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In probabilistic assessments, spatially variable material properties are modeled with random fields. These
random fields can be learned from spatial data by means of Bayesian analysis. This paper presents analytical
expressions for the Bayesian analysis of hierarchical Gaussian random fields. We model the prior spatial
distribution by a Gaussian random field with normal-gamma distributed mean and precision and make use of
the conjugacy of prior distribution and likelihood function to find the posterior distribution of the random field
parameters. We present closed-form expressions for the spatial mean and precision function of the posterior

predictive Student’s r-random field. Furthermore, we discuss the application of the hierarchical model to
non-Gaussian random fields (translation random fields) and show the connection of the methodology to the
Bayesian approachof EN 1990 for estimating characteristic values for material parameters. The method is
illustrated on two spatial data sets of concrete and soil strength parameters.

1. Introduction

Setting up an engineering model requires definition of material
properties. To correctly account for their inherent randomness, such
material properties are commonly modeled probabilistically. A proba-
bilistic representation with random variables is sufficient for modeling
materials without or with negligible spatial variability. However, in
many applications the effects of the spatial variability of materials
should not be neglected in the modeling process. This is the case,
e.g., with soil parameters in geotechnical assessments [1], and material
parameters in assessments of large concrete structures [e.g.2].

Spatially variable uncertain quantities can be modeled by random
fields (RFs). An RF represents a random variable at each point of a
spatial domain [3]. A complete definition of the RF requires specifi-
cation of the joint distribution of the variables corresponding to any
collection of points of the spatial domain. This is nontrivial in general
with the exception of Gaussian and a special case of non-Gaussian RFs,
termed translation RFs. Translation RFs are RFs that can be expressed
as functions of Gaussian RFs [4], e.g., a lognormal RF can be expressed
as the exponential of a Gaussian RF. A Gaussian RF implies that the
joint distribution for any collection of points is multivariate Gaussian
and can be completely defined by the first- and second-moment func-
tions [5]. Gaussian RFs have well established statistical properties and
a variety of methods are available for simulating them [e.g. [6]].

RFs can be learned from data through Bayesian analysis [7]. In
the general case, such an update needs to be done numerically with
methods usually based on Monte Carlo sampling, including Markov
chain Monte Carlo methods [8], sequential Monte Carlo methods [9,10]
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and subset simulation [11-13]. However, Gaussian RFs enable the use
of conjugate priors to learn the RF parameters via a closed-form update
in a Bayesian analysis [2,14].

RFs have been used for a long time in the field of geostatistics for
the interpolation of spatial data by means of kriging, which includes
Bayesian inference of Gaussian RF parameters [e.g. [15,16]]. A compre-
hensive review of hierarchical Bayesian analysis with spatial data from
the viewpoint of geostatistics can be found in [17]. More recently, these
approaches have gained importance in the field of machine learning.
They are used for Gaussian process regression, which is a versatile
surrogate model for random functions with noisy observations [18].
In the engineering community, the potential of accounting for spatial
variability within Bayesian analysis has been recognized especially in
the field of geotechnical engineering [e.g. [19-22]]. Therein, it is often
essential to identify site-specific trend functions of soil properties in
addition to the inherent spatial variability. Recently, attempts have
been made to simultaneously learn the trend function and autocovari-
ance function with sparse measurements in a Bayesian analysis. The
approach of [23-25] applies sparse Bayesian learning to learn the trend
function of the RF and subsequently draws samples from the posterior
distribution of the RF parameters through Markov chain Monte Carlo
methods. The authors of [26] applied Bayesian compressive sampling
to represent non-homogeneous RFs. This approach does not require the
explicit choice of a prior RF model. It expresses the RF as a superposi-
tion of a set of basis functions and evaluates the posterior distribution
of the coefficients of these functions using sparse measurements. The
method has been combined with the Karhunen-Loéve expansion to
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obtain realizations of the RF [27-29], and has been recently extended
to treat multi-dimensional and cross-correlated RFs [30,31].

Bayesian approaches have also found their way into other engi-
neering fields, e.g., for estimating design values of structural material
properties when samples are available [32,33], which is also included
in the current European standards for constructions (EN 1990) [34].

The aim of this paper is to present a hierarchical Bayesian model
for material properties modeled with Gaussian or translation RFs. Hi-
erarchical Gaussian Bayesian models have been well developed in the
context of Bayesian linear regression [e.g.7] and hierarchical spatial
modeling [e.g.35]. This work applies existing results from these fields
to derive a comprehensive hierarchical RF model that can be used in
the context of stochastic material modeling. We make use of the fact
that the normal-gamma distribution is the conjugate prior for the mean
and precision of a Gaussian RF to obtain the posterior distribution of
the RF parameters. The posterior predictive RF is a non-homogeneous
RF with Student’s t-marginal distribution. Importantly, given a prior
distribution for the RF parameters and a chosen autocorrelation func-
tion, all steps of the Bayesian analysis can be performed in closed
form, providing marginal and multivariate solutions for the posterior
predictive RF model. This property should simplify application in prac-
tice, especially in engineering domains where accounting for spatial
variability is currently not common practice. Moreover, we discuss
how existing approaches for simulation of Gaussian RFs can be applied
to generate realizations of the derived RF model. The application to
situations with non-Gaussian translation prior RFs is investigated and
for the specific case of lognormal prior distribution, the equations
for the required transformation are given. Furthermore, we discuss
the influence of the prior correlation function and a posterior point
estimate of its parameters. Finally, we show that the presented updating
approach is a generalization of the Bayesian approach for evaluation of
characteristic values of EN 1990.

The structure of the paper is as follows. Section 2 presents the
structure of the hierarchical RF, followed by a short review of Bayesian
analysis and a step-by-step presentation of the proposed Bayesian up-
dating procedure. Section 3 applies the method to two examples from
different engineering fields (geotechnical engineering and structural
engineering). A summary and main conclusions are given in Section 4.
The analytical expressions for updating the RF are derived in Appen-
dices A to C and Appendix D describes properties of the log-Student’s
t-distribution.

2. Methodology

In a Gaussian RF X(z), the joint distribution of {X(z;),i = 1,...,n}
for any z; € 2 ¢ R? and n € N is jointly Gaussian, with 2 denoting
the domain of definition of the RF and d the spatial dimension of
Q [5]. This RF is fully described by the spatial functions for the mean
value, the variance and the autocorrelation. Closed-form solutions are
available for the posterior distribution of the RF given data M of
X [7,36]. We consider a prior RF for X(z) with homogeneous point
statistics, i.e., a-priori the RF has constant mean and variance. The
vector of uncertain hyperparameters is 6 = [yX,AX]T, where py is
the mean value and Ay is the precision (inverse of the variance). The
assumption of prior homogeneity is a simplification and limits the
application to cases without a spatial trend of the RF or cases where
a homogeneous RF X(z) can be obtained from the actual RF by a nor-
malization operation [e.g., 3] or by de-trending methods [e.g., 37,38].

Fig. 1 summarizes the investigated problem setting, where the nodes
represent uncertain quantities (the random variables and the RF) and
the arrows denote the direct dependencies among them [e.g. [39]].
7 is the vector of correlation parameters, i.e., the parameters of the
autocorrelation function of the RF. These are initially considered as
deterministic; the estimation of r from the data M is discussed in
Section 2.7. It is worth noting that the method can handle arbitrary
autocorrelation functions, i.e., we do not require the autocorrelation
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Fig. 1. The hierarchical RF model to learn X(z) from M. uy and 1 are the mean and
precision of the RF X(z) and M is the measurement data. r is the vector of parameters
of the autocorrelation function.

function to depend on the difference in location, although in most
applications this is a standard choice. The aim of the analysis is to
learn X(z) conditional on M. The individual steps of the analysis are
derived in the following, preceded by a short introduction to the basics
of Bayesian analysis.

2.1. Bayeslan analysis

When performing a Bayesian analysis, the first step is setting up a
prior joint probability density function (PDF) of the parameters 6. The
prior PDF f (0) is then updated to the posterior PDF f (0|M) with data
M, by application of Bayes’ rule [7]:

f(OIM) « f(6)-L(OIM), @

where L(0|M) is the likelihood function, summarizing the informa-
tion from the data M. Note that a single data point M; may contain
various types of information, including the measurement outcome,
the measurement location or time, the used measurement device and
the environmental conditions at the time of the measurement. In this
paper, we focus on the case where M contains spatially distributed
measurements of an RF X(z). Hence, each M, includes the measure-

ment outcome x,,; and the corresponding measurement location z

m,i m,is

ie, M; = [x,; Z,;]. Given a set of n direct measurements of the
' T

RF X(z), M = [M;, M,,..., M,], with measurement outcomes x,, =

[Xm.l’ Xpposeees xm’,,] C R" and corresponding measurement locations

Zy = [Zm1s Zmas o zm’n]T C R™4 the joint likelihood is the PDF of
X(z) at locations Z,, conditional on 6:

L@OM) = f (xm;Zmle) . 2
2.2. Prior model

We consider a Gaussian RF X(z) whose parameter vector 6 has a
normal-gamma (N'G) prior, with PDF [e.g. [33,35,401]
F(0) = NG (ux. dxlug. k0. a9, fo) = N (x| or k0dx ) - G (Axlag. By)
1
ap—> Ko 2
=Cohy 2exp(—&x (7(;4,(—;40) +ﬂ0)). 3)
I (-) is the gamma function and C is a normalizing constant, given by
1
ﬁ”‘O K2
Co = #} @
I (a) 27)2
The spatial variability of the prior RF is determined by its autocorrela-
tion function p (z l,zz) [3,5]. A classical choice for the autocorrelation

function is the Matérn model, which includes the exponential model
and the square-exponential model [5,18,41].
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2.3. Likelihood function

The likelihood function for learning the RF X(z) with spatially
distributed measurements M is given by Eq. (2). For the Gaussian RF
this translates to:

n

/12
LOM= ——X

A
n T €Xp <_7X (xm_MXln)R;] (xm_ﬂxl")T>’
(27)7 (det (R,,))?

()

where R,, is the correlation matrix of the measurement locations with
entry R,,; ; calculated as p (z,,;.2,,;)- 1, denotes a 1 x n-vector of ones.

Uncertainty in the measurement procedure can be accounted for
by including a measurement error ¢;. Assuming an additive measure-
ment error yields the following relation between the actual value x at
location z,,; and the measured value x,, ;:

Xy =X (zm'[) +€;. (6)

The error ¢; is often modeled by a zero-mean Gaussian random vari-
able with standard deviation ¢, and statistical independence between
the measurement errors at different locations is assumed. In such
case, the joint likelihood function retains the form of Eq. (5) and the
measurement error only affects the calculation of the entries in R,

R, ; :p(z,-,zj) +§(i,j)~0'62, 7

where §(i, j) is the Dirac delta function returning 1 if i = j and 0
otherwise.

2.4. Posterior distribution of the parameters

In the general case, Eq. (1) needs to be solved numerically, e.g.
through sampling techniques, due to the intractability of the normal-
izing constant. However, analytical solutions for the posterior distribu-
tion are available in some special cases, when using conjugate priors [7,
40]. The chosen NG prior distribution and the multivariate Gaussian
likelihood of Eq. (5) are conjugate. Hence, the posterior distribution of
0 can be derived analytically and has the same parametric form as the
prior, i.e., it is a NG distribution. The Bayesian updating simplifies to
an update of the parameters of the N'G distribution [35,42]:

1
S OIM) = NG (sux Ax ity o, ,) = €2y 2exp (= (5 (wx = 1,) +,) ).

(8)
where the normalizing constant C, is given by
. L
no.2
c, = bk )

I (a,) @n)?

The parameters of the posterior distribution can be obtained with the
following set of equations:

Kot +1,R-1xT

Hy = ——— (10
" K+ 1,RT

K, =Ko+ 1L,R 11T, an

a, =ay+ ﬂ, 12)

2
- — _ 2
KoM, ROTLT — 2i0p1, R, ) — (1, R 1xT)

Ko +1,R-11]

1 _
B, =P+ 3 x,R-xl +

13

A derivation of the parameters in Egs. (10) to (13) can be found in [7]
in the context of Bayesian linear regression. For easier accessibility, we
provide the derivations in Appendix A.
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2.5. Marginal posterior predictive distribution

Typically, the goal is to make predictions about the quantity of
interest X. To this end, one needs the posterior predictive distribution
of X, which is obtained by marginalization of the joint PDF of X
conditional on 0 and the posterior distribution of 6 given M. When X is
modeled by a single random variable and the measurement points are
uncorrelated, the posterior predictive distribution is given as [7,19,33]

£ (xlx,) = /@ £ x10) £ (61x,,) do. (14)

where © denotes the domain of definition of 6. The conditional inde-
pendence between X given 6 and M does no longer hold when X is
modeled as an RF. Instead, the posterior and the posterior predictive
distribution of X will depend on the spatial location z. In RF theory,
the PDF of the RF X(z) at location z is termed marginal (or first order)
PDF of X(z). The marginal posterior predictive PDF of X(z), denoted
f (x;z|M), is given as

S (x;:zIM) = /@f(x;zlG,M)f(GlM)dG. (15)

Here, f (x;z|0,M) is the marginal PDF of X(z) given 6 and M, which
requires an additional updating step. In this step, the prior is the
marginal PDF of X(z) given 6, f (x;z|0), which is a Gaussian PDF
with parameters py and Ay. The posterior PDF f (x;z|0,M) is again a
Gaussian PDF with parameters x// and 1/, which can be calculated by
application of the following updating rules for the conditional Gaussian
distribution [3,15,36]:

— T
W =y + R, R (x, — uyl,) . (16)
-1
A=y (1 - Rz’mR,;'R;m> , 17

where R, : R? — R™" is a row vector function with element i defined
as p (z, zm',,-) with n being the number of measurements and R,, is given
by Eq. (7).

The integral in Eq. (15) can be written as follows:

+o00  ptoo
f(x;zIM)=/ 0/ N (x4 )N (hx Vs k0 Ax) G (Ax @y, B,) duydiy.
dx=0Juy=-c0
(18)

Solution of the integral in Eq. (18) results in the following marginal
posterior predictive PDF:

FeszIM) = £ (xlug,. Az, v,) =

19

where f, (x|y,, A, v,) denotes the PDF of the Student’s ¢-distribution
with location parameter y,, scale parameter A, and degrees of freedom
v, [36].

The spatial functions for the parameters of the posterior predic-
tive Student’s 7-distribution are given in closed form by the following
expressions:

— T
Hzp = Hp T+ Rz,mRmI (‘xm - “nln) ’ (20)
a”l
, @1

_1RT ~19T\2 =
B (1= Rey RS R, + (1= R, RMT) i)

’lz,t =

v, = 2an . (22)

The parameters y,, k,, @, and B, are obtained following the updating
rules in Egs. (10) to (13). A detailed derivation of the parameter update
can be found in Appendix B.
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2.6. Posterior predictive random field

The approach presented in Section 2.5 enables predicting the
marginal distribution of quantity X at any location z € 2 given
spatial data M. This is useful in cases where the correlation among
values of X at different locations needs not be accounted for in further
predictions [33]. However, in many cases the spatial dependence of X
is required for predictions. In such cases, the joint distribution of X at
k different locations is given by the kth order posterior predictive PDF
of X (z):

f (e ZIM) = /@f(x;ZIO,M)f(GIM)dG- (23)

The posterior distribution for the parameter vector 6 is the same as the
one appearing in Eq. (15). The prior distribution of the RF X (z) given
0 is Gaussian and, hence, f (x;Z|0) is k-variate Gaussian. Since the
updating rules for a conditional Gaussian distribution of Egs. (16) and
(17) can be extended to the multivariate case, f (x;Z|0,M) is also k-
variate Gaussian with mean vector u!/ and precision matrix A/, which

y/
can be calculated by the following equations [36]:

- T
”g = MXIZ + RZ,ml{m1 (xm - ”Xln) s (24)
-1
AJ =y (RZ - RZ’mR;lR;m> , (25)

where Ry, : R¥d — RF*" 5 a matrix function with element i, j defined
as p(z;,2,;). Ry 1 R4 - RE js a matrix function with element
i,j defined as p (zl-,z-). R,, is the matrix containing the correlation
of the measurement locations and a potential measurement error, as
introduced in Section 2.3. 1; is a 1 X k vector of ones.
Eq. (23) takes the following form:

+0o +oo
f(x;ZIM)=/ / N (2o lpy A7) N (i Lty K0 2x ) G (Al B,) dyday.

dx=0Juy=-co

(26)

The integral in Eq. (26) results in the following kth order posterior
predictive PDF

FGZIM) = £, (xlug. Ay v) =

.
. (1 . (x = pz,) Az, (x = pz,) ) . 27)

Vi

where f, (x|pz,. Az, v;) is the k-variate Student’s ¢-distribution [36,
43]. As in the univariate case, v, is a scalar parameter denoting the
degrees of freedom. v, is given by Eq. (22) and the parameters u,, and
Ay, are given in closed form:

Hze = 1]+ Ry, R (6, = 1) " (28)
-1

Ay = ‘;—” (R = Ry, R'RE, + (17 = Ry, RT) ! (1] = Ry, RT)T)

(29

Rz, Ry, and R,, follow the definitions for Egs. (24) and (25) and the
parameters yu,, k,, @, and g, are obtained following the updating rules
in Egs. (10) to (13). The analytical expressions for the parameters of the
multivariate posterior predictive Student’s ¢-distribution are derived in
detail in Appendix C.

The multivariate Student’s s-distribution as predictive distribution
for the multivariate Gaussian distribution also appears in Bayesian
regression for the normal linear model [7,35,44]. In fact, the presented
model forms a special case of weighted linear Bayesian regression with
a single explanatory variable.

Eq. (27) can be used for multivariate predictions of X accounting for
the information in M. It is noted that for k = 1, Eq. (27) reduces to the
expression for the marginal posterior predictive Student’s ¢-distribution
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Fig. 2. Adapted hierarchical Bayesian model to consider z as uncertain parameter. The
dependence of the resulting RF model on r can be integrated out when 7 is modeled
as random vector.

given in Eq. (19), accordingly Eqgs. (28) and (29) reduce to Egs. (20)
and (21).

Egs. (28) and (29) can be directly transformed to the spatial param-
eter functions of the posterior predictive RF, i.e., the mean function
#;(z) and the precision function 4, (z;,z,):

- T
H(z) = p, + Rz,mle (xm - ”nln) > (30
Q, -
}'t (Z],Zz) = ﬂ_" (,0 (Zl,Zz) - RzlvamlRl—z,m
n
-1
+ (1= R, R (1= R, RT)) L BD

where p (z),z,) is the prior correlation of z; and z,. R_,, and R,, are
utilized as in Eqgs. (16) and (17). The posterior predictive RF is fully
defined by the parameters specified by Egs. (22), (30) and (31).

2.7. Choice of correlation parameters

The choice of the prior autocorrelation function p (zy, z,) has signif-
icant influence on the predictive distribution of the proposed RF model;
it controls the spatial variability of the prior RF and the correlation of
the measurement locations in R,,. Hence, the autocorrelation function
and its parameters need to be chosen carefully. Although literature is
available on different parametric correlation models, their advantages
and disadvantages [e.g. [5,41,45]], the specific parameter choice for
a problem at hand remains challenging if little information about
the modeled quantity is available. This problem can be addressed by
treating the vector 7 of correlation parameters as a random vector
with associated prior distribution f(r). The dependency between t
and the multivariate posterior predictive distribution can be expressed
explicitly by extending Eq. (23) as follows:

f(x;ZM, 1) = / f(x;Z16,M, 1) f (6|]M, 1) d6. (32)
)
f (x;Z|M) can then be determined by marginalization of f (x;Z, z|M):
sz = [ fwzennar= [ ez fadn @3)
T T

with T denoting the domain of definition of r. Fig. 2 illustrates the
adapted hierarchical Bayesian model where 7 is considered as ad-
ditional uncertain parameter, in contrast to the deterministic choice
illustrated in Fig. 1. The closed-form updating procedure for the poste-
rior predictive expressions can only be used to find f (x; Z|M, t). Direct
evaluation of Eq. (33) can be cumbersome or even impossible, as it
requires evaluation of f (r|M), which depends on the choice of the
correlation model and most likely cannot be evaluated in closed form.

Through application of Bayes’ theorem, f (r|M) is given by the
following expression:

f@IM) « f(7) - f M]7). (34
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Including the dependency on 7 in the definition of the likelihood
function of Eq. (2) gives

22 1 .
x p (-2 (x, - ux1,) (R, @) (x, —uxl,,)T).

LM, 1) = ————ex (
(2x)* det (R,, (7)) 2

(35)

f (M|r) is the proportionality constant in f (6|M, ) x f (0) - L (0|M, 1),
hence

f(©)-L@OIM, 1)

f(OIM, 1)

Note that 6 and  are independent and thus, f (0|t) = f(0). f (6|M, t)
is the posterior PDF of 0 for a given r, which is a NG PDF with param-
eters given in Section 2.4. Splitting the densities and their respective
normalizing constants in Eq. (36) gives

S Mjz) = (36)

f®-LeM 1)
f oM, )
where C, and C, are defined in Egs. (4) and (9). £(6) and f(OM, 1)
are the unnormalized prior and posterior N G distributions. L©OM, 1) is
the exponential term of the likelihood function and is equal to the ratio
of £(0IM, ) and £ () (cf. Appendix A). Thus, the fraction disappears
in Eq. (37). Inserting the expressions for ¢, and C, into Eq. (37) yields

fM|1) = Cy .@r)" % det (R, (r))_%

@ @7

r 0 "
() 4 — (27) 2 det (R, (7))~
I (ag) (B, ()™

Using Eq. (38), sampling from f (r|M) can be achieved, e.g. by us-
ing Markov chain Monte Carlo methods [8]. These samples 7, i =
1,.... Nyemce can then be used to approximate f (x; Z|M):

f(er)=< o )7 P 39

K, (T)

1 Nymcmce
f6ZIM) x ——— f(xZIM,7;). (39)
Nycemce ,g‘ ( /)
Alternatively, the posterior distribution of = can be approximated
by its maximum a-posteriori (MAP) estimate [46]. That is, Eq. (33) is
approximated by

FZIM) & f (xZIM, %), (40)

where 7* is the MAP estimate of 7. It is found by maximizing Eq. (34)
with respect to 7. Using Eq. (38), this is equivalent to solving the
following optimization problem:

argmax f (r[M) = argmin In (x, (r))+2a,In (8, (v)) +In (det (R,, (r))) —2In (f (7)),

7€T 7€T

(41)

where x,, a, and g, follow the definitions in Section 2.4 conditional on
T.

The parametric form of the correlation model can be chosen among
a set of models by means of Bayesian model selection. To this end,
the marginal likelihood, i.e., the normalizing constant of Eq. (34), must
be evaluated for the different parametric model choices and multiplied
with the prior beliefs in the models [47].

2.8. Extension to non-Gaussian prior random fields

The presented Bayesian approach is applicable to Gaussian prior
RFs and data assigned with additive Gaussian measurement error. Its
applicability can be extended to the class of so-called translation RFs,
defined as [4,48]

Y(z)=T U (2), (42)

where U (z) is a zero-mean and unit-variance Gaussian RF. If the
marginal cumulative distribution function (CDF) of the non-Gaussian
RF Fy..(y(2)) is given and it is strictly increasing, one can define the
transformation of Eq. (42) as T (-) = F;}z (@(-)), with F;}z (-) denoting
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the inverse of Fy(-) and @(-) the standard normal CDF [49]. U (z) is
obtained from Y (z) by inversion of Eq. (42):

U@ =T"'7 (). (43)

To apply the proposed hierarchical Bayesian approach to the non-
Gaussian RF Y (z), each measurement outcome y,,; transformed to the
Gaussian space through Eq. (43) should be associated with an additive
Gaussian error. This can be equivalently stated as follows:

Ymi=T (” (zm,i) + 5[) ) (44)

where ¢, is a zero-mean Gaussian measurement error. A special case is a
lognormal RF Y (z) with parameters ., and 4,y and a multiplicative
lognormal measurement error, i.e., y,,; = y(Z,;) - €,;. In such case,
Egs. (42) and (44) can be rewritten as functions of a Gaussian RF X (z):

Y (z) = exp (X (2)), (45)
1 1
Vi = €Xp (x (Zms) + /1;(5 -5,-> =exp (x(z,,)) - exp </1;(5 ~£,-)
=exp (x (2,;)) - €,u- (46)

My and Ay, are the mean value and precision respectively of the
underlying Gaussian RF X (z), i.e., pxy = ppy and Ay = Aj,y. The error
term ¢,,; follows a lognormal distribution with median 1. Its parameters
are p,, = 0 and Ay,, = 4, - 1y, which are mean value and precision
respectively of the underlying Gaussian measurement error. 4, has to
be chosen accordingly. That is, the hierarchical Bayesian approach is
directly applicable by a simple logarithmic transformation of the data
and the measurement error. After the updating procedure, the posterior
predictive RF can be transformed back to the original space by applying
Eq. (45). The transformed marginal distribution of the posterior predic-
tive RF has the form of a log-Student’s z-distribution. This distribution
model is used in finance for the pricing of options [50,51] and belongs
to the family of log-symmetric distributions [52]. The marginal PDF of
the posterior predictive RF is defined as follows:

I ( 3 + l) 1
S G52 = fyin (Mg Ao vi) = 5 ———25 <L> 2

v,

t 1
d, (In) —pu,)\ * 2
x<1+—"’(n(y) ta) > . 47)

Vi

The finite-dimensional PDF can be derived in a similar manner. It is

noted that the log-Student’s t-distribution has divergent integer mo-

ments of any order. A short proof of this can be found in Appendix D.

The parametrization of Y (z) conditional on M is done by means of

Uz Az, and v, ie., in terms of the parameters of the underlying

Student’s 1-RF X (z). For v, - oo, f,1, (v;IM) converges to a lognormal
1

distribution with location parameter u,, and scale parameter A;f

2.9. Sampling the posterior predictive random field

The finite-dimensional distribution of the posterior predictive RF
is the multivariate Student’s r-distribution with parameters u,, Az,
and v,. The posterior predictive random vector X(Z) corresponding to
locations Z can be expressed as follows [43]:

z
X(Z)= &V) + Uz, (48)

Vi
where U(Z) is a zero-mean Gaussian random vector with precision ma-
trix Az,. V is a random variable that follows the chi-square distribution
with v, degrees of freedom and is independent of U(Z). Replacing U(Z)
in Eq. (48) by U(z), a zero-mean Gaussian RF with spatial precision
function 4, (z,,z,) as given by Eq. (31), and furthermore replacing pz,
by u,(z), the spatial function for the mean value defined in Eq. (30),
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yields the corresponding expression for the posterior predictive Stu-
dent’s 7-RF. Hence, the Student’s +-RF X(z) can be expressed as a
function of a Gaussian RF and one additional independent chi-square
random variable. In case of sampling from a translation RF Y(z), the
transformation of Eq. (42) has to be adapted accordingly. Samples from
U(z) can be generated by a variety of existing methods [e.g. [6]].

2.10. Connection to the Bayesian approach of EN 1990

Annex D.7 of EN 1990 (Eurocode 0) on the basis of structural design
offers a method to determine design values for material properties
when samples are available [34]. The samples are used to estimate a
quantile value of the underlying probability distribution, the so-called
characteristic value. This approach distinguishes between the cases
where (a) mean and variance of the material property are unknown and
(b) only its variance is unknown. In case (a), the characteristic value
can be estimated based on the sample mean, sample standard deviation
and the number of samples n. The underlying theory is a Bayesian
approach and the calculated value is the 5% quantile value of the
posterior predictive distribution [2,33]. We show in the following that
the hierarchical approach presented in this paper is a generalization of
case (a) in Annex D.7 of EN 1990.

We consider a material property X that follows a normal distri-
bution with unknown parameters 6 and that a set of samples x,, =
[Xm1s Xmos oo xm’,,]T are available. If no prior information about f (9)
is available, a non-informative choice can be made by choosing a N'G
distribution with the following parameters [42]:

(10> ko> 20 ) = [/,o,—%,o], (49)

resulting in f () = 43!

Furthermore, we assume independence of the random variables cor-
responding to the measurement locations and neglect the measurement
error, i.e., R,, = L. This leads to a simplification of Egs. (10) to (13):

Lx, 1<
o= —— =7 ; Xmis (50)
K, =n, (51)
-1
a, = i 5 (52)
2 n
1 (L,x,) 1 2
poe (- Y LS )
i=1

If one neglects the dependence between the measurements and the
RF at the predictive locations, the posterior predictive distribution
f (x|x,,) is obtained following Eq. (14) and is space-invariant. It is a
Student’s 7-distribution with the following parameters:

1 n
=y = ; X (54)
a, -1
A= — LA (55)
ﬂn (1+Kn ) (n+1)21-=1 (xm,i_”n)
v, =2a,=n-1. (56)

The characteristic values in the method in EN 1990 are defined as
5% quantile values of a Student’s 7-distribution with parameters given
by Egs. (54) to (56). An additional transformation step is added for
ease of use, in which the Student’s z-distributed random variable X is
normalized:

U = (X—u,)ﬁ, (57)

where U, follows the standard Student’s z-distribution with v, degrees
of freedom, i.e., 4, = 0 and A, = 1. This normalization allows the use of
standardized coefficients (k, values), which only depend on n:

k== Fgl oy 1, 58)
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where F; 1(.) is the inverse CDF of U, and p = 0.05, since the character-
1

istic value x, is defined as the 5% quantile value. Using the k, value,

x; is obtained as follows:

x; = fix (1—k,dx), (59)
where jiy = %Z:’_l X,,; is the sample mean and §y = Z—X is the
- ’ X
- o . 2
sample coefficient of variation with 6y = anl n (Xmi—fix)". EN

1990 provides tabulated values of k, for varying n.

The method in EN 1990 also covers the case when the material prop-
erty Y follows a lognormal distribution and y,, = [y,.1+ Ymas--- » ym’,,]T
are the available samples. In this case, the Bayesian analysis underlying
the method is conducted as described above for the Gaussian random
variable X = In(Y) with the logarithmic samples x,,; = In(y, ), i =
1,...,n. The posterior predictive distribution f (y|y,,) is a log-Student’s
t-distribution parameterized in terms of the parameters of the underly-
ing Student’s #-distribution given by Egs. (54) to (56). The characteristic
value y, is the 5% quantile value of f ( ¥ ym), which is equivalent to
the exponential of the 5% quantile value of the underlying Student’s
t-distribution. Thus, y, can be calculated as

v = exp (jix (1 -k,x)), (60)

where jiy and 5y are the sample mean and sample coefficient of
variation of the logarithmic samples and &, is given by Eq. (58).

In a nutshell, the method in Annex D.7 of EN 1990 to determine
characteristic values for the design of structures is a special case of
the presented RF analysis, which assumes a non-informative prior
distribution, independent measurements without measurement error
and independence between measurement locations and the material
parameter at the predictive locations.

3. Numerical examples

In this section, the proposed approach is applied to two numerical
examples. The first one involves a one-dimensional RF of a geotech-
nical material, while the second one models the concrete compressive
strength of a ship lock wall with a two-dimensional anisotropic RF.

3.1. Tip resistance of cohesive soil

Soil parameters are often determined based on measurements from
cone penetration testing (CPT). In CPT, the tip resistance ¢, measures
the force required to push the cone through the soil and can be used
to infer further soil parameters. In this example, data from a CPT is
used, where the tip resistance of a cohesive soil layer was measured in
depths from z = 3.900m to z = 10.275m resulting in 256 equidistant
measurements of the tip resistance. The data is taken from [53] and
was also used by Wang and Zhao to illustrate the performance of
Bayesian compressive sampling when sparse data is available [26].
The tip resistance is modeled by the one-dimensional RF g¢r(z) in
vertical direction with lognormal prior marginal distribution. Hence,
the transformation of Eq. (45) is applied:

qr (z) = exp (X (2)). (61)

The underlying prior RF X (z) is a homogeneous Gaussian RF with
unknown mean value yy and unknown precision 4. The prior autocor-
relation function is modeled by the exponential model with unknown
correlation length /.

|5~

] (62)

p(z:.z;) =exp|-
c
Furthermore, no prior information on uy or iy are available and thus
a non-informative prior N'G distribution is chosen with the parameters
from Eq. (49).

It is assumed that knowledge of the full data set is not available but
only a subset of 13 measurement values taken at equidistant locations,
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Fig. 3. Posterior predictive RF of the tip resistance g;. Panel a) shows the median
(red line) and the two-sided 90% credible interval, i.e., the area between the 5% and
95% quantile value (orange area) of the marginal log-Student’s ¢-distributions. The 13
blue dots mark the used measurement locations and values while the full data set is
illustrated by the dotted black line. Panel b) shows three independent realizations of
the posterior predictive RF in comparison to the two-sided 90% credible interval in
gray. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

as illustrated by the blue dots in panel a) of Figure 3. It is assumed
that the measurements are associated with a multiplicative lognormal
measurement error with median 1 and coefficient of variation CV, =
0.05. In a first step, the MAP estimate for /, is obtained by solving the
minimization problem of Eq. (41), where the vector = only consists of
I.. A uniform prior on the positive numbers is employed for /. and
hence the term In(f(r)) in the optimization problem can be dropped
and the MAP estimate reduces to a maximum likelihood estimate [54].
The resulting estimate for /, is obtained as [’ = 0.72m.

Consequently, the posterior parameters of the NG distribution are
obtained by application of Egs. (10) to (13) in combination with
Eq. (46) to account for the log-transformation of the measurements.
The spatial parameter functions of the posterior predictive Student’s
+-RF are calculated by means of Egs. (30) and (31). From Eq. (22) the
degrees of freedom are calculated as v, = 12. These are the parameters
of the RF ¢, (z) given M, which has log-Student’s r-marginal distribution
with PDF given by Eq. (47). As the moments are not defined, the
illustration in panel a) of Figure 3 shows the median of the posterior
predictive tip resistance and the corresponding 5% and 95% quantile
values along the depth of the soil layer. The increasing width of the

a b
) 4 ) 4F 3
5 51 ]
6 6F ]
E7 {1 E7 1
2 0
8 1 8t ]
9 1 9t ]
10 10} 1
0 0

4, [MPa] g, [MPa]
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fIM)

0 r 2 4 6 8 10

Fig. 5. Posterior distribution of the correlation length f (I,[M) as function of the
correlation length /. and the corresponding MAP estimate /.

orange area shows that the uncertainty is very small close to the mea-
surement locations and increases away from the measurements. The
full data set of 256 measurements is indicated by a black dotted line.
Panel b) of Fig. 3 shows three independent realizations of the posterior
predictive RF. Comparison of the random realizations with the full data
set shows good accordance regarding the number and amplitude of
strong local deviations from the posterior predictive median. Hence,
the proposed approach can sufficiently approximate both the overall
trend of the RF and the associated uncertainty.

To illustrate the influence of the number of measurements on the
posterior prediction, the above calculations are repeated for n = 6 and
n = 64 equidistant measurements. Fig. 4 illustrates the measurement
values and locations by blue dots in panel a) and panel c), respectively.
For n = 6, the MAP optimization results in I:G = 4.60m and for
n = 64 it gives I” , = 1.5lm. This large difference in the MAP
estimates is due to the assumed uninformative prior distribution for the
correlation length, in which case, the MAP estimate only depends on
the data. Large differences in the data can lead to significant variation
in the estimated correlation length. The median and corresponding 5%
and 95% quantile values of gp(z) are illustrated in panel a) and c),
respectively of Fig. 4. Comparison to Fig. 3 shows that with increasing
amount of data, the uncertainty, i.e., the variability of ¢;(z) is reduced.
However, even with a small amount of data (n = 6), the global trend of
the tip resistance can be predicted and the location-specific information
can be used efficiently to set up an RF model. The large variability in
the areas between the measurements is illustrated by three independent
realizations in panel b) of Fig. 4. When the amount of data is relatively
large (n = 64), the remaining uncertainty in the tip resistance becomes

¢ d

) 4F y ] ) 4F ™3
S5t 4 51 J
61 1 Gl ]

E7 | E1l ]

N 3
8t 1 8t 1
10¢ ] 10} 1

1 2 3 4 0 4

g, [MPa] 4, [MPa]

Fig. 4. Posterior predictive RF of the tip resistance g for n = 6 (panel a) and b)) and » = 64 (panel c) and d)). Panel a) and c) show the median (red line) and the two-sided
90% credible intervals of the marginal log-Student’s r-distributions. The blue dots mark the used measurement locations and values while the full data set is illustrated by the
dotted black line. Panel b) and c) each show three independent realizations of the posterior predictive RF in comparison to the two-sided 90% credible intervals in gray. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Ship lock wall with a total length of 105m and a total height of 8 m made of tamped concrete from the 1920s. Three vertical core samples (C;, C, and C;) were taken

at the quarter points of the wall indicated by the three dashed lines.

a) Median of the posterior predictive concrete compressive strength
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Fig. 7. Posterior predictive median (panel a)) and 5% quantile value (panel b)) of the concrete compressive strength f, of a ship lock wall obtained with data from three vertical

core samples (n = 24 measurements of the concrete compressive strength). The median and

Table 1

Measurements of the concrete compressive strength f, and the corresponding measure-
ment locations of 24 specimens from 3 vertical core samples (C,, C, and C;) in the
quarter points of the ship lock wall.

5% quantile value at points A, B and C are listed in Table 2.

Typically, massive concrete structures made of tamped concrete
from that time have been built in layers [55]. Hence, we employ
a transverse anisotropic exponential correlation function, where the

Core sample C,

Core sample C,

Core sample C,

correlation length /. ; in direction z; differs from the correlation length

l., in direction z, [56]:

zy [m] z, [m] fo, [MPa] z; [m] z, [m] f., [MPa] z, [m] z, [m] f,, [MPa]

0.40 29.2 0.21  21.2 0.34 185

1.24 155 1.25 16.0 1.34 103

225 87 2.05 320 217 132

3.15 123 3.33 207 3.24 145
26.25 412  16.2 525 415 138 7875 4.27 254

533 116 525 121 512 145

6.15 134 6.40 8.6 6.23 13.2

7.05 139 7.45 148 7.08  33.0

(4, (z.2))°

2
lc,l

N (4, (22))°

. : ©3)
lc,Z

p(z,-,zj) =exp|-—

where 4, (z;,z;) and 4, (z;,z;) denote the canonical distances of z; and
z; in directions z; and z, respectively. Assuming a uniform prior on /.

comparatively small and random realizations of the RF do not differ
significantly from the full data set, as can be seen in panel d) of Fig. 4.

Fig. 5 plots f (I.|M) with the MAP estimate /* = 0.72m located
at the mode of f (I,|M). It appears that, although the posterior dis-
tribution has a distinct mode, it covers a broad range by remaining
relatively flat for increasing values of /.. This is caused by the uniform
prior distribution for /, and shows that such a uniform prior can lead
to an improper posterior distribution of the correlation length. While
this is not a problem when using MAP, it is an issue when the full
posterior distribution of /, is to be used. In such cases, a different prior
distribution should be chosen.

3.2. Concrete compressive strength of a ship lock wall

In this example, we investigate the concrete compressive strength
f. of a ship lock wall made of tamped concrete in the 1920s. The
length of the wall is 105 m and the height of the tamped concrete layer
is 8m, the third dimension is not taken into account for this study.
24 measurements of f, are available from three vertical core samples
taken at the quarter points of the wall [2]. The situation is illustrated
in Fig. 6 and the measurement data and corresponding locations are
shown in Table 1. We assume that the measurements are associated
with a multiplicative lognormal measurement error with coefficient of
variation CV, = 0.025.

Applying the transformation of Eq. (45), the logarithm of f, is
modeled with a two-dimensional Gaussian RF with non-informative
prior NG distribution (cf. Eq. (49)).

and /,, results in the following MAP estimate for the two correlation
lengths:

I = [lj,l, lj_z] =[1.52m,0.58 m] (64)

These values are used in the Bayesian updating to obtain the pos-
terior predictive RF for f,. As the marginal posterior predictive PDF
is a log-Student’s ¢-distribution, the moments cannot be evaluated and
thus, Fig. 7 illustrates the median (panel a)) and the corresponding
5% quantile value (panel b)) of f,.(z) given M across the ship lock
wall. The measured values and the information about their location are
clearly reflected, as regions close to low measurement values show low
median and 5% quantile values, and regions close to high measurement
values show higher median and 5% quantile values. This is illustrated
by the example of three points (A, B and C) at different locations of
the ship lock wall, where the median and 5% quantile values have
been extracted and listed in Table 2. Point A, located close to a low
measurement value, features a posterior median of 10.7MPa and a
5% quantile value of 6.6 MPa, both of which are significantly lower
than those at point C with a median of 23.1 MPa and a 5% quantile
value of 14.1 MPa. Contrary to point A, point C is located close to a
high measurement value (cf. Table 1). The median of 15.9 MPa and 5%
quantile of 8.2 MPa at point B are representative values for all locations
far away from the measurements, i.e., all points with negligible spatial
correlation to any measurement location.

Section 2.10 demonstrates the connection of the proposed RF ap-
proach and the established Bayesian approach in EN 1990. Next, we
compare this approach to the results of the proposed hierarchical RF
model using the data of Table 1. The mean and standard deviation of
the log-transformed measurement values are iy = 2.75 and 6y = 0.37
with a corresponding k, value of k,(n, = 24) = 1.75. Applying Eq. (60)
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Fig. 8. Posterior predictive median of the concrete compressive strength of a ship lock wall in the area around core sample C, obtained with varying correlation lengths.

Table 2

Median (50% quantile value, f,,s) and 5% quantile value (f,s) of the marginal
posterior predictive concrete compressive strength at three different locations (A, B
and C) of the ship lock wall.

z; [m] zy [m] feos [MPa] feo0s [MPa]
Point A 25.95 2.5 10.7 6.6
Point B 37.25 5.3 15.9 8.2
Point C 78.3 6.85 23.1 14.1

0.8 3
0.6
) 047753

€2 el

Fig. 9. Two-dimensional posterior distribution of the correlation lengths in z, (hori-
zontal) and z, (vertical) direction, f (I.[M). The maximum of f (I,[M) is located at
I, =1.53m and /., = 0.58 m, which is equivalent to the MAP estimate I.

gives a characteristic value (5% quantile value) of f., = 82MPa.
This value matches the 5% quantile value at locations without spatial
correlation to the measurement points (cf. point C in Table 2). We note
that this congruence depends on the chosen prior parameters of the RF
and, thus, is the exception, not the rule.

The correlation length is an important parameter in any RF model.
To illustrate this, the Bayesian analysis has been carried out for I, =
0.5I7 and I, = 2I7. The resulting marginal median of f.(z) in the area
around the core sample C, is illustrated in Fig. 8. Obviously, the larger
the correlation length, the bigger the area that is influenced by the
spatial correlation to the measurements. For I, = 0.5I” the spatial effect
of the measurements on the median is restricted to a domain of length
~ 2m, wheres for I, = 2I’ this effect spans over a length of ~ 10m.
It is mentioned that this is the effect of the final step of the Bayesian
approach, where the posterior predictive distribution is obtained. The
whole RF is influenced by the data and the chosen correlation length
by the global posterior parameters of the NG distribution, as can be
seen by the different median values of f.(z) at locations D,, D, and
D, indicated in Fig. 8. These locations are chosen exemplarily for all
points with negligible spatial correlation to any measurement location.
For I, = 0.5I7 the median is 15.7MPa and for I, = 2} it is 16.3 MPa,
compared to 15.9 MPa when I, = I’..

When employing the MAP procedure to approximate f (r|M), it is
important to be aware of the sensitivity of the estimate and the amount
of information provided by the data. In this example, the vertical
distance of the measurement locations is relatively small while the
horizontal distance is either O or very large. Hence, the MAP estimate
for I, is subject to larger uncertainty than the MAP estimate for /. ,,
which is illustrated in Fig. 9 . While f (z|M) has a distinct maximum
in direction /., at I., = 0.58m, it is relatively flat in direction /. In
fact, any /. ; smaller than 5m is approximately equally likely given the

data at hand. Only for /,; > 5m the measurements of different core
samples are noticeably correlated. This behavior is of special interest
when no prior information on the correlation length is assumed, since
in such case the MAP estimate is only controlled by the data. In general,
learning the correlation length from limited amount of data is not a
trivial task, especially if no prior information on the RF parameters
is available. In a study on the correlation length of soil parameters,
a minimum of 5 measurement values within one correlation length are
recommended for learning the correlation length of the exponential
correlation model [57].

4. Conclusion

This paper presents a comprehensive hierarchical Bayesian ap-
proach to model random material properties with spatially distributed
data. It is based on modeling a Gaussian random field assuming
a normal-gamma prior distribution on its parameters. Closed-form
expressions for the posterior normal-gamma distribution of the param-
eters of the random field are derived by making use of the conjugacy
of the normal-gamma distribution and a multivariate Gaussian likeli-
hood function. Subsequently, closed-form expressions for the spatial
parameter function of the posterior predictive random field are derived,
resulting in a non-homogeneous Student’s t-random field. That is, the
marginal distribution of the posterior predictive random field is a
Student’s #-distribution with location-specific parameters.

Sampling from such a random field can be achieved by expressing
the Student’s r-random field in terms of a Gaussian random field
and one additional chi-squared random variable. For estimating the
correlation parameters, a maximum a-posteriori estimation approach
is proposed that accounts for the available data and potential prior
information. In addition, an extension of the approach to non-Gaussian
translation prior random fields is discussed and closed-form expressions
for the case of a lognormal marginal prior distribution are derived.

The applicability of the presented approach to different engineering
fields is illustrated by two examples, one from the field of geotech-
nical engineering and one from structural engineering. The derived
posterior random field models reflect the location-specific information
from the measurements, whereas their uncertainty increases with in-
creasing distance from the measurement locations. Furthermore, it is
demonstrated that the uncertainty can be reduced by increasing the
amount of data. The spatial fluctuation of the posterior random field
is sensitive to the choice of the correlation length parameter. When
no information is available on the prior autocorrelation function, the
maximum a-posteriori estimate for the correlation length is sensitive
to the measurement data and should be handled with care, especially
in the case where limited data is available.

The presented modeling approach can be extended to account for
a trend function in the prior random field parameters. A trend in
the prior mean can be included by employing a linear basis function
model, similar to the work of [23]. A parametric dependence can
also be included in the prior precision parameter, which leads to a
model known as weighted Bayesian linear regression [7]. Investigation
of these models in the context of material modeling is left to future
studies.
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Appendix A. The posterior normal-gamma distribution

The posterior parameters of the normal-gamma distribution for the
parameter vector 0 = [;4 x> A X]T, as specified in Egs. (10) to (13) are
derived in the following.

According to Bayes’ theorem, the posterior distribution f (6|M) is
proportional to the product of prior distribution f (0) and likelihood
L (6|]M), which are defined in Egs. (3) and (5). Using the normal-gamma
prior distribution and the multivariate Gaussian likelihood gives the
following expression:

A
_K02x (ﬂx - H0)2> - €xp (—Axﬁo) :

n_1
FOM) A2 ~exp<

A _ T
- exp <-7" (% = ux1,) RS (x, — uy1,) > . A1)
. . 2 _ _
With the definition of A = &y (ux — pp)” — 2ux1,R1x] + yg(lanlll,
Eq. (A.1) can be rearranged as

1

w0+5-5 _ 1 17,1
7 OIM) o A exp( Ay (/30 + 3R, X + 2A)).
Initially, the focus lies on A which is expanded and modified as

follows:

(A.2)

—1,T

koMo + 1, R "x, +K142

e ——— 0 .
Ko+ 1,R117 0

Next, the square of the expression inside the second parenthesis is
completed:

A=(+1,R ') (,@ - 2uy (A.3)

m

R-117

S, tn

- 2 _ 2
Koty +1,R-1xT ,  (xkoHo + LR x])
oot +KoUy - —
Ko+ 1,R-11

n““m “n

A= (K +1,R;'TT) (yx - 1
0

B C
(A.4)

The terms of C in Eq. (A.4) are expanded and converted to a common
denominator:
c—(K 21, R-1T — 26001, R xT — (1,R-1xT)° L,R1T)
- OMO"mn KoHoLy mxm ('l mxm) (K0+'lmn) .
(A.5)

Inserting the expression for B and C into Eq. (A.2) gives:

1

a0+5— 1 —1.T 1 AX
FOIM) & 272 2~exp(—/1x (ﬂ0+5mem xm+§C))~exp <—7B .
(A.6)

The parametric form of the posterior normal-gamma distribution as
defined in Section 2.4 is as follows:

a1 A
NG (Mx’ Ax |ty Kn’an!ﬂn) =C,Ay 2. exp <_ anx (le - ﬂn)2> - €Xp (_/1xﬂn) .

(A7)

10
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Writing out all the terms in Eq. (A.6) and comparing it to (A.7) one
can see that up to the normalizing constant C,, the resulting expression
of Eq. (A.6) is a normal-gamma distribution with parameters as follows:

_ KoM + 1R IxT

-, (A8)
ko +1,R-11]

K, = ko + 1L,RI1T, (A.9)

@, = ap + g (A.10)

kou21,R-11T

-1, T -1,T)2
0" ""m “n _ZKO”UIWRm xm - (I”Rm xm)

Ko +1,R-11T

1 _
B, =Py + 3 mem'x; +

(A.11)

The normalizing constant is
1

X 2
ﬂnnKn

C = —1
I (a,) 27)2

n

(A12)

Appendix B. The marginal posterior predictive Student’s t-
distribution

In Section 2.5, the Student’s ¢-distribution is introduced as the
marginal posterior predictive distribution of the RF X(z) for the normal-
gamma conjugate prior distribution of the RF parameters. This ap-
pendix derives the analytical expressions for the parameters of the
marginal posterior predictive distribution as given in Egs. (20) to (22).

The marginal posterior predictive PDF at any point z € Q2 is defined
by
f(x;zIM) = /@f(x;zlG,M)f(GlM)dG. (8.1)
f (6|M) is the posterior normal-gamma distribution as defined in Eq. (8)
and f (x; z|60,M) is a location-specific normal distribution with param-
eters y;’ and /1;’ given by Egs. (16) and (17). Hence, Eq. (B.1) can be
expanded as follows:

+o00 +o0
£ (e zIM) =/ NS N (b ) i G (A Lty B,) iy
Ax

=0 J py=—c0

(B.2)

The inner integral involves the convolution of two normal densities:

+oco
/ N (x| 20N (s kpAx ) duy = f (x:2] 45, M) . (B.3)
Hx==00
For the solution of the integral, the expression for 4/, given in Eq. (16)
is rewritten as follows:

— T - —
Wl =px + R, R (x, —uyl,) =px (1-R,RT)+R_,RIxT.
—_— ) ——

v ¢
(B.4)

For this special case and noting that 1 does not depend on uy, the
marginalization in Eq. (B.3) can be solved analytically and results in
a normal density f (x;z|Ax,M) = N (x|ji,, A;), where ji, and 1, are
given by the following equations [36]:

Ay =wp, +&, (B.5)
~ _ -1
Jo= () + i)
- Z1qT2 1\ 7!
= Ax (1= ReyRyRT, + (1= Ro, RT) i) (B.6)
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Inserting in Eq. (B.2) results in

+oo 1 &
=3 I(
/ 0/1X exp (—ﬂx <ﬂn 7(x - ji;) ))dix.
Ay

(B.7)

g (%)
T (a,) (271)

S (x;zIM) =

A solution of the integral in Eq. (B.7) is readily available and the
resulting expression is as follows [36]:

f(x;z|M) =

(B.8)

To bripg f (x;z|M) into a standardized format, we define u,, = ji,,
A, = K;“” and v, = 2, [36]. This gives

zt
v+l 1 v,
r (IT> Az )2 Az 2\ 773
— () (e B )
r (5,) v, v

Eq. (B.9) describes the marginal posterior predictive distribution of the
RF X(z) given measurement data M, which is a Student’s ¢-distribution
with location parameter y,,, scale parameter 4., and degrees of free-
dom v, defined as follows:

S zIM) = (B.9)

Hzr = o+ R R (% — ,1,) " (B.10)
A, = & : (B.11)
T B, (1 = ReuRGRL, + (1= Ry, RMT) 1)
v, = 2a,, (B.12)
where u,, ,, a, and f, are the posterior parameters of the normal-

gamma distribution given by Egs. (10) to (13).

Appendix C. The multivariate posterior predictive student’s 7-
distribution

This section extends the derivation of Appendix B to the mul-
tivariate case to derive the parameters for the kth order posterior
predictive Student’s 7-distribution as given by Egs. (22), (28) and (29)
in Section 2.6.

The PDF of the posterior predictive distribution of the RF X(z) is

S ZIM) = /@ S (x:Z|6,M) f (6]M) de, ((eR))]
with x € R* and Z = [zy,...,2;] € R¥ denoting any set of spatial
points in Q. f (x;Z|0,M) is a k-variate normal density with mean vector
u, and precision matrix A7 given by Egs. (24) and (25). f (6|M) is a
normal-gamma distribution as defined in Eq. (8) and is independent of
the locations Z. Eq. (C.1) is expanded as follows:

F6ZIM) = / / N (%1 AY) - N (st k) ity - G (Al ) diky.
—

(C.2)
The inner integral can be solved by rewriting Eq. (24) as follows:
Hz = uxl + RZJﬂR;l] (30 = py ln)T =pux (1, - RZ»MR;1 1:) + RZ-mR;:lx;rn :
—_—————— ) ——
v 4
(C.3)

Using this expression, the integration over uy can be performed ana-
lytically and results in the density of a multivariate normal distribution
N (x|fiz, Az) with parameters given as [36]

Az =y + 6, (C.4)
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- — _ -1
Az=((a) 7" +v" (axx,) "' w) (€.5)

Substituting Egs. (25) and (C.3) into Eq. (C.5), AZ can be expressed as
the following linear function of Ay:

1
Ay =iy (Ry =Ry, RIRY, + (1, = Ry, RT) i1 (1, = Ry, BT )
K,
(C.6)
Inserting N (x|jiz, Az) into Eq. (C.2) gives
+o0
7z = [ W (sl Ryix) 6 (hx ey ,) iy €
Jx=0

Next, an alternative parametrization is introduced, defining v, = 2a,
and 5 = ’12 I Inserted into Eq. (C.7), this gives the following [36]:

. _ +eo _ & ha, i Vi
f(x,ZIM)—/”:O N.<x‘ﬂstzﬂ—n>G( 2 %) an,

for which a solution is available [36]. The resulting expression is

Fr<(z'l)>| (5 (”

(C.8)

Kty

a,,(x—ﬁz)f(z(x—ﬂl)T> ! i

f (e ZIM) =

Buvi
(C.9)

. . o, .
which is a k-variate Student’s r-distribution with parameters fi,, ﬂ—"KZ
n

a, -
and v,. Defining py, = fiz and Az, = —"K, yields the expression

of Eq. (27) for the kth order posterior preci’ictive distribution of X(z)
given measurement data M. That is, f (x;ZIM) = f, (x|pz,, Az, V)
with parameters given as

T

Uz, =1, + R, R (x,, — p,1,) (C.10)

-1

Ag, = ﬁ—” (Rz =Ry, R'R], + (1, = Ry, ROT) ! (1, — Ry, R
(C.11)
v =2, (C12)

where yu,, x,, a, and g, are the posterior parameters of the normal-
gamma distribution given by Egs. (10) to (13).

Appendix D. The log-student’s ¢-distribution

In Section 2.8, the log-Student’s 7-distribution is introduced as re-
sulting marginal distribution of the posterior predictive RF when the
prior RF has lognormal marginal distribution. In this appendix, the
log-Student’s ¢-distribution and some of its properties are described.

When X follows a Student’s t-distribution, Y = exp (X) follows the
log-Student’s t-distribution [50,52]. The PDF can be derived as follows:

dln (y)

fin ) = fidn(y) = —f (An(y)), (®.1)

where f; (-) is the PDF of the Student’s ¢-distribution, which gives

() : A -m)"\
Ty <z> (”Al(#

(S

fr.ln (J’“‘:a Ar’ Vr) =

>2)2' |

ols

(D.2)

where y,, 4, and v, are the parameters of the underlying Student’s
t-distribution. The CDF of Y is given by the CDF of the underlying
Student’s -distribution with argument In (y):

Ft,ln (Y|l4w /ltsvt) =F (ln ) |l‘rs}~p‘/t) . (D.3)
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The log-Student’s t-distribution does not have finite moments of any
order. A simple proof is given in the following. The expected value of
Y is defined as:

E[Y]=E [exp(X)], (D.4)

where X follows the Student’s r-distribution. The exponential function
can be written in terms of the following power series [e.g. [58]]:

)

k
X
exp() =Y, 17 (D.5)
k=0
which can be substituted into Eq. (D.4) to give:
o Xk ® E [ Xk]
E[Y]=E kz-:‘)F =k26 o (D.6)

E [X*] is the kth raw moment of the Student’s ¢-distributed random
variable X. However, the moments of the Student’s z-distribution are
only finite for orders k < v, [59] and thus, the following holds for E[Y]
due to the sum in Eq. (D.6):

E[Y] - o for v, < . (D.7)

Since the first-order moment of Y is infinite, all higher-order integer
moments of Y, as well as joint moments for the multivariate case, will
also be infinite. In the limiting case, when v, - oo, the log-Student’s
t-distribution converges to the lognormal distribution, which has finite
moments of any order.
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