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A B S T R A C T

In probabilistic assessments, inputs with significant spatial variability should be modeled with random fields.
Random fields can be non-homogeneous with location-specific marginal distributions, for example, due to site-
specific information incorporated through Bayesian analysis or due to spatial trends in the mean or variance
of the uncertain quantity. This paper investigates the spatial averaging method for the discretization of non-
homogeneous random fields. In this approach, the random field is reduced to a set of random variables
representing its local averages over a corresponding set of elemental domains. This is of particular benefit
when coupling the random field model with finite elements for structural analysis. We extend the application
of the method to non-homogeneous Gaussian and non-Gaussian translation random fields with lognormal,
Student’s 𝑡- and log-Student’s 𝑡-marginal distribution. The latter two distributions are particularly relevant if
spatial data is used in a hierarchical Bayesian random field modeling. Two numerical investigations assess the
ability of the method to efficiently represent the response variability and probability of failure of structural
systems with spatially variable inputs. The investigations include the effect of different element sizes for the
spatial averaging on the system response and applicability of the spatial averaging method to assessing local
and global failure modes.
. Introduction

Many engineering applications require the consideration of physical
uantities that vary randomly in space. Common examples include
aterial properties in large structures [1], soil properties in geotech-
ical sites [2] and the apparent properties of composite materials [3].
patially variable properties can be modeled by random fields (RF) [4].
y definition, an RF consists of an infinite number of random variables.
ence, numerical treatment of RFs requires their approximation in

erms of a finite number of random variables, a task known as RF
iscretization. An overview of existing discretization methods can be
ound in [5] (with focus on the dimensionality reduction aspect) and,
ore recently, in [6] (with focus on the simulation cost).

The spatial averaging (SA) method expresses the RF through a set
f random variables representing local averages of the field over a set
f elements. The method was originally proposed by Vanmarcke and
rigoriu [7] and is extensively described in [4]. SA has been applied to
omogeneous RFs in various applications and is commonly employed in
he context of geotechnical analyses to approximate spatially variable
oil properties [8–12]. Such problems have the advantage that geotech-
ical failure modes are typically dominated by average behavior and
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not by local extrema of the soil properties. Thus, an RF can often be
sufficiently approximated by a small set of random variables or even a
single random variable representing the averaging behavior of the RF
over a spatial domain (e.g., a failure surface). SA has also been applied
to problems in structural analysis to explicitly account for the spatial
variability of loads and material properties [7,13–16].

The theory of SA supports the application of the method to non-
homogeneous RFs, although it has been reported that it leads to in-
creased numerical effort [17]. SA for non-homogeneous RFs has re-
cently been applied in the context of reliability analysis in [18,19].
Non-homogeneous RFs occur, for example, when the spatial moment
functions (mean and variance) follow a trend [e.g.,20,21], or when a
homogeneous RF is updated with measurement data through a Bayesian
analysis [e.g.,1,22–25]. While in the first case it may be possible
to express the RF as function of a homogeneous RF by means of
a transformation or standardization [4], this does not hold for the
latter case. This paper focuses on the second case, i.e., when the non-
homogeneous behavior of the RF results from a Bayesian updating of
the RF parameters. Such non-homogeneous RFs are characterized by
local changes in the spatial mean function, local reductions of the
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spatial standard deviation function and a complex location-specific
autocorrelation structure.

One of the advantages of SA over other RF discretization meth-
ods applicable to non-homogeneous RFs is the compact form of the
resulting set of averaging random variables. If the RF is Gaussian,
the averaging random variables are Gaussian random variables fully
defined by a mean vector and a covariance matrix evaluated through
spatial integration of the RF moment functions. Hence, it does not
require the spectral decomposition of the covariance operator as is
the case, e.g., for the Karhunen–Loève expansion [26,27]. Moreover,
each of the random variables directly represents the RF in a specific
domain. That is, coupling of the method with a finite element model
is straightforward, which makes it ideally suited for use in engineering
applications [7,13,14]. In addition, the method can account for the fact
that the response of structural systems is often determined by regions of
high or low values and not by local extrema of random quantities. Last
but not least, the illustrative character of the SA random variables can
significantly enhance understanding and acceptance of spatial variabil-
ity and thus increase the motivation in the engineering community for
explicit modeling of RFs in engineering assessments. A closely related
method, termed local average subdivision tackles the problem by using
a hierarchical approach from global to local averaging integrals of RFs
to account for spatial variability and the effect of averaging behavior of
properties [28]. It was originally developed for homogeneous RFs but
can be extended to the general non-homogeneous case.

This paper presents the SA method for non-homogeneous Gaussian
RFs following the theory in [4]. In the homogeneous case, the mean
is not affected by the averaging operation and, thus, the mean of the
spatially averaging random variables equals the mean of the random
field. The covariance of the spatially averaging random variables is
obtained by integration over the spatial autocorrelation function multi-
plied by the constant point-variance of the random field [4]. This is not
possible for non-homogeneous random fields, where the parameters of
the averaging random variables need to be calculated from the spatial
mean function and the spatial covariance function. We provide the
required expressions for the non-homogeneous case of one- and two-
dimensional Gaussian random fields. Furthermore, we extend SA to a
special class of non-Gaussian RFs, so-called translation RFs [29], and
present application for RF models with lognormal, Student’s 𝑡- and
log-Student’s 𝑡-marginal distribution. Student’s 𝑡- and log-Student’s 𝑡-

Fs appear as predictive RFs when learning is performed with spatial
ata [30]. RFs with lognormal or log-Student’s 𝑡-marginal distribu-
ion are advantageous for modeling non-negative quantities, such as
trength parameter of materials, as the support of these distributions is
imited to the positive axis.

The focus of the paper is the applicability of the SA method to for-
ard uncertainty propagation and reliability analysis. We investigate

he SA method by means of an application to a one-dimensional elastic
eam structure with spatially variable beam flexibility. Thereby, we
ssess the effects of different mesh choices for the RF discretization with
A on the system response and the structural reliability. In a second
umerical investigation, the SA method is applied for the reliability
nalysis of a ship lock chamber wall with spatial data on the concrete
riction coefficient. The effect of varying dimension in the SA approxi-
ation on the accuracy in representing different failure mechanisms is

nvestigated. On this basis, we conclude with recommendations on the
mplementation of the SA method for structural reliability analysis.

The remainder of this paper is structured as follows. In Section 2,
he spatial averaging method is introduced and explained in detail
or the case of one- and two-dimensional Gaussian random fields. An
xtension to a special class of non-Gaussian random fields can be
ound in Section 2.3. The presented methodology is illustrated with
wo numerical examples in Section 3 followed by short conclusions in
ection 4.
2

c

Fig. 1. Random realization of a one-dimensional RF 𝑥(𝑧) (blue line) and its approxi-
mation with four averaging elements of equal length (red lines, �̂�𝑖 , 𝑖 = 1,… , 4). (For
nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

. Random field discretization with the spatial averaging method

An RF 𝑋(𝒛) is defined as a collection of random variables indexed
y a continuous spatial coordinate 𝒛 ∈ 𝒁, where 𝒁 ⊂ R𝑑 is the spatial

domain of definition of the RF, i.e., 𝑑 = 1, 2 or 3. An RF is said to
be Gaussian if the 𝑛th order joint distribution of the random variables
corresponding to any collection of points 𝐳 = [𝒛1,… , 𝒛𝑛] ∈ 𝒁 is a multi-
variate Gaussian distribution. Gaussian RFs are completely defined by
their spatial mean value 𝜇𝑋 (𝒛), their spatial standard deviation 𝜎𝑋 (𝒛)
nd their autocorrelation function 𝜌(𝒛𝑖, 𝒛𝑗 ), defining the correlation at
wo locations 𝒛𝑖 and 𝒛𝑖 [31]. Any linear mapping of a Gaussian RF
s also Gaussian since the Gaussian distribution remains closed under
inear transformations [32].

An RF is called homogeneous if its 𝑛th order joint PDF is invariant
or a shift in 𝒛, which implies that the marginal PDF 𝑓𝑋 (𝒛) of the RF and
ts moments are space-invariant [33]. For Gaussian RFs, homogeneity
s implied by homogeneity of the first two moment-functions, i.e., it
uffices to know that 𝜇𝑋 (𝒛) and 𝜎𝑋 (𝒛) are constant in space, i.e., 𝜇𝑋 (𝒛) =
𝑋 ∀ 𝒛 ∈ 𝒁 and 𝜎𝑋 (𝒛) = 𝜎𝑋 ∀ 𝒛 ∈ 𝒁 and that the autocorrelation
unction 𝜌(𝒛𝑖, 𝒛𝑗 ) can be expressed as 𝜌(𝒅𝑖,𝑗 ), where 𝒅𝑖,𝑗 = 𝒛𝑖 − 𝒛𝑗 is the
ifference in location of 𝒛𝑖 and 𝒛𝑖.

The spatial averaging method approximates the RF 𝑋(𝒛) by a set
f random variables �̂�𝑖, 𝑖 = 1,… , 𝑛𝑆𝐴, where each random variable
epresents the local average of 𝑋(𝒛) over the domain 𝒁 𝑖 defined by the
ollowing integral [4]:

̂ 𝑖 =
𝐼𝑖
𝛺𝑖

= 1
𝛺𝑖 ∫𝒁𝑖

𝑋(𝜻)d𝜻 , (1)

where 𝛺𝑖 is the volume of the spatial domain 𝒁 𝑖. 𝐼𝑖 is the local integral
of 𝑋(𝒛) over the domain 𝒁 𝑖. All derivations in this study restrict to one-
nd two-dimensional RFs but the theoretical approach can be extended
o three-dimensional RFs and the general 𝑑-dimensional case [4].

Fig. 1 shows a random realization of a one-dimensional RF 𝑥(𝑧)
n blue and its corresponding realization with an SA discretization of
our averaging elements of equal length in red (�̂�𝑖, 𝑖 = 1,… , 4). Each
̂ 𝑖, 𝑖 = 1,… , 4 represents the average of the RF realization 𝑥(𝑧) over
he corresponding interval 𝑍𝑖. Fig. 2 shows a realization of a two-
imensional RF (panel a) and its corresponding realization with an
A discretization of 16 square averaging elements of equal size (panel
). Both figures show that local fluctuations of the RF average out
nd thus disappear in the SA realization while on a larger scale the
patial variability of the RF is identified and represented. An increasing
umber of averaging elements results in a more accurate representation
f the RF and thus in better representation of local fluctuations. If
(𝒛) is a Gaussian RF, the random variables �̂�𝑖, 𝑖 = 1,… ,𝑆𝐴, for the
iscretization with SA are also Gaussian because of the linearity of the
ntegral operation in Eq. (1). It is possible to use SA for non-Gaussian
Fs if the RF can be expressed as function of an underlying Gaussian
F by an isoprobabilistic marginal transformation [29]. Examples of
uch translation random fields where the transformation is available in
losed form are presented in Section 2.3.
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Fig. 2. Random realization of a two-dimensional RF 𝑋(𝑧) (panel a) and its SA
approximation with 16 square averaging elements of equal size (panel b).

The mean of the random variable �̂�𝑖 can be found by integration
of the spatial function for the mean 𝜇𝑋 (𝒛) over the averaging domain
𝒁 𝑖 [4]:

𝜇�̂�𝑖
= 1

𝛺𝑖 ∫𝒁𝑖

𝜇𝑋 (𝜻) d𝜻 . (2)

By integration over the spatial autocovariance function 𝐶𝑋 (𝒛1, 𝒛2) the
variance of �̂�𝑖 can be found [4,18]:

Var
(

�̂�𝑖
)

= 1
𝛺2

𝑖
∫𝒁𝑖

∫𝒁𝑖

𝐶𝑋 (𝜻1, 𝜻2) d𝜻1d𝜻2. (3)

The integration in Eq. (2) is 𝑑-dimensional, where 𝑑 is the spatial
dimension of 𝑋(𝒛). Accordingly, the total dimension of the integration
in Eq. (3) is 2𝑑. The covariance of two random variables �̂�𝑖 and
�̂�𝑗 cannot be obtained directly from the autocovariance function. Its
derivation is presented for the one- and two-dimensional case in the
respective subsections.

If 𝑋(𝒛) is a homogeneous RF, the mean and variance are constant
over 𝒁. In this case, the mean is not affected by the averaging inte-
gration, i.e., 𝜇�̂�𝑖

= 𝜇𝑋 , 𝑖 = 1,… , 𝑛𝑆𝐴 and the variance is given as
linear function of the RF variance: Var

(

�̂�𝑖
)

= 𝛾𝑖Var(𝑋), 𝑖 = 1,… , 𝑛𝑆𝐴,
where 𝛾𝑖 is the variance function representing the average of the
autocorrelation function of the field [4,13]. 𝛾𝑖 expresses the reduction
in the variance caused by the averaging operation and, hence, decreases
with increasing size of the averaging element. It holds that 𝛾𝑖 = 1 if
𝛺𝑖 = 0 and 𝛾𝑖 → 0 for 𝛺𝑖 → ∞ [4,34]. In the homogeneous case,
SA underestimates the true variance of the RF in each SA element for
𝛺𝑖 > 0 [14,35]. This property cannot be directly transferred to the
non-homogeneous case on the element level due to a potentially strong
fluctuation of the spatial variance function, but remains true in a global
view of the RF variability.

For homogeneous RFs, the SA method is extensively described
in [4]. This paper focuses on non-homogeneous RFs that have a com-
plex autocorrelation structure and, hence, cannot be transformed into
homogeneous RFs.

2.1. Spatial averaging for one-dimensional Gaussian random fields

For the discretization of a one-dimensional RF 𝑋(𝑧) with 𝑛𝑆𝐴 spa-
tially averaging domains, Eqs. (2) and (3) can be rewritten for element
𝑖, 𝑖 = 1,… , 𝑛𝑆𝐴 as follows [4,18]:

𝜇�̂�𝑖
= 1

𝐿𝑖 ∫

𝑧𝑖1

𝑧𝑖0

𝜇𝑋 (𝑧) d𝑧, (4)

Var
(

�̂�𝑖
)

= 1
𝐿2
𝑖
∫

𝑧𝑖1

𝑧𝑖0
∫

𝑧𝑖1

𝑧𝑖0

𝐶𝑋 (𝑧, 𝑧′) d𝑧d𝑧′, (5)

where 𝑧𝑖0 and 𝑧𝑖1 denote beginning and end of the averaging domain
𝑍𝑖 and 𝐿𝑖 is the length of this domain, i.e., 𝐿𝑖 = 𝑧𝑖1 − 𝑧𝑖0 .

The calculation of the covariance of two averaging random variables
�̂�𝑖 and �̂�𝑗 requires four auxiliary lengths 𝐿𝑘, 𝑘 = 0,…3, which are
illustrated in Fig. 3 together with the averaging domains 𝑍 and 𝑍 .
3

𝑖 𝑗
Fig. 3. Lengths 𝐿𝑘 , 𝑘 = 0,…3 of the auxiliary intervals for the calculation of the
covariance of the random variables �̂�𝑖 and �̂�𝑗 representing the average behavior of
the RF 𝑋(𝑧) in the local intervals 𝑍𝑖 and 𝑍𝑗 .

The following algebraic identity can be defined using the local integrals
𝐼𝑘 = ∫𝐿𝑘

𝑋(𝜻)d𝜻 , (cf. Eq. (1)) over the illustrated domains [4]:

2𝐼𝑖𝐼𝑗 = 𝐼20 − 𝐼21 + 𝐼22 − 𝐼23 . (6)

Applying the expectation operator on both sides of Eq. (6) gives

2E
[

𝐼𝑖𝐼𝑗
]

= E
[

𝐼20
]

− E
[

𝐼21
]

+ E
[

𝐼22
]

− E
[

𝐼23
]

. (7)

Taking the expectation of the individual terms in Eq. (6) results in [4]

2E
[

𝐼𝑖
]

E
[

𝐼𝑗
]

= E2 [𝐼0
]

− E2 [𝐼1
]

+ E2 [𝐼2
]

− E2 [𝐼3
]

. (8)

Subtracting Eq. (8) from Eq. (7) gives the following expression for the
covariance of 𝐼𝑖 and 𝐼𝑗 :

𝐶
(

𝐼𝑖, 𝐼𝑗
)

= 1
2

(

Var
(

𝐼0
)

− Var
(

𝐼1
)

+ Var
(

𝐼2
)

− Var
(

𝐼3
)

)

. (9)

The covariance of �̂�𝑖 and �̂�𝑗 can be calculated making use of their
proportionality to 𝐼𝑖 and 𝐼𝑗 defined in Eq. (1):

𝐶
(

�̂�𝑖, �̂�𝑗
)

=
𝐶
(

𝐼𝑖, 𝐼𝑗
)

𝐿𝑖𝐿𝑗
. (10)

Using Eq. (9), one gets [4,18]:

𝐶
(

�̂�𝑖, �̂�𝑗
)

= 1
2𝐿𝑖𝐿𝑗

3
∑

𝑘=0
(−1)𝑘 𝛥

(

𝑍𝑘
)

, (11)

where 𝛥
(

𝑍𝑘
)

is given by

𝛥
(

𝑍𝑘
)

= 𝐿2
𝑘Var

(

�̂�𝑘
)

. (12)

When 𝑍𝑗 = 𝑍𝑖, Eq. (11) simplifies to 𝐿0 = 𝐿2 = 𝐿𝑖 and 𝐿1 =
𝐿3 = 0 (cf. Fig. 3). Accordingly, 𝛥

(

𝑍0
)

= 𝛥
(

𝑍2
)

= 𝐿2
𝑖 Var

(

�̂�𝑖
)

and
𝛥
(

𝑍1
)

= 𝛥
(

𝑍3
)

= 0 and hence Eq. (11) reduces to Eq. (5). The
random variables �̂�𝑖, 𝑖 = 1,… 𝑛𝑆𝐴 are Gaussian random variables and
thus the discretization of 𝑋(𝑧) is fully defined by the mean vector
𝝁�̂� containing the individual mean values 𝜇�̂�𝑖

, 𝑖 = 1,… 𝑛 and the
covariance matrix 𝐂�̂� , where 𝐶�̂� (𝑖, 𝑗) , 𝑖 = 1,… 𝑛𝑆𝐴, 𝑗 = 1,… 𝑛𝑆𝐴 is
given by the covariance of �̂�𝑖 and �̂�𝑗 .

2.2. Spatial averaging for two-dimensional Gaussian random fields

Let 𝑋(𝒛) be a two-dimensional Gaussian RF, where 𝒛 ∈ 𝒁 describes
a position in the two-dimensional domain 𝒁. SA proceeds by dividing
𝒁 into 𝑛𝑆𝐴 rectangular elements with edges parallel to the coordinate
axes 𝑧1 and 𝑧2. Expressions for the mean and variance of the random
variables �̂�𝑖, 𝑖 = 1,… 𝑛𝑆𝐴 representing the average of 𝑋(𝒛) in the 𝑖th
element can be found from Eqs. (2) and (3) [4]:

𝜇�̂�𝑖
= 1

𝐴𝑖 ∫

𝑧2,𝑖1

𝑧2,𝑖0
∫

𝑧1,𝑖1

𝑧1,𝑖0

𝜇𝑋 (𝑧1, 𝑧2) d𝑧1d𝑧2, (13)

Var
(

�̂�𝑖
)

= 1
𝐴2
𝑖
∫

𝑧2,𝑖1

𝑧2,𝑖0
∫

𝑧2,𝑖1

𝑧2,𝑖0
∫

𝑧1,𝑖1

𝑧1,𝑖0
∫

𝑧1,𝑖1

𝑧1,𝑖0

𝐶𝑋 (𝑧1, 𝑧2; 𝑧′1, 𝑧
′
2) d𝑧1d𝑧

′
1d𝑧2d𝑧

′
2,

(14)
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Fig. 4. Edges 𝐿1,𝑘 and 𝐿2,𝑙 of the auxiliary domains 𝒁𝑘𝑙 , 𝑘 = 0,…3, 𝑙 = 0,…3 for
calculating the covariance of the random variables �̂�𝑖 and �̂�𝑗 representing the average
behavior of the RF 𝑋(𝒛) in the rectangular domains 𝒁 𝑖 and 𝒁𝑗 .

Fig. 5. Approximation of a non-rectangular two-dimensional domain 𝒁 by an
enveloping domain �̃� consisting of rectangular elements of variable size.

where 𝐴𝑖 = 𝑍1,𝑖𝑍2,𝑖 denotes the area of the averaging domain. 𝑍1,𝑖
and 𝑍2,𝑖 are the lengths of the edges in 𝑧1, 𝑧2 respectively, i.e., 𝑍1,𝑖 =
𝑧1,𝑖1 − 𝑧1,𝑖0 and 𝑍2,𝑖 = 𝑧2,𝑖1 − 𝑧2,𝑖0 .

Eqs. (6) to (11) can be extended to the two-dimensional case (cf.
ig. 4) to obtain the following expression for the covariance of two
veraging random variables �̂�𝑖 and �̂�𝑗 [4]:

(

�̂�𝑖, �̂�𝑗
)

= 1
4𝐴𝑖𝐴𝑗

3
∑

𝑘=0

3
∑

𝑙=0
(−1)𝑘 (−1)𝑙 𝛥

(

𝑍1,𝑘, 𝑍2,𝑙
)

, (15)

where 𝐴𝑖 and 𝐴𝑗 denote the areas of 𝒁 𝑖 and 𝒁𝑗 , which are the
averaging domains for �̂�𝑖 and �̂�𝑗 . 𝛥

(

𝑍1,𝑘, 𝑍2,𝑙
)

is defined as
(

𝑍1,𝑘, 𝑍2,𝑙
)

= 𝐴2
𝑘𝑙Var

(

�̂�𝑘𝑙
)

. (16)

𝑘𝑙 = 𝐿1,𝑘𝐿2,𝑙 is the area of the rectangular auxiliary domain 𝒁𝑘𝑙 , 𝑘 =
,… , 3, 𝑙 = 0,… , 3. Fig. 4 shows the averaging domains 𝒁 𝑖 and 𝒁𝑗
nd the edges of the auxiliary domains. The random variables �̂�𝑖, 𝑖 =
,… 𝑛𝑆𝐴 are Gaussian random variables. Hence, similar to the one-
imensional case, the mean vector 𝝁�̂� and covariance matrix 𝐂�̂� of
he random variables �̂�𝑖, 𝑖 = 1,… 𝑛𝑆𝐴, are sufficient to discretize 𝑋(𝒛).

Eqs. (13) to (15) are only applicable for rectangular averaging
lements. If the domain 𝒁 cannot be divided into rectangular averaging
omains, it needs to be approximated by such a domain [4]. An
xample is shown in Fig. 5, where 𝒁 is approximated by the enveloping
omain �̃�. A prescribed degree of accuracy for the approximation can
e achieved by adjusting the size of the rectangular elements and, if
ecessary, introducing a rotation of the coordinate system. The studies
n this paper are restricted to the case where 𝒁 can be divided into
ectangular averaging elements.
4

𝑌

.3. Spatial averaging for non-Gaussian translation random fields

Although, in theory, the SA method is applicable to non-Gaussian
Fs, in practice, the derived equations for the parameters of the av-
raging random variables are only sufficient in the Gaussian case. For
ost other cases it is difficult or even impossible to find all required

xpressions for obtaining a complete probabilistic description of the
esulting RVs �̂�𝑖 [14]. However, it is possible to extend the applicability
f the method to the class of so-called translation RFs, given by the
ollowing marginal transformation [32,36]:

(𝒛) = 𝑇 (𝑈 (𝒛)) . (17)

(𝒛) is a zero-mean and unit-variance Gaussian RF with autocorrelation
oefficient function 𝜌𝑈 (𝒛, 𝒛′). The mapping of Eq. (17) is designed
o preserve a given marginal cumulative distribution function (CDF)
𝑋 (𝑥) of the RF 𝑋(𝒛). Given that 𝐹𝑋 (𝑥) is strictly increasing, 𝑇 (⋅)
an be defined as 𝑇 (⋅) = 𝐹−1

𝑋 (𝛷(⋅)), where 𝐹−1
𝑋 (⋅) denotes the inverse

DF of 𝑋(𝒛) and 𝛷(⋅) is the standard normal CDF [37]. 𝑈 (𝒛) can be
btained from 𝑋(𝒛) by inversion of Eq. (17), i.e., 𝑈 (𝒛) = 𝑇 −1 (𝑋(𝒛)).
ote that, in order to approximate the RF with a set of Gaussian

andom variables, the spatial correlation needs to be modeled for the
nderlying Gaussian RF. Three special cases of translation RFs, for
hich 𝑇 (⋅) is given by an analytic expression, are presented in the

ollowing. The equations are given for a single averaging element over
he entire domain of definition but can be generalized by dividing 𝒁
nto subdomains and applying the Equations for mean and covariance
erived for the Gaussian case.

.3.1. Lognormal random field
In contrast to a Gaussian RF, a lognormal RF can be used to model

on-negative quantities, which makes it preferable, e.g., for modeling
echanical properties. Consider an RF 𝑌 (𝒛) on the domain 𝒁 defined

y the following function of a zero-mean and unit-variance Gaussian
F 𝑈 (𝒛):

(𝒛) = exp
(

𝑈 (𝒛) ⋅ 𝜎𝑋 (𝒛) + 𝜇𝑋 (𝒛)
)

= exp
(

𝑋 (𝒛)
)

. (18)

(𝒛) is a Gaussian RF with mean function 𝜇𝑋 (𝒛) and standard deviation
unction 𝜎𝑋 (𝒛). 𝐹𝑌 at any 𝒛 ∈ 𝒁 is a lognormal distribution, with
arameters 𝜇ln𝑌 (𝒛) = 𝜇𝑋 (𝒛) and 𝜎ln𝑌 (𝒛) = 𝜎𝑋 (𝒛):

(𝒛) ∼ log
(

𝜇ln𝑌 (𝒛), 𝜎ln𝑌 (𝒛)
)

. (19)

patial averaging is then performed for 𝑋(𝒛) resulting in a Gaussian
andom variable �̂�𝒁 with parameters 𝜇�̂� and 𝜎�̂� =

√

Var
(

�̂�𝒁
)

given
by Eqs. (2) and (3). Applying the transformation of Eq. (18) gives

𝑌𝒁 = exp
(

1
𝛺𝒁 ∫𝒁

𝑋(𝜻)d𝜻
)

= exp
(

�̂�𝒁
)

, (20)

where 𝑌𝒁 is a lognormal distributed random variable with parameters
𝜇ln𝑌 = 𝜇�̂� and 𝜎ln𝑌 = 𝜎�̂� . Due to the non-linear transformation, 𝑌𝒁
does not represent the arithmetic average but the geometric average of
𝑌 (𝒛) over 𝒛. It is noted that the geometric average is always smaller
than or equal to the arithmetic average. Hence, using the geometric
average for the SA discretization of a lognormal RF provides a lower
bound on the spatial average of the RF. While this is reasonable and
conservative for some modeling cases (e.g., for low-strength dominated
soil properties [e.g.,9,10]), it may provide a non-appropriate approxi-
mation of the true RF when the RF represents a load/demand on the
structure [e.g.,11].

2.3.2. Student’s 𝑡-random field
The Student’s 𝑡-distribution can be used to model a Gaussian quan-

tity accounting for the uncertainty in the parameters of the Gaussian
distribution [e.g.,38]. Consider a Student’s 𝑡-RF 𝑌 (𝒛), in which 𝐹𝑌 at
ny 𝒛 ∈ 𝒁 is a Student’s 𝑡-distribution, with location parameter 𝜇𝑌 (𝒛),
cale parameter 𝜎𝑌 (𝒛) and degrees of freedom 𝜈𝑌 [30,38,39]:

( )
(𝒛) ∼  𝜇𝑌 (𝒛), 𝜎𝑌 (𝒛), 𝜈𝑌 . (21)
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Note that 𝜈𝑌 is space-invariant. The transformation of Eq. (17) is given
s [39]

(𝒛) =
√

𝜈𝑌
𝜒

(

𝑈 (𝒛) ⋅ 𝜎𝑌 (𝒛)
)

+ 𝜇𝑌 (𝒛) =
√

𝜈𝑌
𝜒

𝑋(𝒛) + 𝜇𝑌 (𝒛), (22)

where 𝑋(𝒛) is a zero-mean Gaussian RF with standard deviation 𝜎𝑋 (𝒛) =
𝑌 (𝒛) and 𝜒 is a random variable that follows the 𝜒2 distribution with
𝑌 degrees of freedom. As only 𝑋(𝒛) and the function for the mean
alue 𝜇𝑌 (𝒛) are subject to spatial variability, the spatial average 𝑌𝒁 over
he domain 𝒁 can be expressed by the following averaging integral:

̂𝒁 = 1
𝛺𝒁 ∫𝒁

𝑌 (𝜻)d𝜻 = 1
𝛺𝒁 ∫𝒁

√

𝜈𝑌
𝜒

𝑋(𝜻) + 𝜇𝑌 (𝜻)d𝜻

=

√

𝜈𝑌
𝜒

𝛺𝒁 ∫𝒁
𝑋(𝜻)d𝜻 + 1

𝛺𝒁 ∫𝒁
𝜇𝑌 (𝜻)d𝜻

=
√

𝜈𝑌
𝜒

�̂�𝒁 + 𝜇𝑌 , (23)

where �̂�𝒁 is a zero-mean Gaussian random variable with variance
calculated according to Eq. (3) and 𝜇𝑌 is the mean of the spatial average
of 𝑌 (𝒛) over 𝒁 as defined in Eq. (2).

.3.3. Log-Student’s 𝑡-random field
The log-Student’s 𝑡-distribution combines the lognormal and the

Student’s 𝑡-distribution and thus, can be used to model non-negative
quantities accounting for parameter uncertainty [30]. Consider a log-
Student’s 𝑡-RF 𝑉 (𝒛), i.e., 𝐹𝑉 at any 𝒛 ∈ 𝒁 is a log-Student’s 𝑡-
istribution [30,40]:

(𝒛) ∼ ln
(

𝜇ln𝑉 (𝒛), 𝜎ln𝑉 (𝒛), 𝜈𝑉
)

. (24)

he parametrization of 𝐹𝑉 is done by means of the parameters of
he underlying Student’s 𝑡-distribution. At any 𝒛 ∈ 𝒁 it holds that
(𝒛) = ln(𝑉 (𝒛)) follows a Student’s 𝑡-distribution with location param-
ter 𝜇𝑌 (𝒛) = 𝜇ln𝑉 (𝒛), scale parameter 𝜎𝑌 (𝒛) = 𝜎ln𝑉 (𝒛) and degrees
f freedom 𝜈𝑌 = 𝜈𝑉 [30]. By combining Eqs. (18) and (22), the
ransformation of Eq. (17) is given as follows:

(𝒛) = exp
(√

𝜈𝑉
𝜒

⋅
(

𝑈 (𝒛) ⋅ 𝜎ln𝑉 (𝒛)
)

+ 𝜇ln𝑉 (𝒛)
)

= exp
(√

𝜈𝑉
𝜒

𝑋(𝒛) + 𝜇ln𝑉 (𝒛)
)

. (25)

𝑋(𝒛) is a zero-mean Gaussian RF with standard deviation 𝜎𝑋 (𝒛) =
𝜎ln𝑉 (𝒛) and 𝜒 is a random variable that follows the 𝜒2 distribution with
𝜈𝑉 degrees of freedom. The spatial average 𝑉𝒁 over the domain 𝒁 can
e calculated as follows:

̂𝒁 = exp
(

1
𝛺𝒁 ∫𝒁

𝑌 (𝜻)d𝜻
)

= exp
⎛

⎜

⎜

⎜

⎝

√

𝜈𝑉
𝜒

𝛺𝒁 ∫𝒁
𝑋(𝜻)d𝜻 + 1

𝛺𝒁 ∫𝒁
𝜇ln𝑉 (𝜻)d𝜻

⎞

⎟

⎟

⎟

⎠

= exp
(√

𝜈𝑉
𝜒

�̂�𝒁 + 𝜇ln𝑉

)

. (26)

̂𝒁 is a zero-mean Gaussian random variable with variance calculated
ccording to Eq. (3) and 𝜇ln𝑉 is the mean of the spatial average of
n(𝑉 (𝒛)) = 𝑌 (𝒛) over 𝒁. Similar to the lognormal RF in Section 2.3.1,
̂𝒁 represents the geometric average of 𝑉 (𝒛) over 𝒁 instead of the
arithmetic average.

3. Numerical investigations

In this Section, the accuracy of the SA method for approximating
non-homogeneous RFs is investigated by means of two numerical in-
vestigations. The non-homogeneity of the RFs in both cases stems from
5

the combination of a homogeneous prior RF with measurement data. c
The first investigation is a one-dimensional beam under uniform load
with spatially variable beam flexibility analyzed in a statically deter-
minate setting with analytical solution and a statically indeterminate
setting where the system response is evaluated using a finite element
model. Different SA settings regarding element size and number are
investigated for different output quantities of the structural system.
The second investigation is a sliding failure mechanism in a ship lock
chamber wall where the friction coefficient in a construction joint is
modeled as a two-dimensional RF. Two different failure mechanisms
are considered and the effect of the chosen SA discretization on the
reliability estimates is analyzed.

3.1. Measures for the accuracy of the random field discretization

Discretizing an RF 𝑋(𝒛) with a finite number of random variables
̂ 𝑖, 𝑖 = 1,… 𝑛, yields an approximation error. If the �̂�𝑖, 𝑖 = 1,… 𝑛,
re used for uncertainty propagation through a numerical model, this
rror typically propagates through the model and is reflected in the
odel response. However, depending on the type of the quantity of

nterest, the error in the model response may be larger or smaller than
he error in the RF approximation [24]. The point-wise approximation
rror is defined as the difference of the quantity of interest 𝑄 and

its approximation �̂� at spatial location 𝒛, i.e., 𝜀 (𝒛) = 𝑄 (𝒛) − �̂� (𝒛).
ased on 𝜀 (𝒛), numerous local and global error measures can be defined
o assess the accuracy of an RF discretization. e.g., the bias, error
ariance or mean-square error [e.g., 5,32,41]. The latter two include
he covariance of 𝑄 (𝒛) and �̂� (𝒛), which can require the numerical
olution of a complex integral equation. In addition, their interpretation
s not always straightforward and hence they are not further discussed
ere. Instead, we use the normalized bias 𝜀𝜇(𝒛) and the normalized
ariance error 𝜀V(𝒛) as point-wise error measures in this study. They
re defined as [24]

𝜀𝜇(𝒛) =
E [𝑄(𝒛)] − E

[

�̂�(𝒛)
]

E [𝑄(𝒛)]
, (27)

𝜀V(𝒛) =
Var (𝑄(𝒛)) − Var

(

�̂�(𝒛)
)

Var (𝑄(𝒛))
. (28)

aking the weighted integral of Eqs. (27) and (28) over the domain 𝒁
ields the corresponding global error measures [41]:

�̄�𝜇 = 1
𝛺 ∫𝒁

|

|

|

𝜀𝜇(𝒛)
|

|

|

d𝒛, (29)

�̄�V = 1
𝛺 ∫𝒁

|

|

𝜀V(𝒛)|| d𝒛. (30)

In addition, the influence of the RF discretization on the system
esponse is assessed in terms of the system reliability, or equivalently
ts probability of failure. The failure event 𝐹 is expressed in terms of
limit state function 𝑔

(

𝑋(𝒛)
)

, such that failure occurs if 𝑔
(

𝑋(𝒛)
)

≤ 0.
hat is, the probability of failure is 𝑃𝐹 = Pr

(

𝑔
(

𝑋(𝒛)
)

≤ 0
)

. We will

e comparing 𝑃𝐹 with 𝑃𝐹 = Pr
(

𝑔
(

�̂�(𝒛)
)

≤ 0
)

. Typically, 𝑔
(

𝑋(𝒛)
)

is

function of an output quantity of interest 𝑄(𝒛) and 𝐹 occurs with
small probability. Hence, through assessing the influence of the RF

iscretization on the probability of failure, we evaluate the ability of
he discretization to accurately represent the tails of the distribution of
(𝒛).

.2. Analysis of a one-dimensional beam

A one-dimensional beam subject to uniformly distributed vertical
oad is investigated, whose flexibility 𝐹 (𝑧) is modeled by a Gaussian RF
hat is updated with measurement data. The beam has length 𝐿 = 2m
nd the applied load is 𝑞 = 1.4 kNm−1. 𝐹 (𝑧) is the piece-wise constant
A approximation of 𝐹 (𝑧) by using 𝑛𝑆𝐴 averaging elements. Euler–
ernoulli beam theory is used to evaluate the response of the structural
ystem. We consider two different settings for the boundary conditions
f the beam; a statically determinate case and a statically indeterminate
ase.
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3.2.1. Random field model of the beam flexibility
The prior model of 𝐹 (𝑧) is a homogeneous RF with a mean of 𝜇′

𝐹 =
0.5MN−1 m−2 and a standard deviation of 𝜎′𝐹 = 0.1MN−1 m−2. The prior
autocorrelation function is modeled by the exponential correlation
function [31]:

𝜌′(𝑧𝑖, 𝑧𝑗 ) = exp
⎛

⎜

⎜

⎝

−
2 ||
|

𝑧𝑗 − 𝑧𝑖
|

|

|

𝜗

⎞

⎟

⎟

⎠

, (31)

where 𝜗 is the scale of fluctuation, which is set to 1m.
We assume that measurement data 𝐌 is available in the form of 𝑛𝑚

direct measurements of the beam flexibility 𝒙𝑚 = [𝑥𝑚,1,… , 𝑥𝑚,𝑛𝑚 ] and
the corresponding measurement locations 𝒛𝑚 = [𝑧𝑚,1,… , 𝑧𝑚,𝑛𝑚 ]. These
measurements are associated with an additive zero-mean Gaussian
measurement error 𝜀 with standard deviation 𝜎2𝜀 = 0.05𝜇′

𝐹 . In this case,
updating of 𝐹 (𝑧) can be done in closed form by making use of the
self-conjugacy of the Gaussian distribution, resulting in the following
posterior mean and covariance functions [1,4,23]:

𝜇′′
𝐹 (𝑧) = 𝜇′

𝐹 +𝑹𝒛𝑚 (𝑧) ⋅ 𝐑
−1
𝒛𝑚 ,𝜀

⋅
(

𝒙𝑚 − 𝜇′
𝐹
)𝖳 , (32)

𝐶 ′′
𝐹
(

𝑧𝑖, 𝑧𝑗
)

=
(

𝜎′𝐹
)2

⋅
(

𝜌(𝑧𝑖, 𝑧𝑗 ) −𝑹𝒛𝑚 (𝑧𝑖) ⋅ 𝐑
−1
𝒛𝑚 ,𝜀

⋅𝑹𝖳
𝒛𝑚
(𝑧𝑗 )

)

. (33)

𝑹𝒛𝑚 (𝑧) is a 1×𝑛𝑚 row vector function with element 𝑖 equal to 𝜌′(𝑧, 𝑧𝑚,𝑖).
𝐑𝒛𝑚 ,𝜀 = 𝐑𝒛𝑚 ,𝒛𝑚 +𝐑𝜀, where 𝐑𝒛𝑚 ,𝒛𝑚 is an 𝑛𝑚×𝑛𝑚 matrix with element (𝑖, 𝑗)

equal to 𝜌′(𝑧𝑚,𝑖, 𝑧𝑚,𝑗 ) and 𝐑𝜀 =
(

𝜎𝜀
𝜎′𝐹

)2
⋅ I, where I is the 𝑛𝑚 × 𝑛𝑚 identity

matrix.
A single measurement 𝑓𝑚 = 0.75 ⋅ 𝜇′

𝐹 = 0.375MN−1 m−2 at measure-
ment location 𝑧𝑚 = 0.25𝐿 = 0.5m is considered in the RF update. The
resulting posterior RF parameters of the beam flexibility are obtained
by application of Eqs. (32) and (33). We first set the number of SA
elements to 𝑛𝑆𝐴 = 4. Fig. 6 illustrates the posterior RF parameters
together with the parameters of the corresponding four spatial av-
eraging random variables calculated by means of Eqs. (4), (5) and
(11). The measurement leads to a reduction in the mean value at
the measurement location and in the region around the measurement
compared to the prior mean (blue line in panel a). In addition, the
uncertainty and hence the standard deviation at the measurement lo-
cation and in its vicinity is reduced (blue line in panel b). These effects
decrease with increasing distance from the measurement location and
thus the posterior parameters converge to the prior parameters. A
similar effect can be observed in the posterior correlation structure
(panel c). The parameters of the spatial averaging random variables
reflect the non-homogeneity, however the local extrema in the spatial
mean and standard deviation average out when applying the averaging
operations for the discretization with SA (red lines in panel a and b).
The spatial autocorrelation function of the RF is approximated by a
4 × 4 correlation matrix (panel d). Again, the SA discretization accounts
for the non-homogeneity of the RF but local effects average out.

3.2.2. Statically determinate cantilever beam
The statically determinate cantilever beam is illustrated in Fig. 7.

The internal forces are independent of the flexibility and hence the
bending moment 𝑀(𝑧) can be directly calculated as 𝑀(𝑧) = − 𝑞

2 (𝐿 − 𝑧)2.
Using the Euler–Bernoulli beam theory, the rotation 𝜑(𝑧) and vertical
displacement 𝑤(𝑧) as illustrated in Fig. 7 are obtained as follows:

𝜑(𝑧) = −
𝑞
2 ∫

𝑧

0
(𝐿 − 𝑡)2 𝐹 (𝑡) d𝑡, (34)

𝑤(𝑧) = −
𝑞
2 ∫

𝑧

0 ∫

𝑠

0
(𝐿 − 𝑡)2 𝐹 (𝑡) d𝑡d𝑠. (35)

Since 𝐹 (𝑧) is modeled with a Gaussian RF and 𝜑(𝑧) and 𝑤(𝑧) are
linear functions of 𝐹 (𝑧), they are also Gaussian RFs. Based on Eqs. (34)
and (35), spatial functions for the mean and autocovariance of the
system response RFs can be derived:

𝜇𝜑(𝑧) = −
𝑞 𝑧

(𝐿 − 𝑡)2 𝜇𝐹 (𝑡) d𝑡, (36)
6

2 ∫0
Fig. 6. Posterior spatial mean value (panel a) and standard deviation (panel b) of the
RF for the beam flexibility 𝐹 ′′(𝑧) (blue) and its approximation with four averaging
elements 𝐹 ′′(𝑧) (red); posterior spatial autocorrelation of the RF 𝐹 ′′(𝑧) (panel c) and
correlation of the four averaging random variables for the approximation of 𝐹 ′′(𝑧) with
SA (panel d). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. Statically determinate cantilever beam under uniform vertical load 𝑞.

𝐶𝜑(𝑧𝑖, 𝑧𝑗 ) =
𝑞2

4 ∫

𝑧𝑗

0 ∫

𝑧𝑖

0

(

𝐿 − 𝑡𝑖
)2 (𝐿 − 𝑡𝑗

)2 𝐶𝐹 (𝑡𝑖, 𝑡𝑗 ) d𝑡𝑖d𝑡𝑗 , (37)

𝜇𝑤(𝑧) = −
𝑞
2 ∫

𝑧

0 ∫

𝑠

0
(𝐿 − 𝑡)2 𝜇𝐹 (𝑡) d𝑡d𝑠, (38)

𝐶𝑤(𝑧𝑖, 𝑧𝑗 ) =
𝑞2

4 ∫

𝑧𝑗

0 ∫

𝑧𝑖

0 ∫

𝑠𝑗

0 ∫

𝑠𝑖

0

(

𝐿 − 𝑡𝑖
)2 (𝐿 − 𝑡𝑗

)2

× 𝐶𝐹 (𝑡𝑖, 𝑡𝑗 ) d𝑡𝑖d𝑡𝑗d𝑠𝑖d𝑠𝑗 . (39)

Replacing 𝜇𝐹 (𝑡) and 𝐶𝐹 (𝑡𝑖, 𝑡𝑗 ) in Eqs. (36) to (39) with the element-
wise constant approximations obtained by means of Eqs. (4) and (11)
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Fig. 8. Posterior spatial standard deviation of the system response (rotation: panel a; displacement: panel b) for the cantilever beam. The blue lines mark the analytical RF solution
and the red lines mark the SA approximation with 𝑛𝑆𝐴 = 2 (dashed line), 4 (solid line) and 8 (dotted line). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Fig. 9. Panel a shows the SA approximation of the mean (solid red line, left ordinate) and standard deviation (dashed red line, right ordinate) for the tip displacement of the
cantilever beam as function of the number of equisized averaging elements 𝑛𝑆𝐴. The blue lines show the analytical mean value 𝜇′′

𝑤(𝑧 = 2m) (solid blue line) and standard deviation
′′
𝑤(𝑧 = 2m) (dashed blue line). Panel b shows the corresponding SA approximation of the failure probability 𝑃𝐹 (red line) as function of the number of equisized averaging elements
𝑆𝐴. The blue line shows the analytical failure probability 𝑃𝐹 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)
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able 1
verage normalized bias �̄�𝜇 and variance error �̄�𝑉 of the beam rotation 𝜑′′ and vertical
isplacement 𝑤′′ for varying number of spatial averaging elements 𝑛𝑆𝐴 to discretize the
osterior beam flexibility RF.
𝑛𝑆𝐴 �̄�𝜇 �̄�𝑉

𝜑′′ 𝑤′′ 𝜑′′ 𝑤′′

2 0.009 0.019 0.301 0.458
4 0.010 0.020 0.144 0.240
8 0.003 0.005 0.044 0.063

results in 𝜇�̂�(𝑧), 𝐶�̂�(𝑧𝑖, 𝑧𝑗 ), 𝜇�̂�(𝑧) and 𝐶�̂�(𝑧𝑖, 𝑧𝑗 ), i.e., the spatial func-
tions for the system response when 𝐹 (𝑧) is approximated by 𝐹 (𝑧) with
𝑛𝑆𝐴 spatial averaging elements. Due to the linearity of the averaging
operations, �̂�(𝑧) and �̂�(𝑧) are also Gaussian RFs. The system response
RFs and their SA discretization with 𝑛𝑆𝐴 = 2, 4 and 8 are evaluated
using Eqs. (36) to (39). The spatial mean value is approximated well
with any chosen SA discretization. For 𝑛𝑆𝐴 = 2, the maximum of the
point-wise error 𝜀𝜇(𝑧) is in the order of 5% (close to the fixed end of
the beam) and <1% for most spatial locations 𝑧. 𝜀𝜇(𝑧) decreases further
for 𝑛𝑆𝐴 = 4 and 𝑛𝑆𝐴 = 8. In general, 𝜀𝜇(𝑧) decreases with increasing
distance to the fixed end. Fig. 8 shows the spatial standard deviation
of the beam rotation (panel a) and vertical displacement (panel b). The
spatial standard deviation of the system response RFs is underestimated
throughout the length of the beam, with decreasing approximation
error for increasing 𝑛𝑆𝐴. The local effect of the measurement appears
n the shape of 𝜎′′𝜑 (𝑧) and 𝜎′′�̂� (𝑧) but not in 𝜎′′𝑤(𝑧) and 𝜎′′�̂�(𝑧) due to the

smoothing caused by the additional integration when calculating the
vertical displacement.

The average error measures for the system response according to
Eqs. (29) and (30) are listed in Table 1 for 𝑛𝑆𝐴 = 2, 4 and 8. The average
bias is small for all configurations and the variance error decreases
with increasing 𝑛𝑆𝐴. In general, the average error is larger for the
isplacement than it is for the rotation.

To investigate the effect of the SA discretization on the failure
robability of the system, a maximum allowable vertical displacement
7

of 𝑤lim = −1.5mm is defined. Since the vertical displacement of a
cantilever beam reaches its maximum at the free end, the following
limit state function can be formulated:

𝑔(𝐹 (𝑧)) = 𝑤′′(𝑧 = 2m) −𝑤lim, (40)

eplacing 𝑤′′(𝑧 = 2m) by �̂�′′(𝑧 = 2m) in Eq. (40) yields the SA
pproximation of the failure event. Both 𝑤′′(𝑧 = 2m) and �̂�′′(𝑧 = 2m)
re Gaussian random variables with mean value and standard deviation
irectly computable by means of Eqs. (38) and (39). Thus, 𝑃𝐹 is given
s

𝐹 = 𝛷
(𝑤lim − 𝜇′′

𝑤(𝑧 = 2m)
𝜎′′𝑤(𝑧 = 2m)

)

, (41)

here 𝛷(⋅) is the cumulative distribution function of the standard
ormal distribution. The reference solution is 𝑃𝐹 = 9.9 × 10−4. The
A approximation of 𝑃𝐹 is obtained by replacing 𝜇′′

𝑤(𝑧 = 2m) and
′′
𝑤(𝑧 = 2m) by the respective SA approximations.

Fig. 9 illustrates the approximated mean and standard deviation
f the displacement at the free end and the corresponding failure
robability estimate as function of 𝑛𝑆𝐴 and compares them to the re-
pective analytical solutions. It appears that a single averaging element
esults in a strong overestimation of the failure probability as 𝑃𝐹 is
pproximately eight times larger than 𝑃𝐹 . When increasing 𝑛𝑆𝐴, 𝑃𝐹
ecomes negatively biased and converges to the analytical solution 𝑃𝐹
ith increasing 𝑛𝑆𝐴. The relative error in the probability of failure falls

below 30% for 𝑛𝑆𝐴 ≥ 5. The overestimation for 𝑛𝑆𝐴 = 1 results from the
act that the RF 𝐹 ′′(𝑧) is discretized with a single random variable that
verages over the whole length of the beam, which reduces the local
ffect of the measurement at 𝑧𝑚 = 0.5m and leads to an overestimation
f the flexibility in that region. This error propagates through the
odel evaluation and, on the one hand, leads to a strong bias of the

ertical displacement. On the other hand, it leads to an almost perfect
pproximation of 𝜎′′𝑤(𝑧 = 2m) with a single averaging element, since

it counteracts the underestimation of the variance that is typically
observed when using a small number of averaging elements.
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Fig. 10. Posterior mean value (top row), standard deviation (middle row) and correlation (bottom row) of the SA approximation of the posterior flexibility RF with eight equisized
averaging elements (left column), refined mesh at the fixed end (middle column) and refined mesh at the measurement location 𝑧𝑚 (right column). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Effect of adaptive SA element size in an 8-element mesh (solid line: equisized elements, dotted line: refined mesh at the fixed end, dashed line: refined mesh around the
measurement location) on the point-wise normalized bias (panel a) and variance error (panel b) of the vertical displacement.
So far, the SA elements have been equisized, i.e., 𝐿𝑖 = 𝐿
𝑛𝑆𝐴

, 𝑖 =
1,… , 𝑛𝑆𝐴 independent of the location within the structural system. In
the following, the SA mesh is chosen such that it is finer in regions
that may be critical for the system response, in this case the fixed end
of the beam 𝑧 = 0m and the measurement location 𝑧𝑚 = 0.5m. Fig. 10
shows the parameters of the random variables and their correlation for
𝑛𝑆𝐴 = 8 with equisized elements (left column), refined mesh at the
fixed end (middle column) and refined mesh around the measurement
location 𝑧𝑚 = 0.5m (right column). As 𝑛𝑆𝐴 = 8 for all three settings, a
refinement of the SA mesh in one region of the beam necessarily leads
to a coarser mesh in other parts of the domain, in this case towards
the free end of the beam. Fig. 11 illustrates the effect on the point-wise
error in approximating the vertical displacement.

Refining the mesh leads to smaller bias and variance error in that
region compared to the error with equisized elements. The coarser
mesh towards the free end of the beam leads to slightly larger bias and
variance error for the two adaptive mesh choices. The average error
measures are listed in Table 2 showing the minor effect on the average
variance error of the vertical displacement. The investigated adaptive
mesh choices lead to a failure probability estimate of 𝑃 = 9.6 × 10−4
8

𝐹

Table 2
Average normalized bias �̄�𝜇 and variance error �̄�𝑉 of the vertical displacement 𝑤′′ and
estimated probability of failure 𝑃𝐹 with eight SA elements of uniform size, a refined
mesh at the fixed end and a refined mesh at the measurement location.

�̄�𝜇 �̄�𝑉 𝑃𝐹

Uniform mesh 0.005 0.063 8.4 × 10−4

Fine mesh at fixed end 0.001 0.025 9.6 × 10−4

Fine mesh at 𝑧𝑚 0.004 0.044 9.0 × 10−4

(mesh refinement at fixed end) and 𝑃𝐹 = 9.0 × 10−4 (mesh refinement
at measurement location), respectively compared to 𝑃𝐹 = 8.4 × 10−4
with 𝑛𝑆𝐴 = 8 equisized averaging elements. It is reminded that the
reference solution is 𝑃𝐹 = 9.9 × 10−4. However, although the results
with the adaptive mesh choices are more accurate, they are also more
sensitive to the analysis at hand and thus should be handled with
caution. This sensitivity is illustrated by using another adaptive SA
mesh with 𝑛𝑆𝐴 = 8, where the refinement is towards the free end of the
beam, i.e., the region of interest with respect to the limit state function
of Eq. (40). The SA mesh is a left-to-right reversion of the adaptive
SA mesh with the refinement at the fixed end (cf. middle column of
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Fig. 12. Statically indeterminate propped cantilever beam under uniform vertical load
𝑞.

Table 3
Average normalized bias �̄�𝜇 and variance error �̄�𝑉 of the propped cantilever vertical
isplacement 𝑤′′ for varying number of spatial averaging elements 𝑛𝑆𝐴 to discretize
he posterior beam flexibility RF.
𝑛𝑆𝐴 �̄�𝜇 �̄�𝑉
2 0.016 0.322
4 0.023 0.278
8 0.007 0.070

Fig. 10). The resulting failure probability estimate is 𝑃𝐹 = 5.0 × 10−4,
which underestimates 𝑃𝐹 significantly. In the general case, it might be
difficult to find a suitable adaptive SA mesh, especially in cases where
the relation between the RF discretization and the output quantity of
interest is hidden by a black box model evaluation, as is the case for
complex finite element models.

3.2.3. Propped cantilever beam
The structural system is modified by adding an additional vertical

support at the free end of the beam as illustrated in Fig. 12. The
resulting propped cantilever beam is statically indeterminate and thus,
Eqs. (34) and (35) cannot be used to evaluate the beam rotation and
displacement.

Due to the spatial variability of the beam flexibility, the inner
forces of the beam depend on the flexibility. Therefore, the system
response is evaluated with the linear finite element method based on
the Euler–Bernoulli beam theory with a finite element size of 𝑙𝐹𝐸 =
0.01m. Since the system response RFs and their moments cannot be
calculated analytically, a numerical reference solution is employed. To
this end, the posterior flexibility RF is discretized with the Karhunen–
Loève (KL) expansion with a large number of terms (𝑚𝐾𝐿 = 500) [27].
The KL expansion is based on a spectral decomposition of the auto-
covariance operator of the RF and can be used for homogeneous and
non-homogeneous RFs [1,24,41]. Using the KL expansion, the mean
value of an RF is represented exactly, while there is an approximation
error in the covariance operator. The average variance error of the
beam flexibility with the chosen number of terms for the reference
solution is smaller than 1%. The parameters of the posterior flexibility
RF 𝐹 ′′(𝑧) are the same as in the previous investigation and its SA dis-
cretization is done with four equisized averaging elements (cf. Fig. 6).
The reference solution as well as the SA solution for the moments of the
vertical displacement are obtained by running a Monte Carlo simulation
with 𝑁𝑀𝐶𝑆 = 1×104 independent samples and is illustrated in Fig. 13.

Panel a shows that the mean displacement is approximated well
ith four SA elements, concerning both shape and magnitude of the

urve. The standard deviation of the displacement is underestimated
hroughout the beam and the magnitude increases with increasing
istance to one of the supports.

Table 3 lists the average bias and variance error of the vertical
isplacement for 𝑛𝑆𝐴 = 2, 4 and 8. Increasing 𝑛𝑆𝐴 to eight elements
eads to large error reductions while the difference between 𝑛𝑆𝐴 = 2
nd 𝑛 = 4 is comparatively small. Comparison of Table 3 with Table 1
9

𝑆𝐴 a
or the statically determinate cantilever beam indicates that the average
rror is larger for the propped cantilever beam than for the statically
eterminate cantilever beam.

Due to the non-uniform flexibility of the propped cantilever beam,
he inner forces (i.e., bending moment and shear) are functions of the
pplied load and the support reactions, which need to be evaluated
umerically, e.g., by means of the finite element method. The bending
oment in a propped cantilever beam is calculated as follows:

(𝑧) = 𝑀(𝑧 = 0) ⋅ 𝐿 − 𝑧
𝐿

+ 𝑞 ⋅
(

𝐿 ⋅
𝑧
2
− 𝑧2

2

)

, (42)

where 𝑀(𝑧 = 0) is the bending moment at the fixed end of the beam.
For constant beam flexibility, the support reactions can be determined
analytically and 𝑀(𝑧 = 0) = −𝑞 ⋅ 𝐿2

8 . As 𝐹 (𝑧) is modeled by an RF,
he evaluated bending moment at the fixed end depends on the chosen
iscretization. To illustrate this, a reliability analysis with the following
imit state function is performed:

(𝐹 (𝑧)) = 𝑀(𝑧 = 0m) −𝑀lim, (43)

here 𝑀lim is chosen as −1.25 ⋅ 𝑞 ⋅ 𝐿2

8 = −750 kNm. It is noted that
(𝑧 = 0m) is not a Gaussian random variable and thus, evaluation of

he probability of failure in terms of the normal integral is not possible.
nstead, a Monte Carlo simulation with 𝑁𝑀𝐶𝑆 = 1 × 106 samples is
mployed to estimate 𝑃𝐹 , where the full finite element model of the
ropped cantilever beam is evaluated for each realization of the beam
lexibility. A reference solution is obtained based on the KL expansion
ith 𝑚𝐾𝐿 = 500 terms to discretize the beam flexibility in a Monte Carlo

imulation with 𝑁𝑀𝐶𝑆 = 1×107 resulting in 𝑃𝐹 = 2.01×10−3. The results
or varying number of averaging elements in the SA discretization are
llustrated in Fig. 14. The SA approximations for mean (red line) and
tandard deviation (dashed red line) are plotted as function of 𝑛𝑆𝐴 in
anel a and compared to the respective reference solution (blue line and
ashed blue line). If 𝑛𝑆𝐴 = 1, the beam flexibility is uniform throughout
he domain, leading to a deterministic bending moment at the fixed
nd (�̂�′′

𝑀 (𝑧 = 0) = −𝑞 ⋅ 𝐿2

8 = −600 kNm and �̂�′′𝑀 (𝑧 = 0) = 0 kNm).
he SA method underestimates both mean �̂�′′

𝑀 (𝑧 = 0) and standard
eviation �̂�′′𝑀 (𝑧 = 0) before converging to the reference solution with
ncrease of 𝑛𝑆𝐴. Panel b shows the convergence of the estimated failure
robability 𝑃𝐹 (red line) towards the reference solution (blue line).
ailure cannot occur for 𝑛𝑆𝐴 = 1 because the uniform flexibility results
n a deterministic bending moment that does not lead to a failed state
f the system. No failure sample was observed for 𝑛𝑆𝐴 = 2 in the
onte Carlo simulation with the chosen sample size, indicating that

̂𝐹 strongly underestimates 𝑃𝐹 . Choosing 𝑛𝑆𝐴 ≥ 3 leads to negatively
iased estimates of the failure probability converging towards the
eference solution with increasing 𝑛𝑆𝐴. 𝑃𝐹 is of the correct order of
agnitude for 𝑛𝑆𝐴 ≥ 5.

.2.4. Summary and interpretation of results
The one-dimensional beam example shows that SA can be used to

pproximate non-homogeneous RFs in reliability analyses of simple
eam structures. Due to the smoothing effect of the forward operator,
ocal fluctuations in the beam flexibility average out and thus, the
ystem response can be approximated well with spatially averaging
lements. Not surprisingly, a larger number of averaging elements and
hus, a larger number of random variables to approximate the RF
eads to a better global accuracy of the system response approximation.
owever, due to the changing interval bounds when changing the
umber of SA elements, this does not necessarily hold for all error
easures when the RF is non-homogeneous. The distribution tails of the

ystem response are especially important when performing reliability
nalysis. Our results show that the distribution tails can be sufficiently
ell approximated with a reasonable number of random variables for

he RF discretization, although the required number is larger than for
stimating the mean response. The choice of an adaptive size of the
veraging elements can lead to a better accuracy of the results, but at
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Fig. 13. Posterior spatial mean value (panel a) and standard deviation (panel b) of the vertical displacement for the propped cantilever beam. The KL expansion in the reference
olution (blue) discretizes the RF 𝐹 ′′(𝑧) with 𝑚𝐾𝐿 = 500 terms, the SA approximation (red) with four averaging elements of equal size. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Panel a shows the SA approximation of the mean (solid red line, left ordinate) and standard deviation (dashed red line, right ordinate) for the bending moment at the
fixed end of the propped cantilever beam as function of the number of equisized averaging elements 𝑛𝑆𝐴. The blue lines show the analytical mean value 𝜇′′

𝑀 (𝑧 = 0m) (solid blue
ine) and standard deviation 𝜎′′

𝑀 (𝑧 = 0m) (dashed blue line). Panel b shows the corresponding SA approximation of the failure probability 𝑃𝐹 (red line) as function of the number
f equisized averaging elements 𝑛𝑆𝐴. The blue line shows the analytical failure probability 𝑃𝐹 .. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
he same time increases the sensitivity of the SA discretization to the
ehavior of the numerical model. Hence, it cannot be recommended
or general use; in general problems, the underlying numerical model
ay be more complex, in which case the choice of an appropriate

daptive mesh is not straightforward. The influence of the spatial
ariability of the beam flexibility on the system response depends on
he quantity of interest and the problem setting. Local failure mech-
nisms (in our investigation the bending moment) require a larger
umber of averaging elements than failure mechanisms dominated by
lobal behavior of the flexibility (in our investigation the maximum
isplacement). Other than in statically determinate settings, the inner
orces in a statically indeterminate setting are influenced by spatially
ariable beam flexibility and thus are spatially variable functions. This
eads to larger approximation error in the spatial system response when
sing SA for the RF discretization.

.3. Sliding failure in the construction joint of a shiplock

The chamber of a fictitious ship lock is investigated. It has a length
f 𝐿 = 109m, a usable width between the chamber walls of 12m and is
ade of unreinforced tamped concrete. Several failure mechanisms can

ccur in a ship lock, one of them being sliding of the construction joint
etween the chamber wall and the base slab. The cross section of the
all including the joint with a width of 𝑊 = 4.5m and the surrounding

oil are illustrated in Fig. 15. In structural verifications, sliding of this
oint due to shear is one of the failure mechanisms that are investigated
y checking the following condition [42,43]:

𝐸𝑑 ≤ 𝑆𝑅𝑑 , (44)

here 𝑉𝐸𝑑 denotes the applied design shear force at the interface and
𝑅𝑑 is the design sliding resistance of the joint. In practice, both 𝑉𝐸𝑑
nd 𝑆𝑅𝑑 depend on a number of factors and additional variables to
over different effects on the sliding failure. For simplicity, a slimmed-
own version is used here. 𝑉𝐸𝑑 consists of all forces acting horizontally
10

n the structure, i.e., the horizontal earth and water pressure. 𝑆𝑅𝑑 is
Fig. 15. Half cross section of a ship lock chamber with construction joint between
base slab and chamber wall.

the product of the vertical forces 𝑁𝐸𝑑 and the friction coefficient 𝜏 of
the construction joint. Further contributions to 𝑆𝑅𝑑 (e.g., the concrete
tensile strength) are neglected at this point. 𝑁𝐸𝑑 is given by the self
weight of the chamber wall plus the vertical earth and water pressure,
wall friction and crack and pore water pressure.

In this example, two failure events are considered. The first one is
a local exceedance of the sliding resistance along 𝑧2, defined by the
following limit state function:

𝑔1(𝑧1, 𝜏(𝒛)) = 𝛾𝑅 ⋅ 𝑆𝑅
(

𝑧1
)

− 𝑉𝐸
(

𝑧1
)

, (45)

where 𝛾𝑅 = 1.3 is a deterministic coefficient to account for the spatial
load bearing behavior of the chamber wall in a simplified manner.
A detailed mechanical model for the spatial load bearing would go
beyond the scope of the investigation at this point. 𝑆𝑅

(

𝑧1
)

is defined
as the average sliding resistance along the construction joint in 𝑧2:

𝑆𝑅
(

𝑧1
)

=
𝑁𝐸

(

𝑧1
)

4.5m
𝜏(𝒛) d𝑧2. (46)
4.5m ∫0m
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Fig. 16. Posterior spatial mean value (panel a) and standard deviation (panel b) of the two-dimensional RF for the friction coefficient in the construction joint of a ship lock
chamber wall. The red crosses indicate the locations of the 𝑛𝑚 = 8 measurements of the friction coefficient. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
𝑉𝐸
(

𝑧1
)

and 𝑁𝐸
(

𝑧1
)

are the loads acting on the structure in horizontal
and vertical direction. The second limit state function is defined as
exceedance of the average sliding resistance of a substantial part of the
chamber wall:

𝑔2
(

𝜁1, 𝜏(𝒛)
)

= ∫

𝜁1+
�̄�1
2

𝜁1−
�̄�1
2

𝑆𝑅
(

𝑧1
)

d𝑧1 − ∫

𝜁1+
�̄�1
2

𝜁1−
�̄�1
2

𝑉𝐸
(

𝑧1
)

d𝑧1, (47)

where �̄�1 =
𝐿
5 is the length in 𝑧1 that is assumed critical for the sliding

failure mechanism of a substantial part of the wall and 𝜁1 ∈ ( �̄�12 , 𝐿− �̄�1
2 )

is the location of the potential failure point along the wall.
Failure of the chamber wall occurs if any of the two described

limit state functions gives a value smaller than zero at any point in
𝑧1 direction. Thus, the limit state function for system failure is given as
a function of the two individual failure probabilities:

𝑔sys(𝜏(𝒛)) = min

{

min𝑧1
{

𝑔1(𝑧1, 𝜏(𝒛))
}

, 𝑧1 ∈ (0m, 𝐿)
min𝜁1

{

𝑔2(𝜁1, 𝜏(𝒛))
}

, 𝜁1 ∈ ( �̄�12 , 𝐿 − �̄�1
2 )

}

. (48)

3.3.1. Two-dimensional random field for the friction coefficient
The friction coefficient 𝜏 in the construction joint is modeled by a

two-dimensional RF 𝜏 (𝒛) in 𝑧1 and 𝑧2. The prior RF 𝜏′ (𝒛) is homo-
geneous with lognormal marginal distribution 𝐹 ′

𝜏 . The corresponding
parameters are 𝜇′

ln𝜏 and 𝜎′ln𝜏 , which are the mean value and standard
deviation of the Gaussian distribution 𝐹 ′

ln𝜏 of the underlying homoge-
neous Gaussian RF 𝜏ln (𝒛). The spatial correlation of 𝜏′ln (𝒛) is modeled
with the Matérn correlation model with a smoothness parameter of
𝜈 = 1.5 [31,44]:

𝜌′(𝒛𝑖, 𝒛𝑗 ) =

(

1 +

√

3𝛿𝒛
𝑙𝑐

)

⋅ exp
(

−

√

3𝛿𝒛
𝑙𝑐

)

. (49)

The correlation length is chosen as 𝑙𝑐 = 4m.
A typical assumption for the friction coefficient in indented con-

struction joints of concrete structures is 𝜏 = 0.9 [42], while in-situ mea-
surements often show significantly higher friction coefficients. Hence,
the prior RF distribution parameters are chosen such that 𝜏 = 0.9
approximately equals the 5%-quantile value of the lognormal distri-
bution. This is achieved by choosing 𝜇′

ln𝜏 = 0.25 and 𝜎′ln𝜏 = 0.2. The
corresponding mean value and standard deviation are 𝜇′

𝜏 = 1.31 and
𝜎′𝜏 = 0.26. Note that this prior distribution is based on relatively strong
assumptions and may not hold in practice.

It is assumed that data from concrete core samples of the chamber
wall is available including 𝑛𝑚 = 8 spatial measurements of the friction
coefficient 𝜏 in the construction joint (i.e., 𝑧3 = 0m). Table 4 lists the
measurements 𝝉𝑚 = [𝜏𝑚,1,… , 𝜏𝑚,8] and corresponding locations. It is
further assumed that the data are associated with a lognormal multi-
plicative measurement error with median 1 and coefficient of variation
CV𝜀 = 0.1, which is equivalent to an additive zero-mean Gaussian mea-
surement error for the logarithmic transformation of the measurements
ln(𝝉𝑚). Eqs. (32) and (33) can be adapted for the two-dimensional
update of the mean and covariance function of the Gaussian RF 𝜏ln (𝒛):

𝜇′′ (𝒛) = 𝜇′ +𝑹 (𝒛) ⋅ 𝐑−1 ⋅
(

ln(𝝉 ) − 𝜇′ )𝖳 , (50)
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ln𝜏 ln𝜏 𝒛𝑚 𝒛𝑚 ,𝜀 𝑚 ln𝜏
Table 4
Measurement values 𝜏𝑚 of the friction coefficient and corresponding locations in the
construction joint of the ship lock chamber wall.

1 2 3 4 5 6 7 8

𝑧1 [m] 17.80 22.30 46.55 52.05 54.70 54.70 76.25 81.40
𝑧2 [m] 0.75 0.50 1.25 1.45 0.85 1.75 0.35 1.00
𝜏𝑚 2.6 2.1 1.2 1.7 3.1 2.1 2.9 5.0

𝐶 ′′
ln𝜏

(

𝒛𝑖, 𝒛𝑗
)

=
(

𝜎′ln𝜏
)2

⋅
(

𝜌(𝒛𝑖, 𝒛𝑗 ) −𝑹𝒛𝑚 (𝒛𝑖) ⋅ 𝐑
−1
𝒛𝑚 ,𝜀

⋅𝑹𝖳
𝒛𝑚
(𝒛𝑗 )

)

. (51)

𝑹𝒛𝑚 (𝑧) is a 1×𝑛𝑚 row vector function with element 𝑖 equal to 𝜌′(𝒛, 𝒛𝑚,𝑖).
𝐑𝒛𝑚 ,𝜀 = 𝐑𝒛𝑚 ,𝒛𝑚 +𝐑𝜀, where 𝐑𝒛𝑚 ,𝒛𝑚 is an 𝑛𝑚×𝑛𝑚 matrix with element (𝑖, 𝑗)
equal to 𝜌′(𝒛𝑚,𝑖, 𝒛𝑚,𝑗 ) and 𝐑𝜀 = 𝜎2ln𝜀 ⋅ I, where I is the 𝑛𝑚 × 𝑛𝑚 identity
matrix. The resulting posterior mean value and standard deviation of
the marginal lognormal distributions of 𝜏′′ (𝒛) are plotted in Fig. 16.

To approximate 𝜏′′ (𝒛) with SA, the domain of the construction joint
is divided into rectangular averaging domains. Their length is 𝐿

𝑛𝑆𝐴,1
in

𝑧1 and 𝑊
𝑛𝑆𝐴,2

in 𝑧2, resulting in 𝑛𝑆𝐴 = 𝑛𝑆𝐴,1 ⋅𝑛𝑆𝐴,2 rectangular elements of
equal size. The corresponding parameters of the lognormal averaging
random variables and their correlation are found by application of
Eqs. (13) to (15) in combination with the transformation in Eq. (20).
The mean values and standard deviations for 𝑛𝑆𝐴,1 = 20 and 𝑛𝑆𝐴,2 = 1
are illustrated in Fig. 17. It can be seen that local extrema of the RF
parameters resulting from high or low measurement values are not fully
reflected in the SA parameters but regions of high or low values are
visible.

3.3.2. Loads acting on the structure
The vertical forces from self weight, vertical earth and water pres-

sure, wall friction and crack and pore water pressure are modeled
space-invariant and deterministically. They sum up to 𝑁𝐸 (𝑧1) = 580 k
N m−1 per running length. The horizontal water pressure is assumed
deterministic based on the given ground water level (cf. Fig. 15),
resulting in a value of 𝑉𝐸,𝑤 = 353 kNm−1 per running length. The
horizontal earth pressure consists of a basic value of 𝑉𝐸,𝑒 = 159 kNm−1

and is multiplied with a location-specific random term. This term
is modeled with a one-dimensional KL representation using a fixed
number of terms (𝑚𝐾𝐿 = 10). It has mean value 𝜇𝑝 = 1, standard
deviation 𝜎𝑝 = 0.05 and exponential spatial correlation (cf. Eq. (31))
with a scale of fluctuation of 𝜗 = 40m.

3.3.3. Reliability analysis
The reliability analysis is carried out with MCS using 107 inde-

pendent samples. A reference solution is obtained by discretizing the
two-dimensional RF 𝜏′′ (𝒛) with the KL expansion with 𝑚𝐾𝐿 = 500
terms. Fig. 18 illustrates the resulting failure probability estimates as
function of the number of SA elements in 𝑧1 direction 𝑛𝑆𝐴,1. Panel a
shows that 𝑃𝐹 (red line) strongly underestimates 𝑃𝐹 (blue line) for
small 𝑛𝑆𝐴,1 but converges to the reference solution with increasing
𝑛 . 𝑃 = 0 when 𝑛 < 4, confirming the trend to underestimate
𝑆𝐴,1 𝐹 𝑆𝐴,1
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Fig. 17. Posterior spatial mean value (panel a) and standard deviation (panel b) of the SA discretization of the two-dimensional RF for the friction coefficient in the construction
joint of a ship lock chamber wall. The number of elements is 𝑛𝑆𝐴 = 20 with 𝑛𝑆𝐴,1 = 20 and 𝑛𝑆𝐴,2 = 1.
Fig. 18. Failure probability estimates for the sliding failure of the ship lock chamber wall as function of the number of equisized averaging elements in 𝑧1 direction 𝑛𝑆𝐴,1. Panel
a shows the estimate of the system failure probability 𝑃𝐹 (red line) and panel b shows the estimates of the individual failure probabilities 𝑃𝐹 ,1 (solid red line) and 𝑃𝐹 ,2 (dashed
red line). The blue lines mark the corresponding reference failure probabilities 𝑃𝐹 , 𝑃𝐹 ,1 and 𝑃𝐹 ,2 (dashed blue line). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Table 5
Effect of the number of SA elements in 𝑧2 direction 𝑛𝑆𝐴,2 on the failure probability
estimate 𝑃𝐹 for sliding failure of the ship lock chamber, exemplarily for 𝑛𝑆𝐴,1 = 25,
𝑛𝑆𝐴,1 = 50 and 𝑛𝑆𝐴,1 = 75.

𝑛𝑆𝐴,1 𝑃𝐹

𝑛𝑆𝐴,2 = 1 𝑛𝑆𝐴,2 = 2 𝑛𝑆𝐴,2 = 3

25 8.9 × 10−4 8.4 × 10−4 8.4 × 10−4

50 2.7 × 10−3 2.6 × 10−3 2.6 × 10−3

75 3.8 × 10−3 3.7 × 10−3 3.6 × 10−3

𝑃𝐹 for small 𝑛𝑆𝐴,1. The system failure probability can be split up into
the two individual failure probabilities 𝑃𝐹 ,1 and 𝑃𝐹 ,2 for failure as
defined by Eqs. (45) and (47), respectively. Panel b of Fig. 18 shows the
convergence of the individual probability estimates 𝑃𝐹 ,1 (solid red line)
and 𝑃𝐹 ,2 (dashed red line) to the reference solution (respective blue
lines) with increasing 𝑛𝑆𝐴,1. For 𝑛𝑆𝐴,1 < 5 (4), the estimated individual
failure probability for failure mechanism 1 (2) is 0. The required
number of averaging elements for obtaining a good approximation of
𝑃𝐹 ,1 is significantly larger than for 𝑃𝐹 ,2. This is related to the nature of
the two considered failure mechanisms. 𝑔1(𝑧1, 𝜏(𝒛)) describes a failure
mechanism that is located at a single point in direction 𝑧1, i.e., it
is sensitive to local spatial variability. 𝑔2

(

𝜁1, 𝜏(𝒛)
)

on the other hand
describes the average resistance over the length �̄�1, which is dominated
by regions of high and low values of the friction coefficient. This type
of failure mechanism is less sensitive to local variations of the RF
approximation error, and thus, can be well approximated with a smaller
number of averaging elements. Increasing the number of elements in
𝑧2 direction has a minor effect on the estimated failure probability,
as shown in Table 5 for 𝑛𝑆𝐴,1 = 25, 𝑛𝑆𝐴,1 = 50 and 𝑛𝑆𝐴,1 = 75. The
reason is that both failure mechanisms include an integration of the
sliding resistance over 𝑊 in 𝑧2 direction. The minor changes in 𝑃𝐹 can
be attributed to the fact that 𝜏′′ (𝒛) is approximated by the geometric
average in each SA element. Increasing the number of elements leads
to a smaller difference between the integration of geometric averages
(with SA) and the integration of 𝜏′′ 𝒛 (in the reference solution).
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( )
This example shows that, for an efficient reliability analysis, the
number of SA elements should be chosen depending on the problem at
hand. Local failure mechanisms require a larger number of averaging
elements than failure mechanisms dominated by averages over specific
regions or even determined by global averages. By an intelligent choice
of the SA mesh, the stochastic dimension, i.e., the number of random
variables, can be significantly reduced without loss of accuracy. This is
of special interest in multi-dimensional settings, where on the one hand
the number of random variables increases exponentially when the SA
mesh is refined and on the other hand, as illustrated above, the SA mesh
might need to be fine in one direction but can be relatively coarse in
the other direction(s).

4. Conclusion

This paper presents the spatial averaging method for discretizing
non-homogeneous random fields with focus on application in relia-
bility analysis with forward engineering models. Non-homogeneous
random fields can be induced through a spatial Bayesian update of
the random field with measurement data. Each random variable in the
discretization with spatial averages represents the average behavior of
the random field in a chosen linear (in one dimension) or rectangular
(in higher dimensions) spatial domain. Equations to calculate the mean
vector and the covariance matrix of the set of averaging random vari-
ables are presented. These equations enable direct application of the
method to Gaussian random fields. Additionally, we present application
of the method to non-Gaussian translation fields and derive the required
transformation for fields with lognormal, Student’s 𝑡- and log-Student’s
𝑡-marginal distribution.

The performance of the method is investigated through two numeri-
cal examples, a one-dimensional beam and a two-dimensional ship lock
chamber wall. Thereby, the method is assessed in terms of its ability
to accurately represent output quantities of interest and, particularly,
the reliability of engineering structures. It is shown that the spatial
averaging method is suitable to approximate non-homogeneous random
fields with a relatively small set of random variables, especially when
the numerical model of the system response involves integration of
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the spatially variable quantity. In such cases, even a single random
variable can be sufficient for obtaining a reasonable approximation of
the output variability. The examples highlight that understanding of
the mechanical model is essential for efficient application of the spatial
averaging method in conjunction with structural models. It is shown
that not only the number of averaging elements but also the size of
the individual elements are critical parameters for the performance
of the method. An adaptive element size can increase the accuracy
of the discretization by increasing the quality of the random field
discretization in regions of special importance. However, it cannot be
recommended for general application as it requires detailed knowledge
of the effect of spatial variability in the input on the output quantity
of interest. Thus, a uniform mesh size is to be preferred since it is
more robust in terms of the approximation error of the random field
discretization. In the absence of an insight on the mechanical model,
the number of elements can be chosen by defining a target average
relative bias and variance error on the input random field.

The method is particularly suitable for coupling with black box
models of engineering systems, such as finite element models, and,
hence, enables consideration of spatial variability in practical reliability
analyses. Additionally, the presented method can be used to account for
spatial variability in the verification of structures, e.g., by determining
a conservative estimate for the spatial average of material properties or
by accounting for spatial load bearing behavior but still maintaining the
simplifications of a plane structural model. It is left to future studies to
investigate the suitability of the spatial averaging method for practical
application in structural verification.
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