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Abstract

In the field of assistive robotic robots aim to help users with impairments to ex-
ecute daily living activities in everyday household environments. Controlling the
high degrees of freedom of those robots directly, with a joystick, is often tedious and
can cause a high cognitive workload. Using Shared control methods, like Shared
Control Templates [GQ20], provide task-specific guidance and constraints to facili-
tate control. However, designing SCTs requires robotic expertise and was previously
hand-crafted. To make such designs easier and faster, we extend the SCT approach
to facilitate the generation of SCT templates on the basis of demonstrations. We
show the capabilities of this approach in a set of daily living tasks such as opening
a drawer and pouring with the wheelchair-mounted robot EDAN [VHI+20].
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Chapter 1

Introduction

In the field of assistive robotics, robots nowadays are capable of doing a lot of impres-
sive tasks such as helping people with disabilities to restore manipulation capabilities
by enabling them to perform daily living tasks. To perform those tasks in human
environments robots need to be capable of sensing, planning and acting accordingly.
However, pre-programming a robot for all potential uses cases and especially un-
predictable events is impossible. Even only extending a task by adding a new skill
requires more time, effort and resources. Therefore, in the field of Human-Robot In-
teraction researchers look for potential solutions. In this field, several architectures
are designed for humans to interact with (partially) autonomous robots. On the one
hand, they try to overcome the problems of fully autonomous robots that require an
accurate model of the world they interact with. This model might be heavily con-
strained by the validity of its environment modelling and might not allow adaption
to new environments [MFD+17]. Furthermore, it has been shown that users prefer
to be in control rather than have a fully autonomous robot[KHKCG+12]. On the
other hand, they improve on manual control (eg. by a Joystick) of robots as it can
be slow, challenging and might require many control mode switches depending on
the task [HHS16].
These design methods are referred to as Shared Control (SC) or Shared Autonomy
(SA). This is a symbiosis between human skills and robot skills and combines the
high-level cognitive understanding of humans and the rapid computation of robots
[She92, CVW90]. The difference between SC and SA is the degree of autonomy the
system can comprise. In SA robots are capable of adapting the autonomy based on
understanding the environment and human actions and intentions. The dynamics
of an autonomous system can be described as follows:

ẋ(t) = f(x(t), u(t))
u(t) = hθ (uh(t), ua(t); θ(t))

(1.1)

where x is the state of the robot, u is the user input and h is an arbitrary function that
combines/modulates autonomous control and user input. hθ models the autonomy
level of the system and θ is the robot’s understanding of the human or environment



Figure 1.1: Autonomy model of robot systems. Taken from [SCN+21].

(see Figure 1.1). In the case of SC, the arbitration function reduces to h(uh(t), ua(t)
as it only depends on human/autonomous control inputs and no other external
variables [SCN+21].
A popular field where SC and SA are used is assistive robotics, where, for exam-
ple, robots help people with disabilities to conduct activities of daily living. One
implementation is the research project EDAN, an Electromyography (EMG) Daily
AssistaNt [VHI+20]. This is an electric powered wheelchair with a mounted robot
arm that can be controlled via a surface EMG-based interface or a joystick. Manu-
ally controlling everything might be difficult as it leads to a high cognitive load of the
user. For this purpose, SC and SA can help the user by guiding a specific task. For
example, the robot helps users trying to pour a bottle of water into a glass or open
a shelf. The guidance comprises different approaches that extract and use informa-
tion from the human operator, which is in charge of trading control. Usually, these
laborious design procedures require robotic expertise. To make such designs easier
and faster, this master’s thesis is interested in automating the process of setting up
new skills based on Shared Control Templates. With the overall goal of reducing the
amount of work required by programmers to create a desired shared control skill,
a system for learning skills from demonstrations is desired. Improving on previous
work [GQ20] and [QHI+20], this thesis aims to create an automated pipeline to learn
these skills from demonstrations and explore to what degree automation is possible.
The contribution of this thesis is three-fold:

1. Improve the formalism to automatically generate SCT,

2. Design two algorithms to model states, Input Mappings and Active Con-
straints,

3. Test both algorithms on a set of experiments on the real robot.

This thesis is structured as follows: Chapter 2 introduces some related work in this
field. Linear Input Mappings models and vector fields models are introduced in



Figure 1.2: A demonstration of Edan. Taken from [VHI+20].

Chapter 3. Chapter 4 describes the conducted experiments and Chapter 5 discusses
them. Chapter 7 summarizes the master’s thesis and outlines future work.
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Chapter 2

Related Work

Several complementary approaches have been developed in Shared Control where
some approaches predict and leverage user information, while others attempt to
constrain the available workspace.

2.1 Predict and Leverage human intention

First, one can realize shared control with policy blending [DS13]. Dragan et al.
study everyday manipulation tasks where the robot tries to predict and augment
the user input. Two policies, one from the robot for the most likely goal and one
from the user through a device (ie. GUI, joystick) are blended. The amount of
assistance is determined by the prediction confidence of the goal.
In [JSB15] Javdani et al. formulate the SC problem as a Partially Observable
Markov Decision Process (POMDP) with uncertainty over the user’s goal. Rather
than splitting the prediction and then assisting for a single goal, this approach assists
for an entire distribution of goals. They use hindsight optimization in order to find
the best assistance command and provide assistance even if the confidence is low.
A first model-free approach is made by Oh et al. in [OKTM19], where they define
a differentiable strategy. It attempts to integrate motion generation, user intention
inference, and arbitration to train a shared autonomy system using reinforcement
learning. In their user experiments, the approach had problems identifying the
correct intention and resulted in incorrect predictions.
A more sophisticated approach was conducted by Reddy et al. in order to overcome
unknown dynamics, user policies and a particular goal representation [RLD18]. It
tries to learn an end-to-end mapping from observations of the environment and user
inputs to agent actions values in form of a Q-function. The supervision is solely
based on task rewards which consist of known terms for every state and terminal
rewards by succeeding or failing the task.
Mehr et al. present a method for inferring end-effector constraints online from
operator input and a confidence-based method that assists the user in maintaining
those constraints by learning a mapping to the task space [MHD16].



2.2 Restricting the environment

Second, some approaches try to exploit the environment by constraining the available
workspace. This control method is usually referred to as active constraints or virtual
fixtures [BDB14]. They can take various forms and can be applied to any dimension
of the task space, usually the end-effector position, orientation, or full pose. Those
constraints range from simple lines, planes, axial rotations or fixed joints [SZG18]
to generalized cylinders [AC18].
A more implicit restriction is made with Latent Actions or Input Mappings (IM).
The goal is to find a mapping from high-dimensional robot actions to low-dimensional
controls. With so-called learned latent actions, Losey et al. provide a low-dimensional
embedding of high-dimensional robot behaviour, where they change the meaning of
human inputs depending on the confidence in the goal [LSM+20, LJL+21].
In [ACHT14], Alexandrova et al. attempt to learn multi-step manipulation tasks
from a single demonstration. To do this, they learn so-called ”landmarks” that
represent target frames (target position and orientation in Cartesian space) with
respect to relevant objects. An interactive graphical user interface allows the user
to modify the target frames and landmarks a posteriori.
Another aspect within the environment is to capture task-specific information. Learn-
ing from demonstrations (LfD) therefore has become a very popular approach.
Robots acquire new skills by learning to imitate an expert or, likewise, non-experts
to teach robots manipulation [ACVB09]. These methods have helped teach ma-
nipulators a variety of skills, such as robotic surgery [SMO+21] or assistance with
daily activities [MNM18]. The recorded trajectories are usually clustered based on
distance metrics, density [BTTT18], or predominantly statistically using, for ex-
ample, Gaussian mixture models (GMM) and Gaussian mixture regression (GMR)
[CGB07, Cal16] or GMR in Riemannian Manifolds [ZHS+17]. In order to generalise
it is important to learn the representation in terms of relevant frames of reference,
i.e. objects being manipulated [Mas81, LBH12]. In approaches like [AM16] the
frames of reference are often given. Therefore, there is a necessity to extract po-
tential candidate feature frames directly from the recorded data. A first attempt
to cluster trajectories with vector fields was done by Ferreira et al. By using Vec-
tor Field k-Means they try to identify streams of trajectories as vector fields and
capture velocity and magnitude insights [FKSS13]. Their approach makes use of a
grid-based approximation. Baro et al. use Gaussian random fields in [BM17] and
[BM18] to avoid this discretization. Making use of GMMs or vector fields can also
fall into the first category where they act as a policy to blend commands.

2.3 Multiple models

Third, some approaches attempt to combine multiple models simultaneously, e.g.
by constraining the end-effector with multiple models and using different Input
Mappings.



One example is C-Learn (Constraints learning), which uses a multi-model represen-
tation to build arbitrary capabilities [PDS17]. They attempt to learn hard geometric
constraints from a single demonstration using machine learning and motion planning
techniques. The resulting finite state machine consists of a sequence of keyframes
and a set of geometric constraints per keyframe. A generalization of this approach is
[CBO18], where they also learn nonlinear constraints defined not only by the state
space but by an arbitrary constraint space.
Another approach on which this work builds is the Shared Control Template (SCT)
framework, introduced by Quere et al. in [GQ20]. The framework provides templates
to define task-specific capabilities that provide guidance during task execution. The
system leverages knowledge about the task and objects in the world and guides
the user by mapping input commands to task-relevant robot motions. A follow up
approach is [QHI+20], where Quere et al. focus on learning Active Constraints.
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Chapter 3

Background

This chapter briefly summarises the main concepts of SCTs and describes its pipeline,
explains relevant aspects of EDAN and describe the process of learning SCTs from
demonstrations.

3.1 Example

Before starting with the SCT formalization, the pouring task will be explained to
grasp the main concepts. Within this task, users try to pour a bottle into a mug
and the movements consist of different phases. In the first phase, the user moves
the bottle closer to the target. In the second phase, the user starts to slowly rotate
towards the target and in the last state, the pouring takes place. In all these
phases the bottle needs to fulfil geometric constraints like to not tilt too far, which
can be expressed in different coordinate frames. In addition, to simplify the users’

Figure 3.1: Conceptual image of the pouring task, where the user pours a bottle
into a target. It shows the world frame as well as the object and end-effector frame
throughout the task.



Figure 3.2: Schematic overview of SCT modelling the pouring tasks. User commands
∆u are processed by a Finite State Machine with different states, Input Mappings
and Active Constraints. Adapted from [GQ20].

execution, the input commands can be mapped in different motion directions.

3.2 SCT pipeline

The pouring skill from above can then be described more formally within the SCT
pipeline (see Figure 3.2).

Input

At the start of the pipeline is the user input ∆u ∈ R3, which comes either from
an sEMG interface (see [VHI+20]) or a joystick. The space R3 allows translational
and rotational motions and the commands will be further processed within a state
machine.

States

A state is a structure optionally composed of robot parameters (end-effector con-
figuration, control parameters, etc), Input Mappings (IMs), and Active Constraints
(ACs).

Formalism

An SCT models different states and transitions, which resembles a finite state ma-
chine. The transitions depend on metrics such as estimated force thresholds, dis-
tances, or timeouts. For example in the pouring skill, the transitions depend on the
distance between mug and bottle. There is a defined start state, ie. when a skill
starts and only one state can be active. It also defines a distinct end state that
finishes the execution of a skill once its reached.

Input Mappings

IM models constrain the velocity commands on the end-effector and maps user ve-
locity commands u̇(t) to the end-effector velocity ġ(t) at each time step. They are



depending on the end-effector pose and result in an end-effector increment ∆g(t)
(i.e. small end-effector motion) called displacement. Those displacements are con-
tinuously applied to the end-effector pose gε and create a trajectory. In the first
state of the pouring task (translational control), the user input is mapped to the
x1, x2, x3 translation of the grasped thermos. In the second state (Tilting towards
the target), the IMs maps two control signals to translation and one control signal
to rotation. In the last state where the pouring happens, the IMs map only one
signal to translation and two signals to rotation.

Active Constraints

AC models are used to restrict and guide the user along with the task. An AC is
a geometric limit that affects the robots end-effector pose and restricts its space of
permissible poses in the special Euclidean group SE(3). They can comprise scalars,
functions or manifolds like cones or cylinders and are independent of the starting
position. In our pouring task, ACs are used to keep the bottle upright at a specific
height in the first state. In the second state and third steps, ACs restrict the end-
effector pose to not tilt too far by setting a maximum tilt angle to prevent spillage.
Both of these elements assist the user while executing a task and both define a
manifold of allowable end-effector poses at a given state G(s), where G ⊂ SE(3)
and s is a state in the FSM.

Output

The output of the template are homogeneous transformation matrices representing
end-effector poses Ht. Those poses are given to a task space interpolator like a
Cartesian impedance controller to apply them to the robot.

Summary

Figure 3.3: Overview of the system architecture. User commands are processed by
Input Mappings and Active Constraints to obtain a new end-effector pose. Taken
from [GQ20].



To sum up, SCTs provide task-aware mappings and constraints for each state of a
skill to help users achieve a task. The state machine triggers transitions between
them depending on the progress. An SCT is described in a YAML file to easily
adapt and modify without changing the underlying framework (see [GQ20] for ex-
amples). Figure 3.3 shows the overall system architecture combining all different
aspects within a SCT for the research platform EDAN. In addition to the task-
space interpolator, EDAN also includes a whole-body controller that coordinates
the motion of the wheelchair (2DoF) together with a modified DLR Light-Weight
Robot III (8DoF) and five-fingered DLR-HIT hand mounted [VHI+20] to follow the
target pose Htar [IQH+19].

3.3 System integration

SCTs and this master’s thesis are integrated into the EDAN system. Therefore, this
section outlines important aspects such as the world and object representation and
the user interface.

World Representation and Object Database

Following [LBH12], SCTs use an object-centric action representation. Skills are de-
fined for object classes and their inheritance in a database. These object classes can
be inherited, e.g. a thermos can derive from a virtual class bottle, which can derive
from a container. A centralized world representation then handles object instances
and describes the robot belief of the current world state. EDANs perception systems
localises available instances and estimates their pose [VHI+20].

User Interface

EDAN also uses a high-level graphical user interface on a mounted display which
provides various information (see Figure 3.4). For SCTs, a continuous 3D velocity
interface is used with a space mouse or sEMG-based interfaces as input.

3.3.1 Learning SCTs from demonstrations

In previous work, LfD was used to learn new skills. In this pipeline, several demon-
strations were gathered to help capture variability within the task. They contain
end-effector trajectories and forces applied to them. Kinesthetic teaching or teleop-
eration is used to obtain the kinematic part. Force sensors or joint torque sensors
are used to measure external forces. These recordings are then with respect to the
target object, subsampled a given distance and preprocessed with dynamical-time-
warping (DTW) [BC94] to align the timestamps. Afterwards, they were usually
segmented based on curvature or force contact points with different ACs fitted. So



Figure 3.4: The user interface provides general information (Info), the controlled
device (Mode), perception module feedback (Perception), the measured control sig-
nal (Control), different default tasks (Flower) and a list of available tasks from the
world state representation (Available Tasks). Taken from [GQ20].

far, neither learning IMs nor transitions have been considered in the pipeline, which
will be explored in the following.
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Chapter 4

Methodology

A challenge within SCTs is to hand-craft IMs, ACs and states. In this thesis, we de-
velop two different approaches to facilitate the generation of SCTs. The first method
is Linear Input Mappings that tries to identify the main direction of motion and
learn transitions based on them. The second method uses vector fields to generate
IM and AC with a smooth transition based on their superimposition. All of the
poses and transforms used are elements of SE(3), which means their representation
(pose, matrix, ...) is interchangeable.

4.1 Linear Input Mappings

The most elementary IM is a 1-to-1 mapping, where one user input DoF controls one
motion DoF. This can be achieved with a matrix with at most one element per line
and column. For EDAN, where the user input dimension isR3, it gives a M ∈ R6×3

matrix to control 6-DoF motion. This linear input model is applied as IM within a
skill (see Figure 3.3) and computes with the user input ∆u a displacement ∆T at
every time step. This displacement is then applied on the current end-effector pose
to get a new pose.

HIM = M ·∆u ∈ R6×1 (4.1)

An example of such a Linear IM is displayed in Figure 4.1. It maps the user input
in a translation in x and a rotation in y. For EDAN, the first three columns can
be seen as a mapping to the translation vectors and the last three columns as a
mapping to the rotation vectors.

The proposed idea for this algorithm is to define a set of possible Linear IMs M ∈M,
that control 1-3 motion DoF and can be used by SCTs as IMs. This set can then
be used to identify the main direction of motion within trajectories.



Mtxry =

1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0


Figure 4.1: Example of a Linear IM with a translation in x (tx) and a yaw-rotation
(ry).

4.1.1 Identification of Linear IMs

To identify Linear IMs, this approach looks at adjacent poses from the subsampled
recorded trajectories. Those discrete poses gε of the end-effector consist of three
Cartesian coordinates (x,y,z) and orientation as quaternion (q0, q1, q2, q3) expressed
with regards to the target. The displacement between the current pose gε,t to their
next pose gε,t+1 is used in order to identify the main direction of motion within a
time step t. This displacement is given with the transformation ∆Tt with

gε,t+1 = gε,t ∗∆Tt (4.2)

where ∆Tt consists of a rotation matrix Rt and translation tt:

Rt = Rgε,t+1 ·RT
gε,t (4.3)

tt = tgε,t+1 −Rt · tgε,t (4.4)

The rotation difference is transformed back to Euler angles and together with the
translation difference, it forms an Euler pose. Even though the Euler pose has some
drawbacks like non-unique solutions and the gimbal lock [SN03], it is yet a practical
way to define small displacement.
Afterwards, the approach checks by using any command ∆u, which particular Linear
IM M ∈M best approximates the displacement ∆Tt, and solves following linear
equation:

M∆u = ∆Tt (4.5)

The system has more variables m than equations n, which means it is an overdeter-
mined: m > n. This means it has full rank and a solution for

∆u = M+∆Tt (4.6)

exists with the Moore-Penrose inverse M+. The Moore-Penrose inverse is defined
as

M+ = (MTM)−1MT (4.7)

The residual is given by

rt = M∆u−∆Tt (4.8)



To show how well M approximates the displacement, the transform norm is used.
This norm for a given pose g is

||g||TF = ‖gtrans‖2 + α · grot (4.9)

where gtrans is the translation part and grot is the angle-axis of the rotation. The
angle-axis is defined as

grot = arccos
Trace(Rg)− 1

2
(4.10)

with the rotation matrix Rg and the trace of the matrix Trace(·). The parameter α
tunes the trade-off between the Euclidean distance of the translation and the angle
difference in the axis-angle representation.
The cost of one Linear IM and one displacement is

Cost(M,∆Tt) = ||rt||TF (4.11)

The best displacement approximation for ∆Tt for of all Linear IMs in M is given
by the minimum cost.

M̃t = min
M∈M

Cost(M,∆Tt) (4.12)

4.1.2 Using feature frames

The main direction of motion might differ for feature frames. A feature frame is a
frame of interest such as the end-effector pose, the tip frame of a grasped object

Figure 4.2: Conceptual illustration of the pouring skill now with an additional
feature frame like the tip of the bottle. Using the tip frame as a reference for the
motion simplifies the necessary motion to accomplish the task to only rotate without
any translation.



or the grasped frame of a target. The demonstrations can be observed from those
different viewpoints [Cal16]. By looking at the demonstration data from different
feature frames, the motion can be simplified (see Figure 4.2). In the pouring skill
example, the main direction of motion simplifies to only a rotation in the pour state
for the tip of the bottle. Both concepts together are used to analyze the recorded
trajectories.

Linear IMs with 1-DoF

The introduced concept will be illustrated with the following figures. Figure 4.3
shows one trajectory from two different viewpoints for the pouring task. On the
x-axis are the displacements (4.2) over time. On the y-axis is the cost (4.11) of the
different 1-DoF Linear IMs, which include translation in either x,y,z or rotation of
roll (rx), pitch (ry), yaw (rz). Figure 4.3(a) shows the trajectory by looking at the
end-effector. We can see that the trajectory consists of x-translation up to the 14
displacements. From 14 to 25, it consists of y-translation, then a small x-translation
and a slight yaw-rotation at the end. Figure 4.3(b) shows the same trajectory by
looking at the tip of the bottle. Here, the main movement consists of a translation
in y up to the 10 displacements. Afterwards, the yaw-rotation is the main motion.



(a) The cost of 1-DoF Linear IMs by looking at the end-effector. It is mainly generated by x- and
y-translation.

(b) The cost of 1-DoF Linear IMs by looking at the tip of the bottle. While the first part consists
of an x-translation, the main movement in the second part is the yaw rotation.

Figure 4.3: The identification of the main direction of motion using 1-DoF Linear
IMs on two different feature frames for the same trajectory.



4.1.3 Segmentation of trajectories

By using different paths to execute the same task we obtain multiple trajectories and
multiple displacements with different costs associated. Therefore, we would like to
find a labelling of Linear IMs which represent the trajectories in a piecewise smooth
and consistent manner. Meaning the same Linear IM is used in whole regions of the
trajectories. This labelling can result, depending on the task, in different segments.
For example in the pouring skill, we would obtain 3-DoF translation Linear IM in
the first state and 3-DoF rotation and translation Linear IM in the second state.
The smoothing comes from exploiting neighbourhoods since adjacent displacements
should be more likely to be generated by the same Linear IM than by different ones.
Consistency means that it is desirable to have fewer Linear IMs changing within a
state [Sch12]. This problem is formulated as an energy term where the energy for a
label f is given by [BVZ01]:

E(f) = Edata(f) + Esmooth(f) (4.13)

Edata(f) indicates how well the labels represent the data. For example how many
models are used or if the motion can be described with more or less DoF. To account
for this, the cost in (4.11) is extended to include the number of controlled DoF of
the Linear IM:

Cost(M,∆Tt) = ||r||TF + β · nDoF (M) (4.14)

With the parameter β, it favours simpler Linear IMs over more complex Linear
IMs. Edata(f) is then the sum of the costs of the Input Mappings representing the
displacement ∆T over all time steps.

Edata(f) =
T∑
t=1

Cost(M,∆Tt) (4.15)

Esmooth(f) shows how smooth the labels represent the data. It assumes some specific
neighbourhood system N for the displacements. For example, displacements (p, q)
that are within a specific distance can be considered as neighbours.

Esmooth(f) = λ
∑
p,qεN

wpq · δ(Mp 6= Mq) (4.16)

λ is a parameter to tune the influence of the smoothness term, where on the one hand,
labels should not change too often. On the other hand, Linear IMs must represent a
skill in a meaningful manner. Therefore, the smoothing parameter should not be too
high, otherwise, important information will be lost due to over-generalisation and the
displacements will be labelled with only one Linear IM. Contrary, if the smoothing
parameter is too low, too many IMs will be considered and the representation will
not be smooth enough. The weighting factor wpq is based on the tf-norm for the
spatial distance from (4.9) between neighbours. This distance is then used in wpq =



exp(−||p−q||TF ). The metric δ(Mp 6= Mq) is called Potts model, where δ(·) is 1 if it
fulfills the conditions and 0 otherwise. It is 1 if the IM of displacement p is different
to the IM for displacement q and 0 otherwise.

4.1.4 Energy Minimization via Graph Cuts

By minimizing (4.13), a piecewise smooth and consistent labelling will be found.
This can be done either locally or globally. According to [Sch12], graph cuts show the
best performance as a global optimization. A popular algorithm based on this is the
α− β swap algorithm [BVZ01]. It allows swapping the labels between an arbitrary
set of α-labeled displacement and β-labeled displacement. At each iteration, the
algorithm changes the α− β combination until all possible combinations have been
tried and the algorithm converges. To do this, a graph is constructed for a current
labelling f with different weights at the edges and nodes. An optimal cut is found
that solves the maximum flow problem and minimizes the total energy in equation
(4.13). For more details see Section A.3 in the Appendix.

4.1.5 Separation via Support Vector Machines

After identifying the different Linear IMs and finding a smooth and consistent label,
the resulting data points xi with their associated labels yi ∈ f were used to train
a support vector machine (SVM) classifier [CST00] with the Python SciKit Learn
package. The classifier separates the data points by finding an optimal hyperplane
when minimizing the following equation:

min
w,b,ζ

1

2
wTw + C

n∑
i=1

ζi (4.17)

with subject to

yi
(
wTφ (xi) + b

)
≥ 1− ζi (4.18)

ζi ≥ 0, i = 1, . . . , n (4.19)

The goal is to find hyperparameters w ∈ R3 and b ∈ R3 so that the prediction
sign(wTφ(x) + b) is correct for most samples. The parameter ζ allows a certain
distance for these samples to be away from the correct margin boundary, in the case
of some samples violating the hyperplane. With the penalty term C, the strength
of the violation can be regularized. There is also the possibility to use polynomial
or radial-basis kernels, but as we want a linear switch (i.e. simple and intuitive
transition) between the different states of the skill, a linear kernel was sufficient.
Figure 4.4 shows multiple trajectories for the pouring skill segmented and classified.
As expected, the algorithm distinguishes with a hyperplane between two states with
different Linear IMs. Algorithm 1 illustrates the whole pipeline for this approach.



Figure 4.4: Identifying different Linear IMs on multiple trajectories with hyperplane
separating different states.



4.1.6 Building a skill

After various Input Mappings have been identified and separated with a hyperplane,
the outcome is a fast and simple function used by the skill. For this purpose,
all necessary parameters are described in a YAML file (see Listing 4.1). This file
describes three main parts. First, the transitions for the finite state machine. They
depend on the EE position wrt. the target. The SVM predicts the labelling and
returns the current state (see Algorithm 3 in the Appendix). Second, the individual
states where the Linear IMs are applied. The current active state applies the user
input on the Linear IM to generate HIM (see Algorithm 2 in the Appendix). Third,
possible Active Constraints that can be used to apply geometric constraints on
the intermediate pose HIM . For all three parts, it refers to a serialized model
automatically generated from above.

Listing 4.1: Linear IM skill

f sm:
model :

path : ”path/ to /model”
d i s p l a y r v i z : [ True ] | [ Fa l se ]
f rame: [ Ref . frame ]

s t a t e s :
s t a t e 0 :

input mapping:
− model:

path : ”/path/ to /model”
f rame: [ Ref . frame ]

. . .

a c t i v e c o n s t r a i n t s :
− r e f : [ Ref . frame ]

model :
path : ”path/ to /model”
s c a l i n g : [ Int ]



4.2 Vector fields

Another promising approach to automatically generate SCTs is by looking at vector
fields. The successful separation via hyperplanes depends hugely on the skill and the
main direction of motion. Vector Fields, on the other hand, do not need to segment
trajectories and allow us to exploit further knowledge within the trajectories. The
idea is to model the translational displacements of the prerecorded trajectories as
vector fields. Their usage is twofold: either as Input Mappings or to identify can-
didate feature frames (see Figure 4.5). In the first case, the vector fields guide the
end-effector along its way either by scaling the users input command or optional by
by blending the commands. Being able to identify candidate feature frames allows
us to manipulate unknown object in the case perception failed. Vector fields are a
tool to provide us with this prior. For example, if the bottle rotates around the tip
when it is poured, a spherical vector field is created. This tip frame can then be
identified because it is located in the centre of this sphere.

4.2.1 Definitions

A vector field is a function F : R3 → R3 that assigns each point p ∈ R3 a vector
v ∈ R3. It it usually written as

F (p) = (f1(p), f2(p), f3(p)) (4.20)

with f1, f2, f3 as function f : R3 → R. To simplify the calculations, this approach
looks only at the translation of the end-effector pose pε ⊂ gε. We did not consider

Figure 4.5: Conceptual illustration of the vector field approach. The movement can
either be described with vector fields and they are used as IMs. Or a candidate
feature frame can be extracted as the center of the spherical vector field.



the orientation because of their high DoF, their difficulty to visualize and the pref-
erence to control translation over-rotation in most tasks. To obtain the vectors vε
associated with points pε, this approach computes the translation difference between
the current point pε,t to its successor pε,t+1 in Euclidean space.

vε,t =
pε,t+1 − pε,t
‖pε,t+1 − pε,t‖

(4.21)

4.2.2 Basic forms of vector fields

The recognition of basic shapes is a major topic in point cloud segmentation. Fol-
lowing the approach of Schnabel et al. [SWK07] basic shapes like spheres, cylinders
or planes just need a few parameters and only a minimum set of points and vectors
to estimate pose and shape. For this proof of concept, we selected a few basic fields
in a set F .

Translation field A translation vector field is defined by a magnitude and its
direction and is described only by one point and one vector. The vectors associated
with this field have the same direction (see Figure 4.7(a)).

Cylindrical field To describe a cylindrical vector field, a center and a rotation
axis (see Figure 4.7(c)) is needed. The center and axis are described by two points
with corresponding vectors. They define a plane, where the intersection of the planes
is a candidate for the rotation axis.

Spherical field A spherical vector field is only defined by a center (see Figure
4.7(e)). Similar to the cylindrical vector field it is described by two points with
corresponding vectors. They again define a plane, where the midpoint of the inter-
section of the planes is a candidate for the center.

4.2.3 Fitting basic vector fields

In order to robustly find basic vector fields we use a two-step approach. First,
random sample consensus (RANSAC) [FB81] is used to find fields in the presence
of many outliers and a high degree of noise. Second, an expectation-maximisation
(EM) algorithm is used to achieve a smoother fit in a probabilistic manner [ZHS+17].
Algorithm 4 is in Section A.2 of the Appendix shows the generation pipeline for this
approach.

Random sample consensus

RANSAC randomly selects a minimum set of points and vectors to describe the
models and then checks for inliers (points that fit the model) and outliers (points
that do not fit the model). Depending on the field, different vectors are considered as



Figure 4.6: Conceptual illustration of calculating the deviation angles for a spherical
vector field. The blue vectors are generated of the vector field at the different points.
The grey vectors are the vectors from the data. The red lines indicate the angular
deviation between both vectors. Maximizing the set of inliers (i.e. minimizing the
sum of angular deviation) gives the desired field.

inliers or outliers. The distinction is based on the angular difference. To calculate
the angular difference, the algorithm uses the vectors from (4.21) and compares
them to the generated vectors from each field in F . In other words, each field of F
generates one vector at point pε,t and compares it to vector vε,t associated with it.
If the angle deviation is smaller than a predefined angle α, the vector is considered
as inlier otherwise as outlier. For more details about the calculation of these angles
check Section A.1 in the Appendix.

Number of iterations The number of iterations can be determined such that
there is at least one outlier-free subset with a certain probability p. Given the
number of points S needed to compute a model and e, as the relative proportion of
outliers in the data, the probability that no outlier is selected after N iterations is
given by:

p = 1− (1− (1− e)S)N (4.22)

In order to determine how many samples are needed that at least one sample is free
of outliers, the number of iterations follows:

N =
log(1− p)

log(1− (1− e)S)
(4.23)

This number is independent of the total number of measured values and depends
only on the proportion of outliers, the number of parameters of the model function
and the given probability of drawing at least one outlier-free subset.
The algorithm was first tested on synthetic data (see figure 4.7) and then on real data
(see figure 4.8). A set of possible vector field models F ∈ [Translation, Spherical,
Cylindrical] is defined and each model was fitted to the data. After each iteration,
the fitted model with the highest inlier set was stored. The inlier points were



excluded from the data. The defined set of models was again fitted to the reduced
data. After nR iterations, nR fields are obtained to describe the data. In the
pouring skill, the algorithm identifies after two iterations two vector fields. The first
one is a translation field for translation control. The second one is a spherical field
for the pouring (see Figure 4.8(a)). In the open a drawer skill, the algorithm fits
two translational fields after two iterations (see Figure 4.8(b)). To get a meaningful
representation of vector fields, it was important to set the hyperparameters correctly.
Besides the number of iterations, which depends on the skill, the angles to distinguish
between outliers and inliers are important. If this angle is too large, the vector field
would contain too many points, if it is too small, too few points. See Algorithm 5
in Section A.2 of the Appendix for the pseudo code.



(a) Example of a translation vector field. (b) Fitted translation field.

(c) Example of a cylindrical vector field. (d) Fitted cylindrical field.

(e) Example of a spherical vector field. (f) Fitted spherical field.

Figure 4.7: Simple forms of vector fields on the left. Fitted vector fields on the right
with RANSAC. The yellow points are considered as inliers. The synthetic data is
generated in a way that there are no outliers.



(a) Fitting a spherical vector field and translation vector field for pouring skill on real
data.

(b) Fitting two translational fields for open drawer task skill on real data.

Figure 4.8: Basic vector fields fitted on real data for the pouring and open drawer
task.



4.2.4 Expectation Maximisation with Gaussians Mixture Mod-
els

Due to the nature of RANSAC algorithms to distinguish between outliers and inliers,
an EM algorithm is implemented as a second step, to get a smoother fit. This ensures
that all points of the trajectories are considered and associated with probabilities
[ZHS+17]. The idea is that the vectors are generated from a Gaussian distribution
with a zero mean and the spread of the vectors captured with σ. When there are
multiple vector fields, there are multiple Gaussian distributions called a Gaussian
mixture model (GMM). The general form of a probability density distribution is:

N (x|µ, σ) =
1

σ
√

2π
e−

1
2
(x−µ
σ

)2 (4.24)

The GMM aims to describe the angles θ1, ..., θn as:

P (θj) =
K∑
i=1

πi N (θj|µi, σi) (4.25)

where K is the number of Gaussians and πi is the mixing proportion with following
constraint:

K∑
i=1

πi = 1 (4.26)

Expectation Maximisation algorithm

The EM algorithm is an iterative algorithm to soft cluster data based on the prob-
abilistic of GMMs. It consists of two steps: first, the Expectation step (E-Step),
which assigns each data point a probability. Second, the Maximization step (M-
Step), which updates the parameters of each cluster based on the assigned points.

Expectation Steps To assign probabilities to data points, this approach takes
the deviation angle of the data. The probability rim that the angle deviation θi
belongs to model m is given by:

rim =
πm N (θi | 0, σm)
K∑
k=1

πk N (θi | 0, σk)

(4.27)

where σm captures the spread of the angles of the vectors assigned to the model m.



Maximisation Steps After all, probabilities are assigned to each vector, the
model parameters are updated. First, the total weight wm, which is the sum of
the probabilities of the proportion of points assigned to model m,

wm =
∑
i

rim (4.28)

then the mixing proportion

πm =
wm∑
mwm

(4.29)

and the variance

σm =
1

wm

∑
i

θi (4.30)

The center of the vector fields is then updated according to the assigned points.
For a translation field, the new center is the mean overall associated points. For
a cylindrical field, the axis is given by the intersection between all planes from the
points and vectors. Similarly, for the spherical field, the center is given by the
intersection of all the planes, and then the intersection of the intersection lines.
Furthermore, it is possible to check for Spatio-temporal coherence. For example,
points that are too far away or have a less frequent timestamp are removed. If there
are too many models, the models with too few points are pruned. See Algorithm 6
in Section A.2 of the Appendix for the pseudo code.



(a) The initialised vector fields for the pouring task from Figure 4.8(a) were generalised
with the EM algorithm. The colours indicate which points are associated to which field.

(b) The initialised translation vector fields for the open drawer task from Figure
4.8(b) were generalised with the EM algorithm. The colours indicate which points
are associated to which field.

Figure 4.9: Generalised basic vector fields from 4.8.



4.2.5 Vector fields as IM

Compared to Linear IMs, realizing vector fields as IM has two advantages. First, the
transition between the different states (fields) are smooth and based on probabilities.
Second, applying Input Mappings can be done in two optional ways: either apply
scaling to the user commands vector or as policy blending.
To apply a scaling to the user commands, the scalar product s between the command
vector ∆u and the generated vector(s) vF at pε,t is calculated. The generated vector
is either from the most probable vector field (4.31), or from multiple vector fields
(4.32), added together and scaled by the probability P (vF |F ) that this vector is
associated with the vector field F ⊂ F .

s = ∆u · vF (4.31)

s =
F∑
F

∆u · vF · P (vF |F ) (4.32)

The scalar product follows the shape of a cosine between [0, π
2
]. If the command

vector is aligned with the vector field vector vF , then there is a scaling of 1. If
the command vector is not aligned, then the scaling is reduced. If the command
vector is orthogonal to vF then the scaling is 0. In order to tune this scaling with a
parameter, the scalar product was normalized with tunable sigmoid function, where
the parameter ks adjusts the curve.

ss =
s− kss

k − 2ks|s|+ 1
(4.33)

To still maintain motion and avoid 0 input, the scalar product is limited to [min v, 1]
with the clip function. The parameter min v sets a minimum velocity and is defined
in the skill as shown in Listing 4.2. Applying the scaled user command, the outcome
is more guidance: the end-user is always in control rather than blended by a policy.
The intermediate pose from Figure 3.3 becomes the following:

HIM = clip(∆u · ss,min v) (4.34)

A different possibility is using vector fields for policy blending. Therefore, the current
end-effector position is used to determine the nearest neighbour points with vectors
within a distance ε. This is done with a KD-tree using the poses relative to the target
with the Python SciKit-Learn package. Each neighbour influences the current end-
effector position by adding their vectors together scaled by the probability of the
most probable field.

HIM = ∆u +
F∑
F

vF · P (vF |F ) (4.35)



When the end-effector is coming closer to the target pose, the vector field influ-
ence becomes stronger as there are more vectors which cause the end-effector to
automatically go closer to the target.
After applying IMs, geometric constraints can be applied. Similar to the blending
option, the nearest neighbours are located and the average orientation of the neigh-
bours is used, scaled by the distance to them. The parameters for the maximum
number of neighbours max n and maximum distance max d reduce the number of
neighbours. First, it checks within a max d for neighbours and if there are more
than max n, they constrain the number to max n. See Algorithm 7 in Section A.2
of the Appendix for the pseudo code.

4.2.6 Building a skill

Listing 4.2: VF IM skill

s t a t e s :
d e f a u l t :
input mapping:

− model:
path : ”path/ to /model”
r e f f r a m e : [ Ref . frame ]
min v: [ Float ]
max dt: [ Float ]
k s : [ Float ]
d i s p l a y r v i z : [ True ] | [ Fa l se ]
max n: [ Int ]

4.2.7 Identification of candidate feature frames

If perception fails and no additional feature frames are available other than the
end-effector frame, vector fields can be used as a tool to obtain additional frames of
unknown objects to have the possibility to further manipulate them. In the pouring
skill, the bottle is poured out around the tip of the bottle and forms a sphere (see
Figure 4.5), which means that the center of the sphere is a candidate feature frame
for the tip of the bottle. Figure 4.10 shows the identified vector fields in the pouring
technique. Only the translational part of the centre is given and we assume that
it has the same orientation as the world. Figure 4.11 shows the frame of the end
effector and the identified candidate feature frame projected onto a vertical plane.
As expected, the candidate feature frame initially follows the end-effector, but then,
as the end effector follows arc circle, it stays in place.



Figure 4.10: Vector fields identified on the end-effector trajectories wrt. to the
world. A candidate feature frame is the center of the sphere at (0.087, 0.068, 0.265).
The orientation is assumed to be the same as the world.

Figure 4.11: End-effector frame and candidate feature frame from sphere center
projected on a vertical plane.
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Chapter 5

Experimental Results

This chapter verifies the current approach based on conducted experiments on
EDAN. The experiments aim to show a proof of concept of our approach on two
tasks. Furthermore, it shows that the reproduced trajectories are similar to the ones
used for training.

5.1 Metrics

The similarity between trajectories can be measured with plenty of different metrics.
One of the most important and commonly used similarity measures is dynamic time
warping [TBS+21]. In general, DTW measures an optimal match between two
given sequences. A characteristic is that the cost of path represents how well two
trajectories are aligned in that path. In a 2D case, the cost is the sum of the squared
distances between all pairs of aligned points. Using the tf-norm from (4.9) enables
us to compare trajectories in 6D. A low value indicates that the trajectories are
similar.

5.2 Pouring task

The first task in our experiments was the pouring task. Therefore, new trajectories
with kinesthetic teaching were recorded, segmented and fitted to generate the dif-
ferent aspects of the skill. During this process, different hyperparameters have to
be set.

Linear IM The first hyperparameter for the identification of Linear IMs is α in
(4.11) with a reasonable value between [0.3, 0.5]. These values slightly favour ro-
tations, because empirically the algorithm detected translation easier. This might
come from the fact that rotation movements are more affected by noise than trans-
lation movements. The second hyperparameter is β in (4.14) with a small value
around [0.01]. It tunes the controlled number of DoF and enabled 3-DoF, which



Figure 5.1: The pouring task demonstrated on the real system.

was a sufficient for the pouring task (more in the discussion). The third parameter
within the segmentation process is λ in (4.16) to tune smoothing and consistency.
A value between [0, 0.007] showed a good trade-off. The number of neighbours is
determined with the maximum neighbour distance witch was around 4cm. In gen-
eral, it was good to consider up to 10 neighbours. The last parameter within the
separation is the penalty term C in (4.17) and was set to 1000. The commands
during execution were applied onto the end-effector frame in the first state and onto
the tip of the bottle frame in the second state. No active constraints were used.

Vector fields For the vector fields, the deviation angle of the spherical field was
15◦, for the translation field 25◦ and for the cylindrical 20◦. The number of it-
erations for the RANSAC algorithm was two and for the EM algorithm was five
with the coherence filter enabled. The parameters for execution in Listing 4.2 were
min vel equal to 0.1, the max dis equal to 0.15, the sigmoid k equal to 0.5 and the
max neighbours equal to 5.
The generated models were added as skills to the thermos mug in the object repre-
sentation. The red mug was used as a target. Figure 5.1 shows images of the task
with the following parameters:

• Phases: grasp the thermos bottle, lift it, pour ball into the mug.

• Initialization: hand, mug and bottle at a fixed position.

• Success: no spillage and ball poured into the mug.

Table 5.1 shows the results and combines the success rate as well as the completion
time for both approaches. The completion time is calculated in the following to
enable a fair comparison. The start of the task is when the manipulated bottle is
closer than 35cm to the target. The end of the task is when the pouring is done. It
can be seen, that the vector field approach was more robust and faster. A reason
for that is that vector fields in this experiment provided Active Constraints. They
helped the user in the end by constraining the orientation towards the target. With
linear IMs, the user had to control more DoF and especially the control of orientation
in the last state was not as intuitive as expected.



Table 5.1: Comparison of conducted experiment with the pouring task and two
approaches. It shows the success rate and execution times (s), µ±σ over five trials.

Approach Success Failed Execution time [s]
Linear IMs 4 1 14.25 ± 7.28

Vector Fields 5 0 6.00 ± 1.24

Another measure besides the time and success rate is the similarity to the trajectories
used for training. Table 5.2 shows the metric from section 5.1.

Table 5.2: Mean and variance of the similarity to training trajectories over five trials
for each approach.

Approach DTW
Linear IMs 7.13 ± 0.68

Vector Fields 4.28 ± 0.52

Concerning the vector field approach, we can gather interesting information, pre-
sented in Figure 5.2 below. The first image shows the movement of the end-effector
wrt. the target projected on a vertical plane. The second image shows the influence
of the different vector fields as mean and variance for the five trials over the duration
of the skill. We can see that in the first state the translational field mainly influences
the end-effector. When the end-effector comes closer to the target, the influence of
the spherical vector field increases. In the last state, the spherical vector field took
over. The third image shows the mean and average of the scalar product between
the generated vector from the vector field and the user command vector together
with the mean and average of sigmoid-normalized scalar product for five trials. We
can see that the user had difficulties rotating the bottle in the pouring state because
the scaling is low.
The projected plane for the Linear IMs is shown in Figure 5.3.



Figure 5.2: The trajectories for the vector fields are projected on a vertical plane
with the influence of the vector fields and scaling factors.

Figure 5.3: The trajectories for the Linear IM approach are projected on a vertical
plane.



5.3 Opening a drawer task

Figure 5.4: The open a drawer task demonstrated on the real system.

In a second experiment opening a drawer was tested with the vector field approach.
Therefore, new trajectories were recorded by kinesthetic teaching, segmented, fitted
and the skill was to the object representation. The Linear IMs were not considered
here because the movement consists only of translations hence resulting in a single
state with little interest compared to manual control. Figure 5.4 shows images for
each state of the skill with these parameters:

• Phases: move towards the target, apply force, pull open drawer.

• Initialization: Hand at a fixed position with default orientation.

• Success: Drawer opened.

Table 5.3 shows the results with success rate and completion time. To compute the
completion time, the start and end of the task are when the end-effector is within
20cm of the target.

Table 5.3: Success rate and execution times (s), µ±σ for drawer task over five trials.

Approach Success Failed Execution time [s]
Vector Fields 5 0 14.73 ± 4.21

Concerning the vector field approach, we can gather a similar Figure 5.5 as in Section
5.2. The first image shows the movement of the end-effector wrt. the drawer handle
projected on a vertical plane. The second image shows the mean and variance of
the influence of two translational fields for five trials. We can see, that the influence
changes when the fingers touched the handle and the arm tries to open the drawer.
The third image shows the mean and variance of both scaling products for five trials.
We can see that the user had more difficulties when grasping the handle because
the orientation of the hand to be precise.
The similarity metric from section 5.1 wrt. to the training trajectories is shown in
table 5.4.



Table 5.4: Mean and variance of the similarity to training trajectories over five trials

Approach DTW
Vector Fields 4.04 ± 0.25

Figure 5.5: The trajectories for the vector fields are projected on a vertical plane
with the influence of the vector fields and the scaling factors.
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Chapter 6

Discussion

Overall, on our proof on concept experiments both implemented approaches suc-
ceeded on the EDAN systems. Nevertheless, there were quite some differences in
the required setup. This chapter highlights the difference in the design procedure
as well as points out flaws and strengths when using them.

6.1 Design procedure

Linear IM allows model-based segmentation based on the main direction of motion
without taking curvature, distances or timeouts into account. In addition, states,
transitions and IMs are generated automatically. A certain disadvantage is the
quality of these transitions. For example, the hyperplane is sometimes too far from
the target, too flat or too simple. It allows clean transitions, but for more complex
tasks, a more complex decision boundary may be desired. The adjustment of the
hyperplane is directly related to the segmentation result, which is another main
shortcoming of this approach. The result is not as robust to new data or feature
frames as expected. This means that the hyperparameters may have to be readjusted
to achieve the desired result. There is a small gap between smooth and consistent
trajectories, which is strongly related to the quality of the recording and the sampling
distance. If those parameters are defined incorrectly, it can happen that there is only
one Linear IM for all trajectories. Compared to the vector fields, the Linear IMs
were more difficult to set up. They required more time for training and fine-tuning
and resulted in poorer task performance. However, the higher time expenditure also
resulted from the greater degree of freedom that the linear IMs allow in performing
the task, for example, controlling the timing and intensity of the rotation. A positive
point is that any DoF can be controlled.
The advantages of vector fields are the robust fitting with RANSAC. Even in the
presence of high noise, RANSAC allows models to be fitted with only a few param-
eters. But depending on the model, the fitting result can sometimes be ambiguous.
For example, the spherical or cylindrical fields showed weird centers estimation.
Within some fitting iterations, the center jumped with a high distance. Vector



fields are easier to create because there is no need to segment the trajectories. The
influence comes either as a weighted sum of vector fields or individually with the
highest probable vector field. A disadvantage is the limited number of models and
the reduced dimensional space by not making use of the orientation.

6.2 Usability

When using Linear IMs, the decision boundary may be too simple to capture the
underlying constraints. We lack the guarantees to be certain to cross the transitions.
Non-linear kernels or non-linear IMs could help, but are not guaranteed. In addition,
the current label may not allow the user to transition to another state. Therefore,
the end-effector could be stuck, without the possibility to transition further. An
example is when the SCT designer wants to use only 1 DoF to control rotation.
The user then moves towards the decision boundary and once the IMs change, he
cannot transition back. So depending on the task, it is important to know how
many DoFs to control. Another problem with controlling rotations was that they
were not intuitive. The users do not really see around which axis they are allowed to
rotate. This makes controlling the arm not as easy as expected. The intuitiveness
in this approach came from applying the Linear IM rotation onto the hand and the
translation wrt. world. Vector fields, on the other hand, worked quite well. The
user could always feel the influence of the vector fields.
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Chapter 7

Conclusion

In this thesis, we have proposed two novel approaches which expand the Shared
Control Templates to facilitate the learning of skills from demonstrations. By mod-
elling skills with Linear IMs and vector fields, we have shown that states, transitions,
Input Mappings and Active Constraints can be generated and successfully tested on
a real system. Linear IMs identify the main direction of motion, but has fickle seg-
mentation, are not intuitive and do not provide guarantees for the the state machine.
Vector fields, in contrast, allow smooth transitions and guidance. We have further
highlighted the advantages, disadvantages and differences between those two. We
also demonstrated the potential use of vector fields to identify candidate feature
frames in a proof of concept experiment. For further research, it would be worth in-
vestigating non-linear IMs, where the mapping model is not a matrix but a function
that maps the user command ϕ : Rn → Rn. Another way is to look at non-linear
decision boundaries to enable more complex transitions. For the vector fields, more
complex models or a general model could be considered without having to find indi-
vidual models. This general one could smooth all displacements and the generated
vector would be a smoothed version of its neighbours, which means, there is no need
to find individual models. Another option is to exploit different properties of the
vector field such as the gradient, divergence or curl when describing a vector field.
A popular approach within the field of shape estimation is the Hough transform
[ANC13], which is a method for detecting parameterized objects such as spheres,
cylinders and cones. Compared to RANSAC, they have a faster runtime and can
detect multiple instances of the shape at once.
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Appendix A

Appendix

A.1 Calculating the angular difference

To calculate the angular difference, the cosine-similarity and sinus-similarity are
used. The sinus-similarity is used because it was simpler to construct for the spher-
ical and cylindrical field, but in the end the principle is the same.

Translation field The deviation is calculated according to the cosine similarity
relationship of two vectors a and b:

cos(θ) =
a · b
‖a‖‖b‖

(A.1)

Cylindrical field To calculate the deviation angle, we need to construct the de-
sired vector. Therefore we take the normal vector from the associated point on the
cylinder axis. The normal vector v⊥ of the point p to the rotation axis a and axis
center c is given by:

v⊥ = (p− c)× a (A.2)

This normal vector then is used, to calculate the deviation. The deviation angle is
defined as:

sin(θ) =
v⊥ × vp
‖v⊥‖·‖vp‖

(A.3)

Spherical field Similarly to the cylindrical field, we need to construct our desired
vector. Now we take the vector from the associated point to the center of the sphere.
The vector of a point to the centre is given by:

vpc = (p− c) (A.4)



The deviation angle is calculate via:

sin(θ) =
vpc × vp
‖vpc‖·‖vp‖

(A.5)

A.2 Algorithms

A.2.1 Linear Input Mappings

Algorithm 1 Generation Pipeline

Input: Feature frame poses gF , Set of Linear Input Mappings M,
Hyperparameters: α, β, λ,max n,C

Output: Linear Input Mapping FSM and IM models
1: TF ← pose2tf(gF)
2: // Compute displacements
3: TD ← displacements(TF)
4: for each Linear Input Mapping M do
5: // Assign costs for all displacements
6: cM ← cost(M,TD, α)
7: end for
8: // Segment
9: S ← graph cut(cM , β, λ,max n)

10: // Separate
11: S ′ ← SVM.fit(S,C)
12: // Generate transition model and IM model
13: LFSM , LIM ← generate IM(S ′)
14: return LFSM , LIM



Algorithm 2 Input Mapping

Input: User input ∆u, end-effector pose gE(t− 1), Linear Input Mappings M
Output: Displaced target end-effector pose gEim(t+ 1)

1: T Eim ← pose2tf(gE(t− 1))
2: for each input mapping in M do
3: // Compute reference frame
4: T fi ← input mapping.reference frame(T Eim)
5: // Compute transform from T Eim to T fi

6: fiT
Eim ← T fi

−1 ∗ T Eim
7: // Compute displacement
8: TD ← euler2tf(Mi ∗∆u)
9: // Apply displacement to reference frame:

10: // rotation relative, translation global
11: T f ← (TDtrans ∗ T fi) ∗ TDrot
12: // Update target EE pose from reference frame
13: T Eim ← T f ∗ fiT Eim
14: end for
15: gEim(t)← tf2pose(T Eim)
16: return gEim(t)

Algorithm 3 Finite state machine

Input: End-effector pose gE(t− 1), Linear Input Mapping SVM
Output: New state

1: return SVM.predict(gE(t− 1))



A.2.2 Vector fields

Algorithm 4 Generation Pipeline

Input: Feature frame poses gF , Set of possible vector field models F , RANSAC
iterations nR, EM iterations rE

Output: Vector field IM model
1: // Calculate points and vectors
2: p← gE,trans
3: v ← calc vec(p)
4: // Apply RASNAC
5: FR ← RANSAC(F, p, v, nR)
6: // Apply EM
7: FE ← EM(FR, v, rE)
8: // Generate and IM model
9: FIM ← generate IM(FE)

10: return FIM



Algorithm 5 RANSAC

Input: Points p, Vectors v, Set of possible vector field models F ,
Number of Iterations nR

Output: Initialized vector field models FR
1: for nR iterations do
2: for each model in F do
3: // Apply RANSAC
4: // Sample random points
5: s← random samples(p, v)
6: // Estimate model parameters
7: model.parameters← model.estimate parameters(s)
8: // Estimate inliers based on angle difference
9: model.estimate inliers(v)

10: end for
11: // Save model with highest inliers and exclude them
12: best model← best(F )
13: p, v ← delete(p, v; best model.inliers)
14: FR,nR ← best model
15: end for
16: return FR

Algorithm 6 EM with GMM

Input: Vectors v, Initialized models FR from RANSAC, Number of Iterations nE
Output: Smoothed vector field models FE

1: for nE iterations do
2: // Expectation step
3: for each model in FE do
4: // Calculate angle deviation prob
5: rmodel ← model.angle diff prob(v)
6: end for
7: // Maximisation step
8: for each model in FE do
9: // Get vector associated to model

10: vmodel ← associate(v, rmodel)
11: // Filter for spatial-temporal coherence
12: vmodel ← filter(vmodel)
13: // Update centers
14: model.parameters← model.update parameters(vmodel)
15: end for
16: end for
17: return FE



Algorithm 7 Vector Field Input Mapping

Input: User input ∆u, end-effector pose gE(t− 1),
Skill parameters: max n,max d,min v, k s

Output: Displaced target end-effector pose gEim(t+ 1)
1: // Get neighbours close to end-effector pose
2: n← neighbours(gE(t− 1),max n,max d)
3:

4: // Orientation
5: gE,rot(t+ 1)← weighted average orientation(n.orientations, n.distances)
6:

7: // Translation
8: for each vector field in n.fields do
9: // Generate vector field vector

10: vF ← vector field.generate vector(gE,trans(t− 1))
11: // Compute scalar and scale it
12: ss ← sigmoid(∆u · vF , k s)
13: // Apply command
14: gE,trans(t+ 1)← gE,trans(t) + clip(∆u · ss,min v)
15: end for
16: return gEim(t+ 1)



A.3 Alpha-Beta Swap algorithm

Algorithm 8 α− β swap. Taken from [BVZ01].

1: // Start with an arbitrary labeling f
2: // Set success := 0
3: for each pair of labels α, β ∈ L do
4: // Find f̂ = argmin E(f’) among f’ within one α− β swap

5: // If E((̂f)) < E(f), set f := (̂f) and success := 1
6: end for
7: // If success = 1 goto 2
8: return f

The α − β swap algorithm is a popular algorithm used in computer vision. The
version explained here is adapted to our particular problem. The algorithm generates
a labelling f by exchanging an arbitrary set of α-labelled displacements with another
arbitrary set of β labelled displacements. After creating a labelling, no other swap
move decreases the energy term. In order to do this, the assumption is that there
is a semi-metric interaction potential V. It means that the space of labels L for any
pair of α, β in L satisfies two properties:

1. V (α, β) = V (β, α) > 0 and

2. V (α, β) = 0 if α = β.

Finding the optimal swap move

Given an input labelling f and a pair of α, β labels, the algorithm tries to find a
labelling f̂ that minimizes the Energy over all labels within one α − β swap of
f. Therefore it constructs a graph Gα,β =< Vα,β, Eα,β > with vertices and edges
(see Figure A.1 for the 1D structure of the graph). The set of vertices includes
two terminals α and beta and the displacements p in the set of Pα (i.e. set of
displacements labelled with α) and Pβ (i.e. set of displacements labelled with β).
The links of the graph are the terminal links and neighbours links. The terminal
links connect the displacements to the terminals α and β with the edges tαp and
tβp . The neighbours links connect each neighbour displacement p, qαβ which are
neighbours p, q ∈ (N). The weights of each edge is displayed in Table A.1.
The label assignment is then the following: when the cut C seperates p from the
terminal α then p is assigned label α if the displacement p is in Pα,β. Similarly,
when C seperates p from the terminal β, then p is assigned label β. Otherwise, if p
is not in P(α, β) it keeps the inital labelling fp (see Figure A.2).



Table A.1: Weights of the edges. Taken from [BVZ01].

edge weight for
tαp Dp(α) +

∑
q∈Np V {p, q} (α, fq) p ∈ Pαβ

tβp Dp(β) +
∑

q∈Np V q{, q} (β, fq) p ∈ Pαβ
e{p,q} V{p,q}(α, β) {p, q} ∈ N

p, q ∈ Pαβ

Figure A.1: Example of a graph for 1D with different terminal links and edge links.
Taken from [BVZ01].

Figure A.2: Illustration of a cut. Taken from [BVZ01].
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