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Abstract— Aligning the 2D LiDAR point clouds and estimat-
ing their relative poses are the fundamental components of the
2D robotic SLAM (Simultaneous Localization and Mapping)
system. Although there are lots of works addressing this
problem, existing methods often fail to get a balance between
robustness and efficiency. Methods depending on local opti-
mization run fast while sometimes get stuck in local optimum
resulting in the wrong pose estimations, which weaken the
robustness of the methods. Additionally, methods depending
on global optimization always return globally optimal poses by
searching the entire given domain for a long period of time,
which sacrifice the efficiency of the methods. In this work, we
propose a decoupled and globally optimal 2D LiDAR aligning
method, which differs from existing methods by achieving the
robustness and efficiency of the 2D LiDAR pose estimation
simultaneously. Concretely, we use the invariant vectors features
decoupling the motion of rotation and translation to reduce
the dimensionality of the alignment problem. Consequently,
the branch-and-bound algorithm runs in a low dimension to
obtain a robust relative pose. Moreover, we propose a feature-
selecting strategy to speed up our method. The proposed method
is verified in various synthetic and real-world data and shows
great performance.

I. INTRODUCTION

2D points cloud alignment technique is a critical compo-
nent for Simultaneous Localization and Mapping. Given two
sets of points, the process of alignment is to find the best
transformation to align the two points sets. The relative pose
from aligning point clouds can be used for LIDAR odometry
and robots localizing itself on the map [1].

In the past few years, many algorithms have been pro-
posed for 2D LIDAR point clouds alignment, and some of
them obtain great success in application. For example, [2]
proposed the Iterative Closest Point(ICP) algorithm, which
obtains the transformation by alternating between building
closest-point correspondences and get the transformation
with the current correspondences, until convergence. In
addtion, Bliber et al. proposed the Normal Distributions
Transform(NDT) algorithm, which maximizes the point set’s
probability density function with the mixture distribution to
estimate the transformation [3]. These algorithms have been
widely used in several real-world scenes [4] because of good
performance and simple concepts. However the accuracy of
these approaches cannot be guaranteed. Especially, there are
many outliers in the input data, which is a common case in
real application. The reason is that the point set alignment
problem is generally a non-convexity problem [5], and these
algorithms adopt the local optimization methods to obtain
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the transformation. Therefore, there is full of the dangerous
possibility of local minima, and their performance heavily
rely on the proper initialization.

To address this problem, global optimization, which
mostly are based on branch-and-bound algorithm to search
the entire given domain, is applied in point set alignment. [6]
reviews and summarizes the methods for globally optimal
point set alignment, especially 2D LIDAR alignment. How-
ever, when the initial domain cannot properly be estimated,
the global searching strategy is by no mean efficient. Thus
there is a demand for methods which is not only efficient
but also robust.

In this paper, we propose a fast and robust algorithm for
the registration of 2D LIDAR point clouds based on the
branch-and-bound algorithm. The main contributions of our
proposed method are as follows. (1) Our method is more
efficient than other global methods that are based on branch-
and-bound. In this paper, we have two strategies to get
high efficiency. Firstly, we decouple the motion into rotation
and translation, and solve the subproblems sequentially,
which reduce the dimensionality of the original alignment
problem. Secondly, we design an invariant-features selecting
strategy, which significantly reduce the number of invariant-
features. It is worth noting that the idea of motion decoupling
appeared in related work [7] [8]. However, we propose a
original invariant-features selecting strategy for 2D LIDAR
alinment in this paper, which can significantly reduce the
computational burden. (2) Our method is robust to outlier. It
is well known that outlier is the most common enemy of 2D
LIDAR alignment in real application, because outliers are
always distributed irregularly and lead to the non-convexity
of the alignment problem. To obtain a robust result, we
formulate a robust objective function and apply the branch-
and-bound algorithm to get the global optimum.

II. RELATED WORKS

The point set alignment problem has been studied for a
long time. Recently, with the success of deep learning in
other applications [9], the learning methods are being applied
in the point set alignment problem. Li et al. proposed a
end-to-end deep learning method in [10] for loop closure
detection. In [11], authors defined a point-set kernel as
a set of learnable 3D points for point cloud registration.
Besides, there are also researches on learning descriptors
[12] [13]. However, in this section, we focus on the most
relevant non-learning algorithms, which, from the perspective
of optimization, can be divided into two categories: local and
global methods.
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A. Local Methods

The Iterative Close Point (ICP) [14] is one of the most
popular point set matching algorithms. It obtains the solution
by alternately finding the closest correspondences and solv-
ing the optimal translation with the current correspondences.
Due to its conceptual simplicity and excellent performance,
it has been used in many tasks. But it can only obtain a
local optimum and have risks of failure. Over the years,
its several variants, such as, LM-ICP [15] which widened
the basin of convergence, trimmed ICP [16] based on the
Least Trimmed Squares approach and sparse ICP [17], have
been proposed to improve the ICP algorithm. However, they
are all have possibility to be stuck in local minima. Besides
the ICP and its variants, the NDT algorithm is also widely
used in the points set matching, which was proposed by
Biber et al. in [3]. In addition, NDT has been extended to
3D point clouds [18] [19]. In [19], authors have evaluated
the performance of ICP and NDT for 3D mapping, in their
experiments, NDT depends less on the proper initialization
than ICP. Other popular local methods were based on GMMs
(Gaussian Mixture Models) [20] [21]. These approaches
use a mixture of Gaussians to represent each point set
and transform the point set matching problem into aligning
probability distribution.

B. Global Methods

The optimal global methods can guarantee optimality
without initialization. Most of the deterministic Methods
are based on branch-and-bound(BnB) algorithm. [22] was
one of the earliest work applying the branch-and-bound
algorithm for point sets alignment, which used the matchlist-
based branch-and-bound algorithm for geometric matching.
Subsequently, several types of research based on Hartley
and Kahl’s theory [23] which use geometric bound were
proposed. Li et al. formulated an objective function based on
Lipschitz optimization theory and used the branch-and-bound
algorithm to obtain the optimal solution [24]. However, this
method assumes that there is no outlier in the point sets,
and the translation has been determined in advance. It is
almost unrealistic in the real-world scenes. Yang et al. in
[5] proposed a nested branch-and-bound algorithm, which
is the first global 3D points alignment algorithm in SE(3).
Based on the nested method, [25] used the stereographic
projection to increase the algorithm’s efficiency. These nested
methods need search the optimal rotation and translation
in the entire given domain, therefore, the dimension of
searching space is six. Unfortunately, the complexity of BnB
algorithm is exponential in the dimension, thus these nested
methods are relatively time-consuming. To speed up the
global searching process, [7] proposed a decoupling method
to separate the motion and reduce the dimensionality of 3D
point set alignment.

III. METHOD

A. Problem Formulation

There are two 2D LIDAR point sets, X = {xxxi}M
i=1 and

Y =
{

yyy j

}N

j=1
where xxxi ∈ R2 and yyy j ∈ R2, which are related

by a 2D transformation. M may be not equal to N because
of the existence of outliers. The objective of aligning two
point sets is to find a optimal transformation T ∗

, which is composed of a rotation R∗ and a translation ttt∗.
E is defined as the energy function evaluating the alignment
between two point sets. In this paper, we define the maximum
of inliers as the objective function as Eq.(1).

E(T ) =
M

∑
i=1

max
j∈[1,N]

b‖R · xxxi + ttt− yyy j‖ ≤ εc (1)

where b.c is a binary function, if its inner condition is true,
it will return 1 and 0 otherwise, ‖.‖ represents the Euclidean
distance, ε is the inlier threshold. If the distance between
R ·xxxk + ttt and yyyk is less than ε , we will consider xxxk and yyyk is
an inlier pair under the current transformation. Our objective
function Eq.(1) is robust to outliers because the points out
of a distance threshold will not be counted.

B. Decoupling Rotation and Translation Search

As defined in the above section, the transformation is
three- DoF(Degree of Freedom). Unfortunately, to obtain
the global optimum, the branch-and-bound algorithm need
considerable time to search all the 3D domain, which is
exponential in the dimension. In this paper, instead of
optimizing over the 3D transformation domain directly, we
construct the feature vectors which are invariant to translation
and has the same relative rotation as the original point sets.
Concretely, we first align these invariant vectors to obtain
the optimal rotation between two invariant vector sets, then
recover the optimal translation by aligning the original point
sets under the optimal rotation. In this case, our algorithm de-
composes the transformation optimization problem into two
sub-problems through decoupling the rotation and translation
searching, which decreases the algorithm’s dimensionality
and thus improve the algorithm’s efficiency. We then describe
the decoupling method in detail.

Given two points xxxi1, xxxi2 in X , their corresponding points
yyy j1, yyy j2 in Y and optimal rotation R∗ and translation ttt∗ from
X to Y . We have

yyy j1 = R∗xxxi1 + ttt∗ (2)

yyy j2 = R∗xxxi2 + ttt∗ (3)

Using equation (3) minus the equation (2), we have

yyy j1−−− yyy j2 = R∗ · (xxxi1− xxxi2) (4)

where yyy j1−−−yyy j2 is the vector from yyy j1 to yyy j2 and xxxi1−−−xxxi2 is
the vector from xxxi1 to xxxi2.

From the Eq.(4) we can see that both sides vectors are
invariant to the translation and the vector yyy j1−−− yyy j2 can be
aligned with the vector xxxi1−−−xxxi2 by the optimal rotation R∗.
We call these vectors as the translation invariant vectors
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(TIVs). Using the characteristics of the TIVs, we can obtain
the optimal rotation through aligning the TIVs. Given P ={

pppi
}W

i=1 are the TIVs’ set constructed from original point

set X , Q =
{

qqq j

}Z

j=1
are the TIVs’ set constructed from

original point set Y . Optimizing rotation can be described
as the following problem

R∗ = argmaxE(R)

E(R) =
W

∑
i=1

max
j∈[1,Z]

b‖Rpppi−qqq j‖ ≤ εrc
(5)

Obviously, there is only rotation R to be solved in Eq.(5).
It is also worth noting that solving the problem (5), we can
not only recover the optimal rotation but also determine the
TIVs’ correspondence relationship which can be used to find
the corresponding point pairs from the original point sets. For
example, let

{
pppi,qqq j

}
be a corresponding TIVs pair, where

pppi = xxxi1− xxxi2 and qqqi = yyy j1− yyy j2. According to equation, it

is easy to determine that both
{

xxxi1,yyy j1

}
and

{
xxxi2,yyy j2

}
are

corresponding point pairs. These corresponding point pairs
could provide a important prior condition for the translation
searching.

After obtaining the optimal rotation R∗, give C ={{
xxxk,yyyk

}}K

k=1
, where xxxk and yyyk is a pair of corresponding

points, then we have

ttt∗ = yyyk−R∗ · xxxk (6)

We denote xxx′k = R∗xxxk and xxx′k = [x′k1,x
′
k2]

T, yyyk = [yk1,yk2]
T,

ttt∗ = [t∗1 , t
∗
2 ]

T for element representation. Therefore,

t∗1 = yk1− x′k1

t∗2 = yk2− x′k2
(7)

From the equations (7), we can see that the translation has
two independent variables. Thus we can respectively search
the variables, which decomposes the translation searching
problem into two one-dimensional sub-problems. It can fur-
ther decrease the complexity of the algorithm. We formulate
one-dimensional translation searching problem as followings

t∗n = argmax
tn∈R

E(tn), n ∈ {1,2}

E(tn) =
K

∑
k=1
b‖ xkn + tn− ykn‖ ≤ εtc

(8)

C. Selecting Invariant-features

Using the above decoupling strategy, we decompose the
3-DoF transformation recovering problem into three 1-DoF
sub-problems. It guarantees the algorithm’s efficiency. Unfor-
tunately, this strategy decreases the algorithm’s complexity
while increasing the scale of point set. If the original points’
number is n, the number of TIVs constructing from the
original points will grow to n(n− 1)/2. Downsampling the
TIVs can decrease the algorithm’s input scale, improving
its efficiency. However, downsampling contributes to los-
ing geometric information . Thus, formulating a selecting-
strategy which can get a balance between the downsampling

and information loss is the key to guarantee the algorithm’s
accuracy and efficiency simultaneously. In this paper, we
propose a robust feature-selecting strategy to downsample the
TIVs without affecting the algorithm’s accuracy. Our feature-
selecting strategy adopts an equal interval sampling approach
which is based on the property that the paired TIVs have
equal norms. Concretely, let pppk and qqqk be a pair of consensus
vectors. According to eq.(4), we have

qqqk = R∗ · pppk (9)

Calculating the norm of the equation left and right sides, we
can get the conclusion the paired TIVs have equal norm.

‖qqqk‖= ‖R∗ · pppk‖= ‖pppk‖ (10)

Combining this property with equal interval sampling
method, we can decompose the subset selecting from TIVs’
into several parts. In each part, the norm difference among
TIVs would not be larger than twice the sampling threshold.
Through the equal interval downsampling, the overall geo-
metric of the TIVs’ distribution hardly change, thus under a
constant sampling scale, it can loss less geometric informa-
tion. Besides, the selected TIVs’ coarse correspondence can
be determined according to the norm relationship. Here, we
describe our feature-selecting strategy in detail.

Given the norm selecting sequence S = {si}J
i=1 and the

selecting threshold εs. Let Vmax , Vmin be the max and min
norm of the selected TIVs. We have

s1 =Vmin ,sJ =Vmax

sk− sk−1 = (sJ− s1)/J ,k ∈ [2,J]
(11)

Let P′ =
{

P′i
}J

i=1 be the subset of P and Q′ =
{

Q′i
}J

i=1 be
the subset of Q, We call P′k and Q′k as the sampling sub-sets.

After constructing the TIVs, we choose the sampling scale
and the extreme norms to formulate the selecting sequence.
For each selecting length sk, we put all TIVs whose norm is
in range of [sk− εs,sk + εs] into the sampling sub-set P′k or
Q′k. Due to the equal norm relationship and εs� sk− sk−1,
the TIVs in P′l only can be aligned with the TIVs in Q′l .
That is to say, the selected subsets have been pre-aligned and
coarse correspondence can be determined. Thus using the
pre-aligned subsets to recover optimal rotation reduces the
problem’s difficulty. It is useful for improving the algorithm’s
speed and accuracy.

D. Efficient Rotation Search Based on Branch-and-bound
Algorithm

Since we utilize the subsets choosed according to the
feature-selecting strategy rather than the whole TIVs sets
to optimize the rotation, the objective function (5) can be
changed as follows

E(R) =
J

∑
k=1

∑
pppi∈P′k

max
qqq j∈Q′k

b‖R · pppi−qqq j‖ ≤ εrc (12)

Optimizing rotation is a one-dimension searching problem,
so we use the angle space of a circle to represent the rotation
domain, and the range is [−π,π]. When using the BnB
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algorithm to search optimal rotation, the algorithm explores
iteratively the branches of a tree and each branch represents
a sub-space. In the searching process, the algorithm choose
a branch whose priority is the highest and check the upper
bound of the selected branch against the best solution before
creating candidate solutions with it. The branch will be cut,
if there is no better solution it. We summarize the rotation
searching based on BnB in Algorithm 1.

Algorithm 1: BnB rotation search to maximise (12)
Input: the subset of TIVs P′, Q′ and rotation

threshold εr
Output: the optimal rotation R∗ with quality E∗

1 Initialize priority queue q, E∗← 0, R∗← I, L← line
segment of length 2π;

2 while q is not empty do
3 Obtain highest priority line segment L from q;
4 if Ē = E∗ then
5 Terminate;

6 Rc← the center of L;
7 if E(Rc)> E∗ then
8 E∗← E(Rc);
9 R∗← Rc;

10 Divide the L into two sub-lines {Li}2
i=1;

11 for each Li do
12 if Ē(Li)≥ E∗ then
13 Add the Li with its priority Ē(Li) into q;

14 else
15 Cut the Li ;

16 return R∗,E∗

In the Algorithm 1, Ēr(L) is the upper bound of the
current branch, which satisfies:

Ē(L)≥max
R∈L

E(R) (13)

where L is a branch of rotation domain. In this paper, we
calculate the bound as followings.

Ē(L) =
J

∑
k=1

∑
pppi∈P′k

max
qqq j∈Q′k

b‖Rc · pppi−qqq j‖ ≤ εr +δrc (14)

where δr = 2‖pppiii‖sin(Lr/4); Lr is the length of L and εr
is the threshold for rotation optimizing; Rc is the rotation
correspondence to the center of L.

We then give the solid mathematical proof to confirm
Eq.(14) is the upper bound. Given ‖R · pppi − qqq j‖ ≤ εr, we
have:

‖R · pppi−qqq j‖= ‖R · pppi−Rc · pppi +Rc · pppi−qqq j‖ ≤ εr (15)

where ∠(R,Rc) is the angle between the rotation R and Rc.

‖Rc · pppi−qqq j‖−‖(R−Rc) · pppi‖ ≤
‖R · pppi−Rc · pppi +Rc · pppi−qqq j‖

(16)

According to (15) and (16), we have

‖Rc · pppi−qqq j‖−‖(R−Rc) · pppi‖ ≤ εr (17)

‖(R−Rc) · pppi‖= 2‖pppi‖sin∠(R,Rc)/2 (18)

Because ∠(R,Rc)≤ Lr

‖(R−Rc) · pppi‖ ≤ 2‖pppi‖sinLr/4 =⇒‖(R−Rc) · pppi‖ ≤ δr
(19)

Substituting (19) into (17):

‖Rc · pppi−qqq j‖ ≤ εr +δr (20)

According to the proof, we can know if a pair of TIVs{
pppi,qqq j

}
satisfies ‖R · pppi − qqq j‖ ≤ εr, it must satisfy the

‖Rc · pppi−qqq j‖ ≤ εr +δr. Thus Ē(L)≥max
R∈L

E(R).

E. Efficient Translation Search

Searching the translations of both coordinates are also
the one-dimension searching problem. Thus, we use a line
segment to represent the translation searching space and
choose a fixed length for the line segment which is enough
to search the optimal translation.

The objective function has been defined in (8). The upper
bound of the objective function is

Ē(T) =
K

∑
k=1
b‖ xkn + tnc− ykn‖ ≤ εt +δtc (21)

where T represent a branch of translation domain; εt is the
threshold for translation searching, tnc is the center of the T,
and δt is the half-length of the T.

The essence of decoupling the translation search is pro-
jecting the points to both coordinates axis then aligning the
projected points respectively. Although it can decrease the
time complexity of the algorithm, it increases the density of
points(the number of points in the unit area) and lose the
points’ geometric information. It increases the probability
of false aligning and the error of the translations may be
relatively large. Thus a local refinement is a demand for
increasing accuracy.

IV. EXPERIMENTS

To verify the effect of the proposed algorithm, denoted
FBnB, we compare the performance of it with the state-
of-the-art algorithms proposed in [3] [26] , denoted NDT
and GBnB respectively, with both synthetic and real data.
NDT is a local method and GBnB is a global method based
on BnB. They have been integrated in the Matlab (function
”matchScans” and ”matchScansGrid”). We implemented the
FBnB algorithm in python. All experiments were performed
on a PC with the Intel Core i7 CPU.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Median rotation error, median translation error and median runtime
with respect to outlier fraction and point number. (a) (c) (e): points number
experiment. (b) (d) (f):outlier experiment

A. Synthetic Data

In this section, we verify the FBnB’s effect using the syn-
thetic data. To evaluate algorithm’s accuracy and efficiency,
we choose the following metrics.

The experiment about the synthetic data mainly includes
two items. On the one hand, we verify FBnB algorithm’s
accuracy and efficiency through comparing against NDT
and GBnB. On the other hand, we show FBnB algorithm’s
robustness to outliers using the synthetic dataset with a range
of outlier fraction.

1) Accuracy and Efficiency Comparison with State-of-
art Methods: In this experiment, the synthetic data are
formulated based on a frame of point set in German Museum
dataset. We choose a frame of point set from the German
Museum dataset and downsample it according to different
points number. We call it as the first point set. After that,
we randomly select a rotation and translations in the range
of [−π,π] and [−10,10] to transform the first point set
obtaining a new point set which are called as the second
point set.

We respectively utilize NDT, GBnB and FBnB to align
the point sets in the synthetic dataset. For FBnB, the inlier
threshold of rotation search is 0.05 and both the threshold of

translation search and local refinement are 0.1. Its searching
space is the same as the GBnBs. For each experiment under
different points number, 100 registrations are performed to
ensure the experiment’s reliability and the median rotation
error, median translation error and median runtime are
recorded. The result are plotted in Fig.1.

Both FBnB and GBnB algorithm have great accuracy in
all points number experiment. However, the NDT’s rotation
and translation error are so large that we judge the NDT
algorithm being invalid in this experiment. Fig.1e show
FBnB has a similar efficiency to the NDT algorithm and
FBnB’ efficiency change less under different points number.
The median runtime of GBnB are all more than 7s and it
rises rapidly with the increase of points number. FBnB is
quite faster than GBnB especially in the situation the points
number is large.

2) Robustness to Outlier: The synthetic data in this ex-
periment is formulated similar to the above way and the
points number is set at 200. We create a random points set.
These random points are in the region [−10,10]× [−10,10].
Their number depends on the outlier fraction(outlier fraction
is defined as foutlier =

Noulier
Noutlier+Ninlier

, where Noutlier and Ninlier
are the number of outliers and inliers). We use them ran-
domly replacing the points in the second point set. Then we
perform experiments with different outlier fractions and for
each outlier fraction, 100 registrations are performed. The
parameters of three algorithms are the same as the above
experiment. We plot the result in Fig.1.

The NDT algorithm is also invalid in this experiment. For
the accuracy under different outlier fraction, the performance
of GBnB and FBnB are similar. And it is worth noting that
FBnB has greater accuracy and stability than GBnB. For
the efficiency under different outlier fraction, the median
runtime of GBnB are all more than 8s and the FBnB’s
median runtime are all less than 1s. Besides, we can see
the runtime of GBnB is exponential in the outlier fraction
and FBnB’s runtime doesn’t have this rising trend. Thus
regardless of accuracy or efficiency, FBnB is more robust
than GBnB under the existence of outliers.

B. Real data

(a) (b) (c)

Fig. 2. Objective function value of NDT, GBnB ane FBnB on the
three datasets. Data1 represents original data, and data2 represents the data
being transformed. These three pictures respective the results of ”German
Museum,” ”Aces” and ”Intel” datasets.

In this section, we use real data to evaluate the perfor-
mance of FBnB in real-world tasks. The metric in real data
experiments is the value of objective function (1). Give R′
and ttt ′, which are obtained by one of the algorithms(NDT,
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GBnB and FBnB). The objective function value E(R′, ttt ′) can
reflect the overlapping degree between two point sets under
the transformation. The larger it is, the more precise it is for
R′, ttt ′. The inlier threshold in (1) is set at 0.3.

In this experiment, we choose three datasets(”Intel”,
”Aces” and ”German Museum”) as the testing object. For
each dataset, we randomly choose fifty scenes from it, and
in each scene, the time between the first and second point
sets is about 1s. We respectively utilize three algorithms to
align these point sets. The results are shown in Fig.2 and
represented by ”data1”.

Comparing FBnB with NDT, although NDT is faster than
FBnB, the NDT is not stable. As shown in Fig.2a, in several
scenes, NDT is not as precise as GBnB and FBnB, even
invalid. Comparing FBnB with GBnB, they have similar
accuracy in the 150 scenes and FBnB is quite faster than
it in all the scenes.

To evaluate the algorithms’ performance under larger
transformation. We transform the second point set in each
scene according to the rotation and translation which are
randomly selected in the range of [−π,π] and [−5,5]. Then
we do the same experiment using the transformed datasets.
The result are plotted in Fig.2 and repesented by ”data2”.

Since NDT is a local method, it depends on proper
initialization to ensure its accuracy. When the transformation
expands, its performance rapidly becomes worse. As for
GBnB, its accuracy is not affected by the transformation
expanding, but its runtime becomes longer than before. In
contrast, FBnB’s accuracy and efficiency has not changed.

V. CONCLUSION

In this work, we propose a new fast algorithm for global
matching of 2D LIDAR points cloud. We use the invariant
vectors to decouple the rotation and translation searching
which accelerates our BnB based optimization algorithm.
Besides we propose a downsampling method to improve
the effectiveness of our algorithm further and ensure the
robustness of it at the same time. To evaluate the performance
of our algorithm, we conduct the experiments with both
synthetic and real data compared with the state-of-the-art.
The result of the experiments proves that our algorithm is an
efficient and accurate global algorithm.
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