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ABSTRACT

We have carried out a systematic search for galaxy-scale strong lenses in multiband imaging from the Hyper Suprime-Cam (HSC)
survey. Our automated pipeline, based on realistic strong-lens simulations, deep neural network classification, and visual inspection,
is aimed at efficiently selecting systems with wide image separations (Einstein radii θE ∼ 1.0–3.0′′), intermediate redshift lenses
(z ∼ 0.4–0.7), and bright arcs for galaxy evolution and cosmology. We classified gri images of all 62.5 million galaxies in HSC Wide
with i-band Kron radius ≥0.8′′ to avoid strict preselections and to prepare for the upcoming era of deep, wide-scale imaging surveys
with Euclid and Rubin Observatory. We obtained 206 newly-discovered candidates classified as definite or probable lenses with either
spatially-resolved multiple images or extended, distorted arcs. In addition, we found 88 high-quality candidates that were assigned
lower confidence in previous HSC searches, and we recovered 173 known systems in the literature. These results demonstrate that,
aided by limited human input, deep learning pipelines with false positive rates as low as '0.01% can be very powerful tools for
identifying the rare strong lenses from large catalogs, and can also largely extend the samples found by traditional algorithms. We
provide a ranked list of candidates for future spectroscopic confirmation.
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1. Introduction

Strong gravitational lensing systems are very powerful tools for
probing galaxy evolution and cosmology. They provide con-
straints to the level of a few percent on the total mass of the
foreground galaxies or galaxy clusters producing the light deflec-
tions (e.g., Bolton et al. 2008; Shu et al. 2017; Caminha et al.
2019). This leads to unique diagnostics on the dark matter mass
distributions, and to test galaxy evolution models and the flat
Lambda cold dark matter (ΛCDM) cosmological model. More-
over, strongly lensed time-variable sources with observed time
delays between multiple images provide independent and com-
petitive measurements of the Hubble constant H0 (e.g., Refsdal

? Full Table 1 is only available at the CDS via anonymous ftp
to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/cat/J/A+A/653/L6

1964; Wong et al. 2020). However, identifying statistical sam-
ples of strong lenses remains a major challenge.

Convolutional neural networks (CNNs; LeCun et al. 1998)
have proven extremely efficient for pattern recognition tasks
and have given a strong impetus to image analysis and pro-
cessing. Recent studies largely demonstrate the ability of super-
vised CNNs to identify the rare gravitational lenses among
large datasets (e.g., Jacobs et al. 2017, 2019; Petrillo et al.
2019; Huang et al. 2021), extending previous automated algo-
rithms (e.g., Gavazzi et al. 2014; Joseph et al. 2014) generally
with better classification performance (Metcalf et al. 2019). In
Cañameras et al. (2020, hereafter C20), we show that realis-
tic simulations and careful selection of negative examples are
crucial for successfully conducting a systematic search over
30 000 deg2 with PanSTARRS multiband imaging.

We develop here new supervised neural networks for auto-
mated selection of galaxy-scale strong lenses in large-scale
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multiband surveys, using the Hyper-Suprime Cam Subaru
Strategic Program (HSC-SSP; Aihara et al. 2018) for testing on
images approaching the expected depth and quality of the Rubin
Observatory Legacy Survey of Space and Time (LSST) final
stacks (see Ivezić et al. 2019). Previous non-machine learning
identification of galaxy-, group-, and cluster-scale lenses from
the Survey of Gravitationally lensed Objects in HSC Imag-
ing (SuGOHI; Sonnenfeld et al. 2018, 2019, 2020; Wong et al.
2018; Chan et al. 2020; Jaelani et al. 2020, 2021, hereafter S18,
S20, W18 for SuGOHI-g) offers an independent observational
set to test our classification completeness. In this Letter we vali-
date our deep learning pipeline and present new high-confidence
galaxy-scale lens candidates with wide image separations from
the Wide layer of the HSC survey, which is only '1 mag shal-
lower than LSST ten-year stacks, and has sufficient sky coverage
for lens searches. In Sect. 2 we describe the neural network and
the datasets used for training, validating, and testing the network,
and for searching for new lenses. The classification procedure is
presented in Sect. 3, and the results are discussed in Sect. 4.

2. Methodology

We conducted our search on gri cutouts from HSC Wide pub-
lic data release 2 (PDR2) covering nearly 800 deg2 (Aihara et al.
2019) in all three bands, out of the final 1400 deg2. In PDR2,
about 300 deg2 reach the nominal 5σ point-source sensitivities
of 26.8, 26.4, and 26.2 mag respectively in g, r, and i. We focused
on systems with luminous red galaxies (LRGs) acting as lenses
and with image separations &0.75′′, larger than the median see-
ing FWHMs in g, r, and i bands. Such systems are ideal for con-
straining the lens mass-density profiles and for finding strongly
lensed supernovae for cosmography and stellar physics, which
are major goals of our ongoing Highly Optimized Lensing Inves-
tigations of Supernovae, Microlensing Objects, and Kinematics
of Ellipticals and Spirals (HOLISMOKES; Suyu et al. 2020). To
go beyond previous studies that relied on strict catalog preselec-
tions, we demonstrate that a dedicated neural network trained
on a carefully constructed dataset can automatically and effi-
ciently identify such lenses over an extended galaxy sample. We
focused on the 62.5 million galaxies observed in gri bands in
PDR2, without flagged artifacts, and with i-band Kron radius
≥0.8′′. We used 12′′ × 12′′ cutouts, sufficient for galaxy-scale
lenses, downloaded from the data archive server (Bosch et al.
2018). The design of the dataset and choice of network architec-
ture resulted from thorough tests of classification completeness
and purity, using the test set described in Sect. 2.3. The perfor-
mance of our different networks will be compared in a future
paper (Cañameras et al., in prep.).

2.1. Constructing the ground truth dataset

Supervised machine learning classification depends strongly on
the construction of the ground truth data used by the network
to learn the morphological features relevant to each class. We
trained and validated our binary classification network with a
balanced set of 40 000 positive and 40 000 negative examples
(Fig. 1) obtained from random sky positions to limit biases from
small-scale seeing and depth variations. The GAMA09H field
was excluded and reserved for a future comparison study of var-
ious lens search pipelines (More et al., in prep.).

As positive examples, we produced realistic galaxy-scale
lens simulations by painting lensed arcs on HSC gri images of
LRGs. This approach accounts for the quality of HSC imag-
ing and for the presence of artifacts and neighboring galaxies.

Fig. 1. Examples of positives (mock lenses, top row) and negatives (spi-
rals, LRGs, and random nonlenses, bottom row) in the ground truth
dataset for training and validation. Each cutout is 12′′ × 12′′.

We followed the procedure described in Schuldt et al. (2021a)
and C20, by modeling the lens mass distributions with Singu-
lar Isothermal Ellipsoids (SIE) using LRG redshifts and velocity
dispersions from SDSS, and inferring axis ratios and position
angles from the light profiles. Unlike in C20 we included exter-
nal shear, and we chose lens–source pairs to produce a uniform
Einstein radius distribution in the range 0.75′′−2.5′′, increasing
the number of wide separations and of fainter (z > 0.7) lens
galaxies to help recover these configurations. As background
sources, we used high S/N galaxies with spectroscopic redshifts
from the Hubble Ultra Deep Field (Inami et al. 2017), applying
color corrections that match HST filter passbands to HSC, and a
common flux boost to the three bands. Sources were lensed with
GLEE (Suyu & Halkola 2010; Suyu et al. 2012), convolved with
the PSF model at the location of the lens from the HSC archive,
and coadded with the lens HSC cutout. Mocks that have lensed
images with µ ≥ 5, S/N > 5, and that are brighter than the lens at
the position of peak lensed image emissions are accepted by the
pipeline. We used similar fractions of quadruply- and doubly-
imaged systems.

As negative examples, we selected a sample of spirals, iso-
lated LRGs, and random galaxies with rKron < 23 mag in simi-
lar proportions, and a few compact galaxy groups. We obtained
spirals with Kron radius <2′′ from the catalog of Tadaki et al.
(2020, also from HSC Wide) in order to boost the fraction of
examples mimicking lensed arcs. Isolated LRGs helped the net-
work to learn that lensed arcs are the relevant features, and
groups were selected from Wen et al. (2012). Other types fre-
quently misclassified as lenses (e.g., rings, mergers) were more
difficult to include due to limited morphological classifications
available in the HSC footprint (e.g., Willett et al. 2013).

2.2. Training the neural network

Building upon the success of CNNs, deeper architectures have
been developed to optimize performance such as image clas-
sification accuracies. In particular, the residual learning con-
cept (ResNet; He et al. 2016a) enables one to increase the net-
work depth and performance without requiring drastic com-
puting resources. Such ResNets have obtained excellent results
on the ImageNet Large Scale Visual Recognition Challenge
2015 (He et al. 2016a). They resemble deep CNNs with mul-
tiple building blocks (preactivated bottleneck residual units in
He et al. 2016b), and shortcut connections between these blocks
that make the convolutional layers learn residual functions with
respect to the previous layer, and help avoid vanishing gradients
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during optimization. In the recent past, Lanusse et al. (2018)
have developed ResNet architectures for lens finding on LSST-
like simulations, and obtained better results than classical CNNs
on the strong lens finding challenge (Metcalf et al. 2019). Sub-
sequent studies confirm that such ResNets can efficiently select
lenses on real survey data (e.g., Li et al. 2020; Huang et al.
2021).

We used a ResNet adapted from the ResNet-18 architec-
ture (He et al. 2016a) which provides a good trade-off between
performance and total training time for binary classification in
ground-based imaging. The network has a total of 18 layers with
eight blocks comprising two convolutional layers with batch nor-
malization and nonlinear ReLU activations. We added a fully
connected layer of 16 neurons before the last single-neuron layer
with sigmoid activation that outputs a score p.

As data augmentation to prevent overfitting and improve
generalization, the image centroids were randomly shifted
between −5 and +5 pixels, negative pixels were clipped to zero,
and square root stretch was applied to boost low-luminosity fea-
tures. Other techniques such as image normalization did not
improve the performance and were thus not used. The dataset
was split into 80% for training and 20% for validation and, after
randomly initializing weights, the ResNet was trained over 100
epochs using mini-batch stochastic gradient descent with 128
images per batch, a learning rate of 0.0006, a weight decay of
0.001, and a momentum fixed to 0.9. We used early stopping
by saving the final network at epoch 21 that corresponds to the
minimal binary cross-entropy loss in the validation set without
overfitting.

2.3. Testing the performance

We used HSC Wide PDR2 images to design a test set closely rep-
resentative of the overall search sample. First, the completeness
was measured on SuGOHI galaxy-scale lenses that are spectro-
scopically confirmed or have grades A or B (S18; W18; S20).
We visually rejected a few lenses with large image separations
&4′′ suggesting major perturbation from the lens environment as
we do not intend to recover such configurations. Out of the 220
SuGOHI systems remaining, 202 match our Kron radius ≥0.8′′
threshold and were kept as test lenses. Second, the expected
rate of false positives was automatically measured with a set
of nonlens galaxies representative of our overall search sample,
including observational artifacts and various types of interlop-
ers. We collected nonlenses in the COSMOS field (Scoville et al.
2007), excluding flagged HSC cutouts and sources with Kron
radius lower than 0.8′′, as described above. We excluded all 130
strong lenses and lens candidates previously listed in the Mas-
terLens database1, or in Faure et al. (2008), Pourrahmani et al.
(2018), and SuGOHI, assuming that the unparalleled cover-
age of COSMOS guarantees a nearly complete lens selec-
tion. We then classified gri images of the 91 000 remaining
nonlenses.

As shown in the Receiver Operating Characteristic (ROC)
curve (Fig. 2), our ResNet reaches extremely low false positive
rates (FPRs) at least a factor of 10 lower than classical CNNs
(C20). By drastically limiting the number of contaminants, this
network saves significant human inspection time which makes
it very promising for rapid lens finding in any deep, wide-scale
imaging survey. We adopted a ResNet score threshold p > 0.1
for lens selection to maintain FPR . 0.01% with complete-
ness >50% in SuGOHI (Fig. 2). A comprehensive discussion

1 http://admin.masterlens.org

Fig. 2. Receiver Operating Characteristic curve for our ResNet using
an independent test set from HSC Wide PDR2 survey data. Differ-
ent threshold scores of the ResNet trace out the orange curve, and the
threshold score of p = 0.1 is indicated by the blue dot. The true posi-
tive rate (TPR) corresponds to the number of SuGOHI galaxy-scale test
lenses correctly classified over the 202 test lenses. The false positive rate
(FPR) is measured using random nonlenses in the COSMOS field with
Kron radius larger than 0.8′′ and is defined as the number of nonlenses
identified as lenses over the total number of nonlenses.

on classification accuracies as a function of galaxy properties
will be presented in a future paper, together with our other
networks.

Using 6000 COSMOS nonlenses with r < 22 and the 202
SuGOHI test lenses, we tested the stability of ResNet scores
through few-pixel translations, k × π/2 rotations, and flipping of
the gri images. Applying 100 random transformations and com-
puting the output distribution of p showed that predictions with
mean µp < 0.1 and >0.9 are systematically stable, with a scat-
ter σp < 0.05. Galaxies with p < 0.1 discarded before visual
inspection therefore have robust ResNet predictions. Scores with
µp = 0.2–0.8 have higher scatter σp ' 0.05–0.35.

3. The classification procedure

The trained ResNet was applied to the gri cutouts of all 62.5
million galaxies with Kron radius larger than 0.8′′ in order to
estimate their score p. A few hundred cutouts with residual sky
background due to imperfect subtraction or to nearby saturated
stars were assigned high scores, and we automatically excluded
these cutouts with SExtractor (Bertin & Arnouts 1996). This
resulted in 9651 neural network candidates with p > 0.1, 0.015%
of the input sample, including 114/202 (56%) galaxy-scale test
lenses from SuGOHI. We qualitatively observe that the mis-
classified test lenses (see Fig. 3) tend to have either compact
and fainter lens galaxies, lensed sources with redder colors,
stronger blending with lens light, or lower source-to-lens flux
ratios. Each of these configurations is less represented in our
simulations. Our ResNet also recovers 102 group- and cluster-
scale lens candidates, although it is not optimized for these
systems.

The sample with p > 0.1 contains a large number of false
positives, and we conducted a visual inspection stage to collect a
final list of high-confidence lens candidates. Five authors (R. C.,
S. S., Y. S., S. H. S., and S. T.) inspected three-color images
displayed with different scaling and contrasts, and assigned
grades following explicit criteria described in S18 and C20. In
short, grade 3 corresponds to unambiguous lenses with resolved
multiple images, grade 2 corresponds to probable lenses with
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Fig. 3. Illustration of the network and visual classification stages. Top
row: HSC three-color gri images of some SuGOHI galaxy-scale test
lenses missed by the neural network, with scores p < 0.1. Second row:
subset of ResNet candidates with elevated dispersion σG among our
visual inspection grades. Third row: examples of interlopers with p >
0.1 and low average grades G, showing dust lanes or arc-like features
around LRGs.

extended and distorted arcs but no obvious counter-image, grade
1 corresponds to possible lenses such as LRGs with a single,
weakly distorted companion, and grade 0 includes obvious inter-
lopers such as spirals, mergers, and galaxy groups. Blind tests
using 70 galaxies with p > 0.1 and 30 SuGOHI lenses led
to comparable average grades per classifier, 30% of cases with
zero dispersion among our grades, and systematic recovery of
known lenses, which illustrates the benefit of averaging individ-
ual grades and validates our approach.

While the network scores are not calibrated as probabilities,
the fraction of contaminants clearly increases for lower scores.
For this reason, the top 2092 candidates with p > 0.2 were
directly graded by the five authors, while author R. C. excluded
obvious interlopers from the 7559 candidates with 0.1 < p < 0.2
and forwarded the 739 objects with grades ≥1 for inspection by
the other authors. After this first iteration, we reinspected the
332 candidates with dispersion ≥0.75 among our five grades.
The final grades have averages of 0.36–0.62 and dispersions of
0.80–0.85 per classifier and were not normalized. Cases with dis-
persed visual grades often show ambiguous blue arcs that could
either be lensed arcs from background galaxies (without clear
counter-images), spiral arms, or tidal features. The number of
grade 3 lens candidates from each classifier spans a broad range
between 69 and 204. Moreover, our inspection recovers 101/114
SuGOHI test lenses with p > 0.1.

Most contaminants turn out to be underrepresented in our
training set and include edge-on spirals, spirals with diffuse
or unresolved arms discarded from the “S/Z” classification of
Tadaki et al. (2020), lenticular galaxies, and LRGs with dust
lanes or with faint and unlensed companions. In the future,
morphological classifications with unsupervised machine learn-
ing (e.g., Martin et al. 2020) or crowdsourcing will offer inter-
esting avenues for collecting large samples of these galaxy
types in the HSC Wide footprint, aiding the selection of nega-
tive examples for supervised lens searches. Image artifacts are
already well represented in the training set and were better
excluded.

4. Results and discussion

We used the average visual grades G among the five examin-
ers to rank our final sample. We compiled a total of 88 grade
A (G ≥ 2.5) and 379 grade B (1.5 ≤ G < 2.5) that have
convincing lensing features, corresponding to '5% of network
recommendations and to '0.6 candidate per deg2 (close to
expectations from simulations by Collett 2015). Our findings
are summarized in Table 1. The purity, defined as the fraction
of grades G ≥ 1.5 among ResNet recommendations, decreases
rapidly when lowering the threshold p. We estimate that 38% of
the highest scores 0.9 < p < 1.0 have G ≥ 1.5, decreasing to
20% for 0.6 < p < 0.7, 7% for 0.2 < p < 0.3, and 3% for the
lowest interval 0.1 < p < 0.2.

To find duplicates, this list was cross-matched with our
extended compilation of strong gravitational lenses previously
published as confirmed systems or as candidates with confidence
levels equivalent to our grades A and B (see C20). Given the
dataset overlap, we extended our cross-match to the full SuG-
OHI database including grades A, B, and C. We also checked
the SIMBAD Database2 and the Hubble Source Catalog3. A
total of 21/88 grade A and 185/379 grade B lens candidates
are newly discovered, and our inspection increases confidence
for 4/88 grade A and 84/379 grade B that were assigned grade
C in SuGOHI. A subset of these 294 new high-quality candi-
dates best suited for spectroscopic follow-up is shown in Fig. 4.
References of lenses in the literature we recovered are listed in
Table 1. We analyzed SDSS DR16 spectra available for a sub-
set of candidates, and systematically found signatures of LRGs
at intermediate redshift, but no robust confirmation of back-
ground lensed sources as they mostly fall outside the 2′′ SDSS
fibers.

Our independent selection has moderate overlap with
galaxy-scale lenses in SuGOHI (similar to the comparison in
KiDS/GAMA from Knabel et al. 2020). On the one hand, by
relying on YattaLens, an algorithm combining lens light sub-
traction, arc-finding, and lens modeling (S18), SuGOHI could
be more efficient at finding lenses with blended components than
our analysis of brute gri cutouts. On the other hand, our approach
classifies a large catalog from PDR2, while SuGOHI have either
focused on spectroscopically confirmed LRGs (S18); (W18), or
have used S17A release that covers a 35% smaller area with full-
color full-depth imaging than PDR2 (S20). Our newly discov-
ered candidates exhibit both extended arcs and simple double or
quad configurations and are not drastically different from those
in SuGOHI. Lensed sources mostly have blue colors, and our
visual inspection tends to preferentially retain brighter sources.
While the vast majority of lenses are isolated LRGs, small com-
pact groups also contribute in a few cases. Quantitative prop-
erties from lens modeling will be presented in a forthcoming
paper.

This analysis paves the way for limiting human inspec-
tion in future lens searches not only with LSST, but also with
Euclid and Roman. Unsupervised machine learning has not yet
reached the performance of supervised CNNs for lens search,
but the results are promising, especially for identifying pecu-
liar lens configurations that could be omitted in human-assisted
training sets (Cheng et al. 2020). In the future, combining the
two approaches could therefore help increase completeness and
purity.

2 http://simbad.u-strasbg.fr/simbad/sim-fcoo
3 https://catalogs.mast.stsci.edu/hsc/
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Table 1. High-confidence galaxy-scale lens candidates with ResNet scores >0.1, and average grades ≥1.5 from visual inspection.

Name RA Dec p G σG #G = 3 gKron rKron iKron z Notes

HSCJ0102+0158 15.6597 1.98247 0.12 3.0 0.0 5 27.61 21.62 20.58 0.8669(∗) (i)
HSCJ0157−0330 29.3812 −3.51603 0.16 3.0 0.0 5 21.9 21.02 20.14 0.6212(∗) (a)
HSCJ0200−0344 30.1981 −3.73763 0.6 3.0 0.0 5 22.23 21.17 20.04 0.72
HSCJ0232−0323 38.2078 −3.39058 0.19 3.0 0.0 5 20.89 19.37 18.62 0.42 (h) (e) (i)
HSCJ0236−0332 39.1554 −3.53893 1.0 3.0 0.0 5 20.48 19.09 18.54 0.2695(∗) (a) (e)
HSCJ0238−0545 39.5741 −5.76545 0.72 3.0 0.0 5 20.75 19.96 19.18 0.5993(∗) (a) (c)
HSCJ0850+0039 132.6942 0.65146 0.61 3.0 0.0 5 24.66 22.08 21.25 1.00 (d)
HSCJ0904−0059 136.0331 −0.99807 0.69 3.0 0.0 5 22.42 21.23 20.26 0.56 (k)

Notes. The full table is available at the CDS. Some systems in this table are also found in separate lens searches and cross-references will be added
to the corresponding publications (Shu et al., in prep.; Jaelani et al., in prep.). Columns are: source name; right ascension; declination; output score
from the ResNet; average visual grades from five authors; dispersion in the grades; number of classifiers assigning the highest grade of 3; g-, r-,
and i-band Kron magnitudes from PDR2; CNN photometric redshift estimates from Schuldt et al. (2021b) or spectroscopic redshifts marked as (∗)

where available; references for systems previously published, either as spectroscopically-confirmed lenses or as grade A or B candidates.
References. (a) Sonnenfeld et al. (2018), (b) Wong et al. (2018), (c) Chan et al. (2020), (d) Sonnenfeld et al. (2020), (e) Jaelani et al. (2020), (f)
Cañameras et al. (2020), (g) Huang et al. (2020), (h) Stark et al. (2013), (i) Jacobs et al. (2019), (j) Li et al. (2020), (k) More et al. (2012), (l)
Petrillo et al. (2019), (m) Brownstein et al. (2012), (n) Gavazzi et al. (2014), (o) Diehl et al. (2017), (p) More et al. (2016), (q) Shu et al. (2016),
(r) Jacobs et al. (2017), (s) Ratnatunga et al. (1995), (t) Tanaka et al. (2016), and (u) More et al. (2017). Candidates marked with a † have a lower
grade C in SuGOHI.

Fig. 4. Postage stamps (12′′ × 12′′) of grade A lens candidates we have discovered in the HSC Wide survey, using gri multiband imaging. At the
top of each panel we list the ResNet scores p, and the average grades G from visual inspection of scores p > 0.1. Grade A corresponds to G ≥ 2.5.
Candidates with white labels are newly discovered as they are not part of our compilation of previously confirmed strong lenses and grade A or B
lens candidates in the literature. Those marked in light blue are listed as grade C in SuGOHI and obtained higher confidence in our classification.
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Appendix A: Complete list of candidates

Fig. A.1. HSC three-color gri postage stamps of our grade B lens candidates with 1.5 ≤ G < 2.5. The same format as in Fig. 4 is used.
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Fig. A.1. continued.
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Fig. A.1. continued.
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Fig. A.1. continued.
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