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Abstract

For fusion to become a practical source of energy, we need to understand and control the
edge. Current predictions of the edge region of future fusion devices have large uncertainty,
and our understanding of currently-observed experimental phenomena is incomplete. Realistic
simulations of the edge would help to interpret existing experimental results and predict the
performance of new devices and operating scenarios. By improving our understanding and
control of the edge, simulations could help us build energy-producing reactors sooner, for
less cost and with more robust operating conditions. To simulate the edge, we extend the
GRILLIX fluid-turbulence code to perform simulations across the separatrix of existing fusion
experiments. We implement a new grid preprocessor and extend the grid generation algorithm to
enable simulations in realistic axisymmetric magnetic geometries, including in advanced divertor
configurations. We also identify the cause of a numerical issue related to parallel boundary
conditions and implement an immersed boundary method to permit simulations with realistic
wall geometries and sheath boundary conditions.

We then perform a rigorous validation of the numerical model to determine how realistic the
simulations are and to identify how the model can be further improved. We compare against two
experimental cases – an ‘X-point’ scenario in the TORPEX basic plasma physics device, and
the ‘TCV-X21’ validation case in the TCV tokamak. In TORPEX, the simulations reproduce
the experimentally-observed up-down asymmetry and match the density profile. However, the
simulations use a heating power 97% less than the experiment and do not match the electron
temperature profile due to the omission of neutrals. A significantly better match is found for
TCV-X21. At the outboard midplane, the simulations quantitatively match the mean profiles
and fluctuations mostly within uncertainty. They also reproduce the non-Gaussian nature of the
turbulence in the SOL, correctly predicting that the far-SOL should be dominated by coherent
filaments. The drive mechanism for the filaments is identified via a Fourier analysis as drift-wave
turbulence in the outer confined-region. Towards the divertor targets, the quality of the match
decreases due to an issue in applying drift-corrected boundary at glancing angles of incidence
and the use of insulating-sheath boundary conditions for the potential. Despite this, the electron
temperature at the targets matches remarkably well in the scrape-off-layer. The validations
show that GRILLIX can now perform simulations of real devices, and can qualitatively and
often quantitatively match experimental measurements. The validation methodology and cases
developed in this thesis are being used to test improved versions of GRILLIX, guiding the
development of validated predictive simulations of the edge and divertor.
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Abstract

Kurzfassung
Damit Fusion zu einer praktischen Energiequelle wird, muss der Randbereich verstanden und
kontrolliert werden. Aktuelle Vorhersagen des Randbereiches zukünftiger Fusionsanlagen weisen
große Unsicherheiten auf und unser Verständnis der derzeit beobachteten experimentellen
Phänomene ist unvollständig. Realistische Simulationen des Randbereiches würden helfen,
vorhandene experimentelle Ergebnisse zu interpretieren und die Leistung neuer Geräte und
Betriebsszenarien vorherzusagen. Simulationen könnten uns durch Verbesserung unseres Ver-
ständnisses und durch bessere Kontrolle des Randbereiches helfen, energieerzeugende Reaktoren
früher, kostengünstiger und mit robusteren Betriebsbedingungen zu bauen. Zur Simulation des
Randbereiches erweitern wir den GRILLIX-Fluid-Turbulence-Code, um Simulationen über die
Separatrix bestehender Fusionsexperimente hinweg durchzuführen. Wir implementieren einen
neuen Gitter-Präprozessor und erweitern den Gittererzeugungsalgorithmus, um Simulationen
in realistischen axialsymmetrischen magnetischen Geometrien, einschließlich fortgeschrittener
Divertor-Konfigurationen, zu ermöglichen. Wir identifizieren auch die Ursache eines numerischen
Problems im Zusammenhang mit parallelen Randbedingungen und implementieren eine soge-
nannte Immersed-Boundary Methode, um Simulationen mit realistischen Wandgeometrien und
Randbedingungen zu ermöglichen.
Anschließend führen wir eine strenge Validierung des numerischen Modells durch, um

festzustellen, wie realistisch die Simulationen sind und zu ermitteln, wie das Modell weiter
verbessert werden kann. Wir vergleichen mit zwei experimentellen Fällen – einem “X-
Punkt”-Szenario im einfachen TORPEX Experimemt für Plasmaphysik und dem “TCV-X21”-
Validierungsfall im TCV-Tokamak. In TORPEX reproduzieren die Simulationen die experi-
mentell beobachtete vertikale Asymmetrie und das Dichteprofil stimmt überein. Allerdings
weisen die Simulationen eine um 97% geringere Heizleistung als das Experiment auf und stimmen
aufgrund der Vernachlässigung von Neutralgasphysik nicht mit dem Elektronentemperaturprofil
überein. Eine deutlich bessere Übereinstimmung wird für TCV-X21 gefunden. An der äußeren
Mittelebene stimmen die Simulationen quantitativ mit den mittleren Profilen und Fluktuationen
größtenteils innerhalb der Unsicherheit überein. Sie reproduzieren auch die nicht-Gaußsche Natur
der Turbulenz in der Abschälschicht und sagen richtig voraus, dass die entfernte Abschälschicht
von kohärenten Filamenten dominiert werden sollte. Der Antriebsmechanismus für die Filamente
wird über eine Fourier-Analyse als Driftwellenturbulenz im äußeren eingeschlossenen Bereich iden-
tifiziert. Zum Divertor hin nimmt die Qualität der Übereinstimmung aufgrund eines Problems
bei der Anwendung einer driftkorrigierten Grenze bei flachen Einfallswinkeln und der Verwen-
dung von Randbedingungen für das Potential ab. Trotzdem stimmt die Elektronentemperatur an
den Divertorplatten in der Abschälschicht bemerkenswert gut überein. Die Validierungen zeigen,
dass GRILLIX nun Simulationen realer Geräte durchführen und experimentelle Messungen
qualitativ und oft auch quantitativ reproduzieren kann. Die Validierungsmethodik und die in
dieser Arbeit entwickelten Fälle werden verwendet, um verbesserte Versionen von GRILLIX zu
testen und die Entwicklung validierter vorhersagekräftiger Simulationen des Randbereiches und
des Divertors zu leiten.
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Resources

There are several papers and software projects associated with this thesis, which will be referred
to throughout the thesis. These include

• GRILLIX (gitlab.mpcdf.mpg.de/tbody/GRILLIX@baa5cadd, legacy version): a high-performance
fluid turbulence code, used for the TORPEX and TCV-X21 validations presented in this
thesis. This has since been replaced by a refactored version based on parallax.

• TorX (gitlab.mpcdf.mpg.de/phoenix/torx@40964572): a post-processing library devel-
oped for GRILLIX (both legacy and refactored versions) and GENE-X, used to analyse
the simulations in this thesis.

• parallax-equilibrium (gitlab.mpcdf.mpg.de/phoenix/parallax_equilibrium@a0c591ae):
a grid preprocessor developed for GRILLIX (both legacy and refactored versions) and
GENE-X, used to handle axisymmetric magnetic equilibria in various formats.

• TCV-X21 (github.com/SPCData/TCV-X21@784c55a): a publicly-accessible dataset of edge
and SOL measurements from a TCV scenario for validating turbulence simulations, used
to validate GRILLIX in chapter 8.

• Body et al., Treatment of advanced divertor configurations in the flux-coordinate indepen-
dent turbulence code GRILLIX, published in Contributions to Plasma Physics, 2020. This
paper details the grid processing required to handle arbitrary axisymmetric geometries,
discussed in more detail in chapter 5.

• Galassi et al., Validation of edge turbulence codes in a magnetic X-point scenario in
TORPEX, published in Physics of Plasmas, 2022 [1]. For this paper, I performed and
post-processed the GRILLIX simulations, discussed in chapter 7.

• Oliveira & Body et al., Validation of edge turbulence codes against the TCV-X21 diverted
L-mode reference case, published in Nuclear Fusion, 2022 (co-first authorship) [2]. For this
paper, I performed the GRILLIX simulations, wrote the post-processing library, organised
the FAIR data repository with the help of Fair4Fusion, and wrote the paper with D.S.
Oliveira, D. Galassi, C. Theiler, A. Stegmeir and P. Tamain. The results of this validation
are discussed in chapter 8.

We additionally provide the notebooks used to generate the figures and for demonstrations in
the thesis. These are available from doi.org/10.5281/zenodo.5851526.
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Prelude: How to build a fusion reactor

When we look up at night and view the stars,
everything we see is shining because of distant nuclear
fusion.

(Carl Sagan)

This is a brief introduction to magnetic confinement fusion, intended for readers who do not
have a background in plasma physics. If you are already familiar with the topic, it can be safely
skipped. Alternatively, if you would like an extended introduction, Ongena et al., 2016 [3] is
recommended.

Nuclear fusion is the process that powers the stars. It occurs when the nuclei of light elements
(such as Hydrogen) collide and fuse to form heavier elements. When the products of nuclear
fusion have a higher nuclear binding energy than the reactants, the excess energy is eventually
converted into heat – such as sunlight or the solar wind. Before this can occur, however, the
reactants must be extremely hot. Since like charges electrically repel each other, fusion will
only occur when the colliding particles have enough energy to overcome the Coulomb barrier.
In the core of a star, this isn’t an issue: the immense gravity of a star increases the pressure in
the core until fusion reactions start to occur. Once fusion starts to release energy, the inwards
pressure due to gravity is balanced by an opposing pressure from the higher-temperature core

2



and an equilibrium is reached. In the centre of our sun, stellar fusion occurs around a pressure
of 2.6 × 1011 atm, and it produces only about 0.3kWm−3. To put these numbers in perspective,
the kinetic energy-per-unit-volume associated with the pressure is similar to the detonation of
a thermonuclear weapon, while the power-per-unit-volume is roughly equivalent to a compost
heap1. Evidently, without the tremendous pressure and size of the sun, stellar fusion is not a
practical energy source.

Thankfully, we can cheat a little. In 1934, an (Australian!) physicist Mark Oliphant reported
that firing Deuterium ions into a Deuterium target produced an “enormous effect” – a much
higher rate of nuclear reactions than similar tests using normal protons [4]. By changing the
fuel, the thermonuclear fusion rate could be boosted enormously, and further still by increasing
the temperature beyond the temperature in the Sun. The effect of this is remarkable – in the
ITER reactor (under construction), the power density will be 500MW/840m3 = 600 kWm−3

at a core pressure of only 1020m−3 × 15 keV = 2.4 atm – 2000× more power-per-volume, at a
pressure (and energy density) 1011× lower. This is excellent news! Instead of having an energy
density similar to a thermonuclear weapon, the ITER plasma has only 360 kJm−3. This is the
same as the potential energy density of water at a height of 35m, which is pretty manageable.
Therefore, saying that the goal of fusion research is to “put a star in a bottle” is somewhat
misleading. In a fusion reactor, we’re putting much less energy into the fuel and getting far
more energy out in return.

As well as improving the safety of fusion reactors, the low energy density means that – perhaps
surprisingly – heating the plasma isn’t the biggest challenge in fusion (not to say that it is
trivial, but at least that temperatures in excess of 150 million Kelvin are readily attainable).
Instead, the main challenge is energy confinement – keeping the energy in the hot plasma for
long enough that it can heat more fuel, to achieve a self-sustaining reaction. This is, in a way,
similar to lighting a fire on a windy day – the energy available in a match is more than sufficient
to light a fire on a calm day. However, if the wind spreads the heat quickly, either you won’t
burn anything other than matches, or maybe you can burn part of the wood, but it won’t catch
to the surrounding fuel. As such, when we talk about achieving fusion, we don’t really mean
burning some D-T fuel2, but rather gaining energy from the fusion reaction. Break-even (& = 1)
means that the fusion reaction is producing as much energy as was supplied to it – that we’re
getting as much heat from the wood as we are from burning matches. Ignition (& = ∞) means
that the fusion reaction is completely self-heating – that we put away our matchbox, and the
fire keeps on going.

We need to keep the heat confined for long enough that the fuel self-heats. In our fire analogy,
we need a ‘windbreak’ – something to reduce how quickly heat is lost from our fuel. The most
popular confinement method for fusion is ‘magnetic confinement fusion’. Charged particles in
a magnetic field are subject to the Lorentz force � = @v × B. This leads to free motion along
the magnetic field, and circular orbits perpendicular to the magnetic field. If the magnetic

1There isn’t a particularly good reference for this, but a back-of-the-envelope calculation shows that the average
power density of the sun’s core must be small. As per the power density of a compost heap, the value sounds
reasonable (it’s not entirely negligible, but not large).

2A bench-top device called a ‘fusor’ can easily achieve D-D fusion. In fact, these devices produce enough fusion
neutrons that they can be used as a compact neutron source.
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field is strong enough, the Larmor radius A! = <E⊥
@� (the radius of the circular orbit) is much

smaller than the size of our device. This prevents charged particles from moving across magnetic
field-lines. This means that we can support a pressure gradient perpendicular to the magnetic
field – we can build a system for confining the fusion plasma, without putting a solid wall
anywhere near it. Since the plasma will be significantly hotter than the melting point of all
known materials, being able to confine the plasma at a distance is a great advantage.
Since ∇ · B = 0 (no magnetic monopoles), magnetic field-lines are always closed loops. The

simplest topology which can be constructed from magnetic field-lines and which is always
perpendicular to some volume is a torus, and modern magnetic confinement fusion devices are
topologically toroidal. However, a simple toroidal magnetic field is not sufficient to confine
the plasma. In an idealised infinitely-long straight solenoid, the magnetic field is homogenous.
However, if you bend a solenoid into a ring to make a toroidal field, then the coils are packed
more closely towards the axis of rotational symmetry. This leads to a non-homogenous magnetic
field – roughly, the toroidal field varies as �) ' �0 × '0/'. Additionally, since the magnetic
field is now curved, particles are subjected to a centripetal force. Both the ∇� and centripetal
forces lead to a vertical particle drift. Electrons and ions drift in different directions, which
causes a charge separation and an electric field, in turn causing an outwards �×� drift. As such,
a purely toroidal field also cannot confine a plasma. To counteract the charge separation, we
can add a poloidal component to the magnetic field, giving a helical magnetic field. This helps
to counteract the vertical drifts in two ways. Firstly, the vertical drift mostly cancels over a
poloidal orbit – the drift is always in the same direction, but this is either towards or away from
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the magnetic surface depending on whether the particle is above or below the magnetic axis [5].
Additionally, the magnetic field-lines in a helical field typically traverse toroidal surfaces3, and
as such the top and bottom halves of a flux surface are magnetically connected. Since particles
and therefore currents can flow quickly along the magnetic field, large charge imbalances can’t
form (due to the Pfirsch-Schlüter current) – and so the loss-of-confinement due to the large-scale
� × �-drift is avoided.

Unlike the toroidal field which can be generated with external coils, the poloidal field is not so
straightforward to generate. In a purely toroidal system, the poloidal field needs to be generated
via a current inside the plasma volume. We can’t use wires for this (they’d melt immediately).
Instead, since the plasma itself is conductive, we can ramp the current in a central solenoid –
which leads to a time-varying magnetic field through the central solenoid, an induced electric
field and current in the plasma, and a poloidal magnetic field. Alternatively, to avoid pulsed
operation we can use ‘non-Ohmic current drive’. Generating the poloidal magnetic field via the
plasma current is the basis for ‘tokamak’ devices. Another approach is to generate the poloidal
field with external coils, which requires breaking the rotational symmetry. This approach is
used in ‘stellarator’ devices. Comparing the two, tokamaks are simpler to design and construct,
and enjoy improved confinement due to their rotational symmetry, while stellarators are less
susceptible to current-driven instabilities and are easier to operate in steady-state conditions [6].

With our magnetic confinement “windbreak” in place, what is needed to reach a self-sustaining
burning fuel? The condition for ignition is famously summed up in the ‘fusion-triple-product’,
which can be determined by balancing the -heating rate with the power-loss rate [7]

=8)8�� & 2.6 × 1021m−3 s keV (0.1)

for the DT fusion reaction for )8 ∼ 15 keV, for =8 , )8 and �� the ion density, ion temperature and
energy confinement time respectively. The energy confinement time is a measure of how good

3Field-lines typically don’t arrive back in the same place after completing a toroidal revolution. An exception
to this is ‘resonant surfaces’, which are less stable than other magnetic surfaces.
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our windbreak is – the power loss rate %;>BB is assumed to be proportional to the plasma energy
density , = 3

2 (=� + =)))8, with an exponential decay factor ��, such that %,
%C = %ℎ40C −

,
��
.

Remarkably, in the period after the results from the T3 tokamak were released (in 1968),
the highest-achieved fusion-triple-product grew exponentially up until 1997, when the JET
tokamak achieved the highest-recorded energy gain factor of & ≈ 0.67 – that is, the total fusion
power was 67% of the 24MW external heating [8]. In 1998, on the JT-60U tokamak, a record
1.53 × 1021m−3 s keV was achieved for the fusion-triple-product – enough that, if DT was used
as the fuel, the shot would have achieved & = 1.25 (i.e. it would have exceeded break-even) [9].
Unfortunately, in the quarter-century since, the exponential increase in fusion-triple-product
has not continued. Much of the research effort was focused on the design of the ITER tokamak,
which suffered several delays [8]. In the last few years, however, fusion research has regained
its optimism. ITER construction is well underway and should be completed in 2025 [10], the
JT-60SA tokamak has just been completed [11], and the stellarator and inertial-confinement
fusion-triple-product records have both been broken, by Wendelstein 7X [12, 13] and NIF (as
this thesis was being written) respectively. In addition to the recent advances of publicly-funded
fusion research, a number of privately-funded startups have also joined the effort. These range
from the esoteric, to high-field tokamaks such as ARC or ST40 which, although ambitious,
are based on fairly well-established physics. With so many new devices joining the research
effort, we might very well be standing on the brink of break-even, ignition and the commercial
application of fusion. The fusion era could well be just about to begin.
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1. Introduction

Our children will enjoy in their homes electrical energy
too cheap to meter. . . Transmutation of the elements,
unlimited power, ability to investigate the working of
living cells by tracer atoms, the secret of
photosynthesis about to be uncovered, these and a
host of other results, all in about fifteen short years. It
is not too much to expect that our children will know
of great periodic famines in the world only as matters
of history, will travel effortlessly over the seas and
under them and through the air with a minimum of
danger and at great speeds, and will experience a life
span far longer than ours, as disease yields and man
comes to understand what causes him to age.

(L. Strauss, 1954)

Nuclear fusion is on the edge of a breakthrough. In the next few years – most likely 2035
[10] – a fusion reactor will achieve thermal breakeven, where more energy is produced from
fusion reactions than the heating energy provided to the plasma. This achievement will be more
symbolic than practical: achieving break-even is sometimes compared to the Wright Brother’s
first powered flight in 1903 [14]. The 59 second, 260 metre flight was of little practical use,
but it signified the possibility of powered flight and started the rapid development of aviation.
Remarkably, the first flight across the English Channel was completed just 6 years later [15].
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1. Introduction

For fusion, break-even won’t be enough for a viable reactor – it won’t even produce enough
energy to power the heating and auxiliary systems. Nevertheless, break-even will mean that – if
we hide away all of the inefficiencies and support systems – for the first time, fusion on earth
will produce a net energy gain. In that moment, fusion will no longer be just an experiment,
but potentially a real source of electricity.

1.1. Fusion for energy

Once fusion achieves break-even, the next challenge will be to develop fusion into a commercially-
viable source of electricity. This will be far more difficult than the technological challenge
of achieving break-even. Firstly, a power reactor will need much higher energy gain factors
– at least & = 5 before the plasma is mostly self-heating (or ‘burning’), and – for a tokamak
like ITER – around & ∼ 10 before the electricity produced from fusion is enough to run the
heating systems, the magnets and other ‘balance-of-plant’ electrical requirements (see p164 of
reference [16]). Looking at the fusion triple product, to increase &, we can increase either the
density and temperature in the core – increasing the power output, but also increasing the power
reaching the walls – or increase ��, requiring us to tame the zoo of plasma instabilities that
cause the plasma to escape confinement. Next, we will need to design and operate the reactor
in such a way that the cost of fusion electricity – at least eventually [17] – is competitive with
contemporary sources. Very approximately – we can write the cost of electricity from fusion as1

€/kWh =
build cost +maintenance cost

total electrical production over lifetime
(1.1)

We therefore can reduce the cost of electricity by increasing the total electrical production –
by reducing the amount of time that the reactor is shut-down or increasing the total power
produced. Alternatively, we can reduce the build cost and maintenance cost – such as by
using a smaller, simpler design, or replacing the divertor less frequently. Another option is to
increase the lifetime of the reactor – since approximately 60% of the cost of electricity is the
outright build cost, if we can use the same reactor for longer, it can produce more electricity
and ultimately be more economically viable. A third challenge is reliability – how often will the
reactor be shut down, either for maintenance or due to off-normal events? This partly affects the
cost of electricity: the more time the reactor is shut down, the less total electricity it produces,
and the higher the total cost of electricity. In addition to this, if fusion reactors require long
maintenance periods or frequently suffer unexpected shutdowns, they become less desirable for
producing baseload electricity.

These three coupled requirements – high energy gain, low cost-of-electricity and high reliability
– present a complex integration problem. If we optimise a single aspect – say energy gain factor
by increasing the core power – this can degrade the other factors – a high core power can lead to
rapid degradation of the divertor, increasing the maintenance cost and reducing the availability.
1This is a simplification of equation 1 in reference [18]. From table 1 of reference [18], the build cost is estimated
at 58% of the total cost, and the material cost of replacing components is 23%. An additional 17% is for
‘maintenance and operations’; if we allocate half of that to ‘maintenance cost’ then 90% of the cost of fusion
electricity is covered by our simple equation.
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1. Introduction

As such, while such optimisations are important, the most exciting developments are ones that
simultaneously improve all three aspects. These are the ‘breakthroughs’ – which give rapid
rather than steady progress. A recent example of this is the prospect of using high-temperature
superconductors as a breakthrough technology, which led to both excitement and heated debate
[19, 20, 21]. It’s interesting to consider how one design – the ARC reactor [22] – explicitly
highlighted that it was aiming to provide an integrated solution: the announcement paper states
that the design would aim to reduce the cost (‘affordable’), improve the reliability (‘robust’) and
produce net electrical energy (unfortunately, the ‘C’ stands for compact). Before we connect
fusion reactors to the grid there will be several challenges that we need to overcome, but we’re
close enough that fusion as a practical energy source might be just a breakthrough away.

1.2. The Edge and Divertor

No fusion reactions occur in the edge of a fusion reactor, but in many ways, the edge is more
important than the core when it comes to building economically viable fusion reactors. It is
in this region that we find some of the most pressing challenges for magnetic fusion, exotic
plasma behaviour leading to remarkable improvements in plasma confinement, and also some of
our widest conceptual gaps in understanding and controlling fusion plasmas [23]. This makes
the edge promising ground for searching for breakthroughs – the combination of being vitally
important and not fully understood means that we could find significant improvements available
at accessible parameters which we simply haven’t discovered yet. In this section, we will explain
why the edge and divertor are important for fusion, and in the next, we will introduce current
research directions.

1.2.1. The Heat Exhaust Problem

Outside the separatrix, our star meets metal2. A natural question to ask is: “Won’t the walls
melt?” To answer this crucial question, we need to consider how heat is transported out of the
reactor. In steady-state conditions, the sum of the injected (heating) power and fusion power
will be balanced by an equal power exhaust. We know that 80% of the fusion thermal power
will be carried out of the plasma by neutrons [3], while the remaining 20% of the fusion power
plus the injected power will stay in the plasma. Of the power remaining in the plasma, some
fraction will be converted to radiation (photons) and lost to the walls, while the remainder
will be transported across magnetic field-lines and eventually reach the last closed flux surface.
For ITER, the combined neutron and photon flux to the walls will result in a heat flux on the
order of a few MWm−2 [24, 25], which is already challenging. However, the ‘directed’ plasma
heat flux will be even more challenging. Once plasma crosses the last closed flux surface it can
stream quickly along the magnetic field to the walls, while the confining magnetic field prevents
the plasma from spreading across magnetic field-lines. As a result, the plasma reaches the walls
on a narrow ring near the separatrix, resulting in a large power-per-unit-area. This can lead to

2In the prelude, we showed how a fusion plasma is not like the sun’s core. However, the edge plasma is
arguably not that different from the photosphere (which has a temperature of ) ∼ 0.5 eV and a density of
= ∼ 1021m−3).
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1. Introduction

erosion of the wall material and pollution of the core plasma [26], and even localised melting
(particularly during transients) [27].

The ITER divertor is being designed to handle a steady-state directed heat flux of ∼
10MWm−2 [27]. To try to put that number into context, this is similar to the heat flux
on the heat shield of a spacecraft on atmospheric reentry [28]. However, unlike a spacecraft
heat shield, the divertor targets must survive these heat fluxes for years, not minutes, with high
neutron and particle fluences [29, 20], and with minimal particle sputtering from the surface
[26] (i.e. an ‘ablative’ heat shield is not an option). Because of this, the divertor will need to
be replaced throughout the lifetime of the reactor, and the operating conditions of the reactor
will need to be constrained to minimise degradation of the divertor. If we could improve our
understanding and control of the edge plasma and divertor heat flux, we could potentially
build power-producing reactors with a lower maintenance cost, less downtime and with a larger
operating window – which would ultimately help to improve the reliability and competitiveness
of fusion energy.

1.2.2. The Divertor and H-mode

Since the plasma exhaust will stream along magnetic field-lines, we can use shaping coils to divert
the directed heat flux towards specialised heat-tolerant targets. The magnetic field configuration
is called a ‘divertor configuration’, which is compared to a simpler limiter configuration in figure
1.1. Additional poloidal field coils are used to introduce a poloidal field null called an ‘X-point’,
which lies on a flux surface called the ‘separatrix’ which separates the confined region from the
‘open field-line region’3. The ‘divertor’ can refer to both the wall component which absorbs the
directed heat flux and the volume beyond the X-point – we will use ‘divertor targets’ for the
former and ‘divertor region’ or ‘divertor’ for the latter, as indicated in figure 1.2.
Diverted configurations have several benefits over simpler limited configurations [31]. One

key advantage is that we can move plasma-wall interactions away from the core, reducing the
amount of tungsten reaching the core [26, 31]. This leads to lower radiative losses from the core,
increasing the energy confinement time and therefore the energy gain factor. We can also design
the divertor targets to handle extreme heat fluxes. For example, the ITER design (shown in
figure 1.3) uses actively-cooled tungsten monoblocks [32]. The targets will be tilted such that
the directed heat flux intersects at an angle of ∼ 1◦, increasing the area over which the heat
is deposited [27]. As a further defence against localised overheating the divertor targets, the
divertor coil current can be ramped to sweep the strike-point position over time [33]. Divertors
are also useful for particle exhaust: the neutral pressure can be increased by enclosing the
divertor volume, which in turn increases how effectively the pumps work [31]. These benefits
come at an economic cost (especially for ‘alternative’ divertors [34] – discussed later) – the
divertor uses up volume inside the toroidal field coils – so a divertor configuration will have
either a smaller core (less power) or need larger toroidal field coils (more cost) when compared to

3The ‘separatrix’ extends into the divertor region while the ‘last closed flux surface’ borders the confined region
only – around the confined region they are equivalent. ‘Open’ field-lines is a misnomer – there are no known
open magnetic field-lines in the universe [30]. Here, ‘open’ means field-lines that connect to the divertor
targets.
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Figure 1.1.: In limiter configurations, the plasma impacts whichever part of the wall extends
furthest into the plasma. The confined region is bounded by a last closed flux
surface (LCFS). In tokamak divertor configurations, an additional external coil is
added, which carries a current in the same direction as the plasma current. The
poloidal field cancels at a poloidal field null, which is called the ‘X-point’. The
flux surface which comes vanishingly close to the X-point is called the separatrix
since it separates the confined region and the ‘open field-line region’ (the region
where magnetic field-lines intersect the wall). In two-wire-divertor.ipynb, you
can play around with Ampère’s law

∮
H · 3l = �0�4=2 and superposition to see how

to make various magnetic configurations in the large-aspect-ratio limit.
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Figure 1.2.: A poloidal cross-section of TCV,
showing some of the important regions of a
tokamak. The green line is the separatrix,
which separates the confined region from the
open field-line region. We loosely divide the
open field-line region at the X-point, with the
scrape-off-layer (SOL) above the X-point and
the divertor region below. We will further
divide the divertor region into the common-
flux region (CFR), which is magnetically con-
nected to the SOL, and the private-flux region
(PFR). Inside the confined region, we consider
the outermost flux surfaces to be part of the
edge (i.e. outside the blue surface), while flux
surfaces further inside are called the core. The
terminology here is not standardised: often
the ‘edge’ excludes the open field-line region,
and SOL often includes the CFR (including,
at points, in this thesis).

Figure 1.3.: The ITER divertor, reproduced from reference [27].
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a limiter configuration. Nevertheless, the advantages of divertors justify their use in almost all
fusion devices, including ITER [27], ASDEX-Upgrade [35], JET [36], TCV [37], MAST-Upgrade
[38] and even the Wendelstein-7X stellarator [39, 13].

In diverted configurations, we can reduce the directed heat flux before it reaches the targets.
Part of the benefit comes from the magnetic geometry itself: we can move the divertor targets
to a larger major radius to increase their area, increase the flux expansion at the targets, or
increase the cross-field transport (by increasing the parallel connection length, and potentially
by increasing the flux expansion around the X-point [40, 41]). We also can intentionally inject
gas (including fuel gas and ‘seed’ impurities such as neon, nitrogen and argon) into the divertor
volume [42] with less impact on the core plasma performance (compared to using a limiter)
since the divertor has improved confinement of neutrals and impurities. Neutrals and impurities
can convert part of the directed heat flux into radiation, which is deposited over a larger area.
For strong seeding conditions, the plasma can ‘detach’ – the plasma is radiatively cooled until
it recombines before reaching the targets [43, 44, 45] – greatly reducing the heat flux to the
divertor targets.

Diverted discharges are also associated with the ‘high-confinement’ or H-mode [23]. H-mode
was discovered in diverted ASDEX experiments in 1982 [46], and has since been reproduced
on several other machines (including in limited discharges, although it is still easier to access
H-mode in diverted discharges [47]). Of all the breakthroughs in fusion, H-mode was one of the
most surprising – 25 years after its discovery, Fritz Wagner quoted Nietzsche to describe the
discovery of H-mode: “Das Wesentliche an jeder Erfindung tut der Zufall” or “the essence of all
innovation is chance” [48]. Above a certain heating power, it was observed that the confinement
and the energy content in the plasma improved dramatically – which increases the whole core
profile, as though it were lifted onto a ‘pedestal’. The H-mode is associated with a strong
suppression of turbulence in the edge due to strong shearing of poloidal rotation in the edge [49],
leading to very steep edge gradients [50] – although the exact mechanism which leads to the
transition to and from the low-confinement mode is still being researched [51, 52, 53]. H-mode
is not without its challenges (see next section), but it is estimated that power-producing fusion
reactors would cost ∼ 2.5× more if operated without H-mode [48].

1.3. Research questions in the edge

There are still many open questions regarding the processes and properties of the edge, especially
when extrapolating to future devices. For instance, there is considerable uncertainty regarding
how wide the directed heat flux channel will be for ITER (see section 3.1.2 of reference [27]).
In Eich et al., 2013 [54], infrared measurements of the outer-target heat flux profiles were
parametrised by a ‘heat flux decay length’ �@ (roughly giving the heat transport into the
SOL above the divertor) and a ‘spreading factor’ ( (an effective cross-field diffusion in the
divertor). By combining measurements from ELM-free attached discharges on JET, DIII-D,
AUG, Alcator C-mod, NSTX and MAST, a strong �@ ∝ 1/�?>;,$"% relationship was observed –
which gives �@ = 1mm when extrapolating to the ITER & = 10 scenario with �?>;,$"% = 1.2T.
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Figure 1.4.: A ‘back-of-the-envelope’
estimate for how the parallel heat
flux density will vary for different val-
ues of �@ and ( (see reference [54]),
given in eich_fit.ipynb. We esti-
mate the area under each Eich profile
and then normalize each profile to
give the same heat flux (100MW, al-
though our method is only suitable
for determining relative and not ab-
solute values). The cases show the
estimated parallel heat flux for the
ITER & = 10 scenario, mapped to
the outboard midplane for the Eich
scaling [54], Alcator C-Mod measure-
ments at high �?>; [55], XGC [56]
and BOUT++ turbulence simula-
tions [57].

A loose correlation between �@ and ( was also seen, although it was reasoned that ( is probably
determined by the exact geometry of the divertor and as such the spreading factor might be
( ≈ 1.5mm or larger [54]. Since this result was published, a series of high �?>;,$"% discharges
were performed on Alcator C-Mod [55], giving �@ = 1mm and ( = 0.7mm at �?>;,$"% = 1.2T.
By contrast, gyrokinetic modelling by XGC found �@ = 5.9mm and ( = 1.8mm for the
ITER & = 10 scenario [56] while also reproducing �@ on the high �?>;,$"% Alcator C-Mod
measurements [58], and fluid modelling by BOUT++ found �@ = 11.28mm and ( = 5.9mm

[57]. The effect of these different values is estimated in figure 1.4 – where we see that the
XGC prediction would give a ∼ 2.5× lower peak heat flux than the Eich scaling, while the
peak heat flux would be ∼ 4.5× lower than the Eich scaling for BOUT++ and 1.5× higher if
we directly used the Alcator C-Mod result. The differences appear to be due to a shift from
drift-dominated cross-field transport (the Eich result was reproduced in SOLPS with drifts
activated and with a very low anomalous transport coefficient [59], or by the Goldston model
[60]) to turbulence-dominated cross-field transport (trapped-electron-mode turbulence in XGC
and ballooning instabilities in the pedestal in BOUT++). However, with only a few turbulence
models able to simulate the edge of ITER, it is difficult to independently confirm these results,
and as such, there is significant uncertainty as per what the peak heat flux will be4. For ITER,
the range of peak heat flux values can be managed by increasing the divertor neutral pressure
[27]. However, if the Eich scaling is confirmed for ITER, this will probably mean that an
ITER-like divertor will not be able to handle the heat exhaust in a power-producing reactor

4The results discussed here focus on attached discharges, but ITER will be operated under partially- or
fully-detached conditions (see [43] for terminology). In reference [61] a new scaling including high-density
discharges is proposed.
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[62].
In case the ITER lower-single-null divertor will not scale to DEMO or power-producing

reactors, solutions with improved heat-flux handling are being explored. The power-handling
capability and compatibility with detachment of different alternative divertor configurations
(ADCs) is being studied both via modelling and experiment [63, 64, 62], to identify candidates
to test in the Divertor Test Tokamak [65]. These ADCs use additional shaping coils to introduce
additional poloidal-field-nulls (X-points) – giving a ‘snowflake’ if the secondary X-point is close
to the primary X-point [66], an ‘X-divertor’ if the secondary X-point is close to the target [67] (or
Super-X if the targets are also moved to a larger radius [68]) or a ‘double-null’ if the secondary
X-point is on the opposite side of the magnetic axis [69]. The use of a liquid-metal divertor is also
being explored as a possible way to extend the allowable heat flux to the targets [70, 71, 72]. A
third option might be the use of strong neutral and impurity seeding in the divertor to promote
complete detachment5. This has to be balanced against the risk of ‘density-limit’ disruptions –
which may follow from the detachment front reaching the X-point and forming a MARFE [73, 74,
43]. However, recent research suggests that it is possible to control an X-point radiator via active
feedback, resulting in greatly reduced steady-state and transient heat fluxes to the targets [75, 76].

Another open research question is how to handle transient heat fluxes due to edge localised
modes (ELMs) and disruptions6. In H-mode the pedestal gradients steepen continuously until a
magnetohydrodynamic instability called an ELM is triggered. This causes the edge pressure
gradient to collapse and ejects a large amount of the energy stored in the edge over a short
amount of time 0.1 − 1ms [79, 80, 23]. For the ITER & = 10 scenario, large ‘Type-I’ ELMs
could cause melting of the divertor [27] and as such will need to be mitigated or avoided entirely.
To prevent large ELMs, there is research into using resonant magnetic perturbation coils [81, 82],
‘ELM-pacing’ through pellet injection [83] or ELM-free improved-confinement modes such as the
quiescent-H-mode [84], EDA H-mode [85] or I-mode [86, 87]. Current research explores how ELM
mitigation or avoidance can be combined with good core confinement and manageable steady-
state heat fluxes, and what causes plasmas to transition to and from improved confinement
regimes [52, 53, 51].

1.4. Turbulence and complexity

To understand the edge, we need to understand the many physical processes which occur there
and how they interact. Although we have conceptual models for many of the individual processes
in the edge – several of which are indicated in figure 1.5 –, their interactions can lead to complex
behaviour7 such as chaos (sensitivity to initial conditions), emergence (exhibiting dynamics not
present in the isolated subsystems), strongly non-linear system responses and self-organisation.
To capture these dynamics we need to understand not just individual processes, but also the

5See reference [43] for a good review on detachment.
6Disruptions are a loss of plasma control, which leads to most or all of the stored plasma energy being lost to
the walls. For an introduction, see references [77, 78, 23].

7See Complexity Explained (doi:10.17605/OSF.IO/TQGNW, complexityexplained.github.io).
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Figure 1.5.: The edge is host to several interacting physical processes, which occur over different
spatial and time-scales. These include sources of energy and plasma from the
confined region, the turbulent flow of plasma along and across magnetic field lines,
the flux expansion and magnetic geometry of the divertor configuration, plasma drifts
driven by large-scale electric field, ionisation, charge exchange and recombination
reactions between plasma, neutrals and impurities, neutral and plasma chemistry,
and the dynamics of the plasma sheath which forms in front of the solid targets.

dynamics of the edge as a whole.
One of the most important processes to model is the turbulent nature of the plasma flow

since turbulence and background drifts drive most of the cross-field transport in the edge.
Turbulence refers to a type of fluid flow where energy is transferred between fluid vortices at
different spatial scales. These vortices can then interact, leading to complex behaviour which
makes turbulence notoriously difficult to treat analytically8. In fusion plasmas, turbulence
is mostly driven by small-scale instabilities which extract energy from the pressure gradient,
several of which are summarised in table 1.1. Unlike other plasma instabilities, pressure-driven
instabilities tend to be self-stabilising: turbulent cross-field transport leads to a flattening of the
pressure gradient which in turn reduces the energy available for driving turbulence. Therefore,
instead of continuously growing, pressure-driven instabilities can be dynamically balanced,
providing the sustained energy injection necessary for the development of saturated turbulence.
Since turbulence is characterised by the interactions of fluid vortices across a wide range of
spatial scales, direct numerical turbulence simulations need to capture both large and fine-scale
structures and as such are typically very computationally expensive [90]. Currently, the majority
of edge modelling is performed by ‘transport’ codes [91] such as SOLPS [92, 93], EMC3 [94,
95], UEDGE [96] or SOLEDGE2D [97]. These codes treat turbulence as an effective cross-field
diffusion, controlled by heuristic ‘anomalous diffusion coefficients’ which must be tuned to match

8Famously, a proof of the existence and smoothness of solutions to the Navier-Stokes equations for neutral
fluids is one of the Millennium Prize problems [89].
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Name Drive Scale Propagation Cross-phase

Interchange/resistive ballooning (RBM) ∇? > 10�B 0 �/2
Kinetic ballooning (KBM) ∇)4 ,8 ∼ 10�B + �/2
Micro-tearing (MTM) ∇)4 ∼ 10�B − 0

Drift-wave (DW) ∇= 1 − 10�B − 0

Ion-temperature gradient (ITG) ∇)8 1 − 10�B + > 0

Trapped-electron (TEM) ∇)4 ,∇= < 10�B − 0

Electron-temperature gradient (ETG) ∇)4 � �B − �/2

Table 1.1.: Pressure-gradient-driven plasma micro-instabilities responsible for driving turbulence,
modified from [88]. Micro-instabilities can be classified according to their drive
mechanism, their perpendicular scale length (relative to the sound Larmor radius
�B =

√
)4<8

4� ), their propagation direction (where + and − indicate the ion and electron
diamagnetic directions respectively), and the cross phase between the pressure and
electrostatic potential perturbations. Most pressure-driven instabilities occur at
spatial scales around �B or larger, except for the electron-temperature gradient mode.
For a discussion of the physical mechanisms behind these instabilities, see chapter 4
of reference [88].

experimental measurements or expected results9. By treating turbulence diffusively, transport
models are able to greatly reduce the computational cost of simulations compared to direct
numerical simulations of turbulence – which in turn permits the evaluation of large multiphysics
models able to capture many other processes in the edge. However, for predictive simulations
or for fusion devices with limited diagnostic coverage, the prescription of anomalous diffusion
coefficients can introduce significant uncertainty. Beyond this, turbulence can exhibit complex
behaviour such as self-organisation and emergence, which cannot be described via diffusion
[99]. This is particularly important for describing transport into the far scrape-off-layer, which
is dominated by coherent ‘blobs’ [100, 101] which ballistically drive flows in otherwise stable
regions. Turbulence can also drive large-scale plasma ‘zonal’ flows which are thought to be
responsible for the edge transport barrier in improved confinement regimes [52]. If we want
to investigate effects such as filamentary transport or edge transport barriers, or to perform
predictive ab-initio simulations, we need models which can simulate turbulence directly.
To model turbulence in the edge and divertor, there are several numerical models which

are actively under development – including the gyrokinetic codes XGC [56], COGENT [102],
GENE-X [103], Gkeyll [104], ORB5/PICLS [105], GYSELA [106], the gyrofluid code FELTOR
[107], and the fluid codes GRILLIX [108, 109], GBS [110, 111], BOUT++ [112], STORM
[113], Hermes [114], GDB [115], HESEL [116] and TOKAM3X/SOLEDGE3X [91]. These codes
model turbulence self-consistently, capturing the energy injection due to plasma instabilities,
the transfer of energy & interactions between vortices at different scales and the dissipation of
fluid kinetic energy at small scales. Once these ingredients are in place, complex behaviour such

9The use of reduced models to estimate anomalous diffusion coefficients is currently being explored [98].
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1. Introduction

as coherent transport and zonal flows should develop self-consistently, allowing us to directly
investigate these effects.

1.5. Motivation and outline

Turbulence simulations are powerful tools for understanding and learning to control the edge.
These simulations can capture the drive and development of turbulence, as well as its interaction
with other physics such as neutral dynamics, the wall and the magnetic geometry. Compared
to directly analysing experimental results, simulations have the advantage of almost limitless
diagnostic access which lets us examine the dynamics of the edge in extreme detail, observing
the processes and interactions which give rise to complex phenomena in the edge. However,
simulations do not (and cannot) reproduce reality exactly. All models require simplifying
approximations – especially if we want to reduce the computational cost enough that we can
model the entire edge. These assumptions limit the applicability and accuracy of our models.
Because of this, before we can use turbulence modelling to interpret and predict the edge, we
need to rigorously validate these models against experimental results.

Turbulence models have previously been validated in basic plasma physics devices [117, 118,
119] and limiter configurations [120, 121]. However, there is still a need to rigorously validate
turbulence models in divertor geometries10, even though almost all relevant fusion experiments
and all planned fusion reactors use a divertor. There are several reasons why this might be the
case. Firstly, compared to limiter geometries, divertor geometries are more difficult to treat
numerically since the X-point introduces a coordinate singularity in field-aligned coordinates
[122]. Divertor geometries also have more complex dynamics than limiter geometries, both
directly due to the magnetic geometry [123, 41, 124] and due to physical processes such as
volumetric cooling which become important at lower temperatures [31, 43]. Finally, there are
not many existing ‘off-the-shelf’ datasets of divertor measurements suitable for validating edge
turbulence simulations. For validating the basic functionality of the models we need extremely
well-diagnosed experimental cases under simple11 operating conditions, and until turbulence
simulations were shown to be able to simulate such experimental cases there was little research
interest in collecting such datasets. In this work we close this validation gap, demonstrating
that turbulence models are now able to perform realistic simulations of diverted experiments.

In this thesis, we extend the GRILLIX model to perform simulations of realistic divertor
geometries and then validate the extended model against a series of dedicated experimental cases,

10Previous comparisons to diverted experiments have been performed, but these studies did not focus on
validating the turbulence models in the divertor. In Chang et al, 2017, �@ is successfully predicted on NSTX,
DIII-D and Alcator C-mod [56], but only a single comparison observable is considered making it difficult
to assess how accurately these simulations are reproducing the overall dynamics of the edge. In Riva et al.,
2019, GBS is quantitatively validated against outboard midplane measurements from a MAST discharge
[121], but only qualitatively compared to target measurements.

11Away from operational limits, and without any interesting phenomena such as detachment. Turbulence models
will need to be validated under such conditions, but for initial tests, it is preferable to valid the models
against the simplest-possible cases.
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1. Introduction

including the first-of-a-kind diverted TCV-X21 validation scenario. We start by implementing a
new method for generating simulation grids in arbitrary axisymmetric geometries in section
5.4, which enables simulations in both standard and alternative divertor geometries [125]. We
then isolate a numerical issue that prevented simulations of open field-line regions in section
4.5, and implement an immersed boundary method to resolve this issue in section 4.6. These
modifications enable simulations across the separatrix of real experiments, using the magnetic
geometry from magnetic reconstruction codes. The extended model is used to simulate two
experimental cases, and the comparison of the simulated and experimental results is used to
assess how accurately GRILLIX simulations are reproducing plasma dynamics in the edge and
to suggest further improvements of the GRILLIX model.

The thesis is structured to give a comprehensive introduction to the GRILLIX model and
to demonstrate key steps in the rigorous testing of a turbulence model. In part II we focus on
introducing and developing the GRILLIX model. In chapter 2, we outline a derivation of the
drift-reduced Braginskii fluid model used by GRILLIX, starting from a kinetic description. The
derivation is used to highlight where simplifying assumptions are introduced into the model
and to discuss where these assumptions may become invalid. Then, in chapter 3, we derive a
set of sheath boundary conditions from a simple sheath model, again discussing the limits of
applicability of the necessary simplifying assumptions. Together, these chapters form the basis
of our qualification of the physical model, which helps to assess where the GRILLIX model
is applicable and how inaccuracies may be introduced into the simulations. Next, in chapter
4, we show how the physical model is translated into a numerical model. We introduce the
locally-field-aligned parallel discretisation method used by GRILLIX and resolve the boundary
stencil collapse issue which prevented stable simulations in open field-line regions. We then
discuss the verification of the numerical model via the Method of Manufactured Solutions
(MMS), which ensures that our numerical model corresponds to our physical model. Then, in
chapter 5, we introduce a new method that exploits the flexibility of the locally-field-aligned
method to enable simulations of realistic diverted magnetic equilibria.

In part III, we validate the extended GRILLIX model. We shortly summarise the key aspects
of model testing and the validation-driven development cycle in chapter 6, discussing how model
testing can be used as an iterative process for improving the model. We then discuss the results
from the ‘X-point’ scenario in the TORPEX basic plasma physics device, published as reference
[126], and from the ‘TCV-X21’ scenario, published as reference [2]. We rigorously compare
the GRILLIX simulations to the experimental measurements and interpret the results of the
comparison to suggest the root cause of observed discrepancies and how the accuracy of the
model can be further improved. We also demonstrate how numerical diagnostics can be used to
provide an in-depth analysis of the results, focussing in particular on the nature and drive of
turbulent transport.

Finally, in part IV, we show how validation-driven development is already being used to test
new physics in the GRILLIX model, and discuss additional work towards validated reactor-
relevant simulations.
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1.6. Further reading

• Ongena et al., 2016, Magnetic confinement fusion, doi:10.1038/nphys3745: A compact
paper that introduces most of the core aspects of MCF fusion. If you’re new to the field
or want a big picture overview, this is a great place to start reading.

• Chapman and Walkden, An overview of shared technical challenges for magnetic and
inertial fusion power plant development, doi:10.1098/rsta.2020.0019: An introduction to
the challenges of commercialising either magnetic-confinement or inertial-confinement
fusion.

• Wesson, 2011, Tokamaks: The go-to textbook covering most aspects of fusion tokamaks.

• Stangeby, 2000, The plasma boundary of magnetic fusion devices : This extensive textbook
covers a broad range of topics relevant to the edge. Most edge researchers have a well-read
copy.

• Pitcher and Stangeby, 1997, Experimental divertor physics, doi:10.1088/0741-3335/39/6/001:
A more compact (and free!) review of divertor physics.

• Wagner, 2007, A quarter-century of H-mode studies, doi:10.1088/0741-3335/49/12B/S01:
A review paper covering research into high-confinement regimes, from the researcher who
first discovered them.

• Pitts et al., 2019, Physics basis for the first ITER divertor, doi:doi.org/10.1016/j.nme.2019.100696:
An recent extensive discussion on the status and open research questions regarding the
ITER divertor.

• De Domenico et al., 2019, Complexity Explained, doi:10.17605/OSF.IO/TQGNW: A short
visual introduction to complex systems.

• Manz, 2018, The microscopic picture of plasma edge turbulence: in particular, chapter 3
for a clear introduction to 2D turbulent dynamics, and chapter 4 for an explanation of
the mechanisms behind pressure-driven plasma micro-instabilities.

• Claessens, 2019, ITER: The Giant Fusion Reactor: Bringing a Sun to Earth: A general
introduction to the ITER project, which also introduces the broader context and part of
the debate about fusion research.
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Part II.

Developing GRILLIX for realistic
simulations of the tokamak edge

Predictive capability has emerged as a key goal in
magnetic confinement fusion research not just for its
special value in designing and operating ever costlier
and more complex devices such as ITER and DEMO
but, more generally, because its attainment would
signify the quantitative maturity in understanding and
modelling that is required for success in fusion [127].

(P. W. Terry, 2008)
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2. The plasma model

Throughout this thesis we will use SI units, except for the temperatures which are expressed as
an equivalent energy in electron-volts. Wherever we write ), we implicitly mean :�) where
:� = 11 605K eV−1 is the Boltzmann constant. Note that several plasma physics texts use c.g.s.
+ eV units. See the NRL plasma formulary for converting between different systems of units.

2.1. What, why, and how? The derivation and qualification of
the drift-reduced Braginskii equations

A plasma consists of a large number of charged particles, interacting with each other and with
external fields via the electromagnetic force. In a fusion plasma, we can use various conceptual
models to describe the dynamics. For much of the plasma volume, collisions are not sufficient
to thermalise the energy distribution, and as such we require gyrokinetic or kinetic models.
Towards the edge, the collisionality of the plasma increases, and the plasma energy distribution
approaches a local thermodynamic equilibrium. In plasma regions with near-thermal-equilibrium,
we can use fluid models, which evolve moments of the kinetic equations instead of the kinetic
equations themselves. Such fluid models are significantly less computationally expensive to
solve, albeit at the price of reduced fidelity.

In this chapter, we derive the set of differential equations – the drift-reduced Braginskii fluid
equations – which we use to model the plasma dynamics. This derivation can be found in
many references, several of which are listed in the ‘Further readings’ section at the end of this
chapter, and we don’t add anything new. Nevertheless, we will present the derivation in full, for
two reasons. The first is that it is difficult to understand the final set of equations unless you
know where they come from. The second reason is that we use the derivation to highlight the
simplifying assumptions used to derive the model and to discuss the limits of their applicability.
This is used for the qualification of the model, where we determine the conditions under which
our model is applicable.

We show how the Braginskii equations can be calculated from moments of the kinetic equations
with a collisional-magnetised closure. We then apply a number of simplifying assumptions and
perform a drift-ordering, which we use to eliminate high-frequency and small-scale dynamics
from the equations. Finally, we derive equations for continuity (2.56), quasineutrality (2.58),
momentum-balance (2.60), Ohm’s law (2.62), electron temperature (2.67), ion temperature
(2.71) and Ampère’s law (2.74). If you just want the final equations listed, you can find this in
Appendix A. Alternatively, if you want to derive the equations yourself, you can find a list of
useful formulas in Appendix B and some of the intermediate steps of the derivations in Appendix
C. Important equations will be marked in a box, and key terminology will be written in italics.
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2. The plasma model

2.2. From kinetics to fluids

2.2.1. Moments of the kinetic equations

This section mostly follows the derivation of Fitzpatrick, 2011 and Freidberg, 2014

The dynamics of a charged particle in a magnetic field can be described by the Lorentz force

�!>A4=CI = @(K + v × H) = <a (2.1)

for @, <, v, a, K and H the particle charge, mass, velocity, acceleration and the electric and
magnetic field. In a uniform magnetic field without an electric field, this will result in helical
charged particle trajectories which follow magnetic field-lines [3]. For a collection of many
particles, we can describe each plasma species with a distribution function 5(r , v , C), which
gives the phase space density of particles. This can be considered as giving the number of
particles within some range of velocities 33v, within some range of positions 33r and at time C.
Alternatively, we can integrate over all velocities to find the density for some species 

=(r , C) =
∫

5(r , v , C)33v (2.2)

If we ignore processes which can transform particles into other species (i.e. fusion, ionisation,
recombination), we can write the evolution of the distribution function in terms of phase space
conservation. A further simplification is to separate the electromagnetic fields into a smooth
large-scale component and a short-range component corresponding to collisions between particles.
This gives the Boltzmann equation

% 5
%C
+ v · ∇ 5 +

@4

<
(K + v × H) · ∇E 5 =

(
% 5
%C

)
2

(2.3)

where
(
% 5
%C

)
2
is a term which represents the change in the distribution function due to collisions

(short-range electromagnetic interactions). This equation is coupled to Maxwell’s equations (for
the large-scale fields)

∇ × K = −%H
%C

(2.4)

∇ × H = �0P + �0�0
%K
%C

(2.5)

∇ · K =
�@

�0
(2.6)

∇ · H = 0 (2.7)

with current and charge densities

j =
∑


@4

∫
v 533v (2.8)

�@ =
∑


@4

∫
53

3v (2.9)
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2. The plasma model

The Maxwell-Boltzmann equations form the basis of kinetic models, which treat small volumes
of phase-space statistically. Kinetic models contain only a few robust assumptions, so they
should reproduce almost all of the dynamics of a single-particle description of the plasma.
However, they are also extremely expensive to solve numerically – and so aren’t going to let
us model the entire edge. To make simulations of large volumes, we need to make simplifying
approximations. One approximation is to treat the fast particle gyromotion as effectively
instantaneous and model charged rings rather than gyrating particles, giving the gyrokinetic
equations. By eliminating the gyromotion, gyrokinetic models can use larger time-steps than
kinetic models, and additionally need to treat only two velocity-space dimensions instead of
three. These simplifications reduce the computational cost enough that gyrokinetic simulations
of the whole plasma edge are currently computationally feasible, albeit still expensive [56].
To further reduce the computational cost, we can compute moments of the distribution

function, which are velocity-weighted-averages of functions 6(v), averaged over all velocity space〈
6(v)

〉
=

1

=

∫
6(v) 533v (2.10)

The lowest-order moments are of interest since they correspond to quantities with well-understood
interpretations and conservation properties. We’ve already seen the 0th-order moment – the
particle density =, which we can compute by using 6(v) = 1. The 1st-order moment is the bulk
flow velocity u, which we compute using 6(v) = v. The velocity u defines the centre-of-mass
frame, where the net momentum of the plasma species is zero. Moving back to a fixed reference
frame, the species momentum will be <u. We can use the centre-of-mass frame to separate
between a bulk plasma motion at velocity u, and a random thermal motion w = v − u (which
has 〈w〉 = 0). This allows us to write the 2=3-order moment in terms of the random kinetic
energy, temperature or pressure of the particles. We can write the mean thermal energy of the
particles of species  as

� =
1

2
<

〈
F2

〉
(2.11)

More often, we express the thermal motion as a pressure, which is described in full by the
pressure tensor

P = <= 〈w ⊗ w〉 (2.12)

or by components
(
P
)
8 9
= <=

〈
w 8w 9

〉
The pressure tensor can be split into a scalar pressure – equal to the average of the diagonal
elements (which are all equal to ? for an isotropic system)

? =
1

3
<=

〈
F2

〉
=

1

3
TrP (2.13)

and the anistropic pressure tensor (for I the identity tensor), also called the generalised viscosity
tensor

Π

= P


− ?I (2.14)
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2. The plasma model

We can also use the scalar pressure to define a temperature, determined from the ideal gas law
? = =)

) = ?/= (2.15)

We can write the 3rd-order moment, the heat flux due to random thermal motion, as

q =
1

2
<=

〈
wF2

〉
(2.16)

We can find equations describing the evolution of the moments by taking moments of the
Boltzmann equation. Due to the conservation of particles, momentum and energy, we can find
conditions on the form of the collision operator. Generally, we treat reactions such as fusion,
ionisation, recombination or radiative emission as separate sources or sinks, and only consider
elastic collisions in the collision operator. As a result, the collision operator only contributes to
frictional momentum transfer X =

∑
� X� and heat transfer & =

∑
� = &� between unlike

species  and �. This lets us write the equations for the moments as
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%C
+ ∇ · (=u) = S= (2.17)
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= X (2.18)

3
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: ∇u + ∇ · q = & + S� (2.19)

where the terms in the square brackets are advective derivatives 35

3C =

[
% 5
%C + u · ∇ 5

]
, and S=

and S� are particle and energy sources or sinks. The term P

: ∇u is a double-inner product,

which can be calculated component-wise as
∑
8 , 9

(
P


)
8 9

%(u)9
%x 8

.

To arrive at the above moment equations from the Maxwell-Boltzmann equations, we didn’t
make any further assumptions. Although we used terms like ‘isotropic’ and ‘temperature’, we
can use the definitions of these terms without requiring local thermodynamic equilibrium (we
could just as easily have called them something else). However, the equations aren’t closed. The
q term in equation 2.19 is a 3rd-order moment which we haven’t yet worked out an equation
for, and haven’t yet defined expressions for terms like X and &. We could, of course, find an
equation for any :th-order moment from the Boltzmann equations – but this will, inevitably,
depend on the (: + 1)th-order moment due to the v · ∇ 5 term. To find a finite set of equations
we can solve, we need to introduce a closure.

2.2.2. Fluid closure

We can close the moment equations by asymptotically expanding in some small parameter. An
example of asymptotic closure is the Chapman-Enskog collisional closure, where the dynamics
are expanded in terms of the Knudsen number Kn = �< 5 ?/! (for �< 5 ? the mean free path and
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2. The plasma model

! the dimensions of the system). For neutral fluids, expansion to first-order in Kn gives the
familiar Navier-Stokes equations. For plasmas, we can perform two expansions using a similar
method – in terms of �< 5 ?/! for collisional plasmas, and additionally in terms of �/! =

√
)<
4�!

for collisional-magnetised plasmas – giving the Braginskii equations in the unmagnetised and
magnetised limits respectively. The distribution function 5 is expanded in terms of some small
parameter & as

5 = 50 + & 51 + &2 52 + . . . (2.20)

The 0th-order component is always taken to be a Maxwellian distribution – the velocity dis-
tribution corresponding to a local thermodynamic equilibrium – since this causes the collision
operator to vanish. However, since a Maxwellian distribution is isotropic, the associated heat
flux and viscosity will be zero. To find expressions for q and Π, the Boltzmann equation is
linearised and 51 is expanded in velocity space using a series of Laguerre polynomials. This gives
an infinite set of simultaneous equations for 51 in terms of 50, which is truncated to just two
terms, giving a set of two simultaneous equations. Finally, we take moments of our expression for
51, to find expressions for q and Π. This asymptotic closure procedure gives closed expressions
for X, Π, q and &, which we can use with equations 2.17–2.19. The resulting combination of
equations and closure is called the Braginskii equations.

We’ve left out a lot of details. However, it’s useful to understand the general procedure,
since it can help us to identify when and how the closure approximation might give unrealistic
behaviour. By using a Braginskii closure and truncating our expansion of the distribution
function and the collision operator, we’re making several strong implicit assumptions. Firstly,
we assume that 5 is actually close to a Maxwellian – requiring that � ∼ )3/2

 /= is much shorter
than the time-scales that we’re interested in, or alternatively that �< 5 ? ∼ )2/= is much shorter
than the spatial scales that we’re investigating. In magnetised fusion plasmas, this is generally
true perpendicular to the magnetic field, but not along the magnetic field [128]. However, at very
small (sub-Larmor radius) scales, the fluid approximation also breaks down perpendicular to the
magnetic field – once finite-Larmor-radius effects start to become significant. Additionally, by
neglecting the higher-order moments, we lose ‘collisionless’ effects which involve particles with
specific energies. This means that particle trapping and Landau-damping are not contained in
the model – and so we miss instabilities like the trapped-electron-mode and can find unrealistic
heat fluxes.

This raises an interesting question: what happens if we try to model the plasma with a fluid
model, even after it is no longer formally valid? The density, velocity and isotropic pressure are
all determined by the 50 Maxwellian component, and so should remain reasonably well-behaved
(albeit not necessarily realistic – since they’re affected by the higher-order moments) as the
fluid approximation becomes marginal. The heat flux q and viscous stress tensor Π are not
determined by the Maxwellian component, but rather by the 51 and higher-order components of
the distribution. Since the Braginskii closure only includes a truncated-series-expansion of 51, it
is unsurprising that these terms most quickly become unreasonable as we approach the limits of
the fluid approximation.
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2. The plasma model

Although the Braginskii equations are closed and therefore solvable, they include phenomena
across vastly different spatial and time scales. This is a problem for modelling – a lot of the
fast and small-scale dynamics aren’t of much interest for us, but if we simply ignore them they
can cause numerical problems. As such, we make further approximations to focus only on the
turbulent dynamics.

2.2.3. Quasineutrality

Despite consisting of charged particles, most plasmas have very little space-charge. Highly mobile
electrons can respond extremely quickly to any charge imbalance, such that over large-enough
spatial and time scales the plasma is close to neutral. Despite this, the plasma can internally
generate electric fields – indeed, these are crucial for turbulent transport. We want to eliminate
dynamics at the very fast time-scales and small spatial scales where single-particle motion leads
to charge imbalances (since these are expensive to simulate), but to retain the larger electric
fields which lead to transport. This separation is referred to as the quasineutrality approximation.
The time and spatial scales over which charge imbalances occur due to single-particle motion

are, respectively, the inverse electron plasma frequency C ∼ $−1?,4 =
(
=42

&0<

)−1/2
and the electron

Debye length ��,4 = ECℎ,4$−1?,4 , for ECℎ,4 =
√
)4/<4 the electron thermal velocity. We want to

eliminate dynamics which vary at these scales, and so assume that the dynamics of interest
follow

$−1?,4
%

%C
� 1 and ��,4∇ � 1 (2.21)

We can use this to find a condition on Gauss’s law

�2
�,4∇) � ) (2.22)

�0
4=
∇2) �

4)

)4
(2.23)

We can identify ∇ · K ∼ ∇2) (assuming that the electromagnetic part is of the same order as
the electrostatic part). The term 4)

)4
is of the order as the electron perturbation in response to

a perturbing potential ) (i.e. see a derivation of the Debye length), and so we expect 4)
)4
. 1.

Therefore,
�@

4=
=

�0
4=
∇ · K � 1 (2.24)

Therefore, on spatial scales larger than ��,4 , only a small fraction of the total plasma density
leads to a charge density and the resulting electric fields are required to smoothly vary. Then,
taking the divergence of Ampere’s law and we find

∇ × H = �0P + �0�0
%K
%C

(2.25)

0 = ∇ · P +
%�@

%C
(2.26)
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Since we have assumed that �@ � 4= and $−1?,4
%
%C � 1, we further assume that ∇ · P ' 0.

Although we have some small finite charge density, its time derivative is even smaller and as
such we assume that ∇ · P is negligible. Finally, looking again at Ampere’s law, we can multiply
by the entire equation by ��,4 = ECℎ,4$−1?,4 to see that

E2Cℎ,4$
−2
?,4∇ × H = �0E

2
Cℎ,4$

−2
?,4 P +

E2
Cℎ,4

22
$−2?,4

%K
%C

(2.27)

If we assume that ECℎ,4/2 � 1, then the second term on the RHS is an order smaller than the
other terms. Therefore, using the non-relativistic and quasineutral orderings, we can drop the
displacement current term and write Ampere’s law as

∇ × H = �0P (2.28)

2.2.4. Small � limit

We additionally require that the effective magnetic pressure is much stronger than the thermal
pressure. We can write this as a condition on the electron dynamical �4

�4 =
2�0?4

�2
=
22B

E2
�

� 1, (2.29)

where 2B is the sound speed and E� = �/
√
�0=8<8 is the Alfvén speed. E� � 2B implies that

the response of the magnetic field to pressure perturbations will be effectively instantaneous
compared to the evolution of the pressure perturbation. This is used to assume that the magnetic
field is always in a static equilibrium with the perpendicular pressure profile, which lets us ignore
compressional Alfvén (fast magnetosonic) waves. We do, however, keep the magnetic tension
response to pressure perturbations – which represents a competition between electron inertia %9‖

%C

and magnetic induction %�‖
%C . This leads to shear Alfvén waves (also called torsional Alfvén or

slow magnetosonic waves) which travel along the magnetic field. A small perpendicular variation
in the magnetic field will be induced by the change in �‖. This can lead to ‘magnetic flutter’
cross-field transport, which occurs when the perturbed field-lines connect regions of different
pressure. However, for the very low �4 values in this thesis, the effect was found to be minimal1,
and so the term was disabled to reduce computational cost.

2.2.5. Flute-mode and drift approximation

In a magnetised plasma, the confining magnetic field impedes particle motion across the magnetic
field but permits motion parallel to the field. As such, it is generally reasonable to assume
that perturbations will be spatially small perpendicular to the magnetic field, but elongated
parallel to the magnetic field. (This assumption may become marginal in the presence of strong
parallel gradients due to neutrals or the divertor targets). The resulting structures look a little

1The flutter term is stabilising and so the initial instability starts later, but the saturated states with and
without flutter were more-or-less equivalent at low �4 [129].
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like elongated tubes or flutes, bent to follow a magnetic field-line, and so this is called the
‘flute-mode’ approximation. Under the flute-mode approximation, we assume that the parallel
and perpendicular dynamics are strongly separated. As such, instead of solving a 3D vector
equation, we instead solve a 2D equation for the perpendicular dynamics and a 1D equation for
the parallel dynamics. By itself, this doesn’t help much, but if we combine this with the small-�4
assumption we can strongly simplify the perpendicular dynamics. With the small-� assumption,
the perpendicular magnetic pressure will evolve much faster than small perpendicular (kinetic)
pressure excitations. We can use this to perform an ordering : we assume that the time-scales �
which we’re interested in are much longer than the inverse cyclotron frequency Ω−1,

Ω−1 =
@�

<
� � (2.30)

that the frequencies and time-evolution scales of interest $ ∼ 3/3C are lower than the cyclotron
frequency,

(3/3C) � Ω (2.31)

that the parallel spatial wave-number is less than the perpendicular spatial wave-number,

:‖ � :⊥ (2.32)

and that the perpendicular spatial wave-number is much larger than the inverse gradient length
of the magnetic field.

:⊥ �
∇�
�

(2.33)

We can use the drift ordering to isolate the dynamics of interest. In section 2.4 we will show
how this ordering lets us linearise the perpendicular momentum balance.

2.3. The magnetised two-fluid Braginskii equations

Having introduced our approximations, we now need to combine them to simplify the moment
equations. For simplicity we assume a single ion species with @ = +1, plus a single electron
species. We also use the quasineutrality approximation, such that =4 = =8 = =. We then take
the moment equations (2.17–2.19) and use the magnetised limit (Ω� � 1, for � the collision
frequency) of the Braginskii closure to find expressions for X, Π, & and q. As a shorthand we
adopt the notation

u 8 = u and u4 = v

From quasineutrality and continuity, we have two equations for =

%=

%C
+ ∇ · (=v) = %=

%C
+ ∇ · (=u) = S= (2.34)

We usually keep the electron continuity equation, and replace the ion continuity equation with
the quasineutrality condition

∇ · j = 4∇ · = (u − v) = 0 (2.35)
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2. The plasma model

where j = 4= (u − v) is the current density. Since the Maxwellian distribution is isotropic, we
separate the pressure tensor (2.12) into an isotropic pressure (?, equation 2.13) and a viscosity
(Π


, equation 2.14). Under the Braginskii closure, the electron viscosity will be a factor of√

<8/<4 ≈ 42
√
<8/<? smaller than the ion viscosity, and so we drop the terms which aren’t

involved in diamagnetic cancellation. An expression for the components of the ion viscosity can
be found on p.15 of Zeiler, 1999 (called the stress tensor and denoted as %).
A further simplification is made by keeping only the parallel components of the friction

'‖ = X · b̂ = X −X⊥. The perpendicular friction is important for setting the dissipation scale of
the turbulence. However, since we often don’t resolve all the way down to the dissipation scale,
we use a tunable ‘hyperdiffusion’ instead of perpendicular friction. These simplifications allow
us to write the momentum balance equations as

<4=

[
%

%C
+ v · ∇

]
v = −∇?4 − 4= [K + v × H] + '‖b̂ (2.36)

<8=

[
%

%C
+ u · ∇

]
u = −∇?8 − ∇ ·Π

8
+ 4= [K + u × H] − '‖b̂ (2.37)

For the temperature equations, we again neglect the electron viscosity, giving

3

2
=

[
%

%C
+ v · ∇

]
)4 + ?4∇ · v = −∇ · q4 + (&4 −&48) + S�4 (2.38)

3

2
=

[
%

%C
+ u · ∇

]
)8 + ?8∇ · u +Π

8
: u = −∇ · q 8 +&48 + S�8 (2.39)

where S�4 and S�8 are local sources of energy which change the electron and ion temperatures.

2.4. Applying the drift-approximation and small-� limit to the
magnetised Braginskii equations

Next, we apply the drift approximation to separate the parallel and perpendicular flows.
The electric field is assumed to be electrostatic perpendicular to the magnetic field, and
electromagnetic parallel to the magnetic field2. Therefore, we only need to retain the parallel
component of the magnetic vector potential �‖, and we can write the electric field as

�‖ = −
%�‖
%C
− ∇‖) and �⊥ = −∇⊥) (2.40)

We then solve the ion momentum balance equation for the perpendicular ion velocity u⊥ = u−D‖b̂.
To isolate the perpendicular component of the velocity u, we use the ‘drift operator’ (equation
B.17) on equation 2.37.

<8=b̂

�
×

[
%

%C
+ u · ∇

]
u = −

b̂ × ∇?8
�

−
b̂ × ∇ ·Π

8

�
−
4=b̂ × ∇)

�
+ 4=u⊥ (2.41)

2This assumption is justified a posteriori on p3.15 of Scott.
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u⊥ =
b̂ × ∇)
�

+
b̂ × ∇?8
4=�

+ <8b̂

4�
×

[
%

%C
+ u · ∇

]
u + b̂

4=�
× ∇ ·Π

8
(2.42)

We have u on both sides of the equation. To solve this, we can linearise the equation in terms
of (3/3C) /Ω8 = <8 (3/3C) /

(
@8�

)
� 1, which is assumed to be small due to the drift-ordering

(equation 2.30). We can directly see this small parameter in the inertial term, and if we explicitly
expand the b̂×∇ ·Π

8
term we see that it is of the same order as the inertial term. Therefore, to

leading order, we can write

u⊥ = u�×� + u380 + O
(
3/3C
Ω8

)
(2.43)

for the � × � drift

u�×� =
b̂ × ∇)
�

(2.44)

and the ion diamagnetic drift

u380 =
b̂ × ∇?8
4=�

(2.45)

Similarly, for the electrons

v⊥ = u�×� + v380 + O
(
3/3C
Ω4

)
(2.46)

for the electron diamagnetic drift

v380 = −
b̂ × ∇?4
4=�

(2.47)

We then use the leading-order drifts to find the ion inertial response, expanding equation 2.42
to first-order in (3/3C) /Ω8 . We will not, however, determine the electron inertial response, since
this is much smaller than the ion inertial response since <4

<8
� 1 =⇒ O

(
3/3C
Ω4
∼ <4

<8

3/3C
Ω8
� 3/3C

Ω8

)
.

Substituting the leading order perpendicular ion drifts plus the parallel velocity D‖b̂ into equation
2.42 gives

u⊥ = u�×� + u380 + u?>; + O
(
3/3C
Ω8

)2
(2.48)

for the polarisation drift

u?>; =
<8b̂

4�
×

[
%

%C
+ u · ∇

] (
D‖b̂ + u�×� + u380

)
+ b̂

4=�
× ∇ ·Π

8
(2.49)
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2. The plasma model

Provided that the characteristic scale for magnetic field variations is much larger than the scale
of the turbulence (assumption 2.33), we can commute the b̂× operator through the advective
derivative3 to cancel the parallel component, which lets us write the polarisation velocity as

u?>; =
−<8

4�2

[
%

%C
+ u · ∇

] (
∇⊥) +

∇⊥?8
4=

)
+ b̂

4=�
× ∇ ·Π

8
(2.50)

We need to explicitly write out the velocity term inside the advective derivative. Due to a
property of the diamagnetic drift called diamagnetic cancellation, the diamagnetic drift does not
contribute to advection, since the term −<8=

� u380 · ∇u cancels with part of b̂ × ∇ ·Π
8
(we write

the remaining part as Π
380

). This can be seen directly from the expansion of ∇ ·Π
8
given on

p.18 of Zeiler, while the general principle of diamagnetic cancellation is discussed on p.2.37 of
Scott. Conversely, to ensure energy conservation, we do need to include the polarisation velocity
in the advection4. Unfortunately, this is very difficult to treat numerically, so in the numerical
model we drop the polarisation velocity from advective derivatives, and we approximate the
polarisation velocity as

u?>; =
−<8

4�2

[
%

%C
+

(
D‖b̂ + u�×� +���u?>;

)
· ∇

] (
∇⊥) +

∇⊥?8
4=

)
+ b̂

4=�
× ∇ ·Π

8 ,380
(2.51)

This was quite a bit of work for a ‘correction’ term! Couldn’t we have just dropped this term
and saved ourselves the effort? Unfortunately, no. Although the polarisation velocity is small
compared to the � × � and diamagnetic drifts, its divergence is of the same order. Therefore,
wherever u?>; appears under a divergence, we need to keep it. Physically, if particles are able to
instantly respond to pressure perturbations, the perturbation will not grow. It is only due to
terms like inertia and electromagnetic induction that we get a non-instantaneous response and
an energy source for our turbulence.

2.5. The final equation set

With the drift approximation, our electron and ion velocities can be written as

v = u�×� + v380 +
(
D‖ −

9‖
4=

)
b̂ (2.52)

u = u�×� + u380 + u?>; + D‖b̂ (2.53)

where the parallel current density is

9‖ = 4=
(
D‖ − E‖

)
(2.54)

3Using the product rule we see that b̂ ×
[
%
%C + u · ∇

]
u =

[
%
%C + u · ∇

] (
b̂ × u

)
− u ×

[
%
%C + u · ∇

]
b̂. Provided that

the magnetic field doesn’t change too quickly in space or time compared to the velocity, it is reasonable to
drop the second term since it should be much smaller than the first.

4This is curious, since u?>; is formally an order down compared to u�×� or D‖ b̂. However, its divergence is
of the same order as ∇ · u�×� (see Scott p3.6). If we consider vector identity B.9, we can see that a u · ∇
operator acting on some arbitrary vector function G can be related to a divergence ∇ · u.
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2. The plasma model

Although we need it for energy conservation, we will drop the polarisation drift from u · ∇
because this term is difficult to treat numerically, and will further drop u?>; unless it appears
under a divergence. We can substitute the expressions for the velocities into equations 2.34–2.39
and add the constitutive terms from the magnetised-Braginskii closure to find a set of equations.
The final equations are expressed in terms of the ion stress function � (defined on p.18 of Zeiler
and given in equation A.1), which gives the component of the ion viscosity which remains after
diamagnetic cancellation.

Continuity equation

Since we neglected the perpendicular electron inertia, the electron continuity equation is simpler
than the ion equation. As such, we use equation the electron continuity equation (2.34) with
the electron velocity (2.52) to give the evolution of the common density =

%=

%C
+ ∇ · =u�×� + ∇ · =v380 + ∇ · =E‖b̂ = 0 (2.55)

We expand the K × H flux using the vector identity B.5 and write[
%

%C
+ u�×� · ∇

]
= = −=

(
∇ × b̂

�

)
· ∇) −

(
∇ × b̂

�

)
·
∇?4
4
+ ∇ ·

(
9‖
4
− =D‖

)
b̂ (2.56)

Quasineutrality equation

We substitute both the electron and ion velocities (equations 2.52 and 2.53) into the quasineu-
trality equation (equation 2.35), and then rearrange to find an expression for the polarisation
flux

−4∇ · =u?>; = ∇ · 9‖b̂ + 4∇ · =u380 − 4∇ · =v380 (2.57)

∇ · <8=

�2

[
%

%C
+ D‖∇‖ + u�×� · ∇

] (
∇⊥) +

∇⊥?8
4=

)
= ∇ · 9‖b̂ +

(
∇ × b̂

�

)
· ∇⊥

(
?4 + ?8

)
− 1

6

(
∇ × b̂

�

)
· ∇� (2.58)

The quasineutrality equation gives the evolution of the electrostatic potential ).

Momentum balance

To find an equation for the parallel velocity, we project both momentum equations (2.36,2.37)
into the parallel direction by applying the b̂· operator. We then cancel the diamagnetic velocity
terms u380 · ∇ and v380 · ∇ with corresponding terms in ∇ ·Π

8
and ∇ ·Π

4
. Finally, we add the

two parallel components together and drop u?>; since it is hard to evaluate numerically, giving

<8=

[
%

%C
+ u�×� · ∇ +����u?>; · ∇ + D‖∇‖

]
D‖ = −∇‖

(
?4 + ?8

)
− ∇ ·

(
Π
8

)
‖

b̂ (2.59)
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<8=

[
%

%C
+ u�×� · ∇ + D‖∇‖

]
D‖ = −∇‖

(
?4 + ?8

)
+
<8?8

4

(
∇ × b̂

�

)
· ∇D‖ −

2

3
�3/2∇‖

�

�3/2 (2.60)

Ohm’s law

The parallel component of the electron momentum equation can be used to find an equation
for the evolution of the parallel current density. We again cancel v380 · ∇ with part of ∇ ·Π4 ,
and then drop the rest of the electron viscosity tensor. The electric field is written in terms of
the electromagnetic four-potential K = −∇) − %G

%C , which we project into the parallel direction.
The parallel friction is written using the constitutive equations from the Braginskii closure

as '‖ = X · b̂ = 42=2�‖(D‖ − E‖) − 0.71=∇‖)4 = 4=�‖ 9‖ − 0.71=∇‖)4 for �‖ =
(
1.96 =4

2�4
<4

)−1
the

parallel Spitzer resistivity. The first term in the parallel friction is simply friction, while the
second is the thermal force5. We can therefore write

<4

4

[
%

%C
+ u�×� · ∇ + E‖∇‖

] (
D‖ −

9‖
4=

)
−
%�‖
%C

= −
∇‖?4
4=
+ ∇‖) + �‖ 9‖ − 0.71

1

4
∇‖)4 (2.61)

We can use equation 2.60 to show that 3D‖
3C will be a factor of <4/<8 smaller than the 39‖

3C term,
and so we drop it from the left-hand-side, giving

<4

4

[
%

%C
+ u�×� · ∇ + E‖∇‖

]
9‖
4=
+
%�‖
%C

=
∇‖?4
4=
− ∇‖) − �‖ 9‖ + 0.71

1

4
∇‖)4 (2.62)

Since this equation relates the current density to the electric field via a resistivity, we refer to it
as the generalised Ohm’s law.

Electron temperature equation

An expression for the evolution of the electron temperature can be found by expanding the
electron temperature equation (2.38) in terms of constitutive equations from the Braginskii
closure. These are the frictional heating &4 = (D‖ − E‖)'‖ = �‖ 9

2
‖ − 0.711

4 9‖∇)4 , the electron-ion

heat exchange &48 =
3<4

<8

=()4−)8)
�4

and the electron heat flux

q4 = −"‖ ,4∇‖)4 b̂ −
5

2

?4

4�
b̂ × ∇)4 − 0.71

1

4
)4 9‖b̂ (2.63)

representing a random-walk thermal diffusion, a diamagnetic heat flux (see p2.34–2.35 of Scott)
and a ‘hot-tail’ term. The last term accounts for the fact that current is primarily carried by

5The thermal force acts in the direction opposite to the temperature gradient, since higher temperature electrons
have a lower collision cross-section and therefore experience less friction. The thermal force can be considered
a correction to the bulk friction, and it acts against the temperature gradient.
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2. The plasma model

high-energy electrons, and as such we can associate a current with an additional advective heat
flux. The electron heat conductivity is written as

"‖ ,4 = 3.16
=)4�4
<4

(2.64)

for the electron collision time

�4 =
6
√
2�3/2&20

√
<4)

3/2
4

lnΛ44=
∼ )

3/2
4

=
(2.65)

and the Coulomb logarithm

lnΛ ' 6.6 − 0.5 ln
(

=

1020m−3

)
+ 1.5 ln

(
)4

1eV

)
(2.66)

which we approximate as a constant, evaluated at the reference density and electron temperature
(see Appendix A). We don’t introduce new assumptions in the derivation of the electron
temperature equation (although we do use some of the approximations that we made earlier),
so won’t show the derivation here. However, it’s not entirely straightforward, and so you can
find the derivation in Appendix C.1. The final result is

3

2

[
%

%C
+ u�×� · ∇ + E‖∇‖

]
)4 = − )4

((
∇ × b̂

�

)
· ∇) + ∇ · E‖b̂ +

1

=

(
∇ × b̂

�

)
· ∇?4

)
+ 1

=
∇ ·

[
"‖ ,4∇‖)4 b̂

]
+ 5

2

)4

4

(
∇ × b̂

�

)
· ∇)4

+ 0.71

4

)4

=
∇ · 9‖b̂ +

1

=
�‖ 9

2
‖ −

3<4

<8

()4 − )8)
�4

+ S)4 (2.67)

Ion temperature equation

Similarly to the electrons, we can rewrite the ion temperature equation (2.39) using the
constitutive equations from the Braginskii closure. In this case, the relevant terms are &84

(defined in the previous section) and the ion heat flux

q 8 = −"‖ ,8∇‖)8b̂ −
5

2

?8

4�2
H × ∇)8 (2.68)

representing a random-walk thermal diffusion and a diamagnetic heat flux. The ion heat
conductivity is

"‖ ,8 = 3.9
=)8�8
<8

(2.69)

for the ion collision time

�8 =
12�3/2&20

√
<8)

3/2
8

lnΛ44=
∼
)
3/2
8

=
(2.70)
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for the Coulomb logarithm defined in the previous section. The derivation of the final )8 equation
is similar to the derivation for the )4 equation, except we now have u?>; in our velocity. We use
the continuity equations to replace ∇ · u with ∇ · v + 1

= (v − u) · ∇=, which is why we have the
electron diamagnetic velocity in the top row. The derivation is given in Appendix C.2, and the
final result is

3

2

[
%

%C
+ u�×� · ∇ + D‖∇‖

]
)8 = − )8

((
∇ × b̂

�

)
· ∇) + ∇ · D‖b̂ +

1

=

(
∇ × b̂

�

)
· ∇?4

)
+ 1

=
∇ ·

[
"‖ ,8∇‖)8b̂

]
+ 5

2

)8

4

(
∇ × b̂

�

)
· ∇)8

+ )8
=
∇ ·

9‖
4

b̂ + 3<4

<8

()4 − )8)
�4

+ �2

3=�8
+ S)8 (2.71)

Ampère’s law

The set of equations is closed with Ampère’s circuital law ∇×H = �0j. From the quasineutrality
condition, we use the quasi-static form of Ampère’s law. We can write the curl of the magnetic
field in terms of the vector potential (which is divergence-free in the non-relativistic limit)

�0j = ∇ × (∇ × G) (2.72)

= ∇ (���∇ · G) − ∇2G (2.73)

Taking only the parallel component then gives

∇2⊥�‖ = �0 9‖ (2.74)

2.6. Normalised equations

The equations for continuity (2.56), quasineutrality (2.58), momentum-balance (2.60), Ohm’s
law (2.62), electron temperature (2.67), ion temperature (2.71) and Ampère’s law (2.74) form
a complete set. We could solve them as they are, although we’d need to be careful to make
sure that we’re consistent with our units. Instead, we normalise the equations to a set of
reference values, which leads to a number of dimensionless (unit-less) parameters appearing
in the equations. The normalisation parameters, dimensionless parameters and normalised
equations are given in Appendix A.

Our choice of reference parameters should not affect the simulations6, while the dimensionless
parameters do have a strong influence since they set the relative strength of terms in the
equations. One slight exception is the use of a constant Coulomb logarithm lnΛ which is
calculated from the reference parameters, which gives a (weak) dependence on the choice of
reference density and electron temperature.
6Reference parameters could have an effect numerically, particularly if the choice of reference parameter leads
to overflow errors. However, since double-precision numbers can represent values between 10−308 − 10308,
any reasonable choice of reference value will not lead to overflow errors (for single precision, the range is
10−38 − 1038, which could conceivably be reached with a poor choice of reference values).

36



2. The plasma model

2.7. Further reading

• Braginskii, 1965, Transport Processes in a Plasma: the book chapter where the ‘Braginskii
model’ was originally published. Remarkably relevant and readable.

• Zohm, 2015, Magnetohydrodynamic Stability of Tokamaks : section 1.1.1 gives the derivation
of the fluid equations from the Boltzmann equation.

• Freidberg, 2014, Ideal MHD, section 2.3 up to 2.3.3, also giving the derivation of the fluid
equations, in complement to derivation in Zohm.

• Scott, 2001, Low-frequency Fluid Drift Turbulence in Magnetised Plasmas : a comprehensive
thesis that rigorously derives the drift-reduced Braginskii equations and provides an
extensive commentary on their use and analysis.

• Zeiler, 1999, Tokamak Edge Turbulence: a more brisk introduction to the drift-reduced
Braginskii equations, with some useful perspectives on plasma turbulence.
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3. Sheath boundary conditions

3.1. What, why, and how? Using a sheath model to find
boundary conditions for our model

For all fusion experiments on earth, at some point – via classical, neoclassical or turbulent
transport – the plasma will collide with the solid walls of the device. Once plasma particles
reach the walls, they mostly recombine into neutral particles which are reflected back into the
plasma volume, where they are reionised. As such, the walls act as a sink for plasma particles
and a source for neutral particles. However, due to the very different masses of electrons and
ions, random thermal transport to the walls will lead to different rates of electron and ion
loss, resulting in a net current to the walls. To keep the plasma volume quasineutral, the bulk
velocity of electrons and ions must be modified to (approximately) balance the losses. This
requires a strong electric field in a small (∼ ��,4) region near the walls called the sheath, which
breaks the quasineutrality assumption (2.2.3). The electric field extends some short distance
into the plasma (∼ �8), in a region called the magnetic presheath, where it deflects ions from
the field-lines and breaks the ion-drift-ordering (2.2.5). As such, the model that we derived in
chapter 2 is valid only up until the magnetic presheath entrance (MPSE).
Despite being small, the sheath has a significant effect on the bulk plasma. As such, if

we want to accurately model the edge plasma, we need to either model the sheath directly –
which would require coupling to a kinetic model [130] – or at least approximate its effects on
the bulk plasma. Since kinetic models are extremely expensive, we instead look for solutions
to (strongly-simplified) sheath models to find a set of sheath boundary conditions which give
expressions for the MPSE plasma in terms of the bulk plasma properties. The assumptions
required to arrive at an implementable set of equations are less rigorous than those made in
chapter 2, and there is little consensus amongst the modelling community per what sheath
boundary conditions should be used. As such, we need to use validation (Part III) to test our
model and boundary conditions against experiment.
In this chapter, we first present the boundary conditions for a normal sheath in an unmag-

netised plasma. This closely follows results available in literature, although we modify the
standard result to allow for sub and supersonic sheath entrance ion velocities. We then discuss
the magnetised case, introducing the magnetic presheath and drifts, and boundary conditions for
the simulations in this thesis. Finally, we discuss part of what makes this topic so challenging,
and what an improved set of boundary conditions might include.
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3. Sheath boundary conditions

Figure 3.1.: A normal sheath for an unmagnetised plasma with @ = 1. The plasma is divided
into regions – the bulk plasma, the presheath and the sheath. As we move towards
the wall, the electric field increases, accelerating the ions towards the wall and
repelling the electrons. In the presheath, this electric field is weak enough that we
can still apply quasineutrality, while in the sheath the electric field is stronger and
a significant space-charge develops, with =4 < =8 . In this thesis, we assume that the
wall is conducting and grounded.

3.2. The normal sheath

3.2.1. The Bohm criterion

In a simple unmagnetised plasma, as depicted in figure 3.1, an electric field develops spontaneously
to balance the electron and ion fluxes. This electric field accelerates ions towards the wall,
and repels electrons, leading to a region of space charge where the quasineutrality condition
is broken. If we neglect collisions, we can derive the Bohm condition for the ion velocity at
the Debye sheath entrance. We assume that the electron energy distribution function can be
approximately described as a Maxwellian, so that we can relate the electron density at some
position G near the sheath entrance to the electrostatic potential, via the Boltzmann relation

=4(G) = =B4 exp
[
4
(
)(G) − )B4

)
)4

]
(3.1)

where =B4 and )B4 are the electron density and electrostatic potential at the sheath entrance.
Then, if we assume that the ion thermal velocity is negligible compared to the bulk flow
velocity, and that the ion velocity is due only to the acceleration by the electric field, via energy
conservation we have

1

2
<8D(G)2 + 4)(G) =

1

2
<8D

2
B4 + 4)B4 (3.2)
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3. Sheath boundary conditions

We assume that there are no sources in the sheath, and if we further assume that the flow is
incompressible we can write the ion continuity equation as

=8(G)D(G) = =B4DB4 (3.3)

=8(G) = =B4 (DB4/D(G)) (3.4)

which we can rewrite using equation 3.2 as

=8(G) = =B4
[
1 −

4
(
)(G) − )B4

)
 B4

]−1/2
(3.5)

for  B4 = 1
2<8D

2
B4 . Then, using the electrostatic form of Poisson’s equation (for @8 = 1)

∇ · K = −
%2)

%G2
=
4

�0
(=8(G) − =4(G)) (3.6)

�0∇ · K
4=B4

= − �0
4=B4

%2)

%G2
=

[
1 −

4
(
)(G) − )B4

)
 B4

]−1/2
− exp

[
4
(
)(G) − )B4

)
)4

]
(3.7)

Rather than attempting to solve for ), lets consider the values which the right-hand-side

Figure 3.2.: The right-hand-side of equation 3.8, for different values of the normalised potential
difference # = 4

)4

(
)(G) − )B4

)
and the Mach number "B4 = DB4/2B4 = DB4/

√
)4/<8.

There are two distinct branches which give a minimum space charge �@ – one with
)(G) = )B4 (a field-free plasma) and another with DB4/2B ∝ )(G) − )B4 .

of the equation can take. First of all, since the entrance to the sheath is still quasineutral,
we know that

��� �0∇·K4=B4

��� � 1. Then, if we make the change of variables # = 4
)4

(
)(G) − )B4

)
and
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3. Sheath boundary conditions

"B4 = DB4/2B = DB4/
√
)4/<8 we can write�����0∇ · K4=B4

���� = ����� [1 − 2#

"2

]−1/2
− exp

[
#
] ����� � 1 (3.8)

In figure 3.2 we have evaluated
��� �0∇·K4=B4

��� as a function of # and ". There are two branches which
fulfil the quasineutrality condition – # = 0 or a " ∝ #. # = 0 would imply that the electric
field is negligible, which is the solution valid for the bulk plasma. Near the sheath entrance, we
want some electric field pointing towards the wall, to accelerate the ions and repel electrons.
Looking at )(G) in figure 3.1 (generated using sheath_potential.ipynb), if we pick G at some
point in the bulk plasma )B4 − )(G) = )?;0B<0 > 0, which corresponds to

" ≥ 1 ⇐⇒ DB4 ≥ 2B =
√
)4

<8
(3.9)

This is the ‘Bohm criterion’, which states that the ion velocity perpendicular to the wall must
be at least the local sound speed at the entrance to the sheath. To account for non-negligible
ion temperature, we can modify the local sound speed [131] to

2B =

√
�0,4)4 + �0,8)8

<8
(3.10)

where the �0 terms are the adiabatic indices for the electrons and ions. We always set �0 = 1

for both the electrons and ions, which corresponds to the isothermal case1.

3.2.2. Insulating-sheath boundary conditions

The sheath balances the electron and ion wall fluxes via an electric field. We can calculate the
required electric field, and use this to set a boundary condition for the potential. We assume
that the wall is grounded at ) = 0, and calculate the potential difference ΛB4 across the sheath
required to give zero net current. Since the ions are accelerated towards the wall, we assume
that any ions reaching the sheath entrance will arrive at the wall. As such, the ion flux to the
wall will be

Γ8 ≥ 4=B4 2B (3.11)

= =B4 2B"B4 (3.12)

where "B4 = DB4/2B is the Mach number at the sheath entrance, which must be ≥ 1 for the

Bohm criterion to hold. We assume that the electron flux is equal to Γ4 = 1
4=2̄4 with 2̄4 =

√
8)4
�<4

,
which is the flux to an infinite planar surface for particles with temperature )4 . We further
assume the electron density =4 = =B4 exp

[
4ΛB4
)4

]
is the electron density at the wall determined

1The adiabatic index for adiabatic flow is �0 = 5/3 in 3D and �0 = 3 in 1D. Since the strong electric field at the
sheath leads to essentially one-dimensional flow for the ions we might consider setting �0,8 = 3.
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3. Sheath boundary conditions

by the Boltzmann relation, with ΛB4 the potential drop from the sheath to the wall. Then, for
ambipolar flows (9‖ = 0) with single-charged ions, the fluxes must balance

Γ8 = Γ4 (3.13)

=B4 2B"B4 =
1

4
=B4 exp

[
4ΛB4

)4

]
2̄4 (3.14)

2B"B4 =
1

4
exp

[
4ΛB4

)4

]
2̄4 (3.15)

�0,4)4 + �0,8)8
<8

=
1

16
exp

[
24ΛB4
)4

]
8)4
�<4

(3.16)

4ΛB4

)4
=

1

2
ln

[
2�
<4

<8
"2

B4

(
�0,4 + �0,8

)8

)4

)]
ΛB4 ≈ −2.8

)4

4
for "B4 = 1, )8 = )4 , �0,8 = �0,4 = 1 in Deuterium

(3.17)

(3.18)

Currently, we take 4ΛB4
)4

as a constant, assuming "B4 = 1, equal electron and ion temperatures
and using the adiabatic index corresponding to the isothermal case. However, this is mainly
for ease of implementation – we could considering adding the temperature ratio and "B4

dependencies, or using a different adiabatic index. The effect of this is shown in figure 3.3
(generated using sheath_potential.ipynb).

Figure 3.3.: The ambipolar sheath potential ΛB4 , normalised to )4/4. Although the Bohm
criterion requires "B4 ≥ 1, subsonic solutions exist provided "B4 > 0. We fix
�0,4 = 1 and show the effect of changing the ion adiabatic index �0,8, for solutions
with )4 = )8, )4 > )8 and )4 < )8.
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3. Sheath boundary conditions

3.2.3. Conducting-sheath boundary conditions

What happens if the potential drop across the sheath is not ΛB4? So long as the electric field
points towards the wall, we assume that the ion flux should still equal the flux reaching the
sheath entrance. The electron flux, however, will be modified by the new potential (which we
denote )B4 , since we have assumed )F0;; = 0), leading to a net current density

9 = 4(Γ8 − Γ4) (3.19)

= 4=B4

(
2B"B4 −

1

4
exp

[
4)B4
)4

2̄4

] )
(3.20)

Equation 3.15 lets us to rewrite this as

9 = 9B0C

(
1 − exp

[
4()B4 −ΛB4)

)4

] )
where 9B0C = 4=B4"B4 2B is the ion saturation current

(3.21)

(3.22)

Therefore, if )B4 ≠ ΛB4 , there will be some finite current across the sheath. As )B4 → −∞
the positive current will saturate at 9B0C (usually defined with "B4 = 1) – which is the current
associated with the ion flux and no electron flux (the strong electric field completely excludes
electrons from entering the sheath) – while for large positive )B4 there is no limit in our model
on the maximum negative current. However, we have used a very simple sheath model – in
reality, the positive current can exceed 9B0C due to electron emission from the wall [132], and the
negative current also (approximately) saturates at the electron saturation current [133].

This then raises the question, what sets the value of )B4? One way that we could find a
boundary condition for ) is to find an expression for ∇‖) from a simplified Ohm’s law (by
approximating terms in equation 2.62) [134]. Alternatively, if we assume that the current to the
boundary is given, we can rearrange equation 3.21 to give a boundary condition for ) in terms
of 9‖

1 −
9

9B0C
= exp

[
4()B4 −ΛB4)

)4

]
(3.23)

4()B4 −ΛB4)
)4

= ln

[
1 −

9

9B0C

]
(3.24)

)B4 = ΛB4 +
)4

4
ln

[
1 −

9

9B0C

]
(3.25)

which only gives meaningful values for )B4 if 9 < 9B0C .

3.3. The magnetic presheath entrance

In the previous section, we considered the case of an unmagnetised plasma. For a magnetised
plasma, we still have a Debye sheath like the one discussed in the previous section, but also have
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3. Sheath boundary conditions

Figure 3.4.: Plasma-wall interface regions (modified from reference [135]). In a magnetised
plasma, the plasma-wall interface can be broken into three distinct regions [136]. In
the first, called the ‘collisional presheath’, the electron flux is driven by the pressure
gradient, while an electric field ensures that the ion flux matches the electron flux.
Moving towards the wall, at ∼ �8 from the wall the electric field (in the n̂ direction)
becomes strong enough to deflect ions from the magnetic field, in the ‘magnetic
presheath’. Finally, within a few ��,4 of the wall, the electric field completely
dominates the magnetic field, deflecting both ions and electrons. This region is
called the ‘Debye sheath’. In this figure, we show the magnetic field in 2D only –
if you’d like, you can think of this as showing only the poloidal component of the
magnetic field. Additionally, we have shown a 2D wall-normal vector, which is valid
for the assumption of an axisymmetric wall, but which in general would also be
in 3D. Irrespective of the representation shown here, the angle  = cos−1

(
−n̂ · b̂

)
should be calculated using 3D vectors.
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3. Sheath boundary conditions

an additional ‘magnetic presheath’, as indicated in figure 3.4. In the magnetic presheath the
plasma is still quasineutral, but the electric field is strong enough to deflect ions from following
the magnetic field. This breaks the ion drift ordering (2.30), and as such, we need boundary
conditions for our model to apply at the magnetic presheath entrance (MPSE). To derive these,
we need to have a model both for the sheath – which we discussed in the previous section – and
another for the magnetic presheath – which we discuss here.

The size and effect of the magnetic presheath depends on the angle between the magnetic
field b̂ and the wall normal vector n̂. If b̂ ‖ n̂ (magnetic field perpendicular to the wall), the
magnetic presheath disappears and we only have a sheath [136]. Conversely, for b̂ ⊥ n̂ (magnetic
field parallel to the wall), we need to model the finite Larmor radius of the particles [137, 138]
and our simple sheath model breaks down. In between these two limits, we can modify our
sheath boundary conditions to account for the magnetic presheath.

3.3.1. Bohm-Chodura and drift-corrections

The Bohm criterion is replaced by the Bohm-Chodura criterion [136, 139], which states that the
parallel ion velocity D‖ must exceed the local sound speed

D‖ ,<?B4 = "<?B4 2B for "<?B4 ≥ 1 (3.26)

In a magnetised plasma, we can also have poloidal transport due to drifts. The � × � drift leads
to an additional transport to the targets, and since usually �?>;/� � 1 the poloidal transport
due to the drift can be as large as the poloidal transport due to D‖ [139, 140]. Conversely, it is
expected that the diamagnetic velocity does not lead to transport to the targets since the drift is
deflected away from the targets, forming closed loops within the plasma [141]. We can ‘correct’
the parallel velocity boundary condition (3.26) to take into account the � × � transport. One
way to do this would be to calculate the parallel velocity which would give as much poloidal
transport as the � × � drift, and then add this to D‖ in equation 3.26(

D‖ + u�×� · b̂?>;
|�|
�?>;

)
<?B4

= "<?B4 2B (3.27)(
D‖ +

b̂ × ∇)
�?>;

· b̂?>;
�

|�|

)
<?B4

= "<?B4 2B where
�

|�| = ±1 (3.28)

However, in the simulations in this thesis, we instead set(
D‖b̂ · n̂ + u�×� · n̂

)
<?B4

= "<?B4 2B b̂ · n̂ (3.29)

which prevents � × � influx across the boundary. The motivation for this was to try prevent a
strong ion heating observed near the boundaries, which was originally thought to be due to a
spurious source of )8 via �×� transport across the boundary. However, it was later realised that
this heating was caused by the )8

= ∇ · 9‖b̂ (compression of E‖) term in equation 2.71, and so in
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3. Sheath boundary conditions

future work we could consider using equation 3.27, or the more involved boundary condition in
reference [140] (our boundary condition corresponds to the ‘intuitive’ solution in this reference,
which is valid only for insulating boundary conditions) or reference [142].

3.3.2. Current and potential in the magnetic presheath

Using kinetic modelling Chodura showed that the potential difference across the sheath and
magnetic presheath does not vary significantly with the angle  = cos−1

(
−n̂ · b̂

)
– although the

fraction of the total potential drop in the magnetic presheath does vary – provided that  > 10◦

[136]. For most tokamaks of interest, however,  < 10◦ and so we should consider the effect of
the incidence angle on )<?B4 . Unfortunately, a closed form solution for )<?B4 as a function of
 is not available, and so we assume that )<?B4 is the same the sheath entrance potential for
the normal sheath. In reference [130], kinetic modelling finds that )B4 )44 ≈ 3 for  ∈ [1.5◦ , 3◦],
which is close to the result from the normal sheath.

For the current, since the magnetic pre-sheath is quasineutral we require ∇ · j = 0. We
can additionally neglect the diamagnetic current (since the diamagnetic drift doesn’t lead to
transport to the plates) and the � × � drift (since this drift is ambipolar), so we simply set the
parallel current density at the magnetic presheath entrance equal to the sheath current

9‖ ,<?B4 = 4=<?B4"<?B4 2B

(
1 − exp

[
4()<?B4 −ΛB4)

)4 ,<?B4

] )
(3.30)

3.4. Density boundary condition and recycling

When a plasma reaches the solid walls of the reactor, the ions and electrons recombine on the
surface. As such, the walls act as a sink for plasma and a source for neutral particles. We can
find a boundary condition for the plasma density by simplifying the ion continuity equation, by
neglecting drifts, assuming no sources and ignoring the time-derivative, such that

∇ ·
(
=D‖b̂

)
= 0 (3.31)

Therefore, under these strong assumptions, the particle flux across the boundary =D‖ should be
constant. Alternatively, we could use the electron continuity equation (2.56), replacing the drifts
with parallel velocities which give the same poloidal transport (see equation 3.27). However,
these boundary conditions have not yet been tested, and for numerical stability in this thesis we
use a Neumann boundary condition

∇‖= = 0 (3.32)

The neutrals at the wall can either be removed by pumps or be excited and re-ionised, acting
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3. Sheath boundary conditions

as a source of plasma and a sink of energy2. For typical fusion plasmas, the plasma source
and sink due to recycling of particles at the walls is much stronger than the source due to gas
injection and the sink due to pumping. However, we don’t include a neutral model in this thesis,
so we use a density source to try to mimic neutral ionisation.

3.5. Temperature boundary conditions: sheath heat
transmission factors

As well as providing a particle sink, the walls also act as an energy sink. This is a distinctively
kinetic effect: the sheath acts as a high-energy filter for the electrons, and therefore cools the
interior electron distribution beyond what is expected from the advected energy loss. For the
ions, the velocity distribution in the sheath is strongly non-Maxwellian, and so we need to
adjust our energy loss term. Rather than trying to determine the effective heat loss from a
simple model, we usually rely on sheath heat transmission coefficients. These coefficients give
the ratio of the total heat flux crossing the sheath entrance to the advected heat flux at the
sheath entrance, and they require kinetic modelling to get reasonable estimates for [143, 130].
As such, the sheath heat coefficients are inputs to our simulations, with typical values between
�4 ∼ 1.5 − 8 and �8 ∼ 1 − 2 (due to the large uncertainty, it doesn’t make sense to distinguish
between the sheath and the magnetic presheath) [135]. From the definition of the sheath heat
coefficients

@B,<?B4 = =<?B4D<?B4)B,<?B4 − "‖ ,B∇‖)B,<?B4 (3.33)

�B =
@B,<?B4

=<?B4D<?B4)B,<?B4
(3.34)

= 1 −
"‖ ,B∇‖)B,<?B4

=<?B4D<?B4)B,<?B4
(3.35)

−
"‖ ,B∇‖)B,<?B4

=<?B4D<?B4)B,<?B4
= �B − 1 (3.36)

This gives a Robin boundary condition for the electron and ion temperatures.

3.6. Discussion

The walls have a leading-order effect on the edge plasma, and accurately capturing the effects
of the sheath on the bulk plasma is a serious challenge for edge modelling. In this chapter, we
arrived at a set of boundary conditions to apply at the magnetic presheath entrance by making
2In addition to recycling the main plasma species, the walls also act as a source of non-fuel impurities. These
impurities typically radiate much more efficiently than the fuel, and so have a significant effect even when
present only in small concentrations. The rates at which wall impurities are generated is determined by
processes such as direct erosion and implantation of ions in the wall – which are difficult to model. Additionally,
impurities may also be intentionally injected, to enhance the radiative power dissipation. In this thesis,
impurities are neglected entirely.
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some very haphazard assumptions. The first (implicit) assumption that we made was that there
actually exists a sensible way to couple a fluid model to the sheath. Since the sheath requires a
full-kinetic description and it strongly modifies the distribution function in the edge, there may
not be an accurate way to model the plasma near the sheath with a fluid model [130]. Then,
to arrive at a set of solvable boundary conditions, we made several simplifying assumptions,
without considering what the limits of these assumptions are (or even if they are valid at all).
A further challenge is to find boundary conditions that are compatible with the interior model
and numerics. As we will show in section 4.5, this is far from trivial – the sheath acts like a
shock, and so this prevents us from always using physically motivated boundary conditions.
To test different boundary conditions and determine which ones give reasonable results,

comparisons against experiment are extremely helpful. Here, we care more about the impact of
the boundary conditions on the measured plasma profiles, rather than accurately modelling the
sheath itself. As such, we validate the bulk plasma and boundary conditions together, rather
than trying to investigate the boundary conditions by themselves.
In part III, we show that the choice of boundary conditions has a significant effect on the

interior plasma and that much of the disagreement can be linked to boundary conditions. As
such, this is a topic which we should focus on in future work. One solution might be to try to
build boundary conditions from the interior equations, substituting in physically reasonable
estimates of the boundary values where possible, and then simplifying until we can prescribe
boundary values or gradients from the equations. Alternatively, we could aim to include more
physics effects in the boundary conditions, generalising them to be valid at higher collisionality
[144, 143] or including kinetic modifications [145, 130]. For either approach, it is likely that
analytical solutions will not be available, and as such we could consider including an additional
iterative model to find consistent solutions for the MPSE [140]. As an additional note – since our
boundary conditions are not self-consistent, we will need to carefully test them across a range
of plasma conditions. In particular, for fully-detached plasmas, our simple sheath model will
probably be too inaccurate, and so we will need to determine a new set of boundary conditions
(see the discussion in section 2.3 of reference [43]).

3.7. Further reading

• Loizu, 2013, The role of the sheath in magnetized plasma turbulence and flows (PhD thesis):
a long-form introduction to sheath physics in the context of turbulence simulations

• Stangeby, 2000, The plasma boundary of magnetic fusion devices : although mainly focussed
on steady-state transport modelling, this classic text describes the sheath in great detail.
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4.1. What, why, and how? Local field-alignment for
computationally efficient simulations

In fusion plasmas, the strong confining magnetic field leads to very different dynamics parallel
and perpendicular to the magnetic field. The magnetic field mostly prevents particles from being
transported perpendicular to the field, while particle transport parallel to the field is mostly
unaffected and therefore much faster than perpendicular transport. As a result, perturbations are
typically highly elongated parallel to the magnetic field and comparatively small perpendicular
to the magnetic field. We already used this ‘flute-mode’ nature of the turbulence to perform the
drift ordering in section 2.2.5, but we can also use it to build efficient computational grids.
In this chapter, we discuss how the model and boundary conditions developed in previous

chapters (our conceptual model) are discretised1 and implemented as code (our numerical model).
In particular, we discuss in depth the parallel discretisation method – the ‘flux-coordinate-
independent field-aligned’ – since this discretisation method is a large part of why GRILLIX
is able to flexibly and efficiently simulate arbitrary magnetic geometries. We first sketch the
basic idea behind local field-alignment (section 4.3), then introduce the actual parallel operators
used, and explain why we need to use toroidally staggered grids. We discuss a peculiarity
of the discretised equations which leads to strong corrugations near the sheath boundaries,
and the immersed boundary method used to resolve this issue. Finally, we use the method of
manufactured solutions to verify our implementation, and close with a discussion of current
research efforts.

4.2. Field alignment

Within the confined region, many grid-based codes use a field-aligned grid, using a coordinate
system such as those described in references [146, 147, 148]. In field-aligned coordinate systems,
the coordinates are defined in such a way that the magnetic field-lines appear as straight lines
in the coordinate system. Aligning the grid to the magnetic field greatly simplifies both analytic
and numerical computations. Additionally, with the flute-mode assumption, we can reduce the
resolution in the parallel direction. This directly reduces the computational cost by reducing
the number of computational points, and also allows for a larger time-step since the fast parallel
dynamics have the most severe CFL criterion. However, such coordinate systems cannot be
applied across the separatrix [122].

1Discretisation is the representation of the continuous dynamics over some finite-resolution grid.
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To treat the separatrix and the open field-line region, we instead use a ‘locally field-aligned’
(LFA) coordinate system. This method was originally developed in references [149, 150, 151], to
preserve the benefits of field-aligned methods while also being able to cross the separatrix. A
method for reducing spurious cross-field diffusion was developed in references [122, 152], which
forms the basis for the method used in GRILLIX. This method was extended to treat complex
boundaries and arbitrary geometry in references [109, 125]. Beyond GRILLIX, the locally field-
aligned method is also used in FELTOR [107], a gyrofluid code, BOUT++/BSTING [153], a
fluid code capable of modelling stellarators, GDB, a fluid which uses a toroidal coordinate system
[115] and recently GENE-X [103], a gyrokinetic code. As a note on terminology, the method is
usually termed the ‘flux-coordinate-independent field-aligned’ or ‘FCI’ method, although we
prefer ‘locally field-aligned’ for describing what the method is, rather than what it is not.

4.3. Local field-alignment – the basic concept

The basic concept of the locally field-aligned method is refreshingly simple. It is easiest to
describe by considering how we would build a grid for some arbitrary tokamak configuration.
First of all, we assume that the configuration is perfectly axisymmetric – which isn’t actually
necessary (see reference [154]), although it does simplify the book-keeping. We divide the torus
into #?>; equal sections, and at the centre of each section we define a ', / plane at some
constant toroidal angle ) = 8 2�

#?>;
for 8 = 1, 2, . . . . For each poloidal ', / plane, we define a

two-dimensional grid. In GRILLIX, we always use a regularly spaced Cartesian grid, although
again this isn’t strictly necessary [153]. With axisymmetry and a Cartesian grid in the poloidal
planes, the resulting grid is simply a ', ), / cylindrical grid2. From each ', ), / point, we
trace ±Δ) along the magnetic field using an ordinary-differential-equation integrator, as shown
in figure 4.1

%'

%)
=
�'

�)
⇐⇒ '() + Δ)) = '()) +

Δ)∫
0

�'($)
�)

'3) (4.1)

%/

%)
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�/

�)
⇐⇒ /() + Δ)) = /()) +

Δ)∫
0

�/($)
�)

'3) (4.2)

%;‖
%)

=
�

�)
⇐⇒ ;‖() + Δ)) =

Δ)∫
0

�($)
�)

'3) (4.3)

where $()) = ('()), ), /())) is the characteristic curve of the magnetic field-line (see III.A of
reference [109]), ;‖ is the length along the magnetic field-line, and the factor of ' comes from
the cylindrical coordinate system. We can use numerical field-line tracing to find the points

2We could directly discretise the equations using expressions for the operators in cylindrical coordinates, which
is called the non-aligned discretisation method. Non-aligned methods are useful for isotropic systems, while
for flute-mode turbulence aligned methods are typically more computationally efficient.
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Figure 4.1.: The basic concept behind the locally-field-aligned method. For each point, we
trace in both field-directions to neighbouring poloidal planes. The values at the
intersection points can be computed via interpolation and used to compute parallel
operators. N.b. the actual method used in GRILLIX is slightly more complicated –
see figure 4.2.

which are field-line connected to our start point, allowing us to calculate parallel gradients.
Typically, the points where the magnetic field intersect the neighbouring planes are not actual
grid points, and so we use interpolation to find the value at the intersection point. Then, we
can simply calculate perpendicular derivatives using standard two-dimensional finite differences,
and parallel derivatives from the interpolated values.

4.4. Parallel operators and toroidal staggered grid

In GRILLIX, the actual parallel discretisation method is similar to a finite-volume method [122,
152, 108]. In addition to the cell-centred poloidal planes introduced in the previous section,
we also introduce toroidally-staggered poloidal planes at the faces between the cells. Scalar
quantities like the density, temperature and electrostatic potential are defined at the cell-centres,
while vector quantities like the parallel velocity, current and vector potential are defined at the
cell-faces. We then introduce two parallel operators – a parallel derivative which takes quantities
on the scalar grid and returns a value on the vector grid, and a parallel divergence which takes
quantities on the vector grid and returns a value on the scalar grid.

For the parallel derivative, around each point on the vector grid we define a hexahedral flux
box, indicated in figure 4.2. The points of the cell are determined by field-line tracing ) ± 1

2
2�
#?>;

from the four corners of a square ' ± ℎ/2, / ± ℎ/2 around the point ', ), /. The parallel
derivative is defined in terms of a volume integral over the cell. This lets us resolve regions
like the X-point where neighbouring field-lines separate quickly, without having to increase the
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Figure 4.2.: In GRILLIX (figure 7 from the GRILLIX manual), the parallel gradient for the
(8 , 9) point on the

(
: + 1

2

)th plane is defined in terms of an integration over a flux
box (marked in blue). The flux box is defined via tracing to the :th and (: + 1)th
toroidal planes from the corners of a square of side length ℎ (the poloidal grid
spacing) centred at the point. Integration is performed at the ends of the flux box
via numerical integration over interpolated points.
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toroidal resolution [152]. The parallel derivative in GRILLIX is defined as

∇‖D =
1

�
∇ · (DH) (4.4)

= lim
+24;;→0

1

�+24;;

∫
%+24;;

DH · 3Y (4.5)

Only the ends of the flux box contribute to the integral, so we can discretise this as

(
∇‖D

)
8 , 9 ,:+ 1

2
=

1

�8 , 9+8 , 9


∫
�+
8 , 9

D:+1�)3� −
∫
�−
8 , 9

D:�)3�

 (4.6)

where the integrals are evaluated using numerical integration of interpolated points on the :th

and (: + 1)th toroidal planes. The parallel divergence is then constructed from the parallel
gradient using the method of support operators (see the GRILLIX manual and reference [155]).
We define an inner product between two arbitrary test functions D and E as

〈D, E〉 =
∰
V
DE3V (4.7)

On a continuous level, via integration-by-parts∰
V
D∇ ·

(
∇‖Eb̂

)
3V = −

∰
V
∇‖D∇‖E3V + surface terms (4.8)

We discretise ∇‖ according to equation 4.6 and 〈·, ·〉 as a sum over all grid points. The parallel
gradient and divergence are expressed as matrices W and W∗. Since the parallel gradient maps
vectors from the scalar grid onto the vector grid, the left and right hand sides of equation 4.8
will be on different grids and so at first we sum these over different indices (dropping the surface
terms) ∑

1 ,�1 ,�1

u1Q∗1�1
Q�1�1v�1+1 = −

∑
2 ,�2 ,�2

Q2�2u�2Q2�2v�2+2 (4.9)

However, without losing generality, we can relabel the indices. We set �2 = 1, 2 = �1 and
�2 = �1 to let us cancel the arbitrary test functions, then drop the subscripts on the indices.
Since the test functions are arbitrary (i.e. they could also be �-functions), each term in the sum
must also be equal and so

uQ∗�Q��v�+ = Q�uQ��v�+� (4.10)

Q∗� = Q�
+

+�
(4.11)
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Therefore, the discrete parallel divergence is equal to the transpose of the discrete parallel
gradient, multiplied by a volume correction factor. This method ensures that the discretise
parallel gradient will be the negative adjoint of the parallel divergence(

∇‖
)†
= −∇ · ◦b̂ (4.12)

on a discrete level. It also ensures that second-order differential operators of the form ℒ (D(G)) =
3
3G

(
?0(G) 3D3G

)
+ ?2(G)D(G) such as the parallel diffusion will be self-adjoint. In equations 34 and

35 of reference [122] it is shown that this method reduces spurious perpendicular diffusion, which
is extremely important for turbulence simulations. Since the physical cross-field transport due
to turbulence is slow compared to the parallel transport, additional cross-field transport due to
numerical pollution can quickly to lead to unphysical plasma profiles. As such, the self-adjoint
method is necessary for accurate turbulence simulations.

4.5. Boundary stencil collapse

The locally field-aligned method works well when the turbulence is strongly elongated along
the magnetic field. However, as we discussed in chapter 3, in the vicinity of the solid walls
the plasma dynamics lose field-alignment due to the strong sheath electric field. As well as
modifying our equations, the sheath can be difficult to treat numerically. This is true for all
turbulence codes, but the use of a toroidally-staggered grid for GRILLIX makes this issue
particularly severe.
To illustrate the issue we will consider a simplified 1D advection model. If we consider only the
parallel components of the continuity and momentum balance equations and ignore the effect of
anything that isn’t the density or velocity, we can write a simplified set of equations

%C= = −∇ · (=D‖ 1̂) + S= (4.13)

%CD‖ = −D‖∇‖D‖ −
∇‖=
=

(4.14)

As discussed in the previous section, the scalar grid (SG, for =) and vector grid (VG, for D‖)
are toroidal staggered (i.e. the vector grid lies halfway between two scalar grid planes, and
vice-versa – see figures 4.4 and 4.5). The parallel operators map from one grid to another

(∇‖ 5 )8+1/2 =
58+1 − 58
ΔG

maps 5 ∈ (�→ (∇‖ 5 ) ∈ +�

and
∇ · (1̂@)8 =

@8+1/2 − @8−1/2
ΔG

maps @ ∈ +�→ ∇ · (1̂@) ∈ (�

We additionally define mapping operators

5 ∗
8+1/2 =

58+1 + 58
2

maps 5 ∈ (�→ 5 ∗ ∈ +�

and
@∗8 =

@8+1/2 + @8−1/2
2

maps @ ∈ +�→ @∗ ∈ (�
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Figure 4.3.: Density and velocity after 100 time-steps of the advection equations, with D‖ ≥ 2B
and ∇‖= = 0 used as boundary conditions. In the left figure, the scalar grid is the
closest point to the boundary (as in figure 4.4), while in the right figure the vector
grid is the closest point to the boundary (as in figure 4.5).

We can discretise the system of equations, to see how the system evolves for different choices
of boundary conditions. We assume that S= is a constant Gaussian density source, located at
the centre of the domain. For simplicity, we make our domain symmetric around G = 0, and
define left and right boundaries at −G� and G�. Grid points are added at integer values, with
even-integer values assigned to the scalar grid and odd-integer values assigned to the vector
grid. We do not require that the boundary is on a grid point since in the 3D system a magnetic
field-line can intersect the boundary at any position along the wall, and not necessarily on a
poloidal plane. A Jupyter notebook showing the discretisation of this set of equations is available
at boundary_advection.ipynb, which uses a simple diffusion-stabilised FTCS scheme.

We defined boundary conditions to apply at the walls in chapter 3. Ignoring the drift

Figure 4.4.: Grid with scalar-grid point nearest to the boundary
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Figure 4.5.: Grid with vector-grid point nearest to the boundary

corrections since we are in 1D, the boundary conditions for the velocity and density are

D‖ ≥ 2B and ∇‖= = 0 (4.15)

which is a Bohm boundary condition for velocity and a Neumann boundary condition for density.
A snapshot of the density and velocity is shown after 100 time-steps in figure 4.3. The left-hand
figure looks like a reasonable solution to the advection equations. The right-hand figure, on
the other hand, looks completely different. The difference between these figures is that we
shifted our boundary by a small distance ΔG (the distance between the scalar and vector grid
points) and have found a completely different result. This is a problem: we can’t constrain the
parallel distance from grid-points to the sheath boundaries in 3D, so have a continuous range of
boundary positions. As shown in figure 4.6 where we scan the boundary position, the evolution
of the interior points is determined by whether the grid point closest to the boundary in on the
scalar grid (figure 4.4) or the vector grid (figure 4.5). Therefore, two neighbouring field-lines
can have dramatically different dynamics, leading to severe corrugations in the poloidal plane.
We can explain why this is by looking at the discrete forms of the equations

=C+18 = =C8 −
ΔC

ΔG

1

2

(
D8+1/2(=8+1 + =8) − D8−1/2(=8 + =8−1)

)
(4.16)

DC+1
8+1/2 = D

C
8+1/2 −

ΔC

ΔG

(
D8+1/2

D8+3/2 − D8−1/2
2

+ 2=8+1 − =8
=8+1 + =8

)
(4.17)

In the scalar-grid-adjacent case shown in figure 4.4, the density at point 8 evolves according
to the interior dynamics, while the velocity at point 8 + 1/2 is set according to the boundary
condition. If D8+1/2 ≠ D8−1/2 or =8+1 ≠ =8−1, the time-derivative of = in equation 4.16 will be
non-zero. This in turn leads to a density gradient, and as such the time-derivative of D in
equation 4.17 is also non-zero. In the vector-grid-adjacent case shown in figure 4.5, both =8
and D8+1/2 evolve according to the interior dynamics, and boundary conditions are applied at
=8+1 and D8+3/2. If we pick an intentionally-difficult initial condition with D = 0 and = = 1,
the issue is easy to see. Both D8+1/2 = D8−1/2 = 0, so the time-derivative of = in equation 4.16
will be zero. Then, if =8+1 = =8, the time-derivative of D in equation 4.17 will also be zero.
Therefore, regardless of what boundary condition is set on the velocity, if the density gradient
across the boundary is zero, the equations will never evolve. At this point, it is natural to ask
whether this is a peculiarity of our initial condition. However, regardless of what we select as
our initial condition, in the vector-grid-adjacent case the continuity equation (equation 4.16) the

56
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Figure 4.6.: Density and velocity profiles after 100 time-steps of the advection equations, with
D‖ ≥ 2B and ∇‖= = 0 used as boundary conditions. The vertical coordinate gives
the boundary position. Distinctive behaviour is seen depending on whether the
boundary is between a scalar grid point inside and vector grid point outside (for
boundary position between an even and an odd number), or vice-versa.
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velocity boundary condition is not in any density evolution stencil. In the case of the D ≥ 2B ,
∇‖= = 0 boundary conditions, %CD = −D∇‖D − 1

=�
��∇‖=, an increasing velocity gradient (due to the

boundary condition) and a zero density gradient (also due to the boundary condition) causes a
decrease in the velocity in front of the boundary, and therefore an increase in the density in
front of the boundary – leading to the profile seen on the right in figure 4.3.

4.6. Immersed boundary method

To deal with the boundary conditions in GRILLIX, we have two methods for setting boundary
conditions. The first method is to directly compute the value of ghost cells, as described in
section 3.4 of reference [108]. This method works by calculating what values are required
at exterior points such that derivatives are the same as those which would be calculated if
a boundary condition was applied exactly at the boundary, which is used for perpendicular
boundary conditions. However, for the parallel boundary conditions we need to ensure that
neighbouring field-lines evolve continuously – and in particular, need to avoid the corrugations
discussed in the previous section. As such, we use an immersed boundary method3 for setting
parallel boundary conditions, which is described in section III.B of reference [109] and section
3.4 of reference [125]. Instead of setting boundary conditions directly on some interior dynamics
%C 5 = � 5 , we use a modified equation which we solve over a larger domain (which encompasses
the interior, plus a region around it)

% 5

%C
= (1 − "%)� 5 +

"%
&%
( 5% − 5 ) (4.18)

where "% is a mask function, equal to 0 in the interior and 1 in the exterior, &% is a small
user-defined number and 5% is a value of the field 5 which would give the desired boundary
condition. The advantage of this method is that the mask function can be modified to improve
numerical stability. We typically define

"% = 1 + S3(Δ)A4E , F%) − S3(Δ) 5 >AF , F%) (4.19)

where S3 is a third-order smooth-step function

S3(G, F%) = 6 (G/F%)5 − 15 (G/F%)4 + 10 (G/F%)3 (4.20)

By adjusting the width F% of the smooth-step function, we can smooth the corrugations due to
the boundary stencil collapse. As an example, we show "% for the TCV-X21 case in figure 4.7.
The method has proven to be useful and numerically stable. Since we switched to using the
immersed boundary method in GRILLIX, we have performed simulations with the full model in
open-field-line geometries, which were unstable with the Taylor-expansion boundary method
[108]. However, it is far from an optimal method. One issue is that the boundary is no longer

3In previous publications, we called this a penalisation method. However, the method is distinct from the
method described in reference [156] – instead, we directly select the values of 5% to enforce a desired boundary
condition.

58



4. Numerical implementation

Figure 4.7.: The penalisation characteristic function used for the TCV-X21 case discussed in
chapter 8. The "% function varies smoothly from 0 inside the domain to 1 outside the
domain, over some number of toroidal planes. The boundaries where the function
is exactly 0 or exactly 1 are marked in red. Here, we modified the position of the
boundaries (relative to the real TCV divertor targets) to fit a large penalisation
transition region.
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defined at a single point, which makes it difficult to evaluate conservative boundary conditions
such as particle recycling. Another issue is that the transition region required is usually quite
wide – and as such, we need magnetic data for a region outside of the reactor vessel. We can
pad numerical equilibria with artificial magnetic data, although this isn’t always well-behaved
and so we sometimes have to shift the boundaries inwards (as seen in figure 4.7). As such, it
would be extremely beneficial to identify a set of boundary conditions which are both physically
reasonable and which eliminate the need for a finite transition width. This is an active area of
research, discussed more in Appendix C.3.

4.7. Verification with MMS

Using the discretisation, numerical method and boundary conditions discussed in this chapter,
we can convert our conceptual model (equations) into a computational model (code). This
is easier said than done: our model equations are quite complicated and we need to do a lot
of work to set up the simulations! As of writing, the current version of GRILLIX has just
under 30,000 lines of Fortran code4. It’s almost inevitable to introduce translation errors – a 2
instead of a 2.0 for instance. While a lot of translation errors can be caught by code review
or by a good compiler, these methods aren’t guaranteed to catch everything. Another more
subtle error arises if our numerical scheme is non-convergent. As we increase our spatial and
time resolution, our solution from our discrete model should approach the continuous solution.
If this is not the case, then our discretised equations are not consistent with our continuous
equations. Both translation errors and non-convergent numerical schemes cause our simulations
to give results which are not consistent with our numerical model. Due to the complexity and
computational cost of our simulations, these errors are almost inevitably disastrous. Since
the dynamics in our model are non-linear, it is extremely difficult to determine the effect of
an error discovered after a simulation – so repeating expensive simulations (if you still have
budget) is usually the only recourse. More dangerous still is not catching the error at all –
especially as simulation is increasingly used to design and interpret experiments. How can we
avoid easy-to-make, difficult-to-repair errors? We can’t compare to an analytical solution, since
there is are analytical solutions for turbulence, but thankfully we can manufacture our own
solution to compare to.

To test the complete model, we use the Method of Manufactured Solutions (MMS), which is
explained well in Chapter 12 of Computer Simulation Validation [157]. The basic idea of MMS
is that, instead of searching for an exact physical solution, we modify our equations slightly and
use a manufactured solution. First of all, we can write our differential equations in the form

ℒ(D(x , C)) = 0 (4.21)

where ℒ is some operator which acts on our system state D(x , C). Then, we select an arbitrary
solution * = *(x , C), which should be sufficiently complicated that all terms in ℒ are non-zero.
If we then apply our differential operator on our manufactured solution, it will give some residual

ℒ(*(x , C)) = S(x , C) (4.22)
4Excluding comments, measured using the CLOC tool.
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Figure 4.8.: In GRILLIX, we can switch individual evolution equations on or off (or even
individual terms in the evolution equations). This lets us use MMS to isolate issues,
such as in this figure where we see that the error was not converging at second-order
for the ∇ · 9‖b̂ term for commit b5465ef. The y-axis gives the difference between the
prescribed solution and the computed solution, and the x-axis gives the number of
toroidal planes (we also increase the perpendicular resolution at the same rate). The
dashed lines give first and second-order convergence. From our numerical scheme
we expect second-order, but we see first-order or worse convergence here, indicating
an error. This allowed us to catch and fix the error (a toroidal shift in the mapping
of the density from the scalar to the vector grid), which might not have otherwise
been caught in code review.
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We rearrange this to give a new differential operator

ℒ<<B(D(x , C)) = ℒ(D(x , C)) − S(x , C) (4.23)

which, by definition, has a solution

ℒ<<B(*(x , C)) = ℒ(*(x , C)) − S(x , C) = 0 (4.24)

Therefore, the analytical solution to ℒ<<B(D(x , C)) = 0 with an initial condition D(x , C = 0) =
*(x , C = 0) will, by definition, be *(x , C). This is insofar quite straight-forward, if a little
circular – we’ve found an analytic solution to a differential equation because we defined it to be
the analytic solution. However, this method is very powerful if we apply it to our numerical model.

An analytical solution to our differential equations is exactly what we need to make sure
that we haven’t made coding errors and that our numerical scheme is convergent. We first
select a numerical solution of sufficient complexity to test all of the terms in our scheme, but
which is simple enough that the residual of the differential operators can be computed by a
symbolic-maths program like Mathematica or SymPy. We then add this term as a source to our
equations and compute the difference between the analytic and computed solutions for each
dynamic quantity (i.e. the density or velocity)

�<<B(x , C) = D(x , C) −*(x , C) (4.25)

and then compute the !2 error norm. The structure of �<<B(x , C) can sometimes help to
identify issues – i.e. if a particular region has a higher error than average. To fully test the
system, however, we increase the resolution in time and space and check that the norm of
�<<B(x , C) decreases at the rate expected from the order of the numerical scheme5. If this is the
case, we can be confident that our numerical model is both correctly implemented and convergent.

MMS is used to continuously verify the refactored version of GRILLIX (introduced in chapter
9.2). For each commit pushed to the Gitlab repository, a battery of tests is performed using
continuous-integration continuous-development (CI/CD) tools. For changes which do not modify
the model, these tests check that the lowest-resolution MMS result is unchanged for separate
executables compiled with each supported compiler. For changes to the model, a full convergence
analysis is performed, and the MMS reference values are updated. In addition to MMS, we also
perform unit and integration tests for the model, again with multiple compilers. By constantly
verifying the model, the CI/CD suite helps to catch errors quickly in development and ensures
that our simulations match our conceptual model.

5For example, a second-order finite difference scheme should have �<<B (x , C) ∝ ℎ2. To see the second-order
convergence of the spatial discretisation, the time-step must be small enough that the discretisation error
dominates. As such, we typically increase spatial resolution and reduce the time-step simultaneously.
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5. Realistic magnetic geometries

5.1. What, why, and how? Using the magnetic field from real
experiments

One of the key advantages of the locally-field-aligned discretisation method is extremely flexible
for treating magnetic geometries. Locally-field-aligned codes have been used to treat standard
limited [115] and diverted [108] geometries, as well as advanced divertor configurations [125] and
non-axisymmetric geometries [154]. In principle, all that is required is to provide information
about the magnetic field to the field-line tracing routines (4.3) used to build parallel operators
and information about the boundary positions.

In this chapter, we first introduce the concept of magnetic equilibria. We then derive the Grad-
Shafranov equation used in magnetic reconstruction, although this is mainly as a convenient
way to introduce the necessary terminology since we will simply use the results from magnetic
reconstruction codes. Finally, we discuss the design of parallax-format equilibrium NetCDF
files and how they are generated using parallax-equilibrium, and how they are handled in
GRILLIX. The resulting machinery allows for any axisymmetric magnetic equilibrium to be
modelled using the same code – only the equilibrium files need to be built to adapt the code to
a new case.

5.2. Magnetohydrodynamic equilibrium

In turbulence modelling, we are typically interested in modelling cases where the magnetic
field evolves over a longer time-scale than the evolution of the plasma profiles (the ‘transport’
time-scale). However, the evolution of the magnetic field occurs due to processes which are
much faster than transport processes. We have excluded the effects of these fast processes via
the drift-ordering (2.2.5), and so we cannot model the dynamic evolution of the magnetic field.
Instead, we model plasma turbulence in magnetic equilibria, where the structure of the magnetic
field varies slower than the evolution of pressure-driven instabilities.
The magnetic field evolution is usually studied via the magnetohydrodynamic (MHD) equa-

tions. These equations are fluid equations, like the model that we derived in chapter 2, but the
MHD equations are derived using a different ordering. The MHD ordering assumes that the
dynamics of interest occur around the thermal velocity – which is much faster than the ion drift
velocities of the drift-ordering. Perhaps counter-intuitively, the MHD-ordering generally yields a
simpler set of equations than the drift-ordering – since terms like viscosity and heat conduction
are ‘slow’ and therefore excluded. There are several different flavours of MHD-ordered equations,
which use different simplifying assumptions, but we will consider only the simplest ‘ideal MHD’
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equations.
The ideal MHD equations are derived and applied in references [128, 5], but for this chapter

we are only interested in the steady-state solutions with %
%C → 0. This simplifies the force

balance equation to

∇? = j × H (5.1)

This is an extremely helpful expression! We’ll use it several times in this chapter to determine the
properties of magnetohydrodynamic equilibria. Immediately, we can see that H · ∇? = j · ∇? = 0,
and so in an equilibrium state the magnetic field and current vectors must both be tangent
vectors to surfaces of constant pressure, which we call flux surfaces. We can also cross both
sides of equation 5.1 with the magnetic field

∇? × H =
(
j × H

)
× H (5.2)

= −
(
�2j −

(
j · H

)
H
)

(5.3)

j⊥ =
H × ∇?
�2

(5.4)

= 4=u380 (5.5)

In an MHD equilibrium, there must be some current which is perpendicular to both the magnetic
field and the pressure gradient. By comparing this to equation 2.45, we see that it is equal to the
current due to the ion diamagnetic drift, and as such, we identify this as the diamagnetic current.
To ensure ∇ · j = 0, this current must be balanced by another current (called the Pfirsch-Schlüter
current), which develops instantaneously and flows parallel to the magnetic field. Therefore, for
any equilibrium with a non-zero pressure gradient, we need a parallel current.

5.3. Axisymmetric equilibria

5.3.1. The poloidal magnetic flux function

MHD equilibria can be found for various magnetic confinement devices, including linear devices
and stellarators. However, in this thesis we will focus on tokamaks, and assume that the
magnetic field is perfectly axisymmetric since this will simplify our equilibrium calculations.
If we have perfect toroidal symmetry, all derivatives in the toroidal direction can be dropped
%
%) → 0. If we expand the curl of the vector derivative using B.24, we can write

H = ∇ × G (5.6)

=
1

'

�������
R̂ ')̂ Ẑ
%
%' �

�%
%)

%
%/

�' '�) �/

������� (5.7)

= −
%�)

%/
R̂ + 1

'

%'�)

%'
Ẑ +

(
%�/
%'
− %�'

%/

)
)̂ (5.8)

= ∇ ×
(
�))̂

)
+ �))̂ (5.9)
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Figure 5.1.: The poloidal magnetic field components can be expressed in terms of the poloidal
flux function Ψ(', /). This is defined as the magnetic flux through a horizontal
surface (?>; which extends from the axis of symmetry (' = 0) to some radial position
' at some vertical position /, as indicated by the red surface (note that the actual
surface is defined via a full toroidal rotation, while part of the surface indicated here
has been cut away to see inside). To find the two-dimensional poloidal flux function,
we would need to define several surfaces (?>;(', /) at different (', /) positions, and
compute the magnetic flux for each surface. Thankfully, we don’t have to do this
manually. Instead, we take the poloidal flux function from magnetic reconstruction
codes, discussed in section 5.3.4. For reference, we have also indicated the separatrix
and a confined region flux-surface, in grey and green respectively.
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For an axisymmetric field, we can write our poloidal field in terms of a single scalar function
�)(', /). However, we are usually given the poloidal magnetic flux function. This is defined as
the magnetic flux through a horizontal cylindrical surface of radius ' at a constant height /,
as indicated in figure 5.1. In cylindrical coordinates, the differential normal area (B.28) to a
horizontal surface will be 3Y = '3'3)Ẑ, and so the poloidal flux function will be

Ψ(', /) =
∫ 2�

0

∫ '

0

�/('′, /)'′3'′3) = 2�'�)(', /) (5.10)

Rather unhelpfully, there is a related quantity which is defined as #(', /) = '�)(', /)
(sometimes distinguished as the poloidal magnetic field stream function, written in lower case
without the factor of 2�, but not always). We will only ever use the poloidal magnetic flux
function (in this section, and also in parallax-equilibrium), but whenever processing a new
equilibrium you should take extreme care to distinguish between the two1. Combining equations
5.8 and 5.10 gives that

�'(', /) = H(', /) · R̂ =
−1
2�'

%Ψ(', /)
%/

�/(', /) = H(', /) · Ẑ = 1

2�'

%Ψ(', /)
%'

(5.11)

(5.12)

which we can write compactly as a cross product (B.3)

H?>; = H'R̂ + H/Ẑ =
1

2�'

(
−%Ψ
%/

R̂ + %Ψ

%'
Ẑ

)
=

1

2�'
∇Ψ × )̂

(5.13)

(5.14)

5.3.2. The toroidal magnetic field

From Ampère’s law (using B.25 and then expanding 9) using 5.11 and 5.12)

�0j = ∇ × H = −
%�)

%/
R̂ + 1

'

%'�)

%'
Ẑ +

(
%�'
%/
− %�/

%'

)
)̂ (5.15)

=
1

'

(
−
%'�)

%/
R̂ +

%'�)

%'
Ẑ

)
− 1

2�'

(
'

%

%'

(
1

'

%Ψ

%'

)
+ %2Ψ

%/2

)
)̂ (5.16)

=
1

'
∇

(
'�)

)
× )̂ − 1

2�'
Δ∗Ψ)̂ (5.17)

where Δ∗ is the Stokes operator

Δ∗Ψ = '
%

%'

(
1

'

%Ψ

%'

)
+ %2Ψ

%/2
= − 1

2�'�0
9) (5.18)

1The notebook for the TCV-X21 equilibrium compares the q-profile from the eqdsk file to one calculated from
the processed equilibrium, which helps to make sure that we’re not out by a factor of 2�.
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We can find an expression for �) by using the integral form of Ampère’s law. We use a horizontal
disk (?>; as defined in figure 5.1 and its bounding curve %(?>; with a differential line element
3l = '3))̂. Therefore, the toroidal field �) is related to the vertical current �?>; through (?>;∮

%(?>;

H · 3l = 2�'�) = �0

∬
(?>;

j · 3Y = �0�?>; (5.19)

�) = �0

�?>;

2�'
(5.20)

For a tokamak, the current in the toroidal field coils will usually be much larger than the
poloidal current in the plasma and so �?>; ≈ �2>8; , which is called the vacuum field approximation.
Using this approximation, the toroidal magnetic field can be written as a function of radius and
a single reference value

�) = �0
�2>8;
2�'

= �0
'0

'
(5.21)

where �0 = �(' = '0) (where '0 is usually taken to be the radius of the magnetic axis). We
use this form for defining the toroidal field in parallax-equilibrium.

5.3.3. Flux surfaces

By writing H?>; in the form of equation 5.14, we can see that the magnetic field must be a
tangent vector along isosurfaces2 of Ψ, which we call flux surfaces. Furthermore, from the MHD
force balance (equation 5.1), we know that H · ∇? = j · ∇? = 0 – that is, the magnetic field and
the current must tangent vectors to isosurfaces of the pressure. We can further show that the
pressure and Ψ isosurfaces are the same. From axisymmetry, we assume the toroidal derivative
of the pressure is zero, and therefore H · ∇? = 0 =⇒ H?>; · ∇? = 0. Then, using equations 5.14
and B.1, we find that (

∇? × ∇Ψ
)
· )̂ = 0 (5.22)

Since both ∇? and 	 have poloidal components, the toroidal component will only be zero if ?
or Ψ have zero gradient or if ∇? is parallel to ∇Ψ. Therefore, if we want a non-trivial magnetic
equilibrium, the pressure gradient must be a function of Ψ, and so flux surfaces are also surfaces
of constant pressure. Similarly, for the current, j · ∇? = 0 =⇒ j?>; · ∇? = 0 since %?

%) = 0.

Additionally, since ? = ?(Ψ), we can rewrite ∇? = ∇Ψ 3?

3Ψ . Using equation 5.17, we can show

1

'

(
∇('�)) × )̂

)
· ∇Ψ

3?

3Ψ
= 0 (5.23)(

∇Ψ · ∇('�))
)
· )̂ = 0 (5.24)

This is of the same form as equation 5.22, and so '�) =
�0

2� �?>; must also be constant over a
magnetic flux surface. Since �2>8; is constant, the contribution from the poloidal currents must
also be constant. Therefore, if a flux surface intersects some constant-/ surface at two positions
'1 and '2, then '1j('1 , /) · ẑ = −'2j('2 , /) · ẑ, ensuring ∇ · j = 0.
2The poloidal magnetic field at any point in space will point along a contour of Ψ.
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5. Realistic magnetic geometries

5.3.4. Magnetic reconstruction

We now have several ingredients for defining a magnetohydrodynamic equilibrium – the poloidal
flux function Ψ(', /), the pressure profile ?(Ψ) and the poloidal current profile �?>;(Ψ). To put
these together, we need a recipe for how the profiles are related in the direction across to the
flux surfaces. We can use our expressions for the poloidal magnetic field (equation 5.14), the
toroidal magnetic field (equation 5.20) and the current density (equation 5.17) in the MHD
force balance, expanding the terms in ∇? = j × H to give

3?

3Ψ
∇Ψ =

1

(2�')2

(
3�?>;

3Ψ
∇Ψ × )̂ − 1

�0
Δ∗Ψ)̂

)
×

(
∇Ψ × )̂ + �0�?>; )̂

)
(5.25)

=
1

(2�')2
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3�?>;

3Ψ
�0�?>;

) (
∇Ψ × )̂

)
× )̂ +

(
−Δ∗Ψ
�0

)
)̂ ×

(
∇Ψ × )̂

))
(5.26)

Using B.4,
(
∇Ψ × )̂

)
× )̂ =

(
��

��∇Ψ · )̂
)
)̂ −

(
)̂ · )̂

)
∇Ψ = −∇Ψ, and so

3?

3Ψ
∇Ψ =

−1
(2�')2

(
3�?>;

3Ψ
�0�?>; +

Δ∗Ψ

�0

)
∇Ψ (5.27)
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This equation is called the Grad-Shafranov equation. This is an elliptic differential equation
which relates the poloidal flux function Ψ (or, alternatively, the toroidal current function since
Δ∗Ψ = − 1

2�'�0
9)) to the pressure gradient profile 3?

3Ψ (Ψ) and the poloidal current profile �?>;(Ψ).
This must be combined with a suitable boundary condition – usually the value of the poloidal
flux along the boundary. However, ideal-MHD doesn’t tell us how ?(Ψ) or �?>;(Ψ) evolve over
time – and so these must be provided either from experiment or another model.

To find a solution to the Grad-Shafranov equation, we use typically magnetic reconstruction
codes such as EFIT [158], CLISTE [159], LIUQE [160] and IDE [161]. These codes combine
measurements of the poloidal flux from wall magnetic sensors as well as pressure and current
chord measurements (if available) to iteratively find a consistent solution for Ψ(', /). The
accuracy of the solution therefore depends on the available diagnostics [162] and whether the
allowed solutions are further constrained (such as by using a current diffusion equation to
limit how quickly the magnetic equilibrium can change in time) [161, 163]. For example, on
ASDEX-Upgrade, Fischer et al., 2020 found that the uncertainty of the separatrix was as
much as ∼ 6mm – 12× the sound Larmor radius at the outboard midplane separatrix. This
uncertainty can affect the results of the integrated data analysis (since profiles from different
diagnostics are often combined as functions of Ψ). For our simulations, uncertainty in the
magnetic geometry technically should be quantified via sensitivity scans [163], but these are
currently unfeasibly expensive.
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5. Realistic magnetic geometries

5.4. Numerical equilibria in GRILLIX

If we want to perform realistic simulations of real devices, we need to use the realistic magnetic
field geometry. This is, in principle, very straight-forward. Magnetic reconstruction codes can
provide us with gridded numerical values of Ψ(', /), the radial dependence of �)(') (if this is
significantly different to the vacuum field) or a reference value �0 for the toroidal field on-axis (if
the �) ∝ 1/' approximation is valid), allowing us to define our magnetic field using equations
5.11, 5.12 and 5.21 as

H(', /) = 1

2�'

(
−%Ψ(', /)

%/
R̂ + %Ψ(', /)

%'
Ẑ

)
+ �0

'0

'
)̂ (5.29)

We pass gridded values of Ψ(', /) to GRILLIX, and evaluate %'Ψ and %/Ψ at the grid-point
positions using a bicubic spline interpolator [164]. For this, we modified the spline interpolation
routines from github.com/jacobwilliams/bspline-fortran for thread-safety, and verified
that the spline interpolator gave the same result as FITPACK. This approach helps to reduce the
numerical divergence of H?>; , as shown in figure 5.2. Using Ψ instead of H?>; also ensures that if
we smooth the poloidal field to eliminate fine structure, our magnetic field is still divergence-free.

Figure 5.2.: Comparison of the numerical divergence of the poloidal magnetic field, for H?>;
computed from the poloidal flux function Ψ, using either a bicubic spline interpola-
tor (left) or a first-order finite difference method (right) to evaluate the poloidal
derivatives of Ψ. For both methods, we use a bicubic spline interpolator to evaluate
∇ · H = 1

' (%'('�') + %/('�/)).

We additionally require a polygon PF0;;, which give the (', /) position of the first wall
and divertor (which is assumed to be axisymmetric). This allows us to efficiently determine
whether points are inside or outside of the vessel, by the winding algorithm [165, 166]. We
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5. Realistic magnetic geometries

Figure 5.3.: Simulations in advanced divertor configurations proposed for DEMO, at TCV
parameters. From left, the pressure in a configuration with a single-null, an X-
divertor and a Super-X divertor, from simulations performed with GRILLIX. We
are currently exploring how turbulence interacts with magnetic geometry in various
ADCs, including in the planned ASDEX Upgrade upper divertor [167].

also modified the field-line tracing routines such that they can use the winding algorithm as
a stopping condition, which allows for the computation of the along-field-line distance to the
boundaries used for setting the penalisation characteristic function.
By convention, we define PF0;; as a non-intersecting, closed polygon with points defined in

an anticlockwise order and with no repeated points (such that all edges have a non-zero length).
This allows us to consistently define the vector normal n̂ to the polygon – which is useful for
determining which sign of the parallel direction is towards the wall via b̂ · n̂. We can additionally
define the shortest poloidal distance to the wall for any (', /) point, by computing the minimum
vector rejection of the point-to-vertex displacement vector onto the corresponding edge vector.

We can use this methodology to treat any axisymmetric magnetic geometry – including
limiter, divertor and advanced divertor configurations (several of which are shown in figure
5.3). One minor limitation is our use of the vacuum-field assumption for the toroidal field,
which excludes cases with non-negligible poloidal current, but it is straightforward to include a
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5. Realistic magnetic geometries

computed toroidal-field profile is straight-forward3. Although parallax can handle essentially
any axisymmetric magnetic geometry, not all geometries are compatible with the GRILLIX
model and numerics (or, more specifically, the boundary conditions). In particular, due to the
finite-width transition region for the immersed boundary condition (section 4.6), we require
well-behaved magnetic data outside of the vessel. This isn’t always available, in which case we
need to pad the magnetic data with artificial data. Another challenge is that our boundary
conditions aren’t well-behaved in the limit of very shallow glancing angles (n̂ · b̂→ 0). For this
reason, rather than extending the simulation to the first wall, we use a limiting flux surface so
that parallel boundary conditions are only applied in the divertor. We usually trim our grid
just before the secondary separatrix in X-point geometries4, but if this surface is close to the
primary separatrix it can result in an extremely narrow scrape-off-layer.

5.5. Preprocessing with parallax-equilibrium

In the previous step, we skipped over an important step. There are several different magnetic
reconstruction codes, which produce magnetic data in several different file-formats. Some
formats – such as eqdsk or IMAS – are widely used, but even within formats there are different
standards5. As such, rather than implementing several different readers into parallax, we
use a Python preprocessor to convert various formats into our own ‘parallax-standard equi-
librium NetCDF’ format, the structure of which is given in Appendix D. The preprocessor is
called parallax-equilibrium (or pxequi for short), and it is available from the phoenix at
gitlab.mpcdf.mpg.de/phoenix/parallax_equilibrium. Each case is processed in a Jupyter
notebook in pxequi_notebooks, which allows for interactive data processing and in-place docu-
mentation for each case.

The pxequi library currently supports eqdsk and arbitrary MATLAB files, as well as interfac-
ing to the ASDEX-Upgrade EQI equilibria. All equilibrium formats are used to build a common
ProcessEquilibrium instance, which is a derived class based on the NumericalEquilibrium
class from TorX. This design means that, as the necessary data is added to the ProcessEquilibrium,
it can use the functionality of TorX to test the equilibrium during pre-processing. Additionally,
it allows for new readers to be added with minimal difficulty. Once the data is mapped onto a
ProcessEquilibrium object, the remaining pre-processing steps can share the same code. The
remaining steps depend on the availability and quality of the data, although the algorithm is
roughly as follows;

1. Filtering: GRILLIX requires smooth derivatives of Ψ up to 1st order, and GENE-X requires
smooth derivatives up to 2nd order. However, the contours of Ψ define flux surfaces, so

3The original version of the numerical equilibrium routines included this term, but it was dropped to avoid
constructing a second interpolator, since the given profiles were very close to the vacuum field.

4In X-point geometries, a second shaping coil is often used to make a second poloidal-field-null (which might be
outside the vessel). The secondary separatrix is the flux surface that goes through this second poloidal-field-
null.

5Searching for documentation of the eqdsk format, one of the first results warns that “The G–EQDSK file
format is unstable and unreliable. Use with caution.”
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we need to smooth fine structures (which affect the derivatives) while having a minimal
effect on large-scale structures. Several image filters were tested, with the best results
found for a Fourier-Gaussian image filter from scipy.ndimage.fourier_gaussian, with
an additional edge padding6.

2. Axis and X-point optimisation: The magnetic axis and X-point correspond to local
nulls of the poloidal field. To find their positions to high accuracy we use the BGFS
algorithm implemented in scipy.optimize.minimize to find minima of �?>;(', /) =√
�'(', /)2 + �/(', /)2. The starting points can be either supplied manually or taken

from the equilibrium data.

3. Axis and separatrix poloidal flux: The axis and X-point positions are used to define
the values of Ψ0 and Ψ- . These are used to calculate the normalised poloidal flux

�(', /) =
√
Ψ(',/)−Ψ0

Ψ-−Ψ0
, which is 0 at the magnetic axis and 1 at the separatrix.

4. Divertor and first-wall polygon: The divertor and first-wall polygon is approximated
as a collection of ', / points (an axisymmetric wall is assumed). Currently, only the
divertor points are used (since we limit our grid with some limiting flux surface), but
nevertheless, we provide the full first-wall in case the codes are extended to model the
first-wall interaction. The wall points are not always provided with the magnetic data
– but this can be quickly extracted from any figure of the device via a tool such as
automeris.io/WebPlotDigitizer/.

5. Private-flux region polygon: Another polygon is used to designate the private-flux
region. This can be drawn very coarsely, using the position of the X-point.

6. Limiting flux surfaces: For a simple single-null geometry, we need to identify an inner
flux-surface (which is usually, fairly arbitrarily, defined at � = 0.9) to exclude the core.
We also need to define an outer flux-surface, which should be placed just before the first
wall (such that parallel boundary conditions are applied only within the divertor). A third
minimum-� flux-surface is defined in the private flux region, to exclude the glancing-angle
region between the divertor targets. This flux limit is only applied at points within the
private-flux-region polygon identified in the previous step.

7. Exclusion polygon: A third polygon is used to define the region of points which should
be considered for grid creation. This is useful for eliminating regions near the magnetic
field coils, which can have poloidal flux values similar to the confined region. It also defines
the end-of-grid for the finite-width immersed boundary transition region used in GRILLIX.

8. Double-checking: The last pre-processing step is to check that the equilibrium matches
your expectations. Important: You should always check that your poloidal field

6Artificial data was added to the edges of the Ψ(', /) array via np.pad(array, (pad_x, pad_y),
mode=’reflect’, reflect_type=’odd’). The padded array was then filtered, and then the padded edges
were removed. The edge-padding eliminated edge distortion introduced by the Fourier filter, and the Fourier-
Gaussian filter was found to strongly reduce high-frequency components while leaving the flux-surfaces
visually unchanged.
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(and preferably your @-profile) comes out correctly7. It is also worth ensuring that
your limiting flux-surfaces avoid any glancing-angle boundary conditions and that there
are no points within the exclusion polygon that should not be modelled.

Once an equilibrium is pre-processed and mapped to a ProcessEquilibrium object, it can be
written to a parallax-standard NetCDF using the PX2Writer.

5.6. Simulations in arbitrary magnetic geometry

This equilibrium-handling infrastructure permits simulations with GRILLIX and GENE-X in
numerically-defined limited, single-null, double-null, X-divertor, Super-X, snowflake-plus and
snowflake-minus geometries. This unlocks several possibilities – such as investigations of real
devices, including those with negative triangularity and advanced divertor configurations. In
part III, we will use this infrastructure to run simulations in the experimentally-reconstructed
magnetic geometry several, allowing us to quantitatively validate and assess the predictive
capabilities of GRILLIX.

We could extend the equilibrium-handling infrastructure further, to consider more cases
and with increased realism. One interesting possibility would be to permit non-axisymmetric
equilibria since this is within the capabilities of the locally-field-aligned method [154]. This
would of course be interesting for modelling stellarators such as Wendelstein-7X, but also for
including effects such as resonant magnetic perturbation coils or modelling the effects of field
ripple due to non-continuous toroidal field coils. Another possibility would be allowing for the
time-evolution of the magnetic field during turbulence simulations. We could, for instance,
implement a Grad-Shafranov solver to update the magnetic equilibrium according to the pressure
and current profiles computed within a turbulence simulation, or could extend the model to
explore non-equilibrium events such as edge-localised modes. Including realistic axisymmetric
magnetic equilibria in turbulence modelling is a significant development and a starting point of
investigating turbulence in realistic magnetic fields.

7The poloidal flux function Ψ and the poloidal magnetic field stream function # = 1
2�Ψ are often used

interchangeably. If your poloidal field is out by a factor of 6.283, you’ve likely been given #, while all of the
routines in pxequi and parallax assume that you are using Ψ. If in doubt, check again – a factor of 2� in
the poloidal field in your simulations means throwing everything out and starting again.
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Part III.

Validation
All models are approximations. Assumptions, whether
implied or clearly stated, are never exactly true. All
models are wrong, but some models are useful. So the
question you need to ask is not “Is the model true?”
(it never is) but “Is the model good enough for this
particular application?”

(G. E. P. Box)
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6. What, why, and how? Comparing against
experiment to validate our model

Validation is the process of determining the degree to
which a conceptual model is an accurate
representation of the real world from the perspective
of its intended uses. Validation is an essentially
physical problem, one that can be as difficult and
complex as the underlying science itself. Despite the
implications from the standard English usage for the
word, validation should not be viewed as a one-time,
binary process where codes are accepted for all time or
rejected and discarded. Validation is instead part of a
cyclic process, whereby models are continuously
improved [168].

(M. Greenwald, 2010)
In part II, we developed a powerful tool able to simulate plasma turbulence in any axisymmetric
geometry. What should we do with it? Before we use simulations to predict turbulence in
new and novel magnetic geometries, we need to validate the model by making sure that it can
correctly predict results from existing machines. We can use validation to identify errors in our
conceptual model, such as erroneous assumptions in the derivation of our model or unphysical
model inputs. We can also use validation to help us to qualify whether our model is valid
at different physical parameters and to calibrate uncertain input parameters. The results of
validations can be used to guide model development by helping to identify where the model
needs improvement [168] – although due to the non-linear and coupled nature of the system
this is by no means trivial.
By using validation-driven development, we can focus our development effort on parts of

the model which are leading to poor agreement with experiment and we can quantify how the
fidelity of the model improves as we extend the model. Through careful and rigorous validation,
we rapidly improve the predictive capability of the model with a modest number of developers,
can provide estimates of how uncertain the simulation results are, and ultimately can make the
simulations more useful for the fusion effort.
“How much can I trust the results of my simulation?” Numerical errors and uncertainties can

be introduced into simulations in many ways – such as coding errors, uncertain input parameters
and discretisation errors due to finite grid resolutions. In addition to these, there are also (both
explicit and implicit) conceptual errors due to the assumptions we made in the derivation of
our model. We can use verification (section 4.7) to eliminate or reduce numerical errors and
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Figure 6.1.: The model testing cycle, from Greenwald, Verification and Validation for magnetic
fusion, Physics of Plasmas, 2010 [168]

qualification to highlight erroneous assumptions. However, we can’t entirely eliminate many of
these errors – such as discretisation errors or simplifying assumptions. As such, we need to be
able to quantify their effects. Since the plasma response is non-linear, it’s difficult to estimate
how errors and assumptions affect the simulation results via theoretical considerations alone,
and so we instead compare our simulations to experimental results to evaluate their accuracy.
This process is termed validation. It is typically combined with verification and qualification in
a combined model-testing process (as depicted in figure 6.1 from reference [168]), since these
other steps can help to interpret the results of the comparison to experiment and to prevent
bugs that can invalidate the comparison.
To validate our model, we need an experiment to compare to. We could validate our model

against available experimental data, but there are several reasons why it is helpful to compare
to a dedicated experimental case. We want to first validate our model against simple (even
boring) cases to test the basic functionality of the code. However, there is little research interest
in these cases except for the validation of models and, currently, not many dedicated validation
cases since turbulence models have only recently been able to simulate realistic cases. We want
to be able to determine where our model gives good or poor agreement, and why that is the
case. For this, it’s helpful to have extremely well-diagnosed experimental cases, with multiple
observables available for comparison. Not all edge and SOL diagnostics are routinely operated,
and often we need to combine data from multiple shots to get good experimental statistics and
diagnostic coverage. We also need to know things like the magnetic geometry, heating power
or radiation measurements, to set the input parameters for our simulations. The data needed
isn’t always easily available, and when it is it isn’t always well documented – so we need to
work carefully with experimentalists to make sure that we’re providing realistic inputs to the
simulations.
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We worked with the Swiss Plasma Centre under the EUROFusion Enabling Research Project
MFE19.EPFL-02, led by Christian Theiler, to validate the model against dedicated experimental
cases. The first of these was performed on the TORPEX basic plasma physics device, in a new
‘X-point’ scenario, discussed in chapter 7 and published in reference [126]. We then performed a
validation against a dedicated TCV scenario, which we called TCV-X21. The results from this
validation are discussed in chapter 8, and published in reference [2].

6.1. Further reading

There are several excellent references regarding the validation of numerical models, including
specifically for validation in fusion. If you are interested in the topic, the following references
are highly recommended.

• Terry et al., 2008, Validation in fusion research: Towards guidelines and best practices
doi:10.1063/1.2928909: the key concepts of model testing, and how they can be applied
to fusion. Section III.A introduces key terms such as validation metrics, and section V
outlines a series of best practices for model validation [127].

• Greenwald, 2010, Verification and validation for magnetic fusion doi:10.1063/1.3298884:
similar to reference [127], defines key terminology and best practices for model validation.
States that model testing should be performed iteratively rather than once-off, to guide
development of the models [168].

• Beisbart and Saam, 2019, Computer Simulation Validation doi:10.1007/978-3-319-70766-2:
a textbook on validating numerical simulations. Recommend chapters 5 (on simulation
uncertainty), 12 (on the Method of Manufactured Solutions) and 13 (on validation
metrics). Part IX, on the philosophy of computer simulations and their validations, is also
an interesting read.

• Oberkampf and Trucano, 2002, Verification and validation in computational fluid dynamics
doi:10.1016/S0376-0421(02)00005-2: a classic text on validating numerical models. Section
4.7 gives a useful overview of advantages and deficiencies of validation metrics [169].

• Ricci et al., 2015, Approaching the investigation of plasma turbulence through a rigorous
verification and validation procedure: A practical example) doi:10.1063/1.4919276: intro-
duces the validation methodology which was used in reference [2], based on a composite
metric introduced in reference [118].

• Ho et al., 2019, Application of Gaussian process regression to plasma turbulent transport
model validation via integrated modelling doi:10.1088/1741-4326/ab065a: an alternative
validation metric based on Gaussian process regression [170].

• White, 2019, Validation of nonlinear gyrokinetic transport models using turbulence measure-
ments doi:10.1017/S0022377818001253: an extensive ‘tutorial’ discussing the validation of
non-linear gyrokinetic simulations [171]
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7. Validation against the TORPEX basic
plasma physics device

Figure 7.1.: A CAD-drawing of the TORPEX device, reproduced with modification from epfl.
ch. The toroidal field coils are marked in red, and shaping coils are marked in
olive-green. The vacuum vessel and a representative magnetic field line are indicated.
Note that, in contrast to a tokamak, there is no central solenoid and therefore no
plasma current drive mechanism.

TORPEX is a basic plasma physics experiment operated by the Swiss Plasma Centre [172,
173]. Like a tokamak, TORPEX uses toroidal magnetic field coils to generate an axisymmetric
toroidal field. However, there is no central solenoid and so the poloidal field cannot be generated
via the plasma current. Instead, a poloidal field can be generated via an in-vessel toroidal
conductor [172], which is possible since TORPEX is operated at very low plasma densities and
temperatures. The use of in-vessel coils and shaping coils means that a wide range of magnetic
geometries can be achieved in TORPEX, including geometries with a poloidal field null like an
X-point. Additionally, due to the low densities and temperatures, the entire plasma volume can
be studied with immersed probes, giving good diagnostic coverage. TORPEX has previously
been used for validating the basic functionality of plasma turbulence models [119], including
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Figure 7.2.: Flux surfaces (left) and field-line pitch �?>;/�) (right, as a percentage) in the
TORPEX X-point scenario. Data is shown between the limiting flux surfaces. The
‘separatrix’ – the flux surface of the poloidal field null – is shown in red, and contours
of the poloidal flux are shown in white. The actual boundary is shown in blue, and
the position where the boundary is applied is shown in orange.

GRILLIX [108]. As part of a EUROFusion Enabling Research Project1 this validation effort was
extended to an X-point-like magnetic geometry. The results of this project have been published
as Galassi et al., 2021, ‘Turbulence dynamics around the X-point in TORPEX and comparison
with multi-code 3D flux-driven simulations’ [126], comparing the results from the GRILLIX,
GBS, STORM and FELTOR codes. In this chapter, we will introduce the TORPEX ‘X-point’
validation case, describe how the GRILLIX simulations were performed, and discuss the match
between the experiment and simulation.

7.1. The TORPEX X-point scenario

For this validation, a magnetic geometry with a poloidal field null was generated using external
shaping coils. A magnetic equilibrium is analytically computed from the coil currents only,
instead of using a magnetic reconstruction code. The vacuum field assumption is used to write
the toroidal field as �)(', /) = �0

'0

' where the reference magnetic field value �0 = 76mT

(in the anti-clockwise direction, if viewed from above) is taken at the centre of the device at
'0 = 1m. The equilibrium is assumed to be axisymmetric, allowing us to use the poloidal
flux function Ψ(', /) to define the magnetic field via the method described in section 5.4. A
poloidal cross-section of the resulting flux surfaces and the computed field-line pitch is shown in

1EUROFusion ENR MFE19.EPFL-02, led by Christian Theiler.
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figure 7.2. The geometry is up-down symmetric, with a poloidal field null close to the centre
of the device. Using analogous terminology from a tokamak, the poloidal field is termed an
X-point and its flux-surface is termed a ‘separatrix’, although there is no confined region in this
geometry. The plasma volume was fuelled with neutral �2 gas, which was then ionised with a
Electron-cyclotron Resonance microwave Heating (ECRH) system. The total injected power was
∼ 300 kW, giving an ionisation fraction of =4/=�2 ∼ 1%, a plasma density of =4 ∼ 1 × 1016m−3
and an electron temperature of )4 ∼ 5 eV. The position of the particle and energy source
was estimated via the method described in reference [174], by measuring the change in the
ion saturation current when the microwave heating was switched on. The determined source
position was localised in the left (high-field-side) sector, and was fitted analytically as

S(', /) =



exp

[
−

(
'−'0

0

)2
−

(
/−/0

1

)2]
if ' > '0

1
2 exp

[
−

(
'−'0

0

)2
− 22 (' − '0) (/ − /0) −

(
/−/0

1

)2]
+ 1

2 exp

[
−

(
'−'0

0

)2
+ 22 (' − '0) (/ − /0) −

(
/−/0

1

)2]
if ' ≤ '0

(7.1)

with '0 = 0.98m, /0 = −0.02m, 0 = 0.0335m, 1 = 0.050m and 2 = 565m−2. The power and
particle source rates were not given, and as such the simulations were permitted to vary their
source rates to match = ' 2.1 × 1016m−3 and )4 ' 5.3 eV at 'A4 5 = 0.96m, /A4 5 = 0.0m.

Validation data was collected by three Langmuir probe arrays. Two arrays were mounted on a
fixed hexagonal grid covering most of the poloidal cross-section, while the other probe array was
mounted on a vertical arm that could be swept horizontally. The probe directly measured the
ion saturation current density2 �B0C = 0.54=2B and the floating potential3 +5 ; = ) −ΛBℎ. The
mean, standard deviation and skew of �B0C and +5 ; was computed from the measured signals.
Additionally, the plasma density and electron temperature were estimated via a four-parameter
fit to the I-V characteristic.

7.2. Cold-ion model with neutral friction

Although GRILLIX includes terms for ion thermal effects, these were disabled for TORPEX
modelling since only electrons are heated via ECRH and electron-ion heat transfer is likely small
since there is no confined region in the X-point scenario4. Additionally, the neutral dynamics
were not treated self-consistently. Instead, it was assumed that the neutrals provided a constant
background, and the electron-electron collision time �44 was replaced with the electron-neutral

2The ion saturation current density is computed from the ion saturation current by estimating the collection
area of the probes. Compared to the expression for �B0C given by equation equation 3.21, there is an additional
factor of 0.5 because the probes are immersed rather than wall-mounted, and it is assumed "Bℎ ≈ 1.

3The floating potential is defined in terms of the sheath potential ΛBℎ , given by equation 3.17 and here
approximated as ΛBℎ 4

)4
≈ 3.

4This assumption was also partly motivated to reduce the differences between the models used by GRILLIX,
GBS, STORM and FELTOR.
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collision time �4= ≈ 1.4ms. Therefore, the model used for this validation was (in SI-units)[
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corresponding to the continuity equation, quasineutrality equation, parallel momentum balance,
Ohm’s law with electromagnetic induction and electron inertia, electron temperature equation
and Ampere’s law in the cold-ion limit, with the curvature operator K defined by equation
B.18. The D terms correspond to numerical (hyper)diffusion terms used to stabilise the
numerical scheme, which is applied on the vorticity Ω and modified electromagnetic potential
Ψ< (described in reference [109]). Compared to the equations presented in Appendix A, the
main differences are the assumption of cold ions ()8 → 0) and the use of �4= instead of �44 in
the resistivity and heat-conductivity.
At the parallel boundary conditions, we used an � × �-drift corrected velocity boundary

condition (given by equation 3.27), a zero-current assumption 9‖ → 0, ) → ΛBℎ)4 , a sheath-
heath-transmission boundary condition (equation 3.36) with �B,4 −1 = 2.5 for )4 and a Neumann
condition ∇‖= = 0 for the density. At the perpendicular boundaries, Neumann boundary
conditions were used for all quantities except for the current (set to 0) and the potential (set
to ΛBℎ). Simulations using the realistic boundary surface (the blue circle in figure 7.2) were
numerically unstable due to the shallow angle-of-incidence between the magnetic field and
the wall5. A modified boundary surface (the orange line in figure 7.2) which maximised the
angle-of-incidence between the poloidal field and the wall was found to be more stable, and as
such the modified boundary was used for the validation.
5The drift-corrected boundary conditions are expected to be valid for angles-of-include ≥ 1.3◦ [175]
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7. Validation against the TORPEX basic plasma physics device

7.3. Simulating the TORPEX X-point scenario

The TORPEX magnetic field was processed using parallax-equilibrium, following the method
developed in chapter 5. 16 poloidal planes were used to resolve the toroidal direction and the
poloidal resolution was set to 1mm, giving a total of 16 × 1.5 × 105 = 2.4 × 106 grid points.
The time-step was set to 4 × 10−5 × '0/2B0 = 2.7 × 10−9 s, which was slightly below the CFL
stability limit. A constant density and temperature was used as the initial condition, and the
sources were tuned to approximately match the reference density and temperature values. The
tuned source rates were 2.18 × 1018 particles-per-second and 8.83W – notably less than the
300W used in the experiment. To prevent the equations from becoming stiff due to low values
of density and temperature, an additional adaptive source was used to prevent the density from
dropping below 5 × 10−15m−3 and the electron temperature below 2.21 eV. The simulations
were performed on the Draco cluster and the Marconi supercomputer, at a cost of 6104 CPU-hrs
per millisecond6. Tuning the sources took 0.15ms, after which the simulation was continued for
7.36ms to collect statistics7.

7.4. Comparison to experiment

The results of the simulation were post-processed using the TorX analysis library. The mean
profiles from the TORPEX simulation are shown in figure 7.3. These profiles are interpolated to
the measurement positions of the swept Langmuir probe array and compared to the experimental
measurements in figure 7.4. The density is shown to match fairly well between experiment and
simulation. The simulated profile correctly predicts a higher density near the source region
(in the left sector) and captures the up-down asymmetry. The most notable difference is that
the simulated density doesn’t reach as low a density value as the experiment, due to a density
floor which is used for numerical reasons. Additionally, the density peak in the simulation is
slightly less localised than in the experiment. An overall correlation of � = 0.79 is found between
the simulation and experiment, which is remarkably high considering our strongly simplified
treatment of the neutrals.
By contrast, the electron temperature profile is not well-predicted by the simulation. The

simulated )4 profile has a similar spatial structure to the simulated = profile, while the measured
experimental profile has a very different structure. The measured profile appears to be aligned
vertically, with a peak temperature near the wall on the lower high-field-side. The poor agreement
is most likely due to the lack of neutral ionisation and radiation in the simulations. This missing
energy sink could explain the large difference in the simulated (8W) and experimental power
(300W) – we are missing 97% of the power, so the power loss to the walls must be only a
small fraction of the total power loss! Therefore, by neglecting the neutrals, we’ve dramatically
changed the energy source and sink terms. This explains the poor match in the )4 profile

6Average value of 2500 time-steps, taking 1180 s on the Skylake partition of Marconi, using 16 MPI tasks and 8
OpenMP threads-per-task.

7This is a long time to gather statistics for a turbulence simulation. To get reasonable values of the skew, more
sample points are necessary than for a lower-order statistical moment.
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7. Validation against the TORPEX basic plasma physics device

Figure 7.3.: Poloidal profiles of the mean density, electron temperature, electrostatic po-
tential and velocity. The velocity is normalised to the reference sound speed
2B0 = 14.6 km s−1
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7. Validation against the TORPEX basic plasma physics device

Figure 7.4.: Comparison of the simulated and measured profiles of the mean density (top row),
electron temperature (middle row) and electrostatic potential (bottom row) at the
measurement positions of the swept Langmuir probe array. The left column gives
the experimental measurement and the middle column gives the corresponding
GRILLIX simulation. The right column gives the correlation between the simulated
and measured profiles. The G-value of each point corresponds to an experimental
measurement, and the H-value gives the simulated value at the same position. The
Pearson correlation coefficient � is given in the annotation, and the black solid line
gives the perfect-correlation H = G.
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7. Validation against the TORPEX basic plasma physics device

Figure 7.5.: Comparison of the simulated and measured profiles of the mean floating potential
(left) and its standard deviation (right), along a line at / = 0. The central figure
compares the simulated and measured profiles of the plasma potential and the
electron temperature (divided by the elementary charge to give units of volts).

(correlation � = 0.21) – and actually, it is surprising that we managed to match the density
profile so well.

The match for the potential is similar to the match for the electron temperature. Again, the
simulation predicts a similar structure to the density profile, while the measured profile appears
to be vertically aligned, and the resulting correlation (� = 0.34) is poor. The relationship between
the potential and the electron temperature is given by the floating potential +5 ; = ) − ΛBℎ.
We compare the simulated and measured floating potential at the / = 0 position of the swept
Langmuir probe array in figure 7.5. Here, we see that the mean simulated +5 ; is closer to zero
than in the experiment. Since we have set +5 ; → 0 at the boundaries, the low +5 ; values near
the boundaries are expected, but it is not immediately obvious how this affects the interior
dynamics since we also don’t match the )4 profile. In the central plot of figure 7.5, we see
that both )4 and ) vary with position in both the experiment and in the simulation. In the
simulation, )4/4 ≈ )/3 such that the floating potential is always +5 ; ≈ 0, while in the experiment
it appears that +5 ; ∝ −)4/4. From equation 7.5 we see that the parallel gradients of )4 and )
are related via the parallel current, which may suggest that the insulating boundary conditions
for ) and 9‖ need to be reconsidered. Interesting, despite the poor agreement in the mean
floating potential, its standard deviation agrees more closely with the experiment – suggesting
that we might be capturing the turbulence more accurately than the background drifts.
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7. Validation against the TORPEX basic plasma physics device

Figure 7.6.: Stream-plots of the mean and turbulent poloidal ion fluxes in TORPEX. The mean
flow is calculated as mean (�8) = mean (=uC>C), where uC>C = u�×� + u380 + D‖b̂. The
turbulent flux is calculated as mean (= × (uC>C −mean(uC>C))). The colour scale gives
the magnitude of the poloidal components of the vector field, and the stream-plot
is computed from the poloidal components of the vector field. The maximum of the
colour scale for the mean flux is set to ten times the maximum for the turbulent
flux, since the turbulent flux is much smaller than the mean flux.

Although there is no available experimental data for the parallel velocity, it is surprising that
the parallel velocity profile (shown in figure 7.3) is highly supersonic throughout the plasma
volume. By following the time evolution of the profiles and comparing the results to the TCV
validation in the next chapter, it seems that there is a numerical feedback loop causing extremely
high velocities, discussed more in section 8.6.2. Despite the high velocities, it is interesting to
consider the flow profile observed in the simulation. This is shown both for the mean particle
flux Γ = =u and turbulent flux = (u −mean(u)) in figure 7.6. In the mean-flow profile, we see a
distinctive flow pattern that transports particles from the source region (left) into the upper
region. There, the asymmetry observed in the density profile can be attributed to the mean
� × �-drift which preferentially transports particles into the upper sector (the mean electric
field points from the source region across the separatrix, and the asymmetry of the drift can
be found via the right-hand-rule). This would correspond to a preferential transport towards
the high-field-side target in a lower-single-null favourable-field-direction tokamak discharge –
suggesting that convective cells around the X-point may contribute to in-out asymmetries. The
turbulent flux is much weaker than the mean flux, and it is conspicuously absent in the right
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sector – which is roughly analogous to the private-flux-region of a tokamak. We see that the
mean flow is consistently outwards at the boundaries, while the turbulent component appears
to stagnate near the boundaries.

7.5. Comparison to other models

The TORPEX X-point scenario was also simulated by the GBS [110, 111], STORM [113] and
FELTOR [107] models [126]. For all models, neutrals were not directly included, but rather
assumed to modify the plasma resistivity and heat conductivity as in section 7.2, permitting
a direct comparison of the codes. The other fluid models, GBS and STORM, found similar
results to GRILLIX for the ion saturation current, electron temperature and injected power.
Conversely, the plasma potential in these simulations had a lower minimum value and a range
closer to the experimental values due to the use of different potential boundary conditions. The
gyrofluid FELTOR model showed significantly different results to the fluid codes, predicting
ion saturation current and potential profiles lower than the other codes (and lower than the
measurements). However, since FELTOR also used a fixed electron temperature, it is unclear
whether these differences are due to the gyrofluid model or the isothermal approximation. A
qualitative validation metric (introduced in reference [118] and discussed in section 8.7) was
used to assess the overall match for each of the codes. It was found that GRILLIX achieved
a slightly better overall match (" = 0.85) compared the other codes (" ≥ 0.89), although the
result is still far from what could be considered as indicating a match.

7.6. Discussion

The overall result from the TORPEX was not particularly encouraging. Although we tried to
include the effect of neutrals by modifying the resistivity and heat conductivity, it appears that
this simple treatment is insufficient to match the experiment. The omission of self-consistent
neutral dynamics led to unrealistic power sources and sinks, leading to a poor match to the )4
profile. This in turn led to a poor match for the electrostatic potential, which was seen to closely
follow ΛBℎ throughout the plasma volume. Nevertheless, the density profile was found to match
well, which is surprising since the background drifts will be affected by the (erroneous) ) profile.
The simulation reached extremely high parallel velocities, which might indicate a feedback loop.
The sensitivity to neutral dynamics and boundary conditions, unfortunately, make this case
extremely difficult to match. Presumably, a significantly improved match could be achieved by
including self-consistent neutral dynamics. However, the lack of a confined region means that
this case will be dominated by sheath effects, and the low pitch angle between 0.5◦ and 1.2◦

at the boundaries means that our sheath boundary conditions (which require ≥ 1.3◦) are not
valid [176]. Additionally, the low electron temperatures mean that we need a surprisingly large
number of grid-points despite the small size of the device, which increases the computational
cost. As such, rather than acting as a simple test of the basic functionality of the simulations,
this case could be useful for experimenting with various sheath models.
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tokamak scenario

Figure 8.1.: The edge plasma density from a GRILLIX simulation, and the TCV vessel. Ren-
dering performed with NVIDIA IndeX and Paraview.

All reactor-relevant tokamaks or stellarators use a divertor. For a burning plasma, the
divertor is required to remove helium ash from the plasma, making them essential for reactor
operations. Beyond this, there are several advantages of the divertor geometry compared to
the simpler limited geometry, discussed in section 1.2.2, and so almost all fusion experiments
are operated with a divertor. Despite this, edge validations have often focussed on limited
discharges [120, 121, 126] or basic plasma devices [117, 118, 177, 119], to avoid the additional
complexity introduced by the divertor magnetic geometry. This is useful for developing the
basic functionality of the codes, but to move towards reactor-relevant simulations it is clear
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that validations in diverted geometry are essential. In this chapter, we describe a landmark
validation project – the TCV-X21 validation case, developed as part of EUROFusion Enabling
Research Project MFE19.EPFL-02 led by Christian Theiler. The results of this project have been
submitted for publication as Oliveira and Body1 et al., 2021, ‘Validation of edge turbulence
codes against the TCV-X21 diverted L-mode reference case’ [2], comparing the results from
the GRILLIX, GBS and TOKAM3X codes. In this chapter, we will discuss the results of this
validation, focussing mainly on the GRILLIX results and presenting them in more detail than
in the combined paper.

8.1. The TCV-X21 diverted L-mode scenario

TCV is a medium-sized tokamak, operated by the Swiss Plasma Centre [37]. It can achieve a
wide variety of plasma configurations – including advanced divertor configurations – due to
the unshaped (rectangular) vacuum vessel and 16 independently-powered shaping coils. For
this work, a new scenario was specifically developed for the validation of turbulence codes.
The scenario was designed to be as easy as possible to match – a simple Deuterium-fuelled
lower-single-null with a reduced field (for reduced computational cost), with a reduced density
targetting a strongly sheath-limited regime (to reduce the effect of neutrals), in L-mode (since
H-mode requires the formation of a transport barrier) and with only Ohmic heating.

The toroidal field was reduced from the nominal 1.43T to 0.95T, which increased the reference
ion Larmor radius �B0 and therefore the spatial scale of several microinstabilities (see table
1.1). Compared to the nominal field, in the reduced field �B0 =

√
)40<8/4�0 ∝ 1/�0 ≈ 1.54×

larger, reducing the number of grid-points required by
(
'0/�B0

)2 ∝ 1/�2 ≈ 2.37×. This either
reduces the cost of the simulations by half or allows for simulations with effectively double the
resolution at the same computational cost. To keep a similar q-profile and field-line pitch to a
TCV discharge at nominal parameters, the plasma current was reduced to �? ' 165 kA.

To reduce the effect of the neutrals, a low density corresponding to ∼ 25% of the Greenwald
density was used, and the plasma was fuelled from the top seeding value (indicated in figure 8.3).
The electron temperature dropped by a factor of between ∼ 2 (at the separatrix) to ∼ 0.8 (at
Ψ# = 1.08) from the divertor-entrance (measured by Thomson scattering) to the low-field-side
divertor target (measured by the wall-embedded Langmuir probe array). This suggests that the
discharge is sheath-limited and in low-recycling conditions. For the initial modelling, we use this
to assume that all of the density source is in the confined region and neglect the ionisation in
the divertor. We don’t include neutrals and so need to add a density source, which was assumed
to be constant along flux-surfaces and localised to a region just inside the confined region, as
indicated in figure 8.2. The applied density source function was

S=(', /) = 2= exp
−

(
Ψ# (', /)2 −Ψ2

#,2

Ψ2
#,F

)2 (8.1)

with the source centre at Ψ#,2 = 0.915 and the source width Ψ#,F = 0.0838. The source rate
1Co-first authorship.
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Figure 8.2.: Flux-surfaces and estimated
source positions in the TCV-X21 scenario.
The energy source position is indicated by
the blue shaded region, and the particle
source position is indicated by the green
shaded region. The divertor is marked
in black, and points outside the vessel
are indicated by the grey shaded region.
The 0, 0.5 and 1 levels of the penalisation
characteristic function are shown in green
(near the targets), and the separatrix is
indicated by a red-dashed line.

2= was unknown and so it was tuned by each simulation group to give a reasonable match
of the outboard midplane density at the separatrix. This gave a total particle injection rate
of 1.85 × 1021 s−1 – which is reasonably close to the ≈ 3 × 1021 s−1 inferred from the total flux
reaching the wall Langmuir probes.

The discharge was heated Ohmically, to reduce the number of heating systems which had to be
considered by the modelling groups. Since Ohmic heating is proportional to the plasma current,
it is assumed that the power source is localised near the magnetic axis (current measurements
were not available). Ohmic heating will preferentially heat the electrons since %$ℎ< = ��2 and
� ∝ 1/√<, so we apply a )4 source only. The applied core power source is indicated in figure
8.2. Rather than applying a temperature source as per usual, we modified the source such that
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it injected a constant power. The general form for the total power is

% =
3

2

∫
=(x)

(
()4 (x) + ()8 (x)

)
+ ()4(x) + )8(x)) (=(x)d3+ (8.2)

where x = (', ), /). For the TCV modelling we set

()4 (x) =
1

=(x) [(%(x) − ()4(x) + )8(x)) (=(x)] and ()8 (x) = 0 (8.3)

which simplifies the power source to

% =
3

2

∫
(%(x)33+ (8.4)

The resulting power is independent of the density source rate, since the energy associated with
adding particles is subtracted from )4 . We don’t use an external source for the ion temperature,
and instead heat them via equipartition. For the validation, (% was adjusted to give 150 kW of
power, matching the total Ohmic heating power. A later bolometry analysis estimated that
∼ 30 kW was being lost to confined-region radiation, while the ionisation associated with the
particle source would require a further 4.0 kW (using the particle source rate and an ionisation
energy of 13.6 eV), so probably a value of 115 kW may have been more appropriate. Nevertheless,
as we will discuss later in this chapter, it would be preferable to include self-consistent neutral
dynamics, rather than increasing the complexity of the source functions.

8.2. The TCV-X21 validation dataset and repository

The SPC team collected an experimental dataset by performing several discharges based on
the TCV-X21 scenario. An extensive dataset was collected by combining data from different
diagnostics and discharges, giving a total of 45 observables from the 5 diagnostic systems
indicated in figure 8.3, measured in two toroidal field directions. The diagnostic systems and
the methods for calculating the experimental uncertainty are detailed in reference [2]. The
dataset observables include the plasma density =, electron temperature )4 , plasma potential
), ion saturation current density 9B0C and floating potential +5 ; = ) − ΛBℎ from the FHRP
(outboard midplane), RDPA (divertor volume), LFS-LP (low-field-side target) and HFS-LP
(high-field-side target) Langmuir probe arrays. Additionally, the immersed probes (FHRP and
RDPA) measure the parallel Mach number "‖, and the wall-mounted probes (LFS-LP and
HFS-LP) measure the parallel current density 9‖. In addition to the probe measurements, the
TS (Thomson scattering) system gives measurements of = and )4 at the divertor entrance,
and the IR-LFS (infrared camera) system gives @‖ at the low-field-side target. No edge-data
is available for the ion temperature, while the value in the confined region is determined via
charge-exchange recombination spectroscopy.

To enable future validations against this dataset, the experimental data, extended documen-
tation of the validation case, the routines used to process the simulations and the simulation
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Figure 8.3.: The diagnostics used to collect experimental data in the TCV-X21 scenario, over-
layed onto the density from a GRILLIX simulation. Experimental data was collected
via a fast horizontally-reciprocating midplane probe (FHRP), the Thomson scat-
tering system (TS, using only points below the magnetic axis), wall-embedded
Langmuir probes at the low-field-side (LFS) and high-field-side (HFS) targets, an
infrared camera (IR) measuring the heat flux at the low-field-side target and a
vertically-reciprocating divertor probe array (RDPA).
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Figure 8.4.: For the TCV-X21 validation case, the experimental and simulation data is stored
in an interoperable data format (NetCDF) and processed using an open-source
library of Python scripts. The functionality of this library is built on packages
from Conda-forge, and in-place documentation is provided with Jupyter notebooks.
These are shared via gitlab.mpcdf.mpg.de and github.com repositories. The
repository is also permanently stored on zenodo.org, and a Docker image of the
library is used to provide in-browser interactivity via mybinder.org. By using
a public github.com mirror, we can provide user-support via issues and accept
user-submitted data via merge requests.

results are provided according to the Findable Accessible Interoperable Reproduce (FAIR) open
data principles. The dataset and resources are shared at github.com/SPCData/tcv-x21 and
gitlab.mpcdf.mpg.de/tcv-x21/tcv-x21. In addition to the scientific outcomes of this work,
this project can also be considered an experiment for the public release of fusion data. We’re
hoping that this will make the dataset and validation case more widely used and that this
will encourage more sharing of fusion data and more openness in code validation. If you’re
considering something similar, as early as possible in the project you should decide how you will
store your data, how you will share it, and under what licence. This data management plan can
be informal, although having a formal structure in place and getting your contributors to sign up
can avoid future conflicts. For the licence, the Creative Commons licences are recommended if
you’re sharing a dataset. We selected a standard CC-BY 4.0 Attribution licence which includes
a requirement for attribution and marking any changes, while we decided against adding a
non-commercial clause since this can prevent the use of datasets in things like textbooks.

The licence and a data management plan are the most important parts of sharing a dataset,
but if you want to make it easier to use your dataset there are a few additional tools that you
can use. These are outlined in figure 8.4. For user-support, a public github.com repository lets
anyone with a GitHub account make issues and merge requests for your repository, although
there are a few oddities such as charging for Git-LFS which make this service less than
optimal. As such, we also kept the institutional gitlab.mpcdf.mpg.de repository, which is
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easier to do development and testing in. We also stored a copy of the repository with CERN’s
zenodo.org, which offers permanent versioned storage of datasets up to 50GB, a DOI for each
version, an interface to github.com and a Python-based REST API for sending and retrieving
files. I additionally built a Docker image based on a jupyter/scipy-notebook image from
github.com/jupyter/docker-stacks. This allowed for in-browser interactive data exploration
via mybinder.org – which was rather complicated to set up and somewhat frivolous, although
it is useful to have a snapshot of the data analysis as of paper submission available at the click
of a button. The paper was only recently published but the work is already gaining interest,
with at least 5 groups aiming to reproduce and extend the simulations2 and more experimental
data being collected to include in the repository. These are promising signs that TCV-X21 will
be a significant work setting the standards for rigorous validations, and also for the open and
accessible sharing of fusion data.

8.3. Hot-ion electromagnetic model

To simulate the TCV-X21 scenario, we used a hot-ion, electromagnetic model which evolves
the plasma density =, the electron and ion temperatures )4 and )8, the electrostatic potential
), the parallel velocity D‖, the parallel current density 9‖ and the parallel component of the
electromagnetic vector potential �‖. Self-consistent neutral dynamics were not included, nor
was the electromagnetic ‘flutter’ transport. The equations are implemented in GRILLIX in a
dimensionless form, given in appendix A and appendix A of reference [129], included here in SI
units for reference;[
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corresponding to the continuity (2.56), quasineutrality (2.58), momentum-balance (2.60), Ohm’s
law (2.62), electron temperature (2.67) and ion temperature (2.71) equations, plus Ampère’s
law (2.74), with the curvature operator K defined by equation B.18. The D terms correspond
to numerical hyper-diffusion terms used to stabilise the numerical scheme, which is applied on
the vorticity Ω and modified electromagnetic potential Ψ< (described in reference [109]).
We limit the heat conductivity in the core, since the Braginskii heat flux diverges at low

collisionality (high temperatures). To calculate a reasonable value for the heat flux limit on
closed flux-surfaces, we use equation B.63 from the SOLPS-ITER manual [92], where

"‖4 = "‖40)
5/2
4 is replaced by "‖4 ,;8<8C43 = "‖40)

5/2
4

(
1 + ���

@'0

)−1
(8.5)

where ��� is the mean-free-path of hot-tail electrons, given as

���[m] = 7.5 × 1016 ()4[eV])
2

=[m−3]
(8.6)

and @ is the safety factor. At the time these simulations were run, we didn’t have the functional-
ity to set a variable heat-flux. Instead, a value was calculated by analysing a partially-converged
simulation and finding a heat flux limit that was reasonably representative of the actual result
of the above equation.

As in the TORPEX validation, the TCV simulations were found to be strongly affected by
boundary conditions. For the first simulations performed, we used the same insulating boundary
conditions as in the TORPEX validation, with 9‖ → 0, ) → ΛBℎ. However, it was found
that strong internal currents were driven in TCV, including in the SOL. Using the insulating
boundary conditions, these currents had to be forced to zero in the boundary region, leading to
a strong parallel gradient in 9‖. Due to the )

=∇ ·
(
9‖b̂

)
terms in the )4 and )8 equations, this

led to a strong heating near the boundaries. For the electron temperature, due to the larger
sheath-heat transmission coefficient, this heating could be transported to the targets, while for
the ions the heat is not lost as effectively and so the overall )8 increases. Eventually, this would
cause the simulations to crash with )8 ∼ 100 eV in the SOL – higher than in the confined region.
To avoid this heating term, the parallel current boundary condition was changed to ∇‖ 9‖ = 0 –
a simple Neumann boundary condition, setting the boundary current to the nearest interior
value. As we will later show, this led to surprisingly good agreement with the experimentally
measured current profiles. However, the potential was still set to the insulating value ) = ΛBℎ.
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The other boundary conditions were an � × �-drift corrected velocity boundary condition
(given by equation 3.27), a sheath-heath-transmission boundary condition (equation 3.36) with
�B,4 − 1 = 2.5 for )4 and �B,8 − 1 = 0.1 for )8 , and a Neumann condition ∇‖= = 0 for the density.
At the perpendicular boundary conditions, Neumann boundary conditions are used for all
quantities except for the current (set to 0) and the potential (set to ΛBℎ).

8.4. Simulating the TCV-X21 scenario

The magnetic equilibrium corresponding to TCV shot 65402 at time C = 1 s was computed
using the LIUQE code [160]. This equilibrium was processed with parallax-equilibrium,
and used for the simulations in both field directions. For all simulations, we used 16 toroidal
planes to resolve the parallel dynamics. To calculate the required perpendicular resolution, the
reference electron temperature was set to the separatrix value measured by Thomson scattering
)40 = 41.3 eV, giving a reference sound Larmor radius

�B0 =

√
)40<8

4�0
=

√
41.3 eV · 2.014 u
4 · 0.95T = 0.977mm

To resolve microinstabilities which mostly occur on scales around 1−10�B (see table 1.1), we need
a perpendicular grid resolution of ∼ �B or finer. However, in GRILLIX we use a regularly-spaced
perpendicular grid, and so set a single perpendicular resolution in terms of �B0. The relationship
between the reference and local Larmor is shown in figure 8.5. Most of the confined region has
�B > �B0, except for the outermost flux-surfaces on high-field-side (which has a larger �B due to
the higher magnetic field). Conversely, all of the open field-line region has �B < �B0.
The resolution required to resolve the turbulent drive and transport depends both on the

spatial scale of the instabilities and on the numerical scheme. Ideally, we would scan the
resolution, increasing it until an increase of resolution no longer causes any noticeable change in
the dynamics. However, due to the strong variation of �B it’s very expensive to run simulations
that are globally converged with respect to resolution. As such, we instead pick a resolution
which gives a reasonable balance between cost and accuracy.

For TCV-X21, we used a perpendicular resolution of 2�B0 for quickly scanning input parameters.
At this perpendicular resolution and with 16 poloidal planes and a timestep of 1.02 ns, the
simulations cost around 1.69 × 104CPU-hrs per millisecond – giving about 2ms per week on
4 nodes of Marconi-Skylake3. Once the 2�B0 simulations reached a quasisteady state, we
interpolated the solution to a 1�B0-resolution grid and then continued the simulation, at a cost of
9.14 × 104CPU-hrs per millisecond. This changed the turbulence drive and so we needed to find
a new quasisteady state, but reaching convergence was faster than reaching convergence from
a clean initial condition – suggesting that this method might also be helpful for economising
simulations of larger devices. Visually, the higher-resolution simulations looked similar in
the confined-region, but had more filaments in the open-field-line region and especially the
private-flux-region – which is consistent with what we would expect from figure 8.5.

3(at realistic resistivity and heat conductivity) – this is extremely cheap for a turbulence simulation.
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Figure 8.5.: The ratio of the lo-
cal sound radius �B , normalised to
the reference sound Larmor radius
�B0 ' 1mm, using a )4 profile from
a GRILLIX simulation. To resolve
microinstabilities that drive turbu-
lence, we need a perpendicular reso-
lution equal to some number of the
local sound-Larmor-radii �B (see ta-
ble 1.1). However, we don’t know
the temperature profile in advance
and use a constant perpendicular res-
olution, so we set our perpendicular
resolution equal to some number of
the reference sound-Larmor-radius
�B0. The contour where �B = �B0 is
marked in blue.

8.5. Comparison of simulation to experiment

The simulations were processed using a subset of the TorX library which was publicly released with
the TCV-X21 repository. The simulations were interpolated to the positions of the experimental
diagnostics and either compared directly to the experiment or used to calculate synthetic
diagnostics (the expected value measured by an experimental diagnostic if it was measuring a
plasma with the simulated profiles). The simulated and experimental profiles were compared
both graphically and via a quantitative composite validation metric introduced in reference
[118]. Due to the sheer number of observables – in total, 90 one- and two-dimensional profiles,
45 in each field direction, from 5 diagnostic systems – this is no small task. One result of the
validation is that the confined region agrees quite well, while the open field-line region does
not, and as such we present the results by region, starting from the core and working our way
towards the divertor and targets.

8.5.1. Uncertainty quantification

For the experimental data, the uncertainty was given as the root-mean-square sum of the intrinsic
diagnostic uncertainty, the standard deviation across repeat discharges and the uncertainty
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of the models used to calculate comparison observables from raw experimental data. For the
GRILLIX simulations, the statistical uncertainty was calculated via a bootstrap analysis [178].
The basic principle of this is as follows: if you have # data points, randomly sample # values
from the data set with replacement (i.e. you can draw the same value twice) and calculate the
statistical moments (mean, standard deviation, skew and kurtosis). Then, repeat this procedure
a number of times, each time redrawing another # data points and recalculating the statistical
moments. Eventually, you will have a distribution of results for each statistical moment, with a
mean and a standard deviation for each moment. The expected value of the moment is set to
the mean of the moment, and the statistical uncertainty (due to calculating statistical datasets
from a finite number of time-points and poloidal planes) is set to the standard deviation of
the moment. When taking data from 16 poloidal planes and from 500 time-points (about
1ms), the bootstrap method was found to give negligible statistical uncertainty for the mean,
a small statistical uncertainty for the standard deviation, and large statistical uncertainty for
the skew and kurtosis. In addition to statistical uncertainty, there are several other sources
of uncertainty – notably, sensitivity to uncertain input parameters such as the sheath heat
transmission coefficients or the density source rate, uncertainty in the magnetic reconstruction
and the discretisation error due to finite time- and space-resolution – although these are not
evaluated in this work4.

8.5.2. Core profiles

Since GRILLIX uses a collisional-magnetised fluid closure, we don’t expect that the model will
accurately model the plasma in regions where the collisionality is low. For TCV-X21, this means
that the model is not formally valid in the core. Nevertheless, it is interesting to consider what
happens when we apply the model outside of its region of applicability. Since the TCV-X21
scenario is small, we decided to include the core region, removing the need to apply boundary
conditions at some confined-region flux surface. To avoid extremely high conductivities due to
the Braginskii expressions, a heat-flux limiter (equation 8.5) was used. This permitted stable
simulations in both toroidal field directions, which we compare to measurements from Thomson
scattering and charge-exchange recombination spectroscopy in figure 8.6. We are also interested
in the profiles of the radial electric field but do not have experimental data, and so show the
simulated profiles in figure 8.7. These comparisons are not included in reference [2], although
the data is available in the repository.
In figure 8.6, we see that all of the profiles agree fairly well near the separatrix (Ψ# → 1).

Additionally, the )4 profile matches further into the core. However, the flattening of the profile
observed around Ψ# ∼ 0.25 is not seen in the simulations, which might be due to the shape of
our )4 source or due to the lack of fast MHD instabilities near the magnetic axis. Conversely,
the = and )8 profiles don’t match the experiment in the core. For the density profile, the density

4We performed simulations at 2mm and 1mm in both field directions. We could use this to estimate the
discretisation error via Richardson extrapolation [118]. However, this method should only be used when the
numerical solution is close to the asymptotic solution obtained at infinite resolution. When we refined our
grid, the solution changed significantly, suggesting that we are not in the asymptotic region and that the
Richardson error estimation is invalid. See references [179, 163] for more discussion of simulation uncertainties
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Figure 8.6.: Core profiles from Thomson scattering (= and )4) and charge-exchange-
recombination-spectroscopy ()8) diagnostics. The experimental data is given in
forward field (light blue) and reversed field (red), which is compared to the simulated
profiles in forward field (blue) and reversed field (orange).

source is clearly visible, although the density profile peaks around Ψ# ∼ 0.75 instead of at the
source position at Ψ# ∼ 0.915. To recover the experimental density profile, we need to increase
the inward particle transport, which might require modelling the neutrals [180] or trapped
particles [181]. The )8 looks reasonable in the edge, albeit with extremely high uncertainty, but
is cooler in the core. This might indicate that we need either an additional )8 source (such as
the small contribution from the Ohmic heating) or additional coupling mechanisms between )4
and )8.
In figure 8.7, we show the radial electric field and the electrostatic potential. We see that

the radial electric field structure does not change significantly with the toroidal field direction,
although the reversed field simulation has �A03 ∼ 1− 2 keV more negative than the forward-field
case. This slight difference in the radial electric field corresponds to a significant difference in
the electrostatic potential – the simulations are similar in the SOL since the absolute value of
the potential is fixed via the boundary conditions5, while in the core the forward-field simulation
has a potential difference (with respect to the walls) of ≈ 0V, while in the reversed field case we
have a core potential of ≈ −200V. Relating this back to the profiles; an inhomogeneous radial
electric field can cause shearing of the plasma poloidal rotation, which can suppress turbulence
[129] and affect the plasma profiles. Since the structure of �A03 is similar in both toroidal field
directions, the plasma =, )4 and )8 profiles are similar despite the large difference in ).

5We set the sheath entrance potential equal to the potential drop across the sheath – which implies that the
potential at the wall must be 0.
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Figure 8.7.: Core profiles for the electrostatic potential (measured in the SOL by the FHRP)
and the radial electric field. The experimental data is given in forward field (light
blue) and reversed field (red), which is compared to the simulated profiles in forward
field (blue) and reversed field (orange).

8.5.3. Outboard midplane profiles

Comparison of mean plasma profiles

Next, we consider the simulated outboard midplane and divertor entrance profiles. These are
compared to measurements from the fast horizontally-reciprocating probe (FHRP, at the OMP)
and Thomson scattering (TS, at the DE) systems in figure 8.8 and 8.9. We see that for all of the
OMP and DE profiles, the toroidal field reversal doesn’t have a large effect in the simulations.
Similarly, for the experimental measurements, the toroidal field reversal doesn’t have much
of an effect, except for the electrostatic potential ) and the floating potential +5 ; = ) − ΛBℎ.
From equation 3.21, this suggests that the current density 9 at the outboard midplane might be
changing with the toroidal field direction, although since the current isn’t measured directly we
can’t confirm this. Additionally, the measured parallel velocity D‖ (shown normalised to the local
sound speed as "‖ ) is faster in reversed field, and the separatrix density is smaller (∼ 2/3rds of
the forward-field value) in reversed field. However, when comparing the outboard-midplane and
divertor entrance density measurements, it is surprising that the DE = is higher than the OMP
= in reversed-field while it is about the same in forward-field. Since the )4 separatrix values are
about the same between the OMP and DE, the difference in the = measurements would imply
a pressure gradient along confined-region flux surfaces, and it is unclear if this is physically
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Figure 8.8.: Mean profiles at the outboard midplane (OMP, measured by the FHRP) and divertor
entrance (DE, measured by TS). The experimental data is given in forward field
(light blue) and reversed field (red), which is compared to the simulated profiles
in forward field (blue) and reversed field (orange). We have multiplied both the
simulated and measured forward-field parallel Mach number "‖ = D‖/2B by −1,
such that we can compare its magnitude against the reversed-field.
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reasonable or indicative of an underestimated experimental uncertainty6.
Comparing the simulations to the experiment, we see that the simulations match the density

profile fairly well (with the exception of the OMP-separatrix = in reversed-field). The )4 profiles
are underestimated by approximately a factor of 2 at the separatrix, while a good agreement
is found from Ψ# & 1.05. The ) profile matches within the (large) experimental uncertainty
in forward-field, while it is underestimated in the reversed-field SOL. For the simulations, the
separatrix corresponds to a maximum of ), while this is less clearly visible in the experimental
measurements. The parallel Mach number "‖ = D‖/2B is overestimated in the simulations. Since
)4 is underestimated, part of the disagreement could be because the simulated 2B =

√
)4/<8

is underestimated, but even after correcting for this we see that the parallel velocity D‖ is
overestimated. This will increase the parallel transport relative to the perpendicular transport,
which may explain why the density profiles fall off faster into the SOL in the simulations.

Comparison of mean profiles from synthetic diagnostics

We also calculate synthetic probe measurements from the simulated profiles and compare these
to the direct experimental measurements. This is interesting particularly for the ion saturation
current density – since the =, )4 and ) profiles determined by the FHRP are calculated using a
model which assumes that )4 = )8 , while in the simulations we instead find that )8 ≈ )4 + 10 eV
around the separatrix. The 9B0C profiles agree at both the separatrix and in the far-SOL, while in
the near-SOL the simulations predict that 9B0C should fall off more quickly than in the experiment.
Since we see similar behaviour in both the 9B0C and DE-= profiles, the lower reversed-field OMP-
= measured by the FHRP is probably not realistic. The floating potential +5 ; shows poor
agreement in both field directions. While in the experiment the +5 ; profile changes significantly
with the toroidal field direction, in the simulations this effect is not observed. The forward-field
simulation appears to match the shape and magnitude of the profile reasonably well, but the
simulated +5 ; profile is shifted towards the confined region by ΔΨ# ∼ 0.02. Conversely, for
the reversed-field simulation, the +5 ; is both underestimated in the SOL and shifted towards
the confined region. This may a consequence of the )→ ΛBℎ boundary condition. As we will
discuss in section 8.5.4, the simulated and measured 9‖ at the targets change with the toroidal
field direction, and so if we set the potential at the boundaries consistently this could improve
our description of the potential across the separatrix.

Comparison of statistical moments from synthetic diagnostics

Since the experimental profiles of 9B0C and +5 ; are measured directly rather than determined
from experimental measurements via a model, we can also compute the statistical moments
of these observables. These are compared to the corresponding statistical moments from the
synthetic diagnostics in figure 8.9. For the standard deviations of 9B0C and +5 ; we see a reasonable

6Since the FHRP has a probe head which is small compared to the ion Larmor radius, the probe collection area
was calculated using the sheath-expanded surface area (valid for a weakly-magnetised plasma) rather than
its parallel-projected area (valid for a strongly-magnetised plasma) [182]. Additionally, it was assumed that
)4 = )8 .
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Figure 8.9.: Statistical moments of the profiles at the outboard midplane (measured by the
FHRP). � indicates the standard deviation, ‘skew’ indicates the unbiased skewness
and ‘kurt’ indicates the Pearson kurtosis. The experimental data is given in forward
field (light blue) and reversed field (red), which is compared to the simulated profiles
in forward field (blue) and reversed field (orange).
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Figure 8.10.: Probability distribution functions of 9B0C at various positions along the outboard
midplane for the forward-field simulations. Each colour indicates a different radial
position, representing the outer-confined region (blue), the separatrix (orange), the
near-SOL (green) and the far-SOL (red). A histogram is shown for each position,
giving the normalised counts from 16000 samples binned into 50 equally-spaced
bins. For each histogram, we also fit a Gaussian distribution from the mean and
standard deviation of the distribution, shown by the dashed line. The statistical
moments corresponding to each position are given in the table. The black dashed
line gives the minimum 9B0C value achievable for an immersed probe for the density
and temperature floors used in the simulations

agreement for both the shape and order-of-magnitude. Since these can be related back to the
fluctuations of =, )4 and ), this suggests that we are capturing the turbulent fluctuation levels
reasonably well. One interesting point is that the simulations seem to be reproducing the
standard deviation of +5 ; more accurately than its mean, particularly in reversed-field. This
could imply that the simulations are capturing small-scale � × � turbulence more accurately
than the large-scale background drifts.
We also have experimental measurements for the skewness and kurtosis of 9B0C . These are

defined in terms of the statistical moments about the mean [183]

<A =
1

=

=∑
8=1

(G8 − Ḡ)A

The (unbiased) skew is given as

skew(G) = <3/<3/2
2 (8.7)

which is zero for the normal distribution. The (Pearson) kurtosis is given as

kurt(G) = <4/<2
2 (8.8)
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which is 3 for the normal distribution. Somewhat confusingly, the kurtosis is sometimes given as

excess kurt(G) = <4/<2
2 − 3 (8.9)

which we call the excess (Fisher) kurtosis (this is zero for the normal distribution).
These higher-order statistical moments help to characterise non-normally distributed data.

The profiles for the mean, standard deviation, skew and kurtosis of 9B0C at the OMP are given
in figure 8.9. The skewness and excess kurtosis are close to zero in the confined region in
both field directions, in both the simulations and the experiment. Moving into the SOL, in
the forward-field the skewness and kurtosis increase for both the simulation and experiment,
although the simulated values increase more steeply than in the experiment. Conversely, in the
reversed-field, the experimental skewness and excess kurtosis increase slightly and then return
to almost zero – suggesting Gaussian-distributed turbulence. This is not reproduced in the
simulation.
To understand the meaning of these statistical moments, we also show the raw probability

density function from the forward-field simulation at several radial positions in figure 8.10.
The PDFs are all seen to be positively skewed: that is, there are more high-amplitude data
points than would be expected from Gaussian-distributed data. Physically, this means that
the plasma has an overabundance of coherent structures which have more particles than the
background (compared to a normal distribution) – which are termed ‘blobs’ or ‘filaments’ –
and/or an absence of ‘holes’ (background minus a filament) [100]. As we move further into the
SOL, the skewness of the distribution increases. We also see that the kurtosis increases into the
SOL. This implies that 9B0C signal is increasing dominated by very-high or very-low amplitude
events, rather than by events with 9B0C close to the mean [113]. Combined with the skew, we
conclude that as we move further into the SOL, the 9B0C signal is increasingly dominated by
coherent blobs rather than random transport. We expect that these blobs are sourced from a
region with negative skewness (since the ejection of the blob will leave a corresponding hole)
seen between Ψ# = 0.8 and 0.95 in the simulations. Filaments generated in this region drive
SOL turbulence ballistically, leading to non-Gaussian statistics in the SOL [99].

8.5.4. Target profiles

Comparison of mean plasma profiles

We next consider the profiles measured at the divertor targets. We are interested in both the
toroidal field reversal and the in-out asymmetry, so we plot both field directions and both
divertor targets for each observable. The plasma density, electron temperature and electrostatic
potential are shown in figure 8.11, and the current and floating potential are shown in figure 8.12.
We see that in the experimental measurements, the density, current density and floating potential
show a strong effect of toroidal field reversal and a strong in-out asymmetry. The potential
changes with field direction but is similar at both targets, while the electron temperature is
similar at both targets and in both field directions.
In the simulations, a weaker effect of toroidal field reversal and in-out asymmetry is found,

which might suggest that the background drifts are having a weaker effect in the simulations
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Figure 8.11.: Mean profiles at the low-field-side (LFS) and high-field-side (HFS) divertor targets,
measured by the wall-embedded Langmuir probes. The experimental data is given
in forward field (light blue) and reversed field (red), which is compared to the
simulated profiles in forward field (blue) and reversed field (orange).
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Figure 8.12.: The parallel current density and floating potential at the low-field-side (LFS) and
high-field-side (HFS) divertor targets, measured by the wall-embedded Langmuir
probes. The mean and standard deviation for each observable is shown. The
experimental data is given in forward field (light blue) and reversed field (red),
which is compared to the simulated profiles in forward field (blue) and reversed
field (orange).
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than in the experiment. The target = is underestimated by a factor of ∼ 2 − 3, and the profile
shape is only loosely recovered. One interesting feature is the small secondary peak visible on
both the LFS and HFS targets in the forward-field direction. The position of this secondary
peak roughly corresponds to the prominent private-flux-region peak seen on the LFS target and
the split peak seen on the HFS target – although the magnitude of the simulated peaks is much
lower than the corresponding experimental features. A mechanism for a similar double-peaked
= profile is described via UEDGE transport modelling in reference [124], primarily due to
background �×� drifts. The effect of the = floor value is visible on the targets, and the increase
of the = profile at the limiting flux surface may indicate a numerical issue.
The )4 profiles agree remarkably well – matching both the shape in the SOL for both field

directions and the magnitude of the profile for the forward-field field simulation. The reversed
field simulation slightly underestimates )4 , although this is just outside of uncertainty. In
the private flux region, )4 drops much more sharply than in the experiment, such that the
private-flux-region is mostly at the )4 floor. Since we have set ) = ΛBℎ (where ΛBℎ is roughly
proportional to )4 , equation 3.17), the )4 profile also affects the ) profile. This gives reasonably
good agreement in the forward-field SOL, while the shape of the simulated reversed-field ) is
significantly different to the experiment. In both field directions, the steep )4 gradient into the
private flux region leads to a strong radial electric field, which will, in turn, drive poloidal � × �
flows across the boundary surface.

Current density and floating potential

The mean and standard deviation of the current density and floating potential are shown in
figure 8.12. We see that the simple extrapolation of the internal current is able to predict the
approximate shape and magnitude of 9‖ , except for at the HFS in forward-field. The simulations
also predict �(9‖) remarkably well, capturing the profile shape in both field-directions and the
magnitude in forward-field, while overpredicting the magnitude in reversed-field. Since we are
setting the boundary current equal to the current at the nearest interior point, this suggests
that the currents observed at the targets must be driven mostly within the plasma volume –
such as via thermoelectric currents – rather than by the sheath.

In a sharp contrast to 9‖, the floating potential and its standard deviation are matched very
poorly by the simulations. In the simulations, we have set +5 ; → 0 as a boundary condition
(corresponding to 9‖ → 0, see equation 3.25), but this does not agree with the experimental
measurements. Our simple sheath model in chapter 3 gives the relationship between +5 ; and 9‖
at the targets as equation 3.25. Our relatively good agreement for 9‖ suggests that we might be
able to set ) in terms of 9‖, which is discussed more in section 8.6.

Statistical moments of 9B0C

The mean, standard deviation, skew and kurtosis of 9B0C at the targets is shown in figure 8.13
(see section 8.5.3 for the definition of the skew and kurtosis). We see that the mean 9B0C value is
underestimated at both targets and in both field directions – likely due to the low target =. This
also leads to an underestimated �(9B0C), while the relative fluctuation level (not shown) is closer
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Figure 8.13.: Statistical moments of the ion saturation current at the low-field-side (LFS) and
high-field-side (HFS) divertor targets, measured by the wall-embedded Langmuir
probes. � indicates the standard deviation, ‘skew’ indicates the unbiased skewness
and ‘kurt’ indicates the Pearson kurtosis. The experimental data is given in forward
field (light blue) and reversed field (red), which is compared to the simulated profiles
in forward field (blue) and reversed field (orange).

109



8. Validation against the TCV-X21 diverted tokamak scenario

Figure 8.14.: Probability distribution functions of 9B0C , at various positions along the low-field-
side target for the forward-field simulations. Each colour indicates a different radial
position, representing the private-flux region (blue), the separatrix (orange), the
near-SOL (green) and the far-SOL (red). A histogram is shown for each position,
giving the normalised counts from 16000 samples binned into 50 equally-spaced
bins. For each histogram, we also fit a Gaussian distribution from the mean and
standard deviation of the distribution, shown by the dashed line. The statistical
moments corresponding to each position are given in the table. The black dashed
line gives the minimum 9B0C value achievable for a wall-embedded probe for the
density and temperature floors used in the simulations.
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to the experimental value near the separatrix (the far-SOL and PFR are again underestimated).
The skewness and kurtosis 9B0C are seen to oscillate wildly and to give extreme values. The
non-smooth profiles may suggest that we don’t have enough data points to characterise these
higher-order moments, while the extreme values suggest that we have points that are not
described by Gaussian statistics. To investigate this further, we plot the raw probability density
function at several positions in figure 8.14.
We see that at the separatrix and in the SOL, the PDFs of 9B0C appear reasonably close

to the Gaussian profiles. However, in the private-flux region, the PDF is essentially a �
function at 9B0C = 1.14 kAm−2, which is the minimum possible value of 9B0C , given floor values
of = 5 ;>>A = 5 × 1017m−3 and )5 ;>>A = 2.1 eV. If we allowed 9B0C to drop further, we would
presumably find a more reasonable PDF in the PFR. However, since there are several 1/=
and 1/) terms in the equations, very low values of = and ) can lead to numerical difficulties.
Furthermore, comparing to the profiles in figure 8.11, we see that the experimental measurements
are above the floor values, so it would be instead better to find why the = and ) profiles in the
PFR are so low.

Heat flux to targets

From our sheath-heat transmission boundary conditions (equation 3.36), we can calculate the
heat flux to the targets as the sum of a convective heat flux =D‖)4 and a conductive heat
flux −"‖∇‖). Additionally, since the poloidal � × �-drifts are found to be strong, we add an
addition convective component with a velocity equal to the effective parallel transport due to
the �×�-drift (i.e. a convective flux with a value of D‖ which gives the same poloidal transport).
The resulting parallel heat flux profile is compared to measurements from an infrared camera
which measures the heat flux to the LFS target, with the results shown in figure 8.15.

For each @‖ profile, we use Levenberg-Marquardt algorithm [184] to fit a Eich-type profile
(see reference [54]) of the form

@‖(A) =
@0

2
exp

[(
(

2�@

)2
− A − A0

�@

]
× erfc

(
(

2�@
− A − A0

(

)
+ @�� (8.10)

where A = 'D − 'DB4? is the radial distance from a flux surface to the separatrix evaluated at the
outboard midplane7, @0 is the peak heat flux, �@ is the heat flux decay length, ( is a ‘spreading
factor’, A0 allows for a radial shift of the separatrix position (to correct for uncertainty in the
separatrix position or a radial shift due to drifts), and @�� is the background heat flux. The
relevant fitted values are given in the table in figure 8.15.

We see that the Eich-type profiles fit the experimental results fairly well, while they provide a
poor fit for the simulated profiles. This might suggest that the simulations are not reproducing
the heat flux spreading correctly, or alternatively, that our expression for the heat flux isn’t
capturing all of the necessary components. The forward-field simulation is able to recover
the experimental peak heat flux, while the reversed-field simulation underestimates the peak
heat flux by almost a factor of 4. The simulations in both field directions predict narrow

7For PFR flux surfaces, a confined region flux surface with the same Ψ# is used.

111



8. Validation against the TCV-X21 diverted tokamak scenario

Figure 8.15.: Computed heat flux to the divertor targets, compared to Eich-type fits. The
corresponding fit parameters are given in the table. The experimental data is
given in forward field (light blue) and reversed field (red), which is compared to
the simulated profiles in forward field (blue) and reversed field (orange).

peaks, leading to a very small �@ for the forward-field simulation and a poorly-fit profile for the
reversed-fit profile. The simulated spreading factor is much lower than the experiment, for both
field directions.
This is a problem! We need accurate predictions of �@, since this determines the area over

which the heat flux is spread and ultimately the peak heat flux. To figure out why we aren’t
getting the expected profiles, we show the different components included in the heat flux in
figure 8.16. The heat flux is dominated by the electron heat convection 5

2=)4E‖, which has a
narrow profile. This can be partly explained by the narrower-than-measured 9‖ profile in figure
8.12, and partly because we have missed the density peak at Ψ# = 1.025 ('D −'DB4? = 0.6 cm) in
figure 8.11. The double-peak structure is due to the electron conductive heat flux 3.16 =)4�4<4

∇‖)4 ,
which gives a heat flux into the simulation at 'D −'DB4? = 0.5 cm, indicating higher temperatures
at the targets than in the domain. This seems to be balanced by the � × � convected heat flux,
so the double-peaked profile might be related to the strong poloidal � × � flow. This suggests
that we could improve our prediction of the heat flux by improving the match of other target
profiles. We could also add additional terms to the heat flux, such as the kinetic energy of the
particles or the energy associated with recombination of the particle flux, and should carefully
consider how to calculate heat fluxes across the sheath from a fluid model.
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Figure 8.16.: Components of the computed heat flux, from a single time-point and single poloidal
plane from the forward-field simulation.

8.5.5. Divertor volume profiles

Finally, we show the divertor volume profiles measured by the reciprocating divertor probe array,
in figure 8.17. For the density profile, we see that the profile is underestimated throughout the
divertor volume. Additionally, the experimental results show only a small drop in the direction
parallel to the magnetic field (vertical in these figures), while a strong parallel density gradient
was seen in the simulations. In the forward-field, a strong transport into the PFR was seen
experimentally, while for the simulations this isn’t reproduced. Conversely, the )4 profiles in the
SOL match quite well, although the experimental broadening into the PFR isn’t seen in the
simulations. For ), both experiment and simulation are roughly constant along the magnetic
field, but the experimentally observed shape isn’t recovered in the simulations. For the parallel
Mach number, a large deviation from the experiment is found. The simulations show

��"‖ �� � 1,
while the experiment shows

��"‖ �� < 1. Despite the much-higher-than-measured magnitudes, the
direction of the parallel flow appears to be roughly correct – including the reversal of the PFR
flow with the toroidal field reversal.

8.6. Discussion

Putting everything together, we have shown that it is now possible to run simulations in realistic
divertor geometries, at realistic physical parameters, and at a relatively modest computational
cost. By comparing multiple observables and at multiple positions, the TCV-X21 validation
lets us find where the model is working well, where it isn’t and, crucially, to interpret the causes
of disagreement and determine how we can improve the fidelity of the model. We see that
the model is able to match the outboard midplane and divertor entrance profiles remarkably
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Figure 8.17.: Mean profiles in the divertor volume, measured by the reciprocating divertor
probe array. The rows (from top) correspond to the density, electron temperature,
electrostatic potential and parallel Mach number, with each row sharing a colour-
bar. For each subplot, the vertical direction gives the vertical displacement in
metres from the X-point. We have cropped the colour-bar range for "‖ to keep
detail in the experimental results: the actual range of values are (−0.58, 0.67)
for TCV in forward-field, (−0.78, 0.14) for TCV in reversed-field, (−0.23, 6.4) for
GRILLIX in forward-field and (−3.4, 2.6) for GRILLIX in reversed-field.
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well, except for the parallel Mach number which is overestimated. By contrast, the divertor
volume and divertor targets show a poorer match, except for the )4 profile in the SOL which
matches remarkably well. This might be due to our choice of sheath boundary conditions or
due to the omission of neutrals. Further into the confined region, the =, )4 and )8 profiles all
look reasonable in the edge, but the = and )8 profiles do not agree in the core – although we
didn’t expect our model to apply there anyway. In the outlook (section 9.2), we discuss how
the model will be extended to improve its accuracy at lower collisionality, which would let us
simulate the core more accurately.

8.6.1. What is driving the turbulence?

At the outboard midplane, both the simulations and the experimental measurements found
non-Gaussian probability density functions for 9B0C . Positive skewness and excess kurtosis
indicate that the 9B0C signal is dominated by coherent filaments with an amplitude larger than
the mean 9B0C , which is the behaviour typically expected in the SOL [101, 100]. In the simulations,
we identified a range of flux surfaces in the confined region with negative skewness, between
Ψ# = 0.8 and 0.95. We can use the lineouts feature in torx to investigate this flux surface
in more detail. We first interpolate the fields to the flux surface and then use the symmetry
angle8 to interpolate from our 16 poloidal planes to a much higher toroidal resolution (the figure
uses 1000 points in the toroidal direction). We then calculated the I-score for each point in the
upscaled =, ), )4 and )8 profiles for a single time-point, and show the result in figure 8.18. We
also perform a Fourier analysis and show the magnitude of each poloidal mode as well as the
phase shift between the =, )4 and )8 profiles and the ) profile. The magnitude helps to identify
which are the dominant modes, while the phase shift can be used to identify whether the mode
exhibits drift-mode or ballooning characteristics9.
We find that the = and )8 modes have approximately the same amplitude as the ) modes,

while the )4 modes have a lower amplitude. All fields show a localised peak around a poloidal
wavenumber of between 30−40 (which corresponds to a toroidal wavenumber of between 15−20,
since the @-factor of the flux surface is 2.11). This peak could be identified as the energy
injection scale (the spatial scale of the dominant instability). For both the = and )8 profiles, the
phase shift is much less than �/2, indicating that the turbulence is driven predominantly by
drift-wave rather than interchange turbulence. The )8 profile has higher I-scores than the =
profile, which we could associate with the coherent filaments ejected into the SOL. To confirm
this, it would be helpful to develop a blob tracking algorithm such as in reference [187]. This
would also be useful for investigating what sets the frequency and size of blobs, and studying
how they are transported through the edge and SOL. Another extension could be to apply the
Fourier analysis in the open field-line region, to study secondary instabilities which lead to
profile broadening.

8We use the ‘ballooning’ or ‘straight-field-line’ coordinates. See equation 6.3.20 in reference [185] and the
Fourier_analysis notebook in the torx repository – particularly the section on upscaling in the toroidal
direction.

9See the discussion on page 7.13 of reference [186]. Interchange modes should have a phase shift around �/2,
while drift-wave turbulence has a phase shift closer to 0.
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Figure 8.18.: The profiles and a Fourier analysis of theΨ# = 0.86 flux-surface, which is identified
as the source region for SOL filaments. The colour-bar in the upper set of plots
gives the z-score at each point, calculated as (G − Ḡ)/�(G). The x-labels are the
outboard midplane, X-point, inboard midplane, and top of the device.
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8.6.2. Fast parallel advection

Despite the promising initial result, there’s still room for improvement, especially at the divertor
targets. Rather than focussing on what is matching well, it is interesting to find where and how
the code is diverging from the experiment since this lets us see how to improve the result in the
future. The most striking disagreement is the parallel Mach number, especially in the divertor,
which is much higher than measured. Since our )4 profiles are realistic, this indicates that we are
overestimating the parallel velocity. To balance our particle source and sinks, the fast advection
will require us to increase our particle source rate or to reduce the target density to reduce the
outgoing particle flux Γ = =D‖. This explains why we are underestimating the target density,
and this causes us to underestimate other profiles such as 9B0C . We may also be setting our
particle source too high, although this is less clear than the reduced target density. Our total
source rate appears reasonable when compared to the total flux reaching the Langmuir probes,
but the outboard midplane )4 separatrix value is lower than measured. This might indicate
that the core density source is too high since we added a negative )4 source proportional to the
density source (to achieve a constant power).
The overestimated parallel advection will affect the balance of parallel and perpendicular

transport. Increased parallel transport will lead to narrower SOL profiles and a reduced effect
of the background drifts since plasma entering the SOL has less time to be advected across
field-lines before it reaches the divertor targets. This gives a reasonable explanation for the
narrowed parallel-heat-flux profiles and for the reduced effect of toroidal field reversal. The
depletion of the private-flux-region can also be partly be explained by this mechanism, although
it appears that we’re also not fully resolving the local drive of turbulence due to the very small
sound Larmor radius in the PFR, since the PFR activation increases slightly with increasing
resolution. The two mechanisms likely affect either other – the parallel advection reduces )4
and therefore �B in the PFR, which in turn leads to less cross-field transport since we aren’t
resolving the locally-generated turbulence.

What is driving this fast advection? Since we observed something similar in TORPEX, it
appears that this is a peculiarity of the model or boundary conditions, rather than something
specific to the case we are modelling. By following the time evolution of the simulation, we
see that D‖ starts increasing after the initial )4 pulse travels from the OMP to the targets.
This leads to a radial electric field at the targets due to the ) ∝ )4 , which then modifies the
parallel velocity to compensate for the � × � transport across the targets, via the mechanism
depicted in figure 8.19. At this point this is desirable, since the modified D‖ prevents spurious
� × � fluxes across the boundary, and additionally the modification of D‖ by return flows is
physically motivated [139, 140]. However, the influx from � × � should be exactly balanced by
D‖. Instead, the electric field along the target increases, probably due to the coupling of the
target )4 and ). This leads to self-steepening, and eventually to the extremely high velocities
observed. It’s not entirely clear why this is occurring. Due to the stencil-collapse issue described
in section 4.5, we gradually switch from the interior to boundary dynamics and therefore there
is no exact boundary surface. Going back to a ghost-cell method (or at least using a zero-width
penalisation) might therefore improve the issue, but this would require resolving the stencil
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Figure 8.19.: The interaction of the ) = ΛBℎ and drift-corrected velocity boundary conditions
can lead to a feedback loop. First, there is usually a temperature gradient across
the separatrix at the targets, since the scrape-off-layer is parallel-connected to a
higher temperature region. Due to the ) = ΛBℎ boundary condition, this leads to
an electric field and therefore an � × � velocity across the boundary. If the � × �
velocity is inflowing, the parallel velocity is accelerated to compensate, while if the
� × � velocity is out-flowing, the parallel velocity is decelerated. However, we do
not drive reverse flows in the parallel velocity, so above a certain out-flowing � × �
velocity there is a net outflow in the private-flux-region, leading to a steepening of
the temperature gradient and a feedback loop.

collapse. Alternatively, if we used consistent conducting boundary conditions we could change
the target electric field, but it is unclear if this would be stabilising.
Furthermore, resolving the feedback loop is only part of the puzzle. If we instead just set

D‖ = ±2B at the divertor targets, we will still have faster-than-measured parallel flows in the
divertor, and we will not have a mechanism to reproduce the experimentally-observed flow
reversal (seen in figure 8.17). The experimental measurements show flows significantly below
sound speed throughout most of the divertor, while even for simulations with simple Bohm
boundary conditions the parallel velocity will be close to sound speed in the divertor volume.
We might be able to reduce the divertor flows by introducing neutrals. In previous transport
modelling, subsonic flows in the divertor volume were possible only if neutrals were included
[123]. Neutrals can reduce D‖ by adding an additional viscosity into the D‖ equation or by
acting as an energy sink near the targets. Additionally, if the density increases faster than the
temperature drops, the neutrals will cause a positive pressure gradient towards the targets,
which will oppose the parallel flow. Another more radical way to reduce D‖ would be to not
use a Bohm criterion at all, and instead drive advection across the targets via a particle source.
In a simple 1D model, this was found to still give a target velocity D‖ → 2B when the flow is
driven by a sufficiently strong density source (i.e. the flow will become ‘choked’). However, for
a weakly sourced region like the PFR, the outflow velocity would be subsonic.
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Figure 8.20.: The experimental parallel current density 9‖ at the divertor targets (in blue),
compared to the experimental ion saturation current density 9B0C (in green) and the

expected current density 9B0C
(
1 − exp

[
4
)4
+5 ;

] )
(in orange) from a simple sheath

model, using the experimental 9B0C , +5 ; and )4 measurements.

8.6.3. Conducting boundary conditions

According to the sheath model we discussed in chapter 3, our boundary conditions for the
parallel current are inconsistent with our potential boundary conditions. As such, the match
for 9‖ at the targets is remarkably (and unexpectedly) good. Firstly, as a caveat, it’s unclear
whether this is a fluke, or whether it represents real physics. If we assume the latter, this could
let us set ) in terms of 9‖ using equation 3.21. In the simulations, we have 9 > 9B0C so can
directly compute +5 ; from the simulated 9‖ . However, to see whether this condition is reasonable
we can use

9‖ = 9B0C

(
1 − exp

[
4

)4
+5 ;

] )
(8.11)

+5 ; =
)4

4
ln

(
1 −

9‖
9B0C

)
(8.12)

with the experimental data. We show the 9‖ profile calculated by equation 8.11 with �(9‖)2 =[
�(9B0C)

%9‖
%9B0C

]2
+

[
�()4)

%9‖
%)4

]2
+

[
�(+5 ;)

%9‖
%+5 ;

]2
compared to the measured 9‖ and 9B0C in figure 8.20.

We see that there is a good agreement between equation 8.11 and the measured 9‖, suggesting
that the simple sheath model is reasonably accurate.
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Figure 8.21.: A poloidal snapshot of the plasma density from the GBS, GRILLIX and TOKAM3X
simulations. Here, GBS and GRILLIX show the reversed-field case, while
TOKAM3X shows the forward-field case. The simulations have visually differently-
sized structure – large for GBS, medium for TOKAM3X and small for GRILLIX.

In our equations we have 9‖ = −∇‖). This term would be destabilising if we use equation
8.12 as the ) boundary condition with a free-flowing 9‖ boundary condition – since as )→ −∞
at the targets we have that 9‖ →∞ (which makes sense – as we generate strong electric fields,
the positive current should increase). There is no obvious mechanism in the interior dynamics
that would limit 9 < 9B0C , and so this would drive our system unstable. To resolve this, we could
set a current limiter, or simultaneously set a coupled boundary condition on 9‖ and ) such as in
reference [134].

8.7. Comparison to other models and validation metrics

The TCV-X21 case was also used to validate the GBS [111] and TOKAM3X [134] models,
with the results of the validations published in a combined paper [2]. The models also use the
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GBS(+) GBS(−) GRILLIX(+) GRILLIX(−) TOKAM3X(+)
Diagnostic observable 3 9 ( 3 9 ( 3 9 ( 3 9 ( 3 9 (

Fast
horizontally-
reciprocating
probe (FHRP)
for outboard
midplane

= 1.35 0.841 0.712 0.899 0.698 0.865 1.73 0.91 2.6 0.893
)4 0.66 0.765 0.426 0.825 0.866 0.733 1.21 0.776 0.916 0.756
+?; 0.482 0.774 2.21 0.78 0.52 0.738 1.3 0.773 0.801 0.75
�B0C 1.27 0.89 0.663 0.893 1.24 0.9 1.4 0.882 4.09 0.918
� (�B0C) 4.73 0.889 1.64 0.939 1.9 0.927 1.9 0.934 3.25 0.933
skew (�B0C) 2.44 0.81 1.81 0.912 3.78 0.898 12.1 0.942 1.85 0.847
kurt (�B0C) 2.8 0.829 2.37 0.934 4.78 0.886 20.2 0.954 2.4 0.83
+5 ; 4.52 0.833 6.38 0.901 2.15 0.749 4.99 0.824 1.65 0.696
�

(
+5 ;

)
5.11 0.949 8.78 0.963 5.67 0.953 4.98 0.94 4.22 0.952

"‖ 2.18 0.925 7.9 0.92 6.53 0.942 4.61 0.944 2.46 0.901
(";&)FHRP (0.62; 4.02) (0.61; 4.25) (0.59; 4.06) (0.69; 4.2) (0.75; 4.01)

Thomson scattering
(TS) for divertor

entrance

= 1.09 0.877 0.59 0.908 0.435 0.887 0.992 0.907 2.63 0.914
)4 3.28 0.89 3.93 0.907 1.09 0.872 1.37 0.871 2.72 0.874
(";&)TS (0.52; 0.883) (0.5; 0.908) (0.018; 0.88) (0.1; 0.889) (0.99; 0.894)

Wall Langmuir
probes for

low-field-side
target

= 1.81 0.861 4.2 0.89 1.81 0.859 2.35 0.862 3.28 0.902
)4 6.01 0.937 3.63 0.911 1.76 0.907 1.94 0.868 1.88 0.908
+?; 9.63 0.951 3.79 0.925 2.55 0.912 4.8 0.896 2.26 0.915
�B0C 2.9 0.891 16.1 0.942 3.22 0.884 3.62 0.88 2.76 0.91
� (�B0C) 4.93 0.859 3.34 0.894 5.52 0.854 5.3 0.872 5.38 0.85
skew (�B0C) 3.02 0.849 9.03 0.922 71.3 0.957 45.5 0.943 5.4 0.808
kurt (�B0C) 1.96 0.904 15.5 0.971 1290 0.994 68.1 0.982 2.7 0.895
�‖ 2.93 0.765 7.53 0.863 7.78 0.841 4.16 0.85 4.29 0.735
�

(
�‖
)

3.26 0.884 10.4 0.92 2.71 0.896 3.51 0.905 4.24 0.844
+5 ; 6.54 0.854 5.66 0.794 2.14 0.64 5.9 0.734 2.74 0.662
�

(
+5 ;

)
5.83 0.907 6.88 0.916 7.49 0.894 6.1 0.909 7.4 0.893

(";&)LFS-LP (0.96; 4.83) (1.0; 4.97) (0.94; 4.82) (0.98; 4.85) (0.98; 4.66)

Overall "; & (0.87; 18.9) (0.86; 19.4) (0.83; 19.0) (0.87; 19.2) (0.92; 18.6)

Table 8.1.: Quantitative validation result for each observable. For each code and field
direction (indicated by (+) for forward field and (−) for reversed field), the 3 9
(‘normalised distance’, equation 8.13) and ( 9 (‘sensitivity’, equation 8.17) terms
are given. The normalised distance 3 9 gives the root-mean-square Z-score of the
difference between the experiment and simulation, with green cells indicating good
agreement (3 9 → 0) and red cells indicating poor agreement (3 9 → ∞, with the
colour scale limited to 3 9 ≤ 5.0). The sensitivity ( 9 indicates the precision of each
observable, with ( 9 → 0 for observables with high relative uncertainty and ( 9 → 1

for observables with low relative uncertainty. The combined level-of-agreement "
(equation 8.14 for 30 = 1.0 and � = 0.5) and the comparison quality & (equation
8.15) are given for the FHRP, TS, LFS-LP and for the overall validation.
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drift-reduced Braginskii equations, although both GBS and TOKAM3X omit electromagnetic
effects and GBS uses a different set of sheath boundary conditions [188]. The models use
different parallel discretisations – a fully non-aligned method in GBS, a locally field-aligned
method in GRILLIX (described in chapter 4) and a domain-decomposed flux-aligned method in
TOKAM3X. Additionally, while GRILLIX used the Braginskii resistivity and heat-conductivities
directly, GBS and TOKAM3X artificially modified these parameters to reduce computational
cost and improve numerical stability10. GBS increased the resistivity by a factor of 3 and
reduced the heat conductivities by a factor of between 20 and 4.8 (see section 4.1 of reference [2]
for details), while TOKAM3X increased the resistivity by a factor of 1.8 and reduced the heat
conductivities by a factor of 1.8. The simulations also used different heating sources – 170 kW

for GBS and only 30 kW for TOKAM3X, compared to 150 kW for GRILLIX and 150 kW of
Ohmic heating in TCV-X21 (of which ≈ 120 kW crossed the separatrix).
The different models had markedly different simulation results. In figure 8.21 we compare

poloidal snapshots of the plasma density, where we see that the scrape-off-layer filaments are
large in GBS, medium-sized in TOKAM3X and small in GRILLIX. This is likely due to the
increased resistivity used in GBS and TOKAM3X, since the resistivity affects the perpendicular
size of electrostatic perturbations [134]. Comparing the profiles (see figures in reference [2]),
we see that the models are not too dissimilar at the outboard midplane, but they predict
significantly different divertor profiles. We find that GBS captures more of the effect of toroidal
field reversal, especially for the density profiles, and also predicts parallel velocities closer to the
experiment – which is consistent with our interpretation that the parallel velocity in GRILLIX
is the primary cause of the disagreement in the target density profile. We also find that both
GBS and TOKAM3X predict extremely flat divertor electron temperature profiles. For GBS,
this is probably due to the reduced heat conductivity which changes the balance of parallel and
perpendicular transport. For TOKAM3X, the outboard midplane electron temperature profile
is also extremely flat so this might be due to the very low power source used in that simulation.
To help interpret and compare the validation results we used a validation metric which

summarises the agreement between simulation and experiment in terms of a single number11.
The methodology is described in reference [118] and in section 2 of reference [2]. For this
discussion we will briefly summarise it here. For each model, the level of agreement for each
observable (i.e. the plasma density measured by the FHRP, for instance) is quantified using the
RMS of the Z-scores for each measurement point

3 9 =

 1

#9

#9∑
8=1

(
4 9 ,8 − B 9 ,8

)2
Δ42

9 ,8
+ ΔB2

9 ,8


1/2

(8.13)

where 9 indicates some particular observable, and 4 9 ,8 and Δ4 9 ,8 are the experimental values
and uncertainties defined at some set of discrete measurement points 8 =

{
1, 2, ..., #9

}
. The

simulation result is assumed to be continuous and so is interpolated to the experimental

10A discussion on why this is particularly necessary for electrostatic models is given in reference [189] and also
in section III.E of reference [109].

11For more discussion of validation metrics and why they are useful, see references [127, 168].
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measurement positions, giving computed values B 9 ,8 and uncertainties ΔB 9 ,8. However, for this
study, we didn’t calculate simulation uncertainties, and so set ΔB = 0 for all observables and
models. The results from all observables are combined into a composite metric

" =

∑
9 '(3 9)�9( 9∑

9 �9( 9
(8.14)

which returns values between 0 (perfect agreement) and 1 (disagreement), and a ‘quality’

& =

∑
9

�9( 9 (8.15)

Here, ' is a smooth-step function (with constants 30 = 1 and � = 0.5)

'(3 9) =
tanh

[ (
3 9 − 1/3 9 − 30

)
/�

]
+ 1

2
(8.16)

( 9 is the ‘sensitivity’ which gives a measure of the total relative uncertainty

( 9 = exp

(
−
∑
8 Δ4 9 ,8 +

∑
8 ΔB 9 ,8∑

8 |4 9 ,8 | +
∑
8 |B 9 ,8 |

)
(8.17)

and �9 is a ‘primacy hierarchy’

�9 =
[
ℎ�G? + ℎ(8< − 1

]−1
9

(8.18)

defined in terms of two manually-set hierarchies, given in table 1 of reference [2]. The hierarchies
are chosen to increase the weight of direct measurements (i.e. the plasma density for ℎ(8<
or the ion saturation current for ℎ�G?) in the calculation of the composite metric, compared
to observables which have to be calculated from a model (i.e. @‖ for both ℎ(8< and ℎ�G?)12.
The results of the validation analysis for the midplane probe, the divertor entrance Thomson
scattering and the low-field-side Langmuir probes are shown in table 8.1, as well as the overall
validation result. We see that the validation metric gives a similar result to what we found by
directly comparing profiles – namely, that the match is better at the outboard midplane and
divertor entrance. Despite achieving an impressive match at the OMP and divertor entrance, the
large number of poorly-matched observables in the divertor means that the overall quantitative
result for GRILLIX of " = 0.83 in forward-field and " = 0.87 in reversed-field is about the
same as for TORPEX (" = 0.85). Nevertheless, the forward-field result for GRILLIX gives the
highest level-of-agreement from amongst the codes and the reversed-field gives a similar result
to GBS (" = 0.86). Therefore, from the qualitative metric, we can safely say that GRILLIX
is performing at least as well or better than the other models. Combined with the fact that
GRILLIX was also able to perform simulations without relaxed parameters and at a higher
poloidal resolution than the other models, this result suggests that the locally-field-aligned
method used by GRILLIX is both accurate and computationally efficient.
12The simulation hierarchies should be updated if validating, say, a gyrofluid model which calculates the heat

flux directly.
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8. Validation against the TCV-X21 diverted tokamak scenario

8.8. Future validations

This validation gives confidence in the predictive capabilities of GRILLIX and shows how
the model can be improved further. Since the TCV-X21 validation case has been publicly
documented and released, it is much faster to perform repeat validations against this case.
This lets us quickly try new features and to see whether they are giving an improved result,
using the model testing cycle shown in figure 6.1. We’ve just performed the first iteration
of this cycle for TCV-X21 and are already in a second iteration testing a diffusive neutrals
model (discussed in section 9.2). This should help us rapidly improve the fidelity of the
model at minimal computational cost (since TCV-X21 is small). Then, we’ll need to work
towards more challenging, more reactor-relevant validations. For this, we need well-diagnosed
experimental cases, in challenging scenarios like advanced divertor configurations, high-recycling
conditions or in H-mode, and on larger machines like full-size TCV, ASDEX Upgrade and
JET. With a combination of luck and hard work we’ll be able to quantitatively match the
divertor measurements in TCV-X21 in the near future, and so should already start to work with
experimentalists to build the stepping-stones to reactor-relevant simulations.
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Part IV.

Summary and Outlook
I may not have gone where I intended to go, but I
think I have ended up where I needed to be.

(Douglas Adams)
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9. Summary and outlook

Realistic turbulence simulations of the edge and divertor will play an important role in the
development of fusion as a practical source of energy. These simulations will let us study in
extreme detail the dynamics of crucial processes such as detachment or the formation and
evolution of edge transport barriers, as well as potentially identifying new effects which could
lead to improved reactor performance. For this, we need to develop models which are able to
accurately reproduce the complex dynamics of the edge. Realistic simulations need to capture
many important interacting physical processes in the edge – such as turbulent plasma flows,
sheath effects at the walls, neutral dynamics and the effect of diverted magnetic geometries.
At the same time, these simulations need to be computationally feasible, and ideally cheap
enough that we can perform repeat simulations over profile relaxation time-scales. This forces
us to make simplifying assumptions, which inevitably introduce errors, and so we need to
carefully balance the computational performance and accuracy of our models. We can assess the
accuracy of our numerical models by using the validation process. By comparing simulations
against experimental results, we can quantify the error in our simulations and the uncertainty in
predicted results. We can also analyse the results of a validation to guide model development and
highlight parts of the model which need additional work [168]. This can help to rapidly improve
the accuracy of our simulations while reducing unnecessary computational and development
costs. However, for the results of a validation to be meaningful we need to compare against
experimental cases which contain similar physics to the cases we want to investigate. As such,
to develop realistic turbulence models for the edge and divertor, we need to validate our models
in diverted geometry. Here, we develop and validate the GRILLIX turbulence model against a
diverted reference case, demonstrating that realistic and affordable turbulence simulations of
the edge are now possible.

9.1. Summary

In this thesis, we performed a first-of-a-kind comprehensive validation of a turbulence model
against the TCV-X21 diverted reference scenario. To achieve this, we extended the GRILLIX
turbulence model to permit simulations in realistic divertor geometries. We extended the
grid generation algorithm in GRILLIX to handle arbitrary axisymmetric magnetic geometries,
using a bicubic spline interpolator to calculate divergence-free magnetic field components from
numerically-defined poloidal flux functions. To handle various magnetic reconstruction formats
and to perform pre-processing steps such as identifying limiting flux surfaces, we implemented
the parallax-equilibrium grid preprocessor to interactively build standardised equilibrium
NetCDF files. These equilibrium files are developed to contain all of the information required
to automatically generate a simulation grid corresponding to a particular case, including the
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9. Summary and outlook

geometry of the divertor and first-wall. This thesis also investigated the challenges of setting
parallel boundary conditions in locally field-aligned codes. To reduce spurious cross-field diffu-
sion, GRILLIX uses adjoint parallel operators which require a toroidally-staggered grid. By
using a simple 1D advection model, we demonstrated that when combined with sheath boundary
conditions, this toroidal staggering can lead to dramatically different dynamics on neighbouring
field-lines, causing poloidal corrugations and numerical instabilities. To circumvent this issue,
we implemented an immersed boundary condition that smoothly applied boundary conditions
over a transition region, permitting numerically-stable simulations with the full GRILLIX model
in open field-line geometries. Together, these modifications enabled simulations of real diverted
fusion devices.

The extended model was used to perform a first-of-a-kind validation of the GRILLIX model
against the TCV-X21 diverted validation case. The simulations were performed with minimal
manual tuning, with the only free physics parameter being the density source rate. A remarkably
good agreement between simulation and experiment was found at the outboard midplane and
divertor entrance, with the simulations matching most of the mean and fluctuation profiles
within uncertainty. The positive match indicated that GRILLIX was accurately modelling
the dynamics of the edge and upstream scrape-off-layer, and so we implemented additional
numerical diagnostics to further investigate the dynamics. As a demonstration, we performed
an analysis of the simulated phase-shift and skewness to show that scrape-off-layer filaments
in TCV-X21 are being driven ballistically by a region of drift-wave turbulence in the outer
confined region. A further blob tracking algorithm and comparison against gas-puff-imaging
data is planned, to check that the model is accurately describing these coherent transport events.
Shifting our focus to the divertor targets, we found good agreement for the electron temperature,
for the parallel current density and its standard deviation, and for the forward-field electrostatic
potential. By contrast, the target density and the floating potential showed poor agreement. To
improve our match of the target profiles, we should develop a consistent set of conducting-sheath
boundary conditions and eliminate the finite-width boundary transition region. Since the edge is
a tightly-coupled system, this could also improve our description of the main plasma dynamics.
In particular, a more realistic potential boundary condition will improve our description of
divertor drifts (affecting cross-field transport) and modify the radial electric field across the
separatrix (affecting poloidal rotation and turbulence suppression in the edge).
In parallel to the GRILLIX validation, other edge turbulence models were also validated

against the experimental reference case within the TCV-X21 study [2]. This allowed for the
direct comparison of different models, which indicated that realistic resistivity and heat conduc-
tivities are required to accurately describe the divertor plasma. In contrast to the other codes,
GRILLIX was able to perform multiple simulations using realistic physical parameters and at a
higher poloidal resolution, which suggests that it had a lower computational cost. Despite a
lower cost, GRILLIX also achieved an equal-or-better overall match according to a quantitative
validation metric used in the study [2]. This demonstrates that local field-alignment enables
accurate and cost-effective edge turbulence simulations of existing devices, while still flexibly
handling diverted geometries.
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9. Summary and outlook

In addition to the TCV-X21 validation, a validation against an ‘X-point’ scenario in TORPEX
was performed [126]. Here, GRILLIX was able to reproduce the density profile reasonably
well, capturing an up-down asymmetry observed in the experiment. However, the electron
temperature was not matched and the power used in the simulations was significantly less than
in the experiment, suggesting that self-consistent neutral dynamics are required to model the
weakly-ionised plasma. Other participating codes (which also omitted neutrals) found similar
results – and so, despite a poor overall match, GRILLIX again achieved a slightly better result
according to the validation metric [126].

Despite focusing on the GRILLIX code, this thesis also contributed to other edge simulation
projects. The grid generation procedure was ported to the parallax library and is now as
standard by both GRILLIX and GENE-X users, requiring little to no user intervention once
the equilibrium files are developed. This has been used to perform GRILLIX and GENE-X
simulations in TCV and AUG [180, 2], as well as in alternative divertor configurations [62] and
negative triangularity cases. By flexibly handling arbitrary geometries, the procedure developed
in this thesis lets us study the interaction of turbulence & magnetic geometry and contribute to
active research topics aiming to improve our control of the edge. As well as helping to set up
GRILLIX and GENE-X simulations, this project has also helped to post-process them. The
routines developed for validation were developed into the general-purpose TorX library. This
library has a long and growing list of functionality – including efficient routines for plotting data,
converting to SI units, mapping data to measurement locations, lazy evaluation of large datasets,
Fourier analyses along straight field-line coordinates and vector operations and projections in
cylindrical coordinates. This makes it significantly easier to perform basic post-processing and
comparisons to experiments, while also enabling advanced analyses which help us to further
study the dynamics of the simulations.

Beyond GRILLIX and GENE-X, a subset of the TorX functionality was also released alongside
the TCV-X21 experimental and simulation data in a FAIR public repository, developed in
collaboration with SPC and Fair4Fusion. This repository is intended to make it easier for
other turbulence models to compare against the TCV-X21 dataset, which is in many ways
in-and-of-itself an experiment. By publicly sharing the dataset, we hope to encourage the
rigorous validation and open benchmarking of edge turbulence models, as well as encouraging
the development and public release of other validation datasets. Although it is too early to
see the impact of this work, a culture of collaboration and careful testing could dramatically
accelerate the development of edge turbulence modelling.

9.2. Outlook

The results of this landmark study demonstrate that GRILLIX can now perform realistic
simulations of real devices. We should now validate the model against cases with more reactor-
relevant physics and should use GRILLIX to help interpret experimental results. We will
continue to validate GRILLIX against TCV-X21 since – due to its low cost to simulate and
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9. Summary and outlook

Figure 9.1.: A comparison of the plasma and neutral density with and without neutrals (left and
centre plots), and the neutral density in the case with neutrals (right plot), from
simulations performed by Konrad Eder. The neutral density has been multiplied by
a factor of 10 to bring its values closer to the plasma density for plotting. In the
simulations with neutrals, the neutral density at the divertor targets has been fixed
at 1 × 1018m−3 (10% of the plasma density reference value).

excellent diagnostic coverage – we can rapidly test new features. Repeat validations have already
begun – testing a new version of GRILLIX which was heavily refactored for performance, which
also includes the diffusive neutrals model developed in reference [180]. An initial comparison of
the plasma density in simulations performed with and without neutrals is shown in figure 9.1,
where we see that the neutrals increase the target density (towards the experimental values).
Interestingly, the simulations with neutrals also have much more prominent scrape-off-layer
filaments, larger in-out asymmetries and a larger difference between forward- and reversed-field
simulations – indicating that the neutrals affect much more than just the density source. We
will also use TCV-X21 to explore new sets of sheath boundary conditions. From the validation
performed in this work, we have identified the need for consistent conducting-sheath boundary
conditions. Additionally, to avoid a feedback loop in the drift-corrected velocity boundary
conditions and to enable consistent recycling boundary conditions, we will extend the single
field-line model developed in section 4.5 to identify sets of boundary conditions which do not
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9. Summary and outlook

require a finite-width transition region. These will then be tested in TCV-X21, before being
applied to other validations and interpretive simulations.
Then, to continue developing GRILLIX towards reactor-relevant conditions, we need to

validate against cases at more challenging conditions. The first such step has already been taken
– GRILLIX was recently validated against an attached ASDEX Upgrade discharge in reference
[180], showing remarkably good agreement especially at the outboard midplane. Beyond this, we
should test the model under more challenging conditions, aiming to simulate detached cases, in
H-mode or ELM-free improved confinement regimes, and in large devices such as JET. For this,
the turbulence modelling community should work closely with experimental teams to develop
well-diagnosed common validation cases across a broad range of parameters, building a series of
‘stepping-stone’ cases towards reactor-relevant conditions. To simulate these more challenging
cases, we will need to continue to develop our physical and numerical models. We are exploring
a Landau-fluid closure [115] to calculate realistic heat fluxes at low collisionality, ion-orbit-losses
[190] to improve our description of the radial electric field, a Grad-Zhdanov closure [191] able to
model multiple ion species (including impurity ions which are important for radiative cooling
[192]) and an extension to 3D geometries including stellarators. Beyond this, we will need to
consider how to include kinetic effects for the plasma and neutrals, by coupling to another
code or by trying to capture these effects via effective models. Within this context, we will
continue to closely collaborate with GENE-X to develop a multi-fidelity approach and will use
validations to assess at which point the additional computational cost of a high-fidelity model is
justified. To simulate devices with larger magnetic fields and plasma volumes, we will also need
to improve the computational weak-scaling of GRILLIX. For this, the model has recently been
significantly refactored to reduce thread-branching, and we are currently developing a GPU
version for modern supercomputer architectures.

As well as developing and validating the model, we should apply GRILLIX to interpret and
predict fusion experiments. An obvious candidate would be a prediction of the ITER heat
flux, which could help to confirm or contradict existing predictions from turbulence models.
We could also use the flexible magnetic geometry handling to investigate the performance of
advanced divertors, predicting power-sharing in the SPARC double-null divertor [193] or – once
the model is extended to 3D – investigating detachment in the W7X island divertor [194, 39],
for example. At the same time, there is an abundance of unexplained and underexplained edge
phenomena already present in devices such as TCV and AUG. Already, we could use GRILLIX
to help interpret and augment experimental measurements – such as by providing )4/)8 for
Langmuir probe analyses, or calculating edge fluctuation levels for ECRH power deposition
models. Once the neutral model is extended, we will also be able to investigate the dynamics of
the detachment front and X-point radiator. The model could also be extended to reproduce
the L-H transition and ELMs, which would let us directly observe the evolution of the edge
transport barrier and pedestal, study the effects of ELM mitigation, and investigate ELM-free
improved-confinement regimes. The positive results in this thesis and the accelerating rate at
which the model is being developed suggest that such studies will soon be possible, promising
to significantly improve our understanding and control of the edge.

130



9. Summary and outlook

9.3. Conclusion

This thesis extended the GRILLIX fluid-turbulence model to enable realistic and efficient
simulations in real divertor geometries. By validating the extended model against experiment,
we demonstrated that efficient simulations of the divertor & scrape-off-layer are now possible and
already remarkably realistic. The results of this and future validations will be used to accelerate
the development of GRILLIX, further improving the accuracy of the model. This will establish
GRILLIX as a tool for studying and exploring edge phenomena in existing devices and bring
validated reactor-relevant simulations within reach. Accurate, validated and computationally-
efficient simulations of the edge will lead to breakthroughs in our understanding and control of
the edge, which will in turn help to develop fusion as a practical source of energy.
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Appendices
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A. Normalised equations

In GRILLIX, the equations are normalised by selecting a number of reference parameters, and
then dividing the equations to arrive at a dimensionless form. The symbol ~ (\circledast ) is
used to indicate a reference value, and ∅ (\varnothing ) is used to indicate a dimensionless
value. The normalisation module in the TorX library can help with calculating dimensionless
values from reference parameters. Note that we always use SI units, except for the temperatures
which are expressed as an equivalent energy in electron-volts. Wherever we write ), we implicitly
mean :�) where :� = 11 605K eV−1 is the Boltzmann constant. Note that several plasma
physics texts use c.g.s. + eV units. See the NRL plasma formulary for converting between
different systems of units. The reference and/or normalisation parameters are:

'~ [m] major radius of the magnetic axis, used to normalise the length-scale
parallel to the magnetic field

�B~ = 1
4�~

√
)~
<8

[m] reference sound Larmor radius, used to normalise the length-scale per-
pendicular to the magnetic field

C~ = '~/2B~ [s] reference time-scale, used to normalise time-scales
�~ [T] on-axis magnetic field strength
=~

[
m−3

]
reference density, usually taken at the outboard-midplane separatrix

)~ [eV] reference temperature, usually taken at the outboard-midplane separatrix
)~ = )~/4 [V] reference electrostatic potential

2B~ =
√
)~/<8

[
ms−1

] reference velocity, defined as the ion sound speed at the reference tem-
perature

4=~2B~
[
Am−2

]
reference current density

�4∅�~�B~ [Tm] reference vector potential, with �4∅ defined below

lnΛ~ [−] reference Coulomb logarithm, defined as 6.6−0.5 ln
(

=~
1020m−3

)
+1.5 ln

(
)4~
1eV

)
.

Note that we always use lnΛ~ instead of lnΛ, since it changes slowly.

�4~ = �̃4
<0.5
4 )1.5

~
lnΛ=~

[s] reference electron collision time, defined such that �4 = �4~
()4/)~)1.5
(=/=~) , with

�̃4 = 3.605 × 1026 s/
(
kg0.5 eV1.5m3

)
.

�8~ = �̃8
<0.5
8
)1.5
~

lnΛ=~
[s] reference ion collision time, defined such that �8 = �8~

()8/)~)1.5
(=/=~) , with

�̃8 =
√
2�̃4 .
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A. Normalised equations

The dimensionless parameters are:

� = '0/�B~ ratio of parallel to perpendicular length scales

�4∅ = E2�~/2
2
B~

electron dynamical beta, using the reference sound speed and reference
Alfvén velocity E�~ = �~/(�0=~<8)

<4/<8 electron-to-ion mass ratio

�4∅ =
√

<8

<4

�4~
C~

normalised reference electron collision time, with an additional factor√
<8

<4
so that both �4 and �8 depend on the ion mass

�8∅ =
�8~
C~

normalised reference ion collision time
�‖∅ = 0.51/�4∅ normalised Spitzer resistivity
"‖4∅ = 3.16�4∅ normalised parallel electron heat conductivity
"‖8∅ = 3.9�8∅ normalised parallel ion heat conductivity
�8∅ = 0.96�8∅ normalised ion viscosity, which scales the ion stress function �

We write the component of the ion viscosity which remains after diamagnetic cancellation in
terms of the ion viscous stress function [129]

� = −�80
[

2

�3/2∇ ·
(
D‖�

3/2b̂
)
− 1

2

(
�()) + 1

4=
�

(
?8

) )]
(A.1)

where �80 = 0.96=)8�8.
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A. Normalised equations

This lets us write the final equation set in terms of normalised values.
Continuity equation[

%

%C
+ u�×� · ∇

]
= = −=

(
∇ × b̂

�

)
· ∇) −

(
∇ × b̂

�

)
· ∇?4 + ∇ ·

(
9‖ − =D‖

)
b̂ (A.2)

Quasineutrality equation

∇ · =
�2

[
%

%C
+ D‖∇‖ + u�×� · ∇

] (
∇⊥) +

∇⊥?8
=

)
= ∇ · 9‖b̂ +

(
∇ × b̂

�

)
· ∇⊥

(
?4 + ?8

)
− 1

6

(
∇ × b̂

�

)
· ∇� (A.3)

Parallel momentum equation[
%

%C
+ u�×� · ∇ + D‖∇‖

]
D‖ = −

1

=
∇‖

(
?4 + ?8

)
+ )8

(
∇ × b̂

�

)
· ∇D‖ −

2

3

�3/2

=
∇‖

�

�3/2 (A.4)

Ohm’s law

<4

<8

[
%

%C
+ u�×� · ∇ + E‖∇‖

]
9‖
=
+ �4~

%�‖
%C

=
∇‖?4
=
− ∇‖) −

�‖∅

)
3/2
4

9‖ + 0.71∇‖)4 (A.5)

Electron temperature equation

3

2

[
%

%C
+ u�×� · ∇ + E‖∇‖

]
)4 = − )4
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∇ × b̂

�

)
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1

=

(
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�

)
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)
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=
∇ ·
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Ion temperature equation

3

2
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%

%C
+ u�×� · ∇ + D‖∇‖

]
)8 = − )8
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∇ × b̂

�

)
· ∇) + ∇ · D‖b̂ +

1

=
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�

)
· ∇?4

)
+ 1

=
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"‖8∅)

5/2
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· ∇)8
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3<4

<8

()4 − )8)
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3/2
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3=�8∅
+ S)8 (A.7)

Ampere’s law

∇2⊥�‖ = 9‖ (A.8)
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B. Useful formulas

General vector identities. 5 is an arbitrary scalar function, and � and � are arbitrary vector
functions.

Scalar triple product (a × b) · c = (b × c) · a = (c × a) · b (B.1)

Reversing a cross-product a × b = −b × a (B.2)

Expanding a cross-product w. ê1 × ê2 = ê3 a × b =

������ ê1 ê2 ê3
01 02 03
11 12 13

������ (B.3)

Vector triple product (a × b) × c = (a · c)b − (b · c)a (B.4)

Divergence of a scalar-vector product ∇ · ( 5G) = 5∇ · G + G · ∇ 5 (B.5)

Curl of a scalar-vector product ∇ × ( 5G) = 5∇ × G + (∇ 5 ) × G (B.6)

Divergence of a cross-product ∇ · (G × H) = H · (∇ × G) − G · (∇ × H) (B.7)

Curl of a cross-product ∇ × (G × H) = G(∇ · H) − H(∇ · G) (B.8)

+ (H · ∇)G − (G · ∇)H (B.9)

Divergence of a gradient ∇ · (∇ 5 ) = ∇2 5 (B.10)

Curl of a gradient ∇ × (∇ 5 ) = 0 (B.11)

Divergence of a curl ∇ · (∇ × G) = 0 (B.12)

Curl of a curl ∇ × (∇ × G) = ∇(∇ · G) − ∇2G (B.13)

Gauß’s theorem
∫
V
(∇ · G)3V =

∮
%V

G · 3S (B.14)

Stoke’s theorem
∫
S
(∇ × G) · 3S =

∮
%S

G · 3; (B.15)

(B.16)

GRILLIX-specific formulas. H = �b̂ is the magnetic field vector, which points in the direction b̂

and has a magnitude �.

Drift operator
1

�
b̂ × (G × H) = G − G · b = G⊥ (B.17)

Curvature operator K( 5 ) = −∇ ·
(
b̂ × ∇ 5
�

)
= −

(
∇ × b̂

�

)
· ∇ 5 (B.18)
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B. Useful formulas

Coordinate systems

|∇G | = |∇H | = |∇I | = 1 (Cartesian) (B.19)

|∇' | = 1, |∇) | = 1

'
, |∇/ | = 1 (Cylindrical) (B.20)

|∇' | = 1, |∇� | = |∇) | = 1

'
(Spherical) (B.21)

In Cylindrical coordinates:

Gradient ∇ 5 =
% 5

%'
R̂ + 1

'

% 5

%)
)̂ +

% 5

%/
Ẑ (B.22)

Divergence ∇ · G =
1

'

% ('G')
%'

+ 1

'

%G)

%)
+ %G/

%/
(B.23)

Curl ∇ × G =
1

'

�������
R̂ ')̂ Ẑ
%
%'

%
%)

%
%/

�' '�) �/

������� (B.24)

=
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1

'

%�/
%)
−
%�)

%/

)
'̂ +

(
%�'
%/
− %�/

%'

)
)̂ + 1

'

(
%
(
'�)

)
%'

− %�'
%)

)
/̂

(B.25)

Laplacian ∇2 5 = 1

'

%

%'

(
'
% 5

%'

)
+ 1

'2

%2 5

%)2
+
%2 5

%/2
(B.26)

Differential length 3l = 3'R̂ + '3))̂ + 3/Ẑ (B.27)

Differential area 3Y = '3)3/R̂ + 3'3/)̂ + '3'3)Ẑ (B.28)

Differential volume 3\ = '3'3)3/ (B.29)
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C. Additional results

C.1. Deriving the electron temperature equation

Starting from the Braginskii )4 equation (2.38)

3

2
=

[
%

%C
+ v · ∇

]
)4 + ?4∇ · v = −∇ · q4 + (&4 −&48) + S�4 (C.1)

with

v = u�×� + v380 +
(
D‖ −

9‖
4=

)
b̂ (C.2)

u = u�×� + u380 + u?>; + D‖b̂ (C.3)

q4 = −"‖ ,4∇‖)4 b̂ −
5

2

?4

4�
b̂ × ∇)4 − 0.71

1

4
)4 9‖b̂ (C.4)

&4 = (D‖ − E‖)'‖ = �‖ 9
2
‖ − 0.71

1

4
9‖∇)4 (C.5)

&48 =
3<4

<8

= ()4 − )8)
�4

(C.6)

The perpendicular heat flux can be rewritten using identify B.7 as
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Then, using identity B.5 to expand the ∇ × ?4
4� b̂ term
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Assuming that we can commute 1
� through the derivative and recognising the electron diamagnetic

velocity (2.47) we can write this as
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We can also combine the terms related to the thermal force using identity B.5
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We then combine the 3
2v380 · ∇)4 from the LHS with the 5

2v380 · ∇)4 term from the perpendicular
heat flux, giving a v380 · ∇)4 on the RHS. By using the expression for the electron diamagnetic
velocity v380 =

−b̂×∇(=)4 )
4=� , the chain rule and identities B.1 and B.2, we can rewrite this as
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We are allowed to add back in a term )4

(
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· ∇=, since this will be zero.
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This is then combined with the −)4∇ · E380 term using identity B.5 to give
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=
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This gives the final form of the electron temperature equation (2.67)
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or, using the expressions for the perpendicular velocities

3

2

[
%

%C
+ u�×� · ∇ + E‖∇‖

]
)4 = − )4

((
∇ × b̂

�

)
· ∇) + ∇ · E‖b̂ +

1

=

(
∇ × b̂

�

)
· ∇?4

)
+ 1

=
∇ ·

[
"‖ ,4∇‖)4 b̂

]
+ 5

2

)4

4

(
∇ × b̂

�

)
· ∇)4

+ 0.71

4

)4

=
∇ · 9‖b̂ +

1

=
�‖ 9

2
‖ −

3<4

<8

()4 − )8)
�4

+ S)4 (C.22)

139



C. Additional results

C.2. Deriving the ion temperature equation

Starting from the Braginskii )8 equation (2.39)
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with v, u and &48 defined in the previous section and
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Following the same procedure as in the previous section, we can write
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where the � term comes from the component of the ion viscosity tensor which remains after
diamagnetic cancellation. Like always, we drop u?>; from the advective derivative, since this
term is difficult to deal with numerically. However, we also have a ∇ · u?>; term, and since it’s
under a divergence we should not neglect it. To simplify this term, we can use the fact that due
to quasineutrality %=

%C + ∇ · (=u) =
%=
%C + ∇ · (=v) = 0. We can therefore rewrite a divergence of

the ion flux in terms of a divergence of the electron flux.
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We use identity B.5 to rewrite the terms with 9‖ as 1
=

(
=∇ · 9‖4= b̂ + 9‖
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)
= 1
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9‖
4 b̂. Then, we

combine the terms with the electron and ion diamagnetic velocities, using the form of the ion
diamagnetic velocity u380 =

b̂×∇(=)4 )
4=� and the electron diamagnetic velocity given in the previous

section. We can use equation C.18 (replacing )4 with )8) to cancel

u380 · ∇)8 +
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which simplifies the diamagnetic terms in equation C.25 (using identity B.5) to
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This gives the final form of the ion temperature equation (2.71)
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which has the electron diamagnetic velocity v380 in the first line. We can also write this using
the expressions for the perpendicular velocities
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C.3. Testing other boundary conditions with 1D advection

We can use the 1D advection model in section 4.5 to quickly test other boundary conditions.
In figure C.1, we show the corresponding scan using Bohm and constant flux boundary condi-
tions. The Bohm condition is implemented taking the maximum of the sonic velocity and the
extrapolated velocity (or the minimum, at the opposite boundary). The constant flux boundary
condition sets =4GC4A8>A = Γ1>D=30AH/D4GC4A8>A = =1>D=30AH · D1>D=30AH/D4GC4A8>A . It is seen that the
corrugations in figure C.1 are much less pronounced than in figure 4.6, but still visible. As a
point of curiosity, we can reduce the corrugations further by applying the velocity boundary
condition to any vector-grid-points outside the outermost scalar-grid-point (even if those points
are within the boundary), giving figure C.2 – which introduces an error dependent on the
grid-spacing, but which eliminates the stencil collapse issue.

In general, this highlights the need to consider the boundary conditions as a coupled system.
It also suggests that we might be able to improve the situation by treating points near the
boundary exceptionally. In future work, we will extend the simple 1D model to include the
parallel components of the other equations. We will then try to set the boundary conditions via
Taylor or Padé approximations, aiming to identify a set which gives a continuous solution as we
scan the boundary position.
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C. Additional results

Figure C.1.: Density and velocity profiles after 100 time-steps of the advection equations, using
Bohm and constant flux boundary conditions.

142



C. Additional results

Figure C.2.: Density and velocity profiles after 100 time-steps of the advection equations, using
Bohm and constant flux boundary conditions. For this case, if the boundary is
vector-grid-adjacent, it is shifted until it is scalar-grid-adjacent. This leads to an
error dependent on the grid-spacing, but it ensures that the velocity boundary
condition is directly involved in the density evolution stencil.
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D. parallax-standard equilibrium NetCDF

The parallax-equilibrium code writes NetCDF files which have a tightly defined structure,
to reduce the amount of work which needs to be done by parallax. Each equilibrium file will
have the following global attributes

• description: a short tag explaining where the equilibrium file came from, the shot
number and time, and any other relevant information

• build_url: https://gitlab.mpcdf.mpg.de/phoenix/parallax_equilibrium

• build_hash: the git hash of pxequi used to construct this equilibrium

• history: date and time of file creation

• author: email address of the user who made the equilibrium

• smoother: details of the numerical smoother used, if any

• version: an optional tag which indicates which version of parallax this file is compatible
with

The equilibrium data is separated into NetCDF groups. The groups and their contents are

• Magnetic_geometry

– psi: The poloidal flux function Ψ(', /) in units of Weber, defined over a rectangular
(', /) grid

– btor: (optional) The toroidal field �)(', /) in Tesla, defined over the same rectan-
gular (', /) grid as psi

– R: normalised radial positions '/'0 where values of Ψ and �) are given

– Z: normalised vertical positions '/'0 where values of Ψ and �) are given

– axis_Btor: toroidal magnetic field at the magnetic axis �)('0 , /0), in units of Tesla

– magnetic_axis_R and magnetic_axis_Z: radial and vertical position of the magnetic
axis '0 , /0, in units of metres

– x_point_R and x_point_Z: radial and vertical position of the X-point(s) '- , /- , in
units of metres. Not used by parallax, but useful for post-processing. For equilibria
with multiple X-points, these can be given as a list.

• Psi_limits
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D. parallax-standard equilibrium NetCDF

– psi_axis: the poloidal magnetic flux at the magnetic axis Ψ0, in Weber

– psi_separatrix: the poloidal magnetic flux at the separatrix (or equivalently, at
the primary X-point) Ψ- , in Weber

– rho_min: the limiting flux-surface used to exclude the core, usually �<8= = 0.9. Given
as a value of the normalised poloidal flux �.

– rho_max: the limiting flux-surface used to avoid glancing-angle parallel boundary
conditions at the first wall, usually approximately the outermost flux surface which
intersects only the divertors and not the first-wall. Given as a value of the normalised
poloidal flux �.

– sub-groups used for applying additional flux-limits within a polygon. The name of
the group is not used by parallax and so can be used to identify the purpose of the
flux limit – i.e. privflux is usually used for the private-flux region in a single-null
configuration. The group should contain

∗ R_points and Z_points: arrays defining the '/'0 and //'0 points of the
polygon, normalised to the magnetic axis radius '0

∗ invert: whether the flux-limit should be applied for points inside the polygon
or outside the polygon

∗ use_local_max and use_local_min: boolean flags used to defined whether the
polygon defines a minimum or maximum � limiting flux-surface

∗ local_rho_min or local_rho_max: (optional if boolean flag is false) float
values which give the limiting flux-surface value to be applied within the polygon.
Given as values of the normalised poloidal flux �.

• Grid_limits

– grid_rmin, grid_rmax, grid_zmin and grid_zmax: floats defining the range From
which points should be sampled for the numerical grid, normalised to the magnetic
axis radius '0.

– spline_rmin, spline_rmax, spline_zmin and spline_zmax: floats defining the
extent of the grid of Ψ values, normalised to the magnetic axis radius '0. Not used
by parallax, but useful for documentation.

• divertor_polygon and exclusion_polygon: Polygons which define the divertor-first-wall
polygon and the exclusion polygon (see previous section). Each polygon group contains

– R_points and Z_points: arrays defining the '/'0 and //'0 points of the polygon,
normalised to the magnetic axis radius '0

– invert: whether points inside of the polygon should be considered as the ‘interior’
or the ‘exterior’.
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