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Abstract

Modern blockchains, such as Ethereum, gained tremendously in popularity over the past

few years. What partially enables this large increase are so-called smart contracts. These

are programs that are deployed and executed across the blockchain. However, just like tra-

ditional programs, smart contracts are subject to programming mistakes. Although, unlike

traditional programs their code is publicly available and immutable. Hence, as smart con-

tracts become more popular and carry more value, they become a more interesting target

for attackers. In the past few years, several smart contracts have been exploited, resulting

in assets worth millions of dollars being stolen. In this dissertation, we explore the security

of smart contracts from three different perspectives: vulnerabilities, attacks, and defenses,

and demonstrate that, as so often, “smart” does not imply “secure”.

In the first part of the dissertation, we study the automated detection of vulnerabilities in

smart contracts, without requiring prior access to source code. We start by building a sym-

bolic execution framework for detecting integer bugs that leverages taint analysis to reduce

false positives. However, as symbolic execution is notorious to produce false positives, we

explore hybrid fuzzing as an alternative. As a result, we propose a hybrid fuzzer for smart

contracts that combines symbolic execution with fuzz testing and leverages data dependen-

cies across state variables to efficiently generate transaction sequences. Our approach is

capable of detecting more vulnerabilities with less false positives.

In the second part of the dissertation, we explore various ways to mount attacks against

smart contracts. We start by proposing a framework to detect and quantify classical smart

contract attacks (e.g., reentrancy, integer overflows, etc.) on past transactions by combining

logic-driven and graph-driven analysis. Afterwards, we study the effectiveness of a new type

of fraud known as honeypots, by scanning the entire blockchain for different types of honey-

pots using symbolic execution. Next, we present a methodology to measure the prevalence

of so-called frontrunning attacks, which follow from the rise of decentralized finance and the

sharp increase of users trading on decentralized exchanges. Our results show that attackers

are making a fortune by manipulating the order of transactions.

In the third and final part of the dissertation, we discuss several defense mechanisms

for smart contracts. We first propose a solution that developers can use to automatically

patch vulnerable smart contract bytecode using context-sensitive patches that dynamically

adapt to the bytecode that is being patched. However, this does not solve the issue of al-

ready deployed smart contracts. To that end, we present a second solution that enables

security experts to write attack patterns that are triggered whenever malicious control and

data flows are detected. Once a transaction is detected to be malicious, all state changes

are rolled back and the attack is thereby prevented. These attack patterns are written us-

ing a domain-specific language and are managed via a smart contract. The latter enables

decentralization, guarantees the distribution of security updates, and warrants transparency.
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Zusammenfassung

Neuartige Blockchains, wie Ethereum, haben in den letzten Jahren enorm an Popular-

ität gewonnen. Ermöglicht wurde dies unter anderem durch sogenannte Smart Contracts.

Smart Contracts sind Programme, die auf der Blockchain ausgeführt werden. Ebenso wie

herkömmliche Programme sind auch Smart Contracts anfällig für Programmierfehler. Im

Gegensatz zu herkömmlichen Programmen ist der Code jedoch öffentlich verfügbar und

unveränderbar. Aufgrund der zunehmenden Bedeutung und Popularität werden Smart Con-

tracts auch zu einem interessanteren Ziel für Angreifer. In den letzten Jahren wurden bere-

its mehrere Smart Contracts ausgebeutet, wodurch bereits ein Vermögen im Wert von

mehreren Millionen Dollar gestohlen wurde. In dieser Dissertation analysieren wir die Sicher-

heit von Smart Contracts mit dem Fokus auf drei verschiedene Aspekte: Schwachstellen,

Angriffe und Schutzmechanismen; und zeigen, dass “smart”, wie so oft, nicht automatisch

“sicher” bedeutet.

Im ersten Teil der Dissertation analysieren wir die automatisierte Erkennung von Schwach-

stellen in Smart Contracts, ohne dass ein Zugriff auf den Quellcode erforderlich ist. Zunächst

erstellen wir ein Framework für symbolische Ausführung zur Erkennung von Integer-Bugs,

welches Datenflussanalyse benutzt, um die Anzahl von falsch positiven Ergebnissen zu

verringern. Da symbolische Ausführung jedoch dafür bekannt ist, falsch positive Ergeb-

nisse hervorzubringen, untersuchen wir hybrides Fuzzing als Alternative. Wir stellen einen

hybriden Fuzzer für Smart Contracts vor, welcher symbolische Ausführung mit dynamis-

cher Ausführung vereint und Datenabhängigkeiten über Zustandsvariablen hinweg nutzt,

um Transaktionssequenzen effizient zu generieren. Durch diese Vorgehensweise können

mehr Schwachstellen mit geringerer Fehlerquote erkannt werden.

Im zweiten Teil untersuchen wir verschiedene Möglichkeiten, Angriffe auf Smart Con-

tracts durchzuführen. Wir stellen ein Framework zur Erkennung und Quantifizierung klas-

sischer Smart Contract-Angriffe (z.B. Reentrancy, Integer Overflows, etc.) auf vergangene

Transaktionen vor, bei dem Logik und Graphen gesteuerte Analyse kombiniert werden. An-

schließend analysieren wir die Effektivität einer neuen Betrugsart, welche als Honeypots

bekannt ist, indem wir die gesamte Blockchain mittels symbolischer Ausführung nach ver-

schiedenen Arten von Honeypots durchsuchen. Als nächstes präsentieren wir eine Meth-

ode zur Messung der Prävalenz sogenannter Frontrunning-Angriffe, welche aus dem Auf-

stieg des dezentralisierten Finanzwesens und dem enormen Anstieg von Nutzern, die an

dezentralen Börsen handeln, folgen. Unsere Ergebnisse zeigen, dass Angreifer mit der Ma-

nipulation der Transaktionsreihenfolge ein Vermögen verdienen.

Im dritten und letzten Teil untersuchen wir mehrere Abwehrmechanismen für Smart Con-

tracts. Zuerst stellen wir eine Lösung vor, mit der Entwickler anfälligen Smart Contract

Bytecode mit Hilfe kontext-sensitiver Patches automatisch patchen können, welche sich dy-

namisch an den zu patchenden Bytecode anpassen. Dies löst jedoch nicht das Problem
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bereits aufgesetzter Smart Contracts. Aus diesem Grund präsentieren wir eine zweite Lö-

sung, welche es Sicherheitsexperten ermöglicht, Angriffsmuster zu beschreiben, die aus-

gelöst werden, wenn bösartige Kontroll- und Datenflüsse ausgeführt werden. Sobald eine

Transaktion als bösartig erkannt wird, werden alle Zustandsänderungen zurückgesetzt und

der Angriff wird dadurch verhindert. Diese Angriffsmuster sind in einer domänenspezifis-

chen Sprache geschrieben und werden über einen Smart Contract verwaltet. Letzteres

ermöglicht die Dezentralisierung und gewährleistet die Verteilung von Sicherheitsupdates,

sowie Transparenz.
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1 | Introduction

It is September 15, 2008, when Lehman Brothers, a well established financial institution

with a history of over 150 years and more than 25,000 employees worldwide, declares

bankruptcy [29]. The bankruptcy filing involves more than 600 billion USD and is consid-

ered the largest bankruptcy filing in U.S. history. The liquidation of Lehman Brothers is just

one of many that would follow during the so-called Great Recession. Set in motion by the

U.S. housing bubble and the global financial crisis in 2007, the Great Recession marks a

time in which a large number of people lost their jobs, homes, and in some cases even

their lives [28]. As a result, many people also began to lose their trust in governments and

especially in financial institutions. The world was going through a dark chapter.

On October 31, 2008, a user named Satoshi Nakamoto1, posted a whitepaper to a

cryptography mailing list, that described a fully decentralized electronic cash system that

does not depend on trusted third parties such as governments or financial institutions [13].

This was the moment where Bitcoin was born, and its underlying technology: blockchain.

What initially started as a cryptocurrency that was merely used by nerds and geeks to buy

pizzas online [159], has grown to a cryptocurrency with a daily trading volume of more than

20 billion USD and a market capitalization worth almost 1 trillion USD [207]. Bitcoin was not

the first cryptocurrency to be proposed [2, 7]. However, it was the first cryptocurrency that

solved the double-spending problem of digital currencies in an exceptionally elegant way.

While being accessible to everyone, it did not rely on a central authority, nor did it require

participants to trust each other or to be online at all times.

Blockchain is often regarded as one of the most disruptive technologies since the in-

vention of the Internet itself. In recent years, companies across the globe have poured

significant value into blockchain research, examining how it can make their existing busi-

ness more efficient and secure. A blockchain is essentially a verifiable, append-only list of

records in which all transactions are recorded in so-called blocks. Every block, except the

very first block, is linked to its previous block via a cryptographic hash, thereby forming a

chain of blocks or a so-called “blockchain”. This list of records is maintained by a distributed

peer-to-peer network of untrusted nodes, which follow a consensus protocol that dictates

the appending of new blocks.

1Satoshi Nakamoto’s true identity remains a mystery until today.
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Introduction

A diverse range of blockchain implementations have emerged since the release of Bit-

coin. All of these implementations pursue a common goal, namely decentralizing the control

over a particular asset. They achieve this by substituting trusted central entities with a large

network of untrusted entities who strive to reach consensus on a history of transactions.

Trust is obtained via the assumption that the majority of these entities act faithfully and

respect the blockchain protocol, since going against the protocol becomes too costly and

therefore irrational. The asset that Bitcoin aims to decentralize, is its own cryptocurrency,

and the trusted centralized entities it attempts to replace, are traditional banks.

However, things changed when in 2013, Vitalik Buterin contended that Bitcoin and its un-

derlying technology could be used for other purposes besides decentralized payments [24].

This was the moment where Ethereum was born. Ethereum goes a step further than Bitcoin

by decentralizing the computer as a whole instead of just decentralizing banks. Ethereum is

nowadays ranked as the second largest cryptocurrency in the world in terms of market capi-

talization, right behind Bitcoin [207]. It has been recently valued to be worth over 500 billion

USD, thereby surpassing the value of Visa and JPMorgan [221]. Ethereum is different from

Bitcoin in many ways. Its most important novelty is its capability to execute so-called smart

contracts. Smart contracts are essentially programs that are deployed and executed across

the Ethereum blockchain via the so-called Ethereum Virtual Machine (EVM) [30]. The EVM

is a purely stack-based virtual machine that supports a large set of instructions, which enable

the execution of Turing-complete programs. By introducing the concept of smart contracts

to the masses, Ethereum revolutionized the way digital assets are traded. Smart contracts

are usually developed using a high-level programming language. Despite a large variety of

available programming languages (e.g., Vyper [223], LLL [75], Bamboo [93], Obsidian [65],

etc.), Solidity [133] remains the most prominent language for developing smart contracts

in Ethereum. Independently of the chosen programming language, the high-level source

code must be always translated into a low-level bytecode representation, before it can be

deployed and interpreted by the EVM. In contrast to traditional programs, smart contracts

cannot be updated and may carry assets that can easily be worth millions. Thus, program-

ming mistakes that were never intended by the developer become now both irreversible and

devastating.

At the beginning of May 2016, almost a year after Ethereum’s release, the Ethereum

community announced the inception of the first so-called Decentralized Autonomous Orga-

nization (also known as “TheDAO”). It was intended to function in a similar way to a venture

capital fund, where entities would operate through a smart contract instead of centralized

governing authorities. By removing these centralized authorities, costs would be reduced

and more control and access would be provided to the investors. The idea of TheDAO was

to allow anyone to pitch their project to the community and potentially obtain funding directly

from TheDAO’s smart contract. Anyone owning DAO tokens could then vote on projects and

obtain rewards if the projects turned profitable. TheDAO had a creation period during which
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Figure 1.1: A visual example of the DAO reentrancy attack.

Ethereum users could send ether (Ethereum’s own cryptocurrency) to a specific address

in exchange for DAO tokens. The creation period surpassed everyone’s expectations and

became the biggest crowdfund ever by gathering 12.7M ether (worth around 150M USD at

the time). With the funding in place, things were looking promising that the project would

take off and become a huge success. However, on June 17, 2016, a user commented on

Reddit that something odd would be going on with TheDAO’s smart contract [49]:

[...] I think TheDAO is getting drained right now [...]

It happened to be that an attacker found a loophole in the code of the smart contract, which

allowed anyone to drain all funds from TheDAO. In the first few hours of the attack, 3.5M

ether were stolen, the equivalent of 50M USD at the time. Interestingly, a week before

the attack, on June 10, 2016, Christian Reitwiessner, one of the lead developers of the

Solidity programming language, published a blog post about common smart contract security

pitfalls [55]. In his blog post, the developer described exactly the same recursive call bug that

was exploited during the DAO hack. A recursive call bug (also known as reentrancy) occurs

when external contracts are allowed to call back (i.e., reenter) the calling contract before the

initial execution is completed. Figure 1.1 provides an illustrative example of the reentrancy

attack that was mounted against TheDAO. The attacker used a contract to call TheDAO’s

withdrawBalance function, which would then transfer ether to the calling address. In this

case the calling address was a contract, which had been previously deployed by the attacker.

An ether transfer to a contract always triggers the so-called fallback function. The attacker

exploited this feature in order to call again (i.e., reenter) the withdrawBalance function of

TheDAO’s smart contract, before the balance was updated. The fact that the state of the

smart contract is solely updated after the transfer and not before, allowed the attacker to
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repeatedly withdraw ether from TheDAO. Ironically, on June 12, 2016 (5 days before the

attack), the developers of TheDAO have been notified about the potential existence of such

a recursive call bug within their smart contract, but the developers simply reassured the

community that their smart contract would not be vulnerable [59]:

[...] No DAO funds at risk following the Ethereum smart contract ‘recursive call’ bug
discovery [...]

In the end, the developers were wrong, yet unbelievably lucky. The attacker decided to stop

draining the smart contract, even though he or she could have continued to do so. This

allowed a group of white hats to withdraw the remaining funds into a safe account. Moreover,

any ether withdrawn from TheDAO’s smart contract, would be first placed into a child DAO

smart contract, which was subject to a 28 day holding period. The initial reaction of the

community was to advocate a soft fork to stop the ether leaving the child DAO beyond those

28 days [37]. A soft fork does not result in a rollback (i.e., no past transactions or blocks

are reversed), whereas a hard fork results in a rollback (i.e., past transactions or blocks

are reversed). Unfortunately, despite having been integrated into most clients and having

received major support from the community, the soft fork was canceled before it came into

play as it would have opened up a denial-of-service vulnerability [48]. The last chance was a

hard fork. The hard fork would move all the funds of the created child DAOs into a withdraw

contract that would be available only to the original owners. The original owners would then

be able to exchange their DAO tokens for ether. Despite being contested by many Ethereum

users, the hard fork was successfully deployed on July 20, 2016, with only a slight majority

voting in favor for the hard fork. A significant amount of users on the other hand, argued

that the hard fork violated the basic principles of Ethereum and smart contracts: “CODE IS

LAW”, meaning that code must be considered final once it is deployed on the blockchain

and should not be changed. This dispute led to the Ethereum blockchain splitting into two

separate chains. One that adopts the hard fork and which continued to be called “Ethereum”,

and another one called “Ethereum Classic”, which in contrast to the other one, did not adopt

the hard fork.

However, the DAO hack did not remain the only attack on Ethereum smart contracts.

Since then, a number of other attacks have followed. Another prominent example are the

two Parity wallet hacks. On July 19, 2017, an attacker found a vulnerability in the source

code of Parity’s multi-signature wallet smart contract. The attacker was able to steal over

150K ether (worth around 30M USD at the time) from a number of deployed contracts. To

save deployment costs, Parity’s wallets were using the same library contract. The idea be-

hind a library contract, is to deploy redundant code only once on the blockchain. Other

contracts can then call the library contract to execute the redundant code and thereby re-

duce the size of their own code. Thus, Parity’s wallet contract would act as a proxy where

the fallback function would forward unknown function calls via a delegatecall to the library
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Figure 1.2: A visual example of the first Parity wallet attack.

contract. A delegatecall runs the code of the called contract under the context of the calling

contract. This means that the called contract has access to the balance and storage of the

calling contract. Unfortunately, Parity’s library contract also contained functions that enabled

everyone to set up the wallets. These functions should have been protected such that they

could only be used under one specific circumstance, namely during the deployment of a new

wallet contract. However, the functions were entirely unguarded, which allowed the attacker

to reset the ownership and execute arbitrary functions. Figure 1.2 provides a visual example

of the attack. The attacker had to send two transactions to the affected contracts. The first

transaction would call the initWallet function on the wallet contract. The fallback function

of the wallet contract would then forward the function call to the library contract and execute

the initWallet function in the context of the wallet contract. The execution of initWallet

would result in setting the attacker as exclusive owner of the wallet contract. The second

transaction would call the execute function on the wallet contract. Similarly, the fallback

function of the wallet contract would forward the function call to the library contract, however,

this time execute the execute function in the context of the wallet contract. This would result

in emptying the balance of the wallet contract and sending all the ether to the attacker.

A month later, Parity claimed to have fixed the bug and that it hired a security company

to perform a security audit before deploying the new version of the library on the blockchain.

However, the library contract was attacked a second time on November 6, 2017, just a few

months after the first attack. This time, the attacker did not steal any funds, but publicly

admitted of having accidentally killed the library contract (see Figure 1.3) and thereby de-

stroyed the access to ether that is worth over 150M USD. Similar to the first attack, the

second attack was composed of two transactions. Yet, in comparison, the attacker called in

the second attack the library contract directly instead of going through a wallet contract and

its delegatecall. Thus, the first transaction of the second attack directly called initWallet

on the state of the library contract, instead of the wallet contract, and set the attacker as the
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Figure 1.3: User admits on GitHub to have “accidentally” killed wallets belonging to Parity.

owner of the library. In the second transaction of the second attack, the attacker called the

kill function of the library contract, which resulted in the library contract being destroyed

(i.e., the code being removed and any subsequent calls to the library contract resulting in an

error). Calling the execute function in the second transaction, as it was the case in the first

attack, would make no sense since the execution context was the one of the library and the

library did not contain any ether to be withdrawn. This second attack was possible because

both, developers and auditors, always considered the contract to be used as a library and

never thought that someone would directly call the library. Unfortunately, many Parity wal-

lets had the address of the library contract hard-coded, with no option of updating it. As a

result, the ether contained within these wallets is now lost forever, because the code of the

destroyed library contract was the only way to move the ether out of the wallets.

1.1 Research Questions

The aforementioned incidents question the security of smart contracts. On the one hand, the

capabilities offered by modern blockchains, such as Ethereum, fuel the development of new

disruptive use-cases. On the other hand, the freedom of being able to write Turing-complete

smart contracts entails new dangers and sparks a certain skepticism around the security

guarantees offered by blockchains. Blockchains are often highly praised as secure and "un-

hackable". However, attacks such as the DAO hack [57] or the Parity wallet hacks [84, 80]

demonstrated how vulnerable blockchain applications can be if the underlying smart con-

tracts contain bugs. Due to these attacks, a lot of effort has been put in finding reentrancy

and access control bugs in smart contracts, but only very little effort have been made to

study whether smart contracts are vulnerable to traditional software bugs. For instance,

integer overflows or so-called wraparounds are a popular type of bugs that are frequently

found in traditional programs. In 2019, integer overflows have been ranked 8th in the top

25 most dangerous software errors [149]. Similar to traditional programs, integer opera-

tions are very common in smart contracts, for instance, to keep track of account balances.
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Moreover, the way how Solidity and the EVM handle integer types may lead to unexpected

border cases, thereby introducing vulnerabilities in smart contracts. This raises the question

whether developers are aware of these peculiarities and if they add appropriate checks to

their code. Bugs such as integer overflows, division by zero, or integer type conversion er-

rors, belong to the family of so-called integer bugs. The accurate detection of integer bugs

requires to know the accurate size (e.g., 32-bit or 64-bit) and sign (e.g., signed or unsigned)

of an integer variable. This information may easily be retrieved from source code, depend-

ing on the programming language in which the program has been developed. However, a

prominent issue when analyzing publicly available smart contracts for bugs, is the lack of

source code. Ethereum for instance, only stores the bytecode and not the source code of a

smart contract on its blockchain. This makes it hard to analyze smart contracts for integer

bugs.

Most bug detection tools for smart contracts rely on symbolic execution (e.g., [51, 120,

116]). Symbolic execution has the advantage of being able to reason about all execution

paths of a program. However, it also has several disadvantages. Symbolic execution is a

static analysis technique, meaning that it does not execute code using concrete values but

rather executes code in an abstract way, thereby replacing program inputs with symbolic

values. This introduces approximation issues that often result in false positives. Moreover,

symbolic execution is often combined with constraint solving in order to reason if an execu-

tion path is satisfiable or vulnerable under a given set of constraints. However, the ability

of a constraint solver in solving a given set of constraints depends on the complexity of the

constraints. In the context of symbolic execution, the complexity of the given constraints

depends on the length of the execution paths and complexity of the branch conditions of a

program. Symbolic execution is therefore prone to have difficulties in analyzing large com-

plex programs. This is known as the “path explosion” problem. With the rise of complex

use-cases, such as decentralized games and decentralized finance, smart contracts are

becoming more and more complex and symbolic execution is reaching its limitations. In

traditional software security, fuzzing or fuzz testing is a popular alternative to symbolic ex-

ecution. Fuzzing is a dynamic analysis technique that executes a program using concrete

values and checks if the execution path resulted in a bug being triggered. Fuzzing has the

advantage of scaling well to larger programs and reporting no false positives (assuming that

the bug detection is implemented correctly). However, the main challenge in fuzzing consists

in generating meaningful inputs that explore all the different execution paths of a program.

A popular way to generate meaningful inputs is to analyze the source code (i.e., white-box

fuzzing). Unfortunately, as mentioned earlier, users mostly only have access to the public

bytecode of a smart contract and therefore we must design tools that are capable of detect-

ing vulnerabilities by only analyzing the bytecode of a smart contract. This leads to our first

research question.

7



1.1. Research Questions

Research Question 1 (RQ1)

How can we detect vulnerabilities in smart contracts without having access to source

code?

Over the past few years, industry as well as academia made a significant effort in releas-

ing a number of vulnerability detection tools for smart contracts (e.g., [76, 102, 120, 87, 136,

112, 90, 155, 181]). Developers can use these tools to find and fix vulnerabilities in their

smart contracts before deploying them on the blockchain. A large portion of these tools are

publicly available and free to use (e.g., [76, 102, 87, 136]). Moreover, several smart contract

auditing companies have been founded over the past few years (e.g., [217, 215, 206]) in

order to provide professional services to developers by conducting manual security audits of

smart contracts. It seems that checking smart contracts for vulnerabilities prior deployment

is becoming a common practice. This raises the question whether these years of efforts

have yielded visibly fewer attacks in the wild. If the tools proposed herein and the security

audits performed by companies are effective, one could argue that attacks should have de-

clined over time. Further, vulnerabilities such as reentrancy and faulty access control are

often ranked as the most dangerous vulnerabilities in smart contracts [105]. However, this is

most likely due to the significant monetary value that is often associated with these attacks.

But what if other types of vulnerabilities are exploited more often, but just involve smaller

amounts and therefore remain rather occluded?

Moreover, the security of smart contracts is often associated with the detection and ex-

ploitation of vulnerabilities contained within the code of a smart contract. However, smart

contracts also heavily depend on a number of internal as well as external components. For

example, smart contracts depend on the correct execution of the EVM or the process of cor-

rectly ordering transactions. These parts can be considered as internal components since

they represent integral parts of the Ethereum blockchain. As external components, we may

consider the Solidity compiler or blockchain explorers such as Etherscan. These are part

of the Ethereum ecosystem but do not represent integral parts of the Ethereum blockchain.

Independently of being internal or external, these components are as well just programs,

meaning that they are inherently prone to programming mistakes. Thus, what happens if

one or several of these components contain programming mistakes? Do these program-

ming mistakes allow attackers to mount new types of attacks against smart contracts? This

leads to our second research question.

Research Question 2 (RQ2)

What types of attacks exist leveraging smart contracts and how can we measure

them?
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Despite a large number of freely available vulnerability detection tools for smart con-

tracts, developers are yet left alone with the burden of having to fix vulnerabilities manually.

Existing tools often highlight the line at which a vulnerability resides, but developers are still

required to know how to fix the vulnerability. Without appropriate knowledge or experience,

developers might not be able to correctly fix the vulnerability, or even worse, their attempt

may result in introducing new vulnerabilities. This became evident when the Parity wallet

was hacked a second time after being manually patched following a security audit. There-

fore, automatic patching offers a powerful promise to strengthen smart contract defenses,

while at the same time minimizing the risk of introducing new vulnerabilities. However, cur-

rent approaches either do not scale well to the growing complexity of smart contracts or are

limited in the types of vulnerabilities that they can patch.

While automated vulnerability patching helps developers in fixing vulnerabilities before

deployment, it does not solve the issue of protecting smart contracts that have already been

deployed and contain vulnerabilities. Current solutions suggest that developers include, prior

deployment, an option to either destroy their smart contract via a selfdestruct or upgrade

their smart contract via a proxy contract. But what if a developer forgets to add such an

option during development? Moreover, if a smart contract contains a bug and is under

attack, then the developer is required to detect the attack and to manually react by quickly

sending a transaction that temporarily disables the smart contract. However, the moment

the developer realizes that their contract is under attack, it might be already too late and all

the funds may have been drained out of the smart contract. This leads to our third and final

research question.

Research Question 3 (RQ3)

How can we protect smart contracts against attacks before and after deployment?

1.2 Contributions

The main contributions of this dissertation are summarized as follows:

(1) We develop OSIRIS – a tool based on symbolic execution and constraint solving to

study the prevalence of integer bugs in smart contracts. To reduce the reporting of be-

nign integer bugs (e.g., introduced by the compiler for optimization purposes), OSIRIS

leverages taint analysis to track only the flow of integer bugs that may be triggered by

an attacker. We find that integer bugs are a prevalent issue in smart contracts. Our

analysis on 1.2M contracts revealed that 42,108 contracts suffer from at least one in-

teger bug (e.g., integer overflow, division by zero, truncation error, etc.). In comparison

to existing works, OSIRIS achieves a considerably lower false positive rate. Moreover,
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OSIRIS discovers major programming flaws in two contracts after analyzing the top

495 Ethereum token smart contracts. We also identify causes for integer bugs and

propose possible modifications to the EVM and the Solidity compiler, to remove the

burden from developers to protect their smart contracts against integer bugs.

(2) We present CONFUZZIUS – a hybrid fuzzer for smart contracts that does not require

access to source code. CONFUZZIUS combines evolutionary fuzzing with constraint

solving. We use evolutionary fuzzing to exercise shallow parts of a smart contract

and constraint solving to generate complex inputs that satisfy conditions that allow the

evolutionary fuzzing algorithm from exploring deeper parts of the contract. Moreover,

CONFUZZIUS infers dynamically data dependencies across state variables to generate

sequences of transactions that trigger complex smart contract states. We evaluate the

effectiveness of CONFUZZIUS by comparing it with state-of-the-art symbolic execution

tools and fuzzers. Our evaluation on a curated dataset of 128 contracts and a dataset

of 21,147 real-world contracts shows that our hybrid approach detects up to 23% more

bugs than state-of-the-art and that it outperforms existing tools in terms of code cover-

age by up to 69%. We also demonstrate that data dependency analysis can boost the

detection of bugs up to 18%.

(3) We propose HORUS – an extensible framework for carrying out longitudinal studies

on smart contract attacks. The framework identifies smart contract attacks by trans-

lating the execution of individual transactions into logical expressions which can then

be queried using queries written in Datalog. In addition, the framework is capable

to quantify the amount of stolen assets independently of their type (i.e., ether or to-

kens). Moreover, by loading transactions into a graph database, we can trace the

flow of stolen assets across accounts and perform behavioral studies on attackers.

We provide a longitudinal study on the security of Ethereum smart contracts by an-

alyzing transactions of 4.5 years, ranging from August 2015 to May 2020. We find

8,095 attacks in the wild, targeting a total of 1,888 vulnerable contracts. Our analysis

shows that on the one hand the number of attacks targeting integer overflows seem

to have decreased over the years, but on the other hand attacks targeting unhandled

exceptions and reentrancy seem to remain present despite a wealth of smart contract

security tools. We also demonstrate the practicality of HORUS in identifying malicious

transaction and tracing of stolen assets by applying it to the Uniswap and Lendf.me

hacks that occurred in April 2020.

(4) We present a taxonomy of honeypot techniques and use this taxonomy to build HON-

EYBADGER – a tool that uses symbolic execution together with well-defined heuristics

to automatically detect smart contract honeypots. Using HONEYBADGER, we conduct

the first systematic analysis of honeypots by analyzing over 2 million smart contracts
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deployed on the Ethereum blockchain, and confirm the prevalence of at least 690 de-

ployed honeypots. An analysis on the transactions performed by a subset of the dis-

covered honeypots reveals that 240 users already became victims of honeypots and

that honeypot creators already made an accumulated profit of over 90,000 USD.

(5) We propose an efficient methodology to detect frontrunning attacks such as displace-

ment, insertion, and suppression on Ethereum’s past transaction history. We perform

an extensive large-scale study on more than 11M historical blocks and identify a total

of 199,725 attacks mounted by 526 bots and 1,580 attacker accounts. The measured

attacks yield an accumulated profit of 18.41M USD for the attackers, providing evi-

dence that frontrunning is both lucrative and a prevalent issue. Moreover, we are able

to group the identified attacker accounts and bots into 137 unique attacker clusters. Fi-

nally, we also discuss frontrunning implications and find that miners are profiting from

frontrunning practices by making a passive income of 300K USD only due to the high

transaction fees that frontrunners have to pay to miners in order to be able to mount

their attacks.

(6) We introduce a novel context-aware patching approach that combines template-based

patching with semantic-based patching to create tailored patches for smart contracts.

We build ELYSIUM – a tool that implements our approach to automatically patch 7

different types of vulnerabilities in smart contracts at the bytecode level. We compare

ELYSIUM to existing works using 3 different datasets and by replaying more than 500K

transactions. We not only demonstrate that ELYSIUM is capable of patching at least

30% more bugs than existing solutions, but that it is also more efficient in terms of gas

consumption by using up to 1.9 times less gas.

(7) We propose ÆGIS together with a novel domain-specific language, which enables the

definition of attack patterns. Attack patterns describe malicious control and data flows

that occur during execution of malicious transactions. ÆGIS detects and reverts mali-

cious transactions in real-time using these attack patterns, thereby preventing attacks

on deployed smart contracts. Moreover, we introduce a new way to quickly propa-

gate security updates without relying on client-side update mechanisms, by making

use of a smart contract to store and vote upon new attack patterns. Storing patterns

in a smart contract ensures integrity, decentralizes security updates and provides full

transparency on the proposed patterns. We illustrate the effectiveness by providing

patterns to prevent the two most prominent hacks in Ethereum, the DAO and Parity

wallet hacks. We also provide a detailed comparison to current state-of-the-art runtime

detection tools. Through a large-scale analysis on 4.5 million blocks, we demonstrate

that ÆGIS achieves a better precision than current state-of-the-art tools.
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1.3 Overview

This dissertation consists of three parts. Each part addresses one of the aforementioned

three research questions. The first part is divided in two chapters and focuses on automated

vulnerability detection of smart contract bytecode by employing static and dynamic analysis

techniques. This part is based on two publications [102, 210], which are joint works with

Julian Schütte, Antonio Ken Iannillo, Arthur Gervais, and Radu State. The second part is di-

vided in three chapters and studies various types of attacks and frauds that can be mounted

against smart contracts or using smart contracts. This part is based on four publications

[158, 226, 211, 209], which are joint works with Antonio Ken Iannillo, Arthur Gervais, Mathis

Steichen, Liyi Zhou, Kaihua Qin, Duc V Le, Ramiro Camino, and Radu State. The third

and final part is divided in two chapters and proposes defenses for smart contracts, before

and after deployment. This part is based on three publications [157, 180, 222], which are

joint works with Hugo Jonker, Mathis Baden, Robert Norvill, Beltran Fiz Pontiveros, Sjouke

Mauw, and Radu State.

Part I: Detecting Vulnerabilities in Smart Contracts

Chapter 3 focuses on the detection of integer bugs in Ethereum smart contracts. This chap-

ter addresses parts of RQ1 by leveraging symbolic execution in conjunction with constraint

solving to analyze the bytecode of deployed smart contracts and to study the prevalence of

integer bugs. This chapter is based on the paper:

• Christof Ferreira Torres, Julian Schütte, and Radu State. “Osiris: Hunting for Integer

Bugs in Ethereum Smart Contracts”. In Proceedings of the 34th Annual Computer

Security Applications Conference (ACSAC), pages 664–676, San Juan, PR, USA, De-

cember 3–7, 2018 [102].

Chapter 4 studies the use of hybrid fuzzing for detecting bugs in Ethereum smart contracts.

This chapter addresses parts of RQ1 by proposing a hybrid fuzzer for smart contract byte-

code that solves the three challenges of smart contract testing: input generation, stateful

exploration, and environmental dependencies. This chapter is based on the paper:

• Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State. “Con-

Fuzzius: A Data Dependency-Aware Hybrid Fuzzer for Smart Contracts.” In Proceed-

ings of the 6th IEEE European Symposium on Security and Privacy (Euro S&P), pages

103–119, Virtual Event, October 7–22, 2021 [210].

Part II: Studying Attacks on Smart Contracts

Chapter 5 analyzes the distribution of smart contract attacks on Ethereum over time. This

chapter addresses parts of RQ2 by proposing a framework that first identifies attacks by

leveraging logic-driven analysis to detect if the execution of a transaction exploits a given
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vulnerability in a smart contract and afterwards identifies the flow of stolen assets by lever-

aging transaction graph based analysis. This chapter is based on the paper:

• Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State. “The

Eye of Horus: Spotting and Analyzing Attacks on Ethereum Smart Contracts”. In

Proceedings of the 25th International Conference on Financial Cryptography and Data

Security (FC), pages 33–52, Virtual Event, March 1-–5, 2021 [211].

Chapter 6 investigates the prevalence of smart contract honeypots on the Ethereum block-

chain. This chapter addresses parts of RQ2 by employing symbolic execution to detect

smart contract honeypots in the wild and by performing a longitudinal analysis on the effec-

tiveness, liveness, behavior, diversity, and popularity of honeypots. This chapter is based on

the paper:

• Christof Ferreira Torres, Mathis Steichen, and Radu State. “The Art of The Scam:

Demystifying Honeypots in Ethereum Smart Contracts”. In Proceedings of the 28th

USENIX Security Symposium (USENIX Security), pages 1591–1607, Santa Clara,

CA, USA, August 14–16, 2019 [158].

Chapter 7 measures the rising adoption of frontrunning practices on the Ethereum blockchain.

This chapter addresses parts of RQ2 by presenting an approach that is efficient enough to

analyze the information contained within historical blocks and measure the phenomenon of

frontrunning as well as quantify the spread of the individual types of frontrunning: displace-

ment, insertion, and suppression. This chapter is based on the papers:

• Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais. “High-

Frequency Trading on Decentralized On-Chain Exchanges”. In Proceedings of the

42nd IEEE Symposium on Security and Privacy (S&P), pages 428–445, Virtual Event,

May 23–27, 2020 [226].

• Christof Ferreira Torres, Ramiro Camino, and Radu State. “Frontrunner Jones and

the Raiders of the Dark Forest: An Empirical Study of Frontrunning on the Ethereum

Blockchain”. In Proceedings of the 30th USENIX Security Symposium (USENIX Se-

curity), pages 1343–1359, Virtual Event, August 11–13, 2021 [209].

Part II: Proposing Defenses for Smart Contracts

Chapter 8 presents a framework to automatically patch vulnerable smart contracts before

deployment. This chapter addresses parts of RQ3 by introducing a context-aware patching

approach that combines template-based patching with semantic-based patching to create

patches that are tailored to the implementation of each smart contract. This chapter is

based on the paper:
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• Christof Ferreira Torres, Hugo Jonker, and Radu State. “Elysium: Automagically Heal-

ing Vulnerable Smart Contracts Using Context-Aware Patching”. [222].

Chapter 9 proposes a solution to defend against attacks on smart contracts after deploy-

ment. This chapter addresses parts of RQ3 by introducing a system that detects and re-

verts malicious control and data flows at runtime via attack patterns that are stored on the

blockchain and which are written using a novel domain-specific language. This chapter is

based on the papers:

• Christof Ferreira Torres, Mathis Baden, Robert Norvill, and Hugo Jonker. “ÆGIS:

Smart Shielding of Smart Contracts (Poster)”. In Proceeding of the 26th ACM SIGSAC

Conference on Computer and Communications Security (CCS), pages 2589–2591,

London, UK, November 11–15, 2019 [157].

• Christof Ferreira Torres, Mathis Baden, Robert Norvill, Beltran Fiz Pontiveros, Hugo

Jonker, and Sjouke Mauw. “ÆGIS: Shielding Vulnerable Smart Contracts Against At-

tacks”. In Proceedings of the 15th ACM Asia Conference on Computer and Communi-

cations Security (Asia CCS), pages 584–597, Virtual Event, October 5–9, 2020 [180].

Chapter 10 finally concludes this dissertation by summarizing results and discussing limita-

tions as well as future research directions.
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2 | Background

In this chapter, we introduce the reader to the background that is necessary to under-

stand the work conducted within this dissertation. We briefly highlight the technicalities

of Ethereum and smart contracts including common vulnerabilities on smart contracts.

2.1 Ethereum
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Figure 2.1: Ethereum blockchain structure.

Ethereum is a blockchain technology that was introduced in 2014 [30], with the first block

being mined in July 2015. A blockchain is essentially a peer-to-peer network of computers

that update and share a copy of the same database without necessarily knowing or trusting

one another. The database acts as a ledger that keeps record of every single transaction that

has been performed within this network. The word “block” refers to the fact that transactions

are grouped into batches, which are called “blocks”. A transaction has to be included in such
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Figure 2.2: Ethereum can be seen as a transaction-based state machine.

a block in order to be considered valid. The word “chain” refers to the fact that each block

is cryptographically linked to its previous block via a cryptographic hash, whereby the first

block (i.e., genesis block) begin an exception as it has no previous block and therefore acts

as a root of trust. In other words, blocks are chained together and form a chain of blocks,

which is known as a “blockchain” (see Figure 2.1).

The Ethereum blockchain can be seen as a transaction-based state machine, that reads

a series of inputs and, based on those inputs, transitions to a new state (see Figure 2.2).

Ethereum starts with a blank state called the “genesis state”. This genesis state transitions

into a new state after executing a batch of transactions. This new state represents the

current state of Ethereum, at any point in time. In other words, blocks represent states

and transactions represent state transitions. The data inside a block cannot be altered

without changing all subsequent blocks. Changing all subsequent blocks would require the

consensus of the majority of the network.

Every computer in the network must agree upon each new block and the chain as a

whole. These computers are known as "nodes". Nodes acts as an entry point to the

blockchain and ensure everyone interacting with the blockchain has the same view on the

data. To accomplish this distributed agreement, blockchains make use of a consensus pro-

tocol. Ethereum currently uses Proof-of-Work (PoW) as its consensus protocol. In order to

append a new block to the blockchain, users have to generate a hash of the new block, which

starts with a given number of zeros. Finding such a hash requires a lot of computing power.

It acts as a “proof” that a node has done “work” by spending its computational resources.

This process is known as mining and nodes which decide to participate in this process are

known as miners. Mining is essentially playing a lottery where miners follow a brute-force-

based trial and error approach and the first to successfully mine a block is rewarded in the

form of some cryptocurrency. New blocks are then broadcast to the nodes in the network,

checked and verified, thus updating the state of the blockchain for everyone.

As nodes are allowed to propose new blocks at the same time, it can be the case that

two or more blocks are proposed simultaneously with a valid hash while referencing the

same parent block. This is called a “fork”. Forks pose a serious issue to blockchains as they

result in multiple concurrent states (or chains) and make it hard to agree on which state is

the correct one. For instance, if the chains were to diverge, a user might own 10 coins on
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Figure 2.3: An illustration of Ethereum’s GHOST protocol.

one chain, 20 on another, and 40 on another. To prevent multiple chains and help determine

which fork is the most valid one, Ethereum uses a technique known as the Greedy Heaviest

Observed Subtree (GHOST) protocol (see Figure 2.3). The GHOST protocol states that one

must select the chain that contains the most computation. One way to determine that chain,

is to leverage the block number of the most recent block (i.e., leaf block), which amounts to

the total number of blocks in the current chain (not including the genesis block). The higher

the block number, the longer the chain and the greater the mining effort that must have gone

into arriving at the leaf. This allows nodes to agree on the canonical version of the current

state. Blocks that are not included in the canonical chain are often referred to as orphans or

uncles. In contrast to other blockchains, such as Bitcoin, Ethereum also adds uncle blocks

to the calculation to figure out the longest and heaviest chain of blocks. This allows for the

inclusion of more transactions and attributes a reward to the creators of uncle blocks as

well as miners for declaring concurrent blocks as uncles and thereby keeping forked chains

short.

2.1.1 Ether

Ether is the native cryptocurrency of Ethereum. A cryptocurrency is a digital currency that is

secured by means of cryptographic primitives. The purpose of ether is not only to allow users

to exchange value between one another, but also to provide an economic incentive for users

to provide computational resources to the Ethereum network. Any participant who sends a

transactions must offer some amount of ether to the Ethereum network as a remuneration.

This remuneration will be awarded to whoever gets to mine the block that includes the trans-

action, as a result of doing the work of verifying, executing, and broadcasting the transaction

to the rest of the network. The amount of ether offered must correspond to the time and effort

spent in executing the transaction. These costs prevent malicious participants from inten-

tionally congesting the network by requesting the execution of infinite computation or other

resource-intensive actions, as these participants must pay for the computation. Ethereum
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Table 2.1: List of cryptocurrency denominations in Ethereum.

Denomination Value in ether Value in wei

wei 10−18 1

Kwei (babbage) 10−15 1, 000

Mwei (lovelace) 10−12 1, 000, 000

Gwei (shannon) 10−9 1, 000, 000, 000

microether (szabo) 10−6 1, 000, 000, 000, 000

milliether (finney) 10−3 1, 000, 000, 000, 000, 000

ether 1 1, 000, 000, 000, 000, 000, 000

provides a metric system of denominations to describe different units of ether (see Table

2.1). Each denomination has its own unique name (some bear the family name of figures

that played an important role in cryptoeconomics and computer science). Wei and Gwei

are the most popular denominations. Wei is the smallest possible denomination of ether

also known as the base unit, and as a result, many technical implementations base all their

calculations in wei. Gwei (short for gigawei) is often used to describe costs related to “gas”.

2.1.2 Accounts

The global state of Ethereum is composed of many objects called “accounts”. They are able

to interact with one another through so-called “messages”. Each account has a 20-byte

address and a state associated with it. An address in Ethereum is a 160-bit identifier (a

string of 42 hexadecimal characters) that is used to uniquely identify any account on the

blockchain. There exist two different types of accounts (see Figure 2.4):

• Externally Owned Accounts (EOAs), which are controlled by private keys and have

no code associated with them.

• Contract Accounts (CAs), which are controlled by their contract code and have code

associated with them (i.e., smart contracts).

Both account types have the ability to receive, hold and send ether. EOAs can send mes-

sages to other EOAs and CAs by creating a transaction and signing it using their private key.

The code that is associated with a CA, is executed whenever it receives a message from an

EOA or a CA. The code allows a CA to perform various actions (e.g., write to storage, per-

form computations, etc.), which a EOA is not capable of. However, unlike EOAs, CAs cannot

initiate new transactions on their own. Instead, CAs can only trigger messages in response

to other messages that they have received from either an EOA or another CA. Thus, any ac-

tions that occurs on the Ethereum blockchain, are always set in motion by transactions that

are triggered by EOAs. The account state consists of four fields, which are always present

regardless of the type of account:
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Figure 2.4: Anatomy of Externally Owned Accounts (EOAs) and Contract Accounts (CAs).

• Nonce: A number that acts as a simple counter which indicates the number of trans-

actions sent from the account. This prevents the replaying of transactions and ensures

that transactions are only processed once. If the account is an EOA, this number rep-

resents the number of transactions sent from the EOA’s address. If the account is a

CA, the nonce represents the number of contracts created by the CA.

• Balance: The amount of cryptocurrency owned by this address in units of wei. Wei is

the smallest subunit of ether (1 wei is equivalent to 10−18 ether).

• StorageRoot: A hash of the root node of the Merkle Patricia tree that encodes the

storage contents of the account. This value is by default empty for both types of ac-

counts and is solely updated for CAs whenever data is written to storage.

• CodeHash: A hash of the bytecode associated with this account. For CAs, this repre-

sents a hash of the code that is stored on the blockchain. For EOAs, the this value is

the hash of the empty string.

Creating an EOA has no cost as no data such as code, storage or balance is associated

with the account at creation time. A CA on the other hand, has a cost because it uses the

blockchain’s storage to persist the contract code and data directly at creation time.

2.1.3 Transactions

Transactions are essentially cryptographically signed instructions from EOAs to update the

state of the Ethereum blockchain. EOAs sign their transactions using their private key in

order to cryptographically prove that the transaction could only have come from them and not

from someone else. Two types of transactions exist: message calls and contract creations.

The latter are transactions with an empty recipient field that result in creating new CAs

(i.e., smart contracts). The code, to be associated with the CA, is placed inside the data

field of the transaction. Regardless of their type, all transactions contain the following fields

(see Figure 2.5):

• Nonce: A count on the number of transactions sent by the sender. This number is

incremented by one every time a transaction is sent by the sender.
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Figure 2.5: Anatomy of an Ethereum transaction.

• GasPrice: The amount of wei that the sender is willing to pay for each unit of gas that

is used during the execution of the transaction.

• GasLimit: The maximum amount of gas units that the sender is willing to spent for

the execution of this transaction. This amount is set and paid upfront, before any

computation is performed.

• To: The address of the recipient. If the recipient is an EOA, the transaction will transfer

value, if the recipient is a CA, the transaction will transfer value as well as execute the

contract’s code. A transaction with an empty recipient address is used to trigger the

creation of a new CA.

• Value: The amount of wei to be sent from the sender account to the recipient account.

Interestingly, this value may be used to set the starting balance of the newly created

CA in a contract-creating transaction.

• V, R, S: These values represent the digital signature (R, S) which can be used to

recover the public key (V). These values identify the sender of the transaction and

confirms that the sender has authorized the transaction.

• Init: This field is only part of contract-creating transactions and consists of an unlimited

length byte array that includes the code to be used during the initialization process and

the code to be permanently associated with the newly created CA.

• Data: This is an optional field that is only part of message calls and consists of a

byte array of unlimited size that specifies the input data (e.g., , function name, function

parameters) of the message call.

As previously mentioned, contract-creating transactions and message calls are always ini-

tiated by EOAs. However, this does not mean that CAs cannot communicate with other

CAs. CAs can send messages or so-called “internal transactions” to other CAs. Internal

transactions are similar to normal transactions, with the major difference being that they are

not initiated by EOAs, but instead they are initiated by CAs. Moreover, internal transactions

merely exist as virtual objects that, unlike transactions, are not persisted in the Ethereum
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blockchain and only exist at execution time. When a CA sends an internal transaction to an-

other CA, the code that is associated with the recipient CA is executed. In contrast to normal

transaction, internal transactions do not contain a gas limit by default. They are only limited

by the gas limit that was determined by the normal transaction that triggered them. Thus,

the gas limit that the EOA provides within its normal transaction, must be large enough to

perform the execution of the normal transaction, including any sub-executions that occur as

a result of that transaction, such as any internal transactions. If the execution of an internal

transaction runs out of gas, then its execution will be will be reverted, along with any subse-

quent internal transactions triggered by the execution. However, the parent execution is not

reverted.

2.1.4 Blocks

Blocks are batches of transactions with a reference to the hash of the previous block. This

adds immutability and makes fraud noticeable, since a change in a transaction would inval-

idate all the previous blocks as all previous block hashes would change as well. Moreover,

by grouping transactions into blocks, all network participants are given enough time to come

to consensus, even in the case where hundreds of transactions are broadcast per second.

The size of a block is usually bounded to a target size of 15 million gas units. However, the

size of blocks will be increased or decreased depending on the demands of the network, up

to a block limit of 30 million gas units (2x target block size). The total amount of gas spent

by all transactions contained within the block must be less than the block gas limit. This is

crucial as otherwise blocks could grow arbitrarily large and congest the blockchain. A block

consists of a block header, a list of transactions, and a list of the block headers of the block’s

ommers (see Figure 2.6). A block header consists of the following fields:

• ParentHash: A hash of the parent (previous) block’s header (i.e., the pointer that links

blocks together in a chain).
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• OmmersHash: A hash of the current block’s list of ommers. An ommer is a block

whose parent is equal to one of the current block’s parent’s parent.

• Beneficiary: The account address that receives the fees for mining this block.

• LogsBloom: A Bloom filter (i.e., a data structure) that allows efficient querying of

information contained in the logs.

• Difficulty: The effort required to mine this block.

• Number: The count of the current block. The block number of the genesis block starts

at number zero and each subsequent block number is increased by one. The block

number is often referred as the length of the blockchain in blocks.

• GasLimit: The current gas limit per block. This value represents the limit set on the

overall gas consumption for this block.

• GasUsed: The sum of the total gas used by all transactions contained in this block.

This value cannot surpass the GasLimit.

• Timestamp: The UNIX timestamp when the block was mined.

• ExtraData: Arbitrary data that can set by the miner. This data is limited to 32-byte and

usually refers to the name of the miner or the client version that was used to mine the

block.

• MixHash: A hash that, when combined with the nonce, proves that this block meets

the difficulty of this block.

• Nonce: A value that, when combined with the MixHash, proves that this block has

performed the required work.

• StateRoot: The hash of the root node of the Merkle Patricia trie that stores the state

of all accounts (i.e., account balances, storage, code, and nonces). The hash is calcu-

lated only after all transactions have been executed.

• TransactionsRoot: The hash of the root node of the Merkle Patricia trie that stores all

transactions listed in this block.

• ReceiptsRoot: The hash of the root node of the Merkle Patricia trie that stores the

receipts of all transactions listed in this block. Transaction receipts are generated after

the execution of a transaction contain information such as logs or the actual gas that

has been used during execution.
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Block times are much lower in Ethereum (~15 seconds) than compared to those of other

blockchains, such as Bitcoin (~10 minutes). The block time refers to the time that it takes

to mine a new block. In Ethereum, the average block time is evaluated after each block.

The expected block time is set as a constant at the protocol level and is used to protect the

network’s security when miners gain more computational power. The average block time

is compared with the expected block time, and if the average block time is higher, then the

difficulty contained in the block header is decreased. If the average block time is smaller,

then the difficulty in the block header is increased. A smaller average block time enables

faster transaction processing. However, shorter block times also means that miners will

be more likely to find more competing block solutions. These competing blocks are often

referred as ommers or uncles and are seen as “orphaned blocks”, hence, blocks that were

mined but are not part of the canonical chain. The purpose of ommers is to incentivise

miners to include orphaned blocks as a part of the canonical chain and thereby avoid forks.

Miners are only allowed to include orphaned blocks that are not more than six block numbers

away from the current block number.

2.1.5 Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) is a purely stack-based, register-less virtual machine

that runs low-level bytecode and supports a Turing-complete set of instructions. Every in-

struction is represented by a one-byte opcode (e.g., 0x60→ PUSH1, e.g., 0x50→ POP, etc.).

The instruction set consists of more than 140 different instructions ranging from basic oper-

ations such as arithmetic operations or control-flow operations to more specific ones, such

as the modification of a contract’s storage or the querying of properties related to the exe-

cuting transaction (e.g., sender) or the current blockchain state (e.g., block number). The

EVM uses a memory model that is specific to the execution of smart contracts and differs

from the traditional von Neumann architecture (see Figure 2.7).

Instead of organizing code and data in one large general-purpose memory, the EVM

follows the Harvard architecture by separating code and data into four different address

spaces: (1) an immutable code address space, which contains the smart contract’s byte-

code, (2) a mutable but persistent storage address space that allows smart contracts to

persist their data across executions, (3) a mutable but volatile memory address space that

acts as a temporary data storage for smart contracts during execution, and finally (4) a stack

address space that allows smart contracts to pass arguments to instructions at runtime.

The EVM employs a gas mechanism that assigns a cost to the execution of an instruc-

tion. This mechanism prevents DoS attacks and ensures termination by solving the halting

problem. When issuing a transaction, the sender has to specify a gas limit and a gas price.

The gas price defines the amount of ether that the sender is willing to pay per unit of gas

used. As the gas price is coupled to ether, developers are motivated to write efficient pro-
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Figure 2.7: Architecture of the Ethereum Virtual Machine.

grams to keep transaction costs low and to avoid “infinite” loops. The base fee for executing

a transaction starts at 21,000 gas units. The final execution costs are determined by multi-

plying the gas price with the gas used. The gas limit is specified in gas units and must be

large enough to cover the amount of gas consumed by the instructions during a contract’s

execution, otherwise execution will terminate abnormally with an out-of-gas exception and

its effects will be rolled back. The EVM also throws an exception when a jump destination is

invalid, an instruction does not exist, or when there are not enough elements on the stack to

perform an given operation.

Instructions operate on a stack of 256-bit big-endian words. The stack is private to a sin-

gle contract (but not to methods within the contract) and is almost free to use in terms of gas.

The size of the stack is limited to 1,024 items. In addition to the stack, smart contracts can

also store variables in memory. Memory is a random-access array of 256-bit words that is

accessible only by the currently executing smart contract. Memory is always initialized with

zeros and thus isolated from previous executions. Memory is also used to pass arguments

across message calls. Figure 2.8 shows an example of an EVM message call. The CALL

instruction first copies the arguments of the message call from memory into the input data of

a new instance of the EVM. The control is then returned back to the message caller via the

RETURN instruction and the return value that includes the result of the message call is placed

into the memory of the caller. Besides stack and memory, the EVM also features storage.
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While stack and memory are volatile and may only hold values during execution, storage

is persistent and part of the world state σ. It is organized as a Patricia Merkle trie holding

sets of key-value stores for each account. Storage is isolated from other smart contracts

and is the only way for a smart contract to retain state across executions. While storage

is theoretically unlimited, its use is expensive (compared to stack and memory) and should

only be used to store small amounts of data.
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EVM EVM
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Return Value

CALL
Instruction

RETURN
Instruction

MemoryMemory

Figure 2.8: EVM message call.

During execution, the EVM holds a machine state µ = (g, pc,m, i, s), where g is the gas

available, pc is the current program counter, m represents the memory contents, i is the

active number of words in memory, and s is the content of the stack. The execution of a

smart contract results in the modification of the world state σ, which is a data structure that

holds a mapping of an address a to an account state σ[a]. An account state contains the

bytecode σ[a]c, a balance σ[a]b, and a storage σ[a]s. Apart from the world state σ, the EVM

also has access to the execution environment I = (Ia, Io, Ip, Id, Is, Iv, Ib, IH , Ie, Iw), where

Ia is the address of the account that is being executed, Io is the transaction origin, Ip is the

gas price, Id is the transaction input data, Is is the transaction sender, Iv is the transaction

value, IH is the current block header information, Ie is the current call depth, and Iw is the

permission to make modifications to the world state. In contrast to traditional programs,

the effect of a smart contract execution may only depend on information originating from

the world state σ and the execution environment I. This guarantees reproducibility, which

enables determinism and therefore allows the Ethereum blockchain to reach a consensus.

In summary, the EVM essentially takes as input the current world state σ and an execution

environment I, and outputs a updated world state σ′, which is afterwards used as input for

the next execution.
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2.2 Smart Contracts

The concept of smart contracts has been first introduced by Nick Szabo in 1997 [6]. He

described the concept of a trustless system consisting of self-executing computer programs

that would facilitate the digital verification and enforcement of contract clauses contained in

legal contracts. Due to the lack of efficient trustless systems, the concept of smart contracts

remained out of reach for many years, and it only became a reality with the release of

blockchains, such as Ethereum.

2.2.1 Solidity

Function
Hash

Function
Arguments

Transaction
Input Data 𝐼d

𝑠

Stack

CALLDATALOAD
Instruction

Function 
Dispatcher

Function A

Function B

Code

JUMPI
Instruction
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Figure 2.9: Solidity function dispatcher.

Solidity is an object-oriented programming language and it is currently the most prominent

programming language for developing smart contracts in Ethereum. Its syntax resembles a

mixture of C and JavaScript, but it comes with a variety of unique concepts that are specific

to smart contracts and might be unfamiliar or confusing for new developers, such as the

visibility of function modifiers: internal, external, pure, view, the function-wide scoping of

variables, the emitting of events, or smart contract specific operations such as selfdestruct

or revert. Similar to C, Solidity uses a function dispatch table to select what function to ex-

ecute during runtime. The compiler does so by adding to the bytecode a function dispatcher

that first loads the hash of the name of the function to be executed (the initial 4 bytes of the

transaction input data Id) into the stack and then jumps to the function implementation that

is associated with the hash (see Figure 2.9). Now, unlike C and JavaScript, the concept

of “undefined” or “null” values does not exist in Solidity. Newly declared variables always
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Table 2.2: Functions that can move ether in Solidity.

Adjustable Gas Gas Limit Behavior on Error

send() No 2,300 Return False
transfer() No 2,300 Throw Exception
call.value() Yes All/Settable Return False

have a default value depending on their type. For example, integers are always initialized

with zero, whereas Boolean’s are always initialized with False. Besides common variable

types, such as int, bool, or string, Solidity also provides unique types such as mapping

or address. The variable type mapping behaves similar to a dictionary in Python by map-

ping keys to values and therefore allowing an easy access to storage. The variable type

address is meant to hold addresses of Ethereum accounts and has member function such

as balance, send, transfer, call, etc. The member functions send, transfer, and call

can be used to move ether from one address to another. All these functions make use of the

EVM CALL instruction, with difference being the gas limit that can be used and the behavior

on an error (see Table 2.2 for more details). For example, the functions send and transfer

have a fixed gas limit of 2,300 units, whereas the function call by default provides all the

available gas to the CALL instruction, unless the developer explicitly states the gas limit by

using the function member gas (e.g., call.value().gas()).

Almost all variable types in Solidity are of type value, meaning that their value is copied

when passed as an argument to a function. In contrast, the value of variable types of type

reference, are not copied and therefore modified across function calls. Currently, variable

types of type reference comprise mappings, arrays, and structs. Developers always have

to explicitly state the data area where the type is stored when using a variable of type ref-

erence: memory (where its lifetime is limited to an external function call), or storage (where

its lifetime is limited to the lifetime of the contract). In general, state variables are always

stored in storage, function arguments are always stored in memory, and local variables of

type value are stored in the stack. Moreover, Solidity suggests to be a statically typed lan-

guage, i.e., the compiler expects type information for each variable to be made explicit. For

instance, integers can be signed and unsigned, and of lengths between 8 and 256 bits in

8-bit steps denoted as uint8 or int128. This resembles integer types in C and may lead

novice developers to assume that a uint8 will occupy 8 bits in memory, while an int128

occupies 128 bits. However, this assumption is wrong. Any integer type will be represented

inside the EVM as 256-bit values in big endian order using two’s-complement. That is, the

integer type system of Solidity is not entirely consistent with that of the EVM, which can

lead to programming errors. Explicit conversion between primitive types is possible, but the

effects are not well documented. In fact, the documentation reads: Note that this may give

you some unexpected behavior so be sure to test to ensure that the result is what you want.
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Figure 2.10: An illustrative example of the anatomy of Ethereum bytecode.

For example, explicitly casting a signed negative integer into an unsigned one will not result

in the absolute value, but rather simply leave its bit-level representation intact. Interestingly,

Solidity does not support floating points. However, similar to JavaScript, Solidity provides

members such as length or push for arrays.

Apart from variables, Solidity also provides units for ether and time (e.g., wei, days,

etc.) as well as special keywords and functions which always exist in the global names-

pace and are mainly used as general-use utility functions or to provide information about the

blockchain. For instance, the keyword block can be used to access information about the

current block (e.g., block.number), and the keyword msg and tx to access information about

the transaction/message that is being executed (e.g., tx.origin, msg.sender, etc.). Also

mathematical and cryptographic functions are provided (e.g., addmod, ecrecover, etc.). For

error handling, Solidity provides two convenience functions called assert and require, that

can be used to check for a condition and to throw an exception if the condition is not met.

Developers can interleave Solidity statements with inline assembly in a language called Yul,

which is close to the one of the EVM. This gives more fine-grained control and bypasses

optimizations imposed by the compiler. An inline assembly block is marked via the keyword

assembly. The inline assembly code can access local Solidity variables, but different in-

line assembly blocks cannot call functions or access variables defined in a different inline

assembly block.

2.2.2 Bytecode

Ethereum bytecode consists of a sequence of bytes that is interpreted by the EVM. Each

byte either encodes an instruction or data. Figure 2.10 depicts the anatomy of Ethereum

bytecode. Ethereum bytecode consists of two main parts: deployment bytecode and de-

ployed bytecode. Deployment bytecode includes the deployment logic of the smart contract.

This logic is responsible for initializing state variables and reading constructor arguments ap-

pended at the end of the Ethereum bytecode. It is also in charge of extracting the deployed

bytecode from the Ethereum bytecode and copying it to persistent storage. This is achieved

via the CODECOPY and RETURN instructions. Starting from a given offset and for a given size,

the CODECOPY instruction first copies the code running in the current environment to memory.
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Afterwards, the RETURN instruction returns the code that has been copied into memory to the

EVM. As a result, the EVM creates a new contract by generating a new 160-bit address and

persisting the returned code with this new address. The deployed bytecode contains the

runtime logic (i.e., runtime bytecode) and optional metadata. The runtime bytecode is the

logic that is executed whenever a transaction is sent to a smart contract. Some compilers,

such as the Solidity compiler, also append some metadata (e.g., compiler version) to the

end of the runtime bytecode.

2.2.3 Vulnerabilities

Atzei et al. [60] were the first to provide a survey of smart contract vulnerabilities and attacks.

However, their survey relates to 2016. Since then, several new vulnerabilities and attacks

have emerged (e.g., Parity wallet hacks, integer overflows, etc.). In 2018, the NCC Group

released their Top 10 ranking of smart contract vulnerabilities and dubbed it the Decentral-

ized Application Security Project (DASP)1. DASP is an open and collaborative project to join

efforts in documenting and ranking smart contract vulnerabilities within the security commu-

nity. The idea is similar to the well known Open Web Application Security Project (OWASP).

However, neither the ranking nor the list of vulnerabilities has been updated since its first

release in 2018. Another initiative to document well-known attacks is the one presented

by ConsenSys [38]. Unfortunately, their list only contains a handful of vulnerabilities. In

2019, Chen et al. [145] presented a survey of vulnerabilities, attacks, and defenses for the

Ethereum blockchain. Moreover, a project called the Smart Contract Weakness Classifi-

cation Registry (or simply SWC Registry2) has been released with the goal to provide a

common way to report and classify security issues in smart contracts. It loosely resembles

the terminology and structure used in the Common Weakness Enumeration (CWE) project.

At the time of writing, it includes 37 entries. Each entry consists of an identifier (SWC-ID),

a weakness title, a CWE parent, and a list of related code samples. Unfortunately, Chen et

al.’s survey as well as the SWC Registry lack both a ranking and labels which highlight the

severity and impact of each vulnerability.

Table 2.3 depicts our own taxonomy of vulnerabilities and detection tools. It lists 22

different vulnerabilities, grouped into 10 categories, and mapped to 25 distinct vulnerability

detection tools: 15 tools based on static analysis and 10 on dynamic analysis. The tools

listed in our taxonomy were chosen based on the following two criteria: (1) the tool does not

just construct artifacts such as control-flow graphs or intermediate representations of smart

contracts but also detects vulnerabilities; (2) the tool identifies at least one vulnerability listed

in the DASP ranking. Interestingly, when creating this taxonomy, we realized that there is

no unified naming or definition of vulnerabilities. We found that sometimes tools detect the

same vulnerability, but name the vulnerability differently. For example, while VANDAL uses
1https://dasp.co
2https://swcregistry.io
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Table 2.3: A taxonomy of vulnerabilities and detection tools. Vulnerabilities are sorted
according to the DASP ranking. Tools marked with  detect the vulnerability, while tools
marked with # do not detect the vulnerability. Tools that only partially detect a vulnerability
or just some vulnerabilities of a category are marked with G#. Tools with available source
code are marked with ∗, whereas tools without available source code are marked with †.
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Vulnerability ∗ † ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ † ∗ † ∗ ∗ † ∗ ∗ ∗ † ∗ ∗ † ∗

Reentrancy G# G# # G# G# # G# G# G# G# # G# # # # G# G# G# # G# G# # G# G# G#
Same-Function   #   #     #  # # #    #   #    
Cross-Function # # #  # #  # # # # # # # #   # # # # #   #
Delegated # # # # # # # # # # # # # # #   # # # # #   #
Create-Based # # #  # # # # # # # # # # # #  # # # # #   #
ERC777-Based # # # # # # # # # # # # # # # # # # # # # # # # #

Access Control # G# #   # G# G# G# G# # G# G# G# G# # # G# # # # G# G# # G#
Transaction Origin #  #   #     #  # # # # # # # # # # #  #
Unchecked Delegatecall # # #   #   # # #     # #  # # #  # #  
Parity Wallet Hack 1 # #    # # # # # # #    # #  # # #   #  
Unchecked Selfdestruct  #    #   #  #     # # # # # #  # #  

Arithmetic   #  #   # G# # G#  # # # # # # #   #  #  
Integer Overflow   #  #   # G# # G#  # # # # # # #   #  #  
Integer Underflow   #  #   # G# # #  # # # # # # #   #  #  

Unhandled Exception   #   #     #  # # # # #  #    #   
Denial-of-Service # G# G# G# G# # # # G# # G# G# G# G# G# # # G# # G# # G# G# # G#

Unexpected Throw #  #  # # # #  #   # # # # # # # # # # # #  
Insufficient Gas Griefing # # # # # # # # # #   # # # # #  #  # # # # #
Block Gas Limit # # #  # # # #  #   #  # # # # # # # # # # #
Block Stuffing # # # # # # # # # # # # # # # # # # # # # # # # #
Parity Wallet Hack 2 # #    # # # # # # #    # #  # # #   #  

Bad Randomness G#  #   #  # G# # #  # # # # #  # # #  # G#  
Frontrunning   #   #  # # # #  # # # # # #  # # #  #  
Time Manipulation   #   #    # #  # # # # #  # # #     
Short Address # # # # # # # # # # #  # # # # # # # # # # #  #

the name unchecked send for an unhandled exception, OYENTE names this vulnerability

mishandled exception. These different nomenclatures make it hard to compare the detec-

tion capabilities of the individual tools. We extracted the detection capabilities of each tool by

manually analyzing their source code if available. Otherwise, we inferred the detection capa-

bilities directly from their paper. MYTHRIL and MANTICORE have frequent release schedules:

the capabilities highlighted in Table 2.3 are based on their latest version, which at the time of

writing were, 0.22.4 and 0.3.3, respectively. It is interesting to observe that there is no single

tool that is capable of detecting all the vulnerabilities listed in Table 2.3. We provide in the

following a detailed explanation of each of the vulnerabilities.

Reentrancy. A typical flaw in smart contracts are reentrant calls. Reentrancy may occur

whenever a contract sends a value to or calls a function from another contract, and the

called contract has enough gas to call back the original contract. As a result, the called
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contract reenters the original contract. Therefore, the original contract must guarantee that

its state is always correct, independent of reentrant calls. Otherwise, a malicious contract

can take advantage of an incorrect intermediate state to steal funds. The 2016 DAO hack

remains the most famous example of a reentrancy attack not only because an unknown

attacker managed to steal funds worth 50M USD [47], but also because it led to a hard fork

of the Ethereum blockchain [163]. A way to protect against reentrancy is to use the Solidity

methods send or transfer rather than call. The aforementioned methods limit the amount

of gas to 2,300 units, which makes it impossible for the called contract to modify the state or

make any function calls. However, this only protects the sending of value.

In 2018, an attacker exploited a reentrancy bug by making use of an unprotected function

call [125]. Whenever a contract calls an external function that belongs to another contract,

the amount of gas will not be limited. The only way to protect against reentrancy, in that

case, is to add a reentrancy guard in the form of a mutex. Reentrancy vulnerabilities were

extensively studied by Rodler et al. [165], and can be divided into four distinct categories:

same-function, cross-function, delegated and create-based. Same-function reentrancy oc-

curs when an attacker reenters the original contract via the same function, whereas cross-

function reentrancy occurs when an attacker takes advantage of another function that shares

the same state with the original function. Delegated reentrancy and create-based reentrancy

are similar to same-function reentrancy, but use different opcodes to perform reentrancy.

While delegated reentrancy makes use of DELEGATECALL or CALLCODE, create-based reen-

trancy uses CREATE or CREATE2.

Despite reentrancy having been studied so well, it seems to remain a reoccurring prob-

lem in smart contracts. In early 2019, the scheduled Ethereum Constantinople hard fork

introduced a cheaper gas cost for certain state-changing operations. As an unwanted side

effect, this enabled reentrancy attacks, even when using safe methods such as send or

transfer [144]. Fortunately, the issue has been reported on time, and the hard fork has

been postponed, thereby preventing it from affecting any smart contracts on the blockchain.

However, in April 2020, two decentralized exchanges, Uniswap and Lendf.me, became vic-

tims of a reentrancy attack due to them trading the imBTC token [187]. This particular token

implements the ERC777 standard [74], which allows calling another contract before tokens

are transferred and therefore enabling reentrancy. The issue had already been reported a

year before the attack [167, 164]. However, many developers assumed that this vulnerability

would only affect the transfer of ether and that the transfer of tokens would be safe.

Access Control. A typical design pattern in smart contracts is to assign an address as the

owner of the smart contract [106]. This address has then privileged access to functions that

can either update sensible variables, transfer funds, or destroy the entire contract. Unfortu-

nately, this also means that faulty implementations of access control can lead to devastating

consequences. One example of a flawed access control implementation is the use of Solid-
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ity’s tx.origin to check whether the current address is authenticated to perform a sensible

function call such as the withdrawal of funds. However, tx.origin does not represent the

currently calling address, but the very first address that initiated the transaction. Remember

that within a transaction, contracts can call other contracts, and therefore the calling address

can be a different one at runtime. An attacker can perform a man-in-the-middle attack by

first convincing a victim to send a transaction to the attacker’s contract, which then performs

within the same transaction a message call to the victim’s wallet. If the wallet checks for the

transaction origin to authenticate users, then the attacker will be authenticated as the victim

and might be able to steal the funds. Developers should, therefore, rely on the msg.sender

property to authenticate user accounts.

A different typical design pattern is the proxy contract. It separates funds and data from

logic. The idea of proxy contracts was introduced to mitigate the problem that smart con-

tracts, once deployed, cannot be modified. Proxy contracts are implemented using Solidity’s

delegatecall method. This method takes an address as parameter and executes code re-

siding at that address in the context of the original contract. If an attacker can manipulate the

address to his own will, then he or she can execute arbitrary code, including code that steals

funds or destroys the original contract. This vulnerability is known as unchecked delegate-

call or unsafe delegatecall. A prime example of such a vulnerability is the first Parity wallet

hack back in July 2017 [84]. The wallet contract contained code that would redirect any

unmatched function calls to a library contract using a delegatecall. Unfortunately, the de-

velopers forgot to write a check for the initWallet function, ensuring that the function could

only be called once. As a result, an attacker was able to gain ownership of the contract by

simply forwarding the call to that function through the wallet contract. Once in control, the at-

tacker withdrew all the funds by invoking another function called execute. This vulnerability

resulted in an estimated loss of roughly 150K ether, approximately 30M USD at that time.

Another popular design pattern is the implementation of a kill or destroy function that

allows the owner to remove the code of the smart contract from the blockchain once it is not

needed anymore. Such functions are implemented using Solidity’s selfdestruct method.

This method deletes the contract’s code and sends all the funds to a given address. How-

ever, if access to this method is not adequately protected, then an attacker can either destroy

the contract or steal its funds. This vulnerability is known as unchecked selfdestruct or suici-

dal contract. A prominent example of this vulnerability is the second Parity wallet hack (see

denial-of-service vulnerability below).

Arithmetic. Integer overflows and underflows are not specific to smart contracts, but they

are well-known vulnerabilities in software engineering. However, they are especially dan-

gerous in smart contracts because they can quickly lead to exploits that allow attackers to

steal large amounts of funds. An integer overflow or underflow occurs when the result of an

arithmetic operation falls outside of the range of an integer type. For example, an overflow
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occurs if a variable of type uint256 contains its maximum value (i.e., 2256 − 1) and a value

of one is added to the variable. The value of the variable circles then back to zero. The

same is true for underflows. If an unsigned variable contains zero and a value of one is sub-

tracted, then the variable will be set to its maximum value. Integer overflow attacks were first

reported in conjunction with the two ERC20 token contracts called BeautyChain [126] and

MESH [127]. Both attacks are a result of improper input validation on numeric inputs. Since

neither the Solidity compiler nor the EVM enforces integer overflow/underflow detection, a

common way to mitigate integer overflows and underflows is to use the SafeMath library for

arithmetic operations [124].

Unhandled Exception. This vulnerability is sometimes also described as exception dis-

order, unchecked send, or unchecked low-level call. The reason for this vulnerability is

that Solidity does not handle exceptions uniformly. For example, methods such as call,

delegatecall or send, do not stop the execution or revert the entire transaction upon failure.

Instead, an exception is raised and propagated up to the method, reverting only the side

effects caused by the method call. The execution is then resumed with the method returning

false. Beyond that point, it is the responsibility of the developer to check the result of the

method and to perform appropriate exception handling. However, in practice, many devel-

opers forget or decide to ignore the handling of such exceptions. As a result, an attacker

can create a contract that intentionally causes the method call to fail, for example, either by

throwing an exception or by consuming all the gas (see the denial-of-service vulnerability

below). An example of an unhandled exception is the King of the Ether Throne (KotET)

incident in February 2016 [46]. The contract failed to process a legitimate payment because

the recipient was a contract, and the amount of 2,300 gas units provided by send was not

enough. The payment failed, and the ether was returned to the KotET contract. The contract

code did not check for payment failure and continued processing, making the latest player

king, despite the compensation payment not having been sent to the previous player.

Denial-of-Service. There are many ways to cause a denial-of-service (DoS) on a smart

contract. These can range from artificially increasing the gas consumption of a function, to

abusing faulty access control in order to destroy a smart contract. Gas plays a crucial role in

smart contracts. If a user does not provide enough gas or if a function consumes too much

gas, then this can result in an exception. If unanticipated, then this exception can result in

a smart contract being in an inconsistent state with the consequence of locking or freezing

up funds. This type of DoS is known as insufficient gas griefing or gasless send. Another

type of DoS can be due to unbounded operations. In April 2016, a smart contract called

GovernMental was stuck in a deadlock with a balance of 1,100 ether, because the list of

creditors was so long, that it would require an amount of gas that is higher than the allowed

maximum to payout all the creditors in one transaction [40].
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However, even if a contract does not contain unbounded operations, an attacker can

still prevent other transactions from being included in the blockchain for several blocks. An

attacker can continuously issue transactions, which will consume the entire block gas limit,

such that no other transactions will be included in the block (given a high enough gas price).

This type of DoS is known as block stuffing and can also be seen as a form of frontrunning

(see frontrunning vulnerability below). A block stuffing attack was conducted in October

2018 on Fomo3D, a gambling contract that was designed to reward the last address that

purchased a lottery ticket. Each purchase extended the timer, and the game ended once

the timer went to zero. The attacker bought a ticket and then stuffed 13 blocks in a row

until the timer was triggered and the payout was released to the attacker [123]. Besides

gas-related DoS attacks, funds can also be stuck because the called contract throws on

purposely an exception via a revert. This type of DoS is known as unexpected throw.

The second Parity wallet hack, which happened in November 2017 [80], can also be

seen as a DoS attack. After the first Parity wallet hack, a new library contract was deployed

in order to address the issues related to the first hack. However, the developers forgot to

initialize the library contract after deployment, meaning the contract itself had no owners. As

a result, three months after deployment, a user known as devops199 was able to set itself

as the owner and kill the contract via the selfdestruct method, which removed the code of

the library contract from the blockchain [66]. The library contract itself contained no funds,

but it was an inherent part of many Parity wallets. Consequently, any wallet trying to use the

library contract failed. This effectively rendered the wallets unusable and resulted in freezing

up the funds contained in the wallets for eternity.

Bad Randomness. Randomness is hard to achieve in general. In Ethereum it is even

harder, since smart contracts are executed in a deterministic way. However, games and

lotteries sometimes require non-deterministic values. Therefore, a variety of smart contracts

rely on “unpredictable” information originating from yet unmined blocks, such as blockhash

or number. They most often use this information as a seed to generate pseudo-random num-

bers. However, because the sources of randomness are predictable, malicious users can

brute force the values of blocks before they have been mined. The Run [43] and SmartBil-

lions [68] are famous examples of smart contract lotteries using block information for gener-

ating random numbers. In October 2017, an attacker was able to exploit the predictability of

block information and steal 400 ether from the SmartBillions contract [83].

Frontrunning. Users observing the network can see and react to transactions before they

are mined. Miners typically order transactions based on their gas prices. This results in

gas price wars between users in the network. Frontrunning is therefore also known as

transaction order dependence (TOD). A decentralized exchange is a perfect example on how

this can be exploited. An attacker observes a transaction containing a large buy order and
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quickly broadcasts its own transaction containing a buy order with a larger gas price in order

to be executed before the observed buy order. A decentralized exchange named Bancor

was reported in 2017 to be vulnerable to frontrunning attacks [82, 73]. A few other cases

related to frontrunning have been studied by Eskandari et al. [151]. Common mitigations

against frontrunning include the use of commit and reveal schemes or the specification of a

minimum or maximum acceptable price range on a trade, thereby limiting price slippage.

Time Manipulation. Smart contracts sometimes rely on the current time to either be able

to lock a token sale, or unlock funds within a payment channel or a game. In Solidity, the

current timestamp is retrieved via block.timestamp or now. However, this value can be set

by miners and can therefore be manipulated. If a miner holds enough value inside a smart

contract, then the miner could gain an advantage by choosing a suitable timestamp for a

block that he or she mines. Smart contracts should, therefore, avoid relying on timestamps

originating from blocks. Atzei et al. stated that the ponzi smart contract GovernMental is

vulnerable to a timestamp manipulation attack [60]. However, there is no reported incident

of such an attack in the wild.

Short Address. Function arguments are encoded as chunks of 32 bytes within the input

field of a transaction. However, if the length of an encoded argument is shorter than 32

bytes, then EVM will auto-pad extra zeros to the end of the argument such that it has a

length of 32 bytes. Short address attacks have been first described by the authors of the

Golem project [79]. They noticed the bug because of a user transaction failing due to a

considerable amount of tokens being transferred. The ERC20 function transfer(address

to, uint256 value) takes as input an address and an amount of tokens. A user entered an

address that was shorter than 160-bit. Thus, the EVM added trailing zeros to the end of the

transaction input, which resulted in shifting the value to the left by a few zeros and increasing

the number of tokens to be transferred. Attackers can exploit this vulnerability by generating

specially-crafted addresses that end with trailing zeros. Unfortunately, the EVM does not

check the validity of addresses, and thus the only way to prevent this attack is to check the

length of a transaction’s input at the level of the smart contract using msg.data [78].
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3 | Osiris
Hunting for Integer Bugs in Smart Contracts

In this chapter, we focus on detecting integer bugs, a class of vulnerabilities that is particu-

larly difficult to avoid due to certain characteristics of the EVM and the Solidity programming

language. We start by introducing OSIRIS – a tool that combines symbolic execution and

constraint solving in order to accurately find integer bugs in Ethereum smart contracts. More-

over, by employing taint analysis, we are capable of minimizing the number of reported false

positives. We compare OSIRIS to existing tools and find that OSIRIS is capable of detecting

a greater range of bugs, while providing a better specificity of its detection. Afterwards, we

evaluate its performance on a large experimental dataset containing more than 1.2 million

smart contracts. We find integer bugs in roughly 4% of the deployed contracts. Furthermore,

we evaluate OSIRIS against a range of reported CWEs and identify critical vulnerabilities in

a couple of token smart contracts that belong to the top 495 token smart contracts currently

deployed on the Ethereum blockchain. Finally, we investigate causes for integer bugs and

propose ways to protect smart contracts against integer bugs by suggesting modifications

to the EVM and the Solidity compiler.

3.1 Introduction

The capability of executing smart contracts is one of the most compelling features of mod-

ern blockchains. Smart contracts can carry assets worth millions of dollars. Unless explicitly

designed by the developer, smart contracts typically cannot be changed once deployed on

the blockchain. In that respect, it is imperative that smart contracts are correct and contain

no vulnerabilities. Previous research identified a number of vulnerabilities specific to smart

contracts (e.g., reentrancy), some of which led to prominent multi-million dollar fraud cases.

However, little effort has been made in identifying classical software bugs, such as integer

overflows, in smart contracts. Developers usually write their programs using a high-level

programming language. The same applies for Ethereum smart contracts. In Ethereum, de-

velopers typically write their smart contract code in Solidity, which then compiles into EVM

bytecode. Although various experimental versions of high-level languages exist, at the time

of writing, Solidity [133] is the most prevalent language for developing smart contracts. At a
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first glance, the C/JavaScript-like syntax of Solidity looks familiar to developers with experi-

ence in JavaScript or C, and encourages rapid development of smart contracts. However,

the way how smart contracts are executed, as well as their security properties, are funda-

mentally different from traditional programs and may lead to unexpected behavior at runtime.

In combination with a lack of strict static validation and limited support of development tools,

developers are encouraged to tweak their smart contract code until it “just works”. While

this might be a feasible approach for prototyping, it likely results in fatal errors when smart

contracts are deployed as real-world applications on the Ethereum blockchain. In contrast

to traditional programs, once smart contracts have been deployed, they cannot be updated

anymore. Transactions that were never intended by the developer become irreversible.

1 contract SimpleDAO {

2 mapping (address => uint) public credit;

3 function donate(address to) {

4 credit[to] += msg.value;

5 }

6 function queryCredit(address to) returns (uint) {

7 return credit[to];

8 }

9 function withdraw(uint amount) {

10 if (credit[msg.sender] >= amount) {

11 msg.sender.call.value(amount)();

12 credit[msg.sender] -= amount;

13 }

14 }

15 }

Figure 3.1: A simplified version of the DAO smart contract.

With the DAO hack in June 2016 [57], it became clear what consequences emerge when

subtle programming mistakes, in non-updatable smart contracts, hit high-volume applica-

tions. The attacker managed to drain 50 million USD worth of ether from the DAO smart

contract, by exploiting a “reentrancy” bug in conjunction with a “call to the unknown” bug.

Interestingly, Atzei et al. [60] reviewed the DAO hack one year later and realized that the

attack could have been exploited more efficiently, using only two calls to the fallback function

of the attacker’s smart contract. The attack makes use of the previously reported vulnera-

bilities and a new unreported vulnerability: an integer underflow in the function withdraw
at line 12 (see Figure 3.1). The attack works as follows. The attacker first deploys the con-

tract Mallory. Afterwards, the attacker first invokes the function attack to donate 1 wei

(1 wei = 10−18 ether) to the DAO smart contract and then calls the function withdraw on

the DAO smart contract to withdraw the funds (see Figure 3.2). The function withdraw will

check whether the attacker has enough credit, and if yes, it will transfer the funds back to

Mallory. As in the original attack, call will invoke Mallory’s fallback function (see line 11
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1 contract Mallory {
2 SimpleDAO public dao = SimpleDAO(0x818EA...);
3 address owner;
4 bool performAttack = true;
5 function Mallory() {
6 owner = msg.sender;
7 }
8 function attack() {
9 dao.donate.value(1)(this);

10 dao.withdraw(1);
11 }
12 function() { // Fallback function
13 if (performAttack) {
14 performAttack = false;
15 dao.withdraw(1);
16 }
17 }
18 function getJackpot() {
19 dao.withdraw(dao.balance);
20 owner.send(this.balance);
21 }
22 }

Figure 3.2: A more efficient attack than the original DAO attack.

in Figure 3.1), which in turn will call back withdraw. This will interrupt the updating of the

credit at line 12 in Figure 3.1. Hence, the check at line 10 in Figure 3.1 will succeed again,

despite the attacker having already received all the funds it donated. Consequently, the DAO

smart contract will send 1 wei to Mallory for the second time and invoke its fallback function

again. However, this time the fallback function will do nothing and the nested calls will begin

to close. The effect is that Mallory’s credit is updated twice: the first time to zero and the

second time to 2256 − 1 wei, because of an underflow occuring at line 12 in Figure 3.1. Now,

to finalize the attack, the attacker simply calls the function getJackpot, which transfers all

the funds from the DAO smart contract to Mallory.

In this chapter, we investigate the prevalence of such integer bugs in smart contracts.

We introduce OSIRIS, a symbolic execution tool for detecting various types of integer bugs in

Ethereum smart contracts. We use OSIRIS to find vulnerabilities in smart contracts currently

deployed on the Ethereum blockchain. Furthermore, we investigate whether this type of

vulnerability is already being exploited, and point out improvements to the EVM and the

Solidity compiler as a safeguard against these types of bugs. In summary, this chapter

makes the following contributions:

Contributions

• We present OSIRIS, a symbolic execution tool which automatically detects integer

bugs in EVM bytecode. The tool currently covers three different types of integer

bugs: arithmetic bugs, truncation bugs and signedness bugs.
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• We run OSIRIS on all smart contracts that have been deployed on Ethereum until

January 2018 (i.e., 1.2 million contracts), and find that 42,108 of them suffer from at

least one of these three bugs.

• We compare OSIRIS to ZEUS [112] and demonstrate that OSIRIS is capable of de-

tecting more vulnerabilities, with a higher confidence and a considerably lower false

positive rate.

• We analyze 495 Ethereum top token smart contracts and discover major vulnerabil-

ities in two them.

• We identify causes for integer bugs and propose modifications to the EVM and the

Solidity compiler, to protect smart contracts against integer bugs.

3.2 Integer Bugs

A multitude of different scenarios exist where integer operations may result in bugs in smart

contracts [44]. Three main classes of integer bugs exist that may allow a malicious user to

steal ether or modify the execution flow of a smart contract: 1) arithmetic bugs, 2) truncation

bugs, and 3) signedness bugs. All three classes of bugs occur due to the mismatch between

machine arithmetic and arithmetic over unbounded integers.

Table 3.1: Behavior of integer operations in EVM and Solidity. Both x and y are n-bit inte-
gers, where x∞, x∞ denote their ∞-bit mathematical integers. Integer operations marked
with s denote signed operations, whereas integer operations marked u denote unsigned
operations.

Integer
Operation

In-Bounds
Requirement

Out-of-Bound Behavior

EVM [30] Solidity [133]

x+s y x∞ + y∞ ∈ [−2n−1, 2n−1 − 1] modulo 2256 modulo 2n

x+u y x∞ + y∞ ∈ [0, 2n − 1] modulo 2256 modulo 2n

x−s y x∞ − y∞ ∈ [−2n−1, 2n−1 − 1] modulo 2256 modulo 2n

x−u y x∞ − y∞ ∈ [0, 2n − 1] modulo 2256 modulo 2n

x×s y x∞ × y∞ ∈ [−2n−1, 2n−1 − 1] modulo 2256 modulo 2n

x×u y x∞ × y∞ ∈ [0, 2n − 1] modulo 2256 modulo 2n

x /s y y 6= 0 ∧ (x 6= −2n−1 ∨ y 6= −1)
0 if y = 0 0∗ / INVALID† if y = 0

−2255 if x = −2255 ∧ y = −1 −2n−1 if x = −2n−1 ∧ y = −1

x /u y y 6= 0 0 0∗ / INVALID†

x mods y y 6= 0 0 0∗ / INVALID†

x modu y y 6= 0 0 0∗ / INVALID†

∗ Solidity version < 0.4.0; † Solidity version ≥ 0.4.0

3.2.1 Arithmetic Bugs

We consider bugs such as integer overflows and underflows, but also bugs due to division

by zero or modulo zero, as arithmetic bugs. Integer overflows (or underflows) occur when an

42



Osiris

arithmetic expression results in a value that is larger (or smaller) than it can be represented

by the resulting type. The usual behavior in such a case is to silently “wrap around”, e.g., for

a 32-bit type, reduce the value modulo 232. In C/C++ the out-of-bounds behavior of integer

operations is mostly undefined, whereas in Ethereum all behavior is well-defined. Table 3.1

summarizes the different out-of-bound behaviors enforced by the EVM and by Solidity. There

are two noteworthy observations. First, even though all arithmetic operations performed by

the EVM are modulo 2256, the result of a + b in Figure 3.3 will silently wrap around if the

value is larger than 232 − 1. This behavior is enforced by Solidity, not by the EVM. Second,

division (or modulo) by zero results in 0. In other programming languages this would result

in an exception being raised. However, in the EVM and Solidity versions prior to 0.4.0 this

results in 0. Since most developers would expect an exception, starting from version 0.4.0

the Solidity compiler injects an invalid operation to throw an assert-style exception, causing

the EVM to revert all changes.

1 function add(uint32 a, uint32 b) public returns(uint) {

2 return a + b;

3 }

Figure 3.3: An example of an integer overflow bug in Solidity.

3.2.2 Truncation Bugs

Converting a value of one integral type to a narrower integral type that has a shorter range of

values may introduce so-called truncation bugs. Truncation bugs became infamous due to a

64-bit integer value that was converted to a 16-bit integer, which ultimately led to the explo-

sion of an Ariane 5 rocket in 1996. While truncation bugs in smart contracts will (hopefully)

not lead to explosions, they may lead nevertheless to a loss of precision, which ultimately

may result in the loss of funds. For instance, consider the fallback function in Figure 3.4. The

function converts and stores the received amount of ether to an unsigned integer of 32 bits.

The value of msg.value is of type the uint, which is equivalent to the type uint256, thus

it can hold integer values ranging from 0 to 2256 − 1. If a caller transfers an amount larger

than 232 − 1, this value will be truncated and the balance will be lower than the amount that

the caller effectively transmitted.

1 mapping(address => uint32) balance;

2

3 function() public payable {

4 balance[msg.sender] = uint32(msg.value);

5 }

Figure 3.4: An example of a truncation bug in Solidity.
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3.2.3 Signedness Bugs

Lastly, converting a signed integer type to an unsigned type of the same width (or vice versa)

may introduce so-called signedness bugs. This conversion may change a negative value to

a large positive value (or vice versa). For example, consider the function withdrawOnce in

Figure 3.5. This function allows a caller to withdraw only once a maximum amount of 1 ether

from the smart contract’s current balance. However, if the parameter amount is a negative

value, it will pass the bounds check, be converted to a large unsigned integer, and finally

be passed as parameter to the transfer function. As a result, the transfer function will

transfer an amount larger than 1 ether to the caller.

1 function withdrawOnce(int amount) public {

2 if (amount > 1 ether || transferred[msg.sender]) {

3 revert();

4 }

5 msg.sender.transfer(uint(amount));

6 transferred[msg.sender] = true;

7 }

Figure 3.5: An example of a signedness bug in Solidity.

3.3 Methodology

Due to the lack of publicly available source code, our goal is to detect integer bugs at the

bytecode level. However, there are a number of challenges that we need to overcome in

order to be able to detect integer bugs at the bytecode level. In this section, we describe our

approach towards inferring integer types, detecting integer bugs, applying taint analysis to

reduce false positives, and other challenges such as the identification of benign checks for

integer bugs.

3.3.1 Type Inference

Type information such as integer size (e.g., 32 bits for uint32) and signedness (e.g., signed

for int), is essential in order to check whether the result of an integer operation is in-bound

or out-of-bound. However, type information is usually only available at the source code level

and not at the bytecode level. That being said, due to certain code optimizations introduced

by the Solidity compiler during compile time, it is actually possible to infer the size and the

sign of integers at the bytecode level. For example, the compiler introduces for unsigned

integers an AND bitmask in order to “mask off” bits that are not in-bounds with the integer’s

size. A zero masks the bit, whereas a one leaves the bit as it is. As an example, a uint32
will result in an AND using 0xffffffff as its bitmask. Thus, from the AND instruction we

infer that it is an unsigned integer and from the bitmask we infer that its size is 32 bits. For
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signed integers, the compiler introduces a sign extension via the SIGNEXTEND instruction.

A sign extension is the operation of increasing the number of bits of a binary number while

preserving the number’s sign and value. In two’s complement, this is achieved by appending

ones to the most significant side of the number. The number of ones is computed using

the following formula: 256 − 8(x + 1), where x is the first value passed to the SIGNEXTEND
instruction. As an example, consider an int32 which will result in a SIGNEXTEND instruction

using the value 3 as its first parameter. Thus, from the SIGNEXTEND we learn that it is a

signed integer and from the value 3 we infer that its size is 32 bits, by solving the following

equation: 8(3 + 1).

3.3.2 Finding Integer Bugs

We now describe the techniques that we use to find the different types of integer bugs

described in Section 3.2.

Arithmetic Bugs. For each arithmetic instruction that could potentially overflow (i.e., ADD
and MUL) or underflow (i.e., SUB), we emit a constraint that is only satisfied if the in-bounds

requirements are not fulfilled (see Table 3.1). As an example, if we have an addition of two

unsigned integers a and b, we emit a constraint to the solver that checks if a + b > 2n − 1,

where n denotes the largest size of the two values, e.g., in case a is a uint32 and b is

a uint64, n will be 64. Similarly, for signed/unsigned division (i.e., SDIV and DIV) and

signed/unsigned modulo (i.e., SMOD, MOD, ADDMOD and MULMOD), we check whether the in-

bounds requirements are not fulfilled as defined in Table 3.1. As an example, for signed

division we emit a constraint that checks whether the divisor can be zero. If the solver can

satisfy any of the emitted constraints under the current path conditions, we know that an

arithmetic bug such as an overflow or a division by zero is possible.

Truncation Bugs. Solidity truncates signed and unsigned integers using SIGNEXTEND and

AND instructions, respectively. For each instruction, we check whether it is possible for the

input to be outside the range of the output. We do this by adding a constraint to the solver

that is satisfied when the input value is larger than the output value. Moreover, we check

the truncator value against two patterns, in order to detect and ignore truncations that have

been intentionally introduced by Solidity. First, we check whether the binary representation

of the truncator is equivalent to 160 ones. This represents a conversion to the type address.

The second pattern consists in checking whether the binary representation of the truncator

contains any zeros (ignoring leading zeros). This pattern aims at filtering out truncations that

have been introduced by Solidity in order to squeeze multiple variables in one data storage

slot.

Signedness Bugs. We reuse the approach by Molnar et al. [15], and adapt it to detect
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signedness bugs in Ethereum smart contracts. The idea is to reconstruct signed/unsigned

type information on all integral values, from the executed EVM instructions. This information

is present in the source code but not in the bytecode. The algorithm to infer this informa-

tion automatically, works as follows: consider four different types for integer values: “Top”,

“Signed”, “Unsigned”, “Bottom”. “Top” means the value has not been observed in the context

of a signed or unsigned integer; “Signed” means that the value has been used as a signed

integer; “Unsigned” means the value has been used as an unsigned integer; and “Bottom”

means that the value has been used inconsistently as both. These types form a lattice of

four points. Our goal is to find symbolic variables that have the type “Bottom”. Every variable

starts with the type “Top”. During execution we modify the type of a variable, based on the

type constraints of certain instructions. For example, a signed comparison (e.g., SLT, SGT,

etc.) between two variables causes both variables to receive the type "Signed", whereas

an unsigned comparison (e.g., LT, GT, etc.) between two variables causes both variables to

receive the type "Unsigned". Any variable that received both a signed and unsigned type,

receives the type “Bottom”.

3.3.3 Taint Analysis

Taint analysis is a technique that consists in tracking the propagation of data across the

control flow of a program. Taint analysis is extensively being used by numerous integer error

detection tools in order to reduce the number of false positives [16, 14, 21, 26]. It is cer-

tainly possible to detect integer bugs without taint analysis. However, there are cases where

integer bugs might be benign. For example, the Solidity compiler injects during compilation

integer overflows at certain locations in the bytecode in order to optimize it for later execu-

tion. These overflows are intentional and should not be flagged as malicious. Taint analysis

can help to distinguish between benign overflows introduced by the developer or compiler,

and malicious overflows that are exploitable by an attacker. In taint analysis we have the

notion of so-called sources and sinks, with the idea that data originates from a source and

eventually flows into a sink. Taint is introduced by sources, which is subsequently propa-

gated across the state of a program. In the case of the EVM, the program state consists of

the stack, memory and storage. We follow a very precise approach on how taint should be

propagated across stack, memory and storage, by taking the exact semantics of every EVM

instruction into account (see Section 3.4.2). Sources are locations in a program, where data

is originating from an untrusted input that might be controllable by an attacker, for example,

environmental information or function parameters. Sinks represent locations, where data is

used in a sensitive context, for example, security checks or access to storage. Thus, the

attack surface of a smart contract is defined by the EVM instructions that are exposed to an

attacker. In other words, an attacker is limited to certain sources in order to trigger bugs that

are used in sensitive sinks. Therefore, by deliberately ignoring integer bugs that do not origi-
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nate from a source and do not flow into a sink, we can focus exclusively on actual exploitable

integer bugs and gracefully reduce the number of false positives, Figure 3.6 illustrates this

process. We only check for integer bugs where the input data to the integer operation is

tainted. Finally, we only validate an integer bug if it flows into a sink.

Figure 3.6: An integer bug is reported as valid if it originates from a source (i.e., untrusted
input) and flows into a sink (i.e., sensitive location).

Sources. There are a number of EVM instructions, which an attacker could potentially use in

order to introduce data that might lead to the exploitation of integer bugs. These instructions

can be divided in: 1) block information, such as GASLIMIT or TIMESTAMP), 2) environmental

information, such as CALLER or CALLDATALOAD and 3) stack, memory, storage and flow

operations, such as SLOAD or MLOAD. However, many of these instructions have certain

requirements and limitations which makes them almost impossible to be used by attackers in

practice. For example, block information such as the TIMESTAMP can only be introduced by a

miner and the proposed value can only have a divergence of 15 seconds from the timestamp

of the other miners. Another example of a limited instruction is environmental information,

such as the CALLER. An attacker can generate as many accounts as he wants, but he cannot

predict the value of the account address. Thus, generating a desired address is essentially

the same as brute-forcing. Taking all this into account, we selected CALLDATALOAD and

CALLDATACOPY as sources for our taint analysis. The reasons are twofold: first, an attacker

can pick any arbitrary value (he is solely limited by the data type chosen by the developer)

and second, values are introduced at the transaction level and are therefore not only limited

to miners.

Sinks. Whether or not an integer bug is harmful depends on where and how the smart con-

tract uses the affected integer value. Such sensitive locations may originate from 1) stack,

memory, storage and flow operations such as SSTORE or JUMPI and 2) system operations

such as CREATE or CALL. We selected SSTORE, JUMPI, CALL and RETURN as sinks for our

taint analysis, as these opcodes have an impact on path execution, storage and the sending

of ether.
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Figure 3.7: Architecture overview of OSIRIS. The shaded boxes represent its main compo-
nents.

3.3.4 Identifying Benign Integer Bugs

Though taint analysis already reduces significantly the number of false positives, there are

still some cases where an integer bug might originate from an untrusted source and flow into

a sensitive sink, while being a benign integer bug. In order to cope with such cases, we came

up with some heuristic rules that allow us to detect specific cases of benign integer bugs.

For example, instead of immediately reporting an integer overflow or underflow as valid when

we find it to be part of a branch condition, we check whether the predicate is designed to

actually catch the bug. We note that common checks make use of the erroneous result to

catch integer overflows and underflows, for example if ((x + 1) < x) or if (x != (x
* y) / y). We observe that these checks often use the same variable, on the right-hand

side as well as on the left-hand side of the predicate. We also observe that if a predicate

catches an integer bug, it is inclined to return soon or jump to a uniform error handling

function. Hence, we report an integer bug as invalid if we find a predicate to use the same

variable on the right-hand side as well as on the left-hand side, and one successor block of

the branch condition in the control-flow graph ends in a JUMPI, REVERT or ASSERTFAIL.

3.4 OSIRIS

In this section, we provide an overview on the overall design and implementation details of

OSIRIS1.

3.4.1 Design Overview

Figure 3.7 depicts the architecture overview of OSIRIS. OSIRIS can take as input the byte-

code or Solidity source code of a smart contract. The latter is internally compiled to EVM

1Code is publicly available at: https://github.com/christoftorres/Osiris
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bytecode. OSIRIS outputs whether a contract contains any integer bug (e.g., overflow,

underflow, truncation, etc.). OSIRIS consists of three main components: symbolic analy-

sis, taint analysis and integer error detection. The symbolic analysis component constructs

a Control-Flow Graph (CFG) and symbolically executes the different paths of the contract.

The symbolic analysis component passes the result of every executed instruction to the taint

analysis component as well as to the integer error detection component. The taint analysis

component introduces, propagates and checks for taint across stack, memory and storage.

The integer error detection component checks whether an integer bug is possible within the

executed instruction.

3.4.2 Implementation

We implemented OSIRIS on top of OYENTE’s [51] symbolic execution engine. OYENTE faith-

fully simulates 124 out of the 134 EVM bytecode instructions. The non-faithfully simulated

instructions consist of logging operations (i.e., LOG0, LOG1, LOG2, LOG3 and LOG4), oper-

ations regarding the output data from a previous contract call (i.e., RETURNDATASIZE and

RETURNDATACOPY), the operation to create a new contract (i.e., CREATE) and operations to

call other contracts (i.e., DELEGATECALL and STATICCALL). Non-faithfully simulated means

that the engine faithfully simulates the stack, but does not implement the complete logic of

the operation as described in [30]. However, since all of these operations (except the log-

ging operations) are related to contract calls and detecting integer bugs across contract calls

is out of scope, we can safely ignore the non-faithfully simulated instructions by OYENTE.

OSIRIS is written in Python with roughly 1,200 lines of code (not counting OYENTE’s sym-

bolic execution engine). In the following, we briefly describe the implementation of each

main component.

Symbolic Analysis. The symbolic analysis component starts by constructing a CFG from

the bytecode, where nodes in the graph represent so-called basic blocks and edges rep-

resent jumps between individual basic blocks. A basic block is a sequence of instructions

with no jumps going in or out of the middle of the block. OSIRIS can output a visual rep-

resentation of the CFG depicting the individual path conditions and highlighting the basic

blocks that include integer bugs (see Figure 3.8). After constructing the CFG, the symbolic

execution engine starts by executing the entry node of the CFG. The engine consists of

an interpreter loop that gets a basic block as input and symbolically executes every single

instruction within that basic block. The loop continues until all the basic blocks of the CFG

have been executed or a timeout is reached. In the case of a branch, the symbolic execution

engine queries Z3 [11] in order to determine which path is feasible. If both paths are feasi-

ble, then the symbolic execution engine explores both paths in a Depth First Search (DFS)

manner. Loops are terminated once they exceed a globally defined loop limit.
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Figure 3.8: A representation of the control-flow graph that OSIRIS produces for Figure 3.9.
The basic block highlighted in red indicates the location where an overflow may occur.
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1 pragma solidity ^0.4.21;
2
3 contract Test {
4 function overflow(uint value) public pure returns(uint) {
5 return value + 1;
6 }
7 }

Figure 3.9: An example of a smart contract possibly producing an integer overflow at line 5.

Taint Analysis. The taint analysis component is responsible for introducing, propagating

and checking of taint. The symbolic execution engine forwards every executed instruction

to the taint analysis component. Afterwards, the taint analysis component checks whether

the executed instruction is part of the list of defined sources. If that is the case, the taint

analysis component introduces taint by tagging the affected stack, memory or storage lo-

cation. We faithfully introduce and propagate taint across stack, memory and storage. We

implemented the stack using an array structure following LIFO logic. To represent memory

and storage, we simply used a Python dictionary that maps memory and storage addresses

to values. Since the EVM is a stack-based and register-less virtual machine, the operands

of an instruction are always passed via the stack. Our taint propagation method identifies

the operands of each EVM bytecode instruction and propagates the taint according to the

semantics of each instruction as defined in [30]. The taint propagation logic tags accord-

ing to the following principle: if an instruction uses a tainted value to derive another value,

then the derived value becomes tainted as well. By following this principle, we achieve a

more precise taint propagation than, for instance, MYTHRIL [120]. MYTHRIL propagates taint

across the stack, but for certain instructions it does not propagate taint across memory or

storage. For example, the instruction SHA3 computes the Keccak-256 hash over a memory

region that is determined by two operands that are pushed onto the stack: offset and size.

MYTHRIL simply checks if at least one of the two operands is tainted. If so, it taints the result

that is pushed onto the stack. OSIRIS on the other hand, does not check the operands, but

the memory region. OSIRIS only taints the result, if at least one of the values that is stored in

the given memory region is tainted. As a final step, the taint analysis component verifies if a

taint flow occurred, by checking whether the executed instruction is part of the list of defined

sinks and if any of the values it used has been tainted by an integer bug.

Integer Error Detection. In contrast to the taint analysis component, the integer error de-

tection component is not called upon every executed instruction. The integer error detection

component is only called at instructions that may result in integer bugs, such as arithmetic

instructions. For example, integer overflow checks are only performed if the symbolic anal-

ysis component executes an ADD or a MUL instruction, whereas width conversion checks

are only performed if the symbolic analysis component executes an AND or a SIGNEXTEND
instruction. Moreover, calls to the integer error detection component are only performed if
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at least one of the operands of the executed instruction is tainted. If these criteria are met,

then the symbolic execution engine eventually forwards the executed instruction along with

the current path conditions to the integer error detection component. Afterwards, the com-

ponent follows the different techniques as described in Section 3.3.2 in order to detect the

specific integer bugs. For example, in the case of an AND instruction with tainted operands,

the symbolic analysis component will call the integer overflow detection method of the inte-

ger error detection component. The integer overflow detection method first tries to infer the

sign and the width of the two integer operands as described in Section 3.3.1 and then cre-

ates a formula with a constraint that is only feasible if an integer overflow is possible under

the current path conditions. This formula is afterwards passed on to the Z3 solver, which

checks for its feasibility. If the solver finds a solution to the formula, then the integer error

detection component knows that an integer overflow is possible and returns an error back

to the symbolic analysis component. After that, the symbolic analysis component calls the

taint analysis component, which then taints the result of the AND instruction where its source

represents the discovered integer bug.

3.5 Evaluation

In this section, we assess the correctness and effectiveness of OSIRIS via an empirical anal-

ysis and demonstrate its usefulness in detecting real-world vulnerabilities in Ethereum smart

contracts. The empirical analysis is separated in a qualitative and a quantitative analysis.

Via the qualitative analysis we aim to determine the reliability of our tool by comparing our

results with ZEUS [112]. Via the quantitative analysis we intend to demonstrate the scala-

bility of OSIRIS and to measure the overall prevalence of integer bugs contained in smart

contracts that are currently deployed on the Ethereum blockchain.

Experimental Setup. All experiments were conducted on our high-performance comput-

ing cluster using 10 nodes with 960 GB of memory. Every node has 2 Intel Xeon L5640

CPUs with 12 cores each and clocked at 2,26 GHz, running a 64-bit Debian GNU/Linux 8.10

(jessie) with kernel version 3.16.0-4. We used version 4.6.0 of Z3, as our constraint solver

for the symbolic execution engine as well as for our integer error detection module. For the

symbolic execution engine we set a timeout of 100 ms per Z3 request. The global timeout

for the symbolic execution was set to 30 minutes per contract. For our integer error detection

module we set a timeout of 15 seconds per Z3 request. The loop limit, depth limit (for DFS),

and gas limit for the symbolic execution engine was set to 10, 50, and 4 million, respectively.

3.5.1 Empirical Analysis

Qualitative Analysis
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Table 3.2: Number of integer overflows and underflows detected by ZEUS and OSIRIS.

Tool Safe Unsafe No Result Timeouts

ZEUS 233 628 22 14
OSIRIS 711 172 0 35

Dataset. Kalra et al. [112] present a tool called ZEUS, which is capable of detecting integer

overflows and underflows. The authors evaluate their tool using a dataset of 1,524 contracts

that they obtained by periodically scraping explorers such as Etherscan, Etherchain and

EtherCamp over a period of three months [111] on the main and test network. We decided

to reuse this dataset in order to compare our results with ZEUS and to evaluate bugs that

ZEUS does not detect such as division by zero or truncation bugs. However, the published

dataset does not contain bytecode nor source code of the evaluated contracts. We were

able to download the bytecode and source code for 961 out of the 1,524 contracts using

Etherscan. Interestingly, 883 out of the 961 contracts are unique.

Results. We run OSIRIS on the 883 unique contracts and summarize our results for each of

the three types of bugs below.

Arithmetic Bugs. We compare OSIRIS’s capability of detecting integer overflows and under-

flows with ZEUS. Table 3.2 shows that OSIRIS reports most contracts to be safe whereas

ZEUS reports most contracts to be unsafe. “Safe” means that no overflow or underflow has

been detected, whereas “unsafe” means that either an overflow or an underflow has been

detected. The reason for discrepancy between ZEUS and OSIRIS, is that OSIRIS aims at de-

tecting solely overflows and underflows that are exploitable by an attacker in practice, thus

limiting the number of reported bugs, while ZEUS aims to be complete. ZEUS reports no

result for 22 contracts, where no result means either an error occurred or a timeout. ZEUS

encountered less timeouts than OSIRIS, with 14 compared to 35. Table 3.3 depicts the con-

fusion matrix of the evaluation between OSIRIS and ZEUS. OSIRIS reports 5 contracts to be

unsafe, whereas ZEUS reports them to be safe. We manually verified these 5 contracts and

indeed found them to potentially produce integer overflows. Figure 3.10 provides an exam-

ple of a vulnerable function from one of the 5 contracts. The multiplication in the function

Table 3.3: Comparison between ZEUS and OSIRIS.

OSIRIS

Safe Unsafe No Result

Z
E

U
S Safe 228 5 0

Unsafe 471 157 0
No Result 12 10 0
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convertToWei may overflow if amount is large enough. This questions ZEUS claim to be

sound in terms of achieving zero false negatives. In 471 cases, ZEUS reports a contract to

be unsafe while OSIRIS reports it to be safe. We manually analyzed all these cases and

found that in some cases overflows were benign. These benign overflows were induced by

the developer or by the Solidity compiler as part of handling data structures of dynamic size

such as arrays, strings or bytes. The remaining overflows were indeed possible overflows,

that were not caught by OSIRIS. OSIRIS could not catch them because they do not originate

from the sources that we defined. Thus, technically OSIRIS could detect them by adding

more sources, such as loading from storage (i.e., SLOAD). Apart from that, the authors of

ZEUS state in their work that for several cases their tool reported unsafe, although the con-

tract was safe. We encountered 32 of these cases. OSIRIS reports 28 of these cases to be

safe, thus about 88% less than ZEUS. Unfortunately, ZEUS does not check for division by

zero or modulo zero bugs, thus we cannot compare OSIRIS to ZEUS in this regard. OSIRIS

did not find any modulo bugs. However, it did find 26 contracts vulnerable to division by zero

bugs. We confirm the results via manual analysis of the source code and verifying that the

bytecode was compiled using a compiler version lower than 0.4.0.

1 convertToWei(uint amount, string unit) external constant returns (uint) {

2 return amount * etherUnits[unit];

3 }

Figure 3.10: Overflow in EtherUnitConverter ’s convertToWei function, not detected by
ZEUS.

Truncation Bugs. OSIRIS reports 39 contracts carrying truncation bugs. We manually verified

the findings and confirm the 39 bugs to be true positives. To confirm the findings, we checked

the source code for type castings where integers are converted to smaller ranges.

Signedness Bugs. Signedness bugs seem to be less common. OSIRIS only reports 6 con-

tracts to be vulnerable. Also here, we manually verified the findings and confirm the 6 bugs

to be true positives. In order to confirm, we looked for conversions between signed and

unsigned integers in the source code.

Quantitative Analysis

Dataset. We collected the bytecode of 1,207,335 smart contracts by downloading the first

5,000,000 blocks from the public Ethereum blockchain. The timestamps of the collected

smart contracts range from August 7, 2015 04:42:15 AM to January 30, 2018 1:41:33 PM.

Figure 3.11 depicts the number of smart contracts in our dataset with respect to the month of

their deployment on the blockchain. We state a sudden increase of smart contracts, starting

from April 2017. In 2016, 50,980 contracts were deployed on average per month, whereas in
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Figure 3.11: Number of smart contracts in Ethereum has increased abruptly.

2017 this number increased almost tenfold, with 447,306 contracts being deployed on aver-

age per month. Ethereum does not store the source code of smart contracts. To obtain the

source code of a smart contract, users often refer to services such as Etherscan. However,

at the time of writing, Etherscan solely lists the source code of 29,486 smart contracts [95].

Hence, only around 2% of the smart contracts on the Ethereum blockchain have their source

code publicly available. Again, this emphasizes the need for tools such as OSIRIS, that are

capable of analyzing smart contracts directly at the bytecode level. Out of these 1,207,335

contracts, only 50,535 are unique in terms of their bytecode. In other words, 96% of the

smart contract on the Ethereum blockchain are copies.

Performance. On average, OSIRIS takes 75 seconds to analyze a contract, with a median

of 13 seconds and a mode of 1 second. 524 contracts require more than 30 minutes to

analyze. The number of paths explored by OSIRIS ranges from 1 to 1,394 with an average

of 71 per contract and a median of 51. Similar to [51], we observe that the running time

depends almost linearly on the number of explored paths. Finally, during our experiments,

OSIRIS achieved a code coverage of about 88% on average.

Results. Figure 3.12 summarizes our results. OSRIS detects 42,108 contracts which con-

tain at least one of the integer bugs discussed in Section 3.2. Out of these, 14,697 are

distinct (by direct comparison of their bytecode). Figure 3.12 shows that most reported

bugs are arithmetic (e.g., overflows, underflows, etc.) with 41,379 contracts as compared to

2,738 and 405 contracts for truncation and signedness, respectively. Out of these 41,379

contracts, 14,107 are found to be distinct, which account for roughly 28% of the 50,535
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Figure 3.12: Number of vulnerable contracts reported by OSIRIS per integer bug type.

distinct contracts in our dataset. Figure 3.12 also depicts the distribution between reported

arithmetic bugs. We note that overflows are the most common type of bugs with 23,473

vulnerable contracts, where 10,520 are distinct which account for about 21% of the distinct

contracts in our dataset. Immediately after that follow underflows with 11,479 vulnerable

contracts, where 6,103 are distinct which account for about 12% of the distinct contracts

in our dataset. It is interesting to note that even though we only detect 29 distinct contracts

vulnerable to modulo zero, the number of overall vulnerable contracts is 10,335. This implies

that certain contracts are copied excessively and that one bug in such a contract can have

a huge impact on the security of thousands of other contracts on the blockchain.

3.5.2 Detection of Real-World Vulnerabilities

In this section, we examine the effectiveness and usefulness of OSIRIS in detecting and

reporting real-world vulnerabilities. For this purpose, we run OSIRIS on five divulged vulner-

abilities and analyze 495 top Ethereum token smart contracts.

Detecting Known Vulnerabilities

Table 3.4: CVEs examined by OSIRIS.

Token Bug Name CVE Number Disclosed

BEC [94] batchOverflow CVE-2018-10299 22 April 2018

SMT [99] proxyOverflow CVE-2018-10376 25 April 2018

UET [101] transferFlaw CVE-2018-10468 28 April 2018

SCA [100] multiOverflow CVE-2018-10706 10 May 2018

HXG [97] burnOverflow CVE-2018-11239 18 May 2018

A security company called PeckShield [217] disclosed in 2018 five different vulnerabilities

related to ERC-20 token smart contracts, each exploiting an integer overflow (see Table 3.4).

OSIRIS successfully detects all the vulnerabilities listed in Table 3.4. From this small-scale
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1 function transfer(address _to, uint256 _value) returns (bool success) {
2 if (balances[msg.sender] >= _value && _value > 0) {
3 balances[msg.sender] -= _value;
4 balances[_to] += _value;
5 Transfer(msg.sender, _to, _value);
6 return true;
7 } else { return false; }
8 }

Figure 3.13: Overflow at Line 4 in StandardToken’s transfer function.

experiment, we gain confidence that OSIRIS is suitable as a detection tool for vulnerabilities

in real-world smart contracts.

Detecting Unknown Vulnerabilities

In the previous experiment, we analyzed OSIRIS’s capability of effectively detecting known

CVEs. In this experiment, we want to check whether OSIRIS is capable of detecting yet

undiscovered vulnerabilities in Ethereum token smart contracts.

Dataset. Etherscan provides a list of top tokens ranked by their market capitalization [96].

As of June 2018, the list holds a total of 509 different tokens. Out of these, 495 have their

source code publicly available. We downloaded the bytecode as well as the source code for

these 495 smart contracts and analyzed them using OSIRIS.

Results. OSIRIS reported 164 contracts to be vulnerable, where 126 contracts were re-

ported to contain overflows and 54 to contain underflows. We verified the findings via man-

ual inspection of the source code. We found two overflows to be false positives and the rest

of the findings to be indeed true positives. Although all of the reported overflows/underflows

are semantically possible, yet most of them are unlikely to be exploited in practice. The

reasons are twofold: 1) a large number of overflows and underflows may only be triggered

by the owner of the smart contract and 2) a large number of overflows and underflows are

due to implementations either not checking whether the balance of a receiver may overflow

after a transfer (see line 4 in Figure 3.13), or not checking whether the value of the total

supply may underflow before subtracting the amount of tokens to be burned (see line 4 in

Figure 3.14). Nevertheless, two integer underflows reported by OSIRIS, have proven to be of

particular interest. Let us consider the code snippet in Figure 3.15. The code originates from

a token called RemiCoin2. OSIRIS reports that an integer underflow is possible at Line 11.

The issue arises at the check at Line 7 (ironically commented as checking for allowance).

The condition is not checking whether the amount is higher than the allowance, but whether

the allowance is higher or equal to the amount. This is probably due to a simple copy-paste

2https://etherscan.io/token/0x7dc4f41294697a7903c4027f6ac528c5d14cd7eb
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1 function burn(uint256 _value) returns (bool success) {
2 if (balances[msg.sender] < _value) return false;
3 balances[msg.sender] -= _value;
4 _totalSupply -= _value;
5 Burn(msg.sender, _value);
6 return true;
7 }

Figure 3.14: Underflow at Line 4 in function burn.

mistake, as some contracts have the exact same condition but return if the condition is false

rather than when its true. Nevertheless, this subtle mistake has two tremendous conse-

quences: 1) an attacker can transfer all the tokens from any address to another address of

her own and 2) the attacker can provoke an underflow, hereby setting her allowance to any

amount she desires. The same bug is also present in the UET token [101].

1 function transferFrom(address from, address to, uint value) returns (bool success) {

2 //checking account is freeze or not

3 if(frozenAccount[msg.sender]) return false;

4 //checking the from should have enough coins

5 if(balances[from] < value) return false;

6 //checking for allowance

7 if(allowed[from][msg.sender] >= value) return false;

8 //checking for overflows

9 if(balances[to] + value < balances[to]) return false;

10 balances[from] -= value;

11 allowed[from][msg.sender] -= value;

12 balances[to] += value;

13 // Notify anyone listening that this transfer took place

14 Transfer(from, to, value);

15 return true;

16 }

Figure 3.15: RemiCoin’s transferFrom function allows an arbitrary user to steal tokens
from another user.

RemiCoin (RMC) was released in 2017 and has a market capital of 27,520 USD. Its

creators are unknown. At its peak in October 2017, RemiCoin was traded for 1.82 USD,

whereas now its value has dropped to 0.0147 USD. At the time of writing, 348 addresses

hold RemiCoins and a total of 11,497 transfers have been made so far. We checked whether

this bug has been exploited in the wild. We found multiple transactions resulting in integer

underflows3. However, we miss evidence of these being targeted attacks as the victims are

still left with a rather high amount of tokens. Since the bug results in transactions with a

legitimate allowance being refused, we find it quite surprising that this bug has not been
3https://bit.ly/2LHeNf6
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noticed so far. Demonstrating the above attack on the public blockchain is feasible. How-

ever, for ethical reasons we were reluctant to do so. Therefore, we demonstrate the at-

tack on a copy of the smart contract that we deployed on the Ropsten test network4 and

created two test accounts: 1) 0xe9131d546bba6e233b0a19e504179dc61365a77f and 2)

0x7e2a886f1ba5942cc7a3a53fc6fae94868e318a0. We deployed the contract via the first

account, hence making this account the holder of the total supply of tokens. Afterwards, we

performed our attack by calling the transferFrom function and passing as arguments the

address of the first account, the address of the second account and finally the total supply of

tokens5. As a result, the second account now owns all of the tokens and its allowance was

set from zero to a substantial amount.

3.6 Discussion

In this section, we highlight weaknesses in the Ethereum ecosystem that lead to smart

contracts that are prone to integer bugs. Further, we discuss possible remedies to prevent

integer bugs from happening in smart contracts.

3.6.1 Causes for Integer Bugs

Weaknesses of Solidity and EVM. Solidity is a language that has been designed to lower

the bar for developers entering the smart contract ecosystem. In that respect, its syntax

resembles JavaScript, suggesting a dynamically typed scripting language, which in fact, it is

not. Then again, during compilation from Solidity to EVM, the compiler warns about some

type casts which gives the developer the impression of a strictly static type validation – which

again is not true. In fact, Solidity compiles into static EVM bytecode, but the type system of

Solidity does not strictly map into that of EVM. For example, although integers with less than

256 do not exist in EVM, Solidity attempts to give the developer the impression of different

integer types by providing respective type identifiers and generating wrap-around behavior

during compilation. This is a weakness because first, it suggests that developers could

save memory by using shorter integer types and second, it makes the unexpected (integers

wrapping around) the rule. As a second weakness we consider the overflow handling of EVM

itself. Unlike in low-level programming, deliberate integer overflows is a rarely used feature

in application development and we have not come across a single smart contract that uses

integer overflow in a deliberate way. Nevertheless, neither the Solidity compiler nor EVM

treat integer overflows as an exception but rather treat them as a real CPU would do –

with some unexpected deviations such as feasibility of division by zero. Given the fact that

aborting a smart contract will result in a safe rollback of the transaction, treating overflows

4https://bit.ly/2HIKbrx
5https://bit.ly/2l7ITNy
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as an exception and panicking seems to be the safer alternative than silent wrapping.

Unsafe Implementations of Standards. The ERC-20 [32] token standard provides a stan-

dardized Application Programming Interface (API) for tokens within Ethereum smart con-

tracts. The API provides basic functionality in order to transfer tokens, as well as to allow

tokens to be approved such that they may be spent by another on-chain third-party. The

standard describes an interface consisting of a number of functions and events, which a

smart contract must implement in order to be compliant. The main issue with the current

standard, is that it solely provides an interface. Its implementation is left to the developer of

the token. As a consequence, many different implementations exist. Some implementations

might have bugs and might be copied by other developers, with the bugs left unnoticed,

hereby spreading the bugs across multiple contracts. In addition, some tokens introduce

new functionality that is not part of the standard and hereby potentially introduce new bugs.

Negligible and Incorrect Use of Safe Libraries. In Section 3.5.2, we analyzed the safety

of 495 token smart contracts. Token contracts perform a number of arithmetic operations

such as subtracting from balances and adding to balances. However, these operations may

produce integer bugs such as overflows and underflows. Therefore, it is recommended to

perform such operations using a safe arithmetic library such as SafeMath [124]. SafeMath

provides safe arithmetic operations for multiplication, division, addition and subtraction. We

found that 337 out of the 495 contracts include the SafeMath library in their source code.

Thus roughly 32% of the tokens do not make use of a SafeMath library and are therefore

highly susceptible to overflows and underflows. Moreover, OSIRIS found 53 out of the 337

contracts to include bugs related to overflows and underflows. After manual inspection, we

found that even when developers make use of the SafeMath library, this does not necessarily

mean that they use it for every single arithmetic operation performed by their smart contract.

3.6.2 Ways Towards Safe Integer Handling

There are various ways to reduce the likelihood of potentially catastrophic integer bugs in

Ethereum smart contracts. We discuss two different ways in the following:

(1) Handle integer bugs at the application layer. This is the approach taken by libraries

such as SafeMath. This is already a best practice and the only way to avoid overflows

without modifying the Solidity compiler or EVM. However, it comes at the price of ad-

ditional EVM instructions which increases gas costs. Obviously not all developers see

the benefit of using additional libraries for solving apparently simple arithmetic tasks.

(2) Handle integer bugs at the compiler level. Compiler-generated overflow checks remove

the burden from developers but still create additional overhead in terms of gas costs

and runtime performance. Other languages such as Rust go a route that combines
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rigorous static checking with fail-fast at development time and defensive programming

at runtime. This approach could be retrofitted to the Solidity compiler without affecting

the language or the EVM: as we have shown in this chapter, static integer overflow

checking of real-world smart contracts is feasible and could be integrated into the

compiler to identify potential overflow bugs at development time (as it is done by [121]

for C code, for example). By additional annotations such as //@allow_overflow,

developers could explicitly mark variables that should be treated in an unsafe way to

allow deliberate overflows. The drawback is obviously that generated EVM bytecode

may still contain unnecessary and costly runtime checks.

3.7 Related Work

In the past few years, several approaches have been proposed to tackle the challenge of

fully formalizing reasoning about Ethereum smart contracts. Numerous attempts have been

made in modeling the semantics of Ethereum smart contracts in state-of-the-art proof assis-

tants [71, 129, 34, 70, 104, 85]. Bhargavan et al. propose to translate a subset of Solidity

to F* for formal verification [34]. This is similar to the approach initially followed by the So-

lidity compiler of translating Solidity contracts into WhyML to generate formal proofs for the

why3 framework [129]. A number of alternative translations of EVM bytecode to manual

assisted proofs have been proposed, including proofs in Coq [71] and Isabelle/HOL [70, 85].

While these approaches enable formal machine-assisted proofs of various safety and secu-

rity properties of smart contracts, none of them provide means for fully automated analysis.

As a result, a large number of automated tools have been proposed for ensuring correct-

ness and safety of smart contracts [51, 87, 122, 136, 112, 120]. All of these tools are based

on symbolically executing EVM bytecode. Luu et al. were the first to present a symbolic

execution tool called OYENTE [51]. The tool is capable of automatically detecting vulnerabil-

ity patterns such as transaction-ordering dependence, timestamp dependence, mishandled

exceptions and re-entrancy. Nikolic et al. present MAIAN [122], a tool that builds up on

OYENTE and employs inter-procedural symbolic analysis as well as concrete validation in

order to find and validate vulnerabilities on trace properties, such as greedy, prodigal, and

suicidal, in Ethereum smart contracts. Tsankov et al. present SECURIFY [136], a tool that

first symbolically analyses a contract’s dependency graph to extract semantic information

and afterwards checks for violations of safety patterns. To enable extensibility, the tool per-

mits new patterns to be specified via a designated domain-specific language. In any case,

none of the aforementioned tools currently check for integer bugs in smart contracts.

Kalra et al. propose ZEUS [112], a framework for automated verification of smart con-

tracts using abstract interpretation and symbolic model checking, accepting user-provided

policies. ZEUS inserts policy predicates as assert statements in the source code, then

translates everything to an intermediate LLVM representation, and finally invokes its verifier
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to determine assertion violations. The tool is capable of detecting integer overflows and

underflows similar to OSIRIS, with the difference of OSIRIS working at the bytecode level

and ZEUS at the source code level. However, source code is not always available. More-

over, ZEUS requires users to write policies to assert the security of smart contracts, which is

sometimes not that trivial. Mueller et al. present MYTHRIL [120], a security analysis tool for

Ethereum smart contracts. It uses concolic analysis, taint analysis and control flow checking

to detect a variety of security vulnerabilities. MYTHRIL comes very close to the approach

behind OSIRIS, with one of the differences being that OSIRIS uses a more precise and com-

plete taint propagation logic while allowing users to define their own sources and sinks.

Another difference is that MYTHRIL treats every integer as a 256-bit integer and therefore

does not detect an overflow if for example two 32-bit integers are being added, OSIRIS on

the other hand tries to infer the width of every integer in order to precisely tell if an arithmetic

operation can overflow or not. Finally, at the time of writing, MYTHRIL seems to have issues

in distinguishing between benign and malignant overflows and underflows [119]. OSIRIS

effectively distinguishes between benign and malignant integer bugs. Ultimately, both ZEUS

and MYTHRIL, fail to check for truncation bugs and signedness bugs, whereas OSIRIS does

check for these two types of integer bugs.

3.8 Conclusion

We presented the design and implementation of OSIRIS – a symbolic execution tool for de-

tecting integer bugs in Ethereum smart contracts that leverages taint analysis to reduce false

positives. Our comparison with ZEUS [112] shows that ZEUS is not sound and that OSIRIS

reports less false positives than ZEUS. For example, OSIRIS found 5 contracts to be unsafe

whereas as ZEUS reported them to be safe. Our evaluation on over 1.2 million Ethereum

smart contracts indicates that about 4% of the deployed contracts might be vulnerable to at

least one of the three types of integer bugs presented in this chapter. Moreover, OSIRIS dis-

covered integer bugs in two of the top 495 Ethereum token smart contracts. Finally, we also

identified causes for integer bugs and proposed modifications to the EVM and the Solidity

compiler to make smart contracts safer against integer bugs.
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4 | ConFuzzius
Data Dependency-Aware Hybrid Fuzzing for Smart

Contracts

In this chapter, we propose a data dependency-aware hybrid fuzzer for smart contracts. Al-

though a variety of tools for detecting bugs in smart contracts have been proposed, most

of these tools rely on symbolic execution, which may yield false positives due to over-

approximation. Recently, a number of fuzzers have been proposed to detect bugs in smart

contracts. Unfortunately, these tend to be more effective in finding shallow bugs and less

effective in finding bugs that lie deep in the execution, therefore achieving low code cover-

age and many false negatives. An alternative that has proven to achieve good results in

traditional programs is hybrid fuzzing, a combination of symbolic execution and fuzzing. In

this chapter, we study hybrid fuzzing on smart contracts and present CONFUZZIUS, the first

hybrid fuzzer for smart contracts. CONFUZZIUS uses evolutionary fuzzing to exercise shal-

low parts of a smart contract and constraint solving to generate inputs that satisfy complex

conditions that prevent evolutionary fuzzing from exploring deeper parts. Moreover, CON-

FUZZIUS leverages dynamic data dependency analysis to efficiently generate sequences of

transactions that are more likely to result in contract states in which bugs may be hidden.

We evaluate the effectiveness of CONFUZZIUS by comparing it with state-of-the-art symbolic

execution tools and fuzzers for smart contracts. Our evaluation on a curated dataset of 128

contracts and a dataset of 21K real-world contracts shows that our hybrid approach detects

more bugs than state-of-the-art tools (up to 23%) and that it outperforms existing tools in

terms of code coverage (up to 69%). We also demonstrate that data dependency analysis

can boost bug detection up to 18%.

4.1 Introduction

The inception of immutable, blockchain-based smart contracts has shown how to enable

multiple mistrusting parties to trade and interact without relying on a centralized, trusted third

party. The immutability of a contract is crucial. If at least one of the engaging parties were

allowed to modify a digital contract, the contract’s trust would vanish. Unlike traditional legal

contracts, smart contracts do not allow a dispute resolution with a neutral third party. Most
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importantly, smart contracts cannot be nullified — parties cannot revoke any deployed smart

contract, even if its code figures undeniable software bugs. Therefore, this very immutability

comes at a price: smart contracts must be tested extensively before exposing them and their

users to significant monetary value. In the past, simple vulnerabilities (e.g., missing access

control [80]) as well as more subtle vulnerabilities (e.g., reentrancy [57]) have led to losses

exceeding many tens of millions of USD.

We can verify the behavior of a smart contract using four different approaches. (i) Unit

testing: requires manual effort to cover the different sections of the code, but it unveils only

a limited number of bugs within the test cases. (ii) Symbolic execution: analyzes contract

behavior abstractly but performs slowly on complex contracts (i.e., path explosion problem).

(iii) Static analysis: does not execute code and over-approximates the contract behavior —

it can capture the entire contract execution surface, but it exhibits false positives that must

be manually inspected. Finally, (iv) fuzzing: tests a contract reasonably fast by automatically

generating test cases, with a generally lower false positive rate than static analysis. Fuzzing,

however, can suffer from low code coverage, especially when inputs are fuzzed at random

and hence does not overcome simple input sanity verification.

When fuzzing smart contracts, we face the following three challenges: 1) input gener-

ation, 2) stateful exploration, and 3) environmental dependencies. When it comes to input

generation, the input space can be significantly broad. However, the solution might be lim-

ited to a specific point. For example, if a condition requires an input value of type uint256 to

equate to 42, then the probability of randomly generating 42 as input is tremendously small.

Moreover, smart contracts are stateful applications, i.e., the execution may depend on a

state that is only achievable following a specific sequence of inputs. Finally, the runtime en-

vironment of smart contracts exposes additional inputs related to the underlying blockchain

protocol, such as the current block timestamp or other contracts deployed on the blockchain.

As a result, the execution flow of smart contracts may also depend on environmental infor-

mation besides transactional information.

We solve these three challenges as follows. In tandem with the fuzzing procedure, we

employ symbolic taint analysis to generate path constraints on tainted inputs. Once we

detect that the fuzzer is not progressing, we activate a constraint solver to solve the con-

straint in question. We collect this solution within a mutation pool, from which the fuzzer can

draw to move past the challenging contract condition. Existing hybrid fuzzing approaches,

e.g., Driller [58], cease the fuzzer when they are stuck and switch to concolic execution to

get past the complex condition. Then, they restart the fuzzer once passed the condition.

Our approach keeps the fuzzer running and only uses constraint solving to generate inputs

on the fly, which will eventually be picked by the fuzzer via the mutation pools. Moreover,

we perform path termination analysis to purge irrelevant inputs from the mutation pools. To

deal with the statefulness of smart contracts, we chose to take advantage of the selection

and crossover operators of genetic algorithms. Genetic algorithms follow three main steps:
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selection, crossover, and mutation. The selection operator’s task is to choose two individu-

als from the population, which are afterwards combined by the crossover operator to create

two new individuals. The challenge here is to generate meaningful combinations of inputs.

We leverage data dependencies between individuals to guide our selection and crossover

operators in selecting/combining two individuals only if they follow a read-after-write (RAW)

data dependency across state variables. Finally, to solve the third and last challenge, we

instrument the execution environment (i.e., the Ethereum Virtual Machine) to fuzz environ-

mental information and model the input to a contract as a tuple consisting of transactional

and environmental data. In summary, this chapter makes the following contributions:

Contributions

• We propose CONFUZZIUS, the first design and implementation of a hybrid fuzzer for

smart contracts.

• We present a novel method to efficiently create meaningful sequences of inputs at

runtime by leveraging dynamic data dependencies between state variables.

• We evaluate CONFUZZIUS on a set of 128 curated smart contracts as well as 21K

real-world smart contracts, and demonstrate that our approach not only detects

more vulnerabilities (up to 23%), but also achieves more code coverage (up to 69%)

than existing symbolic execution tools and fuzzers.

4.2 Methodology

This section discusses the three main challenges of fuzzing smart contracts via a motivating

example and presents our solution towards solving these three challenges.

4.2.1 Motivating Example

Suppose a user participated in an Initial Coin Offering (ICO) on the blockchain and now

owns a number of tokens. Now let us assume the user wants to sell a certain amount of

their tokens at a variable price that increases 1 ether per day. Figure 4.1 shows a possible

implementation of an Ethereum smart contract using Solidity. The smart contract allows

a user to sell its tokens to an arbitrary user on the Ethereum blockchain. The contract

sells the tokens to the first buyer willing to pay 42 ether, plus 1 ether for each day since

the start of the sale. Moreover, the token sale should last no longer than 30 days. In this

example, the smart contract acts as a simple mediator that automatically settles the trade

between the user owning the tokens and the user willing to buy the tokens without both users

requiring to know or trust each other. Smart contract based ICOs often follow a standard

that is known as ERC-20 [32]. This standard provides an interface that standardizes function

65



4.2. Methodology

1 interface Token {
2 function transferFrom(address sender, address recipient, uint256 amount) external

returns (bool);
3 function allowance(address owner, address spender) external view returns (uint256);
4 }
5
6 contract TokenSale {
7 uint256 start = now;
8 uint256 end = now + 30 days;
9 address wallet = 0xcafebabe...;

10 Token token = Token(0x12345678...);
11 address owner;
12 bool sold;
13
14 function Tokensale() public {
15 owner = msg.sender;
16 }
17
18 function buy() public payable {
19 require(now < end);
20 require(msg.value == 42 ether + (now - start) / 60 / 60 / 24 * 1 ether);
21 require(token.transferFrom(this, msg.sender, token.allowance(wallet, this)));
22 sold = true;
23 }
24
25 function withdraw() public {
26 require(msg.sender == owner);
27 require(now >= end);
28 require(sold);
29 owner.transfer(address(this).balance);
30 }
31 }

Figure 4.1: Example of a vulnerable token sale smart contract. Lines highlighted in red
represent complex conditions, whereas lines highlighted in gray illustrate read-after-write
data dependencies and finally, lines highlighted in blue depict environmental dependencies.

names, parameters, and return values. For example, the standard includes a function called

transferFrom, which allows a user to transfer a limited amount of tokens to an arbitrary

user on behalf of the owning user. Another example is the function allowance, which

returns the number of tokens that a user can spend on behalf of the owning user. The

smart contract in Figure 4.1 works as follows. An arbitrary user can call the function buy to

purchase the tokens for 42 ether and a fee of 1 ether for each day that has passed since the

launch of the token sale. The contract will automatically transfer the tokens by calling the

function transferFrom on the ICO’s contract. After the purchase, the smart contract owner

can call the function withdraw to retrieve the 42 ether and the fee of the purchase.

The contract contains two vulnerabilities, one known as block dependency and another

one known as leaking ether. The latter is enabled via a bug in the function Tokensale (see

line 14 in Figure 4.1). Prior to Solidity version 0.4.22, the only way of defining a constructor

was to create a function with the same name as the contract. The function Tokensale is
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supposed to be the constructor of the contract TokenSale. However, due to a typo, the

names do not match, and the compiler does not consider the function as the contract’s con-

structor. As a result, the function Tokensale is considered a public function that any user

on the blockchain can call. This type of programming mistake has led to multiple attacks

in the past [60]. The first vulnerability, namely block dependency, occurs when the transfer

of ether depends on block information, such as the timestamp (see line 27 in Figure 4.1).

A malicious miner can alter the timestamp of blocks that it mines. Although miners cannot

set the timestamp smaller than the previous one, nor can they set the timestamp too far

ahead in the future, developers should still refrain from writing contracts where the trans-

fer of ether depends on block information. The second vulnerability, namely leaking ether,

occurs whenever a contract allows an arbitrary user to transfer ether, despite having never

transferred ether to the contract before. The following sequence of transactions triggers both

vulnerabilities:

• t0: A non-malicious user calls the function buy with a value equals to 42 ether + fee;

• t1: An attacker calls the function Tokensale;

• t2: The same attacker calls the function withdraw after 30 days.

When running the above example using ILF [160] (a state-of-the-art smart contract fuzzer),

it is not capable of finding the two vulnerabilities even after 1 hour. Inspecting the code cov-

erage reveals that ILF achieves only 39%. For comparison, CONFUZZIUS achieves roughly

95% code coverage and correctly identifies the two vulnerabilities in less than 10 seconds.

4.2.2 Input Generation

Generating meaningful inputs is crucial for automated software testing. Fuzzers generate

inputs in order to execute not-yet-executed code. This generation can be completely random

(black-box fuzzers) or driven by runtime information (grey-box fuzzers). In both cases, the

primary approach is to mutate previous inputs to generate new inputs to test. Thus, finding

the right heuristics is of fundamental importance to efficiently explore the target input space

and, eventually, find latent bugs in the code. However, real-world programs tend to contain

conditions that are hard to trigger. These complex conditions need to be addressed by

fuzzers in order to execute as much code as possible. Line 20 in Figure 4.1 provides an

example of such a complex condition. Function buy requires the transaction value to be

equal to 42 ether along with a variable fee that depends on the number of days that have

past since the launch of the token sale. Figure 4.2 illustrates the Control-Flow Graph (CFG)

of the function buy along with its branching conditions. The complex condition is highlighted

in red in the CFG. A fuzzer following a traditional random strategy will fail to get past this

condition since it will generate the desired value only once every 2256 trials.
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require(now < end);

require(msg.value == 42 ether + 
(now-start)/60/60/24*1 ether);

REVERT

require(token.transferFrom(
this,    
msg.sender,        
token.allowance(wallet, this)

));
sold = true;

REVERT

REVERTSTOP

now < end now >= end

msg.value == 42 ether + 
(now-start)/60/60/24*1 ether

msg.value != 42 ether + 
(now-start)/60/60/24*1 ether

token.transferFrom(…) == True token.transferFrom(…) == False

Figure 4.2: CFG of the function buy(). Complex path conditions are highlighted in red.

Existing smart contract fuzzers such as HARVEY [171] instrument the code and compute

cost metrics for every branch to mutate the inputs. Our approach applies constraint solving

to generate values for complex conditions on-demand. However, our fuzzer does not directly

propagate these values, but instead stores them in so-called mutation pools. Mutation pools

manage a set of values that the fuzzer can use to get past complex conditions. Every func-

tion has its own set of mutation pools, namely a mutation pool per function argument, trans-

action argument (e.g., transaction value), and environmental argument (e.g., block times-

tamp). Initially, all the pools are empty, and the fuzzer uses randomly generated values

to feed the target functions. Once the fuzzer cannot discover new paths, it activates the

constraint solver to generate new values. We use symbolic taint analysis to create the ex-

pressions required by the constraint solver to generate new values. We introduce taint in the

form of a symbolic value whenever we come across an input during execution. This symbolic

value is then propagated throughout the program execution, thereby forming step-by-step a

symbolic expression that reflects the constraints on the particular input. Solving these ex-

pressions will result in new values that will be added to the mutation pools. The fuzzer will

then pick these values from the mutation pools and generate new inputs that execute new

paths. In the example provided in Figure 4.1, CONFUZZIUS will realize at a certain point

that the code coverage is not increasing. It will then activate the constraint solver, which will

output the value 42 together with the current fee depending on the current block timestamp.

The value will then be added to the mutation pool that manages the transaction value for

the function buy. The value will be picked up from the mutation pool by CONFUZZIUS in the

next fuzzing round, and the execution of the transaction will evaluate the condition at line 20

to True. This will result in CONFUZZIUS getting past the missing branch and executing new

lines of code.
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Tokensale()

1) Write: owner1) Read: end
2) Write: sold
…

1) Read: owner
2) Read: sold
…

buy() withdraw()

Figure 4.3: A dependency graph illustrating read-after-write (RAW) data dependencies con-
tained in Figure 4.1. A node represents a smart contract function while an edge indicates a
RAW dependency between two functions.

4.2.3 Stateful Exploration

Due to the transactional nature of blockchains, smart contract fuzzers must consider that

each transaction may have a different output depending on the contract’s current state,

i.e., all the previously executed transactions. Combining multiple transactions together is

necessary to generate states that trigger the execution of new branches. Ethereum smart

contracts have, besides a volatile memory model, also a persistent memory model called

storage, which allows them to keep state across transactions. For example, the global vari-

ables (i.e., state variables) end, wallet, token, owner, and sold in Figure 4.1 are storage

variables and their values might change across transactions. Let us consider the two vulner-

abilities mentioned earlier. An attacker will only be able to extract the funds via the function

withdraw, if the variable owner contains the address of the attacker and the variable sold
is set to True. However, this is only possible if the functions buy and Tokensale are called

(i.e., executed) before the function withdraw. Thus only a particular combination of the

three functions will trigger the two vulnerabilities. Although this example may seem straight-

forward, automatically finding the right combination of function calls within contracts with

many functions can become challenging as the number of possible combinations grows ex-

ponentially. We base our solution on a simple observation: a transaction influences the

output of a subsequent set of transactions if and only if it modifies a storage variable that

one of the subsequent transactions will use. This property is a known data dependency

called read-after-write (RAW) [19]. As a first step, CONFUZZIUS tracks during execution all

the storage reads and writes performed by a transaction along with their storage locations.

Afterwards, CONFUZZIUS combines transactions such that transaction a is executed after

transaction b only if a reads from the same storage location where b writes to. CONFUZZIUS

always executes the combination of transactions on a clean state of the contract. Thus,

a transaction sequence contains only transactions that change the state used by one of

the subsequent transactions within the same sequence by construction. In the example of

Figure 4.1, CONFUZZIUS will progressively learn that:
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• function buy reads storage variable end and writes to storage variable sold;

• function Tokensale writes to storage variable owner;

• function withdraw reads from storage variable owner and storage variable sold.

By leveraging the information learned above and combining transactions based on RAW

dependencies, CONFUZZIUS will eventually create the following transaction sequence:

buy() → Tokensale() → withdraw()

The directed graph in Figure 4.3 depicts all RAW dependencies and possible combinations.

The graph shows that the functions buy and Tokensale must be executed before the func-

tion withdraw, but that the order between the two can be arbitrary.

4.2.4 Environmental Dependencies

The execution of a smart contract does not only depend on the transaction arguments or the

contract’s current state. A smart contract’s control-flow can also depend on input originating

from the execution environment (e.g., a block’s timestamp). Let us consider the contract in

Figure 4.1. Even though the function withdraw has no input argument, the transfer of the

balance is bound to some requirements. The requirement at line 27 is only satisfied if the

transaction that triggered the function call is part of a block created 30 days after the con-

tract’s deployment. Thus, the condition is bound to the mining mechanism of the Ethereum

blockchain. Miners are responsible for aggregating transactions from blockchain users into

blocks and to broadcast them to other miners upon validation. When executing the transac-

tions included in a block, the EVM accesses the block information contained therein. Block

information includes the block hash, the miner’s address, the block timestamp, the block

number, the block difficulty, and the block gas limit. We solve this challenge by modeling

this information as a fuzz-able input. These inputs follow the same fuzzing procedure as

transaction inputs. We modified the EVM in order to be able to inject the fuzzed block infor-

mation during the execution of the smart contract. However, modeling block information as

fuzz-able inputs is not enough. The EVM also permits calls to other contracts deployed on

the blockchain. Thus the control-flow of a smart contract may depend on the result of calling

other contracts. Consider line 28 in Figure 4.1, where the state variable sold is required to

be set to True in order for the attacker to be able to retrieve the funds. The variable sold
can only be set to True if the two contract calls at line 21 (e.g., token.allowance and

token.transferFrom) are successful. Similarly, we solve this challenge by instrumenting

calls to contracts and modeling return values as fuzz-able inputs. Our modified EVM then

injects the fuzzed return values at runtime.
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Initial Population

Instrumented EVM

Constraint Solving

Termination Analysis

Data Dependency Analysis

Code Coverage Evaluation

Vulnerability Detection

Symbolic Taint Analysis

Evolutionary Fuzzing Engine Execution Trace Analyzer

Mutation Pools
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Execution TraceIndividual

Read Value

Remove Value

Report

Smart Contract

Blockchain State
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Code Coverage
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Selection
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Figure 4.4: Overview of CONFUZZIUS’s hybrid fuzzing architecture. The shadowed boxes
represent the three main modules and form together a feedback loop.

4.3 CONFUZZIUS

In this section, we provide details on the overall design and implementation of CONFUZZIUS.

4.3.1 Architecture Overview

CONFUZZIUS’s architecture consists of three main modules: the evolutionary fuzzing engine,

the instrumented EVM, and the execution trace analyzer. Figure 4.4 provides a high-level

overview of CONFUZZIUS’s architecture and depicts its individual components. CONFUZZIUS

has been implemented in Python with roughly 6,000 lines of code1. CONFUZZIUS takes as

input the source code of a smart contract and a blockchain state. The latter consists of a list

of transactions and is optional. The blockchain state is useful for fuzzing already deployed

smart contracts or contracts that need to be initialized with a specific state. CONFUZZIUS

begins by compiling the smart contract to obtain the Application Binary Interface (ABI) and

the EVM runtime bytecode. Afterwards, the evolutionary fuzzing engine starts by generating

individuals for the initial population, based on the smart contract’s ABI. After that, the engine

follows a standard genetic algorithm (i.e., selection, crossover, and mutation) and propa-

gates the newly generated individuals to the instrumented EVM. The instrumented EVM

executes these individuals and forwards the resulting execution traces to the execution trace

analyzer. Next, the execution trace analyzer performs several analyses, e.g., symbolic taint

analysis, data dependency analysis, etc. The execution trace analyzer is also responsible

for triggering the constraint solver, running the vulnerability detectors, updating the mutation

pools, and feeding information related to code coverage and data dependencies back to the

evolutionary fuzzing engine. This process is repeated until at least one of the two termination

conditions is met: a given number of populations has been generated, or a given amount

of time has passed. Finally, CONFUZZIUS outputs a report containing information about the
1Source code is available at https://github.com/christoftorres/ConFuzzius.

71

https://github.com/christoftorres/ConFuzzius


4.3. CONFUZZIUS

0x7d6cdd25 “hello” 42

Function Selector String Uint32

Timestamp 1533907326

Population

Input

Individual

Environment

Transaction

Block Number

From

Value

Gas Limit

9867543

0xdead…beef

100

…Data

3000000

Call Result …

Return Data Size …

External Code Size …

0x1234…5678 32

Contract Address Uint256

Figure 4.5: Encoding of our population and its individuals. The shadowed boxes depict
immutable values, whereas the non-shadowed boxes depict mutable ones.

code coverage and the vulnerabilities that it detected.

4.3.2 Evolutionary Fuzzing Engine

In the following, we provide details on the encoding, initialization, fitness evaluation, selec-

tion, combination, and mutation of individuals.

Encoding Individuals. One of the most important decisions to make while implementing an

evolutionary fuzzer is deciding on the representation of individuals. Improper encoding of in-

dividuals can lead to poor performance [3]. Figure 4.5 illustrates our encoding of individuals.

Vulnerabilities are usually triggered either by sending a single transaction or a sequence of

transactions to a smart contract. However, transactions alone are not enough to trigger all

vulnerabilities (see Section 4.2.4). Specific vulnerabilities depend on the execution environ-

ment to be in a specific state. Thus, our encoding represents an individual as a sequence of

inputs. Every input consists of an environment and a transaction. Both are encoded as key-

value mappings. An environment includes block information such as the current timestamp

and block number, but it also includes call return values, data sizes, and external code sizes.

The latter three are encoded as an array of mappings, where a contract address maps to a

mutable value (e.g., a call result or a size). A transaction includes the address of the sending

account (from), the transaction amount (value), the maximum amount of gas for the contract

to execute (gas limit), and the input data for the contract to execute (data). The input data

is represented as an array of values where the first element is always the function selector,

and the remaining elements represent the function arguments. The function selector is com-

puted using the ABI and by extracting the first four bytes of the Keccak (SHA-3) hash of the

function signature. As an example, the function test(string a, uint b), has the string

test(string,uint) as its function signature, which after hashing and extracting the first

four bytes, results in 0x7d6cdd25 being its function selector.
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Initial Population. The population is initialized with N individuals, each of which initially

contains only a single input (i.e., a single transaction and environment). The function selec-

tor to be included in the transaction is selected in a round-robin fashion. Function arguments

are generated based on their type, which we obtain through the ABI. Depending on the type

and size (i.e., fixed or non-fixed) of the argument, we apply different strategies to gener-

ate valid arguments for each function. For example, if the argument type is a fixed size

uint32, then we randomly choose a value either from the valid input domain (e.g., between

0 and 232 − 1) or from a set of inputs that trigger edge cases of the valid input domain

(e.g., 0, 1, 4294967295). The population is reinitialized whenever there has been no increase

in code coverage for the past k generations. This soft reboot introduces back diversity into

the population and procrastinates premature convergence when the population has turned

homogeneous.

Fitness Evaluation. The fitness evaluation of individuals plays a crucial role in evolutionary

fuzzing. The computation of the fitness function is done repeatedly and must be therefore

sufficiently fast. A slow computation can adversely make the fuzzing exceptionally slow.

The fitness function is supposed to represent the landscape of the problem. In general,

evolutionary fuzzers aim to achieve complete coverage of the code. While obtaining full code

coverage does not necessarily mean that all vulnerabilities will be found, it is undoubtedly

true that no vulnerabilities will be found in code that has not been explored. Our fitness

function is based on branch coverage (a form of code coverage) and data dependencies.

We define our fitness function for an individual i as follows:

fit(i) = fitbranch(i) + fitRAW (i) (4.1)

The fitness fitbranch is computed by counting the number of branches that remain unexplored

by the individual. We keep track of all the branches that have been executed so far by all

the individuals. Then, we iterate through the execution trace of the individual and analyze

every conditional jump instruction (i.e., JUMPI instruction). A conditional jump always has

two destinations, one for the True branch and one for the False branch. We obtain the jump

destination of the True branch by extracting it from the stack and the jump destination of the

False branch by incrementing the program counter by one. We increase the individual’s

fitness value fitbranch by one for every jump destination that is not in our list of executed

branches. This approach aims to prioritize individuals that require more exploration since

these individuals will allow us to explore new parts of the contract. However, this metric

alone is not enough. We are also interested in preserving individuals that allow us to create

useful sequences of transactions (e.g., sequences with RAW dependencies), even though

these individuals might have been already explored extensively. Therefore, we compute
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the fitness fitRAW , which takes this into account by using the data dependencies detected

by our execution trace analyzer. We start with a fitRAW of zero and increment fitRAW by

one for every write to storage that the individual has performed during execution. The final

fitness value of an individual is then defined by the the sum of the two fitness values fitbranch

and fitRAW . The combination of these two values allows us to drive the genetic algorithm

to explore unexplored code while preserving individuals that are useful to explore deeper

states of the smart contract.

Selection. The process of choosing two individuals for the crossover step is called selection.

Literature proposes several selection operators [20]. We choose linear ranking selection as

our selection operator since it considers the population as a whole during selection and

not just a subset as it is, for example, the case in tournament selection. In linear ranking

selection, individuals with a high fitness value are ranked higher than those with a low fitness

value. In other words, an individual is selected with a probability that is linearly proportional

to the individual’s rank in the population. Hence, the worst individual has a rank of 1, the

second-worst a rank of 2, the best-performing individual has a rank of N , where N is the

size of the population. All individuals have a chance of being selected, although the higher-

ranked individuals will be slightly preferred. However, traditional linear ranking selection does

not consider data dependencies between individuals. Therefore, we propose a modified

version of the linear ranking selection strategy, where the first individual is selected based

on linear ranking selection, however, the second individual is selected based on having a

RAW dependency with the first individual following a round-robin fashion. In case there is

no individual that has a RAW dependency with the first individual, we fallback to traditional

linear ranking selection to select the second individual.

Crossover. The crossover operator creates two new individuals by recombining the input

sequences of two existing individuals. Instead of randomly combining two individuals, we

combine an individual after another only if the first performs a write to a storage location

from which the second performs a read (RAW dependency). There are only two possible

combinations in our case: individual a appended to individual b, or vice versa, individual

b appended to individual a. If a combination yields a RAW dependency, then we combine

both individuals by first selecting the individual whose input sequence performs the write

and then append the individual whose input sequence performs the read. As opposed to

traditional crossover, we are concatenating individuals rather than splitting them apart and

swapping their input sequences. This preserves the RAW dependencies within the individ-

uals themselves and creates individuals with new RAW dependencies. If there is no RAW

dependency between two individuals, then we simply return one of the two individuals un-

modified. However, it should be noted that individuals are not always combined even though

they might have a RAW dependency. Individuals are combined based on a given crossover
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probability pc. Moreover, to prevent individuals from growing indefinitely large, we check be-

fore combining if the sum of their lengths exceeds the maximum size of l, and only combine

them if their lengths are lower or equal to l. On the one hand, a small l will produce shorter

combinations of individuals, which will result in shorter execution times but also in finding

less bugs. On the other hand, a larger l will result in longer combinations of individuals,

which will result in finding more bugs that lay deeper in the execution, but also in longer

execution times. Therefore, a trade-off between completeness and performance must be

taken when selecting an appropriate value for l.

Mutation. The mutation operator randomly modifies parts of a single individual in order to

create a new individual. It introduces diversity in the population. Our mutation operator works

by iterating through the sequence of inputs of an individual and mutating every environmental

and transactional value based on a shared mutation probability pm. A value can be mutated

in two ways: replacing the original value with a random one or replacing the original value

with a value from a mutation pool. Mutation pools act as a form of short-term memory.

They allow the fuzzer to reuse values that have been previously observed or learned during

past executions. There are in total nine different mutation pools, one per transactional and

environmental value type. Hence, our fuzzer has a mutation pool for senders, amounts,

gas limits, function arguments, timestamps, block numbers, call results, call data sizes, and

external code sizes. All mutation pools are implemented to map a function selector to a

circular buffer, except for the mutation pool on function arguments. The implementation is

similar, except that we do not directly map the function selector to a circular buffer but to

another mapping that maps to an argument index and then to a circular buffer. Thus, the

pool for function arguments first maps to a function selector, then to an argument index, and

then to a circular buffer. This is because functions can have more than just one argument,

and we want to keep track of interesting values for every argument separately. Circular

buffers help us ensure that the values contained therein are rotated in a round-robin fashion

while old values are overwritten by newer ones (i.e., mimicking short-term memory). Our

buffers can hold up to 10 values by default. All mutation pools are initially empty, except

for the mutation pool tracking transaction amounts, which is initialized with the values 0 and

1. When mutating a transactional or environmental value, we first check if the associated

mutation pool is empty. If the pool is empty, we inject a randomly generated value based on

the type of information extracted from the ABI. Otherwise, we inject the current value at the

head of the circular buffer and rotate it.

4.3.3 Instrumented EVM

The EVM is responsible for executing the transactions generated by the individuals on the

runtime bytecode of the contract that is under test. Its efficiency has a significant impact

on the overall performance of the fuzzer. Hence, the EVM must achieve a high processing
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rate of transactions. Every official Ethereum client implementation allows users to deploy

smart contracts locally and send transactions to them. However, all of these clients require

transactions to be encoded using the Recursive Length Prefix (RLP) format in order to be

mined. We realized that the actual EVM execution time is negligible compared to the effort

of encoding and decoding a transaction to and from the RLP format. Therefore, we decided

to reuse an official Python implementation of the EVM [152] and incorporate it within our

fuzzer. This removes the burden of mining blocks as well as encoding transactions and

thus significantly speeds up the execution. Moreover, we slightly modified the EVM in order

to be able to retrieve the execution trace of a transaction. An execution trace consists of

an array, where every element contains the name of the executed instruction, the program

counter, the execution stack, the call-stack depth, and a flag stating if an internal error has

occurred during execution. The EVM itself is by default stateless and uses the blockchain to

preserve states. However, since we are not interested in the internal persistence mechanism

of the Ethereum blockchain, we decided to implement a simple storage emulator that is

used by our EVM to persist the state changes that are performed during execution. All state

changes are kept in memory to further improve the speed of execution. Besides persisting

the state of smart contract executions, the storage emulator also allows us to inject custom

environmental information such as the block timestamp or modify the result of a call. Finally,

the storage emulator also enables us to create snapshots of the current state of the EVM.

This allows us to quickly reset the state of the EVM to an initial state without having to

redeploy the smart contract every time from scratch when executing the transactions of an

individual.

4.3.4 Execution Trace Analyzer

The execution trace analyzer receives the execution trace from the instrumented EVM and

then performs a number of analyses, such as code coverage evaluation, data dependency

analysis, symbolic taint analysis, vulnerability detection, constraint solving, and termination

analysis. Moreover, the execution trace analyzer also manages the values stored within

the mutation pools and is responsible for providing code coverage information and data

dependencies to the evolutionary fuzzing engine. Finally, it is also in charge of generating a

report containing statistics about code coverage and vulnerabilities.

Code Coverage Evaluation. Code coverage is necessary for computing the fitness of an

individual and detecting when the evolutionary fuzzing engine should activate constraint

solving or reset the population. The code coverage is computed by counting the number of

unique program counter values within the execution trace.

Data Dependency Analysis. Fitness evaluation, selection, and crossover require informa-

76



ConFuzzius

Table 4.1: Storage Layout of State Variables in Solidity.

Variable Type Declaration Access Storage Location

Primitive T v v s(v)
Struct struct v { T a } v.a s(v) + s(a)
Fixed Array T[10] v v[n] s(v) + n · |T|
Dynamic Array T[] v v[n] h(s(v)) + n · |T|

v.length s(v)
Mapping mapping(T1 => T2) v v[k] h(k || s(v))

tion about data dependencies. The data dependency analysis tracks all the state variables,

read from and written to, throughout the execution of the fuzzer. In contrast to existing ap-

proaches [173], which extract data dependencies via static analysis, our fuzzer retrieves

access patterns to state variables at runtime (i.e., dynamically) by iterating through the ex-

ecution trace and scouting for SLOAD and SSTORE instructions. The advantage of static

analysis is that it is fast compared to dynamic analysis. However, the disadvantage is that it

requires source code to precisely track data flows across variables. While data flows could

be extracted from bytecode through static analysis, it would only work for simple variable

types such as primitives and not for complex types such as mappings or arrays. Dynamic

analysis on the other hand, allows us to track variables with complex types, even without

source code. The disadvantage is the additional runtime overhead and implementational

effort. The instruction SLOAD denotes a read from storage, whereas an SSTORE instruction

denotes a write to storage. Table 4.1 depicts how Solidity computes the storage location for

different types of state variables [190]. The function s() determines the so-called storage slot

of a particular variable v, whereas the function h() computes a Keccak-256 hash. Statically-

sized variables such as primitives, structs, and fixed-size arrays, are laid out contiguously

in storage starting from position 0. Solidity uses a Keccak-256 hash computation to define

the stored data’s starting position due to the unpredictable size of dynamically-sized arrays

and mappings. However, we are not interested in identifying individual storage locations but

rather access to a particular variable. Therefore, our goal is to extract the storage slot s(v)

for a variable v, instead of the exact storage location. As an example, assume we have a

state variable called balances of type mapping, which maps an address to a uint, and

we have two addresses a and b. The storage location for balances[a] and balances[b]
will be different, since the computation of the storage locations will be h(a || s(balances))

and h(b || s(balances)), respectively, where || means concatenation. However, these two

storage locations share the same storage slot s(balances), which enables us to link both

storage locations together to the same state variable balances. Extracting the storage slot

for statically-sized variables is straightforward as it is equivalent to the storage location. It can

be achieved by merely popping the first element from the stack for both instructions, SLOAD
and SSTORE. Extracting storage slots for mappings and dynamic arrays is more challenging.
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As it is not possible to invert the result of a hash, we must keep track of the Keccak-256

hash computations by mapping the result of a SHA3 instruction to the memory contents that

were involved in the computation. Note that the SHA3 instruction computes the Keccak-256

hash from a memory slice determined via two arguments on the stack, namely the memory

offset and the memory size. Thus, for mappings, all we need to do is to obtain the mapped

memory contents. To deal with concatenation, we only extract the last 32 bytes of the mem-

ory contents as these represent the storage slot. Finally, for dynamic arrays, we must keep

track of the arithmetic addition of Keccak-256 hashes. The storage slot is then determined

the same way as for mappings, except that there is no concatenation.

Symbolic Taint Analysis. The symbolic taint analysis produces symbolic constraints that

are later used by other parts, such as constraint solving and vulnerability detection. We

introduce taint in the form of symbolic values and track their flow across instructions. We

leverage light dynamic taint analysis by injecting taint only for instructions that can be fuzzed,

e.g., CALLDATALOAD, CALLVALUE, or TIMESTAMP. Taint is propagated across stack, memory,

and storage. The propagation of taint across storage allows us to do inter-transactional

taint analysis. We implemented the stack using an array structure that follows LIFO logic.

We used a Python dictionary to map memory and storage addresses to values to repre-

sent memory and storage. Since the EVM is a stack-based, register-less virtual machine,

the operands of instructions are always passed via the stack. Therefore, our taint propaga-

tion method identifies each EVM bytecode instruction’s operands and propagates the taint

according to each instruction’s semantics as defined in the yellow paper [30]. The taint prop-

agation logic follows an over-tainting policy, which tags the instruction’s output as tainted if

at least one of the instruction’s inputs are tainted.

Constraint Solving. There are situations where the evolutionary fuzzing engine converges

prematurely because it cannot advance past a complex conditional statement. The con-

straint solver’s role is then to generate a valid input that allows the evolutionary fuzzing

engine to get past the complex condition. The symbolic taint analysis tries to build a logical

formula that describes the complex execution path, thereby reducing the problem of rea-

soning about the execution to the domain of logic. These logical formulas are often called

path constraints. We implemented our own lightweight symbolic execution engine, that only

executes instructions related to arithmetic operations (e.g., ADD, MOD, EXP), comparison logic

(e.g., LT, EQ), and bitwise logic (e.g., AND, NOT). The engine consists of an interpreter loop

that gets instructions from the execution trace and symbolically executes them. The loop

continues until all the instructions contained in the execution trace have been executed. We

obtain the formulas only for conditional statements with open branches, i.e., never executed

branches. Each formula contains the path constraints to reach the conditional statement.

We negate the last constraint, substitute the symbolic variables in the rest of the logical for-
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mula with concrete values that have been used as inputs to trigger the execution trace, and

use the Z3 SMT solver [11] to produce inputs to reach the open branch. Concretization helps

us reduce the complexity of the formula and therefore avoid the path explosion problem. We

then add the produced inputs to the mutation pools. Eventually, in one of the following gen-

erations, the mutation operator will pick up the solution, and our evolutionary fuzzing engine

will now be able to get past the complex condition. We also keep the previously used inputs

in the mutation pools, allowing the fuzzer to execute both branches.

Termination Analysis. The execution traces may contain valuable feedback on the validity

of the inputs. Our fuzzer uses the execution traces to obtain feedback and learn whether

an input is meaningful or not. The termination analysis inspects the execution traces for

opcodes that indicate either correct or incorrect termination of execution. Invalid inputs will

result in the execution trace terminating with a REVERT, INVALID, or ASSERTFAIL instruc-

tion, whereas valid inputs will result in the execution terminating with either a SELFDESTRUCT,

SUICIDE, STOP, or RETURN instruction. Once we detect an incorrect termination, we analyze

the last path constraint before the termination and retrieve the input values responsible for

the incorrect termination. We then remove these values from the mutation pools. A transac-

tion that results in an incorrect termination reverts all state changes made during execution

and is therefore not relevant for creating meaningful RAW dependencies. This helps the

fuzzer focus on more relevant parts of the code.

Vulnerability Detection. We detect vulnerabilities by analyzing the execution traces and

the information returned by the symbolic taint analysis as well as the data dependency

analysis. We define a detector per vulnerability. We implemented detectors for 10 different

vulnerabilities. More detectors can be easily added to extend the detection capabilities of

our fuzzer. We briefly elaborate on the implementation details of each detector:

• Assertion Failure (AF). We detect an assertion failure by checking if the execution

trace contains an ASSERTFAIL or INVALID instruction.

• Integer Overflow (IO). Detecting integer overflows is not trivial, since not every over-

flow is considered harmful. Integer overflows may also be introduced by the compiler

for optimization purposes. Therefore, we only consider an overflow as harmful, if it

modifies the state of the smart contract, i.e., if the result of the computation is written

to storage or is used to send funds. We follow our previous approach on detecting in-

teger overflows [102] and start by analyzing if the execution trace contains an ADD, MUL
or SUB instruction. We extract the operands from the stack and use these to compute

the unbounded result of the arithmetic operation. Afterwards, we check if our result is

equivalent to the result that has been pushed onto the stack. If they are not the same,

we know that an integer overflow has occurred and we keep track of the overflow by

79



4.3. CONFUZZIUS

tainting the result of the computation. We report an integer overflow if the tainted result

flows into an SSTORE instruction or a CALL instruction, as these instructions will result

in updating the state of the smart contract.

• Reentrancy (RE). A reentrancy occurs whenever a contract calls another contract, and

that contract calls back the original contract. We detect reentrancy by first checking if

the execution trace contains a CALL instruction whose gas value is larger than 2,300

units and where the amount of funds to be transferred is either a symbolic value or a

concrete value that is larger than zero. Finally, we report a reentrancy if we find an

SLOAD instruction that occurs before the CALL instruction and an SSTORE instruction

that occurs after the CALL instruction, where both instructions (i.e., SLOAD and SSTORE)

share the same storage location.

• Transaction Order Dependency (TD). We detect transaction order dependency by

checking if there are two execution traces with different senders, where the first execu-

tion trace writes to the same storage location from which the second execution trace

reads.

• Block Dependency (BD). We detect a block dependency by checking if the execution

trace contains either a CREATE, CALL, DELEGATECALL, or SELFDESTRUCT instruction,

that is either control-flow or data dependent on a BLOCKHASH, COINBASE, TIMESTAMP,

NUMBER, DIFFICULTY, or GASLIMIT instruction.

• Unhandled Exception (UE). We detect unhandled exceptions by first checking if the

execution trace contains a CALL instruction that pushes to the stack the value 1 as a

result of the call. A value of 1 means that an error occurred during the call (i.e., an

exception). Afterwards, we check if the result of the call flows into a JUMPI instruc-

tion. If the result does not flow into a JUMPI instruction until the end of the execution

trace, then we know that the exception of the call was not handled and we report an

unhandled exception.

• Unsafe Delegatecall (UD). We detect an unsafe delegate call by checking if there is

an execution trace that contains a DELEGATECALL instruction and terminates with a

STOP instruction, but whose sender is an attacker address. Attacker and benign user

addresses are generated at the start by the fuzzer.

• Leaking Ether (LE). We detect the leaking of ether by checking if the execution trace

contains a CALL instruction, whose recipient is an attacker address and which has

never sent any ether to the contract in a previous transaction or has never been passed

as a parameter to a function by another address that is not an attacker.

• Locking Ether (LO). We detect the locking of ether by checking if a contract can

actually receive ether but cannot send out any ether. To check if a contract cannot
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send ether, we check if the runtime bytecode of the contract does not contain any

CREATE, CALL, DELEGATECALL, or SELFDESTRUCT instruction. To check if a contact

can receive ether, we check if the execution trace has a transaction value larger than

0 and terminates with a STOP instruction.

• Unprotected Selfdestruct (US). Similar to the leaking ether or unsafe delegatecall

vulnerability detectors, this detector relies on attacker accounts. We detect an un-

protected selfdestruct by checking if the execution trace contains a SELFDESTRUCT
instruction where the sender of the transaction is an attacker and its address has not

been previously passed as an argument by a benign user.

4.4 Evaluation

In this section, we evaluate the effectiveness and performance of CONFUZZIUS by answering

the following three questions:

• Does CONFUZZIUS achieve higher code coverage than current state-of-the-art sym-

bolic execution and fuzzing tools for smart contracts?

• Does CONFUZZIUS discover more vulnerabilities than current state-of-the-art symbolic

execution and fuzzing tools for smart contracts?

• How relevant are CONFUZZIUS’s individual components in terms of code coverage and

vulnerability detection?

Datasets. We run our experiments using two different datasets. The purpose of the first

dataset is to measure code coverage, whereas the second dataset aims to measure the de-

tection of vulnerabilities2. The first dataset was obtained by crawling Etherscan’s list of ver-

ified smart contracts [178]. These are real-world smart contracts where the source code is

publicly available and verified to match the bytecode deployed on the Ethereum blockchain.

We filtered out contracts that failed to compile using Solidity version 0.4.26, resulting in a

dataset of 21,147 contracts. Moreover, we split our dataset into different clusters based on

each contract’s number of EVM bytecode instructions. The idea is to examine code coverage

on smart contracts with different sizes. We used the standard k-means clustering algorithm

to create the clusters. The number of clusters has been determined using the Elbow and

the Silhouette method. Both methods yield 2 to be the optimal value for k. Table 4.2 lists the

number of lines of source code (LoSC), number of public functions, and the number of EVM

bytecode instructions for each cluster and the overall dataset. The first cluster represents

small contracts (≤ 3,632 instructions) and contains 17,803 contracts, whereas the second

cluster represents large contracts (> 3,632 instructions) and contains 3,344 contracts. The

2Code and datasets are publicly available at: https://github.com/christoftorres/ConFuzzius.
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Table 4.2: Statistics of our real-world dataset and its two clusters.

LoSC Functions Instructions

Dataset Contracts Min Max Mean Min Max Mean Min Max Mean

Small 17,803 1 3,584 119 1 81 14 1 3,632 1,763
Large 3,344 44 3,148 429 1 190 32 3,633 16,889 5,495

Overall 21,147 1 3,584 168 1 190 17 1 16,889 2,353

second dataset is based on Durieux et al.’s curated dataset [177], a collection of annotated

smart contracts, which the authors used to evaluate the effectiveness of smart contract

analysis tools. Unfortunately, their curated dataset is missing certain types of vulnerabilities

(e.g., assertion failures). We decided to reuse their dataset and extend it with annotated

vulnerabilities from the Smart Contract Weakness Classification (SWC) registry [189]. We

added contracts related to assertion failures, unsafe delegatecalls, leaking ether, locking

ether, and unprotected selfdestructs. The extended dataset consists of 128 contracts with

148 annotated vulnerabilities.

Baselines. We compare CONFUZZIUS to the tools listed in Table 4.3. We limit our com-

parison to symbolic execution tools and fuzzers as we want to know if our hybrid approach

performs better than these methods on their own. We chose OYENTE [51] because of its

popularity among the community and continuous development. We chose MYTHRIL since

a recent study on smart contract analysis tools [177] revealed that it performs better than a

variety of existing tools (e.g., Manticore [87], SmartCheck [135], Securify [136], Maian [122],

etc.). We chose M-PRO because it employs a similar transaction sequence combining strat-

egy as ours, with the difference being that ours is dynamic, and theirs is static. We chose

ILF [160] since it has proven to outperform existing smart contract fuzzers (i.e., CONTRACT-

FUZZER [110] and ECHIDNA [176]). We chose SFUZZ because it is a recent work that has

not been compared yet by previous works and because it is based on the popular fuzzing

tool AFL. Table 4.3 compares the different types of vulnerabilities detected by each tool.

Table 4.3: Security tools evaluated in this work. Tools marked with  support the detection
of the vulnerability, while tools marked with# do not support the detection of the vulnerability.

Requires
Source Code

Requires
ABI

Vulnerability Detectors

Toolname Type AF IO RE TD BD UE UD LE LO US

OYENTE [51] Symbolic 7 7      # # # #  
MYTHRIL[120] Symbolic 7 7         #  
M-PRO[173] Symbolic 3 7         #  
ILF [160] Fuzzer 3 3 # # # #       
SFUZZ[186] Fuzzer 3 3 #   #    #  #
CONFUZZIUS Hybrid 7 3           
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Figure 4.6: Overall instruction coverage of CONFUZZIUS and other tools.

We see that none of the tools are currently able to detect all of the ten vulnerabilities that

are currently detectable by CONFUZZIUS. We also see that CONFUZZIUS does not requires

source code as compared to the other fuzzers.

Experimental Setup. We followed the guidelines by Klees et al. [113] on evaluating fuzz

testing. For each experiment, we performed 10 runs, each with independent seeds. For the

first dataset we run experiments on the small contracts for 10 minutes each, whereas on

the large contracts we run experiments for 1 hour each. Preliminary tests showed that most

tools did not yield more coverage past these times. Moreover, before every run, we initialized

CONFUZZIUS’s and ILF’s blockchain state with the same values that were used to deploy

the contracts on the Ethereum mainnet. For the second dataset, we run the experiments

for each contract for 10 minutes. We run our experiments on a cluster of 10 nodes, each

with 128 GB of memory. Every node runs CentOS release 7.6.1810 and has 2 Intel® Gold

6132 CPUs with 14 cores, each clocked at 2.60 GHz. We run CONFUZZIUS with a variable

population size that is computed as two times the number of functions contained in the ABI

of the contract under test. We set the crossover probability and the probability of mutation

to 0.9 and 0.1, respectively. The population is reinitialized whenever the code coverage does

not increase for k = 10 generations. We set the maximum length for individuals to l = 5.

Finally, we used Z3 version 4.8.5 as our constraint solver with a timeout of 100 milliseconds

per Z3 request.

4.4.1 Code Coverage

Figure 4.6 depicts the overall instruction coverage (e.g., the average of all contract runs) of

CONFUZZIUS and other security tools on the clusters of small and large contracts. CON-
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Figure 4.7: Overall instruction coverage of CONFUZZIUS, ILF and SFUZZ over time.

FUZZIUS achieves the highest coverage on the small and large contracts, with 91% and

81%, respectively. As expected, every tool struggles with the larger contracts. We see that

the overall coverage is less for the larger contracts than for the smaller contracts. How-

ever, while the difference is roughly 10% for CONFUZZIUS, symbolic execution tools such

as MYTHRIL have a difference of 31%. Figure 4.7 compares the overall instruction cover-

age of CONFUZZIUS and the two other fuzzers, ILF and SFUZZ, over time. We only plotted

the instruction coverage for these three tools as we do not have coverage information over

time for symbolic execution tools. CONFUZZIUS not only consistently outperforms ILF and

SFUZZ, but it also achieves more code coverage in a shorter time. On the small contracts,

CONFUZZIUS achieves after 1 second 66% instruction coverage, whereas ILF and SFUZZ

achieve solely 12% and 15%, respectively. On the large contracts, CONFUZZIUS achieves

after 1 second 46% instruction coverage, whereas ILF and SFUZZ achieve only 10% and

11%, respectively.

4.4.2 Vulnerability Detection

Table 4.4 summarizes the vulnerabilities detected by each tool for each of the 10 categories

on the extended curated dataset. Each entry shows the number of true positives (left-hand

side) and false positives (right-hand side). For example, OYENTE reported for assertion fail-
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Table 4.4: True positives and false positives detected by each tool per vulnerability type.

Vulnerabilities

Toolname AF IO RE TD BD UE UD LE LO US Total

OYENTE 6/6 12/4 8/0 2/0 0/0 - - - - 0/0 28
MYTHRIL 7/3 18/5 10/0 0/0 3/0 24/0 0/0 4/0 - 2/0 68
M-PRO 7/3 18/5 10/0 0/0 3/0 24/0 0/0 4/0 - 2/0 68
ILF - - - - 0/0 10/0 1/2 4/0 5/0 3/0 23
SFUZZ - 12/0 7/0 - 1/0 21/0 1/2 - 0/0 - 42
CONFUZZIUS 10/0 18/0 10/0 2/0 7/0 46/0 1/0 4/0 5/0 3/0 106

Total Unique 14 19 11 4 7 75 1 9 5 3 148

ure (AF), 6 true positives and 6 false positives (i.e., 6/6), whereas MYTHRIL reported for

assertion failure (AF), 7 true positives and 3 false positives (i.e., 7/3). Overall, we see that

CONFUZZIUS detected the most number of vulnerabilities, namely 106 out of 148 vulnera-

bilities (roughly 71% of all vulnerabilities). ILF detected the least number of vulnerabilities,

with 23 out of 148. In the following, we discuss the results obtained for each category.

Assertion Failure (AF). CONFUZZIUS detects more assertion failures than the other tools,

namely 10 out of 14, and does not report any false positives. Both MYTHRIL and M-PRO

report 7 assertion failures and 3 false positives. OYENTE reports 6 true positives and 6 false

positives. Our manual investigation reveals that they over-approximate the satisfiability of

execution paths due to incorrect modeling. For example, OYENTE reports in Figure 4.8 an

assertion failure at line 8. However, this is not possible because param is set at the constructor

and is checked to be always larger than zero.

1 contract AssertMultiTx1 {

2 uint256 private param;

3 constructor(uint256 _param) {

4 require(_param > 0);

5 param = _param;

6 }

7 function run() {

8 assert(param > 0);

9 }

10 }

Figure 4.8: False positive reported by OYENTE on an assertion failure.

Integer Overflows (IO). CONFUZZIUS reports the same number of integer overflows as

MYTHRIL and M-PRO, namely 18 out of 19. However, MYTHRIL and M-PRO also report

5 false positives, whereas CONFUZZIUS reports none. For example, MYTHRIL reports in

Figure 4.9 an integer overflow at line 6. However, there is no possibility to initialize balanceOf,
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therefore an overflow can never occur because the require statement at line 4 will never be

satisfied.

1 contract IntegerOverflowAdd {

2 mapping (address => uint256) balanceOf;

3 function transfer(address _to, uint256 _value) {

4 require(balanceOf[msg.sender] >= _value);

5 balanceOf[msg.sender] -= _value;

6 balanceOf[_to] += _value;

7 }

8 }

Figure 4.9: False positive reported by MYTHRIL on an integer overflow.

Reentrancy (RE). CONFUZZIUS, MYTHRIL and M-PRO detect the same number of reen-

trancy vulnerabilities, namely 10 out of 11. OYENTE and SFUZZ detect 8 and 7, respectively.

Transaction Order Dependency (TD). CONFUZZIUS and OYENTE detect 2 contracts vul-

nerable to transaction order dependency. Both MYTHRIL and M-PRO do not detect any of

the 4 contracts to be vulnerable to transaction order dependency.

Block Dependency (BD). CONFUZZIUS is the only tool capable of detecting all 7 block

dependencies. Our manual investigation reveals that CONFUZZIUS is capable of detect-

ing more block dependencies because of its environmental modeling, which allows CON-

FUZZIUS to fuzz block information and therefore, CONFUZZIUS can detect more calls that

are dependent on block information.

Unhandled Exception (UE). CONFUZZIUS reports the largest number of unhandled excep-

tions, namely 46 out of 75. MYTHRIL and M-PRO report 24 unhandled exceptions. ILF and

SFUZZ report 10 and 21 unhandled exceptions, respectively. Similar to block dependency,

CONFUZZIUS detects more unhandled exceptions because it models call return values as

environmental information that can be fuzzed. This allows CONFUZZIUS to simulate excep-

tions and check if they are handled.

Unsafe Delegatecall (UD). CONFUZZIUS is the only tool that detects unsafe delegatecall

without false positives. Neither MYTHRIL nor M-PRO were able to detect unsafe delegate-

calls. ILF and SFUZZ detect an unsafe delegatecall, but also report 2 false positives. For

example, in Figure 4.10 ILF reports an unsafe delegatecall at line 13. However, the variable

callee can only be changed by the owner and the delegatecall is therefore safe.

Leaking Ether (LE). CONFUZZIUS, MYTHRIL, M-PRO and ILF detect the same number of

ether leaking vulnerabilities, namely 4 out of 9. None of the tools report false positives.

86



ConFuzzius

1 contract Proxy {
2 address callee;
3 address owner;
4 constructor() {
5 callee = address(0x0);
6 owner = msg.sender;
7 }
8 function setCallee(address newCallee) {
9 require(msg.sender == owner);

10 callee = newCallee;
11 }
12 function forward(bytes _data) {
13 require(callee.delegatecall(_data));
14 }
15 }

Figure 4.10: False positive reported by ILF on an usafe delegatecall.

Locking Ether (LO). Both CONFUZZIUS and ILF detect all ether locking vulnerabilities.

SFUZZ, on the other hand, does not detect any of the vulnerabilities.

Unprotected Selfdestruct (US). Both CONFUZZIUS and ILF detect all the unprotected self-

destruct vulnerabilities. OYENTE does not detect any of the vulnerabilities and MYTHRIL as

well as M-PRO, detect 2 of the 3 unprotected selfdestruct vulnerabilities.

4.4.3 Component Evaluation

In the following, we evaluate the importance of CONFUZZIUS’s three main components: 1)

constraint solving, 2) read-after-write dependency analysis and 3) environmental instrumen-

tation. We randomly selected 100 contracts from each cluster. We then performed three

experiments for each contract, where we deactivated a different component for each exper-

iment. For example, in the "Without Constraint Solving" experiment, we disabled constraint

solving but kept RAW dependency analysis and environmental instrumentation enabled.

This means that inputs will be generated following a random uniform distribution, and the

constraint solver will not be used to produce inputs. In the "Without Read-After-Write De-

pendency" experiment, we disabled RAW dependency analysis but kept constraint solving

and environmental instrumentation enabled. This means that transaction sequences will

not be combined following RAW dependencies, but that they will be combined at random,

following a uniform distribution. Finally, in the "Without Environmental Instrumentation" ex-

periment, we disabled environmental instrumentation but kept constraint solving and RAW

dependency analysis enabled. This means that environmental information such as block

timestamps or call return values will not be fuzzed. We repeated each experiment 10 times

and run the experiments on the small contracts for 10 minutes, and on the large contracts

for 1 hour. Figure 4.11 depicts our results. Each bar shows the percentage of the achieved

results compared to the results when all three components were enabled (i.e., the grey bar
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Figure 4.11: Comparison of overall instruction coverage and vulnerabilities detected be-
tween CONFUZZIUS’s individual components.

in the back). We see that each component is an added value for CONFUZZIUS, which means

that they are all essential to CONFUZZIUS’s performance. However, we can see that gen-

erating meaningful inputs via constraint solving plays an essential part in achieving broad

code coverage and detecting more bugs. Also, environmental instrumentation seems to

help achieve code coverage and detect bugs. Nevertheless, our novel method that lever-

ages RAW dependency analysis to create meaningful sequences of inputs at runtime can

provide 2% more code coverage on small contracts and 5% on large contracts. Further, it

allows the detectors to find 10% and 18% more vulnerabilities in small and large contracts,

respectively.

4.5 Related Work

Since its introduction by Miller et al. [4], fuzzing has been applied to many different domains

and targets. American Fuzzy Loop (AFL) [52] is one of the most widespread fuzzers and it is

based on evolutionary fuzzing and exploits execution data to guide the generation/mutation

of fuzzed inputs. Besides AFL and its offsprings [64, 63], other fuzzers also use evolutionary

approaches to generate test inputs automatically [81, 72]. KLEE [10] and SAGE [12] are

white-box fuzzers and execute code in a controlled environment. Driller [58] is a hybrid

fuzzer that leverages selective concolic execution in a complementary manner. Symbolic

execution based fuzzers produce meaningful inputs but tend to be slow [91, 128, 146, 147].

Fuzzers such as LibFuzzer [56], FuzzGen [182] and FUDGE [141] focus on fuzzing libraries,

which cannot run as standalone programs, but instead are invoked by other programs.

Several efforts have been made to adopt traditional software fuzzing techniques to test

smart contracts. CONTRACTFUZZER [110] for instance, generates inputs based on a list of
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input seeds. It also deploys an entire testnet to fuzz transactions, while CONFUZZIUS is

more efficient and solely emulates the EVM. Moreover, CONFUZZIUS does not rely on user-

provided input seeds but instead analyzes the execution traces and uses a constraint solver

to generate new values specific to the contract under test. ECHIDNA [176] is a property-

based testing tool for smart contracts that leverages grammar-based fuzzing. ECHIDNA re-

quires user-defined predicates in the form of Solidity assertions and does not automatically

check for vulnerabilities. HARVEY [171] predicts new inputs based on instruction-granularity

cost metrics. In contrast, CONFUZZIUS exploits lightweight symbolic execution when the

population fitness does not increase. Further, HARVEY fuzzes transaction sequences in a

targeted and demand-driven way, assisted by an aggressive mode that directly fuzzes the

persistent state of a smart contract. Instead, CONFUZZIUS relies on the read-after-write de-

pendencies to guide the selection and crossover operators to create meaningful transaction

sequences efficiently. ILF [160] is based on imitation learning, which requires a learning

phase prior to fuzzing. ILF consists of a neural network that is trained on transactions ob-

tained by running a symbolic execution expert over a broad set of contracts. CONFUZZIUS

does not have the overhead of a learning phase and uses on-demand constraint solving

while actively fuzzing the target. Moreover, ILF is limited to the knowledge that it learned

during the learning phase, meaning that ILF has issues in getting past program conditions

that require inputs that were not part of the learning dataset. CONFUZZIUS does not have

this issue as it learns inputs on-the-fly that are tailored to target contract that is being fuzzed.

SFUZZ [186] is an AFL based smart contract fuzzer, whereas ETHPLOIT [201] is a fuzzing

based smart contract exploit generator. Both SFUZZ and ETHPLOIT have been developed

concurrently and independently of CONFUZZIUS. While SFUZZ follows a random strategy

to create transaction sequences, ETHPLOIT uses static taint analysis on state variables to

create meaningful transaction sequences. However, static taint analysis has the disadvan-

tage of being imprecise and analyzing parts that are not executable. Despite SFUZZ using a

genetic algorithm as CONFUZZIUS, it employs a different encoding of individuals. Moreover,

SFUZZ only models block number and timestamp as environmental information. ETHPLOIT,

on the other hand, instruments the EVM in a similar way to CONFUZZIUS. However, ETH-

PLOIT does not fuzz the size of external code nor contract call return values.

Apart from fuzzing, several other tools based on symbolic execution were proposed to

assess the security of smart contracts [51, 122, 120, 102, 158, 116, 181]. MPRO [173] com-

bines symbolic execution and data dependency analysis to deal with the scalability issues

that symbolic execution tools face when trying to handle the statefulness of smart contracts.

MPRO has been developed concurrently and independently from CONFUZZIUS. There are

two significant differences to our approach. First, MPRO retrieves data dependencies us-

ing static analysis and therefore requires source code, whereas CONFUZZIUS tries to infer

data dependencies from bytecode. Second, MPRO works in two separate steps, first, it

infers data dependencies via static analysis, and then it applies symbolic execution. CON-
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FUZZIUS, on the other hand, applies a dynamic approach and infers data dependencies

while fuzzing. ETHRACER [115] uses a hybrid approach with a converse strategy by primar-

ily using symbolic execution to test a smart contract and using fuzzing only for producing

combinations of transactions to detect vulnerabilities such as transaction order dependency.

CONFUZZIUS’s fuzzing strategy, compared to ETHRACER, is not entirely random but based

on read-after-write dependencies, yielding faster and more efficient combinations.

Besides symbolic execution and fuzzing, other works based on static analysis were pro-

posed to detect smart contract vulnerabilities. ZEUS [112] is a framework for automated

verification of smart contracts using abstract interpretation and model checking. SECU-

RIFY [136] uses static analysis based on a contract’s dependency graph to extract semantic

information about the program bytecode and then checks for violations of safety patterns.

Similarly, VANDAL [90] is a framework designed to convert EVM bytecode into semantic logic

relations in Datalog, which can then be queried for vulnerabilities.

4.6 Conclusion

We presented CONFUZZIUS, the first hybrid fuzzer for smart contracts. It tackles the three

main challenges of smart contract testing: input generation, stateful exploration, and envi-

ronmental dependencies. CONFUZZIUS solves the first challenge by combining evolutionary

fuzzing with constraint solving to generate inputs that allow the fuzzer to get past complex

path conditions. The second challenge is solved by leveraging data dependency analy-

sis across state variables to generate purposeful transaction sequences. Finally, the third

challenge is solved by modeling block related information (e.g., block number) and contract

related information (e.g., call return values) as fuzzable inputs. We ran CONFUZZIUS and

other state-of-the-art fuzzers and symbolic execution tools for smart contracts against a cu-

rated dataset of 128 contracts and a dataset of 21K real-world smart contracts. The results

not only show that our hybrid fuzzing approach detects more bugs than existing state-of-the-

art tools (up to 23%), but that is also outperforms these tools in terms of code coverage (up

to 69%) and that data dependency analysis can boost the detection of bugs (up to 18%).
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5 | Horus
Spotting and Analyzing Attacks on Smart Contracts

In this chapter, we investigate the analysis and detection of smart contract attacks. In recent

years, Ethereum gained tremendously in popularity. As a result, smart contracts have been

victims of a number of attacks in the past. In response to these attacks, both academia

and industry proposed a plethora of tools to scan smart contracts for vulnerabilities before

deploying them on the blockchain. However, most of these tools solely focus on detecting

vulnerabilities and not attacks, let alone quantifying or tracing the number of stolen assets.

In this chapter, we present HORUS, a framework that empowers the automated detection

and investigation of smart contract attacks based on logic-driven and graph-driven analysis

of transactions. HORUS provides quick means to quantify and trace the flow of stolen assets

across the Ethereum blockchain. We perform a large-scale analysis of all the smart con-

tracts deployed on Ethereum until May 2020. We identified 1,888 attacked smart contracts

and 8,095 adversarial transactions in the wild. Our investigation shows that the number of

attacks did not necessarily decrease over the past few years, but for some vulnerabilities

remained constant. Finally, we also demonstrate the practicality of our framework via an

in-depth analysis on the recent Uniswap and Lendf.me hacks.

5.1 Introduction

In just four years, Ethereum grew from a daily transaction average of 10K in January 2016 to

an average of 500K in January 2020 [179]. Such an increase in value and popularity attracts

abuse and the lack of a governing authority has led to a “Wild West”-like situation, where

several attackers began to exploit vulnerable smart contracts to steal their funds. In the past,

several smart contracts hosting tens of millions of USD were victims to attacks (e.g., [47, 84,

80]). Hence, over the past few years a rich corpus of research works and tools have surfaced

to identify smart contract vulnerabilities (e.g., [51, 136, 102, 120, 135, 90, 181, 110, 112]).

However, most of these tools only focus on analyzing the bytecode of smart contracts and

not their transactions or activities. Only a small number leverages transactions to detect

attacks (e.g., [165, 175, 198]), whereas the majority either requires the Ethereum client to

be modified or large and complex attack detection scripts to be written. Moreover, none of
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these tools allow to directly trace stolen assets after their detection.

In this chapter, we introduce HORUS, a framework capable of automatically detecting and

analyzing smart contract attacks from historical blockchain data. Besides detecting attacks,

the framework also provides means to quantify and trace the flow of stolen assets across

Ethereum accounts. The framework replays transactions without modifying the Ethereum

client and encodes their execution as logical facts. Attacks are then detected using Datalog

queries, making the framework easily extendable to detect new attacks. Stolen funds are

traced by loading detected transactions into a graph database and performing transaction

graph analysis. Using our framework, we conduct a longitudinal study that spans the entire

past Ethereum blockchain history, from August 2015 to May 2020, consisting of over 3 million

smart contracts. One of the fundamental research questions we are investigating is whether

these years of efforts have yielded visibly fewer attacks in the wild. If the tools proposed

herein are effective, one could argue that attacks should have declined over time. To quantify

the answer to this question, we start by investigating whether attacks occur continuously, or

if they appear sporadically. While most well-known attacks carry significant monetary value,

we wonder whether smaller, but ongoing attacks may occur more often and remain rather

occluded. In summary, this chapter makes the following contributions:

Contributions

• We present the design and implementation of HORUS, a framework that helps iden-

tifying smart contract attacks based on a sequence of blockchain transactions using

Datalog queries.

• We provide means to quantity stolen funds, including ether as well as tokens, and

to trace them across accounts to support behavioral studies of attackers.

• We conduct a longitudinal study on the security of Ethereum smart contracts of

4.5 years, and find 8,095 attacks in the wild, targeting a total of 1,888 vulnerable

contracts.

• We demonstrate the practicality of HORUS by performing a forensic analysis on the

2020 Uniswap and Lendf.me hacks.

5.2 HORUS

In this section, we provide details on the design and implementation of the HORUS frame-

work. HORUS automates the process of conducting longitudinal studies of attacks on Ether-

eum smart contracts. The framework has the capability to detect and analyze smart contract

attacks from historical data. Moreover, the framework also provides means to trace the flow

of stolen assets across Ethereum accounts. The latter is particularly useful for studying the
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Figure 5.1: Architecture of HORUS. Shaded boxes represent custom components, whereas
boxes highlighted in white represent off-the-shelf components.

behavior of attackers. Figure 5.1 provides an overview on the architecture of HORUS. The

framework is organized as an EAT (extract, analyze, and trace) pipeline consisting of three

different stages:

(1) Extraction: The extraction stage takes as input a list of transactions from which exe-

cution related information is extracted and stored as Datalog facts.

(2) Analysis: The analysis stage takes as input a set of Datalog relations and queries,

which together identify attacks on the extracted Datalog facts.

(3) Tracing: The tracing stage retrieves a list of attacker accounts obtained via the anal-

ysis and fetches all transactions related to these accounts (including normal trans-

actions, internal transactions and token transfers). Afterwards, a graph database is

created, which captures the flow of funds (both ether and tokens) from and to these

accounts. Further, the database can be augmented with a list of labeled accounts to

enhance the tracing of stolen assets.

In the following, we describe each of the three pipeline stages in more detail. The entire

framework was written in Python using roughly 2,000 lines of code1.

5.2.1 Extraction

The role of the extractor is to request from the Ethereum client the execution trace for a

list of transactions and to convert them into logic relations that reflect the semantics of their

execution. An execution trace consists of an ordered list of executed EVM instructions.

Each record in that list contains information such as the executed opcode, program counter,

call stack depth, and current stack values. Unfortunately, execution traces cannot be ob-

tained directly from historical blockchain data, they can only be recorded during contract

execution. Fortunately, the Go based Ethereum client (Geth) provides a debug functionality

1Code and data are publicly available at: https://github.com/christoftorres/Horus.
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.decl opcode(step:number, op:Opcode, tx_hash:symbol)

.decl data_flow(step1:number, step2:number, tx_hash:symbol)

.decl arithmetic(step:number, op:Opcode, operand1:Value, operand2:Value,
arithmetic_result:Value, evm_result:Value)

.decl storage(step:number, op:Opcode, tx_hash:symbol, caller:Address, contract:
Address, index:Value, value:Value, depth:number)

.decl condition(step:number, tx_hash:symbol)

.decl erc20_transfer(step:number, tx_hash:symbol, contract:Address, from:Address,
to:Address, value:Value)

.decl call(step:number, tx_hash:symbol, op:Opcode, caller:Address, callee:Address,
input:symbol, value:Value, depth:number, call_id:number, call_branch:number,

result:number)
.decl selfdestruct(step:number, tx_hash:symbol, caller:Address, contract:Address,

destination:Address, value:Value)
.decl block(block_number:number, gas_used:number, gas_limit:number, timestamp:

number)
.decl transaction(tx_hash:symbol, tx_index:number, block_number:number, from:

Address, to:Address, input:symbol, gas_used:number, gas_limit:number, status:
number)

Figure 5.2: List of Datalog facts extracted by HORUS.

via the debug_traceTransaction and debug_traceBlockByNumber functions, which gives us

the ability to replay the execution of any given past transaction or block and retrieve its ex-

ecution trace. Execution traces are requested via Remote Procedure Call (RPC). Previous

works [165, 218, 175, 200, 198] did not rely on RPC as it is too slow. Instead, they modified

Geth to speed up the process of retrieving execution traces. However, this has the limitation

that users cannot use Geth’s default version, but are required to use a modified version, and

changes will need to be carried over every time a new version of Geth is released. More-

over, at the time of writing, none of these works publicly disclosed their modified version of

Geth, which not only makes it difficult to reproduce their results, but also to conduct future

studies. Therefore, rather than modifying Geth, we decided to improve the speed on the

retrieval of execution traces via RPC. We noticed that execution traces contain information

that is irrelevant for our analysis. Fortunately, Geth allows us to inject our own execution

tracer written in JavaScript [195]. Through this mechanism, we are able to reduce the size

of the execution traces and improve execution speed, without actually modifying Geth. For

example, our JavaScript code removes the current program counter, the remaining gas and

the instruction’s gas cost from the execution trace. Moreover, instead of returning a com-

plete snapshot of the entire stack and memory for every executed instruction, our code only

returns stack elements and memory slices that are relevant to the executed instruction.

Figure 5.2 shows the list of Datalog facts that our extractor produces by iterating through

each of the records of the execution traces and encoding relevant information. While most

facts are related to low level EVM operations (e.g., call), others are related to high level op-

erations. For example, the erc20_transfer fact refers to the ERC-20 token event “Transfer”
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that is emitted whenever tokens are transferred, where contract denotes the address of the

token contract, and from and to, denote the sender and receiver of the tokens, respectively.

It is important to note that this list can easily be modified or extended to support different

studies from the one proposed in this chapter by modifying the extractor, analyzer and tracer.

Besides using the default types number and symbol, we also define our own three new types:

Address for 160-bit values, Opcode for the set of EVM opcodes, and Value for 256-bit stack

values.

Dynamic Taint Analysis. The extractor leverages dynamic taint analysis to track the flow

of data across instructions. Security experts can then use the data_flow fact to check if

data flows from one instruction to another. Taint is introduced via sources, then propagated

across the execution and finally checked if it flows into sinks. Sources represent instructions

that might introduce untrusted data (e.g., CALLDATALOAD or CALLDATACOPY), whereas sinks

represent instructions that are sensitive locations (e.g., CALL or SSTORE). We implemented

our own dynamic taint analysis engine. The engine loops through every executed instruc-

tion and checks whether the executed instruction is a source, for which the engine then

introduces taint by tagging the affected stack value, memory region or storage location ac-

cording to the semantics defined in [30]. We implemented the stack using an array structure

following LIFO logic. Memory and storage are implemented using a Python dictionary that

maps memory and storage addresses to values. Taint propagation is performed at the byte

level (see examples in Figure 5.3).

Execution Order. Attacks such as the Parity wallets hacks were composed of two trans-

actions being executed in a specific order. To detect such multi-transactional attacks, our

framework encodes a total order across multiple transactions via the triplet o = (b, t, s),

where b is the block number, t is the transaction index, and s is the execution step. The exe-

cution step is a simple counter that is reset at the beginning of the execution of a transaction

ADD SHA3

Memory m Memory m’

Stack s Stack s’Stack s Stack s’

Figure 5.3: The example on the left depicts the propagation of taint via the ADD instruction,
where the result pushed onto stack s′ becomes tainted because the second operand on
stack s was tainted. The example on the right depicts the propagation of taint via the SHA3
instruction, where the result pushed onto stack s′ becomes tainted because the memory m
was tainted.
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and its value is incremented after each executed instruction. An execution step is bound

to a transaction index, which is on the other hand bound to a block number. As such, our

framework is able to precisely identify the execution order of any instruction across multiple

transactions and the entire blockchain history.

5.2.2 Analysis

The second stage of our pipeline uses a Datalog engine to analyze whether a given list of

Datalog relations and queries match any of the previously extracted Datalog facts. These

Datalog queries identify adversarial transactions, i.e., malicious transactions that success-

fully carried out a concrete attack against a smart contract by exploiting a given vulnerability.

Our framework uses Soufflé as its Datalog engine. Soufflé compiles Datalog relations and

queries into a highly optimized C++ executable [45]. In the following, we provide Datalog

queries for detecting reentrancy, Parity wallet hacks, integer overflows, unhandled excep-

tions and short address attacks. In this chapter, we focus on detecting vulnerabilities that

are ranked by the NCC Group as the top 10 smart contract vulnerabilities [105] and for which

we can extract the amount of ether or tokens that were either stolen or locked.

Reentrancy. Reentrancy occurs whenever a contract calls another contract, and the called

contract calls back the original contract (i.e., a re-entrant call) before the state in the original

contract has been updated appropriately. We detect reentrancy by identifying cyclic calls

originating from the same caller and calling the same callee (see Figure 5.4). We check if

two successful calls (i.e., result is 1), share the same transaction hash, caller, callee, id

and branch, where the second call has a higher call depth than the first call. Afterwards, we

check if there are two storage operations with the same call depth as the first call, where

the first operation is an SLOAD and occurs before the first call, and the second operation is

an SSTORE and occurs after the second call.

Reentrancy(hash, caller, callee, depth2, amount) :-

storage(step1, "SLOAD", hash, _, caller, index, _, depth1),

call(step2, hash, _, caller, callee, _, _, depth1, id, branch, 1),

call(step3, hash, _, caller, callee, _, amount, depth2, id, branch, 1),

storage(step4, "SSTORE", hash, _, caller, index, _, depth1),

depth1 < depth2, step1 < step2, step3 < step4, !match("0", amount).

Figure 5.4: Datalog query for detecting reentrancy attacks.

Parity Wallet Hacks. In this chapter, we focus on detecting the two Parity wallet hacks [84,

80]. Both hacks were due faulty access control implementations that allowed attackers to set

themselves as owners, which allowed them to perform critical actions such as the transfer

of funds or the destruction of contracts. We detect the first Parity wallet hack by checking
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if there exist two transactions t1 and t2, both containing the same sender and receiver,

where the first 4 bytes of t1’s input match the function signature of the initWallet function

(i.e., e46dcfeb), and if the first 4 bytes of t2’s input match the function signature of the

execute function (i.e., b61d27f6) (see Figure 5.5). Afterwards, we check whether there is a

call, which is part of t2 and where t2 is executed after t1 (i.e., block1 < block2; block1 =

block2, index1 < index2).

ParityWalletHack1(hash1, hash2, caller, callee, amount) :-

transaction(hash1, index1, block1, from, to, input1, _, _, 1),

substr(input1, 0, 8) = "e46dcfeb",

transaction(hash2, index2, block2, from, to, input2, _, _, 1),

substr(input2, 0, 8) = "b61d27f6",

call(_, hash2, "CALL", caller, callee, _, amount, _, 1),

(block1 < block2; block1 = block2, index1 < index2).

Figure 5.5: Datalog query for detecting the first Parity wallet hack.

We detect the second Parity wallet hack in a very similar way to the first one, except

that in this case we check if t2’s input matches the function signature of the kill function

(i.e., cbf0b0c0) and t2 contains a selfdestruct (see Figure 5.6).

ParityWalletHack2(hash1, hash2, contract, destination, amount) :-

transaction(hash1, index1, block1, from, to, input1, _, _, 1),

substr(input1, 0, 8) = "e46dcfeb",

transaction(hash2, index2, block2, from, to, input2, _, _, 1),

substr(input2, 0, 8) = "cbf0b0c0",

selfdestruct(_, hash2, _, contract, destination, amount),

(block1 < block2; block1 = block2, index1 < index2).

Figure 5.6: Datalog query for detecting the second Parity wallet hack.

Integer Overflows. We detect integer overflows by checking if data from CALLDATALOAD

or CALLDATACOPY opcodes flows into an arithmetic operation, where the arithmetic result

does not match the result returned by the EVM. Afterwards, we check whether the result

of the arithmetic operation flows into an SSTORE storage operation and an erc20_transfer

occurs, where the amount is one of the two operands used in the arithmetic computation

(see Figure 5.7). Please note that in this work, we only focus on detecting integer overflows

related to ERC-20 tokens, since token smart contracts have been identified in the past to be

frequent victims of integer overflows [126, 127].
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IntegerOverflow(hash, from, to, amount) :-

(opcode(step1, "CALLDATALOAD", hash);

opcode(step1, "CALLDATACOPY", hash)),

arithmetic(step2, _, operand1, operand2, arithmetic_res, evm_res),

arithmetic_res != evm_res, (operand1 = amount; operand2 = amount),

storage(step3, "SSTORE", hash, _, _, _, _, 1),

data_flow(step1, step2, hash), data_flow(step2, step3, hash),

erc20_transfer(_, hash, _, from, to, amount), !match("0", amount).

Figure 5.7: Datalog query for detecting integer overflow attacks.

Unhandled Exception. Inner calls executed by smart contracts may fail and by default only

the state changes caused by those failed calls are rolled back. It is the responsibility of the

developer to check the result of every call and perform proper exception handling. However,

many developers forget or decide to ignore the handling of such exceptions, resulting in

funds not being transferred to their rightful owners. We detect an unhandled exception by

checking whether a call with opcode "CALL" failed (i.e., result is 0) with an amount larger

than zero and where the result was not used in a condition (see Figure 5.8).

UnhandledException(hash, caller, callee, amount) :-

call(step, hash, "CALL", caller, callee, _, amount, _, 0),

!match("0", amount), !used_in_condition(step, hash).

Figure 5.8: Datalog query for detecting unhandled exceptions.

Short Address. The ERC-20 functions transfer and transferFrom take as input a destina-

tion address and a given amount of tokens. During execution the EVM will add trailing zeros

to the end of the transaction input if the transaction arguments are not correctly encoded as

chunks of 32 bytes, thereby shifting the input bytes to the left by a few zeros, and therefore

unwillingly increase the number of tokens to be transferred. However, attackers can exploit

this fact by generating addresses that end with trailing zeros and omit these zeros, to then

trick another party (e.g., web service) into making a call to transfer/transferFrom contain-

ing the attacker’s malformed address. We detect a short address attack by first checking

if the first 4 bytes of a transaction’s input match either the function signature of transfer

(i.e., a9059cbb) or transferFrom (i.e., 23b872dd). Then, for the function transfer we check

whether the length of the input is smaller than 68 (i.e., 4 bytes function signature, 32 bytes

destination address, and 32 bytes amount), and for the function transferFrom we check

whether the length of the input is smaller than 100 (i.e., 4 bytes function signature, 32 bytes

from address, 32 bytes destination address, and 32 bytes amount), and finally we check if

an erc20_transfer occurred (see Figure 5.9).
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ShortAddress(hash, from, to, amount) :-

transaction(hash, _, _, input, _, _, 1, _),

(substr(input, 0, 8) = "a9059cbb", strlen(input) / 2 < 68;

substr(input, 0, 8) = "23b872dd", strlen(input) / 2 < 100),

erc20_transfer(_, hash, _, from, to, amount), !match("0", amount).

Figure 5.9: Datalog query for detecting short address attacks.

5.2.3 Tracing

The final stage of our pipeline is the tracing of stolen assets, such as ether and tokens,

from attacker accounts to labeled accounts (e.g., exchanges). The tracer starts by extract-

ing sender addresses and timestamps from malicious transactions that have been identified

via the Datalog analysis. Sender addresses are assumed to be accounts belonging to at-

tackers. Afterwards, the tracer uses Etherscan’s API to retrieve for each sender address

all its normal transactions, internal transactions and token transfers, and loads them into

a Neo4j graph database. We rely on a third-party service such as Etherscan to retrieve

normal transactions, internal transactions and token transfers, because a default Ethereum

node does not provide this functionality out-of-the-box. Accounts are encoded as vertices

and transactions as directed edges between those vertices. We differentiate between three

types of accounts: attacker accounts, unlabeled accounts, and labeled accounts. Every ac-

count type contains an address. Labeled accounts contain a category (e.g., exchange) and

a label (e.g., Kraken 1). We obtain categories and labels from Etherscan’s large collection

of labeled accounts2. We downloaded a total of 5,437 labels belonging to 204 categories.

We differentiate between three different types of transactions: normal transactions, inter-

nal transactions, and token transactions. Each transaction type contains a transaction value,

transaction hash, and transaction date. Token transactions contain a token name, token

symbol and number of decimals. Transactions can be loaded either backwards or forwards.

Loading transactions forwards allows us to track where attackers sent their stolen funds to,

whereas loading transactions backwards allows us to track where attackers received their

funds from. We start with the attacker’s account when loading transactions and recursively

load transactions for neighboring accounts that are part of the same transaction for up to a

given number of hops. We do not load transactions for accounts with more than 1,000 trans-

actions. This is to avoid bloating the graph database with transactions from mixing services,

exchanges or gambling smart contracts. Moreover, when loading transactions backwards,

we only load transactions that occurred before the timestamp of the attack, whereas when

loading transactions forwards, we only load transactions that occurred after the timestamp

of the attack. Finally, when all transactions are loaded, security experts can query the graph

database using Neo4j’s own graph query language called Cypher, to trace the flow of stolen
2https://etherscan.io/labelcloud
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funds. Evidently, our tracing is only effective up to a certain point, since mixing services and

exchanges prevent further tracing. Nonetheless, our tracing is still useful to study whether

attackers send their funds to mixers or exchanges and to identify which services are being

used and to what extent.

5.3 Evaluation

In this section, we demonstrate the scalability and effectiveness of our framework by per-

forming a large-scale analysis of the Ethereum blockchain and comparing our results to

those presented in previous works.

Dataset. We used the Ethereum ETL framework [162] to retrieve a list of transactions for

every smart contract deployed up to block 10M. We collected a total of 697,373,206 transac-

tions and 3,362,876 contracts. The deployment timestamps of the collected contracts range

from August 7, 2015, to May 4, 2020. We filtered out contracts without transactions and

removed transactions that have a gas limit of 21,000 (i.e., do not execute code). Moreover,

similar to [165], we skipped all the transactions that were part of the 2016 denial-of-service

attacks, as these incur high execution times [54]. After applying these filters, we ended up

with a final dataset of 1,234,197 smart contracts consisting of 371,419,070 transactions.

During the extraction phase, HORUS generated roughly 700GB of Datalog facts on the final

dataset.

Experimental Setup. All experiments were conducted using a machine with 64 GB of

memory and an Intel(R) Core(TM) i7-8700 CPU with 12 cores clocked at 3.2 GHz, running

64-bit Ubuntu 18.04.5 LTS. Moreover, we used Geth version 1.9.9, Soufflé version 1.7.1,

and Neo4j version 4.0.3.

5.3.1 Results

Table 5.1 summarizes our results: we found 1,888 attacked contracts and 8,095 adversarial

transactions. From these contracts, 46 were attacked using reentrancy, 600 were attacked

during the Parity wallet hacks, 125 were attacked via integer overflows, 1,068 suffered from

unhandled exceptions, and 55 were victims of short address attacks. For the Parity wallet

hacks, we find that the majority was attacked during the first hack. We also observe that most

contracts that are vulnerable to integer overflows were attacked via an integer underflow.

5.3.2 Validation

We confirm our framework’s correctness by comparing our findings to those reported by pre-

vious works for which results were publicly available. Also, we solely compare our finding to
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Table 5.1: Summary of detected vulnerable contracts and adversarial transactions.

Results Validation

Vulnerability Contracts Transactions TP FP p

Reentrancy 46 2,508 45 1 0.97
Parity Wallet Hacks 600 1,852 600 0 1.00

Parity Wallet Hack 1 596 1,632 596 0 1.00
Parity Wallet Hack 2 238 238 238 0 1.00

Integer Overflow 125 443 65 0 1.00
Overflow (Addition) 37 139 25 0 1.00
Overflow (Multiplication) 23 120 20 0 1.00
Underflow (Subtraction) 104 352 68 0 1.00

Unhandled Exception 1,068 3,100 100 0 1.00
Short Address 55 275 5 0 1.00

Total Unique 1,888 8,095

works that, similarly to HORUS, focus on detecting attacks rather than vulnerable contracts.

In cases where the results were not publicly available, we manually inspected the source

code and transactions of flagged contracts using Etherscan. Table 5.1 summarizes the re-

sults of our validation in terms of true positives (TP), false positives (FP) and precision (p).

Overall our framework achieves a high precision of 99.54%.

Reentrancy. First, we compare our results to those of SEREUM [165]. The authors re-

ported a total of 16 vulnerable contracts, where 14 are false positives. The true positives

include the DAO [41] and the DSEthToken [67] contract, which HORUS has also identi-

fied. HORUS has flagged none of the 14 false positives. Next, we compare our results

to ÆGIS [157, 180]. HORUS successfully detected the 7 contracts that were reported

by ÆGIS. Then, we compare our results to SODA [175]. HORUS identified 25 of the 26

contracts that were flagged as true positives by SODA. We analyzed the remaining con-

tract (0x59abb8006b30d7357869760d21b4965475198d9d) and found that it is not vulnerable

to reentrancy, which is in line with what other previous works discovered [198]. For the 5 false

positives reported by SODA, we detected 3 of them, where two (0xd4cd7c881f5ceece4917d8

56ce73f510d7d0769e and 0x72f60eca0db6811274215694129661151f97982e) are actual true

positives and have been misclassified by SODA. The other one (known as HODLWal-

let [98]) is indeed a false positive. Afterwards, we compare our results with those of ETH-

SCOPE [198]. HORUS detected 45 out of the 46 true positives reported by ETHSCOPE. The

non-reported contract is the DarkDAO [42], which did not suffer from a reentrancy attack and

is, therefore, a false positive. In terms of false positives, HORUS only has one in common with

ETHSCOPE, namely the aforementioned HODLWallet contract. The other two false positives

that ETHSCOPE reported were correctly identified as true negatives by HORUS. Finally, we

compare our results with those of Zhou et al. [203]. HORUS found 22 of the 26 contracts that
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have been reported as true positives by Zhou et al. We inspected the remaining 4 contracts

and found that they are false positives.

Parity Wallet Hacks. For the first Parity wallet hack, we compared our results to those

reported by ÆGIS and Zhou et al. ÆGIS reported 3 contracts, which have also been

found by HORUS. Next, Zhou et al. reported 622 contracts, of which HORUS found 596. We

analyzed the remaining 26 contracts and found that these are false positives. After analyzing

their list of transactions, we could not find evidence of the two exploiting transactions, namely

initWallet and execute. For the second Parity wallet hack, we compared our results to

those of ÆGIS. HORUS found 238 contracts, of which 236 were also reported by ÆGIS.

The remaining two are true positives and have not been identified by ÆGIS.

Integer Overflow. We compared our findings to those of Zhou et al. The authors found 50

contracts, whereas we found 125 contracts. HORUS detected 49 of the 50 contracts reported

by Zhou et al. We analyzed the undetected contract (0xa9a8ec071ed0ed5be571396438a046a4

23a0c206) and found no evidence of an integer overflow. Besides our comparison with Zhou

et al., we also tried to analyze manually the source code of the reported contracts. We were

able to obtain the source code for 65 of the 125 reported contracts. Our manual inspection

identified that all of the contracts are true positives. They either contained a faulty arithmetic

check or no arithmetic check at all.

Unhandled Exception. Since none of the previous works analyzed unhandled exceptions,

we manually analyzed the source code of the contracts reported by HORUS. However, we

limited our validation to a random sample of 100 contracts since manually analyzing 1,068

contracts is infeasible. We find that all of the 100 contracts contained in their source code

either a direct call or a function call that did not check the return value. Therefore, we

conclude that HORUS reports no false positives on the detection of unhandled exceptions.

Short Address. We compared our results to those reported by SODA. SODA detected 726

contracts and 6,599 transactions, whereas HORUS detected 55 contracts and 275 transac-

tions. After further investigation, we found that the contracts and transactions detected by

HORUS were also detected by SODA. We also found that SODA reported transactions that

failed or where the transferred amount was zero, while HORUS only reported transactions

that were successful and where an ERC-20 transfer event was successfully triggered with

an amount larger than zero. Moreover, we were able to obtain the source code for 5 of

the reported contracts and confirm that the transfer or transferFrom functions contained

inside those contracts do not validate the input length of parameters.
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Figure 5.10: Weekly average of daily contract deployments and attacks over time.

5.4 Analysis

In this section, we demonstrate the practicality of HORUS in detecting and analyzing real-

world smart contract attacks via an analysis of our evaluated results and a case study on

the recent Uniswap and Lendf.me incidents.

5.4.1 Volume and Frequency of Attacks

Figure 5.10 depicts the weekly average of daily attacks in comparison to the weekly average

of daily deployments. We note that the peak of weekly deployed contracts was at the end

of 2017, and that the largest volume of weekly attacks occurred before this peak. Moreover,

most attacks seem to occur in clusters of the same day. We suspect that attackers scan the

blockchain for similar vulnerable contracts and exploit them at the same time. The first three

spikes in the attacks correspond to the DAO and Parity wallet hacks, whereas the last spike

corresponds to the recent Uniswap/Lendf.me hacks.

2016 2017 2018 2019 2020

Reentrancy
Mean: $2,208,220, Max: $94,812,885

Parity Wallet Hacks
Mean: $9,798,532, Max: $107,773,036

Integer Overflow

Unhandled Exception
Mean: $371,990, Max: $158,396,132

Short Address

DAO Hack

Parity Wallet Hack 1

Parity Wallet Hack 2

SpankChain Hack

Uniswap & Lendf.me Hacks

King of the Ether Throne

BeautyChain Hack

SMT Token Hack

$10
$100
$10,000
$100,000,000

Figure 5.11: Volume and frequency of smart contract attacks over time.

Figure 5.11 depicts the occurrences of adversarial transactions per vulnerability type that

we measured during our evaluation. While reentrancy attacks seem to occur more spo-

radically, other types of vulnerabilities such as unhandled exceptions are triggered rather
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Figure 5.12: Invested ETH and net profit made by Uniswap attackers over time.

continuously. Overall, we see that over time less contracts became victims to short address

attacks and integer overflows, suggesting that smart contracts have become more secure

over the past few years. However, we also see that smart contracts still remain vulner-

able to well-known vulnerabilities such as reentrancy and unhandled exceptions, despite

automated security tools being available. Figure 5.11 also illustrates for each adversarial

transaction the amount of USD that was either stolen (reentrancy and Parity wallet hack 1)

or locked (unhandled exception and Parity wallet hack 2). The USD amounts were calcu-

lated by multiplying the price of one ether at the time of the attack with the amount of ether

extracted via our Datalog query. We do not provide USD amounts for short address attacks

and integer overflows, because these attacks involve stolen ERC-20 tokens and we were not

able to obtain the historical prices of these tokens. We can see that the DAO hack and the

first Parity wallet hack remain the two most devastating attacks in terms of ether stolen, with

ether worth 94,812,885 USD and 107,773,036 USD, respectively. We marked well-known

incidents such as the DAO hack, or the two Parity wallet hacks for the reader’s convenience

and to demonstrate that HORUS is able to detect them.

5.4.2 Forensic Analysis on Uniswap and Lendf.me Incidents

Uniswap. On April 18, 2020, attackers were able to drain a large amount of ether from

Uniswap’s liquidity pool of ETH-imBTC [154]. They purposely chose the imBTC token as

it implements the ERC777 standard, which would allow them to register a callback func-

tion and therefore perform a reentrancy attack on Uniswap. The attackers would start by

purchasing imBTC tokens for ETH. Afterward, they would exchange half of the purchased

imBTC tokens within the same transaction back to ETH. However, the latter would trigger a

callback function that the attackers registered before the attack, allowing them to take control

and call back the Uniswap contract to exchange the remaining half of imBTC tokens to ETH

before the conversion rate was updated. Thus, the attackers could trade the second batch
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Figure 5.13: Transaction graph of Uniswap incident with normal transactions loaded for-
wards for up to 5 hops. Yellow node highlights Uniswap attacker whereas pink nodes high-
light exchanges.

of imBTC tokens at a more profitable conversion rate. Interestingly, this vulnerability was

known to Uniswap and was publicly disclosed precisely a year before the attack [148].

We used HORUS to extract and analyze all the transactions mined on that day, and

identified a total of 525 transactions performing reentrancy attacks against Uniswap with

an accumulated profit of 1,278 ETH (232,239.46 USD). The attack began at 00:58:19 UTC

and ended roughly 3.5 hours later at 04:22:58 UTC. Figure 5.12 depicts a timeline of the

attack, showing the amount of ether that the attackers invested and the net profit they made

per transaction. We see that the net profit goes down over time. The highest profit made

for a single transaction was roughly 9.79 ETH (1,778.72 USD), while the lowest profit was

0.01 ETH (2.73 USD). The attackers began their attack by purchasing tokens for roughly

80 ETH and went over time down to 1 ETH. Moreover, we see that the profit was mostly

tied to the amount of ether that the attackers were investing (i.e., using to purchase imBTC

tokens). However, we also see that sometimes there were some fluctuations, where the

attackers were making more profit while they would invest the same amount of ether. This is

probably due to other participants trading imBTC on Uniswap during the attack and therefore

influencing the exchange rates. In the last step, we traced the entire ether flow from the

attackers account for up to 5 hops using HORUS’s tracing capabilities (see Figure 5.13).

Our transaction graph analysis reveals that the attackers exchanged roughly 702 ETH (55%
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Figure 5.14: Deposited and borrowed tokens by Lendf.me attackers over time.

of the stolen funds) for tokens on different exchanges: 589 ETH on Uniswap for WETH,

DAI, USDC, BAT, and MKR, 31 ETH on Compound, and 82 ETH on 1inch.exchange. The

latter is of particular interest for law enforcement agencies as 1inch.exchange keeps track

of IP addresses of transactions performed over their platform [192], which can be useful in

deanonymizing the attackers.

Lendf.me. On April 19, 2020, attackers were able to drain all tokens from Lendf.me’s liquid-

ity pools [153]. Similar to the Uniswap hack, the attackers exploited the fact that Lendf.me

was trading imBTC and could register a callback function to perform a reentrancy attack.

The attackers would start by depositing x amount of imBTC tokens into Lendf.me’s liquidity

pool. Next, still within the same transaction, they would deposit another amount y, however,

this time triggering the callback function registered by the attackers, which would withdraw

the previously deposited x tokens from Lendf.me. By the end of the transaction, the imBTC

balance of the attackers on the imBTC token contract would be x − y, but the imBTC bal-

ance on the Lendf.me contract would be x + y, thereby increasing their imBTC balance on

Lendf.me by x without actually depositing it. Similar to Uniswap, the issue here is that the

user’s balance is only updated after the transfer of tokens, thus the update is based on data

before the transfer and therefore ignoring any updates made in between.

Using HORUS, we extracted and analyzed all the transactions mined on that day. We

identified a total of 46 transactions performing reentrancy attacks against Lendf.me, and 19

transactions using the stolen imBTC tokens to borrow other tokens. Figure 5.14 shows on

the left the amount of imBTC tokens that the attackers deposited during the attack and the

amount of USD that the attackers made by borrowing other tokens. The right-hand side of

Figure 5.14 depicts the number of tokens in USD that the attackers borrowed from Lendf.me.

The attackers borrowed from 12 different tokens, worth together 25,244,120.74 USD, where

10.31M USD are only from borrowing WETH. The attackers launched their attack at 00:58:43

UTC and stopped 2 hours later at 02:12:11 UTC. They started depositing low amounts of

imBTC and increased their amounts over time up to 291.35 imBTC. The borrowing started
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Figure 5.15: Transaction graph of Lendf.me incident with token transfers loaded forwards
for up to 3 hops. Yellow node highlights Lendf.me attacker whereas pink nodes highlight
exchanges.

at 01:22:27 UTC and ended at 03:30:42 UTC. Finally, we used HORUS to trace the flow

of tokens from the attackers account for up to 3 hops (see Figure 5.15). We found that

the attackers initially traded some parts of the stolen tokens for other tokens on ParaSwap,

Compound, Aave, and 1inch.exchange. However, at 14:16:52 UTC, thus about 10 hours

later, the attackers started sending all the stolen tokens back to Lendf.me’s admin account

(0xa6a6783828ab3e4a9db54302bc01c4ca73f17efb). Lendf.me then moved all the tokens into

a recovery account (0xc88fcc12f400a0a2cebe87110dcde0dafd29f148) where users could

then reclaim their tokens.

5.5 Related Work

Researchers proposed a number of tools to detect smart contract vulnerabilities via static

analysis. Luu et al. [51] proposed OYENTE, the first symbolic execution tool for smart con-

tracts. Other tools such as OSIRIS [102], combine symbolic execution and taint analysis

to detect integer bugs. MYTHRIL [120] uses a mix of symbolic execution and control-flow

checking. MAIAN [122] employs inter-procedural symbolic execution. TEETHER [116] auto-

matically generates exploits for smart contracts. HONEYBADGER [158] performs symbolic

execution to detect honeypots. However, symbolic execution is often unable to explore all

program states, making it generally unsound. Formal verification tools were proposed [117,

170], together with a formal definition of the EVM [107]. ETHBMC [181] uses bounded

model checking to detect vulnerabilities, whereas ETHOR [193] uses reachability analy-
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sis. ZEUS [112] verifies the correctness of smart contracts using abstract interpretation and

model checking. SMARTCHECK [135] checks Solidity source code against XPath patterns.

VERISMART [194] leverages counter example-based inductive synthesis to detect arithmetic

bugs. SECURIFY [136] extracts semantic information from the dependency graph to check

for compliance and violation patterns using Datalog. VANDAL [90] converts EVM bytecode to

semantic logic relations and checks them against Datalog queries. The main difference be-

tween these works and ours, is that they analyze the bytecode of smart contracts, whereas

we analyze the execution of transactions.

Although less apparent, a number of dynamic approaches have also been proposed.

ECFCHECKER [69] enables the runtime detection of reentrancy attacks via a modified EVM.

SEREUM [165] proposes a modified EVM to protect deployed smart contracts against reen-

trancy attacks. ÆGIS [157, 180] presents a smart contract and a DSL to protect against

all kinds of runtime attacks. SODA [175] uses a modified Ethereum client to inject custom

modules for the online detection of malicious transactions. Perez et al. [218] use Datalog

to study the transactions of vulnerable smart contracts that have been detected by previous

works. ETHSCOPE [198] loads historical data into an Elasticsearch database and adds dy-

namic taint analysis to the client to analyze transactions. Zhou et al. [203] study attacks and

defenses by encoding transactional information as action trees and result graphs. TXSPEC-

TOR [200] is a concurrent work to ours and adopts the Datalog facts proposed by VANDAL.

However, these facts were designed to analyze bytecode and do not allow to detect multi-

transactional attacks. In contrast to these works, our work does not modify the Ethereum

client. Instead, we dynamically inject our custom tracer into the client. We also provide a

new set of Datalog facts that allow to check for multi-transactional attacks and describe data

flows between instructions via dynamic taint analysis. Finally, none of the aforementioned

tools provide means to trace stolen assets across the Ethereum blockchain.

5.6 Conclusion

In this chapter, we presented the design and implementation of an extensible framework

called HORUS, for carrying out longitudinal studies on the detection, analysis, and tracing

of smart contract attacks. We analyzed transactions from August 2015 to May 2020 and

identified 8,095 attacks as well as 1,888 vulnerable contracts. Our analysis revealed that the

number of attacks seem to have decreased for attacks such as integer overflows, whereas

the number for unhandled exceptions and reentrancy attacks still seem to remain constant

despite an abundance of new smart contract security tools. Finally, we also presented an in-

depth analysis on the 2020 Uniswap and Lendf.me incidents and demonstrate the practicality

of HORUS in performing post-mortem analyses.
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6 | HoneyBadger
Demystifying Smart Contract Honeypots

In this chapter, we investigate the emergence of smart contract honeypots. In the past few

years, several smart contracts have been exploited by attackers. However, a new trend to-

wards a more proactive approach seems to be on the rise, where attackers do not search

for vulnerable contracts anymore. Instead, they try to lure their victims into traps by deploy-

ing seemingly vulnerable contracts that contain hidden traps. This new type of contracts is

commonly referred to as honeypots. In this chapter, we present the first systematic analy-

sis of honeypot smart contracts, by investigating their prevalence, behavior and impact on

the Ethereum blockchain. We develop a taxonomy of honeypot techniques and use this to

build HONEYBADGER – a tool that employs symbolic execution and well defined heuristics

to expose honeypots. We perform a large-scale analysis on more than 2 million smart con-

tracts and identify 690 honeypot smart contracts as well as 240 victims in the wild, with an

accumulated profit of more than 90,000 USD for the honeypot creators. Finally, our manual

validation shows that 87% of the reported contracts are indeed honeypots.

6.1 Introduction

As Ethereum grows and becomes more valuable, attackers also become more incentivized

to find and exploit vulnerable contracts. In fact, Ethereum already faced several devastating

attacks on vulnerable smart contracts. The most prominent ones being the DAO hack in

2016 [57] and the Parity Wallet hack in 2017 [84], together causing a loss of over 400M USD.

In response to these attacks, academia proposed a plethora of different tools that allow to

scan contracts for vulnerabilities, prior to deploying them on the blockchain (see e.g., [51,

120, 102]). Unfortunately, these tools may also be used by attackers in order to easily

find vulnerable contracts and exploit them. This potentially enables attackers to follow a

reactive approach by actively scanning the blockchain for vulnerable contracts. Alternatively,

attackers could follow a more proactive approach by luring their victims into traps. In other

words: Why should I spend my time on looking for victims, if I can just let the victims come

to me? This new type of fraud has been introduced by the community as “honeypots” (see

e.g., [131, 132]). Honeypots are smart contracts that appear to have an obvious flaw in their
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design, which allows an arbitrary user to drain ether from the contract, given that the user

transfers a priori a certain amount of ether to the contract. However, once the user tries to

exploit this apparent vulnerability, a second, yet unforeseen, trapdoor unfolds which prevents

the draining of ether to succeed. The idea is that the user solely focuses on the apparent

vulnerability and does not consider the possibility that a second vulnerability might be hidden

in the contract. Similar to other types of fraud, honeypots work because human beings are

often easily manipulated. People are not always capable of quantifying risk against their own

greed and presumptions.

In this chapter, we investigate the prevalence of such honeypot smart contracts in Ether-

eum. To the best of our knowledge, this is the first work to provide an in depth analysis on

the inner workings of this new type of fraud. Moreover, we introduce HONEYBADGER – a

tool that uses a combination of symbolic execution and precise heuristics to automatically

detect various types of honeypots. Using HONEYBADGER, we are able to provide interesting

insights on the plethora, anatomy, and popularity of honeypots that are currently deployed

on the Ethereum blockchain. Finally, we investigate whether honeypots are profitable and

discuss their effectiveness. In summary, this chapter makes the following contributions:

Contributions

• We conduct the first systematic analysis of an emerging new type of fraud in

Ethereum: honeypots.

• We identify common techniques used by honeypots and organize them in a taxon-

omy.

• We present HONEYBADGER, a tool based on symbolic execution that automatically

detects honeypots in Ethereum smart contracts.

• We analyze 2 million smart contracts and confirm the prevalence of at least 690

honeypots in the wild.

• We discover that 240 users already became victims of honeypots, with an accumu-

lated loss of over 90,000 USD for the honeypot creators.

6.2 Ethereum Honeypots

In this section, we provide a general definition of a honeypot and introduce our taxonomy of

honeypots.

6.2.1 Honeypots

Definition 1 (Honeypot). A honeypot is a smart contract that pretends to leak its funds to

an arbitrary user (victim), provided that the user sends additional funds to it. However, the
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funds provided by the user will be trapped and only the honeypot creator (attacker) will be

able to retrieve them.

Attacker Honeypot

1) Deployment

3) Withdrawal
2) Exploitation

Victim

Figure 6.1: Actors and phases of a honeypot smart contract.

Figure 6.1 depicts the different actors and phases of a honeypot. A honeypot generally

operates in three phases:

(1) The attacker deploys a seemingly vulnerable contract and places a bait in the form of

funds;

(2) The victim attempts to exploit the contract by transferring at least the required amount

of funds and fails;

(3) The attacker withdraws the bait together with the funds that the victim lost in the at-

tempt of exploitation.

An attacker does not require special capabilities to set up a honeypot. In fact, an attacker has

the same capabilities as a regular Ethereum user. He or she solely requires the necessary

funds to deploy the smart contract and to place a bait.

6.2.2 Taxonomy of Honeypots

We grasped public sources available on the Internet, in order to have a first glimpse at the

inner workings of honeypots [139, 118, 131, 130, 132]. We were able to collect a total of

24 honeypots (see Table 6.1) and distill 8 different honeypot techniques. Table 6.1 presents

the list of 24 honeypots that have been collected from public sources available on the Inter-

net. We organize the different techniques in a taxonomy (see Table 6.2), whose purpose is

twofold: (i) as a reference for users in order to avoid common honeypots in Ethereum; (ii) as

a guide for researchers to foster the development of methods for the detection of fraudulent

smart contracts. We group the different techniques into three different classes, according to

the level on which they operate:

(1) Ethereum Virtual Machine

(2) Solidity Compiler

(3) Etherscan Blockchain Explorer
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Table 6.1: List of publicly available honeypots on the Internet [139, 118, 131, 130, 132].

Contract Name Contract Address Technique

Ethereum Virtual Machine

MultiplicatorX3 0x5aa88d2901c68fda244f1d0584400368d2c8e739 Balance Disorder

PinCodeEtherStorage 0x35c3034556b81132e682db2f879e6f30721b847c Balance Disorder

Solidity Compiler

TestBank 0x70c01853e4430cae353c9a7ae232a6a95f6cafd9 Inheritance Disorder

KingOfTheHill 0x4dc76cfc65b14b3fd83c8bc8b895482f3cbc150a Inheritance Disorder

RichestTakeAll 0xe65c53087e1a40b7c53b9a0ea3c2562ae2dfeb24 Inheritance Disorder

ICO_Hold 0x4ba0d338a7c41cc12778e0a2fa6df2361e8d8465 Inheritance Disorder

TerrionFund 0x33685492a20234101b553d2a429ae8a6bf202e18 Inheritance Disorder

DividendDistributorv3 0x858c9eaf3ace37d2bedb4a1eb6b8805ffe801bba Skip Empty String Literal

For_Test 0x2ecf8d1f46dd3c2098de9352683444a0b69eb229 Type Deduction Overflow

Test1 0x791d0463b8813b827807a36852e4778be01b704e Type Deduction Overflow

CryptoRoulette 0x94602b0e2512ddad62a935763bf1277c973b2758 Uninitialised Struct

OpenAddressLottery 0xd1915a2bcc4b77794d64c4e483e43444193373fa Uninitialised Struct

GuessNumber 0x559cc6564ef51bd1ad9fbe752c9455cb6fb7feb1 Uninitialised Struct

Etherscan Blockchain Explorer

TestToken 0x3d8a10ce3228cb428cb56baa058d4432464ea25d Hidden Transfer

WhaleGiveaway1 0x7a4349a749e59a5736efb7826ee3496a2dfd5489 Hidden Transfer

Gift_1_ETH 0xd8993f49f372bb014fb088eabec95cfdc795cbf6 Hidden State Update

NEW_YEARS_GIFT 0x13c547ff0888a0a876e6f1304eaefe9e6e06fc4b Hidden State Update

G_GAME 0x3caf97b4d97276d75185aaf1dcf3a2a8755afe27 Hidden State Update

IFYKRYGE 0x1237b26652eebf1cb8f59e07e07101c0df4f60f6 Hidden State Update

EtherBet 0x3c3f481950fa627bb9f39a04bccdc88f4130795b Hidden State Update

Private_Bank 0xd116d1349c1382b0b302086a4e4219ae4f8634ff Straw Man Contract

firstTest 0x42db5bfe8828f12f164586af8a992b3a7b038164 Straw Man Contract

TransferReg 0x62d5c4a317b93085697cfb1c775be4398df0678c Straw Man Contract

testBank 0x477d1ee2f953a2f85dbecbcb371c2613809ea452 Straw Man Contract

The first class tricks users by making use of the unusual behavior of the EVM. Although the

EVM follows a strict and publicly known set of rules, users can still be misled or confused

by devious smart contract implementations that suggest a non-conforming behavior. The

second class relates to honeypots that benefit from issues that are introduced by the Solid-

ity compiler. While some compiler issues are well known, others still remain undocumented

and might go unnoticed if a user does not analyze the smart contract carefully or does not

test it under real-world conditions. The final and third class takes advantage of issues that

are related to the limited information displayed on Etherscan’s website. Etherscan is per-
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https://etherscan.io/address/0x3c3f481950fa627bb9f39a04bccdc88f4130795b#code
https://etherscan.io/address/0xd116d1349c1382b0b302086a4e4219ae4f8634ff#code
https://etherscan.io/address/0x42db5bfe8828f12f164586af8a992b3a7b038164#code
https://etherscan.io/address/0x62d5c4a317b93085697cfb1c775be4398df0678c#code
https://etherscan.io/address/0x477d1ee2f953a2f85dbecbcb371c2613809ea452#code
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Table 6.2: A taxonomy of honeypot techniques in Ethereum smart contracts.

Level Technique

Ethereum Virtual Machine Balance Disorder

Solidity Compiler

Inheritance Disorder
Skip Empty String Literal
Type Deduction Overflow

Uninitialized Struct

Etherscan Blockchain Explorer
Hidden State Update

Hidden Transfer
Straw Man Contract

haps the most prominent Ethereum blockchain explorer and many users fully trust the data

displayed therein. In the following, we explain each honeypot technique through a simplified

example. We also assume that: 1) the attacker has placed a bait in form of ether into the

smart contract, as an incentive for users to try to exploit the contract; 2) the attacker has a

way of retrieving the amount of ether contained in the honeypot.

Ethereum Virtual Machine

Balance Disorder. Every smart contract in Ethereum possesses a balance. The contract in

Figure 6.2 depicts an example of a honeypot that makes use of a technique that we denote

as balance disorder. The function multiplicate suggests that the balance of the contract

(this.balance) and the value included in the transaction to this function call (msg.value)

are transferred to an arbitrary address, if the caller of this function includes a value that is

higher than or equal to the current balance of the smart contract. Hence, a naive user will

believe that all that he or she needs to do, is to call this function with a value that is higher

or equal to the current balance, and that in return he or she will obtain the “invested” value

plus the balance contained in the contract. However, if a user tries to do so, he or she will

quickly realize that line 5 is not executed because the condition at line 4 does not hold. The

reason for this is that the balance is already incremented with the transaction value, before

the actual execution of the smart contract takes place. It is worth noting that: 1) the condition

at line 4 can be satisfied if the current balance of the contract is zero, but then the user does

1 contract MultiplicatorX3 {
2 ...
3 function multiplicate(address adr) payable {
4 if (msg.value >= this.balance)
5 adr.transfer(this.balance + msg.value);
6 }
7 }

Figure 6.2: An example of a balance disorder honeypot.
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1 contract Ownable {
2 address owner = msg.sender;
3 modifier onlyOwner {
4 require(msg.sender == owner);
5 _;
6 }
7 }
8 contract KingOfTheHill is Ownable {
9 address public owner;

10 ...
11 function() public payable {
12 if(msg.value > jackpot) owner = msg.sender;
13 jackpot += msg.value;
14 }
15 function takeAll() public onlyOwner {
16 msg.sender.transfer(this.balance);
17 jackpot = 0;
18 }
19 }

Figure 6.3: An example of an inheritance disorder honeypot.

not have an incentive to exploit the contract; 2) the addition this.balance+msg.value at line

5, solely serves the purpose of making the user further believe that the balance is updated

only after the execution.

Solidity Compiler

Inheritance Disorder. Solidity supports inheritance via the is keyword. When a contract

inherits from multiple contracts, only a single contract is created on the blockchain, and the

code from all the base contracts is copied into the created contract. Figure 6.3 shows an

example of a honeypot that makes use of a technique that we denote as inheritance disor-

der. At first glance, there seems to be nothing special about this code, we have a contract

KingOfTheHill that inherits from the contract Ownable. We notice two things though: 1)

the function takeAll solely allows the address stored in variable owner to withdraw the con-

tract’s balance; 2) the owner variable can be modified by calling the fallback function with a

message value that is greater than the current jackpot (line 12). Now, if a user tries to call

the function in order to set themself as the owner, the transaction succeeds. However, if he

or she afterwards tries to withdraw the balance, the transaction fails. The reason for this is

that the variable owner, declared at line 9, is not the same as the variable that is declared

at line 2. We would assume that the owner at line 9 would be overwritten by the one at

line 2, but this is not the case. The Solidity compiler will treat the two variables as distinct

variables and thus writing to owner at line 9 will not result in modifying the owner defined in

the contract Ownable.

Skip Empty String Literal. The contract illustrated in Figure 6.4 allows a user to place
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an investment by sending a minimum amount of ether to the contract’s function invest.

Investors may withdraw their investment by calling the function divest. Now, if we have

a closer look at the code, we realize that there is nothing that prohibits the investor from

divesting an amount that is greater than the originally invested amount. Thus a naive user

is led to believe that the function divest can be exploited. However, this contract contains a

bug known as skip empty string literal1. The empty string literal that is given as an argument

to the function loggedTransfer (line 14), is skipped by the encoder of the Solidity compiler.

This has the effect that the encoding of all arguments following this argument are shifted to

the left by 32 bytes and thus the function call argument msg receives the value of target,

whereas target is given the value of currentOwner, and finally currentOwner receives the

default value zero. Thus, in the end the function loggedTransfer performs a transfer to

currentOwner instead of target, essentially diverting all attempts to divest from the contract

to transfers to the owner. A user trying to use the smart contract’s apparent vulnerability

thereby effectively just transfers the investment to the contract owner.

1 contract DividendDistributorv3 {

2 ...

3 function loggedTransfer(uint amount,bytes32 msg,address target,address currentOwner){

4 if (!target.call.value(amount)()) throw;

5 Transfer(amount, msg, target, currentOwner);

6 }

7 function invest() public payable {

8 if (msg.value >= minInvestment)

9 investors[msg.sender].investment += msg.value;

10 }

11 function divest(uint amount) public {

12 if (investors[msg.sender].investment == 0 || amount == 0) throw;

13 investors[msg.sender].investment - =amount;

14 this.loggedTransfer(amount, "", msg.sender, owner);

15 }

16 }

Figure 6.4: An example of a skip empty string literal honeypot.

Type Deduction Overflow. In Solidity, when declaring a variable as type var, the compiler

uses type deduction to automatically infer the smallest possible type from the first expression

that is assigned to the variable. The contract in Figure 6.5 depicts an example of a honeypot

that makes use of a technique that we denote as type deduction overflow. At first, the

contract suggests that a user will be able to double the investment. However, since the type

is only deduced from the first assignment, the loop at line 7 will be infinite. Variable i will

have the type uint8 and the highest value of this type is 255, which is smaller than 2 *

1https://github.com/ethereum/solidity/blob/develop/docs/bugs.json
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msg.value2. Therefore, the loop’s halting condition will never be reached. Nevertheless, the

loop can still be stopped, if the variable multi is smaller than amountToTransfer. This is

possible, since amountToTransfer is assigned the value of multi, which eventually will be

smaller than amountToTransfer due to an integer overflow happening at line 8, where i is

multiplied by 2. Once the loop exits, the contract performs a value transfer back to the caller,

although with an amount that will be at most 255 wei (smallest sub-denomination of ether,

where 1 ether = 1018 wei) and therefore far less than the value the user originally invested.

1 contract For_Test {

2 ...

3 function Test() payable public {

4 if (msg.value > 0.1 ether) {

5 uint256 multi = 0;

6 uint256 amountToTransfer = 0;

7 for (var i = 0; i < 2 * msg.value; i++) {

8 multi = i * 2;

9 if (multi < amountToTransfer) {

10 break;

11 amountToTransfer = multi;

12 }

13 msg.sender.transfer(amountToTransfer);

14 }

15 }

16 }

Figure 6.5: An example of a type deduction overflow honeypot.

Uninitialized Struct. Solidity provides means to define new data types in the form of structs.

They combine several named variables under one variable and are the basic foundation for

more complex data structures in Solidity. An example of an uninitialized struct honeypot is

given in Figure 6.6. In order to withdraw the contract’s balance, the contract requires a user

to place a minimum bet and guess a random number that is stored in the contract. However,

any user can easily obtain the value of the random number, since every data stored on the

blockchain is publicly available. The first thought suggests that the contract creator simply

made a common mistake by assuming that variables declared as private are secret. An

innocent user simply reads the random number from the blockchain and calls the function

guessNumber by placing a bet and providing the correct number. Afterwards, the contract

creates a struct that seems to track the participation of the user. However, the struct is not

properly initialized via the new keyword. As a result, the Solidity compiler maps the storage

location of the first variable contained in the struct (player) to the storage location of the first

variable contained in the contract (randomNumber), thereby overwriting the random number

22 * 0.1 ether = 2 * 1017 wei
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with the address of the caller and thus making the condition at line 14 fail. It is worth noting

that the honeypot creator is aware that a user might try to guess the overwritten value.

The creator therefore limits the number to be between 1 and 10 (line 10), which drastically

reduces the chances of the user generating an address that fulfills this condition.

1 contract GuessNumber {

2 uint private randomNumber = uint256(keccak256(now)) % 10 + 1;

3 uint public lastPlayed;

4 uint public minBet = 0.1 ether;

5 struct GuessHistory {

6 address player;

7 uint256 number;

8 }

9 function guessNumber(uint256 _number) payable{

10 require(msg.value >= minBet && _number <= 10);

11 GuessHistory guessHistory;

12 guessHistory.player = msg.sender;

13 guessHistory.number = _number;

14 if (_number == randomNumber)

15 msg.sender.transfer(this.balance);

16 lastPlayed = now;

17 }

18 }

Figure 6.6: An example of an uninitialized struct honeypot.

Etherscan Blockchain Explorer

Hidden State Update. In addition to normal transactions, Etherscan also displays so-called

internal messages, which are transactions that originate from other contracts and not from

user accounts. However, for usability purposes, Etherscan does not display internal mes-

sages that include an empty transaction value. The contract in Figure 6.7 is an example of

a honeypot technique that we denote as hidden state update. In this example, the balance

is transferred to whoever can guess the correct value that has been used to compute the

stored hash. A naive user will assume that passHasBeenSet is set to false and will try to call

the unprotected SetPass function, which allows to rewrite the hash with a known value, given

that least 1 ether is transferred to the contract. When analysing the internal messages on

Etherscan, the user will not find any evidence of a call to the PassHasBeenSet function and

therefore assume that passHasBeenSet is set to false. However, the filtering performed by

Etherscan can be misused by the honeypot creator in order to silently update the state of the

variable passHasBeenSet, by calling the function PassHasBeenSet from another contract and

using an empty transaction value. Thus, by just looking at the internal messages displayed

on Etherscan, unaware users will believe that the variable is set to false and confidently
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transfer ether to the SetPass function.

1 contract Gift_1_ETH {

2 bool passHasBeenSet = false;

3 ...

4 function SetPass(bytes32 hash) payable {

5 if (!passHasBeenSet && (msg.value >= 1ether))

6 hashPass = hash;

7 }

8 function GetGift(bytes pass) returns(bytes32) {

9 if (hashPass == sha3(pass))

10 msg.sender.transfer(this.balance);

11 return sha3(pass);

12 }

13 function PassHasBeenSet(bytes32 hash) {

14 if (hash == hashPass) passHasBeenSet = true;

15 }

16 }

Figure 6.7: An example of a hidden state update honeypot.

Hidden Transfer. Etherscan provides a web interface that displays the source code of a

validated smart contract. Validated means that the provided source code has successfully

been compiled to the associated bytecode. For quite a while, Etherscan presented the

source code within an HTML textarea element, where larger lines of code would only be

displayed up to a certain width. Thus, the rest of the line of code would be hidden and solely

visible by scrolling horizontally. The contract in Figure 6.8 takes advantage of this “feature”

by introducing, at line 4 in function withdrawAll, a long sequence of white spaces, effectively

hiding the code that follows. The hidden code throws, if the caller of the function is not the

owner and thereby prevents the subsequent balance transfer to any caller of the function.

Also note the check at line 4, where the block number must be greater than 5,040,270. This

ensures that the honeypot solely steals funds when deployed on the main network. Since

the block numbers on the test networks are smaller, testing this contract on a such a network

1 contract TestToken {
2 ...
3 function withdrawAll() payable {
4 require(0.5 ether < total);/*______________________________________________________*/

if (block.number > 5040270) {if (_owner == msg.sender){_owner.transfer(this.
balance);} else {throw;}}

5 msg.sender.transfer(this.balance);
6 }
7 }

Figure 6.8: An example of a hidden transfer honeypot.
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1 contract Private_Bank {
2 ...
3 function Private_Bank(address _log) {
4 TransferLog = Log(_log);
5 }
6 function Deposit() public payable {
7 if (msg.value >= MinDeposit) {
8 balances[msg.sender] += msg.value;
9 TransferLog.AddMessage("Deposit");

10 }
11 }
12 function CashOut(uint _am) {
13 if (_am<=balances[msg.sender]) {
14 if (msg.sender.call.value(_am)()) {
15 balances[msg.sender] -= _am;
16 TransferLog.AddMessage("CashOut");
17 }
18 }
19 }
20 }
21 contract Log {
22 ...
23 function AddMessage(string _data) public {
24 LastMsg.Time = now;
25 LastMsg.Data = _data;
26 History.push(LastMsg);
27 }
28 }

Figure 6.9: An example of a straw man contract honeypot.

would transfer all the funds to the victim, making him or her believe that the contract is not a

honeypot. We label this type of honeypot as hidden transfer.

Straw Man Contract. In Figure 6.9 we provide an example of a honeypot technique that we

denote as straw man contract. At first sight, it seems that the contract’s CashOut function is

vulnerable to a reentrancy attack [60] (line 14). In order to be able to mount the reentrancy

attack, the user is required to first call the Deposit function and transfer a minimum amount

of ether. Eventually, the user calls the CashOut function, which performs a call to the contract

address stored in TransferLog. As shown in the Figure 6.9, the contract called Log is sup-

posed to act as a logger. However, the honeypot creator did not initialize the contract with an

address containing the bytecode of the shown logger contract. Instead it has been initialized

with another address pointing to a contract that implements the same interface, but throws

an exception if the function AddMessage is called with the string “CashOut” and the caller

is not the honeypot creator. Thus, the reentrancy attack performed by the user will always

fail. Another alternative, is to use a delegatecall right before the transfer of the balance.

Delegatecall allows a callee contract to modify the stack of the caller contract. Thus, the

attacker would simply swap the address of the user contained on the stack with his or her
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Figure 6.10: An overview of the analysis pipeline of HONEYBADGER. The shaded boxes
represent the main components.

own address and when returning from the delegatecall, the balance would be transferred to

the attacker instead of the user.

6.3 HONEYBADGER

In this section, we provide an overview on the design and implementation of HONEYBAD-

GER3.

6.3.1 Design Overview

Figure 6.10 depicts the overall architecture and analysis pipeline of HONEYBADGER. HON-

EYBADGER takes as input EVM bytecode and returns as output a detailed report regarding

the different honeypot techniques it detected. HONEYBADGER consists of three main compo-

nents: symbolic analysis, cash flow analysis and honeypot analysis. The symbolic analysis

component constructs the Control-Flow Graph (CFG) and symbolically executes its different

paths. The result of the symbolic analysis is afterwards propagated to the cash flow analysis

component as well as the honeypot analysis component. The cash flow analysis component

uses the result of the symbolic analysis to detect whether the contract is capable to receive

as well as transfer funds. Finally, the honeypot analysis component aims at detecting the dif-

ferent honeypots techniques studied in this chapter using a combination of heuristics and the

results of the symbolic analysis. Each of the three components uses the Z3 SMT solver [11]

to check for the satisfiability of constraints.

6.3.2 Implementation

HONEYBADGER is implemented in Python, with roughly 4,000 lines of code. We briefly

describe the implementation details of each main component below.

Symbolic Analysis. The symbolic analysis component starts by constructing a CFG from

the bytecode, where every node in the CFG corresponds to a basic block and every edge

3Code is publicly available at: https://github.com/christoftorres/HoneyBadger
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corresponds to a jump between individual basic blocks. A basic block is a sequence of

instructions with no jumps going in or out of the middle of the block. The CFG captures

all possible program paths that are required for symbolic execution. Symbolic execution

represents the values of program variables as symbolic expressions. Each program path

consists of a list of path conditions (a formula of symbolic expressions), that must be satisfied

for execution to follow that path. We reused and modified the symbolic execution engine

proposed by Luu et al. [51, 76]. The engine consists of an interpreter loop that receives a

basic block and symbolically executes every single instruction within that block. The loop

continues until all basic blocks of the CFG have been executed or a timeout is reached.

Loops are terminated once they exceed a globally defined loop limit. The engine follows

a depth first search approach when exploring branches and queries Z3 to determine their

feasibility. A path is denoted as feasible if its path conditions are satisfiable. Otherwise, it

is denoted as infeasible. Usually, symbolic execution tries to detect and ignore infeasible

paths in order to improve their performance. However, our symbolic execution does not

ignore infeasible paths, but executes them nevertheless, as they can be useful for detecting

honeypots (see Section 6.3.2). The purpose of the symbolic analysis is to collect all kinds of

information that might be useful for later analysis. This information includes a list of storage

writes, a list of execution paths P , a list of infeasible as well as feasible basic blocks, a list of

performed multiplications and additions, and a list of calls C. Calls are extracted through the

opcodes CALL and DELEGATECALL, and either represent a function call, a contract call

or a transfer of Ether. A call consists of the tuple (cr, cv, cf , ca, ct, cg), where cr is the recipient,

cv is the call value, cf is the called contract function, ca is the list of function arguments, ct is

the type of call (i.e., CALL or DELEGATECALL) and cg is the available gas for the call.

Cash Flow Analysis. Given the definition in Section 6.2.1, a honeypot must be able to

receive funds (e.g., the investment of a victim) and transfer funds (e.g., the loot of the at-

tacker). The purpose of our cash flow analysis is to improve the performance of our tool, by

safely discarding contracts that cannot receive or transfer funds.

Receiving Funds. There are multiple ways to receive funds besides direct transfers: as a

recipient of a block reward, as a destination of a selfdestruct or through the call of a payable

function. Receiving funds through a block reward or a selfdestruct makes little sense for a

honeypot as this would not execute any harmful code. Also, the compiler adds a check during

compilation time that reverts a transaction if a non-payable function receives a transaction

value that is larger than zero. Based on these observations, we verify that a contract is

able to receive funds, by first iterating over all possible execution paths contained in P and

checking whether there exists an execution path p that does not terminate in a REVERT.

Afterwards, we use Z3 to verify if the constraint Iv > 0 can be satisfied under the given path

conditions of the execution path p. If p satisfies the constraint, we know that funds can flow

into the contract.
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Transferring Funds. There are two different ways to transfer funds: either explicit via a call

or implicit via a selfdestruct. We verify the former by iterating over all calls contained in C

and checking whether there exists a call c, where cv is either symbolic or cv > 0. We verify

the latter by iterating over all execution paths contained in P and checking whether there

exists an execution path p that terminates in a SELFDESTRUCT. Finally, we know that funds

can flow out of the contract, if we find at least one call c or execution path p, that satisfies

the aforementioned conditions.

Honeypot Analysis. The honeypot analysis consists of several sub-components. Each

sub-component is responsible for the detection of a particular honeypot technique. Every

honeypot technique is identified via heuristics. We describe the implementation of each sub-

component below. The honeypot analysis can easily be extended to detect future honeypots

by simply implementing new sub-components.

• Balance Disorder. Detecting a balance disorder is straightforward. We iterate over all

calls contained in C and report a balance disorder, if we find a call c within an infeasible

basic block, where cv = Iv + σ[Ia]b.

• Inheritance Disorder. Detecting an inheritance disorder at the bytecode level is rather

difficult since bytecode does not include information about inheritance. Therefore, we

leverage on implementation details that are specific to this honeypot technique: 1)

there exists an Is that is written to a storage location which is never used inside a path

condition, call or suicide; and 2) there exists a call c, whose path conditions contain

a comparison between Is and a storage variable, whose storage location is different

than the storage location identified in 1).

• Skip Empty String Literal. We start by iterating over all calls contained in C and

checking whether there exists a call c, where the number of arguments in ca is smaller

than the number of arguments expected by cf . We report a skip empty string literal,

if we can find another call c′, that is called within function cf and where c′r originates

from an argument in ca.

• Type Deduction Overflow. We detect a type deduction overflow by iterating over all

calls contained in C and checking whether there exists a call c, where cv contains the

result of a multiplication or an addition that has been truncated via an AND mask with

the value 0xff, which represents the maximum value of an 8-bit integer.

• Uninitialized Struct. We use a regular expression to extract the storage location of

structs, whose first element is pointing at storage location zero within a basic block.

Eventually, we report an uninitialized struct, if there exists a call c ∈ C, where either cv
contains a value from a storage location of a struct or the path condition of c depends

on a storage location of a struct.
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• Hidden State Update. We detect a hidden state update by iterating over all calls con-

tained in C and checking whether there exists a call c, whose path conditions depend

on a storage value that can be modified via another function, without the transfer of

funds.

• Hidden Transfer. We report a hidden transfer, if two consecutive calls c and c′ exist

along the same execution path p, where cr ∈ σ[Ia]s ∧ cv = σ[Ia]b and c′r = Is ∧ c′v =

σ[Ia]b.

• Straw Man Contract. First, we verify if two consecutive calls c and c′ exist along the

same execution path p, where cr 6= c′r. Finally, we report a straw man contract if one of

the two cases is satisfied: 1) c is executed after c′, where c′t = DELEGATECALL ∧ cv

= σ[Ia ]b ∧ cr = Is ; or 2) c is executed before c′, where c′t = CALL ∧ Is ∈ c′a .

6.4 Evaluation

In this section, we assess the correctness and effectiveness of HONEYBADGER. We aim

to determine the reliability of our tool and measure the overall prevalence of honeypots

currently deployed on the Ethereum blockchain.

Dataset. We downloaded the bytecode of 2,019,434 smart contracts, by scanning the first

6,500,000 blocks of the Ethereum blockchain. The timestamps of the collected contracts

range from August 7, 2015 to October 12, 2018. Interestingly, a lot of contracts share

the same bytecode. Out of the 2,019,434 contracts, only 151,935 are unique in terms of

exact bytecode match. In other words, 92.48% of the contracts deployed on the Ethereum

blockchain are duplicates. The most duplicated contract is replicated 387,914 times.

Experimental Setup. All experiments were conducted on our high-performance computing

cluster using 10 nodes with 960 GB of memory, where every node has 2 Intel Xeon L5640

CPUs with 12 cores each and clocked at 2,26 GHz, running 64-bit Debian Jessie 8.10.

We used version 1.8.16 of Geth’s EVM as our disassembler and Solidity version 0.4.25 as

our source-code-to-bytecode compiler. As our constraint solver we used Z3 version 4.7.1.

We set a timeout of 1 second per Z3 request for the symbolic execution. The symbolic

execution’s global timeout was set to 30 minutes per contract. The loop limit, depth limit (for

DFS) and gas limit for the symbolic execution were set to 10, 50 and 4 million, respectively.

6.4.1 Results

We run HONEYBADGER on our set of 151,935 unique smart contracts. Our tool took an

average of 142 seconds to analyse a contract, with a median of 31 seconds and a mode of

less than 1 second. Moreover, for 98% of the cases (149,603 contracts) our tool was able
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Figure 6.11: Number of detected honeypots per technique.

to finish its analysis within the given time limit of 30 minutes. The number of explored paths

ranges from 1 to 8,037, with an average of 179 paths per contract and a median of 105

paths. Finally, during our experiments, HONEYBADGER achieved a code coverage of about

91% on average. Out of the 151,935 analyzed contracts, 48,487 have been flagged as cash

flow contracts. In other words, only 32% of the analysed contracts are capable of receiving

as well as sending funds. Figure 6.11 depicts for each honeypot technique the number of

contracts that have been flagged by HONEYBADGER. Our tool detected a total of 460 unique

honeypots. It is worth mentioning that 24 out of the 460 honeypots were part of our initial

dataset (see Table 6.1) and that our tool thus managed to find 436 new honeypots. Moreover,

as mentioned earlier, many contracts share the same bytecode. Thus, after correlating the

results with the bytecode of the 2 million contracts currently deployed on the blockchain, a

total of 690 contracts were identified as honeypots4. Our tool therefore discovered a total of

22 balance disorders (BD), 75 inheritance disorders (ID), 11 skip empty string literal (SESL),

5 type deduction overflows (TDO), 80 uninitialized structs (US), 382 hidden state updates

(HSU), 14 hidden transfers (HT) and finally 101 straw man contracts (SMC). While many

contracts were found to be HSU, SMC and US honeypots, only a small number were found

to be TDO honeypots.

6.4.2 Validation

In order to confirm the correctness of HONEYBADGER, we performed a manual inspection

of the source code of the contracts that have been flagged as honeypots. We were able

to collect through Etherscan the source code for 323 (70%) of the flagged contracts. We

verified the flagged contracts by manually scanning the source code for characteristics of
4The latest honeypots can be found at: https://honeybadger.uni.lu/
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the detected honeypot technique. For example, in case a contract has been flagged as a

balance disorder, we checked whether the source code contains a function that transfers the

contract’s balance to the caller if and only if the value sent to the function is greater than or

equal to the contract’s balance.

Table 6.3: Number of true positives (TP), false positives (FP) and precision p (in %) per
detected honeypot technique for contracts with source code.
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TP 20 41 9 4 32 134 12 30

FP 0 7 0 0 0 30 0 4

p 100 85 100 100 100 82 100 88

Table 6.3 summarises our manual verification in terms of true positives (TP), false positives

(FP) and precision p, where p is computed as p = TP/(TP + FP). A true positive means

that the contract is indeed a honeypot with respect to the reported technique and a false

positive means that the contract is not a honeypot with respect to the reported technique.

Overall our tool shows a very high precision and a very low false positive rate. Our tool

achieves a false positive rate of 0% for 5 out of the 8 analyzed honeypot techniques. For

the remaining 3 techniques, our tool achieves a decent false positive rate, where the highest

false positive rate is roughly 18% for the detection of hidden state updates, followed by 15%

false positive rate for the detection of inheritance disorder and finally 12% false positive rate

for the detection of straw man contracts.

6.5 Analysis

In this section, we analyze the true positives obtained in Section 6.4, in order to acquire

insights on the effectiveness, liveness, behavior, diversity and profitability of honeypots.

6.5.1 Methodology

We crawled all the transactions of the 282 true positives using Etherchain’s5 API, in order

to collect various information about the honeypots, such as the amount of spent and re-

5https ://www.etherchain.org/
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Figure 6.12: Number of successful, active and aborted honeypots per honeypot technique.

ceived ether per address, the deployment date and the balance. Afterwards, we used simple

heuristics to label every address as either an attacker or a victim. An address is labeled as

an attacker if it either: 1) created the honeypot; 2) was the first address to send ether to the

honeypot; or 3) received more ether than it actually spent on the honeypot. An address is

labeled as a victim if it has not been labeled as an attacker and if it received less ether than

it actually spent on the honeypot. Finally, using this information we were able to tell if a hon-

eypot, was either successful, aborted or still active. A honeypot is marked as successful if a

victim has been detected, as aborted if the balance is zero and no victim has been detected

or as active if the balance is larger than zero and no victim has been detected.

6.5.2 Results

Effectiveness. Figure 6.12 shows the number of successful, aborted and active honeypots

per honeypot technique. Our results show that skip empty string literal is the most effective

honeypot technique with roughly 78% success rate, whereas hidden transfer is the least

effective technique with only 33% success rate. The overall success rate of honeypots

seems rather low with roughly 37%, whereas the overall abortion rate seems quite high

with about 54%. At the time of writing, only 10% of the analyzed honeypots are still active.

Figure 6.13 illustrates the number of monthly deployed honeypots per honeypot technique.

The very first honeypot technique that has been deployed was a hidden state update in

January 2017. February 2018 has been the peak in terms of honeypots being deployed,

with a total of 66. The highest number of monthly honeypots that have been deployed per

technique are hidden state updates with a total of 36 in June 2018. 7 honeypots have been

deployed on average per month. In our analysis, the quickest first attempt of exploitation

happened just 7 minutes and 37 seconds after a honeypot had been deployed, whereas

the longest happened not until 142 days after deployment. A honeypot takes an average
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Figure 6.13: Number of monthly deployed honeypots per honeypot technique.

of 9 days and a median of 16 hours before it gets exploited. Interestingly, most honeypots

(roughly 55%) are exploited during the first 24 hours after being deployed.

Liveness. We define the lifespan of a honeypot as the period of time between the de-

ployment of a honeypot and the moment when a honeypot was aborted. We found that

the shortest lifespan of a honeypot was 5 minutes and 25 seconds and the longest lifespan

was about 322 days. The average lifespan of a honeypot is roughly 28 days, whereas the

median is roughly 3 days. However, in around 32% of the cases the lifespan of a honeypot

is only 1 day. We also analyzed how long an attacker keeps the funds inside a honeypot,

by measuring the period of time between the first attempt of exploitation by a victim and the

withdrawal of all the funds by the attacker. The shortest period was just 4 minutes and 28

seconds after a victim fell for the honeypot. The longest period was roughly 100 days. On

average attackers withdraw all their funds within 7 days after a victim fell for the honeypot.

However, in most cases the attackers keep the funds in the honeypot for a maximum of 1

day. Interestingly, only 37 out of 282 honeypots got destroyed, where destroyed means that

the attacker called a function within the honeypot that calls the SELFDESTRUCT opcode.

In other words, 171 honeypots are in some kind of “zombie” state, where they are still alive

(i.e., not destroyed), but not active (i.e., their balance is zero). Analyzing the 37 destroyed

honeypots, we found that 19 got destroyed after being successful and 18 after never having

been successful.
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Figure 6.14: A word cloud generated from the comments on Etherscan.

Behavior. Our methodology classified a total of 240 addresses as victims. In 71% of the

cases a honeypot managed to trap only one victim. In one case though, 97 victims have

been trapped by just a single honeypot. Interestingly, 8 out of the 240 addresses fell for more

than one honeypot, where one address even became a victim to four different honeypots. We

also found that 53 attackers deployed at least two honeypots, whereas one attacker deployed

eight different honeypots. It is worth noting that 42 of the 53 attackers simply deployed

copies of one particular honeypot type, whereas the remaining 11 deployed honeypots of

varying types. 87 out of the 282 detected and manually confirmed honeypots (about 31%)

contained comments on Etherscan. We manually analyzed these comments and found that

the majority of the comments were indeed warnings stating that the contract might be a

honeypot. Moreover, Figure 6.14 shows that the term “honeypot” is the most prevalent term

used by the community to describe this type of smart contracts. Surprisingly, 20 out of the

87 commented honeypots were successful. 16 were successful before a comment had been

placed and 4 have been successful even after a comment had been placed. Interestingly,

21 honeypots aborted after a comment was placed. The quickest abort was performed just

33 minutes and 57 seconds after the comment, whereas the longest abort was performed

37 days after the comment. Finally, attackers took an average of 6 days and a median of 22

hours to abort their honeypot after a user had placed a comment.

Diversity. We used the normalized Levenshtein distance [9] to measure the similarity of

the bytecode between the individual instances of a particular honeypot technique. Table 6.4

outlines the similarity in terms of minimum, maximum, mean and mode per honeypot tech-

nique. We observe that for almost every technique, except TDO, the bytecode similarity

varies tremendously. For example, in case of hidden state update honeypots, we measure

a minimum similarity of 11% and a maximum similarity of 98%. This indicates that even

though two honeypots share the same technique, their bytecode might still be very diverse.

Profitability. Table 6.5 lists the profitability per honeypot technique. The profitability is

computed as received amount - (spent amount + transaction fees). No values are pro-
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Table 6.4: Bytecode similarity (in %) per honeypot technique.

BD ID SESL TDO US HSU HT SMC

Min. 27 14 22 88 25 11 28 26
Max. 97 96 98 95 98 98 98 98
Mean 50 40 47 90 52 49 71 53
Mode 35 35 28 89 45 36 95 49

vided for TDO, because for the single true positive that we analyzed, the transaction fees

spent by the attacker were higher than the amount that the attacker gained from the vic-

tim. The smallest and largest profit were made using a hidden state update honeypot, with

0.00002 ether being the smallest and 11.96 ether being the largest. The most profitable

honeypots are straw man contract honeypots, with an average value of 1.76 ether, whereas

the least profitable honeypots are uninitialized struct honeypots, with an average value of

0.46 ether. A total profit of 257.25 ether has been made through honeypots, of which 171.22

ether were made through hidden state update honeypots. Note that, the exchange rate of

cryptocurrencies is very volatile and thus their value in USD may vary greatly on a day-to-

day basis. For example, although 11.96 ether is the largest profit made in ether, its actual

value in USD was only 500 at the point of withdrawal. We found that the largest profit in

terms of USD was actually a honeypot with 3.10987 ether, as it was worth 2,609 USD at the

time of withdrawal. Applying this method across the 282 honeypots, results in a total profit

of 90,118 USD.

6.6 Discussion

In this section, we summarize the key insights gained through our analysis and we discuss

the ethical considerations as well as the challenges and limitations of our work.

Table 6.5: Statistics on the profitability of each honeypot technique in ether.

Min. Max. Mean Mode Median Sum

BD 0.01 1.13 0.5 0.11 0.11 3.5
ID 0.004 6.41 1.06 0.1 0.33 17.02
SESL 0.584 4.24 1.59 1.0 1.23 9.57
TDO - - - - - -
US 0.009 1.1 0.46 0.1 0.38 6.44
HSU 0.00002 11.96 1.44 0.1 1.02 171.22
HT 1.009 1.1 1.05 1.0 1.05 2.11
SMC 0.399 4.94 1.76 2.0 1.99 47.39

Overall 0.00002 11.96 1.35 1.0 1.01 257.25
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6.6.1 Honeypot Insights

Although honeypots are capable of trapping multiple users, we have found that most hon-

eypots managed to take the funds of only one victim. This indicates that users potentially

look at the transactions of other users before they submit theirs. Moreover, the low success

rate of honeypots with comments, suggests that users also check the comments on Ether-

scan before submitting any funds. We also found that the bytecode of honeypots can be

vastly different even if using the same honeypot technique. This suggests that the usage of

signature-based detection methods would be rather ineffective. HONEYBADGER is capable

of recognizing a variety of implementations, as it specifically targets the functional character-

istics of each honeypot technique. More than half of the honeypots were successful within

the first 24 hours. This suggests that honeypots become less effective the older they be-

come. This is interesting, as it means that users seem to target rather recently deployed

honeypots than older ones. We also note that most honeypot creators withdraw their loot

within 24 hours or abort their honeypots if they are not successful within the first 24 hours.

We therefore conclude that honeypots have in general a short lifespan and only a small

fraction remain active for a period longer than one day.

6.6.2 Challenges and Limitations

The amount of smart contracts with source code available is rather small. In 2019, only

50,000 contracts with source code are available on Etherscan. This highlights the neces-

sity of being able to detect honeypots at the bytecode level. Unfortunately, this turns out to

be extremely challenging when detecting certain honeypot techniques. For example, while

detecting inheritance disorder at the source code level is rather trivial, detecting it at the

bytecode level is rather difficult since all information about the inheritance is lost during com-

pilation and not available anymore at the bytecode level. The fact that certain information is

only available at the source code level and not at the bytecode level, obliges us to make use

of other less precise information that is available in the bytecode in order to detect honey-

pot techniques such as inheritance disorder. However, as Section 6.4 shows, this approach

reduces the precision of our detection and introduces some false positives. Finally, another

limitation of our tool is that it is currently limited to the detection of the eight honeypot tech-

niques described in this chapter. Other honeypot techniques are not detected. Nevertheless,

we designed HONEYBADGER with modularity in mind, such that one can easily extend the

honeypot analysis with new heuristics to detect more honeypot techniques.

6.6.3 Ethical Considerations

In general, honeypots have two participants, the creator of the honeypot, and the user whose

funds are trapped by the honeypot. The ethical intentions of both participants are not always

clear. For instance, a honeypot creator might deploy a honeypot with the intention to scam
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users and make profit. In this case we clearly have a malicious intention. However, one

could also argue that a honeypot creator is just attempting to punish users that behave

maliciously. Similarly, the intentions of a honeypot user can either be malicious or benign.

For example, if a user tries to intentionally exploit a reentrancy vulnerability, then he or she

needs to be knowledgeable and mischievous enough to prepare and attempt the attack, and

thus clearly showing malicious behavior. However, if we take the example of an uninitialized

struct honeypot that is disguised as a simple lottery, then we might have the case of a

benign user who loses his funds under the assumption that he or she is participating in a fair

lottery. Thus, neither honeypot creators nor users can always be clearly classified as either

malicious or benign, this depends on the case at hand. Nevertheless, we are aware that

our methodology may serve malicious attackers to protect themselves from other malicious

attackers. However, with HONEYBADGER, we hope to raise the awareness of honeypots and

save benign users from potential financial losses.

6.7 Related Work

Honeypots are a new type of fraud that combine security issues with scams. They either

rely on the blockchain itself or on related services such as Etherscan. With growing interest

within the blockchain community, they have been discussed online [130, 131, 132] and col-

lected within public user repositories [118, 139]. Frauds and security issues are nothing new

within the blockchain ecosystem. Blockchains have been used for money laundering [23]

and been the target of several scams [31], including mining scams, wallet scams and Ponzi

schemes, which are further discussed in [86, 138]. In particular, smart contracts have been

shown to contain security issues [60]. Although not performed directly on the blockchain,

exchanges have also been the target of fraud [22].

Several different methods have been proposed to discover fraud as well as security

issues. Manual analysis is performed on publicly available source code to detect Ponzi

schemes [62]. [140] introduces ERAYS, a tool that aims to produce easy to analyze pseu-

docode from bytecode where the source code is not available. However, manual analysis is

particularly laborious, especially considering the number of contracts on the blockchain. Ma-

chine learning has been used to detect Ponzi schemes [92] and to find vulnerabilities [134].

The latter relies on [122] to obtain a ground truth of vulnerable smart contracts for training

their model. Fuzzing techniques have been employed to detect security vulnerabilities in

smart contracts [110] and in combination with symbolic execution to discover issues related

to the ordering of events or function calls [115]. However, fuzzing often fails to create inputs

to enter specific execution paths and therefore might ignore them [137]. Static analysis has

been used to find security [90, 136, 135] and gas-focused [103] vulnerabilities in smart con-

tracts. [90] requires manual interaction, while [136] requires both the definition of violation

and compliance patterns. [135] requires Solidity code and therefore cannot be used to an-
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alyze the large majority of the smart contracts deployed on the Ethereum blockchain. [103]

considers gas-related issues which is not necessary for the purpose of this work. In order to

use formal verification, smart contracts can, to some extent, be translated from source code

or bytecode into F* [34, 104] where the verification can more easily be performed. Other

work operates on high-level source code available for Ethereum or Hyperledger [112]. [70,

71] propose a formal definition of the EVM, that is extended in [85] towards more automated

smart contract verification and the consideration of gas. Formal verification often requires

(incomplete) translations into other languages or manual user interaction (e.g., [129]). Both

of these reasons make formal verification unsuitable to perform a large analysis of smart

contracts, as it is required in this work.

Symbolic execution has been used on smart contracts to detect common [87, 120, 51,

102] vulnerabilities. This technique also allows to find specific kinds of misbehaving con-

tracts [122]. It can further provide values that can serve to generate automated exploits that

trigger vulnerabilities [116]. The same technique is used in this chapter. Symbolic execution

has the advantage of being capable to reason about all possible execution paths and states

in a smart contract. This allows for the implementation of precise heuristics while achieving

a low false positive rate. Another advantage is that symbolic execution can be applied di-

rectly to bytecode, thus making it well suited for our purpose of analyzing more than 2 million

smart contracts for which source code is largely not available. The disadvantage is the large

number of possible paths that need to be analyzed. However, in the case of smart contracts

this is mostly not an issue, as most are not very complex and rather short. Moreover, smart

contract bytecode cannot grow arbitrarily large due to the gas limit enforced by the Ethereum

blockchain.

6.8 Conclusion

We investigated an emerging new type of fraud in Ethereum: honeypots. We presented a

taxonomy of honeypot techniques and introduced a methodology that uses symbolic exe-

cution together with well-defined heuristics to automatically detect honeypots. We showed

that HONEYBADGER can effectively detect honeypots in the wild with a very low false positive

rate. In a large-scale analysis of 151,935 unique Ethereum smart contracts, HONEYBADGER

identified 460 unique honeypots. Moreover, an analysis on the transactions performed by a

subset of 282 honeypots, revealed that 240 users already became victims of honeypots and

that attackers already made more than 90,000 USD profit with honeypots. It is worth noting

that these numbers only provide a lower bound and thus might only reflect the tip of the

iceberg. Nonetheless, tools such as HONEYBADGER may already help users in detecting

honeypots before they can cause any harm.
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Measuring Frontrunning Attacks on Smart Contracts

In this chapter, we measure the prevalence of frontrunning attacks on smart contracts.

Ethereum prospered the inception of a plethora of smart contract applications, ranging from

gambling games to decentralized finance. However, Ethereum is also considered a highly

adversarial environment, where vulnerable smart contracts will eventually be exploited. Re-

cently, Ethereum’s pool of pending transaction has become a far more aggressive environ-

ment. In the hope of making some profit, attackers continuously monitor the transaction pool

and try to frontrun their victims’ transactions by either displacing or suppressing them, or by

strategically inserting their own transactions. This chapter aims to shed some light into what

is known as a dark forest and uncover these predators’ actions. We present a methodology

to efficiently measure the three types of frontrunning: displacement, insertion, and suppres-

sion. We perform a large-scale analysis on more than 11M blocks and identify almost 200K

attacks with an accumulated profit of 18.41M USD for the attackers, providing evidence that

frontrunning is both, lucrative and a prevalent issue.

7.1 Introduction

The concept of frontrunning is not new. In financial markets, brokers act as intermediaries

between clients and the market, and thus brokers have an advantage in terms of insider

knowledge about potential future buy/sell orders which can impact the market. In this con-

text, frontrunning is executed by prioritizing a broker’s trading actions before executing the

client’s orders such that the trader pockets a profit. Frontrunning is illegal in regulated fi-

nancial markets. However, the recent revolution enabled by decentralized finance (DeFi),

where smart contracts and miners replace intermediaries (brokers) is both a blessing and a

curse. Removing trusted intermediaries can streamline finance and substantially lower ad-

jacent costs, but misaligned incentives for miners leads to generalized frontrunning, in which

market participants behave exactly like unethical brokers used to in the “old” financial world.

Unfortunately, this is already happening at a large scale.

Our work is among the first comprehensive surveys on the extent and impact of this phe-

nomenon. Already in 2017, the Bancor ICO [82] was susceptible to such an attack – among
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other vulnerabilities – but no real attack was observed in the wild. Some concrete frontrun-

ning attacks on the Ethereum blockchain were brought to knowledge by two independently

reported attacks and their mitigation approaches to the informed audience. In the first report

[227], the researchers tried to recover some liquidity tokens by calling a specific function

in a smart contract. Since this function was callable by everyone, the authors – who also

compared the pending transactions in the transaction pool to a dark forest full of predators

– assumed that their function call could be observed and frontrunned by bots observing the

submitted transactions in the transaction pool. Even though they tried to obfuscate their

efforts, their approach failed in the end, and they became a victim of a frontrunning bot. A

few months later, a second group of researchers [232] reported a successful recovery using

lessons learned from the previously reported incident [227]. The success was due to them

mining their transactions privately without broadcasting them to the rest of the network. The

researchers used a new functionality provided by SparkPool called the Taichi Network [228].

In this way, the transactions were not available to frontrunning bots but relied entirely on hav-

ing a reliable and honest mining pool. However, this approach enables centralization and

requires users to entrust their transactions to SparkPool. Similar to how honeypots gather

intelligence by luring attackers to compromise apparently vulnerable hosts [5], a recent ex-

periment [229] detailed the interactions with two bots and reported relevant assessment on

their nature and origin. Surprisingly, the frontrunning bots do not rely on advanced software

development techniques or complex instructions, and code examples on developing such

bots are readily available [230, 231].

There are several ways to perform frontrunning attacks. The first survey defining a tax-

onomy of frontrunning attacks [151] identified three different variants on how these can be

performed. To understand these approaches – displacement, insertion, and suppression –

a short refresh on gas and transaction fees in Ethereum is given. Transactions, submitted

to the Ethereum network, send money and data to smart contract addresses or account

addresses. Transactions are confirmed by miners who get paid via a fee that the sender of

the transaction pays. This payment is also responsible for the speed/priority miners include

a transaction in a mined block. Miners have an inherent incentive to include high paying

transactions and prioritize them. As such, nodes observing the unconfirmed transactions

can frontrun by just sending transactions with higher payoffs for miners [150]. The common

feature of all three attack types is that by frontrunning a transaction, the initial transaction’s

expected outcome is changed. In the case of the first attack (displacement), the outcome of a

victim’s original transaction is irrelevant. The second attack type (insertion) manipulates the

victim’s transaction environment, thereby leading to an arbitrage opportunity for the attacker.

Finally, the third attack (suppression) delays the execution of a victim’s original transaction.

Although previous chapters [150, 151] have identified decentralized applications which are

victims of frontrunning attacks, no scientific study has analyzed the occurrence of these

three attacks in the wild on a large scale. The impact of this structural design failure of the
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Ethereum blockchain is far-reaching. Many decentralized exchanges, implementing token-

based market places have passed the 1B USD volume [233] and are prone to the same

frontrunning attack vectors because the Ethereum blockchain is used as a significant build-

ing block. Frontrunning is not going to disappear any time soon, and the future looks rather

grim. We do not expect to have mitigation against frontrunning in the short-term. Miners

do profit from the fees and thus will always prioritize high-yield transactions. Moreover, the

trust mechanism in Ethereum is built on the total observability of the confirmed/unconfirmed

transactions and is thus by design prone to frontrunning.

This chapter sheds light into the long-term history of frontrunning on the Ethereum

blockchain and provides the first large scale data-driven investigation of this type of attack

vector. We investigate the real profits made by attackers, differentiated by the specific attack

type and propose the first methodology to detect them efficiently. In summary, this chapter

makes the following contributions:

Contributions

• We propose a methodology that is efficient enough to detect displacement, inser-

tion, and suppression attacks on Ethereum’s past transaction history.

• We run an extensive measurement study and analyze frontrunning attacks on

Ethereum for the past five years.

• We identify a total of 199,725 attacks, 1,580 attacker accounts, 526 bots, and over

18.41M USD profit.

• We demonstrate that the identified attacker accounts and bots can be grouped to

137 unique attacker clusters.

• We discuss frontrunning implications and find that miners made a profit of 300K

USD due to frontrunners.

7.2 Frontrunning Attacks

This section defines our attacker model and introduces the reader to three different types of

frontrunning attacks.

7.2.1 Attacker Model

Miners, as well as non-miners, can mount frontrunning attacks. Miners are not required

to pay a higher gas price to manipulate the order of transactions as they have full control

over how transactions are included. Non-miners, on the other hand, are required to pay a

higher gas price in order to frontrun transactions of other non-miners. Our attacker model

assumes an attacker A that is a financially rational non-miner with the capability to monitor
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Attacker Bot Attacker EOAs Bot Contracts

Off-Chain On-Chain

Figure 7.1: Attacker model with on-chain and off-chain parts.

the transaction pool for incoming transactions. The attacker A needs to process the trans-

actions in the pool, find a victim V among those transactions and create a given amount of

attack transactions TAi before the victim’s transaction TV is mined. Usually, A would not be

able to react fast enough to perform all these tasks manually. Hence, we assume that the

attacker A has at least one computer program BotA that automatically performs these tasks.

However, BotA must be an off-chain program, because contracts cannot react on its own

when transactions are added to the pool. Nevertheless, BotA needs at least one or more

EOAs to act as senders of any attack transaction TA. Using multiple EOAs helps attackers

obscure their frontrunning activities, similar to money laundering layering schemes. We re-

fer to these EOAs owned by A as attacker accounts EOAAj and to the EOA owned by V as

victim account EOAV . We assume that attacker A owns a sufficiently large balance across

all its attacker accounts EOAAj from which it can send frontrunning transactions. However,

attacker A can also employ smart contracts to hold part of the attack logic. We refer to these

smart contracts as bot contracts BCAk
, which are called by the attacker accounts EOAAj .

Figure 7.1 provides an overview of our final attacker model.
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Figure 7.2: Illustrative examples of the three frontrunning attack types.
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7.2.2 Frontrunning Taxonomy

We describe in the following the taxonomy of frontrunning attacks presented by Eskandari

et al. [151].

Displacement. In a displacement attack an attacker A observes a profitable transaction

TV from a victim V and decides to broadcast its own transaction TA to the network,

where TA has a higher gas price than TV such that miners will include TA before TV

(see Figure 7.2 a). Note that the attacker does not require the victim’s transaction

to execute successfully within a displacement attack. For example, imagine a smart

contract that awards a user with a prize if they can guess the preimage of a hash. An

attacker can wait for a user to find the solution and to submit it to the network. Once

observed, the attacker then copies the user’s solution and performs a displacement

attack. The attacker’s transaction will then be mined first, thereby winning the prize,

and the user’s transaction will be mined last, possibly failing.

Insertion. In an insertion attack an attacker A observes a profitable transaction TV from a

victim V and decides to broadcast its own two transactions TA1 and TA2 to the net-

work, where TA1 has a higher gas price than TV and TA2 has a lower gas price than

TV , such that miners will include TA1 before TV and TA2 after TV (see Figure 7.2 b).

This type of attack is also sometimes called a sandwich attack. In this type of attack,

the transaction TV must execute successfully as TA2 depends on the execution of TV .

A well-known example of insertion attacks is arbitraging on decentralized exchanges,

where an attacker observes a large trade, also known as a whale, sends a buy trans-

action before the trade, and a sell transaction after the trade.

Suppression. In a suppression attack, an attacker A observes a transaction TV from a vic-

tim V and decides to broadcast its transactions to the network, which have a higher

gas price than TV such that miners will include A’s transaction before TV (see Fig-

ure 7.2 c). The goal of A is to suppress transaction TV , by filling up the block with its

transactions such that transaction TV cannot be included anymore in the next block.

This type of attack is also called block stuffing. Every block in Ethereum has a so-called

block gas limit. The consumed gas of all transactions included in a block cannot ex-

ceed this limit. A’s transactions try to consume as much gas as possible to reach this

limit such that no other transactions can be included. This type of attack is often used

against lotteries where the last purchaser of a ticket wins if no one else purchases a

ticket during a specific time window. Attackers can then purchase a ticket and mount

a suppression attack for several blocks to prevent other users from purchasing a ticket

themselves. Keep in mind that this type of frontrunning attack is expensive.
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7.3 Measuring Frontrunning Attacks

This section provides an overview of our methodology’s design and implementation details

to detect frontrunning attacks in the wild.

7.3.1 Identifying Attackers

As defined in Section 7.2.1, an attacker A employs one or more off-chain programs to per-

form its attacks. However, because we have no means to distinguish between the different

software agents an attacker A could have, for this study, we consider all of them as part of

the same multi-agent system BotA. Additionally, we cannot recognize the true nature of A

or how BotA is implemented. Instead, we would like to build a cluster with the n different

attacker accounts EOAA1 , ..., EOAAn and the m different bot contracts BCA1 , ..., BCAm to

form an identity of A. Consequently, in each of the following experiments, we use our de-

tection system’s results to build a graph. Each node is either an attacker account or a bot

contract. We make the following two assumptions:

Assumption 1: Attackers only use their own bot contracts. Hence, when an attacker ac-

count sends a transaction to a bot contract, we suspect that both entities belong to the

same attacker. Note that one attacker account can send transactions to multiple bot

contracts, and bot contracts can receive transactions from multiple attacker accounts.

Assumption 2: Attackers develop their own bot contracts, and they do not publish the

source code of their bot contracts as they do not want to share their secrets with

competitors. Hence, when the bytecode of two bot contracts is exactly the same, we

suspect that they belong to the same attacker.

With these assumptions in mind, we create edges between attacker accounts and bot con-

tracts that share at least one attack transaction, and between bots that share the same

bytecode. Using the resulting graph, we compute all the connected components. Hence, we

interpret each of these connected components as a single attacker cluster.

7.3.2 Detecting Displacement

Attackers typically perform displacement attacks by observing profitable pending transac-

tions via the transaction pool and by copying these profitable transactions’ input to create

and submit their own profitable transactions. While attackers are not required to use a bot

contract to mount displacement attacks, using a smart contract allows them to limit their loss

as they can abort the execution in case of an unexpected event. However, detecting dis-

placement attacks that directly interact with the contract that is susceptible to displacement

is tremendously hard as there is no possible way to distinguish between an attacker and a
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benign user that just happened to send a transaction to the susceptible contract. Our de-

tection is therefore limited towards finding attackers that perform displacement attacks using

bot contracts. The general idea is to detect displacement by checking for every transaction

T if there exists a subsequent transaction T ′ with a gas price lower than T and a transac-

tion index higher than T , where the input of T ′ is contained inside the input of T . However,

detecting displacement in the wild can become quite challenging due to a large number of

possible combinations. A naive approach would be to obtain a list of every internal and

external transaction per contract and then compare every transaction to every subsequent

transaction. However, given that a single contract can have easily thousands of transactions,

this approach would quickly result in a combinatorial explosion. Moreover, obtaining internal

transactions requires re-executing all past transactions which results in a significant amount

of time given that the Ethereum blockchain currently has more than 1 billion transactions.

Our goal is therefore to focus only on external transactions and follow a more efficient ap-

proach that might sacrifice completeness but preserve soundness. We begin by splitting the

range of blocks that are to be analyzed into windows of 100 blocks and slide them with an

offset of 20 blocks. This approach has the advantage that each window can be analyzed

in parallel. Inside each window, we iterate block by block, transaction by transaction, and

split the input bytes of each transaction into n-grams of 4 bytes with an offset of 1 byte and

check whether at least 95% of the n-grams match with n-grams of previous transaction in-

puts. Since we focus on detecting displacement attacks performed via bot contracts, we

cannot use 100% matching, because the victim’s external transaction will be encapsulated

inside the attacker’s external transaction along with some command-and-control data. Each

window has its own Bloom filter that memorizes previously observed n-grams. A Bloom filter

is a probabilistic data structure that can quickly tell if an element has already been observed

before or if it definitely has not been observed before. Thus, Bloom filters may yield false

positives, but no false negatives. The idea is first to use a Bloom filter to perform a quick

probabilistic search and only perform an exhaustive linear search if the filter finds that at

least 95% of a transaction’s n-grams are contained in the filter. Our Bloom filters can hold

up to n = 1M elements with a false positive rate p = 1%, which according to Bloom [1],

requires having k = 6 different hash functions:

m = − n ln p

(ln 2)2
(7.1)

k =
m

n
ln 2 (7.2)

We bootstrapped our 6 hash functions using the Murmur3 hash function as a basis. The

result of each hash function is an integer that acts as an index on the Bloom filter’s bit array.

The bit array is initialized at the beginning with zeros, and a value of one is set for each index

returned by a hash function (see Figure 7.3). An n-gram is considered to be contained in
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Figure 7.3: An example on how transaction input bytes are mapped into a bloom filter.

the filter if all indices of the 6 hash functions are set to one. We use interleaved n-grams

because the input of a copied transaction might be included at any position in the attacker’s

input. Once our linear search finds two transactions TA and TV with matching inputs, we

check whether the following three heuristics hold:

Heuristic 1: The sender of TA and TV as well as the receiver of TA and TV must be differ-

ent. The receiver of TA and TV has to be different to make sure that we only detect

displacement attacks that are performed by bot contracts.

Heuristic 2: The gas price of TA must be larger than the gas price of TV .

Heuristic 3: We split the transaction input of TA and TV into sequences of 4 bytes, and

the ratio between the number of the sequences must be at least 25%. This heuristic

requires that the byte sequences from TV conform with at least 25% of the byte se-

quences of TA to avoid false positives. Without this restriction, it is very common for

transactions with very small inputs to match by chance against transactions with very

large inputs.

However, the aforementioned heuristics may not filter out all the benign cases and therefore

produce false positives. As a result, we filter out the benign cases by applying a runtime

validation on the transaction inputs. The heuristics are still useful and necessary since the

validation process is computationally very intensive and the heuristics help us reduces the

number of cases to validate and thus save time. To validate that TA is a copy of TV , we run

in a simulated environment first TA before TV and then TV before TA. We report a finding if

the number of executed EVM instructions is different across both runs for TA and TV , as this

means that TA and TV influence each other. During our experiments, we noted that some

bot contracts included code that checks if the miner address of the block that is currently

being executed is not equal to zero. We think that the goal of this mechanism could be to

prevent transactions from being run locally.
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Limitations. With more than 11 million blocks and over 1 billion transactions, we were

compelled to make trade-offs between efficiency and completeness. To be able to scan the

entire blockchain for displacement attacks in a reasonable amount of time, we decided to set

a window size of 100 blocks, meaning that we could not detect displacement attacks were

an attacker’s transaction and a victim’s transaction are more than 100 blocks apart. Another

limitation is that our heuristics only focus on detecting displacement attacks performed by

bot contracts. For example, attackers can also send a transaction directly to the contract that

is susceptible to displacement, without going through a bot contract. However, it is difficult

for us to distinguish between benign users and attackers in such a case. Therefore, we

decided to focus only on detecting bot contracts since a benign user would not use such

a contract to perform a transaction to the susceptible contract. Thus, our heuristics might

produce false negatives and our results should be considered as a lower bound only.

7.3.3 Detecting Insertion

We limit our detection to insertion attacks on decentralized exchanges (DEXes). At the time

of writing, we are not aware of any other use case where insertion attacks are applied in

the wild. DEXes are decentralized platforms where users can trade their ERC-20 tokens for

ether or other ERC-20 tokens via a smart contract. Uniswap is currently the most popular

DEX in terms of locked value with 3.15B USD locked1. There exist two genres of DEXes,

order book-based DEXes and Automated Market Maker-based (AMM) DEXes. While order

book-based DEXes match prices based on so-called ’bid’ and ’ask’ orders, AMM-based

DEXes match and settle trades automatically on-chain via a smart contract, without the need

of third party service. AMMs are algorithmic agents that follow a deterministic approach

to calculate the price of a token. Uniswap, for example, is an AMM-based DEX, which

computes for every trade the price of a token using the equation of a Constant Product

Market Maker (CPMM):

[x]× [y] = k (7.3)

where [x] is the current reserve of token x and [y] is the current reserve of token y. Trades

must not change the product k of a pair’s reserve. Thus, if the underlying token reserves

decrease as a trader is buying, the token price increases. The same holds in the opposite

direction: if the underlying token’s reserve increases while a trader is selling, the token

price decreases. Despite being simple, CPMMs are incredibly susceptible to price slippage.

Price slippage refers to the difference between a trade’s expected price and the price at

which the trade is executed. Given the public nature of blockchains, attackers can observe

large buy orders before miners pick them up by monitoring the transaction pool. These

large buy orders will have a significant impact on the price of a token. Leveraging this

knowledge and the fact that miners order transactions based on transaction fees, attackers

1https://defipulse.com/
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Figure 7.4: An illustrative example of an insertion attack on an AMM-based DEX that uses
CPMM.

can insert their buy order in front of an observed large buy order and insert a sell order after

the observed large buy order to profit from the deterministic price calculation. Figure 7.4

depicts an example of an insertion attack on an AMM-based DEX that uses CPMM. Let us

assume that a victim V wants to purchase some tokens at a price p. Let us also assume that

an attacker A observes V ’s transaction and sends in two transactions: 1) a buy transaction

which also tries to purchase some tokens at a price p, but with a gas price higher than V , and

2) a sell transaction that tries to sell the purchased tokens, but with a gas price lower than V .

Since A pays a higher gas price than V , A’s purchase transaction will be mined first and A

will be able to purchase the tokens at price p, where p = pA1 (cf. Figure 7.4). Afterwards, V ’s

transaction will be mined. V will purchase tokens at a higher price pV , where pV > pA1 due

to the imbalance in the token reserves (see Equation 3). Finally, A’s sell transaction will be

mined, for which A will sell its tokens at price pA2 , where pA2 > pA1 and therefore A making

profit. Our detection algorithm exploits the fact that DEXes depend on the ERC-20 token

standard. The ERC-20 token standard defines many functions and events that enable users

to trade their tokens between each other and across exchanges. In particular, whenever a

token is traded, a so-called Transfer event is triggered, and information about the sender,

receiver, and the amount is logged on the blockchain. We combine this information with

transactional information (e.g., transaction index, gas price, etc.) to detect insertion attacks.

We define a transfer event as E = (s, r, a, c, h, i, g), where s is the sender of the tokens, r

is the receiver of the tokens, a is the number of transferred tokens, c is the token’s contract

address, h is the transaction hash, i is the transaction index, and g is the gas price of the

transaction. We detect insertion attacks by iterating block by block through all the transfer
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events and checking if there are three events EA1 , EV , and EA2 for which the following six

heuristics hold:

Heuristic 1: The exchange transfers tokens to A in EA1 and to V in EV , and the exchange

receives tokens from A in EA2 . Moreover, A transfers tokens in EA2 that it received

previously in EA1 . g Thus, the sender of EA1 must be identical to the sender of EV as

well as the receiver of EA2 , and the receiver of EA1 must be identical to the sender of

EA2 (i.e., sA1 = sV = rA2 ∧ rA1 = sA2).

Heuristic 2: The number of tokens bought by EA1 must be similar to the number of tokens

sold by EA2 . To avoid false positives, we set a conservative threshold of 1%. Hence,

the difference between token amount aA1 of EA1 and token amount aA2 of EA2 cannot

be more than 1% (i.e., |aA1
−aA2

|
max(aA1

,aA2
) ≤ 0.01).

Heuristic 3: The token contract addresses ofEA1 , EV , andEA2 must be identical (i.e., cA1 =

cV = cA2).

Heuristic 4: The transaction hashes of EA1 , EV , and EA2 must be dissimilar (i.e., hA1 6=
hV 6= hA2).

Heuristic 5: The transaction index of EA1 must be smaller than the transaction index of EV ,

and the transaction index of EV must be smaller than the transaction index of EA2

(i.e., iA1 < iV < iA2).

Heuristic 6: The gas price of EA1 must be larger than the gas price of EV , and the gas

price of EA2 must be less of equal to the gas price of EV (i.e., gA1 > gV ≥ gA2).

Limitations. Our heuristics assume that insertion attacks always occur within the same

block. This assumption enables us to check blocks in parallel since we only need to compare

transactions within a block. However, this assumption does not always hold in reality, as

transactions might be scattered across different blocks during the mining process. Thus,

there might exist insertion attacks that were performed across multiple blocks, which our

heuristics do not detect and therefore might result in false negatives.

7.3.4 Detecting Suppression

In suppression, an attacker’s goal is to withhold a victim’s transaction by submitting transac-

tions to the network that consume large amounts of gas and fill up the block gas limit such

that the victim’s transaction cannot be included anymore. There are several ways to achieve

this. The naive approach uses a smart contract that repeatedly executes a sequence of

instructions in a loop to consume gas. This strategy can either be controlled or uncontrolled.

In a controlled setting, the attacker repeatedly checks how much gas is still left and exits

the loop right before all gas is consumed such that no out-of-gas exception is raised. In
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an uncontrolled setting, the attacker does not repeatedly check how much gas is left and

lets the loop run until no more gas is left and an out-of-gas exception is raised. The former

strategy does not consume all the gas and does not raise an exception which makes it less

obtrusive, while the latter strategy does consume all the gas but raises an exception which

makes it more obtrusive. However, a third strategy achieves precisely the same result with-

out running code in an infinite loop. If we think about it, the attacker’s goal is not to execute

useless instructions but rather to force miners to consume the attacker’s gas units to fill up

the block. The EVM proposes two ways to raise an error during execution, either through a

revert or an assert. The difference between revert and assert is that the former returns the

unused gas to the transaction sender, while the latter consumes the entire gas limit initially

specified by the transaction sender. Hence, an attacker can exploit this and call an assert

to consume all the provided gas with just one instruction. Our goal is to detect transactions

that employ one of the three aforementioned suppression strategies: controlled gas loop,

uncontrolled gas loop, and assert. We start by clustering for each block all transactions with

the same receiver, as we assume that attackers send multiple suppression transactions to

the same bot contract. Afterwards, we check the following heuristics for each cluster:

Heuristic 1: The number of transactions within a cluster must be larger than one.

Heuristic 2: All transactions within a cluster must have consumed more than 21,000 gas

units. The goal of this heuristic is to filter out transactions that only transfer value

(i.e., ether), but do not execute code.

Heuristic 3: The ratio between gas used and gas limit must be larger than 99% for all

transactions within the cluster.

If we happen to find a cluster that fulfills the heuristics mentioned above, we check whether

at least one of the neighboring blocks (i.e., the previous block and the subsequent block)

also contains a cluster that satisfies the same heuristics. We assume that an attacker tries

to suppress transactions for a sequence of blocks. Finally, we try to detect if an attacker

employs one of three suppression strategies by retrieving and analyzing the execution trace

of the first transaction in the cluster. An execution trace consists of a sequence of executed

instructions. We detect the first strategy by checking if the transaction did not raise an

exception and if the instruction sequence [GAS, GT, ISZERO, JUMPI] is executed more than

ten times in a loop. This particular instruction sequence checks how much gas is left and

jumps towards a different code location, if the amount of gas is lower than a given value.

We detect the second strategy by checking if the transaction raised an exception via a revert

and if the instruction sequence [SLOAD, TIMESTAMP, ADD, SSTORE] is executed more than

ten times in a loop. This particular instruction sequence increments a persistent counter

residing in storage with the current timestamp in order to consume a large amount of gas.
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Finally, we detect the third strategy by checking if the transaction raised an exception via an

assert.

Limitations. Our heuristics follow two major assumptions. First, we assume that an attacker

always sends multiple transactions to the same bot contract. However, an attacker could

also just send one transaction and deploy multiple bot contracts for single use. Second, we

assume that an attacker always tries to suppress more than just one block. However, an

attacker could also just try to suppress one block. While in practice we always observed that

attackers tried to suppress multiple blocks and sent multiple transactions as well as reused

the same bot contract, it is still possible that some attackers do not follow this pattern and

therefore our heuristics might produce false negatives.

7.4 Analyzing Frontrunning Attacks

In this section, we analyze the results of our large scale measurement study on detecting

frontrunning in Ethereum.

7.4.1 Experimental Setup

We implemented our detection modules using Python with roughly 1,700 lines of code2 We

run our modules on the first 11,300,000 blocks of the Ethereum blockchain, ranging from

July 30, 2015 to November 21, 2020. All our experiments were conducted using a machine

with 128 GB of memory and 10 Intel(R) Xeon(TM) L5640 CPUs with 12 cores each and

clocked at 2.26 GHz, running 64 bit Ubuntu 16.04.6 LTS.

7.4.2 Validation

Since our work is the first to systematically study the three different types of frontrunning by

leveraging historical blockchain data on such a large scale, we are missing a ground truth

against which we can compare our results. Our goal was therefore to design very precise

and rather conservative heuristics that might yield false negatives, but no false positives. We

started with a rather liberal definition of our heuristics and did several iterations, where we

regularly checked for outliers and tried to tighten the heuristics after each iteration whenever

we discovered false positives in our preliminary results. After finding no more false posi-

tives we ran our final experiments, which resulted in over 200K transactions being labeled

as either displacement, insertion, or suppression frontrunning attacks. Since checking all of

these 200K transactions manually is extremely cumbersome, we decided to select a random

sample of 100 findings for each type of frontrunning attack and manually check them for false

2Code and data are publicly available at: https://github.com/christoftorres/Frontrunner-Jones.
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Table 7.1: Distributions for displacement attacks.

Cost (USD) Profit (USD) Gas Price ∆ (Gwei) Block ∆

mean 14.28 1,537.99 0.43 0.78
std 18.25 7,162.80 2.65 2.37
min 0.01 0.00 0.00 0.00
25% 4.36 1.14 0.00 0.00
50% 9.48 158.53 0.00 0.00
75% 16.64 851.04 0.00 0.00
max 311.69 223,150.01 52.90 19.00

positives. For displacement, we tried to reverse engineer the code of the identified bot con-

tract to see if the code was proxying the transaction input to a specified contract destination.

For insertion, we checked if the two reported attacker transactions and the whale transaction

were indeed buying or selling the exact same token via the same exchange. Finally, for sup-

pression, we tried to reverse engineer the reported bot contract and to check if the contract

would probe who is the last purchaser of a ticket of a specific lottery or gambling contract and

try to consume the entire gas in case the last purchaser was a specific address. Following

these steps, our manual validation did not reveal any false positives. However, as already

mentioned previously, our heuristics have some limitations which might result in false neg-

atives. Hence, all the results presented in this chapter should be interpreted only as lower

bounds, and they might only show the tip of the iceberg.

7.4.3 Analyzing Displacement

Overall Results. We identified a total of 2,983 displacement attacks from 49 unique attacker

accounts and 25 unique bot contracts. Using the graph analysis defined in Section 7.3.1 we

identified 17 unique attacker clusters.

Profitability. We compute the gain of an attacker A on each displacement attack by search-

ing how much ether EOAA receives among the internal transactions triggered by TA. Ad-

ditionally, we obtain the profit by subtracting the attack cost from the gain, where cost is

defined solely by the fees of TA. Finally, for each attack we convert the ether cost and profit

into USD by taking the conversion rate valid at the time of the attack.

Attacks. We can see in Table 7.1 the distribution of each variable we collected per displace-

ment attack. The cost and the profit do not appear to be very high for most of the attacks,

but the distributions of both variables present very long tails to the right. Additionally, we

compute the Gas Price ∆ as the gas price of TA minus the gas price of TV . This value indi-

cates how much the attacker A is willing to pay to the miners so they execute TA before TV .
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Table 7.2: Distributions for displacement attacker clusters.

Cost (USD) Profit (USD) Attacks Attacker Accounts Bot Contracts

mean 2,505.09 269,872.45 175.47 2.88 1.47
std 9,776.51 1,005,283.40 555.03 3.89 0.80
min 0.05 0.01 1.00 1.00 1.00
25% 0.14 3.53 1.00 1.00 1.00
50% 3.98 726.70 5.00 1.00 1.00
75% 65.78 4,670.94 8.00 3.00 2.00
max 40,420.63 4,152,270.01 2249.00 16.00 3.00

Table 7.1 shows that most of the attacks contain a very small gas price difference in Gwei

(and cannot be represented with only two digits of precision), but there are very extreme

cases with a difference close to 50 Gwei. Furthermore, we compute the Block ∆ to indicate

how many blocks are between the execution of TA and TV . Again we can see in Table 7.1

that for most of the attacks, both transactions were executed in the same block, but there

are some extreme cases with a long block distance of 19 blocks.

Attacker Clusters. Each of the 17 identified clusters contains bot accounts with different

bytecode, with the exception of one cluster that contains three bot accounts with the exact

same bytecode. Table 7.2 presents the distribution of each attacker cluster variable. The

first variable describes profit, where we can see that a single attacker mounted 2,249 at-

tacks making an accumulated profit of more than 4.1M USD while spending over 40K USD

in transaction fees. We can also see that the attacker used 16 different accounts and 3

different bots to mount its attacks. The minimum amount of profit that an attacker made

with displacement is 0.01 USD. Overall, the average number of attacks per attacker cluster

is 175.47 attacks, using 2.88 accounts and 1.47 bots. However, we also observe from the

distribution that at least half of the attackers only use one account and one bot contract.

7.4.4 Analyzing Insertion

Overall Results. We identified a total of 196,691 insertion attacks from 1,504 unique at-

tacker accounts and 471 unique bot contracts. Using the graph analysis defined in Sec-

tion 7.3.1 we identified 98 unique attacker clusters.

Profitability. We compute the cost for each attack as the sum of the amount of ether an

attacker spent in TA1 and the fees imposed by transactions TA1 and TA2 . Additionally, we

compute the profitability of an attack as the amount of ether an attacker gained in TA2 minus

the cost. Finally, for each attack we convert the ether cost and profit into USD by taking the

conversion rate valid at the time of the attack.
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Table 7.3: Distributions for insertion attacks.

Cost (USD) Profit (USD) Gas Price ∆1 (Gwei) Gas Price ∆2 (Gwei)

mean 19.41 65.05 407.63 3.88
std 51.15 233.44 1,897.47 137.12
min 0.01 -10,620.61 0.00 0.00
25% 4.09 7.86 0.00 0.00
50% 7.74 24.07 5.25 0.00
75% 15.23 62.92 74.10 0.00
max 1,822.22 20,084.01 76,236.09 27,396.63

Attacks. We can see in Table 7.3 the distribution of each variable we collected per insertion

attack. The cost and the profit do not appear to be very high for most of the attacks, but

the distributions of both variables present very long tails to the right. Note that the profit

also present very large negative values to the left, meaning that there are extreme cases of

attackers losing money. Additionally, we compute the Gas Price ∆1 and Gas Price ∆2 as the

gas price of TA1 minus the gas price of TV , and the gas price of TV minus the gas price of

TA2 respectively. This value indicates how much the attacker A is willing to pay to the miners

so they execute TA1 before TV and also if TA2 can be executed after TV . Table 7.3 shows that

25% of the attacks contain a very small Gas Price ∆1 in Gwei (and cannot be represented

with only two digits of precision), but that half or more paid a significant difference, reaching

some extreme cases of more than 76K Gwei. For Gas Price ∆2 most of the attacks have a

very small value, but there are extreme cases, which mean that some attacks are targeting

transactions with very high gas prices.

Gas Tokens. We analyzed how many attacks were mounted using gas tokens. Gas tokens

allow attackers to reduce their gas costs. We found that 63,274 (32.17%) of the insertion

attacks we measured were performed using gas tokens. Of these, 48,281 (76.3%) attacks

were mounted using gas tokens only for the first transaction TA1 , 1,404 (2.22%) attacks were

mounted by employing gas tokens only for the second transaction TA2 , and 13,589 (21.48%)

attacks were mounted by employing gas tokens for both transactions TA1 and TA2 . We also

found that 24,042 (38%) of the attacks used GST2, 14,932 (23.6%) used ChiToken, and

24,300 (38.4%) used their own implementation or copy of GST2 and ChiToken.

Exchanges and Tokens. We identified insertion attacks across 3,200 different tokens on

four exchanges: Bancor, Uniswap V1, Uniswap V2, and SushiSwap. Figure 7.5 depicts the

weekly average of daily insertion attacks per exchange. The first AMM-based DEX to be

released on Ethereum was Bancor in November 2017. We observe from Figure 7.5 that the

first insertion attacks started in February 2018, targeting the Bancor exchange. We also see

that the number of insertion attacks increased tremendously with the rise of other DEXes,
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Figure 7.5: Weekly average of daily insertion attacks per decentralized exchange.

such as Uniswap V1 and Uniswap V2. While it took 3 months for attackers to launch their

first insertion attacks on Uniswap V1, it only took 2 weeks to launch attacks on Uniswap V2

and 5 days to launch attacks on SushiSwap. This is probably due to the core functionality of

Uniswap V1 and Uniswap V2 being the same and that SushiSwap is a direct fork of Uniswap

V2. Thus, for attackers it was probably straightforward to take their existing code for Uniswap

V1 and adapt it to attack Uniswap V2 as well as SushiSwap. The peak of insertion attacks

was on October 5, 2020, with 2,749 daily attacks. We measured in total 3,004 attacks on

Bancor, 13,051 attacks on Uniswap V1, 180,185 attacks on Uniswap V2, and 451 attacks

on SushiSwap. Table 7.4 shows the different combinations of exchanges that attackers

try to frontrun. We see that most of the attackers focus on attacking Uniswap V2, with 72

attacker clusters (73.47%). We also see that 92.86% of the attackers only focus on attacking

one exchange. Moreover, we observed one attacker that attacked all the 4 exchanges, 2

attackers that attacked Uniswap V1 and Uniswap V2, and 4 attackers that attacked Uniswap

V2 and SushiSwap. The latter is expected since SushiSwap is a direct fork of Uniswap V2.

Hence, the attackers can reuse their code from Uniswap V2 to attack SushiSwap. What

is interesting though, is the fact that no attacker is attacking only SushiSwap, we see that

attacker always attack SushiSwap in conjunction to another exchange.

Table 7.4: Exchange combination count by attacker cluster.

Exchange Combination Attacker Clusters

Uniswap V2 72
Uniswap V1 16
SushiSwap, Uniswap V2 4
Bancor 3
Uniswap V1, Uniswap V2 2
Bancor, SushiSwap, Uniswap V1, Uniswap V2 1
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Figure 7.6: Two examples of attackers changing their strategies over time from direct at-
tacks (i.e., using directly an exchange) to indirect attacks (i.e., using a bot contract).

Attack Strategies. In 186,960 cases (95.05%) the attackers sold the exact same amount

of tokens that they purchased. Thus, an easy way to spot insertion attacks on decentral-

ized exchanges is to check for two transactions that have the same sender and receiver,

and where the first transaction buys the same amount of tokens that the second transaction

sells. However, some attackers try to obscure their buy and sell transactions by using differ-

ent sender accounts. We found 86,038 cases of attacks (43.74%) where attackers used a

different sender address to buy tokens than to sell tokens. Moreover, besides trying to hide

their sender accounts, attackers also try to hide in some cases the addresses of their bot

contracts by using proxy contracts to forward for instance the call to buy tokens to the bot

contracts. To the outsider it will look like two transactions with different receivers. We found

only 5,467 cases (2.78%) where the attackers are using proxy contracts to disguise calls

to their bot contracts. Insertion is the only attack type for which our heuristics can detect

attacks that do not employ bot contracts. For these cases, the attacker accounts call the

DEXes directly. From all the insertion attacks we detected, only 2,673 cases (0.01%) fall in

this category of direct attacks. We included these attacks in most of the results, but we do

not count them for the cluster computation since we cannot link the corresponding attacker

accounts to any bot contract. Figure 7.6 highlights examples of two accounts that changed

their attack strategy over time. The attackers initially performed their attacks by calling di-

rectly the smart contract of exchanges, but then switched to bot contracts over time.

Attacker Clusters. Among the 98 attacker clusters that we identified, many of the bot

contracts share the same bytecode. The most extreme case is an attacker cluster that
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Table 7.5: Distributions for insertion attacker clusters.

Cost (USD) Profit (USD) Attacks Attacker Accounts Bot Contracts

mean 38,807.63 130,246.93 1979.78 14.87 4.81
std 135,352.00 462,464.36 6053.68 90.59 10.09
min 0.98 -2,319.42 1.00 1.00 1.00
25% 43.84 -9.78 4.25 1.00 1.00
50% 419.74 691.48 68.50 2.00 2.00
75% 3,510.94 8,350.46 529.25 3.00 4.00
max 686,850.37 2,262,411.95 39162.00 891.00 80.00

contains 80 bot contracts and all of them have the same bytecode. We find that attackers

were already able to make an accumulated profit of over 13.9M USD. From Table 7.5, we see

that an attacker makes on average a profit of over 130K USD per attacker cluster. Moreover,

the average profit per attack is 78.72 USD, whereas the median profit is 28.80 USD. The

largest profit that has been made with a single attack was 20,084.01 USD. However, not

all the attacks were successful in terms of profit. We count 19,828 (10.08%) attacks that

resulted in an accumulated loss of roughly 1.1M USD. The largest loss that we measured

was 10,620.61 USD. The average loss is 56.93 USD per attack and the median loss is 14.26

USD per attack. Thus, the average loss is still lower than the average profit, meaning that

insertion attacks are profitable despite bearing some risks.

Competition. We found among our detected results 5,715 groups of at least two inser-

tion attacks that share the same block number, victim transaction and exchanged token but

with different attackers. Included in those groups, we found 270 cases where at least two

of the attackers targeting the same victim belong to the same attacker cluster. To explain

this phenomenon, we have three hypothesis. The first one is that an attacker would not

interfere with its own attacks, hence, our attacker clustering mechanism is incorrect. Since

our methodology is based on heuristics and we have no ground truth to validate them, we

could expect to find occasional errors. However, since the heuristics are simple and rea-

sonable enough, we also consider the next two hypothesis. The second one is that some

attackers might not be clever enough to coordinate multiple agents working in parallel, and

the self-interference could be an accident. And third, the parallel attacks could be a tac-

tic to split the movements of funds into smaller amounts to avoid becoming the target of

other attackers. For example, we found two instances where attackers became victims

at the same time, namely accounts 0x5e334032Fca55814dDb77379D8f99c6eb30dEa6a and

0xB5AD1C4305828636F32B04E5B5Db558de447eAff in blocks 11,190,219 and 11,269,029, re-

spectively.
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7.4.5 Analyzing Suppression

Overall Results. We identified a total of 50 suppression attacks originated from 98 attacker

accounts and 30 bot contracts. From these entities, we identified 5 unique attacker clusters

using the graph analysis defined in Section 7.3.1.

Rounds, Success, and Failure. In this section we define a suppression attack as a se-

quence of rounds. Each round starts with an investment transaction that sends ether to

the victim’s contract, which is added to a prize pool. The round then continues with a se-

quence of one or more stuffing transactions. When another participant interrupts the stuffing

sequence by sending a new investment transaction, the participant becomes the new po-

tential winner of the prize pool. This event terminates the round in a failure state, because

the attacker cannot claim the prize anymore. Otherwise, if an interruption never occurs and

the attacker can eventually claim the competition prize, the round is terminated with a suc-

cess status. Thus, we define the status of an entire suppression attack as the status of the

last round in the corresponding sequence of rounds. From the 50 suppression attacks we

identified, 13 were successful and 37 failed.

Suppression Strategies. In Table 7.6 we show the distribution of suppression strategies

split by successful and failed attacks. We see that although the assert strategy is the most

popular one, it is not the most successful one. The controlled gas loop strategy seems to be

the most successful in terms of attacks.

Table 7.6: Suppression strategies.

Suppression Strategy Attacks Successful Failed

Assert 20 2 18

Controlled Gas Loop 18 8 10

Uncontrolled Gas Loop 12 3 9

Profitability. In a suppression attack, the profit of the attacker A is defined by the accumu-

lated ether in the prize pool of the suppressed contract. Note that the attack only obtains the

prize if it succeeds. Additionally, we subtract from the profit the attack cost which is defined

by the sum of the initial investment on each round, and the accumulated fees of all the re-

lated transactions TAi . Finally, for each attack we convert the ether cost and profit into USD

by taking the conversion rate valid at the time of the attack.

Attacks. We can see in Table 7.7 the distribution of each variable we collected per sup-

pression attack. An interesting result is that at least 75% of the attacks generate big losses.

However, there are also extreme cases with huge profits. Hence, we could say that the
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suppression attacks are very risky but that they can also yield high rewards. Along with the

price and cost, we also count the number of rounds, blocks and transactions every attack

contains. We can observe, as expected in Table 7.7, how all these metrics grow together

with the cost. A suppression attack lasts on average 6.62 rounds and an attacker stuffs on

average 29.70 blocks with an average of 182.70 transactions.

Table 7.7: Distributions for suppression attacks.

Cost (USD) Profit (USD) Rounds Blocks Transactions

mean 2,349.65 20,725.24 6.62 29.70 182.70

std 3,331.21 113,598.58 12.86 50.77 456.91

min 4.67 -10,741.12 1.00 2.00 6.00

25% 221.87 -1,893.26 1.00 4.00 12.50

50% 896.68 -284.81 2.00 10.00 33.50

75% 2,719.69 -14.93 4.75 21.50 88.75

max 10,741.12 791,211.86 66.00 233.00 2,664.00

Attacker Clusters. We identified 5 attacker clusters. Among the attacker clusters, we found

only two pairs of bot contracts sharing the same bytecode. From Table 7.8, we can see that

the average profit per attacker cluster is 207,252.36 USD and that the largest profit made

by an attacker cluster is over 777K USD. However, we also see that mounting suppression

attacks is expensive with an average of 23,496.52 USD, but still profitable with an average

profit of 207,252.36 USD. Also, we find that attackers mount on average 10 attacks and use

on average around 19 attacker accounts and 6 bot contracts. There is one case where an

attacker was responsible for mounting 18 different attacks using 42 different accounts and

14 different bots.

Table 7.8: Distributions for suppression attacker clusters.

Cost (USD) Profit (USD) Attacks Attacker Accounts Bot Contracts

mean 23,496.52 207,252.36 10.00 19.60 6.00

std 20,520.87 323,613.48 7.65 13.67 5.24

min 46.00 -46.00 1.00 6.00 1.00

25% 14,836.39 19,274.31 3.00 12.00 2.00

50% 21,592.43 115,241.45 12.00 18.00 5.00

75% 25,054.40 124,243.35 16.00 20.00 8.00

max 55,953.37 777,548.67 18.00 42.00 14.00
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Table 7.9: List of contracts that were victims of suppression attacks.

Contract Name Attacks Rounds Transactions Attackers Bot Contracts Attacker Clusters

Last Winner 16 20 304 27 5 2
FoMo3Dlong 12 188 5875 81 8 4
Peach Will 6 52 1105 26 5 2

ERD 3 3 207 20 2 1
ETH CAT 2 23 929 20 2 1

Escape plan 2 3 67 20 2 1
SuperCard 1 25 319 17 1 1

Mobius2Dv2 1 4 82 19 1 1
Star3Dlong 1 3 66 6 1 1

FDC 1 3 44 18 1 1
F3DPRO 1 1 41 18 1 1
FomoXP 1 3 39 19 1 1

EFS 1 1 33 16 1 1
The rabbit 1 1 15 13 1 1
RichKey 1 1 9 8 1 1

Competition. We found that suppression attacks only targeted 15 unique contracts, which

are listed in Table 7.9. We can see that only the contracts Last Winner, FoMo3Dlong, and

Peach Will were targeted by different attacker clusters. We searched through all the at-

tacks for blocks where any of these three contracts were the victims and more than one

attacker cluster was targeting the same victim. We found only one case where bot contract

0xDd9fd6b6F8f7ea932997992bbE67EabB3e316f3C started an attack interrupting another at-

tack from bot contract 0xd037763925C23f5Ba592A8b2F4910D051a57A9e3 targeting Last Win-

ner on block 6,232,122.

7.4.6 Summary

In the following, we summarize our previous findings and compare the different types of

frontrunning attacks in terms of structure, competition, cost, profit, bot triggers, bot activity,

and trends.

Structure. As shown in Figure 7.2, the difference between each attack type is the number

of transactions the attacker employs and where the attacker places them in a block relative

to the victim. For displacement, the attacker needs to place only one transaction before the

victim. For insertion, the attacker creates a sandwich of two transactions around the victim’s

transaction. Finally, for suppression, the attacker must delay the victim’s transaction with

one or more transactions.

Competition. Attackers can interrupt each other depending on the structure of the attack.

For displacement, the attacker only sends one transaction before the victim, so the only way
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Figure 7.7: Cost (left) and profit (right) distributions in logarithmic scale.

for another attacker to interrupt the attack is to place another transaction before the attacker

(i.e., with a higher gas price than the victim and the attacker). Moreover, note that the second

attacker could be aiming at the same victim or could be considering the first attacker as the

victim. In insertion, competition is more complex since one or more transactions can interfere

between the three transactions of a sandwich. Additionally, one attacking transaction can

take the role of the victim in another sandwich (i.e., when the attacking transaction moves

so many funds that it is considered a whale transaction for other attackers). Finally, the

suppression case is even easier to interrupt given the number of transactions it involves

over an extended range of blocks. Interestingly, the results from our heuristic show that

interruptions from regular lottery participants caused most of the failed attacks.

Cost. We present the distribution of attack cost for each attack type in Tables 7.1, 7.3

and 7.7. In Figure 7.7 (left), we present the three cost distributions all together. We employed

a logarithmic scale on the x-axis because the high density of displacement cost around

zero as well as the large dispersion of suppression costs, makes the visualization hard to

interpret. However, using this logarithmic scale, we cannot visualize the actual cost, but we

can see that suppression attacks tend to be more expensive and have more diverse costs.

Profit. Similar to the cost, we present the distribution of attack profit for each attack type

in Tables 7.1, 7.3 and 7.7. In Figure 7.7 (right), we present the three profit distributions all

together. Similar to the cost, we employed a logarithmic scale on the x-axis because the high

density of insertion profit around zero as well as the large dispersion of suppression profits,

makes the visualization hard to interpret. In this scale, we cannot visualize the actual profit,

but we can see that displacement attacks tend to be more profitable than insertion attacks

and that suppression attacks tend to be more profitable than the other two. Additionally, the

displacement profit distribution seems to have two modes.

Bot Triggers. Bots are triggered by transactions that appear in the pool of pending transac-
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tions, which on the other hand reflects user activity. Thus, bots respond to actions performed

by human users. For instance, in the case of displacement these triggers can be users ac-

cessing smart contracts that do not have proper access control. For insertion, bots are

typically triggered by large trades that users commit on decentralized exchanges. Finally,

for suppression, bots are triggered when the prize pool of a lottery or gambling contract has

reached a significant amount of value, which makes running a suppression attack lucrative.
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Figure 7.8: Number of attacks by weekday and hour for displacement (top left), insertion
(top right), and suppression (bottom), following the UTC timezone.

Bot Activity. Figure 7.8 describes the number of attacks by weekday and hour for displace-

ment, insertion, and suppression, respectively, using Coordinated Universal Time (UTC) as

timezone. We can see that the distribution for displacement appears to be random. For in-

sertion, our results indicate higher bot activity overlapping with evening hours in the northern

hemisphere, with highest activity between five and midnight. One plausible explanation is

that transactions vulnerable to insertion attacks correspond to human-initiated trading on the

blockchain. The evening activity can be explained by the fact that most people have more

time to do trading on decentralized exchanges at the end of the day (e.g., after work or after

dinner). However, as discussed previously, user activity triggers bots, and users belong to

different parts of the world with different timezones, so it is hard to draw any conclusions. We

leave it to future work to validate whether the increase of trading activity on decentralized

exchanges has led to the increase of insertion frontrunning attacks and whether most users

engage in trading activities at the end of the day. Finally, there is a slightly higher activity

on Wednesdays for suppression, but we are unsure if the reason depends on a particular
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Figure 7.9: Percentage of attacks by year.

lottery (e.g., advertisement) or if this is just a coincidence due to our small sample size of

detected suppression attacks.

Trends. The number of attacks has a very different magnitude for each attack type: 2K

for displacement, 197K for insertion and only 50 for suppression. This difference makes it

hard to visualize how the amount of attacks changes overtime for all the attacks at the same

time. For that reason, in Figure 7.9, we present the percentage of attacks by year for each

type of attack. We cannot compare the absolute values in the y-axis, but we can see how

suppression attacks decreased over the years, and how both displacement and insertion

mostly appear in 2020.

7.5 Discussion

In this section, we discuss the implications of frontrunning and why existing mitigation tech-

niques are not effective.

7.5.1 Implications of Frontrunning

Daian et al. [150] emphasize that miners could engage in frontrunning activities to maxi-

mize or increase their profits. This will most likely be the case when EIP-2878 becomes

accepted and the current static block award drops from 2 ETH to 0.5 ETH [185]. However, at

the moment miners are already profiting indirectly from frontrunning activities performed by

non-miners, since the high gas prices that those non-miners pay end up being for the min-

ers in the form of transaction fees. Thus, miners are incentivized to allow frontrunning. Our

results show that miners already earned more than 300K USD from transaction fees payed

by the attackers performing insertion frontrunning attacks. While transaction fees in January

2018 only represented 9% of the monthly revenue of a miner, in January 2021 nearly 40%

of the monthly revenue came from transaction fees [212]. Thus, besides attackers, we also
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concluded that miners profit from frontunning attacks. However, attackers and miners are

not the only entities that profit from frontrunning. Take the example of Uniswap. In general,

Uniswap takes a 0.3% fee on every transaction. This fee is divided between the liquidity

providers, proportionally to their share. For example, if you provide 50% of the liquidity,

then you will earn 50% of the collected fee. Thus, liquidity providers profit from every trade

performed by frontrunners. However, frontrunning attacks can also have some severe impli-

cations for normal users in general. For instance, due to multiple attackers trying to frontrun

other attackers via gas price auctions, they temporarily push the average gas prices of the

network and force users that do not engage in frontrunning to either pay higher transaction

fees or wait longer for their transactions to be mined. This becomes a vicious circle where

once again the miners profit from the fact that benign users have to pay higher transaction

fees for their transactions to be mined. Thus, the more attackers engage in frontrunning, the

more it will have an impact on benign users. Another issue is suppression, which prevents

blocks to be used or filled in an optimal way. Ethereum already struggles with a low transac-

tion throughput [161] and suppression attacks only amplify the issue. Suppression attacks

can cause the network to congest and decentralized applications to stop working properly.

7.5.2 Limitations of Existing Mitigations

There are currently two main reasons why frontrunning is conceivable on public blockchains

such as Ethereum. The first reason is the lack of transaction confidentiality. Every node in

the network, not just miners, can observe all the transactions in the clear before they are

mined. The fact that transactions are transparent to everyone is undoubted one of the major

advantages of a public blockchain, however the content and purpose of a transaction should

only be visible to everyone once it has been mined. The second reason is the miner’s ability

to arbitrarily order transactions. This puts a lot of power into the hands of miners. Miners can

decide to censor transactions or change the order of transactions such that they make the

most profit. The idea to order transactions based on the gas price sounds rational at first,

however this also introduces determinism in a way that can be manipulated by outsiders. A

suitable mitigation technique must address these two issues, but it must also be efficient in

terms of costs for the users, provide fair incentives for miners to continue mining transac-

tions, and be adoptable by everyone and not just by a special group of participants. In our

study, we observed that most frontrunning is happening on DEXes, since the risk of failure is

low compared to the amount of profit that can be made. Uniswap, the DEX most affected by

frontrunning, is aware of the frontrunning issue and proposes a slippage tolerance parame-

ter that defines how distant the price of a trade can be before and after execution. The higher

the tolerance, the more likely the transaction will go through, but also the easier it will be for

an attacker to frontrun the transaction. The lower the tolerance, the more likely the trans-

action will not go through, but also the more difficult it will be for an attacker to frontrun the
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transaction. As a result, Uniswap’s users find themselves in a dilemma. Uniswap suggests

by default a slippage tolerance of 0.5% in order to minimize the likelihood that users become

victims of frontrunning. However, in this work we prove that the slippage tolerance does

not work as we measured over 180K attacks against Uniswap. Hence, other mitigations to

counter frontrunning are needed. Bentov et al. [143] present TESSERACT, an exchange that

is resistant to frontrunning by leveraging a trusted execution environment. However, their de-

sign follows a centralized approach and requires users to have hardware support for trusted

execution. Breidenbach et al. [88] proposed LibSubmarine[89], an enhanced commit-and-

reveal scheme to fight frontrunning. However, in the case of Uniswap, LibSubmarine would

require three transactions to perform a single trade, making it cumbersome and relatively

expensive for users to trade.

7.6 Related Work

Daian et al. researched frontrunning attacks from an economical point of view by studying

gas price auctions [150]. Moreover, by modeling actions of bots using game theory, and

framing the problems in terms of a Nash equilibrium for two competing agents, the authors

demonstrated that DEXes are severely impacted by two main factors: the high latency re-

quired to validate transactions, which opens the door to timing attacks, and secondly the

miner driven transaction prioritization based on miner extractable value. The mix of these

two factors leads to new security threats to the consensus-layer itself, independent of al-

ready existing ones [36, 25]. However, the authors only focused on detecting frontrunning

on DEXes and in real time, without scanning the entire blockchain history for evidence of

frontrunning. Our work builds on the taxonomy defined by Eskandari et al. [151], which

introduces three different types of frontrunning: displacement, insertion, and suppression.

Despite illustrating a few concrete examples and discussing several mitigation techniques,

the authors did not analyze the prevalence of frontrunning attacks in the wild. Zhou et

al. [226] estimated the potential effect of frontrunning on DEXes but limited their analysis

only to insertion attacks on a single exchange. Their study estimated the theoretical profit

that could have been made if users would have engaged in fruntrunning attacks, but did

not back their conclusion with real observed data. Compared to their work, we perform real

world measurements not only for insertion attacks, but for the complete spectre of attack

types (i.e., displacement, insertion, and suppression). Besides studying frontrunning, a few

mitigation techniques have also been proposed to counter frontrunning. For instance, Kelkar

et al. proposed a consensus protocol to achieve transaction order-fairness [184]. Breiden-

bach et al. [88] proposed LibSubmarine[89], an advanced commit-and-reveal scheme to fight

frontrunning at the application layer. Bentov et al. [143] present TESSERACT, an exchange

that is resistant to frontrunning by leveraging a trusted execution environment. Finally, Koko-

ris et al. [114] describe CALYPSO, a blockchain that is resistant to frontrunning due to private
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transactions. Unfortunately, none of these techniques are broadly adopted as they are ei-

ther not compatible with the Ethereum blockchain or because they are too costly. Another

important side-effect of decentralized finance is the emergence of flash loans [224]. Wang

et al. [197] discuss a methodology to detect flash loans using specific patterns and heuris-

tics. We leave it to future work to study the implications of flash loans in the context of

frontrunning.

7.7 Conclusion

In this chapter, we investigated the prevalence of frontrunning attacks in Ethereum, by pre-

senting a methodology to efficiently measure the three different types of frontrunning at-

tacks: displacement, insertion, and suppression. Our large-scale analysis on the Ethereum

blockchain identified 199,725 attacks with an accumulated profit of over 18.41M USD for the

attackers. We discussed implications of frontrunning and found that miners profit from fron-

trunning practices. Miners already made an accumulated passive income of more than 300K

USD only from transaction fees payed by frontrunners. Overall, we can conclude that our

results shed some light on the predatory actions of the creatures hiding inside Ethereum’s

dark forest, and we provide evidence that frontrunning is both, lucrative and a prevalent

issue.
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8 | Elysium
Healing Vulnerable Smart Contracts via Context-Aware

Patching

In this chapter, we propose a novel method towards automatically patching vulnerable smart

contracts prior to deployment by leveraging a combination of template-based and semantic-

based patching. Several approaches have been proposed to improve smart contract secu-

rity, by either automatically detecting bugs prior to deployment or allowing contracts to be

updated after deployment. However, merely identifying bugs automatically is not enough.

This became evident when the Parity wallet was hacked a second time after being manu-

ally patched following a security audit. The most elegant solution would be to automatically

eliminate bugs prior to deployment. Automatic pre-deployment patching offers a powerful

promise to strengthen smart contract defenses. Current approaches are limited in the types

of vulnerabilities that can be patched, in the flexibility of the patching process, and in terms

of scalability. In this chapter, we propose ELYSIUM – a scalable approach towards auto-

matic smart contract repair, that combines template-based with semantic-based patching by

inferring context information from the bytecode. ELYSIUM can currently patch 7 known vul-

nerabilities in smart contracts automatically and it can easily be extended with new templates

and new bug-finding tools. We evaluate the effectiveness and correctness of ELYSIUM using

3 different datasets by replaying more than 500K transactions on patched contracts, and find

that ELYSIUM outperforms existing tools by patching at least 30% more contracts. Finally, we

also compare the overhead in terms of deployment and transaction cost. In comparison to

other tools, ELYSIUM minimizes transaction cost (up to a factor of 1.9), for only a marginally

higher deployment cost.

8.1 Introduction

Smart contracts may govern assets that are sometimes worth millions. This makes them

an appetizing target for attackers. The underlying blockchain technology guarantees that

the past cannot be changed. As a result, it is not possible to update the code of a smart

contract, even if bugs are found. Moreover, blockchain technology also guarantees trans-

parency. Thus, smart contract code is publicly visible and can be inspected by anyone for

165



8.1. Introduction

bugs. Several high-profile attacks on high-value smart contracts have occurred. A prominent

example is the 2016 DAO hack, where an attacker managed to steel ether worth 50M USD

by exploiting a reentrancy bug in the smart contract [57].

Since then, various ways to mitigate the problem of insecure smart contracts have been

studied. Some works have focused on adding updateability to smart contracts by using a

“proxy” contract that forwards calls to the most up-to-date version of the code [225, 216].

Other works have focused on modifying clients to block transactions that might result in

hacks (e.g., [69, 165, 180]). Others focused on identifying bugs prior to deployment. Many

studies used symbolic execution to this end (e.g., [51, 122, 120, 102, 158, 116]), while

others used abstract interpretation and model checking (e.g., [112, 136, 90, 193, 181]),

including fuzzing (e.g., [110, 160, 210]). Further additions in this arsenal are tools to detect

and study attacks (e.g., [175, 211]). Despite all these efforts, even well-studied bugs with

well-known countermeasures (e.g., reentrancy) still occur in high-value contracts and are

triggered deliberately or unwittingly. Examples include the 30M USD Parity hack in 2017 [84],

a follow-up attack of its fix that resulted in locking up 150M USD [80], the 2018 reentrancy

bug in the Spankchain smart contract [125] affecting 38K USD, and the 2020 reentrancy

bugs in the Uniswap and Lendf.me smart contracts [191] affecting together 25M USD.

Ideally, smart contracts should be deployed as secure as possible. This entails not

only proxying them, but also checking for known classes of bugs pre-deployment. Pre-

deployment bug fixing typically relies on manual analysis and patching. However, manual

patching is cumbersome, time consuming and, as illustrated by the second Parity hack [80],

does not guarantee the absence of known classes of bugs. Automation of both bug finding

and bug patching is thus needed. While there has been research into automatically patch-

ing smart contracts [199, 202, 219, 214], existing work is still limited: (1) they only address

some vulnerabilities, (2) they use inflexible hard-coded templates that do not scale well, and

(3) they add a large overhead in terms of deployment and transaction costs.

We propose a methodology to address these shortcomings by automatically generating

context-aware patches tailored to each contract. For each contract, we perform a number of

analyses such as integer type inference and free storage space inference to sufficiently un-

derstand the context of the smart contract to be able to create tailored and efficient patches.

Inference and patching are performed at the bytecode level. This is obviously more chal-

lenging than working at the source code level, but has the advantage that our methodology

can be applied to any smart contract, independently of the programming language that was

used. An added bonus is that bytecode level patching results in more efficient code in

terms of size and gas usage than recompiled patched source code [219]. Our methodol-

ogy leverages a hybrid approach by combining the flexibility of template-based approaches

with the effectiveness of semantic-based approaches. Users can write patching templates

that contain place holders which are replaced with contract-related information during patch

generation. Moreover, since our approach leverages already existing bug-finding tools, it
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can easily be extended to incorporate new bug-finding tools, giving it the flexibility to handle

future vulnerabilities. In summary, this chapter makes the following contributions:

Contributions

• We present a novel context-aware patching approach that combines template-

based with semantic-based patching to create flexible and tailored patches for smart

contracts.

• We propose ELYSIUM, a tool that implements our approach to automatically patch 7

different types of vulnerabilities in smart contracts at the bytecode level.

• We compare our tool to existing works using 3 different datasets and replaying more

than 500K transactions, and demonstrate that ELYSIUM not only patches more bugs

(at least 30% more), but that it is also more efficient in terms of gas consumption

(up to 1.9 times less gas).

8.2 Methodology

In this section, we describe the individual challenges as well as our approach towards patch-

ing vulnerabilities at the bytecode level for the vulnerabilities listed in Table 8.1.

8.2.1 Smart Contract Vulnerabilities

In the last years, a plethora of smart contract vulnerabilities have been identified and studied

[60, 218]. The NCC Group initiated the Decentralized Application Security Project (DASP)

with the goal of grouping the most common smart contract vulnerabilities into categories

and ranking them based on their real-world impact [105]. Table 8.1, lists the top 5 categories

and their associated vulnerabilities. Although more categories and vulnerabilities exist, our

work primarily focuses on the vulnerabilities associated with the top 5 for two reasons: 1)

bytecode level detection tools exist for detecting those vulnerabilities 2) those vulnerabilities

can be patched by manipulating the bytecode.

Table 8.1: Decentralized Application Security Project Top 5

Rank Category Associated Vulnerabilities

1 Reentrancy Same- and Cross-Function Reentrancy
2 Access Control Transaction Origin, Suicidal, Leaking, Unsafe Delegatecall
3 Arithmetic Integer Overflows and Underflows
4 Unchecked Low Level Calls Unhandled Exceptions
5 Denial of Services Unhandled Exceptions, Transaction Origin, Suicidal, Leak-

ing, Unsafe Delegatecall
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1 mapping (address => uint) public
userBalances;

2 ...
3 function withdrawBalance() public {
4 uint amount = userBalances[msg.sender];
5 msg.sender.call.value(amount)("");
6 userBalances[msg.sender] = 0;
7 }

(a) Before Patching

1 mapping (address => uint) public
userBalances;

2 + bool private locked = false;
3 ...
4 function withdrawBalance() public {
5 uint amount = userBalances[msg.sender];
6 + require(!locked);
7 + locked = true;
8 msg.sender.call.value(amount)("");
9 + locked = false;

10 userBalances[msg.sender] = 0;
11 }

(b) After Patching

Figure 8.1: (a) Example of a function vulnerable to reentrancy due to an unguarded external
call. (b) Example of a function not vulnerable to reentrancy due to a state variable guarding
the external call.

8.2.2 Patching Reentrancy Bugs

The code snippet in Figure 8.1a provides an example of a function that is vulnerable to reen-

trancy at line 5. The function withdrawBalance transfers the balance of a user to the calling

address. Note that a transfer is simply a call to an address. Hence, if msg.sender is a contract,

then the transfer will trigger the code that is associated to msg.sender. This code can be mali-

cious and call back the withdrawBalance function, and reenter function withdrawBalance while

the first invocation has not finished yet. The issue here is that userBalances[msg.sender]

has not been set to zero at that moment, and therefore an attacker can repeatedly withdraw

its balance from the contract. This is clearly a concurrency issue that can be addressed

in several ways. One solution, is to ensure that all state changes, such as the setting of

userBalances[msg.sender] to zero, are performed before the call. However, this requires

correctly identifying all state variable assignments that are affected by the call, and mov-

ing them before the call. Unfortunately, this process is rather tedious and error-prone, as it

might break the semantics of a contract. A far more simple and less invasive approach, is

to make use of mutual exclusion, a well studied paradigm from concurrent computing with

the purpose of preventing race conditions [8]. The idea is to introduce a so-called mutex

variable that locks the execution state and prevents concurrent access to a given resource.

Figure 8.1b depicts a patched version of the function withdrawBalance using mutual exclu-

sion. A new state variable called locked has been introduced at line 2. The variable is used

as a mutex variable and is initially set to false. The condition at line 6 first checks if locked is

set to false before executing the call at line 8. Then, before executing the call, the variable

locked is set to true and when the call has finished executing, the variable is set back to

false. This mechanism ensures that the call at line 8 is not re-executed when the function

withdrawBalance is reentered. Nevertheless, special care needs to be taken when working
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1 address public owner;
2 ...
3 function withdraw(address receiver)

public {
4 require(tx.origin == owner);
5 receiver.transfer(this.balance);
6 }

(a) Before Patching

1 address public owner;
2 ...
3 function withdraw(address receiver)

public {
4 - require(tx.origin == owner);
5 + require(msg.sender == owner);
6 receiver.transfer(this.balance);
7 }

(b) After Patching

Figure 8.2: (a) Example of a function vulnerable to transaction origin due to the use of
tx.origin. (b) Patched example using msg.sender instead of tx.origin.

with mutexes. One has to make sure that there is no possibility for a lock to be claimed and

never released, otherwise a so-called deadlock might occur and render the smart contract

unusable. However, the greatest challenge of this approach is the introduction of a new state

variable at the bytecode level. While this is straightforward when working at the source code

level, it becomes more challenging when working at the bytecode level, where high level in-

formation such as state variable declarations are missing. Our idea is to use bytecode level

taint analysis in order to learn about occupied storage space and infer which storage space

is still available for inserting a new state variable (cf. Section 8.3 for more details on free

storage space inference). It is crucial that we only introduce mutex variables at free storage

space as otherwise we will overwrite already used storage space and break the semantics of

the contract. Please note that the code presented in Figure 8.1a is an example of a so-called

same-function reentrancy. However, Rodler et al. [165] presented other types of reentrancy

such as cross-function reentrancy, delegated reentrancy, and create-based reentrancy. The

idea is that an attacker can take advantage of a different function that shares the same state

with the reentrancy vulnerable function. Thus, for a contract to be safe against any type

of reentrancy, we have to apply the same locking mechanism to every function that shares

state with the function that is vulnerable to reentrancy. We achieve this by searching the

bytecode for writes to the same state variable used inside the reentrancy vulnerable func-

tion and by guarding them using the same mutex variable that is used in the reentrancy

vulnerable function.

8.2.3 Patching Access Control Bugs

Access control bugs includes: transaction origin, suicidal, leaking, and unsafe delegatecall.

While the former requires its own approach, the latter three can be patched using a common

approach.

Patching Transaction Origin. The function withdraw in Figure 8.2a makes use of tx.origin

to check if the calling address is equivalent to the owner. However, as tx.origin does not

return the last calling address but the address that initiated the transaction, an attacker can
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1 contract Suicidal {
2 ...
3 function kill() public {
4 selfdestruct(msg.sender);
5 }
6 }

(a) Before Patching

1 contract NonSuicidal {
2 + address private owner;
3 ...
4 + constructor() {
5 + owner = msg.sender;
6 + }
7 ...
8 function kill() public {
9 + require(msg.sender == owner);

10 selfdestruct(msg.sender);
11 }
12 }

(b) After Patching

Figure 8.3: (a) Example of a suicidal contract due to an unprotected selfdestruct. (b)
Example of a non-suicidal contract due to a protected selfdestruct.

try to forward a transaction initiated by the owner in order to impersonate itself as the owner

and bypass the check at line 4. The process of patching a transaction origin vulnerability

is rather simple. Figure 8.2b depicts a patched version of the function withdraw. The patch

simply replaces tx.origin with msg.sender, which returns the latest calling address instead

of the origin.

Patching Suicidal, Leaking, and Unsafe Delegatecall. The contract in Figure 8.3a is

considered suicidal. The function kill does not verify the calling address. As a result,

anyone can destroy the contract. The vulnerabilities leaking and unsafe delegatecall are

similar, although they relate to contracts that allow anyone to either withdraw ether or control

the destination of a delegatecall. These three vulnerabilities share the same issue, namely

the unprotected access to a critical operation. The idea is therefore to add the missing logic

that limits the access to a critical operation to only a single entity, for example, the creator

of the smart contract. Figure 8.3b depicts a patched version of the function kill. A new

state variable owner has been added (line 2) as well as a constructor (lines 4-6) in order

to initialize the variable owner during deployment with the address of the contract creator.

Finally, a check has been added at line 9 to verify if msg.sender is equivalent to the address

stored in the variable owner. Similar to reentrancy, this approach requires the identification of

free storage space in order to introduce a new state variable owner. To initialize the variable

owner at deployment (cf. Section 8.3 for more details on modifying the deployment bytecode),

we are required to modify the deployment bytecode instead of the runtime bytecode. Please

note that before creating a new owner variable, we first try to infer and reuse existing owner

variables by employing certain heuristics (e.g., identify variables where msg.sender is written

to). Also note that, deployment bytecode always contains a constructor at the bytecode level,

we therefore just append an assignment to the end of the existing constructor bytecode.
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1 mapping (address => uint32) public
tokens;

2 ...
3 function buy(uint32 amount) public {
4 require(msg.value == amount);
5 tokens[msg.sender] += amount;
6 }

(a) Before Patching

1 mapping (address => uint32) public
tokens;

2 ...
3 function buy(uint32 amount) public {
4 require(msg.value == amount);
5 + uint32 bounds = 2**32-1 - tokens[msg.

sender];
6 + require(bounds >= amount);
7 tokens[msg.sender] += amount;
8 }

(b) After Patching

Figure 8.4: (a) Example of a function vulnerable to an integer overflow due to a miss-
ing bounds check guarding the update of tokens[msg.sender]. (b) Example of a function
not vulnerable to integer overflows due to an added bounds check guarding the update of
tokens[msg.sender].

8.2.4 Patching Arithmetic Bugs

Arithmetic bugs such as integer overflows and underflows are a common issue in smart

contracts. In 2018, several ERC-20 token smart contracts have been victims to attacks

due to integer overflows [109]. The code snippet in Figure 8.4a, provides an example of

a function that is vulnerable to an integer overflow at line 5. The function buy is missing

a check that verifies if the value contained in tokens[msg.sender] would overflow if amount

would be added. A common way to ensure that unsigned integer operations do not wrap,

is to use the SafeMath library provided by OpenZeppelin [124]. For example, in the case

of addition, the library performs a post-condition test, where is first computes the result of

a + b and then checks if the result is smaller than a. If this is the case, then an overflow

has happened and the library halts and reverts the execution. However, Solidity allows

developers to make use of smaller types (e.g., uint32, uint16, etc.) in order to use less

storage space and therefore reduce costs, despite the EVM being able to operate only on

256-bit values. As a result, the Solidity compiler artificially enforces the wrapping of integers

on these smaller types to be consistent with the wrapping performed by the EVM on types of

256-bit. Unfortunately, the checks provided by the SafeMath library only work with values of

type uint256 and do not protect the developers from integer overflows caused by variables

of smaller types. Moreover, Solidity enables integer variables to be unsigned or signed,

but SafeMath only checks for unsigned integers. Therefore, in order to be able to patch

any type of integer overflow, we need to be capable of inferring the size and the signedness

(i.e., signed or unsigned) of an integer variable. While this is trivial when working with source

code, it becomes challenging when working with bytecode, where high-level information

such as size and signedness are not directly accessible. The idea of our approach is to

leverage bytecode level taint analysis in order to infer the size as well as the signedness of

integer variables (cf. Section 8.3 for more details on integer type inference). Once the size
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1 uint public prize;
2 address public winner;
3 bool public claimed = false;
4 ...
5 function claimPrize() public {
6 require(!claimed && msg.sender ==

winner);
7 msg.sender.send(prize);
8 claimed = true;
9 }

(a) Before Patching

1 uint public prize;
2 address public winner;
3 bool public claimed = false;
4 ...
5 function claimPrize() public {
6 require(!claimed && msg.sender ==

winner);
7 - msg.sender.send(prize);
8 + require(msg.sender.send(prize));
9 claimed = true;

10 }

(b) After Patching

Figure 8.5: (a) Example of a function vulnerable to an unhandled exception due to a missing
return value check on send. (b) Example of a function not vulnerable to unhandled exceptions
due to an added return value check on send.

and the signedness are determined, we can generate a patch that verifies if an arithmetic

operation is in bounds with respect to size and signedness. For example, Figure 8.4b depicts

a patched version of the function buy. First, we compute the bounds by subtracting the

value of tokens[msg.sender] from the largest possible value of an unsigned 32-bit integer

(i.e., 232 − 1) (line 5). Afterwards, we check if amount is smaller or equal to the computed

bounds (line 6). If amount is not within the computed bounds, then we halt and revert the

execution. Otherwise, the addition at line 7 is considered safe and we continue the execution.

8.2.5 Patching Unchecked Low Level Calls Bugs

An unchecked low level call, also known as an unhandled exception, occurs whenever the

return value of a call is not checked. A call can fail due to several reasons: an out-of-gas

exception, a revert triggered by the called contract, etc.. A developer should therefore never

assume that a call is always successful, but should always check the return value and handle

the case when the call fails. The function claimPrize() in Figure 8.5a does not check if prize

has been rightfully sent to msg.sender (cf. line 7). As a result, the variable claimed is set to

true, while msg.sender has not received the prize. Fortunately, patching an unchecked low

level call is rather trivial. A patched version of the function is shown in Figure 8.5b. The

patch surrounds the send with a require, which will halt the execution and revert the state

in case send is not successful. Please note that, while this patches the unchecked low level

call, the use of require can make in this case the contract vulnerable to denial-of-service

attacks if calling msg.sender will always fail.

8.3 Design and Implementation

In this section, we provide details on the overall design and implementation of ELYSIUM.
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Figure 8.6: Overview of ELYSIUM’s architecture. The shaded boxes represent the four main
steps of ELYSIUM.

8.3.1 Overview

An overview of ELYSIUM’s architecture is depicted in Figure 6.10. ELYSIUM takes as input

a smart contract as well as an optional bug report and outputs a patched smart contract

together with a patching report. The input smart contract can be either bytecode or Solidity

source code. The latter, will be compiled into bytecode before performing any analysis or

patching. The patched smart contract consists of the patched version of the bytecode of

the original smart contract. The patching report contains information about execution time

and the individual patches that have been applied. ELYSIUM’s patching process follows four

main steps: 1 bug localization, 2 context inference, 3 patch generation, and 4 bytecode

rewriting. The bug localization step is responsible for detecting and localizing bugs in the

bytecode. This step is skipped in case a bug report is provided. The context inference

step is in charge of building the Control-Flow Graph (CFG) from the byteocde and inferring

from the CFG context related information, such as integer types and free storage space, by

leveraging taint analysis. The patch generation step is responsible for creating patches by

inserting previously inferred context information within given patching templates. Finally, as

a last step, the bytecode rewriting is in charge of injecting the generated patches into the

original CFG and translating it back to bytecode. ELYSIUM is written in Python and consists

of roughly 1,600 lines of code. In the following, we describe each of the four steps in more

detail.

8.3.2 Bug Localization

In order to be able to patch bugs, ELYSIUM first needs to know the exact location of a bug

and its type. One option is to implement our own bug detection solution. However, this

is time consuming and error-prone. Another option is to make use of already existing bug

detection solutions for smart contracts and to simply incorporate them into ELYSIUM. This

approach has the advantage of adding modularity by decoupling the detection process from

the patching process. This also makes it easy to extend ELYSIUM with other or future security

analysis tools. ELYSIUM leverages the following three well-known smart contract analysis

tools to detect and localize bugs: OSIRIS [102] to detect integer overflows, OYENTE [51] to
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detect reentrancy, and MYTHRIL [120] to detect unhandled exceptions, transaction origin,

suicidal contracts, leaking ether, and unsafe delegatecalls. These tools are provided to

ELYSIUM as Docker images. ELYSIUM spawns each tool as a separate Docker container,

and once a tool has finished running, the output of the tool is parsed and bug information

such as the opcode (e.g., CALL, ADD), exact bytecode location (i.e., program counter) and

vulnerability type (e.g., reentrancy, integer overflow, etc.) is extracted. This information is

then added to a bug report and used by the subsequent steps. Please note that, one can

also directly provide a manually crafted bug report to ELYSIUM. In such a case, ELYSIUM

will skip the bug localization step and will directly forward the bug report to the subsequent

steps. A user only has to ensure that the bug report follows ELYSIUM’s JSON format and

that it contains the aforementioned information.

8.3.3 Context Inference

To effectively patch vulnerabilities related to reentrancy, access control, and integer over-

flows, we require some context related information. We gather this information by traversing

the CFG and leveraging taint analysis to infer information about integer types and free stor-

age space. We build the CFG by using the EVM CFG Builder python library [213].

Integer Type Inference. Integer type information is composed of a size (e.g., 32-bit for

type uint32) and a signedness (e.g., signed for type int and unsigned for type uint). Both

are essential in order to correctly check whether the result of an arithmetic operation is

either in-bound or out-of-bound. However, type information is usually lost during compilation

and it is therefore only available at the source code level. Fortunately, we can leverage some

behavioral patterns of the Solidity compiler in order to infer the size as well as the signedness

of integers. For example, for unsigned integers, we know that the compiler introduces an AND

bitmask in order to “mask off” bits that are not in-bounds with the integer’s size (i.e., a zero

will mask off the bit, whereas a one will leave the bit set). Thus, a variable of type uint32 will

result in the compiler adding to the bytecode a PUSH instruction that pushes a bitmask with

the value 0xffffffff onto the stack followed by an AND instruction. Hence, from the AND

instruction we infer that it is an unsigned integer and from the bitmask we infer that its size

is 32-bit, since 0xffffffff = 232 − 1. For signed integers, the compiler will introduce a sign

extension via the SIGNEXTEND instruction. A sign extension is the operation of increasing the

number of bits of a binary number while preserving the number’s sign and value. The EVM

uses two’s complement to represent signed integers. In two’s complement, a sign extension

is achieved by appending ones to the most significant side of the number. The number of

ones is computed using 256 − 8(x + 1), where x is the first value passed to SIGNEXTEND.

For example, a variable of type int32 will result in the compiler adding to the bytecode a

PUSH instruction that pushes the value 3 onto the stack followed by a SIGNEXTEND. Hence,

from the SIGNEXTEND instruction we infer that it is a signed integer and from the value 3
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Figure 8.7: An example on the usage of taint analysis to infer integer types from bytecode.

we infer that its size is 32-bit, by solving the following equation: y = 8(x + 1), where in

this case x = 3. Knowing these patterns, we can use taint analysis to infer integer type

information at the bytecode level. First, we iterate in a Breadth First Search (BFS) manner

through the CFG until we find the basic block that contains the instruction that is labeled

as the bug location. In the case of integer overflows, the instruction at the bug location can

either be an ADD, a SUB, or a MUL. Afterwards, we use recursion to iterate from the basic block

containing the bug back to the root of the CFG, thereby creating along the way a list of all

visited instructions. This list of instructions reflects the execution path that has to be taken

in order to reach the bug location. Using this execution path, we can apply taint analysis on

it, by executing instruction by instruction and simulating in an abstract manner the effects of

each instruction on a shadowed stack, memory, and storage. The idea is to introduce taint

whenever we come across a PUSH, AND, or SIGNEXTEND instruction. Finally, when we arrive at

the instruction of the bug location, we check which tainted values have been propagated up

to this instruction. For example, if the tainted values that reached the bug location include a

PUSH and an AND instruction, then we know that it is an unsigned integer and we know its size

from the value introduced by the PUSH instruction. Figure 8.7 provides an illustrative example

on how taint is introduced at address 0x9c and 0xa1, and how it is propagated throughout

the stack until it reaches the vulnerable instruction ADD at the address 0xa6.

Free Storage Space Inference. Patching reentrancy and access control bugs requires the

introduction of an additional state variables at the bytecode level. State variables are associ-

ated with EVM storage, a key-value store, where both keys and values are of size 256-bit. In

Solidity, statically-sized variables (e.g., everything except mappings and dynamically-sized

array types) are laid out contiguously in storage starting from key zero, whereas the storage

location for dynamically-sized variables is computed using a hash function. Moreover, the

Solidity compiler tries to pack multiple, contiguous items that need less than 256-bit into a

single storage slot. To not collude with existing statically-sized state variables, we need to
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find which storage keys are already in use. To do this, we first extract all the possible exe-

cution paths from the CFG by iterating through it in a Depth First Search (DFS) manner and

adding each visited instruction to a list. Each list represents one execution path contained

in the CFG. An execution path is terminated whenever we come across a STOP, RETURN,

SUICIDE, SELFDESTRUCT, REVERT, ASSERTFAIL, or INVALID instruction. Moreover, whenever

we run into a JUMPI instruction we split the execution by creating a copy of the list of in-

structions visited so far and continue iterating first on one branch and then on the other

branch. The EVM provides two different instructions to interact with storage: SLOAD and

SSTORE. The former takes as input a storage key from the stack and pushes onto the stack

the value stored at that key. The latter takes as input a storage key and a value, and stores

the value at the given key. Storage keys are usually pushed onto the stack as constants.

Thus, whenever a storage instruction is executed (i.e., SLOAD or SSTORE), a PUSH instruction

will be executed before at some point in the execution with the goal of pushing the storage

key onto the stack for the storage instruction to use. Our idea is therefore to run our taint

analysis on all the collected execution paths and to introduce taint whenever we execute

a PUSH instruction. The taint includes the PUSH instruction and will be propagated across

stack as well as memory. Eventually, we will reach a storage instruction, where we then

simply check the taint and infer the used storage key from the propagated PUSH instruction.

Afterwards, we add the inferred key to the list of identified storage keys sk. Finally, after

having analyzed all execution paths, we can compute the next available free storage key as

k = max(sk) + 1. This approach ensures that we do not collude with existing storage keys

and it preserves the contiguous layout of state variables in Ethereum smart contract.

8.3.4 Patch Generation

To generate patches, we use a combination of template-based and semantic patching. Ta-

ble 8.2 provides an overview of all templates currently offered. A patch template is selected

according to the vulnerability type that is to be patched. ELYSIUM includes templates for

seven vulnerability types. Moreover, existing templates can be modified or new ones added

in order to patch vulnerabilities that are not supported yet by ELYSIUM. We developed our

own domain-specific language (DSL) that enables users to write their own context-aware

patch templates. The structure of a patch template consists of a sequence of instructions to

be deleted, a sequence of instructions to be inserted, and an insert mode and constructor

flag. The insert mode determines whether the instruction sequence to be inserted should

be inserted before or after the bug location. The constructor flag specifies if the deletion

and insertion should occur at the deployment bytecode. Our DSL is a combination of the

mnemonic representation of EVM instructions and custom keywords that act as place hold-

ers for context dependent information. We leverage the pyevmasm library [183] to trans-

late the mnemonic representation of EVM instructions into EVM bytecode. The following
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Table 8.2: Patch templates provided by ELYSIUM.

Vulnerability Patch Template Source Code Representation

Reentrancy {"delete": "", "insert": "free_storage_location
SLOAD PUSH1_0x1 EQ ISZERO PUSH_jump_loc_1 JUMPI
PUSH1_0x1 DUP1 REVERT JUMPDEST_jump_loc_1
PUSH1_0x1 free_storage_location SSTORE",
"insert_mode": "before", "constructor": false}

+ require(!locked);
+ locked = true;

... ...
{"delete": "", "insert": "PUSH1_0x0
free_storage_location SSTORE", "insert_mode":
"after", "constructor": false}

+ locked = false;

Transaction
Origin

{"delete": "ORIGIN", "insert": "CALLER",
"insert_mode": "before", "constructor": false}

- require(tx.origin == ...);
+ require(msg.sender == ...);

Suicidal,
Leaking &
Unsafe
Delegatecall

{"delete": "", "insert": "CALLER
free_storage_location SSTORE", "insert_mode":
"after", "constructor": true}

+ constructor() {
+ owner = msg.sender;
+ }

... ...
{"delete": "", "insert": "free_storage_location
SLOAD PUSH20_0xffffffffffffffffffffffffffffffffff
ffffff AND CALLER EQ PUSH_jump_loc_1 JUMPI
PUSH1_0x1 DUP1 REVERT JUMPDEST_jump_loc_1",
"insert_mode": "before", "constructor": false}

+ require(msg.sender == owner);

Integer
Overflow
(Addition)

{"delete": "", "insert": "DUP2 DUP2
integer_bounds SUB LT ISZERO PUSH_jump_loc_1
JUMPI PUSH1_0x1 DUP1 REVERT JUMPDEST_jump_loc_1",
"insert_mode": "before", "constructor": false}

+ require(MAX_VALUE - a >= b);

Integer
Overflow
(Multiplica-
tion)

{"delete": "", "insert": "DUP2 DUP2
MUL integer_bounds AND DUP3 ISZERO DUP1
PUSH_jump_loc_1 JUMPI POP DUP3 SWAP1 DIV
DUP2 EQ DUP1 JUMPDEST_jump_loc_1 SWAP1 POP
PUSH_jump_loc_2 JUMPI PUSH1_0x1 DUP1 REVERT
JUMPDEST_jump_loc_2", "insert_mode": "before",
"constructor": false}

+ require(b != 0 && a * b / b == a);

Integer Un-
derflow

{"delete": "", "insert": "DUP2 DUP2 LT ISZERO
PUSH_jump_loc_1 JUMPI PUSH1_0x1 DUP1 REVERT
JUMPDEST_jump_loc_1", "insert_mode": "before",
"constructor": false}

+ require(a >= b);

Unhandled
Exception

{"delete": "", "insert": "DUP1 ISZERO ISZERO
PUSH_jump_loc_1 JUMPI PUSH1_0x1 DUP1 REVERT
JUMPDEST_jump_loc_1", "insert_mode": "after",
"constructor": false}

+ require(...);

four keywords exist: free_storage_location, integer_bounds, PUSH_jump_loc_{x}, and

JUMPDEST_jump_loc_{x}. The free_st orage_location keyword is used to get the current

free storage location and it is automatically replaced with a PUSH instruction that pushes the

current free storage location onto the stack when generating the patch. The integer_bounds

keyword is used to get the integer bounds on the instruction at the bug location and it is au-

tomatically replaced with a PUSH instruction that pushes the inferred integer bounds onto

the stack when generating the patch. The PUSH_jump_loc_{x} and JUMPDEST_jump_loc_{x}

keywords work in conjunction. They are used to mark jumps across instructions within a

template. The PUSH_jump_loc_{x} keyword is replaced in the bytecode rewriting step with a
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PUSH instruction that pushes the jump address of the JUMPDEST_jump_loc_{x} keyword. The

JUMPDEST_jump_loc_{x} keyword simply acts as a marker and is afterwards replaced with a

normal JUMPDEST instruction.

8.3.5 Bytecode Rewriting

…
0x0000009c PUSH2 0xffff
0x0000009f SWAP2
0x000000a0 DUP3
0x000000a1 AND
0x000000a2 SWAP4
0x000000a3 SWAP1
0x000000a4 SWAP4
0x000000a5 ADD
0x000000a6 AND
… 

Original Code
…
0x0000009c PUSH2 0xffff
0x0000009f SWAP2
0x000000a0 DUP3
0x000000a1 AND
0x000000a2 SWAP4
0x000000a3 SWAP1
0x000000a4 SWAP4
0x000000a5 DUP2
0x000000a6 DUP2
0x000000a7 PUSH2 0xffff
0x000000aa SUB
0x000000ab LT
0x000000ac ISZERO
0x000000ad PUSH1 0xb4
0x000000af JUMPI

0x000000b0 PUSH1 0x0
0x000000b2 DUP1
0x000000b3 REVERT

0x000000b4 JUMPDEST
0x000000b5 ADD
0x000000b6 AND
…

True branchFalse branch

Patched Code

Figure 8.8: An example on bytecode rewriting, where a guard is added to an unguarded
ADD instruction using the integer overflow (addition) patch template.

Ethereum smart contracts are always statically linked, meaning that the bytecode already

includes all the necessary library code that is needed at runtime. This makes EVM byte-

code rewriting easier than compared to traditional programs. Nonetheless, rewriting EVM

bytecode still poses some challenges. Similar to traditional programs, EVM bytecode uses

addresses to reference code and data in the bytecode. Thus, when modifying the bytecode,

one must ensure that the addresses that reference code and data are either adjusted or pre-

served. There are two popular ways to deal with this issue. One solution is to preserve the

layout of the existing bytecode by copying the basic block that is to be modified at the end of

the bytecode. Afterwards, we replace the code of the original basic block with a jump to the

copied basic block, and if needed we fill up the original basic block with useless instructions

(e.g., INVALID, JUMPDEST, etc.) to preserve the original size. The modifications are then per-

formed on the copied basic block that resides at the end of the bytecode. At the end of the

modified basic block, we jump back to the end of the original basic block such that the rest of

the original bytecode can be further executed. This technique is known as "trampoline" and

is employed by EVMPATCH [219]. It is the least invasive, since no address references need

to be adjusted. However, one disadvantage is that the original basic block needs to be large

enough to at least hold the logic to jump to the end of the bytecode. Another disadvantage,
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is the tremendous size increase of the bytecode. While this is less important in traditional

programs, for smart contracts this has a monetary impact. The technique will add useless

instructions, so-called "dead code", to preserve the layout, however, this will also result in

higher deployment costs. We decided to opt for a more efficient solution in terms of deploy-

ment and transaction costs, by modifying the bytecode directly at the bug location. However,

this technique requires the correct identification of broken address references and the sub-

sequent adjustment according to the new bytecode layout. Before patching the bytecode,

we create a so-called shadow address, a copy of the current address that is associated

with each instruction in the CFG. Then, we scan the CFG for the basic block that is associ-

ated with the bug location. Afterwards, we modify the basic block by either deleting and/or

inserting instructions according to the generated patch. Figure 8.8 depicts an example of

an original basic block (left hand side) that is vulnerable to an integer overflow at address

0xa5, and how it is patched (right hand side) by inserting a patch in the form of a guard

ranging from address 0xa5 to address 0xb4. After modifying the basic block, we update all

the shadow addresses of all instructions in the CFG whose address is larger than the ad-

dress of the bug location, with the size of the newly added instructions. For example, for

the instruction ADD in Figure 8.8, we keep track of the original address with the value 0xa5

and update the shadow address to the value 0xb5 (0xa5 + 16 bytes of newly added instruc-

tions). After having patched all the vulnerable basic blocks, we still have to adjust the jump

addresses that are pushed onto the stack since some of these might be broken (e.g., not

reference to a JUMPDEST instruction anymore). We do this in two steps. In the first step,

we localize broken jump addresses by iterating through each basic block contained in the

CFG and scanning each basic block for JUMPDEST instructions where the original address is

different than the shadow address. In the second step, we iterate through each basic block

contained in the CFG and scan each basic block for PUSH instructions whose push value

is equivalent to the original address and replace the push value with the shadow address.

Finally, we convert the patched CFG back to bytecode, by first sorting the basic blocks in

ascending order according to their starting, and then translating each EVM instruction within

the basic block to their bytecode representation. However, remember that the deployment

bytecode copies during deployment the entire runtime bytecode of the smart contract into

memory. Thus, as the size of the runtime bytecode has changed, the deployment bytecode

also needs to be adapted to copy the new amount of runtime bytecode. We do so by scan-

ning the deployment bytecode for the following consecutive sequence of instructions: PUSH

DUP1 PUSH PUSH CODECOPY. The first PUSH instruction determines the amount of bytes to be

copied, the second PUSH instruction determines the offset from where the bytes should be

copied, and the third PUSH instruction determines to which offset destination in memory the

bytes should be copied. We update the deployment bytecode by replacing the value of the

first PUSH instruction with the new size of the runtime bytecode. The second PUSH instruction

is only updated if the deployment bytecode has also been patched (e.g., constructor code
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has been added as part of a patch template).

8.4 Evaluation

In this section, we evaluate ELYSIUM by measuring its effectiveness, correctness, and costs.

8.4.1 Experimental Setup

Table 8.3: A comparison of the individual patching tools evaluated in this work.

Vulnerabilities

Toolname Bug Localization Patching Level Approach Availability IO RE UE TO SU LE UD

EVMPATCH [219] Outsourced Bytecode Template Not Available H# # # # G# G# G#
SMARTSHIELD [202] Outsourced Bytecode Template/Semantics On Request H# H#  # # # #
SCREPAIR [199] Outsourced Source Code Mutation Open Source† H# H#  # # # #
SGUARD [214] Insourced Source Code Template/Semantics Open Source H#  #  # # #
ELYSIUM Outsourced Bytecode Template/Semantics Open Source        

† Publicly available source code does not compile. # Not supported. H# Patching partially supported. G# Patch
template must be specified manually.  Fully automatic patching supported. IO: integer overflow, RE: reen-
trancy, UE: unhandled exception, SU: suicidal, LE: leaking, UD: unsafe delegatecall.

Baselines. We compare ELYSIUM to the tools listed in Table 8.3. Most tools, including ELY-

SIUM, have their bug localization outsourced, meaning that they leverage existing security

analysis tools to detect and localize bugs. SGUARD is the only tool that leverages its own

bug localization. While ELYSIUM, EVMPATCH, and SMARTSHIELD insert their patches at

the bytecode level, other tools such as SCREPAIR and SGUARD insert their patches at the

source code level. Almost all tools, except for SCREPAIR, use a template-based approach

to introduce their patches. However, some tools such as ELYSIUM, SMARTSHIELD, and

SGUARD use a combination of template-based and semantic-aware patching. The source

code of EVMPATCH is not publicly available. Nonetheless, the authors released a pub-

lic dataset with their results for comparison [196]. SMARTSHIELD is only available upon

request. While the source code of SCREPAIR is publicly available, we did not manage

to compile it. Both, ELYSIUM and SGUARD, are (will be) publicly available under an open

source license. None of the aforementioned tools, except ELYSIUM, are able to patch all the

vulnerabilities mentioned in this paper. For example, while SMARTSHIELD and SCREPAIR

provide means to patch integer overflows, reentrancy, and unhandled exceptions, they do

not provide means to patch access control related bugs such as transaction origin or unsafe

delegatecall. Moreover, some tools only provide partial patching capabilities for a given type

of vulnerability. For instance, all tools, except ELYSIUM, only support the patching of 256-bit

unsigned integers and do not support integers of smaller size. Another example is reen-

trancy, where tools such as SMARTSHIELD and SCREPAIR only provide support for patching
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same-function reentrancy. Furthermore, some tools such as EVMPATCH require develop-

ers to write contract specific patches for access control related bugs and therefore do not

provide generic fully automatic patching. ELYSIUM on the other hand, provides complete

support and fully automatic patching for all vulnerabilities.

Table 8.4: CVE dataset overview.

Transactions

Contract CVE Bugs Total Benign Attacks

BEC 2018-10299 1 409,837 409,836 1
SMT 2018-10376 1 34,164 34,163 1
UET 2018-10468 8 23,725 23,670 55
SCA 2018-10706 9 281 280 1
HXG 2018-11239 4 1,284 1,274 10

Table 8.5: SMARTBUGS dataset overview.

Vulnerabilities

Category Contracts Annotated Detected Overlap

Reentrancy 31 32 29 28
Access Control 18 19 12 12
Integer Overflow 15 23 20 15
Unhandled Exception 52 75 21 21

Total 116 149 82 76

Table 8.6: HORUS dataset overview.

Transactions

Category Contracts Total Benign Attacks

Reentrancy 46 11,529 9,021 2,508
Access Control 589 4,385 2,533 1,852
– Parity Wallet Hack 1 585 4,123 2,509 1,614
– Parity Wallet Hack 2 238 710 472 238
Integer Overflow 125 52,167 51,724 443
Unhandled Exception 1,068 93,268 90,168 3,100

Total Unique 1,823 160,657 152,845 7,823

Datasets. We run our experiments on three different datasets. The first dataset is the CVE

dataset [196] used by Rodler et al. We chose this dataset in order to be able to compare our

tool with EVMPATCH. It consists of real-world ERC-20 token contracts that were victims of

integer overflow attacks. Moreover, the dataset also provides a list of attacking and benign

transactions (see Table 8.4). However, the dataset is limited to integer overflows and only
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contains 5 contracts. The second dataset is the SMARTBUGS dataset [220]. This dataset

consists of 116 manually crafted contracts with 149 annotated vulnerabilities across 4 differ-

ent vulnerabilities (see Table 8.5). While the dataset brings in a large diversity of vulnerabil-

ities, it does not contain a list of benign or attacking transactions. The third dataset that we

used is the HORUS dataset [204]. The dataset consists of 1,823 unique real-world contracts

vulnerable to one of 4 different vulnerabilities, with 160,657 annotated transactions, where

152,845 transactions are benign and 7,823 transactions are attacks (see Table 8.6).

8.4.2 Experimental Results

Effectiveness. We first measure the effectiveness of ELYSIUM and the other tools on the

SMARTBUGS dataset. The dataset only consists of annotated contracts and does not contain

attacking nor benign transactions. We therefore first run the bug-finding tools (i.e., OSIRIS,

OYENTE, and MYTHRIL) on the contracts and match the reported bugs with the annotated

bugs. The overlap marks the validated ground truth (see overlap in Table 8.5). From the

149 annotated bugs, only 76 bugs are detected by the bug-finding tools. Moreover, the

bug-finding tools reported 6 falsely detected bugs. Next, we patch the contracts by running

each of the patching tools and rerun the bug-finding tools on the patched version returned

by each patching tool, and mark a bug as successfully patched if the bug-finding tool does

not report a bug anymore. Table 8.7 shows that ELYSIUM is able to patch 74 out of 76

bugs, whereas SMARTSHIELD and SGUARD can only patch 43 and 32, respectively. We

see that SMARTSHIELD has issues in patching reentrancy, whereas SGUARD has issues in

patching integer overflows. When considering only the bug types that all three tools have

in common, then we count 22, 30, and 43 patched bugs, for SMARTSHIELD, SGUARD, and

ELYSIUM, respectively. This means that ELYSIUM patches at least 30% more bugs than the

other tools. To measure the effectiveness of ELYSIUM and the other tools on the CVE and

HORUS datasets, we re-execute the attack transactions of each dataset, once on the original

bytecode and once one the patched bytecode returned by each tool. We mark an attack

as successfully blocked if the patched bytecode resulted in the transaction being reverted.

Table 8.8 shows that EVMPATCH, SMARTSHIELD, and ELYSIUM successfully blocked all

Table 8.7: Results on running bug detection tools on patched contracts from the SMART-
BUGS dataset.

Category SMARTSHIELD SGUARD ELYSIUM

Reentrancy 7 28 28
Access Control - 2 10
Integer Overflow 15 2 15
Unhandled Exception 21 - 21

Total 43 32 74
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Table 8.8: Results on replayed benign and attack transactions from the CVE dataset.

Benign Transactions Attack Transactions

Contract EVMPATCH SMARTSHIELD ELYSIUM EVMPATCH SMARTSHIELD ELYSIUM

BEC 409,836 409,836 409,836 1 1 1
SMT 34,163 34,163 34,163 1 1 1
UET 17,947 17,947 17,947 55 55 55
SCA 280 280 280 1 1 1
HXG 1,248 1,248 1,248 10 10 10

Table 8.9: Results on replayed benign and attack transactions from the HORUS dataset.

Benign Transactions Attack Transactions

Category SMARTSHIELD ELYSIUM SMARTSHIELD ELYSIUM

Reentrancy 721 7,898 1,883 1,980
Access Control - 2,048 - 1,850
– Parity Wallet Hack 1 - 2,031 - 1,614
– Parity Wallet Hack 2 - 216 - 236
Integer Overflow 50,394 45,095 397 402
Unhandled Exception 82,341 86,080 2,727 2,900

Total Unique 132,860 140,525 4,965 7,087

attacks for all the contracts within the CVE dataset. Table 8.9 shows that ELYSIUM is able to

successfully block more attacks than SMARTSHIELD on the HORUS dataset.

Correctness. ELYSIUM’s correctness depends heavily on the accurate recovery of the CFG

and the accurate inference of free storage locations. We downloaded from Etherscan the

bytecode and source code for the top 100 smart contracts according to their ether balance.

Their lines of source code range from 19 to 3,299 and their number of functions range

from 1 to 291. The EVM CFG Builder library [213] is able to fully recover the CFG for 85

contracts. Overall, the library achieves an average of 96% recovery with an average time

of 6.7 seconds. We improved the library by adding the techniques proposed in [208]. The

improved version is able to fully recover the CFG for 88 contracts and achieves an average of

98% recovery with an average time of 7.5 seconds. For the 12 non-fully recovered contracts,

our improved version of the EVM CFG Builder library is able to recover on average 16% more

of the CFG than the original version. To measure the accuracy of the free storage location

inference employed by ELYSIUM, we leveraged the ability of the Solidity compiler to generate

the storage layout of a smart contract and compared the storage layout generated by the

Solidity compiler with the storage layout inferred by ELYSIUM. ELYSIUM is able to correctly

infer the storage layout and thus next available free storage location for all 100 contracts.

Besides measuring CFG recovery and free storage location inference, we also measured
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the correctness of ELYSIUM by replaying benign transactions on the patched contracts and

considering them successful if the result is identical to the result of the original unpatched

transaction (with the exception of the patched one using more gas). Table 8.8 shows that

EVMPATCH, SMARTSHIELD, and ELYSIUM correctly executed the same number of benign

transactions. However, some transactions were not counted because they resulted in an out-

of-gas error due to the patched contracts consuming now more gas than originally provided

to the transaction. Table 8.9 shows for the HORUS dataset, that despite ELYSIUM not being

able to correctly execute as much benign transactions on integer overflow as SMARTSHIELD,

overall ELYSIUM still executes more benign transactions successfully than SMARTSHIELD.
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Figure 8.9: Deployment cost increase in terms of bytes.
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Figure 8.10: Transaction cost increase in terms of gas.

Costs. We differentiate between deployment cost and transaction cost. Deployment cost is

referred to the cost when deploying a contract on the blockchain. It is computed based on

the size of the bytecode. The larger the bytecode, the higher the cost. Transaction cost is

referred to the cost when executing a function of a smart contract. It is computed based on

the gas consumed by the executed instructions. The more expensive instructions executed,

the higher the cost. While deployment cost is a one-time cost, transaction cost is a repeating

cost. Our goal is therefore to primarily minimize transaction cost when introducing patches.

Figure 8.9 highlights the deployment cost increase for all datasets. The deployment cost

is measured by computing the difference in terms of size between the patched and the

original bytecode. We state that the patches introduced by EVMPATCH and SGUARD add

the largest deployment cost. This is because those tools use templates that have been

generated from source code. In contrast, ELYSIUM and SMARTSHIELD, use manually crafted

and optimized bytecode level templates that use less instructions. SMARTSHIELD is in most
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cases the cheapest in terms of deployment cost. For example, SMARTSHIELD only adds

on average 4 bytes of overhead for reentrancy on the HORUS dataset, whereas ELYSIUM

adds 25 bytes. This is because SMARTSHIELD does not introduce new logic but rather tries

to move writes to storage in the code. However, ELYSIUM is still by far more efficient than

EVMPATCH and SGUARD. Moreover, for unhandled exceptions, ELYSIUM is more efficient

than SMARTSHIELD, because of its highly optimized patch template. Figure 8.10 highlights

the transaction cost increase measured for each dataset. The transaction cost is measured

by computing the gas usage difference between the patched and original contract for all

successfully executed benign transactions. We state that ELYSIUM adds in almost all cases

the smallest overhead in terms of transaction costs. For instance, in the HORUS dataset,

ELYSIUM only adds on average 32 gas units of overhead when patching integer overflows,

whereas SMARTSHIELD adds 60 gas units (i.e., up to a factor of 1.9). However, we also see

that ELYSIUM adds 25,838 gas units on average to patch reentrancy, whereas SMARTSHIELD

adds none. This is because ELYSIUM adds two writes to storage that consume together

25,000 gas units.

8.5 Related Work

Framing code patching as a search and optimization problem has led several authors [17,

27] to leverage well-established heuristics and search algorithms to patch smart contacts.

SCREPAIR [199] uses a genetic algorithm to find a patch. There are inherent limits in terms

of quality and depth of the results. For instance, complex reentrancy patterns, such as

cross-function reentrancy or faulty access control, cannot be trivially patched and contrary

to claims made by SCREPAIR, patches linked to transaction order dependency are not ad-

dressed. Moreover, genetic algorithms are notoriously slow since a population of solutions

needs to be evolved and this process is entirely random. Several techniques from automated

program repair research have been applied to smart contracts. Nguyen et al. [214] present

a tool called SGUARD, that patches smart contract vulnerabilities at the source code level.

The disadvantage of this approach is that the compiler often adds unnecessary/unoptimized

code, increasing bytecode size and thus causing increased deployment and transaction

costs. The main difference with our work is that we patch directly at the bytecode level

and can highly optimize our patches. Moreover, our tool is language independent, while

SGUARD only works for Solidity. Recently, the academic community has shifted its interest

to automated patching of EVM level bytecode. For instance, EVMPATCH [219] can patch in-

teger overflow and access control patterns at bytecode level. Integer overflows are patched

through hard-coded patches restricted to type uint256 overflows and underflows. In order

to patch access control patterns, the developer is required to use a custom domain-specific

language for specifying a contract specific patch. Thus, patching is not fully automated any-

more and the developer is required to understand and fix the bug manually. Claims that

185



8.6. Conclusion

unhandled exceptions can be patched are not backed by experiments and patching access

control bugs (such as suicidal contracts and leaking contracts), is manual and tailored to the

specific contract. Our approach is fully automated, covers more classes of bugs, and does

not require the kind of manual preparation reported in [219]. Targeting more complex bugs,

Zhang et al. [202] presented SMARTSHIELD, which automatically patches integer overflows,

reentrancy bugs, and unhandled exceptions at the bytecode level. The tool is limited to only

use hard-coded patches for integer overflows of type uint256. We observed in our exper-

iments that SMARTSHIELD has issues in patching reentrancy bugs due the complexity of

identifying data and control dependencies across bytecode. Our approach addresses these

challenges by leveraging taint analysis at the bytecode level to infer contract related infor-

mation (e.g., integer bounds and free storage space) and use it to generate automatically

contract specific patches.

8.6 Conclusion

In this chapter, we proposed ELYSIUM, a tool to automatically patch smart contracts us-

ing context-related information that is inferred at the bytecode level. ELYSIUM is currently

able to patch 7 types of vulnerabilities. It can easily be extended by adding further vulner-

ability detectors and by writing new patch templates using our custom DSL. ELYSIUM can

be integrated into existing compilers and build chains to help developers automatically patch

vulnerable smart contracts before deployment, independently of the programming language.

We compared ELYSIUM to existing tools by patching almost 2,000 contracts and replaying

more than 500K transactions. Our results show that ELYSIUM is able to effectively and cor-

rectly patch at least 30% more contracts than existing tools. Moreover, when compared to

existing tools, the resulting transaction overhead is reduced by up to a factor of 1.9.
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9 | ÆGIS
Shielding Vulnerable Smart Contracts Post Deployment

In this chapter, we study the protection of already deployed smart contracts. In recent years,

smart contracts have suffered major exploits, costing millions of dollars. Unlike traditional

programs, smart contracts cannot be modified once deployed. Though various tools have

been proposed to detect vulnerable smart contracts, only very few solutions have been pro-

posed so far to tackle the issue of protecting smart contracts post-deployment. The few

solutions that exist often suffer from low precision and/or are not generic enough to prevent

any type of attack. In this chapter, we introduce ÆGIS, a dynamic analysis tool that protects

smart contracts from being exploited after deployment. Its capability of detecting new vulner-

abilities can easily be extended through so-called attack patterns. These patterns are written

in a domain-specific language that is tailored to the execution model of Ethereum smart con-

tracts. The language enables the description of malicious control and data flows. In addition,

we propose a novel mechanism to streamline and speed up the process of managing attack

patterns. Patterns are voted upon and stored via a smart contract, thus leveraging the bene-

fits of tamper-resistance and transparency provided by the blockchain. We compare ÆGIS

to current state-of-the-art tools and demonstrate that our solution achieves higher precision

in detecting attacks. Finally, we perform a large-scale analysis on the first 4.5 million blocks

of the Ethereum blockchain, thereby confirming the occurrences of well reported and yet

unreported attacks in the wild.

9.1 Introduction

Deployed smart contracts are by default immutable, thus any bugs present during deploy-

ment [60], or as a result of changes to the blockchain protocol [144], can make a smart con-

tract vulnerable. Moreover, since contract owners are anonymous, responsible disclosure

is usually infeasible or very hard in practice. Though smart contracts can be implemented

with upgradeability and destroyability in mind, this is not compulsory. As a matter of fact,

Ethereum already faced several devastating attacks on vulnerable smart contracts.

In 2016, an attacker exploited a reentrancy bug in a crowdfunding smart contract known

as the DAO. The attacker exploited the capability of recursively calling a payout function
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contained in the contract. The attacker managed to drain over 150 million USD [57] worth of

cryptocurrency from the smart contract. The DAO hack was a poignant demonstration of the

impact that insecure smart contracts can have. The Ethereum market cap value dropped

from over 1.6 billion USD before the attack, to values below 1 billion USD after the attack,

in less than a day. Another example happened with the planned Constantinople hard fork

in January 2019. Ethereum was scheduled to receive an update intended to introduce a

cheaper gas cost for certain smart contract operations. On the eve of the hard fork, a new

reentrancy issue caused by this update was detected. It turned out that the reduction of gas

costs also enabled reentrancy attacks on smart contracts that were previously secure. This

resulted in the update being delayed [144]. A third example are the Parity wallet hacks. In

2017, the Parity wallet smart contract was attacked twice due to a bug in the access control

logic. The bug allowed anyone to claim ownership of the smart contract and to take control

of all the funds. The first attack resulted in over 30 million USD being stolen [84], whereas

the second attack resulted in roughly 155 million USD being locked forever [80].

The manner in which these issues are currently handled is not ideal. At the moment,

whenever a major vulnerability is detected by the Ethereum community, it can take several

days or weeks for the community to issue a critical update and even longer for all nodes to

adopt this update. Such a delay extends the window for exploitation and can have dire effects

on the trading value of the underlying cryptocurrency. Moreover, the lack of a standardized

procedure to deal with vulnerable smart contracts, has led to a “Wild West”-like situation

where several self-appointed white hats started attacking smart contracts in order to protect

the funds that are at risk from other malicious attackers [142]. However, in some cases the

effects of attacks can cause a split in the community so contentious that it leads to a hard

fork, such as in the case of the DAO hack which led to the birth of the Ethereum classic

blockchain [57].

Academia has proposed a variety of tools that allow users to scan smart contracts for vul-

nerabilities prior to deploying them on the blockchain or interacting with them (see e.g., [51,

116, 102, 136]). However, by design these tools cannot protect vulnerable contracts that

have already been deployed. Grossman et al. [69] are the first to present ECFCHECKER,

a tool that allows to dynamically check executed transactions for reentrancy. However,

ECFCHECKER does not prevent reentrancy attacks. In order to protect already deployed

contracts, Rodler et al. [165] propose SEREUM, a modified Ethereum client that detects and

reverts1 transactions that trigger reentrancy attacks. SEREUM leverages the principle that

every exploit is performed via a transaction. Unfortunately, SEREUM has three major draw-

backs. First, it requires the client to be modified whenever a new type of vulnerability is

found. Second, not only the tool itself, but also any updates to it must be manually adopted

by the majority of nodes for its security provisions to become effective. Third, their detec-

tion technique can only detect reentrancy attacks, despite there being many other types of
1Consuming gas, without letting the transaction affect the state of the blockchain.
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attacks [60].

In this chapter, we propose ÆGIS, a solution that only requires a one-time modification

of all the clients. Moreover, we design a new domain-specific language to describe attack

patterns. These attack patterns are stored inside a smart contract, which provides a way to

automatically distribute security updates to all the clients independently of the language in

which they have been programmed. In summary, this chapter makes the following contribu-

tions:

Contributions

• We introduce a novel domain-specific language, which enables the description of

so-called attack patterns. These patterns reflect malicious control and data flows

that occur during execution of malicious transactions.

• We present ÆGIS, a tool that reverts malicious transactions in real-time using at-

tack patterns, thereby preventing attacks on deployed smart contracts.

• We propose a novel way to quickly propagate security updates without relying on

client-side update mechanisms, by making use of a smart contract to store and vote

upon new attack patterns. Storing patterns in a smart contract ensures integrity,

decentralizes security updates and provides full transparency on the proposed pat-

terns.

• We illustrate the effectiveness by providing patterns to prevent the two most promi-

nent hacks in Ethereum, the DAO and Parity wallet hacks.

• We provide a detailed comparison to current state-of-the-art runtime detection tools

and perform a large-scale analysis on 4.5 million blocks. The results demonstrate

that ÆGIS achieves better precision than current state-of-the-art tools.

9.1.1 Smart Contract Vulnerabilities

Although, a number of smart contract vulnerabilities exist [60], in this chapter, we primarily

focus on two types of vulnerabilities that have been defined by the NCC Group as the top

two vulnerabilities in their Decentralized Application Security Project [105]: reentrancy and

access control.

Reentrancy Vulnerabilities. Reentrancy occurs whenever a contract calls another contract,

which then calls back into the original contract, thereby creating a reentrant call. This is not

an issue as long as all the state updates that depend on the call from the original contract

are performed before the call. In other words, reentrancy only becomes problematic when

a contract updates its state after calling another contract. A malicious contract can take

advantage of this by recursively calling a contract until all the funds are drained. Figure 9.1
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1 contract A { // Victim contract
2 ...
3 function withdraw() public {
4 if (credit[msg.sender]) {
5 msg.sender.call.value(credit[msg.sender])();
6 credit[msg.sender] = 0;
7 }
8 }
9

10 contract B { // Exploiting contract
11 ...
12 function () public payable {
13 A.withdraw();
14 }
15 }

Figure 9.1: Example of a reentrancy vulnerability.

provides an example of a malicious reentrancy. Contract B contains a fallback function (line

12-14), a default function that is automatically executed when no other function is called.

In this example, the fallback function of contract B calls the withdraw function of contract

A. Assuming that contract B already deposited some ether in contract A, contract A now

calls contract B to transfer back its deposited ether. However, the transfer results in calling

the fallback function of contract B once again, which results in reentering contract A and

once more transferring the value of the deposited ether to contract B. This repeats until the

balance of contract A becomes zero or the execution runs out of gas. Reentrancy vulnera-

bilities were extensively studied by Rodler et al. [165], and can be divided into four distinct

categories: same-function reentrancy, cross-function reentrancy, delegated reentrancy and

create-based reentrancy. Same-function reentrancy occurs whenever an attacker reenters

the original contract via the same function (see Figure 9.1). Cross-function reentrancy builds

on the same-function reentrancy. However, here the attacker takes advantage of another

function that shares a state with the original function. Delegated reentrancy and create-

based reentrancy are similar to same-function reentrancy, but use different opcodes to ini-

tiate the call. Specifically, delegated reentrancy can occur using either the DELEGATECALL

or CALLCODE opcodes, while create-based reentrancy only occurs when using the CREATE

opcode. While the DELEGATECALL and CALLCODE opcodes behave roughly similar to the CALL

opcode, the CREATE opcode causes a new contract to be created and the contract constructor

to be executed. This newly created contract can then call and reenter the original contract.

Access Control Vulnerabilities. Access control vulnerabilities result from incorrectly en-

forced user access control policies in smart contracts. Such vulnerabilities allow attack-

ers to gain access to privileged contract functions that would normally not be available to

them. The most famous examples of this type of vulnerability are the two Parity MultiSig-

Wallet hacks [84, 80]. The issue originates from the fact that the developers of the Parity
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1 contract W { // Wallet contract
2 ...
3 function W(address _owner) { // Contructor
4 L.delegatecall("initWallet(address)", _owner);
5 }
6 function () payable {
7 L.delegatecall(msg.data);
8 }
9 }

10
11 contract L { // Library contract
12 ...
13 modifier onlyOwner {
14 if (m_ownerIndex[msg.sender] > 0) _;
15 }
16 ...
17 function initWallet(address[] _owners, uint _required, uint _daylimit) {
18 initDaylimit(_daylimit);
19 initMultiowned(_owners, _required);
20 }
21 function initMultiowned(address[] _owners, uint _required) {
22 ...
23 for (uint i = 0; i < _owners.length; ++i) {
24 ...
25 m_ownerIndex[_owners[i]] = 2+i;
26 }
27 ...
28 }
29 function execute(address _to, uint _value, bytes _data) onlyOwner {
30 _to.call.value(_value)(_data));
31 }
32 function kill(address _to) onlyOwner {
33 suicide(_to);
34 }
35 }

Figure 9.2: Example of an access control vulnerability.

wallet decided to split some of the contract logic into a separate smart contract named

WalletLibrary. This had the advantage of reusing parts of the code for multiple wallets

allowing users to save on gas costs during deployment. A simplified version of the code can

be seen in Figure 9.2. As can be seen in line 17-20, the initialization of the wallet is per-

formed via the initWallet function located in contract L, which is called by the constructor

of contract W . In addition, any unmatched function calls to contract W are caught by the fall-

back function in line 6-8, which redirects the call to contract L by means of the DELEGATECALL

operation. Unfortunately, in the first version of the Parity MultiSig-Wallet, the developers for-

got to write a safety check for the initWallet function, ensuring that the function can only

be called once. As a result an attacker was able to gain ownership of contract W by calling

the initWallet function via the fallback function. Once in control the attacker withdrew all

the funds by invoking the execute function (line 29-31).

After the first Parity hack, a new Parity MultiSig-Wallet Library contract was deployed ad-

191



9.2. Methodology

dressing the issue above. In the newly deployed version, the initWallet function was not

part of the constructor anymore, but had to be called separately after deployment. However,

the developers did not call the initWallet function after deployment. Hence, contract L

remained uninitialized, meaning that the library contract itself had no owners. As a result,

3 months after deployment a user known as devops199 was experimenting with the previ-

ous Parity hack vulnerability and called the initWallet function directly inside contract L,

marking its address as the owner. The user then called the kill function (line 32-34), which

removed the executable code of contract L from the blockchain2 and sent the remaining

funds to the new owner. The contract itself contained no funds, however it was used by

multiple Parity wallets which had the address of contract L defined as a constant in their

executable code. As a result any wallet trying to use contract L as a library would now re-

ceive zero as return value, effectively rendering the wallet unusable and therefore freezing

the funds contained in the wallets. This led the user to publicly disclose the steps that led to

this tragedy, with the words: “I accidentally killed it.” [66].

9.2 Methodology

In this section, we present the details of our solution towards a generic and decentralized

way to prevent any type of attacks on already deployed smart contracts. Our idea is to

bundle every Ethereum client with a runtime analysis tool, that interacts with the EVM and is

capable of interpreting so-called attack patterns, and reverting transactions that match these

patterns. Attack patterns are described using our domain-specific language (DSL), which

is tailored to the execution model of the EVM and which allows to easily describe malicious

control and data flows. The fact that we shift the capability of detecting attacks from the

client-side implementation to the DSL, gives us the advantage of being able to quickly pro-

pose mitigations against new vulnerabilities, without having to modify the Ethereum client.

Existing approaches, such as SEREUM for example, require the client-side implementation

to be modified whenever a new vulnerability is found.

9.2.1 Generic Attack Detection

Attacks are detected in our system through the use of patterns, which are described using

our DSL. The DSL allows for the definition of malicious events that occur during the execution

of EVM instructions. The syntax of our DSL is defined by the BNF grammar in Figure 9.3.

A pattern is a sequence of relations between EVM instructions that may occur at runtime.

We distinguish between three types of relations, a “control flow” relation (⇒), a “data flow”

relation (;), and a “follows” relation (→). A control flow relation means that an instruction is

control dependent on another instruction. A data-flow relation means that an instruction is
2The contract code is technically not removed from the blockchain, however, the contract’s code can no longer

be executed on the blockchain, because the contract has been marked as killed.
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〈instr〉 ::= CALL | CALLDATALOAD | SSTORE | JUMPI | . . .

〈exec〉 ::= depth | pc | address | stack(int) | stack.result |
| memory(int, int) | transaction.〈trans〉
| block.〈block〉

〈trans〉 ::= hash | value | from | to | . . .

〈block〉 ::= number | gasUsed | gasLimit | . . .

〈comp〉 ::= < | > | ≤ | ≥ | = | 6= | + | - | · | /

〈expr〉 ::= (src.〈exec〉 〈comp〉 〈expr〉) [∧ 〈expr〉]
| (〈expr〉 〈comp〉 dst.〈exec〉) [∧ 〈expr〉]
| (src.〈exec〉 〈comp〉 src.〈exec〉) [∧ 〈expr〉]
| (src.〈exec〉 〈comp〉 dst.〈exec〉) [∧ 〈expr〉]
| (dst.〈exec〉 〈comp〉 dst.〈exec〉) [∧ 〈expr〉]
| (src.〈exec〉 〈comp〉 int) | (dst.〈exec〉 〈comp〉 int)

〈rel〉 ::= ⇒ | ; |→

〈pattern〉 ::= (opcode = 〈instr〉) 〈rel〉 (opcode = 〈instr〉) [where 〈expr〉]
| 〈pattern〉 〈rel〉 (opcode = 〈instr〉) [where 〈expr〉]
| (opcode = 〈instr〉) 〈rel〉 〈pattern〉 [where 〈expr〉]

Figure 9.3: DSL for describing attack patterns.

data dependent on another instruction. A follows relation means that an instruction is exe-

cuted after another instruction, without necessarily being control or data dependent on the

other instruction. A relation is always between two EVM opcodes: a source opcode (src)

and a destination opcode (dst). The source marks the beginning of the relation, whereas

the destination defines the end of the relation. Moreover, the DSL allows to create conjunc-

tions of expressions that allow to compare the execution environment between source and

destination. The execution environment includes the current depth of the call stack (depth),

the current value of the program counter (pc), the address of the contract that is currently

being executed (address), the current values on the stack (stack) as well as the result of an

operation that is pushed onto the stack (stack.result), the current values stored in memory

(memory), and finally, properties of the current transaction that is being executed (e.g., hash)

as well as properties of the current block that is being executed (e.g., number). The stack is

addressable via an integer, where 0 defines the top element on the stack. The memory is

addressable via two integers: an offset and a size. In the following, we explain the semantics

of our DSL via two concrete examples of attack patterns: same-function reentrancy and the

parity wallet hack 1.

Same-Function Reentrancy. Reconsider the reentrancy example that was described in
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CALL

CALL…

…
A.withdraw()

msg.sender.call.
value(…)()

CALL

CALL…

…
A.withdraw()

SSTORE …
credit[msg.sender] = 0

…

⟹

msg.sender.call.
value(…)()

…

…

SSTORE

⟹

…

credit[msg.sender] = 0

…

…
address = B
depth = 1

⟹

address = A
depth = 2

address = B
depth = 3

address = A
depth = 4

address = …
depth = n

⟹

⟹

⟹
⟹

⟹

pc = 272
stack = [𝑔, 𝑡, 𝑎, …]

pc = 937
stack = [𝑔, 𝑡, 𝑎, …]

pc = 272
stack = [𝑔, 𝑡, 𝑎, …]

pc = 937
stack = [𝑔, 𝑡, 𝑎, …]

pc = 8555
stack = [𝑖, 𝑣, …]

pc = 8555
stack = [𝑖, 𝑣, …]

Figure 9.4: Execution example of a reentrancy attack, where the stack values g (gas), t
(to), a (amount), i (index) and v (value) represent the respective parameters passed to the
instructions during execution. A control flow relation is depicted using⇒, while→ depicts a
follows relation.

Section 9.1.1. Figure 9.4, illustrates the control flow as well as the follows relations that

occur during the execution of that example. The execution starts with contract address B

and a call stack depth of 1. Eventually, contract B calls the withdraw function of contract A,

which results in executing the CALL instruction and increasing the depth of the call stack to 2,

and switching the address of the contract that is being executed to contract A. Next, contract

A sends some funds to contract B, which also results in executing the CALL instruction and

increasing the depth of the call stack to 3, and switching the address of the contract that

is being executed back to contract B. As a result, the fallback function of contract B is

called, which in turn calls again the withdraw function of contract A. This sequence of calls

repeats until the balance of contract A is either empty or the execution runs out of gas.

Eventually, the state in contract A is updated by executing the SSTORE instruction. Given

these observations, we can now create the following attack pattern in order to detect and

thereby prevent same-function reentrancy:

(opcode = CALL) ⇒ (opcode = CALL) where

(src.stack(1) = dst.stack(1)) ∧
(src.address = dst.address) ∧
(src.pc = dst.pc) →
(opcode = SSTORE) → (opcode = SSTORE) where

(src.stack(0) = dst.stack(0)) ∧
(src.address = dst.address) ∧
(src.depth > dst.depth)

This attack pattern evaluates to true if a transaction meets the following two conditions:

(1) there is a control flow relation between two CALL instructions, where both instructions

share the same call destination (i.e., src.stack(1) = dst.stack(1)), are executed

by the same contract (i.e., src.address = dst.address) and share the same program
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counter (i.e., src.pc = dst.pc);

(2) two SSTORE instructions follow the previous control flow relation, where both instruc-

tions write to the same storage location (i.e., src.stack(0) = dst.stack(0)), are ex-

ecuted by the same contract (i.e., src.address = dst.address) and where the first

instruction has a higher call stack depth than the second instruction (i.e., src.depth >

dst.depth).

It is worth mentioning that we compare the program counter values of the two CALL instruc-

tions in order to make sure that it is the same function that is being called, as our goal is to

detect only same-function reentrancy.

DELEGATECALL

CALLDATACOPY…

…
L.delegatecall(msg.data)

m_ownerIndex[_owners[i]] = 2+i;⟹

…
address = W
depth = 1

address = L
depth = 2 ⟹⤳ SSTORE ⤳ JUMPI CALLDATALOAD CALL

if (m_ownerIndex
[msg.sender] > 0)

⤳
_to.call.value(_value)(_data));

… … … … … … … …

pc = 284
stack = […]

pc = 1072
stack = […]

pc = 4046
stack = […]

pc = 2701
stack = […]

pc = 725
stack = […]

pc = 2868
stack = [𝑔, 𝑡, 𝑎, …]

transaction hash = 0x9dbf03…ef75ec transaction hash = 0xeef10f…a7be7c

Figure 9.5: Execution example of an attack on an access control vulnerability. A data flow
relation is depicted with ;. The variables g, t and a are as discussed in Figure 9.4.

Parity Wallet Hack 1. Reconsider the access control example described in Section 9.1.1.

Figure 9.5 illustrates the relevant control flow, data flow and follows relations that occur dur-

ing the execution of that example. We note that the execution example is divided into two

separate transactions. In the first transaction, the attacker sets itself as the owner, whereas

in the second transaction the attacker transfers all the funds to itself. Although in reality an

attacker performs two separate transactions, in our methodology, the two transactions are

represented as a single sequence of execution events. For both transactions, the execution

starts with contract address W eventually making a delegate call to contract address L, as

part of the attacker calling the fallback function of contract W . In the first transaction, we see

that at a certain point contract L copies data from the transaction using the CALLDATACOPY

instruction and stores it into storage via the SSTORE instruction. An interesting observation

here is that state is shared across transactions through storage. In the second transac-

tion, the data that has previously been stored is now loaded onto the stack and used by a

comparison. A comparison is ultimately reflected via the JUMPI instruction. Finally, we see

that the comparison follows a CALLDATALOAD instruction whose data is used by a call CALL

instruction. Given these observations, we are now able to create the following attack pattern

in order to detect and thereby prevent the first Parity wallet hack:
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(opcode = DELEGATECALL) ⇒ (opcode = CALLDATACOPY) ;

(opcode = SSTORE) ; (opcode = JUMPI) where

(src.transaction.hash 6= dst.transaction.hash) →
((opcode = CALLDATALOAD) ; (opcode = CALL)) where

(dst.stack(2) > 0)

The above attack pattern evaluates to true if the following two conditions are met:

(1) there is a transaction with a control flow relation between a DELEGATECALL instruction

and a CALLDATACOPY instruction, where the data of the CALLDATACOPY instruction flows

into an SSTORE instruction;

(2) there is another transaction (i.e., src.transaction.hash 6= dst.transaction.hash) where

the data that has been previously stored via the SSTORE instruction flows into a JUMPI

instruction and is followed by a CALLDATALOAD instruction whose data flows into a CALL

instruction that sends out funds (i.e., dst.stack(2) > 0).

It is worth noting that the Parity wallet attack is a multi-transactional attack and that it is

therefore significantly different from a reentrancy attack, that is solely based on a single

transaction. For more examples of attack patterns, please refer to Table 9.1.

9.2.2 Decentralized Security Updates

While our approach of using a DSL allows us to have a generic solution for detecting attacks,

it still leaves two open questions:

(1) How do we distribute and enforce the same patterns across all the clients?

(2) How do we decentralize the governance of patterns in order to prevent a single entity

from deciding which patterns are added or removed?

The answer to these questions is to use a smart contract that is deployed on the blockchain

itself. This solves the problem of distributing and enforcing that the same patterns are al-

ways used across all clients. Specifically, patterns are stored inside the smart contract and

the blockchain protocol itself guarantees that every client knows about the exact same state

and therefore has access to exactly the same patterns. The second problem of decentral-

izing the governance of patterns, is solved by allowing the proposal and voting of patterns

via the smart contract as depicted in Figure 9.6. The contract maintains a list of eligible

voters that vote for either accepting or rejecting a new pattern. If the majority has voted

with “yes”, i.e., to accept the pattern, then it is added to the list of active patterns. In that

case, every client is automatically notified through the mechanism of smart contract events,

and retrieves the updated list of patterns from the blockchain. In other words, if a pattern is

accepted by the voting mechanism, it is updated across all the clients through the existing
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Table 9.1: List of vulnerabilities and their respective attack patterns.

Vulnerability Attack Pattern

Same-Function
Reentrancy

(opcode = CALL) ⇒ (opcode = CALL) where
(src.stack(1) = dst.stack(1)) ∧
(src.address = dst.address) ∧ (src.pc = dst.pc) →

(opcode = SSTORE) → (opcode = SSTORE) where
(src.stack(0) = dst.stack(0)) ∧
(src.address = dst.address) ∧ (src.depth > dst.depth)

Cross-Function
Reentrancy

(opcode = CALL) ⇒ (opcode = CALL) where
(src.stack(1) = dst.stack(1)) ∧ (src.address = dst.address) ∧
(src.memory(src.stack(3), src.stack(4)) 6=
dst.memory(dst.stack(3), dst.stack(4))) →

(opcode = SSTORE) → (opcode = SSTORE) where
(src.stack(0) = dst.stack(0)) ∧
(src.address = dst.address) ∧ (src.depth > dst.depth)

Delegated
Reentrancy

(opcode = DELEGATECALL) ⇒ (opcode = DELEGATECALL) where
(src.stack(1) = dst.stack(1)) ∧
(src.address = dst.address) ∧ (src.pc = dst.pc) →

(opcode = SSTORE) → (opcode = SSTORE) where
(src.stack(0) = dst.stack(0)) ∧
(src.address = dst.address) ∧ (src.depth > dst.depth)

(opcode = CALLCODE) ⇒ (opcode = CALLCODE) where
(src.stack(1) = dst.stack(1)) ∧
(src.address = dst.address) ∧ (src.pc = dst.pc) →

(opcode = SSTORE) → (opcode = SSTORE) where
(src.stack(0) = dst.stack(0)) ∧
(src.address = dst.address) ∧ (src.depth > dst.depth)

Create-Based
Reentrancy

(opcode = CREATE) ⇒ (opcode = CREATE) where
(src.stack(1) = dst.stack(1)) ∧
(src.address = dst.address) ∧ (src.pc = dst.pc) →

(opcode = SSTORE) → (opcode = SSTORE) where
(src.stack(0) = dst.stack(0)) ∧
(src.address = dst.address) ∧ (src.depth > dst.depth)

Parity Wallet
Hack 1

(opcode = DELEGATECALL) ⇒ (opcode = CALLDATACOPY) ;
(opcode = SSTORE) ; (opcode = JUMPI) where
(src.transaction.hash 6= dst.transaction.hash) →

((opcode = CALLDATALOAD) ; (opcode = CALL)) where
(dst.stack(2) > 0)

Parity Wallet
Hack 2

(opcode = CALLDATACOPY) ; (opcode = SSTORE) ; (opcode = JUMPI) where
(src.transaction.hash 6= dst.transaction.hash) →

((opcode = CALLDATALOAD) ; (opcode = SELFDESTRUCT))

Integer Overflow
(Addition)

(opcode = CALLDATALOAD) ; (opcode = ADD) where
((dst.stack(0) + dst.stack(1)) 6= dst.stack.result) ; (opcode = CALL)

Integer Overflow
(Multiplication)

(opcode = CALLDATALOAD) ; (opcode = MUL) where
((dst.stack(0) * dst.stack(1)) 6= dst.stack.result) ; (opcode = CALL)

Integer Underflow (opcode = CALLDATALOAD) ; (opcode = SUB) where
((dst.stack(0) - dst.stack(1)) 6= dst.stack.result) ; (opcode = CALL)

Timestamp
Dependence

(opcode = TIMESTAMP) ; (opcode = JUMPI) → (opcode = CALL) where
(dst.stack(2) > 0)

Transaction
Order Dependency

(opcode = SSTORE) ; (opcode = SLOAD) where
(src.block.number = dst.block.number) ∧
(src.transaction.from 6= dst.transaction.from)
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Figure 9.6: An illustrative example of ÆGIS’s workflow: Step 1) A benign user detects a
vulnerability and proposes a pattern (written using our DSL) to the smart contract. Step 2)
Eligible voters vote to either accept or reject the pattern. If the majority votes to accept the
pattern, then all the clients are updated and the pattern is activated. Step 3) An attacker
tries but fails to exploit a vulnerable smart contract due to the voted pattern matching the
malicious transaction.

consensus mechanism of the Ethereum blockchain. However, solving the second problem

using a voting mechanism opens up a new problem concerning the requirements needed

for governing the votes. In voting literature, verifiability and privacy are typically seen as key

requirements. Verifiability concerns linking the output to the input in a verifiable way. Pri-

vacy concerns whether a vote can be linked back to a voter. In addition, we argue that the

situation here is more akin to boardroom voting than to general elections, because it should

be possible to hold voters accountable. This means that privacy must be maintained only

until the election is over. Finally, the voting system must not be favorable to any voters –

e.g., it should not confer an advantage to voters that cast their vote late. This final property

is called fairness. It is worth noting that fairness requires privacy during the voting phase.

This leads to the following three requirements:

(1) Verifiability: The outcome of the vote must be verifiably related to the votes as cast

by the voters;

(2) Accountability: Voters can be held accountable for how they voted;

(3) Fairness: No intermediate information must be leaked.
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9.3 ÆGIS

In this section, we provide the implementation details of our solution called ÆGIS3. Fig-

ure 9.7, provides an overview of the architecture of ÆGIS and highlights its main compo-

nents. ÆGIS is implemented on top of Trinity4, an Ethereum client implemented in Python.

EVM Interpreter Data Flow 
Extractor

Pattern 
Parser

Execution trace

Revert

ÆGIS
Ethereum Client

ÆGIS 
Smart Contract

Control Flow 
Extractor

Figure 9.7: Architecture of ÆGIS. The dark gray boxes represent ÆGIS’s main compo-
nents.

9.3.1 Ethereum Client

EVM. We modified the EVM of Trinity such that it keeps track of all the executed instructions

and their states at runtime, in the form of an ordered list. We refer to this list as the execu-

tion trace. Each record in this list contains the executed opcode, the value of the program

counter, the depth of the call stack, the address of the contract that is being executed, and

finally, all the values that were stored on the stack and in memory. This list is passed to the

interpreter component of ÆGIS.

Interpreter. The interpreter loops through the list of executed instructions and passes the

relevant instructions to the control flow and data flow extractor components. It is also respon-

sible for signaling the EVM a revert in case the execution trace matches an attack pattern.

Control Flow Extractor. The control flow extractor is responsible for inferring control flow

information. We do so by dynamically building a call tree from the instructions received by

the interpreter. A control flow relation is reported if there exists a path along the call tree,

from the source instruction to the destination instruction defined in a given pattern. Thus,

control flow relations represent call dependencies between two instructions.

3Code is publicly available at: https://github.com/christoftorres/Aegis
4https://trinity.ethereum.org/
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Data Flow Extractor. The data flow extractor is responsible for collecting data flow informa-

tion. We track the flow of data between instructions by using dynamic taint analysis. Taint is

introduced whenever we come across a source instruction and checked whenever we come

across a destination instruction. Source and destination instructions are defined by a given

pattern. Taint propagation follows the semantics of the EVM [30] across stack, memory

and storage. We perform byte-level precision tainting. Taint that is stored across stack and

memory is volatile, meaning that it is cleared across transactions. Taint that is stored across

storage is persistent, meaning that it remains in storage across transactions. This allows us

to perform inter-transactional taint analysis. A data flow relation is given if taint flows from a

source instruction into a destination instruction.

Pattern Parser. The pattern parser is responsible for extracting and parsing the patterns

from the voting smart contract. We implemented our pattern language using textX5, a

Python framework providing a meta-language for building DSLs.

9.3.2 ÆGIS Smart Contract

The ÆGIS smart contract ensures proper curation of the list of active patterns. We imple-

mented our smart contract in Solidity. As previously mentioned, patterns are accepted or

removed via a voting mechanism. The contract holds all proposed additions and removals

of patterns and allows a vote on them within a set time window. The duration can be config-

ured and updated by the contract owner. Proposals are open to the public and anyone can

propose an addition to or removal from the list of patterns.

timetrtctp

commit window reveal window

Figure 9.8: Timeline of the two voting stages.

Fairness. Votes should remain secret until all eligible voters have had sufficient opportunity

to vote. Therefore, two time windows are employed. The first window is for sending a

commitment that includes a deposit. The second window is for revealing a vote including the

return of the committed deposits. The two windows are illustrated in Figure 9.8. In the figure,

tp represents the point in time when a pattern is proposed and marks the start of the commit

window. tc marks the end of the commit window and the start of the reveal window. Lastly, tr
marks the end of the reveal window and the time when the pattern list is updated in case of a

positive vote outcome. A commitment is a hash of the vote ID, the voter’s vote and a nonce.

The vote ID is a hash of the proposed pattern and identifies the pattern that is being voted

5https://github.com/textX/textX
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on. The voter’s vote is encoded as a Boolean. The nonce ensures that commitments cannot

be replayed. The smart contract records these commitments, which must be sent with the

predefined deposit and within the predefined time window. During the commitment phase no

one knows how anyone else has voted on a given pattern, and so cannot be swayed by the

decisions of others. However, the process should ultimately be transparent to both voters

and non-voters to foster trust in the system. As such, during the second window, the reveal

window, all voters reveal how they have voted. They must reveal their vote in order to get

their deposit back. No commits may be made once the reveal period has started.

Tallying. The voting ends either when more than 50% (50% + 1 vote) of the total number

of votes reaches either accept or reject, or when the time window for revealing expires with

less than 50% having been reached. In case the voting has ended but the reveal window

has not yet passed, any remaining voters are still eligible to reveal their vote, such that their

deposit can be returned. The reveal period is bounded so that patterns are accepted or

rejected in a practical amount of time. In the event of a successful vote, the pattern to which

the vote pertains is added to or removed from the record held by the contract, according to

the proposal. If a vote is unsuccessful, i.e., no majority voted for the proposal, the record of

patterns is not changed.

Actors. There are three types of actors: the proposers that submit proposals to add or

remove patterns, the voters that vote on proposals, and the admins that govern the list of eli-

gible voters as well as the parameters of the smart contract (e.g., deposit, commit and reveal

windows, etc.). The ÆGIS smart contract allows every user on the blockchain to become a

proposer by submitting a proposal. Voters then vote on the proposals by first committing their

vote and at a later stage revealing it. Not every user is an eligible voter. Voters are only those

users whose account address is stored in the list of eligible voters maintained by the smart

contract. Admins may update the list of eligible voters. They oversee the proper curation

of the smart contract and act as a governing body. Admins are agreed upon off-chain and

are represented by a multi-signature wallet. A multi-signature wallet is an account address

which only performs actions if a group of users give their consent in form of a signature.

Data Structures. The smart contract consists of several functions and data structures that

allow for the voting process to take place. We make use of a number of modifiers, which act

as checks carried out before specific functions are executed. We use these to check that: 1)

a voter is eligible, 2) a vote is in progress, 3) a reveal is in progress and 4) the associated vote

has ended. We use a struct to hold the details of each vote, these include the patternID, the

proposed pattern and the startBlock. These values enable us to record the details needed

to check when a vote ends, check that the same pattern has not already been proposed, and

count the number of votes. The struct is used in conjunction with a mapping, which maps a
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32 bytes value to the details of each vote. The 32 bytes value represents the voteID of each

vote, created by hashing unique vote information. A constructor is used to define, at contract

launch, the value of the necessary deposit and the time windows during which voters can

commit or reveal. The former is given in ether, while the latter are given in number of blocks.

The deposit is used to ensure that those who committed a vote also reveal their vote. These

values can be changed later using the contract’s admin functions.

Functionality. The public functions for the voting process are: addProposal, removePropos-

al, commitToVote and revealVote. Both proposal functions first check if a vote with the

same ID already exists, and if not create a new instance of voting details via the mapping.

Next, the commitToVote function can be used inside the defined number of blocks to submit

a unique hash of an eligible voter’s vote. This function makes use of the canVote modifier to

protect access. The voter’s commitment and vote hash are stored only if the correct deposit

amount was sent to the function. Once the vote stage has ended the reveal stage begins.

During this window the revealVote function, protected by the canVote modifier, processes

vote revelations and returns deposits. The function checks that the stored hash matches

the hash calculated from the parameters passed to it, and if so, returns the voter’s deposit

and records the vote. Lastly, it calls an internal function which tallies the votes and adds

or removes the pattern if either the for or against vote has reached over 50%. In this way

the vote is self tallying. The patterns are ultimately stored in an array that can be iterated

over to ensure each node has the full set. Finally, the contract also has two admin functions:

transferOwnership, changeVotingWindows. Both of these are protected by the isOwner

modifier. The former allows the current owning address to transfer control of the contract to

a new address. The latter allows the commit and reveal windows to be changed as well as

the amount required as a voting deposit.

9.4 Evaluation

In this section, we evaluate the effectiveness and correctness of ÆGIS, by conducting two

experiments. In the first experiment we compare the effectiveness of ÆGIS to two state-

of-the-art reentrancy detection tools: ECFCHECKER [69] and SEREUM [165]. In the second

experiment we perform a large-scale analysis and measure the correctness as well as the

performance of ÆGIS across the first 4.5 million blocks of the Ethereum blockchain.

9.4.1 Comparison to Reentrancy Detection Tools

By analyzing transactions sent to contracts, Rodler et al.’s tool SEREUM flagged 16 contracts

as victims of reentrancy attacks. However, after manual investigation the authors found that

only 2 out of the 16 contracts have actually become victims to reentrancy attacks. We

decided to analyze these 16 contracts and see if we face the same challenges in classifying
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Table 9.2: Comparison between SEREUM and ÆGIS on the effectiveness of detecting reen-
trancy attacks.
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these contracts correctly. We contacted the authors of SEREUM and obtained the list of

contract addresses. Afterwards, we ran ÆGIS on all transactions related to the contract

addresses, up to block number 4,500,0006. Table 9.2 summarizes our results and provides

a comparison to the results obtained by SEREUM. From Table 9.2, we can observe that

ÆGIS successfully detects transactions related to the DAO contract and the DSEthToken

contract, as reentrancy attacks. Moreover, ÆGIS correctly flags the remaining 14 contracts

as not vulnerable. Hence, in contrast to SEREUM, ÆGIS produces no false positives on

these 16 contracts. After analyzing the false positives produced by SEREUM, we conclude

that ÆGIS does not produce the same false positives because first, ÆGIS does not use

taint analysis in its pattern and therefore does not face issues of over-tainting, and secondly,

it does not make use of dynamic write locks to detect reentrancy.

Reentrancy with Locks. Besides evaluating SEREUM on the set of 16 real-world smart

contracts, Rodler et al. also compared SEREUM to ECFCHECKER, using self-crafted smart

contracts as a benchmark [166]. The goal of this benchmark is to provide means to investi-

gate the quality of reentrancy detection tools. The benchmark consists of three functionally

equivalent contracts, except that the first contract does not employ any locking mechanism

to guard the reentry of functions (VulnBankNoLock ), the second contract employs partial im-

plementation of a locking mechanism (VulnBankBuggyLock ), and the third contract employs

a full implementation of a locking mechanism (VulnBankSecureLock ). As a result, the first

contract is vulnerable to same-function reentrancy as well as cross-function reentrancy. The

second contract is vulnerable to cross-function reentrancy, but not to same-function reen-

trancy. Finally, the third contract is safe regarding both types of reentrancy. We deployed

these three contracts on the Ethereum test network called Ropsten and ran the three con-

tracts against ÆGIS. Table 9.3 contains our results and compares ÆGIS to ECFCHECKER

and SEREUM. We can see that ECFCHECKER has difficulties in detecting cross-function

reentrancy, whereas SEREUM has difficulties in distinguishing between reentrancy and man-

ually introduced locks. This is probably due to the locking mechanism exhibiting exactly

6This is the maximum block number analyzed by the authors of SEREUM.
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Table 9.3: Comparison between ECFCHECKER, SEREUM and ÆGIS on the effectiveness
of detecting same-function and cross-function reentrancy attacks with manually introduced
locks.
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VulnBankBuggyLock
Same-Function TN FP TN
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VulnBankSecureLock
Same-Function TN FP TN
Cross-Function TN FP TN

the same pattern as a reentrancy attack and SEREUM being unable to differentiate between

these two. We found that ÆGIS correctly classifies every contract as either vulnerable or

not vulnerable in all the test cases.

Unconditional Reentrancy. Calls that send ether are usually protected by a check in the

form of an if, require, or assert. Reentrancy attacks typically try to bypass these checks.

However, it is possible to write a contract, which does not perform any check before sending

ether. Rodler et al. present an example of such a vulnerability and name it unconditional

reentrancy (see Figure 9.9). Moreover, they also find an example of such a contract de-

ployed on the Ethereum blockchain7. When SEREUM was published, it was not able to

detect this type of reentrancy since the authors assumed that every call that may lead to a

reentrancy is guarded by a condition. However, the authors claim to have fixed this issue by

extending SEREUM to tracking data flows from storage to the parameters of calls. We cannot

verify this since the source code of SEREUM is not publicly available. We run ÆGIS on both

examples, the manually crafted example by Rodler et al. and the contract deployed on the

Ethereum blockchain. ÆGIS correctly identifies the unconditional reentrancy contained in

both examples without modifying the existing patterns. This is as expected, since in contrast

to SEREUM’s initial way to detect reentrancy, ÆGIS’s reentrancy patterns do not rely on the

detection of conditions (i.e., JUMPI) to detect reentrancy.

9.4.2 Large-Scale Blockchain Analysis

In this experiment we analyze the first 4.5 million blocks of the Ethereum blockchain and

compare our findings to those of Rodler et al. We started by scanning the Ethereum

blockchain for smart contracts that have been deployed until block 4,500,000. We found

7https://etherscan.io/address/0xb7c5c5aa4d42967efe906e1b66cb8df9cebf04f7
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1 contract VulnBank {
2 mapping (address => uint) public userBalances;
3
4 function deposit() public payable {
5 userBalances[msg.sender] += msg.value;
6 }
7
8 function withdrawAll() public {
9 uint amountToWithdraw = userBalances[msg.sender];

10 msg.sender.call.value(amountToWithdraw)("");
11 userBalances[msg.sender] = 0;
12 }
13 }

Figure 9.9: Example of a contract that is vulnerable to unconditional reentrancy [166].

675,444 successfully deployed contracts. The deployment timestamps of the found con-

tracts range from August 7, 2015 to November 6, 2017. Next, we replayed the execution

history of these 675,444 contracts. As part of the scanning we found that only 12 contracts

in our dataset have more than 10,000 transactions. Therefore, to reduce the execution time,

we decided to limit our analysis to the first 10,000 transactions of each contract. In addition,

similar to Rodler et al., we tried our best to skip those transactions which were involved in

denial-of-service attacks as they would result in high execution times8.

Table 9.4: Number of vulnerable contracts detected by ÆGIS.

Vulnerability Contracts Transactions

Same-Function Reentrancy 7 822

Cross-Function Reentrancy 5 695

Delegated Reentrancy 0 0

Create-Based Reentrancy 0 0

Parity Wallet Hack 1 3 80

Parity Wallet Hack 2 236 236

Total Unique 248 1118

We ran ÆGIS on our set of 675,444 contracts using a 6-core Intel Core i7-8700 CPU @

3.20GHz and 64 GB RAM. Our tool took on average 108 milliseconds to analyze a transac-

tion, with a median of 24 milliseconds per transaction. All in all, we re-executed 4,960,424

transactions with an average of 8 transactions per contract. Table 9.4 summarizes our re-

sults. ÆGIS found a total of 1,118 malicious transactions and 248 unique contacts that

have been exploited through either a reentrancy or an access control vulnerability. More

specifically, ÆGIS found that 7 contracts have become victim to same-function reentrancy,

8https://tinyurl.com/rvlvues
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5 contracts to cross-function reentrancy, 3 contracts to the first Parity wallet hack and 236

contracts to the second Parity wallet hack. Similar to the results of Rodler et al., we did

not find any contracts to have become victim to delegated reentrancy or create-based reen-

trancy. We validated all our results by manually analyzing the source code (whenever it was

publicly available) and/or the execution traces of the flagged contracts. Our validation did

not reveal any false positives.

Table 9.5: Same-function reentrancy vulnerable contracts detected by ÆGIS. Contracts
highlighted in gray have only been detected by ÆGIS and not by SEREUM.

Contract Address Block Range

0xd654bdd32fc99471455e86c2e7f7d7b6437e9179 1680024 - 1680238

0xbb9bc244d798123fde783fcc1c72d3bb8c189413 1718497 - 2106624

0xf01fe1a15673a5209c94121c45e2121fe2903416 1743596 - 1743673

0x304a554a310c7e546dfe434669c62820b7d83490 1881284 - 1881284

0x59752433dbe28f5aa59b479958689d353b3dee08 3160801 - 3160801

0xbf78025535c98f4c605fbe9eaf672999abf19dc1 3694969 - 3695510

0x26b8af052895080148dabbc1007b3045f023916e 4108700 - 4108700

Table 9.5 lists all the contract addresses that ÆGIS detected to have become victim of a

same-function reentrancy attack. The block range defines the block heights where ÆGIS

detected the malicious transactions. The first and second contract addresses contained

in Table 9.5 are the same as reported by SEREUM, and belong to the DSEthToken and

DAO contract, respectively. The rows highlighted in gray mark 5 contracts that have been

flagged by ÆGIS but not by SEREUM. After investigating the transactions of these 5 con-

tracts, we find that the contract addresses 0x26b8af052895080148dabbc1007b3045f023916e

and 0xbf78025535c98f4c605fbe9eaf672999abf19dc1 became victim to same-function reen-

trancy, but seem to be contracts that have been deployed with the purpose of studying the

DAO hack. However, the three other contract addresses seem to be true victims of reen-

trancy attacks.

9.5 Discussion

In this section, we discuss alternatives to determine eligible voters, highlight some of the

current limitations as well as future research directions for this work.

9.5.1 Determining Eligible Voters

The introduction of new patterns in ÆGIS depends on achieving consensus in a predeter-

mined group of voters. Although it may intuitively make sense to let miners vote, they are
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not necessarily a good fit. Their interests may differ from those of smart contract users. For

example, depending on a pattern’s complexity, it might introduce an overhead in terms of

execution time. Miners are then incentivized to prefer simpler patterns that are evaluated

quicker, while smart contract users would prefer more secure patterns.

Alternatively, a group of trusted security experts could act as eligible voters9. Security

experts are (by definition) able to properly evaluate patterns and have the interest in doing

so. The voting contract is then controlled by a group of trusted experts who are decided upon

off-chain by a group of admins. For transparency, the identity of admins and experts would

be exposed to the public by mapping every identity to an Ethereum account. Changes to the

list of voters, the deposit, or the commit and reveal windows are then visible to anyone via

the blockchain. Through this setup, security experts would be able to organize themselves

with the voter list being comprised of a curated group of knowledgeable people. Such groups

already exist in reality, for example, the members of the Smart Contract Weakness Classi-

fication registry (SWC)10, and would be a good fit for our system. Moreover, misbehaving

or unresponsive experts could be easily removed by the group of admins. Although this

approach allows for scalability and control, it has the disadvantage of introducing managing

third-parties. That runs counter to the decentralized concept of Ethereum.

Alternatively, there is also an option to select voters, while preserving the decentralized

concept of Ethereum. This is to remove the role of admins altogether, and instead follow

a self-organizing strategy, similar to Proof-of-Stake. In this case, everyone is allowed to

become a voter through the purchase of (not prohibitively priced) voting power. This could

be achieved by depositing a fixed amount of ether into the voting smart contract as a form

of collateral.

9.5.2 Adoption and Participation Incentives

The deployment of ÆGIS would require a modification of the Ethereum consensus protocol,

which would require existing Ethereum clients to be updated. This could be easily achieved

though a major release by including this one-time modification as part of a scheduled hard-

fork. Another issue concerns the incentives to propose and vote on patterns. While prestige

or a feeling of contributing to the security of Ethereum may be sufficient for some, more

incentives may be needed to ensure that the protective capabilities of ÆGIS are used to

the full extent. A monetary incentive could address this. That is, ÆGIS could be extended

with automatically paid rewards. In other words, ÆGIS could be extended to enable bug

bounties [88]. ÆGIS’s smart contract could be modified such that, owners of smart con-

tracts can register their contract address by sending a transaction to ÆGIS’s voting smart

contract and deposit a bounty in the form of ether. Then, proposers of patterns would be

rewarded automatically with the bounty by ÆGIS’s voting smart contract, if their proposed
9Somewhat similar to how CVEs are handled.

10https://smartcontractsecurity.github.io/SWC-registry/
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pattern is accepted by the group of voters. Moreover, owners could simply replenish the

bounty for their contract by making new deposits to ÆGIS’s smart contract.

9.5.3 Limitations

A current limitation of our tool is that proposed attack patterns are submitted in plain text to

the smart contract. Potential attackers can view the patterns and use them to find vulnerable

smart contracts. To mitigate this, we propose to make use of encryption such that only the

voters would be able to view the patterns. However, this would break the current capability

of the smart contract being self-tallying. Designing an encrypted and practical self-tallying

solution is left for future work. Finally, we intend to make use of parallel execution inside

the extractors and the checking of patterns in order to improve the time required to analyze

transactions.

9.6 Related Work

As with any program, smart contracts may contain bugs and can be vulnerable to exploita-

tion. As discussed in [60], different types of vulnerabilities exist, often leading to financial

losses. The issue is made worse by the fact that smart contracts are immutable. Once

deployed, they cannot be altered and vulnerabilities cannot be fixed. In addition to that,

automated tools for launching attacks exist [116].

Several defense mechanisms have been proposed to detect security vulnerabilities in

smart contracts. This includes tools such as ERAYS [140], designed to provide smart con-

tract auditors with a reverse engineered pseudo code of a contract from its bytecode. The

interpretation of the pseudo code however remains a slow and grueling task. More auto-

mated tools have also been proposed benefiting from regular expressions [172] and machine

learning techniques [134] to detect vulnerabilities.

A wealth of security research has focused on the creation of static analysis tools to

automatically detect vulnerabilities in smart contracts. Formal verification has been used

together with a formal definition of the EVM [107, 85], or by first converting smart contracts

into the formal language F* [35, 104]. Other works focused on analyzing the higher level

solidity code [135, 155], which limits the scope to those contracts with available source

code. Another approach is to apply static analysis on the smart contract bytecode [136].

A technique commonly used for this purpose is symbolic execution, designed to thoroughly

explore the state space of a smart contract utilizing constraint solving. It has been used to

detect contracts with vulnerabilities [51, 188], to find misbehaving contracts [122, 115, 158],

or detect integer bugs [102, 112]. Fuzzing techniques have also been applied [110, 160].

In [171] the authors propose HARVEY, a greybox fuzzer that selects appropriate inputs and

transaction sequences to increase code coverage. Fuzzing techniques however involve a

trade-off between the number of discovered paths and the efficiency in input generation.
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While all the listed tools help identify vulnerabilities, they cannot protect already deployed

smart contracts from being exploited. Therefore, to deal with the issue of vulnerabilities in

deployed smart contracts, [69, 165] propose a modification to the Ethereum client, that would

allow detection and prevent exploitation of reentrancy vulnerabilities at runtime. However,

these approaches only deal with reentrancy and require all the clients in the network to be

modified. This is an issue for the following reasons. On one hand, every update of the vul-

nerability detection software requires an update of the different Ethereum client implementa-

tions. This is true for both bug fixes and functionality upgrades, for example the detection of

new vulnerabilities. On the other hand, every modification of the clients needs to be adopted

by all the nodes participating in the Ethereum blockchain. This requires time and breaks

compatibility between updated and non-updated clients. In this work, we propose a generic

solution that protects contracts and users from existing and future vulnerabilities, without

requiring client modifications and forks every time a new vulnerable smart contract is found.

Wang et al. [169] propose an approach to detect vulnerabilities at runtime based on two

invariants that follow the intuition that most vulnerabilities are due to a mismatch between

the transferred amount and the amount reflected by the contract’s internal bookkeeping logic.

However, this approach has three main drawbacks. First, it requires the automated and cor-

rect identification of bookkeeping variables, which besides being a non-trivial task also does

not hold for every contract, since there can be contracts that do not use internal bookkeeping

logic but are nevertheless vulnerable. Second, their approach does not model environmen-

tal information such as timestamps or block numbers, which does not allow them to detect

vulnerabilities such as timestamp dependence or transaction order dependency, whereas

our approach models environmental information and allows for the detection of these vul-

nerabilities. Finally, Wang et al.’s approach can only detect violations of safety properties

and not violations of liveness properties such as the Parity Wallet Hack 2. In this work, we

demonstrate that our approach is capable of detecting both Parity wallet hacks and therefore

violations to safety as well as liveness properties.

As blockchains provide means for transparency and decentralization, multiple block-

chain-based solutions have been proposed to perform electronic voting [53, 61, 108]. With

the recent developments in quantum computers, recent work has also started to focus on the

development of quantum-resistant blockchain-based voting schemes [168]. These solutions

can all be categorized into two categories: cryptocurrency-based and smart-contract-based.

Cryptocurrency-based solutions focus on using payments as a proxy for votes in an

election. When a voter wishes to cast a vote, he or she makes a payment to the address

of the candidate. Lee et al. [50] proposed such a system in the Bitcoin network. However,

their system requires a trusted third party to perform the ballot counting. Zao et al. [33] were

the first to propose a voting scheme using the public Bitcoin network while preserving the

privacy of the votes. Another well-known cryptocurrency-based solution is CarbonVote [39].

It was introduced in the aftermath of the DAO hack to allow the Ethereum Foundation to
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determine if the Ethereum community wanted a hard fork or not. The tallying was performed

by counting the amount of ether that each address received. Needless to say, such a system

gives a tremendous amount of voting power to users with a large amount of funds.

Smart-contract-based voting relies on a decentralized application to assist the voting

process – there is no central entity. McCorry et al. [77] propose a practical implementation

of the Open Vote Network [18] in the form of a smart contract deployed on the Ethereum

blockchain for boardroom voting. Their implementation is self-tallying and provides, in addi-

tion to vote privacy, also transparency. Voting proceeds in several rounds, where the voters

first broadcast their voting key, followed by a proof that their vote is binary (a “yes” or “no”

vote). A final tally round allows anyone to calculate the total sum of votes, without revealing

individual ballots. The voting mechanism described in this chapter is inspired by McCorry

et al.’s proposed solution and implementation. The limitations of their proposed solution,

namely having a binary voting system and limiting the number of voters to less than 50

participants, are acceptable for our purposes.

9.7 Conclusion

Despite various researchers having proposed a significant number of tools to detect vul-

nerabilities in smart contracts, only a small number have proposed a solution to protect

deployed smart contracts against attacks. These solutions depend on the modification of

the Ethereum clients in order to detect and revert transactions that try to exploit vulnerable

smart contracts. However, these solutions require all the Ethereum clients to be modified

every time a new type of vulnerability is discovered. In this chapter, we introduced ÆGIS,

a system that detects and reverts attacks via attack patterns. These patterns describe ma-

licious control and data flows through the use of a novel domain-specific language. In addi-

tion, we presented a novel mechanism for security updates that allows these attack patterns

to be updated quickly and transparently via the blockchain, by using a smart contract as

means of storing them. Finally, we compared ÆGIS to two current state-of-the-art online

reentrancy detection tools. Our results show that ÆGIS not only detects more attacks, but

also has no false positives as compared to current state-of-the-art.
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In this dissertation, we studied the topic of analyzing and improving the security of smart

contracts. Today, five years after the DAO hack, attacks on smart contracts still remain a

pertinent issue. Years of research on smart contract security attribute to the fact that attacks

are now more sophisticated than ever. In this dissertation, we studied the security of smart

contracts by presenting methods to automatically detect vulnerabilities and attacks in smart

contracts, and tried to conceive defense mechanisms that focus on preventing exploits that

stem from well-studied smart contract vulnerabilities. To that end, we studied the domain of

smart contract security from three different angles: (1) automated vulnerability detection, (2)

investigation of attacks, and (3) pre- and post-deployment defenses.

First, we explored the use of static and dynamic analysis methods to perform automated

vulnerability detection on smart contract bytecode. In Chapter 3, we investigated whether in-

teger overflows are an apparent issue in smart contracts. In that light, we presented OSIRIS

– a symbolic execution tool for detecting integer bugs such as arithmetic bugs, truncation

bugs, and signedness bugs, in Ethereum smart contracts. To reduce false positives, our

symbolic execution tool leverages taint analysis to only report integer bugs that can be trig-

gered by attackers and which flow into sensitive program locations such as a call to another

contract or a write to storage. Our comparison showed that current state-of-the-art is in

fact not sound as sometimes claimed and that our methodology is able to report less false

positives. Moreover, our results stipulate that there exist a significant number of deployed

smart contracts that are vulnerable to integer bugs. Therefore, we identified causes for in-

teger bugs and proposed modifications to the EVM and the Solidity compiler. However, the

downside of symbolic execution is that it is notorious for producing false positives and that it

suffers from the path explosion problem as programs become more complex. Consequently,

in Chapter 4, we investigated the use of hybrid fuzzing as an alternative to symbolic ex-

ecution for smart contracts. We presented CONFUZZIUS, the first hybrid fuzzer for smart

contracts which tackles the three main challenges of smart contract testing: input genera-

tion, stateful exploration, and environmental dependencies. We solved the first challenge

by combining evolutionary fuzzing with constraint solving to generate inputs that allow the

fuzzer to get past complex path conditions. Finally, we solved the last challenge by lever-

aging data dependency analysis across state variables to generate meaningful transaction
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sequences instead of random ones. The last challenge, we solved by modeling block related

information (e.g., block number) and contract related information (e.g., call return values) as

fuzzable inputs. We evaluated the performance of our hybrid fuzzer by comparing it to other

state-of-the-art fuzzers and symbolic execution tools for smart contracts and demonstrated

that our hybrid fuzzer is able to detect more bugs and achieve more code coverage than

existing state-of-the-art tools.

Next, we focused on the investigation of attacks against smart contracts. In Chapter 5,

we presented the design and implementation of HORUS – an extensible framework for de-

tecting, analyzing, and tracing smart contract attacks. Our framework identified thousands

of attacks on real-world deployed smart contracts by analyzing transactions of a 4.5 year pe-

riod. In particular, we found that the number of attacks seem to have decreased for attacks

such as integer overflows, whereas the number of attacks related to unhandled exceptions

and reentrancy seem to remain a pertinent issue despite a large number of freely available

smart contract security tools. Moreover, by using two recent examples of attacks on decen-

tralized exchanges, we demonstrated how our framework can be leveraged by researchers

and companies to perform in-depth post-mortem analyses of smart contract incidents. Fur-

ther, smart contracts may not only be victims of attacks, they may also be used by fraudsters

to mount attacks. In Chapter 6, we investigated an emerging new type of fraud in Ethereum

called honeypots. We created a taxonomy of honeypot techniques and build a tool called

HONEYBADGER, that leverages symbolic execution together with well-defined heuristics to

automatically detect honeypots. We showed that our methodology can effectively detect

honeypots with a very low false positive rate. In a large-scale experiment, we were able to

identify several honeypot contracts in the wild. Our analysis on a subset of identified honey-

pots, revealed that already several users fell for these honeypots and that attackers already

made a significant amount of profit by deploying these contracts. However, honeypots are

not the only type of fraud where smart contracts can be used to make profit on the back of in-

nocent users. The rise of decentralized finance stimulated a number of attackers to perform

so-called frontrunning attacks against smart contracts. We investigated the prevalence of

these attacks, by presenting a methodology to efficiently measure the three different types

of frontrunning: displacement, insertion, and suppression, while relying only on historical

information from the blockchain. Our analysis identified thousands of attacks in the wild,

thereby providing evidence that frontrunning is both, lucrative and a prevalent issue, that

has serious implications for modern blockchains.

Finally, we studied pre- and post-deployment defenses for smart contracts. To protect

smart contracts against attacks before deployment, we proposed in Chapter 8 ELYSIUM – a

tool to automatically patch vulnerable smart contracts using context-related information that

is inferred at the bytecode level. Our tool is currently able to patch 7 types of vulnerabilities

and can easily be extended by adding further vulnerability detectors or by writing new patch

templates using our custom domain-specific language. We evaluated our tool and demon-
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strated that our approach of combining template-based with semantic-based patching is able

of effectively and correctly patch more contracts than existing tools, with a minimal increase

in transaction and deployment costs. However, being able to automatically patch vulnerable

smart contracts prior deployment does not protect smart contracts that have already been

deployed. To that end, in Chapter 9 we introduced ÆGIS – a system that detects attacks

via attack patterns and neutralizes them by reverting their effects. These patterns can be

written by security experts using a domain-specific language that is dedicated to the detec-

tion of malicious control- and data-flows inside the Ethereum virtual machine. Moreover, the

system proposes a novel mechanism for security updates by storing attack patterns inside

a smart contract. This mechanism allows attack patterns to be updated quickly and trans-

parently via the blockchain. We compared our system to two current state-of-the-art online

reentrancy detection tools and show that our system detects more attacks in comparison to

current state-of-the-art tools while achieving zero false positives.

In summary, this dissertation provides a variety of tools and frameworks that academia

as well as industry may use not only to detect vulnerabilities in smart contracts, but also to

mount defenses against smart contract attacks. For example, developers can use OSIRIS

and CONFUZZIUS to detect vulnerabilities during development and patch them before de-

ployment using ELYSIUM. After deployment, developers can use ÆGIS to protect their

smart contracts against attacks and leverage HORUS to monitor and trace the flow of stolen

assets in case their smart contracts become compromised. However, the presented tools

and frameworks also have their own limitations and security is in general a cat-and-mouse

game, where attackers constantly seek to find new sophisticated ways to dismantle the se-

curity of software systems and where security experts have to come up with new ways to

defend against these sophisticated attacks. Nonetheless, the results presented in this dis-

sertation shed some light on the security of smart contracts and provide methods and tools

that can be used as building blocks for future research directions.

Future Directions

Despite exploring the security of smart contracts from three different angles, this dissertation

only scratches the surface of smart contract security. Research on the topic of analyzing

and improving the security of smart contracts remains relevant as long as smart contracts

continue to suffer from attacks. In the following, we present possible directions in which the

work presented in this dissertation could be extended.

Composability of Smart Contracts. One possible future research direction is to con-

ceive new techniques to detect vulnerabilities that emerge from the composability of smart

contract protocols. With the rise of decentralized finance, smart contracts became complex

software systems that heavily interact with a variety of smart contracts. Prior to the decen-

tralized finance revolution, smart contracts were merely interacting with one or two contracts.
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Nowadays, people can borrow, invest, and trade across a multitude of smart contracts within

a single transaction. Due to this composability, decentralized finance is often described as

“money lego”. Unfortunately, this composability also introduces new security challenges and

requires a definition of a new threat model. Smart contracts that were previously considered

secure are now vulnerable to attacks when combined with other contracts in unexpected

ways. Prominent examples include the previously analyzed Uniswap and Lendf.me hacks in

Chapter 5, but also more recent examples such as the Cream Finance hacks in 2021 that

resulted together in assets worth almost 200M USD being stolen [205]. There is a pressing

need for tools that can detect flaws across smart contract protocols. One possible solution

would be to perform formal verification by leveraging symbolic execution techniques as used

in Chapters 3 and 6, and extend them to perform inter-contract analysis on smart contracts.

However, this requires the correct modeling of call chains and new strategies to efficiently

deal with the exhaustive number of possible combinations of function calls. Another solution

would be to add inter-contract analysis to our hybrid fuzzer that we presented in Chapter 4.

Hence, instead of testing only one smart contract at a time and treating external calls as

symbolic values, we could perform concrete execution on external calls and test the effects

of calling other smart contracts. However, also in this case inter-contract analysis will lead

to a large number of function combinations to be analyzed. Thus, optimizations will be re-

quired to make inter-contractual analysis feasible in practice. Fortunately, our fuzzer already

provides a way to prioritize the combination of function calls by solely combining functions

that share data dependencies across state variables and would only need to be adapted to

identify data dependencies across smart contracts.

Robustness of Ethereum WebAssembly. Ethereum is planning to replace its cur-

rent execution model with an Ethereum flavored version of WebAssembly (Wasm) called

EWasm. EWasm is a restricted subset of Wasm, that has been customized for the execution

of Ethereum smart contracts. EWasm will enable the execution of smart contracts to be

near-native speed, but it will also introduce new challenges. For example, Ethereum cur-

rently enforces the termination of smart contracts via a gas model. The model associates

a certain gas cost to the execution of each instruction. This guarantees that the execution

will always stop once no more gas is left to pay for the execution. The challenge will be to

propose a new fee schedule for EWasm that does not result in resource exhaustion attacks

due to certain instructions being underpriced. Ethereum has already faced several denial-of-

service attacks in the past due to underestimated gas costs. The existing pricing model uses

a static attribution of gas costs, meaning that the gas costs have been manually assigned to

the instructions. Hence, one possible future direction, would be to analyze the proposed fee

schedule for EWasm and to verify that attackers will not be able to mount denial-of-service

attacks against EWasm-enabled smart contracts, and to propose a better pricing model that

takes into account the various client implementations and dynamically assigns a gas cost to

each instruction which reflects its resource usage (e.g., IO, CPU, memory, etc.).
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Fair Ordering of Transactions. In Chapter 7, we analyzed the prevalence of transac-

tion ordering attacks on the Ethereum blockchain. These attacks pose a serious threat to

the adoption of blockchain technology as a whole. One possible future direction, would be

to come up with new strategies to either establish a fair ordering of transactions or to provide

transaction privacy. A fair ordering would ideally mean that a user who sent his transaction

first, will be also executed first. One solution would be to have a globally synchronized clock

across all the clients. Unfortunately this is a property that is extremely hard to achieve in

practice, especially in decentralized peer-to-peer networks of thousands of nodes. An al-

ternative solution to fair ordering, could be the encryption of transaction content, including

the encryption of smart contracts storage, and to force miners to execute encrypted trans-

actions inside a trusted execution environment (TEE). Miners should not be able to inspect

the outcome of an execution or care about the contents of a transaction. Moreover, other

nodes should not be able to inspect the contents of pending transactions that do not belong

to them. The encryption of transactions and smart contract storage would guarantee con-

fidentially of data in transit and at rest, while TEEs would guarantee confidentially of data

at execution. Thus, attackers would not know which transactions to manipulate, since the

contents and outcome of transactions would remain secret, even to miners. The issue here

is the distribution of encryption keys across a public and decentralized peer-to-peer network

where nodes can simply join and leave at any time.

Control- and Data-Flow Integrity for Smart Contracts. In Chapter 8, we proposed a

defense for smart contracts by automatically patching vulnerable bytecode prior to deploy-

ment using context-sensitive patching. However, another possible future research direction

would be to investigate the applicability of control- and data-flow integrity solutions as a de-

fense mechanism for smart contracts. The solutions proposed in Chapters 8 and 9 follow a

blacklisting approach, meaning that they try to define what malicious control- and data-flows

are in order to block them. The issue with such an approach is the lack of generalizability.

New vulnerabilities will require the definition of new malicious control- and data-flows. A way

to alleviate this cat-and-mouse game, is to follow a whitelisting approach, where the idea

is to analyze the interactions between users and contracts in order to learn what legitimate

control- and data-flows are and block executions that divert from these “regular” flows. In-

tegrity checks would help in preventing unforeseen combinations of smart contracts calls

that might result in reentrancy attacks or calls to privileged functions. The challenge here

would be the inference of “regular” flows and to design an approach that does not impede

legitimate execution while being efficient enough in terms of execution time, bytecode size,

and gas usage to monitor, analyze, and verify the legality of execution paths at runtime.
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