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Abstract Cavitation erosion refers to severe material damage caused by collapsing vapor structures near
walls. During the collapse of vapor structures, high intensity pressure waves up to several GPa are emitted
that can lead to damage of nearby surfaces. Compressible numerical flow simulations enable the numerical
prediction of cavitation erosion by spatial and temporal resolution of such pressure impacts. However, these
simulations usually only provide point-based pressure data. To obtain numerical substitutes for cavitation
erosion pits, further post-processing steps are required, including clustering methods of the point-based pressure
data. Using algorithms, spatially and temporally contiguous areas featuring high pressure are recognized and
defined as clusters. In this contribution, we test the applicability of various clustering algorithms in the field
of artificial intelligence (AI) and machine learning (ML) for this clustering process. We employ established
algorithms as k-means and Density-Based or Density-Ratio Based Spatial Clustering of Applications with Noise
(DBSCAN, DRSCAN). The clustered data and the performance of the clustering process are compared with a
problem-specific, physically motivated algorithm. Additionally, the simulation results reveal new insights into
the spatial and temporal distribution of potentially erosive events.
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Introduction

Artificial intelligence (Al) and machine learning (ML) are the main drivers of innovation nowadays. In this
paper, we want to demonstrate that tools and algorithms from this fast-growing area can be used beneficially
for cavitation erosion prediction.

In cavitating flows, vapor-filled cavities are formed, which later implode emitting intense shock waves
and potentially damaging nearby surfaces. In the research group Gas Dynamics at the TU Munich, we
investigate cavitating flows and their cavitation erosion potential using fully compressible 3-D simulations
of cavitating flows. For the prediction of possible cavitation-induced material damage, we record pressure
peaks at surfaces and afterward cluster data points together to physical erosion pits. Until now, a simple
flood fill algorithm with spatial and temporal criteria has been used for the clustering. In this contribution,
clustering algorithms from ML frameworks are applied to the point-based pressure data and the results are
compared to those of a physically motivated flood fill algorithm.

Problem description

We have performed fully compressible numerical simulations of a cavitating jet eroding a target plate
(specimen) considering varying pump pressures (pi,). The simulation set-up is similar to the experiments
conducted by e.g. Fujisawa et al. [1,2]. Figure 1 depicts the set-up and the erosion on the target. For
the simulations we have used our in-house flow solver CATUM (CAvitationTechnical University Munich),
which has been successfully validated for cavitation erosion prediction [3,4], cavitating multi-component
flows [5-7], cavitation dynamics [8, 9], and bubble collapses [10]. Viscous effects are considered and the
spatial resolution especially resolves the wall-near region with cells of a minimum height of 3 um, resulting
in a grid of about 40 million cells.

Using special algorithms, we monitor and output the hydrodynamic pressure in the near-wall cells. Based
on this data, we generate numerical erosion pit data of plastic surface deformation. The data set obtained
from our simulations can be interpreted as a 3-D set with the hydrodynamic pressure p as a function of the
spatial surface coordinate y,z and the time ¢ as p = p(y,z,7). A representative data set is depicted in Fig. 2.
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Figure 1. Considered configuration in (a) and erosion on the target plate (specimen) in (b). The coordinate
system has been modified to correspond to the presented results. Figures are reprinted from Fujisawa et
al. [2] with permission granted by Elsevier.
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Figure 2. Representative data set of recorded point-based pressure peaks. y and z indicate the target plate
(specimen) and ¢ the temporal evolution. Data points are colored by the pressure p.

Method

For the application of clustering algorithms, the first important step involves data preparation. In the
considered application, this step consists of filtering the output data by a threshold pressure py,, chosen
as pm = 100MPa, and scaling the time. As mentioned above, the data set can be interpreted as a 3-D set
with p = p(y,z,t). For generic clustering algorithms, the data points should have comparable distances in
each dimension. Since temporal and spatial dimensions of a collapse event are on different scales (us and
mm), the time axis is scaled accordingly here.

Then, the point-based pressure data is clustered, where we applied the following algorithms:

(1) Physically motivated simple clustering (PMSC) (Trummler, 2018 [4]):
An engineering approach with a problem-specific algorithm using a simple flood fill algorithm.
Taking advantage of the fact that the local pressure maximum of a pit is centrally located (see also
Fig. 4), the algorithm starts the search from such a local pressure maximum. L.e. first the data set is
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Figure 3. Comparison of the computation time (run time) At for the clustering process of two different
operating points (p;;, = 120bar and p;, = 210bar) using Matlab R2019b on intel core (i5-8265U,1.60GHz).

sorted by descending pressure values. The next value in the list, that is not assigned to another cluster,
is used as the starting point for the algorithm. Based on the fact that the spatial distribution is circular
(see Fig. 4), the search in spatial direction is also circular. To prevent unphysical merging of pits,
additional temporal and spatial limits are employed.

(i1) k-means clustering (Lloyd et al., 1956 [11]):
A method of vector quantization, that aims to partition n data points into k clusters by assigning them to
the nearest mean. k-means is available in standard Al-packages and often employed for ML techniques.

(i11) Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996 [12]):
This algorithm clusters points that are close to each other based on a distance measurement (usually
Euclidean distance) and a minimum number of points. DBSCAN is a well-known data clustering
algorithm commonly used in ML.

(iv) Density-Ratio Based Spatial Clustering of Applications with Noise (DRSCAN) (Zhu et al., 2016 [13]):
The DRSCAN represents an improvement of the DBSCAN by modifying the density-based clustering
algorithm to do density-ratio based clustering.

Results

Comparison clustering algorithms - Physical plausibility

Since the most important criterion is the physical plausibility of the results, we have first manually checked
this. For the considered configuration, the DRSCAN performs best because of its ability to distinguish
between pits that are spatially and temporally very close to each other.

Comparison clustering algorithms - Performance

Figure 3 compares the runtime for the clustering process of two different operating points. ML-algorithms
result in a significant performance increase by about 90%. Additionally, using an existing algorithm saves
working time as it is not necessary to write a new one from scratch.

Pit formation - Maximum pressure distribution
Figure 4 compares a pit from our simulation results (a) with the experimental data of Roy et al. [14]. The
spatial distribution of the maximum wall pressure in our simulation matches the plastic deformation of the
experiment. In further studies [15], we have evaluated the correlation of pit radius and pressure maximum
and compared the findings with experimental data. Additionally, we have also assessed and compared the
cavitation erosion aggressiveness at different operating points.

Furthermore, this analysis allowed us to gain new insights into the duration and temporal evolution of
such collapse events, see [15].
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Figure 4. Distribution of maximum wall pressure p,, of one selected pit in our simulation (a) and the
experimental results of Roy et al. [14] (b) (reprinted with permission granted by Elsevier).

Conclusion

With this paper, we have successfully demonstrated the great potential of ML and Al algorithms for
numerical cavitation erosion prediction. Using an existing algorithm saves code development time and
can lead to better performance and higher accuracy.

Clustering point-based pressure data into numerical substitutes of erosion pits can potentially facilitate
the numerical prediction of cavitation-induced material damage. First, this reduces the extensive data
set of pressure peaks to a smaller, more meaningful, and more sound set of numerical erosion pits that
is easier to handle and interpret. Second, this could provide a possible approach for a grid-independent
numerical prediction of cavitation erosion. While collapse-induced maximum pressures are strongly grid-
dependent [3,4, 10], number and size of pits could lead to a grid-independent prediction.

In a larger context, the aim is to predict actual material deformation. For this purpose, a functional
relationship of hydrodynamic pressure signals (intensity and duration) with the material deformation is
necessary and can be obtained, for example, by coupled fluid-material simulations (see e.g. [16-18])
incorporating suitable material models.
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