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Abstract

Technological advancement, more specifically digitalization, mobile internet, and the widespread
availability of smartphones enabled the rise of mobility-on-demand services. In carsharing sys-
tems, users can rent a vehicle, walk to, and drive with it for one-way or round trips. Ride-hailing
services do not even require the users to drive anymore. After booking, a driver picks up and
drops off the user at the user’s location and the desired destination, respectively. Carsharing
and ride-hailing offer a similar comfort level as a private vehicle, but without some of the
downsides of owning a private vehicle. For instance, the fixed costs of cars are shared among
multiple users, and the search for a full-time parking slot is either simplified (carsharing) or
not necessary (ride-hailing). Due to its high convenience, user-centric business model, and
comparatively affordable prices, ride-hailing services have become more popular than taxis,
grown tremendously, and are a relevant part of urban transportation systems in many cities
nowadays. As a downside, the extensive use of ride-hailing has led to increased levels of total
vehicle kilometers and congestion in some cities. Ride-pooling, which tries to match multiple
users into a single vehicle, can help to mitigate these negative externalities.

Another technological advancement on the horizon is self-driving vehicle technology. In
today’s ride-hailing services, the drivers are the highest cost component. With a much cheaper
cost structure, the mobility service can be offered at a much cheaper price point, probably
attracting a significant amount of demand. From a user perspective, an autonomous mobility-
on-demand service will likely look very similar to today’s ride-hailing service, except for the
vehicle being without a driver. Initially, this could lead to a different experience of the service,
but — as with other new technological advancements — become the new normal over a short
period of time. From an operator’s perspective, some tasks are different than today. In most
of today’s ride-hailing services, the drivers are ultimately the decision-makers. They decide
when to start and end their service hours, which customers to accept, and when and where
to cruise in the city. With autonomous vehicles, each vehicle can be controlled directly by the
operator and — besides maintenance — the availability can be 24/7. Therefore, the potential
for new service optimization techniques emerged.

The first major research question asks how to operate the fleet centrally: What are the
most important tasks/problems and how to address them? An operator of an autonomous
mobility-on-demand service has to make several decisions regarding service design parameters,
the interaction with users, and vehicle routing. For example, an service provider has to specify
whether to offer a pooling service, the general fare, and time constraints for waiting and
detour time. Moreover, operational aspects have to be addressed: fleet size, repositioning
vehicles to be close to possible future requests, estimating the level-of-service and dynamically
setting the fare to make offers to requests, and assigning these requests to vehicle tours in
case of a booking. The combination of these tasks can be viewed as a rich dynamic and
stochastic vehicle routing problem. The thesis contributes in this part by the development of
a new solution approach to this difficult-to-solve vehicle routing problem. Decisions or actions
have impacts on different time scales. For instance, an assignment of a request to a vehicle
affects the route of this vehicle for a few minutes. Contrarily, the set of all repositioning
vehicles should equalize the balance of demand and supply over a much longer period of time.
Selecting a fleet size can even be considered a planning process, which is only performed very
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infrequently as the acquisition of vehicles takes some time and once the investment is made,
vehicles should be utilized. Based on the different time scales, the large operational problem
is divided into more manageable sub-problems, for which solution approaches are developed
and evaluated in a case study. Insertion heuristics and global optimization are studied for the
offer and vehicle-assignment processes, which are required reactions to user requests. With
the help of forecasts, tactical decisions to balance supply and demand can be utilized, e.g., for
repositioning and dynamic pricing. Typically, the operating area is divided into independent
zones for the respective strategies. New approaches to repositioning and dynamic pricing,
which are based on the inter-dependency of these zones, are developed in this thesis. Operators
ultimately will invest computational resources into all of the sub-problems to maximize their
profits. However, the long-term planning variables fleet size and pricing are identified as those
decisions that will influence the demand and profit the most.
The second major research question takes the perspective of a regulating public entity

and traffic planner: How will an autonomous mobility-on-demand service affect the urban
transportation system and how to regulate this system? Compared to typical tasks of traffic
planners, where a measure is developed and the change in user behavior often leads to a
bi-level problem, the operators of mobility services should be considered as a decision-making
entity as well. The contributions with respect to this research question are the development
of a tri-level problem formulation, a solution approach with Bayesian optimization, and the
creation of an agent-based transportation model, which has to trade-off model detail and
computational effort. The tri-level model separates the time scales with the assumptions that
regulators typically require a lot of time to plan and conduct their actions and regulations
should not be changed on a daily basis. Operators have sufficient time to adapt their service
to this regulatory setting to maximize their profit and offer a stable service. On the third level,
travelers choose between different modes for their daily mobility needs, with the autonomous
mobility on demand service being one of these modes. The multi-level Bayesian optimization
model developed in this thesis helps to address this tri-level problem as the next step in this
iterative optimization procedure can infer knowledge from prior iterations in this multi-level
multi-dimensional solution space. Even with this solution approach, the transportation model
has to be computationally very efficient. Therefore, the transportation model aggregates
where possible but still keeps detailed models for the most critical aspects. An agent-based
approach is chosen to model the decision-making of travelers in a tractable fashion. Moreover,
the matching of users to vehicle routes — especially for pooling — is hardly assessable on
a macroscopic scale. Additionally, network dynamics have to be modeled as the decisions of
travelers should affect the transportation system.
In general, autonomous mobility-on-demand services add a new option for travelers that

significantly increases the population’s travel utility and can be viewed as a pull measure,
which can be expected to cause significant modal shifts. The developed framework helps to
identify how to set push measures like toll or parking fees. Furthermore, the sensitivity analysis
of these measures allows noticing when they become too severe, i.e., the regulations reduce
the utility of traveling without bringing social benefits by improving the transportation network
as a whole.
In summary, this thesis contributes to a better understanding of how to operate autonomous

mobility-on-demand systems and how public entities can deal with the new mobility system.
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Chapter 1

Introduction

The operation and regulation of autonomous mobility on demand (AMoD) systems were
selected as the topics of this thesis. Even though the path and timeline towards autonomous
vehicles and AMoD systems are still uncertain, it is essential to analyze AMoD systems already
today as they can potentially disrupt transportation systems. Hence, this thesis describes how
AMoD systems are operated, what impacts can be expected of unregulated AMoD services,
and how to regulate them.

1.1 State of Mobility-on-Demand Systems around 2020

In recent years, fast and mobile internet and the following digitalization enhanced the sharing
economy. For large shares of the population, having access to something and using it on
demand became more important than owning it. The penetration of this trend depends on
the respective field; for example, business models in the media sector completely transformed,
shifting away from selling hard copies (Blue-Ray, DVD, ...) of music or videos to streaming
services that enable customers to enjoy their entertainment on demand. The transportation
sector is also affected by this trend. However, the effect can be expected to be smaller than
in media because media can be fully digitized and benefit from the advancing speed of the
internet network. In contrast, the street and rail infrastructure still limit the physical transport
of people and goods.
Nevertheless, the mentality of sharing is also growing in the transportation sector [S. A. S.

Shaheen et al., 2017]. While owning a private vehicle used to be a status symbol, parts
of the population (mainly in urban environments) can enjoy the benefits related to private
vehicles without actually owning one [Zhou and D. Wang, 2019]. Mobile apps enabled
new modes like car-/bike-/scooter-sharing, non-commercial ride-sharing, and ride-sourcing
by transportation network companies to provide new user-centric and convenient services to
millions of users. Especially transportation network companies, which offer taxi-like services,
gained significant market shares and are sizable enough to create major observable impacts
on cities’ transportation networks. Major companies such as Didi Chuxing1, Uber2, Lyft3, and
Ola4 serve millions of trips per day. This thesis focuses on such taxi-like services and uses
the term mobility on demand (MoD) as an umbrella term for them. MoD services can offer

1https://www.didiglobal.com
2https://www.uber.com
3https://www.lyft.com
4https://www.olacabs.com
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1 Introduction

trips shared by multiple parties, which is denoted by ride-pooling. If an MoD service only
offers exclusive trips, in which no more than one party is in a vehicle at a time, it is called a
ride-hailing service.
Indisputably, MoD services provide an additional option to travelers that offer many benefits

over more traditional modes of transportation from a user perspective. While taxi companies
start to catch up introducing mobile phone apps, the convenience of the new MoD services
with real-time information, online booking, and automatic payment quickly generated more
demand than traditional taxis ever had in many cities. The results of several user surveys
in different countries shows that the most occurring trip purpose is leisure (see [Tirachini,
2020] for a summary of studies and the references therein). Often, these activities take place
in city centers, where parking pressure and parking prices are high. Moreover, customers can
drink alcohol while enjoying the benefits of door-to-door transport [Clewlow and Mishra,
2017].
Obviously, city administrations welcome a possible correlation between MoD introduction

and less drunk driving [Fortin, 2017]. However, transportation planners and city adminis-
trations have to consider multiple aspects. Depending on priorities and the attitude towards
the existing modes, the perceptions of MoD systems vary and affect country/state/city regu-
lations. Cannibalization of public transportation (PT), impact on vehicle kilometers traveled
(VKT), and labor laws are among the most discussed topics.
As an example, the typical business model of Uber was declared illegal under German law,

which did not address ride-hailing properly, and Uber has to stick to all existing taxi regulations
(e.g., insuring trips, only hiring taxi drivers) to operate5. A revision of the respective law, the
PBfeG, was passed in August 2021. Moreover, the actual income of drivers might be below
the minimum wage [Henao and Marshall, 2019a]. However, this thesis will not go into
more depth about labor laws since vehicle automation makes discussions about the business
model with freelancing drivers unnecessary.
[Tirachini, 2020] also provides a compilation of several surveys analyzing MoD mode

substitutions and induced trips. In these surveys, MoD users are typically asked by which
mode they would have made the trip if the MoD service would not have existed. The results
are somewhat different for the studied cities: for example, approximately one third would have
used taxi and another third PT, while only 7 % would have used a private vehicle and 7 %
of trips would not have been made in San Francisco [Rayle et al., 2016]; in Denver, only
10 % would have used a taxi, 22 % PT, approximately a third of private vehicle and more
than 12 % of trips would not have been made [Henao and Marshall, 2019b]. The last-
trip replacement question does not consider long-term effects on private vehicle ownership and
induced travel behavior changes. Several studies in the US have studied the impact of MoD on
vehicle ownership and found similar results, with approximately 10 % of users disposing of one
or more cars [Rayle et al., 2016; Clewlow and Mishra, 2017; Henao and Marshall,
2019b].
Besides trip and private vehicle replacement, the impact on VKT and congestion also de-

pends on the operating model of the MoD system. Current MoD business models employ
two-sided platforms that match customers and drivers. Typically, drivers will not be able to
pick up the next passenger where they dropped of the last. Since most drivers try to opti-

5https://www.uber.com/de/newsroom/fakten-uber-deutschland-sachlage/
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mize their own revenues by driving to areas where they expect demand, the fleet control is
decentralized. As a consequence, the amount of deadheading is rather large. A study based
on data from Denver estimated a lower bound to be around 40 % [Henao and Marshall,
2019b]. Additionally, market competition even decreases the efficiency as deadheading gener-
ally increases with less vehicles of one MoD provider per area and driver double-apping, i.e.
driving for multiple MoD providers is typically prohibited [Jiang and L. Zhang, 2018].
Pooling can achieve positive effects on VKT as multiple passengers share a ride for a part

of their trajectory. However, the ratio of pooled trips in MoD services offering hailing and
pooling is currently relatively small [Bansal, Sinha, et al., 2020; Moody and Zhao,
2020]. More recently, some providers, e.g., ViaVan6 or MOIA7, introduced MoD services only
offering pooled trips to customers.
Whether these providers can operate their service profitably on their own, remains to be

seen. However, as part of PT, they might not need to be profitable. Several cities started to
rethink the role of MoD services and founded partnerships that typically involve subsidizing
rides to fill voids in the public transit networks. Moreover, an integration of MoD and public
transit apps to form mobility-as-a-service apps aim at increasing the share of intermodal trips
and, in the end, private vehicle ownership.
A condition for MoD companies to receive subsidies will likely be that they can prove some

social benefit. Nevertheless, evaluating these benefits is not a trivial task. For example,
quantifying changes in VKT is complex as prior mode choice and induced demand also have to
be considered [Tirachini, Chaniotakis, et al., 2020]. Furthermore, deriving system-wide
consequences from small trip survey samples increases the uncertainty of these studies. Hence,
researchers build data-driven simulation models to study their effects [Wilkes et al., 2021].

1.2 Future of Mobility-on-Demand Systems

Another field in which MoD providers could improve social welfare is sustainability and envi-
ronmental impact of the transportation system, first and foremost local and global emissions.
Tremendous growth of the share of private electric vehicles was achieved in China — in part
by extensive regulation, for instance, by granting guaranteed licenses for electric cars in con-
trast to limitations for gasoline-fueled vehicles8. Compared to China, the market development
is relatively slow in other countries. For example, the number of electric vehicles is slowly
increasing in Germany even though buying electric vehicles is severely subsidized. It seems
that governments have difficulties convincing European private vehicle owners to shift to-
wards electric cars. Since operating an MoD system in cities often requires licenses from the
respective administration, regulations regarding the share of electric vehicles are possible in
the future. Such measures should have positive effects on the net emissions of greenhouse
gases [Greenblatt and S. Shaheen, 2015]. Additionally, MoD fleet operators might want
to adopt electric vehicles anyway as the economics seem to be beneficial for electric vehicles
as maintenance costs are expected to be lower with an electric power train [Arbib and Seba,

6https://www.viavan.com
7https://www.moia.io
8https://www.bloomberg.com/news/articles/2019-02-27/in-beijing-you-have-to-win-a-license-lottery-
to-buy-a-new-car
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2017]. Typically, MoD trips are short-range urban trips and range anxiety will not play a
role as long as the fleet operator develops an intelligent recharging strategy. The effect of
electrifying the fleet on system cost and thereby on prices and customer demand for MoD is
likely to remain small.

In contrast, automation of vehicles might bring considerable changes to MoD systems, both
from the customer’s and operator’s point of view. Before elaborating on the differences brought
to the MoD systems by automation, the following paragraph gives a very brief overview of the
development of autonomous vehicle (AV)s. For more details and further references, interested
readers are referred to the book series Road Vehicle Automation (volume 1[Meyer and
Beiker, 2014] - volume 6[Meyer and Beiker, 2019]). First and foremost, it is difficult to
predict when widespread adoption of autonomous vehicles will take place. In recent years, there
were two major movements: the first is to build automation around existing vehicle concepts,
the second is to develop new vehicle concepts for automation from scratch. On the one hand,
practically all car manufacturers and their suppliers invested money into the technical extension
of existing vehicle safety features (e.g., automatic cruise, lane-keeping, and lane-changing) to
gradually develop self-driving capabilities. On the other hand, new players emerged on the
market aiming to build entirely new vehicle concepts (e.g., Navya9, EasyMile10) or provide
know-how or even complete platforms for existing vehicles (e.g., Waymo11, Mobileye12).

The core principles are to sense the environment with advanced technology like Lidar, com-
bine information from various sensors and high-resolution maps to make sense of the road and
surrounding objects before the autonomous vehicle plans the trajectory and realizes driving
maneuvers. The complexity to achieve these steps with minimal uncertainty, which is required
to ensure traffic safety, is extraordinary; for more details, the reader is referred to [Yurtsever
et al., 2020] and the references therein. Nowadays, most miles are driven in quite realistic
simulation environments; nevertheless, convincing the public opinion of the new technology
requires real-life tests. Current test pilots in the EU employ vehicles that only drive with low
speeds up to 20 km/h and need a safety driver who has to react in emergencies or after a
vehicle stops because of an obstacle alongside a fixed trajectory. Highways with structural
separation of oncoming traffic seem to be one of the next use cases as the complexity is
limited, especially in congested low-speed situations. In contrast, mixed traffic situations with
pedestrians and bicycles seem to be further away in the future.

Besides the technical development to reach a sufficient level of safety, clarifying liability
issues represents another critical issue to reach higher automation levels [Maurer et al.,
2016]. Legal frameworks differ all over the world and – without drivers – the manufacturers
will likely be liable in some form. Hence, widespread adoption of AMoD might still be further
in the future. However, Waymo launched an AMoD service called Waymo One in 2019,
which operates in Phoenix, Arizona. Besides vehicles with safety drivers, it also operates fully
autonomous vehicles within a geofenced area, thereby reaching level 4 automation13. Even in
Germany, several companies announced a near-future implementation of autonomous vehicles

9https://navya.tech/en/
10https://easymile.com/
11https://waymo.com/
12https://www.mobileye.com/
13SAE definition, see https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
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in mobility services. SIXT started a cooperation with MobilEye to start in 202214 and MOIA
plans to use self-driving VW vehicles in 202515.

After this discourse on the current state of vehicle automation, the impacts of automation
on MoD systems are discussed. From a customer’s perspective, the system will be rather
similar: a customer requests a trip per app by providing the origin and destination of the
desired trip. Possibly, the request also contains constraints on the pick-up and drop-off time.
The operator provides information about the service AV to the customer before it arrives at
the pick-up location. Then the customer enters the vehicle and becomes a passenger until
she disembarks the AV at the destination. While not having a human driver might be the
largest emotional change, the pick-up will be most different process-wise. Since there is no
human driver to confirm the identity, confirmation systems like those developed for today’s
carsharing systems are imaginable. In general, AMoD could also be viewed as a development
of free-floating carsharing systems under automation. The difference to today’s services would
be that customers no longer walk to the car, but the AV drives to them. Therefore, the systems
evolving from ride-hailing and carsharing become hardly distinguishable at first glance.

Even though the evolution of classical MoD systems to AMoD remove most differences
between them, various system designs are still possible. For example, a system evolving from
a carsharing business could still allow users to choose an AV from a set of idle fleet vehicles,
which might contain different vehicle models. In such carsharing system with AVs, customers
might even want to drive from their origin to their destination manually while enjoying the
comfort of an autonomous vehicle pick-up trip. In this case, the customers would not have to
communicate their destination to the operator (as in today’s carsharing systems). Similarly,
AMoD based on today’s ride-hailing systems could still use the two-sided platform approach
with AVs. However, it seems tedious for private AV owners to still accept every single task
manually instead of just allowing the AMoD operator control of the AV for a certain amount
of time. an operator would have to consider legal, technical, and safety issues when using
private AVs. Therefore, it will probably be easier for an AMoD business to have complete
control over the AVs (whether they buy or lease the AVs).

In general, central control is advantageous over a system with individual agents, i.e., cus-
tomers or vehicle drivers/owners who perform (local) optimal decisions for their benefit. Con-
trarily, central control allows global optimization with respect to a system objective. [Dandl
and Bogenberger, 2018] studied the difference between the system with decentralized
control, in which customers choose their vehicles, and a centrally controlled fleet. Their case
study in Munich, Germany, showed that central control decreases the number of not served
customers by more than half. Additionally, central control can reduce the share of empty VKT
by approximately 45 % or 20 % for fleet sizes of 3000 or 4000 vehicles, respectively.

In all likelihood, AMoD services will be much cheaper than today’s MoD systems [S. Sha-
heen, 2018]. The most important cost component of ride-hailing and taxi services, the driver,
will be replaced by additional investment costs for the higher technological standard. However,
as the technology develops, these investment costs are expected to decrease, making AMoD
drastically cheaper than current MoD services. Furthermore, insurance, maintenance, and

14https://www.sixt.de/magazine/news/robotaxi-mobileye-sixt/
15https://www.moia.io/en/news-center/vwcv-moia-and-argo-ai-present-roadmap-for-autonomous-ride-

pooling-in-hamburg
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energy consumption costs will probably decrease as a consequence of electric AVs [Arbib and
Seba, 2017; Bösch et al., 2017]. The prices of today’s carsharing services can serve as an
upper bound since they do not include driver costs. Nevertheless, AMoD is likely to be much
cheaper because the utilization of vehicles can be much higher in AMoD systems [Spieser
et al., 2016; Dandl and Bogenberger, 2019]. The effective area in which a vehicle is
available is much larger as it is determined by walking speed and acceptable walking time in a
carsharing system and driving speed and acceptable waiting time in an AMoD system. Then
again, vehicles are likely to require more cleaning and maintenance processes than current car-
sharing vehicles. Depending on the frequency and costs of cleaning, these costs could account
for $0.05 to $0.1 per vehicle-mile [Litman, 2019], which is considerable, but small compared
to driver costs. Additional investment costs need to be considered if AMoD operators require
their own charging infrastructure [T. D. Chen and Kockelman, 2016]. [Burns et al.,
2013] initially estimated AMoD costs around $0.15 - $0.50 per mile. Assuming similar AMoD
business and vehicle costs than today’s carsharing service, [Dandl and Bogenberger,
2019] estimated costs of 0.25 e per km (approximately $0.44 per mile). Approaches consid-
ering the single cost components estimated per-mile costs of $0.15 [Arbib and Seba, 2017],
$0.45 [T. D. Chen and Kockelman, 2016], $0.45 [J. Walker and Johnson, 2016],
$0.68 (converted from 0.43 CHF/km) [Bösch et al., 2017], and $0.80 [Litman, 2019]. Even
though these estimations differ quite a lot, all have in common that the prices will be much
lower than today’s prices for ride-hailing and taxi services, which are in the range of $1.50 to
$2.50 per mile [Litman, 2019]. Hence, AMoD systems could achieve a considerable increase
in market share and research about these systems is highly relevant. Due to these lower prices,
the popularity and demand of AMoD systems can be expected to eclipse today’s systems,
thereby potentially disrupting the transportation system.

The introduction of AVs potentially brings another far-reaching phenomenon: privately
owned AVs. Households with such AVs could utilize the autonomous driving capabilities to
send the vehicle from one household member to the other. Optimizing the AV route for the
planned activities allows the household to replace multiple conventional private cars but can
increase VKT significantly [Correia, Gonçalo Homem de Almeida and van Arem,
2016; X. Xu et al., 2019]. Depending on household size and activities, additional empty
VKT of 34 to 51 % were found in a study by Xu et al. [X. Xu et al., 2019]. Centrally
coordinated AMoD fleets also require empty VKT to travel between customers, but the ratio
of distances driving without and with passengers will be better. For example, a private AV
would have to return home after a trip to work to serve another family member, resulting in
50 % empty VKT. For the same trip, this family member could use a nearby AMoD vehicle,
which likely will be much closer, thereby producing less VKT without passengers. Therefore,
[Narayanan et al., 2020b] conclude that AVs should be introduced in shared systems from
a policy perspective.

Because of the possibly disruptive changes caused by vehicle automation, transportation
planners and regulating authorities should act ahead of time. Since introducing regulations
typically is a long-lasting process, they should forecast the consequences of an unregulated
introduction of AVs, develop possible regulations, and analyze their impacts. It cannot be
expected that there will be one global solution that works for every use case. The financial
viability is quite different in rural and urban areas. Furthermore, the effect of empty trips
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might hardly affect the traffic quality in rural areas whereas the vast amount of extra VKT
produced by private AVs is likely not acceptable in cities that already have congestion on their
street networks. Moreover, the impact on the PT system or even possible extensions of the PT
with AMoD will depend on the available PT system itself: well-structured PT systems may be
extended by first/last mile services or new services might be offered in rural areas, where no
PT option was viable before, but AMoD can also be expected to attract demand from existing
PT systems. This thesis focuses on urban areas since negative externalities and challenges are
expected to be larger. Furthermore, this thesis assumes that private AVs will not be viable for
a significant amount of the population (either they are too expensive or prohibited) and will
not affect urban transportation networks.
Developing and analyzing regulations for AMoD systems involves a new feature for transport

planners. Typically, there is no intermediary between the planned measure and the traffic
demand for applications like road planning, intersection control or even public transportation
planning. Often, measures are directly planned to achieve a certain level of service for a
given demand (one-level optimization). Transport planners also utilize frameworks with a
feedback loop (bi-level optimization) if the measure is expected to change demand. However,
fleet operators, especially private AMoD providers, add a new layer to the problem. City
administrations try to introduce regulations that optimize a social welfare measure (that they
define based on their priorities). As a new element, AMoD providers will adapt their service
design and fleet operation to maximize profit. Finally, travelers will choose among their mobility
options, thereby determining the effects on the whole transportation network. These traveler
choices depend on the regulations, the offered AMoD service, and the other mobility options
of the respective travelers.

1.3 Research Objectives and Methodology

The overarching goals of this thesis are to create a better understanding of AMoD operations
and to provide an optimization framework for regulatory measures in the presence of AMoD
systems. Insights into operational aspects of AMoD systems are critical to estimate the impact
of regulations on the AMoD service design and operation and thereby on the service offered
to customers and non-customers of the AMoD service. Today’s pilots do not provide the
necessary scale concerning fleet size, vehicle speed, and fares. Hence, simulation models are
essential as analyzing tools because (i) fully scaled AMoD systems are not yet available and
(ii) simulation is an excellent tool to analyze ”what-if” scenarios. The latter becomes even
more crucial when studying regulations considering long-lasting administrative processes of
real-world implementations.
This thesis aims to answering research questions on the operation of AMoD systems and

the regulation of transportation systems with AMoD services. The main operational questions
in this thesis are as follows:

RQ 1.1 How can an AMoD fleet be operated effectively and efficiently?

RQ 1.2 Which are the most important operational variables?

To study possible regulations, the AMoD service has to be viewed in the context of the
overarching transportation system. Following questions are guiding this thesis:
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RQ 2.1 What are the effects of an AMoD service on a transportation system?

RQ 2.2 How will an operator react to different regulatory measures?

RQ 2.3 How can city administrations regulate the transportation system considering the re-
action of AMoD operators?

The subsequent chapter surveys existing literature on AMoD systems. After that, chapter 3
and chapter 4 answer the operational and regulatory research questions, respectively. The
respective chapters describe mathematical problem formulations, operational and regulatory
strategies and indicators measuring the performance. Figure 1.1 illustrates the approach taken
in this thesis.

Chapter 3: Operating an AMoD Fleet

Chapter 4: Regulating a Transport System with AMoD

AMoD Fleet Operator

Fleet Size Operating Area

Dynamic Pricing Repositioning

$ $$

Creating Offers Re-Optimize Assignments

$, ETA

MSP
OD

• Exogenous demand • Develop operational strategies • Optimize service parameters • Identify most relevant decisions

AMoD Fleet Operator

• Vehicles utilize transport network

Fleet Size Operating Area

Dynamic Pricing Repositioning

$ $$

Creating Offers Re-Optimize Assignments

$, ETA

MSP
OD

Regulator
• Public entities 

(e.g. city 
authorities)

Travelers
• Generate trips
• Mode-choice
• Utilize transport 

network

Direct regulator measures (e.g. parking costs)

Indirect regulator measures
(e.g. fleet size limitation)

Offer service depending on
request & fleet state

Figure 1.1: Overview of Research Methodology

In the chapter focusing on the operation of an AMoD fleet, exogenous demand is assumed
to compare the impact of several strategies and decisions. These decisions can be viewed
on different time scales; as an example, choosing a fleet size and operating can be regarded
as long-term planning processes, whereas dynamic pricing, repositioning, creating offers and
re-optimizing assignments have to be performed much more frequently.
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The insights gained from this chapter as well as (parts of) the model to operate an AMoD
fleet are integrated into a larger context in chapter 4. The interactions and effects of decisions
made by a regulating entity, the AMoD fleet operator, as well as travelers are studied.
As modeling detail and computation time are limited, the framework to study AMoD regu-

lations in chapter 4 can accommodate only a rather small number of operator variables. Since
the parameter space of decision variables grows with more advanced operator strategies, this
thesis contains a separate case study on the operation of AMoD systems to identify the most
relevant operator variables at the end of chapter 3 and keep these as degrees of freedom for
the AMoD operator in chapter 4. Finally, chapter 5 will summarize and discuss the main
contributions of this thesis, integrate them into the super-ordinate context, and outline future
work.
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Chapter 2

Literature Review

AVs and AMoD are still in the pilot phase, having a relatively small impact on the trans-
portation systems. Therefore, the expected consequences need to be explored in theory, i.e.,
via stated preference experiments, analytic approaches, and simulation. Many recent studies
have applied these methods to generate insights about scaled AMoD systems. As this thesis
focuses on the operational aspects, the subsequent sections will focus on the literature about
the supply side related to AMoD fleets. For more information about the demand side, land use,
traffic control, traffic safety, or economic stakeholders (e.g., car manufacturers, suppliers, tech
and infotainment companies), the reader is referred to Duarte and Ratti [2018], Gkart-
zonikas and Gkritza [2019], and Narayanan et al. [2020b] and references therein for
further information.
AMoD services can vary in several components. The two main components are service design

and fleet control. Service design defines the system as it presents itself to its customers,
while fleet control determines how an operator can achieve this design. After touching on
AMoD service design, this chapter reviews various aspects of modeling AMoD systems to
address operational policies/strategies, studied in different depth in the literature that vary
from macroscopic models to real-time implementations. The analyzed sub-categories of AMoD
Service Design, AMoD System Modeling, and AMoD Fleet Operation are shown in Table 2.1.

Service Design System Modeling Fleet Operation

- operating area - network model - fleet sizing
- charging infrastructure - customer & vehicle model - charging strategy
- hailing/pooling - travel times & - routing - customer assignment strategy
- fleet composition - AMoD competition - repositioning strategy
- pricing considered - AMoD demand - dynamic pricing strategy
- customer interactions - stochasticity of interaction
- time constraints - PT cooperation model
- MaaS & - PT integration

Table 2.1: Overview of highlighted topics in literature review.

A similar taxonomy (albeit split into typical vehicle routing problems (VRP) and new AMoD
categories) for the operation of AMoD systems was created by M. Hyland and Mahmas-
sani [2017]. Furthermore, Jing et al. [2020] created another recent literature review article
about agent-based simulations of AVs.
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2 Literature Review

2.1 AMoD Service Design

Service design determines the kind of service an AMoD provider wants to offer and advertise.
AMoD providers are likely to keep this design for long periods of time to build a brand and
provide a certain customer experience; hence, planning the service design is a crucial step for
AMoD providers. The service design models define the operating area of the AMoD service
and the available charging infrastructure. Moreover, they determine whether a hailing or a
pooling service is offered, whether the fleet consists of one or multiple vehicle types, how
the service should be priced, how the customer interaction is defined, whether there are time
constraints on pick-up and drop-off, and whether there exists some integration into the PT
system. The subsequent paragraphs provide an overview of how these topics were addressed
in literature. Table A3 in the Appendix D classifies papers that put part of their focus on
service design or whose service design model differs in at least one category from most other
publications.

Operating Area: Service is likely to be offered in certain operating areas, which means that
both the pick-up and drop-off points have to be within a particular geofence. Due to higher ve-
hicle utilization, these can be expected to be larger than today’s carsharing geofences [Dandl
and Bogenberger, 2019]. Smaller areas require fewer vehicles, and vehicles will have shorter
trips, allowing one vehicle to serve more trips [Fagnant and Kockelman, 2014]. Service
providers will likely base geofences on network topology (as around the outer highway belt
in [Dandl, Bracher, et al., 2017]), geographic attributes (such as a certain length and
width [Fagnant, Kockelman, and Bansal, 2015]), or administrative boundaries (such as
Manhattan borough [Marco Pavone, 2015; Dandl, M. Hyland, et al., 2019] or the cen-
tral business district in Singapore [Azevedo et al., 2016]). Nowadays, MoD providers often
use socio-demographic and point-of-interest data to estimate demand for their systems and
to determine whether an area should be part of the operating area. Engelhardt, Dandl,
Bilali, et al. [2019] analyzed expected trip data starting in a given set of zones within a
large operating area; in an iterative procedure, they removed zones with the lowest number
of trips and updated the trip data by removing trips ending in eliminated zones. In literature,
there are also simulation-based optimization approaches to define the service area [Liang,
G. H. d. A. Correia, et al., 2016; Bischoff, Kaddoura, et al., 2018]. An evalua-
tion of the relative trip number and remaining operating area determined the final operating
area. As in carsharing, there could be a station-based operation of AMoD [Spieser et al.,
2016; R. Zhang and M. Pavone, 2016], but removing the option of the vehicle coming
(closer) to customers is likely to make the service less attractive (see a comparison of TNC
and carsharing market shares [Clewlow and Mishra, 2017]). A solution between free-
floating and station-based is a network of virtual stop points, which serve as meeting points
for customers that are pooled together. This aggregation of customers helps to enhance
the performance of carpooling [Stiglic et al., 2015] and ride-pooling services [Zwick and
Axhausen, 2020; Engelhardt and Bogenberger, 2021; Andres Fielbaum et al.,
2021]. Among other, different qualities of street and public transport networks, demand pat-
terns, demand densities are a consequence of the choice of different operating areas. These all
impact the AMoD system and also its effect on the transportation system. On the one hand,
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this necessitates case studies with different operating areas, and on the other hand, it makes
a comparison of different operating strategies rather difficult. Most studies analyze AMoD
systems in urban environments, but there are some studies that include more rural regions, for
instance, [Boesch et al., 2016; Wen, Y. X. Chen, et al., 2018; Vosooghi, Puchinger,
Jankovic, et al., 2019; Sieber et al., 2020; Wilkes et al., 2021; Zachariah et al.,
2014]. Some operations research focused papers study their algorithms on existing benchmark
instances [Bongiovanni et al., 2019; H. Zhang et al., 2019] or new test instances [T. D.
Chen and Kockelman, 2016; Wenwen Zhang et al., 2015; J. J. Q. Yu et al., 2018]
to address the issue of comparability. Sheppard et al. [2019] collected data from 9 cities and
the US to apply their approach to a larger number of cases. Oke, Aboutaleb, et al. [2019]
started another project to produce more general results and insights by classifying city types
and then studying the classes by case studies of the archetype cities [Oke, Akkinepally,
et al., 2020].

Charging Infrastructure: In order to provide an AMoD service with electric vehicles, charg-
ing infrastructure will be required. Some studies used publicly available charging station
data [Dandl and Bogenberger, 2019; Fehn et al., 2019; L. Li, Pantelidis, et al.,
2021], including both the position of charging stations and the number and power of charging
units. The power of charging units varies between 1.5 kW [Liang, G. H. d. A. Correia,
et al., 2016] and 300 kW [Boewing et al., 2020], and several studies test the sensitivity of
this parameter on the AMoD system. Models to determine the charging infrastructure are
necessary when no data is available or when the available infrastructure is insufficient to serve
hypothetical AMoD services. T. D. Chen and Kockelman [2016] developed a method-
ology to generate charging infrastructure during warm-up simulations. Jung, J. Y. Chow,
et al. [2014] introduced a two-level optimization framework, where the amount of charging
units per station was derived in the upper level while the lower level contained a simulation of
the fleet operation. Similarly, Kang et al. [2015] developed a multi-level framework, where
the choice of charging station locations in one layer served as input for the fleet assignment
layer. A heuristic to reduce the number of charging locations was employed by Bauer et al.
[2018] between simulations to create their charging infrastructure distribution. H. Zhang
et al. [2019] derived a methodology for systems spreading over multiple cities where charging
station locations result from a mixed-integer linear problem. Another optimization approach
based on the maximal-covering location problem was utilized by Vosooghi, Puchinger,
Bischoff, et al. [2020]; additionally, the authors considered battery swapping in their study.

Hailing/Pooling: A service provider has to determine whether they want (i) customers to
always have a vehicle for themselves (hailing), (ii) customers to accept pooling automatically,
or (iii) customers to have the choice whether they want hailing or accept pooling. While
hailing is the predominant service type in today’s MoD services, pooling of customers will
be needed to reduce the load on the street networks and be operated more efficiently [M.
Hyland and Mahmassani, 2018b]. Simulations of AMoD systems in literature typically
assume operation in options (i) or (ii). Whether or not an AMoD provider offers pooling
influences the vehicle choice as pooling services need vehicles that can accommodate multi-
ple passengers. Therefore, pure pooling services typically employ minibuses or vans. Studies
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assume different vehicle passenger capacity limits, e.g., two [M. F. Hyland and Mah-
massani, 2020], four [Jung, Jayakrishnan, and Park, 2016; Engelhardt, Dandl,
Bilali, et al., 2019], six [Zwick and Axhausen, 2020], or even up to ten [Alonso-Mora,
Samaranayake, et al., 2017]. In simulations, it is possible to remove the vehicle capacity
constraint and evaluate the maximum vehicle occupancy [Fagnant and Kockelman, 2018;
Ruch, Lu, et al., 2020] to find a good composition of vehicle sizes.

Fleet Composition: Vehicle model type, which implicitly include number of seats, battery
size, and energy consumption, should match the operational concept. Most current MoD
systems have a mixed fleet because freelance drivers utilize their own private vehicles. On the
contrary, the ride-pooling service MOIA prefers a homogeneous fleet with its own branding.
Most studies do not differentiate between vehicle models or explicitly assume homogeneous
fleets. Niels and Bogenberger [2017]observed different perceptions of an electric vehicle
and a vehicle with internal combustion engine in a study analyzing carsharing app and rental
data. Dandl and Bogenberger [2018] studied a fleet with two vehicle models and found
that customers preferring one over the other increases VKT compared to scenarios with a
homogeneous fleet of the same size. For two vehicle types, pick-up trips to a specific vehicle
type are longer on average as the density of available vehicles of specific models is smaller
than the density of available vehicles in the whole fleet. With respect to the electrical prop-
erties of vehicles, the sensitivity of the AMoD system to different battery sizes is analyzed
by [T. D. Chen and Kockelman, 2016; Bauer et al., 2018; Sheppard et al., 2019;
L. Li, Pantelidis, et al., 2021; Vosooghi, Puchinger, Bischoff, et al., 2020]. More
complexity is required to analyze mixed fleets. Zhu et al. [2017] assumed an infinite pool
of right-sized vehicles at each stop,Wallar, Schwarting, et al. [2019] utilized a similar
concept for an offline tool to determine the required fleet composition, Y. Liu, Bansal,
et al. [2019] applied a Bayesian optimization framework to find the correct fleet from iter-
ative simulations, and Atasoy et al. [2015] developed an operational model, where a set
of homogeneous vehicles dynamically changes its effective passenger capacity based on the
use-case.

Pricing: The price system directly impacts the profit an AMoD operator makes. The price
level is a key determinant for the attracted demand. The AMoD service could be integrated
in the public transportation fare system [Shen et al., 2018] or set its own prices. Similar to
today’s MoD services, fares for AMoD services can have multiple components. Typically, there
is a customer trip length and/or duration component. Moreover, AMoD providers might want
to introduce a base fare or additional distance fare for the pick-up trip to compensate for the
empty trips made by fleet vehicles and attract less short trips that were previously walked or
driven by bike [Wilkes et al., 2021]. Additionally, fare reduction and fare splitting mechanisms
are possible in ride-pooling: customers could receive a discount for their willingness to pool
or be compensated for the amount of detour they had to endure [Kucharski and Cats,
2020; Wen, Y. X. Chen, et al., 2018]. Since customers typically want to be informed about
trip prices ahead of their trip, the former is easily implemented while the latter would likely
require an upper bound for the fare representing the direct route in the information stage and
the final payment after the trip and the detour have been realized. In theory, realistic pricing
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will be the result of an optimization process [Sebastian Hörl et al., 2019]. However, as
large-scale AMoD systems are not operated yet, there is value in studies trying to estimate
the fixed and operational costs as output to provide a first indication [Bösch et al., 2017;
Dandl and Bogenberger, 2019]. These estimates also included variable electricity costs
in some cases [Fehn et al., 2019; Turan et al., 2020]. Furthermore, dynamic pricing can
be considered by AMoD providers. Dynamic pricing can help to maximize current and future
profit as in other fleet operations [Figliozzi et al., 2007; Lippoldt et al., 2018; Lippoldt
et al., 2019]. In the temporal dimension, higher prices can make more profit out of the
remaining capacity in times of high vehicle utilization [Al-Kanj et al., 2020; Turan et al.,
2020]. Spatially varying prices can help to increase the utilization of vehicles that would remain
without a customer in low-demand zones. Some of these additional trips might even help to
balance the fleet and reduce empty repositioning [Al-Kanj et al., 2020] or limit the flow on
certain street sections [Salazar, Rossi, et al., 2018]. With multiple operators, fares could
also be dynamically generated based on auctions [Kleiner et al., 2011; J. J. Q. Yu et al.,
2018].

Customer-Operator Interaction: It is likely that — as in MoD systems nowadays —
applications using mobile internet will be the means of customer-operator interaction in AMoD
systems. The design of this interaction shapes the VRP of the fleet operator. In literature,
the following models were found: (i) a customer request can be binding, i.e., is a booking, and
has to be served by the operator at some point [M. Hyland and Mahmassani, 2018a],
(ii) a customer requests a ride but leaves the system if she is not picked-up before a certain
time [Spieser et al., 2016], (iii) a customer requests a ride but operators can accept/reject a
customer right away [Dandl, M. Hyland, et al., 2019], and (iv) a customer requests service
offers that the customer can accept or reject [Dandl, Bogenberger, and Mahmassani,
2019; Al-Kanj et al., 2020; Wilkes et al., 2021]. In the last case, the operator also has
the option to make no offer. Cases (ii) and (iii) are closely related as an operator can estimate
whether a vehicle can serve a customer within a specified waiting time. The equivalency
of both cases can be proven under certain assumptions [Dandl.2021a]. Additionally, it is
possible that multiple service offers are connected in a mobility-as-a-service app [Atasoy
et al., 2015; J. J. Q. Yu et al., 2018] or customers retry to be served at a later point in
time [Dandl, Grueber, et al., 2019]. Moreover, the exchanged information flow can vary
for different system designs. Less specific information, like a pick-up time window, can be
communicated at the time of the offer (in an immediate response system) and specified later
on (when an assignment is locked) [Dandl, Grueber, et al., 2019; Erdmann, Dandl,
and Bogenberger, 2021]. Other service design aspects, which are typically not modeled in
simulations because of expected minor global impacts, are asynchronous information flow or
delays in information [Bertsimas et al., 2019; Dandl, Bogenberger, and Mahmassani,
2019; J. Yu and M. F. Hyland, 2020], cancellation policy and penalties, and maximal
vehicle idle duration in case customers show up too late or not at all for pick-up [Andrés
Fielbaum and Alonso-Mora, 2020].

Time Constraints: Customers or service providers can set constraints on pick-up and drop-
off times. First of all, service providers could limit operating hours but are unlikely to do so since
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AVs are available 24/7 and do not have to follow labor regulations. Customer time constraints
are connected with the customer-operator interaction. In a system with a service guarantee,
i.e., an AMoD system where the operator has to serve each booking, hard constraints would
enforce a very large fleet size. On the other hand, if there were no time constraints, a few
customers in regions with low vehicle availability would wait a very long time. This effect
would probably cause low customer acceptance. To avoid these unacceptably long waiting
times, soft constraints, i.e., penalty terms in the objective function, are utilized, e.g., by M.
Hyland and Mahmassani [2018a] and M. Hyland, Dandl, et al. [2019]. Explicit drop-
off time constraints are typically only implemented for pooling services since vehicles will take
the fastest path between pick-up and drop-off location in hailing services, thereby implicitly
constraining the drop-off time. Detour constraints can be implemented in various ways, e.g.,
latest arrival time [Dandl, Grueber, et al., 2019], maximal absolute detour time [Santi et
al., 2014], relative detour time [Engelhardt, Dandl, Bilali, et al., 2019], a combination
of these [Zwick and Axhausen, 2020], the derivation from an initial schedule [Atasoy
et al., 2015], or a certain number of common destinations [Zachariah et al., 2014]. In
an on-demand service, the customer’s pick-up is usually constrained by a certain maximal
waiting time, but time windows can also be applied [Engelhardt, Dandl, Bilali, et al.,
2019; Erdmann, Dandl, Kaltenhaeuser, et al., 2020]. A maximal wait time constraint
is actually a special case of a pick-up time window in which customers want to be picked
up immediately, and therefore, the minimum waiting or reservation time is 0. Contrarily,
if customers do not want to be picked up right away, the system is denoted reservation-
based [Bilali, Dandl, et al., 2019a]. There can also be constraints on the combination of
waiting and in-vehicle travel time, denoted by total travel delay [Martinez et al., 2015] or the
time customers wait for information [Dandl, Grueber, et al., 2019; S. Wang et al., 2019]
before they decide to drop their request. While time constraints in literature are commonly
treated homogeneously among all users, they can also be heterogeneous, i.e., specific for each
AMoD request. For instance, Kucharski and Cats [2020] derive the the time constraints
in their model from travel utility functions.

MaaS/Intermodal PT Integration: The interaction of customers and operators could also
be indirect. Travelers could use so-called mobility as a service (MaaS) apps that bundle multiple
mobility options in one application [Atasoy et al., 2015; Kamargianni and Matyas,
2017; Jittrapirom et al., 2017]: after communicating origin, destination, and planned
departure/arrival time, the MaaS app queries routing services (to compute the private vehicle
trip duration), the public transportation provider (for the best public transportation route), and
MoD and AMoD services (for their respective offers). Additionally, MaaS applications might
be able to coordinate and combine different modes to create seamless intermodal trips [S.
Shaheen and Chan, 2016]. Several studies focused on the AMoD application as a first/last
mile feeder system, e.g., [Vakayil et al., 2017; Shen et al., 2018; Wen, Y. X. Chen,
et al., 2018], but network-wide integration is possible [Salazar, Rossi, et al., 2018]. The
introduction of AMoD services are most effective for the transportation system if the AMoD
and PT systems are designed together [Pinto et al., 2019] or the AMoD service is explicitly
offered in areas with bad PT connection [Dandl, Grueber, et al., 2019].
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2.2 Modeling of AMoD Services in Transportation
Systems

The service design defines the AMoD service from the customer viewpoint. However, the
performance of that service is controlled by the operational strategies that an AMoD provider
applies. To evaluate these strategies from an operational perspective or evaluate the impact
of an AMoD service from a transportation system perspective, models are required. These
models cannot entail all details that are relevant for a real-world AMoD service, but should
reflect the most important aspects. Both human and computational resources in the data
collection and model building processes limit the level of detail. On the one hand, more detail
is required to analyze specifics about AMoD services; on the other hand, tractability is easier
for less detailed models. Hence, there is a trade-off that researchers have to consider when
they design their models. The subsequent paragraphs summarize modeling approaches to the
most relevant topics for AMoD systems and Table A4 (in Appendix D) classify a selected list
of papers. The same classification is available for an extended list of papers in the appendix.
The column study focus in these tables is added (to the topics described below) to allow a
quick impression of whether the study addresses only operational issues (O), includes demand
modeling (D), or considers traffic modeling (T) in more detail.

Network: Transportation systems are typically modeled as networks: stations and their
connections naturally build the nodes and edges of the PT network; the street network can
be created by defining sections as edges and intersections as nodes. Using zone centroids
as nodes and their connections as edges allows the definition of more aggregated networks.
The choice of spatial resolution between nodes and thereby the total number of nodes can
be critical for computational effort. Some papers, e.g., [M. Pavone et al., 2012; Spieser
et al., 2016; Carron et al., 2019], reduce the network size to a rather small number of
stations, representing real stations (like carsharing stations or taxi stands) or all demand inside
a zone and connections between them. This approach is valid for station-based AMoD systems.
Moreover, it can be utilized for studies focusing on other aspects than the actual user-vehicle
assignment process or as an abstract network layer for fleet control processes [Azevedo et al.,
2016; Ruch, Horl, et al., 2018; Q. Li and Liao, 2020]. Fagnant and Kockelman
[2014], Fluri et al. [2019], and Al-Kanj et al. [2020] even defined a hierarchical cascade
structure for different spatial aggregation levels. The benefit of cheap routing computations
also motivated grid-shaped networks [Fagnant and Kockelman, 2014; T. D. Chen and
Kockelman, 2016], in which routing can be reduced to finding shortest distances according
to the Manhattan metric. The idea of using Euclidean [Burns et al., 2013] or Manhattan
metric [M. Hyland and Mahmassani, 2018a; Dandl, M. Hyland, et al., 2019] for
routing also allows the use of continuous planes, which allows a more realistic spread of
demand than a grid network, but excludes modeling network effects like congestion. Thanks
to the availability of open data source projects like OpenStreetMap (OSM)1, the amount of
work (for a single researcher) to build networks was reduced significantly in the past 15 years.
Therefore, many studies can utilize realistic street networks, on which demand is defined and

1https://www.openstreetmap.org
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the AMoD vehicles can move.

Customer & Vehicle Model: Agent-based models allow a realistic representation of ve-
hicle and customer movements and boarding processes. Therefore, operational models have
to include an assignment process of customers to vehicles; any optimization process of these
assignments is bound to contain integer variables. These models are computationally rather
expensive as the actions of many agents have to be considered. On the plus side, agent-based
modeling is often more straightforward as processes are modeled rather than possible effects in
macroscopic models. Some studies employ flow models in which customers and vehicles trav-
eling on the same network edge are aggregated. For better computational performance, these
studies assume continuous flows, i.e., the integrality constraints are dropped in optimization
problems [M. Pavone et al., 2012; Levin, 2017]. For real-life applicability, a quantization
of continuous flows is required for such approaches [R. Zhang and M. Pavone, 2016].
The results from both agent-based and network flow models are bound to be specific to the
modeled operating area. Macroscopic models remove even more detail thereby trading off
exactness in the analysis for a certain use case to gain more general insights. Several macro-
scopic models were developed for ride-pooling, e.g., [Tachet et al., 2017; Daganzo and
Ouyang, 2019; Herminghaus, 2019; Bilali, Engelhardt, et al., 2020]. From a mod-
eling perspective, creating useful macroscopic representations is quite challenging and often
requires symmetry assumptions like homogeneity in space [Bilali, Dandl, et al., 2019b;
Bilali, Dandl, et al., 2019a]. Macroscopic MoD models are also useful to represent com-
plicated interactions in two-sided platforms of today’s MoD systems [Z. Xu et al., 2019;
Nourinejad and Ramezani, 2019] or estimate future states in model-predictive control
approaches [Hyytiä et al., 2012; Dandl, Fehn, et al., 2020].

Travel Times & Routing: The AMoD operator will decide where to send its vehicles based
on the current state of the transportation system. Furthermore, vehicles move according to the
assigned routes in between routing decisions. Most studies utilize deterministic frameworks,
in which the expected travel time (used to make routing decisions) and the realized travel
time (the amount of time the vehicle actually needs for the route) are the same. Exceptions
are models with integrated traffic simulation [Marczuk et al., 2015; Dandl, Bracher,
et al., 2017; Levin et al., 2017; Levin, 2017], which inherently generate stochastic travel
times. Deterministic but time-varying travel times are more common. Typically, the travel
times are generated from a traffic simulation, e.g. [Dandl, Grueber, et al., 2019], or based
on OSM free-flow velocity combined with real traffic data [Vazifeh et al., 2018; Dandl,
M. Hyland, et al., 2020; Zwick and Axhausen, 2020]. Some studies also ignore the
congestion aspect and use free-flow travel times throughout the day. Models without an explicit
network connect two points in a plane by the shortest path in its metric (Manhattan/Euclidean
distance) [Daganzo and Ouyang, 2019; Dandl, Fehn, et al., 2020]; constant speed
throughout the operating area is assumed if travel times are necessary [M. Hyland and
Mahmassani, 2018a; Herminghaus, 2019].
With respect to routing, grid networks are similar to a plane with Manhattan metric; hence

constant speeds are assumed for these networks in most cases [Wenwen Zhang et al.,
2015; T. D. Chen and Kockelman, 2016; Zhu et al., 2017]. Most approaches in AMoD
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literature assume that vehicles will use the fastest path between two stops. The routing
problem is to find the path, i.e., the sequence of edges in a network, that minimizes a certain
cost function, typically the shortest or fastest route. This problem is typically formulated
as an integer linear program. Cost functions with path-level components generally require
an enumeration of all feasible paths and are computationally inefficient. For cost functions
that are the sum of edge-level costs, dynamic programming [Bertsekas, 2005] enables
routing algorithms that are computationally very efficient. The oldest and most famous one is
Dijkstra’s algorithm [Dijkstra, 1959], which builds a frontier of nodes to search and always
adds the neighbors of the current lowest-cost node of the frontier until the destination node is
reached. This approach leads to radial shapes of the explored nodes around the origin node. In
order to reduce the number of explored nodes and thereby increase the computational efficiency,
several algorithms, e.g., bidirectional search, A∗ [Hart et al., 1968], and ALT [Gutman,
2004], have been introduced. These algorithms adapt the cost function to aim the search in
the direction of the destination. With the availability of better computers (CPU and memory),
more advanced routing algorithms were developed that preprocess networks2 to achieve high-
speed online routing queries. The reader is referred to Delling et al. [2017] for a recent
survey. Of course, saving the complete travel time matrix in memory, which is possible for
some urban networks, achieves the best computational performance.
Typically, routing a fleet of vehicles is broken down to giving tasks/destinations for each

vehicle and each vehicle using these routing algorithms to find its best route. Nevertheless,
some studies investigate the potential of coordinated fleet routing, where AMoD vehicles
are distributed among different routes to minimize congestion in the network. Even though
conceptually interesting, significant system-wide performance benefits require a large mar-
ket penetration and agent-based approaches seem to be lacking scaling properties [Liang,
G. H. d. A. Correia, et al., 2018]. The utilization of time-dependent marginal travel times
from system-optimal traffic assignment [Peeta and Mahmassani, 1995] might make them
more efficient. Flow models are more efficient to address congestion-aware routing [Rossi
et al., 2018; Salazar, Tsao, et al., 2019] but require a quantization to be applicable for
real-world applications.

PT Cooperation Model: When an AMoD and line-based PT system are combined, the
number of intermodal route combinations between an origin and a destination pair becomes
easily intractable. Salazar, Rossi, et al. [2018] and Zgraggen et al. [2019] connect the
PT station with some waiting/walking edge to the street network and allow all possible routes,
which is computationally feasible due to their flow-based vehicle and customer model. To work
with actual customer- and vehicle-route assignments, Vakayil et al. [2017] and Pinto et
al. [2019] preprocess the fastest transit-AMoD hyperpaths for each origin-destination pair.
Another approach to limiting the solution space is delineating the catchment area where an
AMoD feeder serves PT stations [Basu et al., 2018; Ma et al., 2019; Oke, Akkinepally,
et al., 2020]. The seamless transfer between both transportation modes requires more research.
On the one hand, a guarantee for on-time arrival by the AMoD service in the first-mile problem
would need attention as current studies do not consider these constraints explicitly. On the

2i.e., perform a lot of routing computations offline, e.g., to build contraction hierarchies [Geisberger
et al., 2008]
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other hand, a reservation for the last-mile problem could already be made at the beginning of
the PT trip leg instead of creating the request at the arrival time at the final PT station [Ma
et al., 2019].

AMoD Competition: Most studies assume a monopoly of one AMoD provider. Some
exceptions consider the competition between AMoD providers. Dandl, Bogenberger,
and Mahmassani [2019] simulated two competing operators with different fare systems and
showed the impact on the AMoD performance metrics. Simonetto et al. [2019] introduced
a concept in which the AMoD operators provide the marginal change of the cost function
related to a customer insertion to a central agency, which considers these marginal changes
and a predefined market share for the companies in its decision to keep the fleet sizes stable
and vehicles utilized. Atasoy et al. [2015] and Y. Liu, Bansal, et al. [2019] analyze AMoD
systems offering hailing and pooling simultaneously that are essentially in competition. From
an efficiency viewpoint, the absence of competition can be beneficial as AMoD services have
positive scaling properties, which are countered by market fragmentation. Vazifeh et al.
[2018] showed that the total fleet size increases by up to 10% for two competitors and up
to 15% for three competitors. Séjournè et al. [2018] define a price of fragmentation and
study it with the means of formal analysis and simulations assuming independent and sufficient
vehicle supply.

AMoD Demand & Stochasticity of Customer Interaction: This paragraph can only
provide a brief overview as a detailed review of descriptions, analysis, and models for possible
travel behavioral changes in the presence of AMoD systems are out of the scope of this thesis.
Many factors will influence future AMoD demand. It can also be expected that the attitude to-
wards AVs in general and AMoD in specific will change over time. Prior knowledge from MoD
systems is undoubtedly useful [Rayle et al., 2016; Bansal, Sinha, et al., 2020; Moody
and Zhao, 2020; Tirachini, Chaniotakis, et al., 2020] as there are no large-scale pi-
lots generating revealed preference data3. For the same reason, stated preference surveys are
the method of choice to study various topics in the AMoD field, such as general AV accep-
tance [Abraham et al., 2017; Bansal and Kockelman, 2017; X. Dong et al., 2019;
Kaltenhäuser et al., 2020; Nair and Bhat, 2021], pooling behavior [Gurumurthy
and Kockelman, 2019; Y. Liu, Bansal, et al., 2019; Alonso-González et al., 2020;
Hou et al., 2020], general mode choice and handling of MaaS platforms [Krueger et al.,
2016; Yap et al., 2016; Frei et al., 2017; Caiati et al., 2019; Feneri et al., 2020], and
more. From a modeling perspective, many studies applied frameworks with exogenous de-
mand, i.e., the demand for the AMoD system was estimated beforehand and is deterministic
and independent from the fleet operation. The generated demand can be based on taxi or
MoD data [Santi et al., 2014; Dandl and Bogenberger, 2019; Dandl, M. Hyland,
et al., 2020], estimated from a transportation model with assumed modal shift [Fagnant,
Kockelman, and Bansal, 2015], or generated from integrated demand models (including
population synthesis, trip generation, destination choice, and mode choice). The simulation

3Harb et al. [2018] provide an interesting approach to estimating induced demand on a small scale.
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platforms SimMobility4 and MatSim5 are examples of the latter, which developed iterative
frameworks, where mode choice is performed in a separate layer with the help of different
logit models [Ben-Akiva and Bierlaire, 1999]. The mode choice and fleet simulations
are iterated until an equilibrium is achieved [Marczuk et al., 2015; Sebastian Hörl,
2017]. A day-to-day adjustment process is applied to the traveler agents to allow exploration
of new mode-choice alternatives and convergence towards (globally) stable and meaningful
mode-choice decisions [Djavadian and J. Y. J. Chow, 2017; Basu et al., 2018; Sebas-
tian Hörl et al., 2019]. Similarly, Kang et al. [2015] use a Hierarchical Bayesian choice
model in a layer separate from the fleet simulation. Since the demand of these frameworks is
not determined during the run-time of the actual fleet simulation, the demand can be viewed
as predefined and deterministic from a fleet operator’s perspective. Frameworks, where the
acceptance of customers does not rely on time constraints (booking) or is only based on
strict time constraints, have deterministic customer interactions. On the contrary, there are
frameworks where customer interactions are based on fleet operational decisions in a prob-
abilistic way. Atasoy et al. [2015], Dandl, Bogenberger, and Mahmassani [2019],
and Wilkes et al. [2021] developed integrated mode-choice models, where the travelers base
their decisions on real-time information. This information can contain fares, pick-up times,
and drop-off times and is generated by the fleet operator based on the state of the fleet and
traveler-specific information (origin, destination, request time). In these models, the AMoD
demand is related to the alternative travel options. Another possibility is to assume sensitiv-
ities to certain aspects, e.g., fares and waiting times. J. J. Q. Yu et al. [2018], Turan
et al. [2020], and Al-Kanj et al. [2020] built frameworks in which the amount of demand
is probabilistic and sensitive to the AMoD fares set by an operator’s dynamic pricing policy.
Customers in the simulation environments of Engelhardt, Dandl, Bilali, et al. [2019]
and Loeb and Kockelman [2019] accept the AMoD based on a waiting-time dependent
probability. Cancellations of trips are another source of stochasticity that has recently been
studied [X. Wang et al., 2019; J. Yu and M. F. Hyland, 2020].

4https://its.mit.edu/software/simmobility
5https://www.matsim.org/
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2.3 AMoD Fleet Operation

Essentially, the operation of an AMoD fleet represents a vehicle routing problem, i.e., a fleet of
vehicles receives assignments of routes and stops to perform specific tasks. There are various
categories to distinguish different types of VRP. Psaraftis et al. [2016] describe a taxonomy
with 11 criteria, most of which have been described in the service design. One of the most
important criteria is the inflow of available information, denoted as the type of problem by
Psaraftis et al. [2016] or evolution of information and quality of information by Pillac
et al. [2013]. The evolution of information can be static or dynamic. In a static problem, all
information is available at the time of decision-making, i.e., the time at which the routes and
stops are assigned to vehicles. Contrarily, in a dynamic problem, information is revealed to
the operator over time making re-assignments for the vehicles meaningful. Larsen [2000]
describes various definitions for the degree of dynamism: (i) the share of customers that are re-
vealed over time, (ii) the share of requests that have been revealed until a certain point in time,
and (iii) the ratio of reaction time, which is defined as the time between a customer is revealed
and a decision regarding this customer has to be made, and the planning horizon. Quality of
information describes the stochasticity of information. If all information is deterministic, the
problem is called deterministic. Otherwise, it is classified as a stochastic problem. Demand
forecasts, which are different from exact future customer information as they predict demand
in spatio-temporal aggregated form [Sayarshad and J. Y. J. Chow, 2016; Dandl, M.
Hyland, et al., 2019], are an example of stochastic information in dynamic problems. The
consideration of stochastic travel times is another example that typically include reliability as
a quality measure of routing [Schilde et al., 2014; Filipovska and Mahmassani, 2020].

Pick-up and delivery problems constitute a subclass of vehicle routing problems, in which
the operator has to fulfill requests to transport people or goods from an origin to a desti-
nation. If people are the customers and all information is available, the (static) problem is
referred to as dial-a-ride problem (DaRP). In its original form, every transportation request
from a set of customers asking for transport in a network must be served while satisfying
certain time constraints. Cordeau and Laporte [2007], Molenbruch et al. [2017],
and Ho et al. [2018] surveyed the literature for DaRP formulations and solution approaches.
Moreover, the latter also summarized publicly available test instances6 and the largest prob-
lem instances that could be solved exactly: 8 vehicles and 96 customers [Braekers et al.,
2014; Gschwind and Irnich, 2015]. There are two-index (sequence of customer pick-up,
and drop-off point) and a three-index (customer pick-up, drop-off and vehicle) formulations
of the problem. Bongiovanni et al. [2019] extended two- and three-index DaRP prob-
lem formulations by including range constraints for electric vehicles and employed a branch-
and-cut strategy to solve instances of up to 5 vehicles and 50 customers. Selecting the
best of the combinatorial possibilities of sequencing pick-up and drop-offs is NP-hard. Even
though these problem instances seem small, they are computationally expensive. In order
to tackle larger VRP instances, meta-heuristic solution approaches were developed: simu-
lated annealing (e.g., Chiang and Russell [1996]), genetic algorithms(e.g., Baker and
Ayechew [2003]), large-neighborhood search(e.g., Ropke and Pisinger [2006], B. Li et
al. [2016], and Syed, Kaltenhaeuser, et al. [2019]), Tabu search(e.g., Gendreau and

6See e.g. http://alpha.uhasselt.be/kris.braekers/
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Potvin [2005] and Erdmann, Dandl, and Bogenberger [2019]), or hybrids of these
algorithms(e.g., Vidal et al. [2012]).
In the following, it is assumed that the AMoD service is highly dynamic, i.e., customers

use their smartphone to make immediate requests and expect fast decisions by the AMoD
operator whether they are to be served. Actually, the restricted access to information and
immediacy of response constrain the solution space severely compared to the static case. On
the one hand, this leads to the solutions of a dynamic setting being worse than the static
case solution; on the other hand, much larger systems can be addressed. The dynamic nature
requires frameworks, in which the movements of the vehicles are simulated and the operator
makes decisions based on the current system state [Regan et al., 1996; Horn, 2002; J.
Yang et al., 2004; Jung and Jayakrishnan, 2014].
The following paragraphs and Table A5 (in Appendix D) divide the fleet operational decisions

into a few categories and summarize the literature about the respective topics.

Fleet Sizing: One of the most critical factors regarding fleet efficiency is fleet size. If the
fleet is very large compared to the demand, many vehicles will be idle producing costs without
generating revenue. If all vehicles are utilized and there is unmet demand, the addition of
vehicles could be profitable. In theory, AMoD operators could use two-sided platforms and
surge pricing to increase an elastic fleet of borrowed privately owned AVs [Stocker and S.
Shaheen, 2017; Nourinejad and Ramezani, 2019] similar to attracting drivers to be
available during peak demand [Hall et al., 2015]. Since this thesis assumes that privately
owned vehicles will play a minor role, AMoD providers also own their AVs and have a constant
fleet size. As drivers are not needed, these vehicles will also be available for operations (unless
they require maintenance). Therefore, driver scheduling and its impact on elastic fleet size
do not have to be considered. Several approaches to fleet sizing are considered in literature.
Analyzing demand and average trip duration gives an immediate estimation for a meaningful
range of fleet sizes [Dandl, M. Hyland, et al., 2020]. Similarly, macroscopic approaches
allow a fast estimation of impacts of various fleet sizes [Daganzo and Ouyang, 2019].
Alternatively, simulations with various explicit fleet sizes return the performance measures
for the respective number of vehicles. For microscopic models, (warm-up) simulations allow
the dynamic generation of vehicles if no other vehicle would be able to serve a customer;
even though this procedure does not represent a real-time operation, it provides a well-sized
fleet [Fagnant and Kockelman, 2014; T. D. Chen and Kockelman, 2016]. A com-
mercial AMoD operator will typically optimize the fleet size with respect to profit, i.e., weight
the generated revenue, the generated costs (by using the vehicles), and the fixed costs of
vehicles [Dandl and Bogenberger, 2019; Sebastian Hörl et al., 2019]. These fixed
costs typically consist of investment/leasing, mileage-independent deprecation, insurance, and
parking fees [Bösch et al., 2017; Dandl and Bogenberger, 2019]. In a joint PT network
design, other measures might be suitable for optimizing the fleet size [Pinto et al., 2019].

Customer Vehicle Assignment: The profit-generating and thereby main task of the fleet
operator is the assignment of customers to its vehicles. Whereas an optimal assignment can
clearly be defined for the static case, the dynamism of the problem does not guarantee that
making the best assignments according to a control objective and the current state is better
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than another assignment in the long run. Nevertheless, it makes sense to apply optimization
techniques to assign customers to the best of the current knowledge [M. Hyland and Mah-
massani, 2018a; Dandl and Bogenberger, 2018]. The dynamic re-optimization of the
current state is denoted by dynamic state optimization in this thesis. For the ride-hailing case,
M. Hyland and Mahmassani [2018a] studied the performance of different re-assignment
policies: customers can be fixed to a vehicle after the initial assignment or be re-assigned to
another vehicle. The other vehicle may currently be be idle or en-route to pick up or drop
off another customer. In their problem formulation, en-route drop-off vehicles are assumed
to first deliver the current on-board customer before driving for the assigned pick-up; vehicles
that are re-assigned while en-route to pick-up do not pick up the previously assigned customer
but are diverted directly to the newly assigned customer. They concluded that the more re-
assignments are possible, the higher the optimization potential and the gain in overall fleet
performance are. Heuristics are often used in the hailing case; some of them hardly affect
the solution, e.g., when limiting the number of vehicles that are considered for each customer
in the optimization [Dandl and Bogenberger, 2019], others severely limit the solution
space. The most constraining but computationally fastest approach is the nearest neighbor
policy, in which a new customer is assigned to the (idle) vehicle that can pick her up next.
Maciejewski, Bischoff, and Nagel [2016] developed a widely-used insertion heuristic
that is computationally as efficient as nearest-neighbor but searches for the next free customer
in under-supply and performs much better in these situations. For pooling, the solution space
grows very fast with the number of on-board and waiting customers. Therefore, many dynamic
ride-pooling studies employ some insertion heuristic, in which a new request is included the
existing route of a vehicle according to some heuristic rules [Jung, J. Y. Chow, et al., 2014;
Fagnant and Kockelman, 2018; Ma et al., 2019]. Winter, Cats, G. Correia, et al.
[2018] use a heuristic in which vehicles can accommodate other customers as long as these
customers arrive within a certain dwell time at a stop. Alonso-Mora, Samaranayake,
et al. [2017] developed the state of the art for pooling algorithms, which is a graph-based
approach exploiting feasibility consideration to build a tractable optimization procedure. The
idea behind the approach is that for hard time constraints (given by the service design), the
number of routes that do not satisfy these constraints grows nearly the same as the number of
possible combinations leaving only a few feasible routes for a larger number of customers. The
authors mention that they were inspired by the approach of Santi et al. [2014] to compute
the shareability of requests. In order to find these feasible routes efficiently, Alonso-Mora,
Samaranayake, et al. [2017] proposed a multi-step approach, which builds feasible routes
with an increasing number of requests. Later papers improved the performance for the optimal
case [Y. Liu and Samaranayake, 2019; Engelhardt, Dandl, and Bogenberger,
2019], revisited the formulation for the two-request case [M. F. Hyland and Mahmas-
sani, 2020], developed heuristics to limit the graph-building process [Simonetto et al.,
2019; Engelhardt, Dandl, and Bogenberger, 2019], or changed the constraints of
requests [Kucharski and Cats, 2020].

It has to be mentioned that the AMoD system modeling approach clearly affects the op-
erational model. Studies assuming a station-based AMoD operation can apply a simple first-
come first-serve queuing model at the station [M. Pavone et al., 2012; Spieser et al.,
2016]. Studies assuming exact knowledge of future customers can build schedules to serve
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these and transitions between the schedules [Boesch et al., 2016; Dandl, Grueber, et al.,
2019; Wallar, Schwarting, et al., 2019]. Flow-based and macroscopic models typically
do not consider an explicit assignment of a specific customer with a specific vehicle [Ta-
chet et al., 2017; Salazar, Rossi, et al., 2018; Daganzo and Ouyang, 2019]. On the
other spectrum of modeling, Dandl, Bogenberger, and Mahmassani [2019] took the
expected computation time for an explicit decision based on optimization into consideration
in the decision-making process.
Moreover, there are some non-myopic approaches, which consider additional aspects when

making customer assignments. Alonso-Mora, Wallar, et al. [2017], Dandl, M. Hy-
land, et al. [2019], and Dandl, M. Hyland, et al. [2020] include variables and objective
components for short-term forecasts in their assignment optimization problem formulation,
Boewing et al. [2020] build a model-predictive control approach that also considers the
scheduling of electric charging processes, and Al-Kanj et al. [2020] even consider dynamic
pricing and repositioning in their customer assignment problem.

Dynamic Pricing: Dynamic pricing is a known concept in VRP [Figliozzi et al., 2007].
While dynamic pricing is often studied in the carsharing [Lippoldt et al., 2018; Lippoldt
et al., 2019] and MoD hailing literature [L. Chen et al., 2015; Bimpikis et al., 2019; He
and Shin, 2019; Nourinejad and Ramezani, 2019], it is less prominent in the studies
about AMoD systems. In the current ride-hailing market, dynamic pricing is used to attract
drivers to the system and balance demand and supply, both in the spatial and temporal
dimensions. As the AVs are available 24/7, this supply-attraction mechanism is not necessary
for AMoD systems. Nevertheless, there is still potential to improve the profit by dynamic
pricing [Turan et al., 2020; Al-Kanj et al., 2020]. The relative gain depends on the fare
and cost structures; dynamic pricing produced approximately 10-30 % gain in the respective
case studies. Al-Kanj et al. [2020] use learning methods to estimate the probability of users
accepting certain fares and the probability that a vehicle will be assigned to the origin zone of
that user given a certain fare. Turan et al. [2020] assume the knowledge of a price sensitivity
and use reinforcement learning to set the prices (as well as reposition and charge vehicles).

Repositioning: Moving vehicles pro-actively to balance demand and supply is an important
feature of on-demand mobility systems. It is very prominent in carsharing, where a vehicle has
a catchment area with a radius corresponding to the typical walking distance of customers.
Staff is required to bring vehicles from cold to hot demand zones in order to increase vehi-
cle utilization and profit [Weikl and Bogenberger, 2013; Weikl and Bogenberger,
2015]. In MoD and AMoD systems, the catchment area of a vehicle is larger as the distance,
which a vehicle can drive in the time people are willing to wait, is larger than the typical
walking distance. On the other hand, vehicle repositioning is much cheaper as the drivers are
already in the vehicle in the MoD case, or AVs can drive themselves in the AMoD case. One
crucial distinction to today’s MoD hailing services is that a centrally controlled and optimized
repositioning strategy can be much more efficient than a decentralized system, where each
driver tries to maximize their own profit. Studies about ride-hailing systems report increased
energy consumption due to empty travel of more than 40% compared to people using a private
vehicle [Wenzel et al., 2019], whereas it is one of the objectives of a centrally controlled
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fleet to minimize the empty mileage [M. Pavone et al., 2012; Dandl and Bogenberger,
2019; Dandl, M. Hyland, et al., 2019]. Due to the dynamism and stochasticity of demand,
it is not intuitively clear how vehicles should be repositioned. Different algorithmic solutions
have been developed in recent years. They usually involve the allocation of the operating
area in disjoint zones, which are treated as separate virtual hubs or stations, for which the
expected demand and vehicle supply are estimated. Most studies assume perfect demand
and supply information, whereas Dandl, M. Hyland, et al. [2019] analyzed the impact of
spatio-temporal aggregation on forecast quality and its impact on fleet performance. They
found that the forecasts of taxi demand in Manhattan become more accurate the less pre-
cise they are, i.e., forecasts with lower spatial and temporal resolution showed smaller errors.
Moreover, they found that a higher spatial resolution, despite lower accuracy, has positively
impact fleet performance in their joint short-term and mid-term assignment and repositioning
approach. By comparing with simulations based on perfect forecasts, which are 0-error fore-
casts by aggregating the actual trip data for given spatio-temporal resolution, they also noticed
that the impact of forecast errors on fleet performance becomes more severe the higher the
resolution. Another approach is to call the repositioning algorithm only once to rebalance the
fleet overnight [Zhu et al., 2017]. However, most studies apply their respective repositioning
algorithms periodically. A heuristic approach often utilized by studies is the block-balance
algorithm developed by Fagnant and Kockelman [2014]. In their strategy, vehicles repo-
sition to neighboring zones if their block-balance value, which is the difference between the
share of vehicles and the share of expected demand, is larger than a certain minimum differ-
ence. Other heuristic approaches using local optimization are presented by Marczuk et al.
[2015], Winter, Cats, Martens, et al. [2020], and Winter, Cats, Martens, et al.
[2021], where vehicles are sent to the next depot or next free parking option. The widest-use
optimization-based approach is the minimum transport problem, e.g., [M. Pavone et al.,
2012; R. Zhang and M. Pavone, 2016; S. Hörl et al., 2019; Ruch, Horl, et al., 2018],
in which the number of excess vehicles is distributed evenly among the zones and the objec-
tive is to minimize the traveled distance. The minimum transport problem is utilized with
two demand-supply estimation processes: a pure feed-forward approach estimating arrival and
departure rates and a feed-back approach based on currently open requests and vehicle move-
ments. In a comparative study, the feed-forward approach showed more promising results [S.
Hörl et al., 2019]. Other optimization-based approaches include a term for the imbalance
in the objective function [Alonso-Mora, Samaranayake, et al., 2017; Wallar, van
der Zee, et al., 2018; Dandl and Bogenberger, 2019], which are denoted as dynamic
state optimization in Table A5. With hypothetical requests or demand-supply imbalances, it
is also possible to integrate repositioning in the objective of the customer-assignment opti-
mization [Alonso-Mora, Samaranayake, et al., 2017; Dandl, M. Hyland, et al.,
2019]; such approaches are denoted by combined dynamic state optimization. In contrast to
these integer optimization models, flow-based equilibrium models assume constant demand
but are capable of integrating flow-based capacity or travel time models [Rossi et al., 2018;
Salazar, Tsao, et al., 2019]. Previously described approaches consider constant demand
or estimate the demand within a certain time horizon in one step. Dandl, M. Hyland,
et al. [2020] apply a dual-horizon approach, where short-term forecasts are considered in the
customer assignment and a longer time horizon is used for a separate repositioning problem.
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Other model-predictive control approaches split the future time horizon into several steps and
optimize the sum of the objective of all steps. The resulting problems were solved with var-
ious methods, e.g., heuristics [Albert et al., 2019], mixed-integer linear programming [R.
Zhang and M. Pavone, 2016; Charkhgard et al., 2020], approximate dynamic program-
ming [Al-Kanj et al., 2020], or reinforcement learning [Wen, Zhao, et al., 2017; Fluri
et al., 2019]. These models for future impact can also contain other control aspects, such as
charging [H. Zhang et al., 2019; Al-Kanj et al., 2020; Estandia et al., 2021].

Charging: The charging strategy determines when and where electric vehicles are sent to
replenish their batteries. Operators can use public charging infrastructure or in their own
depots. Studies typically assume that the AMoD operators do not have to share the charging
infrastructure and can access charging units whenever their vehicles arrive at an empty charging
unit. Strategies with different complexity have been developed in recent years. A trip-rejection
criterion was developed by T. D. Chen and Kockelman [2016], which sends vehicles
charging if they do not have sufficient energy to serve a customer request. This strategy is
problematic in large operating areas, where a single request can send many vehicles to charge
at the same time. Simple threshold models were applied in Dandl and Bogenberger
[2019] and Hu and J. Dong [2020], where vehicles are sent to the nearest free charging
station (after serving their current customers) when the state of charge of a vehicle drops
below a certain threshold. Fehn et al. [2019] built a rule-based system that considers both
state of charge and the current energy price. Furthermore, various model-predictive control
approaches have been developed. Due to the curse of dimensionality, the charging strategy
by Rick Zhang et al. [2016] practically only considered charging over a very short time
horizon. For a less myopic approach, Iacobucci et al. [2019] added a second time horizon
for charging, and Wenbo Zhang et al. [2019] and Estandia et al. [2021] used flow-based
models. The models by Boewing et al. [2020] and Estandia et al. [2021] also consider the
power network in their formulations. Dandl, Fehn, et al. [2020] built a macroscopic model
to account for electricity prices, battery wear, and the influence of limited range and charging
processes. They developed a model-predictive control approach to generating a macroscopic
charging schedule for a whole day.

2.4 Regulation of AMoD Systems

In contrast to the vast amount of literature about the operational side, research on the regula-
tory side with AMoD systems seems somewhat limited. Hence, studies about AV regulation in
general and MoD and taxi systems build the basis for the following paragraphs. Fraedrich
et al. [2019] surveyed city administrations and identified potential fields of action. They stated
that shared rather than private AVs are better for urban development strategies. Another find-
ing was that there could be a mismatch between urban planning and industry priorities, and
urban planners will require integrated transportation models considering AVs to make informed
decisions. Cohen and Cavoli [2019] describe outcomes from a workshop about AV policy
with stakeholders from academia, central and local governments, transport operators, NGOs,
and consultants. They argue that a passive approach could result in a worse performance of
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the transportation systems with respect to traffic flow and accessibility. They suggest a list of
regulatory measures; once again, prioritizing shared over private mobility is one of them. They
acknowledged that parking management and congestion pricing are possible. Lamotte et al.
[2017] and Beheshtian et al. [2020] suggested reservation-based pricing schemes, in which
AVs have to request space on the road. Similar to the energy market, capacity constraints can
be considered and traffic flow improved due to the central monitoring and control. Additional
to parking and congestion pricing, Narayanan et al. [2020a] mention intersection control,
platoon size, variable speed limit, and dedicated lanes as other traffic control level policies that
affect the traffic flow efficiency of AVs. W. E. Walker and Marchau [2017] suggest a
regulatory framework for real-life implementation of policies: after identifying the objectives,
constraints, and options, a basic policy should be set up. Since the introduction of AVs brings
a lot of uncertainty, they suggest studying the robustness of the basic policy and reactions to
vulnerabilities and developing opportunities in advance. A monitoring system should be set
up to determine whether the underlying assumptions are still valid. Moreover, the monitoring
allows a timely policy adaptation by triggering the respective actions.

It is worth noting that regulations are already in place for current taxi and MoD systems
and have been studied in literature, e.g., by H. Yang et al. [2005]. Taxis are severely
regularized; arguably even to the degree that the severe regulations paved the way for the
major growth of MoD systems in comparison to taxi systems [Cetin and Deakin, 2019].
In Germany, there even exists a taxi regulation denoted ’Rückkehrpflicht’, which means that
taxis have to return to their original zone and are not allowed to serve customers on this
return trip. This law was introduced to regulate competition between multiple taxi services
but inherently causes the share of non-revenue miles to be about 50%, which obviously is
inefficient and bad for the environment. As MoD systems started to grow, state and city
administrations introduced some regulations, e.g., background checks of drivers, driver’s license
requirements, vehicle requirements, and the requirement for MoD providers to share data
with administrations [Beer et al., 2017]. More recently, the administration of New York
City limited the number of MoD vehicles [Bellon, 2019] and approved plans to introduce
congestion pricing in Manhattan [Campbell, 2019; Conger, 2020]. Such measures were
studied by S. Li et al. [2019] and K. Zhang and Nie [2019]; however, the frameworks are
not directly transferable to the AMoD case since the two-sided MoD market structure and
minimum wages are key components of their respective methodologies.

Some studies considered transportation systems with AMoD services and some kind of
regulatory measure in place. Simoni et al. [2019] analyzed the impact of different congestion
pricing schemes in the presence of AMoD. They showed that marginal-cost and travel-time
dependent pricing schemes could reduce total VKT and improve social welfare, which they
defined as the sum of toll revenues and all traveler’s utility. Basu et al. [2018] studied the
case of removing the existing mass transit in a virtual city reflecting Singapore, which resulted
in high levels of congestion. In a similar study, Oke, Akkinepally, et al. [2020] analyzed
the removal of mass transit and the integration of AMoD as a feeder system for car-dependent
prototype cities. Under the assumption that the hailing-to-pooling ratio is similar to today’s
MoD systems, they observed an increase in VKT and congestion. Recognizing that a complete
replacement of mass transit is not meaningful, Becker et al. [2020] removed only the least
efficient PT lines. This method resulted in reductions of emissions and positive social welfare
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results, even though they did not consider pooling of customers. They also mentioned that
the full costs rather than only the operating costs of private vehicles should be considered for
a long-term view.

2.5 Conclusion

Research about AMoD systems has been very active in recent years. As a result, many
service designs and operational strategies have been developed and evaluated with various
modeling techniques. However, improvements for the dynamic and stochastic fleet operational
problems remain possible, especially when considering customer assignment, dynamic pricing,
and repositioning all at once and for different service designs.
A smaller amount of studies focused on the regulation of transportation systems with AMoD

services. Some regulatory measures are transferable from real-world regulation of MoD systems
and studies thereof: a limit on fleet size, congestion pricing, and parking management certainly
are applicable for steering demand and supply in a transportation system with AMoD services.
Moreover, shared AVs are to be prioritized over private AVs and pooling will be required
to increase the average occupancy and thereby improve system VKT and the general traffic
situation.
Research gaps can be identified when it comes to the interplay between operator and regu-

lator. The few studies testing regulatory measures did not consider that the operator will react
to these measures, i.e., optimize its system in the new setting. Additionally, the regulatory
actions mainly were of qualitative nature and studied one measure at a time. However, if
fleet size limit, congestion pricing, and park costs are to be adapted, regulators need to know
which quantitative values they should set. They also have to consider the interplay of multiple
regulatory measures acting at once.
The main contributions of this thesis are

• the creation of further insight into operational aspects of AMoD systems.

• the development of a new optimization-simulation framework that considers these op-
erational insights to regulate AMoD systems.

The envisioned framework needs to contain AMoD models that are sensitive to regulatory
measures. There is a trade-off between granularity and computational complexity. Even
though macroscopic models are often better generalizable, they typically assume a high degree
of homogeneity. In addition, modeling the sensitivity to the regulatory measures is challenging
or sometimes impossible. Agent-based models can accommodate more heterogeneous data
input but require more computational effort. Since resources are limited, it is necessary to
focus on certain operational variables before going to the regulatory part of the thesis.
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Chapter 3

AMoD Service Design and Fleet
Operation

This chapter assumes a laisser-faire scenario, where no regulatory measures are in place.
Instead a system, with an AMoD operator and travelers are studied from the operator’s view.
In the first section, certain service design models will be selected. For these service designs,
the mathematical problem will be formulated and the operator’s actions/strategies will be
introduced. These actions are inherently related to different time scales, which allow a divide-
and-conquer approach to tackling the different possible actions in the subsequent sections.
A case study will be used to gain further insights on the impacts of these actions. Finally,
key learnings are summarized in a brief conclusion of the chapter. During the course of this
chapter, mathematical notation is introduced, which enables a brief and precise formulation.
A summary of the mathematical notation is provided in Appendix A.

3.1 Problem Description

This thesis studies an AMoD service operating a homogeneous fleet of vehicles v ∈ V in a
street network G = (N,E), in which (i) a set of potential users R make app requests to the
operator, (ii) the operator has to respond immediately with an offer or a rejection, and (iii)
the users accept or reject an offer, if available. The resulting operational problem is dynamic
as requests are revealed over time. In most scenarios, users expect to be served as soon as
possible; however, a strategy for user reservations is developed and tested in the case study.
Users communicate their time constraints with the request and do not accept offers that do not
satisfy these constraints; moreover, users are modeled price sensitive in the scenarios testing
pricing strategies. The offers, which are communicated from the operator to the users, have
to be created by a strategy that guarantees the level of service1. Therefore, the fleet control
strategies has to avoid to confirm a service but then not deliver the promised service.
The fare structure of the AMoD service is assumed to have a constant base fare (fC) and

a distance-dependent (fD) component. For simplicity, it is assumed that the constant cost
structure of the AMoD service scales with fleet size: all time-based costs (e.g. staff, platform
costs, marketing, vehicle investment/lease, insurance) are distributed per vehicle on a daily
basis and denoted by fixed vehicle costs (cF ). Energy costs, vehicle depreciation, battery wear

1The alternative would be a game, in which both operator and users speculate about the offered and
actual level-of-service, which is out of scope of this thesis.
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are assumed constant per driven distance and their total is denoted by variable vehicle costs
(cD). It is assumed that vehicle batteries have sufficient range in order to schedule charging in
low-demand times and charging processes thereby do not restrict the fleet operation. Finally,
it is assumed that street parking is allowed for AMoD vehicles; a scenario where vehicles have
to return to hubs instead is tested in the case study to quantify the benefits of allowing street
parking.
A request r ∈ R is specified by a request time τr, a pick-up location xpr ∈ Na, and a

drop-off location xdr ∈ Na, where Na ⊂ N is the set of access points defined by the operator.
For the standard case, a maximum waiting time τwr and a maximum driving time τ dr are also
communicated. These values constrain the level of service a user can expect: τwr determines
the latest pick-up time and τ dr the maximum in-vehicle duration, which is relevant for pooling.
In the reservation scenario, the operator offers a time-window in which a user will be picked
up. This time window consists of an earliest pick-up time τ er and a latest pick-up time τ lr. In
this thesis, the latest pick-up time is given by τ lr = τ er + τwr . Furthermore, this thesis assumes
a quasi door-to-door service, i.e., requests are to be picked up at and dropped off at xpr and
xdr , respectively. The operator can reject the request or return an offer, which contains an
expected waiting time twr , an expected driving time tdr , and a fare fr, which is computed by

fr = max
(
fD · dr, fB

)
(3.1)

where dr is the distance of the fastest route between x
p
r and x

d
r , f

B is a minimum base fare and
fD is a direct-route distance-dependent fare component. This formulation ensures that users
do not have to pay for any detour distance. Moreover, fB is introduced to dissuade users from
making very short AMoD trips. The number of passengers ρr that are part of a request has
to be smaller than the seat capacity ρv of vehicles. For the pooling case, ρr determines how
many of a vehicles available seats ρv will be taken by one request. Group discounts could be
introduced easily but are not considered in this thesis for the sake of simplicity and tractability.
The operator has control over the fleet of vehicles V . A vehicle v ∈ V can pick-up and

drop-off users at their respective locations. The boarding and disembarking processes are
assumed to last for τ b. The operator assigns a vehicle plan ξv to each vehicle v. These
plans contain stops Xs (with stop index s ∈ {1, 2, ..}) to pick-up and drop-off users and
drive to certain destinations and wait for further instructions, i.e., repositioning. A stop
X = (x, ts, tl, te, R+, R−, lock) is defined by a network position x ∈ N , a stop duration ts,
possibly a latest arrival time tl and an earliest departure time te, the sets of boarding and
disembarking requests denoted by R+ and R−, and a flag lock indicating a locked status. A
stop with lock = True cannot be changed anymore. It is set to False for short-term decisions
but becomes relevant for the mid-term decisions. The stop duration is given by the boarding
time tb of AMoD system users. It is assumed that users disembark and board sequentially in
a hailing operation, whereas boarding processes of multiple users at the same location x can
be combined in a pooling service: all passengers of one stop can board and disembark within
tb. The latest arrival time at the stop (tl) can be derived from the time constraints of the
requests (both τwr and τ dr ). Without reservations, te of subsequent stops can be ignored as
vehicles should always pick-up other requests of the route as soon as possible and hence leave
a stop as soon as all boarding processes are finished. Obviously, a vehicle assigned to serve a
reservation request r should not leave before the user had a chance to join the vehicle, i.e.,
not before te = τ er + ts.
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It is assumed that vehicles follow the fastest route ϕ between two subsequent stops. In a
hailing operation, the drop-off stop of each request must immediately follow the pick-up stop.
Contrarily, vehicle plans of a pooling operation have to satisfy the conditions that the pick-up
stop comes before the drop-off stop but not necessarily immediately for each user. Furthermore,
the vehicle route has to satisfy the condition that the vehicle cannot accommodate more than
ρv passengers on board at a time.
Let T be a time horizon, for which operational decisions should be evaluated, which is

typically in the range of a day. Moreover, let R be the set of all possible requests within that
time horizon. The global objectives of the operator are to maximize market share and profit.
The market share term penalizes not serving a request with a cost c− per user; this term can
also be interpreted as an opportunity cost as users who are not satisfied with the service on
one day, might not even make a request in the following days. Therefore, the global operator
objective P reads

P =
∑
r∈Rs

fr −
∑
r∈Rl

c− −
∑
v∈V

(
cF + cD · dv

)
(3.2)

where Rs and Rl are the set of served users and the set of not served users that left the
system, respectively. Moreover, dv denotes the total distance that vehicle v drove throughout
the time horizon. For meaningful fare and cost structures (fD > cD, fB ≥ 0), both objectives
are in line2. Hence, it is in the interest of the operator to serve as many requests as possible.
In this case, additional explicit level-of-service measures (for additional waiting and detour
time) are not necessary in the global objective, because users reject offers not satisfying their
time-constraints.
c− can be interpreted both as assignment reward or penalty for not served requests. This

can be shown using an alternative objective P ′

P ′ =
∑
r∈Rs

(
fr + c−

)
−
∑
v∈V

(
cF + cD · dv

)
(3.3)

The optimization with equations (3.2) and (3.3) as objectives is equivalent for a constant
set of requests R, i.e., Rs = R \ Rl, because P = P ′ + Const. In the introduction phase,
large values of c− make sense in order to expand. This thesis focuses on AMoD systems,
which assume a long-term view with demand and supply in equilibrium. In this phase, the
AMoD operator is more concerned with making profits than expanding its market share and
the uncertain parameter c− can be dropped. With c− = 0, equations (3.2) and (3.3) are equal
and denote the global operator objective P , which can be interpreted as the operator profit.
c− could be re-introduced by substituting fr → fr + c− in any subsequent equation.
With this objective in mind, the AMoD provider has following set of actions A:

• determine the fleet size and operating area

• develop a fare system (standard fares and dynamical adaption)

• determine imbalance of demand and supply

2To be more precise, the fare has to be higher then the costs related to the vehicle driving to the user
and serving the user.
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• distribute vehicles in the operating area

• receive app requests; determine level-of-service; make offers

• assign a confirmed request to a vehicle

• build a vehicle plan

The actions A generally depend on the state S of the AMoD system. This can be modeled
as a Markov Decision Process. Whenever the state changes, the operator might think about
taking new actions (event-based approach).
In this formulation, actions can be assigned a (state-dependent) reward Ψ = Ψ(S,A) such

that the overall reward matches the global objective:

• the fleet size is penalized with the vehicle fixed costs cF

• a confirmed user (as a reaction to a good offer action) is rewarded with the respective
fare fr

• the assigned vehicle plan ξv determines the distance dξv to pick up and drop off these
users and reposition vehicles in the operating area; cD · dξv are the corresponding costs
(for driving)

As time is a state variable, a time-based formulation is possible, where all state changes
between two time steps are accumulated and S = S(t). Therefore, all actions performed at
one time step can be collected A = A(S(t)). Moreover, the system state after performing all
these actions, e.g. the assignment of a new vehicle plan, is changed and denoted by post-state
SP (t). The state transition from time ti to ti+1 = ti+∆t is depending on the post state and
changes in the exogenous state variables s(ti+1), which are independent of any actions the
operator takes, e.g. requests that are revealed to the operator at time ti+1. The state transition
operator is denoted by Θ, i.e., S(ti+1) = Θ(SP (ti), s(ti+1)) = Θ(S(ti), A(ti), s(ti+1)). For a
briefer notation, Si = S(ti), S

P
i = SP (ti), si = s(ti) and Ai = A(ti) are defined. The state

S(ti) contains following attributes:

• the current position xv for each vehicle v

• the current on-board requests Ro
v for each vehicle v

• the currently assigned vehicle plan ξv for each vehicle v

• the currently active requests Ra, which are those requests that have been revealed to
the operator and have not yet been served or left the system

• the current state of the network

• stochastic information about future demand Λ and the network
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3.2 General Solution Approach: Separation of Time Scales

The stochastic information Λ can be available in various forms and will be discussed further
in section 3.4.1. For simplicity, the state of the network is assumed exogenous for this part of
the thesis and sufficiently described by the travel times te for all edges e ∈ E.
The operator control problem can be summarized by

min
A

P =
NT∑
i=1

Ψ(Si, Ai) (3.4a)

s.t. Si+1 = Θ(Si, Ai, si+1) ∀i ∈ 1, ...NT (3.4b)

where A = {Ai} denotes the set of all actions taken at all time steps.
In theory, the Bellman equation would determine the set of optimal actions Ai at each time

step ti (∀i ∈ 1, ...NT ):

A∗i = argmax
Ai

Ψ(Si, Ai) + E

 NT∑
t=i+1

γt−iΨ(St, At)

 (3.5a)

s.t. Si+1 = Θ(Si, Ai, si+1) (3.5b)

where NT is the number of time steps until the end of the time horizon to be evaluated
and γ ∈]0, 1] a discount factor weighting future rewards against immediate rewards. The
expectancy value is required if stochastic information is available and can be computed with
Monte-Carlo simulations. In theory, this problem could be solved by dynamic programming.
For problems of very small scale, the expectancy value could be computed by drawing requests
from stochastic distributions and computing the rewards and impacts of the decisions to be
made.

3.2 General Solution Approach: Separation of Time
Scales

In practice, the action space is too large to apply dynamic programming to the equation
system (3.5). General approaches to approximate such problem are available [Bertsekas,
2005; Powell, 2011]. However, the consideration of different time scales of the actions
allows to divide the general problem into smaller and easier to tackle problems.
Similar to Atac et al. [2019], three time scales and classes of decision-making/actions are

defined and illustrated in Figure 3.1. The outcomes of planning decisions remain constant for
a long time. It does not make sense that the AMoD provider recomputes its investments into
AVs based on single requests. It can be expected that users of an AMoD system want to see
stability in operating area and approximate fare range in order to trust such a system. Hence,
this thesis assumes that these decisions remain constant over the evaluation time horizon T
(scale of a day). On the other end of the scale, short-term operational actions like answering
app requests and request-vehicle assignments have to be performed very frequently, namely in
the scale of seconds. These request-vehicle assignments should at least have enough foresight
to consider different possibilities to reach a request before the maximum waiting time τw.
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3 AMoD Service Design and Fleet Operation

Hence, these short-term decisions naturally consider a time horizon in the range of a few
minutes. Finally, forecasts of the stochastic demand for time horizons in the range of minutes
to hours can improve the fleet control by dynamically distributing vehicles to balance expected
demand and supply and setting dynamic fares in order to reduce expected demand to match
supply if necessary. As these forecasts are also stable and do not change every second, these
tactical (mid-term) decisions can be made in the minute-to-hour scale.

With this separation of time scales and the division of actions into these scales, the Bellman
equation is effectively approximated by following equations:

AS,∗i = argmax
AS

i

Ψ̃(Si, A
S
i ) ∀i ∈ 1, ...NT (3.6a)

AM,∗
i = argmax

AM
i

NTM∑
t=i+1

Ψ̄(St, A
M
i ;AS,∗i )

 ∀i : ti%∆tM = 0 (3.6b)

AL,∗0 = argmax
AL

0

E

NT∑
t=0

Ψ(St, A
L
0 ;A

M,∗
i ;AS,∗i )

 (3.6c)

s.t. Si+1 = Θ(Si, Ai, si+1) ∀i ∈ 1, ...NT (3.6d)

where ASi , A
M
i , AL0 denote the short-term, mid-term, and long-term actions, respectively.

Moreover Ψ̃ and Ψ̄ are reward-function approximations to estimate the impact of short-term
and mid-term decisions at time ti on rewards within the respective time horizons. In comparison
to the original formulation, the expectancy value and the discount factor γ are absorbed in
these approximations. Equation (3.6a) states that short-term decisions are based on the
current system state. Furthermore, equation (3.6b) states that the algorithm to determine
repositioning is only performed every ∆tM . % is the modulo operator and obviously for this
to work, ∆tM has to be a multiple of ∆t. This equation assumes that the main impact of
mid-term decisions at time ti is within the mid-term time horizon [ti, ti+T

M ]. The idea behind
this approximation is that vehicles will be moved based on other decisions after ti so that the
effect of any single decision at ti on decisions and rewards becomes smaller and smaller over
time. This should not mean that it cannot influence the fleet performance at later times; an
expected vehicle deficit in 3 hours has to be taken care of at some time, but the difference of
doing it now or in 15 minutes is likely rather small; on the other hand, if the deficit is expected
to occur in 15 minutes, it is important to reposition vehicles right away. Finaly, equation (3.6c)
states that long-term decisions have to be made (i.e., planned) before the system can serve
any users, i.e., time step 0. Finally, equation (3.6d) ensures that the system dynamics remain
the same as in the original problem.

Strategies to address these sub-problems efficiently are the topic in the remainder of this
chapter. First, the most immediate and essential operational problem, i.e., the interaction
with users, is addressed; then, mid-term decisions are explored. As mentioned, the effect of
long-term decisions can be assumed constant over the time horizon T . The section about these
long-term decisions briefly discusses how an operator can address the respective variables.
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3 AMoD Service Design and Fleet Operation

3.3 Immediate Short-Term Decisions

This thesis assumes that the operator receives users’ (app) requests and responds to them
sequentially. The operator algorithm to respond should be fast such that users receive the offer
practically instantaneously. As mentioned in the global problem formulation (section 3.1), the
offers should be realistic. This is achieved in this thesis by making an actual request-vehicle
assignment for an incoming request. The global performance can be enhanced by periodic
re-optimization of request-vehicle assignments every ∆tS (in the range of seconds up to a
minute).

Furthermore, it is assumed that users have already planned their decision-making process
before making the request, i.e., they know which time and monetary constraints they will accept
or reject and therefore can respond to an offer instantaneously3. With the requirements of
instantaneous communication, requests that are revealed at time t either leave the system or
become assigned to a vehicle v. There are no remaining open requests. The set of active
requests (Ra) contains the disjoint subsets of requests waiting for pick-up (Rw =

⋃
v R

w
v ) and

the on-board requests (Ro =
⋃
v R

o
v).

Finally, it is assumed that the operator will not reject any request with start and end location
in the operating area if it is able to serve this request within the given time constraints.
However, the operator can increase fares if a vehicle shortage makes it unlikely that the
operator can serve all incoming requests (see dynamic pricing in section 3.4.3 and its impacts
in section 3.6).

In theory, it would be possible to assign only idle vehicles to user requests, at least in the
hailing case. However, as shown by Dandl and Bogenberger [2018] and M. Hyland
and Mahmassani [2018a], request-vehicle assignment algorithms with consideration of en-
route vehicles severely outperform algorithms assigning only idle vehicles. In the pooling case,
it is even inevitable to forecast routes in order to pool users together. Hence, the short-term
decisions should have some foresight, at least in the range of the typical maximum waiting time
(hailing) or average trip duration (pooling) of requests. The task of the short-term actions is
the creation of vehicle plans that contain the stops to pick up and drop off the active requests.
In order to check whether the plan ξv of vehicle v satisfies all time constraints of requests Rξv

considered in this plan, the expected arrival and departure times can be forecast for each stop.
Ignoring reservation requests for the moment, the vehicle will stop at its planned stops for the
boarding duration and travel along the fastest paths between stops (denoted by ϕ ∈ ξv). A
vehicle plan ξv is defined as feasible if the following conditions are satisfied:

xpr < xdr ∀r ∈ Rξv (3.7a)∑
r∈Rϕ

v

ρr ≤ ρv ∀ϕ ∈ ξv (3.7b)

twr ≤ τwr ∀r ∈ Rξv (3.7c)

tdr ≤ τ dr ∀r ∈ Rξv (3.7d)

3Even though the instant decision-making assumption is not realistic for all users of an AMoD system, it
might be true for a majority as these service design parameters might be advertised openly. Moreover,
this user-operator interaction model will turn out to be very advantageous in chapter 4.
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3.3 Immediate Short-Term Decisions

The notation xi < xj in equation (3.7a) means that a stop (for pick-up or drop-off) at location
xi has to be conducted before a stop at location xj. Therefore, equation (3.7a) guarantees
that each request has to be picked up before it is dropped off. With Rϕ

v denoting the number
of on-board requests on route ϕ ∈ ξv, equation (3.7b) ensures that a vehicle plan cannot
include a route ϕ with more than ρv passengers on board. Equations (3.7c) and (3.7d) check
the waiting and detour time constraints of all requests in the plan, respectively.
Equations (3.7) have to be tested when a vehicle plan is built from scratch or a new request’s

pick-up and drop-off stop are inserted into an existing vehicle plan.
In order to select between different vehicle plans, the operator defines a (short-term) control

objective F S, which represents the short-term reward function approximation Ψ̃. F S should
be a function that approximates the impact of a request-vehicle assignment (and its respective
vehicle plan) on the global objective Ψ(Si, A

S
i ). It can contain a single objective component

or be a multi-objective function. The scale of F S as a whole can be chosen arbitrarily (i.e., F S

does not have to reflect the actual monetary reward) since for any c1 ∈ R+, c2 ∈ R, following
equation holds

argmax
A

(
c1 · F S(A) + c2

)
= argmax

A
F S(A) = argmin

A

(
−F S(A)

)
(3.8)

meaning that the solutions of the corresponding optimization problems are identical. However,
if the optimization is multi-objective, then the scaling of single objectives is significant.
In the two following subsections, the two short-term operating tasks to create offers and re-

optimize the operation are studied for hailing and pooling, respectively. In theory, the pooling
methodology would also work for the hailing case but the simplifications for a hailing service
improve computational efficiency.

3.3.1 Creation of Offers and Re-Optimization of Vehicle Plans
(Hailing)

For the hailing case, in which at most one user is in a vehicle at a time, the drop-off stop of
a request has to immediately follow its pick-up stop. When considering the insertion of a new
request’s pick-up and drop-off stop, only the waiting time conditions (3.7c) have to be checked
while all other conditions (3.7) are satisfied automatically with this rule. As in M. Hyland
and Mahmassani [2018a] and Dandl and Bogenberger [2018], this thesis assumes that
it is sufficient to consider at most one pick-up process per vehicle plan. This assumption
is valid if it is not possible to pick-up and serve a request r within the maximum waiting
time of another request r′, i.e., twr + t[xpr → xdr ] > τwr′ is satisfied for all requests r, r′. This
assumption is quite realistic for an AMoD hailing service that should not be used for very short
trips and offers short waiting times of just a few minutes. If this assumption is not justified,
the more general, but less efficient method described in section 3.3.2 should be applied. The
method illustrated in the following reduces the creation of vehicle plans to an assignment
problem (r, v) that aims to maximize the control objective function F S. Once a vehicle v is
selected for a newly revealed or waiting requests r, the plan stops Xp

r = (xpr, t
b, τr + τwr , τr)

and Xd
r = (xdr , t

b, τr + τwr + t[xpr → xdr ], τr) are appended to the vehicle’s previous plan.
The concept of spatio-temporal vehicle availability is applied to find efficiently the set of

vehicles Vr that can reach a request r within its maximum wait time constraint. A backwards-
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Figure 3.2: Search for available vehicles and estimated time to arrival (ETA) in the hail-
ing case with maximum waiting time τwr = 10 minutes. Figure adapted
from Dandl and Bogenberger [2019].

directed Dijkstra search around the request’s pick-up location xpr with time as cost function
and search radius τwr can be utilized to determine the set of nodes Nr, from where a vehicle
would have to start at time τr to reach r in time. In the second step, the availability of
vehicles v ∈ V at these nodes is considered. The set of vehicles Vr, which are feasible to
serve request r, consists of vehicles that are either idle at position xv ∈ Nr or still in-service
for another request r′, in which case xv = xdr′ ∈ Nr. Without pooled rides, a vehicle with
on-board passenger r′ has to drop-off r′ at xdr′ before being able to drive to xpr. As illustrated
in Figure 3.2, such a vehicle v will be available at xv = xdr′ after dropping of r′ at time tv ≥ τr.
If the operator assigned vehicle v to request r at the current time t, the estimated time to
arrival trv = (tv − t) + t[xv → xpr] would depend on the pick-up route time t[xv → xpr] and
the time of availability tv. Hereby, the time of availability is the current time (tv = t) for
idle vehicles and in the future (tv > t) for non-idle vehicles. The driving costs incurred by
an assignment (r, v) are determined by drv = d[xv → xpr]. The pseudo-code of the search
algorithm can be found in Appendix B.2.

The selection of a request-vehicle assignment (r, v) is determined by the control objective
function F S. It is important to note that an optimal control function cannot be derived
directly due to the dynamic nature of the problem described by equations (3.4), i.e., the
repeated application of the optimization procedure does not guarantee optimality with respect
to the global objective. Instead, heuristic approaches have to be applied to choose a meaningful
control function formulation.

Obviously, the empty distance to pick up a new request, i.e., drv = d[xv → xpr], generates
costs cD and should be minimized. The costs to drive from xpr to xdr could be included as
well but they would not change the result as they are the same for each vehicle. It can make
sense to include a term to minimize user waiting times by minimizing the estimated time to
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3.3 Immediate Short-Term Decisions

arrival trv. Choosing a vehicle with the lowest trv increases user satisfaction as a user r is
picked up and dropped off earlier. It can also be beneficial to the system because the vehicle
v that serves r becomes available as soon as possible. This thesis does not consider strategic
rejections, which weight immediate profit against an expected revenue that the vehicle could
make by remaining available and serve a later request; the goal of the operator in this thesis
is to serve incoming customer requests if possible. This thesis models operators, which aim to
minimize the following control objective function for the assignment of a hailing-request r to
vehicle v

F S
rv = cD · drv + cV OT · trv (3.9)

Here, cD and cV OT are constant distance cost and value-of-time cost coefficients, respectively.
A real AMoD operator will likely try to incorporate various other terms and vary the two
coefficients over time and evaluate the performance of the respective control function in
simulations.

Creation of Offers (Hailing): Whenever a request r is revealed to the operator, a local
optimization is performed to determine the vehicle v this request would be assigned to. This
local optimization is also denoted by insertion heuristic, which in the hailing case is a modified
nearest-neighbor policy.

As a first step, the set of vehicles Vr is determined via the backwards-directed Dijkstra
method. Then, the operator picks the vehicle v∗ for request r that fulfills

v∗ = argmin
v∈Vr

F S
rv (3.10)

Note that v∗ would also be the best solution for request r if the search would include all
vehicles in V .

If Vr = ∅, the operator is not able to serve the user and has to reject the request. Other-
wise, the vehicle plan of v∗ is extended to include pick-up and drop-off stops at xpr and xdr ,
respectively. The operator already knows the estimated waiting time twd , can estimate the
in-vehicle time tdr = d[xpr → xdr ], and compute the fare in order to create an offer to r. If
r accepts the offer, the stops for request r are appended to the vehicle plan of v∗ and are
considered for the future availability of this vehicle. If v was idle, it starts driving towards xpr.
If it is en-route to serve another user, it will continue to do so and drive to xpr after dropping
off the current request. If r declines the offer, the original vehicle plan of v∗ is restored, i.e.,
the stops to pick-up and drop-off r are removed.

Re-Optimization of Vehicle Plans (Hailing): In order to improve the assignments made
by sequential local optimizations for each new request, the request-vehicle assignments are
globally optimized periodically. Every ∆tS, a bipartite linear assignment problem is created
and solved, which considers all possible assignments of requests r ∈ Rw waiting for pick-up
and vehicles v ∈ V . The requests that are on-board of a vehicle do not have to be considered
in the assignment problem. With the control objective function Frv defined in equation (3.9),
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the optimization problem reads:

min
β

∑
r∈Rw

∑
v∈V

βrv · F S
rv (3.11a)

s.t.
∑
r∈Rw

βrv ≤ 1 ∀v ∈ V (3.11b)∑
v∈V

βrv = 1 ∀r ∈ Rw (3.11c)

(trv − (τwr − (ti − τr))) · βrv ≤ 0 ∀r ∈ Rw ∀v ∈ V (3.11d)

βrv ∈ {0, 1} ∀r ∈ Rw ∀v ∈ V (3.11e)

βrv denotes a binary variable that is one, if an assignment between request r and vehicle v
should be made. Equation (3.11b) ensures that each vehicle has at most one waiting request
assigned, equation (3.11c) guarantees that each request, which was previously confirmed and
assigned, is assigned to a vehicle. Moreover, equation (3.11d) is necessary to only make
assignments that satisfy the time constraints of requests; either the estimated time to arrival
trv is smaller than the remainder of the maximum waiting time or βrv = 0.
Instead of creating variables and computing the route costs drv and trv for each request-

vehicle pair, the number of variables can be reduced to speed up the optimization process.
The backwards-directed Dijkstra method can be used for each request r ∈ Rw to determine
the set Vr that can satisfy equation (3.11d). A reduced bipartite graph can be created, in
which edges between r and v only exist, if v ∈ Vr for each r. This procedure allows the
definition of Rw

v as the set of requests in Rw that are connected to a vehicle v. The reduced
optimization problem then reads:

min
β

∑
r∈Rw

∑
v∈Vr

βrv · F S
rv (3.12a)

s.t.
∑
r∈Rw

v

βrv ≤ 1 ∀v ∈ V (3.12b)

∑
v∈Vr

βrv = 1 ∀r ∈ Rw (3.12c)

βrv ∈ {0, 1} ∀r ∈ Rw ∀v ∈ Vr (3.12d)

This integer linear optimization problem is unimodular. Hence, the linear problem resulting
from a relaxation of the integrality condition (3.12d) (0 ≤ βrv ≤ 1 ∀r ∈ Rw ∀v ∈ Vr) will
return the same results and solution approaches for typical linear problems can be applied.
The optimization problem considers only the re-assignment of requests that are waiting to

be picked up. The solution can have several consequences on vehicle movements.

• A vehicle that was idle and is assigned to a request r starts driving towards xpr immedi-
ately.

• A vehicle that is en-route to pick-up a request r′ and re-assigned to r is instantly
redirected towards xpr.
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• A vehicle, which is en-route to drop off request r′′ and was assigned to pick up request
r′ after, still remains en-route to drop off r′′ if r is assigned to it instead of r′.

• When a vehicle v, which had an assignment prior to the re-optimization, is without
assignment after the re-optimization, it becomes idle and waits for further instructions.

The frequency of assignment re-optimizations has to be aligned with the computational
time required to create Vr for all active requests and solve problem (3.12). For large scale
fleets with thousands of vehicles, the time between re-optimizations ∆tR is typically chosen in
the range of 10− 30 seconds.
To reduce the computational burden, so-called RV-heuristics can be applied. These heuris-

tics remove some (r, v) edges in the bipartite matching graph, which are likely not part of the
optimal solution. In the hailing case, this is easily implemented by only keeping the NRV,h

vehicles with the lowest control objective value for each request r.

3.3.2 Creation of Offers and Re-Optimization of Vehicle Plans
(Pooling)

In a pooling service, a request’s drop-off stop at xdr does not have to follow the pick-up
stop xpr immediately. Therefore, the set of requests waiting for a vehicle Rw

v can consist of
multiple requests and there can be multiple possible sequences of pick-up and drop-off stops.
Figure 3.3 illustrates the generation of all possible vehicle plans with a new request r for an
existing vehicle plan with one on-board request and an existing vehicle plan with one waiting
request.
The number of possible stop combinations grows rapidly. As shown in Table 3.1, even for

a single vehicle with |Ro
v| on-board and |Rw| waiting requests, the number of possibilities can

go into the thousands for just a few requests.
Therefore, computationally efficient algorithmic approaches to find feasible routes are nec-

essary. A first criterion to eliminate possible vehicle plans is to check if a vehicle v is close
enough to serve a request r. The backwards-Dijkstra search presented in section 3.3.1 can be
utilized again, but with a different definition of vehicle availability. Because the order of stops
can be re-arranged, it is theoretically always possible to insert the pick-up stop xpr for a new
request r at the first available position in each vehicle’s plan:

• Idle vehicles can start to drive to xpr right away

• Vehicles, which are currently stopping for boarding, can be directed to xpr after finishing
the boarding process

• Vehicles, which are en-route to another stop or idle, can be redirected towards xpr

In conclusion, the availability (xv, tv) of each vehicle is determined by its current location xv,
and either the current time or the time it finishes a current boarding process. If the vehicle
cannot pick up request r in time, i.e., tv + t[xv → xpr] > τr + τwr , the vehicle does not have
to be considered to serve r.
In contrast to the hailing case, this is not a sufficient criterion to find a feasible vehicle

plan with the insertion of r. The minimum requirement is that equations (3.7) are satisfied
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𝑑 → 𝑥𝑟
𝑑

𝜉4: 𝑥0
𝑝
→ 𝑥0

𝑑 → 𝑥𝑟
𝑝
→ 𝑥𝑟

𝑑

𝜉5: 𝑥0
𝑝
→ 𝑥𝑟

𝑝
→ 𝑥0

𝑑 → 𝑥𝑟
𝑑

𝜉6: 𝑥0
𝑝
→ 𝑥𝑟

𝑝
→ 𝑥𝑟

𝑑 → 𝑥0
𝑑

Figure 3.3: Possible insertions of stops for request r into an existing vehicle plan with
one on-board request (left) and into an existing vehicle plan with one wait-
ing request (right). Circles and stars illustrate request pick-up and drop-off
locations, respectively.

for the on-board requests, i.e Rξ
v = Ro

v ∪ {r}. The concept and definition of stops Xs is
computationally more efficient than creating a vehicle plan and checking all conditions (3.7)
for each request and each part of the route after. Instead, the time constraints can be checked
stop-by-stop during the creation process. The set of boarding and disembarking requests (R+

s

and R−s ) for a given stop s remain the same regardless of the sequence of stops. Hence, the
latest arrival time at a stop tls reflects both the waiting time conditions of all requests waiting
to board at xs and all in-vehicle/detour time conditions of requests that want to disembark at
xs. This allows eliminating a lot of sequences: consider a vehicle plan, where the latest arrival
time constraint is violated for stop s; then no plan with Xs at a later position in the sequence
of stops can be feasible.
The computation of the latest arrival time tls is depending on the stop sequence but can be

partially preprocessed for all on-board requests4:

t̄ls = min

(
min
r∈Ro

v

(tpr + τ dr ), min
r∈R+

s

(τr + τwr )

)
(3.13)

where tpr denotes the pick-up time of an on-board request r. The first term considers all detour
time constraints of on-board requests and the second considers all waiting time constraints of
requests waiting to board the vehicle (R+

s ). As a possible permutation of stop sequences is
created (considering that pick-up stops have to be placed before drop-off stops), the expected
pick-up times of waiting requests t̄pr are computed and the change of the latest arrival time due

4A complete preprocessing would be possible if requests would be defined with a latest arrival time
instead of a maximum travel or detour time.
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(|Ro
v |, |Rw|) (0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (2, 0) (0, 3) (1, 2) (2, 1) (3, 0)

Possible Routes 0 1 1 3 6 2 90 30 12 6

(|Ro
v |, |Rw|) (0, 4) (1, 3) (2, 2) (3, 1) (4, 0) (0, 5) (1, 4) (2, 3) (3, 2) (4, 1) (5, 0)

Possible Routes 2520 630 180 60 24 113,400 22,680 5040 1260 360 120

Table 3.1: Number of possible routes over number of on-board passengers (|Ro
v|) and as-

signed waiting customers (|Rw|) for a single vehicle. It is assumed that stops
cannot be combined for this computation. The (recursive) code to compute
the number of routes can be found in Appendix B.1.

to new in-vehicle time constraints can be adapted dynamically for this specific stop sequence:

tls = min

(
min
r∈Rw

v

(t̄pr + τ dr ), t̄
l
s

)
(3.14)

The earliest departure time tes can be derived by the earliest departure time of the boarding
requests for each stop regardless of the sequence of stops:

tes = max
r∈R+

s

(
τ er + tb

)
(3.15)

The feasibility is checked by planing the arrival and departure times at the respective stops.
Let ti be the current time and xv the location of vehicle v. Then the arrival time ta1 at the
first stop X1 = (x1, t

s
1, t

l
1, t

e
1, R

+
1 , R

−
1 ) is determined by the travel time on the fastest route,

i.e., ta1 = ti + t[xv → x1]. If ta1 ≤ tl1, this stop is feasible. The vehicle can depart from this
stop at te1 = max(ta1 + ts, t

e
1) if there are other stops. For all later stops s, the arrival time is

given by tas = tes−1 + t[xs−1 → xs] and so forth.
There can be multiple combinations of distributing requests on vehicles and multiple feasible

vehicle plans containing the exact same requests. An operator will select/assign a certain
vehicle plan based on a pooling control objective on vehicle plan level. As for the hailing
case, the costs for driving and the time required to serve all assigned requests are considered
again. Since the complete vehicle plan is no longer given by the sequence of pick-up stops,
the complete trajectory information of a vehicle plan ξv are necessary to evaluate its control
objective function value F S

ξv
:

F S
ξv = cD · dξv + cV OT

∑
r∈Rξ

v

(
twr + tdr

)
(3.16)

where twr + tdr represents the expected waiting and in-vehicle time of all requests Rξ
v in the

vehicle plan ξv. t
w
r can also be set to the actual waiting times or be ignored for all on-board

requests as they remain constant. This objective function trades off pooling multiple users into
a route (if VKT can be saved) and the additional waiting and detour time of the respective
users. The choice of coefficients is important. For a too large value cV OT , the AMoD system
would predominantly use hailing and only pool users if (i) it means very little time delay for
the users (e.g., if they had exactly the same stops) or (ii) if there are no vehicles for exclusive
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(no, nw) (0, 3) (1, 2) (2, 1) (0, 4) (1, 3) (2, 2) (3, 1) (0, 5) (1, 4) (2, 3) (3, 2) (4, 1)

IH Routes 15 10 6 28 21 15 10 45 36 28 21 15
% Routes 16.67 33.33 50.0 1.11 3.33 8.33 16.67 0.04 0.16 0.56 1.67 4.17

Table 3.2: Number of routes tested by the insertion heuristic (IH) and its share of all
possible routes for a given number of on-board and waiting requests (no, nw).

service left. On the other hand, ignoring cV OT might be disadvantageous for both users and
AMoD system. Distances as sole objective can send vehicles into congested areas where even
though distance is saved neither the operator nor the users are satisfied.

Creation of Offers (Pooling): As in the hailing case, the backwards-directed Dijkstra
search determines the set of vehicles Vr that could satisfy a request’s maximum waiting time
constraint τwr but with the different definition of vehicle availability. The set Vr is typically
larger than in the hailing case (for the same fleet size) as vehicles are available right away
whereas in the hailing case current trips to drop-off locations have to be fulfilled first.

As mentioned, the feasibility conditions have to be checked for possible insertions. For sim-
plicity and high computational performance, an insertion heuristic only considers the inclusion
of the new requests’ pick-up and drop-off stops in the currently assigned sequence of stops.
This method explores all possible stop combinations for up to two requests and becomes a
heuristic from the third request on. Let for example ψv : x

p
1 → xp2 → xd1 → xd2 be the original

route; the addition of r does not consider any vehicle plan that is based on the permutations
of these four stops, which considerably reduces the total number of permutations from 90 to
15. The insertion heuristic reduces the maximum number of route combinations significantly;
the share of all possible route combinations for up to four previously assigned (on-board or
waiting) requests and one new (waiting) request is shown in Table 3.2. The feasibility checks
result in a set of feasible vehicle plans Ξr for request r, sets of feasible vehicle plans Ξvr for
request r and vehicle v, and a set of vehicles with at least one feasible vehicle plan V Ξ

r .

If V Ξ
r = ∅, the operator rejects a request. Otherwise, the control objective function de-

termines, which vehicle and vehicle plan are assigned to a new request. As in the hailing
case, the dynamic nature of the problem prohibits a derivation of an optimal choice of this
multi-objective function.

Let ξrv ∈ Ξr be a feasible plan that resulted from the insertion of request r into the currently
assigned vehicle plan ξv. The local optimization problem of the insertion heuristic finds the
vehicle v∗ and vehicle plan ξ∗v that generates the least additional costs when accommodating
the stops of the new request r.

ξ∗v = argmin
ξrv∈Ξr

∆F S
ξrv = argmin

ξrv∈Ξr

(
F S
ξrv − F S

ξv

)
(3.17)

This problem can be formulated as a vehicle assignment problem by defining an intermediary
step (without computational effort) that selects the best vehicle plan for each vehicle and then
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compares the vehicles:

ξ∗rv = argmin
ξrv∈Ξv

r

∆F S
ξrv ∀v ∈ V Ξ

r (3.18a)

v∗ = argmin
v∈V Ξ

r

∆F S
ξ∗rv

(3.18b)

ξ∗v can then be retrieved as ξ∗rv for vehicle v∗. This approach consisting of (i) finding feasible
solutions, (ii) selecting the best solution for a single vehicle, and finally (iii) assigning a vehicle,
will be handy when it comes to the re-optimization of pooling assignments.
An important remark is that the realization of the offered waiting and detour time are

not guaranteed. In a hailing operator policy, which uses only an insertion heuristic to create
offer and make assignments, the offers would remain exact. However, the re-optimization
of assignments can change the actually realized pick-up and drop-off times. For the pooling
case, realized pick-up and drop-off times could differ from the offer even without global re-
optimization. In an operating policy only using the insertion heuristic, a new assignment to
a vehicle v can affect all previously assigned requests Rv. Obviously, global re-optimizations
can affect the realized pick-up and drop-off times in the pooling case as well. Nevertheless,
the described methodology to generate offers is very useful as it allows a quick estimation
of level-of-service for users and ensures that requests, which confirmed an offer, will always
remain in feasible vehicle plans (for static network conditions). The correctness of the last
statement is proven easily as the insertion heuristic only generates feasible solutions and any
re-optimization always has the option to not change any vehicle plans.
After receiving the offer, user r makes a decision and several cases can occur. If r declines

the offer, the original vehicle plan ξv is restored. Otherwise, ξ
∗
v will be the new vehicle plan of

vehicle v. If the pick-up stop at xpr is not on the first position in the sequence of stops ξ∗v , v
continues along its current trajectory. If v was idle, then it starts driving towards xpr; if it was
en-route to another stop but xpr is the new first stop, vehicle v is redirected.

Re-Optimization of Vehicle Plans (Pooling): Periodic optimization-based modification
of vehicle plans can help to improve the fleet performance. However, compared to the hailing
case, there are more degrees of freedom, which on the one hand offers higher optimization
potential, on the other hand also requires much higher computational effort.
For the insertion heuristic, it was possible to define request-vehicle tuples (r, ξv) that repre-

sent the vehicle plan with the best control function value, which could be assigned to a vehicle.
This is no longer possible for the global re-optimization as multiple requests can wait for a
vehicle and the sequence of all stops, including the drop-off stops of the on-board requests,
can be modified. Hence, the set of active requests Ra contains both the requests waiting for
pick-up Rw and the on-board requests Ro.
As indicated in table 3.1, a brute force approach to enumerating every possible combina-

tion of plan stops becomes hardly tractable even for a single vehicle and a small number of
requests. To address this curse of dimensionality, this thesis follows the approaches developed
by Alonso-Mora, Samaranayake, et al. [2017] and Engelhardt, Dandl, and Bo-
genberger [2019] with some modifications. The concept is to eliminate as many possible
stop combinations outright, i.e., without even having to explicitly build the route and check
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Figure 3.4: Exemplary V2RB-graph. The edges highlighted in blue show possible
paths/assignment options for an assignment of request r.

for feasibility, before finding the best combination according to the control objective function
F S.

On a very high level, the idea is to build an extra layer between requests and vehicles,
denoted by bundle layer. This layer contains request bundles b ∈ B which are sets of requests
that can be served together based on their time constraints. The tasks are to find the vehicles
Vb efficiently that can serve a bundle and then solve a two-layered assignment problem that
selects which vehicles should serve which bundles. An important realization at this point has
to be that on-board requests do not have to be assigned to a vehicle anymore. Hence, all
on-board requests Ro

v are associated with the vehicle v in this graph. Only the requests Rw

have to be assigned to a vehicle and are represented by nodes in the request layer.

A graph for the resulting assignment problem is denoted as vehicle to request bundle (V2RB)-
graph5. Figure 3.4 displays an example. Such V2RB-graph actually represents the complete
ride-pooling re-optimization problem and therefore graph elements absorb a lot of complexity.

An edge between a vehicle v and a request bundle b is denoted as V2RB Ξvb. It contains
all feasible vehicle plans of vehicle v that could be used to serve all requests within the bundle
b. In the example with 3 vehicles, 4 requests, only the 9 of the

(
4
1

)
+
(
4
2

)
+
(
4
3

)
+
(
4
4

)
= 15

possible request bundles are drawn, which produce feasible V2RBs. Moreover, the cost of a
V2RB edge is determined by its representative vehicle plan ξvb, which is the solution of a single
vehicle DaRP:

ξvb = argmin
ξ∈Ξvb

F S
ξ (3.19)

5Alonso-Mora, Samaranayake, et al. [2017] use a very similar construct denoted by request-trip-
vehicle graph, which is conceptually the same but with slightly different graph elements.
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Hence, the definition of a V2RB already contains finding all feasible vehicle plans and the
selection of the best single-vehicle plan. Therefore, the edge between vehicle 2 and the request
bundle b = {2, 3, r} in Figure 3.4 could represent up to 5400 possible vehicle plans if vehicle
2 has two on-board requests, and its costs represents the best control objective function value
F S
vb = F S

ξvb
of all of these plans with respect to equation (3.16). It should be noted that

all on-board requests have to be considered throughout, i.e., all sequences with the drop-off
stops of on-board requests have to be accounted for when searching feasible vehicle plans and
also computing the control objective function values. The connections from a request to the
bundle layer show all possible bundles Br that a request r could be served it with. The set Br

always contains the bundle b = {r} but can also contain bundles with other requests. Since
r was already confirmed, one of the bundles will have to be assigned for each request r.6

A key definition is the rank of a bundle and connected V2RBs as the number of requests
within a bundle. The graph representation becomes powerful because of one main observation:
a V2RB Ξvb of rank n with request bundle b = {r1, ..., rn} cannot be feasible if any of the n
V2RBs of rank n− 1, where one of these requests is not included, is not feasible. Moreover,
only insertions of the stops of request rn into feasible vehicle plans of the V2RB Ξvb′ with
request bundle b′ = {r1, ..., rn−1} can be part of Ξvb. Hence, a meaningful approach to finding
all feasible V2RBs increases in rank and the graph-building process can be run in parallel for
each vehicle v.

Since the addition of more and more boarding processes and detours decrease the proba-
bility of finding feasible V2RBs and vehicle plans for an AMoD service with high user conve-
nience, the graph-building process can become tractable for fleets with hundreds to thousands
of vehicles [Alonso-Mora, Samaranayake, et al., 2017; Engelhardt, Dandl, and
Bogenberger, 2019], especially if additional measures are introduced for the rank 1 and 2
V2RBs.

For rank 1 V2RBs, i.e., single waiting requests, the backwards-Dijkstra method can be
utilized to filter vehicles that cannot reach a request r before its waiting time expires. After
that, it has to be checked whether r’s stops can be inserted without violating the on-board
requests. The remaining edges between vehicles and single-request bundles are denoted RV-
graph. This graph builds the basis for the two sets Bv for all bundles that are connected to a
vehicle and Vb for all vehicles that are connected to a bundle.

For the step to rank 2 V2RBs, it is beneficial to mark requests that cannot be pooled due to
their time constraints. This can be very beneficial for requests with similar pick-up locations,
as they might have many RV graph connections to the same vehicle. However, as their time
constraints are incompatible, the combination of these two requests would be checked and
found to be not feasible for each single vehicle. To avoid this, an RR-graph is introduced,
which connects two requests r1 and r2 if any of the 6 possible routes (with only these two
waiting requests) of a hypothetical vehicle starting from xp1 or xp2 would be feasible. If this is
not the case, no real vehicle will be able to serve the bundle b = {r1, r2}.
If the problem instances are still too large, heuristics could be utilized to, for example,

6Alternatively, a large assignment reward could be added for each request by putting a large negative
cost on all edges between bundles and requests. The edges to different requests in the V2RB-graph
could also have different weights to allow the prioritization of certain requests, e.g. confirmed over
non-confirmed requests if both should be treated in the procedure.
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limit the possible insertions in the single-vehicle DaRP problems [Alonso-Mora, Sama-
ranayake, et al., 2017; Simonetto et al., 2019] or remove edges from the RV-graph
randomly [Simonetto et al., 2019] or based on criteria [Engelhardt, Dandl, and Bo-
genberger, 2019]. These heuristics and the investigation of computational gain vs loss of
optimality are not within the scope of this thesis.
Once the V2RB-graph is built, the following assignment problem can be formulated and

solved:

min
β

∑
v∈V

∑
b∈Bv

βvb · F S
vb (3.20a)

s.t.
∑
b∈Bv

βvb ≤ 1 ∀v ∈ V (3.20b)∑
b∈Br

∑
v∈Vb

βvb = 1 ∀r ∈ Rw (3.20c)

βvb ∈ {0, 1} ∀v ∈ V b ∈ Bv (3.20d)

The binary variables β indicate the selected V2RB assignments. If βvb = 1, the representative
vehicle plan ξvb is the new vehicle plan of vehicle v. As in the hailing case, equation (3.20b)
limits the number of assigned vehicle plans to at most one. Equation (3.20c) ensures that
each request is part of an assigned vehicle plan; visually speaking, exactly one of the paths
starting from each request node (e.g. the ones highlighted in blue for request r in Figure 3.4)
has to be assigned. A changed vehicle plan can cause a vehicle to stop (previously existing
vehicle plan was deleted), be redirected (vehicle was en-route and has a new first stop), or
continue as planned (first stop remains the same).

The computational effort to create the complete V2RB-graph and solve the subsequent
optimization problem is very high. To create solutions in limited time in the range of 10-30
seconds, techniques like parallelization and RV-heuristics are useful and necessary for large-
scale problems. The vehicle-search processes can be parallelized for each request and the
V2RB-graphs can be built for each vehicle in parallel. RV heuristics in the V2RB-graph
building process can be applied in multiple steps. Since the V2RB-graph building process is
often computational at least as expensive as solving the optimization problem [Engelhardt,
Dandl, and Bogenberger, 2019], removing edges from the final V2RB-graph brings only
minor computational benefits. Nevertheless, finding the exact solution of the assignment
problem of equation (3.20) might last a long time and the introduction of an optimization
time out can be useful7. Another option would be to reduce the amount of vehicle plans within
a V2RB (e.g. by removing the vehicle plans with the least utility or a heuristic insertion like
Tabu search in the first place). Finally, the most computation time can be gained by removing
vehicles from Vr before all insertions and feasibility checks are performed for a limited set of
vehicles.
This thesis applies two complementing RV heuristics of the last sort. The first RV heuristic

aims to guarantee service if possible. Therefore, the vehicles Vr are scanned for their workload
and the NRV,wl vehicles with the least workload measured in number of currently assigned

7Many commercial solvers, such as CPLEX or Gurobi offer such an option.
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stops. Therefore, this heuristic favors the use of idle vehicles which provides a high probability
to find a vehicle satisfying the time constraints of new requests. On the downside, these
vehicles are not that likely to find solutions with higher degrees of pooling. In contrast, the
second RV heuristic aims to find vehicles that present a high probability of pooling. For this
purpose, the alignment of the directions defined by the currently assigned vehicle plan and the
new request’s trip are measured by

alignrv = e⃗v ◦ e⃗r (3.21)

where e⃗v is the unit vector from the current vehicle location to the location of the last currently
assigned stop and e⃗r is the unit vector from r’s origin to destination. The heuristic then selects
the NRV,al vehicles in Vr with the highest alignrv values.
Moreover, it should be mentioned that the application of RV heuristics are also meaningful

to decrease response time when creating pooling offers. Hence, these RV heuristic limiting
the number of vehicles, for which all possible insertions are explicitly checked for feasibility,
are applied in the offer phase and the re-optimization phase. However, it is important that
additional care is taken when applying heuristics in the re-optimization process. For each
request, the currently assigned vehicle is added to the list of vehicles, for which the V2RB is
created, in order to guarantee that the solution after re-optimization is at least as good as the
solution before the optimization.

3.3.3 Handling of Reservations

Reservations cannot be treated the same way as immediate-service requests. In the developed
hailing re-optimization strategy, the assumption that a vehicle plan should only contain one
pick-up does not hold anymore if another pick-up of a reservation is half an hour or longer
in the future. Therefore, the V2RB framework is used for both hailing and pooling; however,
vehicle capacity is limited to ρv = 1 in the hailing case.
In the V2RB framework, a lot of vehicles will be able to reach a new reservation request and

a lot of routing possibilities remain available making the developed pooling re-optimization
methodology intractable for a relatively small number of requests (compared to its online
capability). Depending on the urgency of the response, reservations can be classified as short-
term or mid-term decisions. On the one hand, they require more foresight, on the other
hand they should be treated as short-term decision if an immediate accept/reject response is
required as is the case in this thesis.
Therefore, another strategy is developed to treat a reservation request r with τ er > τr. The

idea is displayed in Figure 3.5. After an initial insertion heuristic checks the feasibility and
makes an initial assignment of request r to vehicle vr, the request is kept as a constraint in the
possible routes of vehicle vr in future re-optimization time steps. For pooling re-optimizations,
the request is essentially treated like an on-board request: r is not part of any request bundle
but the stops related to the pick-up and and drop-off of r have to be considered in any vehicle
plan of vr when the feasibility of V2RBs is checked. This essentially means for a hailing
operation that the assignment of an immediate request r′ is only possible if the vehicle can
serve r′ and reach xor before τ

e
r + τwr passes.

r remains as a constraint for V2RB until it becomes a variable of the global re-optimization
at time ti, when the earliest pick-up time is within the short-term horizon, i.e., ti + T S ≤ τ er .
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Figure 3.5: Treatment of a reservation request r. An initial insertion heuristic (IH) assigns
r to a vehicle. The subsequent global re-optimizations (GO) keep this request r
in a feasible route of the assigned vehicle. When the earliest pick-up time τ er is
within the short-term horizon of a re-optimization step GO(r), r is considered
in this re-optimization.

In the global re-optimizations denoted by GO(r) in Figure 3.5, r is treated as any immediate
request, which can be re-assigned to other vehicles.
The control objective function (for both insertion heuristic and global re-optimization) is

slightly modified to account for reservation requests. The driving cost term (cD · dξv) and
the value-of-time term (cV OT ·

(
twr + tdr

)
) still are meaningful. However, it also makes sense

to consider the time a vehicle would have to wait for the reservation request r at xpr before
departing. In many cases, it might make sense to assign a vehicle with low downtime instead
of one with a long waiting time. For instance, when the reservation request r wants to be
picked up in half an hour, a vehicle finishing at xpr in 29 minutes is likely to remain the vehicle
to serve r. In contrast, a vehicle finishing at xpr in 15 minutes would have enough downtime
to fulfill different tasks but might be constrained by its task to return to xpr for the reservation
request.
Let twv denote the time a vehicle would have to wait for customers at stops s in a certain

vehicle plan ξv. t
w
v can be computed for a single stop by the difference between the earliest

departure time tes and the expected vehicle arrival time tas (considering the service duration tss
it anyway should stop there for boarding tss = tb):

twv =
∑
Xs∈ξv

(tes − (tas + tss)) (3.22)

Note that tes − (tas + tss) = 0 for pick-ups related to immediate service requests. However,
for reservation requests, the earliest pick-up time constraint can lead to twv > 0. Hence,
the control objectives F S can be modified to account for the time vehicles have to wait for
reservation requests8:

F S(with reservations)← F S(without reservations) + cV OT · twv (3.23)

The vehicle search process, which was an essential step to cut the solution space for online
requests, can be modified and utilized to make reasonable cuts for reservation requests as well.
Instead of using the current availability as described in the previous subsection, the availability
(i.e., position and time of availability) of each vehicle is determined by the last stop, which is
planned to take place before τ er of a new reservation request r. The vehicle-search procedure

8
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(backwards-Dijkstra) can then be limited in space to select vehicles that anyway make a stop
near the new reservation request.
The advantages of the described approach are:

• the feasibility of a reservation can be checked immediately and the operator can instantly
accept/reject a reservation request

• a reservation confirmed by the operator is guaranteed to remain feasible

• the vehicle assignment becomes part of the optimization problem approximately at the
time when a vehicle actually has to drive for a pick-up

• the computational effort of reservations is similar to those of online requests

This approach cuts the solution space severely and a fully static DaRP solution could provide
better solutions but at a significantly higher if not infeasible computational cost.

3.4 Tactical Mid-Term Decisions

In the last section, algorithmic approaches were developed (i) to respond to app requests asking
for immediate or future service with realistic offers and (ii) to re-optimize current vehicle plans
globally. These decisions were based on route forecasts in the range of the maximum waiting
time and trip time of requests. This section explains the utilization of demand and supply
forecasts to improve fleet performance by planning further ahead of time even without the
knowledge of explicit reservation requests.

3.4.1 Demand and Supply Forecasting

Stochastic knowledge of future demand represents a new set of state variables Λ(ti), which are
not handled by the short-term decisions in the framework of this thesis. These forecasts are
generally available in a spatially and temporally aggregated form. They typically refer to certain
time horizons T and a set of zones Z; they can be predictions of origin-destination trips (Λod),
just trip departures (Λz), or just trip arrivals (Λ̄z), where od ∈ Z2 and z ∈ Z. The forecasts
are typically based on historic data and can be improved by online methods [Sayarshad
and J. Y. J. Chow, 2016]. Nowadays, machine-learning techniques are applied to generate
high-accuracy demand predictions9.
While there are established methods for demand predictions, forecasting the AMoD supply

side is much more complex. In the short-term the current state with the current positions
and all its currently assigned vehicle plans represents a good estimator; however, the further
into the future the prediction goes, the less valid this approach becomes. Far in the future,
most vehicles will have received new assignments and vehicle availability will be determined by
demand forecasts. In the hailing case, vehicles will become available at the departure locations;
hence, forecast of trip arrivals per zone Λ̄z becomes a good estimator for the number of vehicles

9Didi claims that their 15-minute predictions have 85% accuracy: https://www.didiglobal.com/news/
newsDetail?id=323&type=news. However, the used spatio-temporal resolution is not clear.
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that will become available in zone z in the respective time horizon. The author is unaware
of a methodology that describes and evaluates the transition from the current state with
existing plans to future supply forecasts. A consistent methodology that does not use the
current assignments at all is to look at the stack of idle vehicles and use departure and arrival
forecasts to update it (see e.g. [Carron et al., 2019; Charkhgard et al., 2020] but this
method does not consider the exact knowledge of current vehicle plans in the near future.
Hence, such an approach is consistent with an assignment of idle vehicles only, which however
performs much worse than AMoD systems considering current vehicle plans [M. Hyland and
Mahmassani, 2018a; Dandl and Bogenberger, 2018].
Another unanswered question is how forecasts of vehicle demand should be treated in the

pooling case; the amount of required vehicles will be lower than the number of trip departures
because of pooling. Inter-zonal relationships with high pooling probabilities could be consid-
ered. However, these pooling adaptations are out of the scope of this thesis. Instead, the same
methodology is used for hailing and pooling. This implicitly assumes that both the number of
arriving vehicles and the number of required vehicles will scale similarly with the pooling rates.
The method for vehicle imbalance forecasts without any operator actions is described in this
section and will be extended by repositioning and dynamic pricing in the subsequent sections.
The developed strategy divides the mid-term time horizon TM into multiple equidistant

steps. Let TM,1 be the first forecast step, i.e., a time horizon starting from ti with duration
∆TM ≈ E[td] approximately representing the average trip duration. The strategy assumes
that the forecast of vehicle availability based on the current vehicle plans is valid until TM,1.
Therefore, the imbalance I1z , which denotes the surplus or deficit of vehicles within TM,1, is
given by

I1z = |V I
z |+ |V P,1

z | − Λ1
z (3.24)

where |V I
z |, |V P,1

z | and Λ1
z refer to the number of currently idle vehicles in zone z, the number

of vehicles that end their current vehicle plan within zone z and the estimated trip departures
from zone z in the time horizon TM,1, respectively. If demand forecasts are given in OD form,
the predicted trip departures in zone z and forecast step j can simply be calculated from

Λjz =
∑
d∈Z

Λjzd (3.25)

The remainder of the mid-term horizon TM is divided into several steps of the same size (TM,2,
TM,3, etc.) as illustrated in Figure 3.6. The imbalance in zone z within time horizon TM,j is
given by:

Ijz = max(Ij−1z , 0) + Λ̄jz − Λjz ∀j > 1 (3.26)

The first term in equation (3.26) (represented by grey vehicles in Figure 3.6) states that an
earlier vehicle surplus can be utilized to absorb a surge in demand. max(Ij−1z , 0) describes the
stack of remaining (idle) vehicles from the previous forecast step j−1. In contrast, unsatisfied
demand, i.e., users that likely have not been served due to a vehicle shortage and already left
the system, does not have to be considered in future forecast steps.
If the forecasts are given in OD form, the trip arrival estimates can be calculated from

Λ̄jz =
∑
j′≤j

∑
o∈Z

Λj
′

ozδ
j′,j
oz (3.27)

54



3.4 Tactical Mid-Term Decisions

Supply Demand

time
forecast𝑇𝑀,1

Supply Demand Supply Demand Supply Demand

𝑇𝑀,4𝑇𝑀,2 𝑇𝑀,3

Supply

Demand

vehicle expected to be available at start of time horizon

vehicle expected to become available during time horizon

vehicle expected to be demanded during time horizon

vehicle shortage expected during time horizon

Figure 3.6: On forecasts of vehicle imbalance in this thesis. The blue vehicles represent
the expected incoming vehicles based on the current vehicle plan for TM,1 and
the expected incoming vehicles from earlier trips for all later time horizons.

where δj
′,j
oz filters trips starting in time horizon TM,j′ that are expected to end in zone z during

the time horizon TM,j. Thereby δj
′,j
oz models the duration that vehicles are not available due

to traveling from zone o to zone z. This tensor is derived from network travel times between
the centroids of zone o and zone z:

δj
′,j
oz =

{
1 if (j − j′) ·∆TM ≤ t[xo → xd] ≤ (j − j′ + 1) ·∆TM
0 else

(3.28)

Figure 3.6 and equation (3.26) describe a methodology that treats each zone independently.
While this approach is justified for station-based systems, it makes sense to consider the
proximity of zones in the determination of imbalances for AMoD systems. If the forecast zones
are smaller than the radius a vehicle can reach within the typical user waiting times, vehicles
can serve requests from nearby zones thereby potentially making repositioning or dynamic
pricing actions not necessary. To address this issue, Syed, Dandl, Kaltenhäuser, et al.
[2021] developed the concept of reachability by utilizing kernels to distribute the imbalance
between neighboring zones. Compared to this paper, this thesis uses a slightly different density
definition and extends the repositioning framework to multiple temporal steps.
The reachability concept assumes that the probability of a request r being assigned to a

specific vehicle v is highest at its location of availability, decreases with the distance to this
location, and reaches 0 when the distance represents the maximum waiting time, which is
denoted by bandwidth h. For simplicity, this is modeled by a linearly decreasing kernel

K(x, xv) =
3

πh2
max

(
1− |x− xv|

h
, 0

)
(3.29)

where x represents the point of interest for which the imbalance should be computed, xv is
the location of the vehicle, and the factors 3

πh2
are chosen such that∫

Ω

K(x, xv) dΩ = 1 (3.30)

Assuming a symmetry between demand and supply, this linear kernel density definition is also
used to represent the probability of a vehicle v being assigned to a specific request r:

K(x, xpr) =
3

πh2
max

(
1− |x− xpr|

h
, 0

)
(3.31)
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Hence, the (supply and demand) imbalance density during time horizon T considering reach-
ability can be written as

KI(x,xv,x
p
r , j) =

∑
v∈V j

K(x, xv)−
∑
r∈Rj

K(x, xpr) (3.32)

where V j and Rj denote the set of available vehicles and revealed requests expected during
forecast step j.
With the assumption that demand and supply are uniformly distributed within the zones10,

the spatio-temporal imbalance density KI(x, j) can be computed from the expected available
vehicles and trip requests of all zones Z, which allows a connection with the previously defined
zone imbalance Ijz .

KI(x, j) =
∑
z∈Z

∫
Ωz

KI(x,xz,xz, j) dxz (3.33a)

=
∑
z∈Z

∑
v∈V j

z

1−
∑
r∈Rj

z

1

 1

|Ωz|

∫
Ωz

K(x, xz, j) dxz (3.33b)

=
∑
z∈Z

Ijz ·KI
z (x) (3.33c)

Here, the difference of their cardinalities is defined as the expected zone imbalance:

Ijz =

∑
v∈V j

z

1−
∑
r∈Rj

z

1

 = |V j
z | − |Rj

z| (3.34)

It is important to note that the density kernel for each zone KI
z (x) is independent of the

imbalance value and can be preprocessed, which makes this method computationally very
efficient.
This continuous imbalance density function could be used for machine-learning based ap-

proaches. This thesis will apply zone-based optimization algorithms for repositioning. There-
fore, the continuous density can be transformed to a corrected zone imbalance Ī, which
considers reachability, and can be computed from the original zone imbalance values:

Ījz =

∫
Ωz

KI(x, j) dx (3.35a)

=

∫
Ωz

∑
z′∈Z

KI
z′(x) · Ijz′ dx (3.35b)

=
∑
z′∈Z

Ijz′ ·
[∫

Ωz

KI
z′(x) dx

]
(3.35c)

=
∑
z′∈Z

Ijz′ ·Kz,z′ (3.35d)

10This is different from Syed, Dandl, Kaltenhäuser, et al. [2021], where all demand and supply were
assumed in the zone centroid.
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These equations highlight the benefit of the uniformity assumption: the reachability correla-
tions Kz,z′ can be completely preprocessed between all zone-pairs (z, z′).
Figure 3.7 illustrates the steps to compute the imbalance density function and the corrected

zone imbalance. The correlations between zones are the larger the smaller the zones. Similarly,
a larger bandwidth will also increase the correlations. On the other end, the correlation matrix
is the unit matrix (Kz,z′ = δz,z

′
) for zero bandwidth. It can be observed in Figure 3.7

that the method distributes imbalances of zones to its neighbors. Therefore, the corrected
zone imbalance definition considers the spatial dimension of imbalances. As a consequence,
repositioning trips, which would likely be suggested between these nearby zones based on the
original zone imbalance, can be avoided.
In the following, repositioning and dynamic pricing strategies are developed on the base of

these forecast methods. The goals of these strategies are to (i) try to reposition vehicles in
order to avoid vehicle shortages in all steps and (ii) use dynamic pricing to match the price-
sensitive demand to the rather well known vehicle supply in TM,1. This strategy is suggested
as vehicles starting to reposition at the time of decision-making do not necessarily become
available during the first time horizon TM,1. Hence, the idea is to provide service when possible
and use pricing when necessary.

3.4.2 Repositioning

In this section, new repositioning methods are developed. The novelty is the combination
of two key ideas: the density-based approach from Syed, Dandl, Kaltenhäuser, et al.
[2021] and a multi-time-step model-predictive control approach similar to Charkhgard et
al. [2020].
For a multi-step approach, the time horizon TM of mid-term forecasts is divided into a num-

ber of equidistant steps NTM
(represented by bins TM,j with j ∈ {1, ...NTM} in Figure 3.6)

of duration TM,1. Moreover, the frequency of making repositioning decisions ∆tM has to be
chosen appropriately. For reasons of consistency, it makes sense to choose ∆tM = TM,1.
Thereby, repositioning decisions are valid for the current step and the plans for all future steps
can be revisited in the next decision-process. There is a trade-off for the choice of ∆tM : On
the one hand, larger values stabilize forecasts. On the other hand, small values allow fast
reactions to unexpected changes in demand or supply but likely increase the errors of forecasts
and require more expensive computations as more steps are necessary to cover the same time
horizon TM .
In this thesis, the forecast step size TM,1 is chosen to be in the range of the average trip

duration E[td] as this seems a natural scale to progress in time. The number of forecast steps
should be chosen large enough for repositioning trips to cover the whole operating area because
the effects of repositioning trips from one end to the other should be considered. Hence, NTM

is defined by the ratio of longest trip duration by average trip duration.

NTM

=

⌈
maxod∈Z2 tod

E[td]

⌉
(3.36)

where tod = t[xo → xd] denote the fastest route between two centroids. As the number
of forecast steps has to be an integer and forecasts for the impacts of the longest possible
repositioning trips should be considered as well, the value is rounded up, symbolized by ⌈.⌉.
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3.4 Tactical Mid-Term Decisions

In each of the forecast steps j ∈ J = {1, ...NTM}, the operator could decide to reposition
vehicles between zones. Let βjod ∈ N+ be an integer variable denoting the number of vehicles
that should be repositioned from zone o ∈ Z to zone d ∈ Z at forecast step j. This
thesis applies a repositioning strategy, where previously scheduled repositioning trips and the
corresponding stops have the lock flag and cannot be changed. Therefore, their effects are
already considered in the original forecasts Ijz |β=0 before new repositioning decisions are made.
Moreover, this implicates that only idle vehicles are considered for repositioning.

The repositioning of vehicles related to βjod will change the imbalance in zones o and d at the
expected arrival time of the vehicle, which is possibly in another forecast step. The departure
of a vehicle instantly reduces the number of available vehicles in zone o but the arrival at zone
d might be delayed (j′ > j), which is represented by δj

′,j
oz (as defined in equation (3.28)):

Ijz = Ijz (β) = Ijz
∣∣
β=0
−
∑
d∈Z

βjzd +
∑
o∈Z

j∑
j′=1

βj
′

ozδ
j′,j
oz (3.37)

where Ijz |β=0 is given by equations (3.24) and (3.26).

The objectives of repositioning are (i) to bring idle vehicles or vehicles that are expected
to be idle in the future to zones with negative imbalance, i.e., avoid vehicle shortages ψjz
for all zones z ∈ Z and forecast steps j ∈ J , and (ii) to do so with the least amount of
VKT possible. Fig. 3.8 illustrates that bringing additional vehicles to a zone z can decrease
a shortage in forecast step j or further in the future (j′ > j). Hence, the operator predicts
to generate additional revenue by reducing opportunity costs. These opportunity costs for not
equalizing the vehicle deficit (considering reachability) at j in zone z are given by

γj f̄ · ψjz = γj E [fr] ·max
(
0,−Ījz

)
(3.38)

f̄ = E[fB + (fD − cD) · dr] denotes the expected profit, i.e., revenue minus driving costs,
for serving an additional request. In practice, this term could also be specific to zone z and
forecast time j based on historic trip data originating from that zone during that time horizon.
As in the original Bellman equation, γ is a discount factor that exponentially dampens the
impact of future rewards. Equation (3.38) assumes that creating additional vehicle surplus
does not create additional revenue. Each repositioning vehicle as consequence of βjod > 0 also
generates costs. The explicit distance costs dod related to a vehicle repositioning from zone o
to zone d are approximated by the fastest route distance between the two zone centroids.

Therefore, repositioning is a multi-objective problem, which aims to reduce vehicle deficits
with little vehicle movements. In a multi-step formulation, the objectives read:

min
∑
j∈J

∑
z∈Z

f̄ · γj · ψjz , min
∑
j∈J

∑
o∈Z

∑
d∈Z

cD · dod · βjod (3.39a)

The two objectives of this mixed integer problem are in general not aligned as the solution of
the distance objective is to not reposition at all, which will usually not be the solution of the
vehicle-deficit minimization.
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3.4 Tactical Mid-Term Decisions

There are several constraints that describe the dynamics of the multi-time-step system:

s.t. I1z = |V I
z |+ |V P,1

z | −
∑
d∈Z

Λ1
zd︸ ︷︷ ︸

forecast without repositioning

−
∑
d∈Z

β1
zd +

∑
o∈Z

β1
ozδ

1,1
oz︸ ︷︷ ︸

repositioning departures and arrivals

∀z ∈ Z

(3.39b)

Ijz = Y j
z︸︷︷︸

stack

+
∑
o∈Z

Λ̄joz −
∑
d∈Z

Λjzd︸ ︷︷ ︸
forecast

−
∑
d∈Z

βjzd +
∑
o∈Z

j∑
j′=1

βj
′

odδ
j′,j
od︸ ︷︷ ︸

repositioning departures and arrivals

∀z ∈ Z ∀j ∈ J \ {1}

(3.39c)∑
d∈Z

βjzd ≤ Y j
z ∀z ∈ Z ∀j ∈ J

(3.39d)

Y 1
z = |V I

z | ∀z ∈ Z
(3.39e)

Y j
z = max

(
Ij−1z , 0

)
∀z ∈ Z ∀j ∈ J \ {1}

(3.39f)

Ījz =
∑
z′∈Z

Kz,z′ · Ijz′ ∀z ∈ Z ∀j ∈ J

(3.39g)

ψjz = max
(
−Ījz , 0

)
∀z ∈ Z ∀j ∈ J

(3.39h)

βjod ∈ N+
0 ∀od ∈ Z2 ∀j ∈ J

(3.39i)

Equations (3.39b) and (3.39c) describe the computation of the zone-imbalance considering
possible vehicle repositioning decisions as described with equation (3.37). Equation (3.39d)
constrains the number of vehicles repositioned out of a zone to be smaller than the vehicle
stack variable Y j

z at the beginning of the forecast step j. As described by equation (3.39f), the
initial vehicle stack is determined by the number of idle vehicles at the time the repositioning
algorithm is called. For all following forecast steps j, the stack is derived from the imbalance
of the previous step j − 1. If the imbalance Ij−1z is positive, it can be expected that vehicles
are idle at the beginning of step j. If on the other hand, a vehicle shortage is expected and the
imbalance value is negative, the stack Y j

z = 0. These two conditions can be summarized in the
condition Y j

z = max (Ijz , 0) in equation (3.39f). The reachability correlations between zones
are applied in equation (3.39g). As explained earlier, equation (3.39h) defines the computation
of vehicle deficits. Finally, equation (3.39i) is the integrality condition ensuring that an integer
number of vehicles is repositioned.
Regardless of the approach to this multi-step multi-objective problem, the process after

solving the respective problems is the same: The values for β1
od of the optimal solution de-

termine the number of vehicles that should be repositioned at time ti when the algorithm
is called. The remaining part of the solution to this model-predictive control approach will
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not be realized as the repositioning algorithm will be called again at time ti + δTM , which
is the start of the forecast step j = 2, and recompute the optimal solution within the new
time horizon. Finally, the zone-to-zone trips have to be transformed into explicit changes
in vehicle plans. For this purpose, repositioning trips are assigned in random order, i.e.,
for each od-pair β1

od idle vehicles in zone o are randomly chosen and receive a plan stop
X = (xd, t

s = 0, tl = ti + tod, t
e = ti, R

+ = ∅, R− = ∅, lock = True) at the centroid of zone
d. The lock flag signalizes that the stop is locked and that vehicle v cannot remove this stop
from its plan or add any other stop before it. This is important as the short-term decisions do
not consider the forecasts and thereby do not recognize the trip purpose, which is to decrease
the vehicle deficit in another area in the near future.
The multi-objective multi-step problem (3.39) has several challenges:

1. even though the two objectives are already monetarized, it is not clear whether a simple
sum approach is a good way to tackle the multi-objective problem

2. there are two max (.) expressions making the problem non-linear

3. it is a mixed integer problem

The multi-objective aspect is treated later, where different formulations are introduced. The
second and third problems could be tackled by building a Markov Decision Process model (with
multiple steps) and apply some dynamic programming methods to solve it; probably some
approximations are necessary for larger scale problems. This thesis shows another approach,
in which a modification of the problem formulation allows to solve all forecast steps at once
in a single mixed integer linear program.
For this purpose, the max (.) terms need to be linearized. For the opportunity costs ψ, a

relaxation of the max (.) constraint can be applied. Instead of equation (3.39h), two linear
constraints can be introduced:

ψjz ≥ −Ījz ∀z ∈ Z ∀j ∈ J (3.40a)

ψjz ≥ 0 ∀z ∈ Z ∀j ∈ J (3.40b)

Equation (3.40b) ensures that there are no negative deficits. Equation (3.40a) states that
the deficit is at least as large as the negative imbalance value. An optimization problem with
this constraint allows deficits to become larger than the negative imbalance. However, as one
objective is to minimize this deficit and the second objective has no benefits of larger ψjz, the
optimal solution will always satisfy equation (3.39h).
The same relaxation trick is not directly applicable to equation (3.39f), because there is no

objective term trying to minimize the vehicle stacks Y j
z in the current formulation. To over-

come this problem, the set of repositioning actions is limited to ensure vehicle conservation
with respect to zones in each forecast step. The only term breaking this vehicle conservation
originates from δj

′,j
od as vehicles will not be counted to any zone if j′ ̸= j. Therefore, a zone-

based vehicle conservation exists if repositioning trips (βjod > 0) are only allowed when they
arrive in the respective destination zone in the same forecast step j. Assuming the existence
of this zone-based vehicle conservation,

∑
z∈Z Y

j
z −ψjz is constant, i.e., independent of reposi-

tioning actions βjod, and an objective min
∑

j∈J
∑

z∈Z Y
j
z can be added without changing the

general problem:
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1. as long as vehicles are moved between zones with vehicle surplus,
∑

z∈Z Y
j
z is constant

2. assume a vehicle is moved from a zone, where it would contribute to the stack, to a zone
with deficit. Then the stack-objective is better and additionally, the respective deficit
ψjz is reduced, which reduces the deficit objective by the same amount

Hence, a minimization of the sum of deficits and the sum of stacks are aligned objectives and
a replacement of objective is possible:

min
∑
j∈J

∑
z∈Z

f̄ · γj · ψjz → min
∑
j∈J

∑
z∈Z

f̄ · γj · 1
2

(
ψjz + Y j

z

)
(3.41)

With the minimization of Y j
z as part of the objective, the linearization of max (.) term is

possible again and equation (3.39f) can be replaced by

Y j
z ≥ Ij−1z ∀z ∈ Z ∀j ∈ J \ {1} (3.42a)

Y j
z ≥ 0 ∀z ∈ Z ∀j ∈ J \ {1} (3.42b)

The limitation of repositioning trips to those ending in the same forecast time horizon,
has further advantages. The first one is a reduction in the solution space. The optimization
problem (3.39) contains a total of |J | · |Z|2 integer decision variables, which obviously is
reduced by the limitation. Additionally, the operator can decide for vehicle v to make a very
long repositioning trip at the first forecast step without the limitation. Due to the lock status,
this vehicle will not be available for any other assignments throughout its trip to the destination
zone. Splitting the long trip into multiple short trips per forecast step has a similar effect on
the imbalance and trip distance in the long run. However, the vehicle will become available
on its trajectory for possible user assignments. Moreover, the decision to send the vehicle to
the mid-term destination can be reassessed at each forecast step. If it is still meaningful, the
original vehicle or another closeby vehicle will drive further towards the mid-term destination;
if however the realized system state is other than expected, the operator can easily adapt its
repositioning plan.
Therefore, all βjod with δ

jj
od ̸= 1 are set to 0 by adding the cuts

βjod − δjjod ≤ 0 ∀od ∈ Z2 ∀j ∈ J (3.43)

Alternatively, the unnecessary variables can be removed from the problem altogether by defining
the sets of possible OD-pairs Z2

OD, as well as the sets of possible destinations Zd
z and origins

Zo
z for each zone z and replace Z and Z2 in all sums and for-all statements in the optimization

problem (3.39).
Even with the reduction in variables, the problem is still a complex and computationally

expensive mixed integer linear program. A relaxation into a linear problem with subsequent
quantization by rounding (down) of the β variables will be used as a computationally very
efficient approximation of the optimal solution. The actions are determined from rounding
down the part of the solution to the relaxed problem representing the repositioning actions in
the first time horizon:

β1
od =

⌊
β̄1
od

⌋
(3.44)
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In summary, the original problem is reformulated as

min
∑
j∈J

∑
z∈Z

1

2
· f̄ ·γj ·ψjz , min

∑
j∈J

∑
z∈Z

1

2
· f̄ ·γj ·Y j

z , min
∑
j∈J

∑
od∈Z2

OD

cD ·dod ·βjod (3.45a)

subject to:

I1z = |V I
z |+ |V P,1

z | −
∑
d∈Z

Λ1
zd −

∑
d∈Zd

z

β̄1
zd +

∑
o∈Zo

z

β̄1
oz ∀z ∈ Z (3.45b)

Ijz = Y j
z +

∑
o∈Z

Λ̄joz −
∑
d∈Z

Λjzd −
∑
d∈Zd

z

β̄jzd +
∑
o∈Zo

z

β̄joz ∀z ∈ Z ∀j ∈ J \ {1} (3.45c)

∑
d∈Z

β̄jzd ≤ Y j
z ∀z ∈ Z ∀j ∈ J (3.45d)

Y 1
z = |V I

z | ∀z ∈ Z (3.45e)

Y j
z ≥ Ij−1z ∀z ∈ Z ∀j ∈ J \ {1} (3.45f)

Y j
z ≥ 0 ∀z ∈ Z ∀j ∈ J \ {1} (3.45g)

Ījz =
∑
z′∈Z

Kz,z′ · Ijz′ ∀z ∈ Z ∀j ∈ J (3.45h)

ψjz ≥ −Ījz ∀z ∈ Z ∀j ∈ J (3.45i)

ψjz ≥ 0 ∀z ∈ Z ∀j ∈ J (3.45j)

β̄jod ≥ 0 ∀od ∈ Z2
OD ∀j ∈ J (3.45k)

The following paragraphs describe several approaches to address the multi-objective aspect
of the problem.

Linear Weighted Sum (LWS) Strategy: Since the objectives are defined in monetized
fashion, a simple sum approach is an obvious choice:

min
ψ,Y ,β

∑
j∈J

∑
z∈Z

1

2
· f̄ · γj ·

(
ψjz + Y j

z

)
+

∑
od∈Z2

OD

cD · dod · βjod

 (3.46)

Varying the parameter γ ∈]0, 1] shifts the relative importance of the opportunity cost objective
to the distance costs related to the repositioning trips. This approach is called Linear Weighted-
Sum-[γ] Strategy, where γ is replaced with the respective value used in the case study.

Linear Weighted Sum with Reduced Availability (LRA) Strategy: In the LWS problem
formulation, repositioning vehicles are considered available at the destination zone as if they
were already in stack at the beginning of the forecast step. The repositioning problem (3.45)
can be extended with a minor adaption to implement and test the consideration of the amount
of time a repositioning vehicle will be available in the new zone. This can be achieved by
adjusting the computation of the imbalance Ī in equation (3.45h) to

Ījz =
∑
z′∈Z

Kz,z′ ·

Ijz′ −∑
o∈Zo

z

βzoz · (1− (∆TM − toz))

 ∀z ∈ Z ∀j ∈ J (3.47)
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This is denoted by Linear Weighted Sum with Reduced Availability (LRA) strategy. Note that
the change is not made in the computation of the independent zone imbalances I (equa-
tions (3.45b) and (3.45b)) as vehicles should be fully counted at the end of the forecast
step. If the change would be made on the imbalance level, the stack equation (3.45f) would
require a modification. The idea of this reduced availability of repositioning vehicles is also
used by Wallar, van der Zee, et al. [2018] but in a very different methodology. From
a multi-objective point of view, this approach can be interpreted as reduced weights on the
opportunity costs.

Linear Two-Step (LTS) Strategy: Another approach for the multi-objective problem is
to focus as much as possible on improving service and reducing opportunity costs. This can
be done with the lexicographic approach denoted by Linear Two-Step (LTS) strategy: the
sums of deficits and stacks are minimized first and the solution creates constraints for the
subsequent optimization of the distance objective.
This can be achieved by defining new variables ∆I

∆Ij+z =
∑
o∈Zo

z

βjoz ∀z ∈ Z ∀j ∈ J (3.48a)

∆Ij−z =
∑
d∈Zd

z

βjzd ∀z ∈ Z ∀j ∈ J (3.48b)

In Syed, Dandl, Kaltenhäuser, et al. [2021], the two step approach allowed a separation
of the decision variables as it is possible to write constraints for ∆Ij+z to guarantee a feasible
solution for equation (3.48) in the second step. Unfortunately, this is not possible in the multi-
step approach whose od-relations satisfy equation (3.43). Therefore, different from Syed,
Dandl, Kaltenhäuser, et al. [2021], the od-specific variables βjod cannot be removed
from the first optimization problem of the two-step approach.
Hence, the two-step approach first solves the optimization problem with constraints from (3.45)

and the objective

min
ψ,Y ,β

∑
j∈J

∑
z∈Z

1

2
· f̄ · γj ·

(
ψjz + Y j

z

)
+ cm ·

∑
od∈Z2

OD

·βjod

 (3.49)

with a small number cm ≪ f̄ ensuring the priority of the opportunity costs.
Only the number of vehicles to be repositioned in the first forecast step j = 1 are relevant

for the applied actions. After the computation of ∆Ij+z and ∆Ij−z for j = 1, the secondary
objective optimization problem can be posed:

min
β

∑
od∈Z2

OD

cD · dod · β1
od (3.50a)

s.t.
∑
o∈Zo

z

β1
oz =

⌊
∆I1+z

⌋
∀z ∈ Z (3.50b)

∑
d∈Zd

z

β1
zd =

⌊
∆I1−z

⌋
∀z ∈ Z (3.50c)

β1
od ∈ N+ ∀od ∈ Z2

OD (3.50d)
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where ⌊.⌋ operator denotes the floor-operator rounding down the values to the next integer
value. As the constraint matrix is totally unimodular, this rounding guarantees that the solution
of the relaxed linear problem with βod ∈ R+ is integral. Formally, the second problem reflects
the optimal rebalancing problem by M. Pavone et al. [2012]. Nevertheless, the methods are
quite different in the determination of ∆I1+z and ∆I1−z .
Moreover, it should be noted that

∑
od∈Z2

OD
·βjod has to be part of the first-level objective.

From a supply-demand balance point of view, all solutions with β̄jod − β̄jdo = βjod + βjdo result
in the same imbalance values. Nevertheless, if the first optimization problem would select the
solution to e.g. send vehicles between two zones back and forth, these vehicles would have to
be considered in the secondary problem (3.50), which is obviously not good.

Quadratic Two-Step (QTS) Strategy: Another promising modification is the utiliza-
tion of a quadratic imbalance objective [Syed, Dandl, Kaltenhäuser, et al., 2021]. A
quadratic formulation puts more weight on zones with high vehicle deficit or surplus. Hence,
idle vehicles from zones with large surplus are more likely to be repositioned than vehicles
from zones with minor surplus and zones with high expected deficit are more likely to receive
vehicles than zones with small deficits.
Since the quadratic objective cannot be monetized easily and the results in [Syed, Dandl,

Kaltenhäuser, et al., 2021] showed good results for the lexicographic method, this quadratic
objective is used in conjunction with the two-step approach with the secondary problem de-
scribed by equations (3.50). The primary optimization has constraints from (3.45) and the
objective

min
ψ,Y ,β

∑
j∈J

 ∑
od∈Z2

OD

(
ψjz
)2

+
(
Y j
z

)2
+ cm ·

∑
od∈Z2

OD

·βjod

 (3.51)

where cm ≪ 1 ensures the priority of the imbalance terms. This method is denoted by
Quadratic Two-Step (QTS) strategy in this thesis.
Quadratic problems with linear constraints can become computational intractable. They

are either NP-hard [Pardalos and Vavasis, 1991] or solvable in polynomial time [Kozlov
et al., 1980] if and only if the matrix Q in the bilinear form xTQx representing the quadratic
variables is positive definite. Here, x represents the vector of all ψjz and Y

j
z and Q is the unit

matrix (of dimension 2 · |Z| · |J |), which is positive definite. Therefore, the quadratic problem
can be solved efficiently.
After ∆I1+z and ∆I1−z are determined from the solution, problem (3.50) is solved to find

the assignments with minimum expected distance.

Quadratic Deficit and Linear Stack Two-Step (QDLSTS) Strategy The quadratic
formulation in equation (3.51) also generates repositioning flows between zones with vehicle
surplus to balance the surplus. This does not reflect the original idea anymore, where repo-
sitioning should be used to counteract vehicle deficits. To avoid this effect but still prioritize
zones with large deficits, one last problem formulation is created in this thesis, in which the
deficits are quadratic variables, the vehicle stacks remain linear and the distance objective is
once again treated in a two-step approach with the optimization problem (3.50). The primary
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Figure 3.9: Comparison of one forecast step for the described repositioning strategies for
an example with 4 independent zones (Ī = I) in case the expected profit from
serving an additional user outweighs the costs of repositioning between zones.

problem contains the constraints from the original problem (3.45) and the objective

min
ψ,Y ,β

∑
j∈J

 ∑
od∈Z2

OD

1

N esq

(
ψjz
)2

+ Y j
z + cm ·

∑
od∈Z2

OD

·βjod

 (3.52)

where cm ≪ 1 ensures the priority of the imbalance terms and N esq determines the size of the
deficit, from which deficit value ψjz on the quadratic objective should be valued higher than it
was the case in the linear problem formulation, i.e., ψjz/N

esq > 1.
As before, the matrix Q of the bilinear form is a unit matrix (this time of dimension |Z|·|J |),

thereby ensuring computational efficiency.
Again, after ∆I1+z and ∆I1−z are determined, problem (3.50) is solved to find the assign-

ments with minimum expected distance.

Illustrative Example for Application of Different Repositioning Strategies Figure 3.9
illustrates different actions based on the repositioning strategies for a simple example with
one forecast step. In four independent zones (Ī = I), fares and distance costs are chosen
such that serving an additional requests creates more revenue than costs. In this example, the
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LWS, LRA and LTS strategies determine to send one vehicle from zone 1 to the nearby zone
2 (distance d). For the RA strategy, the vehicle is not counted as fully available in zone 2.
In contrast, the QTS and QDLSTS strategies favor to drive a little more distance (

√
2 · d) to

reduce the larger imbalance. If the ratio of expected fare over costs of driving in the example
would change in the favor of costs, the LS and RA strategy would not reposition anymore,
while the two-step strategies are not sensitive to this ratio thereby making the same decisions
as illustrated.
This illustrative example does not make any statements about the final fleet performance,

which has to be evaluated by numerical simulations. In the operational case study (section 3.6),
the newly developed density-based repositioning strategies are compared with each other and an
existing strategy from literature. Therefore, the real-time rebalancing strategy developed by M.
Pavone et al. [2012], which is widely used in transportation research due to its simplicity and
effectiveness, serves as a baseline. The algorithm is briefly described in Appendix B.3.

3.4.3 Dynamic Pricing

All previously discussed repositioning strategies aim to bring vehicles where they are needed,
and best ahead of time. In other words, repositioning tries to match supply to demand. How-
ever, in times of very high demand, it might not be possible to equalize all vehicle shortages.
In the illustrated example (Figure 3.9), such situation occurs and not all shortages can be
removed. In these situations, dynamic pricing can be utilized to reduce demand in order to
match demand to supply.
The fare system in equation (3.1) considers both a minimum base fare fB and a distance-

dependent fare fD. In a transportation system, the relation of both components can influence
whether the service serves shorter or longer trips [Wilkes et al., 2021]. In theory, dynamic
pricing can scale both differently. However, it is not instinctively clear that scaling one over
the other brings benefits to the system. The modeling of price sensitivity to both components
requires complicated demand models and data that is not available to the author. Hence, a
simpler approach, in which the total fare is scaled and users are sensitive to the total price,
is chosen. In the simulation model, the operators can utilize time- and location-dependent
dynamic pricing. In general, the modified fare for a request r reads

fr = βpod,t ·min
(
fB, fD · dr

)
(3.53)

This thesis makes the simplifying assumption that the operator only applies dynamic pricing
to match demand to supply when necessary, i.e., the operator sets fare scale factors βpod,t ≥ 1
to decrease demand. In theory, it could also be possible that an operator reduces fares βpod,t < 1
in certain zones to bring surplus vehicles out of these zones. From an operator perspective,
this can be advantageous as vehicles might end up where it would reposition it anyway but
there is no guarantee. The future vehicle stacks in the repositioning strategy would have
to be adapted to the expected changes, which would require a more complex interaction of
repositioning and dynamic pricing strategies. Moreover, from a transportation system point
of view, one should also consider from which modes this induced demand comes from, which
is not in the scope of this thesis.
It is assumed that the fares should not change too frequently, which might be confusing and

unwanted by AMoD users. Therefore, the time-dependency is determined by the mid-term
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decision time step ∆tM . Every ∆tM , the operator determines a set of dynamic pricing factors
βpod,t, which are valid for ∆tM when the next iteration of the pricing algorithm determines the
pricing factor for the next time interval.

In the following paragraphs two dynamic pricing models are introduced. The first strategy
aggregates all spatial information by utilizing the total fleet utilization as control variable, the
second strategy uses the density-based forecast model.

Utilization-Based Dynamic Pricing This strategy assumes a relation between fleet uti-
lization η, which is defined as the share of driving vehicles (regardless whether it has customers
on board or not) and the probability that a new user request can be matched successfully:
vehicles that are already in use have a smaller chance of accommodating the new user. There-
fore, the dynamic pricing factor is modeled as a function of share ηt of utilized vehicles at time
t. For simplicity, a piece-wise linear function is applied

βpt =

{
1 ηt < 0.75

1 + βPU · (ηt − 0.75) ηt ≥ 0.75
(3.54)

where βPU determines the maximum pricing factor in case of full fleet utilization.

One-Step Forecast Based Dynamic Pricing A more complex model utilizes information
about the price sensitivity of users, the expected demand during the forecast horizons and the
spatio-temporal information, in which zones z ∈ Z vehicle deficits are expected.

The framework assumes that vehicle shortages in the first forecast step lead to unserved
requests leaving the system. With the premise of this dynamic pricing approach to setting the
fare at a level that demand matches the available supply, the number of fulfilled trips would
be similar. Therefore, the forecasts of future steps in the multi-step approach should remain
approximately the same, even with dynamic pricing (βp ≥ 1) in the current step. Therefore, the
repositioning strategy can determine its actions first and this dynamic pricing strategy is called
after the repositioning strategy is performed. It uses the same forecast horizon step ∆TM ,
but only one step is required. Moreover, all repositioning actions can already be considered in
the computation of the respective deficits Ī1z .

It is assumed that the price sensitivity of demand can be modeled by a time- and space-
invariant function D such that the price-sensitive demand Λz(βz) during the next forecast step
(j = 1) is given by

Λz(β
p
z ) = D(βpz ) · Λ1

z (3.55)

for all zones z ∈ Z, where Λ1
z denotes the expected demand if the fare would not be adapted,

i.e., for βpz = 1.

Let Ī1
′
z be the expected imbalance in zone z (considering reachability) for the upcoming

forecast horizon after the repositioning actions are considered. Moreover, let Ī1−z = min(Ī1
′
z , 0)

be the negative value of the expected remaining vehicle deficiency. Then the One-Step Forecast
Based Dynamic Pricing strategy chooses the dynamic pricing factors such that

Λz(β
p
z ) = Λ1

z + Ī1−z (3.56)
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Figure 3.10: Examples for demand functions of form (3.59) representing the price sensi-
tivity of AMoD users. The functions are normalized to return the expected
demand (i.e., D = 1) for price factor 1.

With equation (3.55), it can be derived that

D(βpz ) = 1 +
Ī1−z
Λ1
z

(3.57)

It has to be noted that equation (3.56) can result in a negative value for Λz(β
p
z ) because of

the impact of demand in neighboring zones on the reachability-corrected imbalance. Since a
non-positive demand does not make any sense, Î1−z = max(Ī1−z , ϵ−Λ1

z) with a small number
ϵ > 0 is defined.
The higher the price factor, the less people want to use the service. Hence, any normal

demand function D : R+ → R+ is strictly monotonous decreasing. Therefore, an inverse
function D−1 exists:

βpz = D−1

(
1 +

Î1−z
Λ1
z

)
(3.58)

Figure 3.10 shows examples for demand functions of the form

D(βp) =
1 + exp(a− b)

1 + exp(a · βp − b) (3.59)

where the enumerator is chosen to normalize D(1) = 1 (consistency of expected demand
for normal fares). This functional form can be used to describe price sensitivies according
to Talluri and van Ryzin [2004]. As an application in the transport sector, Hardt and
Bogenberger [2021] describe the price-sensitivity of carsharing. Since uncertainties in this
function are not in the scope of this thesis, it is assumed that equation (3.59) describes both
the expected as well as the realized price sensitivity in the case study. With this definition, βpz
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can be computed analytically

βpz =
b

a
+

1

a
ln

(
1 + exp(a− b)
1 + (Î1−z /Λ1

z)
− 1

)
(3.60)

A solution βpz > 1 exists for equation (3.60) for all zones z ∈ Z with Ī1−z < 0. For zones
with Ī1−z = 0, i.e., vehicle surplus or balance, βpz = 1. The solution does not have an upper
bound (for arbitrarily small values of ϵ) and very large factors βpz ≫ 1 would be the result of
severe vehicle shortages. In order to keep fares within a certain range, it is assumed that the
operator sets a threshold β̃p, i.e.

βpz = min

[
β̃p,

b

a
+

1

a
ln

(
1 + exp(a− b)
1 + (Ī1−z /Λ1

z)
− 1

)]
(3.61)

The pricing factors βp are valid until the next mid-term step and are applied on the fares
fr of all requests in this time interval:

fr = βpzr ·min
(
fB, fD · dr

)
(3.62)

where zr is the zone of the start location of request r.

3.5 Planning Long-Term Decisions

While short-term and mid-term decisions are repeatedly made within the evaluation period T
based on the respective strategies, long-term decisions are made at the beginning and remain
constant throughout the evaluation period T . Equation (3.6c) essentially states that these
parameters should be chosen such that the expected profit over the complete evaluation period
is maximal. This expectation value can be determined by simulations.
The operator has to decide on an operating area Ω, a fleet size |V |, and values for the base

and distance fares fB and fD. The profit function P behaves nicely with respect to fleet
size and fares. For meaningful fare and cost structures, the profit function P (|V |) is a convex
function of fleet size |V |: starting from low vehicle numbers, the revenue and profit increase
with increasing fleet size. At some optimal point, the AMoD demand starts to saturate and
the marginal increase in revenue becomes smaller than the additional fix cost for increasing the
fleet size. With price-sensitive demand and a fixed fleet size, the profit function P (fB, fD)
increases with the fare (there is zero revenue for fB = fD = 0). On the other end, for very
large values of (fB, fD), almost nobody will use the AMoD service, which results in near-zero
revenue as well. Since the transition can be expected to be rather smooth, P (fB, fD) is
convex and has a maximum.
For the combined multi-dimensional optimization, a scenario-based grid search or more

advanced methods like gradient descent can be used. However, the evaluation of a data point
in the ((|V |, fB, fD) space requires simulations of the AMoD system for the evaluation period
T , which is computationally expensive. Hence, heuristic macroscopic methods to limit the
search space for simulations can be useful.
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If a demand estimation and a distribution of trip durations exists, a very simple method to
estimate a lower bound for the required hailing fleet size is to compute the expected number
of customers that are in the system at the same time:

|V |< = max
t∈0...NT

[∑
r∈R

H (t− τr) ·H
(
τr + t[xor → xdr ]− t

)]
(3.63)

where H(.) is the heaviside step function. The first heaviside function is non-zero after the
request time and the second one is non-zero before the expected arrival time if the requests
started at the request time. Hence, the combination of both approximates the time a request
is in the system. The lower bound derived from equation (3.63) does not yet consider that
additional vehicles will be needed for the empty pick-up trips. Based on literature (e.g., [M.
Hyland and Mahmassani, 2018a]), another 10 − 30 % of vehicles should be added. For
pooling, this thesis uses a simple approach and approximates |V |< for pooling by dividing the
respective number of vehicles for hailing by estimated sharing factors.
An estimation of demand as function of the base fare and distance fare is quite difficult and

depends on a lot of factors such as competing AMoD services, their behavior, private vehicle
ownership, availability and pricing of line-based PT services, and the attitudes of the population
to name a few of them. Therefore, the scenario-based evaluation will be necessary. Service
design considerations like app-design, interaction of users and operator and level-of-service
targets for average waiting and detour time also affect the demand.
Even though the operating area could be treated as a continuous variable, AMoD operators

are likely to use existing spatial boundaries to make the operating area comprehensible for
users. Hence, the optimization will be the selection of the best scenario from a discrete set of
possible operating areas.

3.6 Case Study: Setup

In this section, the operational strategies are evaluated in a case study for the city of Munich,
Germany. In order to address the stochastic dynamic problem, the evaluation will be based on
simulations. Hence, the agent-based simulation model FleetPy11 is introduced next. Subse-
quently, the case study setting, i.e., the data input of this simulation model, is described for the
city of Munich. As this thesis introduces several operational strategies, the evaluation is split
into different studies analyzing certain aspects, which will be described in section 3.6.3 about
the scenario setup. After presenting and discussing the results of this studies, some findings
that will be the basis for chapter 4 about regulating AMoD systems will be summarized in the
conclusion.

3.6.1 Agent-Based Simulation Model

A simulation model is designed to capture the dynamics of the AMoD system, i.e., states Si,
actions Ai, exogenous variables si, state transitions Θ and rewards Ψ in the original problem

11See Appendix B.5 for some more general information about FleetPy.
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Figure 3.11: Phases of a single agent-based AMoD simulation.

formulation (3.4). It contains several agent types. Each user request r is represented by an
agent, which contains the information r = (xpr, x

d
r , τr, τ

e
r , τ

l
r, τ

d
r , f

max
r ). Each AMoD vehicle

v is explicitly modeled by v = (xv, R
o
v, X

0
v ), i.e., its current position, the current on-board

requests, and the route to the next plan stop and its respective task describing, for instance,
which customers should board/disembark the vehicle there. Xv can also be empty if a vehicle is
idle. Finally, the operator is modeled by an agent, which centrally controls all AMoD vehicles.
The simulation can be divided into several phases. As displayed in Figure 3.11, the Initial-

ization Phase processes the input data that define a simulation scenario, the Simulation Step
Phase performs the time-controlled simulation steps which applies the fleet control strategies
to the original problem given by equation (3.4), and an Evaluation Phase, where the recorded
vehicle trajectory and user statistic results are evaluated.

Initialization Phase: The agent-based simulation model requires network data, i.e., a net-
work graph G = (N,E) and the attributes distance de and travel time te for all edges e ∈ E.
Even though the framework is capable of dynamic travel times te(t), the operational case study
assumes constant values, which allows the creation of a constant node-to-node travel time
matrix. Travel costs — both distance and travel time — can be read directly from this matrix,
and routes can be determined very efficiently with the algorithm described in Appendix B.2.
Positions in the network are described by tuples (n0, n1, rel), where n0 and n1 define the edge
a vehicle is on and rel determines the relative position on the edge. If a position is exactly on
a node, only n0 is set, n1 is not defined and rel is 0.
The total demand, which represents the amount of users making requests to the AMoD

system, is exogenous and an upper bound for the number of served customers. In contrast,
the actually served demand for the AMoD system is endogenous as users requesting service
can leave the system without traveling with AVs of the AMoD operator.
The user model is determined by simulation parameters. It is assumed that level-of-service
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Figure 3.12: On the time constraint definition in this thesis. The pick-up has to take
place within the interval [τ er , τ

l
r] and the detour parameter determines the

latest time of arrival at the drop-off location xdr at the time of the pick-up tpr.

limits, namely the duration of the maximum waiting time window τwr and the relative detour
τ̃ δr , are set and accepted by both operator and users. Moreover, this case study assumes that
both parties make instantaneous decisions such that the latest decision time τ ir of requests
is equal to their request time (τ ir = τr). While the simulation framework is capable of non-
instantaneous decisions, τ ir = τr will be selected for the operational case study as it will become
important for chapter 4. In most scenarios, the users want immediate service (τ er = τr) and
τw becomes a maximum waiting time. The relative detour parameter τ̃ δr is defined by

τ̃ δr =
τ dr

t[xor → xdr ] + tb
− 1 =

τ δr
t[xor → xdr ] + tb

(3.64)

where τ δr is the absolute detour. The simulation framework records a user as in-vehicle from
the beginning of its boarding process to the beginning of its disembarking process. Hence,
the boarding time tb, another simulation parameter, has to be added to the direct route time
t[xor → xdr ] for the computation of the absolute and relative detour. Therefore, the latest
arrival time is generated dynamically during the simulation at the time of the pick-up tpr (see
Figure 3.12).
The simulation requires the evaluation period T as well as the simulation time step ∆t

as input. All requests r ∈ R are set up in the initialization phase and put in the set of not
revealed requests Ru that are unknown to the operator. A request r is defined by its attributes
r = (xor, x

d
r , ρr, τr, τ

e
r , τ

w, τ̃ δr ).
For the scenarios with dynamic pricing, the sensitivity towards dynamic pricing is modeled.

Therefore, the standard fare fdefr = min
(
fB, fD · dr

)
is evaluated based on the distance of

the fastest path. Next, the maximal acceptable fare is determined by drawing an acceptable
dynamic pricing factor βp,maxr = fmaxr /fdefr for each user such that the overall distribution
reflects the demand curve D(βp) from equation (3.59). In this way, the operator does not
know the exact price sensitivity of each user. The necessary distribution for βp,maxr is generated
by the normalized function −D′(βp) representing the negative derivative of D(βp).12

Finally, all operator related parameters have to be initialized in order to define the fleet
control. These parameters select the short-term and mid-term strategies and set the hyper-
parameters of these strategies as well as the long-term variables for a single simulation. Fur-
thermore, the initial vehicle distribution has to be determined for a simulation.

12Reasoning: given a certain pricing factor βp
0 , a variation of this price by dβp reduces the amount of

demand by dD(βp)
dβp

∣∣∣
βp
0

. Hence for a certain set of users, the number of users with acceptable pricing

factor βp
0 is given by −D′(βp).
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Figure 3.13: Flowchart of simulation step: (i) the system state is updated, (ii) an event-
based immediate response model determines the booking behavior of re-
quests, and (iii) the operator applies its fleet optimization strategies with
certain periodicity.

Simulation Step Phase: Once the simulation is set up, a loop over time controls the
simulation. In every time step i, the processes displayed in Figure 3.13 are performed.

1 : The system update denotes the state transition of the state

Si =
(
(xv, R

o
v, ξv)v∈V , R

a,Λ, Λ̄
)

(3.65)

from time ti to time ti+1 as described by the state transition operator Θ: according to the cur-
rent vehicle plans, each vehicle changes its position, picks up or drops off customers (thereby
modifying their request status), and new requests become active. Moreover, stochastic infor-
mation about expected future requests Λ and vehicle arrivals Λ̄ is updated. However, with
the separation of scales, it is sufficient to update them every ∆tM since they are only used by
the mid-term strategies.

2 : The event-based immediate response processes model the interaction of new user
requests with the operator. Depending on the use case (hailing or pooling), the respective
insertion heuristic creates an offer for every new request. These immediately accept or decline
the offer depending on the traveler model and the offer. The requests that accept and decline
the offer, are added to the request sets Ra and Rl, respectively.

3 : The operator can re-optimize the vehicle plans ξv. The processes in the time-based
fleet optimization phase describe the strategies to determine actions based on user-assignment
re-optimization, repositioning and dynamic pricing. These actions do not require any customer
interaction and modify only the state variables ξv. The different strategies are not applied in
every time step, but periodically with intervals in the short-term (∆tS) or mid-term (∆tM)
time scales. The fleet control algorithms are implemented in a modular way in order to allow
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different combinations of assignment, repositioning, and dynamic pricing strategies (described
in section 3.3 and 3.4) to be applied in a single simulation.
To close the loop, the updated vehicle plans ξv and request sets Ra and Rl determine the

post state S+, according to which the system transitions to the next time step.
In order to have a tractable data log, not all endogenous changes of the system state are

recorded. It is also not feasible to keep track of all actions, i.e., changes in vehicle plans.
Instead of saving the coordinates (or network position) traces of thousands of vehicles driving
hundreds of kilometers in a single day, only the stops and the sequence of nodes between
these stops are recorded. A stop is also recorded whenever all tasks of a vehicle are assigned
to other vehicles and the vehicle becomes idle. On the request side, the number of state
changes remains feasible, therefore it is possible to record all of them. When a user accepts an
operator offer, the fare is recorded for the respective user. In accordance with the definition
of the time constraints, boarding and alighting are recorded when a user starts the respective
boarding processes.
After the simulation time ti reaches the end of the evaluation horizon T , no more requests

enter the system. The remaining vehicle plans are completed in order such that users requesting
a trip shortly before the end of the evaluation period are still recorded properly.

Evaluation Phase: The evaluation of the global operator objective

P =
∑
r∈Rs

fr − cF · |V |+
∑
v∈V

cD · dv (3.66)

is straightforward from the recorded vehicle trajectories and user statistics. The fares can be
read from the user statistics and the driven distance can be derived as all nodes that a vehicle
passed on its trajectory are recorded. Additionally, key performance indicator (KPI)s from
operator and user perspective can be defined.
From the operator perspective, the following KPIs, which can help to identify potential for

improvement of the fleet, are automatically evaluated at the end of a simulation:

mean fleet utilization =
1

|V |
∑
v∈V

T − T idlev

T
(3.67a)

peak fleet utilization = max
j

1

|V |
∑
v∈V

T eval − T idle,evalv,j

T eval
(3.67b)

total VKT =
∑
v∈V

dv (3.67c)

share of empty VKT =

∑
v∈V d

empty
v

total VKT
(3.67d)

share of repositioning VKT =

∑
v∈V d

repo
v

total VKT
(3.67e)

total PKT =
∑
v∈V

∑
ρ

ρ · dρv (3.67f)

km-weighted average occupancy =
total PKT

total VKT
(3.67g)
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effective PKT =
∑
r∈Rs

dr (3.67h)

relative saved distance =
effective PKT− total VKT

effective PKT
(3.67i)

The fleet utilization gives insight about the temporal usage of vehicles. In general, an operator
wants to avoid long total idle times T idlev of vehicles as they only generate fixed costs but
no revenues. On the other end of the spectrum, a fleet utilization near 100% can also be
disadvantageous as there are no more reserves for additional requests. As demand is typically
not constant over time, the peak utilization is a better indicator to check whether the fleet is
at its limits. For the evaluation of the peak, the evaluation period T is divided into shorter
evaluation intervals (with index j) of duration T eval and the idle times are measured during
the respective intervals. A large part of the total VKT is dictated by the number of requests
and their desired trips, especially for hailing systems. The operator has full control over the
empty pick-up and repositioning trips, which is why the share of empty and repositioning
VKT are interesting quantities. For pooling systems, the relation between person kilometers
traveled (PKT) and VKT is of interest. In this thesis, the pooling efficiency is measured by
the km-weighted average occupancy and the relative saved distance. For the computation of
the (km-weighted) average occupancy, each driven km is weighted by its respective occupancy
ρ. This is an intuitive quantity but could in theory be inflated by taking long detours with
multiple passengers on board. Such inflation is not possible for the relative saved distance
indicator, which uses the effective PKT as basis for comparison. The effective PKT are defined
as the sum of the trip distances assuming all served users would have taken the fastest path
with a private vehicle.

Additionally, the following user perspective KPIs are evaluated:

share of served requests =
|Rs|
|R| (3.68a)

mean waiting time =
1

|Rs|
∑
r∈Rs

(tpr − τ er ) (3.68b)

mean travel duration =
1

|Rs|
∑
r∈Rs

(
tdr − tpr

)
(3.68c)

mean detour time =
1

|Rs|
∑
r∈Rs

tδr =
1

|Rs|
∑
r∈Rs

(
tdr − (tpr + t[xor → xdr ] + tb)

)
(3.68d)

mean relative detour time =
mean detour time

mean travel duration
(3.68e)

mean fare per (direct) km =
∑
r∈Rs

fr
dr

(3.68f)

Since there are constraints for waiting and travel time and the maximum acceptable fare, the
most significant quantity is the share of served requests, which shows for how many requests
the operator is capable of satisfying these constraints.
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(a) Municipality of Munich, its street network, and AMoD
pick-up and drop-off points in UTM32 (EPSG:32632)
coordinate system. Streets with more important func-
tional road category are drawn with higher line width.

≤ 5 ≤ 10 ≤ 15 ≤ 20 ≤ 25 ≤ 30

Travel Time [min]

0

10

20

30

40

S
ha

re
of

T
ri

ps
[%

]

(b) Distribution of AMoD trip durations.
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(c) AMoD trip rate over time in 5 % sce-
nario.

Figure 3.14: Information on network and demand data of the case study.

3.6.2 Input Data and Data Pre-Processing

The case study is set up in Munich, Germany. The original operating area is determined by
the official boundaries of the municipality. These are shown together with the street network
extracted from a microscopic traffic model [Dandl, Bracher, et al., 2017] in Fig. 3.14a
in the UTM32N (EPSG:32632) coordinate system, which will be used throughout this thesis.
Moreover, this figure illustrates the street network access nodes, at which requests are picked
up and dropped off. As stops for pick-up and drop-off should not hinder traffic flow on major
roads, only nodes without direct connection to roads, which have speed limit greater or equal
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to 60 km/h, serve as boarding points.

The AMoD demand is derived from OD matrices originating from a microscopic traffic
simulation model [Dandl, Bracher, et al., 2017] for private vehicle trip demand and a
macroscopic traffic model of Bavaria [Maget et al., 2019] for public transport demand.
For the operational part of the thesis, demand is exogenous and assumed to be 5% of the
combined private vehicle and public transport OD matrices. The number of requests sums up
to more than 115 thousand trips and has peaks in the morning and late afternoon hours and
is nearly zero during between 01:00 and 03:00. To avoid ignoring trips starting shortly before
midnight, the simulation time is chosen to be from 03:00 of one day to 03:00 of the next. The
time-based simulation uses a time step of ∆t = 1 s. Request files are generated by applying
Poisson processes on the hourly OD data to create explicit requests that enter the simulation
as exogenous input at access nodes at the respective time steps. For simplicity and a clear
evaluation, it is assumed that each request travels alone, i.e., ρr = 1, and that the parameters
τw = 5 min and τ̃ δr = 40 % are homogeneous13. For scenarios with reservation, additional
request files are generated, in which 25, 50, 75 % of requests are reservation requests with
τ er = 30 min. The maximal fare fmaxr a request r is willing to pay for the AMoD service
is created by computing the standard fare fr = min(fB, fD · dr) and drawing a maximal
acceptable dynamic pricing factor such that the demand curve reflects the logistic function
in equation (3.59) with the choices a = b = 1. Additionally, the operator-side dynamic
pricing threshold β̃p is set to 2. For the computaton of operator profits, explicit fare and cost
values have to be set for this case study. The base fare fB and the distance-dependent fare
fD are assumed to be 1 e and 1 e /km, respectively. The revenues based on these fare
parameters face costs consisting of fix vehicle costs cF = 40 e per day and variable vehicle
costs cD = 0.25 e /km.

In this chapter, constant travel times reflecting free-flow conditions are used to compare
different operating strategies. With this simplification, it is possible to draw the trip duration
distribution before simulations, which is illustrated in Fig. 3.14b. Most trips last between 5
and 10 minutes and approximately 94 % of all trips are shorter than 15 minutes. Fig. 3.14c
displays the number of requests per 15 minutes. For comparison, yellow taxis in Manhattan
have a mean trip duration of approximately 15 minutes and the number of requests reaches
up to 4000 per 15 minutes14. Therefore, the mid-term time step ∆tM is selected to be 15
minutes. In order to keep the amount of time horizons small, the short-term horizon T S and
the mid-term forecast step size TM,1 are also chosen to be 15 minutes. The total mid-term
horizon is 1 hour in most simulations.

Various zone-systems are defined. For most simulations, the zone system in Fig. 3.15a with
maximum edge length of 4 km and 4 aggregation levels is used. It contains squared zones with
different sizes, which are determined by the demand density originating and ending within the
respective zones. Zones, in which more demand is expected, are chosen to be smaller in order
to allow smaller distances between the centroid and any other node, and zones with lower
demand are chosen to be higher to save computational resources and have forecast values in

13Both simulation environment and fleet control strategies are capable of working with heterogeneous
values, but the evaluation is more tractable for the homogeneous case.

14Evaluation of data from week 46 of 2018 by NYC TLC trip records
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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(a) Multi-level zone system with maximum
edge length of 4 km consisting of 121
zones.
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(b) Constant size zone system with edge
length of 2 km consisting of 82 zones.

Figure 3.15: Zone-system definitions in this case study.

a similar scale. The algorithm for the creation of the multi-level zone system is described in
more detail in Appendix B.4. This process generated 121 zones for a maximum edge length
of 4 km. The same procedure was repeated for a maximum edge length of 2 km, resulting in
340 zones. Additionally, zone systems containing only squares (see Fig. 3.15b) with constant
edge length were created for edge length of 4, 2, and 1 km, which created 26, 82, and 268
zones, respectively.

During the zone-creation process, forecast files with values for Λjz and Λ̄
j
z with j ∈ {0, ..., 95}

are created by aggregating the trips originating and ending in the zones for every 15-minute
interval j, respectively. Additionally, a second type of forecast file was generated by taking
the mean of all demand files generated from different random seeds for each period and zone.
The root mean squared deviation of the forecasts generated in this way is approximately 5.5
and the time evolution follows the trip rate curve (Figure 3.14c), i.e., errors are larger when
there is more demand.

In order to pre-process the zone-to-zone reachability correlationsKz,z′ , the required integrals
in equations (3.33) and (3.35) are evaluated on a grid with 100 m distance between points and
a cut-off at the boundaries of the outer zones. Kz,z′ are computed for reachability bandwidth
parameters h ∈ {1, 500, 1000, 1500, 2000, 2500} m. Kz,z′ is a unit matrix for h = 1 m; for
the 4-lvl zone system with 4 km maximal edge length, the share of the non-diagonal elements
from the total sum of all matrix elements is approximately 0, 25, 45, 58, 67, and 74 % for
increasing values of the bandwidth. For other zone systems with larger (smaller) zones, the
values are smaller (larger).

For each zone, the boarding point closest to the geometrical center serves as centroid. In
most simulations, it is assumed that AMoD vehicles can find a parking space where they
become idle; this can be achieved by reserving a few parking lots on most streets. Another
approach is tested in a few scenarios, in which the operator has to return idle vehicles to
depots, which are assumed in the centroids of the zones. In these scenarios, the vehicles also
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(a) Operating area without level 0 (lowest
demand density) zones.

(b) Operating area without level 0 & 1
(lowest demand density) zones.
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three operating areas.
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Figure 3.16: Reduced operating areas and attributes of demand therein.

start in these depots; in all other scenarios the vehicles are distributed at the beginning of the
simulation according to an initial distribution file derived from the trip origins between 00:00
and 05:00.

The question, where an AMoD service can be offered profitably is very interesting for many
stakeholders. In a free market, operators are likely to use a geofence to optimize their profit.
Additionally, cities require an understanding where they want the mobility service to operate
and AMoD service providers should know if they have to ask for subsidies if part of that area
is likely not profitable. In this thesis, three different operating areas are tested in this case
study. For simplicity, these operating areas are generated from the available multi-level zone
system shown in Fig. 3.15a, which classifies the zones by total demand density. Therefore,
removing the largest, lowest-level zones is a simple method to build an operating area with
higher trip density. The resulting operating areas and zone systems from performing this step
twice are illustrated in Fig. 3.16a and Fig. 3.16b. In the second step, one level-1 zone was
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not removed to keep a rather compact operating area15. The sizes of the respective operating
areas are 310, 208, and 56 km2. For the largest operating area, the 310 km2 relate to the
area of the city of Munich rather than the total area of the forecast zones. As mentioned in
the description of equation (3.63), the number of concurrently active requests |V |< is a lower
threshold for the number of vehicles that are required in a hailing operation. The quite large
reductions in concurrently active requests for the different operating areas shown in Fig. 3.16c
has two origins: first, the number of trips is reduced by both trips that originate and end in
the removed zones; second, due to the smaller operating area, longer trips are removed from
the trip duration distribution (as observable in Fig. 3.16d). By design, the request density is
higher for smaller operating areas. The respective densities are 15.6, 18.3, and 25.2 requests
/ km2.

3.6.3 Scenario Setup

The lowest fleet size for the hailing scenarios with 5 % penetration rate as demand is chosen
such that the lowest value approximately matches the lower-bound estimation |V |<. From
there fleet size is incremented by 250 vehicles to analyze the sensitivity to fleet size. For the
pooling scenarios, a smaller fleet can suffice depending on the average occupancy. Therefore,
coarser vehicle increments of 500 vehicles are selected. The fleet is varied between 500 vehicles
and 1500 vehicles, which should approximately be required for average occupancy rates of 1
to 3 passengers.
There are too many strategies and input parameters to allow for a global sensitivity analysis,

in which the sensitivities of all strategies would be tested for different values of the input
parameters. Hence, specific scenarios, in which a subset of strategies and input parameters
are varied to analyze their specific impacts, are set up and described in the next section.
The first subsection focuses the analysis on different assignment algorithms without reposi-

tioning. Then, the reservation method is studied. Third, different repositioning strategies are
compared. The impact of one repositioning strategy on the different assignment algorithm
results is investigated before the sensitivity of the AMoD system performance to several hyper-
parameters is tested for a single repositioning strategy. Different zone systems and parking
strategies are studied in the sixth subsection. The dynamic pricing strategies are included in
the seventh section before finally, the results are analyzed for different operating areas.
For a quick overview, Table 3.3 presents a summary of default scenario parameters and in

which of the subsections of section 3.7 they are varied.

15The result smallest operating area is actually very similar to today’s carsharing operating area.

82



3.7 Case Study: Results

Parameter/Strategy Variation Default Value / Strategy

number of random seeds - 3
time step - ∆t = 1 s
simulation time - 03:00 - 03:00 (86,400 s)
travel times - constant (free-flow)
street parking 6 allowed
initial vehicle distribution 6,8 constant (distributed in operating area)
demand 1,2 5 % of total private vehicle (PV) and PT demand
max. waiting time 1 τwr = 5 min ∀r
max. detour factor - 40 %
reservation share 2 0 %
reservation time - 30 min
boarding time - 30 s

minimum fare - fB = 1 e
distance fare - fD = 1 e /km (computed on cent level)
fix vehicle costs 1 cF = 40 e
distance costs - cD = 0.25 e /km

hailing fleet size 1 |V | ∈ [1250, 1375, 1500, 1625, 1750]
pooling fleet size 1 |V | ∈ [500, 750, 1000, 1250, 1500]
operating area 8 as shown in Fig. 3.14a

short-term horizon 2 TS = 15 min
re-optimization frequency - ∆tS = 30 s
hailing assignment strategy 1,4 with re-optimization
pooling assignment strategy 1,4 without re-optimization
RV heuristics 1 NRV,h = 20; NRV,wl = 5, NRV,al = 15

mid-term horizon 5 TM = 60 min (J = 4)
mid-term strategy frequency - ∆t = 15 min
zone system 6 as shown in Fig. 3.15a
forecast method 3,7 forecasts based on average of random-seed trip data
zone correlation bandwidth 5 1500 m
repositioning strategy 3 QDLSTS with N esp = 10
dynamic pricing 7 -

Table 3.3: Default parameter values and strategies for evaluated scenarios. The ’Variation’
column shows in which of the subsections this parameter or strategy is varied.

3.7 Case Study: Results

3.7.1 Comparison of Assignment Algorithms

First, the impact of the global re-optimization and the scaling properties of the assignment
algorithms is tested for both hailing and pooling when repositioning is not active. Table 3.4
summarizes the scenario design. All scenarios utilize an immediate response system (IRS) to
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Category Description Abbreviation / Variation

assignment hailing without re-assignments HailIRS
strategies hailing with re-assignments HailIRSBatch

pooling without re-assignments PoolIRS
pooling with re-assignments PoolIRSBatch

RV heuristics with / without RV

demand level [%] share of total PV and PT demand 1,5,10,15

fleet size hailing scenarios [250,275,300,325,350]
per % demand pooling scenarios [100,150,200,250,300]

Table 3.4: Scenario parameter variation for comparison of assignment algorithms.

generate offers and make initial heuristic assignments in case the request accepts. In two thirds
of scenarios, periodic re-optimization of request-vehicle assignments is performed in batches
every ∆tS = 30 seconds, which is denoted by IRSBatch, in the other third, vehicle plans are
only changed by the heuristics that generate the offers, which is denoted by IRS. Moreover,
RV -heuristics to speed up computations are applied in half of the scenarios with periodic re-
optimization: in the hailing case, the number of RV connections is limited to NRV,h = 20 and
in the pooling case, NRV,wl = 5 and NRV,al = 15 are chosen. To test the scaling properties,
both demand and fleet size are varied: additional to the 5 % demand scenario, 1, 10, and 15 %
of the total private vehicle and public transport traffic are treated as requests to the AMoD
system. The scenarios are simulated for fleet sizes of 250, 275, 300, 325, and 350 vehicles
per % of demand.
The computation time is an indicator for the complexity of the solution approaches. For

real-time applicability, the operator processes have to be performed reasonable fast, i.e., opti-
mization processes have to finish before the next optimization is called. The total computation
time is the sum of the time spent on IRS and batch re-optimization for a single simulation. For
real-time applicability, the total computation time has to be lower than 24 hours for 24 hours of
simulated time16. Parallelization of processes would allow improvements in computation time;
however, as computational resources are limited for this thesis, the focus was to simulate
multiple scenarios on a single core rather than focus on code efficiency and parallelization.
Fig. 3.17 gives a good impression of computation times. As expected, all simulation times

increase with fleet size and demand level. A nearest-neighbor IRS policy for hailing is compu-
tationally very efficient and even 500 requests per minute (15% demand scenario) and fleet
sizes of 5000 vehicles are computationally feasible. The other strategies besides this hailing
IRS strategy, which has 3 scatter points per fleet size and demand level, were computed with
and without RV heuristics and therefore have 6 scatter points in general. If less data points
are visible, there can be two explanations: (i) the data points are indistinguishable or (ii) the
simulations lasted more than a maximum run time of 40 hours, in which case no data points

16In fact, the computation time has to be even lower, as the computation during peak hours lasts longer
than the computation in off-peak/night hours.
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Figure 3.17: Scatter plot for total computation time of various assignment algorithms for
all random seed simulations with different fleet sizes (x-axis). The legend
entries refer to demand-levels (markers) and assignment strategies (colors).

were created. In general, the scattering for simulations with different random seeds is very
small and points are often hardly distinguishable. The next lowest computation times were
achieved by the pooling IRS strategy. This strategy is real-time capable on a single core even
for the 15 % demand scenario. The computational efficiency of the applied RV heuristics
becomes obvious as with RV-heuristics, the computation time can be kept below 5 hours for
4500 vehicles, whereas the computation time is approximately 13 hours without RV heuristics.
For the hailing case with batch re-optimization, the application of heuristics becomes the more
important the larger the scale of the problem: without heuristics, the 15 % demand scenario
does not finish within 40 hours of computation time. The significant scaling of ride-pooling
possibilities with demand becomes apparent when looking at the simulations with ride-pooling
re-optimizations (PoolIRSBatch), e.g. by comparing the computation times of 5 and 10 %
demand scenarios for 1000 or 1500 vehicles. Simulations with 10 % demand and fleet sizes of
2500 and 3000 vehicles did not finish in time without RV heuristics. For the 15 % scenario,
not even the application of RV heuristics could limit the solution space enough to achieve a
computation time below 40 hours.
Next, the profit objective is evaluated. Fig. 3.18 shows a scatter plot for the simulated

scenarios. As expected, profit increases with demand level and pooling generates higher profits
than hailing. The differences between different fleet sizes for the same demand are rather small,
but profit increases with fleet size for the studied fleet sizes. However, the curves flatten for
higher fleet sizes, indicating that the optimal fleet size without repositioning is nearly reached17.
Moreover, the blue and the orange symbols and some red and green symbols overlap.

17See Fig. 3.25 for scenarios with larger fleet sizes for the 5 % scenario.
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Figure 3.18: Scatter plot for operator profit of various assignment algorithms for all ran-
dom seed simulations with different fleet sizes (x-axis). The legend entries
refer to demand-levels (markers) and assignment strategies (colors).

Therefore, it can be observed that the profits of simulations with and without re-optimization
are very similar. Contrarily, the RV heuristics cause quite large deviations, especially for pooling
and larger scales (demand and fleet size).

The evaluation of both the computation time and profit shows the stability of results over
demand data sets from different random seeds. In most cases, the three scatter points for the
three random seeds are hardly distinguishable. This is also true for other KPIs, which is why
for the rest of the evaluation, mean values of the three random seed simulations are discussed
for a clearer description. An explanation for this result could be that overall, the trip patterns
in the request files have a very high similarity as they originate from the same OD matrices
and a very large number of Poisson processes, namely more than 100, 000 per simulated day
for the 5 % scenario.

In the scenarios studied in this section, the profit for the strategies without re-optimization
or RV-heuristics is very similar to those with more complex operator strategies. This can be
traced back to the dynamics of the original problem; future demand in the dynamic problem
might be better served by a solution that is not optimal according to the current state without
forecast information. Indeed, observing the different line types in Fig. 3.19a and Fig. 3.19b
shows that more requests are served in scenarios with RV heuristics. Note that the HailIRS
strategy inherently only considers the vehicle plan for a single vehicle. These two diagrams
also illustrate the scaling behavior with demand and fleet size. For all demand levels, the
curve of served requests does not yet show saturation over fleet size. The macroscopic fleet
size estimation was too optimistic for strategies without forecasts: approximately 80 % of
demand can be served for the best hailing and pooling scenarios with 250 vehicles per % of
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Figure 3.19: Shared of served requests and average occupancy for variations of demand,
fleet size, and assignment strategy.

demand. However, fleet sizes of 350 vehicles per % of demand are still not sufficient; this
is a consequence of demand patterns and vehicle demand and supply imbalances, as vehicles
might be available but not within the maximum waiting time radius of requests that cannot be
served. Fig. 3.20 displays the vehicles that remained idle for 15 minutes on the one hand, and
the location of unserved requests during that time period on the other hand, for a scenario
with 5 % demand, 1750 vehicles, and the HailIRS strategy. The effect of availability in the
wrong locations also becomes apparent from the evaluation of the peak fleet utilization, which
is roughly 81 % in this scenario, i.e., 20 % of vehicles are not used while users cannot be
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Figure 3.20: On the spatio-temporal imbalance of demand and supply for the 5 % demand
scenario with 1750 vehicles and the HailIRS assignment strategy.

served. The scaling behavior of served requests with demand and fleet size is very similar for
hailing scenarios with more than 5 % demand; only in the 1 % demand scenario, the operator
is not able to serve the same share of requests. This result actually can be expected as the
probability of finding an available vehicle nearby is higher for scenarios with a higher vehicle
density. Obviously, the probability of finding any available vehicle within a certain radius is also
a function of the ratio of fleet vehicles to requests. The km-weighted average occupancy in the
hailing case (see Fig. 3.19c) is determined by the empty pick-up trips and reflects the distance
to the next available vehicle. In the 1 % scenario, an increase in average occupancy and a
decrease in average pick-up distance is observable. Interestingly, this effect is not observable
in the scenarios with more demand, where the results are stable for different fleet sizes. For
the shown fleet sizes, the system is still in an under-supply state. As more vehicles are put into
the system, the pick-up trip distance is mostly determined by the demand density. Therefore,
it is also clear that the km-weighted average occupancy is increasing with demand level in
these scenarios. For hailing systems, a trade-off becomes apparent: re-optimization without
RV heuristics finds solutions with shorter pick-ups; however, without any repositioning, the
non-myopic nature of this optimization brings the system into states that are not favorable for
the future.
The results for pooling are shown in Fig. 3.19b and 3.19d. In the computed scenarios, the

approaches with and without re-optimization can serve approximately the same amount of
requests and the re-optimization can do so with a higher km-weighted average occupancy.
The application of RV heuristics, which limits the number of considered vehicles to only 20 in
this case study, severely limits the solution space for assignments. The effect is similar to the
hailing case: the heuristic approach actually can serve more requests but at decreased pooling
efficiency. The decreasing average occupancy with fleet size can be explained by two effects.
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First, the constant number NRV,al as with increasing fleet size the number of available vehicles
increases and the probability of getting the vehicle with the best match decreases. Second, the
requests that are served additionally with larger fleets, might be requests that are not matching
well with other requests. This likely is also the reason for a small decrease in average occupancy
for the IRS strategies without RV heuristics. The re-optimizations without RV heuristics even
have a slight trend with fleet size even though more users are served, highlighting the large
optimization potential for ride-pooling assignments. The scaling behavior with demand shows
the same trend for a pooling system as for the hailing system, however, the efficiency measured
by average occupancy scales much stronger. Comparing the strategies without RV heuristics,
the relative difference in average occupancy between the 1 and 10 % demand scenario is within
10 % for hailing, whereas this difference is approximately 30 % for pooling.

As observable in Fig. 3.21c, the evaluation of saved distance shares its trends with the
km-weighted average occupancy. The value of saved distance is approximately 32 % for the
15 % demand scenario with the PoolIRS strategy and RV heuristics. If there would be no
detours at all, the average occupancy of 1.7 in the 15 % demand scenario could translate to
a saved distance of approximately (1− 1/1.7) ≈ 41 %. The results show a saved distance of
roughly 32 % indicating very reasonable detours. Since the operator objectives are to minimize
unserved customers and driven distance and the users have detour constraints, unnecessary
detouring with multiple users on board is avoided. The detour time, which contains time
delays due to detours and boarding processes, also follows these general trends. Scenarios
with RV heuristics have shorter detours than their counterparts without RV heuristics and
the detours are decreasing with increasing fleet size as the probability for pooling is decreased
(see Fig. 3.21d). In general, scenarios with more demand have longer detour times: the mean
relative detour time is 17 − 19, 22 − 24, 24 − 25, and approximately 25 % in the IRSPool
scenarios with 1, 5, 10, and 15 % demand, respectively. The share of empty VKT is exactly
correlated with the km-weighted average occupancy in the hailing case and also shows the
same trends in the pooling case. Due to the possibility to insert new request pick-ups at any
point of the route, the share of empty VKT is lower for pooling without RV heuristics (4 to
13 %) than for hailing (9 − 18 %) for the same level of demand. Applying the selected RV
heuristics for pooling increases the share of empty VKT considerably, especially for larger fleet
sizes (9 to 15 %). Fig. 3.21a and 3.21b show that the mean waiting time is rather stable if
demand and fleet size are scaled the same way. The differences between assignment strategies
are also rather small. For 300 vehicles per % of demand, the mean waiting times are between
180 and 190 seconds in almost all scenarios; longer mean waiting times of up to 210 seconds
only occur for the IRSBatch strategies in a hailing operation. In general, the waiting times
decrease with the ratio of fleet size over demand.

Fig. 3.22 illustrates the occupancy over the course of a day for four scenarios with the
same fleet-size-to-demand ratio. This highly aggregated stackplot is very useful as it shows
both the total fleet utilization as well as the distribution of trips with respect to occupancy
over time. In comparison to the 1 % demand scenario with 300 vehicles, the 10 % scenario
with 3000 vehicles has a smaller share of empty trips and additionally, the shares of trips
with 2, 3, or 4 passengers are higher. The trend of more demand leading to better pooling
rates is also apparent during a single simulation as the share of pooled trips is higher during
peak hours. The 5 % demand case shows a higher similarity to the 10 % case than the
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Figure 3.21: Evaluation of further KPIs for variations of demand, fleet size, and assign-
ment strategy.

1 % case. In all four scenarios, the fleet is utilized less than 80 % during peak hours even
though there is unserved demand. In other words, more than 20 % of vehicles are not available
where they would be needed to serve additional requests. This becomes especially apparent
in the afternoon hours, where the fleet utilization is around 60 % for the scenarios with
RV heuristics. It is not unexpected that this happens for all demand levels as for the same
assignment strategy the vehicles follow the same demand patterns, i.e., the spatio-temporal
distributions of requests’ origins and destinations leading to the imbalance of demand and
supply, in strategies without repositioning. A comparison of Fig. 3.22c and 3.22d suggests
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(a) 1 % demand scenario with 300 vehicles

with RV heuristics.
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(b) 10 % demand scenario with 3000 vehi-
cles with RV heuristics.
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(c) 5 % demand scenario with 1500 vehicles
with RV heuristics.
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(d) 5 % demand scenario with 1500 vehicles
without RV heuristics.

Figure 3.22: Stack plots showing vehicles with certain occupancy for IRS pooling scenar-
ios. The 0-occupancy vehicles are divided into empty trips (blue) and idle
vehicles, which are represented by the white area on top.

that dynamic effects of selecting different request-vehicle assignments worsen the situation
in the scenarios without RV heuristics. Even though the strategy without RV heuristics is
more efficient in the morning peak by serving a similar share of requests with less vehicles, the
resulting distribution of vehicles is disadvantageous for the afternoon and evening hours. If
demand could be served, the vehicle utilization or the pooling rate would reflect the afternoon
surge visible in the graph for concurrent travelers in Fig. 3.16c. Instead, more vehicles are
in places where they cannot be assigned to new requests thereby increasing the share of idle
vehicles and decreasing the share of requests that can be served. The plots for the pooling
strategies with re-optimization (IRSBatch) are very similar as for the IRS scenarios, which is
why they are not shown; the RV heuristics in the selection of accepted requests determines
which requests are served and the optimization potential afterwards seems rather limited.

After this global sensitivity analysis for assignment algorithms, some more restricted param-
eter variations were set up to test
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• how a cut-off at a larger maximum waiting time would change the computational effort,
the operator profit, the number of unserved requests, the mean waiting and mean journey
times

• how much more demand could be served with larger fleet sizes and under which circum-
stances operators would consider this by approximating the sensitivity to variable and
fix vehicle costs

For a variation of maximum waiting time, demand and fleet size were set constant to 5% and
1500 (hailing) / 1000 (pooling), respectively. The computation times for maximum waiting
time values of 5, 7, and 10 minutes are shown in Fig. 3.23a. Increasing the maximum user
waiting time τw clearly increases the computational effort as more vehicles can reach a new
request r within this time and can be considered for assignment. The scenario with τw = 10
minutes cannot even be computed within 40 hours with pooling and re-optimization on a
single core. RV heuristics limit the negative scaling effect of increased waiting times on the
computation time. As these heuristics act before the different stop insertions are checked for
feasibility and control objective value, their effect is especially severe for pooling.
Expectantly, the average waiting times increase with increasing maximum waiting time (see

Fig. 3.23b). It can be observed that the hailing IRS approach and the strategies with RV
heuristics utilize the additional possibilities less extensively.
As illustrated in Fig. 3.24a, the increase in maximum waiting time leads to an increase of

profit by up to 20 % for the hailing case as more customers can be served (see Fig. 3.24b).
Without repositioning, the fleet cannot be utilized to its full potential for shorter waiting
times. This can be imagined by drawing circles of availability around the vehicles on a map;
the radius is the maximum waiting time multiplied by an average speed18. If new requests
are within these circles, a match will be possible. Hence, the probability of a match increases
with increasing maximum waiting time. The share of served requests rises from 83 to 91 and
to 99 % for maximum waiting times of 5, 7, and 10 minutes, respectively19. Most of this
reasoning is valid for the sensitivity analysis in the pooling case as well, albeit the scenarios
with RV heuristics show a slightly different behavior for 10 min waiting time. The restriction
of considered vehicles cannot increase the share of served requests anymore but instead even
decreases the average occupancy and thereby profitability.
Another approach to serving more requests is to increase the fleet size (see Figure 3.25).

To keep the computational effort manageable, simulations were only set up for the 5 %
demand scenarios with RV heuristics. With increasing fleet size, the number of share of served
customers grows expectedly. Interestingly, the served-request curves for hailing and pooling are
nearly identical, with only slightly higher values for pooling. For 2500 vehicles, which is almost
twice of the maximum value of the maximum number of concurrent travelers in the system
(Fig. 3.16c), the share of served requests reaches only 95-96 %. Even more vehicles would be
needed to counteract the demand-supply imbalance for short maximum waiting times. The
sensitivity of fleet size on the mean waiting time is higher for hailing system. With more

18For en-route vehicles, the location is given by the next drop-off location and the radius is given by the
maximum waiting time minus the time of availability.

19This validates the macroscopic approach to making first estimates for hailing fleet sizes given a demand
profile.
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Figure 3.23: Computation times and average waiting times for scenarios with different
assignment strategies for a variation of maximum waiting times. The legend
tuples refer to (assignment strategy, |V |,∑N rv).
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Figure 3.24: Profit and share of served requests for scenarios with different assignment
strategies for a variation of maximum waiting times. The legend tuples refer
to (assignment strategy, |V |,∑N rv).
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Figure 3.25: Evaluation of larger fleet sizes for 5 % demand scenario with RV heuristics.

additional vehicles, the probability of finding a nearby available vehicle with short user waiting
time increases, and the operator is likely to assign such additional vehicle due to the control
objective. For pooling systems, the detours of users are also considered in the control objective
function; hence, the probability of an assignment is depending less on the vehicle density and
fleet size. Opposite trends can be observed for hailing and pooling with respect to the saved
distance indicator. A higher vehicle density reduces the mean empty pick-up distance in hailing
systems slightly whereas the pooling results show a negative impact of fleet size, which is not
inherently a result of pooling but can be attributed to the RV selection heuristics (as described
with Figure 3.19d). Nevertheless, this direct comparison shows the benefits of pooling over
hailing: instead of generating approximately 15 % additional VKT, pooling can reduce VKT
by 15-20 % (compared to the case where PKT = VKT). This is also in the interest of the
operator. Serving the same amount of users with less VKT generates a surplus of profit as
displayed in Fig. 3.25a.

Under the assumed cost and fare parameters, an operator would make large operational
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Figure 3.26: Variation of fare & cost parameters for 5 % demand scenario with IRSPool
strategy with RV heuristics.

profits. However, there is a lot of uncertainty in the cost and fare parameters used for this
case study. The variable, distance-dependent operating costs such as costs for energy and
wear, could remain in a similar range as operating costs today. The fixed costs could be higher
due to higher manufacturing costs for automation, at least in the introduction phase of this
new technology. In order to see the impact of higher operating and fixed costs, each of them
was increased by 100 % as a post-processing step, i.e., the simulations were not repeated
with different objective functions, but the evaluation was adapted. Fig. 3.26a illustrates that
the variable costs have more impact than the fixed costs. For the 5 % demand scenario with
1500 vehicles, a vehicle drove approximately 385 km to serve 66 requests on average per
day. With this high mileage per day, additional investment costs of 10 e per day (e.g. for
automation) translate to less than 0.03 e per kilometer of additional costs. An expected but
noteworthy observation is that the increase in fixed costs results in a more convex fleet size to
profit relation than an increase in variable costs. Moreover, the effect of reducing the fare or
increasing the variable costs results in similar functional relations between fleet size and profit.

The fleet size with the highest operational profit and the respective profit are shown for
given fare/cost systems in Fig. 3.26b. The fares are varied more extensively as they likely have
higher uncertainty than the costs: the price elasticity of potential users is unknown, there could
be market effects of competition or there might be regulatory measures in place, for example.
Moreover, the operational profits will have to make up for overhead costs, e.g. for research,
marketing, platform. Interestingly, the scenario with 25 % fare, for which the per-km fare and
costs are both 0.25 e /km, still produces a slight profit due to small profits gained by a base
fare of 0.25 e for trips shorter than one km. With increasing fare level level, the operator will
put more vehicles into the system to serve more customers as the resulting surplus in trips
makes up for the additional fixed costs.
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3.7.2 Reservation Treatment

To check the necessity of a special treatment of reservation requests, the 1 % demand scenario
is computed with a short-term horizon T S = 30 min. With this setting, all reservation requests
are considered in the re-optimization process until they are picked-up. However, the number
of possibilities to assign requests to vehicles is very large as many vehicles reach a new request
within 30 minutes. Additionally, requests that can be matched together create vehicle plans
for many vehicles in the pooling case. As a consequence, the additional computational effort
increases exponentially and not even the 1 % scenario with each second request being reserved
30 min in advance can be computed with re-optimization and a short-term time horizon
considering full optimization of all known requests, i.e., larger than 30 min.

The methodology described in section 3.3.3, which only considers the requests starting
within a shorter time horizon of T S = 15 minutes in the global re-optimization step, is
computationally feasible, at least for the tested 5 % scenario20.

Fig. 3.27 illustrates results of scenarios, in which the share of reservation requests is varied.
The results do not show a clear trend and require further interpretation. For both hailing
and pooling, the 100 % reservation case shows the best results (from a profit point of view),
followed by the 0 % case, and then the mixed reservation scenarios. The profit is directly
related to the share of served requests in the respective scenarios. The pooling efficiency
(Fig. 3.27f) measured by relative saved distance also has this order. Only the empty mileage
in the hailing case, which is shown in Fig. 3.27e, deviates and the mixed scenarios are better in
this KPI. Another finding is that the re-optimization potential seems to be rather limited in the
studied scenarios with the chosen objective as all IRS and IRSBatch results are very similar. In
the under-supply situation, the optimization is not capable of freeing resources in the regions,
where vehicles (hailing) / routes with capacity (pooling) are needed, to accommodate new
requests.

As expected, a comparison of hailing (Fig. 3.27a) and pooling (Fig. 3.27b) shows that a
pooling system has a higher benefit of having only reservation requests over having only online
requests. The additional foresight helps in building more efficient routes with more pooling,
even for the heuristic IRS approach. This in turn allows a larger proportion of requests to
be served. In contrast, the share of empty miles is higher in the 100 % hailing reservation
scenario as the additionally served requests are reachable due to the larger search radius, which
translates into longer pick-up trips.

Compared to the online scenario, the share of served requests decreases by approximately
7− 15 % (25 and 50 % reservations) and 5− 10 % (75 % reservations) for the hailing case,
where the difference becomes smaller as the fleet size increases. For the pooling case, online
and partly reservation scenarios show similar levels of served requests, but the relative saved
distance is better for the online scenario than for the scenarios with some online and some
reservation requests. This can be traced back to the IRS being more likely to accept requests
that fit into currently available vehicle plans in the online only case and avoid requests that
would cause long empty pick-up trips. In contrast, if those requests would reserve, they are
likely accepted as vehicles can reach them within the longer reservation period. Hence, such

20Actually, in the current implementation, the IRS is even more expensive than the optimization as the
availability of vehicles has to be extrapolated far into the future for reservation requests.
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(a) Profit of hailing system.
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(b) Profit of pooling system.
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(c) Share of served requests for hailing sys-
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(d) Share of served requests for hailing sys-
tem.
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(e) Relative saved distance for pooling sys-
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(f) Relative saved distance for pooling sys-
tem.

Figure 3.27: Evaluation of 5 % demand scenario with different shares of reservation re-
quests.

98



3.7 Case Study: Results

Acceptance Rate of Acceptance Rate of
Online Requests Reservation Request

System Type Fleet Size Reservation Share

pooling 1500 25 83.3 100.0
50 74.1 98.7
75 62.3 90.4

hailing 1750 25 78.6 100.0
50 65.5 99.7
75 58.0 95.3

Table 3.5: Served requests per type (online/reservation) for selected scenarios with reser-
vation.

requests will contribute to the empty miles but not the pooled distance, i.e., decrease the
saved-distance indicator.
Table 3.5 gives more insight why the share of served requests does not increase compared

to the online case. Most users with reservation can be accepted with a high probability as
the fleet still has capacity in advance and a suitable vehicle can be found. In contrast, the
share of online requests that can be accepted decreases with rising share of reservations since
many vehicles are not available due to vehicle plans with reservation requests. Therefore, the
effective density of available vehicles for online requests is much lower and the rejection rate
much higher.
The total acceptance rate even decreases with the reservation share. This can likely be

traced back to the selection of requests. While in the system with only online requests, the
operator will serve those that are in the range of vehicles, some fleet vehicle is very probable
to reach any reservation requests. This additional request constrains the possible routes that
can be taken to include the online requests, thereby decreasing the likelihood of serving users
more than in the less constraint online case.
In summary, an operation with reservation and online requests shows the same weakness as

the service with only online requests: the vehicles need to be positioned according to demand
forecasts in order to serve online requests with strict time constraints. This problem becomes
even more apparent if part of the fleet is already utilized due to reservations.

3.7.3 Comparison of Repositioning Algorithms

The problem of balancing demand and supply in both temporal and spatial dimensions is
addressed by repositioning. In this section, the results of different repositioning algorithms are
compared for certain assignment strategies, namely the IRSBatch strategy with RV heuristics
for hailing and the IRS strategy with RV heuristics for pooling. Additional to the repositioning
algorithms introduced in Section 3.4.2, scenarios without repositioning and a widely used
strategy based on [M. Pavone et al., 2012] are evaluated. Table 3.6 summarizes the different
repositioning strategy scenarios, which are studied for varying fleet sizes respectively.
The impact of repositioning on the different assignment algorithms is studied in the subse-
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Name Zone /
Density

Horizon
Time-
Steps

Objective Other
Comments

None - - - no repositioning
strategy

Pavone-
FC

zone single distance see Appendix B.3
for details

LWS density multiple linear weighted sum of deficit,
stack, and distance

-

LRA density multiple linear weighted sum of deficit,
stack, and distance

reduced vehicle
availability

LTS density multiple priority: linear deficit and stack;
secondary: distance

two-step solution
approach

QTS density multiple priority: quadratic deficit and
stack; secondary: distance

two-step solution
approach

QDLSTS density multiple priority: quadratic deficit and lin-
ear stack; secondary: distance

two-step solution
approach

Table 3.6: Repositioning strategy scenarios.

quent section. Moreover, the comparison of repositioning strategies assumes a certain set of
hyper-parameters, namely a zone-to-zone correlation bandwidth of 1500 m and a future time
horizon consisting of 4 steps with 15 min, and a certain zone system (see Fig. 3.15a). These
inputs will be varied in sections 3.7.5 and 3.7.6.

Fig. 3.28 displays KPIs for the hailing case with varying fleet size and repositioning strategy.
The benefit of repositioning becomes apparent from both operator and user perspective. The
strategy derived from [M. Pavone et al., 2012] already improves the results considerably.
Besides the LRA policy, all density-based multi-step strategies perform at least as good as the
Pavone strategy. The LRA strategy underestimates the positive effects made by repositioning
and therefore, less repositioning trips are performed. The share of empty repositioning mileage
is only 1 − 2 % for the LRA scenarios. The QDLSTS strategy generally performs best with
operator profit increasing by 9−11 % compared to the case without repositioning. The advan-
tage decreases with rising fleet size, which is to be expected as the probability of a vehicle being
in the right place increases with the fleet size. In contrast to the study without repositioning,
the profit saturates around 1750 vehicles and the share of served requests reaches 99 %. As
shown in Fig. 3.28b, the LTS formulation, which completely prioritizes the balance over ex-
pected repositioning distance, manages to serve most requests. However, this strategy also
requires the most empty mileage and therefore has the lowest km-weighted average occupancy.
The differences between the LWS and the quadratic formulations (QTS, QDLSTS) are rather
small, especially for served requests. The stronger emphasis on the deficits in the QDLSTS
increases the average occupancy slightly compared to the other two strategies making it the
most efficient of the studied policies. The difference to the QTS strategy is a consequence
of the QDLSTS strategy not sending vehicles between surplus zones. The reduction in empty
repositioning distance compared to the LWS case is likely to originate from dynamic effects of
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(c) Average km-weighted occupancy.
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(d) Average waiting time.

Figure 3.28: KPIs for hailing system with 5 % demand scenario and different repositioning
algorithms.

sending vehicles to the zones with larger deficits as the probability of such repositioning trips
being not necessary is smaller. This is in line with the difference in empty mileage increasing
with fleet size as the probability of unnecessary repositioning trips due to available vehicles
increases. In general, the share of repositioning mileage can be kept below 10 percent. Even
though more users are served, the repositioning strategies decrease the average waiting time
(Fig. 3.28d).
The impact of the the tested forecast qualities is insignificant. The differences between

scenarios with correct trip number per zone and time interval compared to scenarios with
forecast errors are smaller for the QDLSTS strategy than for the LWS strategy, which can
be attributed to the QDLSTS being less sensitive to small imbalances and thereby errors.
Nevertheless, the resulting profits with and without forecast errors are within 1 % for all cases.
Very similar trends to the hailing results are observable for the pooling scenarios in Fig. 3.29.

The profit saturates (here between 1250 and 1500 vehicles) as nearly 100 % of demand can
be served with 1500 vehicles. Only the LRA strategy, which again is too passive, is an
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(b) Share of served requests.
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(c) Average km-weighted occupancy.
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Figure 3.29: KPIs for pooling system with 5 % demand scenario and different repositioning
algorithms.

exception producing results similar to the no-repositioning case. The improvement in average
user waiting time is much smaller than for the hailing case. For very small fleet sizes of 500
vehicles, the fleet is utilized by more than 70 % on average; therefore, there are hardly vehicles
that can be repositioned and only 3 % of all VKT are for repositioning. Hence, it is clear that
the impact of the different strategies is tiny for small fleet sizes. For the scenario with 1500
vehicles and the QDLSTS strategy, the daily average utilization is approximately 47 % and
the share of repositioning VKT roughly 7 %. These additional empty trips are very effective
though, as both the number of served customers is increased while the average waiting time
is decreased. The cost of driving emptily is reflected in the km-weighted average occupancy,
which is decreased from 1.33 to 1.22 for the 1500 vehicles scenario (from no repositioning to
the QDLSTS strategy).

The comparison of the different strategies is also similar to the hailing case. The QDLSTS
generates slightly more profit than the other strategies; the differences to the Pavone strategy
are less pronounced than for the hailing case. As before, the Pavone strategy performs better
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with higher vehicle number. The LTS strategy is again the most aggressive repositioning
strategy, which serves most customers but requires most empty VKT and has the lowest
occupancy.

The results suggest that exact spatial positioning is more important for hailing whereas
routing combinations based on different vehicle distributions can still lead to similar overall
results for pooling. Nevertheless, the results with repositioning show that the strategies also
work for pooling scenarios. The forecast methodology, which assumes one vehicle is needed for
one customer, obviously should have potential for improvement. This also becomes apparent
from the results with forecast errors often producing better results than scenarios with perfect
forecasts; the effect is not significant, though. The differences are below 1 % and therefore
not illustrated. A simple pooling adaption, in which the incoming and outgoing expected trips
were scaled down by zone-specific pooling rates, was tested but did not generate better results.
Improving the utilization of forecasts, especially for pooling, remains an open research topic
for future work.

Since the number of simulations would become infeasible if all repositioning strategies were
tested, operators will use the QDLSTS strategy, which performed best or among the best
(with respect to profit) in the previous scenarios, for the remainder of this chapter.

3.7.4 Comparison of Assignment Algorithms with Repositioning

The choice of assignment algorithm is briefly revisited with the QDLSTS repositioning strategy.
In general, the results of the comparison made in Section 3.7.1 repeat themselves, which is
why only a part of the analysis is discussed here. The main difference is that the share of
served requests and empty vehicle mileage are higher due to vehicle repositioning. However,
explanations involving system dynamics become more complicated to follow and blurred as
routes can be generated by either assignment, repositioning strategies or even both.

With repositioning, the scaling behavior becomes very apparent (see Figure 3.30). The more
demand an AMoD system has (with scaled fleet size), the more customers can be served and
the higher the average occupancy. The benefits of scaling demand from 1 % to 5 % are much
more pronounced than those from scaling from 5 % to 10 %. Compared with this scaling
behavior, the choice of assignment algorithm has a minor impacts on both of these KPIs. For
all demand levels in the hailing case, the use of re-optimization still results in a trade-off with a
lower share of requests being served but with a higher (km-weighted) average occupancy, i.e.,
less emptily driven kilometers. A higher optimization potential can be observed in the pooling
case, where the re-optimization without RV heuristics is capable of serving more customers
with a higher average occupancy. This comes at the cost of more computational effort, as the
10 % demand scenario cannot run in real-time on a single CPU in the given time threshold
for larger fleet sizes. Similar to the case without repositioning, the RV heuristics decrease the
average occupancy quite significantly, especially for larger ratios of fleet size over demand.

The daily profits are mostly determined by the demand level. Following the demand level,
system type (hailing or pooling) and fleet size are the most relevant indicators. The reposi-
tioniong and assignment strategies only play minor roles. For hailing, the profits are in the
ranges of 76 − 89, 444 − 481, and 919 − 976 thousand e per day for the 1, 5, and 10 %
demand levels, respectively. Similarly, these ranges are 50− 100, 346− 575, and 951− 1162
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(b) Share of served requests for pooling sce-

narios.
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(c) km-weighted average occupancy for
hailing scenarios.
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(d) km-weighted average occupancy for
pooling scenarios.

Figure 3.30: Share of served requests and average occupancy for variations of demand,
fleet size, and assignment strategy for scenarios with QDLSTS repositioning.
The tuples in the legend refer to (i) demand level, (ii) assignment with or
without re-optimization, and (iii) applied RV heuristics, where 20 is the num-
ber of vehicles selected by the RV heuristics and 0 means no RV heuristics
are used.

thousand e per day for the pooling scenarios.

To illustrate the dependence on fleet size and assignment strategies, Figures 3.31a and 3.31b
show a rescaled profit, where the profit of a scenario is divided by the profit of the scenario
with HailIRS/PoolIRS without RV heuristics and the lowest tested fleet size for the respective
demand levels. It can be observed that the dependence on fleet size is strongest for small
demand levels. It should be noted that the plot already scales fleet size with demand level, so
the effect is more than linear. These statements hold true for both hailing and pooling. The
larger values for pooling are a consequence of the larger fleet size range analyzed in this case
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(a) Rescaled profit: comparison with
HailIRS scenarios for 250 vehicles per
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(c) Value of Information for hailing scenar-
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Figure 3.31: Evaluation of profit for variations of demand, fleet size, and assignment strat-
egy for scenarios with QDLSTS repositioning. The tuples in the legend refer
to (i) demand level, (ii) assignment with or without re-optimization, and (iii)
applied RV heuristics, where 20 is the number of vehicles selected by the RV
heuristics and 0 means no RV heuristics are used.

study. As the marginal increase in profit with fleet sizes is approximately 0 for the 5 % and
10 % demand scenarios, the optimal fleet size is likely part of the studied ranges or slightly
above. Only the 1 % scenario would really benefit from more vehicles in the fleet. Even with
repositioning, the re-optimization of request-vehicle assignments does not generate additional
profits with the selected control function as shown in Figure 3.31a. The optimization with RV
heuristics pruning the solution space even produces better results, which is a clear indicator
that the control objective, which should encompass the dynamic effects in a static problem,
could be chosen better. As the re-optimization tends to shift assignments to save VKT, it
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(a) IRS strategy with RV heuristics.
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(b) IRS strategy without RV heuristics.
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(c) IRSBatch strategy with RV heuristics.

5 10 15 20 25

Time [h]

0

200

400

600

800

1000

1200

1400
N

um
b

er
of

V
eh

ic
le

s

0

20

40

60

80

100

S
ha

re
of

F
le

et
[%

]

(d) IRSBatch strategy without RV heuris-
tics.

Figure 3.32: Stack plots showing vehicles with certain occupancy for pooling scenarios
with 5 % demand and 1500 vehicles and the QDLSTS repositioning strategy.
The 0-occupancy vehicles are divided into empty trips (blue) and idle vehi-
cles, which are represented by the white area on top.

would likely be beneficial to put more weight on the system time of an assignment (cV OT )
over the distance-related component (cD) in the hailing control objective in equation (3.9).
For pooling operations, the re-optimization brings clear benefits, at least from a certain scale
of the system but only without the RV heuristics that severely limit the solution space. For
small scale systems and small fleet sizes, the heuristics are practically not limiting the solution
space and have hardly any impact.
Next, a comparison between the results with and without repositioning is conducted for the

different assignment strategies. To this end, the value of demand information [Wen, Nassir,
et al., 2019] is defined by

Value of Demand Information =
P ′ − P
P

(3.69)

where P ′ and P denote the profit with and without repositioning, respectively. This value
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is defined for each scenario (demand level, fleet size, assignment strategy) independently.
Figures 3.31c and 3.31d show some similar trends for hailing and pooling. In both cases
the scenarios with full re-optimization, i.e., re-optimization and no RV heuristics, have the
highest value of demand information. This is likely a consequence of the dynamic effects
sending (comparatively) more vehicles to zones where they are not needed in scenarios without
repositioning, which are moved by the repositioning strategies. Additionally, the dependency
on fleet size results in a convex curve in the studied range in most cases except for the
1 % demand scenario. This is reasonable because the probability of finding an idle vehicle
to reposition increases with fleet size and the probability of a vehicle deficiency to occur
decreases with fleet size. Therefore, the the highest benefit of repositioning can be expected
for a medium fleet size, for which approximately 75− 85 % and 90− 95 % of requests can be
served without and with repositioning, respectively. As the 1 % scenario needs more vehicles
to reach these numbers, it can be speculated that the peak of value of demand information is
reached for fleet sizes above the studied range. Interestingly, the value of demand information
is significantly higher for the pooling than the hailing scenarios (both with re-optimization).
This is not necessarily intuitive as the proximity of empty vehicles should be less important
for a pooling operation, where vehicles with customers on-board can still be considered for
assignment. However, in a pooling system an additional vehicle at the right place can serve
more than just one additional request. At least for the scenarios with re-optimization, in which
the average occupancy is higher, this effect seems to prevail in the studied scenarios.

Evaluating the utilization and occupancy for a pooling system over time shows clear differ-
ences without (see Figure 3.22) and with repositioning (see Figure 3.32). Unlike in the case
without repositioning, the utilization curve now follows the demand curve as very high shares
of demand can be served throughout the day. For the 5 % demand scale illustrated in Fig-
ure 3.32, it is still observable that most trips have 1 or 2 requests on board. The comparison
of occupancy levels for the different assignment strategies shows that with RV heuristics, more
vehicles are in operation – approximately 90 % with versus 80 % without in the peak – where
most of the additional vehicles have no or only one passenger on board. Smaller efficiency
gains in the range of 5 % of vehicles become observable when applying batch re-optimization
without RV heuristics. With RV heuristics, re-optimization has negligible impacts on the
occupancy.

As the computation time for a re-optimization is quite significant for pooling simulations,
the remainder of this chapter uses the HailIRSBatch and PoolIRS strategies with RV heuristics.

3.7.5 Sensitivity Analysis of Repositioning Hyper-Parameters

The density-based repositioning strategies have two hyper-parameters that tune the algorithms:
the number of forecast steps J and the bandwidth h, which describes how far the availability
of vehicles spreads from a single point and thereby determines correlations between zones. To
clarify this effect, Figure 3.33 illustrates the imbalance density for various bandwidth parame-
ters, where the imbalance value is set to 1 for three zones of different size and 0 for all others.
It can be seen that the correlations of neighboring zones are more relevant (1) for larger values
of h and (2) the smaller the zone size.

Additionally, the QDLSTS has a parameter N esq determining the weight between the

107



3 AMoD Service Design and Fleet Operation

675000 680000 685000 690000 695000 700000
5.3250

5.3275

5.3300

5.3325

5.3350

5.3375

5.3400

5.3425

5.3450

1e6

10
5

10
4

10
3

10
2

(a) Bandwidth h = 500 m.
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(b) Bandwidth h = 1500 m.
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(c) Bandwidth h = 2500 m.

Figure 3.33: Example of imbalance density plots for various bandwidth parameters. The
imbalance values of three zones are set to 1.

quadratic deficit and the linear stack terms in equation (3.52). For this case study, N esq = 10
was set based on the intuition that the quadratic term should become more important if a
deficit is larger than 10 vehicles. Simulations with N esq = 5 and N esq = 20 were also con-
ducted but did not bring much insight. The KPIs were hardly affected with relative changes
below 0.1% in the hailing and below 0.5% in the pooling case and without clear trends. Hence,
these results are not illustrated and the analysis focuses on the hyper-parameters existing for
all repositioning strategies.

In general, hyper-parameters can have a huge impact on the performance of algorithms.
However, only minor impacts can be observed in this case study, also for bandwidth h and
number of forecast steps J . In all scenarios, a variation in fleet size has much higher effects.
To visualize the impacts of the other two hyper-parameters, the fleet size was kept constant
in Figure 3.34 and the y-axes of the figures are focused on the differences. The fleet size
was chosen to serve approximately 96 % of demand for both hailing and pooling. The tested
variation of bandwidth has a higher impact than the variation of the number of forecast steps.
2, 4, and 6 were chosen as the number of forecast steps, which translate into total forecast
time horizons of 30 minutes, 1 hour, and 1.5 hours, respectively. The choice of 6 steps tends
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(a) Profit in hailing system.
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(b) Profit in pooling system.
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(c) Served requests in hailing system.
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(d) Served requests in pooling system.
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(e) Saved distance in hailing system.
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(f) Saved distance in pooling system.

Figure 3.34: KPIs for variation of repositioning hyper-parameters with a fleet size of 1500
(hailing) and 1250 (pooling) vehicles.
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to perform slightly worse with respect to profit as it generates additional empty mileage.
Compared to the hardly observable changes by the variation of the forecast horizon, it can be

noticed that the introduction of the bandwidth, i.e., the step from bandwidth 1 meter to 500
meters, results in the largest deviations in the results. Even these deviations are rather small:
the profit changes by approximately 3500 e per day, which is less than 1 % of the daily profit.
Nevertheless this introduction of the bandwidth is interesting as with the introduction of the
bandwidth both components of the objective, i.e., the revenue from served customers and the
costs from driving can be improved, for hailing and pooling. Additionally, this difference in
daily profit accumulates to a sizable sum of more than a million e over a year.
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Figure 3.35: Trip length distribution for hailing scenarios with fleet a fleet size of 1250
vehicles, four forecast steps, and varying bandwidth parameter h.

All other steps in bandwidth result in almost negligible differences. Bandwidth parameters
between 500 meters and 1500 meters create a trade-off for the hailing case. On the one hand,
increasing the bandwidth slightly increases the share of served requests (Figure 3.34c) but also
slightly increases the share of empty fleet mileage, which is equivalent with decreasing the
saved distance KPI (Figure 3.34e). Higher bandwidth parameters of 2000 meters and 2500
meters perform slightly worse in both categories. For pooling, the bandwidth of 500 meters
performs slightly worse and the larger bandwidth parameters slightly better than in the hailing
case. Figure 3.34f still shows the same trend with saved distance decreasing with increasing
bandwidth.
The saved distance results can be traced back to changes in the share of distance driven for

repositioning. To get further insight, the repositioning trip length distribution is illustrated in
Figure 3.35 (for a hailing scenario). With bin size of 2 km, the largest share of repositioning
trips is in the range between 8 − 12 km. Longer trips occur less, which is reasonable as the
methodology aims at repositioning trips that will finish within the first forecast step of 15
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minutes. In this time, vehicles with an average speed of 48 km/h can drive 12 km. As before,
the choice of no bandwidth (h = 1 m) creates a clearly distinct picture: the peak between
8− 12 km is much less pronounced and instead more trips with higher distance are scheduled.
These trips are generally using the faster motorway and arterials to move vehicles from the
outside of the operating area into the center. As the deficits are not spread among neighboring
zones and the algorithm tries to equalize deficits of the individual zones, the destination of
repositioning trips is often further in the center resulting in longer trips. The differences in
trip length distribution for h ≥ 500 m are difficult to interpret. As the vehicle availability is
also spread with the bandwidth, it is likely necessary to make more shorter trips (below 6 km)
to fine-balance the zones when the bandwidth is smaller.

It can be summarized that the hyper-parameters of the density-based QDLSTS approach
have minor impacts in the case study and the selected parameters of h = 1500 m and J = 4
are appropriate choices for the remainder of this chapter.

3.7.6 Analysis of Different Zone-Systems and Parking Possibilities

In this subsection, different zone systems are utilized for the demand forecasts and reposition-
ing. Moreover, scenarios are investigated, where the operator is not allowed to park on public
parking lots and vehicles have to return to depots of the operator, which are assumed in the
center node of each zone. This parking prohibition is studied as German law requires taxi
and private-sector hailing and pooling companies to keep to the Rückkehrpflicht, which means
that vehicles are not allowed to remain idle and wait for customers in a zone if their original
base is in another zone. This regulation inherently creates approximately 50 % empty travel.
Administrations can allow additional places to park, which is modeled here with the operator
depots. Additionally to the scenarios with depots in the zone centers, scenarios are studied,
in which there are only four depots positioned near the Main, East, and Pasing train stations
and Parkhaus Schwabing, respectively. If fleet vehicles can only park in depots, the operator
repositions the AVs towards the nearest depot whenever they become idle after dropping of
the last on-board customer without having new pick-up requests assigned to their route. At
any time during their trip to the depot, these vehicles can be assigned to new requests and
they directly drive towards the new request, i.e., they do not have to finish driving to the depot
first. Besides this parking limitation, the scenarios are defined by the default parameters given
in Table 3.3. In the following, scenarios with parking limitations are denoted by without street
parking. The others are denoted by street parking, where it is not further specified if this is
on-street or on parking bays.

Figure 3.36 displays the profits the operators generate in the studied scenarios. Comparing
scenarios with street parking and different forecast zones (Figures 3.36a and 3.36c), results
show that all studied zone systems perform similarly. Only the zone system with the least
spatial resolution, which is a zone system with a constant size and edge length of 4 km,
performs considerably worse. Other than expected, the profit does not grow monotonously
with spatial resolution. Fig. 3.37 illustrates that a higher resolution of zones performs better
with respect to empty VKT, however, at the cost of serving less users.

In contrast, the picture looks very different for the scenarios without street parking. The
first observation is that profits in the hailing operation are significantly smaller. Depending
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(a) Hailing with street parking.
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(b) Hailing without street parking.
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(c) Pooling with street parking.
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(d) Pooling without street parking.

Figure 3.36: Profit for scenarios with different zone systems and street-parking possibility.

on zone system and fleet size, the return-to-depot requirement generates between 10 − 70
thousand e per day smaller profits than the respective street parking scenario. The zone
systems with higher spatial resolution perform better because of the higher proximity of the
nearest depot. For the same reason, the scenarios with only four depots is by far the worst
from an operator’s point of view and the effect becomes even worse with increasing fleet size.
In the pooling scenarios illustrated in Figure 3.36d, the same trends are observable. As the
range of studied fleet sizes in the pooling scenarios start from a lower value, the differences
are not as noticeable at first because the fleets are often in an under-supply state, in which
the vehicles do not become idle.

From a customer’s perspective, the rates of served/rejected requests is the most important
indicator. As shown in figures 3.37a and 3.37b, the effect of the street parking restrictions on
the share of served requests is rather low. Since in times of high demand vehicles are unlikely
to become idle, the number of return trips to depots are limited. Nevertheless, if there are
only four depots, slight losses are observable because repositioning vehicles have to return
to depot if they are not matched to a request near their destination zone. If a vehicle does
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(a) Served requests with street parking.
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(b) Served requests without street parking.
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(c) Saved distance with street parking.
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(d) Saved distance without street parking.

Figure 3.37: Share of served requests and saved distance for hailing scenarios with different
zone systems and street-parking possibility.

not find a match on its return trip, it is likely redistributed again. This behavior obviously
generates a significant amount of empty travel, especially for larger fleet sizes. Therefore,
this scenario creates up to 45 % of additional driven distance. Compared to this large value,
the additional 5− 15 % empty VKT in the other scenarios without street parking seem quite
small even though this increase is quite significant as well. As mentioned before, the proximity
of the nearest depot is decisive for the respective increase in empty VKT and consequently
the decrease in saved distance. With street parking, the share of empty travel also follows
the same order: the smaller the zones, the less empty travel is conducted. The zones with
variable sizes approximately generate as much empty VKT as the zone system with half of their
maximum edge length. With respect to served requests, differences are within a few percent
for all scenarios, even for the one with only four depots. The ability to add new requests to
existing routes can make up for the inefficient cruising of vehicles. However, the statements
for empty VKT are also true for a pooling system.

The costs of having a zone system with very high spatial resolution have to be considered
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Figure 3.38: Computation time of repositioning steps per zone system. The values reflect
the mean values of all scenarios with the respective zone systems and 1625
hailing and 1500 pooling vehicles.

when choosing a zone system. The main cost is the computational effort that is generated by
a larger number of zones. As the studied repositioning algorithms are zone-based, fleet size
hardly affects the computation time of single problem instances. Moreover, it does not matter
whether the system is operated in hailing or pooling mode. Therefore, Figure 3.38 summarizes
the computation times of all studied scenarios with the respective zone system. It is apparent
that the computation time for single repositioning steps becomes higher for zone systems with
higher resolution. The non-linear increase can be expected as the number of zones grows by a
factor of 4 when decreasing the edge length to half its size and the number of decision variables
is quadratic in the number of zones. For a real-world repositioning algorithm, computation
times of approximately 30 or 50 seconds bring additional difficulties as a synchronization issues
between the computed repositioning solution and the new system state at the time the solution
is available can be expected to grow with the computation time.

3.7.7 Analysis of Dynamic Pricing Strategies and Forecast Quality

For this part of the study, it is assumed that the sensitivity of requests with respect to dynamic
pricing (DP) follows the logistic function in equation (3.59) with a = b = 1. Additionally, it is
assumed that all offers with dynamic pricing factor 1 are accepted. To this end, the requests
are modeled with a maximum acceptable pricing factor, which is drawn from the distribution

Ω(βp) = −dD(βp)

dβp
(3.70)

where βp ∈ [1,∞[ and the logistic function D(βp) in equation (3.59) is normalized to satisfy
D(1) = 1. Then, the probability of accepting an offer with dynamic pricing factor P(βp) is
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given by

P(βp) = 1−
∫ βp

1

Ω(x)dx = 1− (D(1)−D(βp)) = D(βp) (3.71)

The operator also uses a = b = 1 in its determination of the dynamic prize in the one-step
forecast (OSF) based dynamic pricing strategy. The maximum surge factor β̃p = 2 for the
OSF strategy. To receive the same maximum factor in the utilization based strategy (Util),
βPU = 4. In this thesis, the original goals of the strategies is that (i) most requests receive a
feasible offer but (ii) a similar amount of users reject as the operator rejects in the case without
dynamic pricing. Hence, the price point is not the result of a profit optimization where less
users would be served albeit for a higher fare.

% with offer, DP: None

% served, DP: None

% with offer, DP: OSF

% served, DP: OSF

% with offer, DP: Util

% served, DP: Util

1300 1400 1500 1600 1700

Fleet Size

70

75

80

85

90

95

100

S
ha

re
of

R
eq

ue
st

s
[%

]

(a) Hailing service with 1250 vehicles.
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(b) Pooling service with 750 vehicles.

Figure 3.39: Share of requests that (i) received an offer and (ii) were served without and
with dynamic pricing.

It can be observed in Figure 3.39 that this goal is not achieved properly by the OSF pricing
strategy. The share of served requests is significantly lower than in the scenario without
dynamic pricing. The figure also shows curves for the share of users that received an offer of
the operator. It can be derived that the fares are set so high that ”too many” users reject
their offers in the OSF strategy. At least the goal of making feasible offers to every request is
fulfilled for hailing. With less requests accepting offers, the fleet is less utilized and therefore
new requests can be inserted into the vehicle plans within their time constraints. In the pooling
case with 500 vehicles, the fleet is simply to small to even achieve that with a maximum pricing
factor of β̃p = 2, which is set in most zones for most of the time between 6am and 8pm. In
general, the utilization based dynamic pricing strategy works quite well: the share of served
requests is very similar and most requests receive an offer. It could set a little higher fares in
the pooling scenarios with small fleet sizes to increase the share of requests that receive offers.
Figure 3.40 illustrates the reason why the OSF strategy does not work as intended. For

the hailing case (Figure 3.40a), the OSF strategy actually does what it is supposed to quite
well: throughout the day, it uses forecasts to set the price point in a way that all requests can
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(a) Hailing service with 1250 vehicles.
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(b) Pooling service with 750 vehicles.

Figure 3.40: Comparison of forecast of expected vehicle deficits of next 15 minutes and
requests not served in the simulation of these 15 minutes without and with
dynamic pricing.

receive an offer. Indeed the forecasts of requests that will not be served — either due to users
not accepting a too high price or the operator not having sufficient supply — is accurate and
matches the share of requests that are not served in the next 15 minutes of the simulation
quite well, i.e., the blue curve in Fig. 3.40a is close to 0. However, this is mostly due to the
fact that the share of requests not accepting a certain fare is accurate.

Simulations without dynamic pricing show that the imbalance forecast I1z from equation (3.24)
actually has quite some room for improvement as the available supply is constantly underes-
timated. The reason for this underestimation is that vehicles are only counted for the region
they are in or will end up due to their current assignments; therefore, the supply side estimation
is bound from the top by the fleet size. However, the number of trips that can be conducted
and are predicted by the demand forecast can be higher than the fleet size as multiple trips
with shorter duration can be made within the forecast time horizon of 15 minutes.

All these statements are true for the pooling case as well, but there is an extra effect creating
the larger gap visible in Figure 3.40b. The forecast of supply should not only consider the
number of vehicles but also the number of seats. Furthermore, to increase difficulty for the
pooling imbalance forecast, the OD relations and therefore the direction in which seats are
available become relevant. As the used forecasts show very good results in the repositioning
context, an improvement of the imbalance forecasts are considered out of the scope of this
thesis and remain a future research topic.

As a consequence of the underestimation of supply, the OSF strategy sets the dynamic
pricing factors higher than the utilization based strategy. Higher dynamic pricing factors would
also be the result of optimizing the expected profit as the expected profit can be interpreted as a
convolution of the dynamic pricing factor and the probability of users accepting a certain pricing
factor. Hence, the full lines in Figure 3.41 show the highest profits being generated by the
OSF strategy. Since users likely value a high service rate and might make less service requests
if they are often rejected or too expensive, opportunity costs are considered in Figure 3.41
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(a) Hailing service.
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(b) Pooling service.

Figure 3.41: Profits and adapted profits including opportunity costs without and with
dynamic pricing.

with the dashed-line curves. For this thesis, a value of 5 e per rejection is assumed; typically
this value would be derived from market research. With the opportunity costs part of the
dynamic pricing objective, the adapted profit optimization is likely to have a similar effect as
the dynamic pricing strategies in this thesis, namely to set fares in a way that as many requests
reject as would have to be declined due to missing supply.

3.7.8 Choice of Operating Area

In this section, the three operating areas illustrated in Figures 3.15a, 3.16a, and 3.16b. For this
experiment, the fleet sizes are approximately scaled with the area of the respective operating
areas. It can be noted that the smallest operating area has a very high similarity to the
business area of today’s carsharing providers in Munich. For the largest operating area, which
is denoted by ”Default-OA”, the fleet sizes are between 1250 and 1750 for hailing and between
500 and 1500 for pooling, just as before. For the next operating area denoted by ”Small-OA”,
the respective ranges are from 910 to 1274 for hailing and from 364 to 1092 for pooling. For
the last operating area, the ”Smallest-OA”, only 260 − 364 and 104 − 312 vehicles are used
for hailing and pooling, respectively. The ratios of fleet size over area are a little larger for
the smaller operating areas. This was a result of choosing an integer interval between the five
fleet size experiments.

The evaluation starts with a hailing service again. The computation time for the hailing
scenarios with re-optimization follows the area sizes. The Default-OA scenarios last approx-
imately 4.6 h, the Small-OA scenarios approximately 2.8 h, and the Smallest-OA scenarios
approximately 0.7 h. The evaluation of profits is shown in Figure 3.42a. It is a good sign that
profits are increasing with the size of the operating area as it is profitable for AMoD operators
to extend their service area beyond the city center, where PT infrastructure is anyway well
developed. Of course, this result is valid for the assumed demand, cost, and fare structure.
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(c) Share of served requests with fleet size
scaled per area.
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(d) Share of served requests with fleet size
scaled per 1000 requests.

Figure 3.42: KPIs for hailing service for various fleet sizes in different operating areas.

As illustrated in Figure 3.42b, the hailing systems generates around 18 % of additional VKT
in the two larger scenarios, whereas approximately 25 % of additional VKT is created in the
Smallest-OA scenarios. This result might seem a little surprising as more repositioning VKT is
required for the larger operating areas (3−5 %) than in the Smallest-OA scenario (1.5−3 %).
Nevertheless, the ratio of pick-up trip length to service trip length becomes rather unfavorable
in the smaller operating area, which by far overshadows the empty VKT for repositioning.
The pick-up distance is indirectly constrained by the maximum waiting time and therefore
similar in the scenarios, while the average user trip lengths are 6.8, 6.1, and 4.3 km for the
Default-OA, Small-OA, and Smallest-OA, respectively. Looking at the share of served requests
in Figure 3.42c, it turns out that the choice of fleet size per area causes the rate of served
requests to have very similar values in the different operating area and fleet size scenarios.
Therefore, less vehicles are required per km2; however, it also has to be considered that the
trip density is higher in the central regions with the respective values being 15.6, 18.3, and
25.2 requests / (km2·h) (from Default-OA to Smallest-OA). When evaluating the share of
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served requests as function of the fleet size per request, the result illustrated in Figure 3.42d
shows that a smaller number of vehicles per request are required for the same service rate in
the smaller operating areas. This is reasonable as trip length and duration are shorter and
thereby the number of concurrent travelers is smaller.
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(c) Small operating area with 1274 vehicles
in time 03:00 - 12:00
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cles in time 12:00 - 24:00

Figure 3.43: Total number of unserved requests per forecast zone in the morning and the
rest of the day for hailing scenarios. The plots show the area of the city of
Munich as reference.
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To analyze the unserved requests in more detail, Figure 3.43 displays the spatiotemporal
occurrences of these requests based on the zone system and in two time intervals. In most
cases, the requests that cannot be served by the AMoD operator are in the outer zones,
regardless of the size of the operating areas. The afternoon peak is a little more difficult to
handle with the same fleet size as (i) some areas cannot be fully served in this period in the
larger operating areas and (ii) the morning peak is no problem in the Smallest-OA scenario.
A minor difference between the peaks can be guessed from the plot of concurrent travelers in
Figure 3.16c but only through simulation do the effects of vehicle utilization become apparent.
Additional, spatial characteristics can be evaluated. For example, the vehicle deficiencies
mostly appear in the western part in the morning hours. Fleet operators could re-adjust the
imbalance forecasts in these regions. Nevertheless, it has to be noted that the numbers of not
served requests are quite small compared to 8000 requests per hour during peak hours in the
Default-OA scenarios showing that the repositioning algorithms work well.
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Figure 3.44: KPIs for pooling service for various fleet sizes in different operating areas.

The insights for pooling reflect mostly those from a hailing operation. The curves represent-
ing share of served requests per fleet size are again mostly shifted in the x-axis (Figure 3.44a).
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As shown in Figure 3.44b, the profit also grows with the size of the operating area. The
relative difference between the profit of the Small-OA and Smallest-OA is a little bit higher,
which is the result of a higher efficiency difference with respect to saved distance. Due to the
RV heuristics and repositioning, the share of empty VKT grows with fleet size. The Small-OA
again requires least empty VKT. With 3 − 4 %, the difference between the operating areas
is smaller than in the hailing case. However, pooling works more efficiently the larger the
operating area is, which is why the difference in empty VKT in the Default-OA scenarios is
similar to the Small-OA scenarios and the difference to the Smallest-OA scenario grows up to
10 % in distance.

3.8 Conclusion

This section briefly discusses and highlights some of the key results in view of the next chapter,
the regulation of AMoD fleets. The change in viewpoint leads to a shift in research questions:
this chapter studied how to best serve a given exogenous AMoD demand in a static street
network; for the next chapter, AMoD will be analyzed as a part of a transportation system
with dynamic networks.
First of all, it has to be noted that the results shown in this chapter are very optimistic

because of the network representation (static with free-flow travel times). In congested net-
works, more vehicles are required to serve the same amount of demand. This can be realized
easily by estimating the number of concurrent travelers, which serves as a lower bound for
the hailing fleet size. As a vehicle needs more time to serve the assigned request, it becomes
available for a subsequent request at a later time. Hence, an operator needs more vehicles at
the same time in total.
In general, hailing systems will always increase VKT compared to every person using their

private vehicle, i.e., VKT ≥ PKT. Pooling is required to reach a state with VKT ≤ PKT.
Even though it might be less convenient for users, the AMoD pooling service can be designed
only to allow minor detours. Considering the time and cost savings from not having to look
and pay for a parking lot, pooling should still be a very attractive service design.
With the assumed cost and fare structure, AMoD systems are highly profitable systems.

Today’s real-world MoD service providers are hardly ever profitable, especially considering
the overhead costs for platform operation and staff. However, the profit margins that are
possible with AVs seem more than enough to compensate for that, especially considering
scaling properties when transitioning to multiple cities.
Operators can benefit from forecasts of demand and supply to improve their profit. In

this thesis, several density-based approaches were developed and tested in various scenarios.
The performance of the new algorithms surpasses the typical approach with independent zone
forecasts. As an alternative for the availability of forecasts, reservation-based systems were
studied. However, results showed that either all requests have to include a reservation time
or the remaining online requests have a low service rate. Simulations without repositioning or
reservation showed that AMoD systems could also serve the same amount of demand without
any demand forecasts but are less profitable. Without repositioning, additional fixed costs due
to larger fleet sizes overcompensate lower variable costs due to less empty VKT.
The sensitivities with respect to costs are important for the next chapter. With higher fixed
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costs, an operator tends to decrease the fleet size, which in turn necessitates more empty VKT
to reposition the fleet and pick up passengers. The fleet size is likely also smaller with higher
variable costs but to a much lesser degree, and additionally, the operator tries to avoid empty
VKT to a higher degree.
For most of this chapter, demand was modeled exogenous and therefore independent of the

fare system; only in the dynamic pricing section, users were sensitive to the fares following
a logistic function depending on the dynamic pricing factor. When the regulation becomes
the topic, the number of AMoD users has to be the result of the competition against other
modes of the transportation system, where the fare will also play into the decision-making
process. However, the probability of a traveler accepting an AMoD offer will not just depend
on the dynamic pricing factor but on more complex relations based on trip characteristics of
all available modes. Nevertheless, the service design (general fare) and dynamic pricing will
play into the decision-making process.
Unlike for carsharing, where service is often limited to urban centers, the operator is likely

to offer its service in the whole urban area. With the assumed fare and cost structure, the
AMoD operator can make more profit with larger operating areas. Of course, this statement
is made with assumed exogenous demand. However, the assumed price level can be expected
to attract a significant amount of demand. This is a positive sign as PT services are typically
developed best within the city centers and could be complemented with connections from, to,
and between the outer regions.
An attractive AMoD service with a large user base has the potential to save a lot of urban

space. In the 5 % demand scenarios, less than 2, 000 vehicles served more than 100, 000 trips.
This amount is by far more than the average number of trips a private car makes in a single
day. Even though AMoD vehicles will still require some space for pick-up and drop-off, the
amount of urban space that can be saved is a great outlook. Actually, this chapter already
contained a policy study considering the question of whether AMoD vehicles should be allowed
to park on-street or have to return to depots. From an operator’s perspective, street parking
is clearly beneficial. City administrations will have to weigh the value of parking space against
the additional empty VKT that is necessarily produced by banning AMoD street parking.
Moreover, this study assumed the case where operators made return trips to depots instead
of circling around their AVs, which will be difficult to prohibit. A return duty, as stated in the
current German law, is counterproductive in the context of AMoD and should be abolished.
Finally, it has to be noted that the computational complexity of AMoD operations is quite

significant, especially for pooling services. For a real-world operator, it makes sense to invest
the required computational resources to gain additional profit as a few thousand e per day
and per city accumulate to a significant amount over time and multiple operating areas.
Contrarily, from a transportation systems perspective, the use of heuristics to speed up the
simulation of operations is likely sufficient in most cases. Nevertheless, the most relevant
service design parameters — fleet size and fares — affect the service rate significantly and
should be considered in transportation system models.
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Chapter 4

Regulation of AMoD Systems

This chapter studies the impacts of AMoD systems on the transportation network and hhow
a regulating public entity can steer the effects. This public entity can be on municipal, state,
or federal level and is denoted by the regulator in this chapter.

In most transportation system models, the system state is given by some form of equilibrium
of supply and demand. The transportation network determines the supply side, and travel-
ers choosing their mobility behavior represent the demand side. An equilibrium is typically
established because of feedback loops. On the one hand, travelers choose a particular route
the better the travel time is on this route; on the other hand, the travel time on this route
becomes worse as more travelers choose it and it becomes congested.

Similarly, an equilibrium can be expected in the presence of an AMoD service. Demand
is attracted until the fleet is highly utilized and cannot offer a high service quality for new
requests. Moreover, the addition of more vehicles generates additional system capacity but
also creates extra costs.

When measures for the current transportation systems should be developed by transportation
planners of or for public entities, bi-level modeling is often the approach of choice. On the
upper level, the measures are adapted into the transportation system and optimized based
on the performance of the lower level transportation model, in which travelers optimize their
behavior based on the adaptions.

A new tri-level framework was developed, including the AMoD service operator as an addi-
tional decision-making player next to the regulator and the travelers. A separation of (time)
scales is applied once again to formulate the problem. Public entities have several possibil-
ities to regulate AMoD directly, which can range from prohibiting service altogether, some
service design aspects (e.g., no hailing, or no service in certain areas), to changing the cost
structure by enforcing a road toll, parking fees, licenses, or even handing out subsidies (e.g.,
for first/last mile service). Moreover, other regulatory push and pull measures, like making
private vehicles more expensive or increasing the public transport budget, affect the AMoD
system indirectly because they can modify the mobility behavior of travelers. Unlike previous
studies investigating single regulatory scenarios, in which operators did not adapt their service,
the newly developed framework considers operator adaptations and offers the possibility to
optimize certain numeric variables, e.g., the height of a toll.

Parts of this chapter were already published in Transportation Research Part C before this
thesis [Dandl, Engelhardt, et al., 2021]. Besides minor editorial changes and adaptions
of notation, this chapter consists of direct and indirect citations of this reference. For reasons
of readability, it is refrained from repeating the citation after every paragraph.
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In the following sections, a mathematical tri-level problem formulation and a solution ap-
proach are introduced to tackle the regulation of transportation systems in the presence of an
AMoD service. The new framework is general, and for a case study, the regulatory measures
and fleet operational variables have to be determined and their impacts modeled. This step
is conducted with the help of an agent-based simulation model applied to a case study based
on the same area as in the previous chapter, i.e., Munich, Germany. Finally, this chapter
concludes with a more general discussion.

4.1 Problem Description

This chapter models a future transportation system with three key actors — the regulator,
the AMoD service planner, and travelers/system users. The regulator sets the political, legal,
and organizational framework; the AMoD service planner offers a profit-maximizing service
depending on the existing regulatory environment; and each traveler chooses the best of her
available mobility options. On the one hand, the choices of travelers affect the utilization of
the road network and PT system as well as congestion levels, environmental impacts, and the
profit/loss of both the AMoD business and the public agency. On the other hand, regulators
and AMoD service planners can influence the decisions of travelers. The regulator has direct
and indirect methods to change travelers’ mode decisions and to impact the AMoD service
planner’s decisions. Increasing parking fees makes PVs less attractive [Washbrook et al.,
2006]. Subsidies to PT or AMoD services represent indirect methods as these financial policies
could motivate AMoD service planners to offer cheaper trips. A road toll is an example that
affects users both directly and indirectly. PV users directly pay the toll and AMoD companies
– if not exempted – are likely to pass the additional costs on to their passengers. Furthermore,
a zone-based distance-dependent toll can influence route choice decisions of AMoD operators
and individual drivers.
This thesis denotes (i) the decision variables of the regulator by αy, where y is the index for

different regulations; (ii) the decision variables of the AMoD service planner by βs, where s
is the index for different service design parameters; and (iii) the mode-choice decision variable
of traveler r for mode m by mr (mr = 1 for the chosen mode, 0 for the others). For the sake
of simplicity and clarity, this thesis limits the set of mobility options to PV, one AMoD service
and PT with walking access and egress.
The decision-making processes of the three different actor classes represent a non-cooperative

game. The study assumes there is a hierarchy of decision making: regulators effectively set
the rules of the transportation game, AMoD service planners define their service, and travelers
make their mode decisions based on the regulator rules and the AMoD planner’s service. This
approach reflects reality as policies and regulation changes generally require a long planning
period; whereas, an AMoD service planner can likely change/adapt their service characteris-
tics relatively frequently (e.g., monthly or quarterly). Finally, a subset of travelers can update
modal decisions on a weekly, if not daily, basis. This approach represents a separation of time
scales.
The goal of the tri-level decision problem is to find a set of regulator decisions αy,∗ that

maximizes social welfare W subject to the conditions that (i) the AMoD business optimizes
its service design to maximize profit P for a given set of regulations αy and (ii) travelers
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optimize their travel behavior (combined mode and route choice) according to their personal
utility Ur =

∑
mmr ·Um

r (αy, βs), subject to regulations αy and the AMoD service design βs.

αy,∗ = argmax
αy

W (αy, βs,∗(xr), {m∗r(αy, βs,∗)}r) (4.1)

βs,∗ = argmax
βs

P (βs, {m∗r(βs)}r|αy) (4.2)

m∗r = argmax
mr

Ur (mr|αy, βs) ∀r (4.3)

Here, the | symbol denotes that the right-hand variables are set by a higher-hierarchy player.

4.2 General Solution Approach: Multi-Level Bayesian
Optimization

Equations (4.1)-(4.3) represent a tri-level mathematical program. To solve the tri-level math
programming problem, this thesis employs a simulation-optimization solution approach. The
simulation-optimization approach includes the transportation model at the lowest level to
capture the behavior of travelers given the middle and upper level decisions. The travelers
are individually optimizing their own utility and the agent-based simulation solves for user-
equilibrium. Additionally, the simulation-optimization solution approach employs Bayesian
optimization (BO) to optimize the AMoD service planner’s decisions in the middle level and
to optimize the regulator’s decisions at the highest level.
The transportation model performs all traveler optimization processes and returns the ag-

gregated quantities for social welfare W and AMoD service planner profit P as functions of
αy and βs, which are inputs to the transportation model. Therefore, the transportation model
must be sensitive to the regulations αy and the AMoD service design βs. Section 4.3 describes
the details of the transportation simulation model and model components.
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Figure 4.1: Flowchart describing the processes of the solution approach on a high level.

The two-level optimization process is a two loop process. The AMoD service planner opti-
mization loop iterates until a solution to equation (4.2) is found. Then the process jumps to
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the next iteration of the regulator level. This two-level process continues until the upper-level
solution converges. Fig. 4.1 displays a flowchart describing the procedure for an arbitrary
transportation model that returns W and P given αy and βs.

A naive approach would re-start the search for βs,∗(αy) from scratch for every hyper-plane
in the solution space defined by a new set of regulator variables αy. Conversely, BO can help
reduce the number of lower level iterations and thereby overall computational effort.

Both regulator and AMoD service planner level optimization can be non-convex (multi-
dimensional) problems. In these types of problems, an optimization algorithm needs to in-
corporate gradient search techniques to move closer to optima, but avoid getting stuck in
local optima. Since a single function evaluation means running a full transportation model
simulation, the number of explicit evaluations should be as small as possible. BO in general
is an iterative process for multi-dimensional non-convex optimization problems with two com-
ponents: a surrogate model representing the objective function and an acquisition function
determining the next point in the solution space for which the original function, in this case
the transportation model, should be evaluated.

The task of the surrogate model is to infer knowledge from prior iterations; the task of the
acquisition function is to exploit this knowledge to search areas where good objective function
values can be expected while also exploring the solution space to avoid ending up in a local
optimum.

Additional to this nice general feature, BO provides another key advantage in the regulator-
AMoD service planner setting: the surrogate function can infer approximations for the profit-
optimal solution βs,∗(αy) from prior iterations in hyper-planes with different regulatory setting
αy,

′
. The surrogate function develops a sense of closeness in both αy and βs directions with

regard to the underlying profit function P (αy, βs). The ’closer’ another setting (αr,
′
, βs,

′
)

is, the larger its effect on the inference of unknown data points. This exploitation of prior
knowledge reduces the number of required iterations.

In this framework, Gaussian Processes are used to model surrogate functions for AMoD profit
P (αy, βs) and social welfare. In order to anticipate an AMoD operator’s reaction, the surrogate
function for social welfare actually approximates W (αy, βs,∗(αy)). It considers only the social
welfare data points from profit-optimized variables in the solution space (αy, βs,∗(αy)). Hence,
this social welfare surrogate function is defined on the space of the regulator variables.

In the following two paragraphs (Gaussian Process and Acquisition function), single-level
BO with Gaussian processes is briefly described. For a clear presentation, typical mathematical
notation without the transportation context is utilized.

Gaussian Process: Surrogate functions should be smooth representations of the true under-
lying function. They are estimated from prior data points. Like many other BO models, this
thesis applies a Gaussian Process to infer the surrogate function value of any point in the so-
lution space. Additionally, Gaussian Processes provide estimates of the uncertainty associated
with an estimation. This type of surrogate function is described through normal distributions
N (µ, σ) at each point of the solution space.

Let X̃ be a vector space (solution space), f : X̃ → R be an underlying function, and
(xp, fp = f(xp)) with xp ∈ X̃, fp ∈ R denote data points from prior explicit evaluations of f .
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Then a Gaussian process denotes a surrogate function

fS(x) ∼ N (µ(x), σ(x)) (4.4)

Both µ and σ are inferred from the set of prior data points (xp, fp) with the help of covariances.
Let X = ∪pxp be the set of prior solution space data points, x, x1, x2 ∈ X̃ be points in the
solution space, and k(x1, x2) be the covariance of two data points in the solution space.
Together with equation (4.4), the following equations describe a Gaussian process:

µ(x) =
∑
p∈X

∑
q∈X

kp(x)K
−1
pq fq (4.5)

σ2(x) = k(x, x)−
∑
p∈X

∑
q∈X

kp(x)K
−1
pq kq(x) (4.6)

where K denotes the constant covariance matrix, where each entry Kpq = k(xp, xq) for all
prior data points xp, xq. Furthermore, kp(x) = k(xp, x) describes the covariance between a
prior data point and the point in the solution space x, for which the Gaussian Process should
be computed. µ(x) can be used as surrogate function and σ(x) gives information about the
uncertainty of the approximation. This thesis employs the commonly chosen Matern kernel:

k(x1, x2) =
1

2ζ−1Γ(ζ)

(
2
√
ζ ∥x1 − x2∥

)ζ
Hζ

(
2
√
ζ ∥x1 − x2∥

)
(4.7)

where Γ is the Gamma function and H the Bessel functions of order ζ and ζ = 5/2 is set as
in [Y. Liu, Bansal, et al., 2019]. Essentially, the covariances determine the contribution
of each prior observations f(xp) on the approximation of f for an arbitrary point x in the
domain.

Acquisition Function: The iterative nature of the BO is controlled by the acquisition func-
tion. In the n-th iteration, the point xn+1 ∈ X, for which the function f should be evaluated
explicitly, is determined by the maximization problem:

xn+1 = argmax
x

An(x) (4.8)

where An : X̃ → R is the nth-step acquisition function. This function in general has the
same dimension as the data points and (in the best case) the unknown underlying function
f . However, with the help of µ(x) (representing the surrogate function) and σ(x) from the
Gaussian Process, this optimization is performed on an analytical, smooth and differentiable
function defined over the whole domain with cheap function evaluations.
The surrogate function is an approximation of the underlying function f . If the surrogate

function would be chosen as the acquisition function, the iterative process is likely to end up
in a local rather than the global minimum. It might be possible that the approximation further
away from the data points is rather bad and even though the surrogate function decreases,
the underlying function becomes better with respect to the overall objective. To avoid this
phenomenon, the acquisition function generally contains a measure of the uncertainty as well.
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Various possible definitions exist in literature, see e.g. [Y. Liu, Bansal, et al., 2019]). The
Upper Confidence Bound method is applied here:

An(x) = µn(x) + κnσn(x) (4.9)

κn =

√
2 log

(
π2n2+dim/2

3δ

)
(4.10)

where dim is the dimension of the solution space and δ = 0.1 is chosen as in [Srinivas et al.,
2012]. The inclusion of n in the definition of κn helps to adapt the weight of the uncertainty
for higher iterations. However, it also causes the algorithm to keep searching in regions with
low expectation value in case there are a larger number of data points. In order to exploit
prior knowledge to a higher degree, κn was limited to 1 for the later stage of the optimization
process in the case study.

Parallel Initialization of Two-Level BO Process: The previous explanation described
the application of BO on typical one-level optimization. In this novel framework, BO is used
for a two-level optimization. The regulator optimization represents an ordinary BO of social
Welfare W with respect to the variables αy. However, the AMoD service planner optimization
is only applied in a hyper-plane, namely the AMoD service design variables for a given set
of regulatory variables. Hence, the optimization only takes place along βs, but data points
outside αy hyper-plane of the current upper level iteration can help infer the surrogate function
for the optimization of P (αy, βs).
In general, there is no strict rule how to set the initial set of data points in BO. Obviously,

the choice affects the path of the iterations, but due to the uncertainty being part of the
acquisition function, the exploration of the solution space should in most cases be achieved.
However, a good initial distribution of data points can help the procedure.
In this thesis, the initialization process is divided in two stages: first, the operator variables

βs are optimized for the case of no regulations. An initial set of simulations are generated by
Sobol sequences in the operator solution space. This low-discrepancy sequence method creates
a good spread of data points in high-dimensional spaces [Sobol, 1976]. If the solution space
is constrained, the corners of the variable space are added to the initial set of simulations
as these would likely be visited in the next iterations. Then, the BO method determines the
profit-optimal solution in the operator space in the no regulation case. After that, an initial
set of data points in the regulator space are created by Sobol sequences (with the corners
of the regulator space for constrained variables). By initializing processes for a multitude
of regulatory settings {αy} in parallel and joining the information (data points) after each
evaluation, each operator optimization process benefits from the results of ’close’ regulator-
variable hyper-planes, which can reduce the number of necessary iterations even further.

4.3 Model

The solution approach described in the previous section is general, and valid with any trans-
portation model. However, this thesis proposes an agent-based transportation system sim-
ulation model at the lowest level, in order to model the experiences of individual travelers
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Figure 4.2: Flowchart describing the processes of the transportation model.

(particularly, AMoD users); the impacts of AMoD service decisions and operational strategies;
and the impacts of specific regulation, in the appropriate detail to capture the experiences of
travelers and the system impacts. This agent-based transportation model can evaluate social
welfare W and profit P for a certain set of regulatory and AMoD parameters αy and βs.

The transportation model executes a loop (with index i) over time with time steps of size
∆t (t← t+∆t); the time-step is one minute in the following case study. Figure 4.2 illustrates
the model inputs and process flow at a high level. The AMoD aspect is nearly identical to the
simulation framework described in Section 3.6.1, but the model contains a lot of additional
components to represent a complete transportation system.

After incrementing the simulation time 1 , the state of AMoD vehicles is updated 2 .
During this step, the framework counts how many fleet vehicles are currently moving on the
streets and add them to the density of the street network. Together with the density of PV and
PT travelers, these determine the update of travel times and crowding 3 . For new travelers

want to start their trip 4 , a combined mode- and route-choice model, which is based on

real-time information will be applied 5 . From an AMoD operator view, this includes the
user-operator interaction with request, offer and user decision, just as in the simulation model
of the previous chapter. In the following case study, travelers can choose between PV, AMoD,
and PT1. If AMoD was selected, the AMoD operator inserts the pick-up and drop-off stops
into its vehicle routes 6 and updates its availability for new requests 7 , i.e., guaranteeing
the trip of the just assigned request is already considered for the next request. Thereby,
the fleet will not create good offers anymore when it is at its capacity. Finally, the travelers

1Pedestrians and bicyclists with shorter trips are assumed to stick to their travel behavior and are
excluded from this case study.
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choosing PV or PT are counted to the density of future time steps according to their projected
trajectories 8 . The following subsections describe each of the components in more detail.
Computation time is one of the key challenges of this tri-level optimization problem as

the upper levels require multiple runs of the transportation model. Hence, the subsequently
described model aggregates where possible while keeping the agent-based nature of travelers
and AMoD vehicles. Moreover, cities are usually not spatially homogeneous regarding the
density of inhabitants, work places, PT infrastructure, etc. To address the trade-off between
computational efficiency and modeling accuracy, the proposed model separates the study area
into two zones Z: an inner city zone zI and an outer city zone zO. Note that the model is
not limited to two zones and could be extended to more zones.
The transportation model must be sensitive to the upper level decision variable inputs.

However, the model can remain relatively aggregate for portions of the transportation system
that are not significantly impacted by potential AMoD regulations. Hence, the selection of
decision variables influences the types and resolution of the transportation model components.
Therefore, the next step is to define the decision variables that will be analyzed in the case
study to follow.

4.3.1 Selecting a Set of Decision Variables

There are many policies a city can test to improve the performance (i.e. social welfare) of a
transportation system. Often, these policies are usually studied independently of each other,
thereby ignoring potential synergistic and opposing effects among multiple policies. This
chapter and especially the general problem (Section 4.1) and high-level solution approach
(Section 4.2) aim to enable the optimization and analysis of a combination of policies. Nev-
ertheless, the study focuses on a selected set of policies and AMoD service planner responses
(i.e. decision variables) to keep the system computationally tractable.

Internalization of External Costs of Private Vehicles: Even though PVs wear the streets,
cause congestion, emit harmful pollutants, and require valuable space for parking in urban
areas, PV owners do not pay (i.e. internalize) these cost in most cities. Higher costs for
parking spaces and a toll for driving on urban roads could decrease the attractiveness of using
the PV. AMoD services also utilize the street network and are not exempt from parking fees and
road tolls in general. However, as they are likely to spend much less time parking [Fagnant
and Kockelman, 2014], this case study assumes that they do not need to pay parking fees.
Moreover, this choice seems reasonable in the context of the previous chapter. Toll costs and
parking fees are likely treated as variable and fixed costs by the operator, respectively. Hence,
parking fees on AMoD would tend to decrease fleet size and increase VKT.

PT Budget: If the regulator wants to increase demand for PT, they should improve PT
service quality. In most US cities to improve service quality, the regulator would need to
provide a larger budget to the PT agency, who would subsequently determine how to improve
their transit service. Increasing frequencies is necessary to accommodate more travelers and
improve their comfort as the PT vehicles are less crowded. The costs for increasing frequencies
can serve as an input. However, it is not clear how many people will choose PT as their mode;
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the revenue and therefore the required PT budget are an output of a simulation run. Hence,
an iterative process would be necessary with PT budget as regulator variable. For simplicity,
the regulator can directly influence the PT frequencies in this model.

Fleet Size Limitation: City administrations could enforce an upper bound on the AMoD
fleet size. This could be achieved by licensing of AMoD vehicles. Only licensed AMoD
vehicles would be allowed to serve customers and the regulating authority controls the number
of licenses that are handed to the AMoD provider.

AMoD Service Planner Decision Variables: The operation of AMoD services can vary
in many details. The most influential service design parameter is fleet size. As shown in the
previous chapter, it determines the maximum number of travelers that can be served at one
time and is one of the main factors for vehicle availability and traveler wait times. If a city
enforces a fleet size limitation, the upper bound of this variable is set by the regulator. This
case study also looks into the price structure of an AMoD service planner as this influences
the demand and thereby indirectly the vehicle movements and fleet distribution.
Since substantial improvements to the transportation system by a pure ride-hailing service

without shared rides are unlikely, this thesis assumes that the regulator constrains the AMoD
operator to provide a pooling service. AMoD customers may be driven alone, but will share
their ride if a match is possible.

4.3.2 Traveler Mode Choice Model

A traveler r is modeled as an agent that wants to travel between an origin-destination pair
od at a time τr. Both start location xpr and end location xdr are within the boundaries of a
pre-defined study area. For mode choice, the traveler considers the set M of following travel
options: PV, PT (with walking access/egress), and AMoD.
As stated in the problem formulation, each agent r tries to maximize the utility related to a

trip. In order to represent stochastic differences in travel behavior, mode-choice is determined
by a logit model. The probability of traveler r choosing mode m is given by:

Pr(m) =
exp[Um

r ]∑
m exp[Um

r ]
(4.11)

where Um are the utilities of the modes. This case study models the utility of each mode as
the negative of the mode’s traveling costs, i.e., Um

r = −Cm
r . For the sake of simplicity, the

case study uses one value of time cV OT for all time-related factors (e.g., in-vehicle time, wait
time, walk time, etc.) in the utility/cost function.
For PV trips, the fastest route is considered. The travel time tPVod is weighted by value of

time cV OT , the travel distance dPVod is weighted by the distance-dependent vehicle costs cD,PV

and the utility can also be impacted by the toll Ctoll
od (τr), and parking fees Cpark,PV

od (τr) for OD-
relation od of traveler r at time τr. The explicit toll and parking fees depend on the decisions
of the regulators and are described in sections 4.3.5 and 4.3.5, respectively. Additionally, the
model includes an intercept term cPV to calibrate the modal split in the model in the absence
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of AMoD service and to reflect unobserved attributes representing the attitude towards PV
compared to the other modes.

CPV
r = cV OT · td,PVod + cD,PV · dod + Ctoll

od (τr) + Cpark,PV
od (τr) + cPV (4.12)

For PT, the model considers the fare fPTod , the access and egress distances dwalkr to and
from PT stops with a walking speed vwalk, the number of transfers NT , the transfer penalty
cT , crowding of the PT system ηPT , and the travel time tPTod . Each transfer represents a
risk of additional travel time. Delays on one line can cause a traveler to miss the next
connection; the resulting additional time for the traveler depends on the frequencies of the
PT lines. Furthermore, crowding impacts utility through the value of travel time with the help
of a monotonously increasing function gV OT (ηPT ). In other words, the perceived travel time
increases with the level of crowding in vehicles. This is modeled as a piece-wise linear function
gV OT with supporting points (ηPT , gV OT (ηPT )) described in C.

CPT
r = fPTod + gV OT (ηPT ) · cV OT · td,PTod + cV OT · vwalk · dwalkr + cV OT · tw,PTr + cT ·NT (4.13)

For AMoD, the model assumes that the fare, the travel time, and the wait time affect
the utility associated with AMoD and thus the mode choice of travelers. The AMoD service
price/fare is one of the AMoD service planner’s decision variables and will be described in more
detail in section 4.3.5.

CAMOD
r = fAMOD

r + cV OT · td,AMOD
r + cV OT · tw,AMOD

r (4.14)

Modeling Assumptions: As this thesis aims to estimate the long-term effects rather than
the short-term effect that AMoD can have on PV ownership and the transportation system,
travelers do not have a PV ownership attribute. Instead, all travelers are given the choice to
use PV, but at full costs (i.e., cD,PV includes depreciation, insurance, maintenance, fuel, etc.)
instead of just operating costs.
For the sake of simplicity, the model does not incorporate impacts of dynamic costs (toll,

AMoD pricing) on the departure time choice of travelers.
Another modeling assumption typical to large-scale transportation models is that travelers

make their decisions immediately. Therefore, just as in the previous chapter about the oper-
ation of AMoD systems, the operator will know immediately, whether a request accepts an
offer or chooses an alternative mode and rejects the offer.

4.3.3 Network Model

Route choices affect the costs of all modes. As modeling route choices is a computationally
expensive process, the proposed framework pre-processes both the PT and the street network
and makes some simplifying assumptions that enable computationally efficient network model-
ing. PT stations are matched and connected to the closest street network node with zero cost.
Traveler origin and destination locations are matched to the nearest street network access/exit
nodes.
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Street Network and Routing Model: PVs and AMoD fleet vehicles drive in the street
network graph G = (N,E). The attractiveness/utility of these two modes is severely influ-
enced by route travel times in the network. The travel times, in turn, depend on the state of
the network, which is affected by the number of vehicles on the streets. In order to be useful
in the larger modeling framework, the street network model needs to reflect traffic dynamics.
Furthermore, spatial granularity is necessary to model the spatio-temporal availability of AMoD
vehicles and pooling of travelers for shared rides. Modeling AMoD in a microscopic traffic sim-
ulation [Dandl, Bracher, et al., 2017] would satisfy both criteria, but is computationally
very demanding and not suitable for the upper level optimizations.
This chapter of the thesis employs an approach that combines spatially granular but com-

putationally efficient routing with macroscopic traffic dynamics. The approach involves pre-
processing all vehicle paths based on free-flow velocities. Therefore, the efficient algorithm
described in Appendix B.2 can be used to create routes.
The travel times on each path are scaled using factors ψtc derived from separate (simplified)

network fundamental diagram (NFD)s for the outer and inner city. Hence, vehicles always
travel on the path that has the shortest travel time under free-flow conditions. However, the
edge (i.e. link) travel times in the transportation model simulation are scaled according to the
traffic state on each edge. The travel time on edge e in cluster/zone z ∈ Z at simulation time
t is given by

tte = ψtzte (4.15)

where te is the free-flow travel time on this edge. The cluster travel time factors ψtz are updated
each time step t based on the vehicle density in the respective part of the street network. The
density comprises the number of PVs and AMoD vehicles driving at time t, which transport
the agents within the study area, as well as the vehicles starting or ending their trips outside
of the study area, which only act as background traffic. The number of background traffic
vehicles needs to be calibrated. The flow qtz and thereby the macroscopic velocity and travel
time factor in cluster z at time t is derived from the NFD qz = qz(kz) and v̄z = qz/kz.
As in [Dandl, Tilg, et al., 2020], the travel time factors are given by the functional form

ψtz ∼ v1,z

(
1

v̄z
+

1

v2,z

)
(4.16)

and the parameters v1,z and v2,z are fitted according to a travel time comparison with a dynamic
traffic assignment simulation (in a pre-processing step). In order to reduce oscillations, the
moving average for kz of the last 5 time steps is used to update the travel time factors.
In order to reduce the computational burden, PVs are not rerouted and tracked in the model.

Only AMoD vehicle states are updated each time step because they affect the offer the AMoD
operator can make to new travelers and therefore their decisions.
This NFD-based approach to scaling network travel times precludes meaningful evaluation of

route choices. However, this approach effectively approximates the quantity affecting traveler’s
mode-choice and AMoD vehicle-passenger matching: the travel time between two points.

PT Network Model: A PT system includes the spatial network layout of all lines, the
schedule for each each line, as well as the specification of vehicle types (e.g., buses and
trams).
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Such PT systems are specified in the widely used GTFS format2. GTFS specifies the
PT system including schedule, stops, routes, and vehicles. To process routing queries in
such a system, OpenTripPlanner3, which is based on OpenStreetMap4 is a useful tool. By
specifying origin and destination, as well as a departure time, possible PT trips are found.
Each trip includes access, egress, and transfer walking distances, total travel time and number
of transfers. These parameters are required inputs for the traveler choice model.

This case study aims to investigate a large operating area with a high number of travelers
and thus computational time is of essence. In order to increase efficiency, routing queries
in the PT system between all stop-to-stop combinations are pre-processed. The result is
a data table (i.e. skim matrix) in which the walking distance, travel time, and number of
transfers for each stop-to-stop combination is stored. This procedure allows to reduce the
OpenTripPlanner query to a simple look-up in the pre-processed data thereby substantially
decreasing the computational cost of such queries. As the waiting time at the station depends
on the schedule and whether the PT service operates on time, it is assumed that the traveler
arrives just in time, i.e., with tPTwait = 0.

Another PT attribute affecting a traveler’s mode choice given by equation (4.13) is the
crowding within PT vehicles. This is modeled in an aggregated fashion similar to the street
network. Whenever a traveler chooses PT, the system-wide count of PT travelers increases by
one for every time step – until the arrival. Crowding represents the equivalent of congestion
of road-bound traffic. The literature suggests that the perceived travel time of (standing)
passengers increases mostly linear with the number of passengers per vehicle. Therefore, the
effects of crowding on the travel time can be represented as a (value of) travel time factor.
Studies for various large cities suggest a maximum factor of 2.0 [Tirachini, Hurtubia,
et al., 2017]. Due to the lack of corresponding studies for the city of Munich, the average
maximum factor to model the effects of travel time is applied in this case study. The crowding
factor ηPTt is defined as the ratio between the number of PT travelers nPTt and the total PT
capacity ΩPT

T .

ηPTt =
nPTt
ρPtT

(4.17)

ρPTT =
1

T

∑
l

∑
ζTl

ρPTl =
∑
l

|ζTl |
T
· ρPTl =

∑
l

νTl · ρPTl (4.18)

where ρPTl is the capacity of a PT vehicle on line l (train, tram or bus) and |ζTl | is the
number of trips on this line during a time interval T (chosen to be one hour) and νTl the
derived frequency. Similar to the street network, PT users traveling from or to areas outside
of the study area need to be included in a calibration process.

For the estimation of social welfare, operating costs and emissions have to be evaluated.
Therefore, operating cost CPT

T and emissions EPT
T of the PT system during time interval T

2https://developers.google.com/transit
3https://www.opentripplanner.org/
4https://www.openstreetmap.org
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are approximated based on the frequencies:

CPT
T = T

∑
l

νTl · dl · cl (4.19)

EPT
T = T

∑
l

νTl · dl · wl · ew (4.20)

where dl, cl and wl ·ew are the mean length, cost, and emissions of a PT vehicle trip (from start
to end station) of line l, respectively. The assumed cost values reflect typical per schedule-
km costs beyond operating costs for the respective vehicle type (bus, tram, train) on line l.
Together with the revenue of PT travelers, they represent the PT budget.

4.3.4 AMoD Fleet Control Model

AMoD vehicles are explicitly represented as agents in the transportation model, which are
controlled centrally by the AMoD operator. The control model follows the same process flow
as described in the previous chapter: a traveler r requests information about a possible trip,
the AMoD operator generates an offer containing fare, expected waiting and driving time
based on the current state of its system and possible insertions of r into the existing vehicle
plans. Then, the traveler chooses whether to use AMoD or another mode, which translates
to a rejection of the AMoD offer. The vehicle plan is updated in case of an acceptance and
reset in case of a rejection.
As mentioned in the conclusion of the last chapter, real-world operators are likely to optimize

all decision levels. However, here the operational decisions are based on the IRS strategy
without vehicle plan re-optimization and with RV heuristics described in Section 3.3.2. Even
though optimization potential is not exhausted, the results of the last chapter show that the
IRS strategy can achieve decent solutions with RV heuristics. Most importantly, the required
computational effort for re-optimization of pooling assignments or for considering every vehicle
for very large fleets would severely slow down the general framework.
The fleet operator still assigns maximum wait time (τwr ) and relative detour time (τ δr )

constraints for a request r. These no longer determine whether the request will accept or reject
an offer but are still useful tools to limit the vehicle search space (τwr ) and possible insertions
(τwr and τ δr ). These level-of-service parameters define the service design and, thereby, the user
experience of the envisioned service and are chosen as in the case study of the last chapter.
However, since travel times are no longer static, it is possible that constraints, which are valid
for a request r at time τr, become infeasible over time. Since the constraints do not actually
determine traveler decisions, this (real-world effect) is not considered as a problem. However,
the addition of new requests is prohibited unless all time constraints can be satisfied to limit
delays.
The control objective is chosen just as in equation (3.16) of the previous chapter:

F S
ξv = cD · dξv + cV OT

∑
r∈Rξ

v

(
twr + tdr

)
(4.21)

With respect to the mid-term strategies, dynamic pricing is applied with the utilization
based model. Moreover, this case study refrains from using a repositioning strategy. First of
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all, forecasts of future demand and supply are not available here because demand is endogenous
and cannot be derived from historical data. As shown in the results of the previous chapter,
this will necessitate larger AMoD fleets to reach a similar level of service but with less empty
VKT. This might be aligning better with the regulator objective depending on the desired
trade-off between required space on and off the road.

4.3.5 Modeling the Impacts of Decision Variables

The transportation model has to be sensitive to the decision variables stated in Section 4.3.1.
The following describes how the decision variables interact with the other parts of the trans-
portation model.

Parking Fee Model: Parking fees for PVs are generally dependent on the location and the
amount of time a vehicle is parked. In an activity and agent-based travel demand model, the
parking time can be approximated very well by the time of a given activity. For trip-based
models, the parking costs become much more difficult to approximate. Furthermore, there is
no way of keeping track of vehicle consistency, i.e., a traveler who chooses a PV to get to work
is very likely to choose the car back on the way home. Unfortunately, only trip-based data
is available in the investigated case study (see section 4.4). For the sake of simplicity, it is
assumed that PV trips in the morning start from a traveler’s home and trips in the afternoon
end there as well. Additionally, it is assumed that parking at home is free and only parking
fees for a constant duration in the intermediary location have to be paid. Parking fees depend
on the zone where a PV is parked, whereas for the sake of simplicity it is assumed that parking
fees are only introduced in the inner city zones zI , while there are none in the outer part zO.
For the model of this case study, parking fees are equally split across both trips; therefore, the
destination of morning trips and the origin of afternoon trips determine the amount:

Cpark,PV
od (τi) =


αP τi < 12:00 & d ∈ zI
0 τi < 12:00 & d ∈ zO
αP τi ≥ 12:00 & o ∈ zI
0 τi ≥ 12:00 & o ∈ zO

(4.22)

τi reflects the time a traveler wants to start her trip and αP the regulator decision variable for
parking regulations controlling the parking fee rate.

Road Toll Model: Similar to the work of [Bracher and Bogenberger, 2017], a dy-
namic toll controlled by an NFD is applied. A distance-based toll is used for this case study,
where only the distance within the toll area in the inner city dod|zI is relevant. The coefficient
is 0 up until a certain vehicle density threshold k0. For densities above this threshold, the toll
coefficient increases linearly with the vehicle density in the inner city zone and is scaled by the
regulator decision variable αRT :

Ctoll
od (t) = max

(
ktzI − k0
k0

, 0

)
· αRT · dod|zI (4.23)

where ktzI refers to the density in the inner city zone.
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PT Frequency Model: The frequency of PT lines impacts the transportation system in
multiple ways. In this model, it affects the total capacity of the PT system and thereby the
crowding ηPTt of PT vehicles. Additionally, a higher frequency improves traveler’s acceptance
of transfers cT because the average transfer and wait times decrease. For simplicity, the model
includes a linear relationship between frequency and the coefficient in the traveler logit model.
The effect of scaling the PT frequency by a factor of αPT is modeled as follows:

ηPTt =
ηPTt,0
αPT

(4.24)

cT =
cT0
αPT

(4.25)

where the ”0” lower-case index refers to the value from the original data.
Of course, higher PT frequencies require operating more PT vehicles and generate higher

costs and emissions. With the assumed linear relation between number of trips ntl on line l
per time period and costs in equations (4.20) and (??), following cost scaling can be derived:

CPT
T = αPT · CPT

T,0 (4.26)

EPT
T = αPT · EPT

T,0 (4.27)

AMoD Fleet Size: The regulator can set an upper bound αF on the number of AMoD
vehicles is allowed to operate. The AMoD operator then has the choice to select the fleet size
βF between 0 and αF .

AMoD Fare Model: As in the chapter 3, the AMoD system is assumed to use a minimum
base fare and a distance-based fare as described by equation (3.1). As mentioned, this service
design is chosen to avoid the substitution of short active mode trips by AMoD. Moreover, the
utilization-based pricing scheme from equation (3.54) is applied. Together, the fare fr for a
request r is determined by

fAMOD
r (t) = max

(
fB, βPD · dr ·

{
1 ηAMOD

t < 0.75
1 + βPU · (ηAMOD

t − 0.75) ηAMOD
t ≥ 0.75

)
(4.28)

where βPD and βPU are the AMoD operator variables for the distance fare rate and the
maximum surge price factor, respectively. It should be noted that the dynamic pricing factor
βPU only takes effect if the fleet is utilized to a high degree, whereas the distance-based pricing
factor βPD affects almost every single offer and thereby the mode-choice decisions and the
transportation system as a whole.

4.3.6 Social Welfare and Profit Model

The objectives of regulator and AMoD service planner are social welfare and profit, respectively.
The profit can be defined straightforwardly as the difference between revenues from fares of
served travelers and operating costs:

P =
∑
r∈Rs

fAMOD
r −

βF∑
v=1

(
cFv + cDv · dv

)
−
∑
t

Ctoll,AMOD
t (4.29)
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where Rs is the set of served requests, fAMOD
r the fare paid by request r, cFv the fixed costs

of a vehicle (e.g., for leasing and insurance), cDv distance-dependent operating costs, dv the
total driven distance of vehicle v and Ctoll

t is the total toll derived from the distance driven in
the toll area of all fleet vehicles (dAMOD

t

∣∣
zI
) during a time step with high traffic demand:

Ctoll,AMOD
t = max

(
ktzI − k0
k0

, 0

)
· αRT · dAMOD

t

∣∣
zI

(4.30)

The definition of social welfare is more complex and not unique. Every city could weigh
different objectives differently or have additional objectives. The objective function in this case
study includes i) the sum of travelers’ utilities of their chosen mode m∗, ii) revenues and costs
for PT, iii) revenues from parking and tolls and iv) emissions of the transportation system.

W =
∑
r

Um∗
r +

∑
r:mr=PT

fPTr − CPT
T

+
∑

r:mr=PV

Cpark,PV
od +

∑
r:mr=PV

Ctoll,PV
od +

∑
t

Ctoll,AMOD
t

− cCO2

ePV ∑
r:mr=PV

dodi + eAMOD

βF∑
v=1

dv + EPT
T

 (4.31)

4.4 Case Study: Setup

4.4.1 Case Study Description

As in Section 3.6.2, this case study is based in Munich, Germany. The AMoD operating area
/ study area, the street network, and the set of possible AMoD access points for pick-up and
drop-off are exactly the same. However, the street network is divided into two zones, one for
the city center zI and one for the outer part of the city zO, which are separated by the inner
highway belt B2R called ”Mittlerer Ring” as illustrated in Figure 4.3a. It should be noted that
the street network exceeds the study area as trips might be faster along the outer motorway
called A99 as through the city. The A99 with a speed limit of predominantly 120 km/h, the
B2R with speed limit of predominantly 60 km/h and motorways leading towards the city center
with speed limits between 60 and 120 km/h are highlighted in the street network as major
streets (see Fig. 4.3a). Most other streets have a speed limit of 50 km/h (general) or 30 km/h
(residential areas).
A multi-modal model is required for this framework, especially since Munich has a widely

used PT system. The PT mode share in Munich is approximately 40 % within the study area
(operating area of AMoD). Hence, the PT network is created based on open-access GTFS
data5. The included PT lines and stations are shown in Figure 4.3b. The high-capacity trains
and corresponding stations in the city center are often overly crowded resulting in stations
which act as bottlenecks in the system. Travelers can access or leave the PT network at the
PT stops marked in green. To connect the street and PT networks, each PT stop is connected

5www.gtfs.de
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to the nearest street node. Additionally, each street network access point, on which demand
is defined, connects to the nearest PT network stop. This simplification is valid as the PT
stop density is very high and is used to speed up the pre-processing of the public transport
network.

NFDs and functional forms qz(kz) are estimated for the street networks within zI and zO
based on data from the microscopic traffic simulation model. Moreover, the parameters for
the travel time scaling behavior in equation (4.16) are estimated. The microscopic traffic
simulation model from [Dandl, Bracher, et al., 2017] also includes PV trips passing,
entering, or leaving the A99 area. These trips are treated as background traffic as they are
not represented in the traveler list. To calculate background traffic density the model creates
two additional traveler sets. The first one includes all PV trips available in the data, while the
second one only includes PV trips with origins and destinations within the AMoD operating
area. The simulation is run with both traveler sets while enforcing the travelers to always
choose PV. The difference between the measured hourly averaged network densities for each
NFD-area is considered the background traffic density.

The time-dependent PT capacity is calculated using the GTFS data by evaluating equa-
tion (??). The PT background travelers (leaving or entering the study area) are determined
the same way as previously described for PVs. Two traveler sets are created based on the
original PT demand data from [Maget et al., 2019]: one includes all PT trips in the data
and the other one only includes travelers with both origin and destination within the AMoD
operating area. A simulation for each traveler set is run while enforcing the travelers to chose
PT. The hourly average difference in PT travelers is used in the model as background value
for calculating equation (4.17). Test simulations showed that the crowding factor in the PT
system reached a level of approximately 0.2. In the real-world PT system, central stations
are highly crowded while many buses, especially in the outer regions, are rarely crowded. In
order to model this inhomogeneity in Munich’s PT system, where a large share of travelers
experience crowding, the total capacity computed according to equation (4.18) is reduced by
a factor of 3.

Like in the last chapter, the OD demand data is derived from both data sources ([Dandl,
Bracher, et al., 2017] and [Maget et al., 2019]), but this time 100 % of demand is
represented by agents that want to travel within the study area. The resulting time-dependent
trip counts are shown in Fig. 4.4. The travelers are generated by Poisson processes with
rates corresponding to the respective OD-matrix entries. The generation process is conducted
multiple times to create request data sets with different random seeds. Street network access
points within a particular origin and destination area are chosen randomly as traveler origins
and destinations, respectively. These agents use the logit model described in Section 4.3.2 for
combined mode- and route-choice decisions. By treating travelers from outside the A99-area
as background traffic, these travelers are effectively exempted from mode choice decisions.
As these travelers do not have direct access to the AMoD service, it is assumed that their
decisions are not likely to change thereby reducing the computational effort of the model.

Input parameters for the various sub-models of the transportation model are summarized in
the appendix C. Thereby, the value for cPV , the intercept term for private vehicles in the mode
choice model, is a result of a calibration process, in which this term was varied in simulations
with 0 AMoD vehicles to end up with the ratio of 56.5 % PV and 43.4 % PT (which is known
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(a) Street Network

(b) PT Network

Figure 4.3: Street network (a) and PT network (b) of the city of Munich used in this case
study. Blue shows the AMoD operating area and orange points correspond to
street network (SN) access points, where travelers enter and leave the simu-
lation. Road tolls and parking fee regulations are applied in the ”iB2R” area
with the ”B2R” as outer boundary (a). The area ”iB2R” and the remaining
study area denoted by ”LHM-iB2R” also resemble the two network clusters
for calculating the NFDs. In (b) PT stops area shown in green. To connect
the PT network and the street network, each PT stop is connected to the
nearest street network node.
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Figure 4.4: Hourly trips within AMoD operating area from PT and PV trip data. Overall
the data covers 2.3 million trips with a mode share of 56.6% PV and 43.4% PT.
Because of computational complexity, the analysis only simulates the morning
peak from 6am to 9am – indicated by the dashed lines. The morning peak
contains 18% of all trips.

from the two data sources).

The AMoD service design is chosen as in the operational case study, with constraints for
maximal customer waiting time τwr = 30 s and relative detour time τ δr = 40 % and a vehicle
capacity ρ = 4 passengers. Additionally, the boarding time is assumed tb = 30 s just as before.

4.4.2 Scenario Setup

In order to improve the livability in the city, the administration and regulator might apply
various policies to regulate traffic in a future with AMoD fleets, especially in the inner districts.
The case study incorporates the policies described in section 4.3. Table 4.1 shows upper and
lower bounds for the corresponding regulator and AMoD service planner decision variables
based on discussions with experts from the city administration. These boundaries should reflect
socially acceptable limits as, for example, an unbound optimization of the toll parameter might
result in a situation, where only the richest people can afford to travel by private vehicle. The
scenario ”No Regulation” denotes the set of regulator variables αP = 2.50 e, αRT = 0 e,
αPT = 1, and αF = 50,000 vehicles. Test simulations showed that this value for αF is
sufficiently high to not constrain the profit-optimal operator fleet sizes.

For application in the Gaussian Process and framework, the variable ranges are linearly
transformed to [0, 1] in order to have comparable scales. Mathematically, these limits act as
boundaries in the optimization process of the acquisition function in equation (4.9).

With a chosen set of decision variables, the transportation model is simulated three times in
the morning-peak (6am-9am) with different random seeds. The resulting mean and standard
deviation of W and P are used for µ and σ in the upper level BO framework.

141



4 Regulation of AMoD Systems

Decision
Variable

Player Range Unit Short Description

αP R 2.50 - 5.00 e Parking fees for PVs ending/starting within
toll area (morning/afternoon)

αRT R 0 - 1.00 e/km Dynamic road toll per driven km for AMoD
and PVs within toll area

αPT R 0.25 - 2.0 Scale factor to decrease/increase PT frequen-
cies

αF R 1 - 50,000 vehicle Number of AMoD vehicle licenses

βF FO 0 - αF vehicle Number of AMoD vehicles
βPD FO 0.25 - 2.00 e/km Distance-based AMoD fare
βPU FO 1.0 - 10.0 Scale factor to increase fares in times of high

vehicle utilization

Table 4.1: Decision variables of regulator (R) and AMoD fleet operator (FO) in this case
study.

Second Social Welfare Definition (Pro-PT Scenario): A second definition of social
welfare will be used in the case study to show impacts of other weights of this multi-objective
problem. This scenario will be denoted by Pro-PT scenario. Following adaptions are assumed:

cCO2 → 25 · cCO2 (4.32)

Cpark,receive → Cpark/4 (4.33)

Ctoll,receive → Ctoll/4 (4.34)

CPT → CPT/10 (4.35)

EPT → EPT/10 (4.36)

eAMOD → 3 · eAMOD (4.37)

The modified social welfare definition puts a much higher weight on the emissions of the
transportation system. Moreover, the standard parameter definition assumes that all parking
revenues are paid to the city, thereby ignoring private parking garages. The valuation of parking
revenue can also be lower to incorporate the space that has to be reserved for parking instead
of put to other productive uses. Similarly, the default definition ignored costs related to the
operation of a toll system, a valuation that is given for the required space and infrastructure
costs for roads. Therefore, the full parking costs (PV users) and toll costs (PV users and AMoD
operator) have to be paid, but only one forth is added as revenue for the city administration.
The costs for PT could be lowered with automation and the valuation of its costs could also
be lower as PT has the obligation to serve travelers, which naturally will lead to higher costs,
but could also be valued. A full electrification, right-sizing, and adaption of the schedule could
bring significant reductions in PT emissions. Finally, the AMoD operator might use internal
combustion engine vehicles and have an increased CO2 footprint.
A first impression to sensitivities of different social welfare parameters can be checked very

quickly as these coefficients do not affect the input of simulations. Therefore, all simulations
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are still valid and the result database from simulations with other social welfare coefficients
can be utilized as long as the database contains values for the respective single social welfare
components.

4.5 Case Study: Results

4.5.1 Evaluation After Initial Simulations
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Figure 4.5: Operator profit over operator variables after the initial set of operator simu-
lations for the case without regulation.

An initial set of 272 operator settings for the no-regulation case revealed that the two oper-
ator variables fleet size βF and distance-based fare βPD are more critical than the utilization-
based pricing factor βPU .
Figure 4.5 illustrates a sharp increase in operator profit for fleet sizes below 10,000 vehicles.

In this region, each addition of an AMoD vehicle generates much more variable profit, i.e.,
revenue minus variable distance-dependent costs, than its fixed vehicle costs. The marginal
benefit of adding vehicles decreases up to fleet sizes of 20,000 to 25,000 vehicles before the
additional fixed costs of adding vehicles finally become larger than the extra variable profit.
Interestingly, the curve does not show a steep decline of profit for larger fleet sizes. This means
that vehicles do not have to be utilized the whole time to be profitable. It can be expected
that full-day simulations would create a steeper curve since fewer vehicles would be able to
serve the demand in off-peak hours.
The distance fare shows a clear maximum at about 0.85 e per km (of direct customer

route distance), which at least is in the range of the assumed value of 1.00 e per km in the
Chapter 3. In the used mode choice model, fares below that hardly affect the attractiveness of
AMoD compared to PT and PV. Hence, higher fares generate larger AMoD revenues. Larger
fares reduce the number of AMoD users more than additional revenue per user can bring the
operator. Likely, reduced pooling efficiency for a lower number of customers also plays a role.
It should be noted again that this case study looks at long-term impacts and computes the
PV mode with full costs rather than operating costs. It is probable that AMoD operators have
to offer lower fares initially in order to convince travelers to give up their PVs.
As illustrated in Figure 4.6, no more than 12,000 of the more than 25,000 AMoD vehicles

are in use at any given time. Only a few of these drive without any passengers, most with
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Figure 4.6: AMoD vehicle occupancy in the best operator scenario with 25,400 vehicles
and a distance fare of 0.86 e per km.

either one or two passengers, a considerable share with three passengers, and a small share
with the maximum of four passengers. This results in a km-averaged occupancy of 1.9 pas-
sengers/vehicle. The average travel time and fare of customers are approximately 11 minutes
and approximately 3.3 e, respectively.
A simple estimation for the lower bound of profitable vehicle utilization can be conducted

with these quantities. With 1.9 passengers on board, a vehicle produces revenues and variable
costs of 3.8 and 0.25 e per km, respectively. Therefore, 93 % of revenues are variable profit.
Three trips with this variable profit are sufficient to compensate for the fixed vehicle costs.
Hence, it can be concluded that the fixed vehicle costs are compensated with approximately
half an hour of activity.

As shown in the previous chapter, real-world operators are likely to spend more computa-
tional resources and utilize demand estimations to improve the fleet control by more advanced
customer-vehicle assignments and repositioning. This will reduce the fleet size needed to serve
the same amount of demand thereby reducing fixed vehicle costs. Empty travel and variable
costs might increase, but to a lesser degree. For the purpose of this case study, the over-supply
of vehicles is acceptable since for the choice of travelers it is critical that vehicles are available;
a customer does not consider whether the AMoD vehicle was idle or had to be repositioned
beforehand.

The utilization-based pricing factor βPU only makes a difference for fleets in under-supply
or near-to-under-supply conditions. Unless the regulator sets a low boundary on fleet size, this
will not be the case in the subsequent scenarios.

After the simulations of the initial set of regulator settings, correlations were used as a
sanity check for the sensitivities of (regulator) variables in the transportation model. Figure 4.7
displays the Pearson correlation coefficients between several KPIs and specific variables as well
as between KPI pairs.

As expected, the modal split of the AMoD service correlates positively with the fleet size and
negatively with the base fare. The total traveler utility increases with higher AMoD availability
and lower fares. A better AMoD offer also decreases crowding in the PT system and the PV
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Figure 4.7: Pearson-Correlations of various KPIs with the decision variables (left) and
other KPIs (right).

mode share and thereby parking revenues. Obviously, vehicle fixed costs completely correlate
with fleet size. Since a fleet size limitation affects the fleet size for low values, its correlations
follow the fleet size, but are weaker.

An increased PT frequency effectively decreases crowding, and therefore increases the total
utility of all travelers and the modal split of PT. As expected, an increase in PT mode share
also reduces the density in both clusters inside (iB2R) and outside (LHM - iB2R) of the inner
highway belt (B2R) of the street network.

Parking costs and toll costs generally seem to have smaller impacts than changing the PT
frequency and the available AMoD offer (fleet size and fare). Nevertheless, they both serve
their purpose increasing the modal share of PT and decreasing the density within the inner
city street network.

Most KPI correlations are clear. For instance, low PT emissions are the direct consequence
of low PT frequency. Similarly, AMoD fixed costs are a direct consequence of the fleet size
variable and therefore, show the same correlations.

Interesting correlations include a negative correlation of PT revenue and total traveler utility.
Push measures, which intend to increase the PT mode share to make PT relatively more
attractive, increase the general travel costs and therefore decrease the total travel utility.
Moreover, high PT mode share is related to scenarios with low AMoD revenue (either due to
low fleet size or high fares), which also decrease the total travel utility. All KPIs indicating a
high mode share of AMoD (including a low PV mode share) seem to have a positive impact
on travel utility.

While correlations are meaningful to derive first insights and perform qualitative model
checks, they cannot give quantitative answers to questions, such as how high a regulator
should set the toll. Moreover, the correlations do not account for the structure of the tri-
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level optimization problem; rather the correlations consider every simulation equally no matter
whether the AMoD service planner variables are optimal or not.

4.5.2 Convergence to the Optimal Solution
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Figure 4.8: Convergence behavior of two-level BO framework. Different colors represent
different regulator settings, for which an operator variable optimization is per-
formed. The ”-2” iteration represents the initial no regulation setting and the
”-1” iteration contains the initial set of regulator settings. The two colors for
this iteration show the regulator setting with the best operator profit (orange)
and best social welfare (green) result.

The solution approach contains multiple convergence processes as the lower level opera-
tor optimization is supposed to converge for each regulator step. Figure 4.8 illustrates the
convergence behavior of the two-level framework plotted on a single axis representing the
continuously counted operator iteration.
The iteration labeled ”-2” denotes the no-regulation case. Its first operator iterations con-

tains 272 different operator settings. After that, each operator step created one new operator
setting according to the acquisition function optimization in equation (4.8). A minor improve-
ment over the best initial setting was achieved.
After that, an initial 272 regulator settings were set up, where the respective operator

variables were derived via BO. If the fleet size limit was above the optimal fleet size, the
best operator variables could be used, for smaller fleet sizes, other operator variable settings
were derived. As shown in Figure 4.8, the first operator iterations of the initial regulator

146



4.5 Case Study: Results

iteration (”-1”) often produced really low profit values because the algorithm explored low
AMoD fleet sizes or too high or low distance-fare values. The search hardly exploited the prior
knowledge from the no-regulation case with κ according to equation (4.10), which motivated
the limitation of κ to 1 after 34 operator iterations. With this change, the exploitation of prior
simulation results helped to quickly derive near-optimal operator settings.
The large and well distributed set of initial regulator settings in the ”-1” iteration ensures

that a good solution in the regulator variable space is available.

4.5.3 Comparison of Scenario Results

There are different mindsets when it comes to regulating a transportation system. In the end,
the definition of the social welfare function will determine what the optimal scenario will be.
In the following, the results from several scenarios are compared:

• No AMOD: status quo without an AMoD system

• No Regulation: transportation system with AMoD system without changes in regulation;
operator variables defined by result of one-level BO

• Default Scenario: social welfare definition according to equation (4.31); operator and
regulator variables defined by result of BO process

• Pro-PT Social Welfare Definition: where the weight of social welfare components are
changed according to equations (4.32)-(4.37); operator and regulator variables defined
by result of BO process
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Figure 4.9: Mode split of motorized trips in the described scenarios.

As mentioned in the introduction, AMoD has the potential to disrupt urban mobility. Fig-
ure 4.9 illustrates that AMoD will take shares from both PV and PT. In all AMoD scenarios,
AMoD was chosen by approximately 50-60% of travelers, whereas a larger share of AMoD
travelers were prior PV than PT users. Regulations can impact whether travelers switch from
PT to AMoD or PV to AMoD. Interestingly, the two SW definitions introduced measures
with quite different outcomes: the standard definition limited the AMoD share at around
50 % thereby increasing both PV and PT share; the Pro-PT definition left the AMoD share
unchanged, but further limited the PV share from 11 % in the unregulated scenario to 8 %.
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No
AMOD

No
Regu-
lation

Default
Social
Welfare
Definition

Pro-PT
Social
Welfare
Definition

Regulator
Variable

Parking Cost [Euro / h] 2.5 2.5 2.5 4.84
Toll Cost [Euro / km] 0 0 1 0.06
PT Frequency Scale 1 1 0.25 1.23
AMoD Fleet Size Limit 50000 50000 50000 46900

Operator
Variable

Fleet Size 0 25400 14600 22900
Dist. Fare [Euro / km] 0.25 0.86 1.01 0.84
Util. Fare Factor 1 10 4.3 10

Social
Welfare
KPIs

Social Welfare -5400 -4669 -4442 -4666 / -4727
Total Traveler Utility -5331 -4402 -4751 -4359
∆Total Traveler Utility 0 929 580 972
PT Revenue 178 113 149 127
PT Costs 334 334 76 405 / 40
Total Parking Revenue 173 18 15 7 / 2
AMoD Toll Revenue 0 0 211 31 / 8
PV Toll Revenue 0 0 33 6 / 1
PV Emission Cost 32 8 9 6 / 142
AMoD Emission Cost 0 2 2 2 / 159
PT Emission Cost 54 54 12 66 / 165

AMOD
Profit
KPIs

AMoD Profit 0 930 760 899
AMoD Revenue 0 1365 1275 1348
AMoD Fixed Costs 0 193 111 174
AMoD Variable Costs 0 242 193 243
AMoD Toll Costs 0 0 211 31

Traveler
KPIs

Avg. Travel Utility -12.86 -10.63 -11.47 -10.53
Avg. AMoD Fare 0 3.3 3.08 3.25

Table 4.2: Regulator and operator variables (section 1 and 2), objective function com-
ponents (section 3 and 4), and per traveler average values for the described
scenarios. The left values in the Pro-PT scenario reflect the original coeffi-
cients while the right use the definitions from equations (4.32)-(4.37). The
units of the per traveler average values are e and thousands of e for all social
welfare and profit component rows are thousands of e.

Table 4.2 summarizes the operator and regulator variables and components for all scenarios.
The first observation is that adding AMoD as an additional mode increases the total travel
utility considerably, which is also reflected in the large AMoD mode shares. These require
large fleet sizes of more than 10, 000 vehicles. The fleet size is not constrained by the best
regulatory solution in either regulation scenario, i.e., αF > βF . The fixed costs for the AMoD
operator are lower than the variable costs and only a fraction of the revenue resulting in a
high profitability of an AMoD service. The AMoD service performance is similar in all three
scenarios (with AMoD system). The average waiting time is 130 seconds in the No Regulation
and the Pro-PT SW scenario and 140 seconds in the Default SW scenario, which can be
attributed to the smaller fleet size. For the same reason, the share of travelers with an AMoD
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Figure 4.10: Evolution of street and PT network utilization over time in the described
scenarios.

offer, which was made if there is a feasible vehicle tour keeping both waiting time and detour
time constraints, is slightly lower for this scenario. The average relative detour is between
17 and 18 % in all cases, which in absolute values is in the same range as the waiting time.
Since repositioning was excluded in this part of the thesis, the share of empty VKT is less
than 4 % in all AMoD scenarios, which is a very low value. On the downside, large vehicle
numbers are necessary to cover the area thereby resulting in rather low fleet utilization values
between 40 and 55 % in the three AMoD scenarios. Therefore, the utilization surge pricing
factor, which would increase fares from 75 % utilization is not relevant. The km-weighed
average occupancy is 1.9 in all scenarios; this values represents a considerable improvement
over the average occupancy of 1.0 for PVs6. With a large share of AMoD users originating
from the PV sector, the densities in the street network are reduced even without regulation
(see Figure 4.10). Moreover, parking revenues are drastically decreased compared to the No
AMoD scenario, which also can be viewed as positive since parking space is freed for other
use.

The standard definition of social welfare employs an emission cost coefficient from the
German Plan for Federal Traffic Routes. The contributions with this definition are an order
of magnitude too small to effectively steer the regulatory policy. Assuming a fully electric
fleet and considering only the emissions for the production of the current (instead of life-cycle
considerations for simplicity), the introduction of an AMoD system is clearly beneficial over the
No AMoD scenario representing the status quo. The combined emissions of PV and AMoD are
reduced by approximately 69 %. On the contrary, the PT system in Munich in its current state
is neither economical nor ecological. Besides the city center, there are many low occupancy
trips, which produce both high operating and emission costs. Especially the operating costs
are a substantial contribution to the social welfare. Hence, the regulator in the default social
welfare definition reduces the PT frequency to the minimal allowed value and increases the toll

6As with many transportation models, groups with multiple travelers are not represented.
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to its maximal value while leaving the parking costs unchanged. The dynamic toll sets in for
densities over 5 veh/lane-km and increases with increasing density and has to be paid by PV
and AMoD. Therefore, the high toll in the Default SW scenario is most effective in keeping
the density of vehicles low in the inner city. The AMoD operator reacts by decreasing the fleet
size and increasing the fare. Interestingly, the fare is only increased by a fraction of the toll,
namely by 0.15 e per km. As illustrated in Figure 4.10, the toll is high enough to keep the
density in the inner city rather low, but the crowding in the PT system is really high due to
the frequency reduction. Both effects are reflected in an decreased value of the traveler utility
compared to the unregulated scenario. Since the AMoD price model assumes an increased
per-km price also in the outer region, where no toll is applied to PV and additionally trip
lengths and AMoD fares are higher, the ratio of PV to AMoD changes towards PV for trips
with origin and destination outside of the city center (see last section in Table 4.3).

Mode
Share

PV [%]

Mode
Share

PT [%]

Mode
Share

AMoD [%]

Avg. PV
Park

Cost [e]

Avg. PV
Toll

Cost [e]

Avg. Offered
AMOD Fare [e]

Origin Destination Scenario

iB2R LHM-iB2R

No AMOD 66.0 34.0 0.0 0.0 0.0 0.0
No Regulation 16.9 30.7 52.3 0.0 0.0 6.3
Default SW 14.3 41.8 43.9 0.0 2.6 7.1
Pro-PT SW 13.8 33.2 53.0 0.0 0.4 6.1

LHM-iB2R iB2R

No AMOD 39.2 60.8 0.0 2.5 0.0 0.0
No Regulation 3.2 33.0 63.8 2.5 0.0 6.5
Default SW 3.2 42.1 54.7 2.5 2.4 7.5
Pro-PT SW 0.6 36.2 63.1 4.8 0.3 6.3

iB2R iB2R

No AMOD 34.0 66.0 0.0 2.5 0.0 0.0
No Regulation 4.6 26.3 69.1 2.5 0.0 3.1
Default SW 3.0 39.2 57.9 2.5 2.6 3.4
Pro-PT SW 0.9 33.9 65.2 4.8 0.4 2.9

LHM-iB2R LHM-iB2R

No AMOD 72.2 27.8 0.0 0.0 0.0 0.0
No Regulation 16.8 24.3 58.9 0.0 0.0 7.3
Default SW 26.9 28.4 44.7 0.0 0.7 8.5
Pro-PT SW 14.9 25.7 59.4 0.0 0.1 7.1

Table 4.3: Analysis of zone-to-zone travel relations in the described scenarios.

The Pro-PT scenario assumes a more efficient operation of the PT system, both ecologi-
cally and economically. Moreover, the regulator is assumed to put a much higher weight on
emissions. In order to optimize social welfare in this scenario, the regulator asks the the PT
operator to increase the frequency and only sets a minor toll while drastically increasing the
parking costs. This further improves the space gained by the introduction of an AMoD sys-
tem. There are hardly PV trips ending in the iB2R region, where PVs have to pay parking fees
(see zone-to-zone travel relations in Table 4.3). The AMoD system is operated with similar
parameters as in the unregulated case. The densities in the street are lower than in the No
AMOD and No Regulation scenario and the PT system shows much lower levels of crowding
(Figure 4.10).

4.5.4 Sensitivity of AMoD Operator and Regulator Variables

The AMoD profit surrogate function P S(αy, βs) is a 7-dimensional function. Since the AMoD
service planner only has control over its own variables, the four regulator dimensions can be
viewed as inaccessible. The regulator sets the hyper-planes in which the AMoD service planner
can optimize. In the Default SW scenario, the regulator sets a high toll of 1 e per km and
decreased the PT frequency. For this regulatory setting, the variable costs are increased by
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4.5 Case Study: Results

Figure 4.11: 2D cuts of the AMoD profit surrogate function along AMoD operator vari-
ables in the hyper-planes defined by the described solutions for the Default
Social Welfare Definition (left) and Pro-PT Social Welfare Definition (right).
The white area shows the non-profitable area in the solution space and the
dashed lines highlight the hyper-planes with the selected AMoD variables
βs,∗(αy).

a factor of 4. As pooling allows a km-averaged occupancy of nearly 2, the AMoD operator
can actually offer the service at fares of approximately 1 e per km and be profitable. How-
ever, compared to the Pro-PT SW scenario, in which parking costs instead of toll costs were
increased, the area of profitability is drastically reduced (see Figure 4.11).

The 4-dimensional surrogate functions W S(αy) are based on less data, since only the sim-
ulations with the highest operator profit contribute data points — one for each regulator
setting. Figure 4.12 shows some two-dimensional cuts through the hyper-planes defined by
the best solution for the two social welfare definition scenarios. The left and right sides clearly
paint two very different pictures: while the Default SW function decreases with decreasing
PT frequency, the best solution in the Pro-PT scenario is to increase PT frequency. Fleet size
limitations below 10,000 vehicles have a very negative impact on social welfare and become
minor up above that. As mentioned before, limitations above the profit-maximizing fleet size
do not matter.

The real advantage of the surrogate functions is the combined consideration of variables.
Assuming a toll of 1 e per km and parking costs of 2.50 e, the worst decision according to
this SW definition would actually be to forbid AMoD and keep the PT frequency as it is. As
the ecological footprint is weighed highly in the Pro-PT case, both increases in PT frequency
and AMoD fleet size (increasing fleet size limit from 0) are beneficial for social welfare as both
modes attract travelers from PV users, which have the worst CO2 footprint.

Parking and toll costs both reduce the travel utility of the PV thereby nudging more people
to use PT. A combined increase of both toll and parking costs could be interesting for city
administrations. The Pro-PT scenario shows that after a certain point, an increase is not
really beneficial anymore because benefits from travelers changing mode do not compensate
for the increased total travel costs anymore. At this point, city administrations will also have
trouble justifying their measures and run into trouble with social equity.
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4 Regulation of AMoD Systems

Figure 4.12: 2D cuts of the social welfare surrogate functions along regulator variables
in the hyper-planes defined by the described solutions for the Default Social
Welfare Definition (left) and Pro-PT Social Welfare Definition (right). The
dashed lines highlight the hyper-planes with the selected regulator variables
αy,∗.

4.6 Conclusion

Besides the continuous regulatory decision parameters of the BO framework, the case study
contained one implicit regulation: the city administration only allows a pooling-service. This
does not mean that all AMoD customers have to be matched; they can also be alone in
a vehicle. However, they would be pooled if it is beneficial according to the fleet control
objective. The AMoD operator and city administration objectives are in line as both benefit
from people sharing a ride: the operator has a better ratio of revenue to vehicle miles and the
city benefits from fewer vehicles on the road.

The AMoD ride-pooling system scales very well with increasing demand. AMoD customers
only had minor waiting and detour times. On average, travelers had to endure 5 minutes for
the sum of both. Considering the time and stress involved in finding a parking space in the
city, the level-of-service is comparable to PV. This case study used PV full costs (0.60 e per
km) in order to analyze long-term adoption. The AMoD operator adapted the prices according
to its competition (0.85 e per km in the scenarios without a toll), which was more than three
times its variable cost. Combined with an average occupancy of nearly 2 passengers/vehicle,
the profit margin of the AMoD system is very large. It is likely that an AMoD service has to
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4.6 Conclusion

compete with operating costs in the introductory phase, in which private vehicle ownership
is rather high. The optimization of profit would motivate the AMoD operator to offer lower
fares than in the studied scenarios. Therefore, the profit margin would be considerably lower.
However, in the long term, travelers might be willing to abolish private vehicles if they have a
better alternative.

The introduction of an AMoD pooling service brings many social benefits. Travelers gain
a new and very attractive mode, which can also help to reduce the number of vehicles on
and off the road. Additionally, AMoD is environmentally more sustainable than PV as they
are likely to be powered by electric motors and have a higher vehicle occupancy. They even
compare favorably against today’s PT system in Munich, where large buses drive rather often
with only a few passengers.

These benefits caused the policy optimization to not apply a fleet size limitation. This policy
recommendation is likely general and transferable to other cities, but has to be analyzed in
detail to be certain. Unless other factors not considered in this case study give reason for a
limitation, fixed vehicle costs limit the fleet size in the profit optimization. Therefore, policy
makers should consider extending the PT portfolio to include an AMoD pooling service as
it can be open to the public and does not exclude travelers. In a PT integration process,
AMoD should not only be considered as an intermodal feeder service. As mentioned, the large
social benefits actually originate from its competitiveness with PV. Test simulations with an
intermodal feeder service and the current PT system showed that only a minor share (less
than 1 %) of travelers used AMoD to get to the next rail-based PT station. The bus stop
network in the study area is very dense and frequencies rather high; travelers rarely chose to
wait for an AMoD vehicle and pay extra for AMoD for a first/last mile trip. Due to its high
computational burden and minor impact, the intermodal sub-model was not included in the
final version of the transportation model. However, an intermodal feeder model should be
included in an integrated PT-AMoD planning process, in which AMoD is considered to replace
inefficient bus lines and off-peak hour bus services.

It is difficult to derive other general policy recommendations. There will not be one set of
regulations that are optimal for every city because measures of social welfare are subject to
the preferences of each city and its residents. For example, some cities might weight emissions
higher than traveler utilities. There is an effort to derive more general insights by classifying
cities and simulating a set of archetype cities [Oke, Aboutaleb, et al., 2019]. However,
the generalization still assumes that the social welfare definition and traveler behavior are
similar in the same city classes. As shown with the two social welfare definition scenarios, the
quantitative values of regulatory measures depend on the exact definition of social welfare. The
framework in this chapter requires an explicit weighting of different social welfare components,
the effect of which should be checked in order to set meaningful weights. The case study in
Munich showed that the coefficient used in the Bundesverkehrswegeplan, a plan for future
infrastructure projects by the German Federal Ministry from 2016, is so low that emissions
had practically no impact on the policy optimization.

In general, push measures are a useful tool to decrease the modal split of PV. Nevertheless,
it should be ensured that the balance between additional traveler costs and social value remains
in balance. A concern related to very high push factors is that they can increase social inequity.
If the push factors are strong enough, only the wealthy travelers in the region will be able to
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use PVs. The framework presented in this chapter is a tool that will stop increasing the
value of toll and parking costs when there is no more social gain. Further considerations, e.g.,
regarding social equity, can help to set additional boundaries on the variables [Bogenberger
et al., 2021].
The application of two social welfare scenarios show that AMoD operators will react to

policies and adopt their service, which in turn has an effect on travelers’ choices. One con-
tribution of this chapter is the development of a framework that allows regulators to consider
this AMoD operator reaction in order to derive good policies for their respective social welfare
definition. Moreover, the impact of weights in the social welfare definitions can be analyzed
using the surrogate functions that are part of the BO procedure.
The framework could integrate more complex mode-choice models to represent travel be-

havior more accurately. The acceptance of AMoD (especially that it is only offered as a pooling
service) and travel behavior are likely the largest uncertainties in the system. More advanced
behavioral models require more data to estimate a larger number of coefficients related to
travel behavior. Generally, the solution approach to the tri-level problem can integrate more
refined models (e.g., fleet control); however, there is direct trade-off between model resolution
and computation time in the proposed tri-level model and simulation-optimization solution
approach. Regarding AMoD profit, the cost structure of autonomous vehicles represents sig-
nificant uncertainty. Nevertheless, as long as the AV costs remain below the fares, the prices
could be market-driven and the modal split similar to the presented results.
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Chapter 5

Concluding Remarks

5.1 Summary

This thesis addresses two main topics, namely the operation and regulation of AMoD systems.
These topics will become relevant with the introduction of AVs, which are fully capable and
legally allowed to drive on their own. AVs can change the cost structure of MoD services
significantly and thereby make AMoD services highly attractive.

Operation of AMoD: Chapter 3 studies how an AMoD service provider can operate its fleet
effectively and efficiently. Therefore, a certain AMoD system design is assumed, including
the costs, the fares, the offered service quality in terms of maximum waiting and detour
times, and the demand such system can attract. The contributions of this chapter are the
mathematical formulation of the underlying problem and the development and evaluation of
solution approaches to this highly dynamic and stochastic problem. The methodology is based
on a separation of time scales, which defines actions based on their respective time horizons
and therefore splits the problem into several easier to tackle problems. The evaluation is
performed with the help of an agent-based simulation framework and a case study for the city
of Munich, Germany. Hereby, the interaction between users and the fleet operator are modeled
with several phases: a request by a user is answered by an offer of the AMoD operator, based
on which the request determines whether to book the service. If the service is booked, an AV
of the operator picks up and drops off the user at her start and end locations, respectively.
Algorithms to create offers and vehicle plans, which determine the routes vehicles follow,

are developed in the short-term section for both hailing and pooling. Insertion algorithms
are used to derive realistic offers, and global re-optimization of all vehicle plans is applied
periodically. Throughout the case study, the positive scaling effects of AMoD services become
apparent. With a higher vehicle density, the probability of finding a nearby vehicle that can be
matched to a new request is higher, thereby increasing the service rate. There is an additional
positive scaling effect with demand for pooling services as the probability of finding matching
requests increases. In the case study, the insertion heuristics generally find good solutions,
and optimization potential seems somewhat limited. This is in contrast to the results found
by M. Hyland and Mahmassani [2018a] but can be explained with the different service
designs: the stricter the time constraints, the less optimization potential is available. Here, the
maximum waiting time is restricted to 5 minutes, whereas there is no time restriction applied
in M. Hyland and Mahmassani [2018a] to model a service guarantee. Hence, dynamic
effects even overshadow possible benefits from optimizing the current state in the hailing case.
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In the pooling case, there is potential for optimization even with these strict time constraints,
but they also come with a much higher computational cost.
The knowledge of future demand is studied both by including reservations and utilization

of aggregated forecasts. Having a completely reservation-based AMoD system increases the
performance of both hailing and pooling compared to on-demand AMoD systems. However,
allowing both online and reservation-based requests even performed worse than a system with
only online requests. Even though the reserved requests can be served and optimized well, the
space to integrate online requests becomes very constrained, leading to low service rates for the
online requests. Repositioning based on demand and supply forecasts helps to position vehicles
where they are needed ahead of time. In general, repositioning is a multi-objective problem,
in which the imbalance of the system should be equalized with as little vehicle movement as
possible. New computationally-efficient multi-step density-based repositioning problem formu-
lations are developed in this thesis. The case study shows significant benefits through the
introduction of repositioning. Although compared to that large gain, the performance gains of
the new density-based formulations compared to existing approaches seem quite small, it has
to be noted that these add up over time, and AMoD providers are likely interested in these
improvements in the range of a few percent.
An analysis of the dependency of the fleet size with respect to the cost and fare structure

shows that In a profit over fleet size plot, the fixed costs determine the steepness of the decline
for larger fleets, whereas variable costs determine the steepness of the rise for smaller fleet
sizes. Therefore, increasing fixed costs tends to decrease fleet size more while having less
effect on the actual profits when compared with increasing variable costs. AMoD operators
can utilize dynamic pricing in times of under-supply to increase profit while keeping similar
service rates. The concept shown in this thesis is to set the fare at a level such that only as
many users want to book trips as there is supply available.
In general, the assumed cost and fare structure are very favorable for AMoD services.

Compared to today’s carsharing system, the operating area can be extended beyond the city
center to the city boundaries with lower trip densities with increasing profits. The amount
of trips an AMoD vehicle can serve is very high; in the case study, more than 115 thousand
trips are served by less than 2, 000 vehicles. Therefore, the introduction of an AMoD service
offers substantial potential to reduce parking lots. Nevertheless, AMoD vehicles also should
be parked when they are not needed for serving requests and in the right place for anticipated
demand as otherwise, they might circle around the streets.
Reflecting on the research questions

RQ 1.1 How can an AMoD fleet be operated effectively and efficiently?

RQ 1.2 Which are the most important operational variables?

it can be concluded that this thesis

• provides a detailed agent-based model that describes how the fleet-operational problem
can be tackled and an AMoD system can be operated,

• adds contributions to improve operational strategies, especially in the context of repo-
sitioning, and
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• identifies the long-term strategies for planning the system design parameters as the most
relevant operational parameters.

The thesis cannot provide an optimal solution for the dynamic and stochastic fleet-operational
problem. Hence, it is possible and likely that better strategies can be found in the future as
fleet operators will invest human and computational resources to continue improving these
strategies to enhance their performance. The contributions in this thesis can be a step-stone.
The second research question is the identification of the most important operator decisions.

Planning the long-term system design parameters are the most relevant for an operator’s profit
and the share of served requests: whether to offer a hailing or pooling service, setting the service
level (time constraints, fares), and choosing a fleet size. Heuristic solution strategies for the
more frequent operational tasks (mid- and short-term decisions) offer a good trade-off between
solution quality and computational effort. These insights can be used for the integration of
an AMoD operator in the larger context of a transportation system.

Regulation of AMoD: While there was a lot of research existing on how to operate a fleet,
the question of regulating this fleet in the context of the transportation system was hardly
addressed before. Therefore, the research questions

RQ 2.1 What are the effects of an AMoD service on a transportation system?

RQ 2.2 How will an operator react to different regulatory measures?

RQ 2.3 How can city administrations regulate the transportation system considering the re-
action of AMoD operators?

require a novel problem formulation and solution approach, both of which are introduced in
this thesis.
The contributions of this thesis are

• the introduction of the tri-level AMoD regulation problem,

• the general two-level BO solution approach,

• the development of a transportation model on the third level, which has to find a good
trade-off between model resolution and computational complexity, and

• a case study demonstrating the framework in the city of Munich.

The problem considers a separation of scales to build a hierarchy of decision-making. First,
a public entity (on state, federal, or municipal level) sets the regulatory frame in which an
AMoD provider offers its service. Second, the operator aims to optimize its profit and adapts
its service according to the regulatory setting. On the third level, travelers determine their
mobility behavior based on the trip characteristics that can be offered by the different modes
in the transportation system, which are affected by the decisions made on the upper two
levels. Ultimately, the goal of the framework is to provide an optimization framework for the
regulating entity, which considers the impact of its decisions on the two lower levels to optimize
social welfare.
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A two-level BO solution is developed to search the solution spaces of regulator and operator
variables. The evaluation of each data point in this solution space involves a simulation
of the transportation model, which is a very time-consuming process for an optimization
procedure. Compared to a naive two-level optimization with independent optimization loops,
the advantage of the BO approach is that surrogate functions can be inferred from all previous
simulations. Therefore, approximations of the relevant objective functions defined on the
solution space are available for the optimization process and help to reduce the required
number of simulations.

Even with this approach, a considerable amount of simulations is necessary. Hence, the
strategy for the transportation model is to go into detail where sensitivity to decision variables
is required and aggregate where it is possible. Inserting every request into the existing vehicle
plans to create an offer is very time-consuming, which limited the simulation period to the
morning hours. Nevertheless, this part of the thesis also follows an agent-based modeling
approach, because individuals’ decision-making remains tractable, and an explicit matching
of travelers and vehicles ensures a realistic level of service model for an AMoD system. The
spatial resolution of street and PT networks is also very high. Still, their dynamics are included
on an aggregate level allowing for a complete pre-processing of the routing sub-problems.

There are a lot of parameters that a regulator and an AMoD operator can vary to influence
the transportation system. For the case study, it is assumed that the regulator enforces pooling
to avoid the negative externalities caused by hailing. The chosen set of regulatory measures
considered for optimization are parking fees for PV, a dynamic toll for PV and AMoD, an
AMoD fleet size limit, and changes in PT frequency. The AMoD system utilizes a service
design (concerning time constraints) similar to chapter 3 and optimizes the fleet size and fare.
As computational efficiency is relevant, the model refrains from re-optimizing user-vehicle
assignments, which likely leads to an underestimation of fleet efficiency.

A generalization of the case study results is difficult as the definition of social welfare is not
unique. Each city administration might have its own ideas of its goals and how to value cer-
tain aspects. Additionally, the transportation networks can have very different characteristics
leading to significantly different sensitivities. For instance, a city with a well-functioning PT
system will value the existing system highly. In contrast, a city with hardly any PT could see
AMoD as a chance to replace highly inefficient parts. Consequently, the shape of the social
welfare function in the regulatory solution space and the optimal solution of the regulatory
variables depends on the city. Hence, the main contribution of this chapter is the developed
methodology that can be applied to different cities.

Some results of the case study are likely transferable. The addition of an AMoD pooling
service — even without regulatory measures — increases the travel utility of the population
compared to the status quo. A regulatory limitation of the AMoD fleet size does not seem
meaningful; the operator will adapt its fleet size to serve the attracted demand anyway. With
this new mobility option as a pull measure, regulators can introduce push measures like toll
and higher parking fees to steer the mode choice behavior and increase travel utility compared
to the status quo.
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5.2 Future Research

On the operator side, this thesis showed one method to approach the highly dynamic and
stochastic problem. However, it is unlikely that an approach can be found that solves this
problem optimally in all cases as long as computational resources are a limiting factor. Solving
vehicle routing problems could be a future application of quantum computers. Until then
and even beyond, variants of vehicle routing problems are likely to remain an active field
of research. Especially different service designs or more realistic frameworks will create new
variants of problems, which for example consider intermodal and stochastic networks, mixed
fleets, the combination of logistic and people transportation, interactions of an electric AMoD
fleet with the power grid, the use of access points, non-instantaneous decision-making by users
and operators, late- and no shows, cancellations, and constraints due to information processes
to increase user convenience such as locking of vehicle and pick-up time a certain time before
the expected pick-up.

Likely, the approach to dividing the action space and addressing the smaller sub-problems
will still be a reasonable approach then. Nevertheless, even in the AMoD service design
assumed in this thesis, there is still plenty of room for improvement. Especially for tasks
with high computational complexity, e.g., the optimization of pooling assignments, the use of
access points, or intermodal assignments, the computational complexity gives reason to study
heuristics that limit the solution space in meaningful ways. In the context of the framework
presented in this thesis, the parameter space of the presented RV heuristics can be analyzed,
and additional RV heuristics can be developed. Additionally, the multi-objective aspect in
the control function of the assignment processes can be analyzed in more detail. Finally,
the expected future vehicle imbalance distribution can also be included as an objective in the
assignment process [Syed, Dandl, and Bogenberger, 2021].

The forecast methodology of demand and especially supply can be improved upon. In
particular, for pooling, the supply forecast methodology should consider that a vehicle can
offer multiple seats, which will likely be available in a specific direction at different times.
On the demand side, considering the pooling potential for certain zones or origin-destination
pairs represents a possible advancement worth investigating. Even though the forecasts work
well for repositioning in the current state, better results can be expected from an improved
accuracy of demand and supply imbalances. Furthermore, the presented one-step forecast
dynamic pricing would benefit from better predictions.

As mentioned when introducing the original problem in equation (3.4), approximate dynamic
programming approaches can be used as alternative solution methods. Machine learning,
specifically reinforcement learning, can be used in this context. Even then, researchers will
likely split the overall problem into easier sub-problems again to reach practical learning curves.
The repositioning problem derived in this thesis can serve as one example where decisions with
good future impacts can be learned from the current state and imbalance density forecasts.
The density representation of imbalance developed in this thesis might be especially beneficial
in combination with convolutional neural networks. Another application for machine-learning
in practice could be the creation of realistic offers purely on the current system state and
request information without the need for explicit insertions of new stops into vehicle plans.
Besides being useful for real-world operators, the feature of estimating realistic offers could
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be of great significance for the modeling of AMoD as part of transportation systems as fast
AMoD offer estimators would allow extending the simulation period in the same computation
time.
The developed tri-level framework to optimize regulations gives rise to several new research

ideas. It is noteworthy that the inherent computational complexity of the problem always re-
quires a trade-off between model resolution and model sensitivity towards regulatory variables.
An interesting approach would be to use a more macroscopic approach for the transportation
model and compare performance and results with the current model.
The current model can be improved by getting more data about traveler behavior, building

an activity-based model, and refining the mode choice model. A combined approach about
within-day mode-choice and pre-day mode choice could be investigated, in which travelers can
also learn during the iterations and some of them can become captive PT, PV, or AMoD users
in the transportation model simulation. On the supply side, repositioning can be integrated
into the current model to reflect more realistic operator behavior. The difficulty is creating
the forecasts of demand and supply, which could be based on the general trip density and prior
simulation iterations.
This thesis assumes that a single AMoD provider operates in a city, which leads to very

high profit margins of this single provider as it sets the fares to compete against PT and PV.
Competition with other AMoD services would likely lead to fares on a lower level closer to the
actual AMoD costs with some percent profit margins. The framework can easily be extended
to let multiple operators choose their variables in sequence1. With multiple AMoD operators,
there is typically a price of fragmentation. Different concepts of cooperation are possible to
alleviate these losses [Engelhardt, Malcolm, et al., 2022].
Another research direction would be to follow up on Pinto et al. [2019]: why not fully

integrate a profitable mobility service, namely AMoD, into public transportation? The current
line-based concept works well on connections with loads of demand, especially if it is on rail
and does not run into the same congestion as the street traffic. However, many connections
follow a downward spiral: little demand is expected; therefore, the service level is low, which
again dissuades demand. These connections are also very costly. A combined PT and AMoD
planning process should be started from the existing PT infrastructure and lines where and
when they work well. The AMoD service service could be offered only for connections not par-
allel to these lines to avoid cannibalization. One step before prohibiting these trips altogether
would be the utilization of pricing; trips in parallel to the reduced number of PT lines should
be more expensive. These suggestions could also work as regulations for open-market AMoD
services. Important are (i) the PT re-planning process beforehand and (ii) to think of AMoD
as more than just a feeder of line-based systems. The inherent advantage is that almost all
connections in a large city area become available to a public transportation system with minor
detours. This new connectivity is very different from the current PT system, where transfers
between lines are often required and lead to large time losses compared to PV. Therefore,
there is a significant potential for AMoD services to improve future transportation systems if
appropriately integrated.

1This has recently been proposed in a publication by Bortolomiol et al. [2021], which has just been
published during the writing process of the conclusion and also tackles the problem of regulation with
mobility service suppliers.
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Liang, Xiao; Correia, Gonçalo Homem de Almeida; Kun An; Bart van Arem
(2020). “Automated taxis’ dial-a-ride problem with ride-sharing considering congestion-
based dynamic travel times”. In: Transportation Research Part C: Emerging Technolo-
gies 112, pp. 260–281. issn: 0968090X. doi: 10.1016/j.trc.2020.01.024.

Lippoldt, Katrin; Tanja Niels; Klaus Bogenberger (2018). “Effectiveness of dif-
ferent incentive models in free-floating carsharing systems: A case study in Milan”.
In: 21st IEEE International Intelligent Transportation Systems Conference (ITSC),
pp. 1179–1185. isbn: 978-1-7281-0321-1. doi: 10.1109/ITSC.2018.8569242.

181

https://doi.org/10.1016/j.compenvurbsys.2017.04.006
https://doi.org/10.1016/j.compenvurbsys.2017.04.006
https://doi.org/10.1016/j.cor.2015.08.008
https://doi.org/10.1016/j.cor.2015.08.008
https://doi.org/10.1109/ITSC.2019.8917253
https://doi.org/10.1016/j.tre.2021.102392
https://doi.org/10.1016/j.trb.2020.08.001
https://doi.org/10.1016/j.trb.2019.09.008
https://doi.org/10.1016/j.trb.2019.09.008
https://doi.org/10.1016/j.tre.2016.05.006
https://doi.org/10.1016/j.tre.2016.05.006
https://doi.org/10.1177/0361198118758048
https://doi.org/10.1016/j.trc.2020.01.024
https://doi.org/10.1109/ITSC.2018.8569242


Bibliography

Lippoldt, Katrin; Tanja Niels; Klaus Bogenberger (2019). “Analyzing the Po-
tential of User-Based Relocations on a Free-Floating Carsharing System in Cologne”.
In: Transportation Research Procedia 37, pp. 147–154. issn: 23521465. doi: 10.1016/
j.trpro.2018.12.177.

Litman, Todd (2019). Autonomous vehicle implementation predictions: Implications for
Transport Planning. url: https://www.vtpi.org/avip.pdf (visited on 12/27/2019).

Liu, Yang; Prateek Bansal; Ricardo Daziano; Samitha Samaranayake (2019).
“A Framework to Integrate Mode Choice in the Design of Mobility-on-Demand Sys-
tems”. In: Transportation Research Part C: Emerging Technologies 105, pp. 648–665.
issn: 0968090X. doi: 10.1016/j.trc.2018.09.022.

Liu, Yang; Samitha Samaranayake (2019). Proactive rebalancing and speed-up tech-
niques for on-demand high capacity vehicle pooling. url: http://arxiv.org/pdf/
1902.03374v1.

Loeb, Benjamin; Kara M. Kockelman (2019). “Fleet performance and cost evalua-
tion of a shared autonomous electric vehicle (SAEV) fleet: A case study for Austin,
Texas”. In: Transportation Research Part A: Policy and Practice 121, pp. 374–385.
issn: 09658564. doi: 10.1016/j.tra.2019.01.025.

Loeb, Benjamin; Kara M. Kockelman; Jun Liu (2018). “Shared autonomous elec-
tric vehicle (SAEV) operations across the Austin, Texas network with charging in-
frastructure decisions”. In: Transportation Research Part C: Emerging Technologies
89, pp. 222–233. issn: 0968090X. doi: 10.1016/j.trc.2018.01.019.

Ma, Tai-yu; Saeid Rasulkhani; Joseph Y.J. Chow; Sylvain Klein (2019). “A
dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated
transit transfers”. In: Transportation Research Part E: Logistics and Transportation
Review 128, pp. 417–442. issn: 13665545. doi: 10.1016/j.tre.2019.07.002.

Maciejewski, Michal; Joschka Bischoff (2017). “Congestion effects of autonomous
taxi fleets”. In: Transport 45.9, pp. 1–10. issn: 1648-4142. doi: 10.3846/16484142.
2017.1347827.

Maciejewski, Michal; Joschka Bischoff; Kai Nagel (2016). “An Assignment-
Based Approach to Efficient Real-Time City-Scale Taxi Dispatching”. In: IEEE In-
telligent Systems 31.1, pp. 68–77. issn: 1541-1672. doi: 10.1109/MIS.2016.2.

Maget, Christoph; Juliane Pillat; Volker Waßmuth (2019). “Transport de-
mand model for the Free State of Bavaria – basis for local transport planning”. In:
Transportation Research Procedia 41, pp. 219–228. issn: 23521465. doi: 10.1016/j.
trpro.2019.09.040.

Marczuk, Katarzyna Anna; Harold Soh Soon Hong; Carlos Miguel Lima
Azevedo; Muhammad Adnan; Scott Drew Pendleton; Emilio Frazzoli;
Der Horng Lee (2015). “Autonomous mobility on demand in SimMobility: Case
study of the central business district in Singapore”. In: 7th International Conference
on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics,
Automation and Mechatronics (RAM), pp. 167–172. doi: 10.1109/ICCIS.2015.
7274567.
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Appendix

A Mathematical Notation

A mathematical notation helps to formulate problems briefly and precisely. Following table
summarizes the notation of variables and parameters and briefly describes their use. For clarity,
parameters, which are only used and described within one certain paragraph, are not enlisted.
Due to the amount of models required in the AMoD regulation model, some characters have to
be overloaded. However, their meaning is clear from the context of the respective paragraphs.

Notation Name Further Description

A action typically state-dependent, i.e. A(S(t))
b request bundle a set of requests (∈ R) that should be connected in a route
B set of bundles Bv represents the set of all request bundles that could be served by a

vehicle v
c cost coefficient super- and subscripts are context specific; coefficients are utilized if costs

can be separated into a constant (coefficient) and a (trip-dependent) char-
acteristic value

C cost function super- and subscripts are context specific; utilized if coefficient notation is
not sufficient to describe costs

d distance can be defined by, e.g., an edge e ∈ E, a route ϕ, a vehicle plan ξ, or a
complete vehicle trajectory (sub-index v ∈ V ); generally given in meters

D price sensitivity used to describe the price sensitivity of demand
E network edges refers to the set of all edges in a network graph G; an edge is defined by its

start and end node (elements of N) and typically contains cost information
(travel time, distance)

f fare travelers have to pay fares to PT and AMoD operators for traveling with
their respective mobility services

F control function objective function of operator control action; super-script determines the
action, e.g., R for request assignment

G network graph consists of nodes N and edges E denoted by G = (N,E); sub-index can
refer to type of network, e.g., PT or street network

h reachability
bandwidth

parameter that determines the radius of reachability for zone-to-zone cor-
relations of forecasts

H heaviside func-
tion

H(x) is 0 for x < 0, 0.5 for x = 0 and 1 for x > 0

Hζ Bessel function of order ζ
i time step index
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Notation Name Further Description

I zone imbalance positive (negative) value reflects vehicle surplus (deficit); sub-index refers
to zone and super-index to valid time horizon

j forecast time step
index

k density macroscopic traffic flow measure for number of vehicles per meter
K kernel density kernel density distribution (used in different vector spaces based on context)
mr mode choice vari-

able
mode choice of traveler r from set M

M mode choice set e.g., PV, PT, or AMoD
N network nodes refers to the set of all nodes in a network graph G
N rv RV-heuristic refers to the number of vehicles selected by an RV-heuristic to limit the

number of considered vehicles for the user-vehicle assignment processes
N (µ, σ) normal distribu-

tion
with mean µ and standard deviation σ

od OD-route refers to the fastest route ϕ between two network points xo and xd

OD OD-pair refers to the set of all possible routes ϕ between two network points xo

and xd; can be used to describe total demand between these points
P profit operator objective; measured in e
q flow macroscopic traffic flow measure for number of vehicles passing per second
R requests / travel-

ers
refers to the set of all requests, travelers or users; super-indices refer to
certain subsets based on their state

s exogenous state
variables

time-dependent description of AMoD state variables that are independent
of operator control

S (AMoD) system
state

time-dependent description of all AMoD state variables; contains vehi-
cle positions, assigned plans, revealed demand, demand estimations, etc.;
SP (t) denotes post-state at time t (after actions A(t) are performed)

t time can be used in many contexts described by the respective sub- and super-
indices; generally given in seconds

T time horizon can be used in many contexts described by the respective sub- and super-
indices; generally given in seconds

Umr travel utility traveler objective; sub-index refers to a request r ∈ R and super-index to
a certain mode m ∈M ; generally given in e

V vehicle fleet set of all AMoD vehicles; super-indices refer to certain subsets depending
on the state of a vehicle

W social welfare regulator objective; measured in e
x network position described by triple, where the first two entries refer to the start and end

node of an edge (e ∈ E) and the third entry is the relative position on the
edge, where 0 denotes the start and 1 the end of the edge; there are many
contexts that describe the respective sub- and super-indices

X stop part of vehicle plan; X = (x, ts, tl, te, R+, R−, l) is defined by a network
position x ∈ N , a stop duration ts, possibly a latest arrival time tl and an
earliest departure time te, the sets of boarding and disembarking requests
denoted by R+ and R−, and a flag indicating locked stops

Z Zones set of all zones that build a disjoint union of the operating area
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Notation Name Further Description

α regulator decision
variable

super- and subscripts are context specific

β operator decision
variable

super- and subscripts are context specific

γ discount factor used to weigh immediate rewards versus future rewards
Λ stochastic de-

mand informa-
tion

typically refers to aggregated data on zone a level and a certain time
horizon T; two sub-indices indicate OD information, one index indicates
only departure information; Λ̄z indicates a trip arrival estimation

δij selection tensor Kronecker delta with two indices, see equation (3.28) for four-index defi-
nition

ζ travel time factor utilized in dynamic network to represent the ratio of current and free flow
travel times on edges (e ∈ E)

Θ state transition
operator

transforms post-state of one time step to the state of the next time step;
contains all vehicle movements, boarding and charging processes, as well
as the revelation of new requests

ξ vehicle plan a sequence of stops X, where vehicles need to stop for several reasons, e.g.,
to wait for customers, let them board or disembark; these stops contain the
time constraints that should be considered; the vehicle plan also defines
the route ϕ through these stops (typically fastest route); sub-index v refers
to a certain vehicle in V

Ξ set of vehicle
plans

typically refers to some set of feasible vehicle plans, super- and sub-indices
are explained in the context

ρ passengers/seats ρv determines number of available seats of vehicle v, ρr number of pas-
sengers in request r

τ time constraint super-indices w, d for waiting time and in-vehicle driving time, respectively;
generally measured in seconds

ϕ route a route is defined by a start position xs, an end position xe, and optionally
a sequence of connected edges (e ∈ E) between them; if the sequence
is not explicitly given, ϕ refers to the fastest route between xs and xe;
in context of a request ϕr refers to the fastest route between a travelers
origin and destination locations

ψ expected reward
(forecast)

used in repositioning formulation as expected rewarding for matching of
future demand and supply

Ψ reward for opera-
tor action

related to operator profit P of an action A

Ω (operating) area can be divided into a disjoint set of zones Z, where Ωz refers to the area
of zone z

Table A1: Mathematical notation used in this thesis in alphabetical order, where Latin
letters are listed before Greek letter.
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B Collection of Selected Algorithms

B.1 Computation of Number of Routes

Let nv = |Ro
v| be the number of on-board requests and nw = |Rw| the number of assigned

requests waiting for pick-up. Then the number of possible routes to serve these requests N
can be determined by following recursive algorithm:

Algorithm 1: get nr routes
Data: nv ≥ 0; nw ≥ 0;
Result: N = get nr routes(nv , nw)
nD ← nv + ndo ; /* Number of drop-offs */

nS ← nv + 2× ndo ; /* Number of stops */

if nD ≤ 1 then
if nD = 0 then

N ← 0;
else

N ← 1;
end

else
N ← 0;
if nw ≥ 1 then

np
S ← nS − 2 ; /* Stops without one waiting request */

d← 0 ; /* new drop-off at any position d */

while d ≤ np
s do

N ← N + (d+ 1)× get nr routes(no, nw − 1) ; /* d+ 1 possibilities to include pick-up

stop */

d← d+ 1;

end

else
np
S ← nS − 1 ; /* Stops without one on-board request */

N ← N + (np
S + 1)× get nr routes(no − 1, nw) ; /* np

S + 1 possibilities to include drop-off

stop */

end

end

B.2 Routing

Backwards-Directed Vehicle Search Algorithm

Let G = (N,E) be a graph representing a street network and C : E → R be the current
travel times of each edge. Moreover, let V be the set of AMoD vehicles with current vehicle
plans ξv for all v ∈ V at time t. Moreover, let r be a new request asking for immediate pick-up
at location xpr and τ

w
r the latest pick-up time.

Then the approach illustrated in Fig. 3.2 and described in Algorithm 2 is an efficient method-
ology to find all vehicles Vr that can serve this request. It consists of two parts: (i) the determi-
nation of general vehicle availability and (ii) a request-specific backwards directed one-to-many
Dijkstra route search algorithm.
A few comments are noteworthy:

(i) The algorithm can also return the mappings costs and next as additional outputs if specific
route costs and routes are required.
(ii) The implementation with priority queue (PQ) automatically takes care of sorting in new
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nodes and returning lowest-cost nodes in an efficient way.
(iii) The function get single veh availability() maps a vehicle position to a node if it is on one
or to the next node if it is on an edge. In the latter case, the available time is extrapolated
from the current time, the relative position on the current edge and the travel time of the
current edge. Hence, the Dijkstra routing algorithm does not have to consider all possible
positions on the edges.
(iv) The output of the function get single veh availability() depends on the locked status of
plan stops. Without any locked plan stops, the current location and the current time determine
the node and time of availability. For a hailing operation, it makes sense to lock a drop-off
stop when a customer boards a vehicle as the drop-off stop has to follow the pick-up. In this
case, the availability is set to the drop-off node and the extrapolated arrival time.
(v) The general vehicle availability does not have to be updated for every single request. It is
sufficient to perform it once per time step. If locked assignments were added to a vehicle, it
would suffice to update the availability of this single vehicle.
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Algorithm 2: search available vehicles
Data: G; V ; t; r;
Result: Vr = search available vehicles(V, r; t;G)

/* general vehicle availability /*
dav ← {} ; /* mapping of search nodes to list of vehicles */

for v ∈ V do
(nav , tav)← get single veh availability(v);
(tav , v)→ dav [nav ] ; /* add vehicle information to node */

end
Nv ← dav .keys() ; /* destinations of Dijkstra search */

/* request-specific route search /*
Vr ← ∅ ;
cmax ← τwr − t;
f ← PriorityQueue() ; /* PQ as frontier data structure */

Ne ← ∅ ; /* set of explored nodes */

next← {} ; /* mapping of node to next node on routes */

cost← {} ; /* mapping of node to total costs from source */

(xpr , 0)→ f ; /* add source node with zero cost to frontier */

cost[xpr ]← 0;
while f is not empty do

nact, cact ← f .remove min element and costs();
if cact > cmax then

break;
end
if nact ∈ Ne then

continue ; /* PQ elements are not invalidated */

end
if nact ∈ Nv then

for (tav , v) ∈ dav [nact] do
if tav + cact ≤ τwr then

v → Vr ; /* add v to set of available vehicles */

end

end

end
for (nnext, c) ∈ nact.get neighbors with costs do

if nnext /∈ Ne then
cnew ← cact + c;
cold ← cost.get(nnext,∞) ; /* infinite if not found */

if cnew < cold then
(nnext, cnew)→ f ; /* PQ update */

cost[nnext]← cnew;
next[nnext]← nact;

end

end

end
nact → Ne

end
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One-to-One Routes for Existing Travel-Time Matrix

Let G = (N,E) be a network graph and C : E → R be the costs on the edges. Moreover,
let M be the travel cost matrix, where Mij represents the costs of traveling from node i ∈ N
to node j ∈ N along the least-cost path in G. This matrix can be pre-processed by various
algorithms, for instance the Floyd-Warshall algorithm.
The memory to save the matrix M scales with O(N2). Hence, saving M is feasible for

networks with a few thousand nodes. The memory to save the actual least-cost routes scales
with O(N3) (as the route length scales with N) and becomes a problem for much smaller
networks. The following algorithm describes a method to re-create the least-cost path ϕ
between two arbitrary nodes o ∈ N and d ∈ N with the help of Matrix M , which is by far
more efficient than Dijkstra. It can be viewed as an A∗ with perfect guidance.

Algorithm 3: get route with matrix
Data: o, d ∈ N ;G = (N,E);M ;
Result: ψ = get route with matrix(o, d)
ϕ← [o] ; /* route (list of nodes) */

c← o ; /* current node */

while c! = d do
lc ← get next nodes(c) ; /* list of neighboring nodes */

for n ∈ lC do
if Mcd =Mcn +Mnd then

ϕ← ϕ+ [n] ; /* add next node to route */

c← n;
break for loop

end

end

end

In a practical implementation with float matrix values,Mcd =Mcn+Mnd should be replaced
with Mcd − (Mcn +Mnd) ≤ ϵ with a small ϵ > 0 to account for rounding effects.

B.3 Pavone’s Repositioning Algorithm

[M. Pavone et al., 2012] introduced a real-time rebalancing policy, which serves as baseline
in this thesis. The number βod of vehicles to be rebalanced between two zones o and d is
determined from an ILP.

min
βod

∑
od∈Z2

tod · βod (1a)

s.t.
∑
z′ ̸=z

(βz′z − βzz′) ≥ vdz − vez ∀z ∈ Z (1b)

βod ≥ 0 ∀od ∈ Z2 (1c)

Here, tod is the expected travel time between zones o and d. In this problem, vez denotes the
number of excess vehicles in zone z. In this thesis, the determination of this value is modified
from the original paper to consider forecasts of arriving (Λ̄z) and departing (Λz) vehicles in a
single time horizon. The excess vehicles are computed for each zone z ∈ Z by

vez = max
(
0, |V I

z |+min
(
0, Λ̄z − Λz

))
∀z ∈ Z (2)
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Since repositioning trips should start at the time step, in which this problem is solved, the
number of repositioning vehicles departing from a zone should be smaller than |V I

z |, the
number of idle vehicles in zone z. Hence, the number of excess vehicles, which represent the
maximum amount of vehicles that can be repositioned from a zone is bound by [0, |V I

z |].
The approach by [M. Pavone et al., 2012] is to balance the excess vehicles in all zones,

i.e.

vdz =

⌊∑
z∈Z v

e
z

|Z|

⌋
∀z ∈ Z (3)

B.4 Demand-Responsive Zone Creation Algorithm

Let G = (N,E) be a network, where each node n ∈ N has coordinates (xn, yn) in a metric
system. Moreover, let TOD be a set of (expected) OD trips (with OD ∈ N × N). The
following algorithm creates quadratic zones, where the edge length of the zones depends on
the amount of (expected) demand within the respective zones. The algorithm requires the
maximum edge length lmax and the number of zoom levels nl as input. It returns a mapping
Z of zone-indices to geometrical shapes and a list of zone-indices L that make up the final
zone system. The procedure is divided into two steps. First, all zones for all zoom levels are
created in Algorithm 4. Then, the demand-based selection of zones is conducted recursively
in Algorithm 5.

Algorithm 4: create hierarchical zones
Data: lmax > 0;nl > 0;G = (N,E);TOD;

Result: Z = create hierarchical zones(lmax, nl, G, T
OD)

xmin, xmax, ymin, ymax ← get boundaries(G,TOD, lmax);

Ttot ← get total demand(TOD);
S = {} ; /* mapping of zone-index to share of total demand */

Z = {};
l← 0 ; /* resolution/zoom level */

while l < nl do
ll ← lmax/2l ; /* edge length of zoom level l */

nl
x ← (xmax − xmin)/ll;

nl
y ← (ymax − ymin)/ · ll;
nx ← 0 ; /* x-index of zone on current level */

while nx < nl
x do

ny ← 0 ; /* y-index of zone on current level */

while ny < nl
y do

i← (l, nx, ny) ; /* zone index */

z ← create zone area(ll, nx, ny);

d← get demand in area(z,G, TOD)/Ttot;
if d > 0 then

Z[i]← z;
S[i]← d;

end
ny ← ny + 1;

end
nx ← nx + 1;

end
l← l + 1;

end

Here, get boundaries(G, TOD) returns the geometrical boundaries of nodes with demand.
The boundary values are selected such that xmax − xmin and ymax − ymin are dividable by
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lmax and the additional length to reach this integrality condition is added symmetrically to
the lower and upper end. The function create zone area(ll, nx, ny) builds a square with edge
length ll around the center point (xmin + ll ∗ (nx + 0.5), ymin + ll ∗ (ny + 0.5)). The function
get demand in area(z,G, TOD) counts the (expected) number of trip departures and arrivals
within zone z.

For the second algorithm, an additional input parameter is required to determine how large
the share of demand smin should be within a zone to replace this zone with the zones of the
next zoom level (if these are available). The recursive algorithm is initiated with the zones of
the lowest resolution, i.e. Zc = {i ∈ Z : i[0] = 0}.

Algorithm 5: select hierarchical zones
Data: Zc;nl;S; smin > 0;
Result: L = select hierarchical zones(Zc, nl, S, smin)
L← [];
for i ∈ Zc do

(l, nx, ny)← i;
if S[i] < smin OR l == nl then

; /* add current zone index */

L← L+ [i]
else

; /* check zones of next zoom level */

Zp
c ← {};

Inl ← [(l + 1, 2nx, 2ny), (l + 1, 2nx + 1, 2ny), (l + 1, 2nx, 2ny + 1), (l + 1, 2nx + 1, 2ny + 1)];
for inl ∈ Inl do

Zp
c [i]← Z[i];

end
L← L+ select hierarchical zones(Zp

c , nl, S, smin)
end

end

For the purpose of creating zones with sizes based on demand, Algorithms 4 and 5 can be
viewed as an alternative to machine-based clustering methods (e.g., K-Means). In contrast
to K-Means, this approach creates regular geometric shapes and considers constraints for
maximum and minimum edge length.

B.5 FleetPy

When simulating mobility-on-demand fleets, modeling detail is of essence. Simpler models
typically have a higher computational performance, but might lack the capability to answer
specific research questions. After adapting and restarting several frameworks from scratch,
FleetPy was designed and developed by the author of this thesis and Roman Engelhardt,
with the intention to build a modular framework with clear interfaces for different agents and
interactions in the real and digital world. The framework proved useful for other PhD students
leading to more contributors. Current development includes different aspects of the framework,
e.g., dynamic access points for pooling, non-myopic user-assignment, repositioning, charging,
and the synchronization of parcel and people delivery.

A first version with the base code was published as open-source code under the MIT license
and is available at https://github.com/TUM-VT/FleetPy. As mentioned, the FleetPy project
is still ongoing and under development.
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C Inputs for Case Study in the AMoD Regulation
Chapter

Chapter Symbol Description Unit Case Study Value Source
Bayesian Hζ Bessel function
Optimization ζ Order of Bessel function 5/2

Traveler cV OT value of time (same for each mode) e /s -0.0045 from1

Model cD,PV distance dependent private vehicle
cost

e /km 0.66 from2

cPV private vehicle mode choice intercept
for modal calibration

e 4.70

fPT
od public transport fare for traveling

from origin o to destination d e 1.00
vwalk walking speed m/s 1.33
cT public transport transfer penalty e -0.8
(η1, g(η1)) first point of definition of gV OT (η) (0,1)
(η2, g(η2)) second point of definition of

gV OT (η)
(0.38,1) from3

(η3, g(η3)) third point of definition of gV OT (η) (1,1.76) from4

(η2, g(η2)) forth point of definition of gV OT (η) (1,10000)
Street v1,I first travel time scaling parameter for

inner zone
m/s 5.87

Network v2,I second travel time scaling parameter
for inner zone

m/s 7.37

Model v1,O first travel time scaling parameter for
outer zone

m/s 10.32

v2,O second travel time scaling parameter
for outer zone

m/s 15.35

Public ρBus assumed capacity for bus pax 100 from3

Transport ρTram assumed capacity for tram pax 216 from3

Network ρSubway assumed capacity for subway train pax 940 from3

Model ρUrbanTrain assumed capacity for urban train pax 1088 from3

cBus cost for bus e /km 3.00 from5

cTram cost for tram e /km 5.00 from5

cSubway cost for subway train e /km 15.00 from5

cUrbanTrain cost for urban train e /km 15.00 from5

wBus energy consumption for bus kWh/km 34 from6

wTram energy consumption for tram kWh/km 26 from6

wSubway energy consumption for subway kWh/km 113 from6

wUrbanTrain energy consumption for urban train kWh/km 173 from6

ew emission of CO2 per energy con-
sumption

g/kWh 112 from7

Fleet τwr customer waiting time constraint s 30
Control τδr detour time constraint
Model relative to direct route travel time % 40

tb boarding duration s 30
ρ AMoD vehicle capacity pax 4
(NRV,wl, NRV,al) number of vehicles considered by RV

heuristic
veh (5,5)

Modeling xP regulator decision variable for park-
ing fees

e [2.50, 5.00]

1[Frei et al., 2017]
2https://www.tcs.ch/de/testberichte-ratgeber/ratgeber/kontrollen-unterhalt/kilometerkosten.php
3https://www.mvg.de/ueber/das-unternehmen/fahrzeuge.html
4[Tirachini, Hurtubia, et al., 2017]
5https://prof.beuth-hochschule.de/fileadmin/prof/jschlaich/200811 Fr JS Kostenmodelle -
NAHVERKEHR.pdf

6https://www.ris-muenchen.de/RII/RII/DOK/ANTRAG/2337762.pdf
7https://www.swm.de/dam/swm/dokumente/geschaeftskunden/broschuere-strom-erdgas-gk.pdf
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Chapter Symbol Description Unit Case Study Value Source

the Impacts xRT regulator decision variable for road
toll

e /km [0.0, 1.0]

of Decision k0 threshold macroscopic density to
trigger road toll

veh /lane-km 5.0

Variables xPT regulator decision variable for scaling
public transport frequency

[0.25, 2.0]

xF regulator decision variable to limit
the AMoD fleet size

vehicles [0, 50,000]

yF AMoD service planner decision vari-
able for fleet size

vehicles [0,10000]

yPD AMoD service planner decision vari-
able for distance-based fare

e /km [0.25, 2.00]

fAMoD
min minimum base fare for an AMoD trip e 1.0
yPU AMoD service planner decision vari-

able to scale fares if 75% fleet uti-
lization is exceeded

[1.0, 10.0]

Social ePV avg private vehicle CO2 emissions g/km 130 from8 9

Welfare eAMOD avg AMoD vehicle CO2 emissions g/km 15 from1011

and Profit cCO2 monetarization of CO2 emissions e /kg 0.145 from12

Model cFv (daily) fixed costs of an AMoD vehi-
cle

e 40 from13

cDv distance dependent operating cost of
an AMoD vehicle

e /km 0.25 from13

Table A2: Collection of parameters within the case study in the AMoD regulation chapter
sorted by their first occurrence. Fixed parameter values within the case study
are given with their source.

D Overview-Tables for Literature Review

For the sake of legibility, abbreviations are used for most categories, which are explained in
the respective paragraphs in Chapter 2.
Abbreviations in Table A3:

• Operating Area: B: benchmark instance, G: grid network instance, O: optimization of
operating area, R: random instance

• Charging Infrastructure: GP: generation procedure, N: variation in number of charg-
ers, O(L): optimization (layer), S: battery swap

• H: hailing, P: pooling

• Fleet Composition: B: battery-size variation, H: homogeneous, M: mixed fleet

8https://www.muenchen.de/rathaus/Stadtinfos/Statistik/Verkehr.html
9https://www.ris-muenchen.de/RII/RII/DOK/ANTRAG/2337762.pdf

10https://ev-database.uk
11https://www.swm.de/dam/swm/dokumente/geschaeftskunden/broschuere-strom-erdgas-gk.pdf
12http://www.suedumfahrung-jetzt.de/wp-content/uploads/2016/04/bvwp-2030-

methodenhandbuch.pdf
13https://www.tcs.ch/de/testberichte-ratgeber/ratgeber/kotrollen-unterhalt/kilometerkosten.php
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• Pricing: A: auction, D: discount for pooled trips, F: fix price structure, O: output of cost
analysis, PO: price optimization, S: spatial pricing, T: temporal pricing, VEC: variable
electricity costs

• Customer-Operator Interaction: AS: asynchronous information flow, B: booking, C-
A/R: customer acceptance/rejection, O-A/R: operator acceptance/rejection, R: request,
RT: retry

• Time Constraints: CD: Common Destinations, D: Detour Time, DTU: Derived from
Travel Utility, R: Reservation Time, SD: Schedule Deviation, TTD: Total Travel Delay,
PTW: Pickup Time Window, W: Wait Time

• MaaS/Intermodal Integration: F: Feeder, I: Indirect (Analysis of Lacking PT Con-
nections), JP: Joint Planning, N: Network

Abbreviations in Table A4:

• Network: G: grid network, E: Euclidean plane, M: Manhattan plane, MS: main street
network, S: street network, VH: virtual hub network, VHC: virtual hub cascade

• Customer & Vehicle Model: F: flow model, Q: quantization of flows, A: agent-based
model, M: macroscopic model

• Travel Times & Routing: -: routing not considered/necessary, BPR/BPM: routing
based on link-flow dependent travel times (BPR/breakpoint model), CS: routing with
constant speed, CTM: routing with cell transmission model, E: routing based on Eu-
clidean distance, FCM: routing with flow-capacity model, IM: routing based on travel
time matrices from iterative simulations, M: routing based on travel time matrix, RS:
routing with random speed, S: routing based on and movement in traffic simulation,
TM: routing based on time-dependent travel time matrices

• PT Cooperation Model: xNS: consideration of hyperpaths through x nearest PT
stations, LCH: preprocessing of least-cost hyperpaths, WNC: consideration of walking
network connectivity, NSS: feeder service only near selected stations

• AMoD Competition: x Op: competition of x operators, H/Px: mixed fleet with
different options (hailing, pooling with max. occupancy of x)

• AMoD Demand: AB: activity-based model, DL: day-to-day learning of agents, E:
exogenous demand, HB: hierarchical Bayesian model, MC: mode choice model, MC-
AS: asynchronous mode choice model, PS: price sensitive demand, WS: waiting-time
sensitive demand

• Stochasticity in Customer Interaction: D: Deterministic, P: Probabilistic

Abbreviations in Table A5:

• Fleet Sizing: D: dynamic vehicle creation in simulation, EDD: elastic data driven fleet
sizing, M: macroscopic estimation, O: optimization
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• Customer-Vehicle Assignment: cDSO: combined Dynamic State Optimization, cMPC:
combined Model Predictive Control, DSO: Dynamic State Optimization, DSO-AS: Asyn-
chronous Dynamic State Optimization, DSO-ML: Machine Learning for DSO, DTI:
Dwell-Time Insertion, IH: Insertion Heuristic, S: Shareability Estimation, SO: Static
Optimization, SQM: Station Queue Model, ST: Schedule Transition, VSH: Vehicle Se-
lection Heuristics

• Dynamic Pricing: cMPC: combined Model Predictive Control

• Repositioning: BB: block-balance algorithm, cDSO: combined dynamic state opti-
mization, cMPC: combined model predictive control, DH: dual horizon approach, DSO:
dynamic state optimization, EMR: early-morning repositioning, EQ: using equilibrium
model, FB: feedback control, FF: feed-forward control, HR: using hypothetical requests,
LO: applying local optimization such as search of next depot, MPC: model predictive
control approach, ODA: only demand anticipation, OSA: only supply anticipation, RC:
random cruising, RFM: using realistic non-perfect demand forecast methods, RL: using
reinforcement learning methods, RR: using rejected requests as demand estimation

• Charging: cMPC: combined model predictive control, EP: electricity price considera-
tion, ID: charging while idle at depot, MP: macroscopic planning model, MPC: model
predictive control, PN: power network considerations, ST: static schedule transition, T:
threshold criterion, TR: trip rejection criterion
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Case Study Operating Area(s) Charging Infras-
tructure

Hail (H) /
Pool (P)

Fleet Com-
position

Pricing con-
sidered

Customer Interaction Time Con-
straints

MaaS & PT
Integration

Citation

Al-Kanj et al. [2020] New Jersey 100 kW H H S,T R,O-A/R,C-A/R - -
Atasoy et al. [2015] Hino (Tokio) - H,P M F R,Broker,C-A/R SD Broker
Basu et al. [2018] Virtual City (Singapore) - P H F B W,D F
Bauer et al. [2018] Manhattan N,P H H,B O B W -
Bilali, Dandl, et al. [2019b] and Bilali, Dandl, et al.
[2019a]

Munich - P H - B R,W,D,B -

Bilali, Engelhardt, et al. [2020] Munich - P H - B R,W,D,B -
Bischoff, Kaddoura, et al. [2018] O, Berlin - P H - R,O-A/R W,D -
Bongiovanni et al. [2019] B 3 kW P M - R,O-A/R TW -
T. D. Chen and Kockelman [2016] G GP,4/50 kW H H,B O R,C-A/R W -
Dandl and Bogenberger [2018] Munich - H M - R,O-A/R W -
Dandl, Bogenberger, and Mahmassani [2019] Manhattan - H H F AS,R,O-A/R,C-A/R - -
Dandl, Grueber, et al. [2019] Munich - P H O B,RT R,W,D I
Dandl, Fehn, et al. [2020] Munich N,163 kW H H VEC,O B - -
Engelhardt, Dandl, Bilali, et al. [2019] and Engel-
hardt, Dandl, and Bogenberger [2019]

Munich - P H - R,O-A/R,C-A/R PTW,D -

Erdmann, Dandl, Kaltenhaeuser, et al. [2020] Manhattan - H H - R,O-A/R W,R -
Sebastian Hörl et al. [2019] Paris - H H PO B - -
Iacobucci et al. [2019] Tokyo 20 kW H H VEC B - -
Jung, J. Y. Chow, et al. [2014] Seoul OL P H - R,O-A/R W,D -
Kang et al. [2015] Ann Arbor OL H H OL B - -
Kucharski and Cats [2020] Amsterdam - P H D - U -
Liang, G. H. d. A. Correia, et al. [2016] O,Delft 1.5 kW H H O R,O-A/R - I
Y. Liu, Bansal, et al. [2019] Manhattan - H,P M D R,O-A/R W,TTD -
Ma et al. [2019] Long Island - P H - B - F
Martinez et al. [2015] Lisbon - P H - B R,W,TTD -
Nahmias-Biran et al. [2020] Virtual City (Singapore) - H,P H F,D B - F
Oke, Akkinepally, et al. [2020] Baltimore, Boston - H,P H F,D B - F
Pinto et al. [2019] Chicago - P H F B D JP
Salazar, Rossi, et al. [2018] Manhattan - H H S B - N
Shen et al. [2018] (part of) Singapore - H,P H F,D R,O-A/R W,D F
Sheppard et al. [2019] 9 study areas in US 10-250 kW H H,B O B W -
Sieber et al. [2020] 4 rural areas Switzerland - H H O B - F
Tachet et al. [2017] 11 Cities - P H - B TTD -
Turan et al. [2020] Manhattan, San Francisco 48 kW H H S,T,VEC B - -
Vakayil et al. [2017] Washington D.C. - H H - R,O-A/R W F
Vosooghi, Puchinger, Jankovic, et al. [2019] Rouen Metro Area (France) - P H F,D R,O-A/R W,D -
Vosooghi, Puchinger, Bischoff, et al. [2020] Rouen Metro Area (France) O,22/43 kW,S P H,B F B - -
Wallar, Schwarting, et al. [2019] Manhattan, Singapore - P M - B W,TTD -
Wen, Y. X. Chen, et al. [2018] Suburban Area in Europe - P H F,D R,O-A/R R,W,D F
Wilkes et al. [2021] Small town in Germany - P H F R,O-A/R,C-A/R W,D -
J. J. Q. Yu et al. [2018] R - H,P H A R,Broker - Broker
Zachariah et al. [2014] New Jersey State - P H - B W,D,CD F
Zgraggen et al. [2019] Manhattan - H H - R,O-A/R - N
H. Zhang et al. [2019] B, Long-Distance O,100 kW H H F B - -
Wenwen Zhang et al. [2015] R - P H D B - -
Zhu et al. [2017] New Jersey - P M - B - -

Table A3: Classification of papers regarding AMoD service design. Papers are mentioned if part of their focus is on service design or if their service design differs in at least one category from most of the
other papers. This category is marked (bold letters).
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Appendix

Study Focus Network
Model

Customer
& Vehicle
Model

Travel
Times &
Routing

AMoD Com-
petition

PT Cooper-
ation

AMoD Demand Stochasticity of
Customer Interac-
tion

Citation

Al-Kanj et al. [2020] O G,VHC A - - - PS P
Atasoy et al. [2015] O,D S A M H,P8 - MC P
Azevedo et al. [2016] O,D VH, S A IM - - AB,MC D
Basu et al. [2018] O,D MS A IM - NSS DL,AB,MC D
Bilali, Dandl, et al. [2019b] and Bilali, Dandl, et al. [2019a] O E M - - - E D
Bilali, Engelhardt, et al. [2020] O E,S M,A M - - E D
Burns et al. [2013] O E M,A - - - E D
Daganzo and Ouyang [2019] O E M,A - - - E D
Dandl, Bracher, et al. [2017] O,T S A S - - E D
Dandl, Bogenberger, and Mahmassani [2019] O M A CS 2 Op - MC-AS P
Dandl, Fehn, et al. [2020] O E M - - - E D
Engelhardt, Dandl, Bilali, et al. [2019] O S A TM - - WS P
Fagnant and Kockelman [2014] O M,VHC A CS - - E D
Fiedler et al. [2018] O S A E,CS - - E D
Fluri et al. [2019] O S,VHC A S - - E D
Herminghaus [2019] O E M CS - - PS D
S. Hörl et al. [2019] O S A S, E - - E D
Kang et al. [2015] O E A CS - - HB D
Levin et al. [2017] O,T S A CTM - - E D
Levin [2017] O,T S F CTM - - E D
Q. Li and Liao [2020] O,D S,VH F BPR - - AB,DUE,SO D
Liang, G. H. d. A. Correia, et al. [2018] O S A BPM - - E D
Liang, Correia, Gonçalo Homem de Almeida, et al. [2020] O S A BPR - - E D
Loeb and Kockelman [2019] O S A IS - - WS P
Ma et al. [2019] O E A CS - 4NS E D
Maciejewski and Bischoff [2017] O,T S A S - - E D
Marczuk et al. [2015] O,D,T S A S - - AB,MC D
Oke, Akkinepally, et al. [2020] O,D S A IM - 7.5mi DL,AB,MC D
Pinto et al. [2019] O,D M? A CS - LCH MC D
Ruch, Horl, et al. [2018] O S,VH A S - - E D
Salazar, Rossi, et al. [2018] O S F FCM - WNC E D
Salazar, Tsao, et al. [2019] O S F BPR - - E D
Séjournè et al. [2018] O VH F M 2 Op - E D
Simonetto et al. [2019] O S A M 2 Op - E D
Turan et al. [2020] O VH A M - - PS P
Vakayil et al. [2017] O VH A M - LCH E D
Vazifeh et al. [2018] O S A TM 1-3 Op - E D
Wilkes et al. [2021] O,D S A M - - AB,MC P
Z. Xu et al. [2019] O E M CS - - E D
J. J. Q. Yu et al. [2018] O - A R Multiple - PS P
Zgraggen et al. [2019] O VH,PT F & Q M - WNC E D

Table A4: Classification of papers regarding AMoD modeling in transportation systems. Papers are mentioned if part of their focus is on the development of AMoD modeling. This category is marked (bold
letters).
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Fleet Sizing Customer Assignment Dynamic Pricing Repositioning Charging
Citation

Albert et al. [2019] 400-1000 SQM - MPC -
Al-Kanj et al. [2020] 1000-2200 cMPC cMPC cMPC cMPC
Alonso-Mora, Samaranayake, et al. [2017] 1000-3000 DSO - DSO,RR -
Alonso-Mora, Wallar, et al. [2017] 1000-3000 cDSO,HR - cDSO,HR -
Atasoy et al. [2015] O, 60 IH - - -
Bauer et al. [2018] D ST - - SST
Bertsimas et al. [2019] 2000-10000 IH, DSO - - -
Bilali, Dandl, et al. [2019b] and Bilali, Dandl, et al. [2019a] - S - - -
Bilali, Engelhardt, et al. [2020] 100-1500 S, DSO - - -
Bischoff and Maciejewski [2016b] and Bischoff and Maciejewski [2016a] 50000-250000 IH - - -
Boesch et al. [2016] 4000-130000 ST - - -
Boewing et al. [2020] 10-45 cMPC - - cMPC,PN
Bongiovanni et al. [2019] 16-50 SO - - SST
Carron et al. [2019] 4000 SQM - MPC -
Charkhgard et al. [2020] 5-100 SQM - MPC -
T. D. Chen and Kockelman [2016] 30000-60000 IH - BB TR
Daganzo and Ouyang [2019] 1-12000 M,IH - - -
Dandl and Bogenberger [2018] 50-4000 DSO, IH - - -
Dandl and Bogenberger [2019] 50-300 DSO - DSO T
Dandl, M. Hyland, et al. [2019] 5000 cDSO - cDSO,RFM -
Dandl, Bogenberger, and Mahmassani [2019] 3500-4500 AS-DSO, IH - - -
Dandl, Grueber, et al. [2019] 1-100 ST - - -
Dandl, M. Hyland, et al. [2020] M,2750-4500 cDSO - cDSO,DH -
Dandl, Fehn, et al. [2020] 2000-2500 M - - MP,MPC,EP
Engelhardt, Dandl, Bilali, et al. [2019] and Engelhardt, Dandl, and Bogen-
berger [2019]

200-3000 VSH,DSO - - -

Erdmann, Dandl, Kaltenhaeuser, et al. [2020] 50-300 R-IH - - -
Estandia et al. [2021] 16000 SQM - cMPC cMPC,PN
Fagnant and Kockelman [2014] D,400-3300 IH - BB -
Fagnant and Kockelman [2018] O,1500-2500 IH - BB -
Farhan, D. Chen, et al. [2018] 45-80 IH - - ID
Farhan and T. D. Chen [2018] 15000-55000 IH - BB TR?
Fehn et al. [2019] 5-30 IH - - T,EP
Fluri et al. [2019] - DSO - RL -
Herminghaus [2019] M M - - -
Hu and J. Dong [2020] 650 DSO, ML-DSO - - T
M. Hyland and Mahmassani [2018a] 100-800 IH, DSO - - -
M. Hyland, Dandl, et al. [2019] 5000 cDSO - cDSO,RFM -
M. F. Hyland and Mahmassani [2020] 400 DSO - - -
Iacobucci et al. [2019] 30 MPC - MPC MPC
Jaeger et al. [2018] 45000 IH - - -
Jung, J. Y. Chow, et al. [2014] 600 IH - - T
Kondor et al. [2020] D,1-400000 IH,S - - -
Kucharski and Cats [2020] - SO - - -
L. Li, Lin, et al. [2019] 200-2000 IH - NaN ID, T
L. Li, Pantelidis, et al. [2021] 262,1400-2000 IH - - TR
Q. Li and Liao [2020] O,2000-10000 - - EQ -
Liang, G. H. d. A. Correia, et al. [2018] 5-25 DSO - - -
Liang, Correia, Gonçalo Homem de Almeida, et al. [2020] 5-25 DSO - - -
Y. Liu, Bansal, et al. [2019] O,1000-4000 DSO - RR -
Y. Liu and Samaranayake [2019] 1000-3000 DSO - HR -
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Citation

Loeb, Kockelman, and J. Liu [2018] 12000-39000 ST - - T,TR,ID
Ma et al. [2019] 400-2200 IH - DSO -
Maciejewski, Bischoff, and Nagel [2016] 500-2500 IH - - -
Navjyoth Sarma et al. [2020] 500-3000 DSO,IH - - -
M. Pavone et al. [2012] 50-150 SQM - FB,FF -
Pinto et al. [2019] O, 250-1500 IH - - -
Ruch, Lu, et al. [2020] 15-600 IH, DSO - RR,BB -
Santi et al. [2014] - S - - -
Simonetto et al. [2019] 150-3000 VSH,DSO - RR -
Syed, Akhnoukh, et al. [2019] 10 IH - - -
Syed, Kaltenhaeuser, et al. [2019] 50-200 IH - - -
Tachet et al. [2017] - S - - -
Turan et al. [2020] 400-1200 SQM cMPC cMPC cMPC,ID,EP
Vazifeh et al. [2018] 6000-12000 DSO,ST - - -
Vosooghi, Puchinger, Bischoff, et al. [2020] 3000 IH - - T,TR
Wallar, van der Zee, et al. [2018] 1000-3000 DSO - DSO -
Wallar, Schwarting, et al. [2019] O ST - - -
S. Wang et al. [2019] 2000-4500 IH,DSO - - -
Wen, Zhao, et al. [2017] 20-300 IH - BB,DSO,RL -
Wilkes et al. [2021] 25-150 IH, DSO - - -
Winter, Cats, G. Correia, et al. [2018] 250-900 DTI - - -
Winter, Cats, Martens, et al. [2020] 12500 IH - LO,ODA,OSA -
Winter, Cats, Martens, et al. [2021] 10000-15000 IH - ODA,LO -
Wittmann et al. [2020] EDD IH, DSO - MPC -
Z. Xu et al. [2019] - M - RC -
J. J. Q. Yu et al. [2018] 10-1000 DSO - - -
Zgraggen et al. [2019] 4500-5500 - - MPC -
Rick Zhang et al. [2016] 40 cMPC,DSO - cMPC,FB cMPC
H. Zhang et al. [2019] O - - cMPC cMPC
Zwick and Axhausen [2020] EDD IH - FF -
Zwick, Kuehnel, et al. [2021] 5000-8000 IH - FF -

Table A5: Classification of papers regarding AMoD operation categories. Papers are mentioned if part of their focus is on the development of operational aspects. This category is marked (bold letters).
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