Internet of Things (IoT)-based Collaborative Control of a Redundant Manipulator for Teleoperated Minimally Invasive Surgeries

Hang Su1, Salih Ertug Ovur1, Zhijun Li2, Yingbai Hu3, Jiehao Li1, Alois Knoll3, Giancarlo Ferrigno1 and Elena De Momi1

Abstract—In this paper, an Internet of Things-based human-robot collaborative control scheme is developed in Robot-assisted Minimally Invasive Surgery scenario. A hierarchical operational space formulation is designed to exploit the redundancies of the 7-DoFs redundant manipulator to handle multiple operational tasks based on their priority levels, such as guaranteeing a remote center of motion constraint and avoiding collision with a swivel motion without influencing the undergoing surgical operation. Furthermore, the concept of the Internet of Robotic Things is exploited to facilitate the best action of the robot in human-robot interaction. Instead of utilizing compliant swivel motion, HTC VIVE PRO controllers, used as the Internet of Things technology, is adopted to detect the collision. A virtual force is applied to the robot elbow, enabling a smooth swivel motion for human-robot interaction. The effectiveness of the proposed strategy is validated using experiments performed on a patient phantom in a lab setup environment, with a KUKA LWR4+ slave robot and a SIGMA 7 master manipulator. By comparison with previous works, the results show improved performances in terms of the accuracy of the RCM constraint and surgical tip.

I. INTRODUCTION

Robot-assisted minimally invasive surgery (RA-MIS), providing intuitive access to surgical operations, has garnered increasing research popularity in recent years because of its advantages compared to traditional open surgery, such as the reduction in recovery time, increased operational workspace and improved dexterity of the manipulation, etc. [1]. Nevertheless, due to the complexity under the kinematic constraint generated by the small incision point, RA-MIS requires expertise and continuous training for the surgeon [2], [3]. This small incision point on the abdominal wall, which has a diameter of less than an inch, is commonly known as the remote center of motion (RCM) constraint [4]. Hence, there are multiple tasks that need to be handled together during the surgical operation in RA-MIS, such as the control of the surgical tip and the maintenance of the RCM constraint, which is unavoidable. Moreover, when there is a collision in the workspace, collision avoidance [5] without affects of the undergoing surgery is of vital importance for safety. Human-robot Interaction (HRI) has been one of the popular solutions to manage the workspace collision [6], [2]. Usually, the above multiple tasks are characterized by different priority levels [7]. For example, the general multiple tasks are listed as follows (T1–T3):

i): The tracking control of the surgical tip must be accurate, which guarantees the success of the performed surgery using the robot manipulator [2].

ii): The RCM kinematic constraint, produced by each small incision, should be respected [8].

iii): Obstacle avoidance using HRI should be implemented to give the surgeon nearby access to a flexible workspace in the operating room [2], [3].

Hierarchical operational space proposed in [9], [10] is an efficient solution to achieve the multiple tasks controlled by the redundant serial manipulator. In our previous works [3], a control framework based on the hierarchical operational space was proposed to ensure T1–T3 together. It aims to limit the force exerted on the incision wall by the tool shaft, preventing patient injury. The collision can also be avoided using HRI with a compliant swivel motion strategy or using a remote body tracking system. However, a compliant swivel motion for HRI [6], which requires uncertain hands-on contact, leading to an error in the task space. The current remote body tracking system is not an optimal solution to predict human intention during the surgery in the complex environment of the operating room.

In recent years, the inspiration of devices communicating with each other has drastically increased. Communication between objects, makes the interaction with other objects such as sensing, identifying and networking, known as Internet of Things (IoT), possible [11], [12]. As a consequence of the infinite number of possibilities of interactions, IoT applications have spread widely to all research fields, and currently they have taken the lead in new research fields [13]. The Internet of Robotic Things (IoRT) is one application of IoT, which is widely used to address the integration of robotics technologies.

The role of robot-robot interaction and human-robot interaction [14] occupies an important place in the increasing research trend of IoRT. When IoRT supported robots are compared to stand-alone robots, IoRT benefits from sensing the presence of humans and allows human-robot interaction [13], [15]. In addition, the sensing capability, communication
In recent years, IoT has been more and more popular in robot applications with HRI, especially for collision avoidance. In [18], laser scanner and IMUs used for distance calculation for safer human-robot interaction. Safaee \textit{et al.} [19] proposed an on-line collision avoidance for using IoT for collaborative robot manipulators by modifying offline created paths using an industrial robot. They present a trend to utilize IoT techniques to avoid a collision without physical interaction.

III. METHODOLOGY

In this paper, we propose a novel method to utilize the benefits brought by IoT. The main contribution of this paper includes:

1) Introducing a novel swivel motion interaction control with IoT techniques to avoid direct hand contact on the robot body.
2) RBFNN is adopted to eliminate the uncertain disturbances existing in the system in a decouple way to improve the accuracy.
3) Experimental comparisons are performed with a hierarchical tasks scenario to demonstrate the effectiveness of the developed method.

As it is shown in Fig. 1, the HTC VIVE controller is used as IoT pre-calibrated with the robot system. In this way, there is real-time communication between the VIVE controller and the robot system. The distance between them can be calculated to detect a possible collision. If there is a collision in the workspace with the nearby surgeon in the operating room, a smooth virtual force will be applied to the robot manipulator to avoid the collision.

A. Teleoperation control of the Surgical tip

The surgical operation is controlled by the master manipulator through the vision interface. To drive the tool-tip position \(X \in \mathbb{R}^3\) following the reference trajectory \(X_r \in \mathbb{R}^3\) from the master, an interpolation method is implemented to allow the manipulator moving to the desired position \(X_d \in \mathbb{R}^3\) efficiently:

\[
X_d = -k_0(X - ^sT_mX_r) + ^sT_m\dot{X}_r
\]

where \(^sT_m\) denotes the transformation matrix, and \(k_0 > 0\) is a positive coefficient. Then a Cartesian compliance control term \([4][2][20], \tau_r\), is proposed to perform impedance control of the surgical tip. The detailed implementation is shown in our previous works \([2], [3]\). For simplification, it is assumed that the desired trajectories are always within the reachable area, and the manipulator is far from its kinematic singularities.

B. Calibration of IoT with Robot for HRI

The HTC VIVE PRO controller has a reference frame, \(v\), associated with respect to the HTC lighthouse base stations which is independently defined from the robot frame, \(b\), shown in Fig. 2. Hence, registration is required between these two reference frames. To find a transformation matrix, calibration and validation steps are needed. In the calibration...
Fig. 2. Calibration of IoT in robot frame. \(X_c \in \mathbb{R}^3 \) is the performed calibration trajectory.

step, the tool-tip of the robot manipulator and the HTC VIVE PRO controller’s origin are positioned at the same location for 5 seconds with 200 [Hz] sampling frequency for 15 different positions along a trajectory \(X_c \). Thanks to the Horn’s quaternion-based method [21], the transformation matrix \(T \), between the two reference frames are computed. After the calibration has been done, transformation matrix \(T \) is applied to the VIVE controller for validation. Three acquisition is performed by synchronous movement of the VIVE controller and robot tool in the space, with a duration of a minute under 200 Hz sampling frequency. The root-mean-squared error between the robot arm reference plane (BSW) and the actual robot arm plane (SEW), is called swivel angle, shown in Fig. 3. It is defined:

\[
\psi_s = \text{sgn}((B_S \times S_E) \cdot S_W) \arccos \left(\frac{(B_S \times S_E) \cdot S_W}{||B_S \times S_E|| \cdot ||S_E \times S_W||} \right) \tag{2}
\]

where \((B_S, S_E, S_W, E_W)\) denote the vector from base to shoulder, the shoulder to the elbow, the elbow to the wrist, and the elbow to the wrist, respectively. The full swivel motion range is \([-\pi, \pi]\). Due to the kinematic limitations, it is divided into a feasible area \([\psi_{smin}, \psi_{smax}]\) and two blocked areas \([-\pi, \psi_{smin}]\) and \(\psi_{smax}, \pi]\) [23].

Except for the swivel angle \(\psi\) of the robot manipulator, to measure the distance between the robot elbow and the possible collision in the workspace, the swivel angle of VIVE controller, \(\psi_V\), between the reference plane (BSW) and the VIVE plane (SVW), is defined:

\[
\psi_V = \text{sgn}((B_S \times S_E) \cdot S_W) \arccos \left(\frac{(B_S \times S_E) \cdot S_W}{||B_S \times S_E|| \cdot ||S_E \times S_W||} \cdot V \cdot V_W \right) \tag{3}
\]

2) IoT-based swivel motion control: After the definition of the robot swivel angle, \(\psi\), and the VIVE swivel angle, \(\psi_V\), an IoT-based swivel motion control approach is proposed to obtain the desired swivel angle \(\psi_d\). Considering the safety, we use the button on VIVE controller to switch on or off the swivel motion control. Hence, the control mode is working incrementally.

- When the button is pushed, the swivel motion control is activated and \(\psi_{init}\) is the initial swivel angle at the starting time \(t_{init}\). The swivel motion of the manipulator is guided by the VIVE controller:

\[
\psi_d = \psi_{init} + \xi \int_{t_{init}}^{curr} \psi_V dt \tag{4}
\]

where \(\psi_V \in \mathbb{R}\) is the velocity of the VIVE swivel motion. \(\xi \in \mathbb{R}\) is a positive scaling coefficient and \(t_{curr}\) is the current time.

- When the button is off, the swivel motion control is off. The compliant arm behaviour will be activated. Hence,

\[
\psi_d = \psi \tag{5}
\]

To drive the swivel motion following \(\psi_d\) in the pre-defined safe area, \([\psi_{min}, \psi_{max}]\), a virtual force \(\mathbf{F}_\phi = u_{\mathbf{F}_\phi} \cdot ||\mathbf{F}_\phi||\) will be applied to the robot manipulator to enable the swivel motion. \(u_{\mathbf{F}_\phi}\) is the force direction vector, which is perpendicular to the BSW plane, defined as:

\[
u_{\mathbf{F}_\phi} = \text{sgn}(\psi_d - \psi) \cdot \frac{S_E \times E_W}{||S_E \times E_W||} \tag{6}
\]

To achieve smooth swivel motion, an interpolation method proposed in the related work [2] is introduced to obtain the smooth control input \(\dot{\psi}_d\). The virtual force \(\mathbf{F}_\phi\) can be
expressed as:
\[
F_\psi = \begin{cases}
\nu F_\psi \cdot (k_\psi(\psi_{\text{min f}} + \rho - \psi) - d_\psi \dot{\psi}) & \psi < \psi_{\text{min f}} \\
\nu F_\psi \cdot (k_\psi(\psi_{\text{max f}} - \rho - \psi) - d_\psi \dot{\psi}) & \psi > \psi_{\text{max f}} \\
\nu F_\psi \cdot (k_\psi(\psi_d - \psi) - d_\psi \dot{\psi}) & [\psi_{\text{min f}}, \psi_{\text{max f}}]
\end{cases}
\]

where \(k_\psi \) and \(d_\psi \) are the constant coefficients, \(\rho \in \mathbb{R} \) denotes a positive constant threshold state of the swivel constraint.

3) Adaptive compensation: Since there is a physical interaction between the patient’s abdominal wall and on the small incision the surgical tool shaft, it generates an external disturbance \(F_e \) on the tool shaft, which is unknown and nonlinear. The precision of the surgical tip and the RCM constraint can be limited by the disturbances. We plan to introduce a RBFNN [24] based decoupled approximation to improve the accuracy of the surgical tool-tip and maintain the RCM constraint.

Thus, the input \(Z \) of RBFNN is chosen with the actual Cartesian position \(X \) and the RCM constraint distance \(d \). The uncertain disturbance \(F(X, \dot{X}, d, \dot{d}) \) is represented as:

\[
F(X, \dot{X}, d, \dot{d}) = \Theta \cdot \xi(X, \dot{X}, d, \dot{d}) + \varepsilon
\]

where \(\varepsilon \) is the smallest approximation error of RBFNN algorithm, \(\Theta = [\theta_1, \theta_2, ..., \theta_l]^T \) is the optimal constant weight matrix of neural networks, \(l \) is the number of nodes used in neural networks, and \(\xi(X, \dot{X}, d, \dot{d}) = [\xi_1, \xi_2, ..., \xi_l] \) is Gaussian function matrix. According to the theory of RBFNN, it can be addressed the upper bound of the approximation error \(\varepsilon^* \), i.e., \(|\varepsilon| \leq \varepsilon^* \), under a positive constant \(\varepsilon^* > 0 \).

The Gaussian function matrix used in the RBFNN algorithm can be represented as follows:

\[
\xi_i(Z) = \exp\left[-\frac{(Z-c_i)^T(Z-c_i)}{b_i^2}\right]
\]

where \((b_i, c_i) \) denote the width of the Gaussian function and the center of the receptive field, respectively. According to the approximation rule, a positive constant can be constrained as follows: \(\delta \) subjected to \(||\xi(Z)|| \leq \delta \) with \(\delta > 0 \).

The adaptive neural network updating law [24] is introduced to adjust the weights of neural network as:

\[
\dot{\Theta} = \gamma E \xi^T(X, \dot{X}, d, \dot{d}) + \varsigma \Theta
\]

where \(\gamma \) is a diagonal positive definite constant matrix determining the updating speed, \(E = [X_d - X]^T \), and \(\varsigma \) is a momentum factor matrix of neural networks, which can improve both training speed and accuracy.

In order to compensate for the uncertainties in physical interaction, an adaptive neural network compensator is designed as:

\[
\tau_d = \tau_{T_1} + \tau_{T_2} + \tau_{N_{11}} + \tau_{N_{12}} + \tau_{N_2}
\]

where \(\tau_{T_i} \) is the task space control term, \(\tau_{N_{ij}} \) is the RCM control term, \(\tau_{N_i} \) is the control term for swivel motion control. The detailed definition and expression can be found in our previous works [3].

IV. SYSTEM DESCRIPTION

Elements of the teleoperated MIS system is shown in Fig. 4. The system is comprised of:

- A serial redundant robot (LWR4+, KUKA, Germany) is used to provide a direct low-level real-time access to the robot controller using the Fast Research Interface (FRI) [25];
- To implement a 3D Cartesian incremental teleoperation control, the haptic device (Sigma 7, Force Dimension, Switzerland) is used for the application;
- An HD endoscopic camera and an ArUco marker board [26], that are used for virtual surgical task tracking in an augmented reality environment;
- A 6-axis force sensor (M8128C6, SRI, China), used to measure the interaction force between the abdominal wall and the surgical tip.
- A HTC VIVE PRO full kit including the wireless HTC VIVE PRO Joystick and two HTC lighthouse base stations adopted to serve as an IoT for the localization of the motion of the surgeon.

The control system has been developed using two separate computers communicating through an UDP protocol. The first one, the “control computer”, executes the real-time control loops implemented using ORocos\footnote{Open Robotic Control Software, \url{http://www.orocos.org/}}, with a real-time Xenomai-patched Linux kernel. The second one, the “vision computer”, runs the perception algorithms developed using ROS\footnote{Robot Operating System, \url{http://www.ros.org/}} Kinetic under Ubuntu.

V. EXPERIMENTAL DEMONSTRATION

The experiments set up procedure is presented in Fig. 5. To validate the proposed IoTHRCC approach, we perform

\[
\tau_d = \tau_{T_1} + \tau_{T_2} + \tau_{N_{11}} + \tau_{N_{12}} + \tau_{N_2}
\]
TABLE I

<table>
<thead>
<tr>
<th>Controller</th>
<th>Controller parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_X</td>
<td>diag(3000, 3000, 3000)</td>
</tr>
<tr>
<td>D_X</td>
<td>diag(30, 30, 30)</td>
</tr>
<tr>
<td>K_N</td>
<td>diag(800, 800, 800)</td>
</tr>
<tr>
<td>D_N</td>
<td>diag(0.1, 0.1, 0.1)</td>
</tr>
<tr>
<td>λ</td>
<td>diag(1.5, 1.5, 1.5)</td>
</tr>
<tr>
<td>ϕ</td>
<td>diag(0.3, 0.3, 0.3)</td>
</tr>
<tr>
<td>c</td>
<td>diag(-3.0, -1.5, 0.5)</td>
</tr>
</tbody>
</table>

experiments in the laboratory setup environment employing a patient phantom. The RCM constraint is validated with physical interaction. And the surgical tip is teleoperated to track virtual trajectories without physical interaction. One teleoperator (User 2) and one surgeon (User 1) were enrolled. Hands-on control is performed to allow the user 1 locating the RCM constraint and insert the surgical tool into the patient phantom. Then teleoperation mode is activated to track the surgical tasks in augmented reality by User 2. The teleoperation tracking of three different tracking tasks in augmented reality is repeated 5 times each. At the same time, the robot arm is moved by user 1 using VIVE controller in an allowed swivel motion area [2], [3]. Table I presents the corresponding control parameters.

We experimentally demonstrate the concept of IoTHRCC and compared its performance with improved human-robot collaborative control (IHRCC) [3]. It should be mentioned that IHRCC handles the disturbances using fuzzy approximation, while RBFNN is used for the nonlinear approximation in IoTHRCC. The previous work manages collision avoidance with direct hand contact, and the novel one proposes a touchless solution. The measured Cartesian position error, E_X, the RCM constraint error, d, and the interaction force F_e [3], [27]. The force sensor has been pre-calibrated in our previous works [27]. This procedure is only validated when the surgical tip travels in free space within the abdominal cavity, which means there are no contact forces at the instrument tip.

It should be noticed that the swivel motion affects the tracking performance and the RCM constraint error. The corresponding distribution of the error of the surgical tip, E_X, is shown in Fig. 6(a). Fig. 6(b) depicts the corresponding
distribution of RCM constraint error d. The corresponding distribution of interaction force $\|F_e\|$ on the small incision during the teleoperation tracking is presented in Fig. 6(c). Compared with IHRC, direct hand contact on the robot is avoided, and the accuracy of the surgical tip is improved. Meanwhile, the error of the RCM constraint and the interaction forces are converged into a smaller scale.

VI. DISCUSSION AND CONCLUSION

An Internet of Things-based human-robot collaborative control scheme (IoTHRC) is introduced for Robot-assisted Minimally Invasive Surgeries. The concept of the Internet of Robotic Things is introduced to facilitate the best action of the robot in Human-robot interaction. Instead of utilizing compliant swivel motion, the HTC Vive Pro interface is employed as a contactless approach to detect the collision and control the swivel motion. It is for the further development of the control scheme in order to consider the challenges associated with IoT technologies. A virtual force is applied to the robot elbow, enabling a safe swivel motion for Human-robot interaction. The effectiveness of the proposed strategy is demonstrated using experiments performed on a patient phantom in a lab setup environment. By comparison, the results show improved performances in terms of the accuracy, both for the RCM constraint and the surgical tip. Compared to the improved human-robot collaborative control in [3], hand contact is avoided and the accuracy is improved. It shows that the interaction between IoT and the robot produces a weaker influence on the teleoperation transparency and stability of the system compared to the compliance collision behavior with hand contacts.

REFERENCES

