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A B S T R A C T

In probabilistic assessments, spatially variable material properties are modeled with random fields. These
random fields can be learned from spatial data by means of Bayesian analysis. This paper presents analytical
expressions for the Bayesian analysis of hierarchical Gaussian random fields. We model the prior spatial
distribution by a Gaussian random field with normal-gamma distributed mean and precision and make use of
the conjugacy of prior distribution and likelihood function to find the posterior distribution of the random field
parameters. We present closed-form expressions for the spatial mean and precision function of the posterior
predictive Student’s 𝑡-random field. Furthermore, we discuss the application of the hierarchical model to
non-Gaussian random fields (translation random fields) and show the connection of the methodology to the
Bayesian approachof EN 1990 for estimating characteristic values for material parameters. The method is
illustrated on two spatial data sets of concrete and soil strength parameters.
. Introduction

Setting up an engineering model requires definition of material
roperties. To correctly account for their inherent randomness, such
aterial properties are commonly modeled probabilistically. A proba-

ilistic representation with random variables is sufficient for modeling
aterials without or with negligible spatial variability. However, in
any applications the effects of the spatial variability of materials

hould not be neglected in the modeling process. This is the case,
.g., with soil parameters in geotechnical assessments [1], and material
arameters in assessments of large concrete structures [e.g.2].

Spatially variable uncertain quantities can be modeled by random
ields (RFs). An RF represents a random variable at each point of a
patial domain [3]. A complete definition of the RF requires specifi-
ation of the joint distribution of the variables corresponding to any
ollection of points of the spatial domain. This is nontrivial in general
ith the exception of Gaussian and a special case of non-Gaussian RFs,

ermed translation RFs. Translation RFs are RFs that can be expressed
s functions of Gaussian RFs [4], e.g., a lognormal RF can be expressed
s the exponential of a Gaussian RF. A Gaussian RF implies that the
oint distribution for any collection of points is multivariate Gaussian
nd can be completely defined by the first- and second-moment func-
ions [5]. Gaussian RFs have well established statistical properties and
variety of methods are available for simulating them [e.g. [6]].

RFs can be learned from data through Bayesian analysis [7]. In
he general case, such an update needs to be done numerically with
ethods usually based on Monte Carlo sampling, including Markov

hain Monte Carlo methods [8], sequential Monte Carlo methods [9,10]

∗ Corresponding author.
E-mail address: s.geyer@tum.de (S. Geyer).

and subset simulation [11–13]. However, Gaussian RFs enable the use
of conjugate priors to learn the RF parameters via a closed-form update
in a Bayesian analysis [2,14].

RFs have been used for a long time in the field of geostatistics for
the interpolation of spatial data by means of kriging, which includes
Bayesian inference of Gaussian RF parameters [e.g. [15,16]]. A compre-
hensive review of hierarchical Bayesian analysis with spatial data from
the viewpoint of geostatistics can be found in [17]. More recently, these
approaches have gained importance in the field of machine learning.
They are used for Gaussian process regression, which is a versatile
surrogate model for random functions with noisy observations [18].
In the engineering community, the potential of accounting for spatial
variability within Bayesian analysis has been recognized especially in
the field of geotechnical engineering [e.g. [19–22]]. Therein, it is often
essential to identify site-specific trend functions of soil properties in
addition to the inherent spatial variability. Recently, attempts have
been made to simultaneously learn the trend function and autocovari-
ance function with sparse measurements in a Bayesian analysis. The
approach of [23–25] applies sparse Bayesian learning to learn the trend
function of the RF and subsequently draws samples from the posterior
distribution of the RF parameters through Markov chain Monte Carlo
methods. The authors of [26] applied Bayesian compressive sampling
to represent non-homogeneous RFs. This approach does not require the
explicit choice of a prior RF model. It expresses the RF as a superposi-
tion of a set of basis functions and evaluates the posterior distribution
of the coefficients of these functions using sparse measurements. The
method has been combined with the Karhunen–Loève expansion to
ttps://doi.org/10.1016/j.probengmech.2021.103167
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obtain realizations of the RF [27–29], and has been recently extended
to treat multi-dimensional and cross-correlated RFs [30,31].

Bayesian approaches have also found their way into other engi-
neering fields, e.g., for estimating design values of structural material
properties when samples are available [32,33], which is also included
in the current European standards for constructions (EN 1990) [34].

The aim of this paper is to present a hierarchical Bayesian model
for material properties modeled with Gaussian or translation RFs. Hi-
erarchical Gaussian Bayesian models have been well developed in the
context of Bayesian linear regression [e.g.7] and hierarchical spatial
modeling [e.g.35]. This work applies existing results from these fields
to derive a comprehensive hierarchical RF model that can be used in
the context of stochastic material modeling. We make use of the fact
that the normal-gamma distribution is the conjugate prior for the mean
and precision of a Gaussian RF to obtain the posterior distribution of
the RF parameters. The posterior predictive RF is a non-homogeneous
RF with Student’s 𝑡-marginal distribution. Importantly, given a prior
distribution for the RF parameters and a chosen autocorrelation func-
tion, all steps of the Bayesian analysis can be performed in closed
form, providing marginal and multivariate solutions for the posterior
predictive RF model. This property should simplify application in prac-
tice, especially in engineering domains where accounting for spatial
variability is currently not common practice. Moreover, we discuss
how existing approaches for simulation of Gaussian RFs can be applied
to generate realizations of the derived RF model. The application to
situations with non-Gaussian translation prior RFs is investigated and
for the specific case of lognormal prior distribution, the equations
for the required transformation are given. Furthermore, we discuss
the influence of the prior correlation function and a posterior point
estimate of its parameters. Finally, we show that the presented updating
approach is a generalization of the Bayesian approach for evaluation of
characteristic values of EN 1990.

The structure of the paper is as follows. Section 2 presents the
structure of the hierarchical RF, followed by a short review of Bayesian
analysis and a step-by-step presentation of the proposed Bayesian up-
dating procedure. Section 3 applies the method to two examples from
different engineering fields (geotechnical engineering and structural
engineering). A summary and main conclusions are given in Section 4.
The analytical expressions for updating the RF are derived in Appen-
dices A to C and Appendix D describes properties of the log-Student’s
𝑡-distribution.

2. Methodology

In a Gaussian RF 𝑋(𝒛), the joint distribution of {𝑋(𝒛𝑖), 𝑖 = 1,… , 𝑛}
for any 𝒛𝑖 ∈ 𝛺 ⊂ R𝑑 and 𝑛 ∈ N is jointly Gaussian, with 𝛺 denoting
the domain of definition of the RF and 𝑑 the spatial dimension of
𝛺 [5]. This RF is fully described by the spatial functions for the mean
value, the variance and the autocorrelation. Closed-form solutions are
available for the posterior distribution of the RF given data 𝐌 of
𝑋 [7,36]. We consider a prior RF for 𝑋(𝒛) with homogeneous point
statistics, i.e., a-priori the RF has constant mean and variance. The
vector of uncertain hyperparameters is 𝜽 =

[

𝜇𝑋 , 𝜆𝑋
]𝖳, where 𝜇𝑋 is

the mean value and 𝜆𝑋 is the precision (inverse of the variance). The
ssumption of prior homogeneity is a simplification and limits the
pplication to cases without a spatial trend of the RF or cases where
homogeneous RF 𝑋(𝒛) can be obtained from the actual RF by a nor-
alization operation [e.g., 3] or by de-trending methods [e.g., 37,38].
Fig. 1 summarizes the investigated problem setting, where the nodes

epresent uncertain quantities (the random variables and the RF) and
he arrows denote the direct dependencies among them [e.g. [39]].

is the vector of correlation parameters, i.e., the parameters of the
utocorrelation function of the RF. These are initially considered as
eterministic; the estimation of 𝝉 from the data 𝐌 is discussed in

Section 2.7. It is worth noting that the method can handle arbitrary

autocorrelation functions, i.e., we do not require the autocorrelation

2

Fig. 1. The hierarchical RF model to learn 𝑋(𝒛) from 𝐌. 𝜇𝑋 and 𝜆𝑋 are the mean and
recision of the RF 𝑋(𝒛) and 𝐌 is the measurement data. 𝝉 is the vector of parameters
f the autocorrelation function.

unction to depend on the difference in location, although in most
pplications this is a standard choice. The aim of the analysis is to
earn 𝑋(𝒛) conditional on 𝐌. The individual steps of the analysis are
erived in the following, preceded by a short introduction to the basics
f Bayesian analysis.

.1. BayesIan analysis

When performing a Bayesian analysis, the first step is setting up a
rior joint probability density function (PDF) of the parameters 𝜽. The
rior PDF 𝑓 (𝜽) is then updated to the posterior PDF 𝑓 (𝜽|𝐌) with data
, by application of Bayes’ rule [7]:

(𝜽|𝐌) ∝ 𝑓 (𝜽) ⋅ L (𝜽|𝐌) , (1)

here L (𝜽|𝐌) is the likelihood function, summarizing the informa-
ion from the data 𝐌. Note that a single data point 𝐌𝑖 may contain
arious types of information, including the measurement outcome,
he measurement location or time, the used measurement device and
he environmental conditions at the time of the measurement. In this
aper, we focus on the case where 𝐌 contains spatially distributed
easurements of an RF 𝑋(𝒛). Hence, each 𝐌𝑖 includes the measure-
ent outcome 𝑥𝑚,𝑖 and the corresponding measurement location 𝒛𝑚,𝑖,

.e., 𝐌𝑖 = [𝑥𝑚,𝑖, 𝒛𝑚,𝑖]. Given a set of 𝑛 direct measurements of the
F 𝑋(𝒛), 𝐌 =

[

𝐌1, 𝐌2,… , 𝐌𝑛
]𝖳, with measurement outcomes 𝒙𝑚 =

𝑥𝑚,1, 𝑥𝑚,2,… , 𝑥𝑚,𝑛
]𝖳 ⊆ R𝑛 and corresponding measurement locations

𝑚 =
[

𝒛𝑚,1, 𝒛𝑚,2,… , 𝒛𝑚,𝑛
]𝖳 ⊆ R𝑛×𝑑 , the joint likelihood is the PDF of

(𝒛) at locations 𝐙𝑚 conditional on 𝜽:

(𝜽|𝐌) = 𝑓
(

𝒙𝑚;𝐙𝑚|𝜽
)

. (2)

.2. Prior model

We consider a Gaussian RF 𝑋(𝒛) whose parameter vector 𝜽 has a
ormal-gamma () prior, with PDF [e.g. [33,35,40]]

(𝜽) = 
(

𝜇𝑋 , 𝜆𝑋 |𝜇0, 𝜅0, 𝛼0, 𝛽0
)

= 
(

𝜇𝑋 |𝜇0, 𝜅0𝜆𝑋
)

⋅ 
(

𝜆𝑋 |𝛼0, 𝛽0
)

= 0𝜆
𝛼0−

1
2

𝑋 exp
(

−𝜆𝑋
(𝜅0
2

(

𝜇𝑋 − 𝜇0
)2 + 𝛽0

))

. (3)

𝛤 (⋅) is the gamma function and 0 is a normalizing constant, given by

0 =
𝛽𝛼00 𝜅

1
2
0

𝛤
(

𝛼0
)

(2𝜋)
1
2

. (4)

The spatial variability of the prior RF is determined by its autocorrela-
tion function 𝜌

(

𝒛1, 𝒛2
)

[3,5]. A classical choice for the autocorrelation
function is the Matérn model, which includes the exponential model
and the square-exponential model [5,18,41].
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2.3. Likelihood function

The likelihood function for learning the RF 𝑋(𝒛) with spatially
distributed measurements 𝐌 is given by Eq. (2). For the Gaussian RF
this translates to:

L (𝜽|𝐌) =
𝜆
𝑛
2
𝑋

(2𝜋)
𝑛
2
(

det
(

𝐑𝑚
))

1
2

exp
(

−
𝜆𝑋
2

(

𝒙𝑚 − 𝜇𝑋𝟏𝑛
)

𝐑−1
𝑚

(

𝒙𝑚 − 𝜇𝑋𝟏𝑛
)𝖳
)

,

(5)

where 𝐑𝑚 is the correlation matrix of the measurement locations with
entry 𝑅𝑚,𝑖,𝑗 calculated as 𝜌

(

𝒛𝑚,𝑖, 𝒛𝑚,𝑗
)

. 𝟏𝑛 denotes a 1×𝑛-vector of ones.
Uncertainty in the measurement procedure can be accounted for

y including a measurement error 𝜀𝑖. Assuming an additive measure-
ent error yields the following relation between the actual value 𝑥 at

ocation 𝒛𝑚,𝑖 and the measured value 𝑥𝑚,𝑖:

𝑚,𝑖 = 𝑥
(

𝒛𝑚,𝑖
)

+ 𝜀𝑖. (6)

he error 𝜀𝑖 is often modeled by a zero-mean Gaussian random vari-
ble with standard deviation 𝜎𝜀 and statistical independence between
he measurement errors at different locations is assumed. In such
ase, the joint likelihood function retains the form of Eq. (5) and the
easurement error only affects the calculation of the entries in 𝐑𝑚:

𝑅𝑚,𝑖,𝑗 = 𝜌
(

𝒛𝑖, 𝒛𝑗
)

+ 𝛿(𝑖, 𝑗) ⋅ 𝜎2𝜀 , (7)

where 𝛿(𝑖, 𝑗) is the Dirac delta function returning 1 if 𝑖 = 𝑗 and 0
otherwise.

2.4. Posterior distribution of the parameters

In the general case, Eq. (1) needs to be solved numerically, e.g.
through sampling techniques, due to the intractability of the normal-
izing constant. However, analytical solutions for the posterior distribu-
tion are available in some special cases, when using conjugate priors [7,
40]. The chosen  prior distribution and the multivariate Gaussian
likelihood of Eq. (5) are conjugate. Hence, the posterior distribution of
𝜽 can be derived analytically and has the same parametric form as the
prior, i.e., it is a  distribution. The Bayesian updating simplifies to
an update of the parameters of the  distribution [35,42]:

𝑓 (𝜽|𝐌) = 
(

𝜇𝑋 , 𝜆𝑋 |𝜇𝑛, 𝜅𝑛, 𝛼𝑛, 𝛽𝑛
)

= 𝑛𝜆
𝛼𝑛−

1
2

𝑋 exp
(

−𝜆𝑋
( 𝜅𝑛
2

(

𝜇𝑋 − 𝜇𝑛
)2 + 𝛽𝑛

))

,

(8)

here the normalizing constant 𝑛 is given by

𝑛 =
𝛽𝛼𝑛𝑛 𝜅

1
2
𝑛

𝛤
(

𝛼𝑛
)

(2𝜋)
1
2

. (9)

The parameters of the posterior distribution can be obtained with the
following set of equations:

𝜇𝑛 =
𝜅0𝜇0 + 𝟏𝑛𝐑−1

𝑚 𝒙
𝖳
𝑚

𝜅0 + 𝟏𝑛𝐑−1
𝑚 𝟏𝖳𝑛

, (10)

𝜅𝑛 = 𝜅0 + 𝟏𝑛𝐑−1
𝑚 𝟏𝖳𝑛 , (11)

𝛼𝑛 = 𝛼0 +
𝑛
2
, (12)

𝛽𝑛 = 𝛽0 +
1
2

⎛

⎜

⎜

⎝

𝒙𝑚𝐑−1
𝑚 𝒙

𝖳
𝑚 +

𝜅0𝜇20𝟏𝑛𝐑
−1
𝑚 𝟏𝖳𝑛 − 2𝜅0𝜇0𝟏𝑛𝐑−1

𝑚 𝒙
𝖳
𝑚 −

(

𝟏𝑛𝐑−1
𝑚 𝒙

𝖳
𝑚
)2

𝜅0 + 𝟏𝑛𝐑−1
𝑚 𝟏𝖳𝑛

⎞

⎟

⎟

⎠

.

(13)

A derivation of the parameters in Eqs. (10) to (13) can be found in [7]
in the context of Bayesian linear regression. For easier accessibility, we
provide the derivations in Appendix A.
3

2.5. Marginal posterior predictive distribution

Typically, the goal is to make predictions about the quantity of
interest 𝑋. To this end, one needs the posterior predictive distribution
of 𝑋, which is obtained by marginalization of the joint PDF of 𝑋
conditional on 𝜽 and the posterior distribution of 𝜽 given 𝐌. When 𝑋 is

odeled by a single random variable and the measurement points are
ncorrelated, the posterior predictive distribution is given as [7,19,33]

(

𝑥|𝒙𝑚
)

= ∫Θ
𝑓 (𝑥|𝜽) 𝑓

(

𝜽|𝒙𝑚
)

d𝜽, (14)

here Θ denotes the domain of definition of 𝜽. The conditional inde-
endence between 𝑋 given 𝜽 and 𝐌 does no longer hold when 𝑋 is
odeled as an RF. Instead, the posterior and the posterior predictive
istribution of 𝑋 will depend on the spatial location 𝒛. In RF theory,
he PDF of the RF 𝑋(𝒛) at location 𝒛 is termed marginal (or first order)
DF of 𝑋(𝒛). The marginal posterior predictive PDF of 𝑋(𝒛), denoted
(𝑥; 𝒛|𝐌), is given as

(𝑥; 𝒛|𝐌) = ∫Θ
𝑓 (𝑥; 𝒛|𝜽,𝐌) 𝑓 (𝜽|𝐌) d𝜽. (15)

ere, 𝑓 (𝑥; 𝒛|𝜽,𝐌) is the marginal PDF of 𝑋(𝒛) given 𝜽 and 𝐌, which
equires an additional updating step. In this step, the prior is the
arginal PDF of 𝑋(𝒛) given 𝜽, 𝑓 (𝑥; 𝒛|𝜽), which is a Gaussian PDF
ith parameters 𝜇𝑋 and 𝜆𝑋 . The posterior PDF 𝑓 (𝑥; 𝒛|𝜽,𝐌) is again a
aussian PDF with parameters 𝜇′′𝒛 and 𝜆′′𝒛 , which can be calculated by
pplication of the following updating rules for the conditional Gaussian
istribution [3,15,36]:

′′
𝒛 = 𝜇𝑋 +𝑹𝒛,𝑚𝐑−1

𝑚
(

𝒙𝑚 − 𝜇𝑋𝟏𝑛
)𝖳 , (16)

𝜆′′𝒛 = 𝜆𝑋
(

1 −𝑹𝒛,𝑚𝐑−1
𝑚 𝑹

𝖳
𝒛,𝑚

)−1
, (17)

here 𝑹𝒛,𝑚 ∶ R𝑑 → R1×𝑛 is a row vector function with element 𝑖 defined
s 𝜌

(

𝒛, 𝒛𝑚,𝑖
)

with 𝑛 being the number of measurements and 𝐑𝑚 is given
y Eq. (7).

The integral in Eq. (15) can be written as follows:

(𝑥; 𝒛|𝐌) = ∫

+∞

𝜆𝑋=0 ∫

+∞

𝜇𝑋=−∞


(

𝑥|𝜇′′𝒛 , 𝜆
′′
𝒛
)


(

𝜇𝑋 |𝜇𝑛, 𝜅𝑛𝜆𝑋
)


(

𝜆𝑋 |𝛼𝑛, 𝛽𝑛
)

d𝜇𝑋d𝜆𝑋 .

(18)

olution of the integral in Eq. (18) results in the following marginal
osterior predictive PDF:

(𝑥; 𝒛|𝐌) = 𝑓𝑡
(

𝑥|𝜇𝒛,𝑡, 𝜆𝒛,𝑡, 𝜈𝑡
)

=
𝛤
(

𝜈𝑡
2
+ 1

2

)

𝛤
(

𝜈𝑡
2

)

( 𝜆𝒛,𝑡
𝜋𝜈𝑡

)
1
2
(

1 +
𝜆𝒛,𝑡

(

𝑥 − 𝜇𝒛,𝑡
)2

𝜈𝑡

)− 𝜈𝑡
2
− 1

2

,

(19)

here 𝑓𝑡
(

𝑥|𝜇𝑡, 𝜆𝑡, 𝜈𝑡
)

denotes the PDF of the Student’s 𝑡-distribution
ith location parameter 𝜇𝑡, scale parameter 𝜆𝑡 and degrees of freedom
𝑡 [36].

The spatial functions for the parameters of the posterior predic-
ive Student’s 𝑡-distribution are given in closed form by the following
xpressions:

𝒛,𝑡 = 𝜇𝑛 +𝑹𝒛,𝑚𝐑−1
𝑚

(

𝒙𝑚 − 𝜇𝑛𝟏𝑛
)𝖳 , (20)

𝜆𝒛,𝑡 =
𝛼𝑛

𝛽𝑛
(

1 −𝑹𝒛,𝑚𝐑−1
𝑚 𝑹

𝖳
𝒛,𝑚 +

(

1 −𝑹𝒛,𝑚𝐑−1
𝑚 𝟏𝖳𝑛

)2 𝜅−1𝑛
) , (21)

𝜈𝑡 = 2𝛼𝑛. (22)

The parameters 𝜇𝑛, 𝜅𝑛, 𝛼𝑛 and 𝛽𝑛 are obtained following the updating
rules in Eqs. (10) to (13). A detailed derivation of the parameter update
can be found in Appendix B.
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2.6. Posterior predictive random field

The approach presented in Section 2.5 enables predicting the
marginal distribution of quantity 𝑋 at any location 𝒛 ∈ 𝛺 given
spatial data 𝐌. This is useful in cases where the correlation among
values of 𝑋 at different locations needs not be accounted for in further
predictions [33]. However, in many cases the spatial dependence of 𝑋
is required for predictions. In such cases, the joint distribution of 𝑋 at

different locations is given by the 𝑘th order posterior predictive PDF
of 𝑋 (𝒛):

𝑓 (𝒙;𝐙|𝐌) = ∫Θ
𝑓 (𝒙;𝐙|𝜽,𝐌) 𝑓 (𝜽|𝐌) d𝜽. (23)

The posterior distribution for the parameter vector 𝜽 is the same as the
one appearing in Eq. (15). The prior distribution of the RF 𝑋 (𝒛) given
𝜽 is Gaussian and, hence, 𝑓 (𝒙;𝐙|𝜽) is 𝑘-variate Gaussian. Since the
updating rules for a conditional Gaussian distribution of Eqs. (16) and
(17) can be extended to the multivariate case, 𝑓 (𝒙;𝐙|𝜽,𝐌) is also 𝑘-
variate Gaussian with mean vector 𝝁′′𝐙 and precision matrix Λ′′

𝐙, which
can be calculated by the following equations [36]:

𝝁′′𝐙 = 𝜇𝑋𝟏𝖳𝑘 + 𝐑𝐙,𝑚𝐑−1
𝑚

(

𝒙𝑚 − 𝜇𝑋𝟏𝑛
)𝖳 , (24)

Λ′′
𝐙 = 𝜆𝑋

(

𝐑𝐙 − 𝐑𝐙,𝑚𝐑−1
𝑚 𝐑𝖳

𝐙,𝑚

)−1
, (25)

where 𝐑𝐙,𝑚 ∶ R𝑘×𝑑 → R𝑘×𝑛 is a matrix function with element 𝑖, 𝑗 defined
as 𝜌

(

𝒛𝑖, 𝒛𝑚,𝑗
)

. 𝐑𝐙 ∶ R𝑘×𝑑 → R𝑘×𝑘 is a matrix function with element
𝑖, 𝑗 defined as 𝜌

(

𝒛𝑖, 𝒛𝑗
)

. 𝐑𝑚 is the matrix containing the correlation
of the measurement locations and a potential measurement error, as
introduced in Section 2.3. 𝟏𝑘 is a 1 × 𝑘 vector of ones.

Eq. (23) takes the following form:

𝑓 (𝒙;𝐙|𝐌) = ∫

+∞

𝜆𝑋=0 ∫

+∞

𝜇𝑋=−∞


(

𝒙𝒛|𝝁′′
𝐙 ,Λ

′′
𝐙
)


(

𝜇𝑋 |𝜇𝑛, 𝜅𝑛𝜆𝑋
)


(

𝜆𝑋 |𝛼𝑛, 𝛽𝑛
)

d𝜇𝑋d𝜆𝑋 .

(26)

The integral in Eq. (26) results in the following 𝑘th order posterior
predictive PDF

𝑓 (𝒙;𝐙|𝐌) = 𝑓𝑡
(

𝒙|𝝁𝐙,𝑡,Λ𝐙,𝑡, 𝜈𝑡
)

=
𝛤
(

𝜈𝑡
2 + 𝑘

2

)

𝛤
(

𝜈𝑡
2

)

(

det
(

Λ𝐙,𝑡
))

1
2

(

𝜋𝜈𝑡
)
𝑘
2

×

(

1 +

(

𝒙 − 𝝁𝐙,𝑡
)

Λ𝐙,𝑡
(

𝒙 − 𝝁𝐙,𝑡
)𝖳

𝜈𝑡

)− 𝜈𝑡
2 − 𝑘

2

. (27)

where 𝑓𝑡
(

𝒙|𝝁𝐙,𝑡,Λ𝐙,𝑡, 𝜈𝑡
)

is the 𝑘-variate Student’s 𝑡-distribution [36,
43]. As in the univariate case, 𝜈𝑡 is a scalar parameter denoting the
degrees of freedom. 𝜈𝑡 is given by Eq. (22) and the parameters 𝝁𝐙,𝑡 and
Λ𝐙,𝑡 are given in closed form:

𝝁𝐙,𝑡 = 𝜇𝑛𝟏𝖳𝑘 + 𝐑𝐙,𝑚𝐑−1
𝑚

(

𝒙𝑚 − 𝜇𝑛𝟏𝑛
)𝖳 , (28)

Λ𝐙,𝑡 =
𝛼𝑛
𝛽𝑛

(

𝐑𝐙 − 𝐑𝐙,𝑚𝐑−1
𝑚 𝐑𝖳

𝐙,𝑚 +
(

𝟏𝖳𝑘 − 𝐑𝐙,𝑚𝐑−1
𝑚 𝟏𝖳𝑛

)

𝜅−1𝑛
(

𝟏𝖳𝑘 − 𝐑𝐙,𝑚𝐑−1
𝑚 𝟏𝖳𝑛

)𝖳
)−1

,

(29)

𝐑𝐙, 𝐑𝐙,𝑚 and 𝐑𝑚 follow the definitions for Eqs. (24) and (25) and the
parameters 𝜇𝑛, 𝜅𝑛, 𝛼𝑛 and 𝛽𝑛 are obtained following the updating rules
in Eqs. (10) to (13). The analytical expressions for the parameters of the
multivariate posterior predictive Student’s 𝑡-distribution are derived in
detail in Appendix C.

The multivariate Student’s 𝑡-distribution as predictive distribution
for the multivariate Gaussian distribution also appears in Bayesian
regression for the normal linear model [7,35,44]. In fact, the presented
model forms a special case of weighted linear Bayesian regression with
a single explanatory variable.

Eq. (27) can be used for multivariate predictions of 𝑋 accounting for
the information in 𝐌. It is noted that for 𝑘 = 1, Eq. (27) reduces to the
expression for the marginal posterior predictive Student’s 𝑡-distribution
 𝑓

4

Fig. 2. Adapted hierarchical Bayesian model to consider 𝝉 as uncertain parameter. The
dependence of the resulting RF model on 𝝉 can be integrated out when 𝝉 is modeled
as random vector.

given in Eq. (19), accordingly Eqs. (28) and (29) reduce to Eqs. (20)
and (21).

Eqs. (28) and (29) can be directly transformed to the spatial param-
eter functions of the posterior predictive RF, i.e., the mean function
𝜇𝑡(𝒛) and the precision function 𝜆𝑡

(

𝒛1, 𝒛2
)

:

𝜇𝑡(𝒛) = 𝜇𝑛 +𝑹𝒛,𝑚𝐑−1
𝑚

(

𝒙𝑚 − 𝜇𝑛𝟏𝑛
)𝖳 , (30)

𝜆𝑡
(

𝒛1, 𝒛2
)

=
𝛼𝑛
𝛽𝑛

(

𝜌
(

𝒛1, 𝒛2
)

−𝑹𝒛1 ,𝑚𝐑
−1
𝑚 𝑹

𝖳
𝒛2 ,𝑚

+
(

1 −𝑹𝒛1 ,𝑚𝐑
−1
𝑚 𝟏𝖳𝑛

)

𝜅−1𝑛
(

1 −𝑹𝒛2 ,𝑚𝐑
−1
𝑚 𝟏𝖳𝑛

))−1
, (31)

where 𝜌
(

𝒛1, 𝒛2
)

is the prior correlation of 𝒛1 and 𝒛2. 𝑹𝒛,𝑚 and 𝐑𝑚 are
utilized as in Eqs. (16) and (17). The posterior predictive RF is fully
defined by the parameters specified by Eqs. (22), (30) and (31).

2.7. Choice of correlation parameters

The choice of the prior autocorrelation function 𝜌
(

𝒛1, 𝒛2
)

has signif-
icant influence on the predictive distribution of the proposed RF model;
it controls the spatial variability of the prior RF and the correlation of
the measurement locations in 𝐑𝑚. Hence, the autocorrelation function
and its parameters need to be chosen carefully. Although literature is
available on different parametric correlation models, their advantages
and disadvantages [e.g. [5,41,45]], the specific parameter choice for
a problem at hand remains challenging if little information about
the modeled quantity is available. This problem can be addressed by
treating the vector 𝝉 of correlation parameters as a random vector
with associated prior distribution 𝑓 (𝝉). The dependency between 𝝉
and the multivariate posterior predictive distribution can be expressed
explicitly by extending Eq. (23) as follows:

𝑓 (𝒙;𝐙|𝐌, 𝝉) = ∫Θ
𝑓 (𝒙;𝐙|𝜽,𝐌, 𝝉) 𝑓 (𝜽|𝐌, 𝝉) d𝜽. (32)

(𝒙;𝐙|𝐌) can then be determined by marginalization of 𝑓 (𝒙;𝐙, 𝝉|𝐌):

(𝒙;𝐙|𝐌) = ∫𝐓
𝑓 (𝒙;𝐙, 𝝉|𝐌) d𝝉 = ∫𝐓

𝑓 (𝒙;𝐙|𝐌, 𝝉) 𝑓 (𝝉|𝐌) d𝝉 , (33)

ith 𝐓 denoting the domain of definition of 𝝉. Fig. 2 illustrates the
dapted hierarchical Bayesian model where 𝝉 is considered as ad-
itional uncertain parameter, in contrast to the deterministic choice
llustrated in Fig. 1. The closed-form updating procedure for the poste-
ior predictive expressions can only be used to find 𝑓 (𝒙;𝐙|𝐌, 𝝉). Direct
valuation of Eq. (33) can be cumbersome or even impossible, as it
equires evaluation of 𝑓 (𝝉|𝐌), which depends on the choice of the
orrelation model and most likely cannot be evaluated in closed form.

Through application of Bayes’ theorem, 𝑓 (𝝉|𝐌) is given by the
ollowing expression:
(𝝉|𝐌) ∝ 𝑓 (𝝉) ⋅ 𝑓 (𝐌|𝝉) . (34)
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Including the dependency on 𝝉 in the definition of the likelihood
function of Eq. (2) gives

L (𝜽|𝐌, 𝝉) =
𝜆

𝑛
2
𝑋

(2𝜋)
𝑛
2 det

(

𝐑𝑚 (𝝉)
)

exp
(

−
𝜆𝑋
2

(

𝒙𝑚 − 𝜇𝑋𝟏𝑛
) (

𝐑𝑚 (𝝉)
)−1 (𝒙𝑚 − 𝜇𝑋𝟏𝑛

)𝖳
)

.

(35)

𝑓 (𝐌|𝝉) is the proportionality constant in 𝑓 (𝜽|𝐌, 𝝉) ∝ 𝑓 (𝜽) ⋅ L (𝜽|𝐌, 𝝉),
ence

(𝐌|𝝉) =
𝑓 (𝜽) ⋅ L (𝜽|𝐌, 𝝉)

𝑓 (𝜽|𝐌, 𝝉)
. (36)

Note that 𝜽 and 𝝉 are independent and thus, 𝑓 (𝜽|𝝉) = 𝑓 (𝜽). 𝑓 (𝜽|𝐌, 𝝉)
is the posterior PDF of 𝜽 for a given 𝝉, which is a  PDF with param-
eters given in Section 2.4. Splitting the densities and their respective
normalizing constants in Eq. (36) gives

𝑓 (𝐌|𝝉) =
0

𝑛 (𝝉)
⋅ (2𝜋)−

𝑛
2 det

(

𝐑𝑚 (𝝉)
)− 1

2
𝑓 (𝜽) ⋅ L̂ (𝜽|𝐌, 𝝉)

𝑓 (𝜽|𝐌, 𝝉)
, (37)

where 0 and 𝑛 are defined in Eqs. (4) and (9). 𝑓 (𝜽) and 𝑓 (𝜽|𝐌, 𝝉)
are the unnormalized prior and posterior  distributions. L̂ (𝜽|𝐌, 𝝉) is
he exponential term of the likelihood function and is equal to the ratio
f 𝑓 (𝜽|𝐌, 𝝉) and 𝑓 (𝜽) (cf. Appendix A). Thus, the fraction disappears
n Eq. (37). Inserting the expressions for 0 and 𝑛 into Eq. (37) yields

(𝐌|𝝉) =
(

𝜅0
𝜅𝑛 (𝝉)

)
1
2 𝛤

(

𝛼𝑛
)

𝛽𝛼00
𝛤
(

𝛼0
) (

𝛽𝑛 (𝝉)
)𝛼𝑛

(2𝜋)−
𝑛
2 det

(

𝐑𝑚 (𝝉)
)− 1

2 . (38)

Using Eq. (38), sampling from 𝑓 (𝝉|𝐌) can be achieved, e.g. by us-
ing Markov chain Monte Carlo methods [8]. These samples 𝝉 𝑖, 𝑖 =
1,… , 𝑁𝑀𝐶𝑀𝐶 can then be used to approximate 𝑓 (𝒙;𝐙|𝐌):

𝑓 (𝒙;𝐙|𝐌) ≈ 1
𝑁𝑀𝐶𝑀𝐶

𝑁𝑀𝐶𝑀𝐶
∑

𝑖=1
𝑓
(

𝒙;𝐙|𝐌, 𝝉 𝑖
)

. (39)

Alternatively, the posterior distribution of 𝝉 can be approximated
y its maximum a-posteriori (MAP) estimate [46]. That is, Eq. (33) is
pproximated by

(𝒙;𝐙|𝐌) ≈ 𝑓
(

𝒙;𝐙|𝐌, 𝝉∗
)

, (40)

here 𝝉∗ is the MAP estimate of 𝝉. It is found by maximizing Eq. (34)
ith respect to 𝝉. Using Eq. (38), this is equivalent to solving the

ollowing optimization problem:

rg max
𝝉∈𝐓

𝑓 (𝝉|𝐌) = arg min
𝝉∈𝐓

ln
(

𝜅𝑛 (𝝉)
)

+2𝛼𝑛ln
(

𝛽𝑛 (𝝉)
)

+ln
(

det
(

𝐑𝑚 (𝝉)
))

−2ln (𝑓 (𝝉)) ,

(41)

here 𝜅𝑛, 𝛼𝑛 and 𝛽𝑛 follow the definitions in Section 2.4 conditional on
.

The parametric form of the correlation model can be chosen among
set of models by means of Bayesian model selection. To this end,

he marginal likelihood, i.e., the normalizing constant of Eq. (34), must
e evaluated for the different parametric model choices and multiplied
ith the prior beliefs in the models [47].

.8. Extension to non-Gaussian prior random fields

The presented Bayesian approach is applicable to Gaussian prior
Fs and data assigned with additive Gaussian measurement error. Its
pplicability can be extended to the class of so-called translation RFs,
efined as [4,48]

(𝒛) = 𝑇 (𝑈 (𝒛)) , (42)

here 𝑈 (𝒛) is a zero-mean and unit-variance Gaussian RF. If the
arginal cumulative distribution function (CDF) of the non-Gaussian
F 𝐹𝑌 ;𝒛(𝑦(𝒛)) is given and it is strictly increasing, one can define the

ransformation of Eq. (42) as 𝑇 ⋅ = 𝐹−1 (𝛷(⋅)), with 𝐹−1 (⋅) denoting
( ) 𝑌 ;𝒛 𝑌 ;𝒛

5

the inverse of 𝐹𝑌 ;𝒛(⋅) and 𝛷(⋅) the standard normal CDF [49]. 𝑈 (𝒛) is
btained from 𝑌 (𝒛) by inversion of Eq. (42):

(𝒛) = 𝑇 −1 (𝑌 (𝒛)) . (43)

o apply the proposed hierarchical Bayesian approach to the non-
aussian RF 𝑌 (𝒛), each measurement outcome 𝑦𝑚,𝑖 transformed to the
aussian space through Eq. (43) should be associated with an additive
aussian error. This can be equivalently stated as follows:

𝑚,𝑖 = 𝑇
(

𝑢
(

𝒛𝑚,𝑖
)

+ 𝜀𝑖
)

, (44)

here 𝜀𝑖 is a zero-mean Gaussian measurement error. A special case is a
ognormal RF 𝑌 (𝒛) with parameters 𝜇ln𝑌 and 𝜆ln𝑌 and a multiplicative
ognormal measurement error, i.e., 𝑦𝑚,𝑖 = 𝑦

(

𝒛𝑚,𝑖
)

⋅ 𝜀𝑦,𝑖. In such case,
qs. (42) and (44) can be rewritten as functions of a Gaussian RF 𝑋 (𝒛):

(𝒛) = exp (𝑋 (𝒛)) , (45)

𝑦𝑚,𝑖 = exp
(

𝑥
(

𝒛𝑚,𝑖
)

+ 𝜆
− 1

2
𝑋 ⋅ 𝜀𝑖

)

= exp
(

𝑥
(

𝒛𝑚,𝑖
))

⋅ exp
(

𝜆
− 1

2
𝑋 ⋅ 𝜀𝑖

)

= exp
(

𝑥
(

𝒛𝑚,𝑖
))

⋅ 𝜀𝑦,𝑖. (46)

ln𝑌 and 𝜆ln𝑌 are the mean value and precision respectively of the
nderlying Gaussian RF 𝑋 (𝒛), i.e., 𝜇𝑋 = 𝜇ln𝑌 and 𝜆𝑋 = 𝜆ln𝑌 . The error
erm 𝜀𝑦,𝑖 follows a lognormal distribution with median 1. Its parameters
re 𝜇ln𝜀 = 0 and 𝜆ln𝜀 = 𝜆𝜀 ⋅ 𝜆𝑋 , which are mean value and precision
espectively of the underlying Gaussian measurement error. 𝜆ln𝜀 has to
e chosen accordingly. That is, the hierarchical Bayesian approach is
irectly applicable by a simple logarithmic transformation of the data
nd the measurement error. After the updating procedure, the posterior
redictive RF can be transformed back to the original space by applying
q. (45). The transformed marginal distribution of the posterior predic-
ive RF has the form of a log-Student’s 𝑡-distribution. This distribution
odel is used in finance for the pricing of options [50,51] and belongs

o the family of log-symmetric distributions [52]. The marginal PDF of
he posterior predictive RF is defined as follows:

(𝑦; 𝒛|𝐌) = 𝑓𝑡,ln
(

𝑦|𝜇𝒛,𝑡, 𝜆𝒛,𝑡, 𝜈𝑡
)

= 𝑦−1
𝛤
(

𝜈𝑡
2 + 1

2

)

𝛤
(

𝜈𝑡
2

)

(𝜆𝒛,𝑡
𝜋𝜈𝑡

)

1
2

×

(

1 +
𝜆𝒛,𝑡

(

ln (𝑦) − 𝜇𝒛,𝑡
)2

𝜈𝑡

)− 𝜈𝑡
2 − 1

2

. (47)

The finite-dimensional PDF can be derived in a similar manner. It is
noted that the log-Student’s 𝑡-distribution has divergent integer mo-

ents of any order. A short proof of this can be found in Appendix D.
he parametrization of 𝑌 (𝒛) conditional on 𝐌 is done by means of
𝒛,𝑡, 𝜆𝒛,𝑡 and 𝜈𝑡, i.e., in terms of the parameters of the underlying

Student’s 𝑡-RF 𝑋 (𝒛). For 𝜈𝑡 → ∞, 𝑓𝑡,ln
(

𝑦𝒛|𝐌
)

converges to a lognormal

istribution with location parameter 𝜇𝒛,𝑡 and scale parameter 𝜆
− 1

2
𝒛,𝑡 .

2.9. Sampling the posterior predictive random field

The finite-dimensional distribution of the posterior predictive RF
is the multivariate Student’s 𝑡-distribution with parameters 𝝁𝐙,𝑡,Λ𝐙,𝑡
nd 𝜈𝑡. The posterior predictive random vector 𝑿(𝐙) corresponding to
ocations 𝐙 can be expressed as follows [43]:

(𝐙) = 𝑼 (𝐙)
√

𝑉
𝜈𝑡

+ 𝝁𝐙,𝑡, (48)

where 𝑼 (𝐙) is a zero-mean Gaussian random vector with precision ma-
trix Λ𝐙,𝑡. 𝑉 is a random variable that follows the chi-square distribution
with 𝜈𝑡 degrees of freedom and is independent of 𝑼 (𝐙). Replacing 𝑼 (𝐙)
in Eq. (48) by 𝑈 (𝒛), a zero-mean Gaussian RF with spatial precision
unction 𝜆𝑡

(

𝒛1, 𝒛2
)

as given by Eq. (31), and furthermore replacing 𝝁𝐙,𝑡
by 𝜇 (𝒛), the spatial function for the mean value defined in Eq. (30),
𝑡
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yields the corresponding expression for the posterior predictive Stu-
dent’s 𝑡-RF. Hence, the Student’s 𝑡-RF 𝑋(𝒛) can be expressed as a
unction of a Gaussian RF and one additional independent chi-square
andom variable. In case of sampling from a translation RF 𝑌 (𝒛), the
ransformation of Eq. (42) has to be adapted accordingly. Samples from
(𝒛) can be generated by a variety of existing methods [e.g. [6]].

.10. Connection to the Bayesian approach of EN 1990

Annex D.7 of EN 1990 (Eurocode 0) on the basis of structural design
ffers a method to determine design values for material properties
hen samples are available [34]. The samples are used to estimate a
uantile value of the underlying probability distribution, the so-called
haracteristic value. This approach distinguishes between the cases
here (a) mean and variance of the material property are unknown and

b) only its variance is unknown. In case (a), the characteristic value
an be estimated based on the sample mean, sample standard deviation
nd the number of samples 𝑛. The underlying theory is a Bayesian
pproach and the calculated value is the 5% quantile value of the
osterior predictive distribution [2,33]. We show in the following that
he hierarchical approach presented in this paper is a generalization of
ase (a) in Annex D.7 of EN 1990.

We consider a material property 𝑋 that follows a normal distri-
ution with unknown parameters 𝜽 and that a set of samples 𝒙𝑚 =
𝑥𝑚,1, 𝑥𝑚,2,… , 𝑥𝑚,𝑛

]𝖳 are available. If no prior information about 𝑓 (𝜽)
s available, a non-informative choice can be made by choosing a 
istribution with the following parameters [42]:

𝜇0, 𝜅0, 𝛼0, 𝛽0
]

=
[

∕, 0,−1
2
, 0
]

, (49)

resulting in 𝑓 (𝜽) = 𝜆−1𝑋 .
Furthermore, we assume independence of the random variables cor-

esponding to the measurement locations and neglect the measurement
rror, i.e., 𝐑𝑚 = 𝐈. This leads to a simplification of Eqs. (10) to (13):

𝑛 =
𝟏𝑛𝒙𝖳𝑚
𝑛

= 1
𝑛

𝑛
∑

𝑖=1
𝑥𝑚,𝑖, (50)

𝜅𝑛 = 𝑛, (51)

𝛼𝑛 =
𝑛 − 1
2

, (52)

𝛽𝑛 =
1
2

(

𝒙𝑚𝒙𝖳𝑚 −

(

𝟏𝑛𝒙𝖳𝑚
)2

𝑛

)

= 1
2

𝑛
∑

𝑖=1

(

𝑥𝑚,𝑖 − 𝜇𝑛
)2 . (53)

If one neglects the dependence between the measurements and the
F at the predictive locations, the posterior predictive distribution
(

𝑥|𝒙𝑚
)

is obtained following Eq. (14) and is space-invariant. It is a
tudent’s 𝑡-distribution with the following parameters:

𝑡 = 𝜇𝑛 =
1
𝑛

𝑛
∑

𝑖=1
𝑥𝑚,𝑖, (54)

𝜆𝑡 =
𝛼𝑛

𝛽𝑛
(

1 + 𝜅−1𝑛
) =

𝑛(𝑛 − 1)

(𝑛 + 1)
∑𝑛
𝑖=1

(

𝑥𝑚,𝑖 − 𝜇𝑛
)2
, (55)

𝜈𝑡 = 2𝛼𝑛 = 𝑛 − 1. (56)

The characteristic values in the method in EN 1990 are defined as
% quantile values of a Student’s 𝑡-distribution with parameters given
y Eqs. (54) to (56). An additional transformation step is added for
ase of use, in which the Student’s 𝑡-distributed random variable 𝑋 is
ormalized:

𝑡 =
(

𝑋 − 𝜇𝑡
)

𝜆
1
2 , (57)

where 𝑈𝑡 follows the standard Student’s 𝑡-distribution with 𝜈𝑡 degrees
f freedom, i.e., 𝜇𝑡 = 0 and 𝜆𝑡 = 1. This normalization allows the use of
tandardized coefficients (𝑘𝑛 values), which only depend on 𝑛:

= −𝐹−1(𝑝)
√

𝑛 + 1 , (58)
𝑛 𝑈𝑡 𝑛
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where 𝐹−1
𝑈𝑡

(⋅) is the inverse CDF of 𝑈𝑡 and 𝑝 = 0.05, since the character-
stic value 𝑥𝑘 is defined as the 5% quantile value. Using the 𝑘𝑛 value,
𝑥𝑘 is obtained as follows:

𝑥𝑘 = �̄�𝑋
(

1 − 𝑘𝑛𝛿𝑋
)

, (59)

where �̄�𝑋 = 1
𝑛
∑𝑛
𝑖=1 𝑥𝑚,𝑖 is the sample mean and 𝛿𝑋 = �̄�𝑋

�̄�𝑋
is the

ample coefficient of variation with �̄�𝑋 = 1
𝑛−1

∑𝑛
𝑖=1

(

𝑥𝑚,𝑖 − �̄�𝑋
)2. EN

990 provides tabulated values of 𝑘𝑛 for varying 𝑛.
The method in EN 1990 also covers the case when the material prop-

rty 𝑌 follows a lognormal distribution and 𝒚𝑚 =
[

𝑦𝑚,1, 𝑦𝑚,2,… , 𝑦𝑚,𝑛
]𝖳

re the available samples. In this case, the Bayesian analysis underlying
he method is conducted as described above for the Gaussian random
ariable 𝑋 = ln(𝑌 ) with the logarithmic samples 𝑥𝑚,𝑖 = ln(𝑦𝑚,𝑖), 𝑖 =
,… , 𝑛. The posterior predictive distribution 𝑓

(

𝑦|𝒚𝑚
)

is a log-Student’s
𝑡-distribution parameterized in terms of the parameters of the underly-
ing Student’s 𝑡-distribution given by Eqs. (54) to (56). The characteristic
value 𝑦𝑘 is the 5% quantile value of 𝑓

(

𝑦|𝒚𝑚
)

, which is equivalent to
the exponential of the 5% quantile value of the underlying Student’s
𝑡-distribution. Thus, 𝑦𝑘 can be calculated as

𝑦𝑘 = exp
(

�̄�𝑋
(

1 − 𝑘𝑛𝛿𝑋
))

, (60)

where �̄�𝑋 and 𝛿𝑋 are the sample mean and sample coefficient of
variation of the logarithmic samples and 𝑘𝑛 is given by Eq. (58).

In a nutshell, the method in Annex D.7 of EN 1990 to determine
characteristic values for the design of structures is a special case of
the presented RF analysis, which assumes a non-informative prior
distribution, independent measurements without measurement error
and independence between measurement locations and the material
parameter at the predictive locations.

3. Numerical examples

In this section, the proposed approach is applied to two numerical
examples. The first one involves a one-dimensional RF of a geotech-
nical material, while the second one models the concrete compressive
strength of a ship lock wall with a two-dimensional anisotropic RF.

3.1. Tip resistance of cohesive soil

Soil parameters are often determined based on measurements from
cone penetration testing (CPT). In CPT, the tip resistance 𝑞𝑇 measures
the force required to push the cone through the soil and can be used
to infer further soil parameters. In this example, data from a CPT is
used, where the tip resistance of a cohesive soil layer was measured in
depths from 𝑧 = 3.900m to 𝑧 = 10.275m resulting in 256 equidistant
measurements of the tip resistance. The data is taken from [53] and
was also used by Wang and Zhao to illustrate the performance of
Bayesian compressive sampling when sparse data is available [26].
The tip resistance is modeled by the one-dimensional RF 𝑞𝑇 (𝑧) in
vertical direction with lognormal prior marginal distribution. Hence,
the transformation of Eq. (45) is applied:

𝑞𝑇 (𝑧) = exp (𝑋 (𝒛)) . (61)

The underlying prior RF 𝑋 (𝒛) is a homogeneous Gaussian RF with
unknown mean value 𝜇𝑋 and unknown precision 𝜆𝑋 . The prior autocor-
relation function is modeled by the exponential model with unknown
correlation length 𝑙𝑐 :

𝜌
(

𝑧𝑖, 𝑧𝑗
)

= exp
⎛

⎜

⎜

⎝

−
|

|

|

𝑧𝑗 − 𝑧𝑖
|

|

|

𝑙𝑐

⎞

⎟

⎟

⎠

(62)

Furthermore, no prior information on 𝜇𝑋 or 𝜆𝑋 are available and thus
a non-informative prior  distribution is chosen with the parameters
from Eq. (49).

It is assumed that knowledge of the full data set is not available but
only a subset of 13 measurement values taken at equidistant locations,
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Fig. 3. Posterior predictive RF of the tip resistance 𝑞T. Panel a) shows the median
(red line) and the two-sided 90% credible interval, i.e., the area between the 5% and
95% quantile value (orange area) of the marginal log-Student’s 𝑡-distributions. The 13
blue dots mark the used measurement locations and values while the full data set is
illustrated by the dotted black line. Panel b) shows three independent realizations of
the posterior predictive RF in comparison to the two-sided 90% credible interval in
gray. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

as illustrated by the blue dots in panel a) of Figure 3. It is assumed
that the measurements are associated with a multiplicative lognormal
measurement error with median 1 and coefficient of variation CV𝜀 =
0.05. In a first step, the MAP estimate for 𝑙𝑐 is obtained by solving the
minimization problem of Eq. (41), where the vector 𝝉 only consists of
𝑙𝑐 . A uniform prior on the positive numbers is employed for 𝑙𝑐 and
hence the term ln (𝑓 (𝝉)) in the optimization problem can be dropped
and the MAP estimate reduces to a maximum likelihood estimate [54].
The resulting estimate for 𝑙𝑐 is obtained as 𝑙∗𝑐 = 0.72m.

Consequently, the posterior parameters of the  distribution are
obtained by application of Eqs. (10) to (13) in combination with
Eq. (46) to account for the log-transformation of the measurements.
The spatial parameter functions of the posterior predictive Student’s
𝑡-RF are calculated by means of Eqs. (30) and (31). From Eq. (22) the
degrees of freedom are calculated as 𝜈𝑡 = 12. These are the parameters
of the RF 𝑞𝑇 (𝑧) given 𝐌, which has log-Student’s 𝑡-marginal distribution
with PDF given by Eq. (47). As the moments are not defined, the
illustration in panel a) of Figure 3 shows the median of the posterior
predictive tip resistance and the corresponding 5% and 95% quantile
values along the depth of the soil layer. The increasing width of the
7

Fig. 5. Posterior distribution of the correlation length 𝑓
(

𝑙𝑐 |𝐌
)

as function of the
correlation length 𝑙𝑐 and the corresponding MAP estimate 𝑙∗𝑐 .

orange area shows that the uncertainty is very small close to the mea-
surement locations and increases away from the measurements. The
full data set of 256 measurements is indicated by a black dotted line.
Panel b) of Fig. 3 shows three independent realizations of the posterior
predictive RF. Comparison of the random realizations with the full data
set shows good accordance regarding the number and amplitude of
strong local deviations from the posterior predictive median. Hence,
the proposed approach can sufficiently approximate both the overall
trend of the RF and the associated uncertainty.

To illustrate the influence of the number of measurements on the
posterior prediction, the above calculations are repeated for 𝑛 = 6 and
𝑛 = 64 equidistant measurements. Fig. 4 illustrates the measurement
values and locations by blue dots in panel a) and panel c), respectively.
For 𝑛 = 6, the MAP optimization results in 𝑙∗𝑐,6 = 4.60m and for
𝑛 = 64 it gives 𝑙∗𝑐,64 = 1.51m. This large difference in the MAP
estimates is due to the assumed uninformative prior distribution for the
correlation length, in which case, the MAP estimate only depends on
the data. Large differences in the data can lead to significant variation
in the estimated correlation length. The median and corresponding 5%
and 95% quantile values of 𝑞𝑇 (𝑧) are illustrated in panel a) and c),
respectively of Fig. 4. Comparison to Fig. 3 shows that with increasing
amount of data, the uncertainty, i.e., the variability of 𝑞𝑇 (𝑧) is reduced.
However, even with a small amount of data (𝑛 = 6), the global trend of
the tip resistance can be predicted and the location-specific information
can be used efficiently to set up an RF model. The large variability in
the areas between the measurements is illustrated by three independent
realizations in panel b) of Fig. 4. When the amount of data is relatively
large (𝑛 = 64), the remaining uncertainty in the tip resistance becomes
Fig. 4. Posterior predictive RF of the tip resistance 𝑞T for 𝑛 = 6 (panel a) and b)) and 𝑛 = 64 (panel c) and d)). Panel a) and c) show the median (red line) and the two-sided
90% credible intervals of the marginal log-Student’s 𝑡-distributions. The blue dots mark the used measurement locations and values while the full data set is illustrated by the
dotted black line. Panel b) and c) each show three independent realizations of the posterior predictive RF in comparison to the two-sided 90% credible intervals in gray. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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q

Fig. 6. Ship lock wall with a total length of 105m and a total height of 8m made of tamped concrete from the 1920s. Three vertical core samples (𝐶1 , 𝐶2 and 𝐶3) were taken
at the quarter points of the wall indicated by the three dashed lines.
Fig. 7. Posterior predictive median (panel a)) and 5% quantile value (panel b)) of the concrete compressive strength 𝑓𝑐 of a ship lock wall obtained with data from three vertical
core samples (𝑛 = 24 measurements of the concrete compressive strength). The median and 5% quantile value at points A, B and C are listed in Table 2.
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Table 1
Measurements of the concrete compressive strength 𝑓𝑐 and the corresponding measure-
ment locations of 24 specimens from 3 vertical core samples (𝐶1, 𝐶2 and 𝐶3) in the
uarter points of the ship lock wall.
Core sample 𝐶1 Core sample 𝐶2 Core sample 𝐶3

𝑧1 [m] 𝑧2 [m] 𝑓c,m [MPa] 𝑧1 [m] 𝑧2 [m] 𝑓c,m [MPa] 𝑧1 [m] 𝑧2 [m] 𝑓c,m [MPa]

0.40 29.2 0.21 21.2 0.34 18.5
1.24 15.5 1.25 16.0 1.34 10.3
2.25 8.7 2.05 32.0 2.17 13.2

26.25 3.15 12.3 52.5 3.33 20.7 78.75 3.24 14.5
4.12 16.2 4.15 13.8 4.27 25.4
5.33 11.6 5.25 12.1 5.12 14.5
6.15 13.4 6.40 8.6 6.23 13.2
7.05 13.9 7.45 14.8 7.08 33.0

comparatively small and random realizations of the RF do not differ
significantly from the full data set, as can be seen in panel d) of Fig. 4.

Fig. 5 plots 𝑓
(

𝑙𝑐 |𝐌
)

with the MAP estimate 𝑙∗𝑐 = 0.72m located
at the mode of 𝑓

(

𝑙𝑐 |𝐌
)

. It appears that, although the posterior dis-
tribution has a distinct mode, it covers a broad range by remaining
relatively flat for increasing values of 𝑙𝑐 . This is caused by the uniform
prior distribution for 𝑙𝑐 and shows that such a uniform prior can lead
to an improper posterior distribution of the correlation length. While
this is not a problem when using MAP, it is an issue when the full
posterior distribution of 𝑙𝑐 is to be used. In such cases, a different prior
distribution should be chosen.

3.2. Concrete compressive strength of a ship lock wall

In this example, we investigate the concrete compressive strength
𝑓𝑐 of a ship lock wall made of tamped concrete in the 1920s. The
length of the wall is 105m and the height of the tamped concrete layer
is 8m, the third dimension is not taken into account for this study.
24 measurements of 𝑓𝑐 are available from three vertical core samples
taken at the quarter points of the wall [2]. The situation is illustrated
in Fig. 6 and the measurement data and corresponding locations are
shown in Table 1. We assume that the measurements are associated
with a multiplicative lognormal measurement error with coefficient of
variation CV𝜀 = 0.025.

Applying the transformation of Eq. (45), the logarithm of 𝑓𝑐 is
modeled with a two-dimensional Gaussian RF with non-informative
prior  distribution (cf. Eq. (49)).
 w
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Typically, massive concrete structures made of tamped concrete
from that time have been built in layers [55]. Hence, we employ
a transverse anisotropic exponential correlation function, where the
correlation length 𝑙𝑐,1 in direction 𝑧1 differs from the correlation length
𝑙𝑐,2 in direction 𝑧2 [56]:

𝜌
(

𝒛𝑖, 𝒛𝑗
)

= exp
⎛

⎜

⎜

⎜

⎝

−

√

√

√

√

√

(

𝛥1
(

𝒛𝑖, 𝒛𝑗
))2

𝑙2𝑐,1
+

(

𝛥2
(

𝒛𝑖, 𝒛𝑗
))2

𝑙2𝑐,2

⎞

⎟

⎟

⎟

⎠

, (63)

where 𝛥1
(

𝒛𝑖, 𝒛𝑗
)

and 𝛥2
(

𝒛𝑖, 𝒛𝑗
)

denote the canonical distances of 𝒛𝑖 and
𝒛𝑗 in directions 𝑧1 and 𝑧2 respectively. Assuming a uniform prior on 𝑙𝑐,1
nd 𝑙𝑐,2 results in the following MAP estimate for the two correlation
engths:
∗
𝑐 =

[

𝑙∗𝑐,1, 𝑙
∗
𝑐,2

]

= [1.52m, 0.58m] (64)

These values are used in the Bayesian updating to obtain the pos-
erior predictive RF for 𝑓𝑐 . As the marginal posterior predictive PDF
s a log-Student’s 𝑡-distribution, the moments cannot be evaluated and
hus, Fig. 7 illustrates the median (panel a)) and the corresponding
% quantile value (panel b)) of 𝑓𝑐 (𝒛) given 𝐌 across the ship lock
all. The measured values and the information about their location are

learly reflected, as regions close to low measurement values show low
edian and 5% quantile values, and regions close to high measurement

alues show higher median and 5% quantile values. This is illustrated
y the example of three points (A, B and C) at different locations of
he ship lock wall, where the median and 5% quantile values have
een extracted and listed in Table 2. Point A, located close to a low
easurement value, features a posterior median of 10.7MPa and a
% quantile value of 6.6MPa, both of which are significantly lower
han those at point C with a median of 23.1MPa and a 5% quantile
alue of 14.1MPa. Contrary to point A, point C is located close to a
igh measurement value (cf. Table 1). The median of 15.9MPa and 5%
uantile of 8.2MPa at point B are representative values for all locations
ar away from the measurements, i.e., all points with negligible spatial
orrelation to any measurement location.

Section 2.10 demonstrates the connection of the proposed RF ap-
roach and the established Bayesian approach in EN 1990. Next, we
ompare this approach to the results of the proposed hierarchical RF
odel using the data of Table 1. The mean and standard deviation of

he log-transformed measurement values are �̄�𝑋 = 2.75 and �̄�𝑋 = 0.37

ith a corresponding 𝑘𝑛 value of 𝑘𝑛(𝑛𝑚 = 24) = 1.75. Applying Eq. (60)
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Fig. 8. Posterior predictive median of the concrete compressive strength of a ship lock wall in the area around core sample 𝐶2 obtained with varying correlation lengths.
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edian (50% quantile value, 𝑓𝑐,0.5) and 5% quantile value (𝑓𝑐,0.05) of the marginal

osterior predictive concrete compressive strength at three different locations (A, B
nd C) of the ship lock wall.

𝑧1 [m] 𝑧2 [m] 𝑓𝑐,0.5 [MPa] 𝑓𝑐,0.05 [MPa]

Point A 25.95 2.5 10.7 6.6
Point B 37.25 5.3 15.9 8.2
Point C 78.3 6.85 23.1 14.1

Fig. 9. Two-dimensional posterior distribution of the correlation lengths in 𝑧1 (hori-
zontal) and 𝑧2 (vertical) direction, 𝑓

(

𝒍𝑐 |𝐌
)

. The maximum of 𝑓
(

𝒍𝑐 |𝐌
)

is located at
𝑐,1 = 1.53m and 𝑙𝑐,2 = 0.58m, which is equivalent to the MAP estimate 𝒍∗𝑐 .

ives a characteristic value (5% quantile value) of 𝑓𝑐,𝑘 = 8.2MPa.
his value matches the 5% quantile value at locations without spatial
orrelation to the measurement points (cf. point C in Table 2). We note
hat this congruence depends on the chosen prior parameters of the RF
nd, thus, is the exception, not the rule.

The correlation length is an important parameter in any RF model.
o illustrate this, the Bayesian analysis has been carried out for 𝒍𝑐 =
.5𝒍∗𝑐 and 𝒍𝑐 = 2𝒍∗𝑐 . The resulting marginal median of 𝑓𝑐 (𝒛) in the area
round the core sample 𝐶2 is illustrated in Fig. 8. Obviously, the larger
he correlation length, the bigger the area that is influenced by the
patial correlation to the measurements. For 𝒍𝑐 = 0.5𝒍∗𝑐 the spatial effect
f the measurements on the median is restricted to a domain of length
2m, wheres for 𝒍𝑐 = 2𝒍∗𝑐 this effect spans over a length of ≈ 10m.

t is mentioned that this is the effect of the final step of the Bayesian
pproach, where the posterior predictive distribution is obtained. The
hole RF is influenced by the data and the chosen correlation length
y the global posterior parameters of the  distribution, as can be
een by the different median values of 𝑓𝑐 (𝒛) at locations 𝐷𝑎, 𝐷𝑏 and
𝑐 indicated in Fig. 8. These locations are chosen exemplarily for all
oints with negligible spatial correlation to any measurement location.
or 𝒍𝑐 = 0.5𝒍∗𝑐 the median is 15.7MPa and for 𝒍𝑐 = 2𝒍∗𝑐 it is 16.3MPa,
ompared to 15.9MPa when 𝒍𝑐 = 𝒍∗𝑐 .

When employing the MAP procedure to approximate 𝑓 (𝝉|𝐌), it is
mportant to be aware of the sensitivity of the estimate and the amount
f information provided by the data. In this example, the vertical
istance of the measurement locations is relatively small while the
orizontal distance is either 0 or very large. Hence, the MAP estimate
or 𝑙𝑐,1 is subject to larger uncertainty than the MAP estimate for 𝑙𝑐,2,
hich is illustrated in Fig. 9 . While 𝑓 (𝝉|𝐌) has a distinct maximum

n direction 𝑙𝑐,2 at 𝑙𝑐,2 = 0.58m, it is relatively flat in direction 𝑙𝑐,1. In
act, any 𝑙 smaller than 5m is approximately equally likely given the
𝑐,1 s

9

ata at hand. Only for 𝑙𝑐,1 > 5m the measurements of different core
amples are noticeably correlated. This behavior is of special interest
hen no prior information on the correlation length is assumed, since

n such case the MAP estimate is only controlled by the data. In general,
earning the correlation length from limited amount of data is not a
rivial task, especially if no prior information on the RF parameters
s available. In a study on the correlation length of soil parameters,
minimum of 5 measurement values within one correlation length are

ecommended for learning the correlation length of the exponential
orrelation model [57].

. Conclusion

This paper presents a comprehensive hierarchical Bayesian ap-
roach to model random material properties with spatially distributed
ata. It is based on modeling a Gaussian random field assuming
normal-gamma prior distribution on its parameters. Closed-form

xpressions for the posterior normal-gamma distribution of the param-
ters of the random field are derived by making use of the conjugacy
f the normal-gamma distribution and a multivariate Gaussian likeli-
ood function. Subsequently, closed-form expressions for the spatial
arameter function of the posterior predictive random field are derived,
esulting in a non-homogeneous Student’s 𝑡-random field. That is, the
arginal distribution of the posterior predictive random field is a

tudent’s 𝑡-distribution with location-specific parameters.
Sampling from such a random field can be achieved by expressing

he Student’s 𝑡-random field in terms of a Gaussian random field
nd one additional chi-squared random variable. For estimating the
orrelation parameters, a maximum a-posteriori estimation approach
s proposed that accounts for the available data and potential prior
nformation. In addition, an extension of the approach to non-Gaussian
ranslation prior random fields is discussed and closed-form expressions
or the case of a lognormal marginal prior distribution are derived.

The applicability of the presented approach to different engineering
ields is illustrated by two examples, one from the field of geotech-
ical engineering and one from structural engineering. The derived
osterior random field models reflect the location-specific information
rom the measurements, whereas their uncertainty increases with in-
reasing distance from the measurement locations. Furthermore, it is
emonstrated that the uncertainty can be reduced by increasing the
mount of data. The spatial fluctuation of the posterior random field
s sensitive to the choice of the correlation length parameter. When
o information is available on the prior autocorrelation function, the
aximum a-posteriori estimate for the correlation length is sensitive

o the measurement data and should be handled with care, especially
n the case where limited data is available.

The presented modeling approach can be extended to account for
trend function in the prior random field parameters. A trend in

he prior mean can be included by employing a linear basis function
odel, similar to the work of [23]. A parametric dependence can

lso be included in the prior precision parameter, which leads to a
odel known as weighted Bayesian linear regression [7]. Investigation

f these models in the context of material modeling is left to future
tudies.
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Appendix A. The posterior normal-gamma distribution

The posterior parameters of the normal-gamma distribution for the
parameter vector 𝜽 =

[

𝜇𝑋 , 𝜆𝑋
]𝖳, as specified in Eqs. (10) to (13) are

derived in the following.
According to Bayes’ theorem, the posterior distribution 𝑓 (𝜽|𝐌) is

roportional to the product of prior distribution 𝑓 (𝜽) and likelihood
(𝜽|𝐌), which are defined in Eqs. (3) and (5). Using the normal-gamma
rior distribution and the multivariate Gaussian likelihood gives the
ollowing expression:

(𝜽|𝐌) ∝ 𝜆
𝛼0+

𝑛
2−

1
2

𝑋 ⋅ exp
(

−
𝜅0𝜆𝑋
2

(

𝜇𝑋 − 𝜇0
)2
)

⋅ exp
(

−𝜆𝑋𝛽0
)

⋅

⋅ exp
(

−
𝜆𝑋
2

(

𝒙𝑚 − 𝜇𝑋𝟏𝑛
)

𝐑−1
𝑚

(

𝒙𝑚 − 𝜇𝑋𝟏𝑛
)𝖳
)

. (A.1)

ith the definition of 𝐀 = 𝜅0
(

𝜇𝑋 − 𝜇0
)2 − 2𝜇𝑋𝟏𝑛𝐑−1

𝑚 𝒙
𝖳
𝑚 + 𝜇2𝑋𝟏𝑛𝐑

−1
𝑚 𝟏𝖳𝑛 ,

q. (A.1) can be rearranged as

(𝜽|𝐌) ∝ 𝜆
𝛼0+

𝑛
2−

1
2

𝑋 ⋅ exp
(

−𝜆𝑋
(

𝛽0 +
1
2
𝒙𝑚𝐑−1

𝑚 𝒙
𝖳
𝑚 + 1

2
𝐀
))

. (A.2)

Initially, the focus lies on 𝐀 which is expanded and modified as
ollows:

=
(

𝜅0 + 𝟏𝑛𝐑−1
𝑚 𝟏𝖳𝑛

)

(

𝜇2𝑋 − 2𝜇𝑋
𝜅0𝜇0 + 𝟏𝑛𝐑−1

𝑚 𝒙
𝖳
𝑚

𝜅0 + 𝟏𝑛𝐑−1
𝑚 𝟏𝖳𝑛

)

+ 𝜅0𝜇20 . (A.3)

Next, the square of the expression inside the second parenthesis is
completed:

𝐀 =
(

𝜅0 + 𝟏𝑛𝐑−1
𝑚 𝟏𝖳𝑛

)

(

𝜇𝑋 −
𝜅0𝜇0 + 𝟏𝑛𝐑−1

𝑚 𝒙
𝖳
𝑚

𝜅0 + 𝟏𝑛𝐑−1
𝑚 𝟏𝖳𝑛

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐁

+ 𝜅0𝜇2
0 −

(

𝜅0𝜇0 + 𝟏𝑛𝐑−1
𝑚 𝒙

𝖳
𝑚

)2

𝜅0 + 𝟏𝑛𝐑−1
𝑚 𝟏𝖳𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐂

.

(A.4)

The terms of 𝐂 in Eq. (A.4) are expanded and converted to a common
denominator:

𝐂 =
(

𝜅0𝜇
2
0𝟏𝑛𝐑

−1
𝑚 𝟏𝖳𝑛 − 2𝜅0𝜇0𝟏𝑛𝐑−1

𝑚 𝒙
𝖳
𝑚 −

(

𝟏𝑛𝐑−1
𝑚 𝒙

𝖳
𝑚
)2) (

𝜅0 + 𝟏𝑛𝐑−1
𝑚 𝟏𝖳𝑛

)−1 .

(A.5)

nserting the expression for 𝐁 and 𝐂 into Eq. (A.2) gives:

(𝜽|𝐌) ∝ 𝜆
𝛼0+

𝑛
2−

1
2

𝑋 ⋅exp
(

−𝜆𝑋
(

𝛽0 +
1
2
𝒙𝑚𝐑−1

𝑚 𝒙
𝖳
𝑚 + 1

2
𝐂
))

⋅exp
(

−
𝜆𝑋
2

𝐁
)

.

(A.6)

The parametric form of the posterior normal-gamma distribution as
defined in Section 2.4 is as follows:


(

𝜇𝑋 , 𝜆𝑋 |𝜇𝑛, 𝜅𝑛, 𝛼𝑛, 𝛽𝑛
)

= 𝑛𝜆
𝛼𝑛−

1
2

𝑋 ⋅ exp
(

−
𝜅𝑛𝜆𝑋
2

(

𝜇𝑋 − 𝜇𝑛
)2
)

⋅ exp
(

−𝜆𝑋𝛽𝑛
)

.

(A.7)

10
riting out all the terms in Eq. (A.6) and comparing it to (A.7) one
an see that up to the normalizing constant 𝑛, the resulting expression
f Eq. (A.6) is a normal-gamma distribution with parameters as follows:

𝑛 =
𝜅0𝜇0 + 𝟏𝑛𝐑−1

𝑚 𝒙
𝖳
𝑚

𝜅0 + 𝟏𝑛𝐑−1
𝑚 𝟏𝖳𝑛

, (A.8)

𝜅𝑛 = 𝜅0 + 𝟏𝑛𝐑−1
𝑚 𝟏𝖳𝑛 , (A.9)

𝛼𝑛 = 𝛼0 +
𝑛
2
, (A.10)

𝛽𝑛 = 𝛽0 +
1
2

⎛

⎜

⎜

⎝

𝒙𝑚𝐑−1
𝑚 𝒙

𝖳
𝑚 +

𝜅0𝜇20𝟏𝑛𝐑
−1
𝑚 𝟏𝖳𝑛 − 2𝜅0𝜇0𝟏𝑛𝐑−1

𝑚 𝒙
𝖳
𝑚 −

(

𝟏𝑛𝐑−1
𝑚 𝒙

𝖳
𝑚
)2

𝜅0 + 𝟏𝑛𝐑−1
𝑚 𝟏𝖳𝑛

⎞

⎟

⎟

⎠

.

(A.11)

he normalizing constant is

𝑛 =
𝛽𝛼𝑛𝑛 𝜅

1
2
𝑛

𝛤
(

𝛼𝑛
)

(2𝜋)
1
2

. (A.12)

ppendix B. The marginal posterior predictive Student’s 𝒕-
distribution

In Section 2.5, the Student’s 𝑡-distribution is introduced as the
arginal posterior predictive distribution of the RF𝑋(𝒛) for the normal-

amma conjugate prior distribution of the RF parameters. This ap-
endix derives the analytical expressions for the parameters of the
arginal posterior predictive distribution as given in Eqs. (20) to (22).

The marginal posterior predictive PDF at any point 𝒛 ∈ 𝛺 is defined
y

(𝑥; 𝒛|𝐌) = ∫Θ
𝑓 (𝑥; 𝒛|𝜽,𝐌) 𝑓 (𝜽|𝐌) d𝜽. (B.1)

(𝜽|𝐌) is the posterior normal-gamma distribution as defined in Eq. (8)
nd 𝑓 (𝑥; 𝒛|𝜽,𝐌) is a location-specific normal distribution with param-
ters 𝜇′′𝒛 and 𝜆′′𝒛 given by Eqs. (16) and (17). Hence, Eq. (B.1) can be
xpanded as follows:

(𝑥; 𝒛|𝐌) = ∫

+∞

𝜆𝑋=0
∫

+∞

𝜇𝑋=−∞


(

𝑥|𝜇′′
𝒛 , 𝜆

′′
𝒛
)


(

𝜇𝑋 |𝜇𝑛, 𝜅𝑛𝜆𝑋
)

d𝜇𝑋
(

𝜆𝑋 |𝛼𝑛, 𝛽𝑛
)

d𝜆𝑋 .

(B.2)

The inner integral involves the convolution of two normal densities:

∫

+∞

𝜇𝑋=−∞


(

𝑥|𝜇′′𝒛 , 𝜆
′′
𝒛
)


(

𝜇𝑋 |𝜇𝑛, 𝜅𝑛𝜆𝑋
)

d𝜇𝑋 = 𝑓
(

𝑥; 𝒛|𝜆𝑋 ,𝐌
)

. (B.3)

For the solution of the integral, the expression for 𝜇′′𝒛 , given in Eq. (16)
is rewritten as follows:

𝜇′′𝒛 = 𝜇𝑋 +𝑹𝒛,𝑚𝐑−1
𝑚

(

𝒙𝑚 − 𝜇𝑋𝟏𝑛
)𝖳 = 𝜇𝑋

(

1 −𝑹𝒛,𝑚𝐑−1
𝑚 𝟏𝖳𝑛

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜓

+𝑹𝒛,𝑚𝐑−1
𝑚 𝒙

𝖳
𝑚

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝜉

.

(B.4)

For this special case and noting that 𝜆′′𝒛 does not depend on 𝜇𝑋 , the
marginalization in Eq. (B.3) can be solved analytically and results in
a normal density 𝑓

(

𝑥; 𝒛|𝜆𝑋 ,𝐌
)

= 
(

𝑥|�̃�𝒛, �̃�𝒛
)

, where �̃�𝒛 and �̃�𝒛 are
given by the following equations [36]:

�̃�𝒛 = 𝜓𝜇𝑛 + 𝜉, (B.5)

�̃�𝒛 =
(

(

𝜆′′𝒛
)−1 + 𝜓2𝜆−1𝑋 𝜅−1𝑛

)−1

= 𝜆𝑋
(

1 −𝑹𝒛,𝑚𝐑−1
𝑚 𝑹

𝖳
𝒛,𝑚 +

(

1 −𝑹𝒛,𝑚𝐑−1
𝑚 𝟏𝖳𝑛

)2 𝜅−1𝑛
)−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̃�𝒛

. (B.6)
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Inserting in Eq. (B.2) results in

𝑓 (𝑥; 𝒛|𝐌) =
𝛽𝛼𝑛𝑛

(

�̃�𝒛
)

1
2

𝛤
(

𝛼𝑛
)

(2𝜋)
1
2
∫

+∞

𝜆𝑋=0
𝜆
𝛼𝑛−

1
2

𝑋 exp
(

−𝜆𝑋

(

𝛽𝑛 +
�̃�𝒛
2

(

𝑥𝒛 − �̃�𝒛
)2
))

d𝜆𝑋 .

(B.7)

solution of the integral in Eq. (B.7) is readily available and the
esulting expression is as follows [36]:

(𝑥; 𝒛|𝐌) =
𝛽𝛼𝑛𝑛

(

�̃�𝒛
)
1
2

𝛤
(

𝛼𝑛
)

(2𝜋)
1
2

(

𝛽𝑛 +
�̃�𝒛
2

(

𝑥𝒛 − �̃�𝒛
)2
)− 1

2−𝛼𝑛
𝛤
(

𝛼𝑛 +
1
2

)

.

(B.8)

o bring 𝑓 (𝑥; 𝒛|𝐌) into a standardized format, we define 𝜇𝒛,𝑡 = �̃�𝒛,
𝜆𝒛,𝑡 =

�̃�𝒛𝛼𝑛
𝛽𝑛

and 𝜈𝑡 = 2𝛼𝑛 [36]. This gives

(𝑥; 𝒛|𝐌) =
𝛤
(

𝜈𝑡+1
2

)

𝛤
(

𝜈𝑡
2

)

(𝜆𝒛,𝑡
𝜋𝜈𝑡

)

1
2
(

1 +
𝜆𝒛,𝑡
𝜈𝑡

(

𝑥𝒛 − 𝜇𝒛,𝑡
)2
)− 𝜈𝑡

2 − 1
2
. (B.9)

Eq. (B.9) describes the marginal posterior predictive distribution of the
RF 𝑋(𝒛) given measurement data 𝐌, which is a Student’s 𝑡-distribution
with location parameter 𝜇𝒛,𝑡, scale parameter 𝜆𝒛,𝑡 and degrees of free-
dom 𝜈𝑡 defined as follows:

𝜇𝒛,𝑡 = 𝜇𝑛 +𝑹𝒛,𝑚𝐑−1
𝑚

(

𝒙𝑚 − 𝜇𝑛𝟏𝑛
)𝖳 , (B.10)

𝜆𝒛,𝑡 =
𝛼𝑛

𝛽𝑛
(

1 −𝑹𝒛,𝑚𝐑−1
𝑚 𝑹

𝖳
𝒛,𝑚 +

(

1 −𝑹𝒛,𝑚𝐑−1
𝑚 𝟏𝖳𝑛

)2 𝜅−1𝑛
) , (B.11)

𝜈𝑡 = 2𝛼𝑛, (B.12)

here 𝜇𝑛, 𝜅𝑛, 𝛼𝑛 and 𝛽𝑛 are the posterior parameters of the normal-
amma distribution given by Eqs. (10) to (13).

ppendix C. The multivariate posterior predictive student’s 𝒕-
istribution

This section extends the derivation of Appendix B to the mul-
ivariate case to derive the parameters for the 𝑘th order posterior
redictive Student’s 𝑡-distribution as given by Eqs. (22), (28) and (29)
n Section 2.6.

The PDF of the posterior predictive distribution of the RF 𝑋(𝒛) is

(𝒙;𝐙|𝐌) = ∫Θ
𝑓 (𝒙;𝐙|𝜽,𝐌) 𝑓 (𝜽|𝐌) d𝜽, (C.1)

ith 𝒙 ∈ R𝑘 and 𝐙 = [𝒛1,… , 𝒛𝑘] ∈ R𝑘×𝑑 denoting any set of spatial
oints in 𝛺. 𝑓 (𝒙;𝐙|𝜽,𝐌) is a 𝑘-variate normal density with mean vector
𝝁′′𝐙 and precision matrix Λ′′

𝐙 given by Eqs. (24) and (25). 𝑓 (𝜽|𝐌) is a
ormal-gamma distribution as defined in Eq. (8) and is independent of
he locations 𝐙. Eq. (C.1) is expanded as follows:

(𝒙;𝐙|𝐌) = ∫

+∞

𝜆𝑋=0
∫

+∞

𝜇𝑋=−∞


(

𝒙|𝝁′′
𝐙 ,Λ

′′
𝐙
)

⋅
(

𝜇𝑋 |𝜇𝑛, 𝜆𝑋𝜅𝑛
)

d𝜇𝑋 ⋅ 
(

𝜆𝑋 |𝛼𝑛, 𝛽𝑛
)

d𝜆𝑋 .

(C.2)

he inner integral can be solved by rewriting Eq. (24) as follows:

′′
𝐙 = 𝜇𝑋𝟏𝑘 + 𝐑𝐙,𝑚𝐑−1

𝑚

(

𝒙𝑚 − 𝜇𝑋𝟏𝑛
)𝖳 = 𝜇𝑋

(

𝟏𝑘 − 𝐑𝐙,𝑚𝐑−1
𝑚 𝟏𝖳𝑛

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝝍

+𝐑𝐙,𝑚𝐑−1
𝑚 𝒙

𝖳
𝑚

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝝃

.

(C.3)

Using this expression, the integration over 𝜇𝑋 can be performed ana-
lytically and results in the density of a multivariate normal distribution


(

𝒙|�̃�𝐙, Λ̃𝐙
)

with parameters given as [36]

�̃� = 𝜇 𝝍 + 𝝃, (C.4)
𝐙 𝑛 𝐹

11
Λ̃𝐙 =
(

(

Λ′′
𝐙
)−1 + 𝝍𝖳

(

𝜆𝑋𝜅𝑛
)−1 𝝍

)−1
. (C.5)

Substituting Eqs. (25) and (C.3) into Eq. (C.5), Λ̃𝐙 can be expressed as
the following linear function of 𝜆𝑋 :

Λ̃𝐙 = 𝜆𝑋
(

𝐑𝐙 − 𝐑𝐙,𝑚𝐑−1
𝑚 𝐑𝖳

𝐙,𝑚 +
(

𝟏𝑘 − 𝐑𝐙,𝑚𝐑−1
𝑚 𝟏𝖳𝑛

)𝖳 𝜅−1𝑛
(

𝟏𝑘 − 𝐑𝐙,𝑚𝐑−1
𝑚 𝟏𝖳𝑛

)

)−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̃�𝐙

.

(C.6)

Inserting 
(

𝒙|�̃�𝐙, Λ̃𝐙
)

into Eq. (C.2) gives

𝑓 (𝒙;𝐙|𝐌) = ∫

+∞

𝜆𝑋=0


(

𝒙|�̃�𝐙, �̃�𝐙𝜆𝑋
)


(

𝜆𝑋 |𝛼𝑛, 𝛽𝑛
)

d𝜆𝑋 . (C.7)

Next, an alternative parametrization is introduced, defining 𝜈𝑡 = 2𝛼𝑛
and 𝜂 = 𝜆𝑋𝛽𝑛

𝛼𝑛
. Inserted into Eq. (C.7), this gives the following [36]:

(𝒙;𝐙|𝐌) = ∫

+∞

𝜂=0


(

𝒙||
|

�̃�𝐙, �̃�𝐙
𝜂𝛼𝑛
𝛽𝑛

)


(

𝜂||
|

𝜈𝑡
2
,
𝜈𝑡
2

)

d𝜂, (C.8)

for which a solution is available [36]. The resulting expression is

𝑓 (𝒙;𝐙|𝐌) =
𝛤
(

𝑘+𝜈𝑡
2

)

𝛤
(

𝜈𝑡
2

)

|

|

�̃�𝐙
|

|

1
2

(

𝛼𝑛
𝛽𝑛𝜋𝜈𝑡

)
𝑘
2

(

1 +
𝛼𝑛

(

𝒙 − �̃�𝐙
)

�̃�𝐙
(

𝒙 − �̃�𝐙
)𝖳

𝛽𝑛𝜈𝑡

)− 𝑘+𝜈𝑡
2

,

(C.9)

which is a 𝑘-variate Student’s 𝑡-distribution with parameters �̃�𝐙,
𝛼𝑛
𝛽𝑛

�̃�𝐙

and 𝜈𝑡. Defining 𝝁𝐙,𝑡 = �̃�𝐙 and Λ𝐙,𝑡 =
𝛼𝑛
𝛽𝑛

�̃�𝐙 yields the expression
f Eq. (27) for the 𝑘th order posterior predictive distribution of 𝑋(𝒛)
iven measurement data 𝐌. That is, 𝑓 (𝒙;𝐙|𝐌) = 𝑓𝑡

(

𝒙|𝝁𝐙,𝑡,Λ𝐙,𝑡, 𝜈𝑡
)

ith parameters given as

𝝁𝐙,𝑡 = 𝜇𝑛𝟏𝑘 + 𝐑𝐙,𝑚𝐑−1
𝑚

(

𝒙𝑚 − 𝜇𝑛𝟏𝑛
)𝖳 , (C.10)

𝐙,𝑡 =
𝛼𝑛
𝛽𝑛

(

𝐑𝐙 − 𝐑𝐙,𝑚𝐑−1
𝑚 𝐑𝖳

𝐙,𝑚 +
(

𝟏𝑘 − 𝐑𝐙,𝑚𝐑−1
𝑚 𝟏𝖳𝑛

)

𝜅−1𝑛
(

𝟏𝑘 − 𝐑𝐙,𝑚𝐑−1
𝑚 𝟏𝖳𝑛

)𝖳
)−1

,

(C.11)

𝜈𝑡 = 2𝛼𝑛, (C.12)

here 𝜇𝑛, 𝜅𝑛, 𝛼𝑛 and 𝛽𝑛 are the posterior parameters of the normal-
amma distribution given by Eqs. (10) to (13).

ppendix D. The log-student’s 𝒕-distribution

In Section 2.8, the log-Student’s 𝑡-distribution is introduced as re-
ulting marginal distribution of the posterior predictive RF when the
rior RF has lognormal marginal distribution. In this appendix, the
og-Student’s 𝑡-distribution and some of its properties are described.

When 𝑋 follows a Student’s 𝑡-distribution, 𝑌 = exp (𝑋) follows the
og-Student’s 𝑡-distribution [50,52]. The PDF can be derived as follows:

𝑡,ln (𝑦) =
|

|

|

|

dln (𝑦)
d𝑦

|

|

|

|

𝑓𝑡 (ln (𝑦)) = 1
𝑦
𝑓𝑡 (ln (𝑦)) , (D.1)

where 𝑓𝑡 (⋅) is the PDF of the Student’s 𝑡-distribution, which gives

𝑓𝑡,ln
(

𝑦|𝜇𝑡, 𝜆𝑡, 𝜈𝑡
)

= 𝑦−1
𝛤
(

𝜈𝑡
2
+ 1

2

)

𝛤
(

𝜈𝑡
2

)

(

𝜆𝑡
𝜋𝜈𝑡

)
1
2
(

1 +
𝜆𝑡
(

ln (𝑦) − 𝜇𝑡
)2

𝜈𝑡

)− 𝜈𝑡
2 − 1

2

,

(D.2)

where 𝜇𝑡, 𝜆𝑡 and 𝜈𝑡 are the parameters of the underlying Student’s
-distribution. The CDF of 𝑌 is given by the CDF of the underlying
tudent’s 𝑡-distribution with argument ln (𝑦):

(

𝑦|𝜇 , 𝜆 , 𝜈
)

= 𝐹
(

ln 𝑦 |𝜇 , 𝜆 , 𝜈
)

. (D.3)
𝑡,ln 𝑡 𝑡 𝑡 𝑡 ( ) 𝑡 𝑡 𝑡
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The log-Student’s 𝑡-distribution does not have finite moments of any
order. A simple proof is given in the following. The expected value of
𝑌 is defined as:

E [𝑌 ] = E
[

exp (𝑋)
]

, (D.4)

here 𝑋 follows the Student’s 𝑡-distribution. The exponential function
an be written in terms of the following power series [e.g. [58]]:

xp (𝑥) =
∞
∑

𝑘=0

𝑥𝑘

𝑘!
, (D.5)

hich can be substituted into Eq. (D.4) to give:

[𝑌 ] = E
[ ∞
∑

𝑘=0

𝑋𝑘

𝑘!

]

=
∞
∑

𝑘=0

E
[

𝑋𝑘]

𝑘!
. (D.6)

E
[

𝑋𝑘] is the 𝑘th raw moment of the Student’s 𝑡-distributed random
variable 𝑋. However, the moments of the Student’s 𝑡-distribution are
only finite for orders 𝑘 < 𝜈𝑡 [59] and thus, the following holds for E [𝑌 ]
due to the sum in Eq. (D.6):

E [𝑌 ] → ∞ for 𝜈𝑡 <∞. (D.7)

Since the first-order moment of 𝑌 is infinite, all higher-order integer
moments of 𝑌 , as well as joint moments for the multivariate case, will
also be infinite. In the limiting case, when 𝜈𝑡 → ∞, the log-Student’s
𝑡-distribution converges to the lognormal distribution, which has finite
moments of any order.
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