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Abstract

With the fast evolution of smart buildings, automated factories and warehouses, indoor lo-
calization systems are becoming more popular. Indoor localization is needed to navigate a
smartphone-user or a robot through a large building. It is also needed to locate resources
and equipment in a warehouse or factory. While Global Positioning System (GPS) signals
are effective at localizing an electromagnetic receiver outdoors, they are attenuated indoors.
A number of high-precision indoor localization systems (ILS) exist, however their perfor-
mance suffers when the environment is complex, contains non-line-of-sight (NLoS) condi-
tions and moving objects. ILSs that measure the distances or angles between its access points
(APs)/routers and the user require a line-of-sight (LoS) between the user and the APs. In or-
der for such systems to maintain a high localization accuracy in a complex environment, a
very large number of APs needs to be installed, increasing the system’s cost. In contrast,
fingerprinting ILS collect calibration measurements, construct a fingerprint map and after-
wards compare the user’s measurements to that map to localize him. While such systems
require less APs, perform well under NLoS conditions, the necessary calibration measure-
ments take a long time to collect, again increasing system cost. Additionally, if any changes
or movement occur in the environment the user’s measurements will no longer be similar to
the map and the localization accuracy will decrease.

The main contribution of this thesis is the development of a fingerprinting-based localiza-
tion approach that functions even when there are moving objects in the environment. This is
achieved by the use of multipath delay profile fingerprints. A fast database look-up scheme
is also designed for the proposed localization algorithm. In addition, a novel communica-
tion protocol between the user and the ILS that protects the user’s privacy is proposed in
this thesis. With the help of the presented approach, the user can obtain his location from
the ILS without the ILS knowing what that location is or being able to track the user. An-
other contribution of this work is the development of a virtual transmitter-based fingerprint
interpolation scheme for multipath fingerprints. The interpolation scheme allows fewer cal-
ibration measurements to be made. This significantly reduces the cost of the ILS. Lastly, an
algorithm that reconstructs a 3D model of the environment from a multipath fingerprint map
is developed. The concept of virtual-transmitters is also used by the proposed approach. To
summarize, this thesis shows the potential and advantages of the use of the multipath delay
profile for indoor localization.
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Kurzfassung

Das Aufgabenfeld der Indoor-Lokalisierung wird benötigt, um Menschen mithilfe von Smart-
phones oder Robotern durch größere Gebäudekomplexe zu navigieren. Gleichermaßen ist es
relevant, um Ressourcen und Equipment in Lagern und Fabriken zu lokalisieren. Generell
werden für diese Aufgabe Signale des globalen Positionsbestimmungssystems (GPS) außer-
halb von Gebäuden genutzt, allerdings sind diese in Innenbereichen von Gebäuden stark
gedämpft. Eine Vielzahl präziser Indoor-Lokalisierungssystem (ILS) existieren, jedoch sinkt
deren Leistungsfähigkeit in komplexen Umgebungen mit Nicht-Sichtverbindung (NLoS) Be-
dingungen und sich bewegenden Objekten. ILSs, welche auf Messungen der Distanzen oder
den Winkeln zwischen Access Points (APs) oder Routern und der Nutzer basieren, benötigen
direkten Sichtkontakt. Um eine hohe Lokalisierungsgenauigkeit derartiger Systeme sicher-
zustellen, wird eine große Anzahl installierter APs benötigt. Diese erhöhen somit die Sys-
temkosten. Im Gegensatz dazu nutzen Fingerprinting-basierte ILSs Kalibrierungsmessun-
gen, konstruieren eine Fingerprint-Karte und vergleichen Nutzermessungen zu dieser für
eine Lokalisierung. Diese Systeme benötigen vergleichsweise weniger APs und zeigen hin-
reichende Genauigkeit unter NLoS Bedingungen, jedoch benötigen Kalibrierungsmessungen
eine vergleichsweise längere Zeit und erhöhen somit ebenfalls die Systemkosten. Außerdem
führen Bewegungen oder Änderungen in der Umgebung dazu, dass die Nutzermessungen
nicht mehr ähnlich zu der gemessenen Karte sind, womit die Genauigkeit reduziert wird.

Diese Dissertation präsentiert einen Fingerprinting-basierten Lösungsansatz, der in kom-
plexen Umgebungen auch sich-bewegende Objekte berücksichtigt. Hierfür werden Mehr-
wegverzögerungsprofil Fingerprints ausgewertet. Ein schnelleres Datenbank Look-up Sche-
ma wurde mitentwickelt und ausgewertet. Außerdem wurde das Kommunikationsproto-
koll so überarbeitet, dass es vertrauliche Informationen des Nutzers schützt. Der ILS hat
demnach keine Möglichkeit, die Position des Nutzers zu verfolgen. Als weitere Neuerung
wird ein Interpolationsschema für Mehrweg Fingerprints vorgestellt, welches weniger Kali-
brierungsmessungen benötigt und somit die Kosten des ILS senkt. Abschließend wurde ein
Algorithmus entwickelt, der ein 3D-Modell aus dem Datenbank von Mehrweg Fingerprints,
basierend auf virtuellen Sendern, erstellt. In Hinblick auf diese erreichten Punkte zeigt die
vorliegende Dissertation das Potential und die Vorteile von Mehrwegprofilen für die Indoor-
Lokalisierung.
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prints are.

Partial similarity metric A similarity metric value the computation of which is
not yet completed. The optimized MCA algorithm up-
dates the partial similarity metrics of the candidate fin-
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Ground-truth The correct (x,y,z) coordinates at which measurements
were performed. In general ground-truth is the set of
correct values to which the measurement of estimation
results are compared to evaluate a system.

k-anonymity Privacy protection scheme, where the users obscure
their IDs from the server or randomly generate
pseudonym IDs.

Paillier cryptosystem Encoding scheme that allows arithmetic operations to
be performed on encoded data

Encoding based privacy protection Privacy protection schemes where the user encodes his
or her measured fingerprint and the server encodes the
reference fingerprints in the database and performs cal-
culations with encoded data.
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the VT. The degree of a VT is defined as the number of
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virtual anchor (VA).

Virtual Anchor (VA) Same as virtual transmitter.
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Interpolated fingerprint A fingerprint that is calculated from a set set of mea-
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Extrapolated fingerprint A fingerprint that is calculated from a set of measured
fingerprints that correspond to reference points which
do not surround the target point.

Geometry polygons It is assumed that the indoor environments is com-
posed of reflective polygons. Each polygon is located in
one plane and can have an arbitrary number of corner
points. Multiple polygons can be located in one plane
and can overlap.

Geometry deviation Metric to evaluate the reconstructed geometry, equal
to the average distance from the vertices of the re-
constructed polygons to the projections projections of
those vertices onto the planes in the ground-truth ge-
ometry.

Geometry coverage The percentage of the area of the ground truth geom-
etry that is covered by the projections of the recon-
structed polygons. This is the metric used to deter-
mined the percentage of correctly reconstructed geom-
etry.

Coverage error Percentage of the area of the reconstructed polygons
that does not coincide with the ground truth geometry.
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|x| absolute value of scalar x

x̂ estimated/predicted value of x

f(·) scalar function

x array

x = N cardinality, amount of elements in array x

xi i-th component of vector x

‖x‖ Euclidean norm of vector x

x̄ mean of x

σ(x) = σx standard deviation of x

x(·) vector function

x · y dot product of x and y

X [M x N] matrix

X(·) matrix function

X set
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〈x,y〉 scalar product between two vectors x, y

X̂ estimated value of a variable X
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Symbol Definition

R2 2D space of real numbers.

σ standard deviation

s(t) Signal at the transmitter.

x(t) Signal at the receiver.

h(t) Channel impulse response between the receiver and
the transmitter.

ak Attenuation undergone by the signal along the k-th
propagation path from the transmitter to the receiver

τk The delay of a multipath component

dk The length of a propagation path

c The speed of light

n(t) Noise added at the receiver

PT Transmit power of a signal.

Nσ2 AWGN noise with variance σ2.

Y (t) Total received signal in the SAGE algorithm.

Yj(t) The signal received by the j antenna
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Symbol Definition

Xk(t) and xk(t) The signals received from the k-th propagation path.
Notation used in the SAGE algorithm.

d0
Distance a signal travels from a transmitter to the re-
ceiver. Either the

LoS or the length of the smallest reflected path.

KL Number of multipath components estimated by the
SAGE algorithm from a received signal.

MAP = {(Di,Xi), i = 1...N} fingerprint map.

N Number of reference fingerprints stored in the finger-
print map.

M Number of APs.

i Index used to describe a reference fingerprint or loca-
tion.

j Index used to describe an AP.

k Index used to describe a multipath component.

Tj j-th transmitter/AP.

T ′j,k k-th first degree (1 reflection) virtual transmitter corre-
sponding to AP Tj .

T ′′j,k k-th second degree (2 reflections) virtual transmitter
corresponding to AP Tj .

T
′(l)
j,k k-th l-th degree (l reflections) virtual transmitter corre-

sponding to AP Tj .

Xi Coordinates of the i-th reference point.

X True location of the user.

X̂ Estimate of the user’s location calculated by the ILS.

Di = {d1, ...,dM} i-th reference fingerprint.

dij = [dij,1, ..., dij,K ] ∈ Di Vector containing the multipath components corre-
sponding to the j-th AP in the i-th reference finger-
print.

dij,k ∈ dij k-th multipath component that correspond to the j-th
AP in the i-th reference fingerprint.

Kij Number of propagation paths between a receiver Tj
and pointXi.

Dq Query fingerprint measured by the user.

dqj ∈ Dq Vector containing the signal propagation distances
from the query point to the j-th AP.

dqj,k ∈ d
q
j k-th multipath component that corresponds to the j-th

AP in the query fingerprint.
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Symbol Definition

Kq
j Number of multipath components in the query finger-

print that correspond to the j-th AP.

Di Fingerprint interpolated at the target location.

dij ∈ Di. Vector containing multipath components interpolated
at the target point that correspond to the k-th AP.

dij,k ∈ dij k-th multipath component that corresponds to the j-th
AP in the fingerprint interpolated at the target point.

d∗ Element of the vector dij that is closest to the value dqj,k
γ(Dq,Di) Similarity metric calculated between the query and the

i-th reference fingerprint.

γ(Dq,Di|Tj) Similarity metric between two fingerprints Dq and Di

calculated for transmitter Tj

Qji A set of all indexes k for which ∃d∗ ∈ dij ,|djk − d∗| →
min and |djk − d∗| < ε

ε Similarity threshold

Np Number of partial fingerprints generated by the user

np Length of a partial fingerprint

Nc Number of fake camouflage fingerprints generated by
the user to one real partial fingerprint

NT = Np +Np ×Nc Total number of partial fingerprints sent by the user to
the server

{Dq
p1, ...,D

q
pNp
} Real partial fingerprints

{Dq
c1, ...,D

q
c(NT−Np)

} Camouflage partial fingerprints

κ Number of candidates returned by the server for each
partial fingerprint

{Dci} Candidate fingerprints returned by the server

{Xci} Candidate locations that correspond to the candidate
fingerprints

|dci| The distances from each candidate point to the nearest
other candidate point

fdc(d) Probability distribution of |dci|
L(Di) Set of partial fingerprints for which the server selected

Di as a candidate

Ni Number of times reference fingerprint Di is picked by
the server as a candidate to a partial fingerprint sent by
the user within one localization step

dL Average distance the user moves between two consec-
utive localization requests.

B Sorted fingerprint database
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Symbol Definition

bin(j, x) Sorted data structure that contains all of the reference
multipath components, the values of which are in the
interval ((x − 1)ε, xε] and which correspond to the AP
Tj

dmax The largest value of a multipath component that can be
stored in the database

(j, k) Iteration of the optimized MCA algorithm at which
the query multipath component dqj,k corresponding to
transmitter Tj is used to update the similarity metric
values.

γi,jk Partial similarity metric calculated for fingerprint Di at
the (j, k)-th algorithm iteration. This means that the
similarity metrics does not yet include the data from
all query multipath components.

f Set of all candidate fingerprints for the optimized MCA
algorithm

γ(j,k) Set of partial similarity metric values corresponding to
the candidate fingerprints in the optimized MCA algo-
rithm

γ
′

i,jk Update term added to the partial similarity metric
γ(j,k) at the (j, k)-th algorithm iteration.

l Sorted array that contains all the multipath compo-
nents in the search area of the query multipath com-
ponent at a iteration of the optimized MCA.

γthr Threshold value such that the partial similarity metric
values γ

′
ij, k of the neighbors of the best match to dqj,k

in l don’t need to be calculated if they are larger than
γthr (Algorithm 5).

γ
′

min,jk Partial similarity metric calculated for reference mul-
tipath component most similar to the query multipath
component at the (j, k)-th iteration of the algorithm. As
the multipath component is most similar to the query,
γ

′

min,jk will actually be the largest partial similarity
metric value calculated in one iteration. However, the
notation min is kept for consistency with [2].

T ∗
j,k k-th candidate VT corresponding to AP Tj calculated

by the VT reconstruction algorithm. The candidate VT
may not be in the set of real VTs. A filtering step is
needed to determine the set of estimated VTs from the
set of candidate VTs.

γV T Threshold parameter used in VT filtering (Algorithm
9).
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Symbol Definition

Yi Reference locations, the fingerprints of which are used
to calculate the interpolated fingerprint.

εc Parameter used for multipath component clustering
(Algorithm 7)).

ε(c1, c2) similarity metric between two clusters of multipath
components (Algorithm 8).

α Parameter used by the cluster matching algorithm (Al-
gorithm 8).

εgroup Threshold parameter used by the cluster matching al-
gorithm (Algorithm 8).

Gi i− th ground truth polygon in the indoor geometry.

Ĝi,l l-th reconstructed polygon that corresponds to the real
polygon Gi.

Ĝi(l) l-th vertex of the i-th reconstructed polygon.

P (Ĝi(l),Gi) the projection of point Ĝi(l) onto the corresponding
ground-truth plane Gi.

δG Value of the geometry deviation metric.
a
Gi The area of the polygon Gi.

GC Value of geometry coverage metric.

CE Value of the coverage error metric.

perimeter Value of the perimeter coverage metric.

Perimeter(Gi) The length of the line created by projecting the vertical
polygon Gi onto the floor-plane.





Chapter 1

Introduction

Autonomous robots need to know their precise location in order to navigate through a build-
ing and to interact with the objects that building contains. Boxes and equipment need to be
located on request in a warehouse or factory. Smartphone apps need to know the location of
the user in order to guide him or her through a shopping mall or to provide location specific
content, such as sales deals and augmented reality. The location of the robot, equipment and
user is provided by an indoor localization system (ILS) .

The goal of this thesis is to develop an ILS that is able to to maintain a high accuracy
in complex non-line-of-sight (NLoS) environments that contain moving objects and that can
change over time. The ILS should consist of a set of radio frequency (RF) transmitters or
access points (APs) and a target device, or receiver, that is carried by the user and commu-
nicates with the APs. It should be possible to obtain the location of a moving user and of a
static object, for example a box to which a receiver is attached.

1.1 Motivation

Indoor localization is a service that is in high demand both for user-oriented smartphone
applications and in industrial systems. Objects that need to be localized include people car-
rying smartphones, robots and mobile equipment and boxes. A small receiver device can
easily be attached to all of them, communicate with a set of access points (APs) or electro-
magnetic transmitters and calculate its location. The same principle is applied for outdoor
localization when a GPS receiver is attached to the object that needs to be localized.

Localization is much more challenging inside buildings than in outdoor environments.
GPS signals are blocked and absorbed by building walls. Therefore, dedicated electromag-
netic transmitters or access points need to be installed in the indoor environment in order to
setup the ILS. At the same time, indoor environments are complex and the line-of-sight (LoS)
between the receiver and the access points is often blocked. This means that triangulation-
based algorithms used by GPS chips are not directly applicable in indoor scenarios and new
algorithms need to be developed for indoor localization.

Although many indoor localization systems have been proposed in publications or even
made available on the market, most do not completely fulfill the desired requirements of
an ILS. Many industrial applications such as robot navigation would require a localization
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accuracy in the centimeter range. A number of approaches have demonstrated cm level in-
door localization accuracy in academic publications. Multiple commercial ILS on the market
promise a 10-30cm accuracy. However, cm-accuracy systems in publications commonly use
fingerprinting and are often tested over a small area in ideal conditions. Extending these
algorithms to a full public building may require a system calibration time of several days or
more. This will make such systems extremely expensive. While fingerprinting systems can
function well under non-line-of-sight (NLoS) conditions, their accuracy will significantly de-
crease in real environments, which contain moving people and where furniture is rearranged
and moved from time to time. On the other hand, commercial ILS generally use ranging and
triangulation. Such systems can tolerate some amount of movement in the environment but
require a LoS between the base stations/access points (AP) and the user. In order to ensure
constant LoS conditions, a very large number APs is necessary, significantly increasing the
system costs. Therefore, the goal of this thesis is to develop a high-accuracy RF-based indoor
localization system that requires a relatively small number of base stations/APs and is able
to maintain its performance in a NLoS environment with moving objects.

Several scarcely addressed aspects of indoor localization are also considered in this the-
sis. The user of an ILS commonly receives his or her location from the ILS server. This means
that the ILS server is able to track the user’s movements. If the ILS is provided by a third
party, the data calculated by the ILS server could be used to analyze the user’s behavior and
to obtain sensitive and private information about the user’s health or protected industrial
data. For example, a third-party ILS installed in a hospital could track the offices visited
by its users and make assumptions about the users’ health. The movement of robots and
machines in a factory can give an insight into proprietary technologies. Therefore, a privacy
protection scheme needs to be integrated into ILSs.

Algorithm complexity and run-time is the second ILS aspect discussed in this thesis.
Many state-of-the-art high accuracy ILSs, including the one proposed in this thesis, use a
database to which the user’s measurements are compared to estimate his or her location.
The larger or denser the database, the better the location estimation of the ILS can be. How-
ever, in conventional ILSs the database lookup is slow as the query needs to be compared
to every single database entry. This would make the practical implementation of such an
ILS challenging in a building with a very large area, such as a shopping center or factory.
The fingerprinting database in this case would be extremely large. Therefore, an efficient
data-base lookup scheme is needed.

At the same time, in order to construct the necessary calibration database, or fingerprint
map, multiple measurements need to be collected. The measurement data and the coor-
dinates at which this data was collected are added to the database. As mentioned above
high-accuracy localization systems generally require measurements to be collected at a very
dense set of locations. This is very impractical if the ILS needs to be set up in a large building
such as a shopping mall or factory. The time necessary for calibrating and setting up the ILS
can be significantly reduced if some of the database entries can be interpolated from mea-
surements collected at the surrounding locations. Such an interpolation scheme also needs
to be developed.
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Additionally, blueprints of buildings are often not available. Time consuming measure-
ments are required to reconstruct them. Since a calibration database is collected by many
ILSs by default, it would be much more convenient if an algorithm was developed to auto-
matically reconstruct a map of the indoor environment from that database.

In summary, an ideal indoor localization system (ILS) should be able to localize mov-
ing and stationary receivers, maintain a high localization accuracy in a NLoS and dynamic
environment, provide privacy protection for the users location, allow a fast data-base look
up for real-time localization, be extendable to large buildings, allow database interpolation
for faster system calibration and reconstruct the indoor geometry from calibration data. The
author of this thesis is unaware of an existing ILS that fulfills all of the requirements listed
above. The aim of this thesis is to develop such an ILS.

1.2 Main Contributions

The following contributions are made in this thesis:

• The development of a low-cost fingerprinting-based indoor localization scheme that
is able to localize a static or moving receiver device and is robust to the presence of
moving objects and changes in the environment. As a fingerprinting-based scheme,
the proposed approach does not require a LoS between the user and the base-stations
and thus requires less infrastructure than the high accuracy systems currently on the
market. At the same time, the use of multipath delay fingerprints in this thesis allows
the proposed ILS to function in the presence of moving objects, in contrast to existing
state-of-the-art fingerprinting algorithms. Both these facts reduce the systems installa-
tion and maintenance cost and increase its robustness.

• The development of a privacy protection scheme that allows the user to obtain his or
her location from the ILS server, without the ILS server being able to track the user.
The proposed privacy protection scheme is made possible by the multipath-based data
format used for localization.

• The development of a database structure that enables a more efficient query lookup.
The database is designed for the multipath based fingerprint structure and multipath
component analysis algorithm proposed in this thesis. As a trade-off exists between
the algorithm’s run-time and accuracy, the optimized data based lookup scheme al-
lows the user to set the localization accuracy according to the available computational
power. The optimized algorithm also produces and updates a preliminary location
estimate during run-time.

• A scheme for interpolating the ILS database is proposed. The novel interpolation/ ex-
trapolation scheme relies on the concept of virtual transmitters (VTs). Given a set of
reference fingerprints, composed of multipath propagation delays, the algorithm iden-
tifies and groups together the the multipath propagation delays across different fin-
gerprints which correspond to propagation paths reflected from the same surface. The
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multipath components which were grouped together are then used to reconstruct th VT
positions with trilateration and calculate the interpolated/extrapolated fingerprints.
Interpolating and extrapolating some of the database entries increases the database
size and the ILS’s accuracy without increasing the calibration time.

• A scheme for reconstructing the indoor geometry from the ILS calibration database
is proposed. The algorithm is designed for the multipath fingerprint structure and is
based on VT reconstruction.

• Measurement and simulation-based evaluation of the proposed approaches is con-
ducted in this thesis. The proof of concept testing is performed with a prototype using
the Decawave board [7] and the ultra-wide-band (UWB) communication standard. A
localization error of 6cm is obtained for a slow moving user and around 30 cm for a
fast moving user with an average distance of respectively 3cm and 10cm between the
ground-truth user location and the closest location at which an entry in the database
was measured.

There are two main differences between the localization approach proposed in this the-
sis and the cm-level accuracy state-of-the-art fingerprinting approaches. Calibration signal
measurements are collected and stored in a database in both cases. The user’s measurements
are later compared against that database for localization. However, before being stored in the
database, the signal measured by the receiver device needs to be converted to a certain rep-
resentation. A set of properties needs to be extracted from the signal or a transform needs
to be applied to it. Such characterizations include the signal received power, the channel
impulse response (CIR), the channel frequency response (CFR) and the channel state infor-
mation (CSI) estimated from the received signals. The approach proposed in this theses uses
the multipath delay values for localization. This is done by only a small subset of state-
of-the art approaches. The second difference between the state-of-the-art and the proposed
approach is in the way in which the user’s measurement is compared to the database entries.
In the state-of-the-art approaches the received signal information is processed and used as
one entity. The approach in this thesis identifies parts and the segments of the signal in-
formation which correspond to the objects moving in the environment. Only the multipath
components that correspond to the background indoor geometry are used for localization.

The focus of this thesis is the development of a one-sensor localization scheme. There-
fore, the proposed scheme does not rely on additional sensors like an inertial measurement
unit (IMU) and on motion filters such as the Kalman filter. The developed scheme needs to
be able to localize a static receiver, such as a chip mounted on equipment in a warehouse.
Additional sensors and algorithms can be used afterwards to augment the base localization
scheme.

1.3 Thesis Organization

This thesis is structured as follows. Chapter 1 motivates the need for a new robust indoor
localization system and lists the requirements which the ILS proposed in this thesis aims
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to fulfill. Chapter 2 summarizes the existing indoor localization algorithms and hardware
implementations which have been proposed in publications or are commercially available.
Chapter 3 describes in detail the multipath-based localization system proposed in this the-
sis. The simulation environment and practical implementation of the proposed system are
also described in this chapter together with the performance evaluation of the core algo-
rithm. Chapter 4 describes the novel user privacy protection scheme. Chapter 5 presents the
proposed database structure and fast fingerprint lookup algorithm. Chapter 6 presents the
proposed virtual transmitter (VT) reconstruction, fingerprint inter- and extrapolation and
environment reconstruction algorithms. Eventually, Chapter 7 concludes this thesis and in-
dicates possible directions for future research.

Parts of the work presented in this thesis have been published in [2], [1], [3]–[5]. The
digital object identifiers (DOIs) of these publications are listed in the bibliography.





Chapter 2

Overview of Indoor Localization
Techniques

This chapter gives an overview of existing indoor localization schemes and systems. In-
door localization is required when a smart system containing movable devices is installed
indoors. Robots need to know their position to navigate through and find objects in a fac-
tory, residential and commercial spaces. Large warehouses require a method for localizing
resources and equipment. Objects need to be tracked to construct a thorough electronic in-
ventory. Smart phone-based navigation apps guiding people though large public buildings
and indoor spaces, such as train stations, also need to know the user’s positions.

Outdoors global navigation satellite system (GNSS) signals can be used to calculate the
location of a electromagnetic receiver with a precision of several meters. Unfortunately, as
GNSS signals are attenuated by walls and ceilings, the global positioning system (GPS) and
other state-of-the-art GNSS outdoor localization techniques cannot always produce a reliable
and accurate position estimation indoors.

In this thesis only indoor localization systems that rely on the reception and transmis-
sion of electromagnetic signals are discussed. The focus is placed on radio-frequency (RF)
localization techniques due to the wide availability and fast development of RF technology
and hardware. Additionally, most large buildings already have a communication network
of transmitters and routers installed. The communication signals can be directly used for
localization. Alternatively, additional transceivers or boards can be integrated into the ex-
isting communication routers. In both cases, pre-installed infrastructure is reused and the
installation and maintenance costs of the ILS are kept low.

This chapter is organized as follows. The requirements of an ILS and the challenges that
arise during ILS development are listed in Section 2.1. Electromagnetic signal properties
that are measured or calculated for indoor localization are summarized in Section 2.3. Local-
ization approaches based on ranging and triangulation and multilateration are discussed in
Section 2.4. Fingerprinting-based indoor localization approaches are summarized in Section
2.5. Existing communication standards and hardware used for indoor localization are dis-
cussed in Section 2.7. A number of commercially available ILSs are listed in Section 2.9. Due
to the large number of publications in indoor localization, most publications in the above
mentioned tables were selected at random. However, a number of publications were also
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included due to their novelty, distinctive methodology or superior results and performance.
This was done in order for the tables to include both frequently used and state-of-the art
localization approaches.

2.1 System Model

Wireless localization App
Data received from APs
Calculating Location 

ILS serverUser APs 
Network

Optional

Figure 2.1: System overview for RF-based indoor localization. A receiver communicates with the
transmitters to measure electromagnetic signal properties. The measured signal properties are then
either used to calculate the receiver’s position locally at the receiver, or are sent to an ILS server. In
the second case the receiver then obtains its position (or the information from which it can determine
its position) from the ILS server.

This thesis focuses on indoor localization systems (ILSs), which are based on the trans-
mission, reception and processing of RF electromagnetic signals. The system model for such
a localization system is shown in Fig. 2.1. An electromagnetic receiver, also referred to as a
tag, processes signals from several transmitters or access points (APs) installed in the indoor
environment. The receiver may calculate its location locally or send the received data to an
ILS server. The ILS server calculates the receiver’s location and communicates it to the user.

There are several differences between a localization system that is installed indoors and
GNSS-based systems used outdoors.

• Outdoors, there is a high likelihood that there is a direct line-of-sight (LoS) between
the user and the satellites. Indoors, the user may be located in different room than an
access point or behind a corner. An object may also be blocking the LoS between the
user and an AP.

• Additional transmitters can easily be installed in an ILS.

• Since the distances between transmitters and receivers is significantly smaller for ILS
than for GPS, an ILS may rely on a wider range of frequencies.

• An ILS often covers a much smaller area, therefore, it is possible to spend some time
calibrating the system before it is used.

Figure 2.2 shows the most common channel parameters [8] that the receiver extracts from
the AP’s signals. Those characteristics of the wireless channel between the receiver an trans-
mitter are then used as an input to one of the localization algorithms described in Sections
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Figure 2.2: Received signal characteristics that are used to localize a device. h(t) denotes the channel
impulse response. It should be noted that in the bottom figure there is no LoS between X2 with T1,
therefore using the ToF2 and the TDoA for multilateration will produce the incorrect result.

2.4 - 2.6.2. The basics of indoor localization techniques described in this section are also
summarized in [9]–[11].

2.1.1 Collaborative ILS

It is possible for multiple ILS to collaborate and share data as discussed in [12]. However,
the more accurate the individual localization systems are, the better the results of the collab-
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oration will be. Such an ILS collaboration requires higher level design features and protocols
which are not considered in this thesis. Therefore, the system model assumed in this thesis
contains one ILSs.

2.1.2 Note on Passive Localization Systems

A subset of localization systems use electromagnetic signals to localize a user, however do
not require a user to carry a receiver or transmitter. These systems analyze the signals and
electromagnetic channels between the APs and find perturbations in these channels to track
the user [13]–[15]. One simple approach is to track whether the user blocks the line-of-sight
(LoS) the APs. The work in [15] analyzes the channel impulse response (CIR) between ultra-
wideband transmitters and receivers. The approach in [13] tracks if any of the multipaths
between the APs are blocked. Passive localization systems are outside the scope of this the-
sis. Therefore, the user is assumed to carry an electromagnetic receiver and/or transmitter.

2.2 Simultaneous Localization and Mapping (SLAM) and Static
Localization

There are two types of localization algorithms. Some localization systems, including GPS,
use a snapshot of the signal data obtained by the electromagnetic receiver to calculate its
position. Such schemes are as a rule able to localize both a stationary object, such as a box
in a warehouse to which a tag has been attached, and a moving user. When a user is mov-
ing too fast, the localization accuracy of the systems may decrease due to Doppler effects or
insufficient signal transmission and reception rate.

Alternatively, pedestrian dead reckoning (PDR) and simultaneous localization and map-
ping (SLAM) algorithms use motion data for localization. A PDR algorithm calculates the
user’s location from a previously known location and the motion information, for example
by integrating twice the acceleration data measured by an accelerator. In a SLAM algorithm,
the user measures some signal or environment characteristics. As he or she moves, the SLAM
algorithm also acquires the motion information. The algorithm estimates by how much and
in which direction the user moved. It then uses this information in combination with the
signal measurements to calculate the user’s location relative to an initial starting position. A
SLAM-based algorithm also constructs a map of the indoor environment as the user moves.
SLAM algorithms commonly use the following data:

• Data from an inertial measurement unit (IMU) or gyroscope, that shows in which di-
rection and how much the user has moved.

• New data about the environment. This can include radar measurements, signal time-
of-arrival or time-of-flight and the signal strength. Motion information can be inferred
from this data as well when it is analyzed over time.

While an IMU is frequently used for localization and is commonly built into smart-
phones, there are two main challenges in IMU-based SLAM.
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• The measurements of the IMU are imprecise.

• The measurement error accumulates over time. If the location of the moving user is
calculated by adding up the IMU-based estimates of incremental distance and direc-
tion, by which the user moved relative to a previous estimate, the error of the user’s
location will increase after every measurement. This is referred to as drift.

Very often the location estimates obtained from electromagnetic signals, a SLAM algorithm,
and, potentially, additional sensors are fused together to obtain a more accurate location es-
timate. Initial SLAM approaches were designed for data from a laser scanner, however they
are not discussed in this thesis. Sections 2.6.2 and 2.6 describe a number of systems that per-
form SLAM-based localization with the data obtained by an electromagnetic receiver. The
following mathematical techniques are commonly used for SLAM and sensor fusion.

• A Kalman filter is a recursive filter that

– Provides the optimal state estimate of the user.

– Is composed of the location estimate and Kalman gain matrix.

– In the prediction step an a priory estimate of the user’s location is computed from
a previous location estimate and the current control input.

– In the update step the a priory location estimate is used to predict the sensor mea-
surements. The difference between predicted and measured data is weighted by
the Kalman gain matrix and added to the a priory estimate to compute the poste-
riory estimate of the user’s location. The Kalman gain matrix is also recomputed
in this step.

– The Kalman gain is computed from the uncertainty of the prediction and of the
measured data.

• An Extended Kalman filter (EKF)

– A variation of the Kalman filter designed for non-linear systems.

– Linearizes the system locally around the users state estimate by using Jacobian
matrices in the prediction and update states of the Kalman filter.

• A particle filter

– Uses a set of particles that represent the likely positions of the user.

– As the user moves, the positions of the particles are updated with the IMU data.
The particle distribution is re-sampled. Particles that move into regions where
the user cannot be or which don’t match sensor measurements are deleted. New
particles are created at locations that the user is likely to be at.

This thesis is focused on developing a localization algorithm that is able to localize a
static receiver. This is done for two reasons. The localization of resources and equipment
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in factories and warehouses is an important ILS use case. Additionally, an algorithm that
can localize a static object can always be augmented with the motion data from an IMU and
made more precise. The better the base localization algorithm is, the more accurate the result
of the data fusion will be.

2.3 Signal Properties used for Localization

Once a user receives a signal from one of the APs, or vice versa, that signal needs to be pro-
cessed before it can be used for localization. The characteristics of the received signal or the
electromagnetic channel between the user and APs illustrated in Fig. 2.2 are commonly used
for localization.

2.3.1 ToA,TDoA, AoA

The Time-of-Arrival (ToA) [9]–[11] is the time at which a signal reaches the receiver. This
time is measured according to the receiver’s internal clock. If the clocks of the receiver and
the transmitter are synchronized, the time stamp of the received signal is used to calculate
the Time-of-Flight (ToF) of the signal. The ToF is the time it takes the signal to travel from
the transmitter to the receiver. The ToF is also the first peak of the channel impulse response
between the transmitter and receiver shown in Fig. 2.2. If there is no obstacle blocking the
LoS, the distance between the receiver and transmitter can be calculated as

d0 =
ToF

c
, (2.1)

where c is the speed of light. The Time-Difference-of-Arrival (TDoA) is the difference be-
tween the times at which the signals from different transmitters reach the receiver. An ad-
vantage of TDoA measurements is that the receiver and transmitters do not need to be syn-
chronized. The Angle-of-Arrival (AoA) is the angle at which the signal arrives at the receiver
and is easily obtained if the receiver contains an antenna array [16], [17].

ToA, TDoA, AoA can be used with any localization algorithm described in Sections 2.4 -
2.5.3.3, but are more commonly used in ranging localization approaches in Section 2.4.

2.3.2 RSSI

A very popular signal parameter used for localization is the received signal strength indicator
(RSSI). The RSSI represents average power in dB of a signal received by the user [18]–[23]. A
commonly used model for the RSSI is [24]:

RSSI(d0) = PT − Pd∗ − 10 · η · log10
d0
d∗

+Xσ, (2.2)

where the RSSI is in dB, d0 is the distance the signal travels from the transmitter to the re-
ceiver, PT is the transmit power, Pd∗ is the signal power measured at a reference distance d∗
from the transmitter, η is the pass loss exponent and Xσ represents additive white Gaussian
noise (AWGN) with variance σ2.
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The RSSI is most commonly used by fingerprinting-based algorithms detailed in Sections
2.5-2.5.3.3. The RSSI can also be used for ranging and distance estimation, according to Eq.
2.2, however the results generally lack in accuracy.

The RSSI is measured by default by most mobile devices, such as smartphones, which
has made the RSSI popular for ILS algorithms. It can also be calculated from the channel
impulse response, channel frequency response and channel state information [18].

2.3.3 CSI, CFR, CIR and Multipath Information

As a signal propagates through an environment, it is reflected from walls and objects as
shown in Fig. 2.2. Because of this, the signal at the receiver is attenuated, delayed and
shifted in phase. The signal from one AP generally travels though several paths to reach the
receiver. All of these effects are included in the channel impulse response (CIR) [18]. The
received signal is equal to the convolution of the original signal with the CIR. If the trans-
mitted signal is in the form of a Dirac delta impulse, then the received signal is equal to the
CIR. A common wide-band model for the CIR h(t) shown in Fig. 2.2 is:

x(t) = h(t) ∗ s(t) =
∑

k

aks(t− τk) + n(t) =
∑

k

aks(t− dk/c) + n(t), (2.3)

where x(t) is the received signal, s(t) is the original signal, ak is the attenuation undergone
by the signal along the k-th propagation path from the transmitter to the receiver and τk is
the delay and dk is the length of that path. c is the speed of light. The term n(t) represents
random noise added to the signal at the receiver [8], [18]. The channel frequency response
(CFR) is the frequency domain representation of the CIR.

The CIR is directly used for localization by some publications. Alternatively, several pa-
rameters or features can be derived from the CIR for indoor localization algorithms. The
channel state information (CSI) most commonly describes the received power and, optionally
phase, at each orthogonal frequency-division multiplexing (OFDM) carrier [25]–[27]. In that
case, the CSI is a downsampled version of the CFR [28], [29]. The multipath components are
the delays with which the reflected copies of the sounding signal reached the receiver equal
to the locations of the peaks in the channel impulse response [3], [30]–[32]. The multipath
components can also be expressed as the distances traveled along the individual propagation
paths shown in Fig. 2.2. In that case, the delays are multiplied by the speed of light.

The CIR and CFR can be measured by a channel sounder. CSI data is provided by cer-
tain WiFi network interface cards (NICs), such as the Intel IWL 5300, which has become a
common platform for WiFi CSI-based localization [26], [29]. There exist multiple methods
for estimating multipath information from a measured signal as shown in Table 2.1.The MU-
SIC algorithm was proposed for multipath azimuth estimation in [16], making it possible to
obtain the angles of arrival of the individual multipath components can be obtained. The
principle component analysis has been used for delay estimation in [33]. The ESPRIT [17]
and Unitary ESPRIT [34] algorithm, while also designed for azimuth estimation, have later
been correspondingly extended to jointly estimate the delays and the azimuth [35], [36] and
elevation angles [37] of a received multipath signal. The independent component analysis
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is used in [38] to estimate the multipath delays and azimuth angles of the global navigation
satellite system (GNSS) signals. The space-alternating generalized expectation-maximization
(SAGE) algorithm is proposed in [39]. Alternatively [40] uses the volume cross correlation
for estimating multipath TDoAs.

The CSI, CIR, CFR and multipath information are predominantly used for fingerprinting-
based localization schemes detailed in Section 2.5.

Existing multipath estimation methods

Authors Year Estimates Algorithm
Platform,

communication
standard

Schmidt at al.
[16]

1986 azimuth MUSIC -

Roy at. al. [17] 1989 azimuth ESPRIT simulation

Haardth at al.
[34]

1995 azimuth Unitary ESPRIT simulation

Zoltowski at al.
[37]

1996
azimuth,
elevation

angles
ESPRIT simulation

Van Der Veen at
al. [35]

1997
delays and the

azimuth
ESPRIT simulation

Lo at al. [33] 1994
multipath

delays

principle
component

analysis (PCA)
simulation

Fleury at al. [39] 1999

relative delay,
incidence
azimuth,
Doppler

frequency, and
complex

amplitude

space-alternating
generalized
expectation-

maximization
(SAGE), derived

from the
maximum

likelihood (ML)
principle

simulation,
wide-band

channel sounder
with a carrier at
the frequency of

1.98 GHz
modulated with a

PN sequence of
period of K = 255
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Luo et al. [41] 2010
multipath

ToAs, TDoAs

modified complex
to real amplitude

least-squares
algorithm, aimed

at better resolution
between close

MPCs

simulation,
measurements

UWB-IR system,
active tag and

receiver

Gifford at. al.
[42]

2011

delays and
gains of

multipath
components

Search-Subtract-
Readjust

Algorithm based
on ML estimation

Agilent E8362B
vector network
analyzer, center

frequency 4-16GHz
BW 1-16GHz

Gentner at al.
[43]

2016

angles of
arrival,

multipath
delays

Kalman enhanced
super resolution
tracking (KEST)

broadband
channel sounder, a

1 mW multitone
signal, with N =
1281 subcarriers

with equal gains at
a center frequency
of 1.51 GHz with a
bandwidth of B =

100 MHz

Zhao at al. [38] 2017
delays,

steering vector

independent
component

analysis

GNSS receiver,
GNSS

Wielandt at al.
[44]

2018
multipath

AoAs

steering the beam
electronically over
all directions and

measuring the
output power of
the beam former,
MVDR algorithm

horizontally
omnidirectional

mobile transmitter
and a uniform
linear antenna
array, vector

network analyzer

Sousa at al. [40] 2019
multipath

TDoAs
volume cross

correlation

CIR extracted from
ray-tracing
simulation
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Jaffe at al. [45]
Chen at. al. [32]

2014
2019

multipath
AoAs and
differential

delays

Singular value
decomposition

(SVD) of the signal
covariance matrix

a circular antenna
array of a WLAN

base station

Ayvasik at al.
[46]

2019
multipath

delays

pilot aided
channel

estimation (known
pilot sequence), LS

estimate

USRP

Cimins at al. [15] 2020
multipath

delays
as peaks of CIR

UWB, Decawave
DW1000 chip

Gentner at al.
[47]

2021
multipath

delays
Channel SLAM

UWB, Decawave
DW1000 chip

Table 2.1: Existing multipath estimation methods. The hardware platforms and communication stan-
dards used to implement the algorithms are highlighted in bold blue text.

2.4 Ranging and Triangulation

Ranging-based algorithms measure the distances and angles between the user and 3 or more
APs. If there is no obstacle blocking the LoS (line-of-sight) to the AP, the received signal
is used to estimate the incidence angle and distance between the user the AP. The incidence
angle is the angle at which the signal arrives at the receiver from an AP. Distances and/or an-
gles to at least 4 APs are required to localize the receiver in 3D . Trilateration/multilateration
is used to calculate the receiver’s location from ToF values and triangulation from AoA mea-
surements [9], [48], [49]. A 2D version of multilateration is illustrated in Fig. 2.3. Multilater-
ation finds the location of the receiver as the intersection of spheres centered at the APs, the
radii of which equal to the speed of light multiplied by the ToF values. The Least-Squares
(LS) algorithm is generally used. Some algorithms, such as the one proposed in [48] combine
AoA and ToF measurements. A good overview of basic ToA and AoA localization techniques
is provided in [48]. Table 2.2 lists several publications on ranging-based localization.

While ranging algorithms are most commonly applied to ToF, TDoA and AoA data, the
distances from the receivers to the APs can also be extracted from RSSI data using Eq. 2.2
[50]. The accuracy of such measurements is, however, generally low.
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Example Multilateration and Triangulation Ranging based ILSs.

Authors
Year

Localization
scheme

Algorithm
remarks

Evaluation
setup

Evalua-
tion

metric

Re-
sults

Qiao at al.
[51] 2014

expectation
maximization
(EM) method

for TDoA

smaller com-
putational
complexity

simulation -

'
non
lin-
ear
LS

Xie at al.
[52] 2017

TDoA based on
RSS-assisted

Cross-
correlation

method

RSS used to
mitigate the

effect of
multipath

interference

Software
defined

radio, WiFi

CDF,
Preci-
sion

0.3m

Djaja-Josko
at al. [53] 2018

TDoA

method for
simplifying

synchro-
nization

UWB,
DW1000chip

CDF,
max

lower
90% of
errors

1ns

Bonnin-
Pascual at

al. [54]
2019

UWB ToA,
filtering of

range
data,localization
with a modified
Iterative Closest

Point (ICP)
algorithm

designed for
environ-

ments with
metalic

objects and
surfaces

close to the
antennas

Pozyx UWB
kit

trajec-
tory
plots

er-
ror
<

0.5m

Zhang at
al. [55] 2020

TDoA with
Chan algorithm

a non-
recursive
algorithm

with
analytic

expression
solution

simulation
CDF,

RMSE
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Table 2.2: Example approaches that rely on ranging, triangulation and multilateration. The hardware
platforms and communication standards used to implement the algorithms are highlighted in bold
blue text.

T1

X1

Receiver

Transmitter

T2

T3Transmitter

Transmitter

T1

X1

Receiver

Transmitter

T2

T3Transmitter

Transmitter

ToF1

ToF2

ToF3

ToF1

ToF3

ToF2

Figure 2.3: Trilateration. Left: it is possible to calculate the location of the receiver for line-of-sight
(LoS) conditions; Right: due to an obstacle blocking the line-of-sight with transmitter T2 (non-line-of-
sight (NLoS) conditions) it is not possible to calculate the location of the receiver.

In order to obtain ToF values, the receiver and the APs need to be synchronized. Since
electromagnetic waves propagate with the speed of light, a measurement error of 1 µs alters
the ToF values by 300 m. [48] proposes a method that can increase the accuracy of ToF mea-
surements through sending a predefined message multiple times. The authors of [49] apply
the time-reversal technique to more accurately calculate the distance between the transmitter
and the receiver. With a slight modification of the LS algorithm, the location of the receiver
can be calculated from TDoA values. In that case synchronization is not required between
the receiver and APs.

Unlike the fingerprinting algorithms detailed in Section 2.5, ranging and AoA-based al-
gorithms do not require time consuming calibration measurements. However, the main chal-
lenge of triangulation and multilateration localization algorithms is the requirement of line-
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of-sight (LoS) conditions. Figure 2.3 illustrates that an incorrect location is calculated when
an obstacle blocks the LoS path from the receiver to one of the APs. Since there is no LoS
path, the algorithm assumes that the length of the shortest reflected path or multipath com-
ponent is equal to the distance between the receiver and the AP. If that value is used by the
LS algorithm, the localization error increases significantly. In the example in Fig. 2.3 the
circles do not intersect and the calculated localization error is very high. Some ILS attempt
to reduce the localization errors by detecting NLoS measurements and excluding them from
the trilateration, i.e. distance, and triangulation, i.e. angle, measurements. At the same time,
ranging measurements with accuracies down to 10cm can be obtained from ultra-wide band
(UWB) devices such as the Decawave board [7]. Because of this, as shown in Section 2.9, most
high precision commercial ILS use ToF/TDoA/AoA estimation and multilateration. The LoS
requirement means that in order for those ILS to reliably localize a user in a complex envi-
ronment a large number of APs needs to be installed. Therefore, existing commercial ILS
may be low cost in an open environment but become very expensive if the environment is
complex and contains moving objects.

Additional ranging algorithms can be found in fusion systems in Table 2.12, commercial
systems in Table 2.18 and machine learning and deep learning approaches in Tables 2.8-2.9.

2.5 Fingerprinting-based Localization Approaches

Fingerprinting algorithms localize the user by comparing his or her measurements to a pre-
recorded map. The main advantage of fingerprinting-based indoor localization algorithms
is that their performance is not affected by non-line-of-sight (NLoS) conditions [18]. As is
illustrated in Fig. 2.4, the algorithms consist of two main steps. First, during the off-line, cali-
bration or training phase, certain measurements, or reference fingerprints, are collected at a set of
reference points in the indoor environment. The reference fingerprints and the corresponding
reference points are stored in a map called a fingerprint map, radio map or calibration database.
The work in [9], [56], [57] provides a detailed overview of fingerprinting-based localization.

In the on-line phase, the user communicates with the APs. He or she extracts the same
type of parameters or features from the received signals, as were calculated during the cali-
bration phase. The ILS server compares the resulting query fingerprint to the map. A scalar
similarity value is computed for each reference fingerprint stored in the map. The similarity
metric represents how similar a reference fingerprint is to the query fingerprint. Example
similarity metrics include [56]:

• The Euclidean distance between two fingerprint vectors [10],

• Correlation of two fingerprint vectors,

• Time-reversal correlation of the fingerprint vectors [28].

It should be noted that localization systems such as [32], [58], require the communication
protocols between user and the APs to be reversed. Instead of the user receiving a signal
from the APs, the APs receive a signal from the user, compare it to a fingerprint database
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Pick

Map Reference fingerprints:

Reference point coordinates

Localization (on-line phase)

Query fingerprint
measured by the user 

Algorithm result
Estimated location 

Compare

Compare

 

user

Figure 2.4: Fingerprinting-based localization.

and localize the user. The same algorithms apply. An advantage of such hardware is that
a simpler off-the shelf device can be carried by the user, while more complicated antenna
arrays can be installed in the APs to analyze the user’s data. This is done in [32], [58]. How-
ever, it is challenging for a such a system to simultaneously track a large number of users.
Specialized communication protocols are needed to handle the situation when several users
contact the APs simultaneously.

The five signal or channel characteristics listed below are most often used as fingerprints:

• Received Signal Strength Indicator (RSSI) (see Sec. 2.3.2),

Channel impulse response (CIR) (see Sec. 2.3.3),

Channel frequency response (CFR) (see Sec. 2.3.3),

Channel State Information (CSI). The most common definition of a CSI fingerprint
is the received power at each of the OFDM carriers (see Sec. 2.3.3),

Multipath components (see Sec. 2.3.3).

TOF and AoA values can be used for fingerprinting but if they are available they are more
commonly used for multilateration and triangulation.
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Fingerprint
Parameter or feature vector created from the

electromagnetic signal received by the user from the APs
that is used for localization.

APs
Fixed electromagnetic transmitters or transceivers that the

user communicates with to calculate his or her location.
Also referred to as transmitters.

ILS server
Core of the system that stores the fingerprint map and that

the user communicates with to obtain his or her location

Receiver
Device carried by the user, term used interchangeably with

user

Fingerprint map
Data collected during system calibration and possibly

updated while the system is on-line. The fingerprint map
contains the fingerprints measured at reference locations.

Query fingerprint
Fingerprint measured by the user to estimate his or her

location.

Reference fingerprints Fingerprints stored in the map.

Reference locations
Coordinates at which the reference fingerprints were

measured

MDP
Multipath delay profile, all of the multipath components
extracted from the signals the user received from the APs

at a given location.

Multipath component
The length of one propagation path that the signal travels

from an AP to the receiver.

Similarity metric
A scalar value calculated between the query and a

reference fingerprint that indicates how similar the query
is to the reference.

Table 2.3: Terms and definitions related to fingerprinting in this thesis.

2.5.1 Fingerprint Types

2.5.1.1 RSSI Fingerprinting

The received signal strength indicator (RSSI) was one of the first signal properties to be used
as a fingerprint. The RSSI is automatically measured by many hand held devices, such as
smartphones, however, it fluctuates significantly over time due to the fading of the channel
and changes in the environment [59]. This happens because the RSSI aggregates the com-
plete channel information into one scalar value. Therefore, the complete RSSI measured by
the receiver fluctuates significantly if changes in the environment alter even one aspect of the
electromagnetic channel between the receiver and the AP. This results in low accuracies of
practical ILSs that rely on only RSSI fingerprinting. Therefore, most ILS that use RSSI finger-
printing fuse its result with the data from other localization techniques or sensors mounted
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on a mobile device, such as an IMU. These ILS are introduced in Section 2.2 and discussed
further in Section 2.6.2. Table 2.4 lists a number of publications that present pure RSSI fin-
gerprinting schemes.

Example RSSI Fingerprinting ILS.

Authors
Year

Localiza-
tion

scheme
Algorithm remarks

Evalua-
tion setup

Evalua-
tion

metric

Re-
sults

Bahl et
al. [60]

RADAR
2000

WiFi RSSI
fingerprint-

ing

Measured data and
linear regression
used to calculate

signal propagation
parameters. The

propagation
parameters are used

to create the
fingerprint map.

office area

resolu-
tion, 25th

per-
centile

4.3m,
1.86m

Van
Haute et
al. [61]

2016

WiFi RSSI
fingerprint-

ing

Active hospital
environment

error eval-
uation
over a
grid of
known
points

average
error,
room
level

accuracy,
latency

1.21m,
96%,
5.43s

Shu at
al. [62] 2016

WiFi fin-
gerprinting
using RSSI
gradient +

IMU +
extended
particle

filter

A binary RSSI
gradients calculated

from the RSSI
fingerprint map a

gradient fingerprint
database (Gmap) ia
established. More

robust against
fluctuations,

measured RSSI
gradients compared

to the map.

smart-
phone,
walking

traces

cdf, 80th
per-

centile

3.6m-
5.6m
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Zhang
at al.
[50]

2017

WiFi RSSI
path-loss-

based
fingerprint
localization
and dual-
scanned

fingerprint
localization

RSSI and distances
from RSSI path loss

model used for
fingerprinting

simula-
tion using
the KIOS

dataset

mean
error,
CFD

3m

Járvinen
et al.
[63]

2019

Faster fin-
gerprinting

with
quantized
WiFi RSSI

Quantized RSSI is
used, multiple

similarity metrics
compared

smart-
phone-
based

evalua-
tion

mean
error

5.68 m
8 bit -
9m 1
bit

Table 2.4: Examples of exclusive RSSI fingerprinting ILSs. The hardware platforms and communica-
tion standards used to implement the algorithms are highlighted in bold blue text.

2.5.1.2 CSI, CIR, CFR Fingerprinting

Due to the low accuracy of RSSI fingerprinting, the CSI, CIR and CFR, detailed in Section
2.3.3 are presented in many publications as a better alternative. The CSI, CIR and CFR con-
tain more information about the electromagnetic channel and therefore, have been shown to
produce up to a cm-level localization accuracy when used as fingerprints. As is explained in
Section 2.3.3, CSI fingerprints can have several different formats.

• In [64], [65] a set of parameters calculated from the channel impulse response (CIR) are
used as the fingerprint.

• The channel frequency response (CFR) is used as a fingerprint in [28], [29].

• A vector containing the received power and phase at each OFDM carrier for each AP
is used in [27]. This is the most common definition of a CSI fingerprint. It can also be
viewed as the downsampled CFR.

• The multipath components extracted from the CIR between the receiver and the AP are
used as the fingerprint in [3], [30]–[32] and can also be viewed as CSI information. The
multipath components are the length of the propagation paths of the signal, both direct
and reflected. The multipath components divided by the speed of light are equal to the
locations of the peaks of the CIR (as shown by Eq. 2.3). Multipath fingerprinting is
discussed in the next section.

The similarity between CSI/CIR/CFR query and reference fingerprints can be compared
in several different ways:
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• Correlation,

• Time reversal technique [25], [28], [66],

• Multipath similarity metrics detailed in Section 2.5.1.3 and Chapter 3.

Example CSI Fingerprinting Schemes

Authors
Year

Localiza-
tion

scheme
Algorithm remarks

Evaluation
setup

Evalua-
tion

metric

Re-
sults

Magsino
at al.
[67]

2017

CFR finger-
printing +

time
reversal

technique

Fingerprint
database updated

while system is
online

USRP 11
carriers, 60-

110 MHz, 5cm
spacing
between
reference

points, 1 AP,
dynamic

environment

correct
identifi-
cation
of the
point

100%,
5cm

Chen at
al. [28] 2017

WiFi CFR
fingerprint-

ing

Time-reversal
resonating strength
similarity metric,

leveraging
frequency diversity,

a large effective
bandwidth

achieved with
frequency hopping

USRP
accu-
racy

1-2
cm

Chen at
al. [66] 2017

WiFi CFR
fingerprint-

ing

Similarity metric:
time-reversal

resonating strength
with residual

synchronization
errors

compensated, CFR
obtained from
MIMO-OFDM

system

off-the-shelf
WiFi device is
equipped with
3 omnidirec-

tional
antennas, 3 × 3

MIMO
configuration

accu-
racy

1-2
cm
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Tseng at
al. [68] 2017

CIR finger-
printing,

kNN,
correlation
similarity

Two fingerprint
maps, measured
and ray-tracing

simulation

Agilent
E4438C vector

signal
analyzer,

center
frequency 900
MHz and BW

100 MHz

RMSE,
CDF

1.8-
3.2m

Chapre
at al.
[27]

2014

CSI-MIMO
fingerprint-

ing with
kNN

Similarity
calculated as

Euclidean distance
between two
fingerprints

laptop,
IWL5300 NIC

mean
error 0.89m

Sen at
al.[69] 2012

WiFi CSI
fingerprint-

ing

CSI data adjusted
before use, log

likelihood
similarity metric

IWL5300 NIC,
measurements
in rooms and
offices, a cafe

and a museum

Accu-
racy,
false
posi-
tives

≈
90%,
up
to

7.3%

Table 2.5: Examples of CSI fingerprinting ILSs. The hardware platforms and communication stan-
dards used to implement the algorithms are highlighted in bold blue text.

Table 2.5 lists several publications that present different CSI, CIR, CFR fingerprinting algo-
rithms. More CSI, CIR, CFR probabilistic and machine learning based fingerprinting ap-
proaches are listed in Tables 2.7, 2.8 and 2.9. In [28], the CFR is acquired through frequency
hopping over a multitude of frequency bands. The experimental results in [28] demonstrate
that, given a fingerprint database with 5cm spacing, the localization algorithm can achieve
an accuracy of up to 1-2 cm in an NLOS environment.

However, conventional similarity metrics for CSI/CIR/CFR fingerprinting are still calcu-
lated using the complete channel information. They do not allow to identify the parts of the
reference and query fingerprints that correspond to changes in the environment. Therefore,
if any changes occur in the environment after the reference fingerprints were measured, a
query fingerprint may be very different from the reference fingerprint measured at the same
location. The similarity metric between a reference and query fingerprint measured at the
same location will be lower than between the query and a reference fingerprint measured at
a different location, and the localization estimate will not be correct. Therefore, a multipath
fingerprinting approach is proposed in this thesis.
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2.5.1.3 Multipath-based Fingerprinting

Table 2.6 lists several example multipath fingerprinting algorithms. As was mentioned in
Section 2.3.3 and Fig. 2.2, the multipath components (MPCs) d1

c , ..
dK
c are the lengths of the dif-

ferent propagation paths along which the signal travels from the APs to the receiver. In some
publications the term multipath components is used to describe the delays that correspond
to the propagation paths d1, ..dK . Both definitions essentially describe the same thing as the
delays of the propagation paths multiplied by the speed of light equal their lengths.

Example Multipath Fingerprinting-based ILSs.

Authors
Year

Localization
scheme

Algorithm
remarks

Device, ex-
perimental

setup

Evalu-
ation

metric

Re-
sults

Chen at
al. [32] 2019

Spatial-temporal
covariance matrix
of the multipath
signals used as a

fingerprint,
Euclidean distance
between location

descriptors,
represented as
points on the

reproducing kernel
hilbert space, used

as the similarity
metric

Robust to
outliers, the
query is first
compared to

larger clusters
and then to the

reference
fingerprints

within the best
matching

cluster, only
one AP needed

antenna
array of a

WLAN
base

station,
measure-
ments in a

warehouse,
3D ray
tracing

simulation

CDF,
92.19
per-

centile,
max
error

1m,
2.5m

Kuper-
stein at
al. [58]

2013

A lower
dimensional signal

subspace of the
spatial-temporal

covariance matrix
as fingerprint, ML

Only one AP
needed

antenna
array of a

WLAN
base

station, ray
tracing

wave prop-
agation

simulator

CDF,
90%

errors,
78%

errors

<
3m,

<
1m.
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Wielandt
et al.
[44]

2018

WiFi AoA
fingerprinting,
angular arrival

spectrum used as a
fingerprint

Fingerprint
map generated

with
ray-tracing,
correlation

used to
compare

fingerprints

vector
network
analyzer,
tested in
several
rooms,

only one
anchor
node

50th
and
95th
per-

centile,
CDF,
nor-
mal-
ized

errors

-

Sousa at
al. [40],

[70]
2018
2019

TDOA ranging
combined with

with TDOA
multipath

fingerprinting
under NLoS

Joint
probability

function of the
possible points

and TDoA
results [70]

machine
learning

approach [40]

RF sensors
with omni-
directional

anten-
nas,[70], 3
dBi whip
antenna,
OFDM

signal [40]

mean,
vari-
ance
σ2,

CDF,
65% of
errors
<[40]

79-
94%,
210m

Phelan
at al.
[71]

2012

Fingerprinting
with mean and

standard deviation
of the delays,

AoAs, and signal
strength of the

MPCs, the delay
spread

Ray tracing is
used to create
the multipath

database,
measured

feature vectors
compared to

statistical
features of

clusters
calculated in
the database

ray tracing
simulation

signal
strength

and
AoA
plots

for the
simu-
lated
envi-
ron-
ment

-

Table 2.6: Examples of multipath fingerprinting ILSs. The hardware platforms and communication
standards used to implement the algorithms are highlighted in bold blue text.

However, existing multipath-based fingerprinting algorithms again use the complete
multipath information to calculate the similarity metric between a query and reference fin-
gerprint. Same as most fingerprinting algorithms, their accuracy decreases significantly if
changes occur in the environment after the fingerprint map is created. This is also the main
difference between the state-of-the art and the localization algorithm proposed in this thesis
and detailed in Chapter 3.
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2.5.2 Fingerprinting Optimization

Once a similarity metric value has been calculated between the query and each reference
fingerprint, the most straightforward way to obtain the users location is to pick the reference
point corresponding to the reference fingerprint with the highest or lowest similarity metric
value. However, many publications increase the localization accuracy of the algorithm by us-
ing filtering and averaging algorithms such as k-nearest neighbors (kNN) [57], [72]. The KNN
algorithm calculates the user’s location as an average of the K reference points for which
the highest or lowest similarity metric value was calculated. Weighted KNN (WkNN) calcu-
lates the user’s location as a weighted average of the K best reference points. The calculated
similarity values can be used as the weights in the average.

2.5.3 Alternative Similarity Metrics and Fingerprinting Algorithms

There are a number of ways to calculate the user’s location given a prerecorded database or
fingerprint map and a measured query. The approaches in Section 2.5.1 calculate a similar-
ity value between the query and the database entries. The location at which the reference
fingerprint which is most similar to the query was recorded is picked as the user’s location.
Alternative approaches are presented in this section.

2.5.3.1 Probabilistic Fingerprinting Approaches and Maximum Likelihood

Example Schemes based on Probabilistic Fingerprinting

Au-
thors Year

Localization
scheme

Algorithm
remarks

Evaluation
setup

Evalua-
tion

metric
Results

Youssef
at al.
[73]
HO-
RUS

2005

WiFi RSSI,
ML, discrete

and
continuous

space
estimator,

Correlation
Modeling and

Handling

Location-
clustering

techniques to
reduce the

computational
complexity

Lucent
Orinoco

silver
network
interface

card (NIC)

Me-
dian,

average
error, σ,

best
90%,
Max

39-51,
42-64,
28-53,
86-132,
121-289

(cm)
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Kuper-
stein at
al. [58]

2013

A lower
dimensional

signal
subspace of
the spatial-
temporal

covariance
matrix as
multipath

fingerprint,
ML

Only one AP
needed

antenna
array of a

WLAN base
station,

measure-
ments in an
office floor,

3D ray
tracing radio

wave
propagation

simulator

CDF

90%

errors <
3m. 78%

errors <
1m.

Wu at
al. [29] 2013

WiFi CSI
fingerprinting

ML approach,
Pearson

correlation used
to calculate
similarity

laptop with
IWL5300

NIC

median
accu-
racy,
CDF

0.65m

Fazelinia
at al.
[74]

2019

WiFi RSSI, ML
classification

based on
Bayesian
decision

theory (BDT)

For faster
computation

classifier’s
discriminant
function is

simplified into
second order by

taking a
logarithm. Only

features with high
discriminatory
information are

used.

RSSI dataset

classifi-
cation
accu-
racy

97.9%

Yu at
al. [75] 2021

WiFi RSSI,
improved

probabilistic
linear

discriminant
analysis
(PLDA)

Supervised
learning

WiFi APs
and smart-

phones

mean
error

1.38m

Table 2.7: Examples of ILSs based on probabilistic fingerprinting. The hardware platforms and com-
munication standards used to implement the algorithms are highlighted in bold blue text.
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A maximum likelihood (ML) approach can be used instead of a similarity metric calculation
to find the best matching fingerprint. The ML approach is implemented as follows. Given
a measured fingerprint sq, the goal of the algorithm is to find a reference location Xi where
the user is most likely to be located given that sq was measured, that is the goal is to find
Xi that maximizes the probability P (Xi|sq). The probability P (X|s) is unknown. However,
according to the Bayes’ rule:

P (Xi|sq) =
P (sq|Xi) ∗ P (Xi)

P (sq)
. (2.4)

Therefore,
argmaxiP (Xi|sq) = argmaxiP (sq|Xi). (2.5)

A distinguishing feature of probabilistic RSSI approaches is that their fingerprint map
contains the probability distribution of RSSI or other fingerprint values measured for each
AP at each reference location. A number of fingerprint samples measured at the reference
point Xi during the calibration phase combined with a Gaussian model is typically used
to approximate P (sq|Xi). Probabilistic CSI approaches generally approximate P (sq|Xi) in
other ways, for example by the Pearson correlation between two fingerprints [29].

2.5.3.2 Machine Learning-based Fingerprinting

Machine learning is used for the following tasks by ILSs:

• Some ILSs improve the localization accuracy of a fingerprinting scheme by extracting
relevant features from the fingerprints before they are stored in the map or used as a
query. This way some ILSs also reduce the size of the calibration database. The follow-
ing mathematical techniques are used:

– Principle component analysis (PCA) .

– The discrete cosine transform (DCT) is also used to decorrelate and compress RSSI
vectors [76].

– The independent component analysis is also used to decorrelate the entries in the
RSSI vectors [76].

• The work in [77] clusters unlabeled RSSI measurements in a way that each cluster cor-
responds to a subarea in the floor plan.

– RL-clustering [78] is used in [77] to cluster RSSI fingerprints.

– Multi-dimensional scaling is used by [77] to obtain a 2D representation of the RSSI
vectors in such as way that the distance between similar RSSI fingerprints is as
small as possible. The multi-dimensional scaling coordinates are used to map
RSSI clusters to the subareas.

• Multiple classifiers can be trained to predict the location of the user, as is done in [79].
The fusion can be used to calculate the users location from the output locations of the
classifiers. An example classifier is the linear discriminant analysis.
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• Identification of NLoS conditions from a CIR is done in [80] using linear discriminant
analysis and support vector machines.

Example Machine Learning-based Schemes

Authors
Year

Localiza-
tion

scheme
Algorithm remarks

Evalua-
tion

setup

Evalu-
ation

metric
Results

Liu at al.
[81] 2021

RSSI fin-
gerprinting

with
k-means
weighted
K nearest
neighbors
(WKNN)

K-means algorithm
used to divide

reference
measurements into
non-overlapping

clusters. One
representative sample
per cluster calculated.
New fingerprint set
that is smaller and

more robust to noise.

simula-
tion,

UjiIn-
doorLoc
dataset

mean
error,
CDF

1.45m-
8.77m

Wang at.
al. [82] 2021

WiFi CSI
fingerprint-

ing with
PCA and

DWT

DWT used for de
noising, PCA for
dimentionality

reduction, eliminate
redundancy

laptop,
Intel

IWL5300

MSE,
σ

1.37,
6.52m

Guo at al.
[79] 2019

WiFi RSSI
fingerprint-

ing with
pre-trained
classifiers

Fusion of the output of
multiple classifiers.

unsupervised fusion
determines the users

location from the
location estimates
which are above a

probability threshold
from each classifier.

WiFi
APs,

smart-
phone

RMSE 2.6m
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Han at al.
[83] 2019

LS Trilater-
ation with
WiFi ToF,
time mea-
surements
used for

LoS identi-
fication.

Support vector
machines are used

with Fine Time
Measurements and

RSSI.

phone
measure-

ments

accu-
racy of
NLOS
identi-

fica-
tion,

RMSE

0.766,
2.296m

Salamah
at al. [84] 2016

WiFi RSSI
fingerprint-

ing with
principle

component
analysis

and
random

forest
classifier

PCA is used to create
an uncorrelated space

and make the
fingerprints smaller, a

random forest
classifier is used to

calculate the
corresponding

location.

smart-
phone,

hall of an
apart-
ment

with ran-
domly

moving
people.

mean
error,
vari-
ance,
RMSE

1m

Fang at al.
[76] 2008

WiFi RSSI
maximum-
likelihood
based fin-

gerprinting
on a

reduced
dimension

space

PCA, independent
component analysis
and discrete cosine
transform (DCT)

applied to the RSSI
data to compress it

before fingerprinting

office
space,
laptop

aver-
age

error,
vari-
ance

of the
error,
CDF

0.86m
for

3APS
0.5m for
15 APs

Table 2.8: Examples of machine learning based ILSs. The hardware platforms and communication
standards used to implement the algorithms are highlighted in bold blue text.

2.5.3.3 Deep Learning and Neural Network-based Fingerprinting

Neural networks have been used for localization in the following ways:

• Training a neural network with labeled reference fingerprints and using the network
to calculate the locations of query fingerprints [26], [85]. As illustrated in Fig. 2.5,
instead of calculating a similarity metric between the query and each reference finger-
print stored in the database, the trained neural network becomes the fingerprint map
and also performs the similarity metric calculation and filtering.
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Figure 2.5: Fingerprinting-based localization using a deep neural network.

– In the calibration phase the network is trained using a set of pre-measured finger-
prints and the locations at which they were recorded.

– In the on-line phase the user’s fingerprint is the input to the network and his or her
location is the output.

This can be done either by

– Training the network with labeled reference fingerprints, that is reference finger-
prints the locations of which are known. This is referred to as supervised learn-
ing. Such a network is equivalent to classical fingerprinting. However, a network
has the ability to filter and interpolate the reference fingerprints, filter noisy data.
Therefore, a network-based approach has the potential to achieve higher accuracy
with calibration measurements than a classical fingerprinting algorithm. This is
shown in [85].

– Training the network with a small amount of labeled fingerprints and a larger
number of unlabeled fingerprints. This is referred to as semi-supervised learning.
The network uses the unlabeled data to find patterns it can use. The network
training algorithms require a large amount of unlabeled fingerprints. Fingerprint
data with location labels is expensive to collect [86]. The location of the receiver
needs to be obtained through manual measurement or external ILS. Unlabeled
data, in contrast, is cheap to collect [86]. The receiver can be randomly moved
around the environment continuously recording measurements. Crowdsourcing
as detailed in Section 2.5.5, where the ILS adds measurements collected by users
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to the fingerprint map, is another approach used to cheaply obtain a large number
of unlabeled fingerprints.

– Training the network only with unlabeled data. This is referred to as unsuper-
vised learning. The work in [87] uses the floor plan, an unlabeled RSSI data that
was collected in a known sequence and a hidden Markov model to estimate the
position of each reference fingerprint. The work in [88] uses deep reinforcement
learning with unlabeled RSSI data. Features are identified in the data and the cal-
culated location of those features are used as reference. The initial features are
the locations close to the APs which are identified using the near field model and
the RSSI. While the calibration phase of these algorithms is the least time consum-
ing, the author of this thesis is not aware of a high-accuracy unsupervised indoor
localization network.

• Using a neural network to transform the fingerprints before they are used in a localiza-
tion algorithm. This is similar to some of the machine learning techniques presented in
Section 2.5.3.2. The network will either reduce the dimension of the fingerprint vectors
or extract the most important features [89]. The following networks are often used:

– An autoencoder trained by the unlabeled data. An autoencoder network has a
butterfly shape with much fewer neurons in the middle then in the input and out-
put layers. Therefore, the input of the autoencoder is essentially encoded by the
left side of the network, the output of the smallest middle layer of neurons is equal
to the encoded data, the right side of the network decodes the data.

– A network trained by a small portion of labeled data and a large amount of unla-
beled data.

• Using an unsupervised network such as an autoencoder to extract important features
from the fingerprint vectors and another network can be trained to use those features
to calculate the users location.

• The work [90] uses a neural network to create two databases, one for a noise-free as-
sumption for the data and the second database considers the data to be noisy. Once the
user obtains his or her measurements the ILS uses the variance of the data to determine
whether the measurements are noisy and which database needs to be applied.

Example deep learning-based localization algorithms are listed in Table 2.9.
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Example Deep Learning-based Schemes

Authors
Year

Localiza-
tion

scheme
Algorithm remarks

Evalua-
tion setup

Evalua-
tion

metric
Results

Gassner at
al. [91] 2021

CSI CNN
finger-

printing

Convolutional neural
network (CNN)

trained on labeled CSI
(Fourier transform of

CIR) fingerprints

USRP
B200mini
attached
to mobile

robot,
LTE

signals,
finger-
print

collected
over a

3.5m×5m

area

average
MSE of
x and y
coordi-
nates,

median
error

<200cm,
175cm

Gönültaş
at al. [92] 2021

WiFi CSI
ML local-

ization

Neural networks
(probability maps)
used to combine

probability estimates
from each AP, inverse

discreet Fourier
transform (DFT) and
auto-correlation used
for feature extraction

two
antenna

IEEE
802.11ac

transceiver

mean
dis-

tance
error,

median,
95th
per-

centile

0.05 -
0.7m

Hao at al.
[93] 2021

Deep
neural

network
RSSI

finger-
printing

Multi-objective
regression DNN
combines RSSI

measurements from
different WiFi
channels sets

smart-
phone,
laptop,
tablet

RMSE
1.508m-
1.815m
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Chen at
al. [94] 2020

Finger-
printing

with envi-
ronment

identifica-
tion,

labeled
samples

A convolutional
neural network

(CNN) performs
indoor environment

identification by
extracting the

inherent features,
another CNN

performs localization
taking environment

type into account

vector
network
analyzer,
omnidi-
rectional
antennas

RMSE
0.28-

0.37m

Sandhu
MSc. [85] 2019

Fully
connected
network
with 3
layers

Multipath data

Ray
tracing
simula-

tion

mean
error

down to
4cm , 20
cm with
a 1m ref-

erence
grid

Li et al.
[88] 2019

RSSI
finger-

printing,
finger-

print map
trained
with a

unsuper-
vised data

The continuous
localization task is

modeled as a Markov
decision processes,

making it possible to
calculate the location

with deep
reinforcement

learning. Features are
extracted from the

RSSI data. Pass-loss
model used initially

for setting the
rewards to the
reinforcement

learning.

tests in an
open
field,
Blue-
tooth

RMSE,
95%

quantile

12.2m,
24.7m
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Chidlovskii
at al. [86]

2019

Varia-
tional
auto-

encoder
trained

with RSSI
data

Only some of the data
is labeled, more

unlabeled data is
used.

WiFi
RSSI UJI-
IndoorLoc

dataset
[95]

RMSE 4.65m

Abbas at
al. [96] 2019

WiFi RSSI
Finger-

printing,
deep

learning
used to

extract the
correla-

tion
between
signals
from

different
APs.

Stacked
auto-encoders used

for de-noising,
regularization used to

avoid over fitting, a
deep network is
trained for each
reference point,

artificial noise added
to the data before it is

used to train the
autoencoders. The

output of the
autoencoders is used

for probabilistic
localization.

629 m2

area with
29

reference
points

and 65m2

area with
81

reference
points.

Android
phones.

mean
error,
cdf,

50th,
75th
and

100th
per-

centiles

629m2 -
2.64m,
2.38m,
3.38m,
7.12m,
65m2 -
1.21m,
1.07m,
1.62m,
3.74m

Berruet at
al. [97] 2018

CFR
finger-

printing
using a

convolu-
tional
neural

network
(CNN)

Trained on a limited
number of labeled

samples, one one data
packet needed for

localization

5 GHz
WiFi
data,

channel
sounder,
5 room
apart-
ment

90th
and
99th
per-

centiles,
median,

mean
error,
CDF

4.36m,
7.21m,
1.55m,
0.14m

Hsu at al.
[90] 2018

RSSI
Finger-
printing

Deep belief network
used to build an

adjust the fingerprint
database

WiFi
RSSI

measure-
ment in a
parking
garage

mean
error

>1.2m
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Moham-
madi et al.

[98]
2018

BLE RSSI
varia-
tional
auto

encoder

Part of the dataset
labeled, most

unlabeled

BLE RSSI
measure-
ments in
a library

mean
error,
error

percent-
ages

4.3m,
47% ≥3m

Khatab et
al. [99] 2018

WiFi RSSI
Autoencoder-

based
extreme

deep
learning
machine
(ELM)

Features learned by
the autoencoder are

used by the ELM

simula-
tion on
the path

loss
model

correct
classifi-
cation

92.82%

Le at al.
[89] 2018

WiFi RSSI
support
vector

machine
trained on

labeled
features

for finger-
printing

Feature extraction on
unsupervised data
with PCA + deep

belief network (DBN),
features calculated

from labeled data and
used to train support

vector machine

UJIIn-
doorLoc
dataset

with 10%

to 100%

of data
used as
labeled

data. 1%

RMSE,
CDF

>6m

Szabo et
al. [100] 2011

Bluetooth
CIR

finger-
printing

Fingerprint map
initialized with data

generated by a model,
labeled

measurements used
improve the map.

Blue-
tooth tag,
lab envi-
ronment

mean
error, σ,

CDF,
per-

centiles
at 50%

and
90%

0.68m,
0.54m,
0.54m,
1.47m

Ner-
guizian at

al. [65]
2007

CIR
finger-

printing
with gen-
eralized

regression
neural

network

Discrete wavelet
transform (DWT)

applied to the CIR,
the result is the input

of the network

simula-
tion

preci-
sion for

91%

trained
and

70% un-
trained
data,
CDF

2m
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Wang at
al. [101] 2017

AoA and
CSI

finger-
printing

Autoencoder
network, three hidden
layers and one input

layer

Intel 5300
NIC,
Dell

laptop

mean
error, σ

1.5m-
2.2m,
0,8m-
1.5m

Table 2.9: Example deep learning based ILSs. The hardware platforms and communication standards
used to implement the algorithms are highlighted in bold blue text.

The main disadvantage of network-based ILS is the requirement that the structure of the
data cannot change after the network was trained. In a master thesis, written at the Chair
of Media Technology at the Technical University of Munich [85], the multipath delay profile
was used as the fingerprint structure. The simulation results showed that the selected con-
volutional neural network succeeded at interpolating between the reference fingerprints and
produced a high accuracy even with a smaller number of reference fingerprints. The ILS also
showed a high accuracy despite a noisy input. However, a neural network requires a very
structured input. When changes in the environment modified the order or removed or added
multipath components to a fingerprint, the network produced high localization errors.

2.5.4 Main Challenges of Fingerprinting-based Systems

2.5.4.1 Calibration and Maintenance Effort

For most fingerprinting algorithms, the more entries the fingerprint map contains the higher
the localization accuracy will be. The accuracy of deep learning and machine learning ap-
proaches also increases with the amount of training data. In order to gather labeled fin-
gerprints, a person or robot needs to go to each reference location to record the fingerprint
and the ground truth coordinates. The ground truth can be collected though manual mea-
surements, SLAM using a laser scanner, Lidar or certain infrared or ultrasonic localization
systems. The construction of the fingerprint map is time consuming and the map needs to
be recomputed every time structural changes occur in the environment [102]. This increases
the overall cost of fingerprinting ILSs. One possible solution to this problem is an approach
where the fingerprint map is constantly updated by the data received by the ILS from the
users of the localization system [103] and [20]. Either the ILS calculates the locations of the
new crowdsourced fingerprints using a localization algorithm or IMU data, or a deep net-
work or machine learning is used to update the map without calculating the locations of
the unlabeled crowdsourced fingerprints. In some cases the system uses IMU data to track
the users displacement and direction of movement and fuses that information together with
the current and previous reported locations to update the fingerprint map. If machine or
deep learning is used, labeled crowdsourced data can be use to find useful features in the
fingerprint vectors.
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2.5.4.2 Temporal Variations of the Channel

Due to the movement of people and objects or the opening and closing of doors, the channel
between a receiver and a transmitter will not remain constant over time [8]. In [8] the author
provides measurements and experimental data on temporal variations of indoor channels.
In [69], [104], [105] the influence of the presence of people on an RSSI fingerprinting-based
localization system is experimentally measured. The results presented in [104] show that the
presence of people can increase the localization error by 11% on average and by as much as
50% in corridors. The work done within a master thesis at the Chair of Media Technology at
the Technical University of Munich [106] showed the variations in the CSI fingerprint map
when people moved around the indoor environment. In [67] the CFR fingerprints are shown
to become uncorrelated within a 15min window in a dynamic environment. The author of
[67] suggests slowly updating the fingerprint database as the ILS is on-line.

In addition, certain APs (equipment from Netgear, Cisco and Aruba Networks) can mon-
itor the signal propagation environment and automatically adjust the transmit power to op-
timize overall network performance [62]. To overcome the variations in AP transmit power
[62] proposes a system that relies on the RSSI gradient and not absolute value fingerprints.
This approach, however, cannot account for global changes in the environment.

2.5.4.3 Device Variation

The work in [105] details the differences in the measured RSSI that can be observed by dif-
ferent smartphones. There may be differences in fingerprints of other formats if different
devices are used for creating the map and by the user.

2.5.5 Crowdsourcing Fingerprints

Crowdsourcing approaches both reduce the calibration effort of an ILS and make it more
robust to changes in the environment. An initial fingerprint map is created when the ILS is
setup. During the online-phase measurements collected by users are added to the fingerprint
map. Crowdsourcing is active when the user lets the ILS know at which location the finger-
print was collected, for example though PDR or data fusion. It is passive when the user only
send the measured fingerprint and not his location to the ILS [77].

Crowdsourcing algorithms can be implemented the following way:

• Odometry or an IMU is used to calculate the location of the new fingerprints. The cal-
culated location and measured fingerprint are added to the map. Filters can be used to
improve the fingerprint map quality [107].

• The location of a new fingerprint is estimated using the existing map. The new finger-
print and the calculated location are added to the map.

• The work in [87] uses the floor plan and a hidden Markov model to construct and
afterwards update the fingerprint map with unlabeled reference fingerprints.

A number of crowdsourcing approaches are listed in Table 2.10.



2.5. Fingerprinting-based Localization Approaches 41

Example Crowdsourcing Fingerprinting ILS.

Authors
Year

Localization
scheme

Algorithm
remarks

Evalua-
tion

setup

Evalu-
ation

metric

Re-
sults

Chai at
al. [108] 2007

WiFi RSSI
Probabilistic

fingerprinting
with

crowdsourcing

Unlabeled
sequential data
provided by the

user used to
improve the

fingerprint map

office
area,

laptop

accu-
racy

close
to 90%

Chen et
al. [77] 2015

WiFi RSSI
fingerprinting,
unsupervised

crowdsourcing

Crowdsourced
fingerprints are

clustered
together, a floor
plan is used to
map clusters to

subareas.

office
rooms,
smart-
phone

sub-
area

correct-
ness
rate

90%

with
raw
RSSI

to 95%

with
aver-
aged
RSSI

Jung at
al. [87] 2018

WiFi RSSI
fingerprinting

Unsupervised
learning and a

floor plan is used
to build the

fingerprint map
from unlabeled

fingerprints.
Fingerprint map

updated.

WiFi
RSSI

smart-
phone
mea-
sure-
ment

aver-
age

error
>2m
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Yu at al.
[107] 2019

RSSI
fingerprinting

with IMU-based
crowdsourcing

Fused and
weighted data
used to create a
higher quality

database,
detrministic and

Baysean
similarity metrics

used

CDF,
accu-

racy of
80% of

test
points,
mean
error
deter-
minis-
tic and
proba-
bilistic
finger-
prints

>
2.08m,
2.438m,
1.556m

An at al.
[109] 2021

Manifold
regularization
used to map
WiFi RSSI

fingerprints onto
a lower

dimensional
subspace, semi

supervised
learning, labeled

and unlabeled
fingerprints

Reduced
computational
requirements,

privacy
preserving
localization

UJI-
IndoorLoc

mean
error,
min

error,
max
error

2.67m,
0.5m,

34.14m

Xiang at
al. [110] 2021

Multi-kernel
transfer learning

for
crowdsourcing

Multi-kernel
maximum mean
discrepancy with

WiFi CSI
distributions,

IMU data, deep
transfer learning

network for
localization

smart-
phone

CDF,
50th
per-

centile

1.08m
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Zhao at
al. [111] 2021

WiFi RSSI, AoA
and IMU data

integrated into a
graph

formulation

Nodes represent
the positions of
devices or user
steps in a time

series. The edges
are estimated
based on the

IMU, WiFi data.
multidimensional

scaling (MDS)
algorithm used to

solve graph
formulation

smart-
phone

CDF,
accu-
racy

1.71m

Jiang at
al. [112] 2021

WiFi RSSI
measurements,

gyroscope,
reference

fingerprints and
locations stored

in a graph

Multi-
dimensional

scaling used to
compute the

distance between
two reference
locations from

WiFi fingerprints,
fingerprints

grouped into
clusters

smart-
phone

error
and ac-
curacy
CDFs

80% <
4m

Table 2.10: Examples of crowdsourcing-based fingerprinting ILSs. The hardware platforms and com-
munication standards used to implement the algorithms are highlighted in bold blue text.

2.6 Summary of Existing Multipath-based Localization Schemes

2.6.1 Multipath Simultaneous Localization and Mapping (SLAM)

As the indoor localization system proposed in this thesis uses the multipath components
of the received signal as a fingerprint, this subsection summarizes existing multipath-based
localization schemes.

Two categories of multipath-based localization approaches can be distinguished. In the
first category of algorithms the multipath components are used to calculate more compact
features. Those features are then used to calculate the location. Such features include points
on the reproducing kernel Hilbert space calculated from the spatial-temporal covariance ma-
trix of the multipath signals received by the base-station antenna array [32]. In the second
algorithm class, the multipath components are used directly for localization and for obtain-
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ing information about the geometry. Example multipath-based fingerprinting algorithms are
summarized in Table 2.6 and Section 2.5.1.3.

Multipath components are also used in multipath SLAM algorithms summarized in Ta-
ble 2.11. In this case, multipath components measured by a moving user are associated
to so-called virtual transmitters (VTs), detailed in Chapter 6. The user’s motion data, and
the differences between the multipath components measured along the user’s trajectory are
used to determine which multipath components corresponds to which VT. The measured
multipath delays and estimated VT locations and a Kalman or particle filter are then used to
localize the user.

Example multipath SLAM-based ILSs.

Authors
Year

Localiza-
tion

scheme

Algorithm
remarks

Evaluation
setup

Evalua-
tion

metric

Re-
sults

Gentner
at al.
[43]

2016

Recursive
Bayesian
filtering
called

Channel
SLAM

VTs estimated
from

multipath
components
of a moving

receiver,
Kalman

enhanced
super

resolution
tracking

(KEST) used
to estimate
multipaths

MEDAV
RUSK-DLR
broadband

channel
sounder 1 mW

multitone
signal, N = 1281

subcarriers ,
center

frequency of
1.51 GHz,

bandwidth of B
= 100 MHz

RMSE of
the

estimated
VT

positions,
localiza-

tion
RMSE

5cm -
1m

Leitinger
at al.
[113],
[114]

2019

Multipath
SLAM with

Baysean
probabilis-
tic feature
estimation

VTs used as
features,

feature and
location belief

iteratively
updated

UWB, channel
sounder, from 3
to 10GHz, 2GHz

BW a center
frequency of
7GHz [113],

[114],
simulation

[114]

CDF
[113],
[114],
RMSE

over time
moving

user, max
error, max

error of
min90%

[114]

max
error
6cm

[113],
simu-
lation

<0.12m,
mea-
sure-
ment
0.2m,

0.083m
[114]
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Ulm-
schnei-

der et al.
[115]

2020

Channel
SLAM

extended
with

transmitter
visibility
informa-

tion

Use of
transmitter

visibility
maps of the

environment

simulation

Mean
absolute

error, 95th
and 5th

per-
centiles

< 5m

Gentner
at al.
[47]

2021
Channel
SLAM

Environment
reconstruc-

tion
performed

UWB,
Decawave
DW1000

accuracy
in 95% of

cases,
trajectory

plots

≈ 1m

Table 2.11: Examples of multipath SLAM ILSs. The hardware platforms and communication stan-
dards used to implement the algorithms are highlighted in bold blue text.

2.6.2 ILSs Based on Sensor Fusion

In order to increase the accuracy of an ILS, locations calculated by multiple algorithms and
the data from multiple sources and sensors are often fused together. Fusion is most com-
monly used with RSSI fingerprinting described in Section 2.5.1.1, as RSSI fingerprinting on
its own has low accuracy and RSSI data is cheap and easy to acquire. In general, the accu-
racy of any localization scheme can be improved with filters, algorithm or sensor fusion in
the following ways:

• If the user is moving:

– As was discussed in Section 2.2, if the user is moving the data from the IMU and
from other sensors is often used to improve the localization accuracy of an al-
gorithm. An IMU would give a noisy estimate of the direction and distance in
which the user moved since the last sensor measurement. IMU data can not be
integrated over time to obtain the users location as the noise accumulated over
each measurement makes the calculated location imprecise. RSSI fingerprinting
can be used to correct the IMU drift.

– The fact that estimates of the users location made one after the other should be
next to each other is space and the users motion should be smooth, can be used to
filter the output of a fingerprinting algorithm.

• If the user is stationary or moving:
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– Data from other localization schemes, such as magnetic field fingerprinting, can
be fused together with electromagnetic fingerprinting or multilateration.

The following filters are most commonly used for calculating the location of the user
based on data from multiple sensors and algorithms:

• Kalman filter detailed in Section 2.2.

• Particle filter detailed in Section 2.2.

• Averaging filters such as the k-nearest neighbors (KNN), applied to multiple estimates.

Table 2.12 lists a number of publications that present localization algorithms based on fin-
gerprinting fused with additional sensor data or motion filters. It should be noted that any
fingerprinting or trilateration approach described in this chapter can be used for data fusion.
However, it is most common for RSSI fingerprinting since the accuracy of the fingerprinting
scheme on its own is very low but RSSI values are measured by default by hand-held de-
vices. In addition, an IMU is usually inbuilt in a smartphone. A filter or fusion algorithm
can be added to any localization scheme, the more accurate the positioning performed by
the original scheme, the more accurate the output of the filter or fusion will be.

Example Fusion-based Schemes

Authors
Year

Localiza-
tion

scheme

Algorithm
remarks

Evalua-
tion setup

Evaluation
metric

Results

Yu at al.
[116] 2021

BLE RSSI
fingerprint-

ing+
inertial
sensor
PDR +
magne-

tometer +
adaptive

unscented
Kalman

filter

Dynamic-time-
warping

algorithm used
to detect the

local BLE
landmark from

RSSI

BLE
nodes use

TI’s
CC2640

chip,
smart-
phone

trajectory,
CDF,

average
error,

RMSE, 50%

accuracy,
90%

accuracy

0.75m,
1.02m,
0.57m,
1.12m

Zhong at.
al. [117] 2018

UWB
TDoA +

IMU + EKF

Designed to
used IMU data

under NLoS
conditions,

processing done
by server

6 tags and
10 UWB
antennas

trajectory
plots, error

over
trajectory

majority
< 0.2m
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Zhang et
al. [118] 2018

WiFi + BLE
+ RSSI fin-
gerprinting
+ propaga-
tion model

localiza-
tion,

landmarks
+ PDR

Fusion done
with a particle

filter, the
fingerprint

database is built
in the online

phase,
fingerprinting
used for initial

localization

3000m2

office
building,

smart-
phone

average
error,

RMSE,
CDF, max

positioning
error,

average
initial

positioning
error

1.11m,
1.26m,
2.77m,
2.15m

Ettlinger
et al. [119] 2016

Finger-
printing(

magnetic +
WiFi +

RFID) +
Kalman

filter

WiFi
fingerprinting

for an
approximate

solution, refined
though magnetic

fingerprinting,
Euclidean and
Mahalanobis

distances used
to compare
fingerprints

office
environ-

ment,
static po-
sitioning -

10 test
points,

kinematic
position-

ing - walk
through a
corridor

average
positioning
error static,

average
lateral

deviation
from the
reference
trajectory

2.04m,
≈1m

Driusso at
al. [120] 2016

EKF + tri-
angulation
+ ToA from

CFR
estimation
+ ESPRIT

and
Kalman
filter for

ToA
tracking

LTE signals

USRP,
3LTE

service
providers

and 5
base

stations,
indoor en-
vironment

RMSE 50th
and 95th

percentiles,
CDF

4.8m,
3.19m,
9.21m

Van
Haute et
al. [61]

2016

ZigBee
TOA +
particle
filter*

Active hospital
environment

error eval-
uation
over a
grid of
known
points

average
error, room

level
accuracy,
latency

3.89m,
47%,
0.5s
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Nurminen
at al. [121] 2015

ToA, PDR
with

three-axis
accelerom-
eters and

gyro-
scopes,

EKF

Skew-t
measurement
noise model

used top detect
NLoS outliers

UWB
beacons

RMSE,
mean,

median

1.23m-
0.75m

Jiang et al.
[122] 2014

Crowd-
sourcing +
WiFi CSI +
WiFi RSSI

fingerprint-
ing

Moving speed
and distance of

the user
estimated from
the 802.11n CSI,

mapping
between RSSI
and location
built using

unsupervised
learning

localiza-
tion and

tracking -
a user

walks on
a prede-

fined
testing

trace for 5
rounds.

perfor-
mance of

individual
algorithm

compo-
nents, CDF,

upper
bound of
smallest
80% of
errors

≈2m

Jiang et al.
[123] 2012

WiFi
RSSI-based
fingerprint-

ing +
accelerom-
eter data

Crowd-sourcing,
no manual room

annotation or
map creation

193 rooms
in a wide
range of

buildings,
21 smart-

phone
users

correct
room iden-
tification

95%

Wang et
al. [124] 2012

Crowd-
sourcing +

SLAM - fin-
gerprinting
(WiFi RSSI

+ urban
sensing

landmarks
+ floor
plan) +

PDR

Recognize
landmarks, e.g.

turns, from
inertial sensors
and WiFi data,
use landmarks

to improve PDR
and PDR to

refine landmark
positions, no
calibration

needed

3 smart-
phone
with 2
phones

(hand and
pocket)

walk
around,
indepen-

dent
ground-

truth

landmark
detection

perfor-
mance,
mean

localization
error, CDF

1.69m
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Woodman
[125] [126]

2008
2010

Particle
filter +

floor plan +
PDR

Particle filter
initialized with a

uniform
distribution,
number of

particles in the
filter adapted
dynamically,

foot mounted
IMU

5 walks
through a
three floor
building

each 10-15
minutes

upper
bound of
95% of
errors

0.62m
[126]

Beaure-
gard et al.

[127]
2008

Backtrack-
ing particle

filter +
floor plan +

PDR

State estimate
refined based on

particle
trajectory

histories, foot
mounted IMU

10 min
walk in

and out of
an office

building +
stairs

mean
localization

error
0.74m

Table 2.12: Examples fusion-based ILSs. The hardware platforms and communication standards used
to implement the algorithms are highlighted in bold blue text.

2.7 Practical Aspects of ILS Implementation

2.7.1 Communication Standard

The receiver and APs communicate with each other over certain frequencies and protocols.
The following common communication standards are summarized in Table 2.13.

Communication standards used for indoor localization

Protocol Frequency Devices
Common ILS

types
Comments

WiFi
IEEE802.11a-

n

2.4 GHz and
5GHz,

bandwidth
40MHz, range
50m to 100m

Smart-
phone,
laptop

WiFi cards,
IWL5300

RSSI and CSI
fingerprinting,

fingerprint-
ing+fusion,

RSSI ranging,
multipath

fingerprinting
[32], [45]

Generally cheap due to the
availability of routers and
measurement of RSSI by
smartphone WiFi cards.
Produces low accuracy
localization with a few
meters, generally fused

with smartphone sensors
such as an IMU.
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ZigBee
IEEE

802.15.4

most commonly
uses the 2.4
GHz band,

range 10m to
100m

wireless
sensor

network
sensors

and nodes

RSSI, ranging

Available in wireless
sensor network devices,

not available on user
devices such as
smartphones.

RFID

ultra high
frequency,
microwave
frequency,

range more than
100m(active
RFID), 1m

(passive RFID)

RFID tags
and reader

RSSI, ranging
proximity

Reader receives data
emitted by tags, RFID tags
are cheap and small, not
available in user devices

such as smartphones.

Bluetooth
IEEE

802.15.1

2.4GHz,
bandwidth

1MHz to 2MHz,
range 10m to
several 100m

BLE
beacons

RSSI
fingerprinting,

ranging

Low energy (LE) devices
can be used.

UWB IEEE
802.15.4-

2015, IEEE
802.15.6-

2012

3.1GHz to
10.6GHz,

bandwidth
larger than

500MHz, range
80m

Channel
sounder,

Decawave
chip

Ranging, CSI
and CFR

fingerprinting

high accuracy 1cm-10cm
localization is possible,

high sampling rates.

Custom
frequency

range
-

Channel
sounder,
spectrum
analyzer

used in
prototype
systems

High accuracy 1cm-10cm
localization is possible

Table 2.13: Communication standards used for indoor localization

2.7.1.1 WiFi

The 801.11 WiFi communications standard is the prime candidate for implementing an in-
door localization systems. WiFi access points and routers are already present in most public
and private buildings. Most areas in larger buildings receive a signal from at least one WiFi
router. If a ILS is developed based on WiFi no additional hardware needs to be setup and
ILS installation only requires a software update on the routers and possibly a calibration of
the fingerprint map. This would significantly reduce the cost of the ILS.
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Most commonly WiFi is used with RSSI fingerprinting and fusion systems. With several
exceptions the accuracy of such systems is in the range of several meters.

2.7.1.2 UWB

Due to it’s high bandwidth (BW) the ultra-wideband communication standard is becoming
more and more popular for high-precision localization. As it’s name suggests, UWB signals
have an absolute bandwidth, that is the difference between the upper and lower frequen-
cies, larger than 500 MHz and a very good time-domain resolution [128]. This makes them
well suited for localization, this is also the feature of UWB which makes it possible to cal-
culate individual multipath delays. Because of their ultra-wide absolute bandwidth, UWB
signals also do not significantly interfere with conventional communication systems [128].
Very short pulses are used in impulse radio transmission with careful signal and architec-
ture design. This allows UWB transmitters to have a very low power consumption with an
average across devices of 30 mW [128]. A detailed description of the UWB communications
standard can be found in [128]–[130]. Hardware created for UWB localization includes

• Decawave DW1000 chip that provides ranging with an accuracy of around 10cm and
CIR estimation.

• UWB solution integrated into a smartphone by the company BeSpoon [131]. The UWB
system offers distance estimation with an accuracy down to 10cmwithin a 880m range.
The UWB antenna can also be used for WiFi communication.

In this thesis the ultra wide-band (UWB) technology is selected for the communication
between the receiver and the APs. This was done for two reasons:

• The UWB standard allows for the use of a wider bandwidth, has a very good time
domain resolution and thus has the potential for high precision multipath estimation.

• As explained in the Section 2.7.2.3, the Decawave dw-1000 chip [7] is an off-the-shelf
UWB transceiver that can be used for precise CIR and multipath estimation.

2.7.1.3 Bluetooth low energy (BLE)

Bluetooth low energy (BLE) is a standard often used for communication between devices
and in wireless sensor networks (WSNs). As their name suggests, an advantage of BLE re-
ceivers or tags is their high energy efficiency. BLE can be used for RSSI, ToA and AoA-based
localization [132]. RSSI BLE systems same as WiFi-based RSSI ILS tend to have a rather
low accuracy. As can be seen from Table 2.18, many commercial systems do use BLE. Some
combine BLE with UWB. In that case BLE is often used for AoA estimation such as in [133].

2.7.1.4 ZigBee

ZigBee is a communication protocol that is used for personal area networks and wireless
sensor networks (WSN), is low cost, low data rate and energy efficient. ZigBee is often sup-
ported by WSN sensors but is not often supported by user devices [132].
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2.7.1.5 RFID

The Radio Frequency Identification Device (RFID) communication system is commonly used
for data transfer. A reader communicates with RFID tags. The RFID tags emit data using cer-
tain frequencies and a certain communication protocol that are known to the reader a priori.
Active RFIDs use the Ultra High Frequency (UHF) and microwave frequency range. They
are generally set up to transmit their ID at regular intervals. Passive RFIDs do not require
an LoS to the reader, however they can communicate with the reader only in a small rage
of 1-2m. Active RFID tags can be located more than a hundred meters away from the RFID
reader and can be used for localization. They are also cheap and small [132]. RFID is well
suited to track objects in a warehouse, however, RFID technology is not available in most
user devices such as smartphones.

2.7.1.6 LTE signals

Signals from mobile networks are also used for localization, for example in [120]. However,
publications or commercial ILS that make use of LTE signals are not common.

2.7.1.7 Custom signals

When a channel sounder or spectrum analyzer is used to implement a prototype localization
system, the developers can choose the spectrum and bandwidth of the signals. Since a spec-
trum analyzer or a channel sounder are very expensive and regulations do not allow private
use of certain frequency bands, the ILS needs to be adjusted to one of the above mentioned
communication standards before it can be made commercially available.

2.7.2 Devices Used as the Receiver

A receiver device communicates with the APs and calculates the signal properties used by
the localization algorithms. To provide an overview of how often and for which applications
different ILS receivers are used, they are highlighted in bold blue text in Tables 2.1-2.15.

Devices used as a Receiver by ILSs.

Device
Commu-
nication
Standard

Localization
Algorithms

Accuracy Comments
Ex-
am-
ples

Smartphone/
laptop

WiFi

RSSI
fingerprinting,

fusion with IMU
and other sensor

data

1m-15m
Use of in-built

communications
chip

[63],
[75]
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Universal
software

radio
peripheral

(USRP)

any
any, CFR

fingerprinting
[67]

5cm [67]
Any ILS can be

implemented on
the device

[67]

Intel
IWL5300
chip[134]

WIFI
CSI

fingerprinting
30cm

In laptops,
calculates power

and phase for
groups of OFDM

carriers,
currently not in

production

[26],
[29]

WLAN base
station

WiFi
multipath

fingerprinting
1m

Multi-channel
receiver

equipped with a
circular antenna
array, standard

communications
hardware

[32]

Decawave
board [7]

UWB

CSI, CIR, CFR
and multipath
fingerprinting,
multilateration

2cm-30cm

Performs channel
estimation,

ranging
measurements

with 10cm
accuracy.

[15],
[47]

Channel
sounding

equipment
(vector

analyzer,
channel
sounder)

any
Fingerprinting
and multipath

SLAM

high
accuracy

depending
on the

algorithm

Most precise
measurements,
can cost in the
range of 200k

USD.

[43],
[135],
[136]

BLE tag BLE
RSSI

fingerprinting
1m

Low power,
standard devices

[88],
[116]

RFID tag,
reader

RFID

RSSI
fingerprinting,

proximity
sensing

several m
low power, WSN

sensors
[137],
[138]
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Custom chip any any
down to

10cm
In commercial

solutions

Table 2.14: Devices used as a receiver in ILSs.

2.7.2.1 RSSI Measurement - Smartphones and Laptops

RSSI is automatically measured by most WiFi cards, therefore RSSI-based ILS are imple-
mented on phones and laptops. Phone-based ILS are cheap and have automatic access to
IMU data. RSSI is also measured by BLE beacons. The RSSI can be calculated from the CSI,
CFR and CIR measured by devices such as the IWL5300, channel sounder or Decawave chip,
however this is generally not done.

2.7.2.2 IWL5300 - WiFi CSI Standard

The Intel N Ultimate WiFi Wireless Link 5300 [134] (IWL5300)[26], [29] is a IEEE 802.11a/b/g/
Draft-N1 wireless network adapter that operates in both the 2.4 GHz and 5.0 GHz spectra
and delivers up to 450 Mbps of bandwidth The features of the IWL5300 include

• Up to 450 Mbps of bandwidth,

• IEEE 802.11a/b/g and Draft-N1 compliance,

• Low power consumption,

• Advanced security via 802.11i,

• Easy-to-use Intel® PROSet v12.0 WLAN software,

• Support for Cisco compatible extensions* v4,

• Performance-optimized with connect with Intel® Centrino® processor technology cer-
tified access points.

The Intel IWL5300 became a popular choice for ILS implementation due to the existence
of the Linux CSI tool [139] [140]. The CSI tool obtains the CSI from channel measurements
performed by Intel Wi-Fi Wireless Link 5300 802.11n MIMO radios, using a custom modified
firmware and open source Linux wireless drivers [139]. The CSI obtained by the IWL5300
is structured as channel matrices for 30 subcarrier groups, which is about one group for ev-
ery 2 subcarriers at 20 MHz or one in 4 at 40 MHz. Each channel matrix entry is a complex
number, the real and imaginary parts of which have a signed 8-bit resolution. Each channel
matrix entry specifies the gain and phase of the signal path between a single transmit-receive
antenna pair [139]. Because the CSI Tool only works with the IWL5300, the IWL5300 contin-
ues to be used, although it was taken out of production by Intel. The latest available driver
for the IWL5300 is from 2017 [141].



2.7. Practical Aspects of ILS Implementation 55

Laptops that are compatible with or are sold with the IWL5300 network interface card
(NIC) include [142]:

• Lenovo ThinkPad X200, Elite ThinkPad R500, Elite ThinkPad R400, ThinkPad T400,
ThinkPad T500, Elite ThinkPad X200, ThinkPad X200s, Elite ThinkPad X301, ThinkPad
W500, ThinkPad W700 [143],

• Dell Latitude E4300, E4200, E5400, E5500, E6400, E6500, E6400 ATG, Precision M6400,
M4400, M6400 Covet, M2400,

• HP Elite Book 2530p, 8530p, 8530w, 8730w, 6930p, Business Notebook 6530b, 6730b,

• Panasonic Toughbook F8, 19, 30, 52, 74, T8, W8.

The list above comes from a web-based source [142].
The IWL5300 was used to implement a fingerprinting ILS in a master thesis performed

at the Chair of Media Technology at the Technical University of Munich [106]. The evalua-
tion of the ILS showed that the CSI values changed when people moved around the indoor
environment.

2.7.2.3 Decawave Chip - UWB CIR Measurement

The Decawave DW1000 is a fully integrated low power CMOS chip that communicates over
the UWB standard [7], [131]. The Decawave board uses a two-way-ranging method and is
able to perform two functions:

• Estimation of the distance between a receiver and transmitter with an accuracy of up
to 10cm. Decawave estimates a localization accuracy of around 30cm for a moving tag
when using ToF or TDoA multilateration.

• CIR estimation.

2.7.2.4 BeSpoon - UWB on a Smartphone

The french company BeSpoon has created a localization system in which the UWB antenna is
integrated into a smartphone [131]. The system provides a ranging accuracy down to 10cm

within 880m. In addition to ranging measurements, the UWB antenna is also used for WiFi
communication.

2.7.2.5 Ubisense

The Ubisense system consists of UWB sensors and tags. The sensors contain antenna arrays
and estimate the azimuth and elevation AoA of the UWB signal from each tag. The TDoA
information is collected between pairs of sensors connected by a timing cable. The AoA and
TDoA measurements are combined to localize the tag.
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2.7.2.6 Universal Software Radio Peripheral

Universal Software Radio Peripherals (USPR) are a type of software defined radios. It is a
receiver and transmitter where the signal processing is manly done by software running on
general purpose processors and not implemented in circuitry. The main advantage of USPRs
is that they are programmable and useful for prototyping. The USPR N210s was used in [67]
as an AP and as the receiver to measure CFR fingerprints. 11 center frequencies were used
with an effective bandwidth of 10MHz.

2.7.2.7 Channel Sounding Equipment

A channel sounder or network analyzer can be used with any communication standard to
perform channel estimation and obtain fingerprints and time-of-flight information. A chan-
nel sounder is generally not used in a commercial ILS as it can easily cost several hundred
thousand dollars.

2.7.3 Effect of Bandwidth

It would be intuitive to assume that a higher bandwidth would enable a higher localiza-
tion accuracy. The work in [144] investigates the dependency of AoA estimation accuracy
on bandwidth for two AoA estimation methods. The AoA estimation is applied to the LoS
component in the time domain CIR. The CIR is obtained by applying the inverse which
is acquired by applying the fast Fourier transform (FFT) to the simulated channel transfer
function in each test bandwidth value between 20kHz and 10MHz. The single input, multi-
ple outputs (SIMO) CIR is calculated as an impulse response containing 10 paths, including
the LoS. The amplitudes are set by the K-factor of the Rician distribution with a typical ur-
ban channel maximum delay spread of 10µs [144]. AoA estimation is performed using phase
interferometry and Multiple Signal Classification (MUSIC). The simulation results showed
that a larger bandwidth increase the AoA estimation accuracy for both algorithms. Experi-
mental results in [145] showed that the ranging errors also decreased for larger bandwidths.
They also showed that using a directional antenna also increased the ranging accuracy.

The dependence of the LoS and multipath estimation on the signal bandwidth is ana-
lyzed using a geometry-based stochastic channel model in [146]. In a narrow band signal
the LoS component becomes fused with the other multipaths denoted as diffuse multipath
(DM). The DM interfering with the LoS path leads to certain multipath effects, for example
amplitude fading and pulse distortion. At a very low bandwidth there is almost no pulse
distortion as the complete DM interferes with the LoS delay. When the DM is approximately
equal to the inverse of the root mean square (RMS) delay spread of the power delay profile,
the largest amount of pulse distortion will occur. The measurements performed in [146] in
the UWB frequency show an increase of signal to interference and noise ratio for the LoS
path and a decrease of the ranging error at higher bandwidth. The use of diversity and mul-
tiple antennas in single-input-multiple-output (SIMO) and multiple-input-multiple-output
(MIMO) systems decrease the ranging error and allow for the use of lower bandwidths for
ranging. An example ML estimator performs correctly at a bandwidth of at least 500MHz.
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The related work in [147] shows that using the pulse distortion and performing a whitening
operation before range estimation allows the ML estimator to operate at 50MHz and using a
MIMO system improves the performance of a ML estimator at 50MHz and allows the esti-
mator to work at 10MHz.

In [67] CFR fingerprints were compared with the time reversal technique, described in
Section 2.5.1.2. The environment where the fingerprints were collected was dynamic. Two
fingerprints were collected with the bandwidth of both 60MHz and 11MHz. The results
obtained with the two types of fingerprints showed that the localization accuracy did not
necessarily increase when the bandwidth of the fingerprints was increased from 60MHz to
110MHz. The off-diagonals of the dataset did decrease with more bandwidth. The authors of
[67] theorize that the additional bandwidth introduces more of the environments dynamics
and thus lowers the similarities between the CFR fingerprints collected at different times at
the same indoor location.

The work in [42] studied the number of multipath components extracted from wireless
signals with different bandwidths and center frequencies. The Search-Subtract-Readjust Al-
gorithm based on an ML estimator was used to obtain the multipath components. Center
frequencies between 4 and 16 GHz and bandwidths between 1 and 1 GHz were used. The
results showed that the choice of center frequency did not significantly effect the number of
estimated multipath components. The number of multipath components increased with the
bandwidth and eventually saturated. The effect of bandwidth was more prominent in NLoS
environments compared to LoS environments. In general, systems with wider bandwidth
offer a better time resolution [148]. This is the reason that more multipath components can
be observed.

2.8 Objectively Comparing Indoor Localization Systems

When two systems are built using different technologies it is not always easy to determine
which one is better or which one should be bought or implemented. The best way to objec-
tively compare several systems is to perform measurements with both of them at the same
coordinates in the same environment. If multiple ILSs are evaluated on different datasets or
in different environments, factors such as a dynamic or stationary environments, the propor-
tion of LOS and NLOS conditions at the measurement points, different fingerprint densities,
hardware imperfections, interference from other electromagnetic devices, could all effect the
estimated accuracies. For example, in publication A the localization error was obtained with
a fingerprint map density of 5cm and in publication B with a fingerprint map density of
30cm. If the system from publication A was shown to perform better, it would be unclear
whether localization system from publication A would still have a higher accuracy if the two
systems were evaluated with the same fingerprint density.

As is explained in Sections 2.3, 2.5.1.1-2.5.3.3, 2.7.2, different signal parameters and re-
ceiver devices are used by different ILSs for localization. The only way to create a single
measurement dataset that can be used for comparing the performance of several arbitrary
localization schemes is by collecting channel measurements with a channel sounder or USRP.
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However, this is not a objective comparison since imperfections or characteristics of the tar-
get devices on which the ILSs would eventually be deployed, may not appear in the channel
sounder measurements and may alter the localization errors of the two systems.

Even if different devices are used to collect the signal data, ILS comparison can still be
objective if the data was collected in the same environment at the same reference and query
locations. Unfortunately, this is commonly not the case [149], each publication implements
the proposed ILS in a unique measurement setup.

The ISO/IEC 18305:2016 International Standard [150] describes a standard methodology
and metrics that can be used for evaluating indoor localization systems. The standard is
analyzed in [150]. The standard uses a black-box testing approach, where the details of the
ILS and available sensors are not known, and describes 14 scenarios and 5 types of buildings
in which tests need to be carried out alongside 30 evaluation metrics. The testing scenarios
include a walking, running user, as well as the presence of people. The specifications on the
distances between and the randomness of test points are also included.

The international conference on information processing and the international conference
on indoor positioning and navigation (IPIN) hold competitions known as the Microsoft and
IPIN competitions where different indoor localization systems are tested in the same envi-
ronment [150]. Both competitions work on to identifying the criteria and metrics needed for
ILS comparison.

The following system properties generally influence the localization accuracy of an ILS:

• The more APs are used, the higher the localization accuracy will be.

• The more reference locations are stored in the fingerprint map, the higher the localiza-
tion accuracy will be.

• Localization accuracies are higher when there is less noise at the receiver and less
movement in the environment.

• If the system is using ranging or multipath information:

– The smaller the number of test locations with NLoS to the APs, the higher the
calculated accuracy of a ranging-based system will be.

– Certain materials promote more multipath and reflections in the environment. An
environment with more reflections will decrease the estimated accuracy of a sys-
tem with RSSI ranging and increase the accuracy of a multipath-based system.

2.8.1 Ground-truth Data Collection

When an ILS is evaluated, the coordinates of the user estimated by the ILS at the query points
(x̂, ŷ, ẑ) are compared to the actual, or ground-truth, locations query points. One challenge in
evaluating an ILS is obtaining or measuring the correct ground-truth coordinates. Manually
measuring the coordinates of each query point is time consuming and would lead to fewer
query points to be used for testing. Ground-truth values are collected in the following ways:
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• Installation of an additional static ILS, for example an optical localization system such
as the Vicon motion capturer [151].

• SLAM can be performed by the measurement platform. The measurement platform
can use a laser scanner or odometry data to calculate its location.

2.8.2 Existing Datasets

There are several datasets available that can be used for testing ILSs. Example datasets are
listed in Table 2.15. The table shows that most datasets contain RSSI data, some also addi-
tionally contain IMU data. Only one dataset collected in 2021 contains CSI data.

Example localization datasets.

Dataset Year Data Comments

Open CSI [91] 2021
CSI (Fourier transform
of the CIR), LTE signals

Software-defined radio, a USRP
B200mini, measurements collected

over a 3.5m× 5m area

IoT-TD [152] 2021 BLE RSSI, IMU data

BLE sensors, smart-phone, ground
truth with millimeter accuracies,

optical cameras used, data
collected in a 3.5m× 3.5m area

Petros. at al.
[153]

2020
RSSI (ZigBee,

Bluetooth, WiFi)

Collected in meeting room and
computer lab, Raspberry Pi 3
Model Bs, Gimbal Series 10

Beacons, and Series 2 Xbees with
Arduino Uno

BLE beacon
indoor

localization
dataset [154]

2018-2019 Bluetooth RSSI BLE beacon, smartphone

UCI
JI-IndoorLoc

[155]
2018 WiFi RSSI

Multi-building, multi-floor, almost
110.000m2, multiple Android

devices

UCI Dataset
[156]

2017 WiFi RSSI Collected on smartphone
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MagPIE [157] 2017

magnetometer, IMU,
and ground truth

position and
orientation

measurement

Three different buildings, with
smart-phone handheld and

mounted on a wheeled robot, in
environments with and without

changes

Barsocchi at
al. [158]

2016

WiFi RSSI, and
geomagnetic
fingerprints,

accelerometer,
gyroscope, orientation

data

Collected over 185.12m2 using a
smartphone and a smartwatch

KIOS [159] 2013 WiFi RSSI

PDR, a laptop, an Android tablet
and two Android smartphones

560m2 typical office environment
that consists of several open

cubicle-style and private offices,
labs, a conference room and

corridors

Table 2.15: Examples of available ILS datasets.

2.8.3 Benchmarking platforms

A benchmarking platform can be used to evaluate an ILS. Such a platform usually:

• Is a device that can be moved around to gather groundtruth data.

• Either already contains a receiver or a receiver can be added to it. The platform com-
bines the receiver measurements with the ground-truth data into a dataset.

The main reasons why there platforms are not more widely used are:

• They are often designed to evaluate a specific type of ILSs and cannot be used to test a
custom receiver.

• They are mainly described in publications and are not commercially available.

• Not all benchmarking platforms include the environment where the ILS is tested. In
order to objectively compare ILSs they have to be tested in the same or at least similar
environments.
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2.8.4 Surveys and and Evaluation Metrics in Indoor Localization

Even if the evaluation measurements for several ILSs are performed at the same reference
and query points in the same environment, in order to determine quantitatively which ILS
performs best, these measurements need to be converted into scalar performance metrics.
The use of different performance metrics can result in incorrect ILSs being considered best.
Examples performance metrics are the average error at the query points, mean squared error
(MSE), root mean squared error (RMSE). The purpose of survey publications is to provide
an overview and compare ILSs and ILS technologies. Most surveys do not re-implement the
ILSs, but rather use the results provided by the original publications. This also means that
the ILSs could be tested in very different environments. This also means that within one
survey different ILSs are commonly evaluated by different performance metrics. This makes
it difficult to compare the ILSs.

The performance metrics listed in indoor localization surveys are used in this thesis to
show which metrics are most commonly used for evaluating ILSs. A number of randomly-
selected surveys are summarized in Table 2.17 together with the performance metrics they
have used. Some publications do not calculate any scalar performance metrics but, for exam-
ple, present an error CDF. The right-most column of Table 2.17 lists the performance metrics
that appear in each of the surveys together with the percentage of publications in that sur-
vey that have used it to evaluate their results. As publications often use more than one
metric to evaluate the proposed approach, these percentages in the Table 2.17 add up to a
number above 100%. The second to right column of the tables shows if the ILSs compared
by the survey have been re-implemented and the environments in which some surveys re-
implemented the ILSs.

When an ILS is tested, a localization error is calculated at a number of test locations. In
order to quantitatively compare ILSs, a scalar performance metric, such as mean localization
error or the MSE, needs to be computed from this set of error values. Table 2.16 summarizes
the performance metrics used by surveys in Table 2.17 to compare ILSs. The left-most col-
umn of the table contains the names given to the performance metrics. It can be seen from
Table 2.16 that the same performance metric is sometimes referred to by different names
in different publications. The second column lists the definitions given to the performance
metrics. It should be noted that few publications actually define the metrics they use. This
can be misleading, since, as can be seen from the first two columns of Table 2.16 the same
names have been used to describe different metrics. For example, Adler et al. [149] defines
accuracy as the combination of trueness and precision and indicates that the mean squared
error (MSE) is an example accuracy metric, [160] defines accuracy as the average Euclidean
distance between the estimated and the true location. Adler et al. refers to the average lo-
calization error as Trueness. Accuracy has been used by Ferreira et al. [161] to describe the
percentage of time that the ILS correctly identifies which room the user is located in. It should
be noted that additional factors, such as sensor calibration and battery power requirements,
processing power requirements, wearability need to also be considered when comparing
ILSs [162], however they are outside the scope of this chapter. The ISO/IEC 18305:2016 inter-
national standard lists a number of ILS performance metrics and includes their definitions
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[150]. In [150] the argument is made that the error mean and variance are not helpful metrics
for evaluating ILSs, the RMSE and error quantiles are suggested as more helpful. When a
localization error is very high, the user was not localized and the exact error value is not
important. However, it will influence the mean error and MSE. A high MSE may indicate
high accuracy ILS with a few outlier measurements with very high error values, or it may
indicate that the error in all the measurements was at the same medium value. It is often
more important to the user to know that in x percent of localization requests his localization
error would be under a certain limit. The 95% and 50% quantiles are mentioned. It is also
mentioned that vertical errors in the z direction may have a different importance than hor-
izontal errors. Therefore, a standard calculation for 3D Euclidean distance errors may not
be as useful. The 2D distance with floor penalty and the real distance, or the distance to be
walked from the location query to the ground truth are mentioned as better metrics. The
standard also discusses latency requirements. Additional metrics such as setup time, cover-
age, relative accuracy and tolerance of interference are also described. More details can be
found in [150].

The following conclusions can be made from the overview of the localization surveys:

• There is currently no standard or default performance metric or set of metrics that can
be used to characterize and compare ILS localization performance.

• The mean localization error or the mean squared localization error (MSE) are the most
commonly used metrics.

• The CDF gives the full information about the error distribution, however it is not a
scalar. If two ILS are described in two publications and do not publish their data it
may not be possible to show both CDFs on one axis. In that case it is difficult to com-
pare the ILSs.

• Different terms can be used to describe the same metric in different publications.

• Differently calculated performance metrics can be referred to by the same name in dif-
ferent publications.

• Most survey papers do not re-implement the localization systems because they do not
have access either to the specialized or custom hardware or to the code that is not made
publicly available. Additionally, the performance of a re-implemented ILS might dif-
fer from the original publication. Most surveys compare the localization approaches
based on the evaluation results reported in the original publications. Therefore, the ILS
compared by the surveys can be tested in very different environments and evaluated
by different metrics.
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Metric Definition Used in

Moments of the error distribution

Accuracy (m)

average localization error obtained at the test points,
the closeness of agreement between a measured quantity

value and a true quantity value measured [138],
E[‖x− x̂‖2] =

∑
|error at test point|
num test points = E[error]

[163]*,[164]*,
[137]*,
[165]*,

[138], [161],
[132]*,
[166]*

Average error
(m),

[167], [124],
[168]

Mean absolute
error (MAE)(m) ,

[115]

Point accuracy
(m)

[61]

Bias [169]

Trueness
closeness between the average value of a number of
measurements and an excepted reference value, i.e.,

mean average error (MAE)
[149]

MSE E[‖x− x̂‖22] = E(error2) [169]

RMSE
√∑

(error at test point)2

num test points =
√
E[error2] [168]

Accuracy
combination of trueness and precision, i.e., mean

squared error (MSE), root mean squared error (RMSE),
MSE = MAE2 + Varience [149]

[149]

Standard
deviation σ

standard deviation of the errors computed at the test
points

[170],[168]

Precision
the closeness f agreement between independent
measurements, i.e., varience, standard deviation

[149]

Error bounds

Max error (m) maximum localization error [73]

Point accuracy
min/max/mean

(m)

localization error obtained at the test points
min/max/mean

[61], [168],
[171], [165]
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Error range (m)
min and max point errors

[165], [161]

Accuracy range
(m)

[165]*,[161]

Mean accuracy upper bound of the mean error* [166]*

Error evaluated at the end or over the length of a track

Final error (m)
localization error computed after the completion of

a track (PDR)

[168]

Position error
(m)

[168], [172]

Final drift (m) [168]

Average lateral
deviation

lateral deviation of the calculated position from the
trajectory*

[119],[168]

Fréchet distance difference metric between two curves [168], [171]

Heading error
(rad)

difference between the true and measured direction of
motion

[168], [172]

Absolute error
(mm)

robot location error measured at a particular time
instance*

[173]*,[168]

Overall estimate

Distance
accuracy (High,
Medium, Low)

Qualitative assessment of the distance measurement
between users

[166]

Room identification

Relative accuracy
(%)

percentage of test points where the room
was identified correctly

[167]

Room
localization

accuracy (%)
[123]

Room accuracy
(%)

[61]

Room level
accuracy

[161]

Mean accuracy [166]
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Room level
accuracy

(true/false)

system accuracy allows to identify the room the user is
located in

[165], [161]

Percent of test points with a defined localization error

Precision (%)
the probability of successful (or unsuccessful) location

estimates with given accuracy
[137], [160]

Relative accuracy
(%)

number of test points where localization was
performed correctly

[167]

Percentile under
5m (%)

percentage of test points at which the computed
localization error was under 5m

[170], [168]

Percentiles

99% within x(m) upper bound of the smallest 99% of errors [160]

95th
percentile(m) upper bound of the smallest 95% of errors

[162], [125],
[168]

95% within x(m) [160], [161]

error range
within 95%(m)

min and max of smallest 95% of errors [165]

90th
percentile(m)

upper bound of the smallest 90% of errors

[168]

90% within x(m) [160], [161]

accuracy up to
with 90%(m)

[168]

90% accuracy (m) accuracy achieved 90% of the time (unclear) [73]

80th
percentile(m) upper bound of the smallest 80% of errors

[122]

80% within x(m) [160]

accuracy with a
50%

probability(m)
average of the smallest 50% of errors* [165]*

50% within x(m) upper bound of the smallest 50% of errors [160]

Third quadrille
of the error(m)

the ILS provides an Euclidean error below the declared
error in three cases out of four [168]

[168]
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Error distribution

PDF, CDF full distribution of localization errors at the test points [124], [122]

Histogram histogram of the error distribution [168]

Table 2.16: Metrics of ILS localization performance. * indicates the information was not specifically
mentioned in the publication and had to be inferred from other system aspects.

Do to the lack of a consistent evaluation metric, the localization approaches presented
in this thesis are evaluated using the mean absolute localization error. The histogram of
the probability distribution of the error values and localization error scatter plots are also
presented since they contain the complete information about the algorithms localization per-
formance. The mean absolute localization error is calculated as follows:

eavr = E[
∣∣∣
∣∣∣X − X̂

∣∣∣
∣∣∣] = E[|e|]. (2.6)

Although it has it drawbacks, the average absolute error represents the localization per-
formance as a scalar value. It is also one of the most commonly used evaluation metric in the
literature, as can be seen from Tables 2.17 and 2.16.

Surveys on Indoor Localization Systems

Au-
thors

Published Year Algorithms Technologies
Re-

implemented
Evaluation metrics

Liu et
al.

[160]

IEEE
Transactions
on Systems,
Man, and

Cybernetics

2007 20

WiFi, UWB,
cellular,
RFID,

Bluetooth

No

accuracy (all),
precision(upper

bound of a set % of
min errors) (all),

complexity,
scalability,

robustness, cost
(all)
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Gu et
al.

[165]

IEEE Com-
munications
Surveys &

Tutorials

2009 17

infrared,
ultra-sound,
RFID, WiFi
(triangula-

tion,
fingerprint-

ing),
Bluetooth,

sensor
networks,

UWB,
magnetic,

vision-based

No

cost, robustness,
complexity,

limitations, room
level accuracy

(12%), error rage in
the lower 95%

(12%), max
error(12%),

average
accuracy*(29%),

error range
(17.6%), average of
the lower 50% of

errors* (5.8%),
upper bound of the

lower 90% of
errors (5.8%),

accuracy cannot be
guaranteed (5.8%)

Mautz
et al.
[163]

International
Conference on

Indoor
Positioning
and Indoor
Navigation

(IPIN)

2011 26
optical

positioning
systems

No

accuracy (order of
magni-

tude,cm,mm,dm,
%), coverage,

camera properties
(all)

Harle
[162]

IEEE Com-
munications
Surveys &

Tutorials

2013 23 + 6

step detection
+ particle
filter with
PDR/WiFi

assisted PDR

No
mean localization
error (33%), 95th
percentile (33%)

Subbu
et al.
[167]

IEEE
Wireless

Communica-
tions

2014 13

cellular, WiFi,
microphone,

camera
magnetome-

ter+PDR

No

relative accuracy
(65%), average

error(65%), both
(23%)
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El-
Sayed
et al.
[169]

International
Workshop on

Computer
Aided

Modeling and
Design of

Communica-
tion Links

and Networks
(CAMAD)

2014 3

millimeter-
wave wireless

systems +
RSS, TOA,

AOA

Monte-
Carlo

simula-
tion

MSE (all), Bias (all)

Mainetti
et al.
[174]

International
Conference on

Software,
Telecommuni-

cations and
Computer
Networks

(SoftCOM)

2014 6

vision,
infrared,

ultrasound,
WiFi, RFID,
Bluetooth

No

Accuracy,
coverage, cost,

complexity (value
ranges compared

for each
technology)

Adler
et al.
[149]

International
Conference on

Indoor
Positioning
and Indoor
Navigation

(IPIN)

2015 138

fingerprint-
ing + TOF +

sound + PDR
+ others

No

characterization of
evaluation

techniques and
metrics: trueness
(54%), accuracy

(38%), error
histogram (16%),

trueness and
precision (30%)

Van
Haute
et al.
[61]

International
Journal of

Health
Geographics

2016 7

RSSI finger-
printing +

ranging(WiFi,
ZigBee, BLE)
+ ZigBee ToA
with particle

filter

real-life
func-

tioning
hospital
environ-

ment

room level
accuracy, latency,

installation
time/cots, energy
consumption (all)
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Basri
et al.
[137]

International
Conference on
Multimedia
Computing
and Systems

(ICMCS)

2016 5

Infrared,
WiFi,

ultrasound,
RFID,

Bluetooth,
multiple

localization
schemes

No

rough accuracy,
coverage, power

consumption, cost
(all)

Khud-
hair
at al.
[138]

Indonesian
Journal of
Electrical

Engineering
and

Computer
Science

2016 *

TOA, TDOA,
AOA, RSS,
computer

vision,
infrared,

RFID,
Cellular,

UWB,
WLAN,

Bluetooth,
ZigBee, FM,

Optical

No

accuracy,
scalability,

complexity, cost
(all)

He at
al.

[166]

IEEE Com-
munications
Surveys and

Tutorials

2016 50

WiFi,
Bluetooth

Low Energy,
RSSI finger-
printing +
improve-

ments + PDR

No

error upper bound
(24%), overall

assessment (10%) ,
mean accuracy

(6%), room
identification
accuracy (2%)

Po-
tortì
et al.
[168]

Sensors 2017 24

RSSI finger-
printing +

hybrid IMU +
UWB +

magnetic +
ultrasound

No

average error
(71%), final error

(13%), RMSE (8%),
max/min/median
error(17%), error
percentile (13%)

PDF/CDF/
histogram (17%),
trajectory (33%)

and more
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Yassin
et al.
[164]

IEEE Surveys
and Tutorials

2017 14

WIFI + RSSI,
TOA, TDOA,
triangulation,
fingerprint-

ing

No
range (all),

accuracy (all)

Fer-
reira
et al.
[161]

IEEE Surveys
and Tutorials

2017 34

WiFi, UWB,
Ultrasound,

RF, Bluetooth,
IMU, RFID,
magnetic,
infrared +

Fingerprint-
ing, TDOA,

ranging
kalman filter,
PDR, SLAM

No

room level (17.6%),
average error
(20%), upper

bound of all errors
(23.5%), upper
bound of the

smallest % errors
(8.8%), error range

(3%)

Za-
fari et

al.
[132]

Computing
Research

Repository
(CoRR)

2017 41

WiFi, UWB,
Acoustic,

RFID,
Bluetooth,

Ultrasound,
Optical,
SigFox,

LoRA, TOA,
TOF, AoA,

TDoA, RSSI,
MP

No

Accuracy, Cost,
Availability,

Energy Efficiency,
Reception Range,

Latency, Scalability
(most)

Table 2.17: Surveys on indoor localization systems

2.9 Commercially available ILS

Most localization system concepts detailed in the section above have been published in aca-
demic publications and are not commercially available at this moment.

While a commercially available ILS can be directly installed in a building that corre-
sponds to the system specifications, the following challenges need to be overcome when
implementing an ILS described in an academic paper:

• The ILS in a publication may have been tested in only one environment. The per-
formance specifications presented in the publication may not apply to larger environ-
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ments or environments with moving objects.

• The ILS in a publication may have been tested on a very small area, the effort to collect
the reference fingerprints over a larger area with the same density as was used in the
publication may be very large.

• Some implementation details or parameter values of the ILS may not be mentioned in
the publication.

Table 2.18 [175], [176] summarizes the ILSs that can be purchased and directly used. The
information from the company websites listed in Table 2.18 was retrieved in January 2020.
Most ILSs listed Table 2.18 rely on the reception of electromagnetic signals, however sev-
eral of the ILSs also use additional technologies, such as geomagnetic fingerprinting, not
discussed in this thesis. It should be noted that some of the data in the table was inferred
from the company websites. * indicates the information was not specifically mentioned but
inferred from other system aspects.

Company System Localization scheme Specs System accuracy

Steerpath
[177]

(Finland)

Smart-
phone
based

WiFi or Bluetooth
based*.

Ranging-based* - no
calibration, may use

building models.
During localization

the user’s
smartphone can be
located in a pocket

or a bag. This means
the system is likely
ToF and not power

-based*. First
position estimate

within 2 seconds - if
IMU is used it’s not

the main data
source.

Uses custom
beacons that
need to be
installed.

2-5m in an office,
hospital or
residential

building, 5-10 m
in large open

spaces such as
airports and
conference

centers, 95%

within 10m

LocusLabs
[178]

(Poland)

Smartphone-
based

localiza-
tion.

Fingerprinting* as an
RF map is measured.

Data from other
sensors may be used.

An RF map of the
building created

during
calibration.

Designed for a
human user and

asset tricking.
several m
accuracy*.
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Terabee
[179]

(Switzer-
land)

Anchors
and a tag

Two-way ranging

AP size
5x5x6.5cm,

receiver device
size

14.5x9x3.5cm,
update rate 30Hz

-

Cloudleaf
[180]

(California)

IoT system
with a

multitude
of access

points and
sensors.

BLE*

Proximity-based*,
Fingerprinting*, DSP

Filtering,
Chennelization,
Motion Sensing

gateway
9.9x11,8x2.5cm,

zone sensor
4.2x7x0.9cm,
sensor range
1-13m to 50m

up to 2m

SmartPoint
[181](-)

Mapping
system

Mapping system
that provides

locations on a more
efficient way.

Provides localization
algorithms

- -

AiristaFlow
[182]

(Finland)

Asset
tracking,
custom

tags
designed

RFID over Wifi

uses existing
WiFi

infrastructure,
RFID, BLE and

GPS

room-level

Bluvision
[183] (Texas)

IoT system
with

localization
using

Bluetooth
and WiFi.

Data from multiple
sensors analyzed.

Active tags and
BLE beacons

used
2m

Connexient
[184] (New

York)

smartphone-
based
indoor

navigation.

Sensor fusion -
good enough for

navigation,
several m*
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Inpixon
[185]

(California)

Smart-
phone
based

navigation

sensor fusion, WiFi
signals used,

Bluetooth, Cellular
and active RFID can
be used to increase

accuracy.

existing or WiFi
routers can be
used. A smart
phone can be

used or a
company

developed
sensor.

1 - 15m
depending on the

sensors used

Quuppa
[186]

(Finland)

Bluetooth
Low

Energy
system

with tags
and APs

Angle-of-arrival

access points 20.2
x 20.2 x 4cm or

40cm x 30.8cm x
5.9cm, tag 3,9cm

x 3.9cm x 9cm

0.5m

Kontakt.io
[187]

(Poland)

Bluetooth
Low

Energy
system

with
beacons
and tags

localization scheme
requires little to no
calibration. Some

tags include an IMU

tag
4.3x4.3x0.8cm,

card tags
8.6x5.5x0.45cm
beacons under
11.5x6.5x4cm,
signal range
under 70m

-

Kinexon
[188]

(Germany)

UWB,
RFID

ToF - 10cm - 50 cm

Infsoft [133]
(Germany)

system
with UWB
and BLE
beacons
and tags

AoA, ToF tag 11x3.6x3.6cm 10-30cm

Prozyx [189]
(Belgium)

UWB
system

with APs
and tags

TDoA - 10-30cm

Proxicon.io
[190] (UK)

UWB and
Bluetooth
tags and
anchors

- - 10cm and higher
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nanotron
[191]

(Germany)

UWB tags
and

anchors
ToA, TDoA, ToF

tag4x2.4x0.35cm,
relatively small

anchors

10-30cm, 1m for
LE solutions

iViu Tech-
nologies

[192]
(California)

smartphone-
based

localiza-
tion, extra

WiFi
sensors

installed

-
installed sensors
size of a deck of

playing cards

3 degrees - 150
degrees

Ubisense
[193] (UK)

UWB
sensors
and tags

TDoA,
AoA,determining

the direct path
- -

BlueBotics
[194]

(Switzer-
land)

use of
indoor

features,
laser

scanner

-

for vehicles up to
5.0 m/s, weight

0.6 - 1.1kg
excluding laser

scanner, min size
134x26x160mm

accuracy ± 1 cm
and ± 1°,

localization rate
up to 20 Hz

CloundNav
[195]

(California)

Sensor
fusion.

Software
solution for

mobile
devices

Fuse GPS, WiFi,
Bluetooth with
accelerometers,

gyroscopes
magnetometers and
pressure sensors in

mobile devices

Uses the sensors
of a mobile

device
-

IndoorAtlas
[196]

(Finnland)

Smartphone-
based

geomag-
netic

indoor
positioning
with other

sensors.

Data fusion,PDR,
geomagnetic

fingerprinting,
Bluetooth beacons,
WiFI triangulation,

Barometric pressure.

Flexible to the
signal sources
present in the
environment

1-2m
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GiPStech
[197] (Italy)

system that
can be run

on any
smart

device and
uses that
devices
sensors

combination of
geomagnetic

fingerprinting radio
frequency

algorithms and
inertial sensors

would run on
systems with

different sensor
configurations

1m

Accerion
[198]

(Nether-
lands)

scanning
warehouse
and factory

floor

-

no additional
infrastructure

required, suitable
for dynamic

environments

mm-level

Locatable
[199]

(Ireland)

system
providing

own
location
devices

- - 5cm

Table 2.18: Commercially available indoor localization systems. Information marked with * was in-
ferred (the information is not mentioned on the websites).

Other companies providing smartphone-based localization include Navenio [200], Insi-
teo [201], Mapxus [202], Combain Mobile[203], Sensewhere [204], Pointr [205], SIRL [206],
situm [207], Nextome [208], Lighthouse Signal Systems [209], Arara [210], Navigine [211],
Indoors.rs [212]. Additional companies include Witrac [213], Intranav [214], Sewio [215],
Localino [216], Ssafectory [217].

The majority of companies listed in Table 2.18 can be classified into three categories:

• High-cost high-accuracy systems employing a Lidar or laser scanner that are used in
the industry and produce cm-level accuracy.

• Industrial ILS that employ custom UWB tags (receivers) and anchors (transmitters)
possibly with sensor fusion. These systems produce an accuracy of 10-30cm but re-
quire a LoS between the tag and the anchors.

• Smart-phone based system that either use pre-installed WiFi routers or custom WiFi
and Bluetooth anchors together with the IMU and other sensors inside the smartphone
and have an accuracy of 1-5m.

An environment with many moving objects and people and with no LoS between the
receivers and the transmitters remains a challenge.



76 Chapter 2. Overview of Indoor Localization Techniques

2.10 Chapter Summary

This chapter provided an overview of existing indoor localization approaches that are based
on electromagnetic signal transmission. There are two types of RF-based localization ap-
proaches. The first type of localization schemes uses the signals from the access points (APs)
to calculate the distances or angles between the APs and the receiver or differences between
the distances from the receiver to each of the APs. Triangulation and multilateration algo-
rithms are used to localize the user. While precise, these approaches require a line-of-sight
(LoS) between the receiver and the APs. This is not always the case in indoor environment.

Fingerprinting-based localization approaches perform a series of signal measurement
during calibration, store the results in a fingerprint map and compare the user’s measure-
ment to that map to localize him or her. Fingerprinting-based algorithms perform well in
non-line-of-sight (NLoS) conditions. Deep learning and machine learning approaches are
used to improve the localization accuracy, reduce the effect of noise and the number of cal-
ibration measurements required by a fingerprinting system. The accuracy of fingerprinting
systems that use received signal strength (RSSI) is several meters. Fingerprinting systems us-
ing channel state information, the channel impulse and the channel frequency response and
UWB signals have localization errors as low as several centimeters. However, if any changes
occur in the environment after the fingerprint map was created or if the environment con-
tains moving objects, the accuracy of the localization schemes decreases significantly.

The motion data from the inertial measurement unit is often used in the literature to
improve the accuracy of localization schemes. IMU data is mostly combined with RSSI mea-
surements as an IMU is integrated into a smart phone and RSSI measurements are performed
by a smartphone by default. Such systems have accuracies from one to several meters.

The goal of this thesis is to develop a fingerprinting-based localization scheme that can
maintain a high localization accuracy in a dynamic environment. The target ILS should not
require motion data and should be able to localize a stationary receiver. This is done because
localization of static objects is often required in industrial scenarios and because IMU data
can always be used to further improve the accuracy of a high-accuracy localization scheme.
The proposed indoor localization system (ILS) is detailed in Chapter 3.

There are many different metrics by which the performance of an ILS is evaluated in
the literature. Although there is not standard metric, the average absolute error is the most
common and will be used in the remainder of this thesis.



Chapter 3

Robust Multipath-based
Fingerprinting

As was shown in Chapter 2, most multilateration-based indoor localization systems are very
sensitive to the presence of NLoS conditions. At the same time, fingerprinting-based local-
ization systems do not produce the desirable localization precision if there is movement of
objects and changes in the indoor environment. However, ILSs are most needed in dynamic
environments with NLOS conditions. Shopping malls contain complex structures and mov-
ing people, boxes and transport vehicles are constantly moved in warehouses and factories,
robotic arms perform tasks in factories. What is most commonly done to mitigate this prob-
lem is to use RF fingerprint or ranging measurements together with a Kalman filter and an
IMU. However, since an IMU and a Kalman filter can be used to improve the accuracy of any
ILS, the focus of this thesis is to develop a base fingerprinting system that is as precise and
robust as possible. In addition, the ILS developed in this thesis should to able to localize a
stationary object, which is not possible if it relies on a Kalman filer or IMU data.

The fingerprint structure and multipath matching scheme described in this thesis were
originally introduced in [1], [3], [6]. Fingerprinting-based systems perform better in NLoS
conditions than ranging schemes. RSSI and CSI fingerprint vectors are power and frequency
representations of the channel. They aggregate the information about all of the surrounding
objects and materials into each vector entry. If an object in the environment moves, it can
effect all of the RSSI, CSI and CFR vector entries. The changes introduced into a fingerprint
by a dynamic environment can not be isolated from the features that correspond to the un-
altered portion of the environment. In contrast, as illustrated in Fig. 3.3, signal propagation
paths can be blocked and created individually as objects move in the indoor environment.
As illustrated by Fig. 3.3, even if some of the multipath components are affected by an ob-
stacle or a change in the environment, the rest can still be used to localize the receiver. The
propagation path lengths shown in Fig. 3.3 cannot fluctuate, as they are tied to physical dis-
tances. They can only appear in and disappear from a fingerprint vector. This makes the
multipath delay profile (MDP), described in Section 3.3, a more robust fingerprint than the
RSSI, CIR, CFR and CSI.

The system requirements are listed in Section 3.1. The assumed system model is detailed
in Section 3.2. The proposed multipath delay profile fingerprint structure is described in
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Section 3.3. The multipath component analysis (MCA) localization algorithm is detailed in
Section 3.4. The ray-tracing simulation setup and the obtained evaluation results are detailed
in Section 3.5. The multipath estimation algorithm and hardware prototype are described in
Section 3.6. Section 3.7 contains the conclusion of the chapter.

3.1 Goals and System Requirements

The main goal of this thesis is to develop a high precision ILS that can localize a user in
an NLoS environment where furniture may change over time and which contains moving
objects and people.

ILS performance requirements:

• The location of the user should be estimated as accurately as possible.

• The localization accuracy should not be affected by NLoS conditions, changes in the
environment and the movement of objects.

• The number of APs should be as low as possible.

• The volume of data exchanged between the user and the ILS server should be as low
as possible. The ILS server should only send the necessary data to the user and not the
complete fingerprint map.

• The delay between the time when the user performs a measurement and the time when
he obtains his location from the ILS server should be as small as possible. The system
should be able to run in real-time. This means that the data transfer, computations and
the data-base queries should be as efficient as possible.

• When possible, the majority of calculations should be performed by the server.

• The standard communication protocol between the user and the server should not need
to be altered. No additional encryption should be implemented.

• The calibration time and effort should be kept as low as possible. The number of la-
beled manually collected reference fingerprints should be as small as possible.

3.2 System Model

The indoor localization system is setup in the following way:

• The user communicates with multiple APs set up in the indoor environment.

• The user estimates the electromagnetic channel and extracts the multipath propagation
delays from the received channel. Alternatively, the user sends the received signal as
is to the ILS server and the ILS server performs the multipath estimation.
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Wireless localization App
Data received from APs
Calculating Location 

ILS serverUser APs 
Network

Figure 3.1: Assumed ILS system model. The user measures the signal from the APs and commu-
nicates with the ILS server. The communication with the ILS server can occur though the APs or a
separate device. Image adapted from [1] ©2021 IEEE.

• The user communicates with and sends the measured signal or multipath delays to the
ILS server. The ILS server calculates the user location and sends it to the user.

The communication between the user, APs and ILS server is illustrated in Fig. 3.1.
Signal propagation between the user and the APs is modeled in the following way [1],

[3]. The electromagnetic signal propagates with the speed of light, therefore, the distance
a signal travels is linearly proportional to the delay at the receiver. When the user and the
APs are located indoors, the signal transmitted by the AP is reflected multiple times from the
walls, floors, ceilings and objects before reaching the receiver. This is illustrated in Fig.3.3.
As a result, the received signal x(t) is a sum of multiple delayed and attenuated copies of the
original transmitted signal s(t).

x(t) =
K∑

k

aks(t− τk) + n(t), (3.1)

where ak is the attenuation undergone by the signal along the k-th propagation path from
the AP to the receiver and τk is the delay. The term n(t) represents noise added to the signal
at the receiver [18]. K is the number of signal propagation paths between the receiver and
the transmitter. With τk = dk/c, we obtain

x(t) =

K∑

k

aks(t− dk/c) + z(t). (3.2)

The channel impulse response is then modeled as:

x(t) = h(t) ∗ s(t), (3.3)

h(t) =
K∑

k=1

akδ(dk/c), (3.4)

where δ(t) is the unit impulse response. dk is the length of the k-th propagation path traveled
by the signal from the AP to the user and c is the speed of light [8]. In this thesis, the term
multipath component (MPC) is used interchangeably to describe the delay dk/c or length dk of
a propagation path between an AP and the receiver. Multipath components have been previ-
ously used for localization in [218] and for simultaneous localization and mapping (SLAM)
in [43], [219].
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3.3 Multipath Delay Profile (MDP)
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Figure 3.2: Proposed localization scheme. The multipath delay profile (MDP) is extracted from the
signals received by the user from the APs. Next, the ILS server uses the multipath matching (MCA)
algorithm to calculate the user’s location. Image adapted from [1] ©2021 IEEE.
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Figure 3.3: Example MDP. If the obstacle, marked with O, is not present in the indoor environment,
the MDP calculated at the receiver locationX is {[dj,1, ..., dj,4]}. If the obstacle is present, it alters the
MDP. Propagation paths dj,1 (yellow) and dj,2 (blue) are blocked, and new propagation paths dj,5 and
dj,6 are created. The MDP in the case when the obstacle is present becomes {[d3, ..., d6]}. The image is
adapted from [1] ©2021 IEEE.

The multipath delay profile (MDP) fingerprint structure, originally proposed in [3] is
used in this thesis to enable robust fingerprinting in an environment that contains moving
objects.

The MDP is a set of vectors that contain the multipath propagation distances or multi-
path delays between a query point and the transmitters [3]. Given a system with M APs, the
reference MDP fingerprints

Di = {di,1, ..,di,M} (3.5)

are measured in the off-line phase at N reference locationsXi, with i = 1...N . The multipath
propagation distances dij,k from transmitter Tj to the reference point Xi are stored in the
vector

dij = [dij,1, ..., dij,Kij ] ∈ Di, (3.6)

with j taking the values 1...M , respectively. The reference MDPs Di are in turn stored in the
fingerprint map

MAP = {(X1,D1), ..., (XN ,DN )}. (3.7)

The query MDP
Dq = {dq1, ...,dqM} (3.8)
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is measured in the on-line phase of the localization algorithm at the user’s locationX , with

dqj = [dq1, ..., d
q
Kq ]. (3.9)

When a fingerprint contains all of the extracted multipath components it is referred to it
as a full fingerprint. A fingerprint containing only a subset of the multipath components mea-
sured at a location is referred to as a partial fingerprint. The original localization presented in
this chapter uses full fingerprints, while partial fingerprints are used by the privacy protec-
tion scheme in Chapter 4. Two example MDPs {[dqj,1, .., d

q
j,4]} and {[dqj,3, ..., d

q
j,6]} are shown

in Fig. 3.3. The first MDP is produced by the geometry without the obstacle, and the second
MDP corresponds to the geometry with the obstacle O.

3.4 Proposed Approach - Multipath Component Analysis

Algorithm 1: MCA Localization Algorithm [3]
Data: Query multipath delay profile Dq = {dqj}, j = 1..M

transmitters {Tj}, j = 1..M
fingerprint map MAP = {(Xi,Di)}, i = 1..N

Parameters: Similarity threshold ε
Result: X̂- Estimated location of the receiver

for ∀Xi in the fingerprint map do

for ∀ transmitter Tj do
dij ← Di(j)

for ∀dqj,k ∈ d
q
j do

d∗ ← argmindq∈dij |d
q
j,k − d∗|

if |dqj,k − d∗| < ε then
γ(Dq,Di|Tj)← +(ε− |dqj,k − d∗|)2

i← argmaxi
∑

j γ(Dq,Di|Tj)
X̂ ←Xi

In order to determine which reference fingerprint is most similar to the query, a similar-
ity metric γ(Dq,Di) is calculated for each reference fingerprint Di. The location of the user
is assumed to be the same as the reference point that corresponds to the reference finger-
print for which the largest similarity metric is calculated. The multipath component analysis
(MCA) algorithm detailed in [3] calculates the similarity metric between two fingerprints in
a way that excludes the changes that occurred in the environment after the creation of the
fingerprint map. Only the multipath components that correspond to the unchanged geome-
try are used to calculate the similarity metric between the reference and query fingerprints.
Algorithm 1 shows the pseudo-code of the MCA algorithm. The MCA algorithm compares
individual query multipath delays to the reference fingerprints. When two multipath com-
ponents are matched, their difference is included into the similarity metric. A multipath
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component dqj from the query vector is matched to the multipath component in the refer-
ence fingerprint dij that is closest to it in value and the difference between the two multipath
components is smaller than the threshold ε. That is dqj,k and d∗ are considered matched if the
difference |dqj,k−d∗| is minimized by d∗ ∈ dij and |dqj,k−d∗| < ε. Because of this, propagation
paths that disappeared from or were added to the query MDP due to an obstacle of change
in the environment that occurred after the fingerprint map was created, are automatically
excluded from the similarity metric. The similarity metric is, therefore, a measure of how
many matches were found and how close they were. For each match, the index k is added to
the set Qij and a term (ε− |dj,k − d∗|)2 is added to the similarity metric as follows

γ(Dq,Di|Tj) =
∑

k∈Qij

(ε− |dqj,k − d∗|)2, (3.10)

Qij = {k|∃d∗ ∈ dij : |dqj,k − d∗| → min ∩ |dqj,k − d∗| < ε}. (3.11)

The similarity metric γ(Dq,Di) is calculated individually for each transmitter and then
summed up to one value as

γ(Dq,Di) =
M∑

j=1

γ(Dq,Di|Tj). (3.12)

The simulation and measurements used to evaluate the proposed approach are described
in Sections 3.5 and 3.6. The validation of the MCA algorithm is provided in this chapter. The
additional algorithms presented in this thesis are validated in the following chapters.

3.5 Ray-tracing Simulation Setup

A simulation tool was developed to extract the multipath distances from a 3D geometry.
The inputs to the simulation are a set of planes representing the walls, ceilings and objects
in the room, the locations of the transmitters and the sample points. Ray-tracing is used to
precisely extract the MDPs for a given 3D indoor geometry. Ray-tracing [3] is a simulation
approach often used in computer graphics. Although originally designed for modeling the
propagation of light rays as they are reflected of obstacles and illuminate objects, ray tracing
can be also used to model the propagation of electromagnetic signals [220].

The following approach is common in computer graphics. Multiple rays are emitted or
’cast’ from a source along all possible directions into the environment. Ray-casting with om-
nidirectional antenna or source is illustrated in Fig. 3.4. The path of a ray is then followed
as it is reflected from multiple surfaces and reaches the target point. The scheme collects
the rays that arrive at a target point, observes which paths they followed and which objects
they are reflected from. While this approach is effective at calculating lighting conditions in
computer graphics, it is less practical for estimating MDPs. The density of the rays decreases
as they propagate away from the transmitter. In order for all multipath components to be
detected at a target location, a very large number of rays needs to be cast from the source
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Transmitter
Receiver

Tj Xi

Figure 3.4: Ray casting example. Rays are ’cast’ from the transmitter location and are reflected off the
walls. Interpolation is needed in order to obtain the multipath profile at pointXi.

and a very large radius is needed to catch the rays. If rays are caught with a large radius
their lengths will not be equal to the exact multipath components.

The principle illustrated in Fig. 3.5 and the concept of virtual transmitters (VTs) described
in Section 6.1 is used instead in the simulation to calculate the exact multipath component
values. The distance between a transmitter Tj and a receiver located at point Xi in Fig.3.5
along the reflected path is equal to the distance between Xi and the reflection of Tj T

′′
j . T

′′
j

is the virtual transmitter (VT) corresponding to Tj and the reflection order. The VTs cor-
responding to a transmitter and a geometry can be calculated recursively. The a set of first
order VTs can be calculated as the reflections of the transmitter in each of the planes in the ge-
ometry. In the next step for each plane Gi in the geometry a set of new planes (polygons) can
be obtained by reflecting all of the other planes (polygons) from Gi. The first order VT cor-
responding to the plane (polygon) Gi is then reflected in each one of the new second degree
planes to obtain second degree VTs. The process is further repeated for each of the second
degree VTs and corresponding second degree planes. The computation is stopped when the
VTs have been obtained up to and including the desired reflection order. This algorithm is
illustrated in Fig. 3.6.

A more computationally efficient ray tracing model was developed in a master thesis at
the Chair of Media Technology at the Technical University of Munich [220]. Ray propaga-
tion is calculated for each room in the indoor environment using VTs and the results are then
combined to create a full map of the building. This model, however, is not used in this thesis.
Integrating it into the simulation can be part of the future work.

It should be noted that we are unable to directly compare the proposed approach with RSI
and CSI fingerprint algorithms described in Section 2.5, as unlike most existing approaches,
the proposed approach is designed for MDP and not RSSI fingerprints. A ray tracing setup
is needed to exactly extract multipath components. However, it cannot be used to generate
a realistic RSSI distribution due to the complexity of fading in a real scenario.

The geometry used in the simulation is shown in Fig. 3.7. Rectangles are used to repre-
sent the walls, ceilings and objects in the room. The environment contains four APs shown
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Figure 3.5: Calculation of a multipath component with two reflections.
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Figure 3.6: Recursive calculation of virtual transmitters and receivers. Solid black lines represent the
original geometry, solid colored lines represent the geometry that was reflected once, dotted lines
represent the geometry that was reflected twice.
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Algorithm 2: Ray Tracing Simulation Algorithm
Data: Geometry, Transmitters Tj , Query and Refernce points {Xi}
Parameters: max_num_reflections
Result: Set of VTs {VTs}, MDPs at reference and query points

VTs← {}, reflections← 0
function VTs = Calculate_VTs(reflections,geometry, {Tj}):
if reflections == max_num_reflections then

return {}

for ∀ planes ∈ geometry do
new_vts← reflect transmitters in the plane
new_geometry← reflect all other planes in the plane
VTs← Calcualte_VTs(reflections+1,new_geometry,new_vts)
return {new_vts,VTs}

Reference and Query MDPs← euclidean distances({Xi}, {VTs})

in Fig. 3.7. The MDPs were calculated at the reference and query points. In that figure, both
the query and reference points have been downsampled before being plotted. The geometry
colored in green and the floor and ceiling were used to calculate the reference fingerprints.
Before the query fingerprints were calculated, the blue color columns were added to the ge-
ometry. The MCA similarity threshold ε was set to 1m. The same simulation environment
has been used in [2], [1], [4], [5].
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Figure 3.7: Simulation setup. Left: planes representing the indoor geometry (floor and ceiling not
displayed). The geometry used for generating the fingerprint map is colored in green. The three
columns, colored in blue, were added to the geometry before the query fingerprints were generated.
Right: Transmitter locations and the query/reference points. Figure adapted from [4] ©2018 IEEE.

3.5.1 MCA Simulation Results

Figure 3.8 compares the performance of trilateration and the MCA algorithm in a dynamic
environment. NLoS conditions are observed at many of the query points. It can be seen that
the presence of walls and the obstacles inside the building creates so much NLoS that the
trilateration algorithm is unable to localize the user at most locations. The reference data for



86 Chapter 3. Robust Multipath-based Fingerprinting

ROBUST MULTIPATH-BASED UWB FINGERPRINTING FOR PRIVACY-AWARE INDOOR LOCALIZATION, OCTOBER 2019 10

0 5 10

−5

0

5

x (m)

y
(m

)

Mean error 3.4m

Query Points Transmitters Walls

0 2 4 6

Localization Error (m)

0 5 10

−5

0

5

0 5 10

−5

0

5

x (m)

Mean error 5.3m

0 5 10

−5

0

5

0 5 10

−5

0

5

x (m)

Mean error 0.13m

0 5 10

−5

0

5

0 5 10

−5

0

5

x (m)

Mean error 0.26m

0 5 10

−5

0

5

Figure 9: Left: Localization error of trilateration. Center: correlation-based CIR fingerprinting. Right: MCA algorithm. No
noise is included in the simulation.
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Figure 11: Localization accuracy with AWGN noise.

when the complete CIR is used as a fingerprint. The MCA
algorithm is shown to be robust against the addition of
obstacles. The small amount of error is present because the
query points generally do not coincide with the reference
points and the MCA algorithm does not estimate the exact
location of a query fingerprint but returns the reference
location it is closest to.

4.2.1 Partial Fingerprint Localization

Figure 10 shows the average localization error obtained
when matching a partial fingerprint to the map. The local-
ization error is evaluated for different values of the partial
fingerprint size np and the number of candidates returned
by the ILS for a single partial fingerprint κ. The curves
marked with an N show the results after additive white
Gaussian noise (AWGN) with σ2 = 0.25m2 was added
to the multipath components in the reference and query
fingerprints. The results show an expected decrease of the

localization accuracy in the presence of noise. They also
show that for κ > 3 the localization accuracy is independent
of κ. In the following simulations, we set κ = 3. It should
be noted that the noise in the system comes from the
environment and the extraction of the multipath compo-
nents. In a practical system, it will, therefore, depend on
the implementation of the channel estimation and multipath
component extraction.

4.3 Privacy Evaluation for Stationary Users

In this section, we evaluate the level of user privacy protec-
tion of the proposed scheme, using the metrics described
in Section 3.4. The parameters described in Section 3.4.1
were evaluated for the proposed privacy protection scheme.
Figure 11 shows the results obtained in a simulation without
noise. In Figure 12, additive white Gaussian noise (AWGN)
with σ2 = 0.25m2 was added to the propagation distances
in the reference and query fingerprints. The top figure
shows the number of candidate fingerprints returned by
the ILS vs. the number of partial fingerprints sent by the
user. The black dashed line shows the limit κ × NT . Since
the same reference point can be selected as a candidate
point more than once by the ILS, the number of candidate
points begins to saturate for large values of NT . The two
bottom subfigures show the privacy metrics H(ρ(Xi)) and
ω, derived in Section 3.4.1. The theoretical upper limits
described in Section 3.4.1 are also plotted. For the curves
marked with RF, Algorithm 2 was used to generate the
camouflage fingerprint. For the curves marked with RT,
Algorithm 3 was used.

The results show a trade-off between complexity and
performance in Algorithms 2 and 3. They also show that
np does not significantly affect the degree or privacy pro-
tection. The MCA algorithm only searches for the matching
propagation distances. It does not penalize the presence of
distances in an MDP that were not matched to the reference
fingerprint. The curves were plotted for κ = 3. Our results
show that the degree of privacy of the algorithms increased
with the value of κ, however, this is coupled with a signif-
icant increase in the number of candidate points. A better
localization performance is achieved for a higher value of
Np. It can be seen from the figures that the degree of privacy
increases with Np when Algorithm 3 is used. This is under-

Figure 3.8: Left: Localization error of trilateration with walls between the rooms removed. Center
Left: Trilateration with obstacles. Center Right: MCA algorithm, reference and query data generated
without obstacles. Right: MCA algorithm, obstacles added when the query data was generated. No
noise is included in the simulation. Figure adapted from [1] ©2021 IEEE.
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when the complete CIR is used as a fingerprint. The MCA
algorithm is shown to be robust against the addition of
obstacles. The small amount of error is present because the
query points generally do not coincide with the reference
points and the MCA algorithm does not estimate the exact
location of a query fingerprint but returns the reference
location it is closest to.

4.2.1 Partial Fingerprint Localization
Figure 10 shows the average localization error obtained
when matching a partial fingerprint to the map. The local-
ization error is evaluated for different values of the partial
fingerprint size np and the number of candidates returned
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Figure 12: Localization accuracy with AWGN noise.

by the ILS for a single partial fingerprint κ. The curves
marked with an N show the results after additive white
Gaussian noise (AWGN) with σ2 = 0.25m2 was added
to the multipath components in the reference and query
fingerprints. The results show an expected decrease of the
localization accuracy in the presence of noise. They also
show that for κ > 3 the localization accuracy is independent
of κ. In the following simulations, we set κ = 3. It should
be noted that the noise in the system comes from the
environment and the extraction of the multipath compo-
nents. In a practical system, it will, therefore, depend on
the implementation of the channel estimation and multipath
component extraction.

Figure 3.10: Localization error of the MCA algorithm with full fingerprints in the presence of AWGN
noise. Figure adapted from [1] ©2021 IEEE.

the MCA algorithm was generated from a geometry without obstacles and the obstacles are
added when the query data is generated. The MCA algorithm performs well in a static and
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Figure 3.11: Mean localization error for different exponent values in the similarity metric.

a dynamic environment. In Fig.3.9 the performance of the MCA and trilateration algorithms
are compared with different numbers of APs. It can be seen from the plots that to reliably
localize the user in the given environment, the trilateration algorithm would require 20 APs
and NLoS detection. At a given point LoS measurements are received from some APs and
NLoS measurements from the others. If no NLoS detection is performed, the user would
assume that the smallest reflected path from the NLoS transmitters is a LoS path, include it
into the multilateration and obtain a wrong result. In contrast, the MCA algorithm performs
well with only 4 APs and no NLoS detection. No noise is added to the MDP fingerprints.
The small amount of error is present because most query points do not coincide with the ref-
erence points and the MCA algorithm does not perform k-means or any other averaging and
instead returns the location of the reference fingerprint which is most similar to the query.
Figure 3.10 shows the performance of the MCA algorithm when AWGN noise is added to
both reference and query multipath components. Figure 3.11 shows the dependency of the
localization accuracy on the exponent α in the similarity metric.

γ(Dq,Di|Tj) =
∑

k∈Qij

(ε− |dqj,k − d∗|)α, (3.13)

Qij = {k|∃d∗ ∈ dij : |dqj,k − d∗| → min ∩ |dqj,k − d∗| < ε}. (3.14)

In all other experiments and in [2], [1], [4] , the exponent α = 2. The results show the
optimal exponent value should be above 0 below 2. Note if the exponent is 0, the similarity
metric is equal to the number of matches found between the two fingerprints.

3.6 Evaluation with Measurement Data

3.6.1 Measurement Setup

Measurements were conducted in collaboration with the Institute of Communications and
Navigation at the German Aerospace Center (DLR). The UWB communication standard
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and the Decawave chip were chosen in this thesis to construct a prototype of the proposed
multipath-based localization system. The UWB communication standard is described in Sec-
tion 2.7.1.2 and the Decawave chip is described in Section 2.7.2.3. The measurements were
conducted in one room in an area the size of which was approximately 10 m by 4 m.

3.6.1.1 Receiver and APs

The Decawave DWM1000 chips1 with UWB two-way-ranging were used both as the receiver
and the APs. The DWM1000 module was attached by a breakout board to the GPIO outputs
of a Raspberry Pi 3 B+. The DW1000 chip was operated and time stamps needed to calculate
distance estimates were transferred by a communication software and SPI interface on the
Raspberry Pi. The setup has 9 APs which are static and mounted on the walls at a height of
roughly 1m as shown in Fig. 3.14. The receiver, also called a tag is carried by a person or
attached to a robot in various experiments.The UWB system is configured to a bandwidth of
500 MHz and a carrier frequency of 3.5 GHz.

The receiver initiates the two-way-ranging method by a ranging request (poll) to one of
the APs. The receiver and AP exchange four messages, two of which are sent by the receiver,
and two by the AP. The estimated distance is afterwards calculated on the receiver side, see
[219]. The Decawave DWM1000 chip also provides an estimated CIR. The DWM1000 chip in-
cludes a large bank of memory that holds the accumulated CIR data which contains complex
values representing a 1ns sample interval. The receiver software running on the Raspberry
Pi accesses this memory after a message from the AP is received. The space-alternating gen-
eralized expectation-maximization (SAGE) detailed in Section 3.6.2 is used to estimate the
multipath delays [39]. It should be noted that the ILS prototype presented in this thesis
uses active localization. The receiver or tag actively communicates with the APs to perform
CIR estimation. In order for the system to support a very large number of users, it would
be advantageous to modify the communication protocols into a scheme were the receivers
only listen to the data transmitted by the APs. As the author of this thesis does not have
access to the software or hardware of state-of-the-art ILSs, it was not possible to compare the
performance of the proposed algorithm against the state-of-the-art algorithms in the same
environment.

3.6.1.2 Ground-Truth Measurement

Existing bench-marking platforms described in Section 2.8 could not be used to evaluate
the proposed localization approach due to lack of access and compatibility to the systems
in question. Several reflectors were attached to the board and its location was tracked by a
Vicon motion capturer [151] to obtain the ground truth data. 16 infrared sensitive cameras
and infrared strobes were used. The accuracy of the Vicon system was better than 1 cm with
a sampling rate higher than 100 Hz. The correct ground-truth and multipath measurements
were grouped together using the timestamps of the two measurement systems.
1 https://www.decawave.com/product/dwm1000-module/
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Figure 3.13: Signal flow graph of the SAGE algorithm [39].

In order to implement the MCA algorithm described in Section 3.4, multipath compo-
nents need to be extracted from a received electromagnetic signal. The space-alternating
generalized expectation-maximization (SAGE) algorithm is used in this thesis. It is designed
to jointly estimate the relative delay, incidence azimuth, Doppler frequency, and complex am-
plitude of impinging electromagnetic waves. According to [39], the main advantage of the
SAGE algorithm is its high resolution. The SAGE algorithm is derived from the maximum
likelihood (ML) principle [221]. It is an extension of the expectation-maximization (EM) al-
gorithm [222]–[224]. In the SAGE algorithm, the high-dimensional optimization process that
is needed to compute the ML estimates of the multipath signal parameters is replaced by
several sequential low-dimensional optimization steps [221].

To implement the SAGE algorithm, a transmitter sends out the sounding sequence u(t)

that consists of periodically repeated bursts. The sounding sequence is assumed by the SAGE
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algorithm to be of the following form [39]:

u(t) =
∞∑

i=−∞
a(t− iT ), (3.15)

a(t) =
K−1∑

k=0

akp(t− kTp), (3.16)

where the coefficients [a0, ..., aK−1] denote the possibly complex sounding sequence, p(t)
denotes the shaping pulse of duration Tp and T = KTp denotes the time interval between
consecutive signal bursts. The SAGE algorithm assumes that a set number of multipath com-
ponents KL is to be extracted from the received signal. If an array of M antennas is used, the
received signal vector has the following form:

[Y1(t), ..., YM (T )]T = Y (t) =

KL∑

k=1

s(t;θk) +N(t), (3.17)

[s1(t;θk), ..., sM (t;θk)] = s(t;θk) = c(φk)αkexp{j2πνkt}u(t− τk), (3.18)

where c(φ) = [c1(φ), ..., cM (φ)] is the steering vector of the antenna array with cm(φ) =

fm(φ)exp{j2πλ−1〈e(φ), rm〉}. The vector θk = [τk, φk, νk, αk] contains the parameters of the
k-th multipath component, where τk is the relative delay of the multipath component, φk
is the incidence azimuth, µk is the Doppler frequency, and αk is the complex amplitude. λ
denotes the wavelength, e(φ) is the unit vector in R2 in the direction of φ, fm(φ) is the com-
plex electric field pattern of them-th antenna. The expectation maximization (EM) algorithm
then restructures the ML estimation into KL separate maximization procedures, one for es-
timating the parameters for each of the KL expected signal propagation paths. The SAGE
algorithm further partitions the optimization problems according to the parameters being
optimized. In this way, the algorithm performs a series of one-dimensional optimization
steps [225]. The optimization is performed iteratively, from an initial set of estimated pa-
rameter values θ̂(0) a sequence θ̂(η) is generated, such that at each step η + 1 the parameter
estimation is improved.

The ML parameters estimation of the k-th multipath component θk for the observation

Xk(t) = xk(t) = s(t,θk) +

√
βkN0

2
Nk(t) (3.19)

can be written as
(θ̂k)ML(xk) ∈ argmaxθk{Λ(θk;xk)}, (3.20)

where Λ(θk;xk) is the log-likelihood function of θk for the observation Xk(t) = xk(t) and√
βkN0

2 Nk(t) is the component of the noise N(t) that corresponds to the k-th multipath com-
ponent. This is illustrated in Fig. 3.12. The signal xk(t) received through the k-th multipath
component is part of the total received signal Y (t) and cannot be directly observed. It can
be estimated using the conditional expectation of Xk(t) on the received signal Y (t) and a
previous estimate of the parameters θ̂k(η):

x̂k(t; θ̂k(η)) = Eθ̂k(η)[Xk(t)|Y (t)] (k = 1, ...,KL). (3.21)
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This is referred to as the Expectation step of the SAGE algorithm. In [39] the estimate
x̂k(t; θ̂(η)) is calculated as:

x̂k(t; θ̂(η)) = s(t; θ̂k(η)) + βk[Y (t)−
KL∑

k′=1

s(t; θ̂k′(η))], (3.22)

where the first term s(t; θ̂(η)) is the contribution of the k-th multipath to the received sig-
nal, under the assumption that the multipath parameters have been calculated correctly. The
term in the brackets is the noise estimate, based again on the hypothesis that the multipath
parameters have been correctly estimated. Given the constraints that the coefficients βk in
the EM algorithm are non-negative and

∑KL
k=1 βk = 1, they are selected to maximize the con-

vergence rate of the algorithm. For the SAGE algorithm in [39] βk = 1. After the expectation
step of the algorithm is completed, the multipath parameters in θ̂ can be re-estimated by
computing the maximum likelihood using the newly computed received signal component
x̂k(t, θ̂(η)):

θ̂k(η + 1) = (θ̂k)ML(x̂k(t; θ̂(η))) (k = 1, ...,KL). (3.23)

This is referred to as the Maximization step of the algorithm. Starting from an initial set of pa-
rameter values θ̂(0), the expectation and maximization steps are iterated until the distance
between parameter estimates reaches a predefined threshold or the estimated parameter se-
quence θ̂(η) stabilizes. The SAGE algorithm differs from the EM algorithm because at each
iteration of the algorithm not all but only a subset of the components of θ̂ are updated, while
the other components are fixed and are updated in another iteration. In the implementation
of the SAGE algorithm in [39], each multipath parameter is estimated separately, therefore,
the maximization step consists of three 1-dimensional optimization procedures. In addition,
the SAGE algorithm is less complex and converges faster than the EM algorithm [39]. The
signal flow of the SAGE algorithm is illustrated in Fig. 3.13.

Two ways of estimating the initial parameter vales θ̂(0) are proposed in [39]: either a
initialization iteration of the algorithm is performed and θ̂(0) is calculated over several it-
erations from θ̂(−KL) = [0, ..., 0], or the MUSIC algorithm is used to compute the initial
estimate of the delays values and an initialization cycle of the SAGE algorithm is used to
compute the initial values of the rest of the parameters.

A more detailed description and the performance evaluation of the SAGE algorithm can
be found in [39].

In this thesis, the SAGE [39] algorithm was used for extracting the multipath components
from the CIR provided by the Decawave board 2 described in Section 2.7.2.3. The number of
multipath components extracted from the signal was set to KL =15.

It should be noted that the multipath extraction and the SAGE algorithm were run off-
line after the measurements were completed.
2 The measurement campaign was performed in collaboration with the Institute of Communications and Navi-

gation at German Aerospace Center (DLR), Oberpfaffenhofen, Münchner Straße 20, 82234 Wessling, Germany.
The hardware setup and the implementation of the SAGE algorithm was performed by the group at the Insti-
tute of Communications and Navigation.
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If the receiver is moving, multipath components can be tracked over time and multipath
estimation is made more accurate using an extended Kalman filter (EKF) or the Kalman En-
chansed Super Resolution Tracking (KESRT) algorithm in [226], [227]. Filtering algorithms
for multipath estimation is not used in this thesis.

3.6.2.1 MCA Localization Performance

Figures 3.16 - 3.21 show the localization error calculated at the reference points in the indoor
environment. In all of the plots both the query and reference points are additionally down-
sampled only when plotting for better visibility. Much denser data-sets were used during
calculation. The evaluation results are published in [1]. In the case of Figure 3.16, both the
reference and query data were collected by the robot. The robot was stopped at every 30 cm

on the trajectory shown in Figure 3.16 and moved at a slow speed between the these points.
The robot was controlled by hand though a remote controller device. In the following this
data-set is referred to as stationary. The stationary data is used as the fingerprint map or ref-
erence in all of the following experiments. There are a total of 897 reference fingerprints, with
22.4 fingerprints/m2. The reference points are averaged such that the distance between two
consecutive points is not less than 10 cm. The mean distance between two reference points
on sections where the robot was moving and was not turned or artificially re-positioned was
12 cm. When two reference points are combined, their MDPs are also averaged. Each MDP
contains 15 sorted multipath components.

In Fig. 3.16 the sets of query fingerprints and reference fingerprints are non-overlapping
subsets of the above described static dataset. An average localization error of 0.057 m was
obtained for a mean distance of 0.029 m between the query and closest reference fingerprints.
Figure 3.15 shows the average localization error as a function of the average distance between
the query fingerprints and the closest reference fingerprint. In this case, the reference data is
further downsampled at different rates.
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Figure 13: Degree of privacy of a moving user as a function
of the number of partial fingerprints sent by the user. The
camouflage fingerprints were generated using Algorithm 2.
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Figure 14: Degree of privacy of a moving user as a function
of the number of partial fingerprints sent by the user. The
camouflage fingerprints were generated using Algorithm 3.

and is attached to a moving robot or person during various
measurements. Figure 15 shows the locations of the APs.
For the measurements, the UWB system is configured to a
bandwidth of 500 MHz and a carrier frequency of 3.5 GHz.
The Decawave DWM1000 chip can provide in addition to
the ranging information the measured CIR. To determine
the sparse structure of the CIR, the multipath estimation
algorithm called space-alternating generalized expectation-
maximization (SAGE) is used [47].

A Vicon motion capturer was used to track the move-
ment of the receiver, hence, to obtain the ground truth.
The Vicon motion capturer tracked a reflector which was
attached to the receiver. The Vicon motion capture system is
capable to track the motion of the receiver in the measure-
ment room with a ground area of approximately 7 m by 4
m with an accuracy of less than 1 cm.

4.5.2 MCA Localization Performance

Figures 16 - 21 show the localization error obtained at a
number of points in the indoor environment. In the case of
Figure 16, both the reference and query data were collected
by the robot. The robot was stopped at a number of locations
in the indoor environment and moved at a slow speed
between these points. The robot collected fingerprints both
while moving slowly and when being stationary. In the
following we will refer to these measurements as stationary.
Figure 17 shows the average localization error as a function
of the average distance between the query fingerprints and
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Figure 15: Measurement setup, AP locations. The APs are
mounted on the walls of the room.
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Figure 16: Localization error at the query points. Near static
measurements. Filled circles correspond to the query points
and empty circles correspond to the reference points. Query
and reference points significantly downsampled when plot-
ting.

the closest reference fingerprints. The error is plotted for a
stationary map and stationary user.

Figure 18 shows the localization errors obtained by a
robot moving slightly faster than walking pace. The ref-
erence data was collected by a stationary robot. It can be
seen that the motion of the receiver significantly impacts the
localization accuracy; however, the algorithm still localizes
the user with an accuracy of 0.308m. Figure 20 shows
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Figure 17: Localization error at the query points. Static
measurements.

Figure 3.14: Measurement setup, AP loca-
tions. APs are mounted on the walls of the
room. Figure adapted from [1] ©2021 IEEE.
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Figure 18: Localization error at the query points. Static
measurements.
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Figure 19: Localization error with different numbers of
transmitters.
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Figure 20: Localization error at the query points. Reference
data collected by a stationary robot. Query data collected
by a moving robot. Empty circles show the downsampled
reference points.
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Figure 21: Localization error at the query points. Reference
data collected by a stationary robot and query data collected
by a moving person. Empty circles show the downsampled
reference points.
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Figure 22: Probability distribution of the localization error
at the query points. Reference data collected by a stationary
robot and query data collected by a moving robot.
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Figure 23: Localization error at the query points. Reference
data collected by a stationary robot, query data collected by
a moving robot, a person moving around the room during
query measurements. Empty circles show the downsampled
reference points.

Figure 3.15: Localization error at the query
points for different reference fingerprint den-
sities. Static measurements. Figure adapted
from [1] ©2021 IEEE.

In Fig. 3.17 the query data was collected by a robot moving at a fast walking pace. The
distance between consecutive query fingerprints is 15 to 20 cm and the distance from a query
to the closest reference point is 11cm. A mean localization error of 0.308m was obtained. The
ratio of the mean error to the mean distance increased compared to the static dataset. In the
future work it should be checked whether the system update rate and timestamp synchro-
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Figure 3.16: Localization error at query points.
Near static measurements. Figure adapted
from [1] ©2021 IEEE.
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Figure 18: Localization error at the query points. Reference
data collected by a stationary robot. Query data collected
by a moving robot. Empty circles show the downsampled
reference points.
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Figure 19: Localization error at the query points. Reference
data collected by a stationary robot and query data collected
by a moving person. Empty circles show the downsampled
reference points.
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Figure 20: Probability distribution of the localization error
at the query points. Reference data collected by a stationary
robot and query data collected by a moving robot.
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Figure 21: Localization error at the query points. Reference
data collected by a stationary robot, query data collected by
a moving robot, a person moving around the room during
query measurements. Empty circles show the downsampled
reference points.

the histogram of the distribution of the localization error
values. Figure 19 shows the localization error obtained when
the query data was collected by a moving person. Figure
21 shows the localization error when the query data was
collected by a stationary or slow moving robot and the
query data was collected by a moving robot. The increase
in localization error corresponds either to the vertical move-
ment of the users hand carrying the receiver or to the fast
walking pace of the user. A person was moving around the
room when the query data was collected.

The results show that the MCA algorithm is able to
precisely localize the user when he or she is stationary or
when his or her movement is slow. Figure 17 shows that
when the reference and query fingerprints are not identical,
the localization error is almost the same as the average
distance from the query to the reference fingerprints.

The motion of the receiver slightly impacts localization
performance. This is most likely because the motion of the
receiver changes the CIR estimation and multipath extrac-
tion. Figure 19 shows that even when the receiver is moving
at a fast walking pace the user is localized with an average
error of approximately 30cm. Fig. 21 shows that the presence
and movement of a person in the indoor environment does
not affect the localization performance.

4.5.3 Privacy Evaluation
Figure 22 shows the privacy metrics evaluated on the static
data. The measurement data validates the effectiveness of
the proposed privacy protection scheme.

5 CONCLUSION

This paper presented a novel privacy protection algorithm
for indoor localization based on the use of partial multipath-
based fingerprints. The proposed approach is robust to
changes in the indoor environment by selectively including
and excluding multipath components from the location

Figure 3.17: Localization error at query points.
Query data collected by a moving robot. Fig-
ure adapted [1] ©2021 IEEE.
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Figure 18: Localization error at the query points. Reference
data collected by a stationary robot. Query data collected
by a moving robot. Empty circles show the downsampled
reference points.
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Figure 19: Localization error at the query points. Reference
data collected by a stationary robot and query data collected
by a moving person. Empty circles show the downsampled
reference points.
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Figure 20: Probability distribution of the localization error
at the query points. Reference data collected by a stationary
robot and query data collected by a moving robot.
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Figure 21: Localization error at the query points. Reference
data collected by a stationary robot, query data collected by
a moving robot, a person moving around the room during
query measurements. Empty circles show the downsampled
reference points.

the histogram of the distribution of the localization error
values. Figure 19 shows the localization error obtained when
the query data was collected by a moving person. Figure
21 shows the localization error when the query data was
collected by a stationary or slow moving robot and the
query data was collected by a moving robot. The increase
in localization error corresponds either to the vertical move-
ment of the users hand carrying the receiver or to the fast
walking pace of the user. A person was moving around the
room when the query data was collected.

The results show that the MCA algorithm is able to
precisely localize the user when he or she is stationary or
when his or her movement is slow. Figure 17 shows that
when the reference and query fingerprints are not identical,
the localization error is almost the same as the average
distance from the query to the reference fingerprints.

The motion of the receiver slightly impacts localization
performance. This is most likely because the motion of the
receiver changes the CIR estimation and multipath extrac-
tion. Figure 19 shows that even when the receiver is moving
at a fast walking pace the user is localized with an average
error of approximately 30cm. Fig. 21 shows that the presence
and movement of a person in the indoor environment does
not affect the localization performance.

4.5.3 Privacy Evaluation
Figure 22 shows the privacy metrics evaluated on the static
data. The measurement data validates the effectiveness of
the proposed privacy protection scheme.

5 CONCLUSION

This paper presented a novel privacy protection algorithm
for indoor localization based on the use of partial multipath-
based fingerprints. The proposed approach is robust to
changes in the indoor environment by selectively including
and excluding multipath components from the location

Figure 3.18: Localization error at query points.
Query data collected by a moving person. [1]
©2021 IEEE.
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Figure 18: Localization error at the query points. Reference
data collected by a stationary robot. Query data collected
by a moving robot. Empty circles show the downsampled
reference points.
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Figure 19: Localization error at the query points. Reference
data collected by a stationary robot and query data collected
by a moving person. Empty circles show the downsampled
reference points.

0 0.5 1 1.5 2

0.05

0.1

0.15

0.2

Localization Error (m)

Er
ro

r
pr

ob
ab

ili
ty

Figure 20: Probability distribution of the localization error
at the query points. Reference data collected by a stationary
robot and query data collected by a moving robot.
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Figure 21: Localization error at the query points. Reference
data collected by a stationary robot, query data collected by
a moving robot, a person moving around the room during
query measurements. Empty circles show the downsampled
reference points.

the histogram of the distribution of the localization error
values. Figure 19 shows the localization error obtained when
the query data was collected by a moving person. Figure
21 shows the localization error when the query data was
collected by a stationary or slow moving robot and the
query data was collected by a moving robot. The increase
in localization error corresponds either to the vertical move-
ment of the users hand carrying the receiver or to the fast
walking pace of the user. A person was moving around the
room when the query data was collected.

The results show that the MCA algorithm is able to
precisely localize the user when he or she is stationary or
when his or her movement is slow. Figure 17 shows that
when the reference and query fingerprints are not identical,
the localization error is almost the same as the average
distance from the query to the reference fingerprints.

The motion of the receiver slightly impacts localization
performance. This is most likely because the motion of the
receiver changes the CIR estimation and multipath extrac-
tion. Figure 19 shows that even when the receiver is moving
at a fast walking pace the user is localized with an average
error of approximately 30cm. Fig. 21 shows that the presence
and movement of a person in the indoor environment does
not affect the localization performance.

4.5.3 Privacy Evaluation
Figure 22 shows the privacy metrics evaluated on the static
data. The measurement data validates the effectiveness of
the proposed privacy protection scheme.

5 CONCLUSION

This paper presented a novel privacy protection algorithm
for indoor localization based on the use of partial multipath-
based fingerprints. The proposed approach is robust to
changes in the indoor environment by selectively including
and excluding multipath components from the location

Figure 3.19: Probability distribution of the lo-
calization errors. Moving robot Fig. 3.17. Fig-
ure adapted from [1] ©2021 IEEE.

nization cause the increase in localization for the fast user measurements. Figure 3.19 shows
the histogram of the probability distribution of the localization error values.

In Fig. 3.18 the query data was collected by a moving person holding the RasberryPi
board in her hand. The mean distance between successive query points is 12.3 cm. An aver-
age error of 0.44m was obtained. The increase in error could be explained by the movement
of the user’s hand holding the Decawave board and the difference between the z-coordinates
in the reference and query datasets.

In Fig. 3.20 the query data was again collected by a robot moving faster then walking
pace. A person was moving around the room at the same time. The trajectories used in Figs.
3.17 - 3.20 to collect the query data are different due to the manual control of the robot. Figure
3.21 shows the average error of the experiments when only a subset of the APs were used to
estimate the user’s location.

The results presented in [1] show that the prototype ILS is able to precisely localize the
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Figure 18: Localization error at the query points. Static
measurements.
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Figure 19: Localization error with different numbers of
transmitters.
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Figure 20: Localization error at the query points. Reference
data collected by a stationary robot. Query data collected
by a moving robot. Empty circles show the downsampled
reference points.
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Figure 21: Localization error at the query points. Reference
data collected by a stationary robot and query data collected
by a moving person. Empty circles show the downsampled
reference points.
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Figure 22: Probability distribution of the localization error
at the query points. Reference data collected by a stationary
robot and query data collected by a moving robot.
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Figure 23: Localization error at the query points. Reference
data collected by a stationary robot, query data collected by
a moving robot, a person moving around the room during
query measurements. Empty circles show the downsampled
reference points.

Figure 3.20: Localization error at query points.
Query data collected by a moving robot,
a person moving around the room during
query measurements. Figure adapted from [1]
©2021 IEEE.
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Figure 3.21: Average localization error for different
numbers of transmitters used. Figure adapted from
[1] ©2021 IEEE.

user when he or she is stationary or when his or her movement is slow. Figure 3.15 shows
that when the receiver is moving very slowly, the localization error is around double the
average distance from the query to nearest reference fingerprint. The localization accuracy
of the ILS prototype decreases when the user is moving fast, however it is still comparable
to commercial ILS. The accuracy the system most likely decreases because the quality of the
CIR and multipath estimation decreases. This can happen because of Doppler effects as the
user moves a large distance between two CIR measurements, incorrect timestamps are re-
ceived and the wrong coordinates from the Vicon system are used to label the fingerprint.
If several measurements are used to estimate a CIR it can happen that the user moves and
those measurements are made at different locations, changing the resulting CIR and MDP.
Figure 3.18 shows that even when the receiver is moving at a fast walking pace, the user is
localized with an average error of approximately 30cm. Figs. 3.20 and 3.21 show that the
presence and movement of a person in the indoor environment does not affect the localiza-
tion performance.

3.7 Summary

This chapter proposed the multipath component analysis (MCA) fingerprinting localization
algorithm. The MCA algorithm uses the multipath delay profile (MDP) as a fingerprint to
precisely localize the user even if changes or motion occurred in the indoor environment
after the fingerprint map was created. The MCA algorithm is validated through simulation
and measurements. A prototype was created in collaboration with the Institute for Commu-
nication and Navigation at the German Aerospace Center (DLR) using the UWB Decawave
board. A slowly moving user was localized with an average accuracy of 6cm, the average
distance from a query point to the closest reference point in the fingerprint map was 3cm.
When the user was moving at a fast walking pace, an average accuracy of 30cmwas obtained
with an average distance from a query to the closest reference point of 11cm.



Chapter 4

Privacy-preserving Indoor
Localization

Tracking implies calculating, storing, and analyzing the user’s location to determine patterns
in his or her behavior. The malicious party may learn about the user’s visits to a clinic, hospi-
tal and obtain private health-related information. It may also learn how robots and resources
in the factory are moved around. Technology and other trade secrets may be obtained by a
competitor. If the malicious party is intercepting communication messages, they can simply
be encrypted to protect the user. However, the ILS itself can be malicious when it is installed
by a company the user does not belong to. This is, for example, often the case in public
spaces such as shopping malls. In this case encryption is not enough, the communication
protocols between the ILS and the user have to be restructured such that the user can obtain
his or her location from the ILS without the ILS knowing that location.

This chapter shows that the MDP fingerprint structure described in Chapter 3, is innately
suited for adding user privacy protection to an ILS. It allows the user to send the ILS only
partial data which enables the ILS to calculate several guesses of where the user may be. The
user can use the full query fingerprint to choose between these guesses and himself or her-
self locally calculate a position. The privacy protection scheme detailed in this chapter was
originally proposed in [1].

This chapter is organized as follows. Section 4.1 summarizes existing privacy protection
schemes. Section 4.2 details the proposed privacy protection scheme. Section 4.3 summa-
rizes the metrics proposed to evaluate privacy. The simulation and measurement results are
presented in Sections 4.4 and 4.5. Section 4.6 contains the conclusion.

4.1 Existing Privacy Protection Schemes

This section summarizes existing ILS privacy protection schemes. As discussed in Section
2.5 in Chapter 3, a typical fingerprinting-based ILS follows the design illustrated in Figs. 4.2
and 4.1. The fingerprint map is stored on the ILS server. The user communicates with the
APs, calculates a fingerprint and sends that fingerprint to the ILS. The ILS, in turn, sends
the calculated location to the user. Note, the communication between the user and the ILS
server can occur over any medium, not necessarily over the access points (APs) used for fin-
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Figure 4.1: Communication between the user and the ILS server without privacy protection. The ILS
server calculates the location of the user and knows the user’s identity.
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Figure 4.2: Assumed ILS system model. The user measures a fingerprint from the APs and obtains
his or her location by communicating with the ILS server [1], [228]. Figure adapted from [1] ©2021
IEEE.

gerprinting. The privacy protection scheme would be built into the communication protocol
between the user and the server. The main objective of doing this is to allow the user to
obtain his or her location from the ILS server, without the server knowing that location.

Several solutions have been developed to protect the location privacy of the user. If the
ILS is simultaneously communicating with several users and cannot tell which fingerprint
was sent by which user, it cannot track them. Therefore, users can replace their IDs with
frequently changing pseudonyms [228]–[236]. This is referred to as k-anonymity and is il-
lustrated in Fig. 4.3. The problem with this approach is that it can create ID collisions and
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Figure 4.3: Anonymity-based privacy protection. The ILS calculates the location of each user and
hence is unable to distinguish between the users.
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network disruptions. In addition, private wireless networks only allow users to have certain
MAC-addresses. In this case the user cannot randomly alter his ID and retain access to the
network [231]. At the same time, the ILS can with time differentiate between and track the
users though the proximity of successive measurements [228]. The work in [234] extends the
k-anonymity algorithm by segmenting each user’s data and injecting noise into each piece.
The users then exchange the data pieces among themselves, create mixed data-packets and
send them to the ILS server. The ILS server calculates data tuples, which the users use to
identify their true locations. While this approach protects the location of the users it requires
them to cooperate in an organized manner and exchange data. Alternatively, it requires a pri-
vacy system that would know the location of each user. Further extensions of k-anonymity
include the work in [235], where k-anonymity is combined with location encryption. The
work in [236] assembles the data collected by the users into a motion graph and uses gene
sequencing. However this approach was developed only for RSSI fingerprinting and not CSI
and multipath fingerprints. In order not to force the user to obscure his or her ID, the Paillier
cryptosystem is used to encode the data exchanged between the user and the ILS in [237]–
[243]. The Paillier cryptosystem illustrated in Fig. 4.4 is an encryption scheme that allows the
server to perform arithmetic operations on the encoded data. The user encodes the measured
fingerprint. The ILS server can encode the reference fingerprints using a public key. The ILS
server is then able to calculate the similarity metrics between the query and reference finger-
prints without knowing the values in the query fingerprint. The resulting similarity values
are also encoded and thus unknown to the ILS. The ILS sends the encoded similarity values
and the corresponding reference coordinates to the user. In this way the reference finger-
prints are also protected from the user. The user locally decodes the similarity values and
determines his location. The work in [240] designs a privacy Paillier-based protection scheme
specifically for CSI-fingerprints. While encoding-based privacy protection schemes are very
thorough and guarantee the user’s privacy, their computational complexity is very high. A
large part of the computations have to be performed by the user locally. The transferred data
volume is also very high as all of the calculated similarity metric values and all of the refer-
ence locations need to be sent by the server to the user. The transmitted data volume grows
linearly with the size of the fingerprint map [237]. At the same time, the higher the accuracy
of the ILS, the denser the reference locations and the larger the fingerprint database tends to
be. An example of this is the scheme in [28]. Alternatively, the location privacy of the user is
protected through AP fuzzification in [244]. Differential privacy is used in [245] to obscure
RSSI data. In [63], [109] several semi-trusted third parties receive parts of encoded RSSI fin-
gerprints from the ILS and calculate parts of encoded or secret-shared location estimates, the
user combines the two secret-shared estimates to obtain his or her location. None of these
approaches fit the ILS proposed in Chapter 3.

A different privacy protection scheme was proposed in [228], [246]–[248]. The user cre-
ates k − 1 artificial fingerprints and sends them to the ILS together with the real measure-
ments. The ILS does not know which fingerprint corresponds to the true location of the user
and calculates a location estimate for all. The user then selects the response of the ILS to
the real measurements as his location. Such schemes are referred to as camouflage-based pri-



4.1. Existing Privacy Protection Schemes 99

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

,{D1}K X1

⋮
{ },Dn Xn

⋮
{ },DN XN

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

Map

D1

D2

D(n+1)

D4

User

ILS server

Encrypt database and
calculate encrypted
similarity

D
q

Measured fingerprint

Map

argmi (γ( , )nn Dn D
q

= =X̂ Xn

x

y

z

User

Measure

Encode

Decrypt and find the
largets similarity

metric 

Public key
Encoded query fingerprint {D

q}K

K

Localization
algorithm run on
encrypted data

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

{γ( , ) , {D1 D
q }K X1}K

⋮
{γ( , ) , {Dn D

q }K Xn}K

⋮
{γ( , ) , {DN D

q }K XN }K

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

γ( , ),D1 D
q X1

⋮
γ( , ),Dn D

q Xn

⋮
γ( , ),DN D

q XN

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

Find maximum
value of γ

Send

Send

Figure 4.4: Privacy protection using the Prailler cryptosystem. The user encrypts the query finger-
prints, the ILS server encodes the fingerprint database with the user’s public key and performs all of
the computations on the encrypted data.
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Figure 4.5: Camouflage-based privacy protection. The user generates fake camouflage fingerprints
and sends them to the ILS server alongside the real measurements.

vacy protection schemes, the concept behind them is illustrated in Fig. 4.5. The artificially
created fingerprints are referred to as camouflage fingerprints and the corresponding locations
as candidate locations. This scheme has two main advantages. Firstly, no changes have to be
made to the communication infrastructure and protocol between the user and the ILS server.
Secondly, the user’s degree of privacy and the scheme’s complexity can be set by the number
of camouflage fingerprints the user sends to the ILS server. Therefore, the user can set the
degree of privacy according to his or her requirements, available computation power and
communication bandwidth.

The main challenge of camouflage approaches is that the user needs to be able to gen-
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erate credible fake fingerprints which the ILS server cannot distinguish from the real ones.
RSSI fingerprints are vectors that fluctuate strongly throughout the environment. Believable
RSSI fingerprints can be thus generated as vectors of random numbers. The CSI, CFR, CIR
and multipath profile at a given location are more complex and are a function of the geom-
etry. Therefore, not every vector can be a valid fingerprint. Unless proper care is taken, the
server can identify the camouflage fingerprints as very dissimilar to all of the entries in the
map. In addition, if the ILS is tracking a moving user and if the localization requests are
very frequent, the ILS can identify the user’s location as points which are close to each other
and form a trajectory. This is illustrated in Fig. 4.10. The algorithms proposed in [246], [247]
compute the camouflage RSSI fingerprints so that they appear to have a natural movement
pattern. The scheme in [247] combines camouflage fingerprint generation with k-anonymity
and uses the RSSI data from multiple users to generate credible RSSI fingerprints. To the
best knowledge of the author of this thesis, no camouflage-based privacy scheme currently
exists for channel based-fingerprints other than the one proposed in [1]. At the same time as
shown in Chapters 2 and 3, CSI, CFR or multipath fingerprints are needed for high-precision
localization.

4.2 Proposed Privacy Protection Scheme

Full Fingerprint
Complete set of multipath components or the complete

information extracted from the signals received from the
APs by the user.

Partial fingerprint
Subset of multipath components or of the information

extracted from the signals received by the user from the
APs.

Camouflage fingerprint
fake fingerprints artificially constructed by the user and

sent to the ILS.

Candidate locations
the set of the possible location estimates that the ILS server

calculates and sends to the user.

Table 4.1: Terms and definitions related to indoor localization privacy in this thesis.

In [1], the following approach is proposed. The user creates a number of partial finger-
prints by selecting a subset of the measured multipath components.

Dq
p = {dqp1 ⊆ dq1, ...,dqpM ⊆ d

q
M} (4.1)

The user also generates a number of fake partial fingerprints. Those fingerprints are then
sent to the ILS server. The server matches each partial fingerprints to several locations and
sends those guesses Xci and the corresponding reference fingerprints Dci to the user. The
reference fingerprints selected by the server are referred to as the candidate fingerprints. The
corresponding locations are named candidate locations. The user locally runs the MCA algo-
rithm on the candidate fingerprints and locations he received and determines his location.
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Figure 4.6: Proposed privacy protection scheme. The user generates partial fingerprints from the
query fingerprint. The user further generates partial camouflage fingerprints. The ILS server returns
several candidate locations and reference fingerprints for each partial fingerprint.
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The main advantage of this approach is that a partial fingerprint is likely to match multiple
reference fingerprints in the map. Thus partial fingerprints are harder to identify as fake than
full ones. In Fig. 3.3, {[dqj3 , d

q
j4

]} is a partial fingerprint of the query fingerprint {[dqj1, .., d
q
j4]}.

{dqj1, .., d
q
j4} is a full query fingerprint.

This privacy protection scheme is only possible if MDP fingerprints are used. If partial
fingerprints are selected as subsets of CFR or CSI taps, it is highly likely that those taps will
only match the user’s location. The assumption behind the approach [1] is that a small subset
of multipath components can be associated by the ILS server to several different locations.

The MCA algorithm detailed in Section 3.4, can be used for calculating the similarity
metric values for both full and partial query fingerprints. In the scenario when Dq is a full
fingerprint, the MCA algorithm returns the user’s estimated location. The full measured fin-
gerprint is compared locally by the user to the candidate fingerprints. When the input of the
MCA algorithm is a partial fingerprint, it will return a predetermined number κ of candidate
locations and candidate fingerprints. The parameters ε and κ of the MCA algorithm are to
be chosen empirically.

The proposed approach is summarized in Fig. 4.6 and Algorithms 3 and 4. The user ran-
domly generates Np partial fingerprints of length np from the measured query fingerprint
Dq. The partial fingerprints are denoted as {Dq

p1, ...,D
q
pNp
}. Since the generation of the par-

tial fingerprints may not be enough to guarantee user privacy, Nc camouflage fingerprints of
the same length np are generated for each partial fingerprint. These fingerprints are denoted
as {Dq

c1, ...,D
q
c(NT−Np)

}. Therefore, a total of NT real and camouflage partial fingerprints of
length np are sent by the user to the ILS. Using the MCA algorithm, the ILS determines κ best
matches from the map for each partial fingerprint it receives, and returns them to the user.
The user locally runs the MCA algorithm to determine his or her true location with the full
measured fingerprint as the query and the candidate fingerprints and locations it receives
from the ILS as the new map.

The user can generate the camouflage partial fingerprints in two different ways as illus-
trated by Algorithms 3 and 4. In Algorithm 3 a number of random multipath propagation
distances is generated for each transmitter. The total number of multipath components gen-
erated is equal to the parameter np. In Algorithm 4 the multipath distances in the camou-
flage partial fingerprints {Dq

p1, ...,D
q
pNp
} are the same as in the measured query, however,

their transmitter IDs are randomly altered.
Using MDP partial camouflage fingerprints for privacy protection has the following ad-

vantages:

• The computational load on the user is low, as no complex operations need to be per-
formed in order to generate credible partial MDP camouflage fingerprints. This state-
ment may not apply if a different fingerprint structure is used.

• The camouflage partial fingerprints are automatically considered credible by the ILS
server. If the number of multipath components in the partial fingerprints is small they
are more likely to be present in multiple reference fingerprints. Since the transmitter
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Algorithm 3: Camouflage Fingerprint Generation I [1] ©2021 IEEE.
Data: Measured fingerprint Dq = {dqj}, j = 1...M

Result: Partial fingerprints to be sent to the ILS {Dq
p1, ...,D

q
pNp

,Dq
c1, ...,D

q
c(NT−Np)

}
for i = 1...Np do

Select random subsets: Dq
pi ← {d

q
p1 ⊆ dq1, ...,dqpM ⊆ d

q
M}

Enforce:
∑

j |dpj | = np

for l = 1...(NT −Np) do
Set random propagation distances: Dq

cl ← {[rand1, ..., randKj ]}, j = 1...M

Enforce:
∑

jKj = np

IDs of the camouflage fingerprints are generated randomly, the candidate locations will
be distributed across the environment.

• The user can control the computational complexity, the data volume, i.e., the number
of candidate locations, and the degree of privacy by setting the parametersNT and Np.

In order to apply the proposed privacy protection protocol to CIR or CFR-based fingerprints,
the multipath components need to be estimated from the CIR or CFR and the fingerprints
need to be converted to an MDP structure.

Algorithm 4: Camouflage Fingerprint Generation II [1] ©2021 IEEE.
Data: Measured fingerprint Dq = {dqj}, j = 1...M

Result: Partial fingerprints to be sent to the ILS {Dq
p1, ...,D

q
pNp

,Dq
c1, ...,D

q
c(NT−Np)

}
for i = 1...Np do

Select random subsets: Dq
pi ← {d

q
p1 ⊆ dq1, ...,dqpM ⊆ d

q
M}

Enforce:
∑

j

∣∣∣dqpj
∣∣∣ = np

for l = 1...Nc do
Shuffle the transmitter IDs: Dq

c(Nc×(i−1)+l) ← {[d
q
j1, ..., d

q
jKj

]}, j = 1...M

Enforce: dqjk ∈ d
q
pr ∈ Dq

pi ∩
∑

jKj = np

4.3 Evaluating Privacy

A privacy metric is needed to quantify the degree of location privacy of a user in a system.
Figure 4.7 shows the distribution of the candidate locations produced by four example cam-
ouflage privacy protection schemes. It can be qualitatively seen that the scheme in the upper
left corner guarantees the most privacy to the user. However, a metric is needed to quantify
the degree of privacy. Entropy has been used before to evaluate privacy, however the quan-
tity for which the entropy was calculated varies for different privacy protection schemes. For
example, the entropy-based privacy metric used in [234] is specific to the k-anonymity and
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Figure 4.7: Example distributions of the candidate locations calculated by the ILS. Top left: the ILS
cannot deduce the location of the user. Top right: the ILS can guess the location of the user due to the
distribution of the candidate points. Bottom left: the ILS can estimate the location of the user because
some reference points were selected as candidates more often than other. Bottom right: the ILS can
estimate the position of the user as the calculated similarity metric to the query is much higher for
some reference fingerprints than for others. Figure adapted from [1] ©2021 IEEE.

differential privacy-based scheme. Since no commonly used metric was available, three pri-
vacy evaluation schemes were proposed by the author of this thesis in [1]. The first two are
quantitative measures of the degree of privacy of a stationary user. The privacy of a moving
user is also evaluated. The privacy metrics are designed to evaluate camouflage-based pri-
vacy protection schemes for fingerprinting ILSs. It should be noted that the metrics in this
section are heuristics that estimate privacy, they do not define its exact numerical value.

In the following, several aspects of a camouflage algorithm that impact user privacy are
considered. In order to derive a metric for the privacy protection of a stationary user:

• First, an approximation is derived for the likelihood, from the point of view of the ILS,
that the user is located in each of the reference points.

• The entropy of the likelihood distribution is used to approximate the degree of privacy.

4.3.1 Fingerprint Occurrence Frequency

In a camouflage-based privacy protection scheme, the ILS determines the κ best matching
fingerprints to each partial fingerprint sent by the user. The user sends more than one real
partial fingerprint. Therefore, if the same reference fingerprint is selected as a match to mul-
tiple partial fingerprints by the ILS, the ILS may suspect it to be the location of the user. This
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is illustrated by the bottom left plot of Fig. 4.7. Let Ni be the number of times the reference
fingerprint Di is considered "matched" within one localization step.

Statement 1. Let Ni be the number of times reference fingerprint Di is picked by the server as a
candidate to a partial fingerprint sent by the user within one localization step. The degree of privacy
protection in a system is highest when Ni is equal for all reference fingerprints.

Proof. A higher Ni means a stronger belief of the ILS that the user is located at Xi. If Ni is
equal for all reference locations, the ILS cannot prefer any of them as a possible user location.

4.3.2 Camouflage Fingerprint Credibility

The ILS calculates the similarity metric between each partial fingerprint sent by the user and
the reference fingerprints in the map. A higher similarity value means that a point is more
likely to be the location of the user. If the real partial fingerprints produce high similarity val-
ues to some reference fingerprints in the map and the camouflage partial fingerprints only
produce small similarity values, it will be easy to differentiate real fingerprints from fake
ones. This is illustrated in the bottom right plot of Fig. 4.7.

Proposition 1. If the sum of the similarity metric values ρ(Xi), calculated each time that the refer-
ence point Xi was picked as a candidate location, is higher for Xi than for other reference points that
can indicate that the user is located atXi.

ρ(Xi) =
1

N∑
k=1

ρ(Xk)

∑
Dq

s∈L(Di)γ(Dq
s,Di), (4.2)

L(Di) = {∀Dq
s | γ(Dq

s,Di) ∈ top κ max values}, (4.3)

where Dq
s are the partial fingerprints sent by the user.

Proof. ρ(Xi) combines the values of γ(Dq
p,Dci) for a candidate locationXi with the value Ni

in Statement 1. ρ(Xi) is also normalized.

Proposition 2. The entropyH(ρ(Xi)) can be used as heuristic estimate of the location privacy of the
user.

Proof. According to the definition of entropy, the higher H(ρ(Xi)) is, the higher the uncer-
tainty of the ILS about the user’s location will be. Entropy is also used to measure the degree
of privacy in [229], [232] and [228].

Claim 1. The upper boundH(ρ(Xi)) = log2N , whereN is the total number of reference fingerprints
in the map holds for the proposed metric.

Proof. The entropy H is maximal for a uniform probability distribution.
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4.3.3 Spatial Distribution

The entropy in the expression above was calculated from the occurrence frequency and sim-
ilarity values of the candidate fingerprints. It does not take into account the locations of the
candidate points. However, in case the user is in a shopping mall or hospital, the ILS server
should not be able to identify which shop or doctor’s office the user is closest to. If all of
the most likely candidate fingerprints are located in close proximity, the ILS will know the
user’s location within a radius. This is illustrated in the top right plot of Fig. 4.7. Given
the same value of H(ρ(Xi)), if the most likely points are distributed throughout the environ-
ment, the ILS cannot determine where the user is. This is illustrated in the top left plot of Fig.
4.7. Therefore, in a camouflage scheme that well protects the user’s privacy, the candidate
points should be distributed over as large an area as possible, and the distances between
neighboring candidate points should be as large as possible.
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Figure 4.8: Illustration of the proof of Propo-
sition 3. The point Xi is shifted to Xi′ , Xi′′ ,
Xi′′′ and Xi∗, a ≥ b. Figure adapted from [1]
©2021 IEEE.

Figure 4.9: Two candidate trajectories. The left
trajectory is more likely to be a natural tra-
jectory of the user. Figure adapted from [1]
©2021 IEEE.

Proposition 3. The parameter ω characterize the spatial distribution of the candidate points when

ω =
1

ωu

N∑

k=1

N∑

l=1

ρ(Xk)× ρ(Xl)×
√
d(Xk,Xl), (4.4)

ωu =
1

N2

N∑

k=1

N∑

l=1

√
d(Xk,Xl), (4.5)

where d(Xk,Xl) is the euclidean distance between Xk and Xl. N is the number of reference finger-
prints in the map.

Proof. Consider the example point distribution in Fig. 4.8. Ideally ω should decrease if the
pointXi is moved away from the other points and should decrease if it moves towards them.
This is the case if it is shifted to locationXi′ . Similarly, ifXi is shifted toXi′′ , it moves closer
to the point clusters around X1 and X2. The privacy provided by this candidate point dis-
tribution and ω decrease. Let Xi be shifted to location Xi∗. As ∆∗1 > ∆∗2, |Xi∗X1| − |XiX1|
is larger than the distance |XiX2| − |Xi∗X2|. This means thatXi moved further fromX1 by
more than it moved closer toX2. In this case it is not immediately clear whether the area cov-
ered by the candidate points and the privacy increased or decreased. The following approx-
imation is made.The change in privacy is assumed to correspond to the change in the value
of ω. In the case that Xi be shifted to Xi′′′ , and ∆2 > ∆1, the area covered by the reference
points decreases. It is shown in [1] that ω also decreases if

√
a+
√
b >
√
a+ ∆1+

√
b−∆2.
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An alternative approach can be used to evaluate how evenly the candidate locations are
distributed throughout the environment. For each candidate point Xci the distance |dci| to
the nearest other candidate point can be calculated. If the value of dci is the same for all of
the candidate points, this would indicate that they are evenly spread throughout the envi-
ronment. If there is clustering of candidate points this would create spikes in the distribution
of |dci|, fdc(d). The following parameters can be then used to evaluate a candidate point dis-
tribution:

• The probability distribution fdc(d) of the values |dci|, the distances from each candi-
date point to the nearest other candidate point. If the candidate points are uniformly
distributed around the environment, all the |dci| values will be the same.

• The average distance from a candidate point to the closest other candidate point
E[|dci|]. This values should be compared to the size of the environment and the number
of candidate points.

• The variance of |dci| values calculated as E[(|dci| − E[|dci|])2]. If the candidate points
are uniformly distributed around the environment the variance of the |dci| values will
be small.

Testing the effectiveness of this privacy metric and the comparison of it to the metric detailed
above is part of the future work.

4.3.4 Privacy of a Moving User

In the following, privacy estimation is performed for a user who is moving around the in-
door environment and sending the ILS localization requests at regular time intervals τL. On
average the user moves by a distance dL between two consecutive localization requests. The
main difference between the camouflage privacy protection of a stationary and moving user
is that the ILS can identify natural movement patterns within the candidate points and thus
obtain a better guess about the user’s location.

If the user sends in localization requests very often, the real locations of the user will form
a path that is easy to identify among the candidate points. This is illustrated in the upper
right corner of Fig. 4.10. The trajectory of the user is marked in red. In the lower left plot of
Fig. 4.10 the locations on the user’s trajectory are spaced further apart. However, after a few
localization requests the server can still identify the user’s trajectory. All of the other possi-
ble trajectories the server can find, marked with black arrows, follow unnatural movement
patterns and can be disregarded. Figure 4.9 shows two trajectories, the left trajectory follows
a natural movement pattern and the right trajectory is unlikely to follow a person and will be
referred to as unnatural. As is shown in Fig. 4.9, the ILS can determine if a trajectory follows
a natural pattern by evaluating the angles between the line segments. In the lower right plot
of Fig. 4.10, the real locations of the user are spaced far apart and the server cannot easily
locate the user. However, if the server follows all possible trajectories over a long period of
time it can disregard all trajectories and identify the real one marked in red. However, in this
case locating the user would take the server much more time and computational power than
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in the lower left and upper right plots. In the upper left plot, the candidate points are dis-
tributed throughout the indoor environment. There are multiple natural trajectories marked
with black arrows and the server cannot easily identify the user.

It can be assumed that if a sever follows all possible trajectories formed by the succes-
sive candidate points over time, has unlimited computational power and employs machine
learning and pattern recognition algorithms, it can eventually figure out the user’s location.
Therefore, the goal of the derived camouflage privacy metric is not to show, whether or not
the server can identify a moving user, but to estimate the number of localization steps and
the computational effort it would take for the server to locate the user.

Proposition 4. In order for the ILS to be unable to identify a moving user, the condition dL ≥
E[d(Xc,t,Xc,t+τL)] must hold. E[d(Xc,t,Xc,t+τL)] is the average distance between two candidate
locations at time t and at time t+ τL.

Proof. If dL is small compared to the average distance between two neighboring candidate
points across two successive localization steps, the ILS can deduce the location of the user by
finding the smallest d(Xc,t,Xc,t+τL).

Localization Step Localization Step

Localization Step Localization Step

Figure 4.10: Possible distributions of candidate points that the ILS calculates for a moving user. Top
left: example of an ideal distribution, top right: the trajectory of the user is easy to identify, bottom
left: the ILS has several guesses as to which trajectory belongs to the user, needs several localization
steps to identify the user, bottom right: the ILS needs many localization steps in order to find the
movement pattern of the user. Figure adapted from [1] ©2021 IEEE.
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Statement 2. Let η(d) be defined as the average number of candidate locations Xc,t+τL , sent by the
ILS to the user at time t + τL, the distance from which to to a candidate location Xc,t, calculated at
time t, is smaller than d. η(d) can be used to estimate the degree of privacy of a moving user.

η(d) = E

[
|{∀Xc,t+τL | d(Xc,t+τL ,Xc,t) ≤ d}|

]
. (4.6)

Proof. If η(dL) is large this means that the candidate point set contains a number of candi-
date trajectories with a step size smaller than dL. Therefore, the ILS needs to analyze a large
number of candidate trajectories to identify the user. At the next iteration of the localiza-
tion algorithm at time t + τL, η(dL), several new candidate trajectories may be created from
each candidate trajectory, existing at time t. If more trajectories are created than can be dis-
regarded by the ILS server as unnatural, the number of trajectories the ILS server needs to
track and analyze will increase exponentially with η(dL).

4.4 Ray-tracing Simulation

4.4.1 Partial fingerprint Localization

The ray tracing simulation setup detailed in Section 3.5 is used to evaluate the privacy pro-
tection of the multipath-based camouflage privacy protection scheme [1]. It should be noted
that it is not possible to directly compare the performance of the multipath camouflage pri-
vacy protection algorithms with other privacy protection schemes in a ray tracing simulation.
K-anonymity and encryption privacy protection schemes are implemented in the commu-
nication protocol with the sever and are not related to the propagation of electromagnetic
waves in the environment. In addition, a metric for objectively evaluating privacy for all
schemes would need to be designed. This is very difficult because as different mechanisms
and physical quantities guarantee the user privacy for each scheme. In k-anonymity ap-
proaches the privacy of the user depends on the number of other users in the system. In
encoding-based schemes full user privacy is guaranteed, the server cannot know the user’s
location, however, the required computational power and data is very high. Comparing the
computational requirements of an encoding and a camouflage-based scheme is hard because
in a camouflage-based scheme the user sets the computational requirements and degree of
privacy. The camouflage based privacy scheme was designed not to provide better privacy
protection under the same constraints as encryption and k-anonymity, but to avoid the con-
straints of those schemes while still protecting the user’s privacy. Camouflage-based privacy
protection works if there are only a few users in the system, the communication protocol
does not need to be altered, and the computational requirements can be kept low. At the
same time, using multipath-based fingerprints makes it possible to generate credible partial
camouflage fingerprints. Camouflage-based RSSI and CSI algorithms are also not simulated
or implemented. This is because a ray-tracing approach is not suitable to precisely calculate
the CSI and RSSI fingerprints.

The first simulated experiment checks whether the partial multipath fingerprints are suf-
ficient for localization with the MCA algorithm. Figure 4.11 shows the average localization
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Figure 4.11: Localization accuracy with partial fingerprints. Curves marked with N were generated
in the presence of noise. Figure adapted from [1] ©2021 IEEE.

error for different values of the partial fingerprint size np and the number of candidates re-
turned by the ILS for a single partial fingerprint κ. Additive white Gaussian noise (AWGN)
with the standard deviation σ2 = 0.25m2 was added to the reference and query multipath
components for the curves marked with N. While the localization accuracy expectedly de-
creases in the presence of noise, for κ > 3 the set of candidate fingerprints returned by the ILS
server contains the fingerprint that would be picked by the localization algorithm. Therefore,
k = 3 is used in the following simulations.

4.4.2 Privacy Evaluation for Stationary Users

The metrics described in Section 4.3 are used to evaluate the privacy of a stationary user in
the proposed approach. Figure 4.12 shows the results of a simulation without noise. Fig-
ure 4.13 shows the privacy metrics calculated in the same simulation when additive white
Gaussian noise (AWGN) with σ2 = 0.25m2 was added to the query and reference multipath
components. All of the figures have the number of partial fingerprints sent by the user as the
x-axis. The top sub-figures show the number of candidate fingerprints returned by the ILS.
This represents the computational load of the user. The black dashed line plots κ × NT . A
reference point can be selected as a candidate for more than one partial fingerprint, therefore
the total number of candidates should be less or equal to κ×NT . The two bottom sub-figures
show the privacy metrics H(ρ(Xi)) and ω, derived in Section 4.3.1. Algorithm 3, that gen-
erates random multipath components, is used to generate partial fingerprints for the curves
marked with RF. Algorithm 4, that randomly changes the AP IDs was used for the curves
marked with RT.

The results show that the degree of privacy increases with the number of partial fin-
gerprints generated by the user NT . However, for large values of NT the gain in privacy
starts to saturate. This is because more partial fingerprints begin to correspond to the same
candidates. The results also show that the number of multipath components in the partial
fingerprint np has less effect on privacy. The MCA algorithm described in Chapter 3 is used
for comparing the partial fingerprints to the fingerprint map. It only searches for the match-
ing propagation distances. Multipath components in an MDP that were not matched to the
reference fingerprint are ignored. However, if an MDP has many multipath components
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Figure 9: Left: Localization error of trilateration. Center: correlation-based CIR fingerprinting. Right: MCA algorithm. No
noise is included in the simulation.
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Figure 10: Localization accuracy with partial fingerprints.
Curves marked with N were generated in the presence of
noise.

when the complete CIR is used as a fingerprint. The MCA
algorithm is shown to be robust against the addition of
obstacles. The small amount of error is present because the
query points generally do not coincide with the reference
points and the MCA algorithm does not estimate the exact
location of a query fingerprint but returns the reference
location it is closest to.

4.2.1 Partial Fingerprint Localization

Figure 10 shows the average localization error obtained
when matching a partial fingerprint to the map. The local-
ization error is evaluated for different values of the partial
fingerprint size np and the number of candidates returned
by the ILS for a single partial fingerprint κ. The curves
marked with an N show the results after additive white
Gaussian noise (AWGN) with σ2 = 0.25m2 was added
to the multipath components in the reference and query
fingerprints. The results show an expected decrease of the
localization accuracy in the presence of noise. They also
show that for κ > 3 the localization accuracy is independent
of κ. In the following simulations, we set κ = 3. It should
be noted that the noise in the system comes from the
environment and the extraction of the multipath compo-
nents. In a practical system, it will, therefore, depend on
the implementation of the channel estimation and multipath
component extraction.
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Figure 11: Privacy evaluation. Top: number of candidate
points received by the user. Middle and bottom: degree of
privacy. The camouflage fingerprints for the curves marked
with RF were generated using Algorithm 2. Algorithm 3 was
used for the curves marked with RT.

Figure 4.12: Privacy evaluation. Top: number of
candidate points received by the user. Middle and
bottom: degree of privacy. The camouflage finger-
prints for the curves marked with RF were gener-
ated using Algorithm 3. Algorithm 4 was used for
the curves marked with RT. Figure adapted from
[1] ©2021 IEEE.
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Figure 12: Privacy evaluation in the presence of noise. No-
tation identical to Fig. 10.

4.3 Privacy Evaluation for Stationary Users

In this section, we evaluate the level of user privacy protec-
tion of the proposed scheme, using the metrics described
in Section 3.4. The parameters described in Section 3.4.1
were evaluated for the proposed privacy protection scheme.
Figure 11 shows the results obtained in a simulation without
noise. In Figure 12, additive white Gaussian noise (AWGN)
with σ2 = 0.25m2 was added to the propagation distances
in the reference and query fingerprints. The top figure
shows the number of candidate fingerprints returned by
the ILS vs. the number of partial fingerprints sent by the
user. The black dashed line shows the limit κ × NT . Since
the same reference point can be selected as a candidate
point more than once by the ILS, the number of candidate
points begins to saturate for large values of NT . The two
bottom subfigures show the privacy metrics H(ρ(Xi)) and
ω, derived in Section 3.4.1. The theoretical upper limits
described in Section 3.4.1 are also plotted. For the curves
marked with RF, Algorithm 2 was used to generate the
camouflage fingerprint. For the curves marked with RT,
Algorithm 3 was used.

The results show a trade-off between complexity and
performance in Algorithms 2 and 3. They also show that
np does not significantly affect the degree or privacy pro-
tection. The MCA algorithm only searches for the matching
propagation distances. It does not penalize the presence of
distances in an MDP that were not matched to the reference
fingerprint. The curves were plotted for κ = 3. Our results
show that the degree of privacy of the algorithms increased
with the value of κ, however, this is coupled with a signif-
icant increase in the number of candidate points. A better
localization performance is achieved for a higher value of
Np. It can be seen from the figures that the degree of privacy
increases with Np when Algorithm 3 is used. This is under-
standable, as Algorithm 3 creates camouflage fingerprints
by randomly changing the transmitter IDs’ real partial fin-
gerprints. The higher the number of real partial fingerprints
Np, the higher the diversity of the camouflage fingerprints
will be. It should be noted that it is advantageous for the
user to send as many real partial fingerprints as possible to
increase the robustness of the localization against changes
in the environment. Figure 4 illustrates that when some
of the multipath components are altered through changes
in the indoor environment, the multipath components that
remained the same can be used for localization. The larger
the number of real partial fingerprints sent by the user to the
ILS, the higher the chance that those fingerprints contain the
multipath components that were unaffected. In addition, the
obtained results demonstrate that even though the presence
of noise predictably decreased the localization accuracy,
the degree of privacy protection and system complexity
remained largely unaffected.

4.4 Privacy of a Moving User
An average value of the privacy metric η(d), introduced in
section 3.4.4, was estimated for an example user trajectory.
The simulations were performed without noise. np was set
to 4 and Np to 5. Figure 14 shows the results for the random
generation of partial fingerprints (Algorithm 2). In Figure
13, the camouflage fingerprints were generated by randomly
changing the transmitter IDs of a real partial fingerprint
(Algorithm 3). The value d in the figures represents the pa-
rameter used for the calculation of η. The results again show
that better privacy protection was achieved by Algorithm 2.

It should be noted that a moving user can also increase
his degree of privacy by learning parts of the fingerprint
map over time and purposefully choosing camouflage fin-
gerprints to mimic natural movement patterns. Therefore,
the presented results and the metric η(d) characterize the
complexity of the trajectory identification task performed
by the ILS and not the actual degree of privacy of the user.

4.5 Measurement Results
4.5.1 Measurement Setup
The measurements were conducted using an UWB system
based on the Decawave DWM1000 chip1 using a two-way-
ranging method. The measurement setup consists of 9 static
UWB APs and a receiver. The APs are mounted on the
walls at a height of roughly 1m. The receiver is mobile

1. https://www.decawave.com/product/dwm1000-module/

Figure 4.13: Privacy evaluation in the presence of
noise. Figure adapted from [1] ©2021 IEEE. Nota-
tion identical to Fig. 4.11.

that were not matched it should be considered dissimilar to the map. κ = 3 was used in
the simulation. Results from additional experiments showed that increasing the number of
candidates returned for one query κ increased the degree of privacy, however, the number
of candidate points increased too much. A better localization performance is achieved for
a higher value of the number of real partial fingerprints Np. It can be seen from Figs. 4.12
and 4.13 that Np has a large effect on privacy when Algorithm 4 is used. Algorithm 4 ran-
domly changes the AP IDs of the multipath components in the real partial fingerprints to
create the camouflage partial fingerprints. A higher Np means a higher diversity of multi-
path components in the camouflage partial fingerprints. Additionally, when a user sends
multiple real partial fingerprints to the ILS, the probability that the partial fingerprints con-
tain multipath components corresponding to the background geometry and the robustness
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Figure 13: Degree of privacy of a moving user as a function
of the number of partial fingerprints sent by the user. The
camouflage fingerprints were generated using Algorithm 2.
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Figure 14: Degree of privacy of a moving user as a function
of the number of partial fingerprints sent by the user. The
camouflage fingerprints were generated using Algorithm 3.

and is attached to a moving robot or person during various
measurements. Figure 15 shows the locations of the APs.
For the measurements, the UWB system is configured to a
bandwidth of 500 MHz and a carrier frequency of 3.5 GHz.
The Decawave DWM1000 chip can provide in addition to
the ranging information the measured CIR. To determine
the sparse structure of the CIR, the multipath estimation
algorithm called space-alternating generalized expectation-
maximization (SAGE) is used [47].

A Vicon motion capturer was used to track the move-
ment of the receiver, hence, to obtain the ground truth.
The Vicon motion capturer tracked a reflector which was
attached to the receiver. The Vicon motion capture system is
capable to track the motion of the receiver in the measure-
ment room with a ground area of approximately 7 m by 4
m with an accuracy of less than 1 cm.

4.5.2 MCA Localization Performance

Figures 16 - 21 show the localization error obtained at a
number of points in the indoor environment. In the case of
Figure 16, both the reference and query data were collected
by the robot. The robot was stopped at a number of locations
in the indoor environment and moved at a slow speed
between these points. The robot collected fingerprints both
while moving slowly and when being stationary. In the
following we will refer to these measurements as stationary.
Figure 17 shows the average localization error as a function
of the average distance between the query fingerprints and
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Figure 15: Measurement setup, AP locations. The APs are
mounted on the walls of the room.
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Figure 16: Localization error at the query points. Near static
measurements. Filled circles correspond to the query points
and empty circles correspond to the reference points. Query
and reference points significantly downsampled when plot-
ting.

the closest reference fingerprints. The error is plotted for a
stationary map and stationary user.

Figure 18 shows the localization errors obtained by a
robot moving slightly faster than walking pace. The ref-
erence data was collected by a stationary robot. It can be
seen that the motion of the receiver significantly impacts the
localization accuracy; however, the algorithm still localizes
the user with an accuracy of 0.308m. Figure 20 shows
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Figure 17: Localization error at the query points. Static
measurements.

Figure 4.14: Degree of privacy of a moving user as
a function of the number of partial fingerprints sent
by the user. The camouflage fingerprints were gen-
erated using Algorithm 3. Figure adapted from [1]
©2021 IEEE.
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Figure 13: Degree of privacy of a moving user as a function
of the number of partial fingerprints sent by the user. The
camouflage fingerprints were generated using Algorithm 2.
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Figure 14: Degree of privacy of a moving user as a function
of the number of partial fingerprints sent by the user. The
camouflage fingerprints were generated using Algorithm 3.

and is attached to a moving robot or person during various
measurements. Figure 15 shows the locations of the APs.
For the measurements, the UWB system is configured to a
bandwidth of 500 MHz and a carrier frequency of 3.5 GHz.
The Decawave DWM1000 chip can provide in addition to
the ranging information the measured CIR. To determine
the sparse structure of the CIR, the multipath estimation
algorithm called space-alternating generalized expectation-
maximization (SAGE) is used [47].

A Vicon motion capturer was used to track the move-
ment of the receiver, hence, to obtain the ground truth.
The Vicon motion capturer tracked a reflector which was
attached to the receiver. The Vicon motion capture system is
capable to track the motion of the receiver in the measure-
ment room with a ground area of approximately 7 m by 4
m with an accuracy of less than 1 cm.

4.5.2 MCA Localization Performance

Figures 16 - 21 show the localization error obtained at a
number of points in the indoor environment. In the case of
Figure 16, both the reference and query data were collected
by the robot. The robot was stopped at a number of locations
in the indoor environment and moved at a slow speed
between these points. The robot collected fingerprints both
while moving slowly and when being stationary. In the
following we will refer to these measurements as stationary.
Figure 17 shows the average localization error as a function
of the average distance between the query fingerprints and
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Figure 15: Measurement setup, AP locations. The APs are
mounted on the walls of the room.
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Figure 16: Localization error at the query points. Near static
measurements. Filled circles correspond to the query points
and empty circles correspond to the reference points. Query
and reference points significantly downsampled when plot-
ting.

the closest reference fingerprints. The error is plotted for a
stationary map and stationary user.

Figure 18 shows the localization errors obtained by a
robot moving slightly faster than walking pace. The ref-
erence data was collected by a stationary robot. It can be
seen that the motion of the receiver significantly impacts the
localization accuracy; however, the algorithm still localizes
the user with an accuracy of 0.308m. Figure 20 shows
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Figure 17: Localization error at the query points. Static
measurements.

Figure 4.15: Degree of privacy of a moving user as
a function of the number of partial fingerprints sent
by the user. The camouflage fingerprints were gen-
erated using Algorithm 4. Figure adapted from [1]
©2021 IEEE.
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Figure 22: Privacy evaluation with measurement data. Top:
number of candidate points received by the user. Middle
and bottom: degree of privacy. The camouflage fingerprints
for the curves marked with RF were generated using Algo-
rithm 2. Algorithm 3 was used for the curves marked with
RT.

calculation. The performance of proposed algorithm was
demonstrated using simulation and measurement data. In
the proposed privacy-protection scheme, the user sends a
number of partial camouflage fingerprints to the ILS and
obtains a list of candidate locations. The user locally deter-
mines his or her true location. We argued that camouflage-
based privacy protection is made possible specifically due to
the fingerprint structure, used in this paper. We developed
several metrics for evaluating the degree of user privacy and
validated our proposed approach through simulation and
measurement data. Our results show that the performance
of the proposed algorithm approaches the derived theoret-
ical limits for large numbers of camouflage fingerprints.
Our results also show that the two algorithms, proposed
for camouflage fingerprint generation, present a trade-off
between the degree of privacy protection and computational
complexity and transmitted data volume.
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of the localization against changes in the environment increase. The simulation results also
show that even though the addition of noise decreases the localization accuracy, the degree
of privacy protection is mostly unchanged.
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4.4.3 Privacy of a Moving User

The metric η(d), proposed in Section 4.3.4 is used to estimate the privacy of a moving user.
Noise is not added to the simulation. np is set to 4 and Np is set to 5. Algorithm 3 is used
to generate camouflage partial fingerprints from random multipath values in Figure 4.14.
Algorithm 4 is used to generate camouflage fingerprints by randomly changing the AP IDs
of real partial fingerprints in Figure 4.15. The privacy metric η(d) was calculated for several
values of d. The results show that better privacy protection was achieved by Algorithm 3.

If the user knows parts of the fingerprint database, or learns it over time, he can generate
camouflage fingerprints that mimic natural movement patterns and increase the degree of
privacy protection. A moving user can also increase his privacy by submitting localization
requests more rarely.

4.5 Measurement Results

The multipath camouflage privacy protection scheme is also validated on the measurement
data-set described in Section 3.6. Figure 4.16 shows the privacy metrics evaluated on the
static data. The results validate the effectiveness of the proposed privacy protection scheme.
Again the generation of partial fingerprints using random multipath components according
to Algorithm 3 results in a higher degree of user privacy.

4.6 Conclusion

This chapter demonstrates that the multipath-based fingerprint format is ideally suited for
implementing a camouflage-based privacy protection scheme. Partial fingerprints can be cre-
ated out subsets of the measured multipath components. Believable fake partial fingerprints
are easier to create as, unlike a full fingerprint, a partial fingerprint is similar to multiple en-
tries in the map. Camouflage CIR, CFR or CSI and even full multipath fingerprints might not
correspond to the geometry and be identified by the server as fake. The server then calcu-
lates a number of candidate locations or guesses where the user might be located and sends
the candidate locations and candidate fingerprints to the user. The server does not know
where exactly the user is. The user locally determines his or her location from the candidate
locations and candidate fingerprints received from the server. The degree of privacy protec-
tion and the computational complexity can be set by the user when he or she decides on the
number of camouflage fingerprints that will be sent to the server.

Several metrics that can be used to estimate the degree of privacy of a stationary and
moving users are also proposed in this chapter. The multipath-based privacy protection
scheme is evaluated using a ray-tracing simulation and measured data.



Chapter 5

Fast Fingerprinting

A significant delay between when a query is sent to the ILS and when a location is received
by the user, can lead to the human user becoming frustrated with the ILS. It can also lead
to instability of a system the components of which communicate over a network [249]. One
example of this would be vehicles that are traveling at high speeds and are using the ILS
to navigate themselves. The position received by a vehicle will not correspond to its actual
location but to the location where the vehicle was when the query was sent. Therefore, the
larger the computation and communication delays in the ILS are, the larger the difference
between a vehicle’s actual and received location will be.

A fingerprinting-based localization algorithm determines which entry in the fingerprint
map is most similar to the user’s query. If the ILS compares the query measured by the user
to every reference fingerprint in the map, its computational complexity will increase linearly
with the size of the map. As mentioned in Section 2.5.4.1, a trade-off exists between the accu-
racy of an ILS and the number of reference fingerprints stored in the map. For example, the
work in [28] achieves centimeter level localization accuracy. However, it uses a fingerprint
database with a 5cm grid or 400 fingerprints per m2. The ILS proposed and validated in Sec-
tion 3.6.1 requires a 3cm fingerprint density to achieve a 6cm average localization error. This
means that having a dense fingerprint database is advantageous. Interpolation [250],[251]
and crowd-sourcing [103] algorithms can be used to create such databases at low cost. How-
ever, for a large fingerprint database to be useful, the ILS needs to be able to search it while
maintaining a small enough computation delay.

This chapter describes a run-time optimization scheme presented in the authors origi-
nal publication [2]. The optimization scheme is designed for the MCA algorithm and the
MDP fingerprint structure detailed in Section 3.3. It guarantees that the best match to the
query data is found, while the similarity metrics between the query and only a subset of
the reference fingerprints are calculated. The computational complexity of the MCA local-
ization algorithm is reduced by sorting the fingerprint database and searching by multipath
components. While many of the existing optimized fingerprinting algorithms down-sample
the fingerprint database before comparing its entries to the user’s query, in the proposed
scheme the entire database is searched for the best match to the query. However, because the
database is sorted, the similarity metric is not calculated for reference fingerprints that do
not contain multipath components that are similar to those in the query. Several approxima-
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tions to the proposed scheme are also described in this chapter. These optimizations allow to
further decrease the computation time by reducing the accuracy of the ILS. The simulation
results presented in this chapter and in [2] show that using the proposed approximations to
search a dense fingerprint database is more effective than applying traditional fingerprinting
on a down-sampled database. Another advantage of the proposed optimization approach is
that a rough location estimate can be given to the user and refined during the database search
until the real location is computed.

5.1 Complexity of State-of-the-Art Fingerprinting Schemes

As mentioned in Section 2.5, common similarity metrics calculated between query and refer-
ence fingerprints include the Euclidean distance [10], correlation, time reversed correlation
[28], and maximum likelihood estimation [29]. In order to find out which reference finger-
print is most similar to the query, such a metric needs to be calculated between each reference
fingerprint and the query. This means that the computational complexity of such an algo-
rithm is at least O(N), where N is the number of reference fingerprints in the map.

The computational complexities of several fingerprinting-based localization approaches
are estimated in Tables 5.1 - 5.3 [2]. The localization algorithms were selected randomly,
while insuring that different algorithm types are included in the comparison. The algorithms
in the tables do not implement run-time optimization. The standard O-notation is used [255].
f/m2 is used to denote fingerprints per square meter. The computational complexity of the
fingerprinting algorithms in Tables 5.1 - 5.3 increases linearly with the number of reference
fingerprints N , as they calculate the similarity metric for each reference fingerprint. The
complexity of an algorithm using maximum likelihood estimation is up to O(N2) as all of
the reference fingerprints are used to calculate the similarity metric for one reference finger-
print. Deep learning and machine learning-based approaches are not included in the Tables.
However, for a neural network, a localization step can be performed in constant time, de-
pending only on the size and depth of the network. The network training time will depend
on the number of reference fingerprints.

A number of optimization approaches search the fingerprint map by dividing it into re-
gions or clusters, finding the cluster the user is likely located in and further subdividing
and searching the chosen cluster until the location is computed [256]. In [257] the query is
only compared to the database entries recorded from the same APs as the query. In [257] an
search algorithm with an O(log(N)) computational complexity is presented. However, this
algorithm requires that the number of reference points corresponding to each AP and the
number of APs visible at each reference point are both less than 20. Otherwise, the computa-
tional complexity of the approach also becomesO(N). In [258], the lengths of the fingerprints
are reduced. While this makes an individual fingerprint comparison faster, the complexity
remains O(N).

Tables 5.1 - 5.3 also show that the computational complexity of the algorithms increases
at least linearly and sometimes even cubically with the number of APs and the size of the fin-
gerprints. In most ILS, both the number of APs is fixed within a given area and the size of the
fingerprint vectors is also constant. However, as mentioned before, the number of reference
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Table 5.1: Complexity estimation of existing RSSI-based localization schemes. Table adapted from [2]
©2018 IEEE.
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Table 5.2: Complexity estimation of existing CIR, CFR and CSI -based localization schemes. Table
adapted from [2] ©2018 IEEE.

fingerprints in the database can easily be increased though measurement, crowd-sourcing
and interpolation [250],[251]. Therefore, this chapter focuses on reducing the complexity of
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Table 5.3: Complexity estimation of existing multipath-based localization schemes. Table adapted
from [2] ©2018 IEEE.

the proposed MCA algorithm with respect to the size of the fingerprint map.

5.2 Proposed Run-Time Optimization Approach

The aim of the proposed optimized algorithm [2] is to estimate the location of the user within
a certain accuracy while comparing the query to only a subset of reference fingerprints.

5.2.1 Database Structure

MDP fingerprints can be arranged in a sorted database as illustrated in Fig. 5.1:

• An array of bins B = {bin(j, x)} with j = 1, ...,M , x = 1, ..., dmax/ε is stored. Each
bin(j, x) is a sorted data structure that contains all of the reference multipath compo-
nents, the values of which are in the interval ((x− 1)ε, xε] and which correspond to the
AP Tj . ε is the similarity threshold of the MCA algorithm according to Eq. 3.11. dmax
is the largest value of a multipath component that can be stored in the database.
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• Each multipath component in the sorted database contains a link to the fingerprint it
belongs to.

bin(1, 1)
(0, ε]

d21,1 ∈ d21

d71,4 ∈ d71

d21,5 ∈ d21
...

di1,6 ∈ di1

. . . bin(j, 2)
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d2j,2 ∈ d2j
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bin(j, 3)
(2ε, 3ε]
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. . . bin(M, dmax
ε

)

(( dmax
ε
− 1)ε, dmax]
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dNM,i ∈ dNM

d11 . . . dij . . . dNM

0 < di1,6 ≤ ... ≤ d21,2 ≤ ε ε < d1j,k ≤ ... ≤ d2j,2 ≤ 2ε
2ε ≤ dij,5 ≤ .. ≤ d7j,1 ≤ 3ε ... (n− 1)ε < ...d7M,10... ≤ nε

so
rt

ed

Figure 5.1: Proposed structure of the fingerprint database. Figure adapted from [2] ©2018 IEEE.
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Approx. L > 1:
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Figure 5.2: Multipath component search. Figure adapted from [2] ©2018 IEEE.

5.2.2 Proposed Fingerprint Matching Procedure

For each multipath component dqj,k ∈ Dq in the query, the similarity metric values for a can-
didate set of fingerprints are iteratively updated. The location estimate X̂ and the candidate
set are updated as well. In the following, the iteration of the algorithm, which corresponds
to the multipath component dqj,k from transmitter Tj , is referred to as the (j, k)th iteration
of the optimized MCA algorithm. A fingerprinting algorithm searches the database to de-
termine which reference fingerprint has the highest similarity metric value with the query.
Therefore, the algorithm does not need to calculate the similarity metric γ(Dq,Di) for the
reference point Xi if it knows beforehand that it will be smaller than the largest similarity
metric calculated so far, that is γ(Dq,Di) < γmax. According to Eq. 3.11, a query multi-
path component dqj,k can only be matched with reference multipath components in the range
(dqj,k − ε, dqj,k + ε). Let us assume that nε < dqj,k < (n + 1)ε at algorithm iteration (j, k).
All of the multipath components, the difference between which and dqj,k is less than ε, and
which correspondingly can be included in the similarity metric, are in the bins bin(j, n− 1),
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bin(j, n), bin(n + 1). Therefore, at this step of the algorithm there is no need to search any
other bins in the database. f denotes the set of candidate fingerprints and γ(j,k) contains the
corresponding similarity metrics calculated at algorithm iteration (j, k). At each subsequent
iteration of the MCA algorithm (j, k + 1) or (j + 1, 1), the metrics stored in γ(j,k+1)/γ(j+1,1)

are first updated as:

Dq
(j,k) = {dq1, ...,dqj−1, [d

q
j,1, ..., d

q
jk]},

γi,jk ∈ γ(j,k) = γ(Dq
(j,k),Di) = γ(Dq

(j,k−1)) + γ
′
i,jk,

γ
′
i,jk = γ({[dqj,k]},Di) = (ε− | dqj,k − lk |)2.

(5.1)

If there are any new fingerprints within the search area of the query multipath component
dqj,k+1 d

q
j+1,1, those fingerprints are added to the candidate set. The location estimate X̂jk is

also updated at each algorithm iteration (j, k) according to the maximum partial similarity
value γi,jk ∈ γ(j,k) calculated so far.

As the values in the database bins are sorted, it is easy to obtain a sorted search array
l for the query multipath components dqj,k at the algorithm step (j, k). The array l contains
multipath components with values in the range ((n−1)ε, (n+1)ε]. Since the array is sorted, it
is easier to search. lk ∈ l denotes the best match to the query such that | dqj,k − lk |→ min and
| dqj,k − lk |< ε. After the best match lk to the query is found, the term γ

′
i,jk is calculated for

its neighboring multipath components in l. The similarity metric value γi,jk corresponding
to the reference fingerprint Di does not need to be calculated if it can be shown beforehand
that it will be less than the largest similarity metric γmax,jk calculated so far. Therefore, the
threshold value γthr is derived such that the partial similarity metric values γ

′
ij, k of the

neighbors of the best match to dqj,k in l don’t need to be calculated if they are larger than γthr.
(ε− | dqj,k − li |)2 = γ

′
i,jk ≤ γthr ⇒ γi,jk ≤ γmax,

γi,jk = γ
′
i,jk + γ

′

i,j(k−1) + ...+ γ
′

i,(j−1)1 + ...+ γ
′
i,11,

γ
′
i,jk ≤ γ

′
min,jk, ..., γ

′
i,11 ≤ γ

′
min,11,

γi,jk ≤ γ
′
i,jk + γ

′

min,j(k−1) + ...+ γ
′
min,11,

γmax ≥ γ
′
i,jk + γ

′

min,j(k−1) + ...+ γ
′
min,11 ⇒ γmax ≥ γi,jk,

γthr = γmax −
k−1∑

l=1

γ
′
min,jl −

j−1∑

q=1

∑

∀l
γ
′
min,ql,

(5.2)

where γ
′
min,jk is the partial similarity metric calculated for the reference multipath compo-

nent most similar to the query multipath component at the (j, k)-th iteration of the algorithm.
As the multipath component is most similar to the query, γ

′
min,jk will actually be the largest

partial similarity metric value calculated in one iteration. However, the notation min is kept
for consistency with [2]. Each algorithm iteration starts by updating the similarity metric
values in γ(j,k) that correspond to the candidate fingerprints in f , the maximum similar-
ity metric value γmax and γthr. It should be noted that line 3 of Eq. 5.2 holds because the
multipath components in the fingerprint database are sorted. Therefore, the calculated γ

′
i,jk

monotonically decreases as the algorithm moves away from lk to the start and end of the
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array l. If the calculated similarity metric becomes smaller than the threshold γ
′
i,jk < γthr, a

new iteration of the algorithm can be started. If γ
′
i,jk ≥ γthr ∩Di 6∈ f then the full similarity

metric γ(Dq
(j,k),Di) is calculated and the reference fingerprint Di is added to the candidate

set f .

Algorithm 5: Fast Fingerprint Matching [2] ©2018 IEEE.
Data: Reference multipath components Di, i = 1...N , reference database B, query

fingerprint Dq

Result: Location estimate X̂ = X̂(M,Kq
M )

for ∀ transmitter Tj do
for k = 1...Kq

j do
find x :xε < dqj,k ≤ (x+ 1)ε
l← [bin(j, (x− 1)), bin(j, x), bin(j, (x+ 1))]
lk ∈ l : | dqj,k − lk |< ε ∩ | dqj,k − lk |→ min
lk ∈ dij ⇒ f(j,k) ← [f(j,k),Di]
Proposed Approach: search neighbors of lk
while γ

′
lk+∆

≥ γthr do
f ← [f ,Dli+∆

]

∆← ±1, update γmax, γthr, γ
′
min,jk

Approximations: search l according to Fig. 5.2
X̂(j,k) ← Yargminiγ(Dq

(j,k),Di∈f)

The optimized MCA algorithm is guaranteed to find the reference fingerprint with largest
similarity metric value. The complexity of the proposed approach is:

O(M q ×Kq × log(
dmax
ε

)× (log(
K ×N × ε

dmax
) + E[Nth])), (5.3)

where M q is the number of APs from which query multipath components were received,
dmax is the largest multipath component in the map such that dmax

ε is the number of bins in
the fingerprint database, Nth = |f |

M×Kq is the number of partial similarity metrics that are cal-
culated at one algorithm iteration. O(log(dmax

ε )) is the complexity of finding the correct bins
and constructing search array l. O(log(K×N×εdmax

)) is the complexity of finding the multipath
component most similar to the query lk within l given that l is sorted.

The proposed approach can also be used with techniques such as k-nearest neighbors that
calculate an average of k best reference locations. k largest similarity metric values would
need to be selected at each algorithm iteration. If the similarity metric needs to be averaged
over neighboring reference locations, a number of largest similarity metric values can first be
obtained by the optimized MCA algorithm. The similarity metrics can then be calculated for
their neighboring points. Since the proposed optimization scheme stored the data from dif-
ferent APs separately, it is very advantageous for large buildings, where only a small subset
of the APs is visible at each location. In that case, the fingerprints with data from other APs
will be ignored by the algorithm and will not effect the computational complexity. The pro-
posed optimization approaches can also be combines with clustering and down-sampling
[257] and [256].
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5.2.3 Approximate Fingerprint Matching

The run-time of the algorithm can be further reduced if it is allowed to find a reference fin-
gerprint, which is similar, but not necessarily the most similar to the query. The work in
[2] describes three approximation schemes for fingerprint matching. All three approxima-
tion algorithms create the search vector l in the same way as the optimized MCA algorithm.
However, instead of calculating partial similarity metrics for all the multipath components
in the search area, only a few multipath components are considered. This is illustrated by
Fig. 5.2. Same as for the original and optimized MCA algorithm, the location estimate is the
reference point which corresponds to the highest computed similarity value.

• Best Multipath Component Match ’Approx. L = _’

In the first approximation algorithm, instead of the full search area, a preset number L
of multipath components around the best march lk are considered. As l is sorted, those
multipath components correspond to the L highest partial similarity metric values at
that algorithm iteration. The complexity of the scheme becomes:

O(M q ×K × log(
dmax
ε

)× (log(
K ×N × ε

dmax
) + L)). (5.4)

• Expected Multipath Component Value ’Approx. expected’

It is unlikely that the user’s location is the same as a reference point. Therefore, the
multipath components of a reference and query fingerprints are unlikely to be identi-
cal. This algorithm approximation adds the reference points closest to dqj,k ± ∆map to
the candidate set f , where ∆map is the average distance from a query location to the
closest reference point. The complexity becomes:

O(M q ×K × log(
dmax
ε

)× log(
K ×N × ε

dmax
)). (5.5)

• Logarithmic Search ’Approx log search’

Instead of searching l the optimized MCA algorithm starts at the best matching mul-
tipath component lk. However, instead of going through the neighbors of lk one by
one, this algorithm approximation goes through the search area with exponentially in-
creasing steps until γ

′
i,k < γthr is found. Thus some of the multipath components in the

search area are skipped. The complexity of the fingerprint matching scheme becomes:

O(M q ×K × log(
dmax
ε

)× 2× log(
K ×N × ε

dmax
). (5.6)

5.3 Evaluation in a Ray-Tracing Simulation

The simulation setup used to evaluate the optimized fingerprint-matching scheme is detailed
in Section 3.5 in Chapter 3. AWGN noise with variance 0.25m2 was added to the query mul-
tipath components. In this way, the query multipath components differ from the reference
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ones. The reference fingerprints were down-sampled to and the approach was evaluated for
different reference fingerprint densities. The MCA algorithm described in Section 3.4 and the
fast fingerprint matching algorithms described in this chapter were run for each fingerprint
density. An average localization error was calculated over the query points. The average
number of the similarity metric calculations, representing the complexity of the algorithm
was also calculated. The simulation data was originally presented in [2].

5.3.1 Performance Evaluation
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Figure 5.3: Average localization error of the algorithms. Figure adapted from [2] ©2018 IEEE.
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Figure 5.4: Number of fingerprint comparisons of the algorithms. Figure adapted from [2] ©2018
IEEE.

Figure 5.3 shows the average localization error obtained at different fingerprint map den-
sities by each optimized MCA algorithm illustrated in Fig. 5.2. ’Precise’ refers to the opti-
mized MCA algorithm from Section 5.2.2 that guarantees that the reference fingerprint with
the highest similarity metric is found. ’Approx. L = 0’ and ’Approx. L = 10’ refer to the
approximation approach from Section 5.2.3 with the number of additional partial similarity
metric calculations per algorithm iteration L equal correspondingly to 1 and 10. ’Approx.
expected’ is the second approximation algorithm which adds a shift to the query multipath
components and only performs one partial similarity metric calculation per algorithm itera-
tion. The algorithm ’Approx. log’ iterates through the multipath components in the search
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Figure 5.5: Efficiency of the algorithms. Figure adapted from [2] ©2018 IEEE.
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Figure 5.6: Localization error at each algorithm iteration. Figure adapted from [2] ©2018 IEEE.

vector with an exponentially increasing step until the calculated partial similarity metric be-
comes smaller than γthr. The original MCA algorithm is marked as ’State-of-the-art’. The
’Theoretical limit’ curves correspond to the case when the similarity metric is calculated for
each reference fingerprint and the average localization error is equal to the average distance
from a query location to the closest reference point. This notation applies to all figures in this
chapter. The results of the original MCA algorithm differ from the theoretical limit due to
the noise added to the query fingerprints. It can be seen from Figure 5.3 that the localization
errors of ’Precise’ and ’Approx. L = 10’ are almost indistinguishable from the state-of-the-art,
which is the original MCA algorithm. The figure also shows that the accuracy of all of the
approximation approaches, especially ’Approx. L = 0’ and ’Approx. L = 10’ starts to saturate
at high map densities. It should be noted, that when noise is present in the multipath compo-
nents increasing the map density may not result in as large an accuracy increase compared
to the noiseless case.

The number of fingerprint comparisons and correspondingly, the complexity of the orig-
inal and optimized MCA algorithms, are shown in Figure 5.4. ’Precise’ performs around
25% less comparisons than the original MCA algorithm. Its complexity, however, still grows
linearly with the map size. On the other hand, the number of similarity metric calculations
performed by the approximation algorithms saturates for large map sizes. It should be noted
that the complexity of all algorithms is at least O(log(N)) since lk needs to be found in the
sorted vector l. Figure 5.5 plots the localization error as a function of the number of similarity
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metric calculations performed by each algorithm. The optimized MCA algorithm and all of
the approximation algorithms are able to beat the state-of-the art by up to 34%. The highest
efficiency is shown by ’Approx. L = 0’ and ’Approx. expected’. Those are the algorithms that
only calculate one similarity metric value per algorithm iteration. However, the algorithms
are not able to achieve the lowest localization error.

Figure 5.6 shows the average errors of the location estimates calculated at each iteration
of the algorithms. The simulation was run with 456 reference fingerprints. One iteration
of the original MCA algorithm is considered to be one comparison of the query with a ran-
domly selected reference fingerprint. The plot shows that an accurate location estimate is
produced before the optimized MCA algorithms finish, and that that location estimate is
improved with subsequent iterations.

5.4 Chapter Summary

This chapter presented an approach to reduce the computational complexity of the MCA al-
gorithm. The complexity is reduced by using a sorted multipath component database. Sev-
eral approximations of the optimized approach, which trade-off localization accuracy and
complexity, are also presented. Given a fixed number of similarity metric calculations, the
localization error of the proposed approach is up to 34% lower than that of the original MCA
algorithm. It should be noted that if the number of fingerprint comparisons is restricted,
the original MCA algorithm has to be used with a down-sampled database. The optimized
algorithm can keep using the original database. The proposed optimized MCA algorithm
also produces a location estimate at each iteration. This location estimate can also be used to
reduce perceived delays in the system. The proposed optimization scheme is possible due to
the MCA algorithm and MDP fingerprint structure. If traditional RSSI and CSI fingerprint-
ing is used, the similarity metric would need to be calculated for each reference fingerprint
in order to locate the user.



Chapter 6

Virtual Transmitters, Fingerprint
Interpolation and Environment
Reconstruction

This chapter focuses on the virtual transmitter (VT) model and on its applications. A virtual
transmitter is the reflection of a transmitter or AP that is located behind a reflecting wall or
obstacle. Virtual transmitters were briefly introduced in Section 3.5, where they were used
to calculate the multipath delay profile of the channel at a point in a simulated indoor envi-
ronment. VTs are used in this chapter to interpolate and extrapolate the fingerprint map and
to reconstruct the indoor geometry.

As was mentioned in Section 2.5.4.1, building the fingerprint map can take a lot of time.
Since the demand for ILS is the highest in large public buildings, such as airports, shop-
ping malls and hospitals, the area over which the fingerprints need to be collected can be
several thousands of m2. At the same time, there is a trade-off between the density of refer-
ence fingerprints and the accuracy of the ILS. For example, in [28] a 5 cm grid is required to
achieve a centimeter level localization accuracy. Figure 3.15 in the experimental validation
of the proposed MCA scheme in Section 3.6.1 shows the increase of localization error with
the decrease of fingerprint density. In order to achieve a localization density of around 6cm,
the MCA algorithm proposed in this thesis requires a fingerprint density of around 3cm. If
some of the fingerprints are interpolated and extrapolated, the amount of calibration mea-
surements, the required calibration time and the system cost will be significantly reduced.
If a map or model of the building is constructed from available calibration measurements,
such a model can be used for fingerprint interpolation. It can also be used for the navigation
of a robot or human user. As will be shown in this chapter, VTs can be used to extrapolate
and interpolate a fingerprint map and to create a model of the environment, and therefore
increase the precision and decrease the cost of the localization system.

The following terms are defined in this chapter:

• A virtual transmitter (VT), also known in literature as a virtual anchor (VA), T ′(l)j,k is the
reflection of a transmitter (AP) Tj that is located behind the wall or obstacle that re-
flects the APs signal. As shown in Fig. 6.1, the length of the reflected path over which
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a signal travels from the AP to the user is the same as the length of the direct line from
the user to the VT. The degree of a VT is defined as the number of times the signal from
the AP would be reflected before it reaches the user. It is also the number of reflection
steps needed to calculate the VT’s position in the ray tracing setup detailed in Section
3.5. A first degree VT is denoted as T ′j,k, second degree VT as T ′′j,k and an l-th degree

VT is denoted as T ′(l)j,k .

• An interpolated or extrapolated fingerprint is calculated at a target point.

• An interpolated fingerprint is a fingerprint that is calculated from a set set of measured
fingerprints that surround the target point.

• An extrapolated fingerprint is a fingerprint that is calculated from a set of reference fin-
gerprints measured at points which do not surround the target point.

• It is assumed that the indoor environments is composed of reflective polygons. Each
polygon is located in one plane and can have an arbitrary number of corner points.
Multiple polygons can be located in one plane and can overlap.

The chapter is organized as follows. The concept of the relevant literature on VTs is pre-
sented in Section 6.1. The proposed VT reconstruction scheme is detailed in Section 6.2. The
proposed fingerprint interpolation and extrapolation algorithms are detailed and evaluated
in Section 6.3. The proposed environment reconstruction scheme is detailed in Section 6.4.

6.1 Virtual Transmitters (VTs)

An example VT is shown in Fig. 6.1. The lengths of the reflected paths from Tj to the point
X are equal to the direct distances from X to the virtual transmitters T ′j,1, ...,T

′′
j,45. Figure

6.1 shows an example of iterative VT calculation over multiple reflections from a known ge-
ometry, similar to the work in [218]. If the indoor geometry is not known, VT positions can
be estimated from measured data. Angle-of-arrival and multipath measurements are used to
estimate the VT positions in [43]. The differences between the multipath profiles measured
at several locations are used in [135].

Once obtained, the positions of the VTs and the measured multipath components, equal
to the distance from the VTs to the receiver, are used to localize the receiver in [43], [218]. Our
previous work [4] interpolates and extrapolates the fingerprint map using VT positions. The
indoor geometry is reconstructed from the VT positions in [136], [259] and in our previous
work in [5].

It should be noted that VTs can be used to model multipath delays created by signal
reflection. However, some multipath components appear due to signal scattering or a com-
bination of scattering and reflection [227]. An expected scatterer (ES) model can be used in
this case. The distances and angles from the ESs to the receiver are the same as the lengths
of the corresponding propagation paths. However, the position of the ES is determined by
both the position of the real scatterer and the position of the receiver at which the multipath
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Figure 6.1: Example of first degree (top) and second degree (bottom) virtual transmitters (VTs). To
save space not all second degree VTs are shown. Figure adapted from [5] ©2019 IEEE.

profile is observed [227]. Essentially, the ES moves as the receiver moves. Because of this, the
position of a real and expected scatterer can not be calculated analogously to VT positions
though triangulation of multipath components measured at different locations. Multipath
components that are created by scattering are not considered in this thesis for VT reconstruc-
tion. The MCA algorithm in Chapter 3 is based on fingerprinting. The multipath profile
needs to change somewhat smoothly over space, however it does not matter to the algo-
rithm whether a multipath component was created by scattering or reflection. For geometry
reconstruction, only VTs and reflected multipath components are used. If an ES is used for
interpolation, the scattered multipath components will be automatically interpolated in the
same way as reflected ones, resulting in slight inaccuracies and noise which is in any case
present in the interpolated fingerprints. The ray tracing simulation tool used in this thesis
only models reflected multipath components.
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Existing VT estimation schemes

Authors
Year

Input Standard VT Calculation
Applica-

tion

Guo et al.
[259] 2006

multipath
delays

-

identify 1st and 2d
degree VTs and use

wall ceiling
assumptions,

geometry based
method

environ-
ment

reconstruc-
tion

Meissner et
al. [218] 2010

geometry,
multipath

delays

UWB
/channel
sounder

from geometry
Position

estimation

Kuang et
al. [135] 2013

multipath
delays

UWB /
vector

analyzer

from differences
between the

multipath profiles
measured at several
locations, solution
of a linear system

Position
estimation

Gentner et
al. [43] 2016

multipath
delays, phase
and angle-of-

arrival,
movement

information of
the user

UWB /
channel
sounder

particle filter,
Channel SLAM

Position
estimation

(SLAM)

Naseri et
al. [136] 2017

multipath
delays, angles-

of-arrival

5.3 GHz,
120 MHz

bandwidth
/ channel
sounder

combining AoA
and multipath

information

environ-
ment

reconstruc-
tion

Ulmschnei-
der et al.

[115], [260]
2020

multipath
delays, phase
and angle-of-

arrival,
movement

information of
the user

simulation

Channel SLAM
[43], visibility

regions, matching
maps from different

users

Position
estimation

(SLAM)

Gentner et
al. [261] 2021

multipath
delays

UWB
Decawave
DW1000

chip

Channel SLAM [43]

Position
estimation
(SLAM),
environ-

ment
reconstruc-

tion

Table 6.1: Existing work relying on the use of VTs.
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Figure 6.2: Multipath component interpolation. The multipath components are equal to the distances
from the points to the VT T ′j . The points Y1, ...,Y4 and distances d1j,2, ..., d4j,2 can be used to calcu-
late the location of T ′j , and therefore, the propagation distance from the target point X to Tj . Figure
adapted from [4] ©2018 IEEE.

6.2 Proposed VT Reconstruction Scheme

The VT reconstruction scheme detailed in this thesis was initially proposed in the conference
publications of the author [4] and [5]. Let Xi,...,Xi+δ be 4 or more distinct points, the re-
ceived signals at which contain multipath components corresponding to the VT T ′j,k. Those

multipath components are equal to
∣∣∣
∣∣∣T ′j,k −Xi

∣∣∣
∣∣∣ , ...,

∣∣∣
∣∣∣T ′j,k −Xi+δ

∣∣∣
∣∣∣. As illustrated in Fig. 6.2,

trilateration can be used to calculate the position of the VT T ′j,k from the coordinates of the
reference points and multipath components.

However, it is not clear which multipath components in the fingerprints di,j ∈ Di, ...,

di+δ,j ∈ Di+δ are created by signal reflections from the exact series of surfaces corresponding
to the VT T ′j,k. An MDP fingerprint contains multiple multipath components and the angle-
of-arrival information, which could be used to easily identify the multipath component-VT
correspondences, is not commonly known. In addition, as shown in Figs. 6.5 and 6.6, the
number of multipath components contained in MDP vectors can vary.

The following concept is used. We know that if multipath components d1j,x...d4j,x mea-
sured atX1...X4 correspond to T ′j,k

∣∣∣∣T ′j,k −X1

∣∣∣∣ = d1j,x, ...,
∣∣∣∣T ′j,k −X4

∣∣∣∣ = d4j,x. (6.1)

Finding the correspondences directly by solving an optimization problem is difficult and
computationally expensive. However, if a hypothesis grouping of multipath components
and a VT exists, Eq. 6.1 can be used to verify that hypothesis. The following heuristic is used
if two locations are close together their multipath components, which were created by the same VTs,
will be close in value. This means that multipath delay profiles (MDPs) measured at close by lo-
cations will contain similar patterns in the values of their multipath components. Therefore,
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Figure 2: Algorithm used to estimate candidate VT positions [8]. Candidate VT positions are filtered to obtain the VTs.

C. Virtual Transmitter-based Indoor Reconstruction

The work in [6] uses a received signal’s multipath com-
ponents to reconstruct the geometry of a rectangular room.
The VT positions are estimated as part of the calculation. The
approach requires the geometry to consist of a parallel floor
and a ceiling that are perpendicular to the walls.

The approach presented in [7] extracts time of arrival
(TOA) and direction of arrival (DOA) values of the multipath
components from received UWB signals. The TOA and DOA
values are then used to calculate the locations of the real and
virtual transmitters and virtual receivers. For each nonline-of-
sight (NLOS) multipath component, the intersection between
the lines connecting the real transmitter and virtual receiver
and the line connecting the real receiver and virtual transmitter
is found. This intersection point corresponds to the point in
the 3D geometry from which the signal was reflected. As
the transmitter is moved to different points in the indoor
environment, a large number of reflector points is obtained.
A Hough detector is then used to find the reflector planes.

III. PROPOSED APPROACH

We propose an environment reconstruction scheme that
consists of the following steps.

1) The VT positions are estimated from the multipath
components in the fingerprint map.

2) The transmitter and VT positions are used to calculate
the reflection planes in the indoor geometry.

3) The multipath fingerprints are used to calculate the shape
of the reflection planes.

A. VT Positioning

Figure 2 illustrates the proposed scheme for calculat-
ing the VT positions. The scheme was originally pro-
posed in our previous work in [8]. If the distances
from a VT T ′

j, k to 4 or more reference points∣∣∣
∣∣∣T ′
j, k −Xi

∣∣∣
∣∣∣ , ...,

∣∣∣
∣∣∣T ′
j, k −Xi+ δ

∣∣∣
∣∣∣ are known, the posi-

tion of T ′
j, k can be calculated using trilateration. The only

challenge is to determine which multipath components in the
fingerprints di, j ∈ Di, ...,di+ δ, j ∈ Di+δ correspond
to the same VTs. In [8] multipath components within the
reference fingerprints are first clustered together. Then the

Algorithm 1: Environment Reconstruction
Data: Reference multipath components and reference

points MAP = {(Di,Xi), i = 1...N}
Result: Set of polygons representing the reflecting

geometry {Gjk,i}
for ∀ transmitter Tj do

Estimate initial VT candidate set {T∗j, k}
Filter the VT positions get the VTs {T ′

j, k}
for ∀ VTs T ′

j, k do
Calculate the reflector plane Ĝk

for ∀(Di,Xi) ∈MAP do
Check visibility of T ′

j, k
Update edges of polygons {Ĝjk,i}

end
Extend {Ĝjk,i} by 1

2d(nearest neighbor)
Keep polygons that correspond to order 1 VTs

end
end
Merge Information from all transmitters

clusters are matched between the fingerprints that correspond
to neighboring reference points. The multipath components
within the matched clusters are used to calculate the VT
candidate positions using trilateration. More details can be
found in [8]. To improve matching accuracy and robustness,
in this work the original clustering and cluster matching
algorithms are replaced by machine learning. A dynamic k-
means clustering algorithm with cosine similarity [17] is used
to cluster the multipath components and the Wards method
[18] is used for cluster matching.

The calculations above produce a large number of can-
didate VT positions T∗j . Not all candidate VTs correspond
to the real VTs as false matches can still be created by
the multipath matching algorithm. The following algorithm is
used to determine the true VT positions. For each candidate
VT T∗j, k a number nj,k is calculated. nj,k is the number
of reference fingerprints that contain a multipath component
equal to the distance between T∗j, k and its reference point. If

Figure 6.3: Algorithm used to estimate VT positions [5]. Candidate VT positions are generated and
then filtered to obtain the VTs. Figure adapted from [5] ©2019 IEEE.

the proposed algorithm considers a number of reference multipath components measured
within a small area. Pattern recognition is used to identify multipath components that cor-
respond to the same VTs. However, since the reference points are located close together, any
noise present in the multipath components will be magnified in the calculated VT positions.
In addition, multipath correspondences may be misidentified. Therefore, VT estimation is
repeated for multiple sets of points. A number of candidate VTs is generated. Equation 6.1
is then used to identify the correct VT positions.

Even if two reference points are located close to each other, pattern recognition is nec-
essary to identify multipath correspondences for the following reason. If dij,1 ∈ Di corre-
sponds to T ′′1,1, this does not mean that the multipath component in dkj,12 ∈ Dk, which is
closest in value to dij,1, will also correspond to T ′′1,1. In Fig. 6.6, for example, the value d2j,2 is
close to d1j,3 and may be grouped together when in actuality they correspond to two different
VTs and reflection surfaces. The correct MDP grouping, however, is {d1j,2, d2j,3}, {d1j,3, d2j,4}
and {d1j,1, d2j,1}. In a similar example in Fig. 6.3, d3j,3 can be incorrectly grouped with d5j,4.
Therefore, instead of matching closest multipath components, the scheme proposed in this
paper finds patterns within the multipath profiles and matches similar patterns across finger-
prints. In order for similar patterns to be present in the MDPs, the reference fingerprints need
to be located close to each other. As will be demonstrated later, an ideal fingerprint map for
VT reconstruction consists of clusters of reference points distributed across the environment.

6.2.1 VT Reconstruction based on Clustering and Cluster Matching
Figure 6.3 illustrates the scheme proposed in [4], [5] for calculating the VT positions from a
fingerprint map. In the case of environment reconstruction, several reference fingerprints lo-
cated close to each other are selected from the fingerprint map as the input to the algorithm.
Clusters of multipath components are first identified within each MDPs. Similar clusters are
then matched across different fingerprints. The clusters which were determined to be similar
are grouped together for interpolation. Multipath components are again matched across the
clusters in the group and then interpolated or used for VT estimation. The proposed Algo-
rithm 6 is illustrated in Fig. 6.3. It should be noted that this algorithm will produce a number
of additional VTs along-side the correct ones. To obtain an exact set of VTs describing the
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Algorithm 6: MDP Interpolation [4] ©2018 IEEE.
Data: Target pointX , reference points and fingerprints selected for interpolation

{(Yk,Dk)}, k = 1...K, transmitters {Tj}, j = 1...M

Result: Interpolated fingerprint Di

for ∀ transmitter Tj do
for l← 1...K do

Cl ← CalculateClusters(dlj ∈ Dl)

G← GroupClusters(C1, ...,CK)
for ∀g ∈ Group ∈ G do

d←MCI(g,Yg,X)
dij ← [dij , d]

Di ← {di1, ...,diM}

indoor geometry, the incorrect VTs need to be filtered out.
In the work in [4], clustering and cluster matching is performed by a classical algorithm

with hand-tuned parameters. The algorithm is improved in [5] where clustering and clus-
ter matching are performed instead by parameter-less machine-learning techniques. An al-
ternative approach, later proposed in [262], finds the correspondences between multipath
components directly, without clustering and cluster matching.

Algorithm 7: Multipath Component Clustering [4] ©2018 IEEE.
Data: Multipath components [dij,1, ..., dij,K ] ∈ dij
Parameters: Clustering threshold εc
Result: Set of multipath component clusters C

Function CalculateClusters(dij)
Sort(dij)
CurrentCluster ← [dij(1)]
for l← 2...K do

if |dij,l − dij,(l−1)| < εc then
Add dij,l to CurrentCluster

else
Add CurrentCluster to C
CurrentCluster ← [dij,l]

Add CurrentCluster to C
return C

6.2.2 Direct Clustering and Cluster Matching

In [4] multipath component clusters are first determined within each reference fingerprint.
It is assumed that if two reference fingerprints are located next to each other, the clusters
within them will look similar. Therefore, a cluster comparison and matching step is per-
formed. Multipath components across the matched clusters are matched again and used to
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Algorithm 8: Cluster Matching
Data: Clustered multipath components {Ci} corresponding to sample points {Yi}
Parameters: Cluster similarity threshold εgroup, α
Result: Delay clusters grouped for interpolation G

Function ε(c1, c2) - Similarity metric
doffset ← min(c1)−min(c2)
nd ← length(c1)− length(c2)
ds ← (max(c1)−min(c1))− (max(c2)−min(c2))
ε← α|doffset|+ (1− α)× (|nd|+ |ds|)
return ε

G← {[ci ∈ Ci, ..., cj ∈ Cj ]}, i 6= j, such that
ε(ci, cj)→ min

∧
ε(ci, cj) ≤ εgroup

Figure 6.4: Matching multipath components between clusters. Left: Both clusters have the same num-
ber of elements. Right: The mean of the smaller cluster is aligned with the mean of the larger cluster.

triangulate or trilaterate the VT position. The clustering procedure proposed in [4] is summa-
rized in Algorithm 7. The multipath component values in the MDP vectors are first sorted.
A heuristically determined threshold εc is used. If the difference between two multipath
components is smaller than εc they are added to a cluster.

Similar clusters would be grouped together such that a group {Ci} would contain at
most one cluster from each fingerprint. Algorithm 8 is used to calculate the similarity metric
ε between two clusters. The smallest elements of similar clusters should be close together
(see Fig. 6.3), they each should contain a similar number of multipath components and have
a similar distance between the smallest and largest multipath component. The Lagrangian
parameter α is used to combine the three conditions into one value. A similarity threshold
εgroup is defined. Clusters, the similarity metric between which is the smallest, and is below
a set threshold εgroup, that is ε(c1, c2) ≤ εgroup, are grouped together.

If the clusters in a group have the same number of elements, then the multipath compo-
nents at the same positions in the sorted cluster vectors are assumed to correspond to the
same VT. The mean of the clusters in the group which have a smaller number of multipath
components are aligned with the mean of the sorted larger cluster vectors as shown in Fig.
6.4. It then becomes possible to again group multipath components in the same positions. If
more than 3 multipath components are grouped together, the position of the VT is calculated
using trilateration. It should be noted that this step relies on heuristics more than the VT
reconstruction scheme in [5], as its goal is fingerprint interpolation rather than perfect VT
reconstruction.
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6.2.3 ML-based clustering and cluster matching

The algorithm used to calculate the VT positions for environment reconstruction in [5] per-
forms clustering and cluster-matching, same as [4]. However, the performance of the original
clustering and cluster matching schemes proposed in [4], was shown to be strongly depen-
dent on the choice of the internal parameters. Therefore, in order to improve the matching ac-
curacy and robustness, machine learning-based clustering and cluster matching algorithms
were proposed in a Bachelor thesis written at the Chair of Media Technology of the Technical
University of Munich [263]. In this work, the dynamic k-means clustering algorithm with
cosine similarity [264] is used to cluster the multipath components and the Wards method
[265] is used for cluster matching.

6.2.4 Direct VT Reconstruction

An alternative approach for multipath component clustering is proposed in another Bach-
elor thesis written at the Chair of Media Technology of the Technical University of Munich
[262]. It achieves superior VT reconstruction accuracy under noise conditions compared to
[263]. Here, the correspondences between the multipath components across fingerprints are
found directly through pattern matching. The clustering and cluster matching steps are not
used. Applying this VT reconstruction method to the proposed interpolation and environ-
ment reconstruction schemes is part of the future work.

6.2.5 VT Filtering

Algorithm 9: VT Filtering [5] ©2019 IEEE.
Data: Candidate VTs T ∗j,k, reference data MAP = {(Di,Xi), i = 1...N}
Result: VT positions T ′j,k
for ∀ candidate VTs T ∗j,k do
nj,k ← 0
for i = 1...N do

Calculate dik ←
∣∣∣
∣∣∣T ∗j,k −Xi

∣∣∣
∣∣∣

if dik ∈ dij then
nj,k + +

{T ij,k} ← {T ∗j,k | nj,k ≥ γV T × 1

|{T ∗j,k}|
∑

j,k nj,k}
{T ′j,k} ← Cluster({T ij,k})

All of the VT reconstruction algorithms mentioned above require that the reference fin-
gerprints are located in a small area. Therefore, all of the algorithms select multiple small
clusters of close-located reference points throughout the environment and individually per-
form VT estimation for each cluster. This will produce a large number of VTs T ∗j . The VTs
calculated in this step are referred to as candidate VTs as not all of them will align with the
real VTs in the environment. This is because false matches can be created by the multipath
matching algorithm. Therefore, the candidate VTs are next filtered using Algorithm 9. A
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number nj,k is calculated for each candidate VT T ∗j,k. nj,k is the number of reference finger-
prints that contain a multipath component equal to the distance between T ∗j,k and the point
at which that reference fingerprint was measured. It is the number of reference points that
receive a signal from the VT T ∗j,k. If the distance

∣∣∣
∣∣∣Xi − T ∗j,k

∣∣∣
∣∣∣ with a certain tolerance is not

present in the fingerprint vector di,j ∈ Di, then neither is the propagation path containing
T ∗j,k. The threshold parameter γV T is used to filter the VTs. The VTs for which nj,k is higher
than γV T× are kept. The rest are filtered out. If the parameter γV T is high; the algorithm
can filter out some correct VT positions, however, it is less likely to keep wrong ones. If γV T
is low, the algorithm will keep more of the correct VT positions, however it may also keep
some false VTs. Afterwards the remaining VT positions are clustered together. The final VT
positions are calculated as the averages of each cluster. This is done because there can be
multiple candidate VTs corresponding to the same location but not overlapping because of
noise. The first order VTs will be separated from the second and higher order VTs, shown in
Fig.6.1, later on in the algorithm.

6.3 Fingerprint Interpolation

The aim of fingerprint interpolation/extrapolation is to computationally generate a finger-
print at a location, referred to in this thesis as a target point, given fingerprints measured
at a sparse set of locations in the environment. In this way, the density of the fingerprint
database can be increased without time-consuming measurements. For interpolation, the
target point needs to be surrounded by the reference points at which fingerprints were mea-
sured. Otherwise, the procedure of generating the fingerprint at the target point is referred
to as extrapolation.

6.3.1 Existing Fingerprint Interpolation Strategies

Multiple fingerprint interpolation strategies have been proposed for received signal strength
indicator (RSSI) fingerprinting [21], [108], [250], [251], [266]–[270]. In some publications, in-
cluding [21], [250], [251], [267], [268], an interpolated fingerprint is calculated as a linear
combination of several neighboring measured fingerprint vectors. The work in [268] does
this though a semi-supervised learning approach. The multivariate polynomial function is
used in [270]. The modified Shepard’s interpolation method is used in [267]. A propagation
path loss model is used to generate RSSI fingerprints in [251], [269], [271]. The standard path
loss model used in [269] is:

RSSId = RSSId0 − 10nlog10(
d

d0
) +Xσ, (6.2)

whereRSSId0 is the RSSI value at the distance d0 from the AP.Xσ models the noise with zero
mean and standard deviation σ. n is the attenuation factor. In order to keep the model accu-
rate without the need to represent unpredictable channel attenuation, reflections, diffraction
and the presence of moving objects and people, the receiver is assumed to be in close prox-
imity to the AP. LS optimization is used to calculate the model parameters in Eq. 6.2. In [108]
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hidden Markov models and the expectation-maximization algorithm are used to extend the
fingerprint map with sequential unlabeled user fingerprints. In [266] the Fourier transform is
applied to the fingerprint map. Fingerprints are interpolated by exploiting the sparsity of the
fingerprint matrices in the Fourier domain and by solving a minimization problem using the
least absolute shrinkage and selection operator. In [272], RSSI fingerprints are interpolated
the following way. Regression analysis is performed over distance and frequency domains
for path loss modeling. Shadowing at a target frequency is obtained by interpolation in the
frequency domain. Afterwards shadowing factors at the target band are interpolated over
space using Kriging interpolation.

RSSI fingerprints are cheaper to collect as they are automatically measured by most hand-
held consumer devices, the RSSI measure aggregates the entire channel information into one
scalar value. Because of this, there are strong and unpredictable fluctuations in measured
RSSI values both over space and time [58], [62], resulting in lower localization accuracy.
Therefore, the CSI has recently gained favor for fingerprinting-based localization. Unfortu-
nately, the RSSI interpolation strategies mentioned above cannot be directly applied to CSI
fingerprint interpolation. The corresponding taps of CIR vectors can not be simply averaged
for the following reason. A CIR is a superposition of several propagation delays.

x(t) = h(t) ∗ s(t), (6.3)

h(t) =
K∑

k=1

akδ(dk/c). (6.4)

It has a peak at each multipath delay in the MDP, as illustrated in Fig. 6.5. When the
CIR is measured at two close-by locations there will be a slight shift between the positions of
corresponding peaks. Therefore, if the CIR at a third near-by location is directly interpolated
by averaging each tap of the two measured CIRs, the result will be a CIR with wider peaks
of low magnitude, for example, wider peaks between d2j,1 and d1j,1, d2j,2 and d2j,3, d1j,4 and
d2j,3 in Fig. 6.5. The correctly interpolated CIR should have peaks of the same sharpness as
the measured CIRs. The positions of its peaks dij,1, dij,2 and dij,3 should be interpolated from
the positions of the peaks in the measured CIRs. It should be noted that the number of peaks
in the CIRs of neighboring points may vary as certain signal propagation paths may exist at
one point and be blocked at others.

There is very limited literature on the interpolation of CIR and CSI fingerprints over
space. In [273] and [274], the multipath components in a measured CIR are tracked as they
appear and disappear as a user moves through an indoor environment. The obtained in-
formation is used to interpolate two CIRs. In the work in [275], CIR-based fingerprints are
averaged as power values before interpolation and localization. Because of the challenges
of CIR and CFR interpolation, this work focuses on the interpolation of multipath compo-
nents. A CIR or CFR at a target location can afterwards be calculated from the interpolated
multipath components.
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Figure 6.5: Channel impulse response (CIR) interpolation. The positions of the CIR peaks need to be
interpolated as well as their magnitudes. Corresponding MDPs are shown in Fig. 6.6. Figure adapted
from [4] ©2018 IEEE.
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Figure 6.6: Interpolation of multipath fingerprints. Before the multipath components can be inter-
polated, the correspondences between the propagation paths need to be determined. In the example
above, dij ∈ Di needs to be interpolated from the pairs {d1j,3, d2j2}, {d1j,2, d2j,3} and {d1j,1, d2j,1}.
Figure adapted from [4] ©2018 IEEE.

6.3.2 Proposed Approach

This section details the novel multipath fingerprint interpolation scheme based on multipath
component matching and the calculation of VT positions and initially proposed in [4].

6.3.3 Interpolation of Multipath Components

An advantage of the multipath-based fingerprint structure detailed in Chapter 3 is that
the propagation distances or multipath components can be interpolated individually. The
known locations of the reference points are denoted as Y1, ...,YK and the corresponding mul-
tipath components as d1j ∈ dij , ..., dKj ∈ dKj . X denotes the target point. The propagation
distance from Tj toX , that is being interpolated, is denoted dij (see Fig. 6.2).

Theorem 1. "The propagation distance dij from the transmitter Tj to the point X is uniquely de-
termined by the locations of 4 or more reference points Y1, ...,YK and the corresponding propagation
distances d1j , ..., dKj , with reflections from the same surfaces in the same order" [4].

Proof. "The lengths of the propagation paths d1j , ..., dKj are equal to the distances from the
reference points to the VT (see Fig. 6.2). If K ≥ 4, the location of T ′(l)j is fully determined

by, and thus can be calculated from Y1T
(l)′j , ...,YKT

′(l)
j . The length of the propagation path

from the target pointX to Tj is in turn equal to the distanceXT ′(l)j = dij ."
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In order to interpolate several MDPs, the correspondences between their multipath com-
ponents need to first be identified. A correspondence means that two multipath components
are created by the same VT with reflections from the same surfaces in the same order. For
example, in Fig. 6.6 the multipath components d1j,2 ∈ d1j and d2j,3 ∈ d2j correspond to
the same reflection order and VT. The clustering and cluster matching algorithms detailed
in Section 6.2.1 are used to group together the multipath components. If more than 3 multi-
path components are grouped together for interpolation, the approach proposed in [4] and
detailed in Algorithm 10 first calculates the coordinates of the VT T ′j using multilateration,
non-linear least squares and the known multipath components [276]. Least squares (LS) is
used since the known multipath components may contain noise. Once the coordinates of
the VT are known, the interpolated multipath component is calculated as the distance from
the target point to the VT. If the number of known multipath components is less than 3, the
interpolated multipath component is set equal to their average. It should be noted that, if the
coordinates of the VT T ′(l)j are obtained, the multipath component at the target point dij can
be calculated regardless of whether the target point X is enclosed by the reference points or
is far away from them. Therefore, it is possible to use the proposed scheme to extrapolate
fingerprints in regions where no measured fingerprints are present.

Algorithm 10: Multipath Component Inter-/Extrapolation [4] ©2018 IEEE.
Data: Reference multipath components {dkj} and points {Yk}, k = 1...K, target

locationX
Result: Interpolated multipath delay value dij
Function MCI(d1j , ..., dKj ,Y1, ...,YK ,X)

T ′(l) - VT corresponding to d1j , ..., dKj
T ′(l) ← Trilateration(d1j , ..., dKj ,Y1, ...,YK)

dij ←‖ T ′l −X ‖
return dij

6.3.4 Simulation Results

The geometry used for the simulation setup is identical to the one in Section 3.5.
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Figure 6.8: Localization error CDF obtained by interpolating the reference points at 2440 (2000%) tar-
get points. Figure adapted from [4] ©2018 IEEE.

The localization error is plotted in Fig. 6.7 as a function of the density of the finger-
print map without interpolation. The parameter used to characterize the map density is the
average distance from the query points to the closest reference point. The downsampling
procedure described in [250] was used. Since the MCA fingerprinting algorithm is used here
without averaging or filtering such as k-means, the localization error at a query point cannot
be smaller than its distance to the closest reference point, the identity function is plotted as
the theoretical limit. The figure shows that the more the map is downsampled the more the
localization error deviates from the theoretical limit. The reason for this is that the similarity
calculated for two fingerprints, which are far from each other, tends to be unpredictable. If
the query fingerprint is far from the closest reference point, it is likely that another finger-
print that is further way from the query has a larger calculated similarity metric value. This
also explains the unevenness of the plot.
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Figure 6.9: Localization error CDF, the reference points marked by a square in Fig. 3.7 were extrapo-
lated at 4000 target points. Figure adapted from [4] ©2018 IEEE.

Table 6.2 shows the change in the average localization error when an interpolated/ ex-
trapolated fingerprint map is used for localization. The table also includes the parameters
used by Algorithms 6, 10, 7 and 8. The cumulative distribution functions (CDFs) of the lo-
calization errors obtained from a interpolated and extrapolated map are shown in Figures
6.8 and 6.9 respectively. In the extrapolation experiment in Figure 6.9 only 4-5 reference
fingerprints are used per room, the rest of the fingerprints in the map are obtained though
extrapolation. In another experiment, first the localization errors were calculated at a number
of query locations using only 14 reference points. Afterwards 4000 interpolated and extrap-
olated fingerprints were added to the map. The resulting localization errors are shown on
the left and right of Figure 6.10 respectively. The original reference fingerprints are marked
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dmap Original error Interpolated dint Reference fingerprints εc εgroup α εMCA Error gain

Interpolation

0.38m 0.48m 200 % 0.21m within 1m 0.1 0.5 0.5 1 13.8 %

0.38m 0.48m 800 % 0.13m within 1m 0.1 0.5 0.5 1 18%

0.38m 0.48m 2000 % 0.09m within 1m 0.1 0.5 0.5 1 20%

Extrapolation

1.34m 1.55m 500 points 0.19m same room 2 3.5 0.5 1 6 %

1.34m 1.55m 2000 points 0.09m same room 2 3.5 0.5 1 10 %

1.34m 1.55m 4000 points 0.07m same room 2 3.5 0.5 1 11.4%

Table 6.2: Localization error gain achieved through interpolation and extrapolation and the corre-
sponding parameter values. Original error is the localization error calculated only using the refer-
ence fingerprints, dmap - average distance from the query points to the closest reference point, dint -
average distance from the query points to the closest reference or target point. Table adapted from [4]
©2018 IEEE.
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Figure 6.10: Fingerprint extrapolation example. Left: only the reference fingerprints marked with red
squares were used to localize the query points. Right: The fingerprint map was extended by 4000
extrapolated points. Figure adapted from [4] ©2018 IEEE.

in red. The results shows an increased number of regions where the user is localized cor-
rectly. However, the results also show several locations where a localization error over 2.5m
was obtained. In Fig. 6.10 such locations mainly correspond to geometrical features and
corners. It can be theorized that the interpolation algorithm did not perform as well there
because of certain VTs being blocked and being visible in points in a close proximity. Over-
all, the probability that the user is localized correctly was much higher when the interpo-
lated/extrapolated map is used. As shown by Figure 6.10, the user can also be localized in
regions not immediately next to a recorded reference point.

6.3.5 Discussion Fingerprint Interpolation

The main disadvantage of the scheme proposed in [4] is its sensitivity to the parameter val-
ues, the correct configuration of which needs to be selected. The optimal parameter val-
ues can be iteratively determined using the fingerprint map. A solution for this problem is
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proposed in [263] and [262]. In [263] ML-based clustering and cluster matching algorithms
without a parameter dependency are used. In [262], the multipath components are matched
directly without clustering and cluster matching.

The fingerprint map is interpolated online, therefore, the fingerprint interpolation scheme
can be complex and its run-time does not significantly impact system performance. The run-
time of the MCA increases linearly with the number of fingerprints in the map. Therefore,
the overall run-time of the ILS will increase linearly with the number of interpolated finger-
prints. The run-time complexity can be reduced by first performing coarse localization using
only measured fingerprints and then refining the localization estimate using interpolated
fingerprints calculated within a defined radius of the initially calculated coordinates.

Table 6.2 and Fig. 6.7 show that interpolating the fingerprint map is not as effective as
using more measured fingerprints. Table 6.2 also shows a saturation in the localization error
at large numbers of interpolated fingerprints. This means that the interpolated fingerprint is
not identical to the fingerprint that would have been measured at that location. This can be
viewed as noise in the interpolated fingerprints. Because of it, the interpolated fingerprint
most similar to the query is not the one calculated at a location that is nearest to the query
point. However, using interpolation is much cheaper than measuring a dense fingerprint
map and Table 6.2 and Figs. 6.8 and 6.9 show the feasibility of the proposed scheme. The
future work on this topic needs to focus on improving the effectiveness of the algorithm
and further integration of the scheme proposed in [263] and [262] and similar approaches to
fingerprint interpolation.

6.4 Environment Reconstruction

If a 3D model of an environment is known, it can be used to improve path planning, local-
ization and navigation for human users, robots and UAVs. A VT-based environment model
can also be combined with an RF multipath-based simultaneous localization and mapping
(SLAM) algorithm [43]. In [277] the estimated indoor geometry is used to calculate channel
impulse responses and improve localization accuracy. A 3D model of the walls and obstacles
can also aid in obtaining a semantic understanding of an environment.

6.4.1 Existing Environment Reconstruction Approaches

Laser scanners and Light Detection and Ranging (Lidar) devices are often used to generate
3D point clouds of an environment. Stereo infra-red (IR) and camera systems are also used to
get a model and coordinates of walls and objects. Lidars and camera systems are well studied
and effective at creating a digital twin of the environment. However, such systems require
expensive hardware. If, on the other hand, a model or digital twin of the environment can
be created from an RF fingerprint map or calibration data of the ILS, obtaining such a model
would not create extra costs beyond the required computational power. A model obtained
from RF measurements can also be fused with Lidar point clouds and camera images.

A number of publications use RF data to gain only specialized information about the en-
vironment. Instead of creating a full 3D environment model, the work in [278] detects and
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tracks individual objects near the APs and receiver using the channel impulse response (CSI).
Ultra wide band (UWB) radars are used to track objects behind a wall or a non-conducting
obstacle in [279]–[281]. UWB radars are used to obtain information about object shape and
properties in [282], [283] and to evaluate the structure and quality of a brick wall in [284]. In
[285] a WiFi emitter is placed behind an object and a wavefront measured with a scanning
antenna on a meter-sized two dimensional area in front of the object is used to obtain the
object’s image.

The full 3D geometry can be reconstructed from RF data in several ways. A UWB radar
[277], [279]–[281], [286] can create a point cloud by measuring distances to the closest ob-
stacle in a number of directions. A mm-wave radar is used in [287]. The measurements
are precise but time consuming as a separate radar position/orientation is needed for each
point in the point cloud. In the work in [286], a UWB radar is used to detect indoor features
and landmarks, such as walls, edges and corners. Those features are then used to construct
a map. Alternatively, dense signal measurements and a large number of fixed transmitters
and receivers were used in a simulation in [285] to calculate the coordinates of the emitters
and a 3D tomography of absorptive objects in a building.

Multipath components and VTs are used in [259] to reconstruct a rectangular room. The
algorithm, however, assumes that the room consists of a parallel floor and ceiling which are
perpendicular to the walls. In [136] multipath time-of-arrival (ToA) and direction-of-arrival
(DoA) values estimated from a UWB signal are used to calculate transmitter and VT coor-
dinates. The reflector point at which the signal reflected of a surface is calculated as the
intersection between the lines connecting the real transmitter and virtual receiver and the
line connecting the real receiver and virtual transmitter. Multiple reflection points are calcu-
lated as the receiver is moved through the environment and a Hough detector is used to fit
planes to the reflector points. Multipath delays and the IMU-based user motion data is used
in [47] in combination with Channel SLAM to estimate the coordinates of reflective surfaces
and scatterers.

6.4.2 Proposed Geometry Reconstruction Scheme

An indoor geometry is represented as a set of planar polygons. Ground truth polygons are
denoted as Gi with i taking the values 1, ...,K. A reconstructed polygon that corresponds to
Gi is denoted as Ĝi,l, as multiple reconstructed polygons can correspond to one real polygon
Gi. Algorithm 11, initially presented in [5], consists of three steps.

1. The VT coordinates are calculated using multipath delay profiles (MDPs).

2. Planes in the environment are calculated as in the middle of and perpendicular to the
lines from the transmitters to the VTs.

3. The MDPs and estimated reflection planes are used to calculate polygons in the indoor
environment.

Since the ID of an AP is generally included in the data it transmits, the algorithm can
know which VT T ′j,k corresponds to which AP Tj . As illustrated in Fig. 6.11, the polygon,
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Algorithm 11: Environment Reconstruction [5] ©2019 IEEE.
Data: Reference multipath components and reference points

MAP = {(Di,Xi), i = 1...N}
Result: Set of polygons representing the reflecting geometry {Gjk,i}
for ∀ transmitter Tj do

Estimate initial VT candidate set {T ∗j,k}
Filter the VT positions get the VTs {T ′j,k}
for ∀ VTs T ′j,k do

Calculate the reflector plane Ĝk

for ∀(Di,Xi) ∈MAP do
Check visibility of T ′j,k
Update edges of polygons {Ĝjk,i}

Extend {Ĝjk,i} by 1
2d(nearest neighbor)

Keep polygons that correspond to order 1 VTs

Merge Information from all transmitters

Tj

T ′j

X′i

Xi

X′1

X′2

X′3
Ĝj,1

Figure 6.11: Geometry Reconstruction. Figure adapted from [5] ©2019 IEEE.

from which the signal was reflected on the given propagation path, contains the middle point
of the line segment between the AP and VT TjT ′j,k and is perpendicular to that line segment.

The polygons corresponding to higher order VTs can be filtered out the following way.
Let Ĝjk,l be a polygon reconstructed from the VT T ′j,k We check if the path from the ref-
erence point Xi to T ′j,k intersects any other reconstructed polygon Ĝje,n before Ĝjk,l. Let
the corresponding VTs T ′j,k and T ′j,l be the reflections to the same transmitter Tj . If that is
the case, T ′j,k can be considered a higher order VT and the Ĝjk,l can be removed from the
reconstructed geometry.

6.4.2.1 Reconstructing Polygons

The proposed scheme first determines which reference fingerprints contain multipath com-
ponents that were created by the 1st degree VT T ′j,k. This means that the algorithm finds the
reference locations Xi which a signal from the AP Tj can reach after being reflected from
the polygon corresponding to T ′j,k. The fingerprint di,j ∈ Di of such a reference point Xi

should contain multipath components approximately equal to the distance XiT
′
j,k. The set
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of reference points that fulfill this condition is denoted Sj,k. The intersections of the recon-
structed plane that corresponds to the VT T ′j,k and the line segments T ′j,kXi, with Xi ∈ Sj,k

are denoted as X ′i ∈ S′j,k. As illustrated in Fig. 6.1, Xi ∈ Sj,k are the points at which the
signal from Tj toXi was reflected from a polygonGjk.

It can happen that dij ∈ Di corresponding to a different VT T ′h can coincidentally contain
a multipath component equal to the distance T ′j,kXi. Therefore, outlier detection is needed
after all points are included in S′j,k. Multiple polygons in an indoor geometry can lie on one
plane. An example of this are the walls around a door way or furniture. The algorithm,
therefore, searches for clusters of points in S′j,k. For every point in the set its distance to the
closest neighbor is calculated as:

di = min(
∣∣∣∣X′i −X′l

∣∣∣∣ |X′i,X′l ∈ S′j,k, i 6= l). (6.5)

A polygon is then reconstructed for clusters with 3 points or more. Point clustering is
performed such that every pointX′i in the cluster Cr has a distance less than its threshold di
to at least one other point in the same cluster. A threshold distance di is calculated for every
pointX′i, to account for the differing point densities within and across clusters.

Cr = {X′i ∈ S′j,k | ∃X′l ∈ Cr :
∣∣∣∣X′i −X′l

∣∣∣∣ ≤ di}. (6.6)

The algorithm starts at an arbitrary reflection point, and adds each subsequent point to
an existing or a new cluster according to Eq.6.6. When a point is contained in more than
one cluster, the clusters are merged. A polygon is obtained from the points on the outward
boundary of a cluster and extended outward by 1

2 of the distance of each boundary point
to its closest neighbor. This is done for the following reason. If the signal from the VT T ′j,k
is obtained by a reference point but not by its neighbor, the boundary of the correspond-
ing reflective polygon should be between the two respective reflection points on the plane.
Therefore, the polygons are further extended outward by 1

2 of the distance of each point on
the contour of the cluster to its closest cluster point.

As mentioned above, the reflecting polygons in the geometry correspond to 1st degree
VTs. A polygon Ĝjk,l reconstructed based on the multipath components from a higher level
VT T ′(l)j,k can be identified the following way. If the line from a reference point Xi to T ′(l)j,k

intersects any other reconstructed polygon Ĝje,n, corresponding to the same AP Tj as Ĝjk,l,
before Ĝjk,l, then T ′(l)j,k is a VT corresponding to paths with more than one reflection.

Once a set of polygons is obtained, contextual information can further be used to fill in
the indoor environments. For example, polygons identified as walls can be extended from
the floor to the ceiling. There is, however, a trade-off when gap-filling is performed in this
way. The algorithm can fill empty spaces such as doors and windows. Filtering can also be
useful, but it can also remove important details from the environment.

6.4.3 Evaluation Metrics

Several numerical metrics are derived to evaluate the performance of the proposed algo-
rithm. Geometry deviation represents how much the reconstructed geometry is aligned with
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the ground truth planes. Geometry coverage represents the percentage of the ground truth
that was reconstructed correctly. The coverage error is the percentage of the reconstructed
area that is not present in the ground truth. Geometry deviation (δG) is defined as the aver-
age distance from the vertices of the reconstructed polygons to the projections of those ver-
tices onto the planes in the ground-truth geometry. The obtained number is then weighted
by the areas of the polygons.

δG =
1

∑K
i=1

a
Ĝi

K∑

i=1

a
Ĝi

Ki

∑

l

‖Ĝi(l)− P (Ĝi(l),Gi)‖, (6.7)

where Ĝi(l) is the l-th vertex of the i-th reconstructed polygon. P (Ĝi(l),Gi) is the projection
of the point Ĝi(l) onto the corresponding ground-truth plane Gi. The polygon is assumed
to correspond to the plane that its vertices are on average closest to and that minimizes δG.
a
Gi is the area of the polygon Gi.

Geometry coverage (GC) is defined as equal to the percentage of the area of the ground
truth geometry that is covered by the projections of the reconstructed polygons.

GC =
(
⋃K
i=1

a
P (Ĝi,Gi))

⋂
(
⋃K
i=1

a
Gi)⋃K

i=1

a
G1

× 100%. (6.8)

Coverage error (CE) is defined as the percentage of the area of the reconstructed poly-
gons that does not coincide with the ground truth geometry. In order to calculate the CE,
the reconstructed polygons are first projected onto the ground truth planes.

CE =
(
⋃K̂
i=1

a
P (Ĝi,Gi)) \ (

⋃K
i=1

a
Gi)

⋃K̂
i=1

a
Ĝi

× 100%. (6.9)

A parameter is also derived for evaluating the reconstructed percentage of the 2D perime-
ter of the environment. This metric can be used to evaluate 2D maps. Here the assumption,
that all of the polygons in the geometry are horizontal, that is parallel to the ceiling and
floor, or vertical, that is perpendicular to the ceiling and floor, is made. First the recon-
structed polygons are projected onto the ground truth planes. Afterwards, the ground truth
and reconstructed geometry is projected onto the floor plane. The perimeter lengths and the
coverage percentage are calculated.

perimeter =
Perimeter(

⋃K̂
i=1 Ĝi

⋂⋃K
i=1Gi)

Perimeter(
⋃K
i=1Gi)

× 100%, (6.10)

where Perimeter(Gi) is the length of the line created by projecting the vertical polygon Gi

onto the floor-plane. Polygons that are parallel to the floor or ceiling are not considered in
the perimeter calculation.

6.4.4 Simulation Results

The simulation setup used to evaluate the proposed scheme is detailed in Section 3.5. The
locations of the reference fingerprints are shown in Figure 6.12. Only the multipath compo-
nents with at most one reflection are included in the simulation.
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Figure 6.12: Reference points, z = {1m, 4m, 6m}

A performance comparison to the state-of-the-art is not possible as the necessary data is
not provided in the relevant publications [136] and [259].

6.4.4.1 Performance Evaluation

The polygon reconstruction algorithm is first tested with ground-truth VT positions. Figure
6.13 shows the polygons reconstructed from ground-truth VT positions and points with z =

4m in Fig. 6.12. The polygons are shown in the same color as their corresponding VTs, the
reference locations are colored in blue. The floor and ceiling polygons are not shown. Figure
6.14 shows the polygons that were reconstructed when all of the simulated reference points
shown in Fig. 6.12, with different z coordinate values, were used. The reconstructed area is
much higher in this case. However, it can be seen that one of the polygons colored in red is
reconstructed incorrectly. The quality of the 2D perimeter reconstruction, i.e., the projections
of the reconstructed polygons onto the xy-plane is similar in both experiments.

Figure 6.15 shows the result of combining the proposed VT and polygon estimation al-
gorithms. All of the reference points are used. The parameter γ in Algorithm 9 was set to
1.5. The figure shows a reconstruction quality comparable to when the ground-truth VTs
are used. A numerical evaluation of the proposed algorithm is shown Table 6.3. The geom-
etry error δG, geometry coverage GC, coverage error CE and perimeter are calculated for
different configurations of the algorithm input data and parameters. In some experiments
the complete set of reference points and in others subsets of points (z = {1m, 4m, 6m}) were
used. The values in the top two rows were obtained using ground-truth VT positions. For
all other rows the VT estimation algorithm was used. The original reconstruction quality is
compared to the case when the vertical polygons are extended between the floor and the ceil-
ing. The reconstruction metric values are plotted for different values of γ in Figure 6.16. In
that case the complete set of reference fingerprints and ceiling to floor polygon extension are
used. The results show a general trade-off between the total percentage of geometry that is
reconstructed and the percentage of geometry that is reconstructed incorrectly in areas which
do not have ground-truth polygons. The higher the geometry coverage, the higher the geom-
etry error and percentage of covered doorways and windows and the higher the deviation
between the true and reconstructed planes, δG, will be. This trade-off is controlled by the VT
filtering threshold γ. When γ is high, more candidate VTs, including more correct VTs, are
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Data Set γ
Perimeter↑ δG ↓ GC ↑ CE ↓ δG ↓ GC ↑ CE ↓

Original reconstruction Polygons extended

Ground-
truth VTs,
z = 1

- 59.2% 0 10.4% 0%
1.3×
10−17

43.9% 3.4× 10−13%

Ground-
truth VTs,
z = 4

- 73.4%
1.5×
10−17

14.1% 0.56%
2.7×
10−17

44.0% 5.4%

Ground-
truth VTs,
complete
reference

data

- 94.9%
1.7×
10−17

29.2% 4.1%
1.7×
10−17

54.0% 8.9%

z = 1 1.5 58.1% 58.1%
12.7%%

1.1% 0.074 42.7% 46.2%

Complete
reference

data
0.5 81.2% 0.26 28.7% 0.72% 0.28 66.0% 42.5%

Complete
reference

data
1.5 78.9%

0.00078
25.8% 0.46% 0.0013 49.8% 1.3%

Complete
reference

data
2 89.5%

0.00068
28.2% 0.46%

0.00088
52.2% 1.41%

Complete
reference

data
3 71.2%

0.00039
17.5% 0.15%

0.00066
28.9% 0.14%

Table 6.3: Reconstruction performance. The performance of the algorithm is better when metrics
marked with ↑ are maximized and metrics marked with ↓ are minimized. Table adapted from [5]
©2019IEEE.

filtered out. When γ is low, more correct and incorrect VTs are kept. The total reconstructed
area increases when polygons are extended between the floor and ceiling. However, in this
case, doors and windows may be covered by the reconstructed geometry. The reconstructed
area also significantly increases when reference points located at different height levels are
used. In this case the geometry error does not increase.

It should be noted that the placement of APs in the indoor geometry has a large influence
on reconstruction quality. When the reference points and the APs are on the same height
level only the perimeter can be reconstructed and not the polygons. When the APs are close
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Figure 6.13: Reference data with z = 4m, perfect VTs. Figure adapted from [5] ©2019 IEEE.
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Figure 6.14: Full reference data, perfect VTs. Figure adapted from [5] ©2019 IEEE.
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Figure 6.15: Full reference data with VT reconstruction. Figure adapted from [5] 2019 IEEE.



150 Chapter 6. Virtual Transmitters, Fingerprint Interpolation and Environment Reconstruction

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

20

40

60

80

100

γ

G
C

,C
E

,p
er
im
et
er

(%
)

GC
CE
perimeter
δG

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

γ

δG

Figure 6.16: Performance metrics over the different values of the parameter γ. Complete multipath
data, polygon extension. The higher the value of γ the more candidate VTs are filtered out. Figure
adapted from [5] ©2019 IEEE.

to the floor, the area of the ceiling polygons is large and of the floor polygons is very small.
And vice versa when the reference points are very close to the ceiling. In order for corners of
the room to be reconstructed, reference points and APs need to be located near those corners.
In the current example, the corners next the transmitters are well reconstructed, in contrast
there are less area is reconstructed next to corners which do not have APs nearby.

6.5 Chapter Summary

This chapter details a novel approach for interpolating the fingerprint map of and recon-
structing the 3D indoor geometry from the fingerprint map of a RF multipath-based indoor
localization system. The positions of virtual transmitters (VTs) are estimated for both those
tasks. The interpolated fingerprints are calculated directly from the VT positions. The envi-
ronment estimation algorithm first uses real and virtual transmitters to obtain planes in the
indoor geometry. The multipath components stored in the reference fingerprints are then
used to calculate the boundaries of the polygons that construct indoor geometry. Several
metrics are proposed to evaluate the geometry reconstruction scheme. Both the interpola-
tion and geometry reconstruction schemes are evaluated in a ray tracing simulation detailed
in Section 3.5. A trade-off is found between the area of the geometry that is reconstructed and
the area of the incorrectly reconstructed geometry. The results show that up to 66% of the
3D geometry and up to 81% of the 2D perimeter is reconstructed by the proposed algorithm
with the given AP locations and reference points.



Chapter 7

Conclusions and Future Work

This thesis provided an overview of the current state-of-the-art in the field of indoor local-
ization in Chapter 2 and presented the following novel algorithms. Chapter 3 presented the
multipath component analysis (MCA) localization algorithm. The advantages of the MCA
algorithm are that, unlike conventional fingerprinting algorithms, it is able to maintain a
decimeter-level localization precision in a dynamic NLoS environment with moving objects,
and that, as a fingerprinting algorithm, it requires much fewer transmitters and access points
(AP) and infrastructure than the high-precision ranging localization systems currently on the
market. Chapter 4 presented a user privacy protection scheme. The novel scheme allows the
user to obtain his or her location from the ILS server without the server knowing what that
location is. An advantage of the algorithm is that the user is able to choose the degree of
privacy and the corresponding computational load of the scheme. Chapter 5 presented an
efficient fingerprint database lookup scheme. The scheme allows the user to obtain a rough,
iteratively improving location estimate during the algorithm’s run-time. Chapter 6 presented
a scheme that obtains the locations of virtual transmitters and uses them for fingerprint map
interpolation and extrapolation and environment reconstruction.

All of the novel algorithms above are made possible by the use of multipath delay pro-
file (MDP) fingerprints. An MDP fingerprint allows individual multipath components to be
processed and analyzed. Because of this, it is possible to identify multipath components in
a fingerprint that correspond to moving objects or any other changes that occurred in the
environment after the collection of the ILS calibration data, and to exclude those multipath
components from the location calculation. The proposed approach also makes it possible to
send the ILS server a subset of multipath components in the query fingerprint and artificially
create fake partial fingerprints which contain only a small number of multipath components,
match multiple locations in the indoor environment, and therefore, are seen as ’believable’
by the ILS. The use of MDP fingerprints also allows for an iterative fingerprint map query
algorithm that processes one multipath component of the measured fingerprint at a time
and refines the localization estimate at each iteration. In contrast to other fingerprint struc-
tures, the use of MDP fingerprints also makes it possible to group the multipath components
measured at different locations that are reflected from the same surfaces in the same order
together for interpolation and virtual transmitter estimation.

All of the proposed algorithms were validated in a ray-tracing simulation. A prototype
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was also created to test the performance of the MCA algorithm. The UWB communication
standard and the Decawave DWM1000 board were used. An average localization error of
6cm was obtained for a slow moving receiver when 9 APs were used in the 1 room test en-
vironment and a 70cm error was obtained when only 1 AP was used. For a fast moving
receiver an error of 30cm was obtained for 9APs and 1.5m for 1 AP.

Original MCA Algorithm 
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User
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On-line localization
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Figure 7.1: Top: original MCA system. Bottom: example crowdsourcing-based MCA system with
efficient database management. If a LoS is detected, the measured MDP is added to the database.
If NLoS is detected the MCA algorithm is used. Interpolation is used to extend and manage the
database.

The potential continuation of the work in this thesis is mainly comprised of creating a
more efficient hardware prototype for the system. Each of the algorithms was implemented
and validated separately. A commercial prototype would need to integrate of the above
algorithms into one system. Such as system would have the following requirements:
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• Perform channel and multipath estimation as accurately as possible. This means that
the amount of noise present in the calculated multipath components needs to be as low
as possible and the multipath resolution needs to be as high as possible. It should be
noted that the multipath resolution is connected to the bandwidth used by the commu-
nication protocols [42], [146]–[148].

• Use a communication standard and frequency range that produces the maximum num-
ber of reflections. The more reflections and multipath delays are present in the received
signals, the more accurate and robust the MCA algorithm will be. Different materials
absorb different amounts of the power of a signal at different frequencies and thus re-
flect the signals with different power attenuation. Therefore, the number of detected
multipath components will depend on the chosen communications standard, the band-
width and carrier frequencies, as well as the multipath estimation scheme.

• The APs and ILS server need to be able communicate with a large number of users
simultaneously. The communication protocols need to be adjusted accordingly.

• The multipath estimation and MCA algorithm need be to run in real time. This means
that the communication between the user and the ILS server needs to be low-latency
and fast. The computational load on the receiver should also be kept low.

• The proposed privacy protection, efficient database lookup algorithm, VT reconstruc-
tion, interpolation and de-noising need to be integrated into a single system.

• Filters such as the k-means, the Kalman filter, algorithms that use IMU data need to be
added to the ILS.

• The following fusion scheme can be implemented to increase the localization accuracy.
When a line-of-sight (LoS) is detected to the transmitters, ranging can be used to cal-
culate the user’s location. If a LoS is detected, a crowdsourcing-like scheme can be
also used to add the calculated location and measured MDP into the fingerprinting
database. An schematic of such a fusion-based system is shown on Fig. 7.1. Instead
of an explicit calibration step, triangulation-based coordinates and measured multi-
path profiles are added to the fingerprint map whenever a LoS is detected to enough
transmitters. Interpolation is used to make the map more precise, and geometrical VT
models are used for interpolation, to keep the size of the map small enough and to
reduce noise.

Fingerprint
map

Transmitter

VTs

MCA
estimate

Transmitter

VTs

MCA

Transmitter

VTs Match
with
query

Triangulation

Figure 7.2: Possible combination of the MCA algorithm and VT triangulation.
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The fusion of the localization scheme with an environment model also holds a lot of po-
tential. In this thesis, the VTs are estimated from the fingerprint map and then used for inter-
polation and environment reconstruction. At the same time, a number of companies such as
NavVis [288] scan an environment and create its digital model or digital twin. It is possible to
use such a model to improve the performance of a localization system. If MDP fingerprints
are used, as in this thesis, then the VTs can be extracted from the geometrical model. The VTs
can then be used to interpolate or even fully create the fingerprint map. The challenge here
would be to correctly model and compensate for the noise present in the measured query
MDP and align it with the approximations present in the environment model and noise in
the VT positions. An iterative algorithm that uses the VT positions to refine the results of the
MCA algorithm can also be designed the following way. The MCA algorithm can be used
to obtain an initial estimate of the user’s location. The distances between that initial location
estimate and the VTs can be stored in an MDP. This MDP can be compared with the query to
determine which query multipath components correspond to which VTs. Triangulation can
then be used to obtain the user’s location from the VT coordinates and measured query mul-
tipath components. Such an algorithm can also be made iterative. The challenge here is to
correctly design the matching procedure between the set of distances from the intermediate
location estimate to the VTs and the multipath components in the measured multipath delay
profile. Designing such an algorithm also remains part of the future work.

In summary, this thesis demonstrated the effectiveness of using individual multipath
propagation delays for localization in dynamic and complex indoor environments. More-
over, it also demonstrated the potential of using multipath delays in various aspects of in-
door localization such as computational efficiency, security and privacy which also motivates
further research in of multipath-based indoor localization.
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ter estimation and multiuser detection in DS/CDMA systems with multipath propa-
gation”, Wireless Personal Communications, vol. 6, no. 1, pp. 161–178, 1998, ISSN: 1572-
834X. DOI: 10.1023/A:1008848721645. [Online]. Available: https://doi.org/10.1023/
A:1008848721645.

[225] K. I. Pedersen, B. H. Fleury, and P. E. Mogensen, “High resolution of electromagnetic
waves in time-varying radio channels”, in Proceedings of 8th International Symposium
on Personal, Indoor and Mobile Radio Communications - PIMRC ’97, vol. 2, 1997, 650–654
vol.2. DOI: 10.1109/PIMRC.1997.631112.

[226] T. Jost, W. Wang, U. Fiebig, and F. Perez-Fontan, “Detection and tracking of mobile
propagation channel paths”, IEEE Transactions on Antennas and Propagation, vol. 60,
no. 10, pp. 4875–4883, 2012.

[227] W. Wang, T. Jost, U. Fiebig, and C. Gentner, “Modeling three different types of multi-
path components for mobile radio channel”, in The 8th European Conference on Anten-
nas and Propagation (EuCAP 2014), 2014, pp. 3065–3069.

[228] X. Liu, K. Liu, L. Guo, X. Li, and Y. Fang, “A Game-Theoretic Approach for Achieving
k -Anonymity in Location Based Services”, Proceedings - IEEE INFOCOM, pp. 2985–
2993, 2013.

[229] Y. Wang, F. Li, and B. Xu, “L2P2 : Location-aware Location Privacy Protection for
Location-based Services”, Proceedings - IEEE INFOCOM, pp. 1996–2004, 2012.

[230] D. Yang, “Truthful Incentive Mechanisms for K-Anonymity Location Privacy”, Pro-
ceedings - IEEE INFOCOM, pp. 2994–3002, 2013.

[231] M Gruteser, M Gruteser, D Grunwald, and D Grunwald, “Enhancing location privacy
in wireless LAN through disposable interface identi ers: a quantitative analysis”, Mo-
bile Networks and Applications, vol. 10, no. 3, pp. 315–325, 2005. DOI: 10.1007/s11036.

[232] A. R. Beresford and F. Stajano, “Location Privacy in Pervasive Computing”, IEEE Per-
vasive Computing, vol. 2, no. 1, pp. 46–55, Jan. 2003, ISSN: 1536-1268. DOI: 10 .1109/
MPRV.2003.1186725. [Online]. Available: http://dx.doi.org/10.1109/MPRV.2003.
1186725.

[233] V. Sadhu, D. Pompili, S. Zonouz, and V. Sritapan, “CollabLoc: Privacy-preserving
multi-modal localization via collaborative information fusion”, in 26th International
Conference on Computer Communication and Networks (ICCCN), 2017, pp. 1–9. DOI: 10.
1109/ICCCN.2017.8038390.

[234] P. Zhao, H. Jiang, J. C. S. Lui, C. Wang, F. Zeng, F. Xiao, and Z. Li, “P3-LOC: A
Privacy-preserving paradigm-driven framework for indoor localization”, IEEE/ACM
Transactions on Networking, vol. 26, no. 6, pp. 2856–2869, 2018, ISSN: 1063-6692. DOI:
10.1109/TNET.2018.2879967.

https://doi.org/10.1109/29.1552
https://doi.org/10.1023/A:1008848721645
https://doi.org/10.1023/A:1008848721645
https://doi.org/10.1023/A:1008848721645
https://doi.org/10.1109/PIMRC.1997.631112
https://doi.org/10.1007/s11036
https://doi.org/10.1109/MPRV.2003.1186725
https://doi.org/10.1109/MPRV.2003.1186725
http://dx.doi.org/10.1109/MPRV.2003.1186725
http://dx.doi.org/10.1109/MPRV.2003.1186725
https://doi.org/10.1109/ICCCN.2017.8038390
https://doi.org/10.1109/ICCCN.2017.8038390
https://doi.org/10.1109/TNET.2018.2879967


173

[235] N. Alikhani, V. Moghtadaiee, A. M. Sazdar, and S. A. Ghorashi, “A Privacy Preserving
Method for Crowdsourcing in Indoor Fingerprinting Localization”, in 2018 8th Inter-
national Conference on Computer and Knowledge Engineering (ICCKE), 2018, pp. 58–62.
DOI: 10.1109/ICCKE.2018.8566402.

[236] M. Zhou, Y. Liu, W. Nie, L. Xie, and Z. Tian, “Secure mobile crowdsourcing for WLAN
indoor localization”, in IEEE INFOCOM 2018 - IEEE Conference on Computer Communi-
cations Workshops (INFOCOM WKSHPS), 2018, pp. 480–485. DOI: 10.1109/INFCOMW.
2018.8406947.

[237] H. Li, L. Sun, H. Zhu, X. Lu, and X. Cheng, “Achieving privacy preservation in WiFi
fingerprint-based localization”, Proceedings - IEEE INFOCOM, pp. 2337–2345, 2014,
ISSN: 0743166X. DOI: 10.1109/INFOCOM.2014.6848178.

[238] R. Zhang, J. Zhang, Y. Zhang, and S. Member, “Privacy-Preserving Profile Matching
for Proximity-Based Mobile Social Networking”, vol. 31, no. 9, pp. 656–668, 2013.

[239] S. Li, H. Li, and L. Sun, “Privacy-preserving crowdsourced site survey in WiFi
fingerprint-based localization”, EURASIP Journal on Wireless Communications and Net-
working, 2016, ISSN: 1687-1499. DOI: 10.1186/s13638-016-0624-2. [Online]. Available:
http://dx.doi.org/10.1186/s13638-016-0624-2.

[240] X Wang, Y Liu, Z Shi, X Lu, and L Sun, “A Privacy-Preserving Fuzzy Localization
Scheme with CSI Fingerprint”, 2015 IEEE Global Communications Conference (GLOBE-
COM), pp. 1–6, 2015. DOI: 10.1109/GLOCOM.2015.7417168.

[241] Z. Yang and K. Järvinen, “The death and rebirth of privacy-preserving WiFi finger-
print localization with Paillier encryption”, in IEEE INFOCOM - IEEE Conference
on Computer Communications, 2018, pp. 1223–1231. DOI: 10 . 1109 / INFOCOM . 2018 .
8486221.

[242] L. Xiang, B. Li, and B. Li, “Privacy-preserving inference in crowdsourcing systems”,
in IEEE Conference on Communications and Network Security (CNS), 2017, pp. 1–9. DOI:
10.1109/CNS.2017.8228623.

[243] T. Shu, Y. Chen, and J. Yang, “Protecting Multi-Lateral Localization Privacy in Perva-
sive Environments”, IEEE/ACM Transactions on Networking, vol. 23, no. 5, pp. 1688–
1701, 2015. DOI: 10.1109/TNET.2015.2478881.

[244] Y. Wang, M. Huang, Q. Jin, and J. Ma, “DP3: A differentialprivacy-based privacy-
preserving indoor localization mechanism”, IEEE Communications Letters, vol. 22,
no. 12, pp. 2547–2550, 2018, ISSN: 1089-7798. DOI: 10.1109/LCOMM.2018.2876449.

[245] Y. Zhu, Y. Wang, Q. Liu, Y. Liu, and P. Zhang, “WiFi fingerprint releasing for indoor
localization based on differential privacy”, in IEEE 28th Annual International Sympo-
sium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017, pp. 1–6. DOI:
10.1109/PIMRC.2017.8292470.

https://doi.org/10.1109/ICCKE.2018.8566402
https://doi.org/10.1109/INFCOMW.2018.8406947
https://doi.org/10.1109/INFCOMW.2018.8406947
https://doi.org/10.1109/INFOCOM.2014.6848178
https://doi.org/10.1186/s13638-016-0624-2
http://dx.doi.org/10.1186/s13638-016-0624-2
https://doi.org/10.1109/GLOCOM.2015.7417168
https://doi.org/10.1109/INFOCOM.2018.8486221
https://doi.org/10.1109/INFOCOM.2018.8486221
https://doi.org/10.1109/CNS.2017.8228623
https://doi.org/10.1109/TNET.2015.2478881
https://doi.org/10.1109/LCOMM.2018.2876449
https://doi.org/10.1109/PIMRC.2017.8292470


174 Bibliography

[246] A. Konstantinidis, G. Chatzimilioudis, D. Zeinalipour-Yazti, P. Mpeis, N. Pelekis, and
Y. Theodoridis, “Privacy-preserving indoor localization on smartphones”, 2016 IEEE
32nd International Conference on Data Engineering, ICDE 2016, vol. 27, no. 11, pp. 1470–
1471, 2016, ISSN: 10414347. DOI: 10.1109/ICDE.2016.7498379.

[247] H. Singh, S. Sarkar, A. Dimri, A. Bhaskara, N. Patwari, S. Kasera, S. Ramirez, and
K. Derr, “Privacy enabled crowdsourced transmitter localization using adjusted mea-
surements”, in IEEE Symposium on Privacy-Aware Computing (PAC), 2018, pp. 95–106.
DOI: 10.1109/PAC.2018.00016.

[248] P. Zhao, W. Liu, G. Zhang, Z. Li, and L. Wang, “Preserving Privacy in WiFi Local-
ization With Plausible Dummy Locations”, IEEE Transactions on Vehicular Technology,
vol. 69, no. 10, pp. 11 909–11 925, 2020. DOI: 10.1109/TVT.2020.3006363.

[249] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked control sys-
tems”, IEEE Control Systems, vol. 21, no. 1, pp. 84–99, 2001, ISSN: 1066-033X. DOI:
10.1109/37.898794.

[250] J. Talvitie, M. Renfors, and E. S. Lohan, “Distance-based interpolation and extrapola-
tion methods for RSS-based localization with indoor wireless signals”, IEEE Transac-
tions on Vehicular Technology, vol. 64, no. 4, pp. 1340–1353, 2015, ISSN: 00189545. DOI:
10.1109/TVT.2015.2397598.

[251] R. Kubota, S. Tagashira, Y. Arakawa, T. Kitasuka, and A. Fukuda, “Efficient sur-
vey database construction using location fingerprinting interpolation”, Proceedings
- International Conference on Advanced Information Networking and Applications, AINA,
pp. 469–476, 2013, ISSN: 1550445X. DOI: 10.1109/AINA.2013.53.

[252] D. Li, B. Zhang, Z. Yao, and C. Li, “A feature scaling based k-nearest neighbor algo-
rithm for indoor positioning system”, in 2014 IEEE Global Communications Conference,
2014, pp. 436–441. DOI: 10.1109/GLOCOM.2014.7036847.

[253] S. H. Jung, B. C. Moon, and D. Han, “Performance Evaluation of Radio Map Construc-
tion Methods for Wi-Fi Positioning Systems”, IEEE Transactions on Intelligent Trans-
portation Systems, vol. 18, no. 4, pp. 880–889, 2017, ISSN: 1524-9050. DOI: 10.1109/TITS.
2016.2594479.

[254] Q. Song, S. Guo, X. Liu, and Y. Yang, “CSI Amplitude Fingerprinting Based NB-IoT
Indoor Localization”, IEEE Internet of Things Journal, vol. PP, no. 99, pp. 1–1, 2017.
DOI: 10.1109/JIOT.2017.2782479.

[255] G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and V.
Kann, Complexity and Approximation: Combinatorial Optimization Problems and Their
Approximability Properties, 2d corrected printing 2003. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 1999, ISBN: 3540654313.

[256] A. Razavi, M. Valkama, and E. S. Lohan, “K-Means Fingerprint Clustering for Low-
Complexity Floor Estimation in Indoor Mobile Localization”, in 2015 IEEE Globecom
Workshops (GC Wkshps), 2015, pp. 1–7. DOI: 10.1109/GLOCOMW.2015.7414026.

https://doi.org/10.1109/ICDE.2016.7498379
https://doi.org/10.1109/PAC.2018.00016
https://doi.org/10.1109/TVT.2020.3006363
https://doi.org/10.1109/37.898794
https://doi.org/10.1109/TVT.2015.2397598
https://doi.org/10.1109/AINA.2013.53
https://doi.org/10.1109/GLOCOM.2014.7036847
https://doi.org/10.1109/TITS.2016.2594479
https://doi.org/10.1109/TITS.2016.2594479
https://doi.org/10.1109/JIOT.2017.2782479
https://doi.org/10.1109/GLOCOMW.2015.7414026


175

[257] S. M. J. Sadegh, S. Shahidi, and S. Valaee, “An efficient database management for
cloud-based indoor positioning using Wi-Fi fingerprinting”, in 2017 IEEE 28th Annual
International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC),
2017, pp. 1–6. DOI: 10.1109/PIMRC.2017.8292265.

[258] G. Pecoraro, S. D. Domenico, E. Cianca, and M. D. Sanctis, “LTE signal fingerprint-
ing localization based on CSI”, in 2017 IEEE 13th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob), 2017, pp. 1–8. DOI:
10.1109/WiMOB.2017.8115803.

[259] W. Guo and N. P. Filer, “2.5D Indoor mapping and location-sensing using an impulse
radio network”, in IET Seminar on Ultra Wideband Systems, Technologies and Applica-
tions, 2006, pp. 211–215.

[260] M. Ulmschneider, C. Gentner, and A. Dammann, “Matching Maps of Physical and
Virtual Radio Transmitters Using Visibility Regions”, in 2020 IEEE/ION Position, Loca-
tion and Navigation Symposium (PLANS), 2020, pp. 375–382. DOI: 10.1109/PLANS46316.
2020.9110139.

[261] C. Gentner, P Robert, M. Ulmschneider, T. Jost, and S. Zhang, “Positioning Using Ter-
restrial Multipath Signals and Inertial Sensors”, Mobile Information Systems, 2017.

[262] M. Abdmoulah, “Virtual transmitters reconstruction using multipath delay profile
fingerprints based on a novel pattern matching algorithm.”, B.S. Thesis, Technical
University of Munich, May 2019.

[263] M. Bourguiba, “Interpolation of reference fingerprints using machine learning and
pattern matching among the multipath components.”, B.S. Thesis, Technical Univer-
sity of Munich, Jul. 2018.

[264] D. Pelleg and A. W. Moore, “X-means: Extending K-means with efficient estimation
of the number of clusters”, in Proceedings of the Seventeenth International Conference on
Machine Learning, ser. ICML ’00, San Francisco, CA, USA: Morgan Kaufmann Publish-
ers Inc., 2000, pp. 727–734, ISBN: 1-55860-707-2. [Online]. Available: http://dl.acm.
org/citation.cfm?id=645529.657808.

[265] C. Shalizi. “Distannces between clustering, hierarchical clustering, 36-350 data min-
ing, Carnegie Mellon University”. (2018), [Online]. Available: https://www.stat.cmu.
edu/~cshalizi/350/.

[266] A. Khalajmehrabadi, N. Gatsis, and D. Akopian, “Structured Group Sparsity: A
Novel Indoor WLAN Localization, Outlier Detection, and Radio Map Interpolation
Scheme”, IEEE Transactions on Vehicular Technology, vol. 66, no. 7, pp. 6498–6510, 2017,
ISSN: 0018-9545. DOI: 10.1109/TVT.2016.2631980.

[267] A. H. Ismail, H. Kitagawa, R. Tasaki, and K. Terashima, “WiFi RSS fingerprint database
construction for mobile robot indoor positioning system”, in 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), 2016, pp. 001 561–001 566. DOI:
10.1109/SMC.2016.7844461.

https://doi.org/10.1109/PIMRC.2017.8292265
https://doi.org/10.1109/WiMOB.2017.8115803
https://doi.org/10.1109/PLANS46316.2020.9110139
https://doi.org/10.1109/PLANS46316.2020.9110139
http://dl.acm.org/citation.cfm?id=645529.657808
http://dl.acm.org/citation.cfm?id=645529.657808
https://www.stat.cmu.edu/~cshalizi/350/
https://www.stat.cmu.edu/~cshalizi/350/
https://doi.org/10.1109/TVT.2016.2631980
https://doi.org/10.1109/SMC.2016.7844461


176 Bibliography

[268] M. Zhou, Y. Tang, Z. Tian, and X. Geng, “Semi-Supervised Learning for Indoor Hy-
brid Fingerprint Database Calibration With Low Effort”, IEEE Access, vol. 5, pp. 4388–
4400, 2017, ISSN: 2169-3536. DOI: 10.1109/ACCESS.2017.2678603.

[269] J. Bi, Y. Wang, Z. Li, S. Xu, J. Zhou, M. Sun, and M. Si, “Fast radio map construction
by using adaptive path loss model interpolation in large-scale building.”, Sensors,
vol. vol. 19, no. 3, p. 712, Feb. 2019.

[270] M. Zhang and W. Cai, “Multivariate Polynomial Interpolation Based Indoor Finger-
printing Localization Using Bluetooth”, IEEE Sensors Letters, vol. 2, no. 4, pp. 1–4,
2018. DOI: 10.1109/LSENS.2018.2878558.

[271] Y. H. Wu, Y. L. Chen, and S. T. Sheu, “Indoor location estimation using virtual finger-
print construction and zone-based remedy algorithm”, in 2016 International Conference
On Communication Problem-Solving (ICCP), 2016, pp. 1–3. DOI: 10.1109/ICCPS.2016.
7751132.

[272] K. Sato, K. Suto, K. Inage, K. Adachi, and T. Fujii, “Space-Frequency-Interpolated Ra-
dio Map”, IEEE Transactions on Vehicular Technology, vol. 70, no. 1, pp. 714–725, 2021.
DOI: 10.1109/TVT.2021.3049894.

[273] B. Meiners, J. Barowski, A. Nalobin, and I. Rolfes, “Investigation on the geometric
properties of multipath components in indoor radio channels”, pp. 1–5, 2015, ISSN:
2164-3342.

[274] ——, “Comparison of the Channel Impulse Response Interpolation Algorithm and
Channel Measurements”, pp. 1–4, 2014.

[275] A. Haniz, G. K. Tran, R. Iwata, K. Sakaguchi, J. Takada, D. Hayashi, T. Yamaguchi,
and S. Arata, “Propagation Channel Interpolation for Fingerprint-Based Localization
of Illegal Radios”, IEICE Transactions on Communications, vol. E98.B, no. 12, pp. 2508–
2519, 2015. DOI: 10.1587/transcom.E98.B.2508.

[276] W. S. Murphy, Jr., and W. Hereman, “Determination Of A Position In Three Dimen-
sions Using trilateration and Approximate Distances”, Tech. Rep., 1999.

[277] H. Luecken and A. Wittneben, “UWB radar imaging based multipath delay prediction
for NLOS position estimation”, in 2011 IEEE International Conference on Ultra-Wideband
(ICUWB), 2011, pp. 101–105. DOI: 10.1109/ICUWB.2011.6058804.

[278] K. N. Poudel, D. Schurig, and N. Patwari, “Spatial imaging using a communica-
tion system’s channel state information”, in USNC-URSI Radio Science Meeting, 2016,
pp. 41–42. DOI: 10.1109/USNC-URSI.2016.7588502.

[279] M. S. Mercan and E. Öztürk, “Through wall imaging based on MIMO UWB radar
with a fast image reconstruction method”, in 2013 European Radar Conference, 2013,
pp. 29–32.

[280] B. Jameson, Y. T. J. Morton, D. Garmatyuk, A. Curtis, and R. Ewing, “Target scene
reconstruction in indoor environment with cognitive OFDM radar”, in International
Waveform Diversity Design Conference (WDD), 2012, pp. 079–084. DOI: 10.1109/WDD.
2012.7311259.

https://doi.org/10.1109/ACCESS.2017.2678603
https://doi.org/10.1109/LSENS.2018.2878558
https://doi.org/10.1109/ICCPS.2016.7751132
https://doi.org/10.1109/ICCPS.2016.7751132
https://doi.org/10.1109/TVT.2021.3049894
https://doi.org/10.1587/transcom.E98.B.2508
https://doi.org/10.1109/ICUWB.2011.6058804
https://doi.org/10.1109/USNC-URSI.2016.7588502
https://doi.org/10.1109/WDD.2012.7311259
https://doi.org/10.1109/WDD.2012.7311259


177

[281] L. Li, X. Chen, and C. Parini, “Development of the UWB radar system with rotat-
ing antenna array and two imaging reconstruction algorithms for concealed metallic
targets imaging in multipath environments”, in International Conference on Electromag-
netics in Advanced Applications (ICEAA), 2015, pp. 759–762. DOI: 10.1109/ICEAA.2015.
7297217.

[282] L. Jofre, A. Broquetas, J. Romeu, S. Blanch, A. P. Toda, X. Fabregas, and A. Cardama,
“UWB tomographic radar imaging of penetrable and impenetrable objects”, Proceed-
ings of the IEEE, vol. 97, no. 2, pp. 451–464, 2009, ISSN: 0018-9219. DOI: 10.1109/JPROC.
2008.2008854.

[283] T.-J. Li, M.-M. Ge, and G.-W. Yuan, “Human activity recognition using UWB radar
and cameras on a mobile robot”, in 4th IEEE Conference on Industrial Electronics and
Applications, 2009, pp. 3038–3042. DOI: 10.1109/ICIEA.2009.5138706.

[284] R. Zetik, J. Sachs, and R. S. Thoma, “UWB short-range radar sensing - The architecture
of a baseband, pseudo-noise UWB radar sensor”, IEEE Instrumentation Measurement
Magazine, vol. 10, no. 2, pp. 39–45, 2007, ISSN: 1094-6969. DOI: 10.1109/MIM.2007.
364960.

[285] P. M. Holl and F. Reinhard, “Holography of Wi-fi Radiation”, Phys. Rev. Lett., vol. 118,
p. 183 901, 18 2017. DOI: 10.1103/PhysRevLett.118.183901. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevLett.118.183901.

[286] T. Deissler and J. Thielecke, “Feature based indoor mapping using a bat-type UWB
radar”, in 2009 IEEE International Conference on Ultra-Wideband, 2009, pp. 475–479. DOI:
10.1109/ICUWB.2009.5288802.

[287] F. Guidi, A. Guerra, and D. Dardari, “Personal Mobile Radars with Millimeter-Wave
Massive Arrays for Indoor Mapping”, IEEE Transactions on Mobile Computing, vol. 15,
no. 6, pp. 1471–1484, 2016. DOI: 10.1109/TMC.2015.2467373.

[288] Navvis company website, https://www.navvis.com/, Accessed: 27-09-2021.

https://doi.org/10.1109/ICEAA.2015.7297217
https://doi.org/10.1109/ICEAA.2015.7297217
https://doi.org/10.1109/JPROC.2008.2008854
https://doi.org/10.1109/JPROC.2008.2008854
https://doi.org/10.1109/ICIEA.2009.5138706
https://doi.org/10.1109/MIM.2007.364960
https://doi.org/10.1109/MIM.2007.364960
https://doi.org/10.1103/PhysRevLett.118.183901
https://link.aps.org/doi/10.1103/PhysRevLett.118.183901
https://link.aps.org/doi/10.1103/PhysRevLett.118.183901
https://doi.org/10.1109/ICUWB.2009.5288802
https://doi.org/10.1109/TMC.2015.2467373
https://www.navvis.com/




List of Figures

2.1 System overview for RF-based indoor localization. A receiver communicates with the
transmitters to measure electromagnetic signal properties. The measured signal proper-
ties are then either used to calculate the receiver’s position locally at the receiver, or are
sent to an ILS server. In the second case the receiver then obtains its position (or the infor-
mation from which it can determine its position) from the ILS server. . . . . . . . . . . . . 8

2.2 Received signal characteristics that are used to localize a device. h(t) denotes the channel
impulse response. It should be noted that in the bottom figure there is no LoS between
X2 with T1, therefore using the ToF2 and the TDoA for multilateration will produce the
incorrect result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Trilateration. Left: it is possible to calculate the location of the receiver for line-of-sight
(LoS) conditions; Right: due to an obstacle blocking the line-of-sight with transmitter T2
(non-line-of-sight (NLoS) conditions) it is not possible to calculate the location of the re-
ceiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Fingerprinting-based localization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Fingerprinting-based localization using a deep neural network. . . . . . . . . . . . . . . . . 33

3.1 Assumed ILS system model. The user measures the signal from the APs and communi-
cates with the ILS server. The communication with the ILS server can occur though the
APs or a separate device. Image adapted from [1] ©2021 IEEE. . . . . . . . . . . . . . . . . 79

3.2 Proposed localization scheme. The multipath delay profile (MDP) is extracted from the
signals received by the user from the APs. Next, the ILS server uses the multipath match-
ing (MCA) algorithm to calculate the user’s location. Image adapted from [1] ©2021 IEEE.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3 Example MDP. If the obstacle, marked with O, is not present in the indoor environment,

the MDP calculated at the receiver location X is {[dj,1, ..., dj,4]}. If the obstacle is present,
it alters the MDP. Propagation paths dj,1 (yellow) and dj,2 (blue) are blocked, and new
propagation paths dj,5 and dj,6 are created. The MDP in the case when the obstacle is
present becomes {[d3, ..., d6]}. The image is adapted from [1] ©2021 IEEE. . . . . . . . . . . 80

3.4 Ray casting example. Rays are ’cast’ from the transmitter location and are reflected off the
walls. Interpolation is needed in order to obtain the multipath profile at pointXi. . . . . . 83

3.5 Calculation of a multipath component with two reflections. . . . . . . . . . . . . . . . . . . 84
3.6 Recursive calculation of virtual transmitters and receivers. Solid black lines represent the

original geometry, solid colored lines represent the geometry that was reflected once, dot-
ted lines represent the geometry that was reflected twice. . . . . . . . . . . . . . . . . . . . 84

179



180 List of Figures

3.7 Simulation setup. Left: planes representing the indoor geometry (floor and ceiling not
displayed). The geometry used for generating the fingerprint map is colored in green.
The three columns, colored in blue, were added to the geometry before the query fin-
gerprints were generated. Right: Transmitter locations and the query/reference points.
Figure adapted from [4] ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.8 Left: Localization error of trilateration with walls between the rooms removed. Center
Left: Trilateration with obstacles. Center Right: MCA algorithm, reference and query data
generated without obstacles. Right: MCA algorithm, obstacles added when the query
data was generated. No noise is included in the simulation. Figure adapted from [1]
©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.9 From left to right: 1) 4 anchors, multilateration multipath simulated (NLoS + multipath).
2) 20 anchors, multilateration multipath simulated (LoS + multipath). 3) 20 anchors, mul-
tilateration no multipath simulated (ideal LoS). 4) 4 anchors, MCA multipath simulated
(NLoS + multipath). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.10 Localization error of the MCA algorithm with full fingerprints in the presence of AWGN
noise. Figure adapted from [1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.11 Mean localization error for different exponent values in the similarity metric. . . . . . . . . 87
3.12 System model used by the SAGE algorithm [39]. . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.13 Signal flow graph of the SAGE algorithm [39]. . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.14 Measurement setup, AP locations. APs are mounted on the walls of the room. Figure

adapted from [1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.15 Localization error at the query points for different reference fingerprint densities. Static

measurements. Figure adapted from [1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . 92
3.16 Localization error at query points. Near static measurements. Figure adapted from [1]

©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.17 Localization error at query points. Query data collected by a moving robot. Figure

adapted [1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.18 Localization error at query points. Query data collected by a moving person. [1] ©2021

IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.19 Probability distribution of the localization errors. Moving robot Fig. 3.17. Figure adapted

from [1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.20 Localization error at query points. Query data collected by a moving robot, a person mov-

ing around the room during query measurements. Figure adapted from [1] ©2021 IEEE. . . 94
3.21 Average localization error for different numbers of transmitters used. Figure adapted

from [1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 Communication between the user and the ILS server without privacy protection. The ILS
server calculates the location of the user and knows the user’s identity. . . . . . . . . . . . . 96

4.2 Assumed ILS system model. The user measures a fingerprint from the APs and obtains
his or her location by communicating with the ILS server [1], [228]. Figure adapted from
[1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Anonymity-based privacy protection. The ILS calculates the location of each user and
hence is unable to distinguish between the users. . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Privacy protection using the Prailler cryptosystem. The user encrypts the query finger-
prints, the ILS server encodes the fingerprint database with the user’s public key and
performs all of the computations on the encrypted data. . . . . . . . . . . . . . . . . . . . . 99

4.5 Camouflage-based privacy protection. The user generates fake camouflage fingerprints
and sends them to the ILS server alongside the real measurements. . . . . . . . . . . . . . 100



List of Figures 181

4.6 Proposed privacy protection scheme. The user generates partial fingerprints from the
query fingerprint. The user further generates partial camouflage fingerprints. The ILS
server returns several candidate locations and reference fingerprints for each partial fin-
gerprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7 Example distributions of the candidate locations calculated by the ILS. Top left: the ILS
cannot deduce the location of the user. Top right: the ILS can guess the location of the
user due to the distribution of the candidate points. Bottom left: the ILS can estimate
the location of the user because some reference points were selected as candidates more
often than other. Bottom right: the ILS can estimate the position of the user as the calcu-
lated similarity metric to the query is much higher for some reference fingerprints than
for others. Figure adapted from [1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.8 Illustration of the proof of Proposition 3. The point Xi is shifted to Xi′ , Xi′′ , Xi′′′ and
Xi∗, a ≥ b. Figure adapted from [1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . 107

4.9 Two candidate trajectories. The left trajectory is more likely to be a natural trajectory of
the user. Figure adapted from [1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.10 Possible distributions of candidate points that the ILS calculates for a moving user. Top
left: example of an ideal distribution, top right: the trajectory of the user is easy to iden-
tify, bottom left: the ILS has several guesses as to which trajectory belongs to the user,
needs several localization steps to identify the user, bottom right: the ILS needs many
localization steps in order to find the movement pattern of the user. Figure adapted from
[1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.11 Localization accuracy with partial fingerprints. Curves marked with N were generated in
the presence of noise. Figure adapted from [1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . 111

4.12 Privacy evaluation. Top: number of candidate points received by the user. Middle and
bottom: degree of privacy. The camouflage fingerprints for the curves marked with RF
were generated using Algorithm 3. Algorithm 4 was used for the curves marked with RT.
Figure adapted from [1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.13 Privacy evaluation in the presence of noise. Figure adapted from [1] ©2021 IEEE. Notation
identical to Fig. 4.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.14 Degree of privacy of a moving user as a function of the number of partial fingerprints
sent by the user. The camouflage fingerprints were generated using Algorithm 3. Figure
adapted from [1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.15 Degree of privacy of a moving user as a function of the number of partial fingerprints
sent by the user. The camouflage fingerprints were generated using Algorithm 4. Figure
adapted from [1] ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.16 Privacy evaluation with measurement data. Top: number of candidate points received by
the user [1]. Notation identical to Figs. 4.12 and 4.13. Figure adapted from [1] ©2021 IEEE. 113

5.1 Proposed structure of the fingerprint database. Figure adapted from [2] ©2018 IEEE. . . . . 120
5.2 Multipath component search. Figure adapted from [2] ©2018 IEEE. . . . . . . . . . . . . . . 120
5.3 Average localization error of the algorithms. Figure adapted from [2] ©2018 IEEE. . . . . . 124
5.4 Number of fingerprint comparisons of the algorithms. Figure adapted from [2] ©2018 IEEE.124
5.5 Efficiency of the algorithms. Figure adapted from [2] ©2018 IEEE. . . . . . . . . . . . . . . . 125
5.6 Localization error at each algorithm iteration. Figure adapted from [2] ©2018 IEEE. . . . . 125

6.1 Example of first degree (top) and second degree (bottom) virtual transmitters (VTs). To
save space not all second degree VTs are shown. Figure adapted from [5] ©2019 IEEE. . . . 129



182 List of Figures

6.2 Multipath component interpolation. The multipath components are equal to the distances
from the points to the VT T ′j . The points Y1, ...,Y4 and distances d1j,2, ..., d4j,2 can be used
to calculate the location of T ′j , and therefore, the propagation distance from the target
pointX to Tj . Figure adapted from [4] ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . 131

6.3 Algorithm used to estimate VT positions [5]. Candidate VT positions are generated and
then filtered to obtain the VTs. Figure adapted from [5] ©2019 IEEE. . . . . . . . . . . . . . 132

6.4 Matching multipath components between clusters. Left: Both clusters have the same
number of elements. Right: The mean of the smaller cluster is aligned with the mean
of the larger cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5 Channel impulse response (CIR) interpolation. The positions of the CIR peaks need to
be interpolated as well as their magnitudes. Corresponding MDPs are shown in Fig. 6.6.
Figure adapted from [4] ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.6 Interpolation of multipath fingerprints. Before the multipath components can be interpo-
lated, the correspondences between the propagation paths need to be determined. In the
example above, dij ∈ Di needs to be interpolated from the pairs {d1j,3, d2j2}, {d1j,2, d2j,3}
and {d1j,1, d2j,1}. Figure adapted from [4] ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . 138

6.7 Localization error obtained without interpolation or extrapolation. The x-axis shows the
average distance from the query points to the closest reference point. Figure adapted from
[4] ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.8 Localization error CDF obtained by interpolating the reference points at 2440 (2000%) tar-
get points. Figure adapted from [4] ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.9 Localization error CDF, the reference points marked by a square in Fig. 3.7 were extrapo-
lated at 4000 target points. Figure adapted from [4] ©2018 IEEE. . . . . . . . . . . . . . . . . 140

6.10 Fingerprint extrapolation example. Left: only the reference fingerprints marked with red
squares were used to localize the query points. Right: The fingerprint map was extended
by 4000 extrapolated points. Figure adapted from [4] ©2018 IEEE. . . . . . . . . . . . . . . . 141

6.11 Geometry Reconstruction. Figure adapted from [5] ©2019 IEEE. . . . . . . . . . . . . . . . . 144
6.12 Reference points, z = {1m, 4m, 6m} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.13 Reference data with z = 4m, perfect VTs. Figure adapted from [5] ©2019 IEEE. . . . . . . . 149
6.14 Full reference data, perfect VTs. Figure adapted from [5] ©2019 IEEE. . . . . . . . . . . . . . 149
6.15 Full reference data with VT reconstruction. Figure adapted from [5] 2019 IEEE. . . . . . . . 149
6.16 Performance metrics over the different values of the parameter γ. Complete multipath

data, polygon extension. The higher the value of γ the more candidate VTs are filtered
out. Figure adapted from [5] ©2019 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.1 Top: original MCA system. Bottom: example crowdsourcing-based MCA system with
efficient database management. If a LoS is detected, the measured MDP is added to the
database. If NLoS is detected the MCA algorithm is used. Interpolation is used to extend
and manage the database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2 Possible combination of the MCA algorithm and VT triangulation. . . . . . . . . . . . . . . 153



List of Tables

2.1 Existing multipath estimation methods. The hardware platforms and communication
standards used to implement the algorithms are highlighted in bold blue text. . . . . . . . 16

2.2 Example approaches that rely on ranging, triangulation and multilateration. The hard-
ware platforms and communication standards used to implement the algorithms are high-
lighted in bold blue text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Terms and definitions related to fingerprinting in this thesis. . . . . . . . . . . . . . . . . . . 21
2.4 Examples of exclusive RSSI fingerprinting ILSs. The hardware platforms and communi-

cation standards used to implement the algorithms are highlighted in bold blue text. . . . . 23
2.5 Examples of CSI fingerprinting ILSs. The hardware platforms and communication stan-

dards used to implement the algorithms are highlighted in bold blue text. . . . . . . . . . 25
2.6 Examples of multipath fingerprinting ILSs. The hardware platforms and communication

standards used to implement the algorithms are highlighted in bold blue text. . . . . . . . 27
2.7 Examples of ILSs based on probabilistic fingerprinting. The hardware platforms and com-

munication standards used to implement the algorithms are highlighted in bold blue text. 29
2.8 Examples of machine learning based ILSs. The hardware platforms and communication

standards used to implement the algorithms are highlighted in bold blue text. . . . . . . . 32
2.9 Example deep learning based ILSs. The hardware platforms and communication stan-

dards used to implement the algorithms are highlighted in bold blue text. . . . . . . . . . 39
2.10 Examples of crowdsourcing-based fingerprinting ILSs. The hardware platforms and com-

munication standards used to implement the algorithms are highlighted in bold blue text. 43
2.11 Examples of multipath SLAM ILSs. The hardware platforms and communication stan-

dards used to implement the algorithms are highlighted in bold blue text. . . . . . . . . . . 45
2.12 Examples fusion-based ILSs. The hardware platforms and communication standards used

to implement the algorithms are highlighted in bold blue text. . . . . . . . . . . . . . . . . . 49
2.13 Communication standards used for indoor localization . . . . . . . . . . . . . . . . . . . . . 50
2.14 Devices used as a receiver in ILSs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.15 Examples of available ILS datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.16 Metrics of ILS localization performance. * indicates the information was not specifically

mentioned in the publication and had to be inferred from other system aspects. . . . . . . . 66
2.17 Surveys on indoor localization systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.18 Commercially available indoor localization systems. Information marked with * was in-

ferred (the information is not mentioned on the websites). . . . . . . . . . . . . . . . . . . . 75

4.1 Terms and definitions related to indoor localization privacy in this thesis. . . . . . . . . . . 101

5.1 Complexity estimation of existing RSSI-based localization schemes. Table adapted from
[2] ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

183



184 List of Tables

5.2 Complexity estimation of existing CIR, CFR and CSI -based localization schemes. Table
adapted from [2] ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Complexity estimation of existing multipath-based localization schemes. Table adapted
from [2] ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1 Existing work relying on the use of VTs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2 Localization error gain achieved through interpolation and extrapolation and the corre-

sponding parameter values. Original error is the localization error calculated only using
the reference fingerprints, dmap - average distance from the query points to the closest
reference point, dint - average distance from the query points to the closest reference or
target point. Table adapted from [4] ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3 Reconstruction performance. The performance of the algorithm is better when metrics
marked with ↑ are maximized and metrics marked with ↓ are minimized. Table adapted
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