
Real-Time Texture-Based 3D
Object Tracking for Advanced

Robotic Manipulation

handed in
MASTER’S THESIS

Mariam Elsayed

Human-centered Assistive Robotics
Technical University of Munich

Univ.-Prof. Dr.-Ing. Dongheui Lee

Supervisor: M. Sc. Manuel Stoiber
Start: 15.12.2020
Intermediate Report: 25.05.2021
Delivery: 21.09.2021

TECHNISCHE UNIVERSITÄT MÜNCHEN

Human-centered Assistive Robotics
UNIV.-PROF. DR.-ING. DONGHEUI LEE

December 3, 2020

M A S T E R ’ S T H E S I S
for

Mariam Elsayed
Student ID 03672563, Degree EI

Real-Time Texture-Based 3D Object Tracking for Advanced Robotic Manipulation

Problem description:

The Institute of Robotics and Mechatronics of the German Aerospace Center has been developing
robotic hands for more than 15 years, which are now comparable to human hands both in size and
robustness and can perform tasks in a human environment. Many of these tasks involve the in-hand
manipulation of objects, for example when using a screwdriver or a pen. In order to plan and react,
the pose of the object has to be known. For this, a multi-modality tracker was developed that uses
both region and depth information from an RGBD camera to determine the pose of the object. The
tracker also computes an uncertainty in form of a covariance matrix that makes it possible to fuse the
pose with kinematic information from the fingers using an Extended Kalman Filter.
Building on this work, the topic of this thesis is the development and integration of an additional
tracking modality that uses texture information to improve the accuracy and robustness of tracking
for a wide variety of objects [1]. The approach should be integrated with the existing tracker to create
a method that considers texture, region, and depth information for robust pose estimation of different
objects in various settings. The performance of the developed method should be evaluated on the
YCB dataset [2], and if possible on the humanoid robot system ”David”.

Tasks:

• Literature review on existing texture-based tracking methods, as well as on SLAM approaches
• Design and implementation of the tracking modality
• Integration of the modality into the existing tracker
• Implementation of a method that creates a 3D map of the texture of an object during tracking.

The 3D map can be saved and used to improve the tracking performance of known objects.
• Experimental validation
• Thesis documentation

Bibliography:

[1] V. Lepetit and P. Fua. Monocular Model-Based 3D Tracking of Rigid Objects: A Survey. 2005.
[2] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn: A convolutional

neural network for 6d object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199,
2017.

Supervisor: M. Sc. Manuel Stoiber
Start: 15.12.2020
Intermediate Report: 15.03.2021
Delivery: 15.06.2021

(D. Lee)
Univ.-Professor

Abstract

In many applications, the 6 DoF pose of an object is required. This includes robotic
applications, such as in-hand manipulation by an anthropomorphic robot and ap-
plications in augmented reality to link the real-world with augmented objects. For
these purposes, optical tracking has been used due to its low financial cost and flex-
ible algorithms. However, it is still a challenge to have a versatile tracker that can
provide accurate pose estimates for objects with different properties. Specifically,
applications of in-hand manipulation pose constraints on the tracker, like the com-
putational efficiency and the ability to handle possible occlusions. These challenges
have motivated methods that rely on different information, such as edges or object
silhouette. While these approaches work well for complex objects, they struggle
with objects that have non-distinct shapes and result in pose ambiguities.
To minimize this problem, we develop a texture-based tracking modality that con-
siders feature points on the object surface to estimate the pose. Each new pose
usually depends on the pose estimation from a previous frame, leading to possible
error accumulation. While this does not greatly impact the performance in many
scenarios, the drift error can be minimized by including a fixed reference of the object
characteristics. For this purpose, we additionally develop a framework to generate a
sparse feature map of a tracked object, which acts as a fixed reference during further
tracking instances. The complete texture-based tracking modality is then combined
with an existing region-based tracker in a multi-modality framework. This exploits
the advantages of both methods and results in an accurate, robust tracker. Finally,
we perform a threefold evaluation on the RBOT dataset, YCB video dataset, and
a self-recorded sequence to assess the performance of the tracker and compare it to
the current state of the art. The results show that the combined tracker delivers
superior tracking performance to existing methods.

2

CONTENTS 3

Contents

1 Introduction 5

2 Problem Statement 7
2.1 The David System . 7
2.2 Requirements for the Vision-based Tracker 8
2.3 Vision-based object tracking . 8
2.4 Multi-modality tracker . 9

2.4.1 Region modality . 10
2.4.2 Depth modality . 10
2.4.3 Extended Kalman Filter framework 11

2.5 Aim of this Work . 11

3 Related Work 13
3.1 Texture-based object tracking . 13

3.1.1 Feature-point-based tracking 13
3.2 Mapping . 15

3.2.1 Structure from motion . 15
3.2.2 SLAM . 15

4 Pose estimation 17
4.1 Preliminaries . 17

4.1.1 Pose parametrization . 17
4.1.2 Image projection . 19

4.2 Feature correspondences . 20
4.3 Energy function . 22
4.4 Optimization . 25

5 Sparse feature map 27
5.1 Data collection . 27

5.1.1 Geodesic grid . 28
5.1.2 Grid matching . 28

5.2 Point optimization . 29
5.2.1 Point clustering . 29
5.2.2 Bundle adjustment . 30

4 CONTENTS

5.2.3 Iterative Closest Point . 31
5.2.4 Point projection . 32

5.3 Integration into the tracker . 33

6 Implementation 35
6.1 Efficiency optimization . 35
6.2 Occlusion handling . 37

6.2.1 Implicit occlusion handling . 37
6.2.2 Explicit occlusion handling . 37

6.3 Parameter tuning . 38

7 Evaluation 41
7.1 Evaluation on the RBOT dataset . 41

7.1.1 Design . 41
7.1.2 Results . 43

7.2 Evaluation on the YCB video dataset 45
7.2.1 Design . 45
7.2.2 Results . 46

7.3 Evaluation on a recorded sequence 47
7.3.1 Design . 47
7.3.2 Results . 49

8 Discussion 53

9 Conclusion and outlook 55

List of Figures 57

List of Tables 59

Bibliography 63

5

Chapter 1

Introduction

Many applications nowadays require 3D tracking of complex objects. These ap-
plications range from augmented reality to robotic manipulation. In augmented
reality, synthetic objects are overlayed in real-world environments, which requires
tracking the relevant objects to estimate the size and position of the synthetic ones.
For humanoid robots or - generally - robotic arms, it is also necessary to estimate
the object’s pose to be grasped accurately. Specifically for manipulating objects
within the robotic hand, an accurate pose of the object is essential. One system
that facilitates in-hand manipulation is the anthropomorphic robot system David,
a lightweight robot system that can grasp and manipulate objects in its hands.
It was developed at the Robotics and Mechatronics Center (RMC) of the German
Aerospace Center (DLR). It is shown in Fig. 1.1. Its hands are comparable to their
human counterparts in size and robustness, and the system is capable of perform-
ing tasks in a human environment. The 6 degrees of freedom (DoF) object pose,
consisting of translation and rotation, is required for all these applications.

Optical tracking - using color cameras - is desirable for such applications because of
its relatively low financial cost. It offers flexibility to develop different methods tar-
geted for specific applications. However, this comes with challenges like motion blur,
occlusions, lighting changes and object ambiguities. To address those issues, differ-
ent approaches have been proposed in the past with different strengths depending
on the application.

In this work we aim to extend a versatile tracker that is able to track objects of
different shapes and textures and fulfill the needed requirements. In the following
chapter, we will first describe the David system. The requirements and constraints
for a vision-based tracker used in the David system are then discussed to define
the problem and the aim of this work. An overview of the related work follows
in Chapter 3. In Chapter 4, we provide the mathematical basis for the remainder
of this thesis. Following this, we present the tracker formulation with a feature-
point-based modality. Then, in Chapter 5, we introduce a novel sparse feature map
formulation that reduces drift and enhances the tracking performance. Chapter 6
provides implementation details of the tracker and in Chapter 7, we evaluate the

6 CHAPTER 1. INTRODUCTION

Figure 1.1: The DLR robot system David [GAB+11]

different components of the tracker on a simulated and real-world dataset and on
a self-recorded sequence and show the results. This is followed by a discussion in
Chapter 8. Finally, Chapter 9 concludes this work and gives an outlook on future
research.

7

Chapter 2

Problem Statement

This chapter first introduces the David system on which the tracker has to operate.
Tracking diverse objects for a real-time application like in-hand manipulation poses
different requirements for the vision-based tracker. We will outline such require-
ments in the section that follows and give a short overview over existing tracking
methods. Then, we will present the tracker and the extended Kalman filter (EKF)
framework that is currently used on the David system. We conclude the chapter
with a clear definition of the aim of this work.

2.1 The David System

The David system, developed by the DLR, is an anthropomorphic lightweight robot
system with arms similar to human arms in size, weight, and performance. The
overall system has 41 DoF, 76 actuators, and 165 position sensors. It was developed
to have variable stiffness actuation similar to human muscles. The system has an
agonist and an antagonist actuator for each DoF in its fingers, making the joint
stiffness naturally adjustable independently of its position. This direct physical
relationship between force, stiffness, and displacement makes it possible to infer
joint torques from the displacement of the elastic elements in the actuators. All of
these components make the David system well suited for in-hand manipulation.

To perform manipulation tasks, the robot has to know the object pose. For this,
the David system is equipped with an Azure Kinect DK, a Red Green Blue Depth
(RGBD) camera that provides color and depth information of the working area.
The Azure Kinect DK has a 1 MP depth camera, providing depth images with a
resolution of 1280× 1024 pixels and a 12 MP 4K color camera. [Mic21] The camera
runs at 30 Hz. With these specifications, it provides a reasonable basis for the
vision-based object tracking algorithm.

8 CHAPTER 2. PROBLEM STATEMENT

2.2 Requirements for the Vision-based Tracker

Performing in-hand manipulation requires having an accurate estimate of the 6 DoF
that define the 3D translation and orientation of the object relative to the camera.
This application poses different constraints to the tracker, which will be presented
in this section.

Efficiency Firstly, the pose calculation must occur in real-time, as the robot needs
this information to react. The entire control cycle, including pose estimation and
performing an in-hand manipulation step, should utilize the total frequency of the
camera, which is 30 Hz. The tracking module should be much faster than the
camera frequency to allow smooth movement and prevent information loss in online
applications.

Occlusion handling Secondly, the tracker has to be robust to occlusions. In the
application of in-hand manipulation, objects are usually occluded by the hand itself.
This type of occlusion is typically known and can be handled explicitly by computing
a mask over the occluding object. The tracker should provide the possibility to
handle unknown occlusions as well. Implicit occlusion handling can utilize the known
object model and depth information from the camera to examine inconsistencies
between expected and measured depth values.

Robustness Thirdly, the complete tracker has to be robust to different object
shapes and textures, including untextured objects and textured and symmetrical
ones. Especially for symmetrical objects, texture information has to be utilized to
estimate the correct object orientation.

Illumination invariance Lastly, the tracking system must be robust to illumina-
tion changes, including lighting differences, shadows from occlusions, and shadows
from the object itself. Especially when relying on object texture, different illumina-
tion settings can present a challenge and should be handled accordingly.

2.3 Vision-based object tracking

While model-free object tracking methods exist, such as [LKL15, SLK14, 2], in this
work, we focus on model-based tracking, in which a 3D model of the tracked object
is assumed to be known. Due to the variety of applications and challenges that
exist, many methods have been proposed for model-based tracking [LF05, YJS06,
2]. Region-based approaches use statistical models to partition a camera frame into
a foreground and a background region, as in [SPS+20, ZZZ+20, TSSC18, Pri12, 4].
With the resulting silhouette and a known object model, the pose of the object is

2.4. MULTI-MODALITY TRACKER 9

estimated. As only the object’s silhouette is considered, these methods face difficul-
ties in tracking objects with local ambiguities or rotational symmetries. In optical
flow methods, the motion of a physical point is projected onto a sequence of im-
ages. It is assumed that the intensity of the 2D projection is constant and that
intensity changes originate from 3D pose changes. Optical flow is prone to drift
because it only considers relative change [LF05]. In edge-based approaches, such
as [HZSQ20, bug, SPHI14, 3], primitives - or edges - are extracted from the image
and matched with primitives from the known object model. These primitives can
be straight lines or more complex curves. Minimizing the projection error gives an
estimate of the pose. Because only edges are considered, these approaches can be
affected by background clutter and object texture.

Machine learning approaches do either standard pose tracking or so-called tracking-
by-detection, which does not include previous information to estimate the next pose.
In [MKK+20], a Convolutional Neural Network (CNN) architecture is proposed with
attention modules to handle background clutter and occlusions. Other examples
include [DMX+21, WMRB20, WXZ+20, 3]. While these methods deliver promising
results, until now, machine learning approaches are still not fast enough to fulfill
our efficiency constraints and they require complex computations on a Graphical
Processing Unit (GPU). To our knowledge, no method was proposed yet to compute
a pose uncertainty with machine learning approaches, which makes it difficult to
reliably fuse results with other sensory outputs.

In feature-point-based methods, such as [WRM+10, VLF04a, 2], feature points are
detected and matched in consecutive frames. The relative object pose can then be
computed from the displacement of feature points between two frames and their
corresponding 3D points on the object model. Feature points are usually regions
of high-contrast or gradient change. As these methods use local information in
the image, they are robust to different object characteristics. The feature points
are defined according to their local region, which makes them robust to illumination
changes. Because these regions are small enough, an illumination change would likely
affect the whole area and, thus, have little effect on the relative intensity differences.
However, if no textured 3D model is used, similar to optical flow, they struggle with
drift because the error of frame-to-frame motion estimation accumulates over time.

In addition to the previous approaches that use RGB color cameras, there are also
depth-based methods that utilize depth input, such as [NIH+11]. The pose is typi-
cally obtained by matching the depth image to the known object model, e.g. using an
Iterative Closest Point (ICP) algorithm. Most approaches, like [RPK+17, KTIN17,
2], use combined RGB and depth information.

2.4 Multi-modality tracker

To enable robust tracking, a multi-modality tracker has been developed at the DLR
that combines two of the methods presented in the previous section. It was im-

10 CHAPTER 2. PROBLEM STATEMENT

plemented on the David system. Given an object model, the current tracker uses
a region modality introduced in [SPS+20] and a depth modality based on the ICP
algorithm in [NIH+11] to determine the pose of the object. This pose is then fused
with kinematic data from the robot fingers using an Extended Kalman filter (EKF),
as explained in [PCSAS18]. In this section, we will explain the region and depth
modalities in more detail and present the extended Kalman filter framework.

2.4.1 Region modality

The region modality relies on RGB images to get information about the objects
contour and was presented in [SPS+20]. With an initial pose estimate, the ob-
ject contour is first projected into image space to define a foreground region and
a background region describing the object and background. Distributions of color
histograms for foreground and background areas known from previous frames are
used to calculate the posterior probabilities for both regions. Each projected con-
tour point becomes the center of a correspondence line perpendicular to the contour.
The formulation then optimizes the contour points along the correspondence lines
according to the posterior probabilities. The optimization is done with a regularized
Gauss-Newton algorithm using the gradient and Hessian of the probability formu-
lation.

2.4.2 Depth modality

As opposed to the region modality, the depth modality uses depth images for its
pose estimation. It builds on the ICP-based tracking framework in [NIH+11]. The
aim is to find the object pose that best matches the object model to the depth
image. The first step is to find point correspondences between the model and the
image. This is done by projecting the model points into the image and assigning
each one the closest image point as the correspondence. The correspondence points
are then weighted according to their distance and optimized using a Gauss-Newton
algorithm. The result is an estimated object pose that best fits the model projection
to the depth image.

As both modalities depend on a regularized Gauss-Newton framework for optimiza-
tion, they can be jointly optimized by adding their gradients and Hessians together.
This formulation enables us to incorporate a new modality following the same struc-
ture, which is relevant for this thesis. In addition, the computation of the Hessian
provides a measure for pose uncertainty that is a necessary requirement for an ex-
tended Kalman filter (EKF).

2.5. AIM OF THIS WORK 11

2.4.3 Extended Kalman Filter framework

The EKF framework is based on [PCSAS18] and extends the pose estimation from
the vision-based tracker to consider joint angles and velocities from the robotic
system. It aims to estimate the object pose as well as joint position biases of the
robot. These quantities are joined together in one vector y. The framework consists
of two main steps: a prediction step and an update step. In the prediction step, the
estimated mean and covariance of y are calculated based on a known motion model
and measured joint velocities. Then, the estimated object pose from the vision-based
tracker is used to update the mean and covariance in the following step. With this
formulation, information from the camera and the joint sensors is fused to compute
a pose estimation.

2.5 Aim of this Work

The existing tracker framework that was presented in the previous section considers
silhouette information from the region modality, and, with the availability of a depth
camera, the second modality utilizes depth related information. However, in both
modalities no texture information is considered. This presents a disadvantage when
tracking objects with a non-distinct silhouette and a symmetrical shape. Building
on the idea of a multi-modality vision-based tracker, we can extend this tracker to
additionally consider texture.
In this work, we formulate a texture-based tracking modality that can be merged
with other tracking methods depending on the application and requirements. While
the system can be applied to different methods, in this work we focus on the com-
bination of the region and texture modality. Such a tracker only requires an RGB
camera without a depth component and has wide applications.
One of the shortcomings of texture-based tracking is drift, as was presented in
Sec. 2.3. Small pose estimation errors can accumulate with each frame and cause
an estimation drift over a large sequence of frames. The problem of drift also exists
in visual odometry applications, in which the robot’s pose and orientation have to
be determined from images of its surroundings. The problem was minimized by
doing Simultaneous Localization And Mapping (SLAM). Estimating a map allows
for making frame-to-map comparisons. After detecting a loop closure, the algorithm
can correct large accumulated errors at once and minimize drift. In this work, we
adopt a similar concept and derive a novel sparse feature map formulation that acts
as a reference for the texture-based modality during tracking.
The first part of the work is the development of the texture-based tracking modality.
We then design and implement the method to generate a sparse feature map of the
object. Having a feature map - or rather a model - improves and accelerates tracking
for known objects. With a feature map, the algorithm can compare frame-to-map
instead of frame-to-frame to minimize drift. Providing a method for map creation
using tracking data eliminates the need for texture model creation, e.g., using a 3D

12 CHAPTER 2. PROBLEM STATEMENT

scanner, and is easily integrated into the regular tracking framework.
Finally, the complete texture-based tracking modality is combined with the region
modality from [SPS+20]. Developing and integrating the texture modality into the
combined tracker improves its robustness.

13

Chapter 3

Related Work

The literature on 3D pose estimation is vast. We have previously motivated our
choice for texture-based tracking and defined the aim of this work. In this chapter,
we will first overview the relevant state of the art from texture-based tracking meth-
ods. Then, we will present relevant research in object and environment mapping,
which provides a good reference for the sparse feature map formulation that is part
of this work.

3.1 Texture-based object tracking

Image texture describes the spatial disparity of pixel intensities within a certain
region of the image. Such information can be used to indicate the position of an
object and is the basis for texture-based tracking. This can be categorized into dense
tracking that considers all image pixels and feature-point-based tracking that relies
on a sparse representation of distinct features. Dense methods have been mostly
employed in environment mapping algorithms, such as [KSC13, WLM+15, 2], while
feature-point-based methods are more common in object tracking applications. One
reason for this tendency is that dense methods are more affected by illumination
variance, which is more visible in object tracking than mapping large spaces. In
the following section, we will present the state of the art of the feature-point-based
methods.

3.1.1 Feature-point-based tracking

Feature-point-based methods rely on a sparse representation of the image data in
the form of feature points. A feature point is composed of a keypoint and the
corresponding descriptor. The keypoint contains the 2D position of the feature
and different properties such as scale and rotation. The descriptor includes the
visual description of the region around the keypoint and is used to compare the
similarity between keypoints to match them. The terms keypoint, feature, and

14 CHAPTER 3. RELATED WORK

interest point are sometimes used interchangeably in the literature. Feature-point-
based tracking consists of three main steps: feature detection, feature matching,
and pose calculation. Feature detection includes keypoint detection and computing
the respective descriptors. For 2D tracking methods, the matching step consists of
matching keypoints between two frames according to their descriptors. In our 3D
object tracking application, this step firstly includes finding 2D-3D correspondences.
Finally, the set of correspondences is used to calculate the object pose. There have
been different solutions to the three stages.

Over the years, several feature detectors have been developed, which offer dif-
ferent trade-offs between accuracy, robustness, and speed. Lowe proposed the
Scale-Invariant Feature Transform (SIFT) descriptor that relies on local gradients
[Low99, Low04]. It quickly gained popularity thanks to its high accuracy and robust-
ness. However, the computationally expensive high-dimensional descriptor makes
the algorithm not fast enough for most real-time applications. Another detector
named Speeded Up Robust Features (SURF) was introduced in [BTVG06], which
is faster than SIFT while maintaining similar performance. Much faster algorithms
became possible with the introduction of binary descriptors, as in the algorithms
Binary Robust Invariant Scalable Keypoints (BRISK) [LCS11] and Oriented FAST
and Rotated BRIEF (ORB) [RRKB11]. Both detectors have similar performance.
BRISK computes the descriptors by making binary intensity comparisons between
the center pixel and the surrounding ones in a circular sampling pattern. In con-
trast, the Binary Robust Independent Elementary Features (BRIEF) descriptor,
used in ORB, performs binary intensity comparisons between random pixel pairs in
the patch around the feature point.

To compute correspondences of the detected features to the 3D object points, one
possible method is to match detected features between two consecutive frames and
then, using the estimated pose and camera parameters, to reconstruct the model
point. Because it relies on the estimated pose, it can accumulate estimation errors.
Another common method is to first include an offline training phase. The keyframes
of the model are obtained with the associated pose [SL04, VLF04b, LZ13, SPS16, 4].
These are then used to reconstruct a textured object model by performing Structure
from Motion (SfM) [SSS06]. Finally, the descriptors for each point are computed.
During tracking, features are detected in an image and then matched against those
in the model. While this group of methods performs well during the online tracking
phase and reduces drift, it requires a lot of offline work for each new object, as each
keyframe has to be segmented before the SfM step and the scaling has to be set
manually [SPS16].

Having computed a set of correspondences, the next step is to estimate the pose.
This problem is known as the Perspective-n-Point (PnP) problem. The basic form
requires three correspondences (P3P) and was first investigated by [Gru41]. A more
recent review of PnP solutions can be found in [Lu18]. To find the best set of
correspondences and avoid outliers, PnP is often combined with Random Sample
Consensus (RANSAC) [FB81, LZ13]. However, this method is very computationally

3.2. MAPPING 15

expensive. An alternative to RANSAC is to include an M-estimator, like a Tukey
or Huber norm [LF05], to penalize large correspondence errors.

3.2 Mapping

Mapping is a task that is closely related to motion estimation. In previous years,
robot motion estimation, known as visual odometry [NNB04], and environment re-
construction were treated separately. Reconstruction by vision relied on Structure
from Motion (SfM) algorithms, as was the case in object tracking. With the in-
troduction of visual SLAM [DRMS07], the performance of the motion tracking, as
well as the reconstruction, improved. In the following section, we will first present
the development of SfM and its current applications in object tracking, then we will
give an insight on the state of the art SLAM algorithms.

3.2.1 Structure from motion

The aim of SfM algorithms is to recover the 3D pose of a scene or object, referred to
as the structure, by estimating the camera motion relative from a collection of 2D
images of that scene. The problem was first defined and solved for the case of two
cameras in [LH81]. In [TK92], the authors presented a solution using a factorization
method, in which the measurement matrix of some tracked feature points is factor-
ized into camera motion and object shape. Later approaches [Har93, TMHF00, 2]
introduced bundle adjustment to solve SfM problems. In bundle adjustment, both
motion and structure are refined together to minimize the reprojection error. One of
the most notable applications of bundle adjustment is [AFS+11], in which the team
attempted to reconstruct the city of rome from a vast collection of images from the
internet.

3.2.2 SLAM

One of the first approaches to solve the SLAM problem was the algorithm EKF-
SLAM [LDW91]. It is based on an Extended Kalman Filter and provided the basis
for new SLAM implementations. In [MTKW02], the FastSLAM algorithm was
introduced and extended the EKF formulation with a particle filter. Since then,
numerous SLAM approaches were introduced that rely on the different tracking
methods. The algorithm introduced in [SLK16] uses an RGBD camera input and
estimates the camera motion using an Iterative Closest Point (ICP) algorithm. This
framework was extended in [LD17] to further consider edge information.
One of the most notable feature-based SLAM algorithms is ORB-SLAM, which was
introduced in [MAMT15] and extended in [MAT17] to ORB-SLAM2. In [CER+21],
ORB-SLAM3 was introduced, which represents the current state of the art. In
the main algorithm, features are extracted in each camera frame, assigned a depth
value from the depth image, and matched across time frames. The motion is then

16 CHAPTER 3. RELATED WORK

estimated by minimizing the reprojection error with bundle adjustment. To reduce
local drift, the new frame is matched against a keyframe instead of the preceding
frame. For the map creation, new RGBD images are matched against a small set of
keyframes to detect loop closures when similar views appear. The map is represented
as a pose graph with each keyframe as a vertex and each loop closure as an edge.
Correction of accumulation errors after a loop closure is done by solving a non-
linear least-squares problem distributed over the graph’s edges. The framework of
ORB-SLAM3 [CER+21] additionally allows for the creation of multiple maps when
viewing a new place.

17

Chapter 4

Pose estimation

In the previous chapters, we have motivated our choice for feature-based methods.
These rely on feature points to extract information from camera frames. In the
following chapter, we first define the mathematical notation used in this work in the
preliminaries section. Then, we derive the theoretical outline for a tracker that can
estimate the 6 DoF object pose and the pose uncertainty from texture data. We first
explain the concepts needed for feature detection, description, and matching. Then,
we derive an energy function by establishing a relationship between the needed pose
and the set of matched features. Finally, an optimization framework to minimize
such a function with the Newton method is presented.

4.1 Preliminaries

This section defines basic mathematical concepts and notation, which will provide
the basis for the following sections. First, we need to parametrize the pose transfor-
mation of an object during its movement in relation to a camera. Additionally, we
need to define the projection of points between image space and model space.

4.1.1 Pose parametrization

The translation and rotation of an object are collectively called a pose. To describe a
pose in Euclidean space, a minimum of six coordinates is required. Three coordinates
are needed to define the translation, while different representations exist to describe
the rotation [SK08].
Homogeneous transformations combine translation and rotation in a single matrix
that can describe full pose variations between coordinate frames. Translation is
denoted with a vector T and rotation with a matrix R. The relation between some
coordinate frames A and B can be expressed as[

AX
1

]
=

[
ARB ATB

0 1

] [
BX

1

]
, (4.1)

18 CHAPTER 4. POSE ESTIMATION

with AX a position vector represented in coordinate frame A, BX a position vector
in coordinate frame B, ARB the rotation matrix from coordinate frame B to A
represented in A, and ATB the translation vector from coordinate frame B to A
represented in A. Using homogeneous transformations with the homogeneous trans-
formation vector X̃ = [X 1] and the homogeneous transformation matrix ADB,
the relation in (4.1) can be written concisely as

AX̃ =A DBBX̃. (4.2)

Homogeneous transformations provide a compact notation, but include redundant
elements and multiplications. Minimal representations on the other hand use in-
dependent coordinates, making them suitable for optimizations. An appropriate
representation for our application is the angle-axis representation. It consists of an
angle θ that rotates around an axis vector w. Writing the parameters as exponential
coordinates r = wθ allows us to write the rotation matrix as

R = exp(r[×]) = I + r[×] +
1

2!
r2[×] +

1

3!
r3[×] + ..., (4.3)

with r[×] representing the skew-symmetric matrix of vector r.
This rotation matrix representation can be linearized by taking the first two terms
of the expansion series into account and neglecting the higher-order ones. With the
addition of the translation variation t, the linear variation around a certain pose
can be written as

X+ = (I + r[×])X + t, (4.4)

with X+ being the result of the variation of X. The vectors r and t form the full
linear variation and can be combined in a coordinate vector θT = [rT tT]. We can
write the relation (4.4) in homogeneous coordinates as

X̃
+

=

[
I + r[×] t

0 1

]
X̃ = D+(θ)X̃. (4.5)

In the application of our tracker, the point X is typically in a camera frame of
reference C, and a transformation to the model frame of reference M is needed, or
the inverse operation. For this, we combine the full homogeneous transformation
with the representation of the linear variation in (4.5). Specifying θ as the variation
around the model coordinate frame, the transformation and variation from camera
to model can be written as

MX̃
+

= D+(θ)MDCCX̃, (4.6)

with MDC the homogeneous matrix from camera frame C to model frame M . The
inverse operation with the same θ results in

CX̃
+

= CDMD
+(θ)−1MX̃. (4.7)

4.1. PRELIMINARIES 19

The inverse linear variation around the model frame

D+(θ)−1 =

[
(I − r[×]) (−I + r[x])t

0 1

]
, (4.8)

can be derived from (4.4) using the relation rT[x] = −r[x]. With equations (4.6)

and (4.7) we can now express pose transformations between a camera and a model
frame of reference and apply a linear variation to both the forward and inverse
transformation.

4.1.2 Image projection

In addition to transforming points from a model to a camera frame of reference, we
also need to map the points from a 2D image space to the 3D model space and vice
versa. For this, we use the notation X = [X Y Z]T for a point in model space
and x = [x y]T for the corresponding point in image space. An RGB camera frame
is denoted as Ic.

Assuming the intrinsic parameters of the camera to be known from an offline pre-
calibration step, we denote the linear projection matrix as

K =

fx 0 px
0 fy py
0 0 1

 , (4.9)

with fx and fy being the focal lengths in both directions and p = [px py]
T being the

principal point. Assuming all images have been rectified by removing lens distortion,
the projection π of a 3D model surface point onto an image plane is

x = π(X) =

[
X
Z
fx + px

Y
Z
fy + py

]
. (4.10)

The inverse operation requires an estimated or known depth value d of the point in
the image plane and can be written as

X = π−1(x, d) =

 d
fx

(x− px)
d
fy

(y − py)
d

 . (4.11)

This formulation allows us to switch from image to model frame and will be the
basis for the following chapters.

For object tracking, we have a time discrete sequence of images. An image captured
at time tk is denoted by Ic(tk), k = 0, ..., l, with Ic(tl) being the current live image.
The corresponding points in image space for the current image are xi(tl).

20 CHAPTER 4. POSE ESTIMATION

4.2 Feature correspondences

An essential step of any feature-based algorithm is finding feature correspondences
between camera frames. This consists of three main steps: feature detection, feature
description, and feature matching. In the detection step, distinct local regions of
an image are found. These are then assigned a descriptor, which is a string of
values describing the pixel values of a feature point and the surrounding region.
The descriptor is used to evaluate the similarity of two points, a process needed to
determine a possible match.
Several detectors and descriptors are discussed in Sec. 3.1.1. After conducting some
initial trials on the efficiency and accuracy of the different detectors and descrip-
tors, we decided to use the Oriented FAST and Rotated BRIEF (ORB) detector
[RRKB11] in this work, as it provided the best trade-off in this regard. This obser-
vation was also confirmed in [GC15, MAMT15, 2].

Feature detection Features are detected by analyzing the greyscale color intensi-
ties of pixels. Certain patterns in small image patches around a pixel point indicate
a feature, which can be either an edge, a corner, or a blob. Edge and corner points
separate lighter pixels in one region from darker pixels on the other side, while blobs
represent a dark region in a light area and vice versa. The features must be repeat-
able, meaning that similar features produce similar descriptors to ensure a robust
match.
The ORB detector relies on the features from the Accelerated Segment Test (FAST)
algorithm, developed by [RD06]. It uses a segment test, which defines a circular ring
typically made up of sixteen pixels around an interest point p, as shown in Fig. 4.1.
Each pixel x in the circular ring can have one of three states:

S(x) =


darker, I(x) ≤ I(p)− t
similar, I(p)− t ≤ I(x) ≤ I(p) + t

brighter, I(p) + t ≤ I(x)

(4.12)

with I(p) and I(x) as the image intensities of the interest point p and pixel x on
the circular ring, respectively. The point p is considered a feature point if at least
twelve consecutive pixels along that circle are either brighter or darker than p by a
certain threshold. The feature point, in this case, is a corner.
ORB employs a scale pyramid of the image and computes FAST features at each
scale level. This way, higher scale invariance is achieved. To further improve ro-
bustness, an orientation component is added to each feature, using the so-called
intensity centroid. It is assumed that the point with the highest patch intensity
around the feature point is offset from the center. The vector from the center pixel
to this intensity centroid may then be used to compute the orientation of the feature
point [RRKB11]. The orientation is used to rotate the feature point location before
computing the descriptor.

4.2. FEATURE CORRESPONDENCES 21

Figure 4.1: The segment test of the FAST detector. The arc shows 12 consecutive
pixels brighter than the interest point p. [RD06]

Feature description After detecting features in an image frame, their corre-
sponding descriptors are computed. One very efficient variant are binary descriptors.
Binary descriptors, in general, perform intensity comparisons between pixel values
around the feature. The results from the comparisons form a binary descriptor string
that describes the region around the feature. Similar-looking feature points produce
similar descriptors. The binary descriptors usually differ in the sampling pattern
chosen to perform the point pair comparisons. The BRISK descriptor, introduced in
Sec. 3.1.1, defines concentric rings of pixels around the feature as its sampling pat-
tern and performs comparisons between neighboring point pairs. A boolean value
is added to the descriptor string for each comparison. In contrast, the BRIEF de-
scriptor performs intensity comparisons between random pixel pairs in the feature
point’s vicinity. BRIEF is the descriptor applied in the ORB framework. However,
for this work, we have decided to use the novel Boosted Efficient Binary Local Image
Descriptor (BEBLID), which was introduced in [SB20]. Instead of comparing single
pixel values, it compares mean values of small regions around the feature center,
making it one of the most efficient descriptor at the time of writing.

Feature matching In each incoming camera frame, features are detected along
with their descriptors. The descriptors from a camera frame are then matched
with those from the preceding frame to establish point correspondences. The more
similar two descriptors are, the more likely it is that they describe the same feature.
The comparisons are made using brute force matching with Hamming distance. It
counts the number of equal bits in both descriptors as a measure of similarity. This
operation can be done efficiently using an XOR followed by a bit count. To minimize
incorrect matches, we utilize Lowe’s ratio test [Low04]. A match is considered
reliable if the distance to the nearest match is much smaller than the distance to the

22 CHAPTER 4. POSE ESTIMATION

Figure 4.2: Example of feature matching from this work for the can object between
two consecutive frames of the YCB dataset [XSNF17]

second nearest one, i.e., d1 < td2, with t as a threshold. In [Low04], this threshold
was set to 0.7. Matches that do not fulfill this condition get discarded. An example
of the correspondences found with this presented method on consecutive frames of
the YCB dataset can be seen in Fig. 4.2.

4.3 Energy function

After obtaining feature correspondences in two consecutive frames with the methods
presented above, the next step relies on an energy function to estimate the object
pose. In this section, we will derive such a function and calculate its gradient and
Hessian. We start with the following formulation

θ∗ = argmin
θ

E, (4.13)

with θ∗ as the optimal pose parameters that minimize E. We first define the residual
error

ri = ‖x′i(tl)− xi(tl−1)‖2 (4.14)

as the distance between a feature point x′i(tl) from the live camera frame and its
corresponding feature point xi(tl−1) from the previous frame transformed into the
current image. For ease of notation, we will omit the time stamps, so ri becomes

ri = ‖x′i − xi‖2. (4.15)

To establish a relation to the pose parameters θ, we use the pose estimate from tl−1
and the known object model to obtain the depth value of the point xi. With this
information, we compute the reconstructed 3D point X i according to Eq. (4.11)
and can write the residual with the projection of this point into the current image

4.3. ENERGY FUNCTION 23

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4
Tukey norm
Quadratic function

Figure 4.3: Tukey norm for c = 3 compared to x2

2

frame as
ri = ‖x′i − π(X i)‖2. (4.16)

We then write an energy function for the correspondence error of the feature points
to be minimized. Instead of minimizing

E =
N∑
i=0

r2i , (4.17)

we can use a more robust version

E =
N∑
i=0

ρTuk(ri), (4.18)

with the number of matched feature points N . The function ρTuk is the Tukey
norm, shown in Fig. 4.3, that minimizes the effect of outliers causing large residual
errors r2i . It is defined as

ρTuk(v) =

{
c2

6
(1− (1− (v

c
)2)3) if|v| ≤ c

c2

6
otherwise

, (4.19)

where c is a constant that is typically set to a value proportional to the standard
deviation of residual errors for inliers [LF05].
To minimize E with a Newton algorithm, we write it as a weighted least-squares
problem

E =
N∑
i=0

w2
i r

2
i (4.20)

24 CHAPTER 4. POSE ESTIMATION

as proposed in [LF05], and define the weight wi as

wi =
ρTuk(ri)

1
2

ri
, (4.21)

to get (4.18). This weight is calculated at the beginning of each optimization cycle
and treated as a constant during optimization. This way, we have a robust energy
function that can be minimized over the pose parameters as defined in (4.13).

For the Newton algorithm, the gradient and Hessian of E in (4.20) are needed.
The weight wi is constant during an optimization cycle, so it does not affect the
derivatives. The gradient is calculated as

∂E

∂θ
=

N∑
i=0

w2
i

∂r2i
∂xi

∂xi

∂CX i

∂CX i

∂θ
, (4.22)

using the chain rule. With the definition of ri in (4.15) and the relation from (4.11),
the following partial derivatives can be calculated.

∂r2i
∂xi

= [2(xi − x′i) 2(yi − y′i)] (4.23)

∂xi

∂CX i

=
1

Z2
i

[
Zifx 0 −Xifx

0 Zify −Yify

]
(4.24)

Finally, the derivative ∂CXi

∂θ
can be calculated using the relation of transformation

and variation from (4.7) as

∂CX i

∂θ
= CRM [−[MX i]× I]. (4.25)

The Hessian of E results in

∂2E

∂2θ
=

N∑
i=0

w2
i

∂

∂θ

(
∂r2i
∂xi

∂xi

∂CX i

∂CX i

∂θ

)

=
N∑
i=0

w2
i

(
∂CX i

∂θ

)T (
∂xi

∂CX i

)T
∂2r2i
∂x2

i

∂xi

∂CX i

∂CX i

∂θ

+
∂r2i
∂xi

∂CX i

∂θ
⊗ ∂2xi

∂CX
2
i

⊗ ∂CX i

∂θ
+
∂r2i
∂xi

∂xi

∂CX i

⊗ ∂2CX i

∂θ2
.

(4.26)

We aim to minimize the energy function E, so its first order derivative is equal to
zero for the optimal pose θ∗. And, as the energy function describes the distances
between feature points to be minimized, the first-order partial derivative of (4.23)
should be close to zero. As a result, we can approximate the last two additive terms

4.4. OPTIMIZATION 25

in the Hessian to zero for a more efficient implementation. We then only require the
second-order derivative

∂2r2i
∂x2

i

=

[
2 0
0 2

]
(4.27)

to complete the calculations. This energy formulation enables us to estimate the
3D object pose from the 2D feature points of two consecutive frames using a known
object model and a pose estimate for the first frame. The Hessian of the energy
function further gives information on the uncertainty of the estimated pose, which
is needed for integration into an extended Kalman filter.

4.4 Optimization

To minimize the energy function defined in the previous section, we estimate a
variation vector and iteratively update the pose using Newton optimization. This
approach was also applied in the existing tracker introduced in Sec. 2.2. For each
iteration, the variation vector θ̂ is calculated as follows

θ̂ =

(
−H +

[
λrI3 0

0 λtI3

])−1
g, (4.28)

where H and g are the Hessian and gradient defined in the previous section, and λr
and λt are the Tikhonov regularization parameters for rotation and translation re-
spectively. Using Tikhonov regularization damps the optimization in directions with
little information. Setting λr and λt to different values balances out the difference
in magnitude between rotation and translation.
Using the exponential map formulation defined in Sec. 4.1.1, the pose can be up-
dated as

CTM = CTM

[
exp([θ̂r]×) θ̂t

0 1

]
. (4.29)

The exponential map naturally results in an orthonormal rotation matrix, so no
orthonormalization is needed. By iteratively updating this process, we can now
estimate the optimal pose.

26 CHAPTER 4. POSE ESTIMATION

27

Chapter 5

Sparse feature map

The tracking framework presented in Chapter 4 takes a preceding pose and preced-
ing camera frame as a reference and computes a relative pose change from frame to
frame. Like other relative tracking algorithms, this approach is prone to drift when
small estimation errors propagate throughout the tracking sequence. To minimize
this behavior, we introduce a novel sparse feature map formulation. The sparse
feature map includes relevant feature points that describe a specific object from
different views. These points are associated with 3D points on the object surface
and are optimized in relation to each other to provide a reliable reference for suc-
ceeding tracking procedures. A feature map enables tracking the object directly
with reference to the map instead of relying on estimations from preceding frames.
Generating a sparse feature map consists of two steps: Data collection and point
optimization. Our formulation collects relevant data during one or several regular
tracking sequences, which eliminates the need for specialized processes or equip-
ment. The following chapter will explain the complete pipeline to generate and use
a sparse feature map. First, we will present how relevant data is collected during
tracking. Then, we will go through the point optimization steps and finally explain
how this map is utilized during new tracking procedures.

5.1 Data collection

During a regular object tracking sequence, feature points are detected and used to
compute an object pose. This association between feature points and object pose
is the basis for a sparse feature map. Thus, we extend the tracking algorithm to
utilize this data for map generation without needing a separate process. Ideally, the
data should represent the object from all possible sides. This section describes the
mapping of the poses on a geodesic grid and how it is used during tracking.

28 CHAPTER 5. SPARSE FEATURE MAP

Figure 5.1: Generating a geodesic grid by recursive bisection [LR05]

5.1.1 Geodesic grid

To have a spatial reference of the object pose, we define fixed viewpoints around
the model on equally spaced vertices of a geodesic grid which approximates a sphere
with a specified radius. These viewpoints will be referred to as key views in the
next sections. To create the geodesic grid, we start with an icosahedron, which is
a polyhedron with 20 equilateral triangular faces. By bisecting each face into four
more triangles, we get a geodesic grid with more faces. This bisection is repeated
until the desired number of faces is achieved [SAM68]. An example of this is shown
in Fig. 5.1.
Having created the desired grid, we use each of its vertices to represent an orientation
in the frame of reference of a camera placed on that vertex. The camera’s coordinate
frame is defined at its focal point with the z axis pointing to the center of the sphere,
the origin of the model coordinate frame. With this definition, we have a reference
grid that represents all orientations around the object. Notice that in our tracking
application, we have a fixed camera and a moving object, not the opposite. However,
as we only consider the relative orientation between the model and the camera, the
presented geodesic grid formulation is mathematically equivalent. It is also not
affected by in-plane rotations of the object.

5.1.2 Grid matching

During a tracking process, we aim to collect relevant information from different
views to utilize for map generation. In an ideal tracking scenario, we would view
the object from all possible key views and have data for all of the model poses defined
as vertices on the geodesic grid. To assign the data for each vertex, we compare
the orientation of the estimated model pose to the orientations on the grid. The
orientation of a pose is defined as

P orientation = MRCCTM . (5.1)

5.2. POINT OPTIMIZATION 29

MRC and CTM represent the inverse rotation and translation components of the
pose CDM , respectively. The orientation represents the rotated translation vector.
To measure the distance, in this case the angle difference, between two orientation
vectors, the dot product is used. With this definition, we assign the estimated pose
to the closest vertex in terms of orientation. For this vertex, we then store the
keypoints and the descriptors collected from the associated frame, along with the
estimated model pose. These associations are then used to generate a sparse feature
map in the point optimization step.

5.2 Point optimization

The data collected during tracking is based on single estimations from frame to
frame. We are given a set of different viewpoints on the geodesic grid, observed
feature points, and their estimated 3D reconstructions. A lot of the feature points
represent the same 3D point from different views. The first step in optimizing the
map points is finding such associations. Then, we optimize the estimated poses and
estimated model points in relation to each other with bundle adjustment and, finally,
fit them to the available object model using ICP. Ideally, all views around the object
are traversed during tracking to collect information from each view. However, in
realistic tracking scenarios, only a portion of the poses defined along the geodesic
grid is viewed. Therefore, we include a final step in this algorithm to project the 3D
points into untracked directions. This section will first present the point matching
step across frames, followed by bundle adjustment and ICP, and finally, the point
projection step.

5.2.1 Point clustering

Finding associations between feature points in the different views is a necessary
requirement for bundle adjustment. This step aims to find groups of equivalent
feature points and link them to a single 3D point on the object model. To achieve
this, we first match the feature descriptors across all views and then combine them
into groups by solving a maximum clique problem.

Key view matching Matching the descriptors of the key views on the grid with
Hamming distance as described in Sec. 3.1.1 gives us an undirected neighbor graph
of the different feature points. We denote this graph G = (V,E), with V being
the vertex set of G, in our case representing the set of keypoints, and E the edge
set of G. An edge exists between two feature points if their descriptors match to a
sufficient degree. The aim is to search this graph and find groups of points where
all members are neighbors. This mathematical problem is known as the maximum
clique problem [CP90, PX94, 2].

30 CHAPTER 5. SPARSE FEATURE MAP

Finding maximum cliques In maximum clique problems, the goal is to find
maximum complete subgraphs in which all member vertices are pairwise adjacent.
The largest possible complete subgraphs are called maximum cliques. This problem
is solved by iteratively increasing the clique sizes until they become maximal. A
single vertex, by definition, constitutes a clique. We then consider one neighboring
vertex. As they are adjacent, this second vertex is added to the clique. Then, we
search along the graph; if a vertex is adjacent to all the existing clique members, it
gets added to it. This process is repeated until no new vertex fulfills the complete
subgraph condition. A pseudocode example of this algorithm is below. To remove
trivial cliques, we include a filtering step to exclude cliques that are smaller than a
certain threshold.

Algorithm 1: Find maximum cliques

Input : Undirected graph G
Output: Maximum cliques Ci..n

for i← 0 to size(V) do
Add Vi to Ci ;
for j ← 0 to size(V) do

if Ci ∪Vj is clique then
Add Vj to Ci ;

end

end

end

Quasi-clique expansion Finding pure maximum cliques is a very strong condi-
tion for our application. It eliminates descriptors that do not fulfill the complete
subgraph condition, even if they have partial matches to the majority of members
in the clique. This results in a representation that is not dense enough and can lead
to the formation of different cliques that essentially describe the same feature. To
mitigate this, we expand the definition to quasi-cliques [BHB07], which are almost
complete subgraphs. For each clique, we assign a new member, if it is adjacent with
a minimum of n members. This step is repeated until no new vertices fulfill this
condition. A pseudocode example of this method is in Algorithm 2.
As a final step, we exclude duplicate cliques and obtain the final set of cliques. Each
clique is then assigned a 3D point computed as the mean of the 3D reconstructions
of the points in each clique. These points and their projections in the different views
are used as initialization for bundle adjustment.

5.2.2 Bundle adjustment

Bundle adjustment is essentially a large parameter estimation problem. We denote
the set of estimated 3D points obtained from the matching step as X i,i=1...n. The

5.2. POINT OPTIMIZATION 31

Algorithm 2: Expand to quasi-cliques

Input : Maximum cliques Ci..n, Discarded points V
Output: Quasi-cliques Qi..n

while size(V) changing do
Qi..n = Ci..n ;
for i← 0 to size(V) do

for j ← 0 to size(C) do
if Vi is neighbor with n members in Cj then

Add Vi to Qj ;
Remove Vi from V ;

end

end

end

end

set of estimated poses is denoted Dj,j=1...m. The observation of a point X i with
object pose Dj is then the point xij. We want to minimize the projection error of
the 3D points X i and the observed points xij in all views. This can be written as

min
Xi,D

j

n∑
i=1

m∑
j=1

ρTuk(xij − x̂ij), (5.2)

x̂ij = π(CR
i
MMX i + CT

i
M), (5.3)

where n is the number of 3D points and m is the number of frames. x̂ij is the
projection of a 3D point MX i into a view with pose CD

i
M . To increase robustness

against possible false associations, we include the Tukey norm ρTuk, introduced
in Sec. 4.3. Minimizing this error starts from given initial parameter estimates.
We use the reconstructed mean points to initialize X i and the computed poses
during tracking the object as initial poses for Dj. By minimizing the nonlinear
least squares error function, we obtain the refined 3D points and poses. This can
be done by applying trust region methods, such as Levenberg-Marquardt, or line
search methods, such as Gauss-Newton optimization. As this problem is usually
ill-posed due to the large number of unknown parameters, we apply Gauss-Newton
to optimize it. It has been proven to converge better than trust region methods for
such problems [SDS09].

5.2.3 Iterative Closest Point

Because bundle adjustment does a relative optimization, there is no absolute ref-
erence for size or scale. This may lead to shifting of the points from their original
location during the optimization. To rectify this behavior and align the computed

32 CHAPTER 5. SPARSE FEATURE MAP

3D points X i with the known object model points denoted Qk,j=1...p, we follow bun-
dle adjustment with an ICP step. Traditionally, the ICP algorithm finds a single
transformation matrix to minimize the distance between both point clouds. In our
formulation, we additionally include a scaling factor. ICP is an iterative approach
that alternates between the following two steps.

• Correspondence step: Find the closest model point for each 3D point X i

Qcorr,i = argmin
Q
‖RsX i + T −Q‖ (5.4)

according to some rotation matrix R and translation vector T describing a
transformation matrixD and scaling term s. In the first step, these parameters
are initialized with I and 1 respectively.

• Alignment step: Update D(R,T) and s to minimize the distance between
both point clouds

(D, s) = argmin
D,s

n∑
i=1

ρTuk(RsX i + T −Qcorr,i). (5.5)

The alignment step is solved using Gauss-Newton optimization, analoguous to bun-
dle adjustment. Both steps are repeated until convergence. By applying the scale
and transformation to the 3D points, we obtain 3D points that are optimized with
regard to the different poses and aligned with the model.

5.2.4 Point projection

As a final step in the map generation algorithm, we verify if the optimized 3D
points are also visible from other views that were not traversed during the tracking
sequence. Likely, points from one view on the geodesic grid are also visible from
neighboring views. To demonstrate the point projection method, we consider a
candidate point X i and a view represented by a pose Dj. The pose Dj was not
traversed on the geodesic grid, and we validate if pointX i is visible from this pose by
comparing the actual and expected depth values. The actual depth is calculated by
transforming the 3D point into the camera frame of reference according to the view
in question, as CD

j
MX i. The expected depth value is calculated by reconstructing

the image point with the view pose and a depth renderer, as π−1(xi, d). If both
depth values are close enough to each other, indicating that the point is on the
visible surface of the object in this view, it is assigned to it. With this method, we
eliminate the need for a comprehensive tracking sequence. Important features on
the object have to be viewed during tracking, but not all poses on the geodesic grid
need to be traversed.
With this formulation, we get a sparse feature map that relates 3D points on the
model surface to their projections in different views along with their descriptors.
This map can then be used as a reference during tracking.

5.3. INTEGRATION INTO THE TRACKER 33

Find correspondences to previous
frame with Hamming distance

Assign matched keypoints a
depth value from previous frame

Minimize correspondence error
over pose parameters

Find correspondences to sparse
feature map with Hamming distance

Minimize correspondence error
over pose parameters

Detect 2D features on new frame

Initial pose

3D object
model

depth
renderer

Store feature descriptors, key-
points and model pose for map

No YesDoes map
exist?

Figure 5.2: Flowchart of the tracker. If a sparse feature map has been previously
generated, it will be used as a reference for tracking.

5.3 Integration into the tracker

Using the sparse feature map during tracking naturally extends the existing tracking
procedure. Fig. 5.2 shows a flowchart of the complete tracking algorithm. If a sparse
feature map has been previously generated, it is used as a reference for tracking.
Instead of finding correspondences to the preceding frame and then reconstructing
the points, the correspondences can be found directly to the closest view on the map,
and the 3D points are directly known. If a map is not available yet, the tracking
is done as presented in the previous chapter with an optional step of storing the
relevant data to generate a sparse feature map.

34 CHAPTER 5. SPARSE FEATURE MAP

35

Chapter 6

Implementation

Having explained the theoretical background of the algorithm in the previous chap-
ters, we can now provide details on the implementation. The algorithm is pro-
grammed in C++ and relies on the libraries Eigen [GJ+10], OpenCV [Bra00], GLFW
[GLF19] and Ceres [AMO10]. In the following chapter, we first present the imple-
mentation measures utilized to improve the computation speed during tracking.
These apply to the different methods in the feature-based tracking modality. Then,
we explain two different methods used to handle possible occlusions by known or
unknown objects during a tracking procedure. Finally, we define the user parame-
ters that influence the tracking performance and give their default values that are
used in the evaluation.

6.1 Efficiency optimization

One of the key requirements for this tracker is the real-time pose detection con-
straint, as presented in Sec. 2.2. For smooth tracking, the detection cycle has to be
much faster than 33 ms. The standard implementation for the different components
already fulfills the minimum requirement. However, optimizing the run time fur-
ther enables the use of higher camera frequencies, multiple object tracking, and the
implementation of more complex control cycles. This section presents the optimiza-
tion measures that were applied for the individual steps in the feature-point-based
tracking cycle.

Feature detection In the standard form of feature detection, the algorithm scans
the entire camera frame for features that are then filtered in later steps according to
their position and relevancy. To shorten the detection time and to only get relevant
features, we limit the search area. Using the pose estimate from a preceding iteration
and an estimate of the object diameter, we project a bounding box of the object
into the camera frame and define a region of interest around the object’s projection.
With this method, the detection is limited to the pixels in the region of interest.

36 CHAPTER 6. IMPLEMENTATION

In addition to performing this crop operation, we also include a scale step. During
tracking, the object can be closer or further away from the camera. Because the de-
tection algorithm processes each pixel in the image, it will have higher computation
times for close objects that fill many pixels. By scaling the cropped image according
to the estimated depth of the object, the region of interest of an object very close
to the camera will have a similar size to one of a further object. This operation
minimizes the number of pixels to be processed and keeps the computation time
constant for different objects and frames.

Feature matching Binary descriptors are traditionally matched with brute force:
Each descriptor from one camera frame is matched against all descriptors from the
other frame using the Hamming distance, as described in Sec. 4.2. In our track-
ing application, we have a relatively small motion from frame to frame, because we
consider a continuous stream of camera frames during a motion. We thus expect
the matched keypoints to be spatially close in the image frame of reference. To
optimize the feature matching, we tried using only spatially close points as match-
ing candidates instead of brute force, by only searching within a certain region of a
feature for its match. However, determining the set of spatially close points requires
some computation time, and the overall method does not provide a significant im-
provement. Performing the efficient Hamming distance calculations in brute force
has comparable computation time to finding spatial comparisons between pixels and
computing a decreased number of descriptor matches.

Depth rendering In depth rendering, the computation bottleneck often lies in
copying the rendered pixel data from the Graphical Processing Unit (GPU) back to
the Central Processing Unit (CPU). To minimize the number of superfluous pixels,
we employ the same method used to improve feature detection and define a region of
interest around the object that is scaled according to the object’s depth. We adjust
the depth image dimensions for the renderer and adapt the intrinsic parameters
(focal length and principal point) to achieve the desired view and only render the
depth values for the defined region of interest.

Point reconstruction The point reconstruction step involves computing the 3D
reconstructions of the image feature points using a rendered depth image. By switch-
ing the order of computation and only reconstructing the image points that were suc-
cessfully matched instead of including a reconstruction step over all feature points,
the number of operations is significantly reduced.

By considering the computational complexities of the individual tracking steps and
optimizing their implementation as presented in this section, the total tracking cycle
computation time was decreased by 39%.

6.2. OCCLUSION HANDLING 37

6.2 Occlusion handling

One of the tracker requirements presented in Sec. 2.2 is occlusion handling. The
tracker should be able to handle partial occlusions to the object while maintaining
accuracy. While the general formulation of the tracker is robust to partial occlusions
to some extent, the performance can be further enhanced by including a dedicated
occlusion handling step. Occlusion handling can be done either explicitly or implic-
itly. The choice of the method depends on the availability of data and tools. In this
section, we will present both methods.

6.2.1 Implicit occlusion handling

Implicit occlusion handling requires the availability of depth information, such as
from a depth camera. To detect occlusions implicitly, the algorithm compares the
difference in expected and actual depth values of the points on the object. The
expected depth value can be obtained in the point reconstruction step of the feature-
based tracking modality. Each detected feature point is used to reconstruct a model
point on the object’s surface. Its depth is the expected depth value for this point.
The actual depth value is the depth provided by the camera in the coordinates of
the feature point. If the depth value of one model point is greater than the measured
depth by a certain threshold, then this implies that another object is closer to the
camera, and this point is likely occluded. In this case, it is excluded from further
computations. This comparison is performed on all pixels within a certain radius
to reduce the effect of possible faulty measurements. With this formulation, depth
values from a camera are used to detect and handle occlusions.

6.2.2 Explicit occlusion handling

Another method to handle occlusions is explicit occlusion handling. In contrast to
the first method, it does not require a depth camera but assumes the potentially
occluding objects to be known. This is typically provided when multiple objects
are tracked simultaneously. Occlusions are handled in this case by analyzing the
estimated depth values of the objects in relation to each other. Model points on
an object that are estimated to be further away from the camera than points of a
different object occupying the same space are considered occluded and are excluded
from the further computation. Like the implicit occlusion handling formulation, this
comparison is performed on all pixels within a certain radius. Explicit occlusion
is useful for multi-object tracking as mutual occlusions are likely in this case. It
provides an alternative to implicit handling if a depth camera is not available.

38 CHAPTER 6. IMPLEMENTATION

6.3 Parameter tuning

The formulation of the tracker with the feature-based tracking modality enables
setting different parameters that influence the tracking performance. These are
thresholds, maximum numbers, or weighing factors that are used within the dif-
ferent methods. In this section, we will briefly explain these parameters and give
their default values. The default values are presented in Table 6.1 in a compact form.

Correspondence search

• Number of features: During feature detection, all the points that fulfill the
FAST detector requirement are computed, and then, according to the ORB
formulation, the n best features are retained. We set this value to 500, meaning
that a maximum of 500 feature points are used in each frame. Setting a
maximum number of features improves the quality of the detector.

• Scale factor: The ORB detector utilizes a scale pyramid to compute features
in different image scales. The scale factor defines the ratio of the scale pyramid
levels. We set it to 1.2, which means that each scale level has (1.2)2 fewer pixels
than the preceding level. This number provides a good trade-off of covering a
certain scale range without having big jumps in the scale pyramid.

• Number of levels: This defines the number of levels in the ORB scale pyramid.
The default value is 8 levels.

Correspondence matching

• Lowe’s ratio threshold: This threshold is connected to Lowe’s ratio test [Low04].
In the original formulation, it was set to 0.7, and we adopt the same value.
The distance of a match has to be smaller than 0.7 times the distance to the
second closest match.

• Lowe’s ratio threshold (map): When tracking with a sparse feature map, the
risk of matching with an outlier is greatly minimized, so we increase this
threshold to 0.8 to allow for more matches with the map.

Occlusion handling

• Occlusion handling threshold: If the distance between depth values from two
measurements is within this threshold, then the point is considered occluded.
This value was chosen to be 0.05 m.

• Occlusion handling radius: This radius defines the region around a pixel in
which occlusion comparisons are considered. It is set to 9 pixels.

6.3. PARAMETER TUNING 39

Tracker step Parameter Value

Correspondence search
Number of features 500
Scale factor 1.2
Number of levels 8

Correspondence matching
Lowe’s ratio threshold 0.7
Lowe’s ratio threshold (map) 0.8

Occlusion handling
Occlusion handling threshold 0.05 m
Occlusion handling radius 9

Optimization
Tukey norm constant 12
Texture modality weight 0.4
Region modality weight 0.6

Table 6.1: Default values for the tracker parameters

Optimization

• Tukey norm constant: The constant c is part of the Tukey norm formulation.
For the tracker, we set this value to 12.

• Texture modality weight: The texture modality weight defines how much the
gradient and Hessian for the pose estimate from the texture modality influence
the update for the next pose computation. We set this value to 0.4.

• Region modality weight: The region modality weight is set to 1 minus the
texture modality weight.

40 CHAPTER 6. IMPLEMENTATION

41

Chapter 7

Evaluation

Having now explained the framework and presented the implementation details, in
this chapter, we provide a comprehensive evaluation and present the results for the
different contributions of this work. In the first section, we evaluate the tracker
on the Region-Based Object Tracking (RBOT) dataset. We show that the multi-
modality tracker consisting of the region-based tracking modality from [SPS+20]
and the proposed feature-based modality performs better than the state-of-the-art
tracking approaches tested on this dataset. We then perform a similar evaluation on
the Yale-CMU-Berkeley (YCB) video dataset. With this, we assess the performance
of the feature-based tracking modality when added to the region-based tracker on
real-world data. To test the effectiveness of adding a sparse feature map, we perform
an evaluation on a self-recorded sequence and present its results in the final section.

7.1 Evaluation on the RBOT dataset

The main part of the evaluation is done on the RBOT dataset. In this section, we
show that the combined method of a region and a texture modality outperforms
the current state of the art algorithms tested on this dataset. In the following, we
describe the design of the dataset and the used error metric, then present the results
of our proposed method and the state of the art.

7.1.1 Design

The RBOT dataset [TSSC18] consists of eighteen objects that are shown in Fig. 7.1.
Of these objects, five are from the Rigid Pose Tracking dataset [PRDR13], twelve
are from the LINE-MOD dataset [HLI+12] and one was created for RBOT. These
simulated objects are placed on a real-world background that depicts a cluttered
desk scene. Two examples are shown in Fig. 7.2.
For each object, the dataset provides four sequences with different qualities. The
regular sequence shows the object moving along the background scene with a fixed
light source. The dynamic sequence shows a similar view but with a moving light

42 CHAPTER 7. EVALUATION

Figure 7.1: Overview of the objects used in the RBOT dataset [TSSC18]. The
textured objects marked with � are from the Rigid Pose Tracking dataset [PRDR13]
and the objects marked with � are from the LINE-MOD dataset [HLI+12]. The
object marked with F is an addition from RBOT.

Figure 7.2: Examples from the RBOT dataset [TSSC18]

source. Then, there is a noisy sequence, which has artificial Gaussian noise added
to it and a dynamic light source. And finally, there is an occlusion sequence that
includes a second object (the squirrel) with a trajectory that overlaps and occludes
the main object. During each sequence, all objects follow the same trajectory. The
occluding object has a different trajectory moving around the main object. Each
sequence consists of 1001 RGB frames with a resolution of 640× 512 px. The dataset
provides 3D models for each object, and the ground truth poses for all frames as a
rotation matrix and translation vector.
To evaluate our method, we use the same evaluation metric that was proposed
in [TSSC18] for this dataset and followed in the remaining publications [TSSC18,
SPS+20, 2]. For each frame during tracking at time tk, the translation error is
computed as

eT (tk) = ‖T (tk)− T gt(tk)‖2, (7.1)

7.1. EVALUATION ON THE RBOT DATASET 43

the distance between the the estimated translation T (tk) and ground truth T gt(tk).
The rotation error is computed as

eR(tk) = cos−1
(

trace(RT (tk)Rgt(tk))− 1

2

)
, (7.2)

with the estimated rotation RT (tk) and ground truth Rgt(tk). A pose estimation is
considered successful, if eT (tk) is below 5 cm and eR(tk) is below 5◦.
In each tracking sequence, the tracker is initialized with the ground truth pose of
the first frame. If the estimated pose does not fulfill the above error requirements
during tracking, the tracking is considered lost and is reset with the ground truth
pose of that frame. The percentage of successful pose estimations in one sequence
constitutes its success rate. For tracking the occlusion sequence, two cases are
defined. In unmodeled occlusion, the occluding object is not considered separately,
and the tracker is configured the same way as for the other sequences. In the case of
modeled occlusion, the main object and the occluding object are tracked to possibly
achieve a higher success rate.

7.1.2 Results

We evaluate our combined tracker on the complete RBOT dataset and compare
the results to the current state of the art approaches. The method in [TSSC18]
is a region-based method from the creators of the RBOT dataset. The methods
[ZZZ+20] and [SPS+20] are also region-based. The latter is the method integrated
into our combined tracker. We further include the results from [HZSQ20], [LZXQ21]
and [SZZ+21], which use a combined method of region and edge information, and
finally [LWZ21], which is based on region information and feature descriptor fields.
The results are shown in Table 7.1. The table shows the success rates of our proposed
method on all sequences, along with the success rates of the state of the art methods.
Our proposed method outperforms the state of the art in most cases by a large
margin and achieves the highest average for all sequences.
To further underline the added value of the texture-based modality, we color the
textured objects Baking soda, Broccoli soup, Cube, Glue, and Koala candy in red
and compute a separate average for these objects. The use of texture information
considerably increases the success rate when compared to the other methods. The
average success rate over these objects is around 10% higher than the second-best
method for most sequences. This improvement is especially significant for objects
with rotational ambiguities, such as Baking soda and the Koala candy. For these
objects, the improvement in success rate reaches 18%.
The evaluation was conducted on a laptop with an Intel i7-8500Y dual-core proces-
sor running at 1.6 GHz. The average execution time for all sequences is 21 ms, when
tracking a single object. The modeled occlusion evaluation runs at 65 ms, because it
requires tracking two objects. We evaluated [SPS+20] on the same laptop and mea-
sured runtimes of 6.2 ms for the single-object sequences and 33 ms for the modeled

44 CHAPTER 7. EVALUATION

Method A
pe

So
da

V
is
e

So
up

C
am

er
a

C
an

C
at

C
lo
w
n

C
ub
e

D
ri
lle
r

D
uc
k

E
gg

B
ox

G
lu
e

Ir
on

C
an
dy

La
m
p

P
ho
ne

Sq
ui
rr
el

A
vg
.
t

A
vg
.

Regular

[TSSC18] 85.0 39.0 98.9 82.4 79.7 87.6 95.9 93.3 78.1 93.0 86.8 74.6 38.9 81.0 46.8 97.5 80.7 99.4 57.0 79.9
[ZZZ+20] 88.8 41.3 94.0 85.9 86.9 89.0 98.5 93.7 83.1 87.3 86.2 78.5 58.6 86.3 57.9 91.7 85.0 96.2 65.4 82.7
[HZSQ20] 91.9 44.8 99.7 89.1 89.3 90.6 97.4 95.9 83.9 97.6 91.8 84.4 59.0 92.5 74.3 97.4 86.4 99.7 70.2 86.9
[SPS+20] 96.4 60.0 98.3 94.6 94.2 91.6 99.6 95.7 93.1 92.9 93.8 89.7 73.0 93.0 81.5 93.3 92.1 99.7 80.4 90.5
[LWZ21] 93.7 39.3 98.4 91.6 84.6 89.2 97.9 95.9 86.3 95.1 93.4 77.7 61.5 87.8 65.0 95.2 85.7 99.8 68.7 85.5
[LZXQ21] 92.8 42.6 96.8 87.5 90.7 86.2 99.0 96.9 86.8 94.6 90.4 87.0 57.6 88.7 59.9 96.5 90.6 99.5 66.9 85.8
[SZZ+21] 93.0 55.2 99.3 85.4 96.1 93.9 98.0 95.6 79.5 98.2 89.7 89.1 66.5 91.3 60.6 98.6 95.6 99.6 69.4 88.1
Proposed 95.5 78.3 98.8 97.2 97.4 95.4 99.8 98.3 99.0 93.3 91.5 92.5 78.7 94.0 96.8 94.7 92.8 99.2 90.0 94.1

Dynamic Light

[TSSC18] 84.9 42.0 99.0 81.3 84.3 88.9 95.6 92.5 77.5 94.6 86.4 77.3 52.9 77.9 47.9 96.9 81.7 99.3 60.3 81.2
[ZZZ+20] 89.7 40.2 92.7 86.5 86.6 89.2 98.3 93.9 81.8 88.4 83.9 76.8 55.3 79.3 54.7 88.7 81.0 95.8 63.7 81.3
[HZSQ20] 91.8 42.3 98.9 89.9 91.3 87.8 97.6 94.5 84.5 98.1 91.9 86.7 66.2 90.9 73.2 97.1 89.2 99.6 63.7 87.3
[SPS+20] 96.8 54.9 98.8 95.2 92.3 96.1 99.8 96.1 92.3 94.3 93.8 92.7 78.7 90.5 81.8 90.3 90.9 99.4 80.6 90.8
[LWZ21] 93.5 38.2 98.4 88.8 87.0 88.5 98.1 94.4 85.1 95.1 92.7 76.1 58.1 79.6 62.1 93.2 84.7 99.6 66.4 84.1
[LZXQ21] 93.5 43.1 96.6 88.5 92.8 86.0 99.6 95.5 85.7 96.8 91.1 90.2 68.4 86.8 59.7 96.1 91.5 99.2 69.1 86.7
[SZZ+21] 93.8 55.9 99.6 85.6 97.7 93.7 97.7 96.5 78.3 98.6 91.0 91.6 72.1 90.7 63.0 98.9 94.4100.071.0 88.8
Proposed 95.6 71.6 98.9 96.0 95.5 96.0 99.8 97.9 98.1 94.6 91.1 93.6 80.5 92.3 94.6 91.3 92.6 99.0 88.2 93.3

Noisy

[TSSC18] 77.5 44.5 91.5 82.9 51.7 38.4 95.1 69.2 24.4 64.3 88.5 11.2 2.9 46.7 32.7 57.3 44.1 96.6 37.5 56.6
[ZZZ+20] 79.3 35.2 82.6 86.2 65.1 56.9 96.9 67.0 37.5 75.2 85.4 35.2 18.9 63.7 35.4 64.6 66.3 93.2 42.6 63.6
[HZSQ20] 89.0 45.0 89.5 90.2 68.9 38.3 95.9 72.8 20.1 85.5 92.2 26.8 15.8 66.2 52.2 58.3 65.1 98.4 44.7 65.0
[SPS+20] 92.8 56.9 92.4 93.6 70.3 63.8 98.8 83.9 51.8 78.6 92.6 58.6 36.2 77.3 68.0 62.2 71.6 98.9 61.3 74.9
[LWZ21] 84.7 33.0 88.8 89.5 56.4 50.1 94.1 66.5 32.3 79.6 94.2 29.6 19.9 63.4 40.3 61.6 62.4 96.9 43.0 63.5
[LZXQ21] 89.1 44.0 91.6 89.4 75.2 62.3 98.6 77.3 41.2 81.5 91.6 54.5 31.8 65.0 46.0 78.5 69.6 97.6 50.5 71.4
[SZZ+21] 92.5 56.2 98.0 85.1 91.7 79.0 97.7 86.2 40.1 96.6 90.8 70.2 50.9 84.3 49.9 91.2 89.4 99.4 56.4 80.5
Proposed 91.2 66.8 94.0 95.2 82.0 73.0 99.0 91.9 85.2 81.2 90.7 69.2 45.9 81.1 88.5 68.9 75.4 97.9 76.3 82.0

Unmodeled occlusion

[TSSC18] 80.0 42.7 91.8 73.5 76.1 81.7 89.8 82.6 68.7 86.7 80.5 67.0 46.6 64.0 43.6 88.8 68.6 86.2 55.0 73.3
[ZZZ+20] 83.9 38.1 92.4 81.5 81.3 85.5 97.5 88.9 76.1 87.5 81.7 72.7 52.5 77.2 53.9 88.5 79.3 92.5 60.4 78.4
[HZSQ20] 86.2 46.3 97.8 87.5 86.5 86.3 95.7 90.7 78.8 96.5 86.0 80.6 59.9 86.8 69.6 93.3 81.8 95.8 68.4 83.6
[SPS+20] 91.5 53.6 96.5 91.1 87.3 91.8 97.3 92.7 87.8 91.3 87.7 86.7 71.9 86.1 77.2 85.7 86.2 96.6 75.6 86.6
[LWZ21] 87.1 36.7 91.7 78.8 79.2 82.5 92.8 86.1 78.0 90.2 83.4 72.0 52.3 72.8 55.9 86.9 77.8 93.0 60.2 77.6
[LZXQ21] 89.3 43.3 92.2 83.1 84.1 79.0 94.5 88.6 76.2 90.4 87.0 80.7 61.6 75.3 53.1 91.1 81.9 93.4 63.5 80.3
[SZZ+21] 91.3 56.7 97.8 82.0 92.8 89.9 96.6 92.2 71.8 97.0 85.0 84.6 66.9 87.7 56.1 95.1 89.8 98.2 66.7 85.1
Proposed 90.2 69.2 97.5 93.2 91.7 91.3 97.8 95.7 95.7 90.3 86.2 88.9 73.5 87.7 91.1 88.1 86.6 96.6 84.5 89.5

Modeled occlusion

[TSSC18] 82.0 42.0 95.7 81.1 78.7 83.4 92.8 87.9 74.3 91.7 84.8 71.0 49.1 73.0 46.3 90.9 76.2 96.9 58.6 77.7
[HZSQ20] 87.8 45.5 98.1 87.2 89.0 89.8 95.1 91.4 77.4 97.1 87.7 83.0 62.5 88.6 69.7 94.1 86.0 98.9 68.5 84.9
[SPS+20] 94.1 55.7 98.1 93.8 90.9 93.7 99.6 96.1 91.7 92.3 92.5 91.5 74.4 90.5 82.4 88.2 89.2 99.3 79.6 89.7
Proposed 92.9 71.0 98.3 94.0 93.0 92.5 99.1 97.4 96.7 91.4 88.9 91.3 75.7 90.6 92.7 89.2 89.0 97.9 86.0 91.2

Table 7.1: Tracking success rates on the RBOT dataset in percent of our proposed
method and the state of the art. Best results are marked bold, and second-best
values are underlined. Textured objects are colored red and Avg. t is the average
of these objects. The value Avg. is the average success rate over all objects.

7.2. EVALUATION ON THE YCB VIDEO DATASET 45

occlusion sequences. The authors in [ZZZ+20], [SZZ+21] and [LZXQ21] performed
their evaluation on a quad-core processor and reported runtimes between 32 ms and
50 ms. The method [LWZ21] achieves a runtime of 10 ms on a six-core processor.

7.2 Evaluation on the YCB video dataset

While our proposed tracker shows significant results on the semi-synthetic RBOT
dataset, here, we also perform an evaluation on real-world data from the YCB video
dataset and compare the performance of our proposed algorithm with the region-
based state of the art approach in [SPS+20]. We first introduce the dataset and
describe the design of the evaluation, then present the results.

Figure 7.3: Objects used in the YCB video dataset
[XSNF17]

ID Name

002 Master chef can
003 Cracker box
004 Sugar box
005 Tomato soup can
006 Mustard bottle
007 Tuna fish can
008 Pudding box
009 Gelatin box
010 Potted meat can
011 Banana
019 Pitcher base
021 Bleach cleanser
024 Bowl
025 Mug
035 Power drill
036 Wood block
037 Scissors
040 Large marker
051 Large clamp
052 Extra large clamp
061 Foam brick

Table 7.2: Object names

7.2.1 Design

The YCB video dataset was published in [XSNF17]. It uses 21 objects of the YCB
dataset [CSW+15] shown in Fig. 7.3 and includes real-world tracking sequences of
these objects along with their 3D models. The videos were taken with an RGBD
camera with a resolution of 630 × 480 at 30 frames per second (fps). The dataset
provides RGB images as well as depth images of 92 video sequences depicting dif-
ferent assortments of the object and recorded under different conditions (lighting,

46 CHAPTER 7. EVALUATION

Figure 7.4: Examples from the YCB dataset [XSNF17]

noise, occlusion, ...). It was originally developed for deep learning approaches and
its creators define 80 sequences for training and 12 for testing. Two examples from
the dataset are shown in Fig. 7.4.

We use the 12 test sequences for this evaluation and compare our proposed method of
the combined tracker with the state of the art region-based tracker from [SPS+20].
As the original publication only includs an RBOT evaluation, we conducted the
evaluation on the YCB video dataset ourselves using the provided code. We ran
both trackers for all objects in each of the tracking sequences. To quantify the
results, we use the same error metric and success rate calculation used for the RBOT
dataset and explained in Sec. 7.1.1. Like the RBOT dataset evaluation, a reset to
the ground truth pose is made if the tracking is considered unsuccessful. The success
rate is the percentage of successful pose estimations throughout a sequence.

7.2.2 Results

The results from the evaluation on the YCB video dataset are shown in Table 7.3.
Each object appears in a subset of the test sequences. The table shows the average
success rate for each object across the sequences. The reference between object ID
and name is clarified in Table 7.2. The results show that the proposed combined
tracker outperforms the region-based tracker from [SPS+20] for all objects by a sub-
stantial margin. The combined tracker achieves a success rate 20% higher than the
performance of [SPS+20]. Especially in the presence of occlusion between objects,
utilizing more information by combining different modalities increases the tracker’s
robustness. The tracker [SPS+20] achieves an average runtime of 5.2 ms and the
combined tracker runs in 23 ms on the YCB dataset.

7.3. EVALUATION ON A RECORDED SEQUENCE 47

Method 002 003 004 005 006 007 008 009 010 011 019

[SPS+20] 76.2 72.2 82.9 76.2 77.3 76.9 76.4 77.0 75.3 75.5 76.6
Proposed 93.4 95.7 96.7 94.3 94.2 92.9 92.2 92.5 92.3 91.8 92.1

Method 021 024 025 035 036 037 040 051 052 061 Avg.

[SPS+20] 73.6 74.5 75.6 76.9 76.5 75.1 74.6 74.6 74.8 75.1 72.3
Proposed 89.1 89.6 89.8 90.5 90.5 90.1 87.5 87.5 87.7 87.8 91.3

Table 7.3: Tracking success rates on the YCB video dataset for all objects. The
numbers 002-061 are IDs for each object in the dataset.

7.3 Evaluation on a recorded sequence

In the previous sections, we provided an extensive evaluation of the texture-based
modality in the combined tracker. In this section, we evaluate the sparse feature map
presented in Chapter 5 and provide comparisons to the combined tracker and the
region-based tracker of [SPS+20]. For this purpose, we have created a self-recorded
sequence and defined an evaluation metric to quantify the performance regarding
a ground truth. We first explain the design in more detail and then present the
results.

7.3.1 Design

For the evaluation, we chose three objects of different shapes: Pringles, Calculator,
and Chocolate. They can be seen in the example in Fig. 7.6. To track them, we
use a RealSense D435 camera [Int19]. It is an RGBD camera, but we only use the
RGB outcome for our tracker. We use the camera with a frame rate of 30 Hz and
a resolution of 640 × 480. We first place the three objects on defined positions and
record a sequence of them while moving the camera, as depicted in Fig. 7.6 showing
frames 1, 160 and 371. The objects remain static during the recording.
To perform the evaluation and quantify the results, we first have to obtain a ground
truth reference of the poses. The poses of the objects in relation to the camera
in the different time steps are unknown, as we do not have access to the camera
poses during its motion. However, as the objects remain fixed, their relative poses
to each other are unchanged. We use this information to obtain a ground truth
reference. We measure the relative distances between all three objects according to
their placement, as shown in Fig. 7.5, and obtain the relative rotation from their
geometry. Thus, we have three ground-truth poses for each pair of objects. To
initialize the tracker, we experimentally obtain the object poses in the first frame
and refine them with the tracker.
During tracking, we track all three objects simultaneously and estimate their poses
as usual. Then, we compute the relative translation and rotation parameter for each
pair as

T 12 = T 2 − T 1, (7.3)

48 CHAPTER 7. EVALUATION

Figure 7.5: Setup of used objects and their ground truth distances

Figure 7.6: Examples from the self recorded sequence

R12 = RT
1R2 (7.4)

and compare these against the measured ground truth values. The translation error
between the estimation and ground truth is calculated as

eT (tk) = ‖T12(tk)‖2 − ‖T 12gt(tk)‖2, (7.5)

The rotation error is calculated with the metric presented in Sec. 7.1.1.

We evaluate the tracking performance on this sequence of the region-based tracker
of [SPS+20], the combined tracker and the combined tracker using a sparse feature
map. To obtain such a map, we take one recording for each of the objects that shows
it from almost all sides and generate the map according to the algorithm described
in Chapter 5. During the tracking sequence, the texture modality utilizes this map
as previously described.

7.3. EVALUATION ON A RECORDED SEQUENCE 49

7.3.2 Results

In this section, we present the results on the recorded sequence for the combined
tracker of region and texture modalities and the tracker when additionally utilizing
a map. We also show the performance of the region-based tracker [SPS+20] on its
own as a reference. The results are shown in Fig. 7.6. We plot the relative rotation
and translation error of each object pair throughout the tracking sequence. In the
errors related to the Pringles object, the region-based tracker suffers from a high
rotational drift. This is due to the rotationally symmetrical characteristics of the
Pringles object, which results in pose ambiguities when only the silhouette of the
object is used. Adding the texture-based modality to the tracker significantly limits
this drift because texture information is utilized to infer the object’s orientation.
The yellow line shows the error result when the texture-based modality relies on a
sparse feature map. The drift is further minimized because using the map allows
correcting the pose in any time step regardless of the preceding estimation.
The plot showing the relative error between the Calculator and Chocolate objects
does not show rotational drift for any method. The high errors around the 100th

frame result from texture ambiguities in the Chocolate object. The same text written
on the side and top of the object leads to false matches and an incorrect pose
estimation. However, the tracker recovers, once more information is available.
For this experiment, we also measure the execution times. Tracking the three objects
with the region-based tracker from [SPS+20] requires 79 ms on the laptop specified
in Sec. 7.1.2. Running the combined tracker has a runtime of 168 ms for the three
objects. Using the sparse feature map reduces this runtime to 140 ms.

50 CHAPTER 7. EVALUATION

0 50 100 150 200 250 300 350 400
0°

50°

100°

150°

200°
Rotation error Pringles-Calculator

region
region texture
region texture map

0 50 100 150 200 250 300 350 400
−40 mm

−20 mm

0 mm

20 mm

40 mm

60 mm

n frames

Translation error Pringles-Calculator

region
region texture
region texture map

0 50 100 150 200 250 300 350 400
0°

50°

100°

150°

200°
Rotation error Pringles-Chocolate

region
region texture
region texture map

0 50 100 150 200 250 300 350 400

0 mm

20 mm

40 mm

n frames

Translation error Pringles-Chocolate

region
region texture
region texture map

7.3. EVALUATION ON A RECORDED SEQUENCE 51

0 50 100 150 200 250 300 350 400
0°

10°

20°

Rotation error Calculator-Chocolate

region
region texture
region texture map

0 50 100 150 200 250 300 350 400
−40 mm

−20 mm

0 mm

n frames

Translation error Calculator-Chocolate

region
region texture
region texture map

Figure 7.6: Rotation and translation error of the relative poses

52 CHAPTER 7. EVALUATION

53

Chapter 8

Discussion

In this thesis, we first developed a feature-based tracking modality that utilizes
texture information and can be added to other modalities based on different ap-
proaches. The results show that the use of the texture modality significantly im-
proves the tracking performance. Especially, the combination of a region modality
and a texture modality, which was considered in this work, results in a strong tracker
as both modalities utilize different types of information. While both methods pro-
vide estimations on the translation and rotation components of the pose, the region
modality considers the silhouette of the object and maintains a robust pose esti-
mate. The texture modality evaluates the texture information on the object surface
to refine the estimation and provide additional value to the translation and rotation
components. The result is a more accurate estimation with reduced drift.

The evaluation on the RBOT dataset shows that this combined tracker beats all of
the state of the art approaches and provides the best success rates for this dataset.
The evaluation on the YCB video dataset illustrates that the performance is also
significantly improved on real-world data when comparing the combined tracker with
a purely region-based tracker. This effect is further demonstrated in the evaluation
of the Pringles object in the self-recorded sequence. By only relying on silhouette
information, it is not possible to estimate the orientation of the object along the
rotationally symmetric axis. These examples show the importance of considering
texture information during tracking if the tracked objects provide such information.
In addition, the texture modality does not present a disadvantage when tracking
untextured objects. The evaluation on the RBOT datasets still shows superior
results for such objects. Because of the gradient and Hessian formulation and the
Gauss-Newton optimization, the texture and region modalities will not significantly
affect the pose estimation if they do not have a strong certainty.

After establishing the impact of the texture-based modality, we developed the formu-
lation of the sparse feature map to further improve the performance of the texture-
based modality and reduce the execution time. Because both the RBOT and the
YCB video datasets do not provide sequences that would be suitable for map gener-
ation, we designed the self-recorded sequence to demonstrate the value of the sparse

54 CHAPTER 8. DISCUSSION

feature map. The results show that it decreases the error of the combined tracker
further. The evaluation on the self-recorded sequence is not comprehensive, but it
gives a good indication that the sparse feature map is an advantageous addition to
the texture-based modality.
The presented sparse feature map formulation provides a superior automated al-
ternative to traditional offline methods that utilize Structure from Motion (SfM)
algorithms. These methods require human supervision to segment the keyframes
and tune the scale of the object model, thus requiring a lot of manual work for each
new object. Our formulation extracts the needed information automatically using
a geodesic grid and calculated pose estimates during a regular tracking sequence.
After clustering and optimizing the data, the scale and orientation of the sparse
feature map are then refined in an ICP step, eliminating the need for human input.
The evaluation of the complete framework has shown that it provides accurate track-
ing results. To conclude this chapter, we would like to discuss the performance of
the algorithm with regards to the requirements of in-hand manipulation presented
in Sec. 2.2. The first requirement is efficiency. The measured execution time on the
dual-core laptop is around 21 ms. Although this measurement was not performed
on a powerful processor, it still fulfills the minimum requirement and utilizes the
full camera frequency. Running the algorithm on the processor of the robot system
is expected to provide shorter execution times.
A further requirement is the ability to handle occlusions. This was tested on the
occluded sequence from the RBOT dataset. The performance for the unmodeled
occlusion sequence achieves the highest success rate when compared to the state of
the art, showing inherent robustness of the region and texture modalities. Including
explicit occlusion handling further improved the success rate in the modeled occlusion
sequence. Lastly, considering the results in dynamic light shows that the framework
is only slightly affected by illumination variance. These factors indicate that the
presented algorithm fulfills the requirements for in-hand manipulation and is suitable
for deployment on the robot system David.

55

Chapter 9

Conclusion and outlook

With this thesis, we provide a framework for a multi-modality tracker that extends
a region-based method with a texture-based approach. The texture-based method
can track directly from frame to frame or can rely on a sparse feature map. The
data collection method, the generation, and use of the feature map during tracking
were developed as part of this work. We have presented the methodology for this
algorithm and conducted a threefold evaluation to assess the method’s performance
in different scenarios. In this final chapter, we would like to draw some conclusions
from the results of this work, discuss some limitations, and give an outlook on
possible future research.

The goal of a versatile tracker is to have a good performance on a broad range
of objects. Each object has different properties that might pose challenges or ad-
vantages for specific tracking methods. To exploit the strengths of each method
and have a versatile tracker, different sets of information have to be utilized. This
work demonstrated that combining region and texture information achieves superior
performance than a single type of information.

A map is often used to minimize drift in texture-based tracking approaches, which
can be a textured 3D model from a 3D scan or a sparse map from a Structure from
Motion algorithm. Both options require a special process and manual supervision
for each new object. However, providing the framework of a sparse feature map that
can be generated from regular tracking information simplifies the process and can
be used without specialized equipment.

Another simplification in our proposed tracker is that it runs on a single CPU and
only requires an RGB camera. This makes it easily accessible for use in differ-
ent applications run on simple processors and handheld devices without additional
financial cost.

One of the limitations of using a texture-based tracker is that the tracked objects
have to be sufficiently textured. Depending on the application and used objects,
this might be a strong requirement. This limitation further motivates the concept
of a multi-modality tracker. One limitation in the map formulation is that the
tracking sequence for the map should be created under similar conditions as the

56 CHAPTER 9. CONCLUSION AND OUTLOOK

remaining tracking instances. This is because the created descriptors can be biased
towards the map sequence, which might negatively affect the tracking performance
if a new sequence differs to a big extent. Lastly, a limitation that exists for different
object tracking methods, is that the object motion from frame to frame needs to be
limited to some extent. An object motion that is too fast might lead to inaccurate
estimations or even tracking loss.
For future research, this formulation has the potential of integrating more modalities,
such as edge-based methods, to handle cases with geometries within an object’s sil-
houette. Additionally, depth information can be included as a depth-based modality
by using a depth camera. The formulations of both the region and texture modal-
ities are in RGB image space, leading to slightly inaccurate estimations along the
z-Axis of the camera frame of reference. Adding depth information is expected to
improve the tracking performance.
Moreover, as a future goal, this framework of a multi-modality tracker can be ex-
tended with an object detection method to initialize the tracker and re-detect the
object in cases of tracking loss. Finally, the presented formulation was designed to
be fused with kinematic information from a robot with an extended Kalman filter to
further refine the pose estimation and can be run on the DLR robot system David.
As a future experiment, it would be interesting to evaluate the tracker on the robot
system David with the complete control cycle of in-hand manipulation.

LIST OF FIGURES 57

List of Figures

1.1 The DLR robot system David [GAB+11] 6

4.1 The segment test of the FAST detector. The arc shows 12 consecutive
pixels brighter than the interest point p. [RD06] 21

4.2 Example of feature matching from this work for the can object be-
tween two consecutive frames of the YCB dataset [XSNF17] 22

4.3 Tukey norm for c = 3 compared to x2

2
. 23

5.1 Generating a geodesic grid by recursive bisection [LR05] 28
5.2 Flowchart of the tracker. If a sparse feature map has been previously

generated, it will be used as a reference for tracking. 33

7.1 Overview of the objects used in the RBOT dataset [TSSC18]. The
textured objects marked with � are from the Rigid Pose Tracking
dataset [PRDR13] and the objects marked with � are from the LINE-
MOD dataset [HLI+12]. The object marked with F is an addition
from RBOT. 42

7.2 Examples from the RBOT dataset [TSSC18] 42
7.3 Objects used in the YCB video dataset [XSNF17] 45
7.4 Examples from the YCB dataset [XSNF17] 46
7.5 Setup of used objects and their ground truth distances 48
7.6 Examples from the self recorded sequence 48
7.6 Rotation and translation error of the relative poses 51

58 LIST OF FIGURES

LIST OF TABLES 59

List of Tables

6.1 Default values for the tracker parameters 39

7.1 Tracking success rates on the RBOT dataset in percent of our pro-
posed method and the state of the art. Best results are marked bold,
and second-best values are underlined. Textured objects are colored
red and Avg. t is the average of these objects. The value Avg. is
the average success rate over all objects. 44

7.2 Object names . 45
7.3 Tracking success rates on the YCB video dataset for all objects. The

numbers 002-061 are IDs for each object in the dataset. 47

60 LIST OF TABLES

LIST OF TABLES 61

Acronyms and Notations

2D Two Dimensional

3D Three Dimensional

BRIEF Binary Robust Independent Elementary Features

BRISK Binary Robust Invariant Scalable Keypoints

CPU Central Processing Unit

FAST Features from Accelerated Segment Test

fps frames per second

DLR German Aerospace Center

DoF Degrees of Freedom

GPU Graphical Processing Unit

ICP Iterative Closest Point

LINE LINEarizing the memory

LINE-MOD Multimodal-LINE

ORB Oriented FAST and Rotated BRIEF

P3P Perspective-3-Point

PnP Perspective-n-Point

RANSAC Random Sample Consensus

RBOT Region-Based Object Tracking

RGBD Red Green Blue Depth

RMC Robotics and Mechatronics Center

62 LIST OF TABLES

SfM Structure from Motion

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization And Mapping

SURF Speeded Up Robust Features

YCB Yale-CMU-Berkeley

BIBLIOGRAPHY 63

Bibliography

[AFS+11] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz,
and R. Szeliski. Building rome in a day. Communications of the ACM,
2011.

[AMO10] S. Agarwal, K. Mierle, and Others. Ceres solver. http://

ceres-solver.org, 2010. Online, accessed 24-August-2021.

[BHB07] M. Brunato, H. H. Hoos, and R. Battiti. On effectively finding maximal
quasi-cliques in graphs. Learning and Intelligent Optimization, Second
International Conference, LION, 2007.

[Bra00] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.

[BTVG06] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust
features. In A. Leonardis, H. Bischof, and A. Pinz, editors, Computer
Vision – ECCV 2006, pages 404–417, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[bug]

[CER+21] Carlos Campos, Richard Elvira, Juan J. Gómez Rodŕıguez, JosÃ© M.
M. Montiel, and Juan D. Tardós. Orb-slam3: An accurate open-source
library for visual, visualâinertial, and multimap slam. IEEE Transac-
tions on Robotics, pages 1–17, 2021. doi:10.1109/TRO.2021.3075644.

[CP90] R. Carraghan and P. M. Pardalos. An exact algorithm for the maximum
clique problem. Operations Research Letters, 1990.

[CSW+15] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar. The ycb object and model set: Towards common benchmarks for
manipulation research. International Conference on Advanced Robotics
(ICAR), pages 510–517, 2015.

[DMX+21] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox.
Poserbpf: A raoâblackwellized particle filter for 6-d object pose track-
ing. IEEE Transactions on Robotics, pages 1–15, 2021. doi:10.1109/

TRO.2021.3056043.

http://ceres-solver.org
http://ceres-solver.org
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/TRO.2021.3056043
https://doi.org/10.1109/TRO.2021.3056043

64 BIBLIOGRAPHY

[DRMS07] A. J. Davison, I. D Reid, N. D. Molton, and O. Stasse. Monoslam: Real-
time single camera slam. In IEEE Transactions on Pattern Analysis And
Machine Intelligence, volume 29, 2007.

[FB81] M. Fischler and R. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analyssis and automated
cartography. Communications of the ACM, 1981.

[GAB+11] M. Grebenstein, A. Albu-Schäffer, T. Bahls, M. Chalon, O. Eiberger,
W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Höppner,
S. Jörg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimböck,
S. Wolf, T. Wüsthoff, and G. Hirzinger. The dlr hand arm system.
In IEEE International Conference on Robotics and Automation, pages
3175–3182, 2011.

[GC15] O. Guclu and A. B. Can. A comparison of feature detectors and descrip-
tors in rgb-d slam methods. In M. Kamel and A. Campilho, editors,
Image Analysis and Recognition, pages 297–305, Cham, 2015. Springer
International Publishing.

[GJ+10] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010. Online, accessed 24-August-2021.

[GLF19] GLFW. https://www.glfw.org, 2019. Online, accessed 24-August-2021.

[Gru41] J. A. Grunert. Das pothenotische problem in erweiterter gestalt nebst
über seine anwendungen in geodäsie. Grunerts Archiv füur Mathematik
und Physik, 1841.

[Har93] R. Hartley. Euclidean reconstruction from uncalibrated views. Applica-
tions of Invariance in Computer Vision, 1993.

[HLI+12] S. Hinterstoisser, V. Lepetit, S. Ilic, s. Holzer, G. Bradski, K. Konolige,
and N. Navab. Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. Proceedings of the
12th international conference on Computer Vision, 2012.

[HZSQ20] H. Huang, F. Zhong, Y. Sun, and X. Qin. An occlusionâaware
edgeâbased method for monocular 3d object tracking using edge con-
fidence. Computer Graphics Forum, 39:399–409, 2020. doi:10.1109/

TIP.2020.2973512.

[Int19] Intel. https://www.intel.com/content/dam/support/us/en/documents/
emerging-technologies/intel-realsense-technology/Intel-RealSense-
D400-Series-Datasheet.pdf, 2019. Online, accessed 09-September-2021.

https://doi.org/10.1109/TIP.2020.2973512
https://doi.org/10.1109/TIP.2020.2973512

BIBLIOGRAPHY 65

[KSC13] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for rgb-d cameras.
In 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2100–2106, 2013.

[KTIN17] W. Kehl, F. Tombari, S. Ilic, and N. Navab. Real-time 3d model tracking
in color and depth on a single cpu core. IEEE Conference on Computer
Vision and Pattern Recognition, pages 465–473, 2017.

[LCS11] S. Leutenegger, M. Chli, and R. Siegwart. Brisk: Binary robust invari-
ant scalable keypoints. In IEEE International Conference on Computer
Vision, 2011.

[LD17] S. Li and Lee. D. Rgb-d slam in dynamic environments using static point
weighting. IEEE Robotics and Automation Letters (RA-L), 2(4):2263–
2270, 2017.

[LDW91] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by
tracking geometric beacons. IEEE Transactions on Robotics and Au-
tomation, 7(3):376–382, 1991. doi:10.1109/70.88147.

[LF05] V. Lepetit and P. Fua. Monocular model-based 3d tracking of rigid
objects: A survey. Foundations and Trends in Computer Graphics and
Vision, 2005.

[LH81] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene
from two projections. Nature, 1981.

[LKL15] S. Li, S. Koo, and D. Lee. Real-time and model-free object tracking
using particle filter with joint color-spatial descriptor. Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 6079–6085, 2015.

[Low99] D.G. Lowe. Object recognition from local scale-invariant features. In
IEEE International Conference on Computer Vision, 1999.

[Low04] D.G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60:91–110, 2004.

[LR05] W. H. Lipscomb and T. Ringler. An incremental remapping transport
scheme on a spherical geodesic grid. Monthly Weather Review, 2005.

[Lu18] X. X. Lu. A review of solutions for perspective-n-point problem in
camera pose estimation. Journal of Physics Conference Series, 2018.

[LWZ21] F. Liu, Z. Wei, and G. Zhang. An off-board vision system for rela-
tive attitude measurement of aircraft. IEEE Transactions on Industrial
Electronics, pages 1–1, 2021. doi:10.1109/TIE.2021.3075889.

https://doi.org/10.1109/70.88147
https://doi.org/10.1109/TIE.2021.3075889

66 BIBLIOGRAPHY

[LZ13] M. Lourakis and X. Zabulis. Model-based pose estimation for rigid
objects. In International conference on Computer Vision Systems, 2013.

[LZXQ21] J. C. Li, F. Zhong, S. H. Xu, and X. Y. Qin. 3d object tracking with
adaptively weighted local bundles. Journal of Computer Science and
Technology, 36:555–571, 2021. doi:10.1007/s11390-021-1272-5.

[MAMT15] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. Orb-slam: A versatile
and accurate monocular slam system. IEEE Transactions on Robotics,
31(5):1147–1163, 2015.

[MAT17] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam sys-
tem for monocular, stereo, and rgb-d cameras. IEEE Transactions on
Robotics, 33(5):1255–1262, 2017. doi:10.1109/TRO.2017.2705103.

[Mic21] Microsoft. Azure kinect dk hardware specifications. https://docs.

microsoft.com/en-us/azure/kinect-dk/hardware-specification,
2021. Online, accessed 19-April-2021.

[MKK+20] I. Marougkas, P. Koutras, N. Kardaris, G. Retsinas, G. Chalvatzaki, and
P. Maragos. How to track your dragon: A multi-attentional framework
for real-time rgb-d 6-dof object pose tracking. Computer Vision and
Pattern Recognition, 2020.

[MTKW02] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fastslam: A
factored solution to the simultaneous localization and mapping problem.
Proceedings of the AAAI National Conference on Artificial Intelligence,
2002.

[NIH+11] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfu-
sion: Real-time dense surface mapping and tracking. In 2011 10th IEEE
International Symposium on Mixed and Augmented Reality, pages 127–
136, 2011.

[NNB04] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition, 2004.

[PCSAS18] M. Pfanne, M. Chalon, F. Stulp, and A. Albu-Schäffer. Fusing joint
measurements and visual features for in-hand object pose estimation.
IEEE Robotics and Automation Letters, 2018.

[PRDR13] K. Pauwels, L. Rubio, J. Dı́az, and E. Ros. Real-time model-based
rigid object pose estimation and tracking combining dense and sparse
visual cues. In 2013 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2347–2354, 2013.

https://doi.org/10.1007/s11390-021-1272-5
https://doi.org/10.1109/TRO.2017.2705103
https://docs.microsoft.com/en-us/azure/kinect-dk/hardware-specification
https://docs.microsoft.com/en-us/azure/kinect-dk/hardware-specification

BIBLIOGRAPHY 67

[Pri12] V. Prisacariu. Pwp3d: Real-time segmentation and tracking of 3d ob-
jects. International Journal of Computer Vision, 2012.

[PX94] P. M. Pardalos and J. Xue. The maximum clique problem. Journal of
Global Optimization, 1994.

[RD06] E. Rosten and T. Drummond. Machine learning for high speed corner
detection. 9th Euproean Conference on Computer Vision, 1:430–443,
2006.

[RPK+17] C. Y. Ren, V. A. Prisacariu, O. Kähler, I. D. Reid, and D. W. Mur-
ray. Real-time tracking of single and multiple objects from depth-colour
imagery using 3d signed distance functions. International Journal of
Computer Vision, 124(1):80–95, 2017.

[RRKB11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: an effi-
cient alternative to sift or surfs. In IEEE International Conference on
Computer Vision, ICCV 2011, 2011.

[SAM68] R. Sadourny, A. Arakawa, and Y. Mintz. Integration of the nondivergent
barotropic vorticity equation with an icosahedral hexagonal grid for the
sphere. Monthly Weather Review, 1968.

[SB20] I. Suarez and J. M. Buenaposada. Beblid: Boosted efficient binary local
image descriptor. Pattern Recognition Letters, 2020.

[SDS09] M. Sarkis, K. Diepold, and A. Schwing. Enhancing the motion estimate
in bundle adjustment using projective newton-type optimization on the
manifold. In K. S. Niel and D. Fofi, editors, Image Processing: Machine
Vision Applications II, volume 7251, pages 125 – 136. International
Society for Optics and Photonics, SPIE, 2009.

[SK08] B. Siciliano and O. Khatib. Springer Handbook of Robotics, pages 10–18.
Springer, Berlin, Heidelberg, 1 edition, 2008.

[SL04] I. Skrypnyk and D. Lowe. Scene modelling, recognition and tracking
with invariant image features. IEEE and ACM International Symposium
on Mixed and Augmented Reality, 2004.

[SLK14] Koo. S., D. Lee, and D. S. Kwon. Incremental object learning and robust
tracking of multiple objects from rgb-d point set data. Journal of Visual
Communication and Image Representation, 25(1):108–121, 2014.

[SLK16] Koo. S., D. Lee, and D. S. Kwon. Fast visual odometry using intensity
assisted iterative closest point. IEEE Robotics and Automation Letters
(RA-L), 1(2):992–999, 2016.

68 BIBLIOGRAPHY

[SPHI14] B. Seo, H. Park, J. Hinterstoisser, and S. S. Ilic. Optimal local search-
ing for fast and robust textureless 3d object tracking in highly clut-
tered backgrounds. IEEE Transactions on Visualization and Computer
Graphics, 20(1):99–110, 2014.

[SPS16] K. Sarkar, A. Pagani, and D. Stricker. Feature-augmented trained mod-
els for 6dof object recognition and camera calibration. International
Conference on Computer Vision Theory and Applications, 2016.

[SPS+20] M. Stoiber, M. Pfanne, K. H. Strobl, R. Triebel, and A. Albu-Schäffer. A
sparse gaussian approach to region-based 6dof object tracking. ACCV:
Asian Conference on Computer Vision, 2020.

[SSS06] N. Snavely, S. M. Seitz., and R. Szeliski. Photo tourism: exploring
photo collections in 3d. ACM Transactions on Graphics, 2006.

[SZZ+21] X. Sun, J. Zhou, W. Zhang, Z. Wang, and Q. Yu. Robust monocular
pose tracking of less-distinct objects based on contour-part model. IEEE
Transactions on Circuits and Systems for Video Technology, pages 1–1,
2021. doi:10.1109/TCSVT.2021.3053696.

[TK92] C. Tomasi and T. Kanade. Shape and motion from image streams
under orthography: A factorization method. International Journal of
Computer Vision, 1992.

[TMHF00] B. Triggs, P. Mclauchlan, R. Hartley, and A. Fitzgibbon. Bundle adjust-
ment - a modern synthesis. In Vision Algorithms: Theory and Practice,
pages 298–372, 2000.

[TSSC18] H. Tjaden, U. Schwanecke, E. Schomer, and D. Cremers. A region-based
gauss-newton approach to real-time monocular multiple object tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.

[VLF04a] L. Vacchetti, V. Lepetit, and P. Fua. Combining edge and texture
information for real-time accurate 3d camera tracking. IEEE and ACM
International Symposium on Mixed and Augmented Reality, 2004.

[VLF04b] L. Vacchetti, V. Lepetit, and P. Fua. Stable real-time 3d tracking using
online and offline information. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2004.

[WLM+15] T. Whelan, S. Leutenegger, R. S. Moreno, B. Glocker, and A. Davison.
Elasticfusion: Dense slam without a pose graph. Robotics, Science and
Systems, 2015.

https://doi.org/10.1109/TCSVT.2021.3053696

BIBLIOGRAPHY 69

[WMRB20] B. Wen, C. Mitash, B. Ren, and K. E. Bekris. se(3)-tracknet: Data-
driven 6d pose tracking by calibrating image residuals in synthetic do-
mains. IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 10367–10373, 2020.

[WRM+10] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg. Real-time detection and tracking for augmented reality on mobile
phones. IEEE Transactions on Visualization and Computer Graphics,
2010.

[WXZ+20] C. Wang, D. Xu, Y. Zhu, R. Mart́ın-Mart́ın, C. Lu, L. Fei-Fei, and
S. Savarese. Densefusion: 6d object pose estimation by iterative dense
fusion. IEEE Conference on Computer Vision and Pattern Recognition,
pages 3338–3347, 2020.

[XSNF17] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox.
Posecnn: A convolutional neural network for 6d object pose estimation
in cluttered scenes. arXiv preprint arXiv:1711.00199, 2017.

[YJS06] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM
Computing Surveys, 38(4), 2006.

[ZZZ+20] L. Zhong, X. Zhao, Y. Zhang, S. Zhang, and L. Zhang. Occlusion-
aware region-based 3d pose tracking of objects with temporally con-
sistent polar-based local partitioning. IEEE Transactions on Image
Processing, 29:5065–5078, 2020. doi:10.1109/TIP.2020.2973512.

https://doi.org/10.1109/TIP.2020.2973512

70 BIBLIOGRAPHY

LICENSE 71

License

This work is licensed under the Creative Commons Attribution 3.0 Germany License.
To view a copy of this license, visit http://creativecommons.org or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,
USA.

http://creativecommons.org/licenses/by/3.0/de/

	d571884cebd3fc7c1f2d187bdc2c6473668046548599c7fca5a919d2ae0a04be.pdf
	517441a0570fc370e42e9a223d283b7fda2195d988a820e18fe43febb6695551.pdf
	d571884cebd3fc7c1f2d187bdc2c6473668046548599c7fca5a919d2ae0a04be.pdf
	Introduction
	Problem Statement
	The David System
	Requirements for the Vision-based Tracker
	Vision-based object tracking
	Multi-modality tracker
	Region modality
	Depth modality
	Extended Kalman Filter framework

	Aim of this Work

	Related Work
	Texture-based object tracking
	Feature-point-based tracking

	Mapping
	Structure from motion
	SLAM

	Pose estimation
	Preliminaries
	Pose parametrization
	Image projection

	Feature correspondences
	Energy function
	Optimization

	Sparse feature map
	Data collection
	Geodesic grid
	Grid matching

	Point optimization
	Point clustering
	Bundle adjustment
	Iterative Closest Point
	Point projection

	Integration into the tracker

	Implementation
	Efficiency optimization
	Occlusion handling
	Implicit occlusion handling
	Explicit occlusion handling

	Parameter tuning

	Evaluation
	Evaluation on the RBOT dataset
	Design
	Results

	Evaluation on the YCB video dataset
	Design
	Results

	Evaluation on a recorded sequence
	Design
	Results

	Discussion
	Conclusion and outlook
	List of Figures
	List of Tables
	Bibliography

