
 

Self-Organized Multifrequency Clusters in an Oscillating Electrochemical System with
Strong Nonlinear Coupling

Maximilian Patzauer * and Katharina Krischer †

Nonequilibrium Chemical Physics, Department of Physics, Technical University of Munich, 85748 Garching, Germany

(Received 6 October 2020; revised 26 January 2021; accepted 9 April 2021; published 10 May 2021)

We study the spatiotemporal dynamics of the oscillatory photoelectrodissolution of n-type Si in a
fluoride-containing electrolyte under anodic potentials using in situ ellipsometric imaging. When lowering
the illumination intensity stepwise, we successively observe uniform oscillations, modulated amplitude
clusters, and the coexistence of multifrequency clusters, i.e., regions with different frequencies, with a
stationary domain. We argue that the multifrequency clusters emerge due to an adaptive, nonlinear, and
nonlocal coupling, similar to those found in the context of neural dynamics.
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Much of the dynamics of oscillating systems as diverse
as neural activities [1], electrical power grids [2], multi-
mode lasers [3], and Josephson junction arrays [4] can be
understood within the common framework of networks of
coupled oscillators. These diverse applications render the
study of coupled oscillators an important discipline of
nonlinear dynamics. The overwhelming majority of pre-
vious studies consider the case of a linear coupling. Only
recently, the more general case of nonlinear coupling has
received increasing attention [5–14]. It could be shown that
this generalization can produce genuine nonlinear coupling
features. For example, the case of global nonlinear coupling
has been found to produce self-organized quasiperiodicity
in ensembles of phase oscillators [5], complex chimera
states composed of (nearly) synchronized regions of differ-
ent mean frequencies and incoherent regions [14], or a
variety of coexistence patterns, including again chimera
states [9–12]. Another representation of nonlinear coupling
is realized in networks of Kuramoto oscillators that are
designed to mimic adaptive neural networks [15]. In this
type of model, recent studies predict the emergence of
multifrequency clusters even when the oscillators are
identical [16–18]. Until then, the existence of multi-
frequency clusters was always linked to heterogeneous
oscillatory systems with some distribution of the natural
frequencies [19–22].
In this Letter, we report the emergence of self-organized

multifrequency clusters from a uniform oscillatory state
during the photoelectrodissolution of an n-Si wafer
when reducing the illumination intensity. Through the

illumination, valence-band holes are created. Their move-
ment parallel to the surface constitutes a nonlocal spatial
coupling [23]. In addition, an external resistance in series
with the electrode acts as a global synchronizing force on
the dynamics [24]. Hence, there are two dominant types of
coupling, a global synchronizing coupling and a long-range
coupling through diffusion and migration of valence-band
holes. Below we will argue that their interaction creates a
nonlinear coupling that, in turn, promotes the formation of
multifrequency clusters.
The oscillatory photoelectrodissolution of Si in fluoride-

containing electrolytes involves the electrochemical oxi-
dation of Si to SiO2 according to

Siþ 2H2Oþ λVBhþ → SiO2 þ 4Hþ þ ð4 − λVBÞe−; ð1Þ

and the chemical etching of SiO2 via

SiO2 þ 6HF → SiF2−6 þ 2H2Oþ 2Hþ; ð2Þ

where 1 ≤ λVB ≤ 4 is the amount of valence-band holes
hþ [25].
We conducted our experiments with an n-doped

(1–10Ω cm) Si (111) sample as the working electrode in
a three-electrode setup. The electrolyte was an aqueous
solution containing 0.06MNH4F and 142 mMH2SO4. The
uniformity of the electrode surface was monitored in situ
with an ellipsometric imaging setup which probes the
change in optical path length at the electrochemical inter-
face. The changes in optical path length are converted into
an intensity signal ξðx; tÞ (x denoting space and t time) and
recorded with a CCD camera (JAI CV-A50). We will
present the ellipsometric intensity ξðx; tÞ as a percentage
of the saturation threshold of the CCD camera. To allow for
the oxidation of n-type Si, the electrode was illuminated
with a linearly polarized He-Ne laser (HNL150L-EC,
Thorlabs), the intensity of which was adjusted with a

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 126, 194101 (2021)
Editors' Suggestion

0031-9007=21=126(19)=194101(6) 194101-1 Published by the American Physical Society

https://orcid.org/0000-0001-8461-2861
https://orcid.org/0000-0002-2664-1127
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.194101&domain=pdf&date_stamp=2021-05-10
https://doi.org/10.1103/PhysRevLett.126.194101
https://doi.org/10.1103/PhysRevLett.126.194101
https://doi.org/10.1103/PhysRevLett.126.194101
https://doi.org/10.1103/PhysRevLett.126.194101
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


linear polarization filter. The illumination was uniform
across the entire electrode surface. Further experimental
details can be found in the Supplemental Material (SM)
[26] and in [23].
In the measurement presented below, the illumination

intensity is the bifurcation parameter. We initialized the
electrode by applying a constant voltage at a high illumi-
nation intensity and then decreased the illumination step by
step. At each step, we waited until transients had died out
and then measured the dynamics for 103 s. We did not find
any experimental evidence of hysteresis in the investigated
parameter range. In order to characterize the dynamics of
our system, we define the amplitude Aðx; tÞ and phase
ϕðx; tÞ of the ellipsometric intensity signal ξðx; tÞ at each
pixel by calculating the analytic signal ζðx; tÞ via the
Hilbert transform H½ξðx; tÞ� (for details see [28]):

ζðx; tÞ ¼ ξðx; tÞ þ iH½ξðx; tÞ� ¼ Aðx; tÞeiϕðx;tÞ: ð3Þ

Having determined the time series of the phase and of the
amplitude, we extracted the dominant frequency νðxÞ at
each point from a linear fit to ϕ vs t (see SM [26]) and the
temporally averaged amplitude Aðx; tÞ.
Exemplary states from a measurement series can be seen

in Fig. 1 where the temporally averaged amplitude Aðx; tÞ,
the dominant frequency νðxÞ, and a snapshot of the phase at
an arbitrary instant in time, ϕðx; t ¼ 807 sÞ, are shown in
the first, second, and third row, respectively. The four
columns depict measurements at four different illumination
intensities. The initial, highly illuminated state is shown in

column I. Here, the system oscillates uniformly with the
same amplitude, frequency, and phase at each point in
space, cf. [9,29].
Upon lowering the illumination intensity (Fig. 1, column

II), the electrode splits into a region with higher amplitude
and a region with lower amplitude. These two regions
oscillate with the same dominant frequency, but the
oscillation phase differs between points in the higher-
and lower-amplitude regions. In other words, amplitude
clusters have formed. Note that the exact location of the
clusters differs when the experiment is repeated, but the
clusters tend to form along the edges of the electrode.
Yet, the data shown in Fig. 1, column II do not give the

full picture of the dynamics. In Fig. 2 the temporal
evolution of the phase at an exemplary point, marked by
a cross in the phase plots in Fig. 1, columns I and II, is
depicted in a frame rotating uniformly with the dominant
frequency of the point in question, ν ≈ 27 mHz; see
SM [26] for details. Starting with the higher illumination
[Fig. 2(a)] we observe only a simple modulation with the
same dominant frequency as the one of the rotating frame.
This is in fact the second harmonic of the dominant
frequency of the original time series ϕðtÞ and thus stems
from its slight relaxational character. In the case with the
lower illumination [Fig. 2(b)], when the amplitude clusters
have formed, we observe a further slow modulation of the
phase evolution. This suggests that the system not only
underwent a pitchfork bifurcation leading to amplitude
clusters but also a secondary Hopf bifurcation creating the
modulated oscillations.

FIG. 1. Experimentally measured spatial distribution of the temporal average of the amplitude, Aðx; tÞ, of the dominant frequency
νðxÞ, and of the phase ϕðx; t ¼ t1Þ at t1 ¼ 807 s at four different illumination intensities: I, μ ¼ 5.97 mW=cm2; II, μ ¼ 0.95 mW=cm2;
III, μ ¼ 0.80 mW=cm2; and IV, μ ¼ 0.73 mW=cm2. Electrode size, A ¼ 12.19 mm2. The grayed out regions in columns III and IV
indicate where Aðx; tÞ < 0.35% and, thus, the frequency as well as the phase cannot be determined. Aðx; tÞ is given in percent of the
saturation threshold of the CCD camera. Videos of the measured intensity ξðx; tÞ can be found in the SM [26].
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When lowering the illumination further, two drastic
changes are observed (Fig. 1, column III). First, the mean
amplitude differentiates further in space, suppressing the
oscillations nearly completely on a part of the electrode. In
this region, the very small amplitude combined with
experimental noise leads to apparent discontinuities in
the phase, rendering the determination of the dominant
frequency impossible. Therefore, in the second and the
third row of Fig. 1, we depict points with Aðx; tÞ < 0.35%,
in gray. Second, and perhaps even more astonishing,
focusing our attention on the region that exhibits well
defined oscillations, Aðx; tÞ > 0.35%, we observe that the
dominant frequency is not uniform anymore. Rather, the
frequencies appear to accumulate around three plateau
values, as apparent from the turquoise, red, and yellow
patches in Fig. 1, column III, whereby the higher frequen-
cies are found in the regions with higher mean amplitude.
In the last state (Fig. 1, column IV) the features that

appeared in column III become more pronounced; on a part
of the electrode the amplitude is practically completely
suppressed. In other words, on this part of the electrode we
observe amplitude death [30]. Likewise, the frequency
differences across the oscillating part of the electrode
become more pronounced. Equal, or at least very similar
frequencies now appear in connected regions, whereby the
frequency distributions of the two outer orange and blue
regions are very narrow, and the frequency distribution of
the middle, “mediating region” is somewhat broader,
ranging from light blue to yellow. Indeed, we witness
the self-organized formation of multifrequency clusters in a
homogeneous oscillatory medium. Considering the snap-
shot of the phase distribution, we observe that the faster
region at the top oscillates nearly uniformly whereas the
more slowly oscillating region at the bottom exhibits a
continuous distribution of the phases over 2π rad. This
traveling-wave-type feature can be seen as the continuum

version of a splay state in networks of coupled oscillators.
Interestingly, the existence of mixed-type multifrequency
clusters consisting of a splay-type cluster and a phase-
synchronized cluster, as we observe it here, has also been
found in simulations of networks of phase oscillators with
adaptive coupling [16–18].
A key to understanding the changes in the dynamics in

our system is to realize that our bifurcation parameter
controls the effective number of degrees of freedom in the
system. First, consider the sketch of the working electrode
and the different potential drops across the cell, depicted in
Fig. 3. The silicon-electrolyte interface is composed of the
bulk silicon, the silicon space charge layer, the oxide layer,
and the double layer (not shown). The constant applied
voltage U splits into the potential drops across the external
resistor IRext, the space charge layer φSCðx; tÞ, and the
oxide φOXðx; tÞ while, to a first approximation, the drops
on the electrolyte side and across the bulk silicon can be
neglected. At high illumination intensities, there is an
excess of valence-band holes and the reaction resistance
across the Si-SiOX interface, which is, to a large part,
determined by the concentration of holes nh, is small. In
comparison the resistance across the oxide and the external
resistor are large and hence they limit the total current I. In
this situation we observe uniform base oscillations.
Moreover, any oscillations in the current lead to an
oscillating potential drop across the external resistor
IRext and the oxide φOX while, owing to the nearly constant
concentration of holes, the potential drop across the space
charge layer φSC remains constant.
As the illumination intensity is reduced, there is no

longer an excess of holes since now the hole production
rate and the reaction rate become of the same order, and
thus the reaction resistance becomes larger. As a conse-
quence, φSC increases at the expense of the other potential
drops and the oscillations in I now lead also to oscillations
in φSC and nh.

FIG. 2. Time series of the local phase in a frame rotating with
the dominant frequency ν. Time series taken at the point marked
by a cross in the ϕ plate in Fig. 1, columns I and II, respectively.

FIG. 3. Sketch of the different layers of the electrode-electro-
lyte interface (not to scale) and the potential drops across the
different interfacial layers as well as across the external resistor.
Ir, reaction current; Im, migration current of ionic species through
the oxide layer. Same x and y as in Fig. 1. For the other symbols,
see text.
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Spatial fluctuations in φSCðx; tÞ and nhðx; tÞ lead to
changes in the local current density. Moreover, they induce
lateral motion of holes which is determined by the gradient
of the electrochemical potential of nh, i.e., the combination
of the differences in concentration and in the electrical field
(see SM [26]).
This lateral motion induces a spatial nonlocal coupling

through the valence band holes. The nonlocality arises from
the electrostatic potential in the space charge layer which is
determined by Poisson’s equation: It entails an instanta-
neous redistribution of the electrostatic potential in the
entire layer upon any local change in the charge density. In
addition to being nonlocal the coupling is also nonlinear.
First, the term describing the lateral motion of the holes
depends on the product of nh and derivatives of φSC [see
Eq. (5) in SM [26] ]. Second, and more importantly, a
change in the global current I affects the potential drop
across the external resistor which in turn alters ϕSCðxÞ and
thus also nh. Likewise, a change in nh affects the local
reaction rate ultimately feeding back into the global current.
To sum up, we have a base oscillator at high illumination

that creates a global field, the total current I. At lower
illumination intensity the concentration of holes becomes
an additional degree of freedom which induces a spatial
nonlocal coupling and feeds back to the mean field I in a
nonlinear manner. Thus the dynamics can be formally
described by the following equations:

_ξðx; tÞ ¼ F½ξðx; tÞ; nh; I; μ�; ð4Þ

_nh ¼ Gðnh;φSC; I; μÞ: ð5Þ

At high illumination intensity μ, nh remains constant and
the function F in Eq. (4) represents the dynamics of the
base oscillator. Equation (5) becomes relevant at low
illumination intensity and depends on the mean field I
that is created by the base oscillator.
If we consider our spatially continuous system as being

composed of infinitesimally small base oscillators wk, one
realizes that the nonlinear coupling is of the same type as
the general physical setting for nonlinearly coupled
oscillators formulated by Rosenblum and Pikovsky [5]
[compare Eqs. (4) and (5) to Eq. (18) in [5] ].
While in Ref. [5] the nonlinear coupling constituted a

strictly global coupling, later a nonlinear and nonlocal
coupling was considered [14]. Interestingly, the nonlinear
nonlocal coupling supported states with three synchronized
regions, each oscillating with a different frequency. In this
respect, these states have a high similarity to our multi-
frequency clusters. However, in addition to these synchron-
ized “frequency clustered” regions the system also
contained a large incoherent domain rendering the states
chimera states. In fact, looking at our data in a different
way, one could argue that also our data contain character-
istics of chimera states.

Figure 4(a) presents a purely global picture of the
dominant frequencies, neglecting any spatial information.
Here, the dominant frequencies as found in state IV of
Fig. 1 are sorted in ascending order. The first about thirty
thousand entries with the value 0 Hz arise from the region
where we observe amplitude death. For higher indices, we
clearly observe three plateaus. These reflect our three
frequency domains. However, the transitions between these
plateaus are not sharp but instead occur continuously in a
finite index range. As such, this graph is reminiscent of
the distribution of dominant frequencies in the above
mentioned chimera states (cf. Fig. 4 in [14]) and to some
extent also to the 2-frequency chimera states in [31–33].
Also another study reveals a link between multifre-

quency clusters and chimera states [34]. In this study a
birhythmic model was considered. When coupling these
oscillators nonlocally, synchronized domains oscillating
in either of the two bistable limit cycles could be
stabilized.
The interfacial regions mediating between the domains

with different frequencies oscillated asynchronously with
frequency components of both adjacent regions. Provata
interpreted her two frequency domains separated by a
“more frequency” incoherent region as a chimera state.
Our multifrequency cluster (Fig. 1, column IV) exhibits
similar features. This can be seen in Fig. 4(b) where we
present the absolute value of the Fourier coefficients of the
three main frequencies, 24, 27, and 32 mHz, of the local
Fourier spectra along the dashed line in the ν plot in
Fig. 1, column IV. While in the bottom low- and the top

FIG. 4. (a) The dominant frequencies ν from Fig. 1, column IV
sorted in ascending order. (b) Spatial profile of the absolute value
of the Fourier transform of ξ for three different frequencies in
mHz together with dominant frequency ν (red). Profile taken at
the dashed line in the ν plate in Fig. 1, column IV.
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high-frequency regions the contribution of the other two
frequencies are very small, in the middle region we find not
only the third, dominant frequency at 27 mHz, but also a
significant contribution of the frequencies of the two
adjacent regions, similar to the findings in Provata’s model
system. Yet, since the main characteristics of our data is the
coexisting of regions oscillating with different dominant
frequencies, we classify the state as a multifrequency
cluster noting that there is much room for further discussion
about the relation between multifrequency clusters and
chimera states.
Last, let us compare our findings to the multifrequency

clusters in [17,18]. The decisive element in their model
equations is that the coupling is adaptive, i.e., the coupling
constant has its own temporal dynamics leading to different
intercoupling strengths between the clusters. In our case,
the hole concentration nh is the nonlinear coupling variable,
modifying the dynamics locally. From this point of view, it
can be seen as establishing an adaptive coupling.
In conclusion, our experimental observation of multi-

frequency clusters is an exceptional example where a self-
organized adaptive coupling was observed in a nonliving
system, opening the door for unprecedented explorations of
adaptively coupled systems in experiments.
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