which is solved with the FASTA (Fast Adaptive Shrink-

age/Thresholding Algorithm) solver.
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More precisely: the convex relaxation is given bymaxz?∈Rd〈z?, z0〉

such that |Az?| ≤ b
(6.44)

where the constraint is understood entry-wise with b := y1/2, and z0 is an initial guess for the signal

z that we again compute with the optimal spectral initialization method. We note that in [Goldstein

and Studer, 2018] the term PhaseMax refers to the problem formulation (6.44), not to a particular

algorithm to solve it. In our experiments we consider the implementation proposed in the PhasePack

package (also from Goldstein & Studer), which we refer to as the PhaseMax algorithm.

For any z ∈ Rd that satisfies the measurement constraints also −z satisfies them. Hence the

solution set of the phase-retrieval problem is not convex. However, as is well-known, the solution set

of any convex optimization problem is convex. We therefore first need to remove the sign ambiguity (or

phase ambiguity in the complex case) in order to arrive at a convex relaxation for the phase-retrieval

problem. PhaseMax does so by restricting the solution space to the vectors for which the (arbitrary)

quantity ω = sign(〈z?, z0〉) is positive, where z? is any vector in the feasible set. In this case we have

ω〈z?, z0〉 = |〈z?, z0〉| > 〈−z?, z0〉. (6.45)

Hence, requiring 〈z?, z0〉 > 0 removes the sign ambiguity of (6.44) and thus restores convexity of the

solution set. It also motivates the name PhaseMax. In summary: the original measurements (6.37)

are taken care of by the constraints in (6.44), whereas the cost function restores convexity of the

solution set. We thus arrive at a convex relaxation of the orginal problem.

Figure 6.12: The cost function (6.54) for d = 2

We now briefly discuss the PhaseMax algorithm from the PhasePack package to solve (6.44). In

a first step the constraints |Az?| ≤ b are approximately enforced by introducing a quadratic barrier
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Figure 6.13: Success rates in terms of SNR for a Gaussian signal in d = 20 (left), d = 64
(middle) and d = 128 (right). We have used the same parameters in all three dimensions, see
experiment_phaseRetrieval folder.

(penalty) function. Thus we arrive at the unconstrained optimization problem

min
z?∈Rd

−〈z?, z0〉+
1

2
|max{|Az?| − b, 0}|2 (6.46)

where the maximization from (6.44) has been replaced with a minimization. This problem is solved

with the FASTA implementation of the Forward-Backward Solver (FBS). FBS is an implementation

of the forward-backward splitting method or proximal gradient method. We refer to [Goldstein et al.,

2014], [Combettes and Pesquet, 2011] and [Chen et al., 2020] for the details.

PhaseLift

The last benchmark method that we consider is PhaseLift. Just like PhaseMax, PhaseLift also in-

troduces a convex relaxation by removing the sign ambiguity of the original phase-retrieval problem.

However the approach taken is different from PhaseMax. PhaseLift reformulates the quadratic con-

straints as affine constraints about the symmetric positive definite matrix Z = zzT ∈ Rd×d which is

unaffected by a change in sign (or phase) of ±z. This reformulation introduces an optimization prob-

lem in a d2 dimensional space, where d is the original signal dimension. In other words: we have lifted

the phase-retrieval problem to a rank-1 matrix completion problem, hence the name PhaseLift. The

advantage is that no constraints on the signal are imposed (differently from PhaseMax, see (6.45)).

The disadvantage is the higher numerical cost. We note that the PhaseLift algorithm (see below) is

much slower than the other benchmark methods.

Introducing the operator A(Z) = {aTmZam}Mm=1 for symmetric matrices Z ∈ Rd×d allows to rewrite

the quadratic measurements as A(zzT ) = y. Further it can be shown that the phase-retrieval problem

is equivalent to the matrix completion problemmin rank(Z)

such that A(Z) = y, Z ∈ Rd×d is symmetric positive definite.
(6.47)

Once a rank 1 matrix Z? is found, the factorization (SVD) Z? = zzT yields the solution for the
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phase-retrieval problem. Problem (6.47) is NP-hard and [Candès et al., 2013b] propose the following

trace-norm relaxationmin Tr(Z)

such that A(Z) = y, Z ∈ Rd×d is symmetric positive definite.
(6.48)

This problem is a semidefinite programme in standard form, and there are many algorithms that solve

this type of problem. In the PhasePack implementation the above problem is solved with FASTA

(see above), where the constraints are again incorporated into the cost function via a quadratic

barrier function 1
2 |A(Z)− y|2 and a proximal operator prox(Z, δ) respectively. The proximal operator

is defined as prox(Z, δ) = V DV T where D = diag(Re(Λ) − δ)+ ∈ Rd×d and V ΛV T = Z is the

eigendecomposition of Z. In simple terms: the proximal operator drops the eigenvalues that are

smaller than a given threshold δ > 0, yielding a symmetric positive definite matrix.

KV-CBO for phase-retrieval

In order to apply the KV-CBO method to the phase retrieval problem we first need to recast it as an

optimization problem on the sphere. Here the fact that the measurement vectors am form a frame,

that is, there are constants C1, C2 > 0 such that C1|z|2 ≤
∑M
m=1 |〈am, z〉|2 ≤ C2|z|2, is crucial.

We first compute an upper bound on the lower frame bound C1. To this end we define the matrix

S ∈ Rd×d with columns given by

S−k =

M∑
m=1

(
AT diag(A−k)

)
−m (6.49)

where A−k ∈ RM is the kth column of A, and diag(A−k) ∈ RM×M the corresponding diagonal matrix.

An upper bound on C1 is then given by the smallest eigenvalue of S, that is, C1 ≤ σmin(S). In the

following we denote this upper bound again by C1.

Noting that

C1|z|2 ≤
M∑
m=1

|〈am, z〉|2 =

M∑
m=1

ym (6.50)

yields the following upper bound on the norm of the unknown signal z

|z| ≤

√√√√ 1

C1

M∑
m=1

ym =: R. (6.51)

With this bound we define the vector V ? ∈ Rd+1 by

V ? =
1

R

(
z√

R2 − |z|2

)
. (6.52)
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This vector is easily seen to have norm 1, hence V ? ∈ Sd, which allows us to recast the original

phase-retrieval problem (6.37) to a phase-retrieval problem on the sphere. More precisely: extending

the measurement vectors by a zero, that is, setting ãm = (aTm, 0)T ∈ Rd+1 yields the problem

|〈ãm, V ?〉|2 = |〈am,
z

R
〉|2 =

ym
R2

=: ỹm (6.53)

where V ? is the unknown signal we wish to reconstruct with the KV-CBO method. We solve this

problem by empirical risk minimization with the KV-CBO method. Once we found V ? we can easily

reconstruct the true signal z of the original problem.

Algorithm 5: KV-CBO for the phase-retrieval problem

Input: frame am ∈ Rd for m = 1, ...,M , measurements ym = |〈am, z〉|2

1 Find upper bound on the lower frame bound C1, see (6.49) and (6.50)

2 Apply the KV-CBO method to the empirical risk minimization function of the recasted

problem (6.53)

V αnT ← KV-CBO(E), E(v) :=

M∑
m=1

∣∣|〈ãm, v〉|2 − ỹm∣∣2 (6.54)

3 Multiply V αnT ∈ Rd+1 with R and drop the last component

z? ← R

d∑
i=1

(V αnT )iei (6.55)

Output: reconstructed signal z? ≈ ±z

Remark 6.4.1. 1. The vectors ãm no longer form a frame. 2. An interesting open problem is

showing the coercivity condition/ inverse continuity assumption for the empirical risk function (6.54).

In [Fornasier et al., 2021a] it is proposed to use the stability estimates from [Bandeira et al., 2014]

and [Eldar and Mendelson, 2014]. 3. An interesting approach to improve the method is the use of a

well-chosen initial guess (e.g. with the optimal spectral initialization method from above).
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6.5 Reconstruction of neural nets

In this section we discuss the third and last application of the KV-CBO method, namely the recon-

struction of single layer neural nets.

First, we start with a brief overview of neural nets. A neural net is a mathematical model for the

neural networks in the human brain. Neural nets are used to categorized data points (so-called feature

vectors) and are at the heart of machine learning. They have proven successful in a large range of

applications, including autonomous driving, face recognition, natural language processing, robotics,

X-ray detection and weather forecasting.

The main building block in all neural nets is the neuron, which is a generalization of the perceptron.

The latter is, in modern notation, a function of the form

f(x) = H(a · x+ ϑ), x ∈ Rd (6.56)

where a ∈ Rd is the weight vector, ϑ ∈ R is the bias, and H is the Heaviside function (H(x) = 1

if x > 0, and H(x) = 0 otherwise). With the perceptron we can build the basic logic gates AND

(a = (1, 1)T , ϑ = −1), OR (a = (2, 2)T , ϑ = −1) and NEGATION (a = −1, ϑ = 1). With a multilayer

perceptron we can also build the XOR gate. The idea of the perceptron is generalized by allowing for

different activation functions, instead of the Heaviside function, the hyperbolic tangent and ReLU are

popular choices. We then refer to the perceptron (6.56) as neuron, as it models the biological neurons

in the human brain. A neural net is, similarly to the human brain, a collection of neurons organized

in layers. Each neural net has one input layer and one output layer, and possibly many hidden layers.

A neural net is called shallow if it has only one hidden layer, and deep if it has many hidden layers,

see figure 6.14 below for a depiciton of a shallow neural net. The mathematical definition of the latter

is

f(x) =

m∑
i=1

biσ(aTi x+ ϑi), x ∈ Rd (6.57)

where d is the input dimension, m is the number of neurons on the hidden layer, ai ∈ Rd are the

weights, ϑi the biases, and bi other weights.

Motivation and problem formulation

Let us assume f : Rd → R is a trained (!) neural net with one hidden layer and m ≤ d hidden

neurons. Let us further assume that the thresholds ϑi and the weights bi are known. The weights

ai ∈ Rd however are unknown (undisclosed, kept in secret). The problem of reconstructing a neural

net is the following: can we reconstruct (reveal, lay open) the weights ai given input-output pairs

(xi, f(xi)) for any possible xi of our choosing? In other words: can we reconstruct the weights ai if

we are given a machine x 7→ f(x) with which we can generate our own training data?

In the groundbreaking work [Fefferman, 1994] this problem is investigated on a theoretical level.
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By using techniques from complex analysis, Fefferman was able to show that, under (quite strict)

conditions on the weights of the neural net and a-priori knowledge of the architecture of the neural

net, two neural nets with the same output function are isomorphic, that is, their weights are identical

up to unavoidable ambiguities (sign changes and permutations of neurons on the same layer).

The problem of training a neural net is ubiquitous in machine learning. The problem of recon-

structing a neural net on the other hand seems rather academic. We now discuss the rationale of the

latter problem. If we interpret the given training data (xi, yi) as samples from a trained but unknown

net f , that is,

(xi, yi) ≡ (xi, f(xi)) (6.58)

where f is a trained neural net with unknown (hidden) weights, then the weights obtained from

reconstructing f should be isomorphic to the weights obtained from training a net with the data

(xi, yi) (provided a result like the one of Fefferman holds).

Figure 6.14: Shallow neural net f : R5 → R with one hidden layer.

We assume: d = m, σ = tanh and the weights ai are normalized ‖ai‖2 = 1 and, either, orthogonal

or quasi-orthogonal. The columns ai are called quasi-orthogonal if they satisfy S(a1, ..., am) < ε where

S(a1, ..., am) = inf{
( m∑
i=1

|ai − ai|2
)1/2 | ai are orthonormal} (6.59)

and ε > 0 reasonably small. We store the weights ai columnwise in a matrix A ∈ Rd×m.

Projected subgradient ascent

The following is an overview of [Fornasier et al., 2021d], [Fornasier et al., 2012], [Fiedler et al., 2021]

and [Rauchensteiner, 2018].

The approach is the following: expose the weights ai by computing (or approximating) the Hessian

of f(x) and then find rank-1 matrices in an m-dimensional matrix subspace. More precisely: the

Hessian of f is given by

∇2f(x) =

m∑
i=1

biσ
′′(aTi x+ ϑi)ai ⊗ ai ∈ L (6.60)
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where ai ⊗ ai = aia
T
i is a rank-1 matrix and L = span{ai ⊗ ai | i = 1, ...,m} is an m-dimensional

matrix subspace in Rd×d. We store the Hessians in a matrix

M = {∇2f(xi)
vec}mxi=1 ∈ Rd

2×mx (6.61)

where mx is the number of sample points xi ∼ U(Sd−1) iid, and vec denotes vectorization (we store

∇2f(xi) in one large vector of dimension d2). The space L defined above is unknown (as the weights ai

are unknown), however, if the number of samples mx is large enough the matrix M contains enough

information to approximate L. Once we have a good approximation L? of L, we need to find the

spannig rank-1 matrices ai⊗ai (difficult), from which we can then find the unknown weights ai (easy).

Since the weights ai are unknown we have to rely on the numerical analogue of the matrix M from

(6.61), that is, we set

Mh = {∇2
hf(xi)

vec}mxi=1 ∈ Rd
2×mx (6.62)

where we use the finite difference approximation

(∇2
hf(x))ij =

f(x+ hei + hej)− f(x+ hej)− f(x+ hei) + f(x)

h2
(6.63)

for some small h > 0.

Remark 6.5.1.

1. Computing the gradient ∇f(x) =
∑m
i=1 biσ

′(aTi x + ϑi)ai ∈ span{ai | i = 1, ...,m} also exposes

the weights ai. However, this information is not enough for reconstruction.

2. From (6.60) we see that not every activation function is admissible. For example, the famous

ReLU activation is not admissible since its second derivative is zero σ′′ = 0.

We now discuss an algorithm proposed in [Fornasier et al., 2021d, algorithm 6] (see also [Rauchen-

steiner, 2018, algorithm 2]) to reconstruct the weights ai of the neural net, see algorithm 6 below.

First, we approximate the unknown matrix subspace L ⊂ Rd×d by computing the Hessians of the

neural net for many sample points xi and setting L? to be the first k principal components of the

matrix of vectorized Hessians. The matrix L? ∈ Rd2×k is then an approximation of the vectorized

matrix Lvec in the sense that the Frobenius distance of the corresponding orthogonal projections P ?

and PL is small, that is, ‖P ? − PL‖F is small. The orthogonal projection P ? onto the approximate

space L? is given by P ? = L?(L?)T .

In a second step we have to find rank-1 matrices in the m-dimensional subspace L?. To explain

how we tackle this problem, let us assume that the exact space L is given. Since the Frobenius norm
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Figure 6.15: The cost function (6.71) for d = 3.

of the symmetric rank-1 matrices ai⊗ai is 1, they are solutions of the following optimization problemmin rank(M)

such that M ∈ L, ‖M‖F = 1.
(6.64)

It can further be shown that they are the only solutions. That is, (6.64) has m global minimizers,

all of which correspond to one of the matrices ai ⊗ ai. The optimization problem (6.64) is in general

NP-hard, and [Fornasier et al., 2021d] (see also [Rauchensteiner, 2018]) propose the relaxationmax ‖M‖2
such that M ∈ L, ‖M‖F = 1.

(6.65)

Here ‖M‖2 = σmax(M) is the spectral norm (or the Schatten-∞ norm). This relaxation is motivated

by the fact that ‖M‖2 ≤ ‖M‖F =
∑
σ2
i (M) with equality iff rank(M) ∈ {0, 1}. An optimal solution

to (6.64) satisfies rank(M?) = 1. Thus, in this case, the spectral norm is maximal (under the given

constraints) ‖M?‖2 = ‖M?‖F = 1 and M? is also an optimal solution of (6.65). The converse also

holds.

In summary: the sets of solutions of (6.64) and (6.65) are the same.

It is proposed to use a projected subgradient ascent method to solve (6.65), that is, starting from an

initial guess X0 we iterate Xj+1 ← P ?Pγ(Xj) followed by a normalization. Here the operator Pγ is

defined as

Pγ(X) = Pγ(UΣV T ) =
1√

γ2σ2
1 + σ2

2 + ...+ σ2
d

Udiag(γσ1, σ2, ..., σd)V
T (6.66)

where γ may be chosen as γ = 10. This approach is reasonable, since (6.65) is about maximizing the

maximal singular value σmax = σmax(X).
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Algorithm 6: Recover weights with projected gradient ascent method

Input: machine that returns f(x) for any x, number of samples mx, step size h, dimension of

approximating subspace k ∈ {m, ..., d2}, γ, Nmax

1 Sample xi ∼ U(Sd−1) iid for i = 1, ...,mx

2 Compute the Hessians ∇2
hf(xi) and assemble the matrix Mh as in (6.62)

3 Compute SVD

Mh = UΣV T (6.67)

4 Set L? to be the first k left singular vectors (columns of U)

5 while ¬ found all m minimizers do

6 choose an initial value X0 ∈ Rd2 as

X̃0 =

k∑
i=1

ξiWi, X0 = X̃0/‖X̃0‖F (6.68)

where W1, ...,Wk ∈ Rd2 is an orthonormal basis of L? and ξ ∼ Nk(0, 1)

7 reshape X0 as d× d matrix

8 for j = 0 to Nmax − 1 do

9 set Xj+1 ← Pγ(Xj)

10 reshape Xj+1 as k × 1 matrix

11 set Xj+1 ← P ?(Xj+1), where P ? = L?(L?)T ∈ Rd2×d2

12 normalize Xj+1 ← Xj+1/‖Xj+1‖F
13 reshape Xj+1 as d× d matrix

14 u1 ∈ Rd ← first left singular vector of Xj (approximation of one of the weights ai)

15 if u1 not found in a previous iteration then

16 store u1 in matrix Arecon

Output: Arecon ∈ Rd×m with ‖Arecon −A‖F small

In [Fiedler et al., 2021] an alternative relaxation is considered:

max
v∈Sd−1

‖PL(v ∗ v)‖2F (6.69)

where PL is the orthogonal projection onto L and the asterix ∗ denotes the columnwise Khatri-Rao

product defined as

A ∗B =
(

(A1 ⊗B1)vec, · · · , (Am ⊗Bm)vec
)
∈ Rn1n2×m (6.70)

where A ∈ Rn1×m, B ∈ Rn2×m and Ai, Bi are the ith column of A and B respectively. This is the

relaxation we consider below. It is proposed to solve this problem again with a projected gradient

ascent algorithm, see algorithm 7.
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Algorithm 7: Recover weights with projected gradient ascent method 2

Input: approximating space L?, γ, max. iterations Nmax

1 while ¬ found all m minimizers do

2 choose an initial value u0 ∼ U(Sd−1)

3 for j = 0 to Nmax − 1 do

4 set U j ← uj ⊗ uj

5 reshape U j as d2 × 1 matrix

6 set U j+1 ← P ?(U j), where P ? = L?(L?)T ∈ Rd2×d2

7 reshape U j+1 as d× d matrix

8 set uj+1 ← uj + 2γU j+1uj

9 normalize uj+1 ← uj+1/‖uj+1‖2

10 if uj not found in a previous iteration then

11 store uj in matrix Arecon

Output: Arecon ∈ Rd×m with ‖Arecon −A‖F small

The above discussion of the optimization problem (6.64) and the relaxed versions (6.65) and (6.69)

assumed that the exact space L is known. However, in practice this space is not known and has

to be approximated, see L?. The reconstruction problem is then solved by considering the analogue

optimization problems (6.65) and (6.69) for the space L?, yielding approximations of the true weights

ãi ≈ ai. We refer to the works [Fornasier et al., 2021d], [Fornasier et al., 2012], [Fiedler et al., 2021]

and [Rauchensteiner, 2018].

It is unclear how many times we need to run the above algorithms to find all the weights ai,

i = 1, ...,m. The minimizer found in a single run depends on the starting point X0 and it is possible

that we need to run the methods � m times to find all the weights. We refer to the GitHub folder

experiment_neuralNets for an implementation of the above two algorithms.

In the following we propose an adaptation of the KV-CBO method that is expected to find more

than 1 minimizer of the optimization problem (6.69) in a single application.

Consensus-based optimization with multiple consensus points

We here discuss an adaptation of the KV-CBO method for the relaxed problem (6.69), that is, we set

E(v) = −‖P ?(v ∗ v)‖2F + 1 (6.71)

where the negative sign is chosen to turn the maximization problem into a minimization problem, and

the +1 makes the function values positive (as is required by the KV-CBO method).
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Instead of having one consensus point V α(ρNt ) we now consider the KV-CBO method with mul-

tiple consensus points. Now every particle V it has its own consensus point V α,i(ρNt ). This individual

consensus point is a localized version of the usual consensus point in the sense that the weighted

average only considers those particles V jt that are in some sense close to V it . The particles will then

form multiple (!) clusters, each of which is expected to converge to one of the global minimizers of

the given cost function. Applied to the reconstruction of neural nets, we hope to find all m global

minimizers of (6.71) with one application of the KV-CBO method.

More precisely: the adaptation of the (anisotropic) KV-CBO model is given by

dV it = λPΓ(V it )V α,i(ρNt )dt+ σPΓ(V it )D(V it − V α,i(ρNt ))dBit + CaniΓ (V it , V
α,i(ρNt ))dt (6.72)

where the correction term remains unchanged, see (3.51). The discretization is done similarly as

before, see (6.1) - (6.5).

Figure 6.16: Cucker Smale weight (6.74) for C = 1 and different values of b

For the consensus point V α,i(ρNt ) we propose two choices, one based on a k-nearest neighbours

search and one based on a Cucker-Smale weight function. The former is given by

V α,i(ρNt ) =

∑
j∈kNN(i;k,p) V

j
t e
−αE(V jt )∑

j∈kNN(i;k,p) e
−αE(V jt )

(6.73)

where kNN(i; k, p) are the indecies of the k nearest neighbors of V it in the p-norm. In many high-

dimensional clustering applications practitioners choose p = 2. However, [Aggarwal et al., 2001],

[Zimek et al., 2012] argue that p = 1 may be the better choice. This choice for the consensus point is

not very efficient as we need to compute pairwise distances ‖V it − V
j
t ‖p in every iteration.

A second choice is given by the following weighted consensus point

V α,i(ρNt ) =

∑N
j=1 V

j
t e
−αE(V jt )ω(b,C)(‖V it − V

j
t ‖p)∑N

j=1 e
−αE(V jt )ω(b,C)(‖V it − V

j
t ‖p)

, ω(b,C)(x) =
1(

1 + x2

C

)b/2 (6.74)
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where ω(b,C)(x) is a bell-shaped weight function motivated by the works of Cucker and Smale,

see [Cucker and Smale, 2007a], [Cucker and Smale, 2007b].

CS kNN

m = 1 100% 100%

m = 2 80% 100%

m = 3 40% 100%

Table 6.7: Success rates for full recovery of all m weights in dimension d = 3, see
experiment neuralNets folder.

We finish this chapter with an interesting open problem: in high dimensional spaces d ≥ 10 the KV-

CBO method quickly fails in finding all the weights. In other words: in high dimensional spaces the

particles seem to converge to only one (!) of the global minimizers instead of m. A possible explanation

for this is based on the concentration of measure phenomenon on the sphere. This phenomenon states

that vectors on the high-dimensional sphere are nearly orthogonal, that is,

〈V it , V
j
t 〉 ≈ 0 (6.75)

for i 6= j.

This further implies that the pairwise distances, and concequently the Cucker-Smale weights, are

nearly constant |V it −V
j
t |2 ≈ 2. Hence, the Cucker-Smale weights do not allow for a good discrimination

between near and far points and consequentely the particles all converge to the same minimizer.

Here more research about efficient ways to cluster points on a high-dimensional sphere is needed.
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6.6 Summary

We have started this chapter with a discussion of the discretization of the KV-CBO model and various

implementation aspects. We refer to the discretized KV-CBO model as the KV-CBO method. We

stated the most general version of the method in algorithm 1, and then restricted ourselves to the

special case Γ = Sd−1 in the rest of the chapter. We introduced the Matlab package of the KV-CBO

method which can be downloaded from GitHub. Whenever possible we included the scripts needed

to reproduce the numerical experiments. We have seen that the anisotropic version of the KV-CBO

method is preferable to the isotropic version and have therefore restricted ourselves to the former in

the rest of the chapter.

We have disucssed three real world applications, namely robust PCA, phase retrieval, and the

reconstruction of a neural net. We motivated the importance of the latter problem with the work of

C. Fefferman. We remind the reader that the phase-retrieval problem is a special case of the problem

of training a neuron with quadratic activation. In all of these applications the KV-CBO method can

keep up with well-known benchmark methods.

In summary: we have a proof of concept that a consensus-based optimization method can be used

to solve important machine learning problems.

132



Appendix

Stochastic Calculus

Definition 6.6.1 (Distribution, Law). 1. Let X : Ω→ S a random variable on the probability space

(Ω,A, P ) to the measure space (S,S). The distribution or law of X is defined as the pushforward

µ(B) = X#P (B) = P ◦X−1(B) (6.76)

for all B ∈ S. The distribution of X is thus a probability measure on (S,S). We also use the notations

µ = law(X) and X ∼ µ.

2. For a stochastic process X : T × Ω→ S we define the function

ΦX : Ω→ ST , ΦX(ω)(t) := Xt(ω) (6.77)

where ST is the set of all functions mapping from T → S. The distribution or law of X is defined as

the pushforward

ν = (ΦX)#P = P ◦ Φ−1
X . (6.78)

In other words: νt(·) = P ◦X−1
t (·) is the probability distribution of the random variable Xt.

Definition 6.6.2 (Brownian motion). Let T ∈ (0,∞] a time horizon and Ω a probability space. A

Brownian motion B : [0, T ]× Ω→ R is a stochastic process, that is, a collection of random variables

indexed by time, with the following properties

1. B0 = 0 almost surely,

2. t 7→ Bt is almost surely continuous,

3. B has independent increments, that is, the random variables Bt1 − Bs1 and Bt2 − Bs2 are

independent for all 0 ≤ s1 < t1 ≤ s2 < t2,

4. the random variable Bt − Bs follow a Gaussian distribution with expectation zero and variance

t− s, that is, Bt −Bs ∼ N (0, t− s) for all s ≤ t.

Here Bt is the short notation for B(t).
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Remark 6.6.1.

1. Figure 2.2 on page 22 shows one realization of a one-dimensional Brownian motion.

2. A Brownian motion in Rd is a stochastic process B : [0, T ] × Ω → Rd of independent (!) one-

dimensional Brownian motions, that is, each component of B is a one-dimensional Brownian

motion as defined above.

Definition 6.6.3 (SDE, Itô integral, Stratonovich integral). A stochastic differential equation in Itô

form is given by

Xt = µ(Xt)dt+ σ(Xt)dBt, X0 = x0 (6.79)

where x0 ∈ Rd is a given starting value, µ and σ are the drift and diffusion functions, B is a d-

dimensional Brownian motion, and the stochastic process X is the solution. This Itô-SDE is the short

notation for the integral equation

Xt = x0 +

∫ t

0

µ(Xs)ds+

∫ t

0

σ(Xs)dBs (6.80)

where the second integral is the Itô integral of the diffusion w.r.t the Brownian motion. This integral

can be defined as ∫ t

0

σ(Xs)dBs = lim
|∆k|→0

k−1∑
i=1

σ(Xtki
)(Btki+1

−Btki ) (6.81)

where ∆k = {0 = tk1 < tk2 ≤ ... ≤ tkk−1 < tkk = T} is a sequence of partitions of the time interval [0, T ].

The Itô integral is thus defined as a limit of Riemann sums where the diffusion function is evaluated

at the left most boundary of the subinterval [tki , t
k
i+1]. The Stratonovich intergal is defined differently:

here we average the function values of the diffusion function at both boundaries of [tki , t
k
i+1], that is,

∫ t

0

σ(Xs) ◦ dBs = lim
|∆k|→0

k−1∑
i=1

σ(Xtki+1
) + σ(Xtki

)

2
(Btki+1

−Btki ). (6.82)

The corresponding Stratonovich-SDE is denoted as

Xt = µ(Xt)dt+ σ(Xt) ◦ dBt, X0 = x0. (6.83)

The Itô and Stratonovich integrals are not equivalent.

Remark 6.6.2.

1. The SDE (6.79) can be discretized with a simple Euler-Maruyama method

Xtk+1
= Xtk + µ(Xtk)∆t+ σ(Xtk)∆Btk (6.84)

where ∆t = tk+1 − tk > 0 is a given time step and ∆Btk = Btk+1
− Btk ∼ Nd(0, (∆t)Id)

are the d-dimensional Brownian increments. The Brownian increments can be generated with
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the Matlab function randn, for the complete Brownian motion we can use cumsum. We note:

N (0,∆t) = (∆t)1/2N (0, 1).

2. In this thesis we usually project the d-dimensional Brownian motion onto the hypersurface Γ

with the projection PΓ, see (3.43).

Definition 6.6.4 (Finite-dimensional distributions, see [Øksendal, 2003]). Let X : [0, T ] × Ω → Rd

a stochastic process on the probability space (Ω,A, P ) and t1, ..., tk ∈ [0, T ]. The finite-dimensional

distributions of X are the probability measures µt1,...,tk in (Rd)k defined as

µt1,...,tk(B1 × ...×Bk) = P (Xt1 ∈ B1, ..., Xtk ∈ Bk) (6.85)

where B1, ..., Bk are Borel sets in Rd.

Theorem 6.6.1 (Kolmogorov extension theorem, see [Øksendal, 2003]). Let k ∈ N and µt1,...,tk a

probability measure on (Rd)k for all t1, ..., tk ∈ [0, T ] satisfying the following two conditions.

1. Let σ ∈ Sk a permutation and B1, ..., Bk Borel sets in Rd. Then

µtσ(1),...,tσ(k)(B1 × ...×Bk) = µt1,...,tk(Bσ−1(1) × ...×Bσ−1(k)). (6.86)

2. For all m ∈ N we have

µt1,...,tk(B1 × ...×Bk) = µt1,...,tk,tk+1,...,tk+m(B1 × ...×Bk × Rd × ...× Rd) (6.87)

where the set on the right hand side has k +m factors.

Then there exists a probability space (Ω,A, P ) and a stochastic process X : [0, T ]×Ω→ Rd such that

µt1,...,tk(B1 × ...×Bk) = P (Xt1 ∈ B1, ..., Xtk ∈ Bk) (6.88)

for all ti ∈ [0, T ], k ∈ N and Borel sets B1, ..., Bk.

Remark 6.6.3.

1. The Kolomogrov extension theorem is also known as Kolomogrov existence theorem and Kolo-

mogrov consistency theorem.

2. Given a family of probability measures {µt1,...,tk | k ∈ N, t1, ..., tk ∈ [0, T ]} satisfying the two

conditions from above, the Kolmogorov extension theorem guarantees the existence of a stochastic

process X : [0, T ]× Ω→ Rd having these probability measures as finite-dimensional measures.

3. We used the Kolmogorov extension theorem in section 3.4 to guarantee the existence of a common

(!) probability space Ω for the particles V i : [0, T ]×Ωi → Rd. In this case the familiy of probability

measures {µt1,...,tk | k ∈ N, t1, ..., tk ∈ [0, T ]} are the distributions of the particles.

135



The following theorem can be found in [Baldi, 2017, Thm. 7.1].

Theorem 6.6.2 (Itô’s isometry). Let L2
ad([0, T ]× Ω) the vector space of square integrable stochastic

processes adapted to the natural filtration of the Brownian motion FB with the inner product

〈X,Y 〉L2
ad([0,T ]×Ω) = E

( ∫ T

0

XtYtdt
)
. (6.89)

As usual we denote with L2(Ω) the space of square integrable random variables with inner product

〈X,Y 〉L2(Ω) = E(XY ). Itô’s isometry states that Itô’s integral L2
ad([0, T ]×Ω) 7→ L2(Ω) is an isometry.

In particular

E
(
(

∫ T

0

XtdBt)
2
)

= E
( ∫ T

0

X2
t dt
)
. (6.90)
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Anisotropic KV-CBO model

In this part of the appendix we report detailed proofs for the KV-CBO model with anisotropic (com-

ponentwise) noise, see (3.50) for the special case Γ = Sd−1. The study of CBO models with anisotropic

noise originates in [Carrillo et al., 2020]. The motivation to consider this noise is to avoid the explicit

dimension-dependence of the constant Cσ,d = (d− 1)σ2/2 (see section 2.3). Here the constant Cσ,d is

replaced by

Cσ = σ2/2 (6.91)

and the conditions on the coefficients is λϑ− 16Cσ > 0, see (6.177) below.

The proofs for the anisotropic model are more technical as the correction term is more complicated:

we have

CaniSd−1(V it , V
α(ρNt )) = −σ

2

2
|V it − V α(ρNt )|2 V it

|V it |2
dt− σ2

2
D(V it − V α(ρNt ))2 V it

|V it |2
dt

+ σ2|D(V it − V α(ρNt ))V it |2
V it
|V it |4

dt.

(6.92)

This part of the appendix is based on joint work of Massimo Fornasier, Hui Huang, Lorenzo

Pareschi and myself and has been published in [Fornasier et al., 2021b]. In that publication the proffs

are not reported in such detail as here.

Well-posedness of the particle system

As in the isotropic case we regularize the coefficient functions PΓ, v 7→ v/|v|2, and v 7→ v/|v|4 with

P1, P2, and P3 respectively. We introduce the following regularized KV-CBO model with anisotropic

noise

dV it = λP1(V it )Vα(ρNt )dt+ σP1(V it )D(V it −Vα(ρNt ))dBit + Cani
Sd−1(V it ,V

α(ρNt )) (6.93)

for i ∈ [N ] where the anisotropic correction term is given by

Cani
Sd−1(V it ,V

α(ρNt )) = −σ
2

2
|V it −Vα(ρNt )|2P2(V it )dt− σ2

2
D(V it −Vα(ρNt ))2P2(V it )dt

+ σ2|D(V it −Vα(ρNt ))V it |2P3(V it )dt.

(6.94)

Theorem 6.6.3 (Well-posedness, cf. theorem 3.7.1). The KV-CBO model with anisotropic noise

(3.50) is well-posed, that is, for every initial probability distribution ρ0 ∈ P(Sd−1) there is a pathwise

unique strong solution.

Proof. The model (3.50) has locally Lipschitz continuous coefficients which implies the existence of a

pathwise unique local (!) strong solution, see theorem 2.4.1.
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We now apply Itô’s formula with f(x) = |x|2 to show that d|V it |2 = 0, hence the particles remain on

the sphere. We find

d|V it |2 = ∇f(V it ) ·
(
λP1(V it )Vα(ρNt )− σ2

2
|V it −Vα(ρNt )|2P2(V it )

− σ2

2
D(V it −Vα(ρNt ))2P2(V it ) + σ2|D(V it −Vα(ρNt ))V it |2P3(V it )

)
dt

+
1

2

∑
k,l

(∇2f(Vt))klσk(t)σl(t)
T dt+∇f(V it ) · σ(t)dBit

(6.95)

where

σ(t) = σP1(V it )D(V it −Vα(ρNt )) ∈ Rd×d (6.96)

and σk is the kth row.

We can simplify this expression by noting that ∇f(V it ) = 2V it , ∇2f(V it ) = 2, and consequently that

∇f(V it ) · λP1(V it )Vα(ρNt ) = 0, and ∇f(V it ) · σ(t) = 0 (note that P1 = PSd−1). Thus, the above

expression simplifies to

d|V it |2 = 2V it ·
(
− σ2

2
|V it −Vα(ρNt )|2P2(V it )− σ2

2
D(V it −Vα(ρNt ))2P2(V it )

+ σ2|D(V it −Vα(ρNt ))V it |2P3(V it )

)
dt+

∑
k,l

σk(t)σl(t)
T dt.

(6.97)

We further note

V it ·P2(V it ) = 1, (6.98)

2V it ·
σ2

2
D(V it −Vα(ρNt ))2P2(V it ) = σ2 |D(V it −Vα(ρNt ))V it |2

|V it |2
, (6.99)

2V it · σ2|D(V it −Vα(ρNt ))V it |2P3(V it ) = 2σ2 |D(V it −Vα(ρNt ))V it |2

|V it |2
. (6.100)

Now we can simplify (6.97) even further as

d|V it |2 =

(
− σ2|V it −Vα(ρNt )|2 + σ2 |D(V it −Vα(ρNt ))V it |2

|V it |2

)
dt

+
∑
k,l

σk(t)σl(t)
T dt.

(6.101)

The kth row of σ(t) is given by

σk(t) = σ(V it −Vα(ρNt ))k(eTk − (V it )k(V it )T ) (6.102)
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hence

∑
k,l

σk(t)σl(t)
T dt = σ2|V it −Vα(ρNt )|2 − 2σ2

∑
k

(V it −Vα(ρNt ))k
(V it )2

k

|V it |2
(6.103)

+ σ2
∑
k,l

(V it −Vα(ρNt ))2
k

(V it )2
l (V

i
t )2
k

|V it |2
(6.104)

= σ2|V it −Vα(ρNt )|2 − 2σ2 |D(V it −Vα(ρNt )V it |2

|V it |2
(6.105)

+ σ2 |D(V it −Vα(ρNt )V it |2

|V it |2
(6.106)

= σ2|V it −Vα(ρNt )|2 − σ2 |D(V it −Vα(ρNt )V it |2

|V it |2
. (6.107)

Now we see that (6.101) gives d|V it |2 = 0, which ensures that the solution stays on the sphere for some

finite time. We can therefore extend the pathwise unique local solution to a pathwise uniquen global

solution. This further shows that the regularized KV-CBO model with anisotropic noise (6.93) equals

the original model with anisotropic noise (3.50).

Well-posedness of the mean-field dynamic

Theorem 6.6.4 (cf. theorem 4.2.1). The mean-field dynamic{
dV t = λPSd−1(V t)V

α(ρt)dt+ σPSd−1(V t)D(V t − V α(ρt))dBt + CaniSd−1(V t, V
α(ρt))dt

ρt = law(V t)
(6.108)

is well-posed, that is, there is a pathwise unique strong solution for any initial probability distribution

ρ0 ∈ P(Sd−1).

Proof. Let ξ ∈ C([0, T ],Rd) and consider the SDE

dV
ξ

t = λP1(V
ξ

t )ξtdt+ σP1(V
ξ

t )D(V
ξ

t − ξt)dBt + Cani
Sd−1(V

ξ

t , ξt) (6.109)

with initial data V
ξ

0 ∼ ρ0 for ρ0 ∈ P(Γ). This SDE is well-posed and V ξt ∈ Sd−1 for all time t which

allows us to use the unregularized operators PSd−1 and CaniSd−1 instead. Thus the SDE introduces a

measure ρξt ∈ C([0, T ],P(Γ)) with ρξt = law(V
ξ

t ).

We define the operator

T : C([0, T ],Rd)× [0, 1]→ C([0, T ],Rd), (ξ, ϑ) 7→ Vα(ρξ) (6.110)

for which we prove the existence of a unique fixed point ξ?. We use the Leray-Schauder fixed point

theorem to show the existence of a (not necessarily unique) fixed point ξ of T .
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Compactness of T : For the solution V of (6.108) we find (similarly to lemma 3.6.4)

|V α(ρt)− V α(ρs)|2 . E|V t − V s|2 (6.111)

. E|
∫ t

s

λPSd−1(V τ )V α(ρτ )|2 + E|
∫ t

s

σPSd−1(V τ )D(V τ − V α(ρτ ))dBτ |2

E|
∫ t

s

CaniSd−1(V τ , V
α(ρτ ))dτ |2 (6.112)

. |t− s|2 (6.113)

where we have used the compactness of [s, t]. With this we conclude that t 7→ V α(ρt) is Hölder

continuous with exponent 1/2. Hence Tξ ∈ C0,1/2([0, T ],Rd) and the compactness of T follows from

the fact that C0,1/2([0, T ],Rd) is compactly embedded in C([0, T ],Rd).

Existence of fixed point of T : Follows as in lemma 3.6.4. By Leray-Schauder there exists a fixed point

ξ? of T , that is, V α(ρξ
?

) = ξ?.

Uniqueness of the fixed point ξ?: Suppose there are two distinct fixed points ξ?,1 and ξ?,2. The

corresponding processes are denoted by V
ξ?,i

t and ρξ
?,i

t respectively. Further we define

Zt = V
ξ?,1

t − V ξ
?,2

t . (6.114)

With the integral representation of (6.109), Itô’s isometry, and the fact that (see (6.111))

|ξ?,1s − ξ?,2s | = |V α(ρξ
?,1

s )− V α(ρξ
?,2

s )|2 . E|Zs|2 (6.115)

we find

E|Zt|2 . E|Z0|2 +

∫ t

0

E|Zs|2ds. (6.116)

Since the initial values of the solutions V
ξ?,1

and V
ξ?,2

are sampled from the same initial distribution

ρ0 we have E|Z0|2 = 0. Gronwall’s inequality further yields E|Zt|2 = 0 for all t ∈ [0, T ], hence the

uniqueness of the fixed point ξ?.

We conclude the proof by noting that the SDE (6.109) for ξ? is exactly the mean-field dynamic

(6.108). The well-posedness of the latter follows from the well-posedness of the former.
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Well-posedness of the mean-field equation

Before proving the well-posedness of the mean-field equation we discuss some integration by parts

results on the sphere, see [Frouvelle and Liu, 2012, section 2.1]. We first recall the standard integration

by parts formula on Sd−1: for Φ ∈ C∞(Sd−1) and a vector field ω : Sd−1 → TSd−1, ω(v) ∈ TvSd−1 we

have ∫
Sd−1

∇Sd−1Φ(v) · ω(v)dv = −
∫
Sd−1

Φ(v)∇Sd−1 · ω(v)dv. (6.117)

Choosing ω(v) = PSd−1(v)φ(v) and appliying (6.117) twice yields∫
Sd−1

(∆Sd−1Φ(v))φ(v)dv =

∫
Sd−1

Φ(v)∆Sd−1φ(v)dv. (6.118)

We note that formula (6.117) and (6.118) hold for any hypersurface Γ, whereas forumla (6.123) below

is specific for the sphere.

We now generalize the integration by parts formula (6.117) for smooth functions A : Sd−1 → Rd

that are not necessarily tangential. For a constant vector V ∈ Rd we have

∇Sd−1(v · V ) = PSd−1(v)∇(v · V ) = PSd−1(v)V (6.119)

where the gradient is wrt v, that is, ∇ = ∇v. For the divergence we further find

∇Sd−1 · (PSd−1(v)V ) = −
d∑
i=1

( d∑
k=1

∂Sd−1,i(vivkVk)
)

= −(d− 1)v · V (6.120)

where we have used that PSd−1(v) = I − v ⊗ v.

Since PSd−1V is tangential we can apply (6.117) to find∫
Sd−1

∇Sd−1Φ(v) · PSd−1(v)V dv = −
∫
Sd−1

Φ(v)∇Sd−1 · (PSd−1(v)V )dv. (6.121)

With property (6.120) and choosing V = ei we further find
∫
Sd−1 ∂Sd−1,iΦ(v)dv = (d− 1)

∫
Sd−1 Φ(v)vidv∫

Sd−1 ∇Sd−1Φ(v)dv = (d− 1)
∫
Sd−1 Φ(v)vdv.

(6.122)

With the above properties we arrive at∫
Sd−1

∇Sd−1Φ(v) ·A(v)dv = −
∫
Sd−1

Φ(v)∇Sd−1 ·A(v)dv + (d− 1)

∫
Sd−1

A(v) · vΦ(v)dv. (6.123)

This integration by parts formula is a generalization of (6.117) since the second term on the right

hand side vanishes for A tangential.
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Theorem 6.6.5 (cf. theorem 4.3.1). The mean-field equation of the anisotropic KV-CBO model

∂tρt = −λ∇Sd−1 · (PSd−1(v)V α(ρt)ρt) +
σ2

2

d∑
i=1

∂2
Sd−1,ii((v − V

α(ρt))
2
i ρt)

− σ2

2
(d− 2)∇Sd−1 · (D(v − V α(ρt))

2vρt) +
σ2

2
(d− 2)(d− 1)|D(v − V α(ρt))v|2ρt

− σ2

2
(d− 1)

d∑
i=1

∂Sd−1,i((v − V α(ρt))
2
i ρt)vi. (6.124)

is well-posed, that is, there is a unique weak solution for any initial probability distribution ρ0 ∈
P(Sd−1).

Proof. Let us first derive the mean-field equation.

Applying Dynkin’s formula with a test function φ ∈ C∞c (Rd) to the mean-field dynamic (6.108)

yields

d

dt

∫
Rd
φ(v)dρt(v) =

∫
Rd
∇φ(v) ·

(
λPSd−1(v)V α(ρt)−

σ2

2
D(v − V α(ρt))

2v
)
dρt(v) (6.125)

+
σ2

2

∫
Rd

Tr
(
(PSd−1(v)D(v − V α(ρt)))

T (∇2φ(v))PSd−1(v)D(v − V α(ρt))
)
dt

where we have used that φ is 0-homogeneous (∇φ(v) · v = 0) and consequently

∇φ(v) · CaniSd−1(v, V α(ρt)) = −∇φ(v) · σ
2

2
D(v − V α(ρt))

2v. (6.126)

With PSd−1(v) = I − v ⊗ v we can rewrite the trace term as

Tr
(
(PD)T∇2φ(v)PD

)
(6.127)

= Tr
(
DP∇2φ(v)PD

)
(6.128)

= Tr
(
D∇2φ(v)D

)
− 2Tr

(
Dv ⊗ v∇2φ(v)D

)
+ Tr

(
Dv ⊗ v∇2φ(v)v ⊗ vD

)
(6.129)

=

d∑
i=1

∂2
iiφ(v)(v − V α(ρt))

2
i − 2

d∑
i=1

(v − V α(ρt))ivi∂i∇φ(v) · v

+

d∑
i,j=1

∂2
ijφ(v)vjvi |D(v − V α(ρt))v|2

(6.130)

=

d∑
i=1

∂2
iiφ(v)(v − V α(ρt))

2
i (6.131)

where we have (once again) used that φ is 0-homogeneous.

Combining the above statements and using the definitions of the differential operators ∇Sd−1 and
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∆Sd−1 we arrive at the following weak formulation (for Φ ∈ C∞(Sd−1)) of the mean-field equation

d

dt

∫
Sd−1

Φ(v)dρt(v) =

∫
Sd−1

∇Sd−1Φ(v) ·
(
λPSd−1(v)V α(ρt)−

σ2

2
D(v − V α(ρt))

2v
)
dρt(v)

+
σ2

2

∫
Sd−1

d∑
i=1

(∂2
Sd−1,iiΦ(v))(v − V α(ρt))

2
i dρt(v). (6.132)

where we have denoted the restriction of ρt ∈ Pc(Rd) onto Sd−1 again with ρt.

Let us now derive the corresponding strong formulation of the mean-field equation. With the

integration by parts formulas from above we find∫
Sd−1

∇Sd−1Φ(v) ·
(
λPSd−1(v)V α(ρt)

)
ρt(v)dv

(6.117)
= −

∫
Sd−1

Φ(v)∇Sd−1 ·
(
λPSd−1(v)V α(ρt)ρt(v)

)
dv

(6.133)

and

− σ2

2

∫
Sd−1

∇Sd−1Φ(v) ·
(
D(v − V α(ρt))

2vρt(v)
)
dv

(6.123)
=

σ2

2

∫
Sd−1

Φ(v)∇Sd−1 ·
(
D(v − V α(ρt))

2vρt(v)
)
dv

− σ2

2
(d− 1)

∫
Sd−1

D(v − V α(ρt))
2vρt(v) · vΦ(v)dv

(6.134)

for the first term on the right hand side of (6.132). We note that we need to apply the (more

complex) formula (6.123) for the second term because D(v − V α(ρt))v is not tangential (as opposed

to PSd−1(v)V α(ρt)).

For the third term on the right hand side of (6.132) we find

σ2

2

∫
Sd−1

d∑
i=1

(∂2
Sd−1,iiΦ(v))(v − V α(ρt))

2
i dρt(v)

=
σ2

2

d∑
i=1

∫
Sd−1

∇Sd−1gi(v) · (v − V α(ρt))
2ρt(v)dv

(6.135)

(6.123)
= −σ

2

2

d∑
i=1

∫
Sd−1

gi(v)∇Sd−1 ·
(
(v − V α(ρt))

2ρt(v)
)
dv

+
σ2

2
(d− 1)

d∑
i=1

∫
Sd−1

(
(v − V α(ρt))

2ρt(v)
)
· vgi(v)dv

(6.136)

where

gi(v) = ∂Sd−1,iΦ(v) (6.137)
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and the square in (v−V α(ρt))
2 is understood componentwise. Defining B : Sd−1 → Rd with (constant)

components (B(v))i = ∇Sd−1 · (v− V α(ρt))
2 allows us to rewrite the first term on the right hand side

of (6.136) as

− σ2

2

d∑
i=1

∫
Sd−1

gi(v)∇Sd−1 ·
(
(v − V α(ρt))

2ρt(v)
)
dv

= −σ
2

2

∫
Sd−1

∇Sd−1Φ(v) ·B(v)dv

(6.138)

(6.123)
=

∫
Sd−1

Φ(v)
σ2

2

d∑
i=1

∂2
Sd−1,ii((v − V

α(ρt))
2
i ρt)dv

− σ2

2
(d− 1)

∫
Sd−1

Φ(v)∇Sd−1 ·
(
D(v − V α(ρt))

2vρt(v)
) (6.139)

Collecting the above statements allows us to write the strong formulation of the mean-field equation

of the anisotropic KV-CBO model as

∂tρt = −λ∇Sd−1 · (PSd−1(v)V α(ρt)ρt) +
σ2

2

d∑
i=1

∂2
Sd−1,ii((v − V

α(ρt))
2
i ρt)

− σ2

2
(d− 2)∇Sd−1 · (D(v − V α(ρt))

2vρt) +
σ2

2
(d− 2)(d− 1)|D(v − V α(ρt))v|2ρt

− σ2

2
(d− 1)

d∑
i=1

∂Sd−1,i((v − V α(ρt))
2
i ρt)vi. (6.140)

Let us now investigate the well-posedness of the mean-field equation.

Existence: The existence of a weak solution follows from the construction above.

Uniqueness: The proof of the uniqueness of the weak solution is the same as for the isotropic model.

We summarize the important steps. First, we assume that ρit ∈ P(Sd−1) for i = 1, 2 are two weak

solutions of the mean-field equation with the same initial data ρ0 ∈ P(Sd−1). Second, we consstruct

linear (!) stochastic processes V
i

t corresponding to ρit as

dV
i

t = λP1(V
i

t)V
α(ρit)dt+ σP1(V

i

t)D(V
i

t − V α(ρit))dBt + Cani
Sd−1(V

i

t, V
α(ρit)). (6.141)

We denote the laws as µit = law(V
i

t). Third, µit are solutions to a linear (!) Fokker-Planck equation

(which has a unique solution). Further, also ρit is a solution to this (nonlinear) Fokker-Planck equation

(6.125). Hence, µit = ρit for i = 1, 2. Last, the well-posedness of the mean-field dynamic yields

µ1
t = ρ1

t = ρ2
t = µ2

t which finishes the proof.
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Mean-field limit

Theorem 6.6.6 (cf. theorem 4.4.1). Let V it denote the anisotropic KV-CBO particles and V
i

t iid

copies of the mean-field dynamic with common probability distribution ρt = law(V
i

t). Assume further

that the initial data and the Brownian motions are the same, that is, V i0 = V
i

0 and Bit = B
i

t. Then

sup
t∈[0,T ]

E|V it − V
i

t|2 . N−1 (6.142)

for all i ∈ [N ]. We note that the constant in . depends on the dimension d.

Proof. The particles V it and V
i

t are solutions to the SDEs

dV it = λPSd−1(V it )V α(ρNt )dt+ σPSd−1(V it )D(V it − V α(ρNt ))dBit + CaniSd−1(V it , V
α(ρNt )) (6.143)

and

dV
i

t = λPSd−1(V
i

t)V
α(ρt)dt+ σPSd−1(V

i

t)D(V
i

t − V α(ρt))dB
i

t + CaniSd−1(V
i

t, V
α(ρt))dt (6.144)

respectively. Since the driving Brownian motions are the same we find an equation for the difference

d(V it − V
i

t) = λ

(
PSd−1(V it )V α(ρNt )− PSd−1(V

i

t)V
α(ρt)

)
dt

+ σ

(
PSd−1(V it )D(V it − V α(ρNt ))− PSd−1(V

i

t)D(V
i

t − V α(ρt))

)
dBit

+

(
CaniSd−1(V it , V

α(ρNt ))− CaniSd−1(V
i

t, V
α(ρt))

)
dt

(6.145)

An application of Itô’s formula with f(x) = |x|2, ∇f(x) = 2x, and ∆f(x) = 2Id yields

d|V it − V
i

t|2 = 2λ(V it − V
i

t) ·
(
PSd−1(V it )V α(ρNt )− PSd−1(V

i

t)V
α(ρt)

)
dt (6.146)

+ 2(V it − V
i

t) ·
(
CaniSd−1(V it , V

α(ρNt ))− CaniSd−1(V
i

t, V
α(ρt))

)
dt+ σ2Tr(σi · σi)dt

+ 2σ(V it − V
i

t) ·
(
PSd−1(V it )D(V it − V α(ρNt ))− PSd−1(V

i

t)D(V
i

t − V α(ρt))

)
dBit

where

σi = PSd−1(V it )D(V it − V α(ρNt ))− PSd−1(V
i

t)D(V
i

t − V α(ρt)). (6.147)

We estimate the first term on the right hand side of (6.146) as (see (4.68))

λ(V it − V
i

t) ·
(
PSd−1(V it )V α(ρNt )− PSd−1(V

i

t)V
α(ρt)

)
.

N∑
i=1

|V it − V
i

t|2

N
+ |V it − V

i

t|2 + |V α(ρNt )− V α(ρt)|2
(6.148)
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where ρNt denotes the empirical measure of the iid copies V
i

t.

We estimate the second term on the right hand side of (6.146) as

2(V
i
t − V

i
t)·
(
C
ani
Sd−1 (V

i
t , V

α
(ρ
N
t )) − CaniSd−1 (V

i
t, V

α
(ρt))

)

. 2|V it − V
i
t|·
∣∣∣∣( − σ2

2
|V it − V

α
(ρ
N
t )|2

V it

|V it |
2
−
σ2

2
D(V

i
t − V

α
(ρ
N
t ))

2 V it

|V it |
2

+ σ
2|D(V

i
t − V

α
(ρ
N
t ))V

i
t |

2 V it

|V it |
4

)

−
(
−
σ2

2
|V it − V

α
(ρ
N
t )|2

V it

|V it|
2
−
σ2

2
D(V

i
t − V

α
(ρ
N
t ))

2 V it

|V it|
2

+ σ
2|D(V

i
t − V

α
(ρ
N
t ))V

i
t |

2 V it

|V it|
4

)

+

(
−
σ2

2
|V it − V

α
(ρ
N
t )|2

V it

|V it|
2
−
σ2

2
D(V

i
t − V

α
(ρ
N
t ))

2 V it

|V it|
2

+ σ
2|D(V

i
t − V

α
(ρ
N
t ))V

i
t |

2 V it

|V it|
4

)

−
(
−
σ2

2
|V it − V

α
(ρ
N
t )|2

V it

|V it|
2
−
σ2

2
D(V

i
t − V

α
(ρ
N
t ))

2 V it

|V it|
2

+ σ
2|D(V

i
t − V

α
(ρ
N
t ))V

i
t |

2 V it

|V it|
4

)

+

(
−
σ2

2
|V it − V

α
(ρ
N
t )|2

V it

|V it|
2
−
σ2

2
D(V

i
t − V

α
(ρ
N
t ))

2 V it

|V it|
2

+ σ
2|D(V

i
t − V

α
(ρ
N
t ))V

i
t |

2 V it

|V it|
4

)

−
(
−
σ2

2
|V it − V

α
(ρt)|

2 V it

|V it|
2
−
σ2

2
D(V

i
t − V

α
(ρt))

2 V it

|V it|
2

+ σ
2|D(V

i
t − V

α
(ρt))V

i
t|

2 V it

|V it|
4

)∣∣∣∣

(6.149)

. 2|V it − V
i
t|·
∣∣∣∣|V it − V it| + (|V it − V

α
(ρ
N
t )|2 − |V it − V

α
(ρ
N
t )|2) + (|V it − V

α
(ρ
N
t )|2 − |V it − V

α
(ρt)|

2
)

∣∣∣∣ (6.150)

where we have used that |V it − V α(ρNt )|2 . 1, |V it | = 1, |V it| = 1.

As in the proof of theorem 4.4.1 we arrive at

2(V it − V
i

t) ·
(
CaniSd−1(V it , V

α(ρNt ))− CaniSd−1(V
i

t, V
α(ρt))

)
. |V it − V

i

t|2 +

N∑
i=1

|V it − V
i

t|2

N
+ |V α(ρNt )− V α(ρt)|2.

(6.151)

Further we find

Tr(σi · σi) . d|V it − V
i

t|2 +

∑N
i=1 d|V it − V

i

t|2

N
+ d|V α(ρNt )− V α(ρt)|2. (6.152)

We do not need to further estimate the fourth term on the right hand side of (4.63) (the coefficient

of dBit), because the expected value of this term vanishes anyway due to the martingale property of

Brownian motion.

Finally we obtain

E|V it − V
i

t|2 . E|V i0 − V
i

0|2 +

∫ t

0

sup
i∈[N ]

E|V is − V
i

s|2ds+

∫ t

0

E|V α(ρNs )− V α(ρs)|2ds

. E|V i0 − V
i

0|2 +

∫ t

0

sup
i∈[N ]

E|V is − V
i

s|2ds+ TN−1.

Here we have used Lemma 4.4.1 in the second inequality. With Gronwall’s inequality we find

sup
i∈[N ]

E|V it − V
i

t|2 . N−1 (6.153)
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where we have used that E|V i0 − V
i

0|2 = 0. This finishes the proof.

Regularity of the mean-field solution

Theorem 6.6.7 (cf. theorem 5.2.2). Let ρ0 ∈ L2(Sd−1). Then there exists a unique weak solution of

the mean-field equation of the anisotropic KV-CBO model (6.124) with the following regularityρ ∈W 1,2,2([0, T ];H1(Sd−1), H1(Sd−1)′),

ρ ∈ L∞([0, T ];L2(Sd−1))
(6.154)

where W 1,2,2 is the space from the Aubin-Lions theorem 5.2.1.

Proof. The uniqueness has been shown in theorem 6.6.5.

The existence is shown with a Picard iteration argument. Let

ρ1(t, v) := ρ0(v), t ∈ [0, T ] (6.155)

be the first iterate of the Picard iteration. For n ≥ 1 and

ρn ∈ L∞([0, T ];L2(Sd−1)) ∩ L2([0, T ];H1(Sd−1)) (6.156)

we consider the linear PDE

∂tρ
n+1
t = −λ∇Sd−1 · (PSd−1(v)V α(ρnt )ρn+1

t ) + σ2

2

∑d
i=1 ∂

2
Sd−1,ii((v − V

α(ρnt ))2
i ρ
n+1
t )

−σ
2

2 (d− 2)∇Sd−1 · (D(v − V α(ρnt ))2vρn+1
t ) + σ2

2 (d− 2)(d− 1)|D(v − V α(ρnt ))v|2ρn+1
t

−σ
2

2 (d− 1)
∑d
i=1 ∂Sd−1,i((v − V α(ρnt ))2

i ρ
n+1
t )vi

ρn+1(0, v) = ρ0(v)

(6.157)

which has a unique weak solution due to the boundedness of the coefficient functions.
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Multiplying both sides with ρn+1
t and integrating we find

1

2

d

dt
‖ρn+1
t ‖2L2(Sd−1) (6.158)

= λ

∫
Sd−1

PSd−1(v)V α(ρnt )ρn+1
t · ∇Sd−1ρn+1

t dv − σ2

2

∫
Sd−1

d∑
i=1

∂Sd−1,i

(
(v − V α(ρnt ))2

i ρ
n+1
t

)(
∂Sd−1,iρ

n+1
t

)
dv

+
σ2

2
(d− 2)

(∫
Sd−1

∇Sd−1ρn+1
t ·

(
D(v − V α(ρnt ))2vρn+1

t

)
− (d− 1)

∫
Sd−1

D(v − V α(ρnt ))2vρn+1
t · vρn+1

t dv

)
+
σ2

2
(d− 2)(d− 1)

∫
Sd−1

|D(v − V α(ρnt ))v|2|ρn+1
t |2dv

+
σ2

2
(d− 1)

∫
Sd−1

d∑
i=1

(
(v − V α(ρnt ))2

i viρ
n+1
t

)
(∂Sd−1,iρ

n+1
t )dv

where we have used the integration by parts formula on the sphere (6.123). With v · ∇Sd−1ρn+1
t = 0

and

∂Sd−1,i

(
(v − V α(ρnt ))2

i ρ
n+1
t

)
= 2(v − V α(ρnt ))i

d− 1

d
ρn+1
t + (v − V α(ρnt ))2

i ∂Sd−1ρn+1
t (6.159)

this can be simplified to

1

2

d

dt
‖ρn+1
t ‖2L2(Sd−1) (6.160)

= λ

∫
Sd−1

PSd−1(v)V α(ρnt )ρn+1
t · ∇Sd−1ρn+1

t dv + σ2 d− 1

d

∫
Sd−1

∇Sd−1ρn+1
t · V α(ρnt )ρn+1

t dv

− σ2

2

∫
Sd−1

d∑
i=1

(v − V α(ρnt ))2
i (∂Sd−1,iρ

n+1
t )2dv +

σ2

2
(2d− 3)

∫
Sd−1

∇Sd−1ρn+1
t ·

(
D(v − V α(ρnt ))2vρn+1

t

)
dv.

The first term on the right hand side of (6.160) can be bounded by∫
Sd−1

λPSd−1(v)V α(ρnt )ρn+1
t · ∇Sd−1ρn+1

t dv ≤ λ
∫
Sd−1

|ρn+1
t ||∇Sd−1ρn+1

t |dv (6.161)

≤ λε2

2
‖ρn+1
t ‖2L2(Sd−1) +

λ

2ε2
‖∇Sd−1ρn+1

t ‖2L2(Sd−1) (6.162)

where we have used Young’s inequality in the second step.

The second term on the right hand side can be bounded as

σ2 d− 1

d

∫
Sd−1

∇Sd−1ρn+1
t · V α(ρnt )ρn+1

t dv . ε2‖ρn+1
t ‖2L2(Sd−1) +

1

ε2
‖∇Sd−1ρn+1

t ‖2L2(Sd−1) (6.163)

where the constant in . depends on σ an d.
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The third term on the right hand side is obviously ≤ 0, and for the fourth term we similarly find

σ2

2
(2d− 3)

∫
Sd−1

∇Sd−1ρn+1
t ·

(
D(v − V α(ρnt ))2vρn+1

t

)
dv (6.164)

. ε2‖ρn+1
t ‖2L2(Sd−1) +

1

ε2
‖∇Sd−1ρn+1

t ‖2L2(Sd−1). (6.165)

Combining the above estimates yields

1

2

d

dt
‖ρn+1
t ‖2L2(Sd−1) −

1

ε2
‖∇Sd−1ρn+1

t ‖2L2(Sd−1) . ε2‖ρn+1
t ‖2L2(Sd−1) (6.166)

from which we deduce with Gronwall’s inequality that

‖ρn+1
t ‖2L2(Sd−1) +

∫ t

0

‖∇Sd−1ρn+1
t ‖2L2(Sd−1)dt . 1 (6.167)

and further

ρn+1 ∈ L∞([0, T ];L2(Sd−1)) ∩ L2([0, T ];H1(Sd−1)). (6.168)

In order to apply the Aubin-Lions theorem it remains to show that

∂tρ
n+1 ∈ L2([0, T ];H1(Sd−1)′). (6.169)

To see this we note

‖∂tρn+1
t ‖H1(Sd−1)′

= sup
‖ψ‖

H1(Sd−1)
≤1

|〈∂tρn+1
t , ψ〉| (6.170)

= sup
‖ψ‖

H1(Sd−1)
≤1

∣∣∣∣〈λPSd−1(v)V α(ρnt )ρn+1
t + σ2 d− 1

d
V α(ρnt )ρn+1

t − σ2

2

(
∇TSd−1 ·D(v − V α(ρnt ))2

i ρ
n+1
t

)
+
σ2

2
(2d− 3)

(
D(v − V α(ρnt ))2vρn+1

t

)
,∇Sd−1ψ

〉∣∣∣∣ (6.171)

. ‖ρn+1
t ‖H1(Sd−1). (6.172)

So far we have construced a sequence

{ρn}n∈N ∈W 1,2,2([0, T ];H1(Sd−1), H1(Sd−1)′) (6.173)

for which the Aubin-Lions theorem guarantees the existence of a subsequence {ρnk}k∈N that converges

to a limit function ρ ∈ L2([0, T ];L2(Sd−1)) as k →∞.

We now prove that this limit function ρ solves the mean-field equation of the anisotropic KV-CBO
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model in the weak sense. With ρn ∈ C([0, T ];L2(Sd−1)) (as in the isotropic proof) we find

d

dt

∫
Sd−1

|Φ(v)
(
ρnkt (v)− ρt(v)

)
|2dv → 0 (6.174)

hence the left hand sides of (6.157) converges to the left hand side of the mean-field equation (6.124).

For the first term on the right hand side of (6.171) we find

λ

∫
Sd−1

∣∣(PSd−1(v)V α(ρnkt )ρnk+1
t − PSd−1(v)V α(ρt)ρt

)
· ∇Sd−1Φ(v)

∣∣2dv → 0 (6.175)

by adding and subtracting the term V α(ρnkt )ρt.

The other terms are treated similarly. This finishes the proof.

Optimization

Definition 6.6.5 (cf. definition 5.3.1). Let δ ∈ (0, 2) and ρ0 ∈ Pac(Sd−1) ∩ L2(Sd−1) the initial

distribution. We assume
supt∈[0,T ] ‖ρt‖L2(Dδ) ≤ ε0,

E(ρt) · V α(ρt) ≥ C1 > 0 t ∈ [0, T ],

VT := sup
t∈[0,T ]

V (ρt) ≤ min

{
‖e−αE‖2

L1(ρ0)

T ,
‖e−αE‖4

L1(ρ0)

Tλ2

}
.

(6.176)

For the coefficients α, σ, λ and δ we assume∃ϑ > 0 s.t. C1 + 5/8− C2/2− (2− δ) ≥ ϑ > 0,

λϑ− 16Cσ > 0
(6.177)

where C1, C2 are the same constants as in the isotropic proof.

Theorem 6.6.8 (Monotonic decay of the variance, cf. theorem 5.4.1). We have

V (ρt) ≤ V (ρ0)e−(λϑ−16Cσ)t +
4λε0C

1/2
3 δ(d−2)/4

λϑ− 16Cσ
. (6.178)

Proof. Let us compute the derivative of the variance

d

dt
V (ρt) = −E(ρt) ·

∫
Sd−1

λPSd−1(v)V α(ρt) + CaniSd−1(v, V α(ρt)) dρt(v). (6.179)

The first term on the right hand side can be estimated as in the isotropic model (see (5.85) - (5.91)),
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that is,

d

dt
V (ρt) ≤ −λC1V (ρt)−

5λ

8
V (ρt)

+
λ

4

(
16ε0C

1/2
3 δ(d−2)/4 + 4(2− δ)V (ρt) + 2C2V (ρt)

) (6.180)

For the second term we have

− E(ρt) ·
∫
Sd−1

CaniSd−1(v, V α(ρt)) dρt(v)

= E(ρt) · Cσ
∫
Sd−1

|v − V α(ρt)|2v +D(v − V α(ρt))
2v + 2|D(v − V α(ρt))v|2v dρt(v)

(6.181)

≤ 4Cσ

∫
Sd−1

|v − V α(ρt)|2 dρt(v) (6.182)

≤ 16CσV (ρt) (6.183)

where we have used Cauchy-Schwarz in the first, and lemma 5.4.1 in the second step.

The rest of proof is the same as for the isotropic model.

Lemma 6.6.1 (Laplace’s principle for the mean-field solution, cf. lemma 5.4.4). Let ρt ∈ Pac(Sd−1)∩
L2(Sd−1) and ρ ∈ L∞([0, T ];L2(Sd−1)) be the mean-field solution of the anisotropic KV-CBO model.

Then

lim
α→∞

− 1

α
log ‖e−αE‖L1(ρt) = E (6.184)

for all t ∈ [0, T ].

Proof. We first show
d

dt
‖e−αE‖2L1(ρt)

≥ −b1(α)V (ρt)− b2(α)V (ρt)
1/2. (6.185)

Here the coefficients b1(α) and b2(α) are different from those of the isotropic model but they still

approach zero as α → ∞. The rest of the proof is exactly the same as for the isotropic model. An

application of Dynkin’s formula yields

d

dt

∫
Sd−1

e−αE(v) dρt(v) =

∫
Sd−1

∇Sd−1e−αE(v) ·
(
λPSd−1

(v)V α(ρt)−
σ2

2
D(v − V α(ρt))

2v
)

d∑
i=1

σ2

2
(v − V α(ρt))

2
i ∂

2
Sd−1,iie

−αE(v) dρt(v).

(6.186)

The first term on the right hand side of (6.186) can be estimated as in (5.100)

λ

∫
Sd−1

∇Sd−1e−αE(v) · PSd−1(v)V α(ρt) dρt(v) ≥ −αλc1e−αEV (ρt)
1/2. (6.187)

151



For the second term on the right hand side of (6.186) we find

− σ2

2

∫
Sd−1

D(v − V α(ρt))
2v · ∇Sd−1e−αE(v) dρt(v)

=
σ2

2

∫
Sd−1

D(v − V α(ρt))
2v · PSd−1(v)∇E(v) αe−αE(v) dρt(v)

(6.188)

≥ −σ
2

2
αc1e

−αE
∫
Sd−1

|v − V α(ρt)|2 dρt(v) (6.189)

≥ −2σ2αc1e
−αEV (ρt). (6.190)

For the third term on the right hand side of (6.186) we find

∫
Sd−1

d∑
i=1

σ2

2
(v − V α(ρt))

2
i ∂

2
Sd−1,iie

−αE(v) dρt(v)

≥ −2σ2
(
(d+ 1)2(α2c21 + αc2) + 4αc1

)
e−αEV (ρt)

(6.191)

where we have used

∂2
Sd−1,iie

−αE(v) L.5.1.1= ∂2
iie
−αE(v) − 2

d∑
j=1

∂2
ije
−αE(v)vjvi − v · ∇e−αE(v) + 2v2

i v · ∇e−αE(v)

− vi∂ie−αE(v) + v2
i∇2e−αE(v) : v ⊗ v

(6.192)

≥ −
(
(d+ 1)2(α2c21 + αc2) + 4αc1

)
e−αE (6.193)

and the estimates from section 5.1.

Combining the above inequalities yields

1

2

d

dt
‖e−αE‖2L1(ρt)

= ‖e−αE‖L1(ρt)
d

dt
‖e−αE‖L1(ρt) (6.194)

≥ −2σ2
(
(d+ 1)2(α2c21 + αc2) + 5αc1

)
e−αEV (ρt)− αλc1e−αEV (ρt)

1/2

=: −b1(α)V (ρt)− b2(α)V (ρt)
1/2 (6.195)

which finishes the proof of (6.185).

Now we can estimate (as in the isotropic case)

‖e−αE‖2L1(ρt)
≥ ‖e−αE‖2L1(ρ0)

(
1− b1(α)− b2(α)

)
(6.196)

which implies

− 1

α
log ‖e−αE‖L1(ρt) ≤ −

1

α
log ‖e−αE‖L1(ρ0) −

1

2α
log
(
1− b1(α)− b2(α)

)
. (6.197)
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Hence, with Laplace’s principle we see that for any ε > 0 we can find α0 = max{α1, α2} such that

∣∣− 1

α
log ‖e−αE‖L1(ρt) − E

∣∣∣∣
≤
∣∣∣∣− 1

α
log ‖e−αE‖L1(ρ0) − E

∣∣∣∣+

∣∣∣∣ 1

2α
log
(
1− b1(α)− b2(α)

)∣∣∣∣ ≤ ε (6.198)

for all α > α0. This finishes the proof.

Theorem 6.6.9 (cf. theorem 5.4.2). Let the initial probability distribution ρ0 satisfy the conditions

from definition 5.3.1, and ε > 0. Then there is an α0 � 1 such that the following approximation

estimates hold |E(ρt)− V ?| ≤ c32c4−1
(
(2Cα)c4V (ρt)

c4/2 + εc4
)
,

|V α(ρt)− V ?| ≤ 3V (ρt)
1/2 + c32c4−1

(
(2Cα)c4V (ρt)

c4/2 + εc4
) (6.199)

for any α > α0 and all t ∈ [0, T ].

Proof. Same as for the isotropic model.
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Benchmark functions

In chapter 6 we discussed the KV-CBO package 6 and illustrated numerical results for the Rastrigin

function. The KV-CBO package implements other benchmark test functions which we briefly discuss

here, see [Momin Jamil, 2013]. All of these functions are defined on Rd and have a standard search

domain v ∈ [a, a]d for some (problem-specific) value a > 0. For the Rastrigin function the standard

search domain is [−5.12, 5.12]d. These standard search domain are not of relevence here (since we

always minimize over the sphere), and are thus not reported.

Rotating the position of the global minimizer can easily be achieved by considering v on the right

hand side with D(v − V ?), where V ? is the position where we want the global minimizer to be, and

D > 0 is a scaling constant.

Figure 6.17: Rastrigin function for different values of D.

Rastrigin:

E(v) = Ad+ |v|2 −A
d∑
i=1

cos(2πvi) (6.200)

where A = 10. The global minimizer is V ? = 0, and E(V ?) = 0. We further chose D = 5.

Ackley:

E(v) = A exp
(
B
|v|√
d

)
− exp

( d∑
i=1

cos(2πBvi)

d

)
+ exp(1) + C (6.201)

where A = −20, B = −0.20 and C = 20. The global minimizer is V ? = 0, and E(V ?) = 0. We further

chose D = 5.

Alpine:

E(v) =

d∑
i=1

|vi sin(vi)−Avi| (6.202)

where A = 0.1. The global minimizer is V ? = 0, and E(V ?) = 0. We further chose D = 6.

6https://github.com/PhilippeSu/KV-CBO/PhD
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Figure 6.21: Schaffer

Schaffer:

E(v) = A+
sin2 |v| −A
(1 +B|v|2)2

(6.203)

where A = 0.5 and B = 1. The global minimizer is V ? = 0, and E(V ?) = 0. We further chose D = 2.

Solomon:

E(v) = A cos(2π|v|) +B|v|+ C (6.204)

where A = −1, B = 0.1 and C = 1. The global minimizer is V ? = 0, and E(V ?) = 0. We further

chose D = 5.

Lévi:E(v) = sin2(πw1) +
∑d−1
i=1 (wi − 1)2(1 +B sin2(πwi + 1)) + (wd − 1)2(1 + sin2(2πwd))

wi = 1 + vi/A
(6.205)

where A = 1 and B = 10. The global minimizer is V ? = 0, and E(V ?) = 0. We further chose D = 4.
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Xin-She Yang (XSY) random:

E(v) =

d∑
i=1

ξi|vi|i (6.206)

where ξ ∼ U([0, 1]d). The global minimizer is V ? = 0, and E(V ?) = 0. We further chose D = 0.5.
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Figure 6.24: XSY random
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Figure 6.25: Griewank
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Matemática Iberoamericana, 10(3):507–555.

160



[Fiedler et al., 2021] Fiedler, C., Fornasier, M., Klock, T., and Rauchensteiner, M. (2021). Stable

recovery of entangled weights: Towards robust identification of deep neural networks from minimal

samples. arXiv:2101.07150.

[Fienup, 1982] Fienup, J. (1982). Phase retrieval algorithms: a comparison. Applied optics, 21:2758–

69.

[Figalli et al., 2018] Figalli, A., Kang, M.-J., and Morales, J. (2018). Global well-posedness of the spa-

tially homogeneous Kolmogorov–Vicsek model as a gradient flow. Archive for Rational Mechanics

and Analysis, 227(3):869–896.

[Fornasier et al., 2020] Fornasier, M., Huang, H., Pareschi, L., and Sünnen, P. (2020). Consensus-
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Birkhäuser, Basel.

[Shechtman et al., 2015] Shechtman, Y., Eldar, Y. C., Cohen, O., Chapman, H. N., Miao, J., and

Segev, M. (2015). Phase retrieval with application to optical imaging: A contemporary overview.

IEEE Signal Processing Magazine, 32(3):87–109.

[Strogatz, 2000] Strogatz, S. H. (2000). From kuramoto to crawford: exploring the onset of synchro-

nization in populations of coupled oscillators. Physica D: Nonlinear Phenomena, 143(1):1–20.

[Sznitman, 1991] Sznitman, A.-S. (1991). Topics in propagation of chaos. In Ecole d’été de probabilités
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