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Abstract Local track irregularities such as mud spots generally cause a sudden
variation in track stiffness, which leads to the track geometry degradation in a short
period. The interaction of the moving train with such track defects induces additional
dynamic stresses in the track system that may prove harmful for the structural health
of the track structure. In this paper, an analytical approach is proposed to simulate
the vertical track acceleration caused by a local track irregularity when subjected to
a uniformly moving load. The railway track is modeled as an infinitely long contin-
uous Euler–Bernoulli beam lying over a Pasternak-type viscoelastic foundation track
model. At any given location along the rail beam, the stiffness and thickness of the
considered foundation model, respectively, denote the track substructural stiffness
and track geometry. To simulate the effects of local irregularities, a pre-defined
variation of the stiffness and thickness is considered in a particular section of the
foundation model. The time-domain deflection/acceleration responses are obtained
for the railway track subjected to a uniformlymoving (a) point load and (b) two-mass
oscillator system. The results show that the local irregularities may cause significant
damage to track structure, which may lead to poor ride comfort or in some cases,
even derailment.

Keywords Local track irregularity · Railway track · Analytical model

1 Introduction

The interaction of the moving train with the vertical imperfections (wheel flats
and railhead corrugations), rail discontinuities (crossings, switches, turnouts), or
local irregularities (mud spots) results in unstable vibrations [1, 2]. These vibrations
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are detrimental for the long-term performance of the track structure, and to ensure
passenger safety, continuous track monitoring is essential.

Track stiffness and vertical track geometry are the two crucial parameters that
are often implemented for the quality assessment of in-service railway tracks. The
track stiffness is defined as the ratio of the train load to the rail deflection. The track
geometry data includes the longitudinal profile, alignment, track gauge, cross-level,
and twist. Both the track stiffness and geometry may vary along the length of the
track at the transition zones, switches, and crossings [3]. However, local irregularities
such as mud spots cause a sudden variation in track stiffness and geometry, which
leads to track degradation in a short period. The interaction of the moving train with
such track defects induces additional dynamic stresses in the track system that may
prove harmful for the structural health of the track.

Track recording vehicles are often used for continuous measurement of stiffness
and vertical profile along the length of the railway track [4, 5]. Additionally, acceler-
ation sensors mounted on in-service trains are also employed to recognize the track
irregularities along the railway tracks. However, continuous monitoring of railway
tracks is costly, disrupts the regular operations, and has not been implemented yet
for a vast length of railway networks across the world. Therefore, prior knowledge
of the typical acceleration signals due to various track defects under the dynamic
train loads is essential to detect the track failures as early as possible [6].

Several studies have simulated the acceleration/displacement response of the rail
beam under moving train loads using various analytical and numerical methods [7–
9]. However, most of these methods analyze the track assuming a constant track
stiffness. Only a few theoretical studies are available in the literature which consider
the variation of track stiffness along the track length [10]. Moreover, none of those
studies take into account track geometry degradation.

The present study is performed in three parts (see Fig. 1). In this first part of this
research, an analytical approach is proposed to simulate the vertical track deflec-
tion/acceleration caused by a local track irregularity. In the second part, the track
acceleration data is collected via (1) an experimental study performed on a 1:87

Fig. 1 Activity diagram showing the steps of the study
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track–vehicle scale model and (2) field measurements. In the third part, the relia-
bility of the proposed approach will be assessed by comparison with the collected
data. In this paper, however, we only present the first part of this study. A subsequent
article (under preparation) will focus on the second and third parts based on results
of ongoing research.

The railway track is modeled as an infinitely long continuous Euler–Bernoulli
beam lying over a Pasternak-type viscoelastic foundation track model. At any given
location along the rail beam, the stiffness and thickness of the considered foundation
model denote the track substructural stiffness and track geometry, respectively. For
simulating the effects of local irregularities, a pre-definedvariation of the stiffness and
thickness is considered in a particular section of the foundation model. An analytical
approach is employed to analyze the response of a vehicle moving over the local
irregularity. The results comprise the time-domain deflection/acceleration response
of the rail beam and vehicle system for various train velocities.

2 Analysis

Figure 2 represents the railway track model used to analyze the behavior of railway
track system under motion-induced dynamic loading. The rail beam is idealized as
an infinite Euler–Bernoulli beam with x denoting the space coordinate along the
length of the rail beam. The track structure beneath the rail beam is idealized via
a viscoelastic Pasternak layer. The viscoelastic component of this layer comprises
viscous dampers superimposed with a spring layer. The viscoelastic layer accounts
for the stiffness K (x) and damping c(x) associated with various track components
(rail pads, sleepers, ballast, and subgrade). Further, the Pasternak layer (of thickness
HP(x)) takes into account the shear behavior of the substructure components (ballast

Rail beam ( )

Pasternak shear layer 

( (x))
Viscoelastic layer 

( , c) 

Fig. 2 Definition sketch of the considered railway track model
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and subgrade) via the shear parameter GP(x). In addition to this, the Pasternak shear
elements introduce the interaction between the viscoelastic spring elements.

Thus, the considered trackmodel idealizes the railway track system in a simplistic
manner through its stiffness, damping, and shear parameters. Ideally, a proper model
of the railway track should account for the sleepers, rail pads, and rail fasteners.
Further, the model for ballast and subgrade should account for effects such as inter-
particle friction, particle angularity, and nonlinear deformation behavior. However,
the primary goal of this study is to propose a computationally inexpensive analytical
model that, at the cost of certain simplifications, can still yield reasonable results for
the reference of practicing engineers.

Under these idealizations, the equation of motion of the rail beam is given by [9]

E I
∂4w

∂x4
− GP(x)HP(x)

∂2w

∂x2
+ K (x)w + c(x)

∂w

∂t
+ ρ

∂2w

∂t2
= F(x, t) (1)

wherew(x, t) is the transverse deflection of the rail beam (considered positive down-
ward), E is Young’s modulus of rail beam material, I is the moment of inertia of the
rail beam cross section about the axis of bending, ρ is the mass per unit length of the
beam, and F(x, t) is the load applied per unit length of the beam. In this case,F(x, t)
is given by

F(x, t) = P(t)δ(x − vt) (2)

where δ represents Dirac’s delta function and P(t) is the time-varying vertical load
moving over the rail beam with uniform velocity v. Further, as mentioned in the
introduction, the effect of local irregularity (mud spot) is simulated via the variation
of stiffness K (x) and height HP(x) of the Pasternak layer along x . However, it is
assumed that the shear parameter GP(x) and damping values c(x) remain constant
along the length of the railway track. Considering that, and usingEq. (2). Equation (1)
can be rewritten as:

E I
∂4w

∂x4
− GPHP(x)

∂2w

∂x2
+ K (x)w + c

∂w

∂t
+ ρ

∂2w

∂t2
= P(t)δ(x − vt) (3)

Denoting ι = √−1 and f
∧

(ω) as the Fourier transform of an arbitrary function
f (x) of the space coordinate x , we have

f
∧

(ω) =
∞∫

−∞
f (t)e−ιωtdt (4)

and
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f (t) = 1

2π

∞∫

−∞
f
∧

(ω)eιωtdω (5)

Further, on taking the Fourier transform of Eq. (3) using Eq. (4) we can write

E I
∂4w

∧

∂x4
− GPHP(x)

∂2w
∧

∂x2
+ K (x)w

∧ + ιcωw
∧ − ρω2w

∧ = P
( x

v

)
e−ιω( x

v ) (6)

where w
∧

(x, ω) denotes the Fourier transform of w(x, t). On simplifying the above
equation, we can obtain the solution for w

∧

(x, ω) as:

w
∧

(x, ω) =
(

P(x/v)v3

E Iω4 + GPHP(x)ω2v2 + v4K (x) − ρω2v4 + ιcωv4

)

e−iω( x
v ) (7)

To obtain the rail beam deflection w(x, t) in time domain, one needs to evaluate
the inverse Fourier transform of w

∧

(x, ω) using Eq. (5) as:

w(x, t) = 1

2π

∞∫

−∞

(
P(x/v)v3e−iω( x

v )eιωt

E Iω4 + GPHP(x)ω2v2 + v4K (x) − ρω2v4 + ιcωv4

)

dω

(8)

Furthermore, to determine the rail beam deflection below the moving load P(t)
we can substitute x = vt in the above equation:

w0(t) = 1

2π

∞∫

−∞

(
P(t)v3

E Iω4 + GPHP(vt)ω2v2 + v4K (vt) − ρω2v4 + ιcωv4

)

dω

(9)

where w0(t) represents the rail beam deflection at the location x = vt , i.e., w0(t) =
w(vt, t).

3 Results and Discussion

In this section, the response of the railway track system to the local irregularity
is evaluated using the above formulation presented. The parameters used for the
calculations are listed in Table 1. The variations of the track stiffness from a constant
stiffness K_0 (see Table 1) and that of the Pasternak layer thickness H_P (see Table
1) assumed to simulate the local irregularity are shown in Fig. 3a, b, respectively.
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Table 1 Railway track and
oscillator parameters [2, 8, 9]

Parameters Symbol Values

Rail beam

Mass per unit beam length ρ 60 kg/m

Modulus of elasticity E 210 GPa

Central area moment of inertia I 3055 cm4

Shear layer

Shear modulus GP 43.3 MPa

Height HP 0.5 m

Viscoelastic layer

Stiffness per unit beam length K0 40 MPa

Damping ratio ζ 0.05

Point load

Load magnitude P0 100 kN

Oscillator

Mass m0 880 kg

m1 745 kg

Stiffness k1 0.735 MN/m

Coefficient of viscous damping c1 9.36 kN-s/m

Figure 4 shows the deflection response w0(t) of the rail beam subjected to a
uniformly moving load P(t) = P0 (see Fig. 2 and Table 1), at the location x = vt ,
wherev denotes velocity. Itmaybe noted that the positive value of deflection indicates
the downward deflection (i.e., settlement). The deflection is obtained at four different
velocities. Itmay be observed fromFig. 4 that initially, at all the considered velocities,
the rail beamdeflections are constant. Those constant values are equal tow0(t) = wv ,
obtained by inserting the constant stiffness K0 and thickness HP in Eq. (9), at the
given velocity. However, as the load approaches the local irregularity, the deflection
values gradually increase, and respective maximum values are attained at x = 15 m.
As the load moves beyond the local irregularity, those deflections decrease and again
reach the constant value wv . The increase in deflections (by up to 360%) at the
location of local irregularity shows that the stiffness and track geometry degradation
may adversely affect the track performance.

Further, it may also be observed from Fig. 4 that as the velocity increases, the
maximum deflection at x = vt also increases. To better understand the effect of
velocity on the rail beamdeflection, Fig. 5 presents themaximumdeflectionsw0(t)max

observed for the velocities ranging from 0 to 500 m/s. It may be seen that w0(t)max

increases with velocity, with the maximum amplification occurring at v = 447 m/s.
This velocity is referred to as the critical velocity of the track. The maximum train
velocities for ballasted tracks are much lesser than the observed critical velocity.
However, the critical velocity value depends on the overall track stiffness and high
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Fig. 3 Variation of track parameters along the railway track. a Stiffness. b Thickness (the dotted
vertical lines specify the location of local irregularity)

Fig. 4 Deflection response of the rail beam subjected to a uniformly moving load, at the location
x = vt , for v = 30, 100, 200, and 400 m/s
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Fig. 5 Maximum rail beam deflections observed for the velocities ranging from 0 to 500 m/s

amplifications in deflections may be observed for a soft subgrade even at velocities
of magnitudes comparable with the train velocities [8].

In this section,we analyze the effect of the considered local irregularity onvehicle–
track interaction. Figure 6 shows a two-mass oscillator moving uniformly (with
velocity v) over the Pasternak viscoelastic model (with varying thickness H(x) and
stiffness K (x)). The oscillator system comprises masses m0 and m1 connected via
a spring (with stiffness k1) and dashpot (with viscous damping coefficient c1). The
parameters defining the oscillator system are listed in Table 1. It is assumed that the
moving oscillator system is in constant contact with the rail beam, and therefore, the
absolute displacement of mass m0 is equal to that of the rail beam, i.e., w0(t). w1(t)
represents the absolute displacement of mass m1. The force exerted by the moving
oscillator system on the rail beam P(t) (see Eq. (9)) is derived in using an approach
given in the study [9].

Fig. 6 Railway track model with two-mass oscillator
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Figure 7 shows the deflection response of the masses m0 (or of the rail beam) and
m1 at the location x = vt for three different velocities, v = 30, 100, and 200 m/s. It
is assumed that both masses are at rest at location x = 0 and time t = 0.

It may be observed that the deflections w0(t) and w1(t) oscillate about a constant
value. This value is equal to the deflection observed at the contact point when a point

Fig. 7 Deflection responses of the massesm0 (w0(t)) andm1 (w0(t)), at x = vt , for three different
velocities, a v = 30 m/s, b v = 100 m/s, and c v = 200 m/s (the dotted vertical lines specify the
location of local irregularity)
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load of magnitude (m0 + m1)g, where g is acceleration due to gravity, traverses the
track model. The oscillatory vibrations of the deflection w0(t) have a much higher
frequency than those for the deflection w1(t). Also, the frequency of vibration for
both w0(t) and w1(t) decreases with the increase in velocity. Further, the effect of
oscillator damping is evident in Fig. 7 where at all the considered velocities, as the
oscillator moves away from initial location, the magnitude of deflections w0(t) and
w1(t) decays with every cycle of vibration. The rate of vibration decay, however,
decreases with the increase in velocity.

Further, in Fig. 7, as the oscillator approaches the local irregularity section (x =
5–25m), an increase (by up to 250%) inw0(t) can be clearly observed at all velocities.
In addition to this, a significant increase (by up to 290%) in w1(t) may be observed
for the velocity v = 30 m/s. However, the effect of the local irregularity is negligible
on w1(t) at higher velocities (v = 100 and 200 m/s). The low value of deflection
observed at higher velocities may be attributed to the local irregularity’s length along
the rail track. It has been found that for an irregularity of longer length, significant
changes in deflections may be observed even at higher velocities. Lastly, as the
oscillator moves beyond the local irregularity, the deflection values dampen to the
constant value. Thus, it may be concluded that, the local irregularities may cause a
significant damage to track structure which may lead to poor ride comfort or, in some
cases, derailment.

Figure 8 shows the acceleration responses of the masses m0 and m1 along the
length of the railway track. The comparison of these responses with the field accel-
eration data will be able to test the reliability of the presented approach. However,
the data acquisition is still in process, and the subsequent article will focus on the
comparison study.

4 Summary and Conclusions

In this paper, an attempt was made to simulate the effect of local irregularities in the
railway track. The railway track is idealized via a Pasternak viscoelastic foundation
model. A pre-defined stiffness and geometry variation are incorporated in a partic-
ular section of this foundation model to simulate the local irregularity. Further, an
analytical approach is used to analyze the rail beam deflection/acceleration responses
under dynamic train loading for the cases of uniformly moving (a) point load and
(b) two-mass oscillator system.

For both considered loading types, a significant increase in the rail beam deflec-
tions is observed (by up to 360 and 250%, respectively) as the load approaches the
simulated local irregularity position. The maximum amplification in the rail beam
deflection is observed at the so-called critical velocity value. Lastly, it is found that
the oscillator damping brings the rail beam response closer to that observed for the
case of constant moving load idealization.
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Fig. 8 Acceleration responses of the masses m0 (ẅ0(t)) and m1 (ẅ1(t)), at x = vt , for three
different velocities, a v = 30 m/s, b v = 100 m/s, and c v = 200 m/s (the dotted vertical lines
specify the location of local irregularity)
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