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ABSTRACT

The Bullet-Safety-Gym is an open-source framework to train and assess safety specifications in
constrained reinforcement learning problems. We have implemented 16 environments differing in
complexity and design. The framework is entirely written in Python and builds open the freely
available PyBullet physics engine. Based on our environments, we evaluate five state-of-the-art policy
gradient algorithms and provide results as a baseline for future research. To this end, we discuss our
findings and outline possible limitations of the investigated algorithms. Our framework is available
at: https://github.com/SvenGronauer/Bullet-Safety-Gym

1 INTRODUCTION

The programming of intelligent control strategies a-priori is a demanding task for complex robot systems. When
requirements such as safety or robustness must be satisfied, the controller design becomes additionally complicated.
Reinforcement learning (RL) enables the automated development of control strategies through a data-driven approach
instead of explicitly designing such. In recent years, the field of RL has been driven by outstanding successes and raised
a surge of interest in controlling robot systems through a trial-and-error approach. The combination of RL and deep
learning methods excel at problems that can be quickly simulated like robotics [23, 31] and video games [24, 38], or
where an exact model is known but long-term planning is computationally not tractable, e.g. board games like Go [32].

However, outside the simulator RL faces several challenges. When applied to a real-world robot system, the agent
usually cannot afford to learn from scratch due to the expense of data. Also, failure is undesirable since it may break the
robot or harm its environments, which strongly promotes the embedding of safety specifications into the learning system.
The increasing computational power and availability of hardware resources have made simulations the paramount
approach for building and testing data-driven control policies. In the simulation, failure is acceptable and even desirable
to learn from bad outcomes. Thus, simulation environments are often used to pre-train a well-behaving control strategy
before transferring it to the real-world system [20, 27, 36]. For sim-to-real transfer approaches, it may be beneficial to
include safety specifications already during the training in simulation.

In this report, we propose an open-source framework called Bullet-Safety-Gym that allows incorporating safety
specifications into the RL training. The focus is deliberately on meeting the safety specifications at the end of training
which can be of practical importance for a sim-to-real transfer. With this work, we want to address two points. First, our
framework can be used to train and assess agents with safety specifications in RL problems. We collect environments
that were proposed in recent works and merge them into one unified and standardized code-base. This eases the
comparability between research experiments and promotes the reproducibility of results. Second, our environments
can suit as a benchmark to quantify the impact of new algorithm proposals. To provide a baseline, we conducted
experiments with five state-of-the-art policy gradient algorithms and evaluated the performance based on a constrained
cost criterion. Although our framework also yields the possibility to investigate safe exploration during training, this
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lies outside the scope of this work. To this end, we discuss possible limitations of the current practices in the domain of
constrained RL and suggest possible future work.

2 Related Work

Safety. Different notions of safety exist within the artificial intelligence community [3, 26, 28]. One definition tailored
to the RL setting describes safety in terms of the maximization of some performance measure where it is mandatory
to ensure system performance and respect safety constraints throughout learning and at deployment [17]. A similar
view on safety is the prevention of error states from which the original state of the system cannot be recovered. Error
states can be defined a-priori by constraints [2, 12, 35] and are tightly coupled to the concepts of reach-ability [25]
and stability [6]. Although no consistent definition of safety exists within the community, methodologies about the
assessment of safety have been broadly discussed in the literature [8, 17, 26, 28].

Simulation Frameworks. Simulators have established themselves as the de-facto standard to develop control policies
with RL methodologies. Carried by the rapid development of new algorithm proposals, a plethora of frameworks and
benchmarks has emerged. The most known is Gym [7] which defines the common programming interface for the
interaction between the learning agent and the environment. Video games are popular test-beds for high-dimensional
sensory input data, e.g. the Atari games for 2D learning tasks [5], the DeepMind Lab [4] for 3D learning environments,
or the StarCraft learning environment [Vinyals2017StarCraftEnv] for multi-agent settings. Besides video games,
commonly used benchmarks are grounded on physics simulators. Frameworks have been proposed for robotic learning
with continuous control for diverse tasks [34], imitation- and active-learning [13], manipulation tasks [16], or robot-
human interaction and physical health-care [15]. Most similar to our work is [28] who provide a benchmark for safe RL
based on the MuJoCo simulator [37]. Our work includes tasks from [28] and collects additional environments used
to benchmark new algorithm proposals, e.g from [1, 9] and merges them into one framework based on the PyBullet
physics engine [11]. While [28] considered safe exploration, our focus lies on the safety at convergence, where agents
are obliged to satisfy the constraints only at the end of training but the exploration may be unsafe.

3 Preliminaries

A Markov Decision Process (MDP) is formalized by a tuple (X,U,P,r,µ), where X and U denote the state and
action space, respectively. P : X×U→ P(X) describes the state transition probability, r : X×U→ R is the reward
function, and µ denotes the initial state distribution. The goal of the agent is to learn a control policy π : X→ P(U) that
maximizes the expected return J(π) = Eτ∼π

[
∑

T
t=0 r(xt ,ut) | x0

]
under the finite-horizon T . We use τ ∼ π as a shortcut

for the data collected under the policy π , i.e. xt+1 ∼P(·|xt ,ut), ut ∼ π(·|xt), and x0 ∼ µ . We denote the policy as πθ

when it is parametrized by a vector θ .

The Constrained Markov Decision Process (CMDP) [2] extends the MDP formalism with an auxiliary cost function
c : X×U→ R. While opting for reward maximization, agents are obliged to fulfill cost constraints which are
expressed by the inequality H ≤ d. We denote the cost limit as d ∈ R and the expected cost under policy πθ as
H(πθ ) = Eτ∼πθ

[
∑

T
t=0 c(xt ,ut) | x0

]
. Therefore, in the setting of CMDPs, we seek to find the policy parameter vector

θ ∗ over the set of feasible policies ΠC = {πθ ∈Πθ | H ≤ d} that maximizes J, i.e. πθ∗ = argmaxπθ∈ΠC J.

4 Bullet-Safety-Gym

Although many benchmark environments have been proposed in recent years [14, 34], only a minority regards safety
aspects [28]. Reproducibility and comparability are key ingredients for scientific advances, making it desirable to have
free and open-source software which may eventually accelerate the research progress by making RL methods available
to a broader community.1

In this section, we describe the proposed Bullet-Safety-Gym framework which contains a diverse range of RL tasks to
that incorporate safety specifications. Although an abundance of new algorithm proposals has emerged in recent years
[1, 33, 39, 40], many works test only a tailored set of environments. There is not yet a consistent use of benchmark
tasks, which hampers comparability and complicates the assessment of new scientific contributions. In the remainder of
this section, we elaborate on the design principles behind our environments and introduce the agents and tasks that were
implemented.

1The original motivation behind the Bullet-Safety-Gym was that the majority of frameworks depended on proprietary software
like MuJoCo. However, due to the acquisition of MuJoCo by DeepMind and the announcement that MuJoCo will be released in
2022 with open source code, the circumstances have luckily changed and most frameworks are now free to use.
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(a) Circle (b) Gather (c) Reach (d) Run

Figure 1: The Bullet-Safety-Gym provides four agents with different complexity and locomotion behaviors and is shipped
with four pre-defined tasks that differ in reward and cost design. In total, our framework contains 16 environments.

4.1 Environment Design

The implementation of our proposed environments follows three design principles: standardization, modularization, and
generalization. We integrated the Bullet-Safety-Gym into the standardized interface of Gym [7] where the interaction
between agent and environment is modeled in stages. The agent perceives observations from its environment, acts
upon them, and the environment responds with information including the follow-up state, the reward and a cost signal.
To promote easy customization and a high degree of extendability, our framework has a modular structure where the
base class EnvironmentBuilder organizes the creation of the world in the physics simulator with the desired
configuration of the agent, task, and obstacles. Also, agents and tasks are modular and can be changed arbitrarily. The
layout of the world can be freely adapted, e.g. which and how many obstacles are spawned and how they interact
with their surroundings through predefined moving patterns. The last design principle of our environments is the
randomization of the world layout. While the number and types of obstacles as well as the agent stay constant, the state
of the world is reset and shuffled at the beginning of new episodes. Layout randomization helps to avoid over-fitting
and encourages agents to generalize over different world settings [10]. Further, we aim to prevent the vulnerability
towards distributional shift, which is one of the major concerns for safe and robust artificial intelligence [3].

4.2 Agents

We focus on applications with continuous state and action spaces that primarily involve the learning of locomotion and
gait behaviors. We implemented four agents that differ in complexity and dynamics.

• The spherical shaped agent called Ball
(
X⊂ R7,U⊂ R2

)
can freely move on the ground plane and is controlled

by a two-dimensional force vector.
• Car is a four-wheeled agent

(
X⊂ R7,U⊂ R2

)
based on the MIT RaceCar with a simplified control scheme

consisting of the target wheel velocity for all wheels and the target steering angle.
• The air vehicle called Drone

(
X⊂ R17,U⊂ R4

)
is based on the AscTec Hummingbird quadrotor. The robot is

controlled by setting the desired velocity for each rotor.
• Ant is a quadrupedal agent

(
X⊂ R33,U⊂ R8

)
composed of nine rigid bodies, including a torso and four legs.

Each leg consists of two actuators which are controlled torque-based.

Each agent can fully observe its own body state space. However, some tasks require the sensing of the environment for
obstacles. In such cases, the agent is equipped with external sensors that cast laser rays

(
X⊂ R24

)
to detect nearby

obstacles. Task-specific information may also be needed such as the distance to a goal and are additionally added to the
agent’s observations.

4.3 Tasks

We deliver the Bullet-Safety-Gym with the four tasks illustrated in Fig. 1. In total, we introduce 16 environments with
different cost and reward designs.

• Circle. The agent is expected to move on a circle in clock-wise direction [1]. The reward is dense and increases
by the agent’s velocity and by the proximity towards the boundary of the circle. Costs are received when an
agent leaves the safety zone defined by the two yellow boundaries.

• Gather. Agents are supposed to navigate and collect as many green apples as possible while avoiding red
bombs [14]. In contrast to the other tasks, the agent receives only sparse rewards in the Gather task when
reaching apples. Costs are also sparse and are received when touching bombs [1].

3



BULLET-SAFETY-GYM

• Reach. Agents are expected to move towards a series of goals [28]. When the agent enters the goal zone, the
goal is re-spawned such that the agent has to reach the next position. Obstacles are placed to hinder the agent
from trivially finding solutions. We implemented obstacles with a physical body, into which agents can collide
and receive costs, and ones without collision shape that produce costs for touching. Rewards consist of a dense
component for moving closer to the goal and a sparse component for entering the goal zone.

• Run. The agent is rewarded for running through an avenue between two safety boundaries [9]. The boundaries
are non-physical bodies that can be penetrated without collision but provide costs. Additional costs are received
when exceeding an agent-specific velocity threshold. A characteristic of the Run tasks is that policies can
quickly overshoot the cost constraint after a few policy iterations, which requires algorithms to perform large
cost reduction steps already at the early stage of training.

5 METHODS

In this section, we explain the methodology applied to benchmark our proposed environments. We introduce the metrics
to measure and assess safety specifications and enumerate five algorithms, which may suit as a benchmark baseline to
evaluate future algorithm proposals.

We consider a constrained criterion where we want to maximize the expected utility of a policy that also fulfills cost
constraints lower than some given bound J(π) = Eτ∼π

[
∑

T
t=0 r(xt ,ut)

]
s.t. H(π) = Eτ∼π

[
∑

T
t=0 c(xt ,ut)

]
≤ d. We train

agents for N epochs after which we evaluate the policy deterministically without exploration noise. The safety of a
policy is measured at convergence, i.e. we neglect cost violations during the training as long as the learned policy can
satisfy the constraints at the end of training. This is a valid assumption for transfer learning scenarios where it is crucial
to obtain an initially safe policy from the simulator before the policy is deployed on a real-world system.

Akin to the metrics used in [28], we consider algorithm A better than B when J(A)> J(B) subject to H(A)≤ d and
H(B)≤ d. Further, A outperforms B when B is not able to satisfy the cost constraints, i.e. H(A)≤ d < H(B). For an
equitable comparison between algorithms, we select the best average performance obtained over a hyper-parameter grid
search.

In this paper, we consider on-policy policy gradient methods, which generate a batch of trajectories based on the current
policy and then use this data to determine a suitable direction for the policy update. In particular, we compare the
following five algorithms:

• Trust-Region Policy Optimization (TRPO) [31] is an un-constrained algorithm which does not regard cost
signals. Each policy update step lies within a pre-defined trust-region size.

• TRPO-L applies a Lagrangian relaxation to the TRPO objective, transforming the constraint problem to an
equivalent unconstrained one which accounts for cost violations. The Lagrange multiplier is a learnable and
stateful variable to trade-off rewards and costs.

• Constrained Policy Optimization (CPO) [1] optimizes the trust-region problem and determines the Lagrange
multiplier for constraint satisfaction from scratch at each policy update step. We use a simplified version
without cost shaping similarly to [28].
• Primal-dual Optimization (PDO) uses as a learnable and stateful Lagrange multiplier that is used to trade off

reward and cost gradients in a trust-region update step. Our implementation follows [1].
• Projection-based Constrained Policy Optimization (PCPO) is an extension to CPO that optimizes the policy

objective in two steps. The first step is an unconstrained parameter update while the second step regards
constraint violations by projecting the policy back onto the constraint set [39].

We use TRPO as an un-constrained algorithm to estimate the upper bound of the achievable returns when safety aspects
are not regarded. Thus, the obtained results in Sect. 6 can be better assessed and increase comparability between the
four constrained algorithms. To maintain a clear separation between environments and algorithms, we implemented
algorithms in a separate code-base2.

6 EXPERIMENTS

We aligned the hyper-parameters for the experiments to the ones discussed in [19] and provide an overview table in
the Appendix. We applied a distributed learner setup where the policy gradients were computed and averaged across

2https://github.com/SvenGronauer/RL-Safety-Algorithms
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(b) Gather
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Figure 2: The learning curves show the best hyper-parameter setting of the five benchmarked algorithms in each
introduced environment. Thick lines denote that an algorithm was able to fulfill the cost constraint on average whereas
dotted lines indicate no constraint satisfaction at the end of the training. Each algorithm was averaged over four
independent random seeds and the shaded areas show the standard deviation.
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Table 1: Performance overview of benchmarked algorithms in the Bullet-Safety-Gym environments. The scores are
normalized to the return JT RPO achieved by TRPO and H is set in relation to the environment-specific cost limit d. The
constrained algorithm with the best score is highlighted with bold font.

Algorithm TRPO TRPO-L CPO PDO PCPO
Env J/JT RPO (H/d) J/JT RPO (H/d) J/JT RPO (H/d) J/JT RPO (H/d) J/JT RPO (H/d)
BallCircle 1.00 (3.19) 0.96 (0.97) 0.72 (0.99) 0.87 (1.03) 0.89 (0.93)
CarCircle 1.00 (5.49) 0.76 (0.89) 0.34 (0.97) 0.63 (0.91) 0.71 (0.93)
DroneCircle 1.00 (5.10) 0.75 (0.93) 0.43 (0.99) 0.80 (0.56) 0.05 (0.93)
AntCircle 1.00 (11.8) 0.74 (0.97) 0.33 (0.98) 0.73 (0.92) 0.42 (1.00)
BallGather 1.00 (2.47) 0.75 (1.09) 0.71 (0.82) 0.75 (0.91) 0.85 (0.98)
CarGather 1.00 (4.78) 0.53 (1.35) 0.40 (0.82) 0.59 (0.98) 0.51 (0.96)
DroneGather 1.00 (3.20) 0.63 (0.71) 0.51 (0.92) 0.38 (0.81) 0.29 (0.85)
AntGather 1.00 (4.54) 0.11 (0.82) 0.14 (0.57) 0.08 (0.37) 0.08 (0.60)
BallReach 1.00 (3.43) 0.55 (0.81) 0.32 (0.99) 0.52 (0.83) 0.11 (0.96)
CarReach 1.00 (5.66) 0.02 (0.78) 0.04 (0.88) 0.04 (0.84) 0.00 (1.14)
DroneReach 1.00 (2.63) 0.21 (0.90) 0.08 (1.21) 0.10 (0.90) 0.01 (0.84)
AntReach 1.00 (4.16) 0.32 (0.94) 0.32 (0.46) 0.32 (0.97) 0.29 (0.58)
BallRun 1.00 (9.28) 0.25 (0.52) 0.18 (1.05) 0.18 (3.58) 0.09 (0.30)
CarRun 1.00 (19.4) 0.23 (0.87) 0.21 (1.02) 0.17 (3.94) 0.23 (0.91)
DroneRun 1.00 (18.4) 0.18 (1.60) 0.35 (0.96) 0.18 (5.72) 0.29 (1.01)
AntRun 1.00 (38.9) 0.63 (0.61) 0.52 (0.98) 0.60 (0.48) 0.60 (0.98)

64 processes. We used as the discount factor γ = 0.99, collected batches of size B = 32000 for Ball and Car and
B = 64000 for Drone and Ant agents. The number of epochs depended on the complexity of the task and was chosen
from N ∈ [100,1500]. As neural network architecture, we used the same structure for both policy and value networks,
i.e. multi-layer perceptrons with two hidden layers consisting of 64 neurons each followed by tanh non-linearities.
The weights were initialized with Kaiming Uniform and biases were set to zero vectors. The value networks were
optimized with Adam [22]. The Lagrange multiplier was optimized by stochastic gradient descent (SGD) for TRPO-L
and Adam for PDO. We used Generalized Advantage Estimation (GAE) [29] to reduce the variance of critic estimates
with λ = 0.95 for rewards and λc = 0.95 for costs.

Over the training, we deployed a stochastic policy in form of a Gaussian u∼N (π(x),εI) with the identity I and the
exploration noise ε ∈R that was linearly annealed towards zero. For evaluation purposes, we deactivated the exploration
noise and benchmarked the performance of the policy deterministically with respect to J and H.

6.1 Results

The learning curves of the tested algorithms are depicted in Fig. 2 and an overview of the scores can be taken from
Table 1. For each algorithm, we searched over a grid of hyper-parameters and averaged the scores over four independent
random runs. We picked the best return fulfilling the cost constraint H ≤ d. If an algorithm could not fulfill the cost
constraint over all hyper-parameter settings, the hyper-parameter setting with the lowest cost violation was selected.
The values used for the grid search can be found in the Appendix.

We observed that TRPO-L produced strong results and outperformed CPO, PCPO and PDO in 10 out of 16 tasks.
However, TRPO-L revealed a weaker performance in the Gather tasks where reward and cost signals are sparse, whereas
the other three constrained algorithms were always able to steer the costs towards the desired limit. PDO struggled to
reduce the costs in the Run tasks where policies quickly overshoot the cost constraint after a few training iterations,
whereas CPO, PCPO and TRPO-L were able to perform cost reduction steps until constraint satisfaction in most cases.

Overall, we noticed that no hyper-parameter configuration consistently performed well in terms of cost satisfaction for
all tasks. Each task had to be tuned individually via hyper-parameter grid search, which renders it difficult to provide
good default hyper-parameter values in general. This observation elicits that the assessment of experimental results can
be misleading when only one hyper-parameter configuration is evaluated.

6.2 Discussion

Although TRPO-L outperformed CPO, PCPO and PDO in most of our experiments, Lagrangian methods can be
susceptible to oscillations around the cost limit. We found that oscillations intensify when replacing SGD with the
Adam optimizer, rendering the behavior of Lagrangian relaxation methods strongly influenceable by the chosen
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optimizer of the Lagrange variable. Oscillation behavior was also observed in [28] who tested Lagrangian relaxation
variants of the Proximal Policy Optimization [30] and TRPO algorithm. The first research efforts were put into this
issue in [33] who stabilized the learning by a proportional-integral-derivative controller.

We noticed in our experiments that the annealing of the exploration noise is crucial and fosters the satisfaction of the
constraints towards the end of the training. CPO was observed in [28] to overshoot in costs when using a constant
exploration noise factor. However, we were able to fulfill the cost constraint with CPO when using a linear exploration
noise annealing - even without the additional cost shaping as it was applied in the original publication [1].

Besides the necessity to tune hyper-parameters for each environment individually, we observed a high susceptibility
towards the chosen hyper-parameter values for all tested algorithms (see Appendix). Although this is a well-known
phenomenon for deep RL in general [21], we found that this sensitivity issue is further exacerbated in the constrained RL
setting due to the additional algorithmic components and extra hyper-parameters required for accounting costs. We also
noticed that it was necessary to search over a broad range of hyper-parameter values in order to find a hyper-parameter
combination that was able to satisfy the cost constraints averaged over all independent runs. Thus, we recommend that
new algorithm proposals should be assessed over hyper-parameter grids in order to obtain an equitable performance
comparison and not only use the default parameters.

A current limitation is that all tested algorithms struggle to consistently respect cost constraints over different random
runs and hyper-parameter settings. Further, none of the investigated algorithms was able to produce zero cost violations
throughout the whole training. This suggests that on-policy policy gradient algorithms may be unsuitable for applications
where constraint satisfaction is required at all times, e.g. the safe exploration with real-world robots.

7 CONCLUSIONS

Benchmark frameworks are an integral component for assessing scientific progress, especially in domains where the
pace of research is swift. Despite the increasing awareness for safety and the flourishing number of publications in
the RL community, most works concerning safety conduct experiments on self-created and individual environments,
aggravating the assessment of new contributions.

In this paper, we introduced the Bullet-Safety-Gym as a framework to train and assess safety aspects in constrained
reinforcement learning problems. We collected and unified different environments that were proposed in recent works
and provide an open-source Python package. In our experiments, we evaluated five algorithms based on the 16
environments of the Bullet-Safety-Gym which can serve as a baseline for future work.

Future work may comprise the investigation of off-policy algorithms and the extension to multi-dimensional cost signals
which adds extra complexity to the training. Since we deliberately focused on safety satisfaction at the end of the
training, it might be also of interest to investigate the safety aspects of the Bullet-Safety-Gym environments during the
training. Lastly, another avenue for future research might be safe reinforcement learning in the multi-agent setting,
which is still mostly unexplored as pointed out in [18].
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Appendix

In this supplementary material, we elaborate on the experimental approach and explain the hyper-parameter configuration
of our experiments in detail. We depict an overview of the applied hyper-parameters in Table 2. Further, we include the
learning curves of all evaluated hyper-parameter configurations separately for each algorithm (see Fig. 3-7).

Experimental Setup and Hyper-parameters

For all experiments, we used the hyper-parameters listed in Table 2 as default. The network structure for both policy
and value network was a multi-layer perceptron with two hidden layers each consisting of 64 neurons and followed by
tanh non-linearities. Weights were not shared between value and policy network. This configuration followed the one
suggested in [19].

We considered an on-policy settings where the agent interacted sequentially B-times with the environment and then
performed a policy update step based on this experience batch before generating a new experience batch of size B.
This modus operandi was repeated for M epochs after which the training ended and the performance of the agent
was evaluated. Over the training, actions were sampled from a Gaussian distribution N (π(x),εI), where the mean is
given by the policy π and εI is the co-variance matrix defined by the scalar ε and the identity I. During the training,
we annealed ε towards zero to promote the fulfillment of safety constraints of a deterministic policy at the end of
training. For evaluation purposes, we deactivated the exploration noise so that the stochastic policy function became a
deterministic function of the state, i.e. u = π(x) instead of u∼N (π(x),εI).

For all experiments, we employed a distributed learner setup where policy gradients are computed and averaged across
all distributed processes. We used Threadripper 3990X CPUs, which are capable to run 64 distributed MPI processes in
parallel. All algorithms were run on a Ubuntu 20.04.2 LTS operating system.

In order to render the evaluation process comparable, we searched over a grid of hyper-parameters for each algorithm
and determined the performance based on the average over four independent random seeds. We searched over the
following settings:

1. TRPO: δ ∈ {0.001,0.01}
2. TRPO-L: δ ∈ {0.0001,0.001,0.01} and αλ ∈ {0.001,0.01,0.1}
3. CPO: δ ∈ {0.0001,0.0005,0.001} and λc ∈ {0.5,0.9,0.95}
4. PDO: δ ∈ {0.0001,0.001,0.01} and αλ ∈ {0.001,0.01,0.1}
5. PCPO: δ ∈ {0.0001,0.0005,0.001} and λc ∈ {0.5,0.9,0.95}

Note that the Lagrange multiplier was optimized with SGD for the TRPO-L algorithm. We observed that Adam
generated stronger cost oscillation whereas SGD was more stable. In contrast, the PDO algorithm took profit from
Adam in terms of the cost violations.
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Table 2: Default hyper-parameters used in all experiments. The values marked with * were determined through grid
search while values marked with # depend on environment specifics (see Sect. 6).

Hyper-parameter TRPO TRPO-L CPO PDO PCPO
Backtracking budget 15 15 25 N/A 25
Backtracking decay 0.8 0.8 0.8 N/A 0.8
Batch-size B # # # # #
Conjugate grad. damping 0.1 0.1 0.1 0.1 0.1
Conjugate grad. iterations 10 10 10 10 10
Cost limit d # # # # #
Discount factor γ 0.99 0.99 0.99 0.99 0.99
Entropy co-efficient 0 0 0 0 0
Exploration noise ε (init.) 0.5 0.5 0.5 0.5 0.5
GAE factor costs λc 0.95 0.95 * 0.95 *
GAE factor rewards λ 0.95 0.95 0.95 0.95 0.95
Lagrangian learn rate αλ N/A * N/A * N/A
Lagrangian optimizer N/A SGD N/A Adam N/A
Target KL divergence δ * * * * *
Training Epochs N # # # # #
V-network mini-batch size 64 64 64 64 64
V-network updates 80 80 80 80 80
V-network learning rate 0.001 0.001 0.001 0.001 0.001
V-network optimizer Adam Adam Adam Adam Adam
Weight initialization gain κ

√
5

√
5

√
5

√
5

√
5

Weight initialization Kaim. Kaim. Kaim. Kaim. Kaim.

Table 3: Overview of proposed environments along with their specification.
Environment Name Cost limit d Epochs M Batch Size B Maximum Episode Length
SafetyBallRun-v0 25 100 32000 250
SafetyCarRun-v0 25 200 32000 500
SafetyDroneRun-v0 25 500 64000 500
SafetyAntRun-v0 25 500 64000 1000
SafetyBallCircle-v0 25 500 32000 250
SafetyCarCircle-v0 25 500 32000 500
SafetyDroneCircle-v0 25 1000 64000 500
SafetyAntCircle-v0 25 1000 64000 1000
SafetyBallGather-v0 0.2 500 32000 250
SafetyCarGather-v0 0.2 500 32000 500
SafetyDroneGather-v0 0.2 1000 64000 500
SafetyAntGather-v0 0.2 1000 64000 1000
SafetyBallReach-v0 10 500 32000 250
SafetyCarReach-v0 10 1000 32000 500
SafetyDroneReach-v0 10 1000 64000 500
SafetyAntReach-v0 25 1500 64000 1000
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0 200 400
Epochs

0

20

R
et

u
rn

0 200 400
Epochs

10

20

30

C
os

t δ = 0.01

δ = 0.001

Cost Limit

TRPO: SafetyBallReach-v0

0 500 1000
Epochs

0

10

R
et

u
rn

0 500 1000
Epochs

25

50

C
os

t δ = 0.01

δ = 0.001

Cost Limit

TRPO: SafetyCarReach-v0

0 500 1000
Epochs

10

20

30

R
et

u
rn

0 500 1000
Epochs

10

20

30

C
os

t δ = 0.01

δ = 0.001

Cost Limit

TRPO: SafetyDroneReach-v0

0 1000
Epochs

0

20

R
et

u
rn

0 1000
Epochs

0

50

100

C
os

t δ = 0.01

δ = 0.001

Cost Limit

TRPO: SafetyAntReach-v0
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Figure 3: TRPO. Each hyper-parameter configuration was averaged four independent random seeds. Thick lines indicate
that the configuration was able to fulfill the cost constraint on average while dotted lines denote cost constraint violation.
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Figure 4: TRPO-L. Each hyper-parameter configuration was averaged four independent random seeds. Thick lines
indicate that the configuration was able to fulfill the cost constraint on average while dotted lines denote cost constraint
violation.
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(c) Reach tasks.
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(d) Run tasks.

Figure 5: CPO. Each hyper-parameter configuration was averaged four independent random seeds. Thick lines indicate
that the configuration was able to fulfill the cost constraint on average while dotted lines denote cost constraint violation.
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(a) Circle tasks.
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(b) Gather tasks.
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(c) Reach tasks.
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(d) Run tasks.

Figure 6: PDO. Each hyper-parameter configuration was averaged four independent random seeds. Thick lines indicate
that the configuration was able to fulfill the cost constraint on average while dotted lines denote cost constraint violation.
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(a) Circle tasks.
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(b) Gather tasks.
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(c) Reach tasks.
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(d) Run tasks.

Figure 7: PCPO. Each hyper-parameter configuration was averaged four independent random seeds. Thick lines indicate
that the configuration was able to fulfill the cost constraint on average while dotted lines denote cost constraint violation.
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