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Abstract 

Multiple sclerosis (MS) is an autoinflammatory disease of the central nervous system (CNS) and 

the most frequent cause of neurological disability in younger adults. Monocyte-derived mononuclear 

phagocytes are recruited from the peripheral blood, mature in the CNS parenchyma and contribute 

significantly to inflammatory lesions in the CNS, a hallmark of multiple sclerosis histopathology. 

Mononuclear phagocytes play crucial roles in tissue damage and repair. Previous studies on 

experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, have shown 

that macrophages acquire a pro-inflammatory phenotype (resembling M1 polarization) after migrating 

into the CNS and can switch to a putative reparative phenotype (resembling M2 polarization) during 

lesion recovery. Here, we aimed to further investigate the molecular phenotype and cell-cell 

communication pathways of these cells. 

We used phenotype reporter mouse lines, cell sorting, quantitative mass spectrometry, next-

generation sequencing and developed novel network-based computational algorithms (gene set 

enrichment analysis coupled to network analysis, NezzworGS, and functional protein-protein 

interaction coupled to network analysis, FUPPINA) to further analyze the molecular signatures of M1-

like and M2-like  macrophages in CNS lesions and decipher potential signaling pathways between 

macrophages and immune cells under neuroinflammatory conditions. We found gene sets related to 

immune cell signaling and proliferation enriched in M1 macrophage proteome and gene sets related 

to extracellular matrix organization, antigen presentation, G protein-coupled receptor signaling and 

the nervous system enriched in M2 macrophage proteome. Although the overall proteome-

transcriptome correlation was low at single protein/transcript level, these gene sets were also enriched 

in M1 and M2 macrophage transcriptomes. Furthermore, we identified extracellular proteins, 

potentially secreted by M1 and M2 macrophages that could mediate the destructive and/or reparative 

effects of these polarization phenotypes. By measuring the proteomes of (infiltrating) immune cells in 

EAE (and healthy control) we unraveled possible ligand-receptor interactions between these cells and 

M1 and M2 macrophages, respectively. 

In this study we identified molecular signatures of M1 and M2 macrophages as well as potential 

ligand-receptor interactions with other cell types that might serve as druggable targets in the context 

of neuroinflammation. These results further provide the basis for functional studies to 

comprehensively dissect the cellular interactions that drive formation and resolution of 

neuroinflammatory lesions. 
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Zusammenfassung 

Die Multiple Sklerose (MS) ist eine chronisch-entzündliche Erkrankung des zentralen 

Nervensystems (ZNS) und die häufigste Ursache für neurologische Behinderungen bei jüngeren 

Erwachsenen. Aus dem Blut stammende mononukleäre Phagozyten werden rekrutiert, reifen im ZNS-

Gewebe heran und tragen wesentlich zu den für die Multiple Sklerose typischen entzündlichen 

Läsionen im ZNS bei. Mononukleäre Phagozyten spielen eine entscheidende Rolle bei der Schädigung 

und Reparatur von Gewebe. Vorausgehende Beobachtungen bei der Experimentellen Autoimmun-

Enzephalomyelitis (EAE), einem Tiermodell der Multiplen Sklerose, haben gezeigt, dass Makrophagen 

nach ihrer Einwanderung in das ZNS einen pro-inflammatorischen Phänotyp (M1-Polarisation) und im 

weiteren Krankheitsverlauf einen mit dem Gewebeaufbau assoziierten Phänotyp (M2-Polarisation) 

annehmen können. Ziel dieser Arbeit ist das bessere Verständnis des molekularen Phänotyps und der 

Zell-Zell-Kommunikationswege dieser Phänotypen. 

Wir verwendeten Phänotyp-Reporter-Mauslinien, Durchflusszytometrie, quantitative 

Massenspektrometrie und next-generation sequenzing und entwickelten netzwerkbasierte 

bioinformatische Algorithmen (gene set enrichment analysis coupled to network analysis, NezzworGS, 

und functional protein-protein interaction coupled to network analysis, FUPPINA), um die molekularen 

Signaturen von M1- und M2-Makrophagen in ZNS-Läsionen weiter zu analysieren und mögliche 

Signalwege zwischen Makrophagen und Immunzellen unter neuroinflammatorischen Bedingungen zu 

entschlüsseln. Wir identifizierten molekulare Signaturen im Proteom der M1-Makrophagen, die mit 

der Signalübertragung und der Proliferation von Immunzellen zusammenhängen, sowie molekulare 

Signaturen im Proteom der M2-Makrophagen, die mit der Organisation der extrazellulären Matrix, der 

Antigenpräsentation, der Signalübertragung durch G-Protein-gekoppelte Rezeptoren und dem 

Nervensystem zusammenhängen. Obwohl die Korrelation zwischen Proteom und Transkriptom 

hinsichtlich der Protein- und RNA-Expression gering war, waren diese molekularen Signaturen auch in 

den Transkriptomen der M1- und M2-Makrophagen nachweisbar. Darüber hinaus identifizierten wir 

extrazelluläre Proteine, die möglicherweise von M1- und M2-Makrophagen sezerniert werden und die 

Effekte dieser Polarisierungsphänotypen vermitteln könnten. Durch die Messung der Proteome von (in 

das ZNS infiltrierenden) Immunzellen in der EAE (und in gesunden Kontrollen) konnten wir mögliche 

Liganden-Rezeptor-Interaktionen zwischen diesen Zellen und M1- bzw. M2-Makrophagen 

identifizieren. 

In dieser Arbeit haben wir molekulare Signaturen von M1- und M2-Makrophagen sowie 

potenzielle Liganden-Rezeptor-Interaktionen mit anderen Zelltypen identifiziert, die möglicherweise 

als pharmakologische Zielstrukturen im Kontext neuroimmunologischer Erkrankungen dienen 

könnten. Diese Ergebnisse bilden die Grundlage für weitere funktionelle Studien, um die zellulären 

Interaktionen, die bei entzündlichen Läsionen eine wesentliche Rolle spielen, umfassend zu 

untersuchen zu können. 
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1 Introduction 

1.1 Multiple sclerosis 

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) (1). 

It is the most common non-traumatic cause of neurological disability in younger adults (2). Although 

the prevalence and incidence of MS are continuously rising (3), the underlying disease mechanism 

remains uncertain (1). 

The pathological hallmarks of MS are focal demyelinating lesions, immune cell infiltration and 

neurodegeneration. Lesions can be found both in the white matter and the grey matter of the brain 

and the spinal cord of MS patients (4). They can result in a diverse pattern of clinical signs and 

symptoms, depending on which structures of the CNS are affected. Most commonly, patients present 

with monocular visual impairment (optic neuritis), limb weakness (transverse myelitis), double-vision 

(brain-stem dysfunction) or ataxia (cerebellar lesions) (5, 6). Moreover, lesions can cause dysfunctions 

of the autonomic nervous system, such as bladder or bowel dysfunction, as well as psychic disorders, 

such as fatigue or depression (7–9). 

In most cases, the first presentation of the disease is the clinically isolated syndrome (CIS). The CIS 

describes an acute impairment of neurological functions, which is termed ‘attack’ (10). About 50 % of 

the patients, who had suffered from a CIS, develop a second attack and are then diagnosed with MS. 

MS manifests in diverse disease entities. Most patients suffer from relapsing-remitting multiple 

sclerosis (RRMS). This entity is characterized by relapses followed by a symptom-free interval and a 

(partial) recovery from neurological deficits (remission). However, RRMS can transition to secondary-

progressive multiple sclerosis (SPMS). SPMS features a gradual impairment of body functions, 

sometimes superimposed by relapses. Primary-progressive multiple sclerosis (PPMS) is yet another 

disease entity which is denoted by a gradual gain of deficits without acute relapses (11). 

The treatment and disease management of MS is challenging. So far, there is no cure. However, 

since the mid-1990s there are more and more (pharmacological) treatment options available (4). 

Initially, interferons and glatiramer acetate were administered with the aim to reduce the relapse 

frequency as well as to delay the accumulation of disabilities. Over the time, various therapies have 

evolved and have been approved. Up till now, the pharmacotherapeutic arsenal spans from classical 

immunomodulatory agents, such as interferons, glatiramer acetate or dimethyl fumarate, to novel 

antibodies that specifically interfere with T or B cell function, such as natalizumab or ocrelizumab (12). 

1.1.1 Signs and symptoms 

Inflammatory lesions in MS can occur in any part of the CNS. Thus, the spectrum of signs and 

symptoms is broad. It ranges from motor and sensory to visual and autonomic dysfunctions. None of 

these signs and symptoms are disease-specific. However, Lhermitte’s symptom (neck flection that 

provokes electrical sensations running down the spine and limbs) and Uhthoff phenomenon (increase 

of body temperature which is accompanied by worsening of neurological symptoms) are clinical 

findings highly suspicious of MS (11). Furthermore, visual impairment (as a consequence of optic 

neuritis) is a frequent initial presentation of MS (13). 
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Ultimately, during the disease course of MS, patients can accumulate disabilities that originate 

from relapses followed by an incomplete recovery (as seen in RRMS and SPMS with superimposed 

relapses) or from a gradual worsening of symptoms (as seen in PPMS or SPMS without superimposed 

relapses). The Expanded Disability Status Scale (EDSS) is a tool which assesses the extent of MS-related 

disabilities in patients. It was introduced by Kurtzke in 1983 and has been frequently used as a clinical 

outcome parameter ever since (14, 15). The EDSS is an ordinal scaled rating system from 0 to 10 with 

0.5 increments interval. 0 indicates a normal neurological examination, whereas 10 indicates death 

due to MS (15). In brief, the individual EDSS value is obtained by assessing the degree of disability in 

each Functional System (FS). According to Kurtzke, there are 8 FS: pyramidal, cerebellar, brain stem, 

sensory, bowel and bladder, visual, cerebral or mental and ambulation (14). The higher the degree of 

disability is within one FS and the more FS are affected, the higher the EDSS. 

1.1.2 Epidemiology and risk factors 

In 2016, the global estimated MS prevalence was 2,221,188 (95 % uncertainty 

interval = [2,033,866;2,436,858]). Compared to 1990 the prevalence has increased by 10.4 % (95 % 

uncertainty interval = [9.1;11.8]). However, MS prevalence estimates per 100,00 individuals were 

unequally distributed: In North America (164.6), western Europe (127.0) and Australasia (91.1) the 

prevalence was on average 47.2-fold higher than in eastern sub-Saharan Africa (3.3), central sub-

Saharan Africa (2.8) and Oceania (2.0) (16). Thus, there is a tremendously lower prevalence in countries 

centered around the equator. 

The gender ratio is approximately 3/1 (female/male) for RRMS and 1/1 for PPMS. The mean onset 

of disease is approximately 30 years (RRMS) and 40 years (PPMS), respectively (2, 16–18). 

Up till now, no specific trigger of MS has been identified. Nonetheless, multiple risk factors of 

genetic and environmental nature have been described so far (5). 

1.1.2.1 Environmental risk factors 

Among all measured and reported environmental risk factors in MS, vitamin D deficiency, obesity 

(especially in early life), Epstein-Barr virus infection and cigarette smoking are the strongest predictors 

for the development of MS (19). 

Munger et al. observed a relative risk to develop MS of 0.67 (95 % CI = [0.40;1.12]) in a study 

cohort that had higher vitamin D intake when compared to a matched cohort with lower vitamin D 

intake (20). Furthermore, in another prospective, nested case-control study, Munger et al. showed that 

higher 25-hydroxyvitamin D levels are associated with a lower MS incidence (OR = 0.69, 

95 % CI = [0.36;-0.97]) (21). Salzer et al. observed similar effects in yet another study population (22). 

In summary, both ingested and endogenous vitamin D seems to lower the risk to develop MS. However, 

it remains unclear if this observation is independent from the geographic differences in the MS 

prevalence. The MS prevalence is associated with latitude. The closer to the equator an individuum 

lives, the lower his chance of developing MS is. In regions near the equator the UV light is more intense. 

Vitamin D metabolism critically depends on UV light. Thus, it remains unclear, if the association 

between low vitamin D levels and the risk of developing MS is confounded by latitude or UV light 

exposure (19). Swank et al. found that the MS prevalence in costal villages was lower when compared 
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to continental areas in a study cohort in Norway (23). At costal areas, the consumption of fish is higher. 

Fish is, especially at higher latitudes, an important source of vitamin D. This could on one hand explain 

Swank et al.’s finding and on the other hand support the hypothesis that vitamin D is latitude-

independent protective substance (19). 

Furthermore, Munger et al. observed an association between BMI and the risk of MS in the same 

study cohort that showed the association between high vitamin D intake or blood levels and the 

diminished risk to develop MS (24). The relative risk (RR) of women who had a body mass index 

(BMI) ≥ 30 kg/m2 at the age of 18 to develop MS was increased (RR = 2.25, 95 % CI = [1.50;3.37]) when 

compared to women with normal weight. However, older or younger obese women did not have a 

higher risk. To further investigate if there was an elevated risk of developing MS for obese children, 

Munger et al. conducted a prospective cohort study (25). They observed an association between 

obesity in childhood and the risk to develop MS. 

The prevalence of infectious mononucleosis, caused by Epstein-Barr virus, especially in early 

childhood, is latitude-dependent, similar to the MS prevalence (19, 26). It is assumed that infections 

that occur in early life shift the immune response which could increase the risk to develop 

autoimmunity in future life (27, 28). Indeed, nested case-control studies proved that the EBV nuclear 

antigen 1 (EBNA-1) antibody titer predicts the risk of developing MS (29–32). Notably, this association 

is independent from gender and ethnicity (33). However, the increase of the EBNA-1 antibody titer 

could be confounded by the presence of subclinical MS in these patients. Subclinical MS could provoke 

a latent immune response that elevates the concentration of EBNA-1 antibodies (among other 

antibodies). Levin et al. addressed this question in the U. S. military study and followed-up 

seronegative individuals (34). They showed that all individuals who developed MS had their first 

symptoms after seroconversion, which denotes the EBV infection. Taken together, this proofs that EBV 

infection (and the EBNA-1 antibody titer) is a risk factor for developing MS. 

For the first time, the  evidence for the association between cigarette smoking and the risk to 

develop MS arose from an exploratory study in Israel (35). Further prospective, case-control and 

population-based studies confirmed the association (36–41). Some studies showed that cigarette 

smoking has an unequal impact among females and males: the relative risk in men is higher (1.6 – 2.8) 

when compared to women (1.0 – 1.4) (19). Furthermore, not only the risk of developing MS is higher 

for smokers, but also the risk of worsening MS symptoms (42) as well as converting from CIS to MS (43) 

or RRMS to SPMS, respectively (41, 44). 

1.1.2.2 Genetic risk factors 

Besides environmental risk factors, genetic risk factors are likely to play a role in MS. This 

hypothesis arises from the fact that individuals who have first-degree relatives being affected have a 2 

to 4 % risk to develop multiple sclerosis. In contrast, the natural risk is assumed to be about 0.1 %. The 

risk of recurrence of MS within families depends on the genetic sharing (45): In monozygotic twins the 

concordance is 30 – 50 %, 6 % in dizygotic twins and 3 % in siblings (5). Regardless of the MS 

phenotype, the familial MS prevalence is approximately 13 % (45, 46). 

In order to elucidate the relationship between MS risk and genetic profile, genome-wide 

association studies (GWAS) have been performed. GWAS identified more than 200 genes that 
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contribute to varying extends to the risk of MS (47). A major share of these genes is associated with 

the immune system. Most polymorphisms, which were identified in the GWAS, affect genes that 

encode proteins crucial for immune cell function: HLA genes (including HLA- DRB1*15:01), IL2, IL17. IL-

2 and IL-17 are important cytokines for the regulation of encephalitogenic T cells (48, 49). Other 

polymorphisms affect cytokines of the innate immunity, e. g. genes that encode proteins that mediate 

tumor necrosis factor (TNF) (45). Studies showed that HLA- DRB1*15:01 polymorphisms can interact 

with environmental risk factors: Cigarette smoking (50), adolescent obesity (51) and EBV infections 

(52) synergize with the genetic risk due to HLA- DRB1*15:01 polymorphisms. Likewise, polymorphisms 

in genes that are involved in vitamin D metabolism (GC and CYP24A1) can increase the risk to develop 

MS (53). 

1.1.3 Clinical manifestations 

MS has various disease entities which reflect the time of onset, degree of disability as well as 

presence or absence and, if present, temporal sequence of attacks. The diagnostic criteria were defined 

by the International Panel on Diagnosis of Multiple Sclerosis in the form of the McDonald criteria whose 

latest version was released in 2017 (10). 

The most common disease phenotype of MS is the relapsing-remitting form (RRMS). It affects 

approximately 85 % of the patients who are diagnosed with MS (17, 54). This phenotype is 

characterized by an alternation of relapses and remissions. Originally, Jean-Martin Charcot defined a 

relapse as a focal functional deficit of a white matter tract that lasts for at least 24 hours. It must not 

have an alternate explanation (55). The histological correlates are inflammatory demyelinating lesions 

in any part of the CNS (56). The frequency of relapses varies from 0.46 – 1.8 (mean = 1.5) relapses per 

year (54). However, immunomodulatory treatment can reduce the relapse frequency (57). A relapse is 

followed by either a complete or partial recovery of neurological functions. Incomplete recoveries 

might impact the long-term functional outcome of patients with RRMS (56, 58). Although relapses 

mostly recover spontaneously, there is an increasing body of evidence that an early and aggressive 

immunosuppressive therapy (e. g. with corticosteroids) can improve the long-term outcome (54, 59). 

This strategy might reduce the chance of remaining residual neurological deficits after a relapse. The 

fear of relapses is considered as one of the most burdensome disease features of MS for the patients. 

Thus, an adequate treatment that aims to reduce the relapse frequency not only preserves body 

functions but also reinforces the patients’ control over the disease (60, 61). 

The secondary-progressive phenotype of multiple sclerosis (SPMS) is characterized by a gradual 

worsening of symptoms, emerging from an initial relapsing-remitting disease course (62). In addition, 

the response to the anti-inflammatory pharmacotherapy is decreased (63). The median time from the 

diagnosis to the development of SPMS is 19 years, the mean age of patients is 40 years. SPMS occurs 

in 75 % of the patients who have been initially diagnosed with RRMS (17). While 12.1 % of the patients 

convert to SPMS within the first 5 years from diagnosis, 88.9 % have converted after being diagnosed 

for more than 26 years (64). In addition to the continuous worsening of neurological deficits, relapses 

can superimpose the disease course. The relapses in SPMS occur more frequently close to the 

transition point from RRMS to SPMS (17, 18). Per se, there are no variables that can predict the disease 

progression and extend of disability. However, studies have shown that young (65) and female (66) 

patients are less prone to develop an irreversible disability. Likewise, a longer period between relapses 
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as well as a lower overall number of relapses might predict a later conversion into SPMS (67). In 

contrast, T2 hyperintense MRI lesions, whose presence correlate with the disease course in the early 

disease phase, fail to predict a clinical outcome in the secondary progressive phase. However, T1 

hypointense MRI lesions and radiographic signs of atrophy match with the gradual increase of 

disabilities in SPMS (68, 69). 

It is believed that axonal loss plays a crucial role in the MS disease progression, especially in the 

context of SPMS. MRI and histopathological findings based on electron microscopy of CNS tissue of MS 

patients revealed that the axonal density reversely correlates with the number of lesions (63, 70). 

Radiographic signs of spinal cord (71) or brain (72, 73) atrophy correlate with the EDSS score as a 

surrogate for the degree of disability. In addition, these observations are believed to be an indication 

for axonal loss to be among the underlaying mechanisms of MS-associated disability (63). In addition, 

the axonal pathology in SPMS was assessed when N-acetyl aspartic acid (NAA) was measured by 

magnetic resonance spectroscopy (MRS). NAA is considered as an axon-specific marker. In acute MS 

stages, there was a reduction of NAA which was reversible (74). However, when looked at chronic 

lesions, the NAA reduction was also detected in normal-appearing white matter (75, 76). Thus, brain 

and spinal cord atrophy, which is thought to be secondary to axonal loss, can underlie disease 

progression. 

10 – 15 % of all MS patients show a gradual worsening of symptoms from the time on they are 

diagnosed (17, 77, 78). This MS phenotype is termed primary-progressive multiple sclerosis (PPMS). 

PPMS shows a faster progression when compared to SPMS. Superimposed relapses occur in 40 % of 

the patients (17). The mean age of onset of disease is higher when compared to RRMS (40 years versus 

30 years) (78). The disabilities predominantly arise from an impaired corticospinal tract and are more 

severe when compared to RRMS or SPMS (79). Signs of cortical demyelination and an early spinal cord 

atrophy is are more common in PPMS when compared to RRMS (77). The gender ratio is balanced (78). 

Predictable factor are unknown so far (17, 80). 

1.1.4 Diagnosis 

Most patients initially present with an attack. An attack is defined as 

“a monophasic clinical episode with patient-reported symptoms and objective findings 

typical of multiple sclerosis, reflecting a focal or multifocal inflammatory demyelinating 

event in the CNS, developing acutely or subacutely, with a duration of at least 24 h, 

with or without recovery, and in the absence of fever or infection. Attack, relapse, 

exacerbation, and (when it is the first episode) clinically isolated syndrome are 

synonyms.” (10) 

The further diagnostic workup for patients suspected of MS encompasses clinical, imaging and 

laboratory testing. In principle, these tests aim to resolve a dissemination in time and a dissemination 

in space of MS-specific lesions (and symptoms) according to the revised McDonald criteria (10). The 

dissemination in space can be inferred from the presence of more than one lesion site (and its 

topological symptom) or abnormal MRI finding at multiple CNS areas. The lesion sites are defined as 

juxtacortical, periventricular, infratentorial or spinal (12). If there are lesions in at least two out of four 
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sites, the criteria of dissemination in space will be fulfilled. The dissemination in time can be inferred 

from a history of more than one attack or the presence of CSF-specific oligoclonal bands. The presence 

of oligoclonal bands is a strong predictor of the risk for a second attack, independent from MRI findings 

(81–84). Additionally, other possible explanations for the clinical presentation must be ruled out (such 

as infections, vascular or primary neurodegenerative diseases). These aspects are summarized by the 

revised McDonald Criteria (10). 

1.1.5 Treatment and disease management 

The treatment of MS is built on three pillars: treating acute attacks, reducing the disease activity 

with disease-modifying therapies and ameliorating symptoms (2). 

In general, disease-modifying therapies encompass immunomodulatory drugs, 

immunosuppressants and immune reconstitution drugs (1). The goal of the pharmacotherapy with 

these substances is to reduce the rate of relapses, reduce the number of lesions (as observed by MRI) 

and, ultimately, delay the overall gain of disability (2). In other words, this strategy aims to achieve ‘no 

evidence of disease activity’ (NEDA). NEDA is a scoring system that stratifies the MS disease activity by 

assessing the absence of clinical (NEDA-1 and -2), radiological (NEDA-3 and -4) and laboratory (NEDA-

5) disease parameters (1, 15, 85). 

1.1.5.1 Treatment of attacks 

Acute attacks are most effectively treated intravenously with corticosteroids such as 

methylprednisolone (4, 86, 87). However, the long-term benefit (when compared to placebo) is subtle: 

Beck et al. assessed the effect of corticosteroids on the recovery of visual loss due to optic neuritis. 

Although visual function recovered faster in the corticosteroid group, the visual field, contrast 

sensitivity and color vision were only slightly better in the treatment group when compared to the 

placebo group (88). A meta-analysis by Miller et al. unraveled that high dose methylprednisolone 

treatment versus placebo achieved a mean increase of the EDSS of 0.76 (89). An escalating treatment 

option for acute relapses is plasmapheresis (90, 91). This therapy can reduce acute deficits, however, 

it fails in preventing subsequent disease activity (11). 

1.1.5.2 Disease-modifying therapies 

The basic idea of disease-modifying therapies is to decelerate disease progression and, ultimately, 

prolong the relapse-free interval and, thereby, reduce the chance to accumulate neurological deficits 

over the lifetime. Likewise, it is believed that the conversion from a CIS to MS is delayed when the 

patient is treated adequately. However, only little is known to which extend these drugs can improve 

the long-term clinical outcome of patients (11). While interferons, glatiramer acetate, dimethyl 

fumarate and teriflunomide are considered as milder agents with less (severe) side effects (category 

I), Fingolimod, ozanimod, ponesimod, siponimod and cladribine (category II) as well as natalizumab, 

ocrelizumab and alemtuzumab (category III) can more effectively reduce the annualized relapse rate 

and are therefore used for RRMS patients with more severe disease activity or with therapy failure 

(12). 
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Since the mid-1990s there are two substances available for the treatment of RRMS: interferons 

and glatiramer acetate (4). The CHAMPS, ETOMS and BENEFIT trial showed that the conversion rate 

(from CIS to MS) can be reduced from 45 – 50 % (placebo group) to 28 – 35 % (intervention group) by 

the administration of interferon (92–94). However, the long-term outcome is only mildly improved 

(11). Interferons bear the risk that patients can develop neutralizing antibodies that make a treatment 

less effective. This phenomenon can be observed in about 5 % of all recipients (95). Glatiramer acetate, 

dimethyl fumarate as well as teriflunomide are other category I immunomodulatory agents which can 

reduce the annualized relapse rates of RRMS patients similar to interferons (4, 96, 97). If these 

treatment approaches fail or the patient initially presents with a severe disease activity, treatment 

escalation will be justified (12). 

Fingolimod, ozanimod, ponesimod and siponimod are sphingosine 1-phosphate receptors that are 

crucial for lymphocyte trafficking. Therefore, blocking of sphingosine 1-phosphate receptors leads to a 

reduced infiltration of lymphocytes into the CNS. Fingolimod showed a reduction of the annualized 

relapse rate of 0.4 when compared to placebo. Moreover, it reduced the cumulative probability of 

disease progression in a concentration-depended fashion in RRMS patients (from 24.1 % to 17.7 % and 

16.6 %, respectively) (98, 99). The effectiveness was superior to interferon treatment (100). Ozanimod, 

like fingolimod, is a sphingosine 1-phosphate receptor modulator. Cohen et al. showed similar effects 

for ozanimod as previously observed for fingolimod in patients with RRMS (101). Ponesimod is a third 

sphingosine 1-phosphate receptor modulator approved for RRMS (102). Siponimod, unlike all other 

sphingosine 1-phopsphate receptor modulators, is also approved for treating SPMS (103). Giovannoni 

et al. reported that cladribine, an immunosuppressant agent which targets specific lymphocyte 

subpopulations, reduces the annualized relapse rate and prolongs the relapse-free interval in RRMS 

patients (104). 

Natalizumab and ocrelizumab are two monoclonal antibodies that interfere with the migration of 

lymphocytes into the CNS through an antagonism of the glycoprotein alpha4 integrin (natalizumab) 

(105, 106) or deplete the B cell repertoire (ocrelizumab) by opsonizing CD20 molecules (107, 108). 

Despite its great efficacy in reducing the annualized relapse rate, as observed in the AFFIRM (105) and 

SENTINEL (109) trial, the use of natalizumab is reluctant. If natalizumab inhibits glycoprotein alpha4 

integrin, CD4+ T cells cannot migrate into the CNS anymore. Among other functions, CD4+ T cells are 

crucial to monitor virus infections. Therefore, by decreasing the number of CD4+ T cells in the CNS, the 

risk of a JC virus reactivation and the development of its associated disease, progressive multifocal 

leukoencephalopathy (PML), is increased (110). To date there is no evidence that ocrelizumab would 

bear a significant PML risk compared to other treatments (except of natalizumab). However, it can 

cause higher susceptibility for infections due to hypogammaglobulinemia, a side effect that has to be 

monitored closely. Ocrelizumab is administered intravenously in a six-months period. Ofatumumab, a 

novel monoclonal antibody directed against CD20, is an ocrelizumab-like agent that is administered 

subcutaneously once per month. It showed a higher reduction in the annualized relapse rate when 

compared to teriflunomide in the ASCLEPIOS I and ASCLEPIOS II trials and is considered to be an 

alternative to ocrelizumab to treat patients with highly active RRMS or active SPMS (111). 

Alemtuzumab is considered as third line therapy if treatment with natalizumab or ocrelizumab fails 

(12). 
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So far, ocrelizumab is the only available treatment option for PPMS. Pharmacological treatment 

options for SPMS encompass interferon beta (if SPMS is superimposed by relapses), siponimod (for 

active SPMS characterized by clinical or MRI progression) and mitoxantrone (for highly active SPMS 

leading to significant disabilities within a short interval) (12). Glatiramer acetate and interferons are 

first line therapy options for patients with CIS (12). 

1.1.5.3 Symptoms management 

The fact that MS is a burdensome disease, not only for the patients but also for their 

socioeconomical environment (112), is probability not least based on the severe comorbidities which 

MS is associated with. Besides sensorimotor dysfunction, MS patients can suffer from bladder 

dysfunction, neuropathic pain, cognitive impairment, fatigue, anxiety, depression and insomnia (1). 

Moreover, spasticity is a common problem that approximately 90 % of all MS patients have to face 

during their lifetime (113). All of these symptoms should be addressed adequately by a multimodal 

treatment strategy that comprises pharmacological intervention, physiotherapy and psychotherapy 

(11, 113). 

1.1.6 Animal models of multiple sclerosis 

Analyzing human tissues, cells or body fluid samples can be valuable puzzle pieces to better 

understand by which mechanisms diseases are caused or which variables can influence disease 

progression. However, in the context of MS, the access to human CNS tissue samples is limited. 

Samples from autopsies and biopsies might not reflect the actual stage of the disease since they are 

obtained at externally define timepoints. Thus, the use of animal models can be justified. 

In experimental autoimmune encephalomyelitis (EAE), an animal model of MS, an autoimmune 

CNS attack is considered as being responsible for the demyelination and neurodegeneration (114). For 

that reason, EAE is a widely used model for MS (115, 116). In theory, EAE can be induced in any 

vertebrate (114). Autoreactive T cells (Th1, Th17 CD4+ T cells and CD8 T cells), which are often targeted 

against myelin epitopes, are required to induce EAE. The formation of autoreactive T cells can be 

initialized either actively by immunizing animals with antigens or passively by transferring previously 

engineered autoreactive T cells into the animal (114, 117, 118). For the active immunization either 

myelin basic protein (MBP), proteolipid protein (PLP) or myelin oligodendrocyte glycoprotein (MOG) 

can be used. MOG is believed to be the most popular antigen (114) because it reliably leads to a 

monophasic disease when one-time injected (119) as well as to a prolonged disease when injected 

with a higher dose or more frequently (120). After 10 – 17 days in the active immunization model and 

5 – 7 days in the cell transfer model, the recipient organism develops first disease symptoms (114). 

Regardless the nature of the disease induction, disease onset is characterized by a perivascular 

infiltration of mononuclear cells into the white matter (121). At the peak of the disease axons are 

demyelinated and destructed (122). EAE lesions are observed predominantly in the spinal cord and 

optic nerve and only sparsely present in the brain (120). Although EAE provides a full spectrum and 

controllable progress of an immune-mediated demyelinating disease, it comes with limitations: In EAE, 

CD4+ T cells are the key players that initialize and maintain the disease (123). In contrast, CD8+ T cells 

and B cells are also dominant cell types that drive neuroinflammation in human pathology (124). 

Despite the differences between MS and EAE, EAE is believed to be a powerful tool to study disease 
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mechanisms, to screen for effects of drugs on neuroinflammation and to identify molecules that are 

critical for neuroinflammatory interactions (125). 

1.2 Immunopathology of multiple sclerosis 

The strong association of polymorphisms in genes which encode proteins involved in the immune 

systems suggests that the demyelination and axon damage, as observed in MS, are caused by the 

organism’s own immune system. In recent decades, this hypothesis has been supported by numerous 

histopathological and experimental studies. 

1.2.1 Histopathology 

Early disease stages of MS, such as CIS and (early) RRMS, are associated with white matter lesions. 

These lesions show demyelination, oligodendrocyte loss, reactive gliosis and neuro-axonal 

degeneration. They are located in the brain, spinal cord and optic nerve, according to the clinical 

phenotype (45). Despite the precise anatomical (lesion location) and functional relationship, the 

volume of the lesion only moderately correlates with the severity of disability or cognitive impairment 

(126, 127). Consequently, it is believed that other mechanisms contribute to the gain of disability, too. 

Among these, grey matter lesions and normal-appearing white matter (NAWM) damage are suggested 

to play a crucial role (45). 

1.2.1.1 White matter lesions 

White matter lesions are found throughout all entities and disease stages of MS. There are 

different lesion types: active lesions, which are predominantly found under acutely inflamed conditions 

(e. g. during attacks), and chronic active as well as inactive lesions, which can be detected 

predominantly in SPMS and PPMS patients (45). Active lesions are comprised of an infiltration of 

circulating immune cells and (activated) glial cells, such as CD8+ T cells, CD20+ B cells, fewer CD4+ T 

cells, activated microglia, macrophages and reactive astrocytes. In post mortem studies, chronic active 

lesions accounted for about 30 % of all histopathological lesions (128). They are characterized by a 

constant subtle open blood-brain barrier and accumulation of macrophages and microglia at the lesion 

edge while showing a hypocellular lesion center. Furthermore, reparative mechanism seem to fail 

within these lesion types (128, 129). Inactive lesions lack macrophages and feature a lower density of 

lymphocytes. However, they contain demyelinated and damaged axons and reactive gliosis (130–134). 

Despite the abundance of inactive lesions in SPMS and PPMS, active lesions or mixed lesions can make 

up to 57 % of all lesions in SPMS or PPMS, highlighting a significant contribution of inflammatory 

processes to the disease progression (45). Consistent with this concept, Luchetti et al. showed that 

mixed active/inactive lesions correlate with disease severity in progressive phenotypes of MS (135). 

1.2.1.2 Normal-appearing white matter 

Normal-appearing white matter (NAWM) is white matter that macroscopically appears to be 

normal. However, in MS patients it is characterized by diffuse immune cell infiltrations, neuro-axonal 

damage and gliosis (131, 136). These changes are observed more frequently in progressive MS entities. 

Previously, alterations to NAWM were considered to result from a mechanism which occurs secondary 
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to the initial white matter lesion and axonal damage. However, the correlation of number, size and 

location of both lesion types is poor (136). Thus, changes to the NAWM is suggested to be an 

independent histopathological hallmark (137). 

1.2.1.3 Grey matter lesions 

The earliest stages of MS denote grey matter lesions, preferentially observed in the neocortex and 

the cerebellum as well as archiocortical and deep grey matter structures (such as the basal ganglia, 

substantia nigra, and amygdala) (138). Depending on their (microscopic) localization, grey matter 

lesions are categorized in 3 types. Type I is located at the cortico-subcortical border, involving both 

grey and white matter. Type II lesions are perivenous lesions that occur exclusively in the grey matter. 

Type III lesions are subpial lesions that spread inward and are often associated with meningeal 

inflammation. As for NAWM, grey matter lesions are more widespread in SPMS and PPMS patients, 

affecting up to 60 % of the cortex (45). 

1.2.2 Immune pathophysiology 

Histopathological assessment of CNS tissue from MS patients provides strong evidence that the 

immune system is directly involved in the pathogenesis of MS. Not only cells of CNS resident immunity, 

represented by microglia and, to a lesser extent, astrocytes, but also peripheral immunity, represented 

by lymphoid (T and B cells) and myeloid cells (mononuclear phagocytes) are detected in MS lesions 

(130). Thus, the questions arise how and why these cells are targeted to the CNS, how 

neuroinflammation is maintained and resolved and, ultimately, how this vicious circle can be disrupted. 

1.2.2.1 Autoimmunity 

There is evidence that MS is an autoimmune disease. It is suggested that autoreactive T cells can 

become activated, migrate into the CNS and initiate demyelination accompanied by neuro-axonal 

damage (139). 

The autoimmunity hypothesis is supported by e. g. findings from Pette et al. who identified MBP-

specific T cells in peripheral blood mononuclear cells (PBMC) from MS patients (140). It is believed that 

T cells either fail to tolerate self-antigens due to dysfunctional central tolerance mechanisms or that 

they are skewed in the periphery due to impaired peripheral tolerance mechanisms. Both could trigger 

an autoimmune response with tissue inflammation (139). 

A second piece of evidence arises from a (failed) clinical trial with altered peptide ligands (APL). 

APLs were designed to stimulate or inhibit T cell receptors (TcR) with the goal to abrogate 

encephalitogenic T cell function. Unfortunately, the clinical trial with MBP83–99, an APL that mimics 

MBP, failed in a sense that it led to an exacerbation of previously diagnosed MS (141). Consequently, 

T cells can be stimulated peripherally against CNS epitopes such as MBP and induce CNS autoimmunity 

(139). 

Experimental autoimmune encephalomyelitis (EAE) denotes major histopathological features of 

MS (see 1.2.1) and is commonly used as a model to mimic neuroinflammation and immune-induced 

demyelination (142). In EAE, which is initiated by active immunization with a CNS-specific antigen, such 

as MBP, MOG or PLP, peripheral myelin-specific autoreactive T cells recognize the antigen as foreign 
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and expand in lymphoid tissues (143). After their activation in the periphery is completed, they are 

able to pass the blood-brain barrier and migrate into the CNS. In contrast, unstimulated T cells cannot 

cross the blood-brain barrier (144). This sequence, from external introduction of the antigen to 

neuroinflammation, shows that T cells can acquire an autoreactive phenotype which originates in 

peripheral immune compartments (139). 

Taken together, there are several lines of evidence that support the notion that MS is an 

autoimmune disease triggered by autoreactive T cells. However, T cells are not only responsible for the 

whole spectrum of the histopathological and clinical phenotype of the disease. They rather initiate a 

sophisticated cascade of immune reactions involving other lymphoid as well as myeloid and CNS-

specific cell types. 

1.2.2.2 T cells 

As aforementioned, T cells and T cell autoreactivity in particular play a central role in the 

pathophysiology of MS. Aberrant T cell activation is believed to be a critical trigger for autoreactivity. 

Aberrant T cell activation can be explained by the following pathophysiological hypotheses. 

First, an imbalanced relationship between CD4+CD25+Foxp3+ regulatory T (Treg) cell function and 

CNS-specific effector T cells can lead to an exuberant effector T cell function that can cause 

neuroinflammation. Classically, CD4+CD25+Foxp3+ regulatory T cells can inhibit autoimmunity by 

mediating effector T cell function and thereby reduce tissue damage (145). Thus, if Treg cell function 

was impaired, effector T cells could injure tissues (146, 147). Indeed, Viglietta et al. and Frisullo et al. 

observed that the abundance and function of CD4+CD25+ Treg cells was diminished in circulating cells 

from MS patients (148, 149). Likewise, CD46+ induced type I regulatory cells, CD39+ Treg cells, IFN+ Treg 

cells and follicular Treg cells, which are anti-inflammatory T cell subtypes, are less abundant among 

PBMC in MS patients (150–152). 

Second, in contrast to a (functional) reduction of anti-inflammatory Treg cells, the number of pro-

inflammatory effector CD4+ T cells, which express IL-17, and CD8+ T cells might be elevated PBMC 

fractions in MS patients. IL-17-expression CD4+ T cells, also termed Th17 cells, are able to cross the 

blood-brain border, damage neurons and recruit more CD4+ T cells in the CNS (153). Kebir et al. showed 

that blood lymphocytes sampled from MS patients are more prone to acquire a Th17 phenotype. 

Moreover, Kebir et al. identified T cells co-expressing IL-17 and IFN in brain tissue of MS patients (154). 

Thus, skewing CD4+ T cells to a Th17 phenotype is considered to be a significant contribution to MS 

pathogenesis (155). 

Third, aberrant T cell activation requires antigen presentation. In principle, B cells and myeloid 

cells are competent to present antigens. However, up till now it is not clear which (peripheral) antigens 

exhibit the capacity to induce the activation of autoreactive T cells. Potentially, a molecular mimicry 

between myelin proteins and antigens from microbes could reinforce auto-pathogenicity of T cells 

(156). Indeed, circulating myeloid cells from MS patients exhibit a pro-inflammatory phenotype (157). 

Previous studies showed that these cells can express pro-inflammatory cytokines, such as TNF, IL-12, 

IL-6, IL-23 and IL-1 to a higher extend. These cytokines drive T cell differentiation into pro-

inflammatory Th1 and Th17 cells (45). 
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Once aberrantly activated, T cells can cross the blood-brain barrier. The interchange of immune 

cells between the CNS and peripheral compartments occurs naturally for the sake of immune 

surveillance. Furthermore, a lymphatic drainage system is established to facilitate the communication 

between the CNS and the periphery (deep cervical lymph nodes) (158). In MS cells, especially B cells 

have been shown to migrate from the CNS to the periphery and vice versa (159, 160). In order to pass 

the blood-brain barrier, T cells must upregulate chemokine receptors, adhesion molecules and other 

surface proteins (45). However, the knowledge about how T cells enter the CNS is still incomplete (161, 

162). It is believed that pro-inflammatory cytokines are predominantly responsible for disrupting the 

blood-brain barrier and, therefore, are a prerequisite for T cell migration into the CNS (163). 

T cells densely accumulate in white matter lesions in the CNS of MS patients (133, 163, 164). They 

are found in all lesion types (165). The number of CD8+ T cells exceeds the number of CD4+ cells in the 

lesion (133), nevertheless, the implications of T cell activation in the lesions are not negligible. T cells 

are believed to initialize lesion formation, because they are found in pre-active lesions (163, 166). 

Cytokines, which are secreted by T cells, not only enable the T cells to enter the CNS but also equip 

them with chemotactic properties. In EAE, mRNA which encodes IFN and IL-2 is strongly enriched in 

brain and spinal cord tissue when compared to healthy control (167, 168). IFN is predominantly 

secreted by Th1 and Th17 cells (169–171) and can skew microglia and macrophages to a pro-

inflammatory phenotype (172, 173). Finally, these activated phagocytes cause demyelination and 

axonal damage, the major histopathological hallmarks of MS. 

Thus, T cells exhibit the ability to recognize encephalitogenic antigens in the periphery, shift to a 

pro-inflammatory state (Th1 and Th17), cross the blood-brain barrier, attract and activate phagocytes 

and, thereby, induce neuroinflammation. 

1.2.2.3 B cells 

B cells are believed to contribute to the development of MS relapses. This assumption is based on 

two pillars: the presence of antibodies which are synthesized an released in the CNS and detectable in 

the cerebrospinal fluid of MS patients as so-called oligoclonal bands and the effectiveness of therapies 

which deplete B cells (45). Interestingly, both phenomena are not necessarily linked. Patients who are 

treated with rituximab, a monoclonal antibody directed against the B cell epitope CD20, still show 

oligoclonal bands in their CSF, probably produced by long-lived plasma cells that do not express CD20 

(174, 175). Thus, B cells must have yet another function besides intrathecal antibody production in MS. 

B cells isolated from MS patients’ PBMC exhibit a more pro-inflammatory profile and lack expression 

of anti-inflammatory cytokines (176). Aberrant B cell activation in MS patients can skew T cells towards 

a Th1 or Th17 phenotype through TNF secretion in the periphery (177). Likewise, B cells can attract or 

activate myeloid cells, such as macrophages, through the expression of granulocyte-macrophage 

colony-stimulating factor (GM-CSF) (178). Indeed, Li et al. and Bar-Or et al. showed that patients 

treated with rituximab showed reduced pro-inflammatory myeloid cell responses and lower numbers 

of pro-inflammatory Th1 and Th17 cells (176, 178). 

B cells can present antigens in a MHC class II-dependent fashion in autoimmune diseases (179, 

180) and MS in particular (181). Although it has not been elucidated yet which antigens significantly 
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contribute to disease development (182), MBP- and MOG-specific memory B cell populations have 

been identified in treatment-naïve RRMS patients (183, 184). 

Overall, B cells might function as peripheral antigen-presenting cells (APC) and modulators of T 

cell encephalitogenicity. Thus, they might bridge the gap between the occurrence of autoantigens and 

T cell-mediated neuroinflammation. 

1.2.2.4 Macrophages 

Mononuclear phagocytes are cells that are able to phagocytose microscopic structures upon 

attraction and activation. During development, two distinct phenotypes of mononuclear phagocytes 

emerge: erythro-myeloid progenitor-derived and hematopoietic stem cell-derived mononuclear 

phagocytes. Both phenotypes exhibit the ability of self-renewal and, thereby, self-maintenance (185). 

However, they develop in different embryonic niches. Consequently, once they have colonized their 

embryonic niches, they develop independently. Erythro-myeloid progenitor-derived mononuclear 

phagocytes arise from the yolk sac, an extra-embryonic structure during embryogenesis, and give rise 

to tissue-resident macrophages as well as erythrocytes and megakaryocytes (186–188). Thus, erythro-

myeloid progenitor-derived mononuclear phagocytes will become tissue-resident phagocytes, 

whereas hematopoietic stem cell-derived mononuclear phagocytes will define the monocyte-

macrophage paradigm. Tissue-resident phagocytes comprise microglia (CNS), Kupffer cells (liver), 

Langerhans cells (epidermis) and alveolar macrophages (lung) (189). 

In the context of CNS (auto-) immunity, one must distinguish between cells that populate the CNS 

per se (microglia as well as meningeal, perivascular and choroid plexus macrophages) and cells that 

migrate to the CNS upon attraction and activation (hematopoietic stem cell-derived macrophages). 

Strong evidence that mononuclear phagocytes in MS lesions result from the infiltration of monocytes 

into the CNS derives from observations from the EAE model. If monocytes are depleted before the 

disease onset, EAE onset will be delayed and the clinical score is less severe (190–193). Similarly, if 

monocytes are depleted after disease onset, the disease progression will be inhibited (194). 

Furthermore, the clinical severity correlates with the number of infiltrating monocytes (195). However, 

microglia contribute substantially to disease development and progression, too. Heppner et al. 

demonstrated that the suppression of microglia activation is accompanied by an inhibition of EAE 

development (196). 

In MS lesions, macrophages are the dominant cell population and can be detected in early lesions 

(197–199). It is believed that macrophages are the key effector cells that cause demyelination and 

axonal damage. Bitsch et al. reported that the level of amyloid precursor protein expression in axons, 

which was interpreted as a sign of acute axonal damage, correlates with the number of macrophages 

(and CD8+ T cells) (200). Furthermore, they are at close proximity to damaged axons and phagocytose 

myelin (165). 

Taken together, hematopoietic stem cell-derived mononuclear phagocytes play a crucial role in 

EAE and, presumably, MS pathogenesis. Their function cannot be replaced by erythro-myeloid 

progenitor-derived mononuclear phagocytes, such as microglia. Thus, macrophages and microglia 

must be seen as two independent contributors to CNS autoimmunity. 
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How do hematopoietic stem cell-derived mononuclear phagocytes (monocytes) migrate to the 

CNS? C-C chemokine receptor type 2 (CCR2) is a chemokine receptor that preferentially binds its ligand 

monocyte chemoattractant protein-1 (MCP-1/CCL2) (190). The absence of CCR2 on the surface of 

monocytes or CCL2 in EAE ameliorates EAE symptoms (201–204). CCR2 is strongly expressed on 

monocytes with high Ly6C expression (CCR2+Ly6Chi monocytes) (205). The number of CCR2+Ly6Chi 

monocytes was elevated prior to relapses in a relapsing model of EAE (206). In humans, there are 3 

different monocyte phenotypes described based on their CD14 and CD16 expression levels: classical 

monocytes (CD14++CD16neg), non-classical monocytes (CD14+CD16++) and intermediate subsets 

(CD14++CD16+) (207). In PBMC of RRMS and PPMS patients the number of non-classical monocytes is 

increased (208–210). Additionally, they show a higher expression of CCR2 which is low expressed in 

non-classical monocytes in healthy conditions (208, 211). Moreover, CCL2 can be detected in MS 

lesions and CSF of MS patients (212–215). Thus, CCR2 and its ligand CCL2 presumably attract 

monocytes across the blood-brain barrier. Thereby, they might be involved in EAE and MS early disease 

development and are potential pharmacological targets (190). 

1.2.2.5 Macrophage phenotypes in neuroinflammatory lesions 

Once monocytes have entered their target tissue, they acquire a new phenotype and are now 

termed macrophages. This transformation is driven by cytokines. Depending on which cytokines 

dominate the extracellular environment, monocytes can acquire different phenotypes and thereby 

adapt to the specific needs of the organism (216). In EAE and MS, macrophages are the predominant 

cell type that is directly responsible for demyelination and axonal damage. However, they can acquire 

an alternate phenotype if they adapt to a different set of cytokines. In this context, macrophages are 

associated with remyelination and tissue repair (217–220). 

GM-CSF, IFN and TNF, which are secreted by T cells, polarize macrophages to a pro-

inflammatory phenotype (M1 macrophages). This polarization makes macrophages express MHC class 

II, CD40 and CD86 (221) and secrete IL-6, IL-12p40, IL-1a, IL-1b, iNOS, NO and proteases and denote 

the early phase of EAE (190, 221, 222). Girvin et al. showed that an ablation of the CD40/CD40L 

signaling pathway ameliorates EAE and decreases the T cells response (223). Thus, attracting T cells to 

the CNS is one key function of M1 macrophages in EAE. Furthermore, M1 macrophages can directly 

damage neurons, most likely through the secretion of toxic metabolites (224). Reactive oxygen species 

(ROS) and reactive nitrogen species (RNS) from M1 macrophages can trigger mitochondrial pathology 

in axons and lead to axon fragmentation, a phenomenon which is termed focal axonal degeneration 

(FAD) (225). M1 macrophages not only secrete neurotoxic metabolites but also directly attack neurons 

at the nodes of Ranvier (226). Taking into consideration that iNOS was detected in phagocytes in 

chronic active MS lesions (227), acute axonal damage is most prominent at early stages of MS (228) 

and the extend of axonal damage correlates with the number of macrophages in the MS lesion (200), 

one can conclude that the concept of M1 macrophage polarization associated with axonal damage, 

which was established in EAE, can be transferred to MS. 

If monocytes or macrophages are exposed to IL-4, IL-10, IL-13, IL-33 and TGF-, they will acquire 

an anti-inflammatory phenotype (M2 macrophages). The conversion to M2 macrophages is 

accompanied by a shift toward anti-inflammatory T cell phenotypes (221, 229). This observation can 

be explained by a downregulation of MHC class II of M2 macrophages, stimulated by IL-10 in an 
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autocrine fashion (190). IL-10 dampens the antigen presenting capability of antigen-presenting cells 

(APC), thus, leading to a reduced Th1 activity (230). In addition, the toxic effect of the iNOS-induced 

respiratory burst from M1 macrophages is reversed by the IL-4-dependent expression of Arginase-1 

from M2 macrophages (231). Arginase-1 abrogates NO synthesis by depleting its precursor arginine. 

Furthermore, Arginase-1 promotes the polyamine pathway and thereby drives collagen synthesis 

which is needed for tissue repair (190, 232). Thus, iNOS and Arginase-1 expression in M1 and M2 

macrophages can be interpreted as a mechanism that switches macrophages from a pro-inflammatory 

state to an anti-inflammatory state and vice versa. Ultimately, M2 macrophages are associated with 

axonal repair and remyelination. This is supported by cell transfer experiments that showed that M2 

macrophages decrease EAE disease severity (233, 234). Moreover, Kotter et al. showed that 

oligodendrocyte precursor cells (OPC) will fail to respond to an acute demyelination and that 

remyelination will be impaired if macrophages are depleted (235). Miron et al. showed that M2 

macrophage density was higher in lesions where remyelination was enhanced by parabiotic coupling. 

Additionally, they identified activin-A as a substance which is release by M2 macrophages and exhibits 

the ability to reinforce OPC differentiation (217). 

The polarization to M1 and M2 macrophages is not static. During the disease progression, from 

initial lesion expansion to lesion resolution, macrophages change der polarization phenotype from M1 

to M2, most likely in response to external stimuli (222). Notably, individual cells switch from M1 to a 

M2 phenotype rather than a share of cells being replaced by their anti-inflammatory counterparts (222, 

236). Locatelli et al. and Giles et al. elucidated that the microenvironment dictates macrophage 

polarization. At lesion formation macrophages in the parenchyma show a M1 phenotype whereas 

macrophages in the meninges exhibit a M2 phenotype (222, 236). This concept is supported by 

Béchade et al. who showed that NOS2 expression in microglia is inducible by LPS and IFN (237). 

However, the concept of the existence of M1 and M2 macrophage phenotypes has to be 

interpreted as a rough simplification since there is more and more evidence arising that further 

elucidates the complexity of the molecular phenotypes of CNS macrophages. By applying single-cell 

genomics, Mendiola et al. uncovered multiple CNS innate immune cell populations that might convey 

neurotoxicity in the context of EAE (238). Likewise, Giladi et al. identified 8 monocyte-derived subsets 

at different disease stages of EAE, highlighting the molecular and, eventually, functional diversity of 

mononuclear phagocytes in neuroinflammation. 

Taken together, the function and fate of macrophages in the context of MS and EAE is complex. 

Macrophages respond to external stimuli (from other immune cells), adapt their phenotype and, 

thereby, acquire either pro-inflammatory or anti-inflammatory properties. This then causes either 

demyelination and axonal damage or support remyelination and axonal repair. 

1.2.2.6 Microglia 

Like macrophages, microglia are mononuclear phagocytes. However, they derive (embryonically) 

from erythro-myeloid progenitors from the yolk sac and make up the CNS-specific phagocyte 

population. Their dominant function is to maintain CNS homeostasis (239). Whether microglia are 

overall beneficial or harmful cells in the context of autoimmunity has not yet been fully unraveled (239, 

240). Under various circumstances microglia can get activated. They acquire an amoeboid shape, boost 

proliferation, increase their motility as well as phagocytosis activity and start to present antigens (239, 
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241). In MS and EAE, microglia are associated with axonal damage and oligodendrocyte pathology, 

contain myelin remnants and express MHC class II molecules (241). If microglia function is impaired, 

EAE symptoms will be less severe (196). Ponomarev et al. demonstrated that microglia make up 37 % 

of all myeloid cells in inflammatory lesions. They claim that microglia, once being activated, can 

differentiate into macrophages and dendritic cells (242). In contrast, microglia seem to play a 

substantial role in resolving acute inflammatory lesions. When microglia are activated at an early time 

during EAE disease progression, the clinical EAE outcome is improved (243). Thus, timing of microglia 

activation is believed to be crucial for defining their function. Like macrophages (244), myelin 

phagocytosis might be a stimulus to suppress pro-inflammatory properties of microglia (245). Thus, 

one can debate if there is a M1 and M2 phenotype for microglia as there is one for macrophages (246). 

1.2.2.7 Border-associated macrophages (BAMs) 

Yet another entity of CNS-specific mononuclear phagocytes resides at the dura mater, subdural 

meninges and choroid plexus (247). These non-parenchymal cells are termed border-associated 

macrophages (BAMs). Recently, it was shown that BAMs exhibit a particular ontogeny, self-renewal 

capacity as well as transcriptional profile when compared to parenchymal microglia or macrophages 

(247). Mrdjen et al. showed that BAMs can be classified by CD38, Lyve1, MHCII and CCR2 expression. 

During EAE, the numbers of BAM decrease, which is in line with the overall reduction of tissue-resident 

macrophages upon infiltration of bone marrow-derived monocytes. However, during EAE BAMs loose 

their differential surface marker expression profile and uniformly express CD38 and MHCII which is 

believed to indicate a shift towards a universal activation state (248). Taken together, these findings 

might indicate that BAM are a third entity, besides tissue-resident and infiltrating phagocytes, that 

contribute to EAE disease progression. 

1.2.3 Mechanisms of immune-mediated tissue damage 

Neuronal loss is a major hallmark of multiple sclerosis and EAE. An association study that 

investigated post-mortem histopathological findings and clinical disease courses of MS patients 

provided evidence that axonal loss has a stronger impact on clinical disease severity than 

demyelination (249). Accumulation of oxidized phospholipids and DNA strand breaks, which can be 

observed in active cortical MS lesions, is believed to be an indirect sign of reactive oxygen species (ROS) 

and reactive nitrogen species (RNS) secreted by macrophages and microglia as highlighted in section  

1.2.2.5 (250, 251). In a previous study, externally added oxygen and nitrogen donors were sufficient to 

induce axonal injury similar to EAE but without signs of demyelination (225). 

There is increasing evidence that mitochondria are directly affected by ROS and RNS and that their 

dysfunction contributes to axonal pathology in MS (250). It is believed that there is an imbalance 

between the (higher) energy requirements of demyelinated axons and the (lower) energy production 

due to impaired mitochondria in MS, thus, leading to a state of virtual hypoxia in axons (252). 

Mitochondrial dysfunction might result from oxidative damage to mtDNA, which is believed to be more 

susceptible to oxidative stress because of the lack of histones and repair mechanisms, ultimately 

leading to increased activity of oxidative phosphorylation (OXPHOS), resulting in lower ATP 

concentrations in injured axons (253–255). The molecular basis of this observation was investigated by 

Mahad et al. who showed that there is a lack of cytochrome c oxidase (COX-1) immunoreactivity in 
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multiple sclerosis lesions, potentially leading to a global functional deficit of the OXPHOS in axons (256). 

However, the absolute number of mitochondria was elevated in active and inactive multiple sclerosis 

lesions, pointing towards a compensatory mechanism to deal with lower OXPHOS efficiency and 

secondary ATP deprivation (257, 258). 

Furthermore, dysfunctional mitochondria in chronic lesions itself are a source of ROS. The 

liberation of electrons caused by a defective electron transport chain can react with oxygen to ROS. 

This vicious circle might even enhance the tissue and axonal damage observed in multiple sclerosis 

(131). 

Based on the understanding of the underlying molecular mechanism of ROS-induced axonal 

pathology induced by mitochondrial dysfunction clinical trials have been carried out with the goal to 

decrease ROS toxicity and thereby reduce axonal pathology in multiple sclerosis. Vitamins, co-enzymes, 

creatine, free radical scavengers and hyperbaric oxygen treatments are potential candidates to 

scavenge the oxidative burst from activated phagocytes in acute lesions and the accumulation of ROS 

as a result of defective mitochondria (259). The widespread self-medication of over-the-counter 

antioxidant drugs and substances, such as vitamins and co-enzymes, has not shown to modify the 

disease course of multiple sclerosis so far. Furthermore, a recent study which has investigated the 

effect of idebenone, a derivative of co-enzyme Q10 which is approved for the treatment of Leber's 

hereditary optic neuropathy (LHON), showed no clinical benefits (259–262). However, Lipoic acid 

(ALA), a free radical scavenger, showed a reduction of whole-brain atrophy and had a discrete impact 

on the walking performance of PPMS patients (263–265). 

However, to understand how inflammation disturbs mitochondrial function and how 

mitochondrial dysfunction impacts neuronal cell integrity is not fully understood and needs to be 

further investigated. 
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2 Outline 

Mononuclear phagocytes play a crucial role in lesion formation and lesion alteration in EAE and 

multiple sclerosis. It is believed that the function of mononuclear phagocytes depends on their 

polarization state, enabling both destructive and reparative phenotypes (also termed as M1 and M2 

macrophages, respectively). A recent study has shown that in EAE the pro-inflammatory phenotype of 

mononuclear phagocytes characterizes the early stage of the lesion formation whereas the anti-

inflammatory state dominates the later time point, associated with an alleviation of symptoms and 

lesion resolution or astrogliosis formation (222). Interestingly, pro-inflammatory mononuclear 

phagocytes segue into an anti-inflammatory phenotype on a single-cell level. This raises the question 

how pro- and anti- inflammatory mononuclear phagocytes are molecularly and functionally defined, 

which molecular signals enable pro-inflammatory mononuclear phagocytes to acquire an anti-

inflammatory phenotype and which molecules do pro- and anti-inflammatory mononuclear phagocyte 

secrete to communicate with other immune and CNS cells. 

We applied cell sorting, quantitative label-free mass spectrometry and RNA sequencing and 

developed computational techniques to unravel the composition of the cellular signatures of immune 

cells in EAE and to decipher potential cell-cell communication patterns with a focus on mononuclear 

phagocytes. Furthermore, we measured the alterations in the proteomes of neuronal mitochondria 

from EAE compared to healthy controls to further investigate the molecular mechanism of 

mitochondrial pathology in EAE. In particular, we addressed the following key questions: 

1. Which proteins are differentially abundant in polarized macrophages at certain stages of 

EAE disease progression? 

2. Which molecular (functional) features underlie these cells? 

3. How are these features conserved on a transcriptome level? 

4. How are immune cells and resident CNS cells molecularly equipped to communicate which 

each other? 

5. Which molecular features are altered in the neuronal mitochondrial proteome in EAE 

compared to healthy controls? 

With this large-scale screening approach, we aimed to uncover molecular programs that could 

potentially be modified by pharmacological interference to alleviate disease severity in EAE and, 

ultimately, in multiple sclerosis. 
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3 Materials and methods 

3.1 Materials 

3.1.1 Buffers and media 

Buffers and media were stored, prepared and used according to the manufacturer’s 

recommendations, unless otherwise specified. 

 

Description Source 

Acetate buffer 20 mM sodium acetate, pH 3 

Blocking buffer 10 % (w/v) BSA, 10 % FBS (v/v), 10 % (w/v) fish 
gelatin in PBS 

Destain solution 50 % (v/v) methanol, 10 % (v/v) acetic acid in H2O 

EDTA (0.5 M) 0.5 M EDTA in H2O 

Fixation and permeabilization buffer BD Cytofix/Cytoperm™ Fixation/Permeablization Kit 
(cat# 554714, Becton Dickinson, Franklin Lakes, New 
Jersey, USA) 

HEPES buffer 20 mM HEPES, 200 mM NaCl in H20 

Imidazole buffer (1 M) 1 M imidazole in H2O 

Imidazole buffer (40 mM) 40 mM imidazole in urea buffer 

Imidazole buffer (5 mM) 5 mM imidazole in urea buffer 

Immunocapture (IC) buffer 137 mM KCl, 2.5 mM MgCl2, 3 mM KH2PO4, 10 mM 
HEPES, 1 mM EDTA pH 7.40; 1 % (w/v) essentially 
fatty acid-free BSA, 0.5 x protease inhibitor 

LB medium 1 % (w/v) tryptone, 1 % (w/v) NaCl, 0.5 % (w/v) yeast 
extract in H20, pH 7.0 

Mitochondria isolation buffer 220 mM mannitol, 80 mM sucrose, 10 mM HEPES, 
1 mM EDTA pH 7.40, 1 % (w/v) essentially fatty acid-
free BSA 

Percoll gradient solution 30 % (v/v) Percoll in PBS 

Perfusion buffer (histology) 4 % (w/v) paraformaldehyde, 5 IU/ml heparin in 
0.1 M phosphate buffer, pH 7.4 

Phosphate-buffered saline (PBS) Dulbecco’s Phosphate Buffered Saline, modified, 
without calcium chloride and magnesium chloride, 
liquid, sterile-filtered, suitable for cell culture (cat# 
D8537-500ML, MilliporeSigma, St. Louis, Missouri, 
USA) 

SDS running buffer NuPAGE™ MOPS SDS Running Buffer (20X) (cat# 
NP0001, Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) 

SDS sample additive NuPAGE™ Sample Reducing Agent (10X) (cat# 
NP0004, Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) 

SDS sample buffer NuPAGE™ LDS Sample Buffer (4X) (cat# NP0007, 
Thermo Fisher Scientific, Waltham, Massachusetts, 
USA) 

Solubilization buffer 91 µl 20 mM -mercaptoethanol in 65 ml urea buffer 
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Sonification buffer  17.53 g NaCl, 3.55 g Na2HPO4, 3.45 g NaH2PO4 in 1 l 
H20 

Tissue digestion buffer 0.8 mg/ml collagenase, 10 mg/ml DNase in PBS 

Urea buffer 8 mol/l urea in H20 

Wash buffer 8,5 ml LDAO (N,N-dimethyldodecylamine-N-oxide) in 
500 ml sonification buffer 

Table 1: Buffers and media. 

3.1.2 Reagents and kits 

Reagents and kits were stored, prepared and used according to the manufacturer’s 

recommendations, unless otherwise specified. 

 

Description Source 

Acetic acid Acetic acid, glacial (cat# A6283-100ML, 
MilliporeSigma, St. Louis, Missouri, USA) 

ACK buffer ACK Lysing Buffer (cat# A1049201, Thermo Fisher 
Scientific, Waltham, Massachusetts, USA) 

Affinity resin TALON® Metal Affinity Resin (cat# 635606, Takara 
Bio Inc., Kusatsu, Japan) 

Bovine serum albumin (BSA) Essentially fatty acid-free BSA (cat# A8806-1G, 
MilliporeSigma, St. Louis, Missouri, USA) 

Collagenase Collagenase A from Clostridium histolyticum (cat# 
10103578001, MilliporeSigma, St. Louis, Missouri, 
USA) 

Coomassie stain Bio-Safe™ Coomassie Stain (cat# 1610786, Bio-Rad 
Laboratories, Inc., Hercules, California, USA) 

DAPI Invitrogen™ DAPI (4',6-Diamidino-2-Phenylindole, 
Dihydrochloride, cat# Artikelnummer.10184322, 
Thermo Fisher Scientific, Waltham, Massachusetts, 
USA) 

DNase (MOG) DNase I, 20,000 units (cat# 18047019, Thermo Fisher 
Scientific, Waltham, Massachusetts, USA) 

DNase (tissue digestion buffer) DNase I recombinant, RNase-free, 10,000 units (cat# 
4716728001, MilliporeSigma, St. Louis, Missouri, 
USA) 

Drop delay beads BD FACS™ Accudrop Beads (cat# 345249, Becton 
Dickinson, Franklin Lakes, New Jersey, USA) 

Ethylenediaminetetraacetic acid (EDTA) EDTA, ~0.5 M (cat# 03690, MilliporeSigma, St. Louis, 
Missouri, USA) 

Fc block TruStain FcX™ (anti-mouse CD16/32) Antibody (cat# 
101319, San Diego, California, USA) 

Fetal bovine serum (FBS) Fetal Bovine Serum (cat# F2442-50ML, 
MilliporeSigma, St. Louis, Missouri, USA) 

Fish gelatin Gelatin from cold water fish skin (cat# G7041-100G, 
MilliporeSigma, St. Louis, Missouri, USA) 

Freud’s adjuvant, incomplete Freund’s Adjuvant, Incomplete (cat# F5506-10ML, 
MilliporeSigma, St. Louis, Missouri, USA) 
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Heparin Heparin Natrium Braun 25.000 I.E./5 ml Injektions-
/Infusionslösung (PZN/EAN: 15782698 / 
4150157826988, B. Braun Melsungen AG, 
Melsungen) 

HEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 
(cat# PHG0001-100G, MilliporeSigma, St. Louis, 
Missouri, USA)  

Imidazole Imidazol (cat# I2399-100G, MilliporeSigma, St. Louis, 
Missouri, USA) 

Isoflurane Isoflo® ad us. vet., Inhalationsanaesthetikum (Zoetis 
Schweiz GmbH, Delémont, Swiss) 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) IPTG, ≥ 99 % (TLC), ≤ 0.1 % Dioxane (cat# I6758, 
MilliporeSigma, St. Louis, Missouri, USA) 

Kanamycin Kanamycin sulfate (cat# 60615-5G, MilliporeSigma, 
St. Louis, Missouri, USA) 

Ketamine Ketamine hydrochloride 10 % (Bela-Pharm GmbH, 
Vechta, Germany) 

Lysozyme Lysozyme from chicken egg white (cat# L6876-1G, 
MilliporeSigma, St. Louis, Missouri, USA) 

M. tuberculosis H37Ra, heat-inactivated BD Difco™ Adjuvantien (cat# 231141, Becton 
Dickinson, Franklin Lakes, New Jersey, USA) 

Methanol Methanol (cat# 34860, MilliporeSigma, St. Louis, 
Missouri, USA) 

mRNA library kit Collibri™ 3’ mRNA Library Prep Kit for Illumina™ 
Systems (cat# A38110024, Thermo Fisher Scientific, 
Waltham, Massachusetts, USA) 

N,N-Dimethyldodecylamine-N-oxide (LDAO) N,N-Dimethyldodecylamine N-oxide (cat# 40234-5G, 
MilliporeSigma, St. Louis, Missouri, USA) 

Na2HPO4 Di-Sodium hydrogen phosphate (cat# 1065860500, 
MilliporeSigma, St. Louis, Missouri, USA) 

NaH2PO4 Sodium phosphate monobasic (cat# S0751, 
MilliporeSigma, St. Louis, Missouri, USA) 

NaOH Sodium hydroxide, reagent grade, ≥98%, pellets 
(anhydrous) (cat# S5881-500G, MilliporeSigma, St. 
Louis, Missouri, USA) 

Paraformaldehyde (PFA) Paraformaldehyde (cat# 158127-5G, MilliporeSigma, 
St. Louis, Missouri, USA) 

Percoll Percoll® (cat# P1644-25ML, MilliporeSigma, St. Louis, 
Missouri, USA) 

Pertussis toxin Pertussis toxin from Bordetella pertussis (cat# 
P7208-50UG, MilliporeSigma, St. Louis, Missouri, 
USA) 

Protein ladder PageRuler™ Prestained Protein Ladder, 10 to 180 
kDa (cat# 26616, Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) 

RNA extraction kit RNeasy Micro Kit (cat# 74004, QIAGEN, Hilden, 
Germany) 

RNase inhibitor RNase Inhibitor (cat# N8080119, Thermo Fisher 
Scientific, Waltham, Massachusetts, USA) 

Sodium acetate Sodium acetate (cat# S2889-250G, MilliporeSigma, 
St. Louis, Missouri, USA) 
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Sodium chloride (NaCl) Sodium chloride (cat# S7653-250G, MilliporeSigma, 
St. Louis, Missouri, USA) 

Triton X-100 Triton™ X-100 (cat# T8787-50ML, MilliporeSigma, St. 
Louis, Missouri, USA) 

Tryptone Tryptone (cat# T7293-250G, MilliporeSigma, St. 
Louis, Missouri, USA) 

Urea Urea (cat# U5378-100G, L6876-1G, MilliporeSigma, 
St. Louis, Missouri, USA) 

Viability dye (blue) SYTOX™ Blue Dead Cell Stain, for flow cytometry 
(cat# S34857, Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) 

Viability dye (red) Invitrogen™ LIVE/DEAD™ Fixable Near-IR Dead Cell 
Stain Kit (cat# L10119, Thermo Fisher Scientific, 
Waltham, Massachusetts, USA) 

Xylazine Xylariem®, Xylazinehydrochloride 23.3 mg/ml 
(Serumwerk Bernburg AG, Bernburg, Germany) 

Yeast extract Yeast Extract (cat# Y1625-250G, MilliporeSigma, St. 
Louis, Missouri, USA) 

-Mercaptoethanol 2-Mercaptoethanol (cat# M6250-10ML, 
MilliporeSigma, St. Louis, Missouri, USA) 

Table 2: Reagents and kits. 

3.1.3 Antibodies 

Antibodies were stored and used according to the manufacturer’s recommendations. If not 

otherwise stated, antibodies that were used for flow cytometry (Table 3) were diluted 1:200 in the 

respective buffer. 

 

Description Source 

ACSA-2-APC ACSA-2 Antibody, anti-mouse, APC, REAfinity™ (cat# 
130-116-245, Miltenyi Biotec, Bergisch Gladbach, 
Germany) 

Arginase-1-APC Arginase 1 Monoclonal Antibody, APC, eBioscience™ 
(clone# A1exF5, cat# 17-3697-82, Thermo Fisher 
Scientific, Waltham, Massachusetts, USA) 

B220-FITC FITC Rat Anti-Mouse CD45R/B220 (cat#  

553087, clone# RA3-6B2 (RUO), BD Biosciences, 
Franklin Lakes, New Jersey, USA) 

CD11b-APC APC anti-mouse/human CD11b antibody (clone# 
M1/70, cat# 101211, Biolegend, San Diego, 
California, USA) 

CD19-PerCP PerCP anti-mouse CD19 Antibody (clone# 6D5, cat# 
115531, Biolegend, San Diego, California, USA) 

CD3-APC APC anti-mouse CD3 antibody (clone# 17A2, cat# 
100235, Biolegend, San Diego, California, USA) 

CD45-BV786 Brilliant Violet 785™ anti-mouse CD45 antibody 
(clone# 30-F11, cat# 103149, Biolegend, San Diego, 
California, USA) 
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CD4-FITC FITC anti-mouse CD4 antibody (clone# GK1.5, cat# 
100405, Biolegend, San Diego, California, USA) 

CD8-PE PE anti-mouse CD8a antibody (clone# 53-6.7, cat# 
100707, Biolegend, San Diego, California, USA) 

iNOS-eFluor 450 iNOS Monoclonal Antibody, eFluor 450, 
eBioscience™ (clone# CXNFT, cat# 48-5920-82, 
Thermo Fisher Scientific, Waltham, Massachusetts, 
USA) 

Ly6C-PerCP PerCP anti-mouse Ly-6C antibody (clone# HK1.4, cat# 
128027, Biolegend, San Diego, California, USA) 

Ly6-G-BV785 Brilliant Violet 785™ anti-mouse Ly-6G antibody 
(clone# 1A8, cat# 100707, Biolegend, San Diego, 
Californi127645a, USA) 

O4-APC O4 Antibody, anti-human/mouse/rat, APC (cat# 130-
119-155, Miltenyi Biotec, Bergisch Gladbach, 
Germany) 

PDGFR-PE PE anti-mouse CD140a antibody (clone# APA5, cat# 
135905, Biolegend, San Diego, California, USA) 

Table 3: Antibodies for flow cytometry. 

Description Source 

goat anti-rabbit-AF647 goat anti-rabbit IgG (H+L) highly cross-adsorbed 
secondary antibody, Alexa Fluor 647 (cat# A-21245, 
Thermo Fisher Scientific, Waltham, Massachusetts, 
USA) 

Histone H3 anti-Histone H3 (citrulline R2 + R8 + R17) antibody 
(cat# ab5103, abcam, Cambridge, UK) 

Lactoferrin (LTF) IHC‑plus™ polyclonal rabbit anti‑human 
LF/LTF/Lactoferrin antibody (cat# LS‑B11832, 
Lifespan Biosciences, Seattle, Washington, USA) 

Myeloperoxidase (MPO) human/mouse Myeloperoxidase/MPO antibody 
(cat# AF3667, R&D systems, Minneapolis, 
Minnesota, USA) 

Neutrophil elastase (ELANE) anti-Neutrophil Elastase antibody (cat# ab68672, 
abcam, Cambridge, UK) 

S100A8 mouse S100A8 antibody (cat# MAB3059, R&D 
systems, Minneapolis, Minnesota, USA) 

S100A9 mouse S100A9 antibody (cat# AF2065, R&D systems, 
Minneapolis, Minnesota, USA) 

Table 4: Antibodies for immunohistochemistry 

3.1.4 Mouse lines 

C57BL/6JRj mice were purchased from Janvier Labs (Saint Berthevin Cedex, France). This mouse 

line was used whenever no genetic labeling was needed. 

iNOS-tdTomato-Cre x Arginase-1-YFP (C.129S4/(B6)-Arg1tm1Lky/j) mice were crossed inhouse as 

described in Locatelli et al., Béchade et al. and Reese et al. (222, 237, 266). This line expresses a red 

fluorescent protein (tdTomato) under the iNOS/NOS2 promoter and yellow fluorescent protein (YFP) 

under the Arg1 promoter. iNOS and Arginase-1 can be considered as two of the most specific M1 and 
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M2 macrophage signature proteins (229). Thus, the dual genetic labelling of iNOS and Arginase-1 

enables to monitor the polarization state of phagocytes by measuring fluorescence signals. This mouse 

line and its respective colony was maintained in-house. 

Thy-1 YFP-16 (B6.Cg-Tg(Thy1-YFP)16Jrs/J) mice were purchased from The Jackson Laboratory (Bar 

Harbor, Maine, USA). They were used to label, identify and isolate neurons (267). This strain expresses 

yellow fluorescent protein (YFP) under the Thy-1 promoter. Thy-1 (CD90) is predominantly expressed 

by neurons in the CNS (268). This mouse line and its respective colony was maintained in-house. 

MITO-Tag mice (B6.Cg-Gt(ROSA)26Sortm1(CAG-EGFP)Brsy/J) were purchased from The Jackson 

Laboratory (Bar Harbor, Maine, USA) (269). Mice from this strain were neonatally intraventricularly 

injected with and in-house synthesized and purified AAV9.hSyn:iCre virus to obtain a specific Cre 

expression of hSyn-expressing cells (neurons) (270, 271). 

3.1.5 Bacteria strains 

MOG1-125 was expressed in an E. coli strain as previously reported by Adelmann et al. (272). 

3.1.6 Instruments 

All instruments were operated according to the manufacturer’s recommendations. 

 

Description Source 

Cell sorter BD FACSAria™ III (Becton Dickinson, Franklin Lakes, 
New Jersey, USA) 

Centrifuges and rotors Avanti JXN-26 (cat# B38619) equipped with JA-25.50 
Fixed-Angle Rotor- Aluminum, 8 x 50 mL, 25,000 
rpm, 75,600 x g (cat# 363055) or JA-10 Fixed-Angle 
Aluminum Rotor- 6 x 500 mL, 10,000 rpm, 17,700 x g 
(cat# 369687, Beckman Coulter, Brea, California, 
USA) 

Micro Centrifuge 5417R (cat# 55 69 54175) equipped 
with Rotor FA-24x2 (cat# 5495500006, Eppendorf 
AG, Hamburg, Germany) 

Thermo Scientific™ Multifuge™ X3 Centrifuge Series 
(cat# 10325804) equipped with Thermo Scientific™ 
TX-1000 4 x 1000mL Swinging Bucket Rotor Body and 
Buckets (cat# 15133169 and 15163169, Thermo 
Fisher Scientific, Waltham, Massachusetts, USA) 

Confocal microscope FV1000 confocal system on a BX61 microscope 
(Olympus, Shinjuku, Japan) 

Microfluidic analyzer 2100 Bioanalyzer Instrument (cat# G2939BA, Agilent, 
Santa Clara, California, USA) 

Microvolume spectrophotometer NanoDrop™ 2000/2000c Spectrophotometers (cat# 
ND-2000, Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) 

Objectives (confocal microscope) x10/0.4 (water immersion), x20/0.85 and x60/1.42 
(both oil immersion) (Olympus, Shinjuku, Japan) 

PCR cycler Biometra TRIO 48 (cat# 846-x-070-723, Analytik Jena 
AG, Jena, Germany) 
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Photometer Eppendorf BioPhotometer® (Eppendorf AG, 
Hamburg, Germany) 

Power supply PowerPac Universal Power Supply (cat# 1645070, 
Bio-Rad Laboratories, Inc., Hercules, California, USA) 

SDS-PAGE electrophoresis chamber Mini Gel Tank (cat# A25977, Thermo Fisher 
Scientific, Waltham, Massachusetts, USA) 

Ultrasonic processor Ultrasonic processor UP200St (Hielscher Ultrasonics 
GmbH, Teltow, Germany) 

Table 5: Instruments. 

3.1.7 Consumables and miscellaneous equipment 

Consumables and miscellaneous equipment were used according to the manufacturers’ 

instructions. 

 

Description Source 

Cage, filtertop EUROSTANDARD TYPE II L (cat# 1284L, Tecniplast, 
Hohenpeissenberg, Germany) 

Cage, sealed top TYPE II L (cat# 1285L, Tecniplast, Hohenpeissenberg, 
Germany) 

Concentrator AMICON® Ultra-15 Centrifugal Filters (3 kDa 
NMWCO, cat# UFC900324, MilliporeSigma, St. Louis, 
Missouri, USA) 

Cover slips Menzel™ Microscope Coverslips (cat# 11911998, 
Thermo Fisher Scientific, Waltham, Massachusetts, 
USA) 

Dialysis chamber Slide-A-Lyzer G2 Dialysis Cassettes 3.5  kDa MWCU, 
5 – 15 ml (cat# 87724, Thermo Fisher Scientific, 
Waltham, Massachusetts, USA) 

Food pellet Mouse, general (cat# V1184-0000, ssniff 
Spezialitaeten GmbH, Soest, Germany) 

Gravity column TALON® 2 ml Disposable Gravity Column (cat# 
635606, Takara Bio Inc., Kusatsu, Japan) 

MACS columns LS columns (cat# 130-042-401, Miltenyi Biotec, 
Bergisch Gladbach, Germany) 

Magnetic beads µMACS GFP Isolation Kit (cat# 130-091-125, Miltenyi 
Biotec, Bergisch Gladbach, Germany) 

Mesh filter Falcon® 100 µm Cell Strainer (cat# 352360, Corning, 
New York, USA) 

Microfluidic chips Agilent DNA 1000 Kit (cat# 5067-1504, Agilent, Santa 
Clara, California, USA) 

Microscopy slides Epredia™ Microscope Slides, Cut, 1 mm (cat# 
12342108, Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) 

Potter-Elvehjem homogenizer (tissue) WHEATON® Dounce Tissue Grinder, 1 ml (cat# 
357538, DWK Life Sciences GmbH, Mainz, Germany) 

Protein LoBind® Tubes Protein LoBind® Tubes, 2.0 ml (cat# 0030108132, 
Eppendorf AG, Hamburg, Germany) 
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SDS gel NuPAGE™ 4 to 12%, Bis-Tris, 1.0 mm, Mini Protein 
Gel, 12-well (cat# NP0322BOX, Thermo Fisher 
Scientific, Waltham, Massachusetts, USA) 

Winged infusion set Multifly®-Needle 21 G tube 80 mm (cat# 
85.1638.005, Sarsted, Nuembrecht, Germany) 

Table 6: Consumables and miscellaneous equipment. 

3.1.8 Software 

All computational analysis were done with Python (version 3.7), R (version 4.0.2) and Javascript 

(273, 274). Flow cytometry data were analyzed with Flowing Software (2.5.1, Turku Bioscience, Finland) 

and Python. 

3.2 Methods 

3.2.1 Animal husbandry 

All animals were socially housed with maximum 5 mice per cage. The cages were located in a room 

with a 12 h light/dark cycle within a specialized animal facility. The animals were kept either in filtertop 

cages (no IVC system) or in sealed top cages (IVC system), depending on their location within the animal 

facility. They were fed with autoclaved food pellets and water ad libitum. The cage was changed once 

a week. 

All animal experiments were performed according to general animal welfare principles and 

approved by the local authorities (Regierung von Oberbayern) and performed according to the 

respective animal protocol. 

3.2.2 Genotyping 

PCR-based genotyping of mouse strains was performed according to the suppliers’ protocols. 

Likewise, primers were designed according to the suppliers’ protocols and purchased from metabion 

international AG (Planegg, Germany). The amplicon was analyzed by gel electrophoresis and the 

resulting bands were compared to the respective positive and negative controls. 

3.2.3 Purification of myelin oligodendrocyte glycoprotein 

MOG1-125, which is the N-terminal domain of myelin oligodendrocyte glycoprotein, exhibits the 

capability of inducing EAE when subcutaneously injected with CFA and heat-inactivated M. tuberculosis 

H37Ra (272). MOG1-125 was expressed in E. coli as a fusion protein with a polyhistidine-tag (MOG1-125-

His). The polyhistidine-tag enables the Ni2+-affinity purification of MOG1-125-His. 

First an E. coli strain which genetically encodes MOG1-125-His was expanded in 4 l LB medium 

supplemented with 0.1 % (v/v) kanamycin through incubation at 37 °C on a shaker (200 rpm). The 

optical density at 450 nm of the suspension, which correlates with the number of cells, was monitored 

photometrically. Once the optical density reached 0.8 – 1.0, the expression of MOG1-125-His was 

induced by adding 500 µl 1 M IPTG in H20 per 1 l bacteria culture. After 6 h of expression cells were 
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harvested by centrifugation (20,000 g, 4 °C, 10 min). The supernatant was discarded and the pellet 

frozen at -20 °C and thawed the next day. 

The following steps were performed on ice or at 4 °C. The pellets were thawed and resuspended 

in 40 ml sonification buffer supplemented with one spade point lysozyme and 50 µl DNase 

(20,000 units). The suspension was distributed to two 50 ml tubes. Next, the suspension was treated 

with ultrasound (60 s duration, 60 % pulse time, 75 % amplitude) using an ultrasonic processor. This 

was repeated twice. Afterwards, the sample was centrifuged (20,000 g, 4 °C, 20 min) and the 

supernatant was discarded. The pellets were resuspended in 20 ml wash buffer and homogenized with 

a Potter-Elvehjem homogenizer (10 strokes) and centrifuged (20,000 g, 4 °C, 20 min). The supernatant 

was discarded. The homogenization and subsequent centrifugation were done in total 5 times, 3 times 

with was buffer, then 2 times in sonification buffer, which were added to the pellet after centrifugation, 

respectively. Optionally, the pellet was frozen after this step. Next, 40 ml solubilization buffer was 

added to the pellet. The sample was incubated overnight on an orbital shaker (200 rpm). 

To prepare the affinity resin for purification of His-tagged proteins, 10 ml affinity resin was mixed 

with 30 ml sonification buffer and 10 ml urea buffer and centrifuged (10,000 g, 4 °C, 5 min). The 

supernatant was discarded. The pellet was resuspended in 20 ml sonification buffer with 20 ml urea 

buffer and centrifuged (10,000 g, 4 °C, 5 min). The supernatant was discarded. The pellet was 

resuspended in 10 ml sonification buffer with 30 ml urea buffer and centrifuged (10,000 g, 4 °C, 5 min). 

Finally, the pellet was resuspended in 40 ml urea buffer and centrifuged (10,000 g, 4 °C, 5 min). 

The sample that had been incubated over night was centrifuged (20,000 g, 4 °C, 20 min). The 

supernatant was added to the pellet that resulted from the centrifugation of the affinity resin. The 

resin-sample suspension was mixed well and incubated overnight on a shaker (200 rpm) to allow 

binding of His-tagged MOG1-125 to the affinity resin. Next, the resin-sample suspension was centrifuged 

(10,000 g, 4 °C, 5 min) and the supernatant was discarded. The pellet was resuspended in 30 ml urea 

buffer, incubated for 20 min on a shaker (200 rpm) and centrifuged (10,000 g, 4 °C, 5 min). To wash 

the resin, this step was repeated twice. Finally, the pellet was resuspended in 20 ml urea buffer. 

The suspension was equally distributed to 4 gravity columns. When the liquid had flowed through 

completely, 10 ml urea buffer was added. Next, 5 ml imidazole buffer (5 mM) was added. The flow 

throughs were discarded. Finally, the protein was eluted with 10 ml imidazole buffer (40 mM). The 

flow throughs of all 4 columns were collected and combined. 

Next, the sample was dialyzed. Therefore, the sample was injected into a dialysis chamber. the 

dialysis chamber was put into 5 l acetate buffer and incubated for 24 h at 4 °C. The buffer was 

exchanged and the dialysis chamber was again incubated for 24 h at 4 °C. 

The sample was aspired from the dialysis chamber and concentrated with concentrators (4,000 g, 

4 °C, 10 min) until a concentration of approximately 5 g/l was obtained. The concentration was 

measured with a microvolume spectrophotometer. The correct size of the purified protein and the 

purity of the sample were determined by SDS-PAGE (see section 3.2.4). Finally, the sample was 

aliquoted and stored at -20 °C. 
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3.2.4 Sodium dodecyl sulphate–polyacrylamide gel electrophoresis 

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) was performed based 

on the protocol described by Laemmli (275). MOG1-125-His samples were 1:10-fold diluted in HEPES 

buffer and mixed with SDS sample buffer and SDS sample additive according to the manufacturer’s 

guideline. The samples were incubated at 70 °C for 10 min and cooled to 4 °C after. Optionally, if the 

color of the sample had changed from purple to green, indicating a pH drop, the sample was titrated 

with 5 M NaOH solution until the color changed back to purple. 20 µl sample was loaded per pocket 

on a SDS gel. 4 µl protein ladder was loaded into the outermost pockets. The gel was clamped into the 

SDS-PAGE electrophoresis chamber and the whole system filled with SDS running buffer. Using a power 

supply, 200 V were applied for 60 min. Then, the gel was released from the mold, briefly washed with 

H2O and incubated with Coomassie stain solution for 15 min. Finally, the Coomassie stain solution was 

replaced by destain solution and incubated for 15 min. The destain solution would eventually have 

been refreshed until the gel was completely destained. The migration distance of the protein was 

referred to the protein ladder and, thereby, the protein’s size estimated. The purity of the sample was 

assessed by the number of additional protein bands present in the respective lane. 

3.2.5 Experimental autoimmune encephalomyelitis 

In order to induce experimental autoimmune encephalomyelitis (EAE) in mice, a modified protocol 

based on Abdul-Majid et al. was applied (276). All mouse lines, which were used for EAE experiments, 

had a C57BL/6 genetic background. Female and male mice were both included in the experimental 

procedure. Mice were anaesthetized with a mixture of ketamine (87 mg/kg body weight) and xylazine 

(13 mg/kg body weight). The adequate depth of anesthesia was defined by the absence of pain reflexes 

and loss of muscle tone. The anaesthetized mice were kept on a 37 °C heating pad. 400 µg MOG1-125 

was emulsified in 250 µl complete Freud’s adjuvant (incomplete Freud’s adjuvant supplemented with 

heat-inactivated M. tuberculosis H37Ra to a final concentration of 4 mg/ml). 100 µl of the emulsion 

was injected subcutaneously into each flank and 50 µl of the emulsion was injected subcutaneously 

into the base of the tail with a 23 G needle. Next, 350 ng pertussis toxin, dissolved in 100 µl PBS, was 

intraperitoneally administered. Mice were monitored until the anesthesia had weaned off. The time 

of immunization defined day 0 (0 dpi, days post immunization). At 2 dpi, mice were again 

intraperitoneally injected with 350 ng pertussis toxin in 100 µl PBS. From 0 dpi on, mice were 

monitored at least once a day. A motoric, behavioral and incontinence score was obtained daily. Once 

an animal obtained a score unequal to 0 it was monitored closely (e. g. twice per day) and water and 

food was directly supplied on the bottom of the cage. 

The motoric score is an ordinal scale from 0 to 5 with steps in increments of 0.5, modified after 

Abdul-Majid et al. and Miller et al. (276, 277), previously described by Nikić et al. (225). The score is 

defined as follows: 0: absence of symptoms, 0.5: distal tail paralysis, 1.0: full tail paralysis, 1.5: gait 

insecurity, 2.0: hind limb paraparesis, 2.5: hind limb paraparesis, 3.0: dragging of hind limb(s), 3.5: hind 

limb paralysis, 4.0 hind limb paralysis and fore limb paresis, 4.5: hind limb paralysis and fore limb 

paralysis, 5.0: moribund. The behavioral score is based on an ordinal scale from 0 to 2 with steps in 

increments of 1. It comprises signs of abnormal behavior. Small behavioral abnormalities were defined 

as at least 1 abnormal finding in the aspects listed at a score of 0. Significant behavioral abnormalities 

were defined as at least 2 abnormal findings: 0: normal grooming, eating, drinking, nesting, exploring, 
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1: small behavioral abnormalities, 2: significant behavioral abnormalities. The incontinence score is 

based on an ordinal scale from 0 to 2 with steps in increments of 1. Incontinence was diagnosed by 

sticky fur around the genital. Urinary tract infection was diagnosed by the occurrence of blood at the 

genital and signs of systemic infection (abnormal behavior, freezing, accelerated heart and respiratory 

rate): 0: no abnormal findings, 1: incontinence, 2: urinary tract infection. 

The animal experiment was terminated if the desired time point or severity of the disease progress 

had been reached or the termination criteria had been met (as defined by the animal protocol). 

3.2.6 Cell isolation 

To obtain a single cell suspension of cells from the murine CNS, a protocol which was adapted from 

Martin et al. was established (278). 

Mice were lethally anaesthetized with isoflurane. The abdomen and the thorax were carefully 

opened. The pericardium was carefully removed from the heart. The right atrium was incised and the 

effluent blood collected with a syringe, equipped with a 20 G needle and prefilled with 100 µl 0.5 M 

EDTA, if needed. The left ventricle was punctuated with a 21 G winged infusion set, connected to a 

20 ml syringe which contained 20 ml ice-cold PBS. PBS was injected intracardially with an approximate 

injection rate of 0.5 ml/s. The perfusion efficiency was monitored by inspecting the discoloration of 

the liver. Insufficiently perfused mice were excluded from further analyses. 

Next, the fur, skin, muscles and bones of the back were dissected to free the spinal column from 

the surrounding tissue. At the caudal end of the spinal column, the spinal column was cut from the 

sacrum by cutting at the height of the uppermost insertion of the Mm. glutei maximi. At the cranial 

end, the spinal column was cut at the border to the scull. Next, to isolate the spinal cord from the spinal 

column, the 21 G needle of the winged infusion set was punctuated into the Canalis vertebralis from 

the caudal cut and pushed approximately 5 mm forward. The spinal column was clamped at the height 

where the needle was inserted to seal the Canalis vertebralis around the inserted needle. Then, 

pressure was applied by pushing the plunger of the syringe which was connected to the winged 

infusion set and the 21 G needle until the spinal cord was flushed out of the spinal column at the cranial 

end. The spinal cord was briefly washed with PBS and kept at 4 °C in PBS. 

Next, PBS was replaced by 1 ml tissue digestion buffer and the spinal cord (with the buffer) 

transferred into a 1 ml Potter-Elvehjem homogenizer and homogenized with 10 strokes. The 

homogenate was transferred into a plastic tube and incubated at 37 °C for 30 min at 1,400 rpm to allow 

enzymatic dissociation of the tissue. Then, the enzymatic reaction was stopped by adding 1 % (v/v) 

0.5 M EDTA in H2O and placing the tube on ice for 10 min. The homogenate was passed through a 

100 µm mesh filter and, subsequently, diluted in 30 ml ice-cold PBS. The homogenate was centrifuged 

(300 g, 4 °C, 10 min) and the supernatant was discarded. 

The pellet was resuspended in 12 ml 30 % (v/v) Percoll gradient solution and centrifuged (2,500 g, 

4 °C, 30 min, minimal acceleration, minimal deceleration, swing-bucket rotor). After the centrifugation, 

the myelin fraction was layered on top of the aqueous phase. The cells were at the bottom of the tube. 

The myelin fraction as well as the excessive Percoll gradient solution were carefully sucked away with 

a Pasteur pipette. The cell pellet was resuspended in the remaining Percoll gradient solution and 

transferred to a fresh tube. Next, 4 ml ice-cold PBS was added to the cell suspension and centrifuged 
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(300 g, 4 °C, 10 min). The supernatant was carefully removed and discarded and the cell pellet was 

resuspended in the appropriate volume of the respective solution that was needed for the further 

procedure. 

3.2.7 Isolation of peripheral blood mononuclear cells 

Blood was collected as described in section 3.2.6. All subsequent steps were performed at 4 °C 

and all solutions were pre-chilled to 4 °C. To remove erythrocytes from the sample, they were lysed 

with ACK buffer. Therefore, the sample was centrifuged (300 g, 4 °C, 10 min), the supernatant was 

discarded and the pellet was resuspended in 4 ml ice-cold ACK buffer. The suspension was incubated 

on ice for 10 min. Then, the sample was centrifuged (300 g, 4 °C, 10 min) and the supernatant 

discarded and the pellet resuspended in ice-cold PBS. This procedure was repeated until the pellet was 

discolorized, indicating that all erythrocytes had been lysed. Finally, the pellet was resuspended in the 

appropriate volume of the respective solution for the further procedure. 10 min before the analysis, 

viability dye was added to the sample (1:1000). 

3.2.8 Cell surface staining 

Single cell suspensions were prepared as described in sections 3.2.6 and 3.2.7. Typically, cells were 

resuspended in 200 µl ice-cold PBS without any additives (to avoid any protein contamination for the 

subsequent mass spectrometry analysis). Fc block was 1:500-fold diluted and incubated for 15 min at 

4 °C to cover Fc receptors and prevent unspecific antibody binding. Then, antibody solutions were 

directly added to the sample. The dilution was, if not otherwise specified, 1:200. The sample was 

incubated for 30 min at 4 °C in the dark. Then, the sample was filled up to a total volume of 3 ml with 

PBS, mixed and centrifuged (300 g, 4 °C, 10 min). The supernatant was discarded and the pellet 

resuspended in 3 ml PBS and centrifuged (300 g, 4 °C, 10 min). The pellet was resuspended with PBS 

and the suspension was subjected to further assays. 10 min before the analysis, viability dye was added 

to the sample (1:1,000). 

For bulk RNA sequencing, cells were stained with surface markers, washed and subsequently fixed 

by incubating the cells in fixations buffer and permeabilized with permeabilization buffer according to 

the manufacturer’s protocol. Then, the intracellular staining was done in permeabilization buffer. 

3.2.9 Fluorescence-activated cell sorting 

Fluorescence-activated cell sorting (FACS) was performed on an BD FACSAria™ III sorter according 

to the manufacturer’s guidelines. For sorting of lymphocytes, a 100 µm nozzle was used. All other cell 

types were sorted with a 130 µl nozzle. The system was pre-chilled to 6 °C prior to use. PBS was used 

as a sheath fluid. Likewise, cells were collected in a Protein LoBind® Tube (Eppendorf) that contained 

1 ml ice-cold PBS. The flow-rate was adjusted to 1,000 – 2,000 events/s. Prior use, a drop delay was 

performed with drop delay beads using the software’s automated configuration tool. The sort was 

performed at 4-way purity. 

After sorting the cells, the cell suspension was centrifuged (500 g, 4 °C, 10 min) and the 

supernatant was discarded. The cell pellet was snap frozen in liquid nitrogen and stored at -80 °C until 

analysis. 
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3.2.10 Labeling and gating strategies of different cell types 

Only live cells were sorted, indicated by low viability dye uptake (viability dyelo). If mononuclear 

cells were sorted, events were restricted to a narrow SSC-A/FSC-A gate as shown by Ramesha et al. 

and Martin et al. (278, 279). Otherwise, if CNS cells were sorted, the SSC-A/FSC-A gate was set to 

exclude SSC-Alo/FSC-Alo events. Furthermore, only single cells were sorted. Therefore, only events 

which matched to a linear fit of the correlation between SSC-H and FSC-H were included. 

The gating strategies for sorting of cells for proteomic analyses are shown in detail in Table 7. CD45 

is a marker that denotes myeloid as well as lymphoid cells (280). Therefore, it was used to identify 

immune cells in single cell suspensions from CNS tissues. CD11b is predominantly expressed by myeloid 

cells (281, 282). Thus, mononuclear phagocytes, which derive from the myeloid lineage, were identified 

by the expression of CD45 and CD11b (278, 279) and, in the case of macrophages, by the signature 

enzymes iNOS and Arginase-1 (222). Intermediate expression levels of both CD45 and CD11b 

(CD45medCD11bmed) are believed to denote microglia, in contrast, macrophages highly express CD45 

and CD11b (CD45hiCD11bhi) (222, 278). To assess the expression levels of iNOS and Arginase-1, iNOS-

tdTomato-Cre x Arginase-1-YFP mice were used. iNOS and Arginase-1 are assumed to be specific 

marker enzymes that distinguish pro-inflammatory M1 macrophages and anti-inflammatory M2 

macrophages (229). 

Lymphocytes were identified by the expression of CD45 as well as the expression of CD3 (T cell 

receptor, T cells) (283) and CD19/B220 (B cells) (284), respectively. CD3+ T cells were further 

characterized by the expression of CD4 (T cell surface protein T4) and CD8 (T cell surface protein T8) 

(285). 

Astrocytes were identified by the expression of astrocyte cell surface antigen-2, ACSA-2 (286). To 

fluorescently label neurons, the Thy-1 YFP-16 mouse line was used and YFP+ events were sorted. 

Oligodendrocytes were identified by the presence of the surface marker O4 (287). O4 predominantly 

characterizes pre-oligodendrocytes, pre-myelinating and myelinating oligodendrocytes (288–290). 

Oligodendrocyte precursor cells (OPC) were isolated based on their expression of PDGFRa (290). 

For RNA sequencing, cells were extracellularly stained with Ly6-G-BV785 and CD11b-PerCP, fixed, 

permeabilized and washed and subsequently intracellularly stained with Arginase-1-APC and iNOS-

eFluor 450. 

All gates for FACS were defined according to the respective fluorescence minus one (FMO) control. 

 

Cell type Gating strategy 

M1 macrophages CD45hiCD11bhiiNOS+Arginase-1- 

M2 macrophages CD45hiCD11bhiiNOS-Arginase-1+ 

Monocytes CD45+CD11b+Ly6C- 

Microglia CD45medCD11bmed 

CD4+ T cells CD45+CD3+CD4+CD8- 

CD8+ T cells CD45+CD3+CD4-CD8+ 

B cells CD45+CD19+B220+ 

Astrocytes ACSA-2+CD45- 

Neurons Thy-1+CD45- 
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Oligodendrocytes O4+CD45- 

Oligodendrocyte precursor cells (OPC) PDGFR+CD45- 

Table 7: Gating strategy for the targeted cell types in the proteomics screen. 

3.2.11 Isolation of neuronal mitochondria 

To analyze the neuronal mitochondrial proteomes in EAE, mitochondria were isolated from MITO-

Tag mice, which were neonatally injected with AAV9.hSyn:iCre intraventricularly, at peak of disease 

(EAE onset + 2 d, EAE score > 2) and at remission (EAE onset + 22 d) according to the previously 

described protocol by Fecher et al. and Tai (270, 271). This enabled us to specifically fluorescently label 

mitochondria from neurons. In brief, the lumbar spinal cord was isolated and homogenized with a 

Potter-Elvehjem homogenizer in mitochondria isolation buffer. The sample was incubated with 

nitrogen (800 psi) while stirring (60 rpm, 10 min), protease inhibitor was added, and the sample was 

centrifuged (600 g, 10 min). The supernatant was filtered through a 30 µm mesh and incubated with 

anti-GFP antibody-coated magnetic beads (50 µl) for 1 h at 4° C. Next, the sample was precipitated by 

magnetic-activated cell sorting (MACS) by applying the magnetic beads to a column in a magnetic field 

which was equilibrated with IP buffer. The column was washed three times with IC buffer and finally 

the sample were eluted by removing the columns from the magnetic field and flushing the beads out 

of the column with a plunger. The samples were immediately stored at -20° C. The isolation was 

established and performed by Dr. Yi-Heng Tai. 

3.2.12 Mass spectrometry analysis 

Sample preparation and mass spectrometry analysis was performed by the group of Prof. Dr. Felix 

Meissner at the Department of Proteomics and Signal Transduction, Max Planck Institute of 

Biochemistry, Munich, Germany. Sample preparation and mass spectrometry measurement was done 

as described by Karayel et al. (291). In brief, frozen cell pellets were lysed by adding sodium 

deoxycholate (SDC) lysis buffer (1 % SDC in 100 mM Tris, pH 8.4), incubated at 95 °C for 5 minutes and 

subsequently homogenized by sonication. Samples were diluted to achieve a constant protein 

concentration and reduced and alkylated with 40 mM CAA and 10 mM TCEP (5 min incubation at 45 °C). 

Next, proteins were digested with trypsin and LysC (1:100, 37 °C, overnight incubation). Next, peptides 

were diluted in 1 % trifluoroacetic acid (TFA) in isopropanol and desalted and purified with a reverse 

phase column (SDB-RPS tips) with 1 % TFA in isopropanol and 0.2 % TFA with 2 % acetonitrile (ACN). 

To elute the peptides, the columns were washed with 1.25 % ammonium hydroxide in 80 % ACN and 

dried (SpeedVac vacuum concentrator). Finally, samples were resuspended in 0.2 % TFA with 2 % ACN. 

Peptides were separated by liquid chromatography (EASY-nLC™ 1200 system, Thermo Fisher 

Scientific), equipped with a 50-cm reversed-phase column with ReproSil-Pur C18-AQ 1.9 µm resin (Dr. 

Maisch). The flow rate was 450 nl/min with a buffer system consisting of buffer A (0.1 % formic acid) 

and buffer B (80 % ACN with 0.1 % formic acid). The chromatography system was coupled to a Q 

Exactive HF-X mass spectrometer (Thermo Fisher Scientific), operated with the settings described by 

Karayel et al. Spectra were acquired and analyzed in a data-independent fashion using the 

Spectronaut™ software (Biognosys, Schlieren, Switzerland). 
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Sample preparation and mass spectrometry analysis of neuronal mitochondria was performed by 

the group of Prof. Dr. Stefan Lichtenthaler at the German Center for Neurodegenerative Diseases, 

Munich, Germany. Isolation of neuronal mitochondria was performed by Dr. Tai. Details are described 

by Tai (271). 

3.2.13 RNA sequencing 

After cell sorting, cells were washed and resuspended in 100 µl RNA lysis buffer and incubated for 

1 h at 56°C. Then, RNA was extracted with the RNeasy Micro Kit (QIAGEN) according to the 

manufacturer’s protocol. RNA was reversely transcribed into cDNA and the cDNA was subsequently 

purified using an mRNA library kit according to the manufacturer’s protocol. The sample purity was 

assessed on a microfluidic analyzer equipped with a microfluidic chip. Samples were sequence at the 

Laboratory for Functional Genome Analysis (LAFUGA, LMU Munich). Quality check and demultiplexing 

was performed within the Galaxy environment. Gene mapping and raw count normalization was done 

with a customized R script using the library DEseq2 (292). Further computational analyses were 

performed with specific Python scripts. 

3.2.14 Tissue processing and staining 

Mice were lethally anaesthetized with isoflurane and transcardially perfused with 20 ml PBS 

supplemented with 5 IU/ml Heparin and 20 ml 4 % (v/w) paraformaldehyde in PBS. Next, the spinal 

cord was dissected (laminectomy) and further fixed in 4 % (v/w) paraformaldehyde in PBS for 12 h. The 

tissue was cryoprotected with 30 % (w/v) sucrose in PBS for 48 h at 4 °C. The caudal part of the lumbar 

spinal cord was embedded into molds containing a specimen matrix, frozen at -20 °C and cut in 50 µm 

sections using a cryostat. The sections were washed twice with PBS and permeabilized with 0.1 % (v/v) 

Triton X-100 in PBS. Unspecific epitope binding was blocked by incubating the sections in blocking 

buffer for 2 h. The respective primary antibody was diluted in PBS and incubated at 4 °C for 24 h. The 

sections were washed three times with PBS. The secondary antibody was diluted in PBS and incubated 

at room temperature for 2 h. The sections were washed three times with PBS. The second washing 

step was performed with 0.01 % (w/w) DAPI in PBS. The sections were mounted on a microscopy slice, 

dried, covered with mounting medium and sealed with a cover slip. 

3.2.15 Confocal microscopy imaging 

Samples were scanned on a FV1000 confocal microscopy system (Olympus) with 20- or 60-fold 

magnification and recorded as 12-bit images. The excitation and emission filter wavelength were set 

as depicted in Table 8. The signal amplification was adjusted to control for oversaturation. Secondary 

antibody only controls were used to assess the background signal. The channels were recorded 

sequentially. The resolution was 1024 x 1024 pixels. 

 

Channel Excitation [nm] Emission filter (bandpass) [nm] 

DAPI 405 405 – 435 

YFP 488 510 – 540 

tdTomato 559 590 – 620 
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AF647 635 655 – 755 

Table 8: Confocal microscopy excitation and emission filter configuration. 

3.2.16 Data analysis 

Data analysis was performed with custom scripts written in a Python, R and Javascript 

environments (273, 274). 

3.2.16.1 Data clean-up and data imputation 

A protein was considered as true positively detected if it showed an expression value in > 1 sample 

per group (cell type per condition). If the number of expression values per groups was below 1, all 

values were imputed by random values deriving from a normal distribution characterized by a mean 

value of a two-fold negative standard deviation drawn from the original dataset and a standard 

deviation of the 0.3-fold standard deviation of the original dataset to mimic lowermost values in the 

dataset and avoid zero inflation effects. If the number of valid samples per group was > 1, sequential 

imputation of missing values was applied individually for each group to substitute missing values. This 

method showed higher correlation coefficients when artificially deleted values were predicted 

compared to other techniques (293). To evaluate the precision of the imputation, single imputation 

techniques and multiple imputation techniques were assessed on a dummy dataset which was 

designed to exhibit similar features as the original proteomics expression dataset. The prediction 

precision was assessed by calculating the correlation coefficient between the actual values, which had 

been deleted, and the substitutes. After imputation of missing values, all values were log2-transformed. 

Raw counts from transcriptomic analyses were replaced by 0 if < 2 data points per group were 

defined. If a sequence was only detected in 1 (out of 3) sample, all 3 values were excluded from further 

analysis. Likewise, counts < 10 were excluded from analysis. Raw counts were normalized according to 

the median ratio method (294). Missing values were imputed using an iterative imputation algorithm. 

3.2.16.2 Central tendencies and interval estimates 

The mean value and standard deviation were calculated as a measure for the central tendency 

and interval estimate for parametric variables. For non-parametric variables, the median and the 

interquartile range were calculated. Quantile-quantile (Q-Q) plots were used to compare a distribution 

with a standard normal distribution by visual inspection. 

3.2.16.3 Effect sizes 

To estimate the effect size of the difference between the central tendencies of two groups, 

Cohen’s 𝑑 was calculated according to the following equation (295, 296). If not otherwise specified, 

heteroscedasticity and unequal group sizes were assumed: 

𝑑 =
µ̅1 − µ̅2

√(𝑛1 − 1)𝜎1
2 + (𝑛2 − 1)𝜎2

2

𝑛1 + 𝑛2 − 2
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where µ̅1 and µ̅2 are the mean values from the two independent groups, 𝜎1 and 𝜎2 the respective 

standard deviations and 𝑛1 and 𝑛2 the group sizes. The numerator denotes the difference in means, 

the denominator denotes the pooled standard deviation which estimates the overall variance by 

weighted variances of two groups. 

3.2.16.4 Statistical hypotheses testing 

Statistical hypotheses testing was performed to control for type I errors when null hypotheses 

were sought to be rejected or accepted. 

To test the if two means µ̅1 and µ̅2 from two independent and normally distributed samples 1 and 

2 were equal, t-statistic test was calculated. The null hypothesis was defined as: 

𝐻0: µ̅1 = µ̅0 

Normality was assumed if a given share of values could be parameterized by a mean and variance. 

This was assessed by visual inspection of quantile-quantile plots for samples with a large sample size. 

Homoscedasticity of samples was assumed if 

0.5<
σ1
σ2

<2 

and 

𝑝 < 0.05 

for 

𝐻0: 𝜎1 = 𝜎2 

calculated by Levene’s test with the groups’ standard deviation s1 and s2. If the groups had been 

heteroscedastic, Welch’s test would have been calculated. If the groups had been homoscedastic, 

Student’s t test would have been calculated. When multiple hypotheses were tested, alpha error 

accumulation was controlled by calculating the false discovery rate (FDR) q value by adjusting p values 

according to Benjamini-Hochberg (297). 

3.2.16.5 Correlation analyses 

To assess the correlation of the expression of certain proteins between samples, the correlation 

coefficient according to Pearson was calculated for the respective expression matrices. If multiple 

correlations among n > 2 samples were calculated, hierarchical cluster analysis based on the Euclidean 

distances of the resulting correlation matrix was calculated and visualized by a dendrogram. 

3.2.16.6 Data scaling 

For data standardization of all values x1, x2,…,xi of the vector a, the standard score z was calculated 

as 

𝑧 =
𝑥 − µ

𝜎
 

where µ is the mean and s is the standard deviation of a. 
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For minimum-maximum (min-max) rescaling of all values x1, x2,…,xi of the vector a, the values x1’, 

x2’,…,xi’ were calculated as 

𝑥′ =
𝑥 −min⁡(𝑎)

max(𝑎) − min⁡(𝑎)
 

where min(a) and max(a) are the minimum and maximum values of the vector a. 

3.2.16.7 Dimension reduction 

To assess the degree of sample similarity, uniform manifold approximation and projection (UMAP) 

was performed (298). All features/samples of the expression matrix were standardized before the 

analysis. Likewise, principal component analysis (PCA) was applied as a dimension reduction technique. 

As for UMAP, the features/samples were standardized before the analysis. The first two principal 

components (PC1 and PC2) of each feature/sample were plotted in a two-dimensional space and their 

proportional explained variance reported. 

3.2.16.8 Differential protein expression and receiver operating characteristic (ROC) analysis 

The differential protein expression was calculated by the fold change between the logarithmic 

expression levels of two groups. To assess the relationship between any given fold change and the 

fraction of false-positive observations above this fold change (as defined as the fraction of observations 

with q > 0.05), a receiver-operating characteristic (ROC) analysis was performed. A given fold change 

cutoff value was assessed by calculating its Euclidean distance to the point (sensitivity = 1|1- 

specificity = 0) which characterized the maximum sensitivity and specificity. 

3.2.17 Gene set enrichment analysis coupled to network analysis (NezzworGS) and functional 

protein-protein interaction network analysis (FUPPINA) 

To explore high dimensional proteomic or transcriptomic datasets with respect to underlying 

functional patterns we developed the Python package Nezzworker (engeldaniel.com/nezzworker, 

github.com/engelsdaniel/nezzworker). It is composed of the two classes NezzworGS (gene set 

enrichment analysis coupled to network analysis) and FUPPINA (FUnctional Protein-Protein Interaction 

Network Analysis). 

Gene set enrichment analysis is a powerful technique to gain further insights into the biological 

function of a group of differentially expressed proteins or genes. However, a single gene can belong to 

more than one gene set. Furthermore, most gene set libraries (such as Reactome, which was used in 

this study) are hierarchically designed with child gene sets as a subgroup of a respective parent gene 

set. This means that the differential abundance of a share of proteins or transcripts may result in the 

enrichment of more than one gene set, although the biological source of the enrichment is the same. 

Therefore, we designed NezzworGS, a novel computational algorithm implemented into the 

Nezzworker Python module that performs gene set enrichment analysis with subsequent network 

analysis to further explore the relationship of enriched gene sets. Moreover, NezzworGS identifies 

parent-child relationships of gene sets within hierarchically designed gene set libraries. 
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The NezzworGS algorithm performs a gene set enrichment analysis according to Subramaniana et 

al. implemented into a custom computational algorithm with a subsequent network analysis (299). In 

principle, this algorithm tests to which extent genes from an a priori defined gene set are differentially 

abundant in two groups. Therefore, the normalized enrichment score (NES) was calculated to assess 

the extent of the difference between the enrichment of genes between two groups. Both the classical 

as well as the pre-ranked method were used to calculated the NES (299). Because of the explorative 

nature of this approach, a FDR-adjusted p value (q value) threshold  ≤ 0.25 was defined (299). 

Alternatively, gene sets were ranked according to their NES as a primary thresholding criterion. Next, 

the gene set similarity was calculated in an adjacency matrix based on the number of genes that are 

shared between gene sets (threshold: > 25 % overlap in any of the gene sets). The adjacency matrix 

was then translated into a weighted network graph with the nodes representing the gene sets and the 

edges encoding the gene set similarity. The thickness of the edges encoded the number of leading-

edge genes shared between two gene sets. The area of the nodes represented the mean (protein or 

gene) expression based on expression values of all members of the respective gene set. The spatial 

distribution of the nodes (weight) reflected the similarity of genes sets (regardless if the genes were 

present in the underlying dataset), calculated as the maximum overlap fraction of two gene sets in an 

adjacency matrix. In a subsequent analysis all proteins or genes underlying the identified enriched gene 

sets were individually analyzed with respect to their mean expression and fold change between the 

two groups. NezzworGS automatically calculates centrality measures of the network and identifies 

network modules. If Reactome is chosen as the underlying gene sets library, NezzworGS evaluates the 

parent-child relationship between enriched gene sets because some gene sets (children) can be (full) 

subsets of larger gene sets (parents), leading to an overestimation of the biological signature if both 

are enriched in the analysis. 

The FUPPINA algorithm performs a functional protein-protein interaction network analysis based 

on the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database which contains 

information about physical and functional protein-protein interactions (300). First, an adjacency matrix 

was constructed based on the STRING score that characterized the interaction between each of the 

proteins to be analyzed. Second, an undirected weighted network graph was constructed from this 

adjacency matrix. Nodes which were not connected to at least one other node were remove from the 

network. Network parameters (density, degree of centrality, degree of eigenvector centrality, degree 

of betweenness centrality, degree of closeness centrality) were calculated and functional hubs within 

the network were uncovered by extracting network modules. To further investigate the molecular 

signature of the modules, a gene set enrichment analysis was performed using the Enrichr algorithm 

according to Chen et al., which was implemented into the custom computational workflow (301). In 

brief, this algorithm assumes a binominal distribution for the chance of a any gene to be mapped to 

any gene set in relation to a reference (or background) share of genes. The probability for a list of genes 

not to occur in any given gene set was calculated according to the Fisher exact test. To summarize the 

results, p values deriving from the Fisher exact test were computed. Gene sets with the lowest p values 

were displayed. 

Gene set datasets were obtained from the Molecular Signatures Database (MSigDB, version 7.1 

and 7.4, https://www.gsea-msigdb.org) and Reactome (Reactome, release 77, 

https://reactome.org/download-data/, 09/01/2021) 
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3.2.18 Validation of a novel gene set enrichment analysis coupled to network analysis 

algorithm (NezzworGS) 

To test the NezzworGS algorithm, we constructed two dummy datasets. The first dummy dataset 

was an artificial fold change matrix that contained 1000 genes (gene “1” to gene “1000”) with fold 

change values from an evenly spaced list from -1 to 1. The expression values were drawn from a 

random distribution and min-max normalized. The second dummy dataset was a gene set library which 

encompassed 19 artificial gene sets, each including a fraction of genes from the fold change and 

expression matrix. The gene sets were related in terms of genes they share with each other (Table 9). 

Next, the fold change matrix, the expression matrix and the gene set library were subjected to the 

NezzworGS algorithm. 

 

Gene set Genes N genes Overlap 

A1 1 – 50 50 A2: 80 %, A3: 60 %, A4: 40 %, A5: 20 %, A6: 2 % 

A2 10 – 60 50 A1: 80 % 

A3 20 – 70 50 A2: 80 %, A1: 60 % 

A4 30 – 80 50 A3: 80 %, A2: 60 %, A1: 40 % 

A5 40 – 90 50 A4: 80 %, A3: 60 %, A2: 40 %, A1: 20 % 

A6 50 – 100 50 A5: 80 %, A4: 60 %, A3: 40 %, A2: 20 %, A1: 2 % 

B1 950 – 1000 50 B2: 80 %, B3: 60 %, B4: 40 %, B5: 20 %, B6: 2 % 

B2 940 – 990 50 B1: 80 %, B3: 80 %, B4: 60 %, B5: 40 %, B6: 20 % 

B3 930 – 980 + 700 – 
760 

110 B1: 27 %, B2: 36 %, B4: 36 %, B5: 27 %, B6: 18 %, B7: 55 % 

B4 920 – 970 50 B1: 40 %, B2: 60 %, B3: 80 %, B5: 80 %, B6: 80 % 

B5 910 – 960 50 B1: 20 %, B2: 40 %, B3: 60 %, B4: 80 %, B6: 80 % 

B6 900 – 950 50 B1: 2 %, B2: 20 %, B3: 40 %, B4 60 %, B5: 80 % 

B7 700 – 760 + 800 – 
860 (30) 

90 B3: 66 %, B8: 33 % 

B8 800 – 860 (30) 30 B7: 100 % 

C1 500 – 560 (50) 50 none 

C2 400 – 475 (5) 50 none 

D1 600 – 620 + 1700 
– 1720 

40 D2: 75 %, D3: 50 % 

D2 610 – 630 + 1700 
– 1720 

40 D1: 75 %, D3: 25 % 

D3 600 – 620 + 2700 
– 2720 

40 D1: 50 %, D2: 25 % 

Table 9: Dummy gene sets. The names of the gene sets are arbitrary. The numbers in the column “genes” represent the 
artificial gene names from a list of genes from “1” to “1000”. The overlap is the ratio between the number of genes a gene 
sets has in common with another gene set and the overall number of genes. 

Gene set enrichment analysis revealed the enrichment of 7 gene sets with a normalized 

enrichment score (NES) < 0 and 12 gene sets with an NES > 0 (Supplement Figure 1). Gene sets which 

are comprised of genes with a high fold change value showed higher (absolute) NES values compared 

to gene sets with genes with fold changes close to 0 or to the middle rank, respectively (gene sets C1, 

C2, D1, D2 and D3). 



Materials and methods 

39 
 

The main feature of NezzworGS is the analysis of the relationships between enriched gene sets 

identified from a differential expression matrix. Supplement Figure 2 displays the network of enriched 

gene sets. Gene sets are represented by vertices. The edges encode the fraction of overlapping leading-

edge proteins/genes from the analysis, the actual value is encoded by the edge thickness. By visual 

inspection, the network encompassed 3 subnetworks and 2 vertices without any further connections. 

The network reflected the overlap between different gene sets: Gene set A1 was connected with gene 

sets A2 (80 % overlap), A3 (60 % overlap) and A4 (40 % overlap) but neither with gene set A5 (20 % 

overlap) nor with gene set A6 (2 % overlap), because the latter ones did not meet the filter criterion of 

a minimum overlap of 25 % (as defined for this analysis). Furthermore, the edge thickness reflected 

the degree of overlap between the gene sets (the edge between A1 and A2, which showed an overlap 

of 80 %, was thicker compared to the edge between A1 and A4 with an overlap of 40 %). The 

NezzworGS algorithm computes a weighted network where the spatial distribution of vertices within a 

(sub-) network is dictated by the gene sets similarity between two vertices, regardless of the number 

of leading-edge genes they have in common. This feature is best visualized in the subnetwork that 

encompassed gene sets D1, D2 and D3. Gene set D2 had a higher overlap with D1 (75 %) compared to 

D3 (25 %), thus, vertices 10 and 8 were further apart compared to 10 and 9. However, if the sizes of 

two connected gene sets are unequal, the overlaps (defined by the fraction of genes which are 

members of both gene sets relative to the gene set size) of each of the gene sets are unequal. In this 

case, the higher overlap is weighted higher to ensure that gene sets which are child gene sets have a 

closer proximity to their parent gene set. For example, gene set B8 is a full child gene set of gene set 

B7 (100 % overlap), however, the genes of B8 only make up one third of the whole gene set, while 66 % 

of the members of B7 are shared with B3. Nevertheless, B8 and B7 showed a closed proximity 

compared to B3 and B7 to control for the fact that B8 can be considered as a child gene set of B7. 

To further characterize the vertices/gene sets within the network, the NezzworGS algorithm 

computes centrality measures of each vertex (Supplement Figure 3). Practically, this shows with how 

many other gene sets a specific gene set has (leading-edge) genes/proteins in common. Because many 

gene set libraries are hierarchically designed (with parent-child relationships), a high degree of 

centrality might indicate that the respective gene set acts as a parent gene set for the connected gene 

sets. The degree of centrality analysis reveals that gene set B3 has the highest degree of centrality. 

Indeed, gene set B3 has most connections with a relative high overlap to other vertices (B1: 27 %, B2: 

36 %, B4: 36 %, B5: 27 %, B6: 18 %, B7: 55 %). Vertices which are not connected to any other vertex 

(C1, C2) or which have equal numbers of edges (D1, D2, D3) have (similar) low degrees of centrality. 

Yet another feature of NezzworGS is to compute the modularity of a network (Supplement Figure 

4). This feature allows to identify functionally linked gene sets and functional cores, especially in larger 

networks. 

Besides the above shown features, NezzworGS determines the gene set parent-child-relationship 

of the Reactome gene set library to control for its hierarchical architecture and the potential 

overestimation of the enrichment of (functionally) similar gene sets. 
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3.2.19 Validation of a novel functional protein-protein interaction coupled to network analysis 

algorithm (FUPPINA) 

As outlines above, gene set enrichment analysis is a powerful computational technique to unravel 

molecular signatures of differential gene or protein expression matrices. However, most gene set 

enrichment analysis algorithms require two sets of expression values from different (experimental) 

conditions and are therefore not suitable for the analysis of a single set of expression values of genes 

or proteins. A possible solution is to individually review either highly abundant or differentially 

abundant (between two phenotypes) proteins or transcripts. However, high abundance does not 

necessarily come along with high biological impact, likewise differential abundance analysis requires 

at least two conditions. Thus, we developed an algorithm to screen for functional hubs in a set of genes 

or proteins based on functional protein-protein interaction data (STRING database) and network 

analysis (functional protein-protein interaction coupled to network analysis, FUPPINA). 

To test the FUPPINA algorithm we created two dummy datasets. First, we randomly drew 500 

gene names from a list of all genes listed in the Reactome gene set library (version 7.4, random 

dataset). Second, we created a list of gene names by randomly choosing 5 gene sets from the Reactome 

gene set library and extracting their gene name (gene set dataset). If necessary, this list was filled up 

to 500 gene names with gene names randomly selected from the list of all gene names listed in the 

Reactome gene set library. The respective expression values were not taken into account and were all 

set to 1. Next, we subjected both the random datasets and gene set dataset to FUPPINA. The functional 

protein-protein interaction network of the random dataset was composed of 157 genes/nodes with 

on average 4.92 edges per node with a network density of 0.06 (Supplement Figure 5). Network 

modules were not clearly distinguishable by visual inspection. 

In contrast, the functional protein-protein interaction network of the gene set dataset was 

composed of a higher number of genes/nodes (258) with a higher average number of edges per node 

(22.05), likewise, the network density (0.17) and triadic closure (0.93 versus 0.45) was higher 

(Supplement Figure 6). By visual inspection, the functional protein-protein interaction network of the 

gene set dataset encompassed clearly distinguishable modules with a low inter-module connectivity. 

Taken together, network analysis of functional protein-protein interactions from a gene list which 

derived from gene sets mirrored the functional relationship of the underlying genes. Network 

parameters (degree of centrality, density, modularity, triadic closure) pointed towards a tighter 

network structure when functionally related genes/proteins are analyzed compared to a functional 

protein-protein interaction network constructed from a list of random gene names. Thus, the 

functional protein-protein interaction coupled to network analysis (FUPPINA) algorithm can be used as 

a tool to estimate the functional relationship within a set of genes or proteins independent from 

expression levels. Moreover, it can serve as the basis for further analysis such as gene set enrichment 

analysis (using the Enrichr algorithm) to obtain deeper insights into the explicit function of genes or 

proteins underlying the network’s modules. 

3.2.20 Annotation of proteins 

Proteins were annotated as extracellular proteins according to the Cell-Cell Interaction Database 

(302). Mitochondrial proteins were identified using the MitoCarta2.0 database (303). To map 
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mitochondrial proteins to each of the five electron transfer chain complexes as well as to the citric acid 

cycle (TCA), the Kyoto Encyclopedia of Genes and Genomes (KEGG) was used (304–306). 

Proteins/genes assigned to the Term ‘NADH:ubiquinone oxidoreductase, mitochondria’, ‘NADH 

dehydrogenase (ubiquinone) Fe-S protein/flavoprotein complex, mitochondria’, ‘NADH 

dehydrogenase (ubiquinone) 1 alpha subcomplex’, ‘NADH dehydrogenase (ubiquinone) 1 beta 

subcomplex’ (complex I), ‘Succinate dehydrogenase (ubiquinone)’ (complex II); ‘Cytochrome bc1 

complex respiratory unit’, ‘Cytochrome bc1 complex’ (complex III); ‘Cytochrome c oxidase’ (complex 

IV), ‘F-type ATPase, eukaryotes’, ‘V-type ATPase, eukaryotes’ (complex V) and ‘Citrate cycle (TCA cycle, 

Krebs cycle)’ (TCA) were considered as proteins involved in these metabolic pathways. 

3.2.21 Ligand-receptor interaction prediction 

To screen for potential ligand-receptor interactions between M1 and M2 macrophages and other 

immune cells we first annotated proteins (secreted proteins and ligands) in the respective proteomes 

using databases curated by Efremova et al. and Qiao et al. (302, 307). Next, ligand-receptor interaction 

profiles were extracted from these databases and the respective ligands or receptors were identified. 

An interaction was assumed if the standardized mean expression of the ligand and receptor was > 1. 

The interactions were visualized with a custom Javascript script. 
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4 Results 

4.1 Mononuclear phagocytes differently express marker proteins at distinct 

time points during EAE disease progression 

In order to analyze how mononuclear phagocytes change their molecular phenotype during 

EAE disease progression, their abundances and signature protein expression patterns were measured 

by flow cytometry. Single cells from EAE spinal cords from disease onset and 5 days after onset (5 dpo, 

days post onset) were stained with fluorescently labeled anti-CD45, anti-CD11b and anti-Ly6C 

antibodies. iNOS-tdTomato-Cre x Arginase-1-YFP mice were used to distinguish between M1 (MiNOS) 

and M2 (MArginase-1) macrophages by genetic fluorescent labelling of the respective cells. 

The SSC/FSC analysis of the single cell suspensions from the spinal cord from EAE showed that 

there was a distinct share of events with an approximate mFI (mean fluorescence intensity) in the SSC 

channel at 25 k and 125 k in the FSC channel (Figure 1, A). These events were characterized by high 

CD45-BV786 fluorescence signals. In control mice, the number of these events was tremendously lower 

(Supplement Figure 7, C). Next, the FI (fluorescence intensities) of CD45-BV786, CD11b-APC and Ly6C-

PerCP were measured in the clusters that were characterized by high CD45-BV786 FI levels (Figure 1, 

B, cluster 1, 3 and 4). The majority of events were CD11b+ and characterized by a higher Ly6C-PerCP FI 

(compared to CD11b- events). CD11b+ events further subdivided into CD11bhiCD45hi and 

CD11bmedCD45med events (Figure 1, C). The number of CD45hiCD11bhi events exceeded 3.5-fold the 

number of CD45medCD11bmed events. The mFI of the Ly6C-PerCP signal of CD45hiCD11bhi events 

(mFI = 2,314.9, SD = 2,465.6) was 8.1-fold higher compared to CD45medCD11bmed events (mFI = 284.2, 

SD = 143.7). Most CD45-BV786+ events were CD11b-APC+ (Figure 1, D and Table 10). Analysis of the 

iNOS-tdTomato and Arginase-1-YFP signals revealed, that both signals were exclusively detected in 

CD11bhi events. CD11bhiCD45hi events were either iNOS-tdTomato+ or Arginase-1-YFP+, but not 

iNOS+Arginase-1+. However, only few Arginase-YFP+ events were detected. The ratio of iNOS-

tdTomato+ events to Arginase-1-YFP+ events was 10.5. 
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Figure 1: Flow cytometry analysis of cells isolated from EAE spinal cords (onset). Single cell suspensions from spinal cord 
from EAE mice at disease onset (day with first disease score). A: SSC/FSC analysis of all events. Log2-transformed CD45-BV786 
FI is color-coded. B: Unsupervised cluster analysis (agglomerative clustering) of events characterized by SSC and FSC. C: CD45-
BV786 and CD11b-APC FI of CD45+ clusters 1, 3, 4 and 7. Logarithmic Ly6C-PerCP FI is color-coded. D – F: iNOS-tdTomato, 
CD11b-APC and Arginase-1-YFP fluorescence signals in all CD45+ events. iNOS-tdTomato and Arginase-1-YFP signals 
exclusively occur in CD11b-APChi events. There were almost none iNOS-tdTomato+Arginase-1-YFP+ events detected. The 
horizontal and vertical dotted lines indicate the FI threshold values (signal-to-noise) as defined by FMO controls. SSC and FSC 
FI were divided by 103. All other FI were log2-transformed. All FI are depicted as area of the signals. Maximum values 
(oversaturated signals) or minimum values (undersaturated signals) were excluded from the analysis. FI: fluorescence 
intensity. 

 

Events Frequency 
at onset [%] 
(SD) 

Frequency 
at 5 dpo [%] 
(SD) 

Freq 
[%] 

Cohen’s d (p) 

CD11b+CD45+ 58.6 (13.1) 75.6 (5.4) +17 5.31 (6.6 x 10-4) 

CD11b-CD45+ 10.3 (4.4) 9.8 (1.6) -0.5 -0.27 (0.7) 

CD11bhiCD45hi 43.4 (10.1) 27.1 (5.5) -16.3 -5.62 (1.3 x 10-4) 
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CD11bloCD45lo 12.4 (4.5) 45.1 (9.3) 32.7 13.03 (6.3 x 10-6) 

CD11bhiCD45hiiNOS+Arginase-1- 10.5 (4.2) 11.1 (3.5) 0.6 0.30 (0.8) 

CD11bhiCD45hiiNOS-Arginase-1+ 1.0 (0.6) 10.9 (3.1) 9.9 8.04 (3.6 x 10-5) 

CD11bhiCD45hiiNOS+Arginase-1+ 1.6 (0.6) 8.5 (3.1) 6.8 5.52 (3.8 x 10-4) 

CD11bhiCD45hiiNOS-Arginase-1- 86.8 (4.0) 69.6 (5.7) -17.2 -8.01 (1.2 x 10-5) 

CD11bmedCD45mediNOS+Arginase-1- 0.7 (0.5) 0.2 (0.1) -0.4 -0.71 (1.1 x 10-2) 

CD11bmedCD45mediNOS-Arginase-1+ 0.2 (0.6) 3.4 (0.9) 3.1 3.85 (2.4 x 10-6) 

CD11bmedCD45mediNOS+Arginase-1+ 0.2 (0.3) 0.2 (0.2) 0.0 -0.06 (0.8) 

CD11bmedCD45mediNOS-Arginase-1- 98.9 (1.2) 96.2 (1.0) -2.7 -2.60 (2.3 x 10-5) 

Table 10: Relative abundances of CD45+ events from spinal cords from EAE mice. Single cell suspensions from EAE spinal 
cords were measured by flow cytometry. CD45-BV786, CD11b-APC, iNOS-tdTomato and Arginase-1-YFP FI (signal area) 
defined the gates. Frequencies are shown as % (± SD). p values result from t statistics for independent and heteroscedastic 
groups for H0: µFrequency at onset = µFrequency at 5 dpo. Cohen’s d was calculated for the comparison between the frequencies at onset 

and the frequencies at 5 dpo. nonset = 13 mice, n5 dpo = 8 mice. dpo: days post onset. Freq: Frequency at 5 dpo – Frequency 
at onset [%]. 

At 5 dpo, the CD11bhiCD45hi/CD11bmedCD45med ratio was 5.8-fold lower when compared to 

onset (0.6 at 5 dpo versus 3.5 at onset, Figure 2, C, Table 10). As observed at onset, iNOS-tdTomato+ 

and Arginase-1-YFP+ events were all CD11b-APChi. However, in comparison to onset, there were more 

Arginase-1-YFP+ events (from 1.0 % to 10.9 % of all CD45-BV786+ events) and more iNOS-

tdTomato+Arginase-1-YFP+ events (from 1.6 % to 8.5 % of all CD45-BV786+ events). The ratio of iNOS-

tdTomato+ events to Arginase-1-YFP+ events was 1.0. 
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Figure 2: Flow cytometry analysis of cells isolated from EAE spinal cords (5 dpo). Single cell suspensions from spinal cord 
from EAE mice at 5 days after disease onset (5 dpo). Onset was defined as the day of the occurrence of the first EAE symptom. 
A: SSC/FSC analysis of all events. Log2-transformed CD45-BV786 FI is color-coded. B: Unsupervised cluster analysis 
(agglomerative clustering) of events characterized by SSC and FSC. C: CD45-BV786 and CD11b-APC FI of CD45+ clusters 1, 3, 
4, 5, 7 and 9. Logarithmic Ly6C-PerCP FI is color-coded. D – F: iNOS-tdTomato, CD11b-APC and Arginase-1-YFP fluorescence 
signals in all CD45+ events. iNOS-tdTomato and Arginase-1-YFP signals exclusively occurred in CD11b-APChi events. Some of 
these events were iNOS-tdTomato+Arginase-1-YFP+.The horizontal and vertical dotted lines indicate the FI threshold values 
(signal-to-noise) as defined by FMO controls. SSC-A and FSC-A FI were divided by 103. All other FI were log2-transformed. All 
FI are depicted as area of signals intensities. Maximum values (oversaturated signals) or minimum values (undersaturated 
signals) were excluded from the analysis. FI: fluorescence intensity. 

Flow cytometry analysis revealed 3 populations of cells which were characterized by CD45, CD11b 

and Ly6C expression: CD45hiCD11bhiLy6C+, CD45medCD11bmedLy6C+ and CD45hiCD11b-Ly6C- cells. CD11b 

is a marker protein which is predominantly expressed by myeloid cells. Thus, the majority of CD45+ 

cells in the EAE spinal cord were myeloid cells. Potentially, the CD11b- population can be considered 

as lymphoid cells such as T cells and B cells. As previously characterized, monocyte-derived 

macrophages express higher levels of CD45 and CD11b compared to microglia (278). Thus, within the 

myeloid cell population, the CD45hiCD11bhi population reflected macrophages whereas the 
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CD45medCD11bmed population were microglia. Taken together, this showed that at EAE onset the 

majority of the phagocytes were monocyte-derived macrophages. At 5 dpo the ratio between the 

number of macrophages and the number of microglia was reduced compared to onset. Moreover, only 

macrophages – and not microglia – polarized to M1 or M2, respectively (indicated by iNOS and 

Arginase-1 expression). While the M1 polarization of macrophages dominated at EAE onset, M2 and 

M1/M2 (iNOS+Arginase-1+) cells were approximately as abundant as M1 cells at 5 dpo. These findings 

were consistent with previous data from Locatelli et al. (222). 

4.2 Quantitative proteomics measured 8,615 different proteins in 19 different 

sample types 

To identify proteins which might define destructive and reparative phenotypes of mononuclear 

phagocytes and to better understand their functional role in lesion formation and resolution in EAE, 

we performed a mass spectrometry proteomic screen in collaboration with the group of Prof. Dr. Felix 

Meissner. Therefore, M1 (MiNOS) and M2 (MArginase-1) macrophages as well as microglia, monocytes, T 

cells, B cells, astrocytes, oligodendrocytes, OPCs and neurons were isolated from the healthy and EAE 

murine spinal cord, sorted and analyzed by mass spectrometry (see 3.2.10). For simplicity, 

CD45hiCD11bhiiNOS+Arginase-1- cells are referred to as M1 macrophages whereas CD45hiCD11bhiiNOS-

Arginase-1+ cells are referred to as M2 macrophages. 

4.2.1 The chance of a protein being detected in a sample by mass spectrometry correlated 

with its abundance 

Overall, 19 different sample types were analyzed in this study. Each sample type represented a 

cell type that was derived either from EAE or healthy spinal cords. At least 3 replicates were analyzed 

for each sample type, resulting in 85 individual samples (Table 11). 

 

Cell type Condition N samples N proteins fraction of all identified proteins 

M1 macrophages EAE 8 6,131 0.71 

M2 macrophages EAE 5 6,808 0.79 

Monocytes healthy 5 5,141 0.60 

Microglia EAE 4 6,574 0.76 

healthy 4 5,506 0.64 

CD4 T cells EAE 4 5,649 0.66 

healthy 3 6,127 0.71 

CD8 T cells EAE 3 4,411 0.51 

healthy 4 1,786 0.21 

B cells EAE 4 6,449 0.75 

healthy 4 6,502 0.75 

Neurons EAE 5 3,387 0.39 

healthy 4 3,518 0.41 

Astrocytes EAE 8 3,722 0.43 

healthy 4 4,345 0.50 

Oligodendrocytes EAE 4 5,083 0.59 



Results 

47 
 

healthy 4 3,965 0.46 

OPCs EAE 4 4,729 0.55 

healthy 4 4,645 0.54 

Table 11: Characterization of the samples analyzed in the mass spectrometry proteomics screen. The number of all 
identified proteins was 8,615. A protein was considered to be detected in a sample type (cell type per condition) if it was at 
least detected in 2 individual samples. N proteins shows the number of proteins which were identified under this premise, % 
of all identified proteins shows the fraction of all (8,615) proteins. 

In total, 8,615 proteins were identified. 1,280 proteins (14.9 %) were present in each of the 19 

sample types (in at least 2 sample replicates), 484 (5.6 %) were exclusively detected in 1 sample type 

(Figure 3, A). The number of identified proteins as well as the mean expression levels differed among 

the cell types (Figure 3, B). On average, there were more proteins detected in the immune cell samples, 

comprised of M1 macrophages, M2 macrophages, monocytes, microglia, CD4 and CD8 T cells and B 

cells (Md = 6,233, IQR = [5,197;6,500]), compared to CNS cell samples, encompassing neurons, 

astrocytes, oligodendrocytes and OPCs (Md = 3,961, IQR = [3,638;4,625], p = 2.27 x 10-9, Wilcoxon 

rank-sum test). In contrast, the mean protein expression levels did not differ between immune cell 

samples and CNS cell samples (M = 0.008, p = 0.96, t statistics for independent and heteroscedastic 

groups for H0: Mimmune cells = MCNS cells). The distribution of expression values was skewed, predominantly 

at the upper tail (Figure 3, C and D). 
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Figure 3: Characterization of expression values in the dataset. 8,615 proteins, which were identified in the mass 
spectrometry proteomics screen of immune cells and CNS cells, were analyzed with respect to their distribution to the 19 
different sample types. A: Number of proteins and number of samples in which they could be detected. B: Distribution of the 
number of detected proteins and expression levels according to the cell type (black line: mean expression level, grey area: 
± 1 SD). C: Histogram of the expression level of all detected proteins (solid line: mean expression, dashed line: SD). D: Quantile-
quantile plot of the expression levels of all detected proteins (n = 8,615). 

41.63 % of 732,275 data points were missing in the expression matrix. Proteins which were on 

average lowly expressed were detected in less samples compared to highly expressed proteins (Figure 

4, A). To test the quantitative association between a protein’s expression level and its chance to be 

detected in a sample, a linear regression model was established with the standardized logarithmic 

protein expression as the independent variable and the number of samples the protein was detected 

in as the dependent variable. An increase of the expression level by 1 SD was accompanied by an 

increase of the occurrence of the respective protein in 16 samples. Likewise, proteins that were 

detected in 1 – 30 samples showed a lower expression level when compared to proteins that were 

detected in 59 – 85 samples (M = 0.82, Figure 4, B). Thus, the lower the protein expression, the lower 

the chance for a protein to occur in the dataset. 
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Figure 4: Number of missing expression values and protein expression levels. A: Correlation analysis of the number of 
samples in which a protein was detected and its mean logarithmic expression (calculated across all samples). Each dot 
represents an individual protein (n = 8,615 proteins). B: Distribution of the mean logarithmic expression values, grouped into 
categories with different numbers of samples in which the protein was detected (n = 85 samples, the limits that define the 
categories are arbitrary, dashed lines: mean logarithmic expression values for each category). 

4.2.2 A combined imputation technique could replace missing data 

To replace missing data and control for the lower probability of proteins with low abundance to 

be present in the dataset, we compared different imputation approaches with respect to the prediction 

accuracy of missing data from a test matrix where individual data points had been deleted. The test 

matrix was designed to mimic the original expression dataset. In principle, the test matrix was an 

(n x j) x k dimensional matrix where n was the number of sample types and j the number of replicates 

of the sample types and k the number of identified proteins in the original dataset. The mean 

expression value of the test matrix was 0, the standard deviation was 2.15, the same as in the original 

dataset. Each of the k expression values of the test matrix were sampled from a standard normal 

distribution with SD = 0.2 to add random noise. Missing values were introduced in a not at random 

(NAR) fashion: If the mean of the respective sample was low, the chance of excluding this value would 

be higher. The chance was modelled using a gaussian kernel density estimate function with a mean 

that was set to -0.82 (derived from the original dataset). 

Regression-based (multiple imputation by chained equations, MICE), iterative and k-nearest 

neighbor (KNN) algorithms were assessed with respect to their prediction accuracy of missing data 

(Figure 5). In contrast to single value imputation algorithms (Supplement Figure 8), multiple imputation 

algorithms preserved more precisely the original distribution of the data. The iterative algorithm 

showed the highest correlation coefficient (for the correlation between original values and imputed 

values) and only a small downshift of the mean of the imputed data points when compared to the 

original data points (Figure 5, B). However, all multiple imputation algorithms would underestimate 

the biological relevance of a differential protein expression if the protein was exclusively expressed 

under one condition (or in one cell type) when compared to a second. Thus, an algorithm was 

developed that combined single value imputation and multiple imputation algorithms (Figure 5, D). If 

a protein was detected in less than half of the sample replicates (assuming that the protein is lowly 

expressed or not expressed at all), all expression values (for this particular protein in the respective 

samples) were imputed by a value drawn from a distribution whose mean was 2 SD below the actual 

mean of the expression value of the protein. The SD of this distribution was 0.3-times the SD of the 
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actual SD of the expression values of the protein. Next, the remaining missing values were imputed 

using an iterative approach (as shown in Figure 5, B). This imputation technique, which combines 

regression-based and single value approaches, was used for subsequent analysis in to control for lowly 

abundant proteins and prevent zero inflation. 
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Figure 5: Analysis of the accuracy of multiple and combined imputation algorithms to substitute missing data. Left panels: 
Correlation between original and imputed values of a test matrix. The probability density function was estimated using 
Gaussian kernels. Right panels: Distribution of the original, missing and imputed values. A – C: Different imputation algorithms 
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applied to a test matrix with missing values mimicking the original dataset. The mean values of each protein in the test matrix 
were drawn from a standard normal distribution with the mean standard deviation of the protein expression values of the 
original dataset. D: Combination of single imputation and multiple imputation algorithms. (r: Pearson’s correlation coefficient, 

M: difference in mean between original and imputed values, MICE: multiple imputation by chained equations, KNN: k-
nearest neighbor). 

4.2.3 Dimension reduction techniques revealed the degree of similarity of immune cell and 

CNS cell proteomes 

To assess the similarity of the proteomes, we performed a correlation analysis with subsequent 

hierarchical cluster analysis and Uniform Manifold Approximation and Projection (UMAP) analysis. 

With the exception of one sample (neurons from EAE), correlation analysis revealed a good inter-

sample correlation between samples that derive from the same cell type and experimental group. 

Cluster analysis revealed 2 main clusters (Figure 6). The first cluster was comprised of CNS cell samples 

(neurons, oligodendrocytes, astrocytes and OPC), the second cluster encompassed all immune cell 

samples (M1 and M2 macrophages, monocytes, microglia CD4 and CD8 T cells, B cells). The immune 

cell cluster was subdivided into further clusters, however, there was neither a clear separation 

between myeloid and lymphatic cells nor between CNS resident and peripheral immune cells. Overall, 

the experimental group (EAE versus healthy control) was a stronger classifier than the cell type. CNS-

specific mononuclear phagocytes (M1 and M2 macrophages as well as microglia) formed a cluster at a 

low level. Monocytes (from healthy controls) clustered most distantly from M1 and M2 macrophages 

within the immune cell cluster. Likewise, CD4 and CD8 T cells from EAE showed a lower proximity to 

macrophages than to their counterparts from healthy controls. B cells from EAE and healthy controls, 

which were both isolated from PBMC, were the only experimental groups of a specific cell type which 

showed close proximity in the cluster analysis. 
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Figure 6: Inter-sample correlation analysis of immune cell and CNS cell proteomes. Color-coded correlation coefficients 
(Pearson) for each inter-sample correlation. Each sample is defined by the cell type (color) and the experimental condition 
(greyscale, healthy control or EAE) as indicated with the bars at the edges of the matrix. The dendrogram illustrates the 
hierarchical cluster analysis based on the Euclidean distances between each feature of the correlation matrix (r: Pearson’s 
correlation coefficient). 

In UMAP, phagocytes that were isolated from EAE (M1 and M2 macrophages as well as microglia) 

formed a cluster that was demarcated from lymphatic cells (CD4 and CD8 T cells and B cells, both from 

EAE and healthy controls, Figure 7). Monocytes and CD8 T cells from healthy controls were most 

distinct from all other sample types. Microglia from EAE were closer to M2 macrophages (mean 

Euclidean distance Md = 0.88) than to M1 macrophages (Md = 1.18), whereas microglia from healthy 

controls shared features of both M1 macrophages (Md = 2.32) and M2 macrophages (Md = 2.45) to a 

comparable extend. 
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The CNS cells samples showed less tighter clustering, only OPCs were clearly separated from 

neurons, astrocytes and oligodendrocytes (Figure 7, C and D). Unlike immune cells, there was no clear 

clustering of similar cell types. 

 

Figure 7: Dimensional reduction of the protein expression matrix. The protein expression matrices of all immune cells and 
CNS cells samples were standardized and subjected to UMAP. The color code represents the cell type or the experimental 
condition, respectively (A and B: immune cells, C and D: CNS cells). 

4.2.4 Analysis of signature protein expression revealed the specificity of the immune cell and 

CNS cell proteomes 

To validate the sample quality on a single protein level, we analyzed the expression levels of the 

proteins which were targeted for cell sorting. All immune cells were stained with a fluorophore-

conjugated anti-CD45 antibody and sorted as CD45+ events. In contrast, CNS cells were sorted as CD45- 

events. Overall, the expression of CD45 was higher in immune cells when compared to CNS cells, except 

of mononuclear phagocytes (M1 and M2 macrophages as well as microglia) which showed similar 

expression levels of CD45 as some of the CNS cell types (neurons, astrocytes from healthy controls and 

oligodendrocytes from EAE, Mexpression(CD45) = 4.77, p = 1.19 x 10-19, Figure 8, A). Myeloid cells (M1 and 

M2 macrophages, microglia and monocytes) showed a higher expression of the myeloid lineage marker 

CD11b when compared to lymphatic cells (T cells and B cells, Mexpression(CD11b) = 3.63, p = 8.47 x 10-7). 

M1 and M2 macrophages were sorted as CD45hiCD11bhi events, whereas microglia were sorted as 

CD45medCD11bmed events. Thus, the expression of CD45 and CD11b in M1 and M2 macrophages was 

higher compared to microglia (Mexpression(CD45) = 1.09, p = 1.74 x 10-4 and Mexpression(CD11b) = 0.56, 

p = 3.19 x 10-2). To distinguish between M1 and M2 macrophages, we used a transgenic reporter mouse 

line which expressed tdTomato under a Nos2 promoter and YFP under a Arg1 promoter. Indeed, M1 
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macrophages expressed more iNOS than M2 macrophages (Mexpression(iNOS) = 2.74, p = 1.89 x 10-5), 

whereas the expression of Arginase-1 was higher in M2 macrophages (Mexpression(Arginase-1) = 2.67, 

p = 3.88 x 10-7). Among all immune cells, CD4 and CD8 T cells expressed highest levels of CD3 

(Mexpression(CD3D) = 6.36, p = 1.55 x 10-21). Compared to CD8, the CD4 expression was higher in CD4 T 

cells (Mexpression(CD4) = 6.67, p = 5.74 x 10-7), whereas the CD8 expression was higher in CD8 T cells 

(Mexpression(CD8B) = 4.05, p = 6.87 x 10-5), respectively. 

The abundance of THY1 was higher in neurons than in all immune cells (Mexpression(THY1) = 3.89, 

p = 6.59 x 10-5), however, when compared to astrocytes, oligodendrocytes and OPCs the expression 

level was only marginally higher (Mexpression(THY1) = 0.56, p = 0.29). The expression of ACSA-2 was high 

in astrocytes compared to all other CNS samples (Mexpression(ACSA-2) = 1.88, p = 5.38 x 10-4). However, the 

expression of ACSA-2 in neurons from EAE exceeded the expression of ACSA-2 in astrocytes 

(Mexpression(ACSA-2) = 0.41, p = 0.27). O4 and PDGFRa, which were used to characterize oligodendrocytes 

and OPCs, were not detected on proteome level. 

Hierarchical cluster analysis based on the Euclidean distance of the signature protein expression 

matrix revealed a clear distinction between CD4 and CD8 T cells and all other cell types, indicating that 

the CD3, CD4 and CD8 expression were most specific for T cells (Figure 8, B). In the second main cluster 

(left) all CNS cells, except for OPCs, including microglia from healthy control, clustered together. There 

was no clear sub-clustering of the individual CNS cell types, indicating that the expression of signature 

proteins, that were used for cell sorting, could not resolve the cell-type specificity on a proteome level. 

 

Figure 8: Protein expression of marker proteins of immune and CNS cells. Analysis of the protein expression levels of proteins 
that were used for cell type identification for cell sorting. A: Standardized mean logarithmic expression values were color-
coded for visualization. B: Column dendrogram showing the hierarchical clustering according to the Euclidean distances 
between each sample in the expression matrix (C: control, EAE: experimental autoimmune encephalomyelitis). 

Monocyte-derived M1 and M2 microglia were sorted according to their CD45 and CD11b 

expression. Since this identification technique is discussed controversially, we focused on more 

established markers to distinguish between macrophages and microglia (308, 309). This revealed a 

clear enrichment of the microglia markers P2RY12, SALL1 and TMEM119, previously proposed as 

additional signature proteins to discriminate microglia and macrophages (Figure 9). CCR2, a marker 

that is delineates mononuclear phagocytes from the periphery, was highest expressed in monocytes. 
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Figure 9: Expression of microglia signature proteins. Standardized mean logarithmic expression values for proteins which 
distinguish microglia from macrophages were color-coded for visualization (C: control, EAE: experimental autoimmune 
encephalomyelitis). 

To further evaluate the proteome specificity of samples derived from CNS cells, we assessed the 

expression of signature proteins as previously identified by Cahoy et al. (310). This dataset 

encompasses RNA-seq expression data from murine neurons, astrocytes and oligodendrocytes. 

Overall, 16 out of 43 neuronal markers (as described by Cahoy et al.) were identified in Thy-

1+CD45- cells (neurons) by mass spectrometry. Three (GABRA1, SCG2, SLC12A5) out of these 16 

proteins were significantly higher expressed in neurons compared to astrocytes, oligodendrocytes and 

OPCs. However, the differences in mean logarithmic expression between neurons and all other CNS 

cell types of these proteins were low (Mexpression(GABRA1) = 0.63, Mexpression(SCG21) = 0.88, 

Mexpression(SLC12A5) = 0.65) when compared to the differences of signature protein expression between 

different immune cell types. There was no separation of the neuron samples in the cluster analysis 

based on the expression of the signature proteins. The following proteins/genes were enriched in the 

RNA-seq dataset obtained by Cahoy et al. but not enriched in neurons in this proteome dataset: Satb2, 

Nts, Odz2, 9130024F11Rik, Gpr88, Myt1l, 4930544G21Rik, Gabrg2, A930034L06Rik, Plcxd3, Pcsk2, 

Neurod6, Nov, Prdm8, Glra2, Htr2c, Hs3st2, Crh, A930009L07Rik, Epha7, Dlx1, A130090K04Rik, Gabra5, 

Efcbp1, Sstr2, Npas4 and Vip. 

Twenty Out of the 40 signature genes/proteins, which were analyzed to assess the sample 

specificity of astrocytes, were detected in the astrocyte proteome. However, only 5 proteins were 

significantly higher expressed in astrocytes when compared to neurons, oligodendrocytes and OPCs 

(ALDH1L1, ALDOC, ATP1A2, PLA2G7, SLC25A18). PLA2G7 showed the strongest enrichment in the 

astrocyte samples (Mexpression(PLA2G7) = 1.54, p = 2.24 x 10-3). The differences in mean logarithmic 

expression (Mexpression) of the other differentially regulated proteins between astrocytes and all other 

CNS cell types spanned from 0.49 to 1.46. 1500005I02Rik, 2900019G14Rik, AU067665, Bmpr1b, 

C030045D06Rik, Chrdl1, Cyp4f14, Cyp4f15, Dio2, F3, Fzd2, Gjb6, Gm266, Ppp1r3c, Ppp1r3g, Rfx4, 

Slc15a2, Tmem166, Ttpa and Vil2, which were additional signature genes as reported by Cahoy et al., 

could not be detected in the astrocyte proteome. Cluster analysis of the expression matrices of the 

astrocyte signature proteins revealed no clear differentiation between astrocytes and other CNS cell 

types. 

18 proteins out of 41 candidates from Cahoy et al. were detected in the oligodendrocyte 

proteome. 4 of them were significantly enriched in oligodendrocytes when compared to neurons, 

astrocytes and OPCs (EVI2A, MBP, MOBP and PLA2G4A). Myelin basic protein (MBP) showed the 
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highest differential protein expression (Mexpression(MBP) = 1.86, p = 5.16 x 10-2). Besides myelin basic 

protein, proteolipid protein 1 (PLP1) was the only other myelin protein that was enriched in the 

oligodendrocyte samples (Mexpression(PLP1) = 1.18, p = 0.13, from t statistics for independent samples). 

Ugt8a, AI314604, 9630013A20Rik, 9530066K23ik, A330104H05Rik, Edg8, 1700047M11Rik, 

A230069A22Rik, Gja12, Gal3st1, Erbb3, Tmem10, Elovl7, 6330530A05Rik, Sgk2, Fa2h, Gm98, Il23a, 

Srpk3, Plxnb3, Trf, Plekhh1, Mal, Gpr62, Adamts4, signature genes identified by Cahoy et al., were not 

present in the oligodendrocyte expression dataset. Cluster analysis based on the expression of 

oligodendrocyte signature proteins indicated that CNS cells which derive from the same experimental 

group (EAE or control) are more similar than same CNS cell types from different experimental groups. 

Taken together, only a small fraction of known CNS cell signature proteins were (specifically) 

enriched in the respective proteomes. Thus, we obtained no cell type-specific resolution for the CNS 

cell proteomes. However, when compared to the immune cell proteomes, the CNS cell proteomes 

were highly specific in terms of the expression of neuronal (neurofilament light polypeptide, NEFL) and 

synaptic (synaptosomal-associated protein, SNAP25) markers, astrocyte markers (10-

formyltetrahydrofolate dehydrogenase, ALDH1L1 and astrocyte cell surface antigen-2, ACSA-

2/ATP1A2/ATP1B2) and myelin proteins (myelin basic protein, MBP and myelin proteolipid protein 1, 

PLP1). 

4.2.5 Differential protein abundance analysis of M1 versus M2 macrophages 

One of the main goals of this study was to elucidate the molecular signature of M1 and M2 

macrophages. Therefore, we first analyzed the differential protein expression of M1 and M2 

macrophages to screen for up- and downregulated proteins in each polarization state. Differential 

protein expression was defined as an at least 1.5-fold change in (logarithmic) protein expression level 

with q ≤ 0.05 (FDR-adjusted p value derived from t statistics for independent samples with 

homoscedasticity). We performed a receiver operating characteristic (ROC) analysis to validate this 

premise (Figure 10). This showed that a fold change of 1.5 indicated a sufficient specificity and 

sensitivity (Figure 10, B) and, thus, was set as the lower threshold for the definition of differentially 

expressed proteins. 

 

Figure 10: Receiver operating characteristic (ROC) analysis of fold change thresholds for the differential protein expression 
analysis. A: Correlation between specificity and sensitivity for different fold change thresholds for the analysis of the 
differential protein expression of M1 and M2 macrophages. Fold change was defined as the difference in the mean logarithmic 
protein expression levels. The specificity was calculated as the fraction of identified proteins above a certain fold change 
threshold that met the criteria q ≤ 0.05 (FDR-adjusted p value from t statistics for independent samples with 
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homoscedasticity). Sensitivity was defined as the fraction of proteins with q ≤ 0.05 whose fold change exceeded the given 
threshold. B: Euclidean distance to P(x|y) in the Cartesian space of A, where x is the minimum value of 1-sensitivity and y is 
the maximum of the specificity, calculated for fold change thresholds reaching from 0 to 5 (dashed line: fold change 
threshold = log2(1.5) = 0.58). 

Overall, 1,525 proteins (17.70 % of all identified proteins in the M1 and M2 proteomes) were 

differentially expressed in the M1 and M2 macrophage proteomes, 614 were higher abundant in M1 

macrophages, 911 in M2 macrophages (Figure 11, A). The mean logarithmic fold change of proteins 

that were upregulated in M1 macrophages (Mlog2
(M1) = 1.42) was higher when compared to the mean 

fold change of proteins which were enriched in M2 macrophages (Mlog2
(M2) = 1.98). The 50 most 

extreme differentially enriched proteins are displayed in Figure 11, B and C. 
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Figure 11: Differential protein expression of M1 and M2 macrophages. A: Logarithmic fold change (FC) differential 
expression (M(M1 expression level) – M(M2 expression level)) of all detected proteins and their respective t value (green: upregulated in 
M2 macrophages with log2(FC) ≤ log2(1.5) and q ≤ 0.05, red: upregulated in M1 macrophages with log2(FC) ≥ log2(1.5) and 
q ≤ 0.05, from FDR-adjusted p values from t statistics for independent samples with group homoscedasticity). B and C: Top 
50 differentially regulated proteins in M2 macrophages (B) and M1 macrophages (C, green and red: color-coded ranked fold 
changes, nM1 = 8, nM2 = 5). 
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4.2.6 Gene set enrichment analysis coupled to network analysis revealed molecular 

signatures of M1 macrophage and M2 macrophage proteomes 

To identify molecular patterns underlying differential protein expression in M1 and M2 

macrophages, we performed gene set enrichment analysis coupled to network analysis (NezzworGS 

algorithm). First, proteins which were enriched in M1 and M2 macrophages were filtered according to 

the above defined criteria. For this analysis, the Reactome gene set library (version 7.4, filtered for 

mouse gene sets) was used as a reference database. 

The analysis revealed the enrichment of 94 gene sets with a normalized enrichment score (NES) 

from -1.51 (most extremely enriched in M2 macrophages) to 2.92 (most extremely enriched in M1 

macrophages, Figure 12). After filtering according to statistical testing of the enrichment (p ≤ 0.25), 17 

gene sets were identified to be enriched in M1 and M2 macrophages, respectively. The non-

conservative statistical filtering was applied because of pre-filtering of the input expression matrix as 

well as the explorative nature of this analysis. The identified gene sets were further analyzed by 

network analysis based on similarity of the gene sets (as defined as the number of genes they have in 

common) and the number of leading-edge proteins. 
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Figure 12: Gene set enrichment network analysis (Reactome) of M1 and M2 proteomes. Proteins which were significantly 
differently abundant in M1 versus M2 macrophages (|FC| > 1.5 and q ≤ 0.05) were subjected to gene set enrichment analysis 
(GSEA, Reactome). Gene sets are displayed as red (enriched in M1 macrophages) and blue (enriched in M2 macrophages) 
nodes. The normalized enrichment score (NES) is color-coded (NES > 0: enriched in M1 macrophages, NES < 0: enriched in M2 
macrophages). The area of each node represents the mean protein expression of the gene sets’ underlying proteins. The 
thickness of edges represents the fraction of leading-edge proteins which two gene sets have in common (the highest fraction 
of the two gene sets was taken into account). The spatial distribution in the Cartesian space encodes the similarity of two 
gene sets as defined by the number of genes/proteins they share. 

The most enriched gene sets in M1 macrophages were “Neutrophil degranulation” (34, 

NES = 2.92), “Innate Immune System” (33, NES = 2.25), “DNA Replication” (32, NES = 2.08), “Synthesis 

of DNA” (31, NES = 2.07) and “Immune system” (30, NES = 1.95, Figure 12). In contrast, M2 

macrophages showed an enrichment of the gene sets “Metabolism of RNA” (1, NES = -1.52), “MHC 
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class II antigen presentation” (2, NES = -1.42), “Metabolism of proteins” (3, NES = -1.41), “Signaling by 

Receptor Tyrosine Kinases” (4, NES = -1.39) and “GPCR downstream signaling” (5, NES = -1.34). 

Modularity analysis revealed that the network was comprised of 8 modules (Supplement Figure 

9). Each module represents a subnetwork of gene sets, which share a significant amount of genes and, 

therefore, might display a functional cluster within the M1 and M2 macrophage proteome. Modularity 

class 4 showed gene sets enriched in M1 macrophages, which were related to immune cell activation 

and cytokine metabolism (module of gene sets 20, 21, 22, 27, 28, 30, 33 and 34). Likewise, module 3 

and module 5 were comprised of gene sets enriched in M1 macrophages. Module 5 (gene sets 18 and 

19) showed gene sets related to keratinization/cornified envelope which is essential for building up 

physical (membrane) barriers. Module 3 was predominantly characterized by gene sets related to cell 

proliferation and DNA replication (gene sets 23, 24, 25, 26, 29, 31, 32). Module 1 encompassed one 

M2-macrophage-enriched gene set (“MHC class II antigen presentation”) which did not share a 

significant fraction of leading-edge proteins with other gene sets and was therefore not connected 

with other nodes within the network. Modularity class 7 (gene sets 3, 4, 9, 11, 13, 15 and 17) was 

comprised of metabolism-related gene sets and the gene set “Extracellular matrix organization”. 

Modularity class 2 (gene sets 5, 6, 8, 10 and 12) was built of gene sets related to G-protein coupled 

signaling (e. g. “GPCR downstream signaling”, “GPCR ligand binding” and “Signaling by GPCR”), 

neuronal proteins (e. g. “Transmission across Chemical Synapses” and “Nervous system 

development”). 

The analysis of the parent-child hierarchy of the enriched Reactome gene sets revealed 3 

pedigrees within the M2 macrophage-enriched gene sets (Figure 13). The parent gene sets 

(“Metabolism of proteins”, “Signaling by GPCR” and “Vesicle-mediated transport”) partially reflect the 

gene-set-relationships identified by modularity analysis (modularity classes 7, 2 and 8). Likewise, the 

parent gene sets of the gene sets enriched in M1 macrophages mirror the modules in the network 

analysis (“Keratinization”, “Response to elevated platelet cytosolic Ca2+”, “Cell cycle” and “Immune 

system”; modularity class 5, 4 and 3). 
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Figure 13: Pedigree analysis of Reactome gene sets identified in the M1 and M2 macrophage proteomes. Hierarchical 
relationship of gene sets. Gene sets from the gene set enrichment analysis of the M1 and M2 macrophage proteomes which 
are related in the Reactome gene set database are displayed as nodes. Edges indicate their relationship. Genes underlying a 
child gene set are members of the parent gene set as well. The normalized enrichment score is color-coded. 

Taken together, the M1 macrophage proteome showed an enrichment of gene sets related to 

immune cell signaling, proliferation and keratinization, whereas gene sets related to G protein-coupled 

signaling, neuronal system, extracellular matrix organization and MHC II-dependent antigen 

presentation were enriched in the M2 macrophage proteome. 

We hypothesized that the differential protein expression analysis and gene set enrichment 

analysis were potentially confounded by (protein) contaminants that were enriched during the cell 

isolation process, especially taking into account the enrichment of gene sets related to extracellular 

matrix and neuronal system. Thus, we performed RNA sequencing to measure if the enrichment of 

specific proteins and gene sets is also mirrored on transcription level (with contributions from Lea 

Merkel). Therefore, CD45+CD11b+Ly6G-Nos2+ (M1) and CD45+CD11b+Ly6G-Arginase-1+ (M2) cells from 
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the EAE spinal cord were isolated and sorted at onset and onset + 1 d (M1) as well as onset + 4 d (M2). 

6,924 transcripts of 8,615 proteins (80.4 %) of the whole respective proteome could be identified 

(Figure 14, A). However, the correlation between the M1-M2 fold change RNA expression and the M1-

M2 fold change protein expression was low (r = 0.14, p = 1.75 x 10-32 for H0: r ≠ 0, Figure 14, B). In 

contrast to the proteome, transcripts of the signature enzyme Arginase-1 (Arg1) were not differently 

enriched in M2 cells, however, Nos2 showed a clear enrichment in M1 cells (Supplement Figure 10). 

Based on previous studies, which compared cellular transcriptomes and proteomes, RNA levels only 

partially predict changes on protein level. As outlined by Hoogendijk et al., this might also depend on 

the experimental setup and activation or proliferation state of a cell being analyzed (311). The 

discrepancy between RNA and protein levels in our study is pronounced when looked at 

Arg1/Arginase-1 levels. In contrast to the protein levels, the analysis of the RNA levels in M1 and M2 

macrophages could not segregate both polarization states. This might also result from different half-

lives of Nos2/iNOS and Arg1/Arginase-1 RNA and protein molecules. 

To identify candidates which are enriched in M1 and M2 macrophages both on protein as well as 

on RNA level, we computed a correlation analysis for different sum of ranks cutoff values (Supplement 

Figure 11). Thereby, 1676 transcripts/proteins (863 uppermost and lowermost regulated candidates) 

showed a correlation coefficient r ≥ 0.9. The 55 most enriched transcripts/proteins in M1 and M2 

macrophages, respectively, are shown in Figure 14. 
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Figure 14: Transcriptome-proteome correlation. A: Logarithmic fold change of the genes expressed in M1 and M2 and their 
t values (calculated from a two-sided t-test for independent groups with homoscedasticity). Transcripts which were also 
detected on protein level were color-coded (red: enriched in M1 macrophages, green: enriched in M2 macrophages). B: 
Logarithmic fold changes (M1/M2) of the gene expression and protein expression. Green and red indicate the genes/proteins 
which showed a correlation coefficient r ≥ 0.9. C and D: 55 most extremely enriched genes/proteins in M2 (C) or M1 (D) 
macrophages. The sum of (min-max scaled) ranks is calculated by adding the (min-max scaled) ranks of the respective 
log2(M1/M2) fold change derived from transcriptomics and proteomics. The smaller the sum of ranks, the more enriched a 
candidate was both on a transcriptomic and proteomic level in M1 macrophages. The higher the sum of ranks, the more the 
candidate was enriched in M2 macrophages on a transcriptomic and proteomic level simultaneously. 
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Next, we analyzed the gene set enrichment of the M1 and M2 macrophage transcriptome to test 

if there are functional clusters that are conserved both in the proteome and transcriptome. Therefore, 

the RNA expression matrix was filtered for relevantly differentially abundant transcripts (|FC| > 1.5 

and q ≤ 0.05), and subjected to gene set enrichment analysis coupled to network analysis (NezzworGS 

algorithm, Figure 15). Overall, 74 gene sets were enriched in the M1 and M2 transcriptome, however, 

only 23 gene sets passed the filter criterion (p ≤ 0.25). Among those, 11 gene sets were enriched in the 

M2 macrophage transcriptome (NES < 0) and 12 gene sets were enriched in the M1 macrophage 

transcriptome (NES > 0). 

Subsequent network analysis with modularity analysis revealed two modules which encompassed 

most of the enriched gene sets. With the exception of gene sets 2, 5, 10 and 11, all M2 macrophage-

enriched gene sets shared a significant number of leading-edge genes and were therefore connected 

in the network. Within this module, gene sets 6, 7 and 9 shared most of the underlying genes. These 

gene sets were related to neuronal development. Likewise, gene set 1 and 8 were strongly related, 

both gene sets encompassed transcripts related to G protein-coupled signaling. Moreover, the gene 

sets “CDC42 GTPase cycle” and “Extracellular matrix organization” were identified in this module. With 

the exception of gene set 12 (“Class A/1 (Rhodopsin-like receptors)”), all M1 macrophage-enriched 

gene sets were found within one module. M1 macrophage-enriched gene sets were predominantly 

related to (intracellular) signaling pathways such as mitogen-activated protein kinase (MAPK), WNT 

and PI3K/Akt signaling as well as “Signaling by Interleukins”. 
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Figure 15: Gene set enrichment network analysis (Reactome) of M1 and M2 transcriptomes. Transcripts which were 
significantly differently abundant in M1 versus M2 macrophages (|FC| > 1.5 and q ≤ 0.05) were subjected to gene set 
enrichment analysis (GSEA, Reactome). Gene sets are displayed as red (enriched in M1 macrophages) and blue (enriched in 
M2 macrophages) nodes. The normalized enrichment score (NES) is color-coded (NES > 0: enriched in M1 macrophages, 
NES < 0: enriched in M2 macrophages). The area of each node represents the mean expression of the gene sets’ underlying 
transcripts. The thickness of edges represents the fraction of leading-edge genes which two gene sets have in common (the 
highest fraction of the two gene sets was taken into account). The spatial distribution in the Cartesian space encodes the 
similarity of two gene sets as defined by the number of genes/proteins they share. 

The enrichment of gene sets related to G protein-coupled signaling, neuronal pathways as well as 

(immune cell) signaling such as MAPK and PI3K/Akt signaling was also mirrored when looked into 

parent-child relationships of enriched gene sets (Figure 16). In M2 macrophages, the gene sets “GPCR 

downstream signaling” and “Developmental biology” (the latter one further branches into “Nervous 

system development”) were identified as gene sets with the highest hierarchy. Accordingly, the gene 

sets “Immune System”, “Intracellular signaling by second messengers” and “MAPK family signaling 

cascades” were the gene sets with highest hierarchy enriched in M1 macrophages. 
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Figure 16: Pedigree analysis of Reactome gene sets identified in the M1 and M2 macrophage transcriptomes. Hierarchical 
relationship of gene sets. Gene sets from the gene set enrichment analysis of the M1 and M2 macrophage transcriptomes 
which are related in the Reactome gene set database are displayed as nodes. Edges indicate their relationship. Genes 
underlying a child gene set are members of the parent gene set as well. The normalized enrichment score is color-coded. 

Taken together, we applied NezzworGS, a novel computational algorithm that combines gene set 

enrichment analysis with network analysis, which enabled us to explore potential molecular signatures 

of M1 and M2 macrophages in depth. Overall, gene sets enriched in M2 macrophages (extracellular 

matrix organization, neuronal development, MHC II-associated antigen presentation and G protein-

coupled receptor signaling) were conserved, on both proteome and transcriptome level, although the 

correlation between the abundance of single proteins and transcripts was low. In M1 macrophages, 

gene sets related to immune cell signaling could be detected both on protein and transcript levels. 

However, there was no clear overlap of proliferation-associated gene sets (as detected in the M1 

macrophage proteome) or gene sets related to PIP3/Akt, MAPK or WNT signaling (as detected in the 

M1 macrophage transcriptome). 
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4.2.7 Time-dependent transcriptomic alterations in M1 and M2 macrophages 

The previously shown analyses were based on differentially abundant proteins or transcripts 

derived from M1 macrophages which were isolated from EAE onset and M2 macrophages which were 

isolated 5 days after EAE onset. Consequently, longer exposure of cells to environmental signals within 

the tissue can have an impact on the molecular phenotype of these cells, regardless the transition of 

M1 macrophages into M2 macrophages as previously observed by Locatelli et al. (222). To address this, 

we analyzed the transcriptomic signature of M1 and M2 macrophages from an early and late time point 

during EAE disease course. First, we estimated the transcriptome similarity of M1 (iNOS+Arginase-1-), 

M2 (iNOS-Arginase-1+), M0 (iNOS-Arginase-1-) and M12 (iNOS+Arginase-1+) macrophages at different 

time points during EAE disease progression (onset + 1 d and onset + 4 d). Based on the gene expression 

matrix, UMAP analysis revealed that the majority of transcripts are similarly abundant in different 

polarization phenotypes (M1, M2, M0 and M12) and time points (onset + 1 d and onset + 4 d, Figure 

17). To test how the differential abundance of transcripts could translate into a functional signature of 

these cells, we applied the NezzworGS algorithm to the transcriptome subset that mapped to cluster 1 

which showed highest variability in gene expression among different polarization states and time 

points. 
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Figure 17: UMAP analysis of M1, M2, M0 and M12 macrophages at different time points during EAE disease progression. 
Normalized gene expression matrix subjected to UMAP (left upper plot) and balanced iterative reducing and clustering using 
hierarchies (right upper plot) analysis. Different macrophage polarization states were analyzed at different time points (red: 
EAE onset + 1 d, green: EAE onset + 4 d). The mean logarithmic gene expression for each condition (macrophage polarization 
type per time point) was color-coded. M12 macrophages at EAE onset + 4 d were excluded from further analysis because of 
low cell count. 
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The previously identified gene sets characterizing M1 macrophages (as opposed to M2 

macrophages) related to immune cell signaling and MAPK as well as PI3K/Akt signaling were not 

identified when M1 macrophages from EAE onset + 1 d were compared to M1 macrophages from EAE 

onset + 4 d (Figure 18). Thus, these signaling pathways are likely a time-independent signature of M1 

macrophages. In contrast, gene sets related to proliferation and DNA replication as well as WNT 

signaling were enriched at EAE onset + 1 d (compared to EAE onset + 4 d), indicating that cell 

proliferation and WNT signaling are prominent features of M1 macrophages at lesion formation and 

are less dominant at later time points during EAE disease progression. GTPase-related gene sets 

showed the highest NES at EAE onset + 4 d as well as the highest mean expression of the underlying 

transcripts, indicating a dominant role at later time points of EAE. 

In contrast to M1 macrophages, gene set enrichment analysis of M2 macrophages from EAE 

onset + 1 d and EAE onset + 4 d showed enriched gene sets only at EAE onset + 4 d (Figure 19). This 

share of gene sets encompassed gene sets related to extracellular matrix organization, G protein-

coupled receptor signaling and neuronal genes as previously identified in the M2 macrophage 

proteome and transcriptome (when compared to M1 macrophages). 
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Figure 18: Gene set enrichment network analysis (Reactome) of the transcriptomes of M1 macrophages at EAE onset + 1 d 
and onset + 4 d. Transcripts were pre-filtered according to their clustering in the UMAP analysis of the expression matrix of 
M1, M2, M0 and M12 macrophages at relapse and remission of EAE and subjected to gene set enrichment analysis (GSEA, 
Reactome). Gene sets are displayed as red (enriched at relapse) and blue (enriched at remission) nodes. The normalized 
enrichment score (NES) is color-coded (NES > 0: enriched at relapse, NES < 0: enriched at remission). The area of each node 
represents the mean expression of the gene sets’ underlying transcripts. The thickness of edges represents the fraction of 
leading-edge genes which two gene sets have in common (the highest fraction of the two gene sets was taken into account). 
The spatial distribution in the Cartesian space encodes the similarity of two gene sets as defined by the number of 
genes/proteins they share 
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Figure 19: Gene set enrichment network analysis (Reactome) of the transcriptomes of M2 macrophages at EAE onset + 1 d 
and onset + 4 d. Transcripts were pre-filtered according to their clustering in the UMAP analysis of the expression matrix of 
M1, M2, M0 and M12 macrophages at onset + 1 d and onset + 4 d of EAE and subjected to gene set enrichment analysis 
(GSEA, Reactome). Gene sets are displayed as red (enriched at onset + 1 d) and blue (enriched at onset + 4 d) nodes. The 
normalized enrichment score (NES) is color-coded (NES > 0: enriched at onset + 1 d, NES < 0: enriched at onset + 4 d). The 
area of each node represents the mean expression of the gene sets’ underlying transcripts. The thickness of edges represents 
the fraction of leading-edge genes which two gene sets have in common (the highest fraction of the two gene sets was taken 
into account). The spatial distribution in the Cartesian space encodes the similarity of two gene sets as defined by the number 
of genes/proteins they share. 

These findings suggest that M2 macrophages develop their molecular signature over time while 

M1 macrophages change their molecular signature from a proliferation-associated profile at early 

stages of the disease to a more versatile functional palette during disease progression. 

4.2.8 Leading-edge analysis of proteins and transcripts from gene sets enriched in the M1 and 

M2 macrophage proteome and transcriptome 

Our previous finding suggested that gene sets related to G protein-coupled receptor signaling, 

nervous system, extracellular matrix (all enriched in M2 macrophages) as well as immune cell signaling 

(enriched in M1 macrophages) significantly contributed to the proteomic and transcriptomic 

phenotype of M1 and M2 macrophages in EAE. Next, we analyzed the contribution of single proteins 

and transcripts to the expression of these phenotypes. 

Single protein analysis of leading-edge proteins from gene set analysis revealed that the two most 

differentially abundant proteins in the gene set “GPCR downstream signaling”, which was enriched in 

M2 macrophages, are the neurotransmitter receptors gamma-aminobutyric acid type B receptor 

subunit 2 (GABBR2) and metabotropic glutamate receptor 2 (GRM2, Figure 20). However, they were 

not detected on transcript level, although gene set enrichment analysis of M1 versus M2 macrophage 

transcriptomes showed an enrichment of neuronal-related gene sets in M2 macrophages. The 

discrepancy between the proteome and transcriptome in terms of fold changes between M1 and M2 

macrophages was observed not only for the gene set “GPCR downstream signaling” but also other 

differentially enriched gene sets, although the overall gene set or related gene sets were conserved in 

both the proteome and transcriptome. This implies that the proteomic and transcriptomic phenotype 

of M1 and M2 macrophages has a considerable overlap, however, the differential abundance of 

individual proteins and their respective transcripts does not necessarily need to overlap. 
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Figure 20: Leading-edge proteins from gene sets enriched in the M1 and M2 macrophage proteomes.Logarithmic 
differential protein abundance (black) and transcript abundance (grey) of leading-edge proteins from gene sets enriched in 
M2 macrophages (A: “GPCR downstream signaling”, B: “Nervous system development”, C: “Extracellular matrix 
organization”) and M1 macrophages (D: “Immune System”, E: “DNA Replication”). 

Taken together, gene set enrichment analysis coupled to network analysis of proteomes and 

transcriptomes of differently polarized macrophages at different time points during EAE disease course 

revealed that M2 macrophages acquire a molecular signature over time which encompasses gene sets 

related to G protein-coupled receptor signaling, neuronal development-related proteins/genes and 

extracellular matrix organization. Notably, since these gene sets are conserved in the proteome and 

transcriptome, it is rather unlikely that their enrichment in the proteome results from a contamination 

of extracellular proteins or proteins from other cell types such as neurons. M1 macrophages showed 
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an enrichment of proliferation-related gene sets, both, in the proteome and transcriptome. The 

analysis of the temporal change of the molecular signature of M1 macrophages in the transcriptome 

revealed that these gene sets dominate the initial phase of EAE disease progression. However, this 

finding does not necessarily imply that macrophages indeed proliferate in the inflamed CNS tissue.  The 

molecular signature might also be a remnant from the proliferation state of the cells or the underlying 

genes/proteins are shared for other functions during neuroinflammation. 

4.2.9 Functional protein-protein interaction network analysis revealed functional hubs of 

extracellular proteins within the M1 and M2 macrophage proteomes 

In the previous analysis we characterized the molecular phenotype of M1 and M2 macrophages 

during EAE disease progression. This analysis identified gene sets related to immune cell signaling and 

proliferation enriched in M1 macrophages. On the other hand, gene sets related to G protein-coupled 

receptor signaling, extracellular matrix organization and neuronal development were enriched in M2 

macrophages. We hypothesized that the function of M1 and M2 macrophages in the context of CNS 

inflammation is eventually conveyed by the proteins which they secrete. These secreted proteins might 

then either induced further pro-inflammatory cascades (of other immune cells or CNS target cells) and 

contribute to tissue destruction or reinforce intra- and extracellular programs related to tissue repair 

and maintenance. To screen for molecular functional hubs of extracellular proteins within the M1 and 

M2 macrophage proteomes on single-protein level, we applied a newly developed computational 

algorithm based on functional protein-protein interaction mapping of single proteins coupled to 

network analysis with subsequent gene set enrichment analysis (FUPPINA class of the Python module 

Nezzworker). 

First, we filtered the M1 and M2 macrophage proteome for extracellular proteins. Overall, 114 

proteins of the 614 proteins which were enriched in the M1 macrophage proteome (18.57 %) were 

annotated as extracellular proteins, according to the Cell-Cell Interaction Database (302). The M2 

macrophage proteome exhibited 122 proteins (13.39 %) which were annotated as extracellular 

proteins. Next, the functional relationships between the extracellular proteins were assessed by 

analyzing their functional protein-protein interaction as defined by the STRING database (300). In the 

M1 proteome, 64 proteins (out of 68) showed at least one interaction to another protein and were 

connected to the main network (Figure 21). The network was composed of 64 vertices which were 

connected by 266 edges. The network’s density was 0.13 (where 0 is a network without any edge and 

1 a network with 
n ∙ (n-1)

2
 edges where n is the number of vertices). There was no correlation between 

the degree of centrality and protein expression level on single protein level (r = 0.13, p = 0.29, Pearson 

correlation with p for H0: r ≠ 0). 
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Figure 21: Functional protein-protein interaction network analysis (FUPPINA) for M1 macrophage extracellular proteins. 
Vertices represent proteins which were annotated as extracellular proteins. The degree of centrality is color-coded, the area 
of a vertex encodes the (min-max scaled) protein expression. Edges display the interaction between two proteins. The edge 
thickness as well as the spatial distribution in the Cartesian space encode the (min-max scaled) STRING score. The 50 proteins 
with the highest degree of centrality were annotated (n = 64). 

In the M2 macrophage proteome 102 extracellular proteins (out of 108) showed at least one 

functional protein-protein interaction to another protein (Figure 22). The 102 vertices were connected 

via 341 interactions (edges). The network density was 0.06. There was no correlation between the 

degree of centrality and the expression level of the proteins in the network (r = 0.15, p = 0.12, Pearson 

correlation with p for H0: r ≠ 0). 
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Figure 22: Functional protein-protein interaction network for M2 macrophage extracellular proteins. Vertices represent 
proteins which were annotated as extracellular proteins. The degree of centrality is color-coded, the area of a vertex encodes 
the (min-max scaled) protein expression. Edges display the interaction between two proteins. The edge thickness as well as 
the spatial distribution in the Cartesian space encode the (min-max scaled) STRING score. 6 proteins without any connection 
to the main network were excluded from the analysis (n = 102). 

Next, we compared the two networks to gain deeper insights into the functional diversity of 

macrophage extracellular proteins. Overall, the M1 macrophage functional protein-protein interaction 

network of extracellular proteins showed a higher mean degree of centrality, mean degree of 

eigenvector centrality, mean betweenness centrality and mean closeness centrality compared to the 

M2 macrophage functional protein-protein interaction network of extracellular proteins (Figure 23). 

Similarly, the average number of edges per node was higher in the M1 network (4.16 versus 3.34). 

Taken together, the denser the network (indicated by higher mean centrality metric and a higher 

number of edges per node), the more proteins functionally interact with each other which can be 

interpreted as a higher degree of functional relatedness of proteins. Because of higher centrality 

metrics and a higher average number of edges per node, there are more functional protein-protein 

interactions among M1 extracellular proteins compared to M2 extracellular proteins. 
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Figure 23: Metrics of the M1 and M2 macrophage extracellular proteins functional protein-protein interaction networks. 
Histograms of the vertex metrics of the M1 (red) and M2 (green) macrophage extracellular proteins networks. The vertical 
lines indicate the respective mean value for each feature (A: degree of centrality, B: degree of eigenvector centrality, C: 
degree of betweenness centrality, D: degree of closeness centrality, nM1 = 64, nM2 = 102). 

By visual inspection both networks displayed multiple subnetworks. A subnetwork is characterized 

by a high local density (higher number of edges per nodes) and, thus, might indicate a functional hub 

within the whole network. To further explore these subnetworks, we computed the modularity of each 

network. The functional protein-protein interaction network of M1 macrophage extracellular proteins 

showed 4 modularity classes (Figure 24). Nine proteins, which were connected in modularity class 1, 

showed the highest density. The modularity classes 1 and 3 were clearly separated from the core of 

the (whole) network which was built up by the modularity classes 2 and 4. 
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Figure 24: Modularity analysis of the M1 macrophage extracellular proteins functional protein-protein interaction network. 
Vertices represent proteins which were annotated as extracellular proteins. The modularity class is color-coded. Edges display 
the interaction between two proteins. The edge thickness as well as the spatial distribution in the Cartesian space encode the 
(min-max scaled) STRING score. 

Next, we assessed the enrichment of Reactome gene sets within each modularity class to get 

further insights into the molecular phenotypes of the share of proteins that build up the modularity 

classes. To precisely estimate which gene sets are enriched in each share of proteins (within a module), 

we implemented the Enrichr algorithm into the network analysis to test the gene set enrichment of a 

given share of genes/proteins in relation to a share of (control) baseline genes/proteins (301). We set 

the whole M1 and M2 macrophage proteome as baseline and computed the enrichment of gene sets 

within one network module. Modularity class 1 showed an enrichment of 2 gene sets (“Neutrophil 

degranulation” and ‘Innate immune system”), Modularity class 3 showed more enriched gene sets, 

however, those gene sets were only based on the enrichment of 4 different proteins (FAS, NCAM1, 

SELL and SPN) with a relative strong contribution of FAS to the enrichment of 6 (out of 10) gene sets. 

In contrast, modularity classes 2 and 4 showed an enrichment of gene sets related to pro-inflammatory 

signaling pathways (modularity class 4) and tissue damaging pathways (modularity class 2, e. g. 

“Degradation of the extracellular matrix”, “Collagen degradation” and “Extracellular matrix 

organization”). Furthermore, this modularity class revealed an enrichment of the TLR ligands S100A8 

and S100A9 in the extracellular M1 macrophage proteome. Taken into account the spatial orientation 

of the modules within the main network, FAS-related gene sets (modularity class 3) and immune 
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system-related gene sets (modularity class 1) were comprised of proteins which did not show any 

connection with each other, thus, pointing towards different functions within the share of M1 

macrophage extracellular proteins. In contrast, gene sets which derived from modularity class 2 and 4 

(extracellular matrix-related and immune cell signaling-related) encompassed proteins which 

functionally interacted with each other. 

 

Modularity 
class 

Gene set q value Proteins 

1 

Neutrophil degranulation < 0.001 ADAM8, CD177, AGPAT2, MCEMP1, 
PLAUR 

Innate immune system < 0.001 ADAM8, CD177, AGPAT2, MCEMP1, 
LBP, PLAUR 

2 

Degradation of the extracellular matrix < 0.001 MMP8, CTSG, MMP9, ELANE 

Extracellular matrix organization < 0.001 CTSG, MMP8, TTR, ELANE, MMP9 

Collagen degradation < 0.001 MMP8, ELANE, MMP9 

Regulation of TLR by endogenous ligand 0.006 S100A8, S100A9 

IRAK4 deficiency TLR2/4 0.006 S100A8, S100A9 

RHO GTPases activate NAPDH oxidases 0.008 S100A8, S100A9 

Infection with mycobacterium tuberculosis 0.012 LTF, CTSG 

Diseases of immune system 0.014 S100A8, S100A9 

Amyloid fiber formation 0.016 LTF, TTR 

Signaling by interleukins 0.041 PRTN3, CTSG, LCN2, MMP9 

3 

FasL/CD95L signaling 0.018 FAS 

Cell surface interactions at the vascular wall 0.018 SELL, SPN 

Tp53 regulates transcription of death receptors 
and ligands 

0.02 FAS 

Regulation by c-FLIP 0.027 FAS 

Caspase activation via death receptors in the 
presence of ligand 

0.039 FAS 

Signal transduction by L1 0.048 NCAM1 

RIPK1 mediated regulated necrosis 0.048 FAS 

NCAM1 interactions 0.048 NCAM1 

Caspase activation via extrinsic apoptotic signaling 
pathway 

0.048 FAS 

Basigin interactions 0.048 SPN 

4 

Binding and uptake of ligands by scavenger 
receptors 

0.012 HPX, ALB 

Amyloid fiber formation 0.012 SNCA, APP 

Interleukin 1 family signaling 0.012 IL1B, IL1R2, APP 

Interferon alpha/beta signaling 0.02 ISG15, IFITM3 

Signaling by interleukins 0.023 IL1B, IL1R2, APP, PTGS2 

Transport of organic anions 0.023 ALB 

Innate immune system 0.032 IL1B, APP, ISG15, TREM1, PPBP, 
SERPING1 

DDX58/IFIH1-mediated induction of interferon 
alpha beta 

0.036 APP, ISG15 

Interleukin 4 and interleukin 13 signaling 0.037 IL1B, PTGS2 

Synthesis of 15-eicosatetraenoic acid derivatives 0.04 PTGS2 

Table 12: Modularity-class-wise gene set enrichment analysis of the M1 macrophage extracellular proteins functional 
protein-protein interaction network. 
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Modularity analysis of the M2 macrophage extracellular proteins functional protein-protein 

interaction network revealed 4 modularity classes (Figure 25). Modularity class 3 and 4 showed the 

highest density (0.26 and 0.21, respectively). Vertices of these modularity classes were clearly spatially 

separated. 

 

Figure 25: Modularity analysis of the M2 macrophage extracellular proteins functional protein-protein interaction network. 
Vertices represent proteins which were annotated as extracellular proteins. The modularity class is color-coded. Edges display 
the interaction between two proteins. The edge thickness as well as the spatial distribution in the Cartesian space encode the 
(min-max scaled) STRING score. 

Gene set enrichment analysis of proteins underlying these modularity classes indicated that 

proteins with modularity class 3 are associated with tissue repair and biomolecule synthesis (Table 13). 

In contrast, modularity class 4 showed proteins associated with proteolytic extracellular matrix 

degradation (cathepsins), comparable to modularity class 2 of the M1 macrophage extracellular 

proteins functional protein-protein interaction network. Furthermore, cathepsin D (CTSD) showed a 

high degree of centrality, thus, it might function as a central hub for the tissue degrading function of 

M2 macrophages. Modularity class 1 was comprised of proteins involved in cell-cell signaling and 

complement cascades. Notably, these proteins exhibited both pro- (e. g. CXCL16, C1QA, TLRs) and anti-

inflammatory (e. g. CX3CL1, IL10RB) functions. C1QA and CD68 showed the highest degrees of 

centrality in this modularity class and were both highly expressed in the M2 macrophage proteome. 
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Modularity 
class 

Gene set q value Proteins 

1 

Immunoregulatory interactions between a 
lymphoid and a non-lymphoid cell 

0.004 CD200R1, CD200, SIGLEC1 

Toll-like receptor cascades 0.004 CTSS, TLR3, TLR8, TLR7 

Chemokine receptors bind chemokines 0.004 CXCL16, CX3CL1 

Innate immune system 0.006 C1QB, CTSS, TLR3, C1QC, TLR7, C1QA, 
TLR8, CD68 

Interleukin 10 signaling 0.013 IL10RB, CD80 

Adaptive immune system 0.013 CD200R1, MRC1, CD80, CD200, 
SIGLEC1, CTSS 

Binding and uptake of ligands by scavenger 
receptors 

0.015 MSR1, LRP1 

Peptide ligand binding receptors 0.019 CXCL16, CX3CL1 

Signaling by GPCR 0.019 GRM2, CXCL16, CX3CL1, GABBR2 

Class A/1 (Rhodopsin-like receptors) 0.028 CXCL16, CX3CL1 

2 

Nicotinate metabolism 0.006 CD38, NT5E 

Innate immune system 0.008 IGF2R, CD4, CD93, GAA, ANPEP, 
LGALS3 

Alpha defensins 0.032 CD4 

Pyrimidine catabolism 0.038 NT5E 

PTK6 promotes HIF1A stabilization 0.038 GPNMB 

LTC4-CYSLTR-mediated IL4 production 0.038 GGT1 

Defensins 0.038 CD4 

Cargo recognition for clathrin-mediated 
endocytosis 

0.038 IGF2R, CD4 

Glycogen storage diseases 0.044 GAA 

RUNX1 regulates transcription of genes involved in 
differentiation of myeloid cells 

0.049 LGALS3 

3 

Hemostasis 0.023 MERTK, AHSG, PROS1, F2, ITGAV 

Defective factor VIII causes Hemophilia A 0.025 F2 

Anchoring fibril formation 0.025 COL4A1 

Crosslinking of collagen fibrils 0.025 COL4A1 

Chylomicron clearance 0.025 APOE 

RUNX3 regulates immune response and cell 
migration 

0.031 SPP1 

Assembly of active LPL and LIPC lipase complexes 0.031 APOA4 

HDL remodeling 0.042 APOE 

N-glycan antennae elongation 0.042 MGAT4A 

Metabolism of carbohydrates 0.043 B4GALT7, BGN, VCAN 

4 

Peptide hormone metabolism 0.017 CTSD, CTSZ 

Toll-like receptor cascades 0.018 CTSB, LGMN, CTSL 

Attachment and entry 0.019 CTSL 

Extracellular matrix organization 0.022 CTSB, CTSD, CTSL 

Endosomal vacuolar pathway 0.024 CTSL 

Biosynthesis of the N-glycan precursor (dolichol 
lipid-linked oligosaccharide, LLO) and transfer to 
a nascent protein 

0.024 GLB1, CTSA 

COPII mediated vesicle transport 0.027 CTSZ, FOLR1 

RUNX1 regulates transcription of genes involved in 
differentiation of keratinocytes 

0.028 CTSL 

Vitamin D (calciferol) metabolism 0.028 LGMN 
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Trans-golgi network vesicle budding 0.035 GNS, CTSZ 

Table 13: Modularity-class-wise gene set enrichment analysis of the M2 macrophage extracellular proteins functional 
protein-protein interaction network. 

Taken together, compared to the functional protein-protein interaction network of M1 

macrophage extracellular proteins, the M2 macrophage extracellular proteins functional protein-

protein interaction network was looser and less interconnected, indicated by lower values of centrality 

measures, less edges per vertex and a lower triadic closure (0.52 versus 0.58). This might indicate that 

extracellular proteins in the M1 macrophage proteome share a more directed molecular phenotype 

when compared to the extracellular proteins of the M2 proteome. On the other hand, the multi-centric 

M2 macrophage network might indicate a higher functional diversity of M2 macrophages. This 

conclusion is supported by the enrichment of genes sets within the share of M2 macrophage 

extracellular proteins that point towards both tissue degrading and tissue repair mechanism. Notably, 

the modularity class 2 of the M1 macrophage extracellular proteins functional protein-protein 

interaction network contained proteins which were associated with the formation of (neutrophil) 

extracellular traps, such as MPO, ELANE, CTSG, LTF, CAMP, the matrix metalloproteinases MMP9, 

MMP8 as well as S100A8 and S100A9 (312, 313). Moreover, MMP8, MMP9, LTF, ELANE and MPO were 

among the 10 vertices with the highest degree of centrality in the network. 

Classically, extracellular trap proteins are predominantly expressed by neutrophils. To evaluate 

our finding which suggests that these proteins are also expressed by macrophages at an early EAE 

stage, we assessed the protein expression of histone H3, LTF, MPO, ELANE, S100A8 and S100A9 in 

histological sections from EAE disease onset + 5 d using an iNOS tdTomato Cre x Arginase-1 YFP 

transgenic mouse line to allow the spatial mapping of fluorescent signals with MiNOS (M1) and MArginase-

1 (M2) macrophages (Figure 26). At EAE disease onset there was no immunoreactive protein 

detectable. At EAE onset + 5 d S100A8 signals and MiNOS (M1) macrophages showed and overlay 

compared to MArginase-1 (M2) macrophages. However, Histone H3, LTF, MPO, ELANE and S100A9 signals 

were not co-localized with neither the YFP nor the tdTomato signal. Likewise, given the fact that all 

proteins are secreted proteins, there was no clear spatial relationship of the signals to the location of 

MiNOS (M1) and MArginase-1 (M2) macrophages. There was no extracellular DNA (DAPI-positive) 

detectable. Notably, S100a8 and S100a9 were two of the most strongly enriched transcripts in the M1 

transcriptome (S100a8: log2(FC) = 2.08, q = 2.78 x 10-2; S100a9: log2(FC) = 7.42, q = 6.80 x 10-3). 

However, considering the even higher protein expression by neutrophils, a cellular assignment of the 

investigated proteins to macrophages by fluorescent microscopy might be unprecise. 

Taken together, by applying FUPPINA we identified various proteins which are functionally related 

to each other. The analysis of single candidates revealed an enrichment of proteins related to 

extracellular traps in the M1 macrophage proteome. However, histological analysis could not resolve 

the cell type specificity within EAE lesions. Moreover, analysis of the gene sets underlying the proteins 

that are functionally related could identify proteins which might be responsible for tissue destructive 

and reparative properties of M1 and M2 macrophages, respectively. 



Results 

85 
 

 

Figure 26: Histological analysis of the expression of MET-associated proteins. Immunofluorescence microscopy of 50 µm 
lumbar spinal cord sections from an iNOS tdTomato Cre x Arginase-1 YFP transgenic mouse at EAE onset + 5 d stained with 
antibodies targeting MET-associated proteins. The section with the histone H3 staining was also stained with DAPI (blue) to 
assess the extracellular DNA content. 
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4.2.10 Ligand-receptor interactions 

To further investigate the molecular function of secreted proteins of M1 and M2 macrophages, 

we assessed the ligand-receptor interactions between M1 and M2 macrophages and other immune 

cell types. Therefore, proteins which were annotated as ligands and receptors (based on the 

CellPhoneDB and Cell-Cell Interaction Database) were extracted from the expression matrix (302, 307). 

A biologically meaningful interaction was assumed if the expression level of both receptor and ligand 

exceeded the mean expression (of all cell types) of the respective protein by 1 SD. 

4.2.10.1 M1 and M2 macrophage ligands 

Under the aforementioned assumptions, the M1 macrophage proteome contained 50 proteins 

which were identified as ligands (Figure 27). 109 of their respective receptors were detected in B cells, 

CD4 and CD8 T cells, and microglia. 

Overall, these ligands and receptors could interact via 344 interactions that were distributed 

unequally among different cell types: M1 macrophage ligands showed most interactions with 

receptors enriched in T cells (CD4 T cells: 35 receptors/85 interactions, CD8 T cells: 34 receptors/120 

interactions), followed by microglia (23 receptors/47 interactions) and B cells (17 receptors/39 

interactions). 
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Figure 27: M1 macrophage ligand-receptor interactions. Hierarchical edge bundling of proteins which were annotated as 
ligands and receptors and which were at least 1 SD higher abundant in the M1 macrophage proteome than the mean 
abundance of all other immune cell types. Proteins are displayed as ligand-receptor interaction partners. Proteins were 
annotated according to the CellPhoneDB (Efremova et al.) and the Cell-Cell Interaction Database (Qiao et al.), respectively 
(302, 307). 

Overall, 51 proteins of the M2 macrophage proteome could be identified as ligands with an 

abundance exceeding 1 SD of the mean abundance among all cell types (Figure 28). These proteins 

could interact with 94 receptors found on T cells, B cells, and microglia. Overall, we found 337 possible 

interactions. The (quantitative) distribution of the ligand-receptor interactions between M2 

macrophages and the respective other cell type was comparable with M1 macrophages (CD4 T cells: 

78 interactions, CD8 T cells: 116 interactions, B cells: 44 interactions, microglia: 42 interactions). 

Overall, the M2 macrophage proteome shared 30 ligands with the M1 macrophage proteome. 

Among the 27 ligands specific to the M2 macrophage proteome (as compared to the M1 proteome), 

PTP1 (13 interactions), CTS1 and DPP (both 11 interactions) as well as MFI and SIAE (both 9 

interactions) were the ligands with most receptor interactions. Most receptors of the (specific) M2 

macrophage ligands were expressed by CD4 and CD8 T cells, however, CD4 and CD8 T cells did not 

share common receptors to these ligands but rather showed individual enrichments patterns. CD44 

and M6PR were the receptors that were capable of recognizing most of the ligands which were 
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specifically secreted by M2 macrophages (in contrast to M1 macrophages). CD44 could recognize its 

ligands SPP1, DPP7, SIAE, PTP1 and MIF, whereas M6PR is capable of binding DPP7, SIAE and PTP1. 3 

out of these ligands (DPP7, SIAE and PTP1) could function as signals for both the communication 

between M2 macrophages and CD4 T cells through the binding of IGF2R (DPP7, SIAE and PTP1) as well 

as CD8 T cells through VCAM1 (PTP1). 

 

Figure 28: M2 macrophage ligand-receptor interactions. Hierarchical edge bundling of proteins which were annotated as 
ligands and receptors and which were at least 1 SD higher abundant in the M2 macrophage proteome than the mean 
abundance of all cell types. Proteins are displayed as ligand-receptor interaction partners. Proteins were annotated according 
to the CellPhoneDB (Efremova et al.) and the Cell-Cell Interaction Database (Qiao et al.), respectively (302, 307). 

To gain deeper insights into the differential signaling of M1 and M2 macrophages with other 

immune cells, the 10 most enriched ligands were analyzed with respect to the expression of their 

respective receptors (Figure 29). 64 receptors of these ligands were detected in the proteomes of 

microglia, T and B cells. The majority of the receptors were specific to signals deriving from either M1 

or M2 macrophages, however, 14 receptors could recognize molecules from both M1 and M2 

macrophages. 
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Figure 29: Specific M1 and M2 macrophage ligand-receptor interactions. Analysis of the 20 most differentially enriched 
ligands in M1 and M2 macrophages (left: M1 and M2 macrophage ligands with color-coded log2(M1/M2) differential 
expression) and their receptors (right). The edges indicate the ligand-receptor interactions. The color of the receptors and 
edges encode the ligand specificity (red: ligands from M1 macrophages, green: ligands from M2 macrophages, yellow: ligands 
from both M1 and M2 macrophages). Heatmaps indicate the standardized mean logarithmic protein expression in EAE (right, 
red/blue) and the logarithmic fold change between the protein abundance in EAE and healthy control (left, black/yellow). 

Overall, T cells expressed the respective receptors most, indicating their capability of recognizing 

M1 and M2 macrophage ligands best (Figure 30). In particular, the receptors of M1 macrophages and 

M2 macrophage ligands were most abundant on CD4 T cells, whereas the receptors recognizing both 

ligands from M1 and M2 macrophages were highest abundant in CD8 T cells. Microglia showed the 

highest receptor abundance for ligands from M1 macrophages and lowest abundance for ligands from 

M2 macrophages. 
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Figure 30: Mean receptor expression of immune cells. Mean logarithmic expression of the receptors for ligands from M1 and 
M2 macrophages (red and green) and from both M1 and M2 macrophages (orange). 

The most differentially abundant ligand (in the M1 macrophage proteome compared to the M2 

macrophage proteome) was S100A8. ligand-receptor analysis revealed a possible interaction with the 

surface proteins VCAM1, PTPRA, EGFR, TLR4, TFRL, IGF2R, RPSA and TMED1. Because S100A8 forms a 

heterodimer with S100A9, the ligand-receptor interactions of S100A8 and S100A9 partially overlapped 

(PTPRA, EGFR, TLR4). 

The most abundant receptor in this analysis was the steroid hormone receptor ERR1 (ESRRA) in 

the CD8 T cell proteome which could recognize the neutrophil gelatinase-associated lipocalin (LCN2) 

and haptoglobin (HP) as ligands from M1 macrophages. Compared to CD8 T cells, the abundance of 

ESRRA in CD4 T cells was much lower. 

Transforming growth factor beta receptor (TGFBR) was found to be expressed on microglia as well 

as B and T cells (TGFBR2 on all of these cells, TGFBR1 higher on microglia) in EAE. TGFBR1 and TGFBR2 

could recognize ligands which were found both in the M1 (LRG1) and M2 macrophage proteome 

(INHBA). 

4.2.10.2 M1 and M2 macrophage receptors 

To better understand how M1 and M2 macrophages can receive extracellular signals, the 

distributions of receptor molecules in the M1 and M2 macrophage proteomes were analyzed. 

Therefore, proteins which are annotated as receptors according to the CellPhoneDB (Efremova et al.) 

and the Cell-Cell Interaction Database (Qiao et al.) were filtered (302, 307). Overall, 222 receptors could 

be detected in the M1 and M2 macrophage proteomes. 19 of these receptors were enriched in the M1 

macrophage proteome (log2(FC) > log2(1.5) and q ≤ 0.05, Figure 31, A and B), whereas 35 receptors 

were enriched in the M2 macrophage proteome (log2(FC) < log2(1.5) and q ≤ 0.05). 168 receptors were 

not differentially distributed between the M1 and M2 proteomes (|log2(FC)| < log2(1.5) or q > 0.05, 

Benjamini-Hochberg-adjusted p values from independent t statistics with homoscedasticity). 
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Figure 31: M1 and M2 macrophage receptors. A: Analysis of the differential protein abundance of receptors in the M1 and 
M2 proteomes. Different types of immune cell receptors are indicated by a colored dot. The logarithmic fold change (M1/M2 
protein abundance) is color-coded. The annotation ‘M1 receptors’ and ‘M2 receptors’ is based on a FC- and q value-cutoff 
(|log2(FC)| > log2(1.5) and q ≤ 0.05). ‘M1/M2 receptors’ do not meet either of one or both criteria. B: Distribution of receptors 
in the M1 and M2 proteomes. Specific M1 and M2 receptors (based on FC and q value as described before) are colored in red 
(M1) and green (M2), respectively. C: Gene set enrichment analysis (GSEA, Reactome) of M1, M2 and M1/M2 receptors with 
subsequent weighted network analysis. The nodes represent gene sets, edges indicate if two nodes/gene sets share at least 
one gene/protein. The network’s weight is based on the number of common genes. Gene sets were only considered as 
enriched if OR > 0 and q ≤ 0.05 with the odds ratio OR and the FDR-adjusted p value q deriving from Fisher’s exact test. Ligands 
and receptors were identified according to the CellPhoneDB (Efremova et al.) and the Cell-Cell Interaction Database (Qiao et 
al.), respectively (302, 307) (CSF: colony-stimulating factor, IFN: interferon, TGF: transforming growth factor, TNF: tumor 
necrosis factor; M1 macrophage receptors GSEA network: 1: Adaptive Immune System, 2: Signal Transduction, 3: DAP12 
interactions, 4: Hemostasis, 5: Innate Immune System, 6: Signaling by GPCR, 7: Immune System, 8: Response to elevated 
platelet cytosolic Ca2+, 9: Platelet degranulation, 10: Cell surface interactions at the vascular wall, 11: L1CAM interactions, 12: 
GPCR ligand binding, 13: G alpha (i) signaling events, 14: Class A/1 (Rhodopsin-like receptors), 15: Peptide ligand-binding 
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receptors, 16: Signal transduction by L1, 17: FasL/ CD95L signaling, 18: Formyl peptide receptors bind formyl peptides and 
many other ligands, 19: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell, 20: Toxicity of 
botulinum toxin type F (BoNT/F), 21: Toxicity of botulinum toxin type D (BoNT/D); M1/M2 macrophage receptors GSEA 
network: 1: G alpha (i) signaling events, 2: Signaling by GPCR, 3: FCERI mediated MAPK activation, 4: NCAM signaling for 
neurite out-growth, 5: Interleukin-3, 5 and GM-CSF signaling, 6: Signaling to ERKs, 7: Interleukin-2 signaling, 8: Signaling to 
RAS, 9: Interleukin receptor SHC signaling, 10: Signaling by Leptin, 11: Prolonged ERK activation events, 12: Frs2-mediated 
activation, 13: ARMS-mediated activation, 14: Signaling to p38 via RIT and RIN, 15: G alpha (q) signaling events, 16: FRS-
mediated FGFR4 signaling, 17: FRS-mediated FGFR3 signaling, 18: FRS-mediated FGFR2 signaling, 19: FRS-mediated FGFR1 
signaling, 20: IRS-mediated signaling, 21: MAPK family signaling cascades, 22: RAF/MAP kinase cascade, 23: GRB2 events in 
EGFR signaling, 24: SHC1 events in EGFR signaling, 25: SOS-mediated signaling, 26: SHC1 events in ERBB4 signaling, 27: 
Signaling by the B Cell Receptor (BCR), 28: Signaling by Insulin receptor, 29: EPH-Ephrin signaling, 30: GPCR ligand binding, 31: 
IGF1R signaling cascade, 32: IRS-related events triggered by IGF1R, 33: Signaling by Type 1 Insulin-like Growth Factor 1 
Receptor (IGF1R), 34: Insulin receptor signaling cascade, 35: MAPK1/MAPK3 signaling, 36: Signaling by ERBB4; M2 
macrophage receptors GSEA network: 1: Hemostasis, 2: GPCR ligand binding, 3: Vesicle-mediated transport, 4: Regulation of 
lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARa), 5: PPARa activates gene expression, 6: Binding 
and Uptake of Ligands by Scavenger Receptors, 7: Cross-presentation of particulate exogenous antigens (phagosomes), 8: 
Platelet homeostasis, 9: Platelet calcium homeostasis, 10: Elevation of cytosolic Ca2+ levels). 

Overall, the M1 and M2 macrophage proteomes contained members of various receptor families. 

Among those, interleukin receptors were detected in both the M1 and M2 macrophage proteome. The 

interleukin receptors IL1R2 and IL4R were relatively enriched in M1 macrophages, whereas IL10RB was 

enriched in M2 macrophages. IL17RA and IL18R1, two receptors that can recognize pro-inflammatory 

cytokines IL-17 and IL-18, both showed a logarithmic M1/M2 fold change > 0 (IL17RA: log2(FC) = 0.59, 

q = 0.23; IL18R1: log2(FC) = 0.47, q = 0.15). IL1RAP and IL2RB, which bind the pro-inflammatory 

molecules IL-1 and IL-2, were equally enriched in M1 and M2 macrophages (IL1RAP: log2(FC) = 0.15, 

q = 0.84; IL2RB: log2(FC) = 0.19, q = 0.69). IL10RB was the only interleukin receptor that was 

significantly enriched in M2 macrophages (log2(FC) = -2.29, q = 2.51 x 10-4). Notably, IL-10, the ligand 

of the IL10RB, showed anti-inflammatory properties (314). 

Furthermore, the M1 and M2 proteomes contained the chemokine receptors CCR1, CCR2, CCR5, 

CXCR2 and CXCR4. However, only CXCR2 and CXCR4 were differentially enriched in M1 (CXCR2: 

log2(FC) = 3.69, q = 2.00 x 10-6) and M2 macrophages (log2(FC) = -2.02, q = 2.97 x 10-2), respectively. 

CCR1, CCR2 and CCR5 showed no enrichment, neither in M1 nor M2 macrophages (CCR1: 

log2(FC) = 0.11, q = 0.83, CCR2: log2(FC) = 0.05, q = 0.93, CCR5: log2(FC) = -0.26, q = 0.67). The atypical 

chemokine receptor 1 ACKR1 was enriched in the M2 proteome (log2(FC) = -1.94, q = 7.47 x 10-4). 

The alpha and beta subunit of the granulocyte-macrophage colony-stimulating factor receptor 

(GM-CSF/CSF2RA and CSF2RB) the macrophage colony-stimulating factor receptor (M-CSF/CSF1R) as 

well as the granulocyte colony-stimulating factor receptor (G-CSF/CSF3R) were expressed by 

macrophages. However, none of these receptors was significantly enriched in either of the proteomes. 

From the interferon-alpha/beta receptor, which contains the 2 subunits IFNAR1 and IFNAR2, only 

subunit 2 (IFNAR2) was detected in the macrophage proteomes. Moreover, interferon gamma receptor 

1 (IFNGR1) was detected. However, none of these receptors (subunits) were significantly enriched in 

either of the proteomes (IFNAR2: log2(FC) = 0.35, q = 0.23, IFNGR1: log2(FC) = -0.40, q = 0.44). 

Likewise, transforming growth factor receptors were not enriched in either the M1 or the M2 

macrophage proteome (TGFBR1: log2(FC) = -0.63, q = 8.45 x 10-2, TGFBR2: log2(FC) = 0.13, q = 0.84). 

Within the tumor necrosis factor receptor superfamily, the Fas receptor (FAS) was highly enriched 

in the M1 macrophage proteome when compared to the M2 macrophage proteome (log2(FC) = 2.72, 

q = 1.0 x 10-6). Other members of the tumor necrosis factor receptor superfamily could be detected in 
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both the M1 and M2 macrophage proteomes (CD40, TNFRSF1A and TNFRSF1B). All of them showed a 

relative enrichment in the M1 macrophage proteome (FC > 0), however, none of them was significantly 

enriched (CD40: log2(FC) = 0.92, q = 7.34 x 10-2, TNFRSF1A: log2(FC) = 0.15, q = 0.82, TNFRSF1B: 

log2(FC) = 0.43, q = 0.19) 

Moreover, we analyzed the expression of the macrophage-specific complement receptors CR3 and 

CR4 as well as the complement component 3a receptor 1 (C3AR1) and the complement component 5a 

receptor 1 (C5AR1/CD88). CR3 and CR4 are both members of the b2-integrin family. Both share the 

common b2 chain CD18 (ITGB2). In addition, CR3 is completed by CD11b (ITGAM), whereas CR4 

functions together with CD11c (ITGAX), respectively (315). CR3 was higher enriched in M1 

macrophages when compared to M2 macrophages, however the fold change was below the threshold 

of log2(1.5) (ITGB2: log2(FC) = 0.31, q = 1.17 x 10-2; ITGAM: log2(FC) = 0.44, q = 8.89 x 10-3). In contrast, 

the abundance of ITGAX (as a part of CR4) was slightly higher in M2 macrophages (log2(FC) = -0.34, 

q = 0.14). The complement component 3a receptor 1 (C3AR1) was neither detected in the M1 

macrophage proteome, nor in the M2 macrophage proteome. However, the complement component 

5a receptor 1 (C5AR1) was more abundant in the M1 macrophage proteome (log2(FC) = 0.70, 

q = 1.40 x 10-2
, Benjamini-Hochberg-adjusted p values from independent t statistics with 

homoscedasticity). 

Next, we performed a gene set enrichment analysis (GSEA) of the M1, M2 and M1/M2 

macrophage receptors (Figure 31, C). In the M1 macrophage proteome, 21 gene sets were enriched. 

Of those, 8 gene sets formed a tight module (2, 5, 6, 7, 12, 13, 14, 15). This cluster was comprised of 

gene sets associated with immune system-related G protein-coupled receptor signal transmission. 

Further, it encompassed gene sets pointing towards aspects of cell-cell-communication 

(‘Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell’). In contrast, only 10 

gene sets derived from the M2 macrophage-enriched receptor expression. These gene sets grouped in 

3 clusters. The first cluster (gene sets 3 and 6) pointed towards an anti-inflammatory/tissue clearance 

function (e. g. ‘Vesicle-mediated transport’ and ‘Binding and Uptake of Ligands by Scavenger 

Receptors’). The second cluster (gene sets 4 and 5) was associated with lipid uptake and lipid-induced 

signaling (‘Regulation of lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARa)‘ 

and ‘PPARa activates gene expression’). The third cluster (gene sets 1, 8, 9 and 10) was pointing 

towards homeostasis maintaining. Furthermore, the M2 macrophage receptor profile exhibited 

properties of antigen presentation (‘Cross-presentation of particulate exogenous antigens 

(phagosomes)’). Gen sets which were enriched in the share of receptors that were equally abundant 

in M1 and M2 macrophages (M1/M2 receptors) reflected the versatility of different receptors types in 

both proteomes (e. g. interleukin signaling, CSF signaling). In addition, the gene sets encompassed 

genes/proteins which provides insights into the intracellular signal transduction. A large fraction of 

gene sets was associated with MAP/RAS, ERK, FRC signaling. 

Next, we aimed to investigate how ligands from other immune cells could be recognized by 

macrophages. Therefore, we analyzed potential ligand-receptor interactions between immune 

receptors (interleukin, chemokine, CSF, interferon, TGF, TNF and complement receptors) in the M1 

and M2 macrophage proteomes and their respective ligands detected in CD4 and CD8 T cells, B cells 

and microglia (Figure 32). Overall, 51 ligands could be identified in the proteomes of CD4 T cells, CD8 

T cells, B cells and microglia for 28 immune cell receptors in M1 and M2 macrophages. The majority of 
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ligands (n = 31) was specific to receptors which were characterized by FC > 0, indicating an enrichment 

in the M1 macrophage proteome. 19 ligands could bind receptors which were enriched in both the M1 

macrophage and M2 macrophage proteome. In contrast, one ligand (ARL8B) was able to bind only one 

receptor that was enriched in M2 macrophages (TGFBR1). 

Overall, CD8 T cells showed the highest mean fold change of the EAE versus healthy control protein 

expression of all ligands showed in Figure 32 (CD8 T cells: mean log2(FC) = 3.24, CD4 T cells: 

mean log2(FC) = 0.63, B cells: mean log2(FC) = -0.77, microglia: mean log2(FC) = -0.58). Interleukin-16 

(IL16) was among the ligands with the highest fold change in CD8 T cells (log2(FC) = 7.59, q = 8.50 x 10-

5). It was also highly abundant in B cells but without any significant difference between EAE and healthy 

control B cells. Interleukin-1a, interleukin-1b and interleukin-18 (IL1A, IL1B and IL18) were highly 

abundant in the microglia proteome compared to CD4 T cells, CD8 T cells and B cells. All three ligands 

were higher abundant in EAE compared to healthy control (IL1A: log2(FC) = 1.79, q = 8.83 x 10-2; IL1B: 

log2(FC) = 2.91, q = 2.87 x 10-2
, IL18: log2(FC) = 1.82, q = 3.82 x 10-2). Besides in microglia, interleukin-

1a, interleukin-1b and interleukin-18 were detected with a higher abundance in CD4 and CD8 T cells 

compared to B cells. Interleukin-14 (TXLNA/IL14) was almost equally abundant in CD4 T cells, CD8 T 

cells and microglia. In CD8 T cells it was highly enriched in EAE when compared to healthy control 

(log2(FC) = 4.34, q = 3.50 x 10-5). Likewise, the fold change of interleukin-1b was significantly 

differentially abundant in EAE versus healthy control in CD8 T cells (log2(FC) = 3.06, q = 9.12 x 10-3). All 

other detected interleukins (interleukin-1a, interleukin-14, interleukin-16, interleukin-18) were 

unchanged in CD4 T cells and B cells. Notably, all detected interleukins in lymphocytes and microglia 

could bind to both receptors predominantly expressed in M1 macrophages (FC > 0) as well as M2 

macrophages (FC < 0). Interleukin-1 receptor antagonist (IL1RN) was mainly detected in microglia and 

less abundant in EAE when compared to healthy control. 

Besides interleukins, C-C motif, C-X-C motif and C-X3-C motif chemokine ligands were detected in 

the immune cell proteomes as possible ligands of M1 and M2 macrophage receptors. CCL4 was 

detected with a higher abundance in T cells compared to B cells and microglia. CCL5 was detected in 

both T and B cells with comparable amounts. Likewise, CXCL4 (PF4) was highly abundant in 

lymphocytes when compared to microglia. In contrast, microglia showed a higher protein level of 

CXCL4 when compared to lymphocytes. When compared to healthy control, the protein level of CCL4 

was elevated in EAE in CD8 T cells (log2(FC) = 2.77, q = 1.20 x 10-3) and reduced in microglia (log2(FC) = -

1.37, q = 5.26 x 10-2). Likewise, the CCL5 protein amount in EAE in CD8 T cells was higher when 

compared to healthy control (log2(FC) = 1.32, q = 5.12 x 10-2), whereas in microglia it was diminished 

(log2(FC) = -1.05, q = 6.42 x 10-2). CXCL4 (PF4) was higher abundant in lymphocytes than in microglia. It 

showed a lower abundance in B cells from EAE compared to the healthy control (log2(FC) = -1.31, 

q = 6.53 x 10-3). In contrast, CX3CL1 showed the highest protein amount in microglia and was lower 

abundant in EAE compared to healthy control (log2(FC) = -2.03, q = 5.26 x 10-2). Furthermore, it was 

elevated in EAE in CD8 T cells, however, with a low protein amount in both EAE and healthy control 

(log2(FC) = 2.34, q = 2.37 x 10-4). 
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Figure 32: Ligand-receptor interaction between ligands from CD4 T cells, CD8 T cells, B cells and microglia and M1 and M2 
macrophage immune receptors. Interleukin, chemokine, CSF, interferon, TGF, TNF and complement receptors which were 
detected in the M1 and M2 macrophage proteome (right). Their fold change (M1/M2) is color-coded. The respective ligands 
are shown on the left, ligand-receptor interactions are indicated by connecting lines. The color of the ligand and connecting 
line encodes the M1- and M2-binding specificity (red: ligand only binds receptors with FC > 0, green: ligand only binds 
receptors with FC < 0, yellow: receptor binds both receptors with FC > 0 and receptors with FC < 0. Heatmaps indicate the 
standardized mean logarithmic protein expression in EAE (right, red/blue) and the logarithmic fold change between the 
protein abundance in EAE and healthy control (left, black/yellow). 
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4.3 Differential protein expression in neuronal mitochondria from EAE and 

healthy control 

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important effector 

molecules of the inflammatory response of (tissue) macrophages (316). Exposure of axons to oxidative 

stress can occur during the disease course of neuroinflammatory diseases and is discussed to alter 

axonal mitochondrial function (317). To further investigate the molecular mechanism of mitochondrial 

dysfunction in neuroinflammation, we assessed proteomic changes during the disease course of EAE. 

We isolated mitochondria from EAE and healthy controls and analyzed them by quantitative mass 

spectrometry (in collaboration with Dr. Tai and Prof. Dr. Lichtenthaler). In total, 3356 proteins could 

be detected (Figure 33, A). 804 of those (23.96 %) were annotated as mitochondrial proteins as defined 

by the MitoCarta2.0 database which encompasses 1158 mitochondrial proteins (303). Thus, 69.43 % 

of the mitochondrial proteome (802 out of 1158 proteins) was covered by this analysis. The abundance 

of mitochondrial proteins was higher compared to non-mitochondrial proteins (Figure 33, B). The 

analysis of the distribution of the logarithmic expression levels of the proteins by histogram and 

quantile-quantile analysis revealed normally distributed protein amounts (Figure 33, C and D). 

To analyze the degree of the overall sample/proteome similarity, a principal component analysis 

(PCA) was performed (Figure 33, E). The majority of the variance could be explained by principal 

component 1 (PC1, 35 %), principal component 2 (PC2) could explain 20 % of the variance. 

Furthermore, PC1 segregated samples which derived from EAE or healthy controls. In addition, EAE 

and control samples could be distinguished by correlation analysis. Furthermore, neither the 

correlation analysis nor the principal component analysis showed any evidence for a sample to be an 

outlier (Supplement Figure 12). 

Next, the differentially enriched proteins were assessed by calculating the fold change of the 

abundance levels of the proteins between both experimental groups (EAE and healthy control) and 

subsequent statistical testing. The threshold value of the fold change was set to log2(1.5). Besides the 

subjective biological meaningfulness, this threshold did not undermine controlling the false discovery 

rate evaluated by statistical testing (Figure 33, F and G). Under this assumption, 595 proteins were 

differentially abundant (Figure 33, H). 497 different proteins were higher abundant in the neuronal 

mitochondrial proteome from EAE, 98 proteins were lower abundant in EAE compared to healthy 

controls. 
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Figure 33: Characterization of the neuronal mitochondrial proteomes from EAE and healthy control. A: Number of 
mitochondrial proteins identified in the neuronal mitochondrial proteome. A protein was annotated as “mitochondrial” 
according to MitoCarta2.0 (303). B: Analysis of the abundance of mitochondrial and non-mitochondrial proteins in the 
mitochondrial proteomes of neurons from EAE and healthy controls. Violin plot with kernel density estimates, horizontal lines 
display mean values, vertical lines indicate mean ± SD. C: Distribution of the standardized logarithmic expression values (LFQ) 
of all proteins in all samples (n = 36,916). Vertical solid line displays the mean value, dashed lines indicate the upper and lower 
SD around the mean. D: Quantile-quantile plot of the standardized logarithmic expression values of all proteins in all samples 
(n = 36,916). E: Principal component analysis (PCA) of all samples from EAE and healthy controls. The first two principal 
components (PC1 and PC2) were visualized and the respective variance which they explain is shown. F: Correlation between 
specificity and sensitivity for different fold change thresholds for the analysis of the differential protein levels in mitochondria 
from EAE and healthy control neurons. Fold change was defined as the difference in mean logarithmic protein expression 
levels. Specificity was calculated as the fraction of identified proteins above a certain fold change threshold that met the 
criteria q ≤ 0.05 (FDR-adjusted p value from t statistics for independent samples with homoscedasticity). Sensitivity was 
defined as the fraction of proteins with q ≤ 0.05 whose fold change exceeded the given threshold. G: Euclidean distance to 
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P(x|y) in the Cartesian space of F, where x is the minimum value of 1-sensitivity and y is the maximum of the specificity, 
calculated for fold change thresholds reaching from 0 to 5 (dashed line: fold change threshold = log2(1.5) = 0.58). H: 
Logarithmic fold change between EAE and healthy control of all detected proteins and respective negative logarithmic 
q values (Benjamini-Hochberg-adjusted p values from independent t statistics with homoscedasticity). Vertical lines indicate 
fold change thresholds (-1.5 and 1.5), horizontal line indicate q value threshold (q ≤ 0.05). 

4.3.1 Gene set enrichment analysis coupled to network analysis of the neuronal 

mitochondrial proteome 

To investigate alterations in the molecular signature in the proteome of neuronal mitochondria in 

EAE, we performed gene set enrichment analysis with subsequent network analysis (NezzworGS 

algorithm). This revealed an enrichment of 28 gene sets in EAE or healthy control neuronal 

mitochondria (Figure 34). 14 gene sets were enriched in the healthy control neuronal mitochondrial 

proteome (normalized enrichment score < 0), whereas 14 gene sets were enriched in EAE neuronal 

mitochondria (normalized enrichment score > 0). Overall, the mean protein expression of proteins 

underlying gene sets which were enriched in the proteome of neuronal mitochondrial from the healthy 

control was lower compared to the mean protein expression of proteins from neuronal mitochondria 

from EAE. Gene sets enriched in the mitochondrial proteome in EAE were represented in 3 modules in 

the network analysis (modules 1, 3 and 5, Supplement Figure 13). These modules were comprised of 

gene sets related to (mitochondrial) translation (module 3) and signal transduction as well as immune 

response (module 5). The gene set “Peroxisomal protein import” was not connected to any of the other 

nodes (module 1). Gene sets enriched in the mitochondrial proteome of healthy controls (modules 2 

and 4) were mostly related to energy metabolism. 
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Figure 34: Gene set enrichment analysis (Reactome) of the neuronal mitochondria proteome in EAE and healthy control. 
Mitochondrial proteins (according to MitoCarta2.0) which were enriched (|FC| > 1.5 and q ≤ 0.05) were subjected to 
NezzworGS analysis. Nodes display gene sets and edges indicate the number of leading-edge proteins which two gene sets 
have in common. The area of the node encodes the mean protein expression of the proteins assigned to the respective gene 
set. The color of the node displays the normalized enrichment score. The spatial distribution of the nodes encodes the 
similarity of gene sets. The thickness of edges represents the fraction of leading-edge proteins two gene sets have in common 
(the highest fraction of the two gene sets was taken into account). 

The node/gene set with the highest degree of centrality and gene set size in this cluster 

encompassed proteins involved in the citric acid cycle and respiratory electron transport (Supplement 

Figure 14, Figure 34). Other linked gene sets were e. g. “Respiratory Electron Transport, ATP Synthesis 

by Chemiosmotic Coupling and Heat Production by Uncoupling Proteins”, “Respiratory Electron 

Transport”, “Pyruvate Metabolism and Citric Acid TCA Cycle” and “Citric Acid Cycle TCA Cycle”. To 

further elucidate the relationship between the gene sets associated with mitochondrial energy 
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metabolism we performed a gene set hierarchy analysis (Supplement Figure 15). This revealed 4 gene 

sets with highest hierarchy enriched in both the EAE and healthy control neuronal mitochondria 

proteome. In the healthy control neuronal mitochondria proteome, 2 out of 4 were related to energy 

metabolism (“The citric acid (TCA) cycle and respiratory electron transport” and “Pyruvate metabolism 

and Citric Acid (TCA) cycle”). The analysis of the child nodes revealed that proteins involved in pyruvate 

metabolism/citric acid cycle and, separately, respiratory chain were enriched in healthy neuronal 

mitochondria when compared to EAE, thus showing a global downregulation of the mitochondria 

energy metabolism in EAE. 

To further validate the findings derived from gene set enrichment analysis, we analyzed the 

protein expression levels of the proteins underlying the respective gene sets which were previously 

identified. This revealed that the fold change of the expression levels between the neuronal 

mitochondrial proteome of EAE and the neuronal mitochondrial proteome of healthy control was low 

(Figure 35). However, there was a difference in the absolute expression levels of the proteins with 

respect to their assignment to the respective gene set. Proteins assigned to gene sets which were 

enriched in the control neuronal mitochondrial proteome were more abundant (Mexpression (z score) = 1.19) 

compared to proteins assigned to gene sets enriched in the EAE neuronal mitochondrial proteome 

(Mexpression (z score) = 0.66). Members of the gene set “Citric Acid Cycle TCA Cycle” showed the highest 

mean standardized expression level (2.15). 
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Figure 35: Expression analysis of proteins underlying the enriched gene sets from gene set enrichment analysis based on 
differentially expressed proteins in neuronal mitochondria from EAE and healthy control. Logarithmic fold change 
(EAE/control) and mean logarithmic standardized expression values for each protein are shown. Proteins which were 
identified as leading-edge proteins were color-coded (red: FC > 0, blue: FC < 0). Vertical lines indicate FC = 0, the horizontal 
lines mark the upper and lower SD (1: The citric acid (TCA) cycle and respiratory electron transport, 2: Respiratory electron 
transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins., 3: Respiratory electron 
transport, 4: Complex I biogenesis, 5: Mitochondrial biogenesis, 6: Pyruvate metabolism and Citric Acid (TCA) cycle, 7: 
Organelle biogenesis and maintenance, 8: Citric acid cycle (TCA cycle), 9: Pyruvate metabolism, 10: RNA Polymerase II 
Transcription, 11: Generic Transcription Pathway, 12: Gene expression (Transcription), 13: TP53 Regulates Metabolic Genes, 
14: Metabolism, 15: Peroxisomal protein import, 16: Cellular responses to stress, 17: Cellular responses to stimuli, 18: Post-
translational protein modification, 19: Signal Transduction, 20: Transport of small molecules, 21: Immune System, 22: Innate 
Immune System, 23: Neutrophil degranulation, 24: Mitochondrial translation, 25: Mitochondrial translation termination, 26: 
Translation, 27: Mitochondrial translation elongation, 28: Metabolism of proteins, nEAE = 6, ncontrol = 5). 

With the exception of 3 proteins (SUCLG2, SDHC and IDH2) all members of the gene set “Citric Acid 

Cycle TCA Cycle“ showed a negative logarithmic fold change, indicating their enrichment in healthy 

control neuronal mitochondria compared to EAE (Figure 36). 
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Figure 36: Differential abundance of proteins assigned to the gene set ‘Citric Acid Cycle TCA Cycle’. Logarithmic fold change 
(EAE/control) of the expression level between neuronal mitochondria from EAE and healthy control. The area of the dot 

represents the min-max scaled mean protein expression (nEAE = 6, ncontrol = 5).To validate this finding, we performed 

histological analysis of the abundance of IDH3 and MDH2 (lower abundant in EAE compared to healthy 

control in our proteomics screen) as well as IDH2 (higher abundant in EAE, Figure 37, experiment 

performed by Dr. Tai). IDH3A and MDH2 showed a more than 50 % reduction of the normalized 

fluorescence intensity, indicating a lower protein abundance in EAE when compared to healthy control. 

In contrast, IDH2 showed a slight increase in normalized fluorescence intensity, indicating an increase 

in the protein amount in EAE. These findings were in line with the results obtained from the proteomic 

analysis and highlight a mitochondrial energy deficit in EAE. 
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Figure 37: Histological analysis of IDH3, MDH2 and IDH2 expression in neuronal mitochondria in EAE and healthy controls 
(data from Tai et al.). Confocal microscopy images from histological staining of the mitochondrial proteins IDH3, MDH2 and 
IDH2 (green channel). Tissue was obtained from EAE and healthy controls of Thy1-mitoRFP mice (red channel: transgenic 
labeling of mitochondria). Normalized fluorescence intensities (per individual mouse) were measured to compare protein 
abundance between EAE and healthy controls. Data taken from Tai et al. (318). 

Next, we aimed to understand how the expression of these proteins is altered at a later time point 

of the disease course, eventually mimicking the remission phase of multiple sclerosis. Thus, we 

analyzed the proteomes of neuronal mitochondrial at a later time point during the disease course 

(remission). We observed a clear distinction between the proteomes from the relapse phase 

(EAE onset + 2 d) and the remission phase (EAE onset + 22 d, Supplement Figure 16). Analysis of the 

overall differential protein abundance at relapse and remission revealed a reduction of the fold change 

(EAE versus healthy control) at remission for proteins assigned to gene sets that were downregulated 

at the relapse phase (Figure 38). This indicates that in the downregulation of mitochondrial energy 

metabolism dominates the initial phase of EAE and resolves during the recovery phase of the disease.  
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Figure 38: Logarithmic fold change of electron transport chain and citric acid cycle proteins at EAE relapse and remission.  
Proteins were selected from the neuronal mitochondrial proteomes from either the relapse or remission phase according to 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and their fold changes (EAE/control) were calculated (nEAE-

relapse = 6, ncontrol-relapse = 5, nEAE-remission = 4, ncontrol-remission = 5, grey: not detected). 
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5 Discussion 

In this study I performed a large-scale proteomics screen, complemented by transcriptomic 

analyses and followed by computational analyses to elucidate the molecular signatures and 

intercellular communication pathways of mononuclear phagocytes as well as immune cells and CNS 

cells in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. To 

address this, I used a transgenic mouse model that expressed fluorescent proteins under a Nos2 (iNOS) 

and Arg1 (Arginase-1) promoter which enabled us to identify and sort M1 (MiNOS) and M2 (MArginase-1) 

macrophages at an early (onset + 1 d) and late (onset + 4/5 d) time point during the disease course of 

EAE and analyze their proteomes and transcriptomes with mass spectrometry and next-generation 

sequencing, respectively. Furthermore, we measured proteomic alterations in neuronal mitochondria 

in the context of EAE. To allow for refined computational analysis of the macrophage and mitochondria 

proteomics data sets I further designed a novel analytical tool, Nezzworker, which combines gene set 

enrichment analysis (NezzworGS) and functional protein-protein interaction analysis (FUPPINA) with 

network analysis. 

5.1 Mononuclear phagocytes in CNS autoimmunity 

The concept of pro-inflammatory, so-called classically activated macrophages (M1) and anti-

inflammatory, alternatively activated macrophages (M2), has arisen over the past decades. It alludes 

to the Th1/Th2 paradigm of T cells (319, 320). However, there is strong evidence that the concepts of 

M1/M2 and Th1/Th2 are not only terminologically related but share a functional analogy in terms of 

mediating pro-inflammatory or anti-inflammatory immune cell activation. IFN-, which is secreted by 

Th1 cells, can induce macrophage activation and thereby promote a pro-inflammatory phenotype (M1). 

In contrast, IL-4, IL-5 and IL-10, which are cytokines secreted by Th2 cells, can dampen macrophage 

activation and, thus, play a major role in the emergence of an anti-inflammatory phenotype of 

macrophages (M2) (320, 321). A central metabolic hub in the polarization of macrophages is L-arginine. 

Depending on the extracellular stimuli (from T cells), macrophages induce a distinct metabolic pathway 

to synthesize either nitric oxide (NO), an important effector molecule for host defense, or L-ornithine 

and urea (322). The production of these molecules depends on their common substrate L-arginine and 

the execution of specialized intracellular programs which in the end result in the expression of 

inducible nitric oxide synthase (iNOS) after IFN- stimulation or Arginase-1 (Arg-1) resulting from 

stimulation with IL-4, IL-5 and IL-10 (320). Notably, already in the early 1990s, NO had been discussed 

not only to play a role in killing pathogens but also in autoimmune disorders (323). NO was found at 

higher concentration in MS lesions. Furthermore, indirect evidence of an excessive NO production in 

individuals suffering from MS exist since they showed higher levels of the NO oxidation products nitrate 

and nitrite in body fluids (324–330). Nitric oxide was even discussed as a disease activity marker (325, 

326). Moreover, NO and reactive oxygen species in general are believed to be a major cause of 

oligodendrocyte dysfunction and demyelination, axonal pathology and the disruption of the blood-

brain barrier (331, 332). This suggests that NO-producing macrophages play a major role in MS. 

However, anti-NO or anti-iNOS trials have not been successful so far, most likely because of the 

additional immunomodulatory effects that accompany the detrimental effects of NO (331). In contrast 

to the apparent toxic effect of NO from M1 macrophages, there is no clearly defined metabolite that 
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could explain the anti-inflammatory effect of M2 macrophages. L-ornithine and urea, which are the 

products of the reaction catalyzed by arginase-1, can rather be seen as the result of a compensatory 

mechanism to reduce the toxic effect of M1 macrophages. Through the conversion of L-arginine to L-

ornithine and urea, the substrate to produce NO is depleted and, thereby, the toxic and pro-

inflammatory function of M1 macrophages is attenuated (333). Taken together, our transgenic model 

that utilized genetically encoded fluorescent marker proteins to enable the detection of iNOS- and L-

arginase-expressing cells, combined with further antibody-based immunophenotyping of extracellular 

epitopes is a powerful tool to monitor the polarization phenotype of macrophages. 

Macrophages play a key role in autoimmunity and can be detected in tissue samples or body fluids 

of inflamed organs. It was shown that the M1/M2 ratio can correlate with disease severity and, 

moreover, cell transfer experiments indicated that M2 macrophages are associated with the 

amelioration of an autoimmune disease model (334). In multiple sclerosis macrophages, in addition to 

other myeloid cells such as microglia, are considered as the immediate effector cell population because 

of their capability to phagocytose and secrete reactive oxygen species (335, 336). Indeed, studies in 

EAE have proven macrophages’ indispensability in disease development. When myeloid cells or, in 

particular, CX3CR1+ cells, were depleted, EAE disease course was mitigated and, in the case of CX3CR1+ 

cell depletion, neither demyelination nor axonal damage could be detected (196, 336, 337). However, 

taking into account that macrophages can acquire different polarization states and, thereby, fulfill 

different tasks within the context of autoimmunity, it is obvious that shifting the macrophage 

polarization state towards an M2 phenotype could also have a positive effect on disease progression. 

Unfortunately, further insights cannot be simply derived from human pathology since defining the 

macrophage polarization in MS lesions remains challenging due to a limitation of sample availability at 

specific time points during the disease course. In an autopsy study Vogel et al. identified two 

macrophage subsets within MS lesions (338). One subset showed an M1-like phenotype, another 

subset, which accounted for approximately 70 % of the CD40+ macrophages, showed an intermediate 

activation status. This large fraction of macrophages, that did not show a clear M1 or M2 signature, 

points towards the oversimplification criticism of the M1-M2 concept of macrophage polarization, 

especially when looked at the human tissues. However, one must consider that post-mortem studies 

might reflect histopathological changes which have been acquired, altered and potentially resolved, 

potentially over decades. In addition, it remains unclear if the different molecular phenotypes of 

macrophages reflect an a priori feature of monocyte-derived macrophages that is required and 

responsible for their pathogenicity or if the polarization phenotype reflects primarily an effector state 

as an adaption to further external stimuli, e. g. secreted by T cells. Thus, EAE is a powerful tool to study 

the temporal and spatial progress of macrophage polarization and, furthermore, to track effects 

derived from interventional studies. Indeed, previous studies have made contributions to better 

understand the link between macrophage polarization and EAE disease progression (or resolution). 

Mikita et al. showed that the EAE disease severity could be ameliorated by administering in vitro M2 

polarized macrophages (339). Weng et al. found out that a pharmacological modification of the EAE 

disease course by lenalidomide is associated with an increase in the fraction of M2 cells (F4/80+CD206+) 

(340). Likewise, Liu et al. observed a shift from M1 to M2 macrophages after the administration the 

selective Rho kinase inhibitor Fasudil (indicated by a reduction of CD16/32, iNOS, IL-12, TLR4 and CD40 

and an increase in CD206, Arginase-1, IL-10 and CD14 in the spleen), potentially mediated by T cells, 

accompanied by a reduction of inflammatory cytokines (229). Moreover, there is evidence that a 



Discussion 

107 
 

skewed M1/M2 ratio towards the M2 phenotype potentially reinforces remyelination of axons. 

Butovsky et al. first showed that microglia pretreated with IL-4, which induces a M2 phenotype, could 

enhance oligodendrogenesis and alleviate clinical symptoms of EAE (341). It was later shown that 

remyelination was accompanied by a M1-to-M2 shift and that M2-conditioned media could enhance 

remyelination in a demyelination model (217). However, a major drawback of all of these studies is the 

inconsistent use of signature proteins and genes to determine the polarization phenotype which makes 

comparability and adaptation difficult. 

The M1 and M2 proteomes measured in this study derive from a specific phagocyte population 

from the (inflamed) EAE spinal cord at different time points. Notably, these M1 and M2 populations 

are only a minority that co-occurred with e. g. non-polarized infiltrating macrophages (as defined by 

the absence of iNOS/Nos2 and Arginase-1/Arg1 expression in CD45hiCD11bhi cells in the EAE spinal 

cord) and microglia (as defined by CD45medCD11bmed cells). However, we have specifically chosen to 

analyze these cells because of a previous study which has characterized this transgenic model in the 

context of EAE with respect to spatial and temporal changes in the polarization phenotype. This study 

revealed that the M2 phenotype in this model emerges in many cases from the M1 phenotype on a 

single cell level over the disease course of EAE (222). Thus, the alteration in the M1 and M2 

macrophage proteomes can be interpreted rather as a change in protein expression on a single-cell 

level after time than a characterization of two proteomes that define two cell subtypes co-existing in 

EAE or emerging over the disease course. 

We could identify 17.70 % of the macrophage proteome being different between M1 and M2 

macrophages. As a comparison, CD4 T cells differed by 12.35 % of all proteins in their proteomes, 

microglia by 33.57 % (EAE versus healthy control). Interestingly, microglia (from EAE) and M2 

macrophage proteomes showed the greatest similarity in terms of differential enrichment of proteins. 

The similarity of the M2 macrophage and microglia proteomes was also mirrored in the UMAP analysis 

where M2 macrophage samples showed a greater proximity to EAE microglia than to samples from M1 

macrophages or microglia from healthy controls. Indeed, previous studies showed that microglia, like 

M2 macrophages, have an anti-inflammatory and immune modulatory function. Ajami et al. showed 

that the recruitment of monocyte-derived macrophages is crucial for EAE induction, however, 

microglia alone were not able to induce neuroinflammation on their own (195). Furthermore, 

activation of triggering receptor expressed on myeloid cells-2 (TREM2) induced myelin clearance by 

microglia, highlighting their importance in the context of disease amelioration (342). However, TREM2 

was not detected in this study. Finally, microglia might enhance remyelination through secretion of 

molecules that support oligodendrocyte differentiation (217). 

5.2 Molecular signatures of M1 and M2 macrophages 

One of the main objectives of this study was to better understand which cellular programs 

differentially polarized macrophages execute in the context of neuroinflammation. Therefore, we 

designed and applied a computational algorithm that performs gene set enrichment analysis and 

subsequent network analysis (NezzworGS) of the M1 and M2 macrophage proteome. The differential 

enrichment of gene sets within the M1 and M2 macrophage proteomes mirrored the inflammatory 

and tissue reparative function of the respective polarization state: Gene sets related to proliferation 

and immune cell signaling were upregulated in the M1 macrophage proteome, whereas gene sets 
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related to the interaction of cells with the extracellular matrix, potentially reflecting the clearance of 

debris and regenerative properties, were upregulated in the M2 macrophage proteome. Indeed, in the 

gene set “Extracellular matrix organization” the most enriched protein in M2 macrophages was 

collagen type II alpha I (COL2A1). A major concert related to this finding was contamination of the 

sample by sticky extracellular matrix fragments. However, the detection of collagen transcripts and the 

enrichment of the gene set “Extracellular matrix organization” in the M2 macrophage transcriptome 

makes a contamination unlikely. There is further evidence that macrophages are directly linked to 

collagen metabolism: It was previously reported that M1-like activation of macrophages could 

decrease the secretion of collagens, whereas M2-like activation increased the amount of collagen 

(343). This strengthens the hypothesis that the high abundance of extracellular matrix proteins as 

observed in our study mirrors a phagocyte phenotype which promotes tissue repair. However, it 

remains unclear if collagen synthesis per se is beneficial to restore functional deficits in EAE or if the 

increase in gliosis is thereby promoted which might introduce further obstacles for the neuronal 

plasticity. 

Moreover, the M2 macrophage proteome showed an upregulation of gene sets related to the 

nervous system and G protein-coupled receptor signaling. As for the enrichment of the gene set 

“Extracellular matrix organization” there was the concern of a possible contamination of the 

proteomes by neuronal proteins attached to M2 macrophages during the isolation process. However, 

these gene sets were also enriched in the M2 macrophage transcriptome which makes a contamination 

unlikely. The enrichment of these gene sets (on proteome level) was dominated by a high abundance 

of the gamma-aminobutyric acid type B receptor subunit 2 (GABA-B-R2/GABBR2). GABA-B receptor 2 

belongs to the GABA-B receptor superfamily, which encompasses G-protein-coupled receptors as 

opposed to the GABA-A receptor superfamily, which are ion channels. Thus, GABA-B receptors are 

metabotropic receptors, whereas GABA-A receptors are ionotropic receptors (344). The high protein 

abundance of GABA-B-R2 detected in the M2 macrophage proteome may result either from 

upregulation of the receptor in M2 macrophages or from phagocytosis of synapses which contain 

GABA-B-R2 (because GABA-B-R2 was not detected on transcript level). To date, there are no studies 

which have investigated the role of GABA-B-R2 in phagocyte function in particular. However, 

GABAergic signaling has recently been discussed in the context of phagocyte pathogen defense. 

Bhandage et al. showed that mononuclear phagocytes secrete GABA when being exposed to T. gondii 

and N. caninum and express multiple GABA-A-R subunits as well as enzymes involved in GABA synthesis 

(345). Another study confirmed the RNA expression of GABA-A-R subunits in human peripheral 

monocytes (346). However, both studies only observed RNA expression levels in peripheral (murine 

and human) mononuclear phagocytes (dendritic cells and monocytes) with no link to (neuro-) 

inflammation. Thus, these observations cannot be applied without restriction to the properties of 

infiltrating macrophages in the context of EAE and multiple sclerosis. In contrast, Bhat et al. explored 

the effect of GABAergic signaling on EAE (347). They could show that pharmacologically enhancing 

GABAergic signaling was accompanied by an amelioration of EAE. Potentially, the positive GABAergic 

signaling effect results from the modulation of phagocyte polarization. Indeed, Januzi et al. showed 

that the activity of the M1 marker NFκB as well as COX-2 and iNOS levels in RAW264.7 cells and TNF 

levels in alveolar macrophages from mice pre-treated with LPS were decreased upon treatment with 

muscimol, a GABA-A receptor agonist (348). This study points towards the involvement if GABA 

signaling in the polarization of macrophages towards a M2 phenotype. Taken together, recent findings 
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proved that GABAergic signaling might play a role in phagocyte function and polarization. Likewise, 

there is evidence that modulating GABAergic signaling in EAE can positively influence the disease 

course. So far, only GABA-A receptor signaling was observed in these contexts. Our study raises the 

question to which extent the GABA-B2 receptor signaling pathway might play a role in phagocyte-

mediated neuroinflammation and (CNS-specific) phagocyte polarization. What speaks against this 

assumption is that we have only detected GABA-B-R2 in M2 macrophages but not in M1 macrophages, 

however, previous studies would suggest that GABA signaling has an influence on diminishing the pro-

inflammatory properties of macrophages (348). Thus, if GABA-B-R2 played a role in phagocyte 

polarization towards M2, it would likely be detectable also in M1 macrophages under the assumption 

that M2 macrophages arise from M1 macrophages (222). 

We observed an enrichment of proteins related to immune cell function and proliferation-

associated proteins in the M1 macrophage proteome. However, it remains unclear if infiltrating (bone 

marrow-derived) macrophages in fact proliferate in the inflamed tissue or if this molecular signature 

is a remnant from a previous developmental phase. There is evidence that microglia independently 

from macrophages undergo self-renewal through proliferation during the disease course of EAE (195). 

Eventually, the sorted and analyzed macrophages (CD45hiCD11bhi) in our study are mixed with 

activated microglia. Moreover, it remains unclear if the underlying proteins of the proliferation-

associated gene sets are in fact driving proliferation or are also responsible for shaping the pro-

inflammatory M1-like phenotype of these cells. 

Although the enrichment of inflammatory-related gene sets points towards high abundance of 

proteins related to pro-inflammatory functions, only few classical cytokines were found in our 

proteome analysis. Eventually, this is due to technical limitations of the experimental procedure since 

only a minority of secreted proteins could be captured by this experimental approach. However, the 

analysis of the expression of receptors in the M1 and M2 macrophage proteomes revealed a clear 

enrichment of inflammation-related receptors in the M1 macrophage proteome (e. g. CXCR2, IL-2R2, 

FAS, IL-4R, C5AR1). It has been shown that these receptors play a crucial role in (auto-) inflammatory 

diseases and that their modulation can alter the disease course (349–351). Moreover, we identified 

proteins in the M1 macrophage proteome which are related to immune cell modulation. Such a 

receptor, which is highly abundant in M1 macrophages, is V-domain Ig suppressor of T cell activation 

(VISTA/VSIR). This receptor has been previously found as a key immune checkpoint expressed by T cells 

and myeloid cells, including myeloid-derived suppressor cells (352). Indeed, VISTA blockade by 

monoclonal antibodies was associated with an exacerbation of EAE (353). On the other hand, VISTA 

agonism can prevent immune-mediated conditions such as graft-versus-host-disease (354). Thus, 

tackling VISTA could be a potential pharmacological target for the immunomodulation in 

autoinflammatory conditions such as EAE and multiple sclerosis. Since the expression of VISTA is 

relatively high at the initial phase of the disease, the antagonism might force the shift of tissue 

macrophages from a pro-inflammatory state towards a reparative function. Another immune 

checkpoint modulator, which was found to be enriched in the M1 macrophage proteome, is LILRB3 

(leukocyte immunoglobulin-like receptor). LILRB3 belongs to a subgroup of 5 inhibitory leukocyte 

immunoglobulin-like receptors (355). Yeboah et al. showed that agonistic LILRB3 antibodies skew 

human monocytes to a M2-like phenotype, indicating the immunomodulatory function of LILRB3. Thus, 
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similar to VISTA, LILRB3 could be a potential druggable target to shift pro-inflammatory macrophages 

to a less harmful phenotype in the context of neuroinflammation. 

As opposed to the proteomic signature of M1 and M2 macrophages, transcriptomics revealed 

insights into possible signaling pathways that promote the acquisition of different macrophage 

phenotypes. In the M1 macrophage transcriptome (but not in the respective proteome) we observed 

an enrichment of gene sets related to the WNT signaling as well as PI3K/Akt signaling pathway. 

Interestingly, these pathways promote the transition of pro-inflammatory macrophages to 

alternatively activated macrophages (356–358). This possible functional impact is further supported 

by the fact that the gene set related to WNT signaling dominated the early phase of EAE and was not 

enriched at the remission phase. 

PI3K/Akt signaling as well as MAPK signaling pathways, which were enriched in our transcriptomic 

analysis of M1 macrophages, were also enriched in previous analyses by Orecchioni et al., both in in 

vivo M1-like macrophages (PI3K/Akt and MAPK signaling) and in vitro stimulated (IFN- + LPS, MAPK 

signaling) macrophages (359). Furthermore, they found an enrichment of transcripts related to Toll-

like receptor 4 (Tlr4) downstream signaling which is in line with our finding. 

5.3 Functional protein-protein interaction analysis of extracellular proteins 

within the M1 and M2 macrophage proteome 

Most analytical techniques to assess functional patterns of biological processes from omics studies 

are based on differential gene/protein expression. This includes single gene/protein identification as 

well as gene set enrichment analysis or dimensional reduction and clustering algorithms. However, 

molecular signatures do not have to be determined by highly (differentially) abundant genes or 

proteins only but can also manifest through the interaction between various genes or proteins. 

Likewise, depending on the experimental or observational method, there are not always two clearly 

defined groups from which a differential gene/protein expression matrix can be derived from. 

Therefore, we developed a novel computational technique that combines functional protein-protein 

interaction network analysis with gene set enrichment analysis (FUPPINA). Previous studies have 

already implemented network analyses into the workflow of gene set enrichment analysis and showed 

benefits of this technique (360, 361). 

We investigated the functional protein-protein interaction networks of extracellular proteins of 

the M1 and M2 macrophage proteome. The goal was to identify protein-protein interaction 

subnetworks with distinct functions that could unravel further features of M1 and M2 macrophages. 

We identified and explored these subnetworks within large networks with help of topological network 

variables (density and modularity). Furthermore, FUPPINA allows to correlate protein expression levels 

with the degree of centrality of a protein. We observed no correlation between these variables, neither 

for M1 macrophage extracellular proteins nor M2 macrophage extracellular proteins. This indicates 

that network analysis is a powerful tool to screen for proteins or genes within a proteome or 

transcriptome regardless their expression values because since even low abundant proteins can have 

a large impact on cellular function if they are embedded into a larger functional network. To 

complement this technique, the Enrichr algorithm was implemented into the FUPPINA computational 

workflow. This allowed us to seek for gene sets within subnetworks without taking gene or protein 
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abundance into account (as compared to the classical rank-based gene set enrichment analysis 

algorithm) (301). 

Overall, the M1 macrophage functional protein-protein interaction network was denser compared 

to the M2 macrophage functional protein-protein interaction network, thus, more proteins interacted 

with each other in the M1 macrophages extracellular proteome compares to M2 macrophages. This 

observation can be interpreted as an indicator for a more directed cellular program of M1 

macrophages where protein subnetworks closely functionally collaborate to express a certain cellular 

phenotype. The gene set enrichment analysis of the modules with the highest network density 

revealed the pro-inflammatory feature of M1 macrophages. This finding is in line with the gene set 

enrichment analysis of the whole M1 macrophage proteome. 

To further dissect the functions of M1 and M2 macrophages and we wanted to explore which 

extracellular proteins within the M1 and M2 macrophage proteome function as signals and mediators 

for tissue damage (M1 macrophages) and tissue repair (M2 macrophages). The M1 macrophage 

extracellular protein network showed 4 modules. While 2 modules encompassed proteins related to 

immune cell signaling, one module (module 2) contained proteins which play a role in the formation 

of extracellular traps, subsumed under the gene sets “Degradation of the extracellular matrix” and 

“Extracellular matrix organization” (312, 313, 362–365). Extracellular traps (ETs) were first described 

in 2004 by Brinkmann et al. as a host defense mechanism of neutrophils (366). These neutrophil 

extracellular traps (NETs) are membrane-less extracellular structures composed of DNA and proteins 

(neutrophil elastase, cathepsin G, myeloperoxidase, lactoferrin, gelatinase as well as histones). 

Because of their sticky properties, NETs are believed to immobilize pathogens to ultimately facilitate 

their killing. Besides antimicrobial function, extracellular traps have been observed in the context of 

autoimmune disorders such as systemic lupus erythematosus and ANCA-associated vasculitis (367, 

368). Moreover, extracellular traps are not only ejected by neutrophils but also monocytes and 

macrophages (369). There were several proteins enriched in the M1 macrophage proteome which 

belong to the family of ET-associated proteins (myeloperoxidase, neutrophil elastase, cathepsin G, 

lactoferrin, cathelicidin, the matrix metalloproteinases MMP9, MMP8 and MMP12 as well as S100A8 

and S100A9). 

MPO (myeloperoxidase) and ELANE (neutrophil elastase) are considered as neutrophil signature 

proteins, thus, a major concern of the assumption that macrophage extracellular traps play a critical 

role in lesion formation at an early stage of the disease course as promoted by our findings is a possible 

contamination of the sorted CD45+CD11b+ cells by neutrophils. However, MPO and ELANE have been 

detected in extracellular traps ejected by macrophages in other studies (370, 371). With 

immunofluorescence microscopy of EAE tissues and RNA sequencing we did not gain further significant 

comprehensive insights into the potential contribution of METs to the molecular mechanism of the 

disease development. It remains unclear if this is due to technical limitations associated with the 

investigation of extracellular proteins or due to a contamination by neutrophils that migrate to the 

spinal cord early during disease development. However, we obtained strong evidence for 

S100A8/S100A9 being involved in the molecular signature of M1 macrophages, judged by proteomic 

and transcriptomic as well as histological analyses. Notably both candidates were strongly enriched in 

M1 macrophages at disease onset (on a protein and RNA level) and were still detected at onset + 5 d 

in histological sections in inflammatory spinal cord lesions. S100A8 and S100A9 can form a heterodimer 
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in phagocytes and neutrophils and sense calcium to facilitate cytoskeleton rearrangement (372). Under 

inflammatory conditions S100A/S100A9 is secreted and may function as an immunomodulatory signal. 

It may serve as a biomarker for autoimmune disorders since its concentration was elevated in the 

serum of systemic lupus erythematosus patients and correlated with disease activity (373). A similar 

study found that S100A8/S100A9 correlated with clinical, radiological and serum inflammation 

markers in rheumatoid arthritis patients (374). S100A9 is also a druggable target. Quinoline-3-

carboxamides bind to S100A9 in a zinc- and calcium-dependent fashion (375). Interestingly, 

laquinimod, a quinoline-3-carboxamide derivative, could prevent the development of EAE and abolish 

immune cell infiltration into the murine spinal cord (376). This finding has led to multiple clinical trials 

assessing the efficacy of laquinimod for the treatment of RRMS and PPMS (377–379). Although the 

drug showed promising effects in terms of MRI lesions and annual relapse rates, the European 

Medicines Agency (EMA) refused the marketing authorization due to higher incidences of malignancies 

and embryotoxic or fetotoxic effects which were observed in the animal model (379). 

5.4 Ligand-receptor interactions 

As outlined in a previous study, the local environment of phagocytes in EAE is critical for acquiring 

their phenotype (222). Locatelli et al. showed that MiNOS (M1) macrophages are found predominantly 

in the spinal cord parenchyma during initial lesions stages, whereas MArginase (M2) macrophages are 

located at the meninges at initial stages of disease and lesion development. During disease 

progression, MiNOS (M1) macrophages can switch their phenotype to MArginase (M2) macrophages. In 

vitro studies showed that macrophage polarization is triggered by various cytokines from other 

immune cells or moieties from pathogens (380, 381). Taken together, macrophage polarization is a 

complex orchestration of the interplay of different immune cell types. Thus, we aimed to analyze with 

which molecular signals M1 and M2 macrophages in EAE can communicate with other cell types. We 

screened for enriched ligands in the proteome of a cell type of interest and screened for the 

enrichment of the corresponding receptor in the proteomes of other cell types. However, the 

individual CNS cell samples did not show a specific signature protein enrichment with respect to the 

cell type. Thus, one cannot assume cell-specificity for the CNS cell proteomes. However, the immune 

cells showed a clear differential enrichment of the corresponding proteins. Thus, our main focus was 

to determine which ligand-receptor interactions between macrophages and other myeloid and 

lymphatic immune cells play a role in EAE. 

We identified S100A8, LCN2, CAMP, S100A9, LTF, HP, LRG1, OLFM4, FCN2 and ELANE as the most 

differentially enriched ligands in the M1 macrophage proteome. The S100A8/S100A9 heterodimer is a 

signal complex that promote pro-inflammatory functions of myeloid cells. It was shown that binding 

of S100A8/S100A9 to toll-like receptor 4 (TLR4) is a crucial interaction to mediate the pro-inflammatory 

stimulus (382, 383). In the context of neuroinflammation, Reynolds et al. showed that TLR4 on CD4 T 

cells is crucial for EAE disease development (384). In our study high abundances of TLR4 were detected 

in the macrophage, microglia and T cell proteomes. Both M1 and M2 macrophages were equipped 

with TLR4, however, there was a non-significant tendency towards higher expression in M1 

macrophages. Thus, the secretion of S100A8/S100A9 may serve both as a paracrine and autocrine 

stimulus to promote pro-inflammatory immune cell functions. Since TLR4 was lower abundant in the 

M2 macrophage proteome, the S100A8/S100A9-TLR4 interaction is potentially a mechanism that 



Discussion 

113 
 

promotes the shift from M1 to M2 macrophages by downregulating TLR4 expression. Indeed, TLR4 

expression seemed to be linked to macrophage polarization. Previous studies by Sauer et al. and Orr 

et al. pointed out that TLR4 is higher expressed in M1 macrophages and that TLR4 deficiency facilitates 

the polarization to M2 macrophages, presumably via the IRF/STAT pathway (380, 385, 386). In contrast, 

interleukin-10 receptor (IL-10R) has the ability to reverse the intracellular signaling which was initiated 

by TLR4 (380). IL-10R was highly enriched in the M2 macrophage proteome in our study. Likewise, IL-

1, IL-1, IL-14 (alpha-taxilin, TXLNA) and IL-18, which are ligands that can bind to IL-10R, were 

detected, predominantly in microglia and T cells. Notably, IL-1, IL-1 and IL-18 were enriched in EAE, 

whereas IL-14 and IL-16 were not changed or even more abundant in microglia and T cells in healthy 

controls. Thus, the differential expression of TLR4 and IL-10R in macrophages could sense signals sent 

from microglia and T cells to promote the pro-inflammatory (TLR4) state or to facilitate the transition 

towards an anti-inflammatory phenotype (IL-10R). However, it remains unclear which factors regulate 

the expression of TLR4 and IL-10R. Since there are both high protein levels of the ligand 

(S100A8/S100A9) and the receptor (TLR4) in M1 macrophages, one could assume that the TLR4 

stimulation rather reflects an autocrine mechanism, whereas the IL-10R stimulation is potentially a 

result of T cell-macrophage or microglia-macrophage interactions. 

The ligand-receptor interaction between leucine-rich alpha-2-glycoprotein (LRG1), which was 

enriched in the M1 macrophage proteome, inhibin beta A (INHBA), enriched in the M2 macrophage 

proteome and TGF-b receptor 2, which was highly abundant in the CD4 T cell proteome might be crucial 

for the differentiation of Th17 cells. It was shown that leucine-rich alpha 2 glycoprotein induces Th17 

differentiation in naïve CD4 T cells by stimulating TGF-β-Smad2 signaling (387). Thus, LRG1 secreted by 

M1 macrophages could promote further pro-inflammatory T cell response. In contrast, M2 

macrophages could dampen this signaling through inhibiting TGF-b receptors by inhibin beta A (388). 

However it is unclear if such a mechanism contributed to neuroinflammation because it was shown 

that TGF-b signaling in general has anti-inflammatory effects (389). Probably, the initial ligand (whether 

it is TGF-b or LRG1) and local cytokine environment paves the way for one or the other receptor 

response. 

Our analyses suggest that macrophages use distinct pathways when communicating with CD4 and 

CD8 T cells. Judged by the number of possible ligand-receptor interactions as well as the abundance of 

receptors, the M1 macrophage-CD8 T cell interaction was more pronounced than the M1-macrophage-

CD4 T cell interaction. The most abundant receptor on CD8 T cells was estrogen-related receptor alpha 

(ESRRA). A possible ligand to this receptor is Lipocalin-2 (LCN2). Lipocalin-2 was detected in both the 

ligand-receptor analysis of M1 macrophages as well as the functional protein-protein interaction 

network. Furthermore, Lipocalin-2 showed the highest sum of ranks in the comprehensive proteome-

transcriptome analysis, indicating a strong enrichment in the M1 macrophage proteome as well as 

transcriptome. LCN2 is known to be increased in the spinal cord after EAE induction as well as spinal 

cord injury, potentially secreted by microglia and astrocytes (390, 391). Moreover, Lcn2-deficient mice 

showed a milder EAE disease course, therefore, it is believed to play a major role in EAE (391). An in 

vitro study showed that LCN2, which was added to cultured hippocampal neurons, impaired spine 

mobility and maturation and led to spine retraction (392). LCN2 not only impaired spine constitution 

but also inhibited myelination in vitro (393). Furthermore, LCN2 was found in the CSF of PPMS patients, 

its concentration correlated with the neurofilament light concentration as a biomarker for neuronal 
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impairment (393). Thus, LCN2 might be a key mediator of demyelination and spine pathology in MS. 

Our study shows that M1 macrophages are potentially a main source of LCN2, which might contribute 

to tissue damage as well as regulate adaptive immune responses through binding to receptors on 

CD8 T cells. 

The most strongly enriched ligand in the M2 macrophage proteome was vitamin K-dependent 

protein S (PROS1). Together with its receptor AXL receptor tyrosine kinase (AXL), which was also 

specifically enriched in the M2 macrophage proteome compared to the M1 macrophage proteome, 

this ligand-receptor signaling mechanism can inhibit M1 macrophage polarization as shown in a 

previous study by Ubil et al. (394). Thus, PROS1-AXL co-expression in macrophages might maintain an 

anti-inflammatory phenotype in EAE through autocrine stimulation. 

5.5 Mitochondrial pathology 

One of the tissue consequences of the infiltration of macrophages is the emergence of axonal 

damage in neuroinflammatory lesions (225). Axonal pathology is widely discussed to correlate with 

functional deficits of MS patients and to be a potential underlying mechanism for the transmission 

from RRMS to SPMS (395–398). The causal link between immune cells infiltration and axonal loss is not 

fully understood. However, oxidative stress caused by ROS release of immune cells and enhanced by 

secondary mitochondrial dysfunction is believed to be a major contributor to the axonal pathology in 

MS and EAE (399). It was shown that mitochondrial pathology is an early sign of axonal pathology in 

EAE and MS (225). To further explore the underlying molecular mechanisms when mitochondria are 

exposed to ROS we measured neuronal mitochondrial proteomes using specific fluorescent transgenic 

labeling techniques combined with MACS (270). We showed that proteins related to energy 

metabolism (TCA cycle and OXPHOS) were less abundant in the proteome of EAE neuronal 

mitochondria when compared to healthy controls. We further showed that the downregulation of 

most of the proteins related to mitochondrial energy metabolism was restored after the initial phase 

of the disease resolved. Similar results were obtained from post mortem transcriptome analyses from 

MS patients from Dutta et al. who observed a decrease of respiratory chain complex I and III transcripts 

in the MS motor cortex (400). Likewise, Rosenkranz et al. observed a de-regulation of gene transcripts 

in neurons in EAE related to energy metabolism and electron transfer chain in particular (401). 

We observed a lower abundance of both TCA cycle and OXPHOS proteins in EAE compared to 

healthy control in our study. It remains unclear if the lower abundance of proteins from both pathways 

is functionally linked or can be seen as two individual mechanisms. Possibly, TCA cycle is predominantly 

affected and the loss of OXPHOS proteins is secondary due to lack of reduction equivalents. To address 

this, we overexpressed IDH3A by viral transduction and assessed possible shifts in energy metabolism 

by measuring the ADP-to-ATP ratio in vivo in EAE (318). Indeed, axons which were transduced with 

IDH3A showed higher ATP levels. This indicates that OXPHOS function can be partially restored by 

enhancing TCA function in EAE, highlighting TCA as a possible pharmacological target for 

neuroinflammatory diseases. 

Furthermore, it remains unclear whether the lower abundance of proteins related to TCA cycle 

and OXPHOS in EAE results from exposure to damaging molecules, such as ROS, or from a 

compensatory mechanism that aims to escape the vicious circle of ROS production characterized by 



Discussion 

115 
 

enhanced ROS production due to damaged mitochondria (131). Recently, proliferator-activated 

receptor gamma coactivator 1- alpha (PGC-1a) has been identified as a regulator of energy metabolism 

in EAE which bears the ability to ameliorate EAE severity when overexpressed in murine neurons (401). 

If the downregulation of mitochondrial energy metabolism was an escape mechanism from further 

ROS damage with subsequent liberation of free electrons and radical formation, overexpression of 

PGC-1a and the associated restoration of OXHPHOS integrity would rather cause further worsening of 

neuronal impairment and increase EAE severity. Taken together, these findings provide evidence that 

mitochondrial energy metabolism in EAE is rather compromised than regulated. 

5.6 Limitations of this study 

To identify and allow sorting of M1 and M2 macrophages in EAE we used a transgenic mouse 

model. A limitation of this model, however, is the indirect measurement of iNOS and Arginase-1 

protein expression through the expression of fluorescent proteins regulated by the Nos2 and Arg1 

promoter. The potential difference between the half-lives of the fluorescent proteins and the actual 

iNOS and Arginase-1 proteins can result in a mismatch between the fluorescent labeling and the 

metabolic state of a cell. Likewise, RNA sequencing revealed that the Arg1 transcript levels were as 

high in sorted CD45+CD11b+Ly6G-iNOS+ (M1) cells as in CD45+CD11b+Ly6G-Arginase-1+ (M2) cells, 

whereas the Nos2 transcript levels reflected the actual distribution of the protein levels among M1 and 

M2 cells. However, in the sorted Nos2-tdTomato+ and Arg1-YFP+ cells iNOS and Arginase-1 were clearly 

differentially enriched in the respective proteomes, increasing the reliability of this model, but also 

emphasizing the potential poor transcriptome-proteome correlation. 

In this study we used iNOS and Arginase-1 expression as the only marker enzymes to distinguish 

between M1 and M2 macrophage phenotypes. However, there is increasing evidence that 

parenchymal CNS myeloid cells and macrophages in particular show a high transcriptional complexity 

and diversity (238, 402, 403). Thus, the identified differentially abundant proteins, genes and gene sets 

reflect molecular signatures that are either shared by a heterogenous group of cells (all expressing 

either iNOS or Arginase-1) or are highly expressed in a subgroup of these cells, not necessarily reflecting 

the molecular signature of other coexisting macrophage popoulations. 

We faced technical limitations regarding the sorting of CNS cells. Except of microglia, none of the 

resident CNS cell proteomes (neurons, astrocytes, oligodendrocytes, OPCs) showed a specific signature 

with respect to previously characterized protein or RNA expression data. It is likely that the dense 

physical interaction of these cells within the CNS tissue makes dissociation of the cells (while 

maintaining their integrity) impossible. A recently developed technique based on bio-orthogonal 

noncanonical amino acid tagging (BONCAT), cell type-specific Cre expression and mass spectrometry 

could circumvent this limitation (404). Therefore, Cre is expressed under a cell type-specific promoter 

which further enables the cells to express a variant methionyl-tRNA synthetase (MetRS) that allows 

the incorporation of the methionine surrogate azidonorleucine (ANL) into nascent polypeptides. After 

that, isotopic peptides, which derive from a specific cell type, can be identified and whole proteomes 

of a certain cell type can by analyzed. 
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5.7 Outlook 

In the past two decades specific cell-targeting pharmacotherapies in multiple sclerosis have 

emerged. According to their mode of action, they can be divided into two groups: antibodies and small 

molecules. Rituximab/ocrelizumab, natalizumab and alemtuzumab are monoclonal antibodies which 

inhibit T cell (natalizumab and alemtuzumab) and B cell (rituximab/ocrelizumab) function. The 

sphingosine 1-phosphate receptor modulators fingolimod, ozanimod and siponimod as well as 

glatiramer acetate are small molecules that interfere with T cell function. Notably, although belonging 

to treatment category II and III, their side effects are controllable, presumably because of their targeted 

mode of action. One could hypothesize that not only altering T and B cell function but also addressing 

myeloid cells like mononuclear phagocytes might mitigate the disease course of multiple sclerosis. 

However, so far, none of the approved drugs primarily target these cells. In principle, depletion of 

monocytes or macrophages (under experimental conditions) was associated with amelioration of EAE 

as shown in previous studies (192, 193). Moreover, analogous to the function of integrin alpha 4 in T 

cells, motile sperm domain-containing protein 2 (MOSPD2) was identified to regulate monocyte 

migration (405). Furthermore, targeting MOSPD2 with inhibiting antibodies could ameliorate EAE 

(406). However, depleting monocytes (systemically or locally in the CNS) raises concerns about severe 

side effects. Thus, targeting phagocyte polarization rather than phagocyte migration might circumvent 

this concern. Indeed, there are promising agents which have shown to modulate macrophage function 

in EAE, for example by shifting their polarization from a pro-inflammatory phenotype (M1) to an anti-

inflammatory phenotype (M2) (308). Additionally, assuming that phagocytes have not only destructive 

functions but also reparative effects, remaining phagocytes’ migration function intact but altering their 

polarization might be more beneficial overall. Taken together, mononuclear phagocytes in general and 

monocyte-derived macrophages in particular are promising pharmacological targets for future drug 

development for multiple sclerosis. 

In this study we have identified possible druggable targets, both, on macrophages but also other 

immune cells, that build a communication pathway between macrophages and other immune cells in 

the inflamed CNS. However, further functional testing is necessary to narrow down hypotheses and 

identify promising targets for directed therapeutical approaches for multiple sclerosis and other 

neuroinflammatory diseases. 
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Supplement Figure 1: Graphical output from gene set enrichment analysis from the NezzworGS algorithm. Dots represent 
enriched gene sets. Their normalized enrichment score (NES) is color-coded. The dot size encodes the mean expression of the 
underlying proteins/genes (in this case drawn from a random distribution). 
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Supplement Figure 2: Graphical output from the network analysis (normalized enrichment scores) of gene sets enriched in 
the differential expression matrix (NezzworGS). Gene sets are displayed as vertices, their normalized enrichment score (NES) 
is color-coded. The area of each vertex represents the mean expression of the gene sets’ underlying proteins/genes. The 
thickness of edges represents the fraction of leading-edge proteins/genes which two gene sets have in common (the highest 
fraction of the two gene sets was taken into account). The spatial distribution in the Cartesian space encodes the similarity of 
two gene sets as defined by the number of genes/proteins they share. 
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Supplement Figure 3: Graphical output from the network analysis (centrality) of gene sets enriched in the differential 
expression matrix (NezzworGS). Gene sets are displayed as vertices, their degree of centrality is color-coded. The area of 
each vertex represents the gene set size (number of underlying genes). The thickness of edges represents the fraction of 
leading-edge proteins/genes which two gene sets have in common (the highest fraction of the two gene sets was taken into 
account). The spatial distribution in the Cartesian space encodes the similarity of two gene sets as defined by the number of 
genes/proteins they share. 
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Supplement Figure 4: Graphical output from the network analysis (modularity) of gene sets enriched in the differential 
expression matrix (NezzworGS). Gene sets are displayed as vertices, their modularity class is color-coded. The spatial 
distribution in the Cartesian space encodes the similarity of two gene sets as defined by the number of genes/proteins they 
share. 
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Supplement Figure 5: Functional protein-protein interaction network analysis (FUPPINA) of a random list of gene names. 
Nodes represent proteins/genes, edges display their functional protein-protein interaction according to the STRING database. 
The degree of centrality of each node was color-coded. The edge thickness as well as the distance between two nodes encode 
the protein-protein interaction score. Expression values were not taken into account and arbitrarily set to 1. 
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Supplement Figure 6: Functional protein-protein interaction network analysis (FUPPINA) of a list of gene names extracted 
from 5 randomly selected gene sets from the Reactome gene set library. Nodes represent proteins/genes, edges display 
their functional protein-protein interaction according to the STRING database. The degree of centrality of each node was 
color-coded. The edge thickness as well as the distance between two nodes encode the protein-protein interaction score. 
Expression values were not taken into account and arbitrarily set to 1. 
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Supplement Figure 7: Flow cytometry analysis of cells isolated from the spinal cord of a healthy mouse. Single cell 
suspensions from the spinal cord from 1 healthy mouse. A: SSC/FSC analysis of all events. Log2-transformed CD45-BV786 FI is 
color-coded. B: Unsupervised cluster analysis (agglomerative clustering) of events characterized by SSC and FSC. C: CD45-
BV786 and CD11b-APC FI of CD45+ cluster 4. Compared to EAE mice, there was only 1 CD45+CD11b+ cluster. SSC and FSC FI 
were divided by 103. All other FI were log2-transformed. All FI are depicted as area of the signals. Maximum values 
(oversaturated signals) or minimum values (undersaturated signals) were excluded from the analysis. FI: fluorescence 
intensity 
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Supplement Figure 8: Single value imputations. Left panels: Correlation between original and imputed values of a test matrix. 
The probability density function was estimated using Gaussian kernels. Right panels: Distribution of the original, missing and 
imputed values. A – C: Different imputation algorithms applied to a test matrix with missing values mimicking the original 
dataset. The mean values of each protein in the test matrix were drawn from a standard normal distribution with the mean 
standard deviation of the protein expression values of the original dataset. Missing values were substituted by the row mean 
(A), row minimal (min, B) or row maximal (max, C) value, where each row represents one protein (r: Pearson’s correlation 
coefficient, DM: difference in mean between original and imputed values). 
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Supplement Figure 9: Gene set enrichment network analysis (Reactome) of M1 and M2 proteomes (modularity analysis). 
Proteins which were significantly differently expressed in M1 versus M2 macrophages (|FC| > 1.5 and q ≤ 0.05) were 
subjected to gene set enrichment analysis (GSEA, Reactome). Gene sets are displayed as nodes. The color indicates to which 
module a node belongs. The thickness of edges represents the fraction of leading-edge proteins two gene sets have in 
common (the highest fraction of the two gene sets was taken into account). The spatial distribution in the Cartesian space 
encodes the similarity of two gene sets as defined by the number of genes/proteins they share. 
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Supplement Figure 10: Gene expression of M1 and M2 signature genes. Mean logarithmic normalized expression of genes 
whose proteins were used to identify M1 and M2 macrophages for cell sorting (M1: CD45+CD11b+Ly6G-iNOS+ and M2: 
CD45+CD11b+Ly6G-Arginase-1+, n = 3 per group, from EAE onset, grey: not detected). 
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Supplement Figure 11: Correlation coefficients for the correlation between the transcriptome and proteome differential 
expression in M1 and M2 macrophages. The correlation coefficient was calculated for different numbers of 
proteins/transcripts from a sorted expression matrix (by the sum of ranks). The number of proteins/transcripts n reflects the 
proteins/transcripts with the n/2 uppermost and n/2 lowermost sum of ranks. The horizontal line indicates r = 0.9 with 838 
uppermost and lowermost proteins/transcripts regarding their sum of ranks. 
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Supplement Figure 12: Correlation analysis of the neuronal mitochondrial proteomes from EAE and healthy controls. Color-
coded correlation coefficients (Pearson) for the correlation between each sample acquired in this study. The dendrogram is 
based on the Euclidean distance between the correlation vectors and indicates the sample similarity. 
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Supplement Figure 13: Gene set enrichment analysis (Reactome) of the neuronal mitochondria proteome in EAE and 
healthy control (modularity analysis). Nodes display gene sets, edges represent the relative maximal overlap of leading-edge 
proteins between two gene sets. The spatial distribution of nodes represents the similarity of two neighboring gene sets (as 
defined as the number of genes they have in common). Modularity classes are color-coded. 
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Supplement Figure 14: Gene set enrichment analysis (Reactome) of the neuronal mitochondria proteome in EAE and 
healthy control (degree of centrality). Nodes display gene sets and edges indicate the number of leading-edge proteins which 
two gene sets have in common. The area of the node encodes the number of leading-edge proteins in the respective gene 
set as a measure of the size of the gene set. The color of the node displays the degree of centrality. The spatial distribution of 
the nodes encodes the similarity of gene sets. 
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Supplement Figure 15: Gene set hierarchy analysis of gene sets enriched in the EAE and healthy control neuronal 
mitochondria proteome. Directed network analysis with vertices representing gene sets enriched in the EAE (normalized 
enrichment score > 0, red) or healthy control (normalized enrichment score > 0, blue) neuronal mitochondria proteome. 
Edges indicate the direction of inheritance. 
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Supplement Figure 16: Correlation analysis of the neuronal mitochondrial proteomes from EAE and healthy controls at 
different time points of the disease course. Color-coded correlation coefficients (Pearson) for the correlation between each 
sample acquired in this study. The dendrogram is based on the Euclidean distance between the correlation vectors and 
indicates the sample similarity. 
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