Fakultat fir Elektrotechnik und Informationstechnik
Technische Universitat Minchen

Coherence-on-Demand and Hybrid Eviction Policies for
Multiprocessor System-on-Chip Architectures

Akshay Sateesh Srivatsa

Vollstandiger Abdruck der von der Fakultét fiir Elektrotechnik und Informationstechnik
der Technischen Universitdt Miinchen zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr.-Ing. Ulf Schlichtmann

Priifende der Dissertation:
1. Prof. Dr. sc.techn. Andreas Herkersdorf
2. Prof. Dr.-Ing. habil. Wolfgang Schréder-Preikschat,
Friedrich-Alexander-Universitat (FAU) Erlangen-Niirnberg

Die Dissertation wurde am 17.01.2022 bei der Technischen Universitdt Miinchen
eingereicht und durch die Fakultat fiir Elektrotechnik und Informationstechnik am
07.07.2022 angenommen.

Abstract

The increase in performance of modern computing systems can be briefly credited to
two driving forces. One, the advancements in semi-conductor manufacturing technology,
which have significantly increased the number of transistors on a chip by leveraging Den-
nard Scaling and Moore’s Law. Two, the advancements in transistor-technology agnostic
optimization techniques, which have led to innovative computer (micro)architecture de-
signs that efficiently utilize the transistors on a chip. However, with the end of Dennard
Scaling and slowing of Moore’s Law, the “optimization-spotlight” is ever-more on en-
hancing the architecture of computing systems. Further, it is becoming increasingly
clear that solely optimizing the processor architecture is not sufficient, and interfaces
around it, like the memory subsystem also need to be considered jointly. This the-
sis proposes two computer architecture concepts, both directed towards optimizing the
memory subsystem of large computing platforms.

The first contribution is an alternative hardware-based cache coherence methodol-
ogy for ever-growing tile-based manycore architectures. The motivation is that a single
application rarely utilizes all processing and memory resources of a manycore system.
This questions the need for global coherence which consumes substantial hardware area
overheads, leading to scalability issues. This thesis proposes a Region-based Cache
Coherence (RBCC) concept that provides scalable and flexible inter-tile coherence for
tile-based manycore systems. RBCC introduces the notion of coherence regions, which
comprise a sub-cluster of tiles that are guaranteed to be cache coherent. By confin-
ing inter-tile coherence support to within coherence regions, RBCC significantly reduces
the required book-keeping overheads compared to global coherence schemes (73% area
reduction assuming a 64-tile system with a maximum coherence region size of 8-tiles).
RBCC’s coherence regions are also designed to be flexible. They can be created, dis-
solved, re-sized or even re-located at run-time based on the application’s requirements,
thereby establishing a coherence-on-demand environment. The performance of RBCC-
enabled inter-tile coherence is evaluated against software-based alternatives for different
workloads. Results show that workloads execute faster when using hardware-supported
coherence (by up to 45%), compared to the software alternatives.

The second contribution focuses on efficient data management for cache memories.
The need for quick memory accesses coupled with limited cache capacities highlight
the importance of eviction policies. Modern applications tend to exhibit non-uniform
memory access patterns, which are further amplified when several such applications
are executing simultaneously. As a consequence, the caches experience highly irregular
memory access patterns, making it nearly impossible for a single eviction policy to
manage cache data efficiently. This thesis introduces a Hybrid Voting-based Eviction
Policy (HyVE) that enhances cache data management by considering several eviction

iii

Abstract

criteria. HyVE is a modular framework that fuses multiple standalone eviction policies
together, and evaluates their individual decisions using voting theory. The concept
of HyVE has been explored for Last Level Caches (LLCs) as well as sparse directory
structures. For LLCs, results show that HyVE reduces the cache misses by up to 25%
compared to its standalone counterparts. The performance of HyVE has also been
evaluated against state-of-the-art (hybrid and learning-based) eviction policies, which
show both improvements and deterioration. For sparse directories, results show that
HyVE reduces the coherence traffic and execution time of workloads by up to 11%
compared to the LRU policy.

The experimental evaluations of both research contributions, RBCC and HyVE have
been performed on simulation as-well-as an FPGA-based prototyping platform.

iv

Zusammenfassung

Den Leistungszuwachs in modernen Computersystemen kann zwei treibenden Kraften
zugeschrieben werden. Einerseits, dem Fortschritt in der Halbleitertechnologie, welches
zu einer hoheren Anzahl an Transistoren auf einem Chip fiihrte (Dennard Scaling und
Moore’s Law). Andererseits, transistor-technologieunabhéngige Verbesserungen, welche
zu innovativen Computerarchitekturentwiirfen und eine bessere Nutzung der vorhan-
denen Transistoren fiihrt. Allerdings, mit dem Ende von Dennard Scaling und der
Verlangsamung von Moores Law, liegt der Fokus immer mehr an der Verbesserung der
Architektur von Computersystemen. Optimierung der Prozessorarchitektur allein reicht
allerdings nicht aus und Schnittstellen, wie das Speicher-Subsystem sollten ebenfalls
berticksichtigt werden. Diese Thesis schlagt zwei Computerarchitektur-Konzepte vor,
beide haben das Ziel das Speicher-Subsystem in groffen Computerplattformen zu opti-
mieren.

Der erste Beitrag ist ein alternative hardwarebasierte Cache-Koharenz Methode fiir
wachsende kachelbasierte Mehrkernsysteme. Die Motivation dahinter ist, dass eine
einzige Applikation selten alle Rechen- und Speicherressourcen eines Mehrkernsystem
ausnutzen kann. Dies stellt in Frage, ob eine globale Koharenz bendtigt wird, welche
zu einem Hardwaremehraufwand und Skalierungsproblemen fiihrt. Diese Arbeit schlagt
eine Region-based Cache Coherence (RBCC) vor, welche eine skalierbare und flexible
Kohéarenz zwischen Kacheln in einem grofien kachelbasierte Mehrkernsysteme erméglicht.
RBCC fiihrt das Konzept von Kohérernzregionen ein, in denen Untergruppen von Kachel
gebildet werden konnen, fiir welche Cache-Kohdrenz garantiert werden kann. Durch
beschréanken der Inter-Kachelkohérenz auf innerhalb einer Kohéarenzregion, verringert
RBCC den Mehraufwand, welches eine globales Kohérenzschema aufweist (73% Fliachen-
Reduzierung in einem 64-Kachel System mit einer maximalen Koharenzregion von 8-
Kacheln). RBCC’s Kohérenzregionen wurden entwickelt um flexibel zu sein. Je nach
Anforderung der Applikation konnen sie wiahrend der Laufzeit erstellt, aufgelost, deren
Grofle angepasst und verlagert werde. Somit wird eine coherence-on-demand Umge-
bung erstellt. Die Leistung von RBCC wird gegeniiber softwarebasierten Alternativen
fiir verschiedene Arbeitslasten ausgewertet. Die Ergebnisse zeigen, dass Arbeitslasten
mit hardwareunterstiitzten Koharenz bis zu 45% schneller sind, verglichen zu Software-
Alternativen.

Der zweite Beitrag fokussiert sich auf effiziente Datenverwaltung fiir Cache-Speicher.
Die Anforderung fiir schnelle Speicherzugriffe gekoppelt mit begrenzter Cachekapazitat
verdeutlicht die Wichtigkeit von Rdumungsstrategien (eviction policies). Moderne An-
wendungen tendieren zu uneinheitlich Speicherzugriffe, welche noch weiter verstérkt
werden, wenn mehrere solche Anwendungen gleichzeitig ausgefiihrt werden. Dies hat
zu Folge, dass Caches sehr irregulare Speicherzugriffsmuster aufweisen, was es flr eine

Zusammenfassung

einzige R&umungsstrategie nahezu unmoglich macht die Daten im, Cache effizient zu ver-
walten. Diese Thesis fithrt eine Hybrid Voting-based Eviction Policy (HyVE) ein, welche
die Datenverwaltung in Caches mit mehreren Raumungsstrategien erweitert. HyVE ist
ein modulares Framework, welches verschiedene Raumungsstrategien kombiniert indem
es dessen einzelnen Entscheidungen mit Hilfe von Wahltheorie (voting theory) evaluiert.
Das Konzept von HyVE wurde fiir sowohl Last Level Caches (LLCs), als auch Sparliche
Verzeichnis-Strukturen (sparse directory structures) erforscht. Die Ergebnisse fiir LLCs
zeigen, dass HyVE die Anzahl an Cache um bis zu 25% verringert, im Vergleich zu
einzelnen Radumungsstrategien. HyVE wurde auch zu anderen Raumungsstrategien auf
neustem Stand der Technik verglichen und zeigt Verbesserungen und Verschlechterun-
gen auf. Die Ergebnisse fiir spare directories zeigen, dass der Kohéarenzverkehr und die
Laufzeit der Arbeitslast um bis zu 11% abnehmen im Vergleich zur Least Recently Used
(LRU) Strategie.

Die experimentelle Evaluation beider Forschungsbeitrige, RBCC und HyVE wur-
den mit sowohl Simulationen, als auch mit Field Programmable Gate Array (FPGA)-
basierten Prototyp.

vi

Contents

Abstract ili
Zusammenfassung v
Contents vii
List of Figures xi
List of Tables Xv
Glossary xvii
Acronyms Xix
1 Introduction 1
1.1 Background 1
1.1.1 The Walls of Computer Architecture 1

1.1.2 Cache Memories e 2

1.1.3 The Evolution of Manycore Architectures 2

1.1.4 The Need for Cache Coherence 3

1.1.5 Cache Data Management)

1.1.6 Resource-Aware Computing 5

1.2 Problem Statements 6
1.2.1 Scalable Cache Coherence 6

1.2.2 Optimizing Cache Data Management 7

1.3 Contributions 7
1.3.1 Region-based Cache Coherence (RBCC) 7

1.3.2 Hybrid Voting-based Eviction Policy (HyVE) 8

1.4 Organization 8

2 State of the Art 9
2.1 Cache Coherence e 9
2.1.1 No Hardware Coherence Support 10

2.1.1.1 MPI-based Communication 10

2.1.1.2 Software-based Coherence Schemes 10

2.1.2 Hardware Coherence Support 11

2.1.2.1 Overcoming Scalability Limitations 12

vii

CONTENTS

viii

2.1.2.2 Alternatives to Global Coherence 12

2.1.3 How is RBCC Different? 14

2.2 Eviction Policies e 15
2.2.1 Standalone Cache Eviction Policies 16
2.2.2 Hybrid Cache Eviction Policies 17
2.2.3 Learning-based Cache Eviction Policies 18
2.2.4 Eviction Policies for Sparse Directories 19
2.2.5 How is HyVE Different? 20
Region-based Cache Coherence (RBCC) 21
3.1 The RBCC Concept it i 21
3.1.1 Target Architecture 21

3.2 RBCC Features i e e 22
3.2.1 Scalability 22
3.2.2 Flexibility 24
3.2.3 Coherence-on-Demand 26
3.2.4 Auxiliary Features 26

3.3 RBCCDesign s 27
3.3.1 The Coherence Region Manager (CRM) 27
3.3.2 Architectural Design 27
3.3.3 The CRM and its Sub-modules 28

3.4 RBCC Functionality 30
3.4.1 Coherence Region Configuration 30
3.4.2 Coherence-on-Demand: RBCC-malloc() 32
3.4.3 Coherence Operations 33
3.4.4 Coherence Barrier Mechanism 34
3.4.5 False Sharing Resolution, 36
3.4.6 Auxiliary Functions 38

3.5 Concept Evaluation - High-Level Simulation 39
3.5.1 Simulation Framework L. 39
3.5.1.1 Extracting Traces from the Gemb Simulator 40

3.5.1.2 Data Placement Strategies 41

3.5.2 Experimental Setup 41
3.5.3 Resultsand Analysis 42

3.6 Hardware Implementation and Evaluation - FPGA Prototype 44
3.6.1 Hardware Setup 44
3.6.2 FPGA Resource Utilization and Timing 44
3.6.3 Experimental Setup L. 48
3.6.4 Results and Analysiso 49
3.6.4.1 RBCC mode versus MP mode 51

3.6.4.2 Run-time Re-configuration Analysis 55

3.6.4.3 RBCC-malloc() Analysis 58

3.7 Enabling Shared Memory Workloads 60
3.7.1 Two Methodologies for Shared Memory Programming 60

CONTENTS

3.7.2 Experimental Setup and Evaluation 61

3.8 Additional Case-Study - RBCC and In-NoC Circuits (INCs) 62
3.8.1 Concept e 62
3.8.2 Experimental Setup and Evaluation 63
Hybrid Voting-based Eviction Policy (HyVE) 65
4.1 The HyVE Concept i 65
4.1.1 Voting Theory Background 66

4.2 HyVE: Features and Design, 68
4.2.1 Rank Generation L 68
4.2.2 Modular and Flexible Framework 68
423 TieHandlingo 69

4.3 Case-Study 1: HyVE for Caches 70
4.3.1 Ingredients for HyVE 70
4.3.2 Exploring HyVE Flavours 71

4.4 Experimental Evaluation - HyVE for Caches. 73
4.4.1 Simulation Framework L0000 73
4.4.2 Experimental Setupo oo 73
4.4.3 Analysing HyVE Flavours 74
4.4.4 Cache Size Sensitivity Analysis 79
4.4.5 Voting Methodology Analysis - Borda Count vs Condorcet Method 80
4.4.6 Comparison to State-of-the-art Policies 82
4.4.7 Take-away Pointso oo 84
4.4.8 Hardware Implementation 85

4.5 Case-Study 2: HyVE for Sparse Directories 87
4.5.1 Architecture-aware Eviction Policies 88
4.5.2 Building HyVE for Sparse Directories 89

4.6 Experimental Evaluation - HyVE for Sparse Directories 90
4.6.1 Target Architecture L. 90
4.6.2 Experimental Setup Lo 90
4.6.3 Results and Analysis oo 91
4.6.4 Highlighting HyVE’s Properties 96
4.6.4.1 Experimental Setup 98

4.6.4.2 Results and Analysis 99

Conclusion & Outlook 103
5.1 Conclusion e 103
5.2 Outlook e 104
Bibliography 107
A Results of all Explored HyVE Flavours 117
B Analysing HyVE with the Condorcet Method for Sparse Directories 121

X

List

1.1
1.2
1.3

2.1

2.2

2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12
3.13

3.14

3.15

of Figures

A simple example illustrating the need for cache coherence. 4
An example of snoop-based coherence 5
An example of directory-based coherence 5

The speedup of several Princeton Application Repository for Shared-
Memory Computers (PARSEC) benchmarks executed using different in-
put set sizes for increasing thread counts, taken from [1] (C) 2016 IEEE . . 13
The diversity of different memory access patterns for increasing cache

sizes using the LRU policy, taken from [2] (©) 2008 IEEE 15
A taxonomy of cache eviction policies 16
The lifespan of a cache block with different phases, adapted from [3] . . . 16

An example illustrating the concept of Set-Dueling (SD), adapted from [4] 18

A heterogeneous DSM-based tiled manycore architecture used to evaluate
RBCC. This architecture is also used in as part of the Invasive Computing
(InvasIC) project L 22
An example sparse directory structure L. 23
A visualization of the achievable directory area reductions when using
RBCC compared to global coherence for different N and M,,,4, combinations 24
The InvaslC tile-based manycore architecture with several coherence regions 25
An example memory-map with code and data sections 26
The internal block diagram of the CRM with its sub-modules 28
An example illustrating how RBCC-malloc() dynamically tailors coher-
ence regions to only track actually shared applications’ working-sets at

run-time ..o Lo L 32
An example illustrating the internal block diagram and operation of the

coherence barrier mechanismo 35
An example of the false sharing problem 37
An example of false sharing resolution 37
The normalized execution time of each benchmark with three DoPs (4, 8,

16) for the RBCC::FT, RBCC::MA and AiO system configuration 43
Logic utilization break-down of the CRM by functionality 45

Logic utilization for a N = 16 tile manycore system with increasing co-
herence region sizes (2 < Mpe, < 16) normalized to a Virtex-7 FPGA 46
BRAM utilization for a N = 16 tile manycore system with increasing
coherence region sizes (2 < My < 16) normalized to a Virtex-7 FPGA 47
Directory re-configuration overheads for different reset steps 47

xi

LIST OF FIGURES

xii

3.16
3.17
3.18
3.19

3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

3.31

4.1

4.2
4.3

4.4

4.5

4.6

4.7

4.8

A flow diagram depicting the feature extraction task 49
Clustered coherence regiono 50
Corner coherence region 50
Per-frame execution time of the donkeykong video clip, with and without

BT . . 51
Per-frame execution time of the spaceinvaders video clip, with and with-

out BT 52
Per-frame execution time of the pacman video clip, with and without BT 52
Per-frame execution time of the snake video clip, with and without BT . 53
Average execution time of the rbcc mode and mp mode for all video clips

with increasing BT o o 54
Expanding the coherence region using the donkeykong clip. 56
Expanding the coherence region using the snake clip 56
Relocating the coherence region using the donkeykong clip 56
Relocating the coherence region using the snakeclip 56
FIFO load reduction when using RBCC-malloc() for all video clips 59
The execution time of two SPLASH-2 benchmarks using both VSM- and

CRM-based approaches to enable shared memory programming, for dif-

ferent DoPs 61
Different coherence region configurations on a 4x4 tile-based manycore
system 63

The normalized average delay of inter-tile coherence messages for the
clustered-corner and pure-corner configurations with and without INCs

for all benchmarks. Adapted from [5] 64
An abstract example demonstrating the basic concept of HyVE using

three eviction policies casting their votes on four candidates 65
Condorcet Method 67
An example illustrating how standalone eviction policies are incorporated

within the HyVE framework using a 4 way cache structure 69
Target architecture 74

Normalized LLC misses for HyVE-a and its constituent eviction policies
for all benchmarks, an eviction count and opinion analysis plot for selected
benchmarks 76
Normalized LLC misses for Hy VE-b and its constituent eviction policies
for all benchmarks, an eviction count and opinion analysis plot for selected
benchmarks 77
Normalized LLC misses for Hy VE-C and its constituent eviction policies
for all benchmarks, an eviction count and opinion analysis plot for selected
benchmarks 78
Normalized LLC misses for Hy VE-d and its constituent eviction policies
for all benchmarks, an eviction count and opinion analysis plot for selected
benchmarks 78

LIST OF FIGURES

4.9 Normalized LLC misses for Hy VE-e and its constituent eviction policies

for all benchmarks, an eviction count and opinion analysis plot for selected

benchmarks 79
4.10 Normalized LLC misses with different cache sizes for all HyVE flavours . 80
4.11 Normalized LLC misses of all HyVE flavours using the Condorcet Method 81
4.12 Eviction count plots for HyVE-a and HyVE-d using the Condorcet Method

and Borda Count voting methodologies, for four representative bench-

marks each Lo 82
4.13 The normalized LLC misses of all benchmarks using the HyVE flavours,

DRRIP and Hawkeye L o 83
4.14 The normalized IPC of all benchmarks using the HyVE flavours, DRRIP

and Hawkeye e 84
4.15 Breaking-down the FPGA resource utilization for each HyVE flavour . . . 86
4.16 An example demonstrating the LNS eviction policy 88
4.17 An example demonstrating the SDF eviction policy 89
4.18 An example demonstrating the LRU policy 89
4.19 An example demonstrating HyVE with LRU, LNS and SDF as the con-

stituent eviction policies L o 90

4.20 The execution time and additional evaluation metrics for the canneal
benchmark using the standalone eviction policies and HyVE with Borda
Count for different sparse directory configurations (sets,ways) 92

4.21 The execution time and additional evaluation metrics for the swaptions
benchmark using the standalone eviction policies and HyVE with Borda
Count for different sparse directory configurations (sets,ways) 92

4.22 The execution time and additional evaluation metrics for the fluidani-
mate benchmark using the standalone eviction policies and HyVE with
Borda Count for different sparse directory configurations (sets,ways) . . . 93

4.23 The execution time and additional evaluation metrics for the fft bench-
mark using the standalone eviction policies and HyVE with Borda Count
for different sparse directory configurations (sets,ways) 93

4.24 The execution time and additional evaluation metrics for the lucb bench-
mark using the standalone eviction policies and HyVE with Borda Count
for different sparse directory configurations (sets,ways) 94

4.25 Victim distribution analysis of all benchmarks for the sparse directory
configuration - 128 sets, 8 ways using Borda Count as the voting procedure 95

4.26 HyVE break-down 97
4.27 The three team configurations and their respective characteristics on a
4x4 tiled manycore architectureo oo 98

4.28 The total eviction count for multiple test scenarios using the micro-benchmarks100
4.29 The total number of dirlnvs and the total number of dirlnv hops for

multiple test scenarios using the micro-benchmarks 101
4.30 The total execution cycles for multiple test scenarios using the micro-
benchmarks, with and without the presence of BT 101

xiii

LIST OF FIGURES

Xiv

4.31 The average dirlnvs per eviction, and the average hops per dirlnv for

Al

A2

A3

B.1

B.2

multiple test scenarios using the micro-benchmarks

Normalized LLC misses of the standalone eviction policies for all bench-
marks e e e
Normalized LLC misses of the 18 remaining HyVE flavours for all bench-
marks e e
Normalized LLC misses of the already analysed 5 HyVE flavours for all
benchmarks

The execution time of all benchmarks using the standalone eviction poli-
cies and HyVE with the Condorcet Method for different sparse directory
configurations
Victim distribution analysis of all benchmarks for the sparse directory
configuration - 128 sets, 8 ways using the Condorcet Method as the voting
procedure e

List of Tables

3.1
3.2

3.3

3.4
3.5

3.6

4.1
4.2

4.3
4.4

4.5

4.6
4.7

4.8

Revisiting coherence alternatives for large tile-based manycore architectures 21
An example of two CCT entries that establish a coherence region spanning

two tiles 30
A summary different memory access operations and their coherence actions 35
An example trace file format oo 41

FPGA resource utilization of the CRM module in terms of LUTSs, REGs,
MUXs and BRAMs for a N = 16 tile manycore system with a coherence

region size of Myae =8 . . o o o L 45
Latency of different CRM operations 46
Ranking Distributiono oL o 66
List of all explored HyVE flavours categorized into groups of two, three

and four L. 72
Architecture configuration parameters for the sniper simulator 73
FPGA resource utilization (LUT, REG) and logic delay for all standalone

eviction policies and HyVE flavours using Borda Count 86
Fundamental differences between a data cache and a sparse directory in

the context of eviction decisions 87

Optimization attributes of the constituent eviction policies used for HyVE 89
FPGA resource utilization (LUT, REG) and logic delay for all standalone

eviction policies and HyVE flavours using Borda Count 97
The test scenarios with combinations of different data-set sizes and their
properties L. 99

XV

Glossary

constituent eviction policy An eviction policy used within the HyVE framework.

LEON A high-performance RISC-based processor designed
using the SPARC ISA.

manycore architecture An MPSoC platform consisting of several dozens of
cores. Used synonymously with the term manycore
system.

manycore system An MPSoC platform consisting of several dozens of
cores. Used synonymously with the term manycore
architecture.

multi-core architecture An MPSoC platform consisting of 2-8 cores. Used
synonymously with the term multi-core system.

multi-core system An MPSoC platform consisting of 2-8 cores. Used
synonymously with the term multi-core architecture.

standalone eviction policy ~An eviction policy used independent of the HyVE
framework.

TLM-2.0 A SystemC standard for inter-module communica-
tion known as Transaction Level Modelling.

xvii

Acronyms

dirInv

AHB
AiO
AMBA
ARC

BIP
BRAM
BRRIP
BT

CCT
CDR
CPU
CRM

DASH
DDC"
DIP
DLT
DMA
DoP
DRAM
DRRIP
DSM
DSS

FAU
FIFO
FP
FPGA
FT

GUI

Directory-induced Invalidation.

Advanced High-performance Bus.
All-in-One.

Advanced Microcontroller Bus Architecture.
Adaptive Replacement Cache.

Bimodal Insertion Policy.

Block RAM.

Bimodal Re-Reference Interval Prediction.
Background Traffic.

Coherence Configuration Table.
Coherence Domain Restriction.
Central Processing Unit.
Coherence Region Manager.

Directory Architecture for Shared Memory.
Dynamic Distributed Cache.

Dynamic Insertion Policy.

Directory Look-aside Table.

Direct Memory Access.

Degree of Parallelism.

Dynamic Random Access Memory.
Dynamic Re-Reference Interval Prediction.
Distributed-Shared Memory.

Dynamic Set Sampling.

Friedrich-Alexander-Universitat Erlangen-Niirnberg.
First In First Out.

Frequency Priority.

Field Programmable Gate Array.

First Touch.

Graphical User Interface.

Xix

Acronyms

XX

HP
HPC
HyVE

I/0
IDT
ILP
IMSuite
INC
InvasIC
IP

IPC
IPT
ISA
ITIV

KIT

L1
L2
L3
LFU
LIP
LIS

LLC
LNS
LRA
LRU
LUT

MA
MESI
MESIF
MI
MMU
MOESI
MPI
MPPA
MPSoC
MRU
MSI
MUX

Hit Priority.
High Performance Computing.
Hybrid Voting-based Eviction Policy.

Input/Output.

Image Distribution Time.
Instruction Level Parallelism.
IIT Madras Benchmark Suite.
In-NoC Circuit.

Invasive Computing.
Intellectual Property.
Instructions-per-Cycle.

Image Processing Time.
Instruction Set Architecture.
Institute for Information Processing Technologies.

Karlsruhe Institute of Technology.

Level 1.

Level 2.

Level 3.

Least Frequently Used.
LRU Insertion Policy.
Lehrstuhl fiir Integrierte Systeme / Chair of Inte-
grated Systems.

Last Level Cache.

Least Number of Sharers.
Least Recently Accessed.
Least Recently Used.
Look-Up Table.

Most Accessed.
Modified-Exclusive-Shared-Invalid.
Modified-Exclusive-Shared-Invalid-Forward.
Modified-Invalid.

Memory Management Unit.
Modified-Owner-Exclusive-Shared-Invalid.
Message-Passing Interface.

Massively Parallel Processor Array.
Multi-Processor System-on-Chip.

Most Recently Used.
Modified-Shared-Invalid.

Multiplexer.

NINE
NoC
NPB
NRU
NUMA

0OS

PARSEC

PGAS
PSEL

RBCC
REG
RISC
Rol
RRIP
RRPV

SCC

SCD

SD

SDBP
SDF

SHiP
SPLASH-2
SRAM
SRRIP

TLB
TLM

UMA

VSM

Non-Inclusive Non-Exclusive.
Network-on-Chip.

NAS Parallel Benchmarks.
Not Recently Used.
Non-Uniform Memory Access.

Operating System.

Princeton Application Repository for
Memory Computers.

Partitioned Global Address Space.

Policy Selector.

Region-based Cache Coherence.
Register.

Reduced Instruction Set Computer.
Region of Interest.

Re-Reference Interval Prediction.
Re-Reference Prediction Value.

Single-Chip Cloud Computer.
Scalable Coherence Directory.
Set-Dueling.

Sampling Dead Block Prediction.
Shortest Distance First.
Signature-based Hit Predictor.

Shared-

Stanford Parallel Applications for Shared Memory.

Static Random Access Memory.
Static Re-Reference Interval Prediction.

Translation Lookaside Buffer.
Tile Local Memory.

Uniform Memory Access.

Virtual Shared Memory.

Acronyms

poel

1 Introduction

The insatiable hunger for faster, smarter and power-efficient electronic products are some
of the key factors revolutionizing the computing industry. The computer architecture
community has been significantly contributing towards this cause through continuous in-
novation. For decades, the transistor manufacturing technology has been evolving with
the likes of Dennard Scaling [6] and Moore’s Law [7]. Owing to these factors, the number
of transistors that can be accommodated on a given chip have been increasing, whilst
maintaining the power consumption within acceptable limits. The performance of com-
puting systems has also been enhanced using transistor-technology agnostic optimization
techniques such as frequency scaling, exploiting the Instruction Level Parallelism (ILP),
reducing the processor-memory performance gap, increasing data locality, etc. With the
end of Dennard Scaling and slowing of Moore’s Law [8], the need for such transistor-
technology agnostic optimization techniques are increasing even more. However, each of
these optimization techniques come with certain limitations and challenges.

1.1 Background

1.1.1 The Walls of Computer Architecture

From a system level perspective, a modern computing system is a combination of a
processing subsystem, a memory subsystem and different types of interconnects. The
challenges or “walls” of computer architecture present themselves at all parts of the
computing system.

Power Wall. Increasing the clock frequency of a processor increases its capacity to
do work. An increase in the processor’s operating frequency also increases its power
consumption, subsequently increasing its temperature. At a certain frequency thresh-
old, a power wall is reached, beyond which cooling techniques fail to cope. Operating
at/beyond such critical frequencies may reduce the lifespan of transistors and affect
their functionality, ultimately making the processor non-operable. Therefore, the fo-
cus shifts towards investing the abundantly available transistors (from Moore’s Law) to
design multiple (safely-clocked) processors that can work in parallel, leading towards a
Multi-Processor System-on-Chip (MPSoC) architecture.

ILP Wall. There are many techniques which exploit ILP such as instruction pipelining,
superscalar execution units and even out-of-order processing. These techniques undoubt-
edly improve the performance of an MPSoC, but have their limitations. Designing very
deep pipelines has a negative impact on instruction latency. For superscalar systems,

1 Introduction

the performance benefits are limited by the amount of parallelism that can be extracted
from an application.

Memory Wall. One of the main challenges in the memory subsystem of an MPSoC, is
the memory wall. The speed of the processor subsystem has been increasing at a much
higher rate compared to the memory subsystem. Rephrasing the popular proverb, “A
computing system is only as fast as its slowest component”. Therefore, any mismatch
between the processing and memory subsystems degrades the performance of the entire
computing system. For example, if an application performs a lot of memory accesses,
the processor is forced into an idle state, while waiting for slow memory loads/stores. To
overcome this problem, layers of cache memories are used to minimize memory access
latencies.

1.1.2 Cache Memories

Computing systems typically store data in the main memory, which is made up of Dy-
namic Random Access Memory (DRAM) cells. Accessing the DRAM usually results
in high memory access latencies, which is hidden by using cache memories. Caches are
composed of Static Random Access Memory (SRAM) cells which respond to data re-
quests much faster than DRAM memories. But SRAM-based memories require more
transistors to hold data compared to DRAM-based memories, making them expensive
in terms of area. Therefore, as a trade-off, cache memories are designed and dimensioned
to hold a limited amount of important data, which can vary dynamically throughout an
application’s execution.

Caches hold data using two basic principles namely, temporal locality and spatial
locality. Various structural designs of a cache have been extensively explored, resulting
in directly mapped caches or N-way associative caches, with the latter being used in
a majority of MPSoC systems. The write-policy of caches have also been explored,
producing two commonly used policies namely write-through or write-back. On modern
MPSoCs, it is common to see a memory hierarchy consisting of several caches between
the processor and main memory. Typically a small Level 1 (L1) cache is used for quick
data access. The L1 cache is usually private to each core. This is followed by a larger
Level 2 (L2) cache, which may be shared between multiple cores. If required, an even
larger Level 3 (L3) cache is included. The cache at the last level of a given cache hierarchy
is usually referred to as the Last Level Cache (LLC).

1.1.3 The Evolution of Manycore Architectures

Interconnect. MPSoC systems consisting of a small number of processing units (= 2-8),
also referred to as multi-core systems, are usually interconnected using a bus topology.
With an increase in the number of processing units, the available bus bandwidth sat-
urates quickly. This reduces the efficiency of inter-processor communication, rendering
the bus interconnect impractical for large number of cores. A Network-on-Chip (NoC)
is used to cope with such limitations, leading to tile-based manycore architectures that

1.1 Background

can accommodate a large number of processing units (several dozens) efficiently. Some
tiled manycore architectures use both, a bus-based interconnect within a tile, and a
NoC-based interconnect between tiles.

Memory Subsystem. The transition to tiled manycore architectures introduces Non-
Uniform Memory Access (NUMA) latencies, as the distance of the main memory is
not constant for all processing units. Furthermore, a single dedicated tile with main
memory causes access bottlenecks similar to that of the bus interconnect. To address
this problem, memories are commonly split-up and distributed into all tiles, creating a
distributed memory architecture. In modern tiled manycore systems, it is common to
see distributed memory architectures where both the main memory (DRAM) and a Tile
Local Memory (TLM) (SRAM) are distributed among different tiles.

Parallel Programming Models. The introduction of distributed memory architectures
opens up different methodologies that can be used to program them. They can be
loosely classified into two parallel programming models namely, message-passing and
shared memory. The message-passing model assumes that each tile in the distributed
memory architecture has a private address space and communicates with other tiles using
explicit software messages. While this approach avoids bottlenecks to shared resources,
it increases the programming effort that is required to manage inter-tile communication.
By using the standardized Message-Passing Interface (MPI), this additional effort can be
reduced. However, the programmer still has to orchestrate all inter-tile communication
(added programming effort), and the communication messages themselves can be ineffi-
cient as they are performed by system software. Furthermore, all existing applications
which have mostly been written assuming a shared memory programming model would
need to be modified to follow the MPI model.

Alternatively, the shared memory programming model views the distributed memory
architecture from a shared memory perspective, making it a Distributed-Shared Mem-
ory (DSM) architecture. Here all tiles have a common view of the entire address space
and inherently communicate via load/stores to the shared memory. Applications can
continue using the shared memory programming paradigm, only if the underlying ar-
chitecture can guarantee a coherent shared memory view of the common address space.
The shared memory programming model comes with its challenges, such as mandatory
cache coherence support, which is challenging especially for large manycore systems.

1.1.4 The Need for Cache Coherence

In tile-based manycore architectures, multiple processing units operate collectively to
speed-up a given application. This may involve operating on common data from main
memory, which passes through the cache hierarchy. As a consequence, multiple copies
of the same data may be present locally in different caches across the entire manycore
system. Now, when a processor modifies shared data in its local cache, this information
needs to be conveyed to all other caches which also possess a copy of the shared data.

1 Introduction

Memory Store
variable =y

Figure 1.1 demonstrates the need for cache co-
herence using a simple example. Initially, two
processing elements (P0, P1) read from a vari-
able residing in main memory @ @. Now, the
variable with the value x is present in both
caches. When PO issues a memory store op-
eration @, it modifies the variable value to y.
Assuming write-through caches, this new vari-
able value is updated in the main memory, but
within P1’s private cache, the variable value is Figure 1.1: A simple example illustrating
still outdated @. Therefore, a coherence pro- the need for cache coherence
tocol is needed to ensure that the data within

both caches are always kept up-to-date. This allows the processors to confidently operate
on shared data.

variable = x

variable = x Stale Data

variable = x

Memory Read Memory Read

Main Memory

Coherence Protocols. Caches are appended with additional bits which represent the
state of a cache line . A rule-set is formulated to govern these states and their tran-
sitions, known as a coherence protocol. Extensive research has produced several coher-
ence protocols such as Modified-Invalid (MI), Modified-Shared-Invalid (MSI), Modified-
Exclusive-Shared-Invalid (MESI), Modified-Exclusive-Shared-Invalid-Forward (MESIF),
Modified-Owner-Exclusive-Shared-Invalid (MOESI), etc., each representing the states of
a cache line. More states undoubtedly optimize the coherence protocol, but significantly
add to its design complexity. The coherence protocol is also influenced by properties like
the cache’s write policy (write-through or write-back) and how cache data is updated
(cache-invalidate or cache-update). Further, the interconnect topology of the MPSoC
also dictates the type of coherence support that can be offered.

Snoop-based Coherence. In a pure bus-based architecture, snooping coherence schemes
are used to maintain cache coherence. The presence of a common bus medium makes
all memory load/store requests transparent to the caches connected to the bus. Snoop-
based coherence is relatively simple, and mostly used in small scale multi-core systems.
Figure 1.2 illustrates a basic example of snoop-based coherence.

Directory-based Coherence. Snoop-based coherence cannot be applied for tiled many-
core architectures, as the advantage of a common bus medium is lost. Therefore,
directory-based coherence schemes are used. The directory is a hardware book-keeping
database which holds the sharer information of all cached data. Therefore, all memory
load/store requests explicitly communicate with the directory to keep data coherent. Di-
rectories use status bits and bit-vectors to support coherence on a cache line granularity.
Figure 1.3 illustrates a basic example of directory-based coherence. In large tile-based
manycore architectures, directories may be distributed among all tiles to avoid access
bottlenecks, where each directory holds the sharer information for a predefined partition

'"Hardware-based cache coherence is commonly supported on a cache line granularity

1.1 Background

() (?)

L1 (1] (3] L1 Sharer Bit Vector | Tag | Flags
Cache |Memory Invalidate| Cache ® ® ® ® ® ® ®
< 3 Store Cache] > (1] L1 Main L1 Main [3)
Memory Memo Memo e
L2 v L2 L Iy || Check
QI Bus Snoop Store f i Directory-—"" Send
NA | Directory | NA | Directory | Invalidations
Main I) I
MemOl’y Inform Directory
Figure 1.2: An example of Figure 1.3: An example of directory-based coherence
snoop-based
coherence

of the main memory. Depending on how the memory address range is partitioned, the
sharer information of a load/store request could reside in a different tile than the actual
data. This introduces additional NoC hops, also known as home-node hops, that need
to be traversed to access the sharer information. For the example in Figure 1.3, both
the main memory and the directories are distributed among the tiles. If each directory
is made responsible for the corresponding local main memory address range, additional
home-node hops can be avoided. From a structural perspective, directories have been
optimized for area using designs that limit the number of entries, similar to caches. Such
optimized directory structures are known as sparse directories [9].

1.1.5 Cache Data Management

Cache structures offer quick memory access latencies, but are limited in capacity. There-
fore, empty cache entries are seen as prime real-estate for application data. Depending
on how data within a cache is managed, it can either have a positive or negative impact
on an application’s execution time. A cache replacement algorithm is used to maximize
the efficiency of cache data management. Replacement algorithms have been extensively
explored especially for cache memories, generating staple eviction policies such as LRU,
Least Frequently Used (LFU), LRU Insertion Policy (LIP), First In First Out (FIFO)
etc. By optimizing for eviction criteria such as recency, frequency, etc., these policies
attempt to retain the most relevant data within the cache, for quick memory accesses.

1.1.6 Resource-Aware Computing

An increase in the number of processing and memory resources of modern manycore
architectures reveals new challenges regarding its overall management. InvasIC [10] is a
collaborative research project that investigates a resource-aware programming paradigm
for manycore architectures. The InvaslC approach allows applications to request for
hardware resources, which are granted by a run-time system based on availability. Dur-
ing the course of its execution, the InvasIC paradigm allows applications to dynamically
expand, shrink, or even relocate to a different amount hardware resources, depending
on the current status of the manycore system. After an application terminates, the

1 Introduction

run-time system retracts the hardware resources which can then be used by other appli-
cations. The goal of the InvasIC project is to efficiently manage the execution of several
applications that are simultaneously requesting for hardware resources on a manycore
architecture. In order to support these features, both software-based programming con-
cepts and hardware-based architectural changes of the manycore system are required.

1.2 Problem Statements

This thesis tackles two research challenges, both of which optimize the memory subsys-
tem of MPSoC platforms. The first challenge is to provide scalable hardware coherence
support for large DSM-based tiled manycore architectures. The second challenge is to
enhance cache data management for MPSoCs.

1.2.1 Scalable Cache Coherence

There has always been a debate on whether cache coherence is even needed for today’s
MPSoC systems. Authors of [11, 12, 13] argue that cache coherence, especially when
supported by hardware mechanisms will not scale with increasing processor/tile counts,
owing to its hardware overheads. Instead, they prefer MPI (no coherence) that moves
away from the traditional shared memory programming paradigm or software-managed
coherence. This thesis favours a cache coherent architecture due to its many advantages.
One, it allows programmers to continue with the shared memory programming paradigm
as opposed to MPI, where inter-tile communication has to be managed explicitly by the
programmer. Secondly, most Operating Systems (OSs) (Linux, Windows) and even ap-
plications expect a cache coherent shared memory view of the underlying architecture.
Therefore, a majority of leading chip manufacturers like Intel, AMD, ARM, etc. have
mostly been designing fully cache coherent computing systems by default [14]. With
a cache coherent system, software programmers can dedicate their time towards writ-
ing efficient code, without being bothered by the inconvenience of managing low-level
application communication and synchronization.

Cache coherence can be supported either by software or hardware techniques. This
thesis favours hardware-supported coherence methods as it exhibits better performance
than software schemes [15, 16]. The paper Why On-Chip Cache Coherence is Here
to Stay [14] reinforces these views on hardware-supported coherence methodologies. It
carefully analyses the overheads of on-chip coherence and argues that with proper system
design, hardware-supported coherence can be provided for the foreseeable future.

Of course, hardware-supported coherence comes with its challenges, especially with
today’s ever growing manycore architectures. Intra-tile coherence can be supported quite
efficiently using snoop-based schemes, as the number of processing units within a tile
does not increase drastically. But as the number of tiles increase, inter-tile coherence
faces challenges such as design complexity, scalability and area overheads. This thesis
proposes a scalable and flexible hardware-supported coherence methodology to overcome
these challenges for DSM-based tiled manycore architectures.

1.3 Contributions

1.2.2 Optimizing Cache Data Management

Standalone eviction policies such as LRU, LFU, LIP, FIFO etc. usually optimize for a
single eviction criterion such as recency, frequency, etc. Therefore, they thrive when ap-
plications exhibit non-erratic data access patterns. Modern day applications are growing
both in number and complexity, thereby increasing the diversity of data access patterns.
Even within a single application, there are certain phases that exhibit contrasting mem-
ory access patterns. On manycore systems, multiple such applications are executed on
the same platform (even simultaneously), further diversifying the memory access pat-
terns. Such erratic access patters can easily disorient an eviction algorithm, resulting in
cache pollution/thrashing, subsequently degrading application performance.

This motivates the need for eviction algorithms that can handle varying data access
patterns. The challenge is to provide a smart eviction policy which efficiently manages
cache data by optimizing for multiple eviction criteria. This thesis proposes a hybrid
eviction policy which is evaluated for LLCs in a multi-core system, as well as for sparse
directories in a tile-based manycore architecture.

1.3 Contributions

The contributions of this thesis can be divided into two sub-topics. The first contribution
is a scalable and flexible hardware-supported coherence methodology for DSM-based
tiled manycore architectures. The second contribution is a hybrid eviction policy which
enhances cache data management by combining several eviction criteria.

1.3.1 Region-based Cache Coherence (RBCC)

A majority of chips produced today offer hardware-supported coherence by default. They
mostly offer global coherence, where all processing elements have a coherent view over
the entire memory address space. Global coherence for tile-based manycore systems does
not scale well with increasing core counts, as it greatly increases the memory overheads
required by directory-based coherence schemes.

Taking a step back and questioning, “does a manycore system even need global co-
herence?” reveals insightful findings on the behaviour of multi-threaded applications.
On manycore systems, a single multi-threaded application cannot efficiently utilize all
available processing and memory resources [1]. In fact, manycore systems are designed
to simultaneously execute several multi-threaded applications, each of which consume
a certain share of processing and memory resources. These arguments deem global
coherence unnecessary for large tile-based manycore architectures.

This thesis introduces RBCC, a concept that uses a divide-and-conquer approach to
provide scalable and flexible coherence for tile-based manycore systems. The main idea of
RBCC is to provide hardware-supported coherence for a limited number of tiles within a
large manycore system. The subset of coherent tiles or coherence regions are configured
based on the application’s requirements. Limiting coherence to a cluster of tiles has
its advantages. One, it significantly reduces the book-keeping overheads required for

1 Introduction

directory-based inter-tile coherence. This sidesteps the scalability issues of hardware-
supported coherence for tile-based manycore architectures. Two, by confining coherence
to a subset of tiles, inter-tile communication and the corresponding coherence traffic are
limited to within the coherence regions. Furthermore, the RBCC concept is designed
to be dynamic and flexible. At run-time, the coherence regions can be re-configured
or even relocated to span specific clusters of tiles, all controlled according to the the
application’s requirements.

The contributions related to the RBCC concept, its design, implementation and eval-
uation were published at international conferences [17, 18, 5], a journal [19] and part of
a book chapter [20].

1.3.2 Hybrid Voting-based Eviction Policy (HyVE)

Standalone eviction policies struggle to cope with cache pollution/thrashing when run-
ning several applications that exhibit non-uniform data access patterns. This thesis
introduces HyVE, a novel framework that combines multiple standalone eviction poli-
cies together and uses concepts from the voting theory domain to decide on an eviction
victim. HyVE uses multiple eviction criteria to optimize cache data management and
has several advantages. One, almost any new or existing standalone eviction policy can
be extended to be incorporated as part of HyVE. Two, by design, HyVE is a modular
framework that can accommodate an arbitrary number of standalone eviction policies.
This enables designers to build HyVE with the desired number and/or combination of
constituent eviction policies that best suit the MPSoC platform and the applications.
Three, by design, all constituent eviction policies within the HyVE framework can op-
erate simultaneously. From a hardware implementation perspective, this allows HyVE’s
timing complexity to scale gracefully when accommodating several standalone eviction
policies. This thesis evaluates HyVE using two case-studies: LLC evictions in a multi-
core system and sparse directory replacement decisions in a DSM-based tiled manycore
system.

The contributions related to the HyVE concept, its design, implementation and evalu-
ation were published at international conferences [21, 22] and a journal [23]. Additionally,
the HyVE concept has been submitted and published as an international patent [24].

1.4 Organization

The rest of this thesis describes the contributions in detail. Chapter 2 talks about
other work in the field that are related to the contributions of this thesis. Chapter 3
describes the concept and features of RBCC, and how they have been realized through
the Coherence Region Manager (CRM) module. The concept of RBCC is evaluated using
a high-level simulation model, as well as on an FPGA prototype for different benchmarks.
Chapter 4 describes the concept, features and implementation of the HyVE framework.
HyVE is evaluated for Last Level Caches (LLCs) as well as for sparse directory structures
using a simulator and on an FPGA prototype. Chapter 5 summarizes this thesis and
talks about how RBCC and HyVE can be further improved.

2 State of the Art

2.1 Cache Coherence

Cache memories bridge the performance gap between the processor and memory subsys-
tem. Manycore systems are usually designed with a cache hierarchy consisting of both
private and shared cache memories. Incoherent cache data tend to corrupt the function-
ality of applications, which makes cache coherence support one of the vital features of
a manycore system. The presence of cache coherence both influences, and is influenced
by the following parameters:

e The interconnect topology of the manycore system,
e The parallel programming model of the manycore system

Early manycore architectures consisted of a small number of processing elements,
where inter-processor communication could be efficiently conveyed using a shared bus
medium. Bus-based manycore architecture exhibit Uniform Memory Access (UMA)
latencies and are kept coherent using hardware-based snooping coherence schemes [25].
Snoop-based coherence is relatively easy to implement as it does not incur much area
overheads, nor does it induce costly coherence-related messages. This enables application
developers to use the shared memory model to easily program such manycore systems.

With the increase in number of processing and memory resources, modern manycore
systems have evolved into distributed tile-based architectures. This evolution brings-in
a NoC-based interconnect, triggering a transition from UMA to NUMA latencies. From
a coherence perspective, the advantage of the common bus is medium lost, necessitating
alternative coherence solutions using directory structures [26].

Compared to snoop-based schemes, directory-based coherence is much more complex
to implement and comes with overheads such as additional directory look-up times and
increased NoC traffic for coherence messages. As explained in Section 1.1.4, directories
can be designed either as a unified structure or can be distributed among different tiles.
The former approach could lead to directory access bottlenecks in large systems, and the
latter might induce additional home-node hops. Further, hardware-supported directory-
based coherence schemes consume significant area overheads that grow with the size
of the manycore system. However, from a performance perspective, hardware-based
directory coherence schemes are usually better than the software alternatives [14].

Therefore, depending on these trade-off factors, a tile-based manycore systems can
be designed to either provide hardware coherence support or not. This is an important
design choice, which in-turn influences the type of parallel programming model to be
used:

2 State of the Art

e No hardware coherence support
— Use an MPI-based programming model

— Use software coherence schemes — shared memory programming model

e Hardware coherence support — shared memory programming model

2.1.1 No Hardware Coherence Support

If a manycore architecture does not support hardware coherence, there are yet two alter-
natives on how it can be programmed. Application developers can leverage MPI-based
techniques for inter-tile communication and synchronization. Else, software coherence
schemes can be used to continue with the shared memory programming model.

2.1.1.1 MPI-based Communication

Distributed memory manycore architectures are commonly used in the High Performance
Computing (HPC) domain. Applications are parallelized over several computing nodes
that are part of a large cluster configuration. Due to the lack of coherence support, appli-
cation developers use explicit software messages to orchestrate inter-tile communication,
at the cost of additional programming effort. These efforts can be partially reduced by
making use of standard MPI libraries [27]. The Single-Chip Cloud Computer (SCC)
developed by Intel [28] is one example that makes use of the MPI programming model.
Kalray’s Massively Parallel Processor Array (MPPA) [29] is another example of a many-
core architecture which uses MPI for inter-tile communication.

While MPI-based programming models limit hardware area overheads, they do come
with certain challenges [30, 31]. The use of MPI-based programming models require ex-
plicit communication messages that are usually performed by system software, thereby
adding to the application’s execution time. Further, the MPI model increases the pro-
gramming effort for application developers, compared to the shared memory model.
Since a majority of applications have been developed assuming a shared memory pro-
gramming model, additional programming effort would be needed to port such legacy
applications onto a non-coherent manycore architecture.

2.1.1.2 Software-based Coherence Schemes

Software enabled coherence mechanisms enable application developers to view the dis-
tributed memory manycore architecture from a shared memory programming perspec-
tive, i.e., as a DSM manycore architecture. Software coherence schemes act as an in-
termediate solution by offering a shared memory view of the underlying system, whilst
avoiding the hardware area overheads and implementation effort. Software coherence
schemes are implemented at different abstraction levels as stated in [32]. The works
mirage [33] and munin [34] integrate software coherence support as part of the OS and
run-time system respectively. The works wvote for peace [35] and IVY [36] expose a

10

2.1 Cache Coherence

library-based interface to applications, which can be used to synchronize shared mem-
ory accesses. Languages such as X170 [37] have been designed with specific constructs
that orchestrate and synchronize memory accesses to shared data.

Software-based coherence schemes allow applications to continue with the shared
memory programming paradigm, when an MPSoC does not provide hardware coher-
ence support. However they lack the performance benefits of their hardware counter-
parts [14, 15, 16]. This can be seen in almost every flagship product by major commercial
vendors like Intel, AMD, ARM, etc., who make use of hardware supported coherence
mechanisms. It is important to note that this in no way rules out the usability of software
coherence methodologies. For instance, a hybrid hardware-software coherence scheme
would be beneficial, especially for large manycore architectures. Coherence within a clus-
ter of tiles (coherence region) could be supported by hardware, while software coherence
methodologies operate between the different coherence regions.

2.1.2 Hardware Coherence Support

Hardware coherence for tiled manycore systems was introduced by the Stanford Directory
Architecture for Shared Memory (DASH) team [26]. They use a 2x2 tile-based design,
where each tile contains 1 processing element and a two-level cache hierarchy. Every
tile also has access to its own main memory and Input/Output (I/O) peripherals. The
DASH multi-processor was primarily used as a platform to introduce and evaluate inter-
tile coherence using a directory-based scheme. Therefore, a directory unit is present
per tile, which is responsible to hold the sharer information of its corresponding main
memory address space. This allowed applications developers to have a shared memory
view over a distributed memory manycore architectures.

Tilera’s TILEPro64" [38, 39] is an example of a commercially deployed tile-based
manycore architecture that supports hardware-based coherence. The architecture con-
tains 64 tiles, each with 1 processing element, and a cache hierarchy of L1 and L2 caches.
The 64 tiles are connected together using a 2D-mesh topology consisting of 5 indepen-
dent networks. The TILEPro64 uses a Dynamic Distributed Cache (DDC™) mechanism
to support inter-tile coherence, which allows each processor to have a shared memory
view over all L2 caches. This effectively transforms the L2 cache within each tile into a
system-wide shared cache. The inter-tile coherence messages are transported exclusively
using one of the 5 independent networks. Interestingly, Tilera was bought by Mellanox
Technologies, which was in-turn acquired by NVIDIA, to boost their presence in the
HPC domain.

Cavium’s OCTEON® [40] is a commercial manycore architecture that supports hard-
ware coherence. The OCTEON II contains 32 cores, where each core is equipped with a
private L1 cache. The cores are connected together with a crossbar interconnect, where
they can access a shared L2 cache. The L2 cache controller is responsible to ensure cache
coherence for the entire system. Cavium is now part of Marvell Technologies, where the
OCTEON multi-processor in used for network processing applications.

Another commercial example pushing for shared memory programming on distributed
memory manycore architectures using hardware coherence schemes is Numascale [30, 31].

11

2 State of the Art

Numascale is an up-and-coming company that designs a unique NumaConnect node
controller. This node controller allows processor manufacturers to “scale-up” several
computing nodes in a tightly-coupled manner, as opposed to “scaling-out” computing
nodes into distributed cluster machines.

However, as the size of manycore systems increase, the book-keeping area overheads
required for directory-based coherence also grow [41]. Assuming that hardware coherence
is supported globally with an exact representation of the sharer information (1 bit per
sharer), the directory area overheads increase quadratically with increasing processor
counts [41]. Depending on the available hardware real-estate of the chip, this may lead
to scalability issues especially for large manycore systems.

2.1.2.1 Overcoming Scalability Limitations

Research on reducing the hardware area overheads for directory-based coherence mostly
focus on two directory optimization techniques namely directory-width reduction and
directory-height reduction. The first approach narrows the directory width by using
limited pointer or coarse vector schemes to represent the sharer information [9]. While
these approaches reduce the width of the directory, they come with certain consequences.
Limited pointer schemes require costly linked-list traversals that add to the latency of
coherence management. Coarse vector schemes hold inexact sharing information, forc-
ing them to conservatively send-out more coherence messages than required. The second
approach shrinks the directory height by using a sparse design. This approach signifi-
cantly reduces the required hardware area overheads by limiting the number of directory
entries. This introduces a capacity problem similar to data caches, thus requiring a
replacement algorithm, where the penalty for each eviction is Directory-induced Invali-
dations (dirInvs). There are also several alternative directory designs [42, 43, 44, 45, 46]
that optimize for area and eviction policies. These are discussed in detail within the
context of eviction policies for sparse directories in Section 2.2.4.

2.1.2.2 Alternatives to Global Coherence

Exploring alternatives for global coherence schemes is motivated by two arguments:
1. To avoid directory scalability limitations altogether,

2. Multi-threaded applications do not efficiently utilize all processing and memory
1

resources of a large manycore system -.
The first argument is orthogonal to the directory-height and directory-width reduction
solutions that were discussed previously. The second argument is supported by the work
in [1], which reports the speedup of the PARSEC benchmarks for increasing thread
counts. Figure 2.1 shows that most benchmarks do not benefit for thread counts ap-
proximately > 16 to 48 2. In fact, some benchmarks even suffer from performance

'"Embarrassingly parallel workloads are exceptions, which are considered to be a minority
2Note that the speedup saturates much faster for smaller input set sizes

12

Speedup

Speedup

Speedup

Speedup

blackscholes (M48)

5 10 15 20 25 30 35 40 45
PARSEC minimum threads parameter
dedup (M48)

WPEGRE

a2 4,
: v ot S

5 10 15 20 25 30 35 40 45
PARSEC minimum threads parameter
fluidanimate (M48)

S
2
12 —
10 2 <
-
8 s
6 e
4
2
0
5 10 15 20 25 30 35 40 45
PARSEC minimum threads parameter
streamcluster (M48)
7 =
6 = .""‘f “\\
NN
7
JA NN
17 ~
NP, ~
2 s \, T,
e AN
1 S = L
. e,
o gy seseed
5 10 15 20 25 30 35 40 45

PARSEC minimum threads parameter

Native Full —li—
Native ROI --F3--

Speedup

bodytrack (M48)

5 10
PARSEC minimum threads parameter
facesim (M48)

15 20 25 30 35 40 45

7 s
i . :

Speedup
IS

/ -

Speedup
3>

45
40
35
30
25
20
15
10

Speedup

5 10 15 20 25 30 35 40 45
PARSEC minimum threads parameter
freqmine (M48)

P
-
-
f-‘.
-/-r
el
o
P

e

5 10 15 20 25 30 35 40 45
PARSEC minimum threads parameter
swaptions (M48)

]
’J
I
P
anad).
:
rart, Jl
f
e —
5 10 15 20 25 30 35 40 45

PARSEC minimum threads parameter

Simlarge Full —@— Simmedium Full —A—

Simlarge ROl --©&--

Simmedium ROI --A--

Speedup

Speedup

Speedup

Speedup

2.1 Cache Coherence

canneal (M48)

5 10
PARSEC minimum threads parameter
ferret (M48)

15 20 25 30 35 40 45

I it st

-
i
e

Waiis
et

1

5 10 15 20 25 30 35 40 45
PARSEC minimum threads parameter
raytrace (M48)

5 10 15 20 25 30 35 40 45
PARSEC minimum threads parameter
X264 (M48)

R AR RA
e
i
/

r . ccasesespoissesssnsesed
P
5 10 15 20 25 30 35 40 45

PARSEC minimum threads parameter

Simsmall Full —&—
Simsmall ROl --&--

Figure 2.1: The speedup of several PARSEC benchmarks executed using different input set
sizes for increasing thread counts, taken from [1] (©) 2016 IEEE

degradation with increasing thread counts. Together, both arguments question the need
for global coherence in manycore systems, leading to architectures that confine coherence
coverage to certain on-chip resources.

The Intel®Xeon Phi [47] is a 36 tile manycore system with 2 processing elements per
tile. It offers various clustering modes that can be used to configure a group of tiles
as part of a coherent NUMA domain. The cluster configuration process is a boot-time
decision, and is limited to a selectable preset of configuration modes. Authors of [48]
propose Coherence Domain Restriction (CDR), which restricts coherence to a cluster of
tiles for MPSoCs. The CDR approach limits the number of sharers that can be part of
a coherence domain, thereby limiting the necessary area overheads required for inter-tile
coherence. CDR also explores limiting the number and location of the home-node to
localize inter-tile communication traffic.

13

2 State of the Art

2.1.3 How is RBCC Different?

The RBCC concept is orthogonal to the discussed directory optimization schemes as
it challenges the need for global coherence. Therefore, it can be classified under the
“alternative to global coherence” category, . Compared to the Intel®Xeon Phi, RBCC
supports run-time coherence region (re)configurations, as opposed to boot-time. This
allows the coherence regions(s) to dynamically adapt to the application’s requirements.
The work on CDR is quite similar to that of RBCC, i.e., both approaches allow restricting
the coherence domain at run-time. However, CDR has been designed and evaluated for
a manycore architecture with unified shared memory, which brings in the necessity of
a home-node for directories. The RBCC concept is designed for a DSM-based tiled
manycore system. The directories are therefore designed without the need for a home-
node, alleviating the network-hops or look-up time that may be required to locate and
access the home-node.

14

2.2 FEviction Policies
2.2 Eviction Policies

Generally, any design structure that experiences more demand that it can fulfil, requires
a management policy to mitigate the mismatch. For example, in computing systems,
cache structures are used to bridge the performance gap between processors and main
memory. A cache is an invaluable hardware resource due to its quick memory access
latency and limited capacity. Therefore, an eviction policy is used to manage the limited
real-estate of a cache.

Primarily, eviction policies have been heavily mined in the context of cache memo-
ries as they greatly influence application performance. Existing cache eviction policies
are either re-used or adapted to fit other hardware structures like sparse directories
or Translation Lookaside Buffers (TLBs). This thesis focuses on eviction policies for
cache memories and sparse directories. The terms eviction and replacement are used
interchangeably throughout this thesis.

In 1966, Laszlé Bélady introduced the MIN algorithm [49] which provides the ideal
solution for the cache replacement problem. However, Bélddy’s algorithm requires com-
plete knowledge of all future memory access patterns in order to function correctly. As
this is impossible to implement, Bélady’s optimum solution is commonly used as a yard-
stick to measure the performance of other cache replacement policies. The performance
of an eviction policy significantly depends on the memory access patterns exhibited by
the workloads. Figure 2.2 [2] shows four commonly seen workload memory access pat-
terns and their impact on different cache sizes. Cache-friendly workloads exhibit a high
degree of temporal and spatial locality. Such memory access patterns benefit from an
increase in cache capacity. Cache-fitting workloads, as the name states, are workloads
whose data-sets can be completely accommodated into the cache. If the data-set sizes
exceed the cache capacity, then the memory access patterns of such workloads will most
likely cause cache-thrashing. The last example are streaming workloads which rarely
exhibit any temporal or spatial locality properties. Such memory access patterns do not
benefit from an increase in cache capacity. In order to cater to such diverse memory
access patterns, cache eviction policies have been extensively explored, producing several
replacement algorithms. Figure 2.3 illustrates a taxonomy of cache replacement policies.

=)
S

i ' Cache-friendly 1 Cache-fitting {} . ..! Cache-thrashing :
75| N Jh | JL 1F ‘ Streaming-|
g | | |
e~ | |
g 0 | a | I 1T | 7
= | | |
251 | \ - | 4L 4L | -
| _ | |
| A |
.,
oL [S22 L L Lo T R RN I L T R T S R T
ALY &5 61 % 9\ VL% A5 61 % 9\ VL% A5 61 % 9\ VL % A5 61 % 9\

Cache Size (MB) Cache Size (MB) Cache Size (MB) Cache Size (MB)

Figure 2.2: The diversity of different memory access patterns for increasing cache sizes using
the LRU policy, taken from [2] (C) 2008 IEEE

15

2 State of the Art

Cache Eviction Policies
I

v v v
Standalone Hybrid Learning-based
Eviction Policies Eviction Policies Eviction Policies
[|
v ¥ v v
Influencing Influencing Set-Dueling Voting-based Prediction-based Non-heuristic-based
Eviction Phase Insertion Phase 5 prpip, etc. HyVE SDBP, SHiP, Hawkeye
LRU, MRU, LIP, BIP, Perceptron, etc.

LFU, FIFO, etc. SRRIP, BRRIP, etc.

Figure 2.3: A taxonomy of cache eviction policies

2.2.1 Standalone Cache Eviction Policies

This category of cache eviction policies are designed to take eviction decisions based
on a single eviction criterion. Commonly used eviction policies include LRU and LFU
that utilize recency and frequency as the eviction criterion respectively. An eviction
policy can be designed to influence a given cache block at different stages of its lifespan.
Authors of [3] have classified this into four phases, which is also illustrated in Figure 2.4:

e The Insertion Phase: The eviction policy assigns/modifies the eviction metric of
the cache block upon insertion into the cache memory.

e The Promotion Phase: The eviction policy modifies the eviction metric of the
cache block upon a cache hit.

e The Aging Phase: The eviction policy modifies the eviction metric of the cache
block relative to other cache blocks.

e The FEviction Phase: The eviction policy utilizes the eviction metric of the cache
block to make an eviction decision.

Eviction policies like LRU, Most Recently Used (MRU), LFU, etc. do not influence the
cache block in the insertion phase. They insert incoming memory blocks into the MRU
position, protecting it from immediate evictions. While this might be favourable for
cache-friendly memory access patterns, it could lead to cache pollution for others.
Authors of [4] introduce two eviction policies - LIP and Bimodal Insertion Policy
(BIP), that additionally modify the eviction metric of a memory block upon insertion into

Lifespan of a Cache Block

Insertion Promotion Eviction
Phase Phase Phase
| >

Aging Aging Time
Phase Phase

Figure 2.4: The lifespan of a cache block with different phases, adapted from [3]

16

2.2 Eviction Policies

the cache. LIP is similar to the LRU policy, but inserts incoming memory blocks into the
LRU position instead. BIP builds upon this idea by inserting incoming memory blocks
either into the LRU position or the MRU position based on a predefined probability
factor. During the replacement phase, both policies evict cache blocks similar to the
LRU policy. Both LIP and BIP offer resistance to cache thrashing, with the latter
additionally capable of adapting to changes in the working-set.

Authors of [50] introduce two further eviction polices - Static Re-Reference Interval
Prediction (SRRIP) and Bimodal Re-Reference Interval Prediction (BRRIP), that also
influence memory blocks during the insertion phase. These eviction policies can be
viewed as fine-granular versions of the Not Recently Used (NRU) policy. Both eviction
policies use a N-bit Re-Reference Prediction Value (RRPV) to predict the re-reference
interval of incoming memory blocks. SRRIP inserts incoming memory blocks with an
RRPV of 22 indicating that it will be re-referenced in the distant-future. The RRPV
is reset upon cache hits, indicating that the cache block will be re-referenced in the near-
future. During the replacement phase, SRRIP evicts the cache block with an RRPV of
2N=1_ If not present, the RRPV of all cache blocks are incremented. BRRIP is an
adaptive version of SRRIP, where incoming memory blocks are inserted with an RRPV
of 2N=1 or 2V¥=2 based on a predefined probability factor. SRRIP offers scan-resistance
(streaming workloads) while BRRIP is thrash-resistant.

The standalone eviction policies make eviction decisions based on a single eviction
criterion. Therefore, they might be unable to optimize the cache performance for a wide
range of application access patterns. In order to solve this, several policies are combined
together to form hybrid eviction policies.

2.2.2 Hybrid Cache Eviction Policies

The goal of hybrid cache eviction policies is to combine the positive attributes of differ-
ent standalone eviction policies, attempting to optimize for varying application access
patterns. Authors of the Adaptive Replacement Cache (ARC) [51] blend LRU and LFU
together, in order to utilize both recency and frequency metrics for the eviction process.
ARC combines the two eviction policies together by maintaining two dedicated lists for
the recency and frequency eviction metrics. Authors of [52] also combine LRU and LFU
together using a different approach. They use a weighted methodology to factor-in the
recency and frequency eviction metrics.

The Concept of Set-Dueling (SD)

A well-known and comprehensively-explored concept to combine two standalone eviction
policies is Set-Dueling (SD) [4]. The primary idea of SD is based on the concept of
Dynamic Set Sampling (DSS) [53] which shows that the overall behaviour of a cache
memory can be determined by a subset of cache lines/blocks. Using this principle, SD
classifies the cache memory into leader-sets and follower-sets, illustrated in Figure 2.5.
The leader-sets are further divided equally among the two competing standalone eviction
policies. A cache miss on any leader-set either increments or decrements the shared

17

2 State of the Art

Policy Selector (PSEL) counter as shown in Figure 2.5. The value of the PSEL counter
indicates the cache memory’s preferred standalone eviction policy. Depending on this
value, the follower-sets select the preferred standalone eviction policy for their eviction
process. The value of PSEL counter varies dynamically throughout the course of an
application, thereby guiding the follower-sets to choose the better performing standalone
eviction policy.

Two popular hybrid cache eviction poli- M Leader Sets Leader Sets
cies using SD are Dynamic Insertion Pol- | Policy | Policy II
icy (DIP) and Dynamic Re-Reference Inter-
val Prediction (DRRIP). DIP combines LRU
and BIP together using the concept of SD.
Therefore, DIP attempts to offer both recency-
friendliness from the LRU policy and thrash-
resistance from BIP. The DRRIP policy uses
SRRIP and BRRIP as the dueling policies
for the two leader-sets. Therefore, it of-
fers both scan-resistance and thrash-resistance
properties. The SD concept has also been
used to combine recency and frequency met-
rics by mixing different segmented LRU ver-
sions [54, 55] together.

I

Cache Miss

|

PSEL Counter

|

Policy | or Policy Il
for

[]

Follower Sets

|

|

|

Figure 2.5: An example illustrating the
concept of Set-Dueling (SD),
adapted from [4]

2.2.3 Learning-based Cache Eviction Policies

Cache replacement policies have also been explored using learning-based techniques.
Such cache eviction policies usually make use of a learning-subsystem to accurately
predict the insertion values for incoming memory blocks.

The work in [56] uses a Sampling Dead Block Prediction (SDBP) to determine the
usefulness of an incoming memory block. SDBP makes use of the program counter for its
predictions. Similarly, the work in [57] uses a Signature-based Hit Predictor (SHiP) to
determine the re-reference interval of a given cache block. Factors such as the memory
region, program counter and the instruction sequence are used to predict the RRPV
value for SRRIP. The works in [58, 59] alternatively use a perceptron-based learning
technique to enhance the accuracy of predictors. This allows for better predictions as
multiple features are used to determine the re-usability of a cache block. Authors of [60]
introduce Hawkeye, which does not use heuristics to determine the re-reference interval
of a cache block. Instead, it records memory accesses patterns and applies an algorithm
similar to Bélady’s MIN solution to determine if an incoming memory block is cache-
friendly or cache-averse.

In general, cache eviction policies have been heavily-mined by the research community,
producing several innovative techniques. The aforementioned eviction techniques cover
all types of cache eviction policies that are relevant in the scope of this thesis. For
interested readers, who would want to delve deeper, the work in [3] is recommended,

18

2.2 Eviction Policies

as it provides a good summary on cache eviction policies including several alternative
approaches.

2.2.4 Eviction Policies for Sparse Directories

More than two decades ago, directory-based coherence [26] was introduced by the Stan-
ford DASH team [61, 62]. Next, these directory structures were subjected to various op-
timization techniques. The directory-width was optimized using coarse vector schemes
and the directory-height was optimized by using sparse directory structures [9]. The
introduction of sparse directories also brought-in the need for eviction decisions, due
to potential conflicts and limited capacity. Eviction policies have been mostly explored
in the context of cache memories. Therefore, the work in [9] uses existing replacement
strategies such as LRU, Least Recently Accessed (LRA) and even a random scheme to
evaluate their performance for sparse directories. Explorations concluded that the LRU
policy is the best performer [9]. Further research to optimize sparse directory structures
have produced several alternative/contemporary directory designs that minimize and/or
even avoid the need for evictions.

Contemporary Directory Designs

The work in [63] uses a Directory Look-aside Table (DLT) to reduce sparse directory
evictions. This additional DLT structure holds replacement candidates that are mapped
using hash functions. If both the sparse directory and the DLT are full, the eviction
candidate is selected using the LRU policy.

The select directory [42] design reduces the area consumption of sparse directories.
Authors of [42] observe that a majority of memory blocks are temporarily private. Lever-
aging this principle, the select directory decouples the tag-array and data-array, thereby
allowing for an overall smaller directory structure. The select directory uses the LRU
policy for its eviction decisions. The stash directory [43] design minimizes evictions by
suppressing dirInvs for private memory blocks. The stash directory also used the LRU
policy for its eviction decisions. The tiny directory [64] design optimizes a sparse di-
rectory for area consumption. Upon reaching its maximum capacity, the tiny directory
borrows bits from the LLC. The tiny directory uses a ratio of corrupted shared LLC
reads coupled with an NRU policy for its eviction decisions.

The cuckoo directory [44] design aims to minimizes both area consumption and the
number of dirlnvs. It employs a hash table and avoids evicting candidates entirely
by re-inserting them to other non-conflicting positions. If a non-conflicting position is
not found, the cuckoo directory uses a random replacement scheme. The ZCache [65]
design interprets cache memories in a different way. It allows for higher associativity
with smaller number of ways by using different hashing functions per way. The ZCache
increases the number of viable replacement candidates across multiple cache ways. This
allows it to find a suitable eviction victim which is decided by the LRU policy. The
Scalable Coherence Directory (SCD) [46] borrows concepts from the ZCache design and

19

2 State of the Art

boasts better scalability and energy efficiency than the cuckoo directory. The SCD design
incurs minimal dirInvs, but uses a random replacement policy when required.

2.2.5 How is HyVE Different?

The contribution of this thesis, HyVE, can be classified under the hybrid eviction policy
category, similar to SD. While combining standalone eviction policies together using SD
leads to effective and efficient solutions, it is limited to two eviction policies. By design,
HyVE supports several standalone eviction policies to be incorporated together. This
enables HyVE to potentially cover more optimization attributes. Compared to learning-
based policies, HyVE does not use a learning subsystem, rather, it resolves to a consensus
among its constituent eviction policies to decide on an eviction victim. HyVE can be
seen as an alternative non-learning based approach for solving the cache replacement
problem. Nevertheless, all three of SD, learning-based policies or HyVE are conceptually
complementary approaches designed to overcome the cache replacement problem, each
with certain advantages and disadvantages, as will be showcased in Section 4.4.6.

In the context of sparse directory designs, all aforementioned works either use the LRU
policy or a random scheme to make eviction decisions. HyVE is a hybrid eviction policy
that attempts to optimize for several sparse directory specific optimization criteria, as
will be shown in Section 4.5. HyVE is evaluated for a regular sparse directory design that
uses a bit-vector scheme to represent the exact sharer information, similar to [9]. Using
a generic sparse directory design allows experimental analyses to solely focus on HyVE’s
characteristics, without involving the additional properties of contemporary directory
designs. It is important to note that HyVE is not limited to generic sparse directory
designs and can be applied to any directory design that requires a replacement decision.

20

3 Region-based Cache Coherence (RBCC)

3.1 The RBCC Concept

The fundamental idea of RBCC is to support the shared memory programming model,
but with an alternative solution compared to global coherence. Global coherence not
only suffers from scalability issues, but isn’t even required, especially when a single
application cannot efficiently utilize all available processing and memory resources of a
manycore architecture. Table 3.1 summarizes the different coherence alternatives and
their implications for large tile-based manycore architectures. The goal of RBCC is to
enable scalable and flexible hardware-supported coherence for large manycore systems.

The RBCC concept is agnostic to architecture parameters such as, the type of memory,
the number of memories, the number of processing units, the number of tiles and the type
of interconnect. It is also independent of cache parameters like the number of levels in the
cache hierarchy, the cache configuration and the coherence protocol. RBCC is applicable
to any manycore system which requires hardware-supported inter-tile coherence. In order
to design RBCC, evaluate its benefits and assess its challenges, a generic tile-based
MPSoC platform is chosen.

3.1.1 Target Architecture

Figure 3.1 illustrates an MPSoC platform which serves as the target architecture to
evaluate the RBCC concept. It is a heterogeneous tile-based manycore architecture
consisting of two different types of memories - an SRAM-based distributed TLM as well
as a DRAM-based main memory. The tiles are broadly classified as compute tiles and
I/0 tiles. Each computing tile consists of four LEON cores that are tightly coupled with
private L1 caches, a shared L2 cache and a TLM. The I/O tile is basically a compute
tile with additional modules such as off-chip main memory or an Ethernet interface.
The L1 caches hold data from the local TLM or main memory to speedup local mem-
ory accesses. A shared L2 cache is used to hold data either from remote TLMs or the
main memory, to speedup remote memory accesses. The modules within a tile are con-
nected using an Advanced High-performance Bus (AHB) interconnect which follows the

Table 3.1: Revisiting coherence alternatives for large tile-based manycore architectures

No Coherence Global Coherence RBCC

MPI-based Software Communication Communication via Shared Memory

Additional Programming Effort Relatively Lower Programming Effort
No Hardware Overheads High Hardware Overheads Low-to-Moderate Hardware Overheads

21

3 Region-based Cache Coherence (RBCC)

®@ ®@® ®@ ®®
®® ®® ® ®®
[NA][cRM] [NA |[crM] [NA |[crM] LEAH(‘RMl

[Fover (o] (Fover (Fouer] Tile Local
® ® ® ® -[I,;\g. ® ® _® Cel;rjhe C:c1he Cel;c1he C:c1he Memory
®E ®E ®E ® 1 i i i !
[NA |[cRM] [NA] 2] [crm | NA }{cRm Q < i I i >

- || Network L2 Cache Coherence

®®@ ®®@ ®®@ (P)| Adapter Region Manager
®® ® ®E[L2 (G —
[NA |[cRM] [NA][cRrM] [[NA][crM] [NA l_l_QBM.ll ...
®@ ®@ ®@ ®@
®® ®® ®® ®®
[NA][cRM] [NA][crM] [NA][cRM] [NA][cRM]

Rouﬁ Ru? ﬁu@ { Router

Figure 3.1: A heterogeneous DSM-based tiled manycore architecture used to evaluate RBCC.
This architecture is also used in as part of the InvasIC project

Advanced Microcontroller Bus Architecture (AMBA) standard. A NoC-based intercon-
nect is used to establish communication between different tiles. For this, a network
adapter sub-module which is present within each tile acts as a gateway to send/receive
information via the routers of the NoC.

Due to the presence of a shared bus medium, a snoop-based scheme is used to provide
intra-tile coherence support. The L1 caches are configured with a write-through policy,
and snoop on the AHB bus to invalidate themselves when necessary using the MI co-
herence protocol. The L2 cache is configured with a write-back policy and uses the MSI
coherence protocol. Unlike the L1 caches, the L2 caches of different tiles do not share a
common interconnect medium. Therefore, a directory-based scheme is required to keep
them coherent. Here, RBCC is used as an alternative to global coherence, to provide a
coherent view among the L2 caches, TLMs and the main memory.

3.2 RBCC Features
3.2.1 Scalability

RBCC provides inter-tile coherence support for a selectable cluster of tiles within a
large manycore system. By confining coherence to within certain regions, it reduces the
directory overheads that are required to maintain coherence. An example of a typical
sparse directory structure is illustrated in Figure 3.2. The number of entries (height) of
the directory is a design-time decision !, that can be represented as 2! entries, where I
is the number of index bits required to address the directory. Each entry of the sparse

1Tt is a trade-off between the number of cache lines expected to be tracked and area consumption

22

3.2 RBCC Features

directory holds the sharer information and auxiliary data for a given cache line. The
width of each entry is computed as follows.

A bit-vector field is used to represent (N-1)bits | Mmax- 1) bits T bits F bits
the number of sharers for a given cache Er— BitEVector Tog Flags
line. The length of this field is given by |
(N — 1), where N represents the num-
ber of tiles present in the manycore ar-
chitecture. This field grows linearly for
large manycore systems. A tag field T
(bits), holding part of the memory ad-
dress is stored to uniquely identify the
cache line. The length of this field is
given by (AS —O —1I), where AS is the
size of memory address space (32 bit, 64 bit, etc.) and O is the number of offset bits 2.
Lastly, a flag field F' (bits) is used to store additional information like the state or validity
of the sharer information. The length of this field is design dependent.

If inter-tile coherence is offered globally for a manycore system with N tiles, the area
consumed by the directory is given by:

I Sets

N

Figure 3.2: An example sparse directory structure

directoryArea(GC) = [(N — 1) + T + F] % 2! (3.1)

By switching to inter-tile coherence support though the RBCC concept, the directory
area consumption is given by:

directoryArea(RBCC) = [(Mypaz — 1) + T + F] x 2! (3.2)

where M,,q, is the maximum size of a coherence region. Therefore, the directory area
reduced by using the RBCC concept compared to global coherence is given by:

. . [directoryArea(RBCC)
directoryReduction = |1 —
trectoryReduction directoryArea(GC)

(3.3)

Mpazr —1)+T+ F
directoryReduction(%) = |1 — I)+ T+ F]

(N—-1)+T+F]

]*100

To better understand and visualize the directory reductions, a sparse directory with
the following parameters is configured - 32 Ki entries, a memory address space of 32
bits, offset of 5 bits, and a flag of 2 bits. The total number of tiles in the manycore
system is varied from N = 16 to N = 1024. Depending on the total number of tiles, the
maximum number of tiles within a single coherence region is varied from M., = 4 to
Mz = N/2. The directory reductions for this configuration is visualized in Figure 3.3.
The magnitude of the directory reductions are mostly influenced by N and M,q0. Mmaz
is a configurable parameter that should be determined at design-time. It represents the

2The number of offset bits is determined by the size of a cache line

23

3 Region-based Cache Coherence (RBCC)

N= 316 @32 ©64 0128 0256 0512 01024

100%
80%
60%

40%

DIRECTORY REDUCTION (%)
N
o
N

0%

4 8 16 32 64 128 256 512
COHERENCE REGION SIZE (Myax)

Figure 3.3: A visualization of the achievable directory area reductions when using RBCC com-
pared to global coherence for different N and M,,,, combinations

maximum size of a single coherence region which can be decided by profiling the class
of applications that are expected to run on the given manycore system. For example,
a manycore system with N = 16 tiles and M, = 4 tiles would reduce the directory
overheads by 41.4% compared to global coherence. Further, the directory reductions
significantly increase when N > M,,,.. This result is in line with the fundamental idea
of RBCC, which is to offer inter-tile coherence to a subset of tiles within a large manycore
system. Therefore, large manycore systems with moderately sized coherence regions will
significantly benefit from using the RBCC concept compared to global coherence, making
it scalable.

3.2.2 Flexibility

RBCC ensures scalability by limiting inter-tile coherence to a subset of tiles within a
large manycore system. A configurable parameter M., denotes the maximum number
of tiles that can be part of a single coherence region. In order to ensure directory
reductions, the size of M4, should be decided at design-time. For example, consider
a manycore system consisting of N = 16 tiles and the maximum size of a coherence
region My, = 4 tiles. Now the question is “which 4 tiles of the available 16 tiles
make up a coherence region”. Answering this question also at design-time would result
in static coherence regions, similar to the Intel® Xeon Phi where a NUMA domain is
configurable at boot-time [47]. By using such an approach, applications would need to

24

3.2 RBCC Features

Figure 3.4: The InvaslC tile-based manycore architecture with several coherence regions

be restrictively mapped to only certain pre-defined coherence regions, which may result
in under-utilization of the manycore system.

RBCC sidesteps this hurdle by enabling flexible coherence regions that can be con-
figured at run-time. The idea is to allow applications to dynamically control coherence
region parameters such as:

e The number of tiles within a coherence region 3,

e The spatial location and/or shape of the coherence region,
e The memory address range to be kept coherent within the coherence region.

With this, applications can dynamically configure and even re-configure coherence re-
gions at run-time based on their ever-changing requirements. This feature perfectly
aligns with the ideologies and requirements of the InvasIC project.

In order to maximize flexibility for applications, RBCC allows fine granular control
over all coherence region parameters. For example, it is possible to configure single/-
multiple coherence region(s) to be spatially disjoint or even overlapping with each other.
Within a coherence region, the coherent memory range can be configured to only par-
tially cover a custom memory address space. RBCC also allows uni-directional sharing
between tiles within a coherence region, i.e., one tile guarantees a coherent view of its
memory address space with the other, but not vice-versa. With such features, several
applications with varying requirements can be simultaneously executed within their re-
spective dynamically-created tailor-made coherence regions on large manycore system.

3The maximum number of tiles within a single coherence region is still Mpqx

25

3 Region-based Cache Coherence (RBCC)

3.2.3 Coherence-on-Demand

In a multi-threaded application spanning dif- Abplicati

pplication Code
ferent tiles, usually not all data is shared by its .text read-only
threads/processes. Therefore, it would be suf- Operating System Code o
ficient to maintain a coherent view only on the data Initialized Data C?s.rr?:rliaea-glrge
memory range where shared application data bss Uninitialized Data
reside. This would lower the amount of co- .
herence actions thereby reducing the coherence Elck private
traffic in the entire MPSoC. RBCC allows ap- l
plications to dynamically configure coherence ! run-time
regions, even to cover a specific memory ad- heap | shareable
dress range. However, the coherence region Figure 3.5: An example memory-map
needs to be configured before the applications with code and data sections

begins in order to maintain correctness. At

this point, only the address ranges of statically allocated application data like initial-
ized /uninitialized data are known. Application and OS code, processor stacks, etc. are
usually private, and therefore do not need to be kept coherent. However, data to be
allocated at run-time are still unknown, which forces the coherence region configuration
to conservatively and unnecessarily cover the entire heap memory address space. This
results in needless coherence actions that add to the network traffic and increases the
communication latency.

As a solution, RBCC is designed to leverage hints from the OS such that it can provide
inter-tile coherence to truly shared dynamically allocated data. The idea is to extend
the memory allocate function of the OS to include the newly allocated data as part the
coherent memory range. Similarly, when the memory free function is invoked by the OS,
the coherent memory range is adapted to exclude the deleted data. This feature uses
hardware-software co-design to provide tailored coherence for truly shared application
data, enabling coherence-on-demand.

3.2.4 Auxiliary Features

The RBCC concept is architecture-agnostic, i.e., it can be applied to any generic tile-
based manycore architecture. However, the target architecture used to conceptualize
RBCC has also influenced its development, thereby adding some auxiliary features.

The architecture under discussion is a DSM-based tiled manycore system with two
types of memories, placed at different locations. The TLM is an SRAM-based memory,
distributed among every tile of the manycore system. The main memory is composed
of DRAM-cells, located within a dedicated memory tile of the manycore system. The
RBCC concept has been developed to seamlessly establish scalable and flexible coherence
for both types of memories. As a consequence of housing distributed TLMs, the book-
keeping directory structures have also been distributed accordingly. This avoids the need
for home-node hops, thereby reducing the latency of coherence messages and lowering
the network load.

26

3.3 RBCC Design

Further, the design choices and implementation specific details when realizing RBCC
have also necessitated several features, such as, providing a coherence barrier mechanism,
resolving false-sharing problems, etc. As these features require design-specific knowledge,
they are described from Section 3.4.4 onwards.

3.3 RBCC Design

3.3.1 The Coherence Region Manager (CRM)

The RBCC concept and its features are realized using a CRM. The CRM establishes
a framework to create, maintain and tear-down coherence regions. It informs a given
tile about which other tile(s) are permitted to have a coherent view over its share of
memory. With this information, coherence is selectively enabled between a configurable
subset of tiles within a large manycore system.

From a coherence perspective, the CRM is designed to perform all tasks of a generic
directory-based coherence entity. Fundamental coherence actions of the CRM include
tracking memory transactions like loads and stores, sending invalidation messages to
clear stale cache data, and writing-back fresh data to the source memory (TLM or main
memory). The CRM additionally contains custom logic which is used realize RBCC
features such as dynamically (re)configuring coherence regions at run-time.

3.3.2 Architectural Design

The CRM is a hardware module distributed within every tile of the target manycore
architecture, introduced in Section 3.1.1. Within the tile, there exist several design
choices as to where the hardware CRM module could be instantiated. Various options
were explored by a former colleague as part of a master thesis [66]. From this work, the
design choices can be broadly classified into tightly-coupled or loosely-coupled.

A tightly-coupled design would be to integrate the CRM into an existing module of
the target manycore architecture. For example, the CRM could be integrated as part of
the L2 cache or even the network adapter, where it would receive information on memory
transactions and carry out coherence actions. This design choice puts the CRM directly
into the data-path, allowing explicit control over all memory transactions. However, the
tight integration with a specific module would make the CRM design non-modular, i.e.,
it would be difficult to use the CRM as an Intellectual Property (IP)-core for any generic
MPSoC platform. With a loosely-coupled design, the CRM would be instantiated on
the AHB bus interconnect as a standalone module. It could use the AHB bus to listen
to memory transactions and perform the required coherence actions. This design choice
would make the CRM modular, but lack explicit control over memory transactions.

Most hardware-supported inter-tile coherence mechanisms usually use a tightly inte-
grated design approach, which requires all memory transactions to first consult with the
coherence manager before responding to the memory request. This thesis implements the
CRM a loosely-coupled design, exploring a non-intrusive approach that works in parallel
to memory transactions. Additionally, this design choice makes it relatively less-complex

27

3 Region-based Cache Coherence (RBCC)

Primary AHB Bus

AHB Slave AHB Master
Interface Interface
C -
O
= O :
s e Write-Back
Transaction 28 Manager
Classifier o .
[Directory
Snoop Unit FIFO Manager
A
v Coherence [MFalse Sharing
Request l TResponse Barrier Resolution
FIFO FIFO|

Management Unit

Re-configuration

A

Manager

Configuration Unit

Figure 3.6: The internal block diagram of the CRM with its sub-modules

to deploy the CRM as an IP-core on a generic MPSoC platform. The subsequent chal-
lenges of this design choice such as controlling memory transactions during coherence
actions and their solutions are described in Section 3.4.6. Lastly, the CRM is designed as
a programmable hardware module. This allows users/applications to dynamically create
and/or dissolve flexible coherence regions at run-time.

3.3.3 The CRM and its Sub-modules

Figure 3.6 depicts the CRM design as a block diagram. The CRM module can be viewed
as several sub-modules, each designated with its respective tasks, working together to
enable RBCC. The design of each CRM sub-module is described below.

Snoop Unit

The Snoop Unit is the front-end of the CRM, connected to the AHB bus interconnect.
It has two main tasks - listening to all memory transactions on the AHB bus and main-
taining information of all active coherence regions concerning the local tile. The Snoop
Unit is equipped with an AHB slave interface that is used for two purposes. One, to
passively listen to all memory transactions on the AHB bus interconnect. This may
include transactions that are not directly addressed to the CRM. Two, to provide a
memory-mapped address space that allows users/applications or even other hardware
modules to directly interact with the CRM, for example, to configure coherence regions,
CRM-CRM communication, check the status of the CRM, etc.

28

3.3 RBCC Design

The Snoop Unit also contains a Coherence Configuration Table (CCT) to keep a record
of all active coherence regions involving the local tile. Users/applications write into the
CCTs of different tiles via the memory-mapped address space to configure a coherence
region. Each entry in the CCT consists of five fields namely:

e Region ID: An identifier differentiating multiple coherence regions.

Start Address: The start of the shared address range.

End Address: The end of the shared address range.

Sharers: A bit-vector representing the remote tiles that are allowed a coherent
view over the shared address range.

Direction: A bit-pair per Sharer representing either uni-directional or bi-directional
sharing.

The role of each entry in configuring coherence regions is explained with an example
in Section 3.4.

Management Unit

This sub-module serves as the back-end of the CRM. Its task is to react on transactions
received from the Snoop Unit via the FIFO Interface. The transactions are sent to a
transaction decoder, where they are interpreted and translated into coherence actions.
In order to execute certain coherence actions, the Management Unit is equipped with
an AHB master interface. The basic operations performed by the Management Unit to
maintain inter-tile coherence are described in Section 3.4.

Configuration Unit

This sub-module is responsible for all coherence region configurations and re-configurations
(to grow /shrink and /or migrate regions) at run-time. The Configuration Unit is equipped
with internal interfaces to the Snoop Unit and to the Directory. Its primary task is to
check if incoming coherence region configurations are new (first time) or an update to
an existing active coherence region. For updates to existing coherence regions, i.e., a
coherence region re-configuration, the Configuration Unit selectively clears the Directory
entries. It also houses two FIFO modules, a request FIFO and a response FIFO to buffer
multiple incoming coherence region configuration. Details describing the functionality
of this sub-module is provided in Section 3.4.

FIFO Interface

The CRM module uses a FIFO Interface to connect the Snoop Unit and the Management
Unit together. The FIFO Interface is not only used for communication, but also to buffer
transactions. It also contains run-time configurable fill level indicators to avoid any FIFO
overflows. The FIFO overflow handling procedure is described in Section 3.4

29

3 Region-based Cache Coherence (RBCC)

Table 3.2: An example of two CCT entries that establish a coherence region spanning two tiles

CCT Entry Tile A Tile B
T — o
Start Address 80000000+¢ 8000000046
End Address 807FFFFF 6 807FFFFF ¢
Sharers 00104 00014 C D

Direction XX2 XXQ 112 XX2 XX2 XXQ XX2 112

Directory

This sub-module is responsible for managing the book-keeping information that is re-
quired for inter-tile coherence. The design of the Directory follows the description
of Section 3.2.1. Therefore, the storage requirements for the sharer bit-vector is re-
duced (RBCC concept), making it substantially smaller and scalable compared to global
coherence directories. Currently, creating a region that exceeds the maximum number of
tiles in a region activates an overflow flag which can be used to trigger an OS interrupt.

3.4 RBCC Functionality

3.4.1 Coherence Region Configuration

RBCC is activated by configuring the CCT present in the Snoop Unit of the CRM. To
better understand the configuration process, consider an MPSoC with 4 tiles in total,
wherein an application requests for a coherence region spanning two tiles, as depicted
in Table 3.2. Also, assume that the application requests for bi-directional sharing of the
complete TLM range, i.e., both tiles within the coherence region are allowed a coherent
view over each other’s entire TLM range. First, the application’s request is handled by
the OS which writes into the CCTs of the two tiles via the memory-mapped interface of
the CRM. As shown in Table 3.2, both tiles (Tile A and Tile B) have the same Region ID
of 1, as they are part of the same coherence region. The Start Address and End Address
fields span the entire TLM address space of the respective tiles. The Sharers field of Tile
A has a bit-vector indicating Tile B as a sharer and vice-versa. This allows both tiles
to have a coherent view over each other’s TLMs. The Direction field for both tiles has
the bit-pair value of 115 (at the corresponding Sharer index) indicating bi-directional
sharing. By modifying the Direction field (to 10, or 01,), applications can enable fine
granular coherence regions through uni-directional sharing.

With proper configuration of the CCTs, users can create and/or update an arbitrary
number of coherence regions spanning different shapes and/or sizes with fine-granular
sharing properties at run-time. The number of entries present in the CCT influences the
number of coherence regions that can be active simultaneously. The maximum number
of entries of the CCT should be decided at design-time, based on the size of the manycore
system and the class of expected applications.

30

3.4 RBCC Functionality

Re-configuration Overheads

The CRM allows coherence regions to be re-configured at run-time based on application
requirements. This feature can be leveraged by resource-aware computing applications
to dynamically add/remove processing and/or memory resources. It can also be used
when a current application ends and a new application begins. The re-configuration
process is similar to an initial configuration process, with an additional possibility that
may involve resetting the sharer entries of the Directory. From the perspective of the
CRM, re-configuration scenarios are classified into two categories. One, to modify the
memory range, i.e., increasing/decreasing the coherent memory address range within an
active coherence region. Two, to modify the number of sharers, i.e., adding/removing
processing and memory resources to/from an active coherence region. If the Configu-
ration Unit detects modifications to the start and/or end address fields, the Directory
entries need to be reset, i.e., the sharer bit-vectors are set to zero. If the address range is
reduced, the sharer bit-vector of the corresponding Directory entries are cleared. If the
address range is expanded, no action is required as the entries are already clean (cleared
when the address range is reduced).

For the example in Table 3.2, if Tile A’s memory address range is reduced by half,
(end address overwritten by 803FFFFFi6) the corresponding range of Directory entries
are reset. If this address range is added back or re-assigned, no action is taken as the
Directory entries are clean. Similarly, Directory entries are also reset upon modifications
to the sharers field. However, compared to the memory range, the sharer bit-vector is
only selectively cleared based on which tile was removed from the coherence region.
For the example in Table 3.2, if Tile B is removed from the coherence region, the bit
corresponding to Tile B in the Sharers field of Tile A’s CCT is cleared (0000,) for
the entire shared memory range. If a tile is added to the coherence region, no action
is required as the entries are clean. Updates to the Region ID or Direction fields do
not require resetting the directory entries. Further details on the Directory resetting
overheads are reported in Section 3.6.2.

Configuration Synchronization

The process of configuring/re-configuring a coherence region involves writing to several
CCTs that are distributed among different tiles of the manycore system. Applications
should start executing only after a requested coherence region has been successfully
(re)configured. The time taken to (re)configure a coherence region depends on:

e The number of tiles requested by the application,
e The possible directory-resetting overheads in case of a re-configuration,
e The current NoC load.

These factors make the coherence region (re)configuration time non-deterministic. To
synchronize this procedure, the coherence region (re)configuration follows a fork-join

31

3 Region-based Cache Coherence (RBCC)

model similar to multi-threaded applications, where each CRM responds with a coher-
ence (re)configuration acknowledgment message upon successfully receiving the The tile
executing the application’s main thread is defined as the coherence region initiator tile.
First, the initiator tile writes into the CCT of the local CRM. This is followed by writes
to all CCTs of the respective remote CRMs that are to be (re)configured as part of the
coherence region. The CRM provides a hardware synchronization register present in the
Configuration Unit, which can be used by the application’s main thread to keep track of
all pending coherence (re)configuration acknowledgments. Upon successfully writes to
all fields of the CCT, the CRM in every tile being (re)configured sends-out a coherence
(re)configuration acknowledgment signal to the CRM of the initiator tile. The time taken
by the CRMs to send-out the acknowledgment signal can vary depending on the possible
Directory reset time and the NoC load. Once all coherence (re)configuration acknowl-
edgment signals are received by the main thread, the application can safely start/resume
its execution.

Referring to the example of Table 3.2, Tile A expects two response signals 4, one from
itself and one from Tile B. During this waiting phase, the application’s main thread polls
on the coherence synchronization register. Once Tile A receives all pending acknowledg-
ment signals, the coherence synchronization register is cleared and the application can
safely begin/resume its execution.

3.4.2 Coherence-on-Demand: RBCC-malloc()

The coherence region configuration and re-configuration procedures are designed to work
at run-time. To leverage this functionality, a software wrapper around the regular mal-
loc() function has been designed. Using this, applications can not only specify the
amount of data to be allocated, but also if the data should be cache coherent . Re-
ferring to Figure 3.7, assume an application initially requests the OS for 4 tiles cache
coherent tiles @. Assuming resources are available, the OS sets up a coherence region by

e Memory
Allocation

Resources

4

a Requesting
Operating System
[p g oy e e

Application Resource Allocator)
7y malloc() Configure
6 Resources RBCC-malloc() CRM
Granted |
Return MPSoC Platform
Pointer

Figure 3.7: An example illustrating how RBCC-malloc() dynamically tailors coherence regions
to only track actually shared applications’ working-sets at run-time

4 Assuming the application’s main thread is running on Tile A
5This can also be abstracted by the OS, making it transparent to the application

32

3.4 RBCC Functionality

writing to the CCTs of the corresponding tiles @. The Start Address and End Address
fields are already set to track compile-time known statically allocated shared data. Upon
confirmation from the CRM, the OS grants the corresponding processing and memory
resources to the application @. During execution, all dynamic data allocation requests
to the OS are handled either by a regular malloc() or RBCC-malloc() @. If the data
allocation request originates from within a coherence region, the OS can automatically
choose RBCC-malloc() over malloc(). In this case, the OS first forwards the range of
this “to-be-allocated” application data/working-set to the CRM @), whose CCTs are
adapted at run-time to additionally track this specific memory range. Upon a success-
ful update, the OS returns a pointer to the newly allocated coherent working-set (@.
Conversely, the free() is replaced by RBCC-free() to clean-up the CCTs followed by
data de-allocation. The CRM configuration penalty/overheads are listed in Table 3.6.
This hardware-software co-design mechanism is triggered by data allocation requests
throughout application execution. RBCC-malloc() allows the CRM to transparently
accommodate and track actually shared application working-set(s) at run-time.

3.4.3 Coherence Operations

With RBCC, coherence needs to be provided only to the subset of tiles and their cor-
responding shared address ranges that are configured as part of a coherence region.
Therefore, the Snoop Unit uses information from the CCT to filter all memory trans-
actions observed on the AHB bus. The filtered transactions are sent to a transaction
classifier, where they are categorized. Then, the transactions are sent to the Manage-
ment Unit of the CRM via the FIFO Interface, where they are translated into specific
coherence actions. The different transactions and corresponding coherence actions are
described below.

Directory Update

If the Snoop Unit detects a load transaction from a remote tile, the transaction classifier
categorizes this as a directory update request and forwards it to the Management Unit
via the FIFO Interface. The Management Unit decodes this request and triggers the
directory manager, which updates the sharer bit-vector for the corresponding ¢ cache
block in the Directory. The Snoop Unit ignores load transactions that originate within
the tile, as tile-local caches are kept coherent by a snoop-based scheme.

Invalidation Generation

If the Snoop Unit detects a store transaction either from within the tile or from a remote
tile, the transaction classifier categorizes this as an invalidation generation request. In
the Management Unit, the transaction decoder triggers the invalidation manager which
accesses the Directory to read the sharer bit-vector for the corresponding cache block.
Depending on the number and position of the set sharer bits, invalidation messages are

5The CRM obtains this information from the network adapter

33

3 Region-based Cache Coherence (RBCC)

sent out using the AHB master interface. These invalidation messages are addressed to
the CRMs of remote tiles which share a copy of the data. The invalidation message also
contains the memory address of the cache block which is to be invalidated in the remote
caches.

Invalidation Execution

If the Snoop Unit detects an incoming invalidation message from a remote CRM, it
triggers an invalidation execution request. This is decoded in the Management Unit
and passed on to the invalidation manager, which executes the request in two steps.
First, the corresponding memory address is invalidated in the L2 cache. This is done
by writing to a specific control register of the L2 cache using the AHB master interface.
Next, the corresponding memory address is invalidated in the L1 cache. This is done
by performing a dummy store operation on the AHB bus which triggers the snoop-
based coherence protocol. The dummy store operation is performed with the AHB
IDLE_TRANS transfer mode, ensuring that the data is not modified 7. After successfully
invalidating the memory address in the L1 and L2 caches, the invalidation manager
sends out an invalidation acknowledgment message to the source CRM which triggered
the invalidation.

Write-back

If the Snoop Unit detects a store operation to a remote tile’s TLM, the transaction
classifier categorizes this as a write-back request. In the Management Unit, the write-
back manager triggers a forced write-back of the corresponding memory address from
the L2 cache. The explicit write-back is performed by writing to the control register of
the L2 cache via the AHB master interface. Then, the L2 cache writes-back this cache
block to the remote TLM via the NoC. After the cache block is successfully written-back
at the remote TLM, the remote CRM sends a write-back acknowledgment message to
the source CRM which triggered the write-back.

3.4.4 Coherence Barrier Mechanism

A coherence manager enforces a coherent view over all shared memory. However, this
does not necessarily enforce “when” all coherence operations have been successfully
executed, i.e., if all processing elements have the same view of the memory subsystem.
This information is required by applications to synchronize and execute as intended. The
CRM is equipped with a coherence barrier mechanism that can be used by applications
for coherence-related synchronization. The coherence barrier is integrated as part of the
Management Unit and uses a novel counter-based approach to track coherence messages.
This approach allows the coherence barrier to work in parallel to ongoing transactions,
thereby maintaining the non-intrusive property of the CRM design.

"The L1 caches have been modified to additionally snoop and react to idle transactions

34

3.4 RBCC Functionality

Table 3.3: A summary different memory access operations and their coherence actions

Memory Operation Potential Coherence Actions
Local Load None
Remote Load Update Directory
Local Store Generate Invalidations
Remote Store Write-back and Generate Invalidations
" Write-back
00 00 [0 rieback@ | porore
< > [——— Tile A
Coherence Barrier | | Coherence Barrier Write-back ACK & s
Issued @ | @® Lifted “ s 5
Coherence Barrier Logic Invalidation @ % §
o f. ACK @ g L
0 8| i v S a
Q S ‘ inv_pend ‘ wb_pend S
) - 2
o O| = Invalidat
% zﬁ 1. nvalida IOH@ N Remote
8 €| |inv_ack_tota I < — Tile B
& wb_tracking FIFO Invalidation ACK @

Figure 3.8: An example illustrating the internal block diagram and operation of the coherence
barrier mechanism

The primary task of the coherence barrier is to inform applications if all coherence
operations were successfully executed, i.e., sent-out and acknowledged. Table 3.3 sum-
marizes the four basic memory operations, and the corresponding coherence actions
taken by the CRM. Load operations do not modify memory and are acknowledged with
data by default. Therefore, the CRM does not need to track them for the coherence
barrier mechanism. Store operations modify memory and can trigger coherence actions
like write-backs and invalidations. Therefore, the CRM keeps track of how many such
messages were sent-out, and if all were successfully acknowledged.

Coherence Barrier Counters

The Management Unit keeps track of the ongoing/pending coherence messages using
different counters.

Invalidation Tracker: This sub-module keeps track of pending invalidations to all tiles
that are triggered by a local store operation. An inv_pend counter per tile is incremented
and decremented when an invalidation is issued and acknowledged respectively (@ and
@ to/from Remote Tile B).

Write-back Tracker: This sub-module keeps track of pending write-back operations to
all tiles. A wb_pend counter per tile is incremented and decremented when a write-back
is issued and acknowledged respectively (@) and @) to/from Remote Tile A).

35

3 Region-based Cache Coherence (RBCC)

Write-back-induced Invalidation Tracker: A write-back operation executed on the
remote tile may trigger further invalidations. Therefore, a write-back acknowledgment
should be sent, only when all invalidations triggered due to a write-back operation are
successfully executed and acknowledged. In Figure 3.8, Tile A receives a write-back @)
which further triggers invalidations @) to Tile B. Only when Tile B sends back an
invalidation acknowledgment @), Tile A responds with a write-back acknowledgment ().
Tracking write-back-induced invalidations becomes a complicated process as there can be
several ongoing write-back operations simultaneously. A look-up table approach noting
down and comparing every invalidation’s parent write-back increases the area of the
CRM and its delay characteristics. Instead, a novel counter-based approach is used to
correctly acknowledge write-backs. An inv_ack_total counter that holds the total amount
of invalidation acknowledgments per tile, is incremented upon receiving an invalidation
acknowledgment. Upon triggering write-back-induced invalidations, the tile computes
the future value of the inv_ack_total as follows:

inv_ack_total fyyre = inv_ack_totaleyrrent + inv_pend + 1 (3.4)

This value, along with the source of the write-back is pushed into a write-back tracking
FIFO. Upon receiving invalidation acknowledgments, the current inv_ack_total counter is
compared to the pushed FIFO entry. If the FIFO value satisfies the current inv_ack_total
counter 8, a write-back acknowledgment to the source tile is sent.

Coherence Barrier Logic

When an application triggers a coherence barrier on a given tile @), a memory-mapped
barrier register is set and the current values of the inv_pend and wb_pend counters
are copied into shadow registers. The shadow registers are decremented upon every
invalidation and/or write-back acknowledgment, and the barrier register is reset when
they reach zero @). Then, the application can safely resume as the barrier is lifted.
The use of shadow registers allows other processing elements (most probably executing
a different application) on the same tile to continue, while the coherence barrier logic
operates in parallel 9.

3.4.5 False Sharing Resolution

False sharing is a well-known problem in manycore systems [67]. It occurs when multi-
ple processing elements access independent variables, but are nevertheless considered as
sharers because the variables themselves are located within the same cache line. False
sharing can significantly degrade the performance of an application. Many solutions
have been proposed to solve the false sharing problem. The work in [68] uses a compiler-
based approach to avoid false sharing by transforming data. Studies in [69, 70] detect
false sharing using compiler-based approaches, and the work in [71] resolves false sharing

8The coherence and acknowledgment messages should always be in-order
9Multiple barriers can be supported by increasing the number of barrier and shadow registers per
tile

36

3.4 RBCC Functionality

L (0 | e 1)L — >
<« 4R < D>
———

A K Front End
| L2 Cache CRM
|
: - Back E
i 12 Cache TLM [2 Cache ack End ®
Tile A A Tile C Tile B © |

@ W @ Network Adapter

Figure 3.10: An example of
false sharing
resolution

Figure 3.9: An example of the false sharing problem

at run-time using data migration. The work in [72] also detects and resolves the false
sharing problem at run-time by using a writer-own protocol together with data migra-
tion. The study in [73] employs a complementary approach by making use of different
cache line sizes. The idea is, with small cache line sizes, the effects of false sharing can
be minimized. Therefore, non-shared data are assigned to large cache line sizes and
shared data are assigned to small cache line sizes. The false sharing resolution strategy
proposed by this thesis is different to the aforementioned works. First, the impact of
false sharing on the manycore system is explained, followed by the proposed solution.

As explained in Section 3.3.2, the non-intrusive functionality of the CRM enables a
modular design which is favourable for easy integration into other manycore systems.
The challenge of this design choice is that it does not enforce flow control over load/store
operations as they do not explicitly pass through the CRM. This, combined with the false
sharing problem can not only deteriorate application performance, but also lead to data
corruption. For example, consider Figure 3.9 where Tile A and Tile B are working on
different words of the same cache line making them false sharers. A write operation (1)
on their respective words would result in remote write-backs (2) of the entire cache line
racing to Tile C’s memory, where each of them further trigger invalidation messages (3)
to each other. The final data in the TLM would be that of the write which lost the
race, and the cache line in the respective L2 caches would be invalid. If the data path
of the remote write operations were passing through the CRM, the second write would
have received a negative acknowledgment, thereby forcing it to re-read the new data
and write it again. As the CRM in Tile C only observes, and cannot control these write
operations, data in Tile C’s memory may be corrupted.

The solution to this data corruption problem, whilst maintaining a modular CRM
design, involves three steps as illustrated by Figure 3.10:

(a) Detect the modified word in the cache line,
(b) Inform the L2 cache back-end as to which word was modified,

(¢) Write-back the modified word (not the cache line) to the remote memory.

37

3 Region-based Cache Coherence (RBCC)

For step (a), the AHB bus signals HSIZE and HBURST are used to decode the modified
word of the cache line. The HSIZE signal represents the write data size ranging from
a single Byte to a complete cache line. The HBURST signal indicates the type of bus
transaction covering a single transfer to a 16 beat burst transfer. Monitoring both
these signals, the CRM detects the modified word in the cache line. This information
is propagated to the L2 cache back-end in step (b). Upon a write-back command from
the L2, the L2 cache back-end uses this information and selectively writes-back only the
modified word in the cache line through the network adapter in step (c). These steps
happen in parallel to the CRM write-back operation, thereby adding no additional delay.

3.4.6 Auxiliary Functions

Apart from enabling coherence and providing coherence-related synchronization method-
ologies, the CRM is also equipped with some additional features that are described below.

FIFO Overflow Handling

The CRM module is designed to operate in parallel to load/store transactions, pas-
sively listening to memory transactions on the AHB bus. The Snoop Unit filters and
classifies incoming transactions, before feeding them into the FIFO Interface. This pro-
cess is performed in a streaming manner, without any back-pressure to the incoming
transactions on the AHB bus. However, the Management Unit cannot guarantee to in-
terpret and perform all the coherence actions in a streaming manner. This is due to the
non-deterministic access times when using the AHB bus, for example, some coherence
operations exhibit non-deterministic completion times depending on bus penalties, num-
ber of sharers, etc. These factors lead to a mismatch in production rate of the Snoop
Unit (snooped bus operations) and consumption rate of the Management Unit (coher-
ence actions) which could lead to loss of transactions. To alleviate this problem, the
FIFO is designed with a predefined critical and safe level. If the FIFO reaches/exceeds
the critical level, the CRM locks the AHB bus in order to stop new transactions from
entering the FIFO. The lock is performed in a selective manner, i.e., only the CRM and
network adapter bus masters are granted bus access during this locked-phase. Such a se-
lective locking mechanism allows the CRM to empty its FIFO without causing deadlocks.
However, locking the local AHB bus only stops transactions generated from within the
tile from filling-up the FIFO. Remote tiles that are part of the coherence region could
yet push transactions into the FIFO. Therefore, the CRM not only locks the local AHB
bus, but also sends out a message to all remote tiles within the coherence region to
selectively lock their respective local AHB buses. Once the FIFO reaches the safe level,
the CRM unlocks the local bus, and sends out a message to all corresponding remote
tiles, instructing them to unlock their respective AHB buses. This selective bus-locking
mechanism is deadlock-free and allows the CRM’s FIFOs to be safely emptied, ensuring
lossless transactions.

38

3.5 Concept Evaluation - High-Level Simulation

Support for DMA Accesses

manycore systems are equipped with a Direct Memory Access (DMA) unit to accelerate
inter-tile memory transfers. DMA memory transactions are carried out between dedi-
cated hardware DMA modules on the source and destination tiles. As these memory
transactions bypass the cache hierarchy, the CRM design is adapted accordingly. From
the perspective of the CRM, DMA transfers are viewed as burst load (reading from
the source tile) and store (writing to the destination tile) operations. The Snoop Unit
filters ignores all burst load operations from the DMA module, as they are not cached
and hence do not need to be traced by the Directory. For burst store operations by
the DMA module, the Snoop Unit triggers the Management Unit to send out potential
invalidations, as the data being written might have been cached previously.

3.5 Concept Evaluation - High-Level Simulation

Implementing the CRM directly as a hardware module requires detailed knowledge of the
manycore system, its various sub-modules and their protocols. These low-lying system
details are not entirely known or are under formulation, especially during the initial
stages of a project. Deciding to go for a hardware implementation at this stage usually
results in frequent modifications, thereby increasing the design time. Therefore, the
RBCC concept is initially verified using a high-level simulation model. This approach
allows the CRM to be validated quickly without the need for concrete system-level
details.

3.5.1 Simulation Framework

An existing SystemC-based [74] cache simulator designed by a colleague at Lehrstuhl fiir
Integrierte Systeme / Chair of Integrated Systems (LIS) is used as a starting point. The
simulator was adapted and extended to incorporate all the necessary components such as
the processing elements, the memory hierarchy and interconnect to mimic a DSM-based
manycore system. All components communicate with each other using the TLM-2.0
standard protocol [75]. As an alternative to a typical SystemC top level module, the
Synopsys Platform Architect Tool is used to connect all components together. The tool
has a user-friendly Graphical User Interface (GUI) which eases the effort of connecting
several components together.

The simulation framework is configured as a tile-based MPSoC with four processing
elements per tile, similar to Figure 3.1. Each processing element has a 16 KiB private
L1 cache (2-way, 256 cache lines per way, 8 words per cache line) using a write-through
policy. The L1 caches uses the MI protocol to keep coherent and are connected to a
common TLM-2.0 compliant bus interconnect. Each tile is equipped with a tile-private
128 KiB L2 cache (4-way, 1024 cache lines per way, 8 words per cache line) using a write-
back policy. The L2 cache uses the MSI cache coherence protocol. Each tile contains a
1 MiB SRAM-based TLM and the entire manycore system houses a DRAM-based global
memory. Intra-tile coherence among the L1 caches is enabled by using a snooping-based

39

3 Region-based Cache Coherence (RBCC)

protocol. Inter-tile coherence between the L2 caches of different tiles is guaranteed by the
CRM module present in every tile. For inter-tile communication, a NoC in conjunction
with a network adapter is used. The NoC is configured as a 4x4 mesh using XY routing.

The focus of the RBCC concept is more towards the memory subsystem than the
processing subsystem. Therefore, to reduce the overall simulation time, a trace-based
simulation approach is used, where the internal operations of the processing elements
like the pipeline stages, registers, etc. are abstracted. The processing elements in the
simulation framework are designed to simply replay traces of a given benchmark that are
obtained externally. The traces are then injected into the simulation framework which
models the memory subsystem. The decision to use trace-based simulation trades-off
exact modelling of the processor internal operations which are not required for high-level
verification, in return for simulation speed.

3.5.1.1 Extracting Traces from the Gem5 Simulator

The Gemb5 [76] simulator is used to generate execution traces of benchmarks, that are
then fed to the trace-based processing elements of the SystemC simulator. The SystemC
simulator concentrates on modelling the memory subsystem of the tile-based manycore
architecture. Therefore, it is important that the extracted benchmark traces are inde-
pendent of Gemb’s memory subsystem modelling. For this reason, Gemb5 is configured
with an Atomic Central Processing Unit (CPU), which avoids capturing the timing char-
acteristics of Gemb5’s memory architecture. Gemb5 is compiled for the Alpha Instruction
Set Architecture (ISA) ¥ and is launched in Full System mode using a modified Linux
kernel and a disk image containing the necessary benchmarks [77]. The benchmark’s
traces are recorded only in the Region of Interest (Rol). This omits any traces generated
during Gemb’s boot-up phase, the benchmark initialization and benchmark clean-up
During the Rol, the traces are further filtered to only include memory accesses, as this
information is sufficient for the SystemC simulator. The benchmarks are executed with
different Degrees of Parallelism (DoPs), and the resulting traces are formatted such that
they can be used by the trace-based processing elements. Table 3.4 illustrates a sample
set of memory access traces. Each trace consists of four fields:

e Timestamp: This field indicates the time at which the trace should be executed.
The time is relative to each processing element and is represented in nano seconds.

e Processor ID: This field represents a particular processing element.
e Load/Store: This field indicates either a memory load (0) or store (1) operation.

e Memory Address: This field represents the memory address that is to be read-from
or written-to.

It is important to note that the same trace file is fed to all processing elements of the
simulator, and each processor executes its share of memory traces. For the example trace

'9A Reduced Instruction Set Computer (RISC)-based ISA similar to the LEON

40

3.5 Concept Evaluation - High-Level Simulation

Table 3.4: An example trace file format
Timestamp Processor ID Read/Write Memory Address

1000 3 0 8000300046
1000 5 1 80005000+¢
3000 3 1 8000303016
5000 5 0 80005050+¢

file of Table 3.4, processor 3 executes the first and third trace. When the simulation
time reaches 1000 ns, processor 3 issues a memory load request to read data from address
8000300046. Once the load request returns successfully, processor 3 waits an additional
3000 ns before issuing a store to address 8000303015. Processor 5 executes the second
and fourth traces in a similar manner.

3.5.1.2 Data Placement Strategies

The memory access traces obtained from Gemb) are unaware of the memory subsystem of
the DSM-based manycore architecture which hosts two types of memories - a distributed
TLM and a global DRAM memory. Therefore, the question “where should data reside?”
arises. This question is answered with two algorithms that are described below.

First Touch (FT) Policy: This data placement strategy attempts to place a given
memory block into the TLM of a tile where the memory block was first accessed. If
the preferred TLM is full, the memory block is placed into the global memory. This
algorithm has a linear complexity of O(n) where, n is the number of memory accesses.

Most Accessed (MA) Policy: In this data placement strategy, each memory block is
placed into the TLM of a tile where the memory block was most accessed over the entire
benchmark run. If the preferred TLM is full, the memory block is placed into the next
preferred TLM. If all TLMs are fully occupied, the memory block is placed into the
global memory. This algorithm exhibits a computational complexity of O(n) + O(m),
where n is the number of memory accesses and m is the number of unique memory
blocks.

The data placement algorithms are executed on the memory access traces of the
benchmarks obtained from the Gemb simulator. The algorithm adapts the memory
address fields in the trace file, to indicate the location of the memory block. The adapted
trace file is fed to the trace-based processing elements to simulate the memory subsystem
of the manycore architecture.

3.5.2 Experimental Setup

The purpose of high-level modelling is to quickly validate the concept of RBCC and
to estimate its benefits. This is done by executing benchmarks on a manycore system
configured with and without RBCC. For the case without RBCC, there is no inter-tile

41

3 Region-based Cache Coherence (RBCC)

coherence support, and all processing elements are configured within a single compute
tile. The impact of data placement on benchmark performance is also evaluated.

Four workloads from the PARSEC Benchmark Suite - blackscholes, swaptions, canneal
and fluidanimate are used for the experiments. All workloads are executed using the
simsmall input-set for three DoPs (4, 8, 16), that make up three different coherence
region sizes (1, 2, 4) respectively. Every workload is executed on the manycore system
with three different configurations:

e Inter-tile Coherence, placed with FT Policy: RBCC::FT Configuration,
e Inter-tile Coherence, placed with MA Policy: RBCC::MA Configuration,

e Intra-tile Coherence Only: All-in-One (AiO) Configuration.

3.5.3 Results and Analysis

The experiments are primarily evaluated for two criteria:
e Benefits of Inter-tile Coherence - AiO vs RBCC::MA,
e Impact of Data Placement - RBCC::FT vs RBCC::MA.

For easy comparisons, the execution time of each configuration is normalized to that of
RBCC::FT with DoP(4).

blackscholes: This benchmark uses a small data-set which is not extensively shared
by all processing elements. Therefore, it favours an increase in DoP and the number
of processing resources. Figure 3.11 shows that with an increase in DoP, RBCC::MA
outperforms AiQ. This is because, in the AiO configuration, all processing elements
share the common bus interconnect. With increasing DoPs, this creates a a bottleneck
for intra-tile communication, leading to performance degradation. Figure 3.11 also shows
that data placement strategy has a negligible impact on execution time. This is due to
the workload’s small data-set, that allows all its data to reside within the TLMs.

canneal: This benchmark uses large data-sets and favours parallelism. Interestingly,
the AiO configuration has a slightly better performance than RBCC::MA. Deeper inves-
tigations reveal that these differences are a result of additional remote accesses that are
required for the RBCC::MA configuration. For the AiO configuration all data resides
in the TLM. Regarding data placement, Figure 3.11 shows that there is a significant
performance deterioration for RBCC::FT compared to RBCC::MA. For RBCC::FT, the
workload’s data-sets are sub-optimally placed in the TLMs, with several frequently-used
memory blocks placed in global memory. This leads to excessive remote TLM and global
memory accesses, underlining the importance of data placement.

swaptions & fluidanimate: Both these benchmarks exhibit similar characteristics with
some minor differences. The swaptions workload use medium sized data-sets whereas
the fluidanimate workload uses large data-sets. Figure 3.11 shows that both benchmarks
tend to have a slightly better performance for the AiO configuration up to DoP(8). How-
ever, for DoP(16), both workloads experience the intra-tile communication bottlenecks

42

3.5 Concept Evaluation - High-Level Simulation

OFirst Touch (RBCC::FT) B Most Accessed (RBCC::MA) m All-in-One (AiO)

1.2
1 Tile — M
Coherence
Region
1 — —
2 Tile
Coherence
0.8 Region
4 Tile
Coherence
Region

Normalized Execution Time
o o
N (o))
]

o
N}

.] ljj

blackscholes canneal swaptions fluidanimate
Benchmarks with different coherence region sizes

Figure 3.11: The normalized execution time of each benchmark with three DoPs (4, 8, 16) for
the RBCC::FT, RBCC::MA and AiO system configuration

of a single tile, making the RBCC::MA configuration a better performer. The data
placement strategies do not affect swaptions due to a relatively low data-set size. As
fluidanimate uses larger data-sets, the chances of sub-optimal data placement is higher.
Figure 3.11 shows that RBCC::F'T’s performance significantly deteriorates for all DoPs
compared to the RBCC::MA configuration.

The high-level simulation framework allowed for a quick implementation and evalu-
ation of the RBCC concept. The simulation results provided three take-away points:
One, it quickly verified RBCC-specific implementation details such as configuring the
CCTs. Two, it showed that the benefits of inter-tile coherence depends on the appli-
cations’ characteristics and data-set size. Three, it highlighted the importance of data
placement strategies and remote memory access penalties, especially when dealing with
a distributed memory manycore architecture.

43

3 Region-based Cache Coherence (RBCC)

3.6 Hardware Implementation and Evaluation - FPGA
Prototype

After validating the RBCC concept and evaluating the benefits of inter-tile coherence
using high-level simulations, the next step was to implement the CRM design as a
hardware module and integrate it as part of a DSM-based tiled manycore architecture.

3.6.1 Hardware Setup

For hardware evaluation, an FPGA prototyping platform is used to design and implement
the CRM. It is integrated as part of a 4x4 tile-based MPSoC system as illustrated
in Figure 3.1. The tile-based MPSoC design is spread across four interconnected Xilinx
Virtex-7 (XC7V2000T) FPGA platforms. Each FPGA platform is loaded with a 2x2
tile design, leading to a 4x4 tile design consisting of 16 tiles and 64 processing cores in
total. Each compute tile contains four LEON3 processing cores, each with their private
2 Way, 4 KiB/Way write-through L1 caches and a shared 4 Way, 16 KiB/Way write-back
L2 cache. The L1 and L2 caches are Non-Inclusive Non-Exclusive (NINE) of each other.
Each FPGA is equipped with a 32 MiB SRAM extension board, which is shared equally
by four tiles on the FPGA. This grants each tile with an 8 MiB TLM. The MPSoC
design also contains an I/O tile, which is similar to a compute tile with additional
peripherals. One of the four FPGAs is equipped with a 1 GiB DRAM extension board
and an Ethernet extension board which serve as main memory and an I/O peripheral
respectively.

3.6.2 FPGA Resource Utilization and Timing

This subsection breaks-down and analyses the resource utilization of the CRM. All re-
source utilization data is obtained using the Vivado Design Suite. Table 3.5 reports the
resource utilization of the CRM as a function of its sub-modules for a manycore system
with IV = 16 tiles and the maximum number of tiles within a single coherence region
M0z = 8. The utilization of each CRM sub-module is further broken-down into FPGA
logic resources like Look-Up Tables (LUTs), Registers (REGs), Multiplexers (MUXs)
and FPGA memory resources like Block RAMs (BRAMs).

A major chunk of logic resources are consumed by the Snoop Unit of the CRM for
its snooping, filtering and classification operations. As the Snoop Unit does not contain
any storage element like a FIFO, its BRAM consumption is zero. The Management
Unit of the CRM does not consume much logic resources. It mostly consists of an
AHB master interface and various sub-modules which just trigger coherence actions.
The Management Unit also hosts the coherence barrier and false sharing resolution
mechanisms. The slight BRAM consumption of the Management Unit is due to the
coherence barrier FIFOs. The Configuration Unit of the CRM also has a moderate
resource utilization, mostly consisting of logic required for run-time re-configuration
operations. The BRAM utilization of the Configuration Unit are due to the request
and response FIFOs. The Directory and FIFO Interface sub-modules of the CRM are

44

3.6 Hardware Implementation and Evaluation - FPGA Prototype

Table 3.5: FPGA resource utilization of the CRM module in terms of LUTs, REGs, MUXs and
BRAMs for a N = 16 tile manycore system with a coherence region size of M4, = 8

Modules LUT REG MUX BRAM
Snoop Unit 2547 2887 340 0
Management Unit 1531 1701 32 2
Configuration Unit 1156 2435 291 3
FIFO Module 140 40 0 7
Directory 112 14 0 13
Entire CRM Module 5486 7077 663 84

Relative to one Compute Tile 4.83% 12.62% 20.86% 12.62%
Relative to the Virtex-7 FPGA 0.44% 0.28% 0.07% 1.93%

the major consumers of FPGA memory resources. The Directory uses BRAMs to store
its sharer bit-vectors that are needed for book-keeping purposes. For these results, the
Directory is synthesized with a sparsity-8 compared to the 8 MiB TLM, and the FIFO
Interface is dimensioned to buffer 4K transactions. As a reference, the area footprint of
the CRM relative to a single compute tile as well as an empty Xilinx Virtex-7 FPGA
are also provided.

Figure 3.12 breaks-down the logic utilization of
the CRM by its features, like basic CRM opera-
tions, run-time re-configuration operations, coher-
ence barrier mechanism and false sharing resolu-
tion. Obviously, the basic CRM operations con-
sume the highest logic resources, followed by the
Configuration Unit. The coherence barrier and

m Basic CRM Unit
m Configuration Unit
® Coherence Barrier

H False Sharing

false sharing resolution mechanisms only account Figure 3.12: Logic utilization break-
for < 10% of the CRM. down of the CRM by
functionality

Sensitivity to Coherence Region Size

The maximum tiles within a single coherence region M., is a design-time parameter
which should be decided based on the size of the MPSoC and the class of applications that
are intended to be executed. In this sub-section, the impact of varying M4, within the
bounds of a 4x4 tile-based MPSoC design is investigated. All possible options of M,qz
are explored, ranging from the smallest M,,,q, = 2 which is a maximum of two tiles within
a coherence region, to the largest M,,,, = 16 which is global coherence. Figure 3.13
illustrates the FPGA logic resources consumed by one CRM hardware module for every
increase in M,,... Note that numbers are normalized to the total available resources of
a Xilinx Virtex-7 FPGA. The logic resources of the Snoop Unit, Configuration Unit and
all FIFO sub-modules are independent of M,,q. 1 The logic resources for Management

1 Glight variations are induced by Vivado’s place and route algorithm

45

3 Region-based Cache Coherence (RBCC)

0.60%
E Snoop Unit OManagement Unit O Configuration Unit ODirectory @Combined FIFO
0.50%

0.40% M M m M M

0.30%

0.20%

0.10%

Resource utilization normalized to a Virtex-7 FPGA

voon MU b L Wl Eom Mliw 0w WErw 00w AT 00T 0 ML I Hu

(16,2) (16,3) (16,4) (16,5) (16,6) (16,7) (16,8) (16,9) (16,10) (16,11) (16,12) (16,13) (16,14) (16,15) (16,16)

Figure 3.13: Logic utilization for a N = 16 tile manycore system with increasing coherence
region sizes (2 < Myq, < 16) normalized to a Virtex-7 FPGA

Unit and Directory sub-modules slightly increase when increasing My, q,. This is due to
the additional logic required to address a larger BRAM.

Figure 3.14 illustrates the FPGA memory resources consumed by the CRM, which
are only due to the Directory and FIFO sub-modules. The smaller FIFOs required by
the Configuration Unit and the coherence barrier mechanism in the Management Unit
are independent of M,,,,. However, the BRAM utilization for the Directory sub-module
increases linearly with an increase in M,,q,. For a N = 16 tile system with M4, = 8
tiles, the BRAM utilization can be reduced by 38% compared to global coherence. The
savings of the synthesized Directory sub-module closely follow the theoretical directory
saving results claimed in Section 3.2.1 2. This means that the BRAM savings will
further increase for large manycore systems with moderately sized coherence regions.

CRM - Operation Numbers

Table 3.6 reports the num-

ber of clock cycles consumed Table 3.6: Latency of different CRM operations

by the Snoop and Manage- CRM Operations Snoop Unit Management Unit

ment Units of the CRM to CRM Configuration 15 clocks 18 clocks

perform different coherence Directory Update 3 clocks 3 clocks

operations. The reported Invalidation Generation 3 clocks 12 clocks

numbers are obtained us- Invalidation Execution 3 clocks 20 clocks

ing cycle-accurate ModelSim Write-back . 3 clocks 7 clocks
Coherence Barrier 3 clocks 3 clocks

simulations performed in a

128]ight deviations from theoretical numbers are due to the granularity of BRAM blocks on an FPGA

46

3.6 Hardware Implementation and Evaluation - FPGA Prototype

ODirectory ®FIFO ©Configuration Unit FIFO OCoherence Barrier FIFO

1.80%
1.60%

1.40%

T

4 Tile Coherent System

T

o -
2] o
Q Q
X X

0.60%

i I s I

Resource utilization normalized to a to Virtex-7 FPGA
= =
<2 <2
X X

1.20% 8 Tile Coherent System

Global Coherence

12 Tile Coherent System

I _

o iy, 4 s, A 1

(16,2) (16,3) (16,4) (16,5) (16,6) (16,7) (16,8) (16,9) (16,10) (16,11) (16,12) (16,13) (16,14) (16,15) (16,16)

Figure 3.14: BRAM utilization for a N = 16 tile manycore system with increasing coherence
region sizes (2 < My < 16) normalized to a Virtex-7 FPGA

traffic-free system. The clock cycles are measured from when the load/store opera-
tion is seen by the Snoop Unit on the AHB bus. The CRM is designed to keep these
numbers as low as possible in order to minimize the overheads required for synchroniza-
tion such as the coherence barrier mechanism. The false sharing resolution operation
is performed in parallel to write-back operations, and therefore does not add additional

timing overheads.

Run-time Coherence Region Re-configuration Overheads

The Configuration Unit of the CRM is
responsible for the Directory resetting
overheads due to a coherence region re-
configuration at run-time. These over-
heads depend on specific changes to the
Start/End address or Sharers fields. Fig-
ure 3.15 reports the re-configuration over-
heads for resetting the Directory of dif-
ferent sizes. The initial coherence re-
gion configuration is assumed to cover the
entire TLM range of 8 MiB. Directory
reset steps, ranging from 0.125MiB to
7 MiB are chosen as the reset range for re-
configuration. Note that these steps are

- - _
N & (2}

—_
o

e (o2}

Time taken for re-configuration (ms)
N oo

0

0.5 0.25 0.125
Dlrectory reset steps M|B)

Figure 3.15: Directory re-configuration over-
heads for different reset steps

47

3 Region-based Cache Coherence (RBCC)

chosen only to get a feeling of the re-configuration overheads required for resetting the
directory for different sizes, but are not specifically limited to the steps reported. The
overheads increase linearly with the number of directory entries to be reset, i.e., larger
memory range modifications would result in longer re-configuration overheads for the
application. A practical example of the re-configuration overheads due to an application
re-configuring its coherence region at run-time is presented in Section 3.6.4.2.

CRM - Timing Analysis

The Vivado timing analysis tool is used to obtain the maximum achievable frequency of
the CRM module. For a standalone CRM design, the maximum delay reported is 9.398 ns
(3.655 ns logic delay + 5.743 ns net delay) that allows the CRM to run at > 100 MHz on
the FPGA prototype. However, the entire design is limited to an operating frequency of
50 MHz. This is mainly due to long logic paths in the L2 cache IP.

3.6.3 Experimental Setup

One of the major benefits of using the RBCC concept is the reduction of directory
overheads that are achieved by confining hardware-supported coherence to a subset
of tiles in manycore systems. The theoretical directory savings were already shown
in Section 3.2.1 and reinforced on an FPGA prototype in Section 3.6.2. In the following
subsections, the benefits of using the shared memory programming paradigm enabled
using hardware-supported RBCC are compared to that of an MPI-based programming
model. The benefits of different RBCC features such as coherence-on-demand and the
overheads for run-time coherence region re-configurations are also evaluated.

Video Streaming Application

To evaluate the benefits of shared memory programming enabled using RBCC, a video
streaming task is used. The task extracts features from an incoming video stream, and
is used as part of a robotic vision application. The application is highly flexible in terms
of its degree of parallelism, i.e., the number of processing elements can be increased/de-
creased at run-time, and on a per video frame granularity. The application also supports
two parallel programming models - shared memory (RBCC) and MPI-based explicit soft-
ware communication. These favourable properties make this application an ideal choice
for evaluating the RBCC concept and its features.

The feature extraction task uses the Harris Corner Detection algorithm to extract
feature points from an incoming video stream. From the hardware perspective, the
application can be viewed as a recursive frame-by-frame operation illustrated in Fig-
ure 3.16. A host PC sends a video stream frame-by-frame via an Ethernet interface to
the FPGA prototype. The video stream is received by the FPGA prototype on the I/O
tile, where the input image is transferred via a DMA operation to the compute tile to be
processed by the main application thread. The host PC also sends configuration infor-

48

3.6 Hardware Implementation and Evaluation - FPGA Prototype

mation such as: the number of processing elements and/or tiles to be used '3, the pro-
gramming model to be used, and other image processing specific parameters. All these
configuration parameters can be controlled from the host PC on a per-frame granularity.
Based on the configured parameters re- :
ceived from the host PC, the applica- i <—
' ew Frame
tion’s main thread parallelizes the fea- :
ture extraction task by distributing the nﬁgur;tion Infol_' Prepare
image to all participating processing el- : Configuration Packet
ements. If the MPI-based mode (mp) ! Image Distribution
is enabled, the different processing ele- i
ments receive their share of the input |
image via software messages that are i
accelerated by a DMA engine. By de- i
sign, this does not require any cache 1:
coherence as no data passes through ‘A i
the cache hierarchy. If shared mem- i
ory mode (RBCC) is enabled, each pro- i

(@)
o

v v vy A 4
Read
Configuration Packet

mp mode @ rbcc mode

| Software Messages | | Memory Loads |
I |
v

Harris Corner Detection

Ethernet Interface

cessing element directly reads its share
of the input image via remote load op-
erations, assuming a coherent shared
memory view. Coherence is enforced
by the CRM by tracking and invalidat-
ing the stale image data in the corre-
sponding remote L2 caches. After pro-

SIFT Feature Extraction

Send Features

Ethernet Interface

A 4 vV VY A4
| Collect Features

Transfer
Features

cessing its share of the image data, each
participating processing element trans-
mits feature points back to the appli-
cation’s main thread. These feature
points, along with other statistics (L2
cache hit rate, image distribution time,
image processing time and total execution time) are transmitted back to the host PC
via the Ethernet interface to be visualized as image overlay in real-time.

Figure 3.16: A flow diagram depicting the feature
extraction task

3.6.4 Results and Analysis

The feature extraction task of the video streaming application is executed in both shared
memory (rbec) and MPI-based (mp) modes. Further, two coherence region configura-
tions - clustered and corner, as depicted in Figures 3.17 and 3.18 respectively are used for
the experiments. The two coherence region configurations have been chosen to demon-
strate and evaluate RBCC’s flexibility feature. Lastly, the impact of Background Traffic
(BT) during application execution is investigated for both programming modes and the
two coherence region configurations. The experiments with BT exposes the application

13 A specific processing element can also be specified

49

3 Region-based Cache Coherence (RBCC)

©@ (o] O0 [
OOL= OO [z
[(K] e
5 !
@@E @@ k) @@
OO =
(16
@[] [G]G) [G]G)
OE[= ®E ®E
e === =
i [G]0G)
SO 56
e =
= = ot e}
Figure 3.17: Clustered coherence region Figure 3.18: Corner coherence region

to a real-world scenario, where several applications are expected to be running simulta-
neously. BT is generated using a separate application that continuously sends synthetic
DMA messages in parallel to the video streaming application on all tiles of the manycore
system other than the configured coherence region tiles. The amount of BT load to be
injected into the manycore system is controlled by varying the length of a DMA transfer.
For the experiments, four DMA sizes are used: 50kB, 100kB, 250kB and 500kB. For
rbcc mode runs, the coherence region is configured before the application begins. Ad-
ditionally, the CRMs transparently adapts to the truly shared application working-sets
at run-time using RBCC-malloc(). For mp mode runs, the CRM is not required, and is
therefore disabled.

The application is fed with a video file from the host PC. The resolution of the video
input determines the size of each frame to be transferred and processed on the FPGA
prototype. The content of the video input determines the number of detected feature
points, in-turn varying total application execution time. Considering the available mem-
ory on the FPGA prototype, video inputs with moderate resolution and duration are
considered. Therefore, short clips (600—700 frames) of popular retro video games (inher-
ently low-resolution) like donkeykong, spaceinvaders, pacman and snake are used. Each
of the sample gameplay clips exhibit different video output characteristics (as will be
shown in Section 3.6.4.1), providing a diverse input set to the feature extraction task.

Initial Observations

To get an impression of the application’s sensitivity with respect to the spatially dif-
ferent coherence region configurations and the BT load on the manycore system, some
initial experiments were conduced and the observations are summarized below. In the
absence of BT, the spatial locality of the coherence region configuration had virtu-
ally no influence on the application’s execution time for both programming modes, i.e.
Trpce-clustered = Trbec-corners and Tmp—clustered ~ Tmp—corners- This result is due to the fact
that the manycore system contains little traffic, allowing all inter-tile communication to
go on unimpeded.

50

3.6 Hardware Implementation and Evaluation - FPGA Prototype

1200
—rbcc mode

mp mode
1100 —rbcc mode with BT (50K)
~—mp mode with BT (50K)

With|Background Traffic

1000 ‘

Al

\N‘H\ ”\‘M HHM{ \HU

| |

|
1
1
1
1
1
1
1
1
600 i !
SN |
M AN ™
. I WA AW gl ‘ ‘«W)V:
o V
1

JM\'

“‘\ U ”/‘ ﬂ}“ v\h‘\ U'\u

me

Ti
®
S
3

Execution
~
8

W U L

Total Coherence Messages: 1,167,422

Video Frame Count

Figure 3.19: Per-frame execution time of the donkeykong video clip, with and without BT

With the injection of BT into the manycore system, the clustered coherence region
configuration was still virtually unaffected'* for both modes. This is because, the tiles
in the clustered configuration are tightly coupled, thereby limiting the impact of BT on
inter-tile communication. However, the corners coherence region configuration showed
sensitivity to BT. Therefore, all further experiments are conducted with the tiles setup
in the corners coherence region configuration, both with and without the presence of
BT, evaluated for the rbcc and mp programming modes.

3.6.4.1 RBCC mode versus MP mode

Figures 3.19 to 3.22 illustrate the per-frame execution time of the feature extraction task
for both programming modes for all video clips. In order to better analyse the impact
of BT, the second halves of these graphs show the per-frame execution time with the
presence of BT (50kB).

donkeykong: This clip has a steady background with moving objects, resulting in a
relatively constant execution time for both programming modes. In the absence of BT,
the execution time of the application using rbcc mode finishes 42% faster than that of
the mp mode . In the presence of BT, there exist delay spikes in the execution time
for both modes as the inter-tile communication is impeded. The application’s execution
time using rbec mode is still 35% faster than that of the mp mode.

spaceinvaders: This video clip shows a periodic removal of objects (aliens killed),
which are then replaced by new ones (aliens re-spawned). Therefore, the execution time
resembles a fading wave pattern. Without BT, the application’s execution time using
rbcc mode is 31% faster than that of the mp mode. The injection of BT impacts both
programming modes, but the rbcc mode finishes 29% faster than the mp mode.

The execution time at-most increased by 5%

o1

3 Region-based Cache Coherence (RBCC)

Frbcc mode - mp mode —rbcc mode with BT (50K) —mp mode with BT (50K)
1100

With Background Traffic

70 M W“Ah“ | \j
-1

500

Execution Time (ms)

T
I /“ »‘[WE |l

400

225
239
253
267
281
295
309
323
337
351
365
379
393
407
421
435
449
463
477
491
505
519
533
547
561
575
589
603
617
631
645
659
673
687

Video Frame Count

Figure 3.20: Per-frame execution time of the spaceinvaders video clip, with and without BT

pacman: In this popular video game clip, the number of extracted feature points are
ever diminishing (eaten by pacman), resulting in a continuous decrease in the applica-
tion’s execution time for both programming modes. Using the rbcc mode, the application
finishes 37% and 31% faster than that of the mp mode with and without BT respectively.

snake: This video clip is sampled when the size of the snake is roughly constant.
Therefore, the application’s execution time is relatively constant. In the absence of BT,
the application’s execution time using the rbec mode is 42% faster than that of the mp

550

~—rbcc mode
500 ~—mp mode

mrhocmede with BiHHUK) With Background Traffic
450 —mp mode with BT (50K)

\
\
fl \'
(Y
[

N
o
o

I (I
[e Sl
L,

1P Jetl |
|
! (‘

Iﬁ A

e A

V ki \\ \’N‘\\K‘U
WL T A N i
ATV T

Execution Time (ms)
w
o
o

300 ‘
1
250 ‘ [
i
1
200
150 Total Coherence Messages: 789,059

TNOAUL TNV =N OADN =N I
ONDONTLNO0ONM © 0O ™M © 0D
NANANANNNOOO ST TS

—_——— -

513
529
545
561
577
593
609

e}
32l
Video Frame Count

Figure 3.21: Per-frame execution time of the pacman video clip, with and without BT

52

3.6 Hardware Implementation and Evaluation - FPGA Prototype

rbcc mode b
! . .
230 mp mode ! With Background Traffic
—rbec mode with BT (50K) i
210 mp mode with BT (50K) !
=190 ! i
E_ 1 .
0170 | f
§ | :
= 150 | ‘

8 h I
3130 !
Q 1
x 1
W10 H
1
1
1
Ll
1
1

©

Total Coherence Messages: 771,99

M
=
Figure 3.22: Per-frame execution time of the snake video clip, with and without BT

mode. With BT, the application’s execution time using the rbcc mode is 28% faster than
of the mp mode.

Breaking-down the Execution Time

To better understand and interpret the differences of the two programming modes, the
application’s execution time is broken-down. Referring to Figure 3.16, the major differ-
ence between the two programming modes are in the image distribution methodology.
For the mp mode, the total execution time (Ty,p) is divided into two parts namely Image
Distribution Time (IDT) and Image Processing Time (IPT). IDTy,, represents the time
taken by the application to distribute the image using explicit software messages which
are DMA-assisted. IPTy,, represents the time taken by the application to process the
image. It is important to note that all memory accesses during IPT,,, are local, as the
data has already been copied by explicit software messages. For rbcc mode, the total
execution time cannot be easily split into two distinct parts as done with the mode. The
reason being, for the RBCC mode, the IDT and IPT phases overlap with each other, i.e.
the overall execution time (Tp¢c) is a mixture of fetching remote data, followed by local
processing which cannot be easily distinguished. Theoretically, IDT,p.. represents the
time taken by the application to simply convey the location of the shared image data
to the respective remote tile. This consists of sending an address pointer of the shared
image data to the remote tiles, whose time consumption is negligible. The IPT}}.. can
be viewed as the total execution time (Typce) as it represents the time taken to process
the image, which is a mixture of on-demand remote TLM accesses and local process-
ing. The on-demand remote access penalties are reduced by the L2 cache which is kept
coherent by the CRM.

93

3 Region-based Cache Coherence (RBCC)

1200
—_— mrbcc mode - T,
1000
— . Omp mode - IDT
° | de - IPT
o _ B mp mode -
£ 800 -
= —
- _
R
5
3 600
(]
x
w
S
Q 400
A
(3]
>
<
) | | | | H H
0 |ﬂ|ﬂ|ﬂ| |
8Q¥¥¥¥¥¥¥¥8Q¥¥¥¥¥¥¥¥8Q¥¥¥¥!¥¥¥8Q¥¥¥¥x¥¥x
_QEOOOOOOOO_QEOOOOOOOO_QEOOOOOOOODEOOOOOOOO
2SO HOoOONMWOOLE " HHLOOLWLOOE "HHOOWLHOO L THHBOOWOLW OO
lx | == NNWLWw -7 | |~ —«~NNLO LD (= | Im— NN |x | |~—NNLLO
588 ddddddd 88 JddddddEASE YA dddFE P8 ddddd
S J8ESESE 2-8ESESET £ I8EJESE 28 ESESE
S = = B 2 = e~ s~ lg= 1= "= | lx = 1= 1%)
¥ Jx Jx I 5?15 5. €5 g g g 0% ¥ JE
LT E T @ [T a gagaga ®)

Figure 3.23: Average execution time of the rbcc mode and mp mode for all video clips with
increasing BT

Therefore, for the execution time analysis, Ty, (IDTnp+IPTp) is compared to Trpee.
Additionally, a BT traffic sensitivity analysis is performed by increasing the BT load for
all video clips. As illustrated in Figure 3.23, the IPTy,, is actually lower than T, pcc
for all video clips. This is because, all memory accesses in the mp mode result in local
accesses, whereas in the rbcc mode they result in remote TLM accesses assisted by a
local L2 cache. However, with the addition of IDT,p, Tinp exceeds Typee. This is due to
the software overheads of explicit message passing required for image distribution to all
remote tiles. IDT,p.c is virtually negligible as each remote tile only receives a pointer
to the shared image data and can therefore directly accesses the image during IPT .
via remote load operations. For all rbcc mode runs, high L2 cache hit rates are recorded
(> 90%) for all video clips. This reduces the remote TLM access penalties and in-turn
the overall processing time.

Regarding the sensitivity to BT, all inter-tile operations are affected due to the added
network load, which is clearly seen in Figure 3.23. When using the mp mode, IDT\,, in-
creases with an increase in BT for all video clips as it consists of remote DMA operations
that are impeded by the added network traffic. However, IPTy,, remains constant with
increase in BT, as all memory accesses during image processing results in local accesses.
In rbec mode, T,y increases with BT as it consists of on-demand remote TLM accesses
that are now slower due to the increased network load. But, in the rbcc mode, the
application exhibits an overall lower execution time and saturates quicker than the mp

o4

3.6 Hardware Implementation and Evaluation - FPGA Prototype

mode with increasing BT. This is visualized using using the trend-lines of Figure 3.23.
This is because, in the rbec mode, inter-tile communication consists of quick load/store
operations which have an overall lower latency in the presence of BT, compared to large
DMA packets of the mp mode.

One could intuitively question whether the mp mode could mimic the rbcc mode by
fetching data as required during processing. However, this would increase the message
passing overhead penalty as each tile would send costly software messages in-between
processing, which would further degrade the application’s performance, especially in
the presence of BT. It is important to note that the mp mode uses a hardware DMA
engine (burst accesses) to distribute the image whereas the rbec mode uses regular load-
/store operations. For systems without a DMA engine, IDT,,, would also use regular
load/store, further increasing the performance improvement of the rbecc mode.

3.6.4.2 Run-time Re-configuration Analysis

This section demonstrates and evaluates the benefits of RBCC’s flexibility feature by
re-configuring coherence regions at run-time using the video streaming application. The
malleable property of the video streaming application allows it to be expanded, shrunk
or even relocated to different subset of hardware resources at run-time on a per-frame
granularity. The CRM’s Configuration Unit sub-module is responsible for all run-time re-
configurations. It makes sure that all requested coherence regions are created/destroyed,
and that the corresponding Directory entries are cleared, before allowing the application
to start/resume safely. Using two scenarios, this section demonstrates the benefits being
able to dynamically re-configure the video streaming application at run-time using the
CRM.

Scenario 1: Expanding the Coherence Region: The goal of this scenario is to demon-
strate the benefits of dynamically expanding the coherence region to contain more hard-
ware resources at run-time. Initially, the video streaming application is executed on a
single compute tile, assuming that other applications have occupied the remaining tiles.
When the other applications finish executing, the video streaming application has the
opportunity to expand onto more hardware resources to increase its degree of paral-
lelism, potentially reducing its overall execution time. It is assumed that new compute
tiles will be available after processing every 1/3' of the total frames.

The results of this experiment are illustrated in Figures 3.24 and 3.25 using the don-
keykong and snake video clips. It shows the per-frame execution time of the video
streaming application as it expands to more compute tiles after processing a third of the
total frames. For the donkeykong video input, on average, the execution time reduces by
38% when expanding from a single tile to two tiles, and by 21% when further expanding
to four tiles. For the snake video input, on average, the execution time reduces by 47%
when expanding to two tiles, and by 28% when further expanding to four tiles.

Expanding the coherence region only changes the sharers field. Therefore, all CRM
Configuration Units that are part of the coherence region selectively reset their Direc-
tory entries and synchronize before the application can safely resume. For both video

95

3 Region-based Cache Coherence (RBCC)

1100 270

Execution on 1 Tile 250 Execution on 1 Tile
230 Lot
@ 900 2210 WU‘W,YJ ! Expand to 2 Tiles
| !]
3 E Re-configuration
o Expand to 2 Tiles o 190 Overheads
E 800 Re-configuration E 170 2,627 ms
c Overheads c Expand to 4 Tiles
2 700 2.638 ms \ S 150 |
= Expandto 4 Tiles 5§ Re-configuration
2 : 8130 Overheads
] Re-configuration] 2650
1 600 Overheads w110 RaHERE
2.648 ms 90
500 Ww
WMAA—
400 50
"TOTTOrrO OO OrrO T OO~ O O™ O™ O~ O TANNOTDONVNDOT~TANNMTLONVIO T NMITOLONOD
ANOLROANLNONLNOANLNOANLNONWLNONWLNO NTOOONTOODTTOULRND-—MULNONT OO N ©
mFrrrAANNNOOOOSTFTTOLODODOOOCON T NNANNNOOOOST I ITWOOWWW0
Video Frame Count Video Frame Count

Figure 3.24: Expanding the coherence region Figure 3.25: Expanding the coherence region
using the donkeykong clip using the snake clip

clips, the re-configuration time is & 2.6 ms, which is negligible when compared to the
application’s per-frame execution time.

Scenario 2: Relocating the Coherence Region: The goal of this scenario is to demon-
strate the benefits of dynamically relocating the coherence region at run-time. Initially,
the video streaming application is executed on four compute tiles that are in the corners
coherence region configuration. Further, BT traffic (50kB) is injected into the manycore
system between all other tiles to impede inter-tile communication, thereby increasing the
application’s execution time. This situation can be overcome by dynamically relocat-
ing to a clustered coherence region configuration, assuming that the necessary hardware
resources are available. It is assumed that, after processing half of the total frames,
the application decides to relocate to a clustered coherence region configuration. It
is important to note that, relocation does not add more compute tiles, rather moves
them closer to each other, which could potentially reduce the impact of BT on inter-tile
communication.

1000 230
210
900
190
))
E 800 E170
g g
E 200 ‘ Relocate Coherence Region = 150 | |
S Re-configuration Overheads & 130 Helocat COh-erenCy Region
E 26ms E] ' \‘ ‘ ‘] Re-configuration Overheads
8 600 g 110 | / ‘ ‘ l e
i i ' “ "\\ ‘ '
500 \ \ ‘ \ % " ‘ I m nMMW‘W Fh
b 70
400 Corners Configuration Cluster Configuration 50 Corners Conflguranon Cluster Configuration
TOTOTT O OO -TOr OO O - O O™ O OO TANNTDONONDO T~ ANNTDONVNDO - NMITLOOMNO0D
ANOLRNROANLNOANLNOANLSNOANLNONLNONWLNO NTOXOANTODTOLNDTMOULNONT OO N I O
FrErrANNNOOOONOTETITTIOOOD0D OO OO~ FrE AN ANNNOOOOSETT TS0
Video Frame Count Video Frame Count

Figure 3.26: Relocating the coherence region Figure 3.27: Relocating the coherence region
using the donkeykong clip using the snake clip

56

3.6 Hardware Implementation and Evaluation - FPGA Prototype

Figures 3.26 and 3.27 illustrate the per-frame execution time of the video streaming
application when switching from a corner coherence region configuration to a clustered
coherence region configuration, using the donkeykong and snake video clips. It can be
clearly seen that the delay spikes induced by BT drastically reduce post relocation for
both video clips. On average, this reduces the execution time by 17% and 21% for the
donkeykong and snake video clips respectively. Again, the CRM’s Configuration Unit
overheads are negligible (= 2.6 ms) compared to the application’s per-frame execution
time.

Formal Analysis. For the explored video streaming application and the two scenar-
ios, the re-configuration overheads do not have any negative impact on the application’s
performance. This is because, the re-configuration overheads are significantly smaller
than the application’s per-frame execution time. Therefore, triggering a re-configuration
at any point in the application’s execution lifespan will be beneficial. However, this
may not be the case for all applications. Therefore, a formal analysis of when a re-
configuration would be beneficial for a generic application, accounting for the CRM’s
re-configuration overheads is provided below.

The benefits of a re-configuration process depends on:

e Whether the application would benefit (reduction in execution time) from increased
parallelism or relocation,

e The time when the re-configuration process is triggered,

e The time required for the re-configuration process.

Let T be the total execution time of an application and T, be the total execution time of
the same application with one re-configuration. 7, can be expressed as a combination of
three parameters: the time before re-configuration (73,), the time required by the CRM’s
Configuration Unit to reset the Directory (Tyecons) and the time after re-configuration
(Tyr). The goal of a re-configuration should always be:

T, < T, where T, = Ty + Treconf + Tar (3.5)

Assuming that the re-configuration process reduces the application’s execution time, the
time after re-configuration can also be represented as:

Tor = (T — Tpy) X v, where 0 < a < 1 (3.6)
By combining Equation (3.5) and Equation (3.6):
Ty + Treconf + {(T - Tbr) X Oé} <T

(3.7)
Tbr(l - a) + Treconf +Ta<T
By rearranging and solving for the time elapsed before re-configuration:
T,
Ty, < T — —econt (3.8)

(1-a)

An application benefits from a re-configuration only if Equation (3.8) holds true, where,

o7

3 Region-based Cache Coherence (RBCC)

e Ty.: The maximum time elapsed before re-configuration, beyond which a re-
configuration will not be beneficial to the application.

e «a: Represents whether an application benefits (reduction in execution time) from
a bigger coherence region (increased parallelism) or a relocation of the coherence
region (avoiding BT).

® Trecons: Re-configuration time, which in this case consists of all CRM Configura-
tion Units resetting their directory entries and synchronizing '°.

The task of monitoring these parameters, performing a feasibility check and triggering
the re-configuration process is left to the OS. By profiling an application, the OS can
determine whether triggering a re-configuration would be beneficial to the application’s
overall execution time. In case of an increase in hardware resources, « represents the
expected speedup, which is calculated as the ratio of the application’s execution time on
more number of resources to that on lesser number of resources, as shown in Figures 3.24
and 3.25. In case of hardware resource relocation, « is calculated similarly but represents
the speedup due to the mitigation of network traffic as shown in Figures 3.26 and 3.27.
For the explored video streaming application, o < 1, indicating that this application
favours an increase in resources.

The re-configuration overheads Tyecons depend on changes to the start/end address
or sharers fields which triggers a reset of the Directory entries. These overheads were
already reported in Section 3.6.2. The video streaming application uses approximately
1.5MiB of the TLM which corresponds to Tj.ccons ~2.6 ms as reported in Figure 3.15.
A low Trecons combined with a favourable o results in T, < T for both scenarios of the
explored video streaming application. Similarly, for any given application, by tracking/-
monitoring these parameters (Ty,, @, Treconf), the OS can accelerate the application by
triggering a coherence region re-configuration, such that Equation (3.8) is not violated.

3.6.4.3 RBCC-malloc() Analysis

RBCC-malloc() [18] tailors coherence support to actually shared application working-
sets that are only known at run-time. This section shows how RBCC-malloc() reduces
the intra-CRM communication traffic, thereby increasing the CRM’s efficiency. The
CRM’s Snoop Unit uses the address range of the application’s dynamically allocated
data as an additional filter to discard irrelevant transaction messages. This reduces the
load on the CRM’s FIFO and Management Unit sub-modules. In order to quantify
these savings, the amount of FIFO transactions with and without RBCC-malloc() are
computed.

Figure 3.28 illustrates the number of FIFO transactions for all four video clips exe-
cuted in the corners coherence region configuration with standalone RBCC (tracking
the complete address range within a coherence region) and with RBCC-malloc() en-
abled (only track actually shared address ranges within the coherence region). With
RBCC-malloc() enabled, the load on the FIFO is reduced by approximately 40% for the

5 For some applications, this can additionally contain state transfers

o8

3.6 Hardware Implementation and Evaluation - FPGA Prototype

ERBCC
39.02% B RBCC-malloc()
. (o]
42.70%
39.97%
E37%
0

donkeykong spaceinvaders pacman snake

N w S o D ~ [o]
o o (=3 o o o o
o o o o o o o

Average FIFO Transactions (Millions)

-
o
o

Figure 3.28: FIFO load reduction when using RBCC-malloc() for all video clips

video streaming application. This is because, RBCC-malloc() allows the Snoop Unit
to filter-out unnecessary transactions that request to track private data structures such
as tile local OS data, core instructions, core stacks, etc. Conservatively tracking these
tile/core-private address ranges results in unnecessary traffic exchange between the FIFO
and Management Unit, leading to redundant coherence actions.

99

3 Region-based Cache Coherence (RBCC)

3.7 Enabling Shared Memory Workloads

The previous sections evaluated RBCC and compared its performance with that of mes-
sage passing techniques. This section describes how the concept of RBCC was applied
to enable shared memory workloads on a DSM-based tiled manycore system. As de-
scribed in Section 3.1.1, the InvasIC target architecture does not support inter-tile co-
herence. Therefore, all applications '® use software DSM techniques like library-based
(MPI) or language-based (X10) to support inter-tile communication and synchroniza-
tion. While there are a large number of benchmarks that use MPI (NAS Parallel Bench-
marks (NPB)) and X10 (IIT Madras Benchmark Suite (IMSuite)), the more commonly
used shared memory workloads like the PARSEC and Stanford Parallel Applications for
Shared Memory (SPLASH-2) benchmark suites are not supported on the InvasIC target
platform.

Therefore the goal was to adapt the SPLASH-2 benchmarks to be executable on the
DSM-based tiled manycore architecture. This required redesigning and/or adapting
parts of the software stack in order to support the shared memory programming model.
A “shared-memory software layer” was introduced by Tobias Langer, a colleague from
the Department of Computer Science 4 (Distributed Systems and Operating Systems)
at Friedrich-Alexander-Universitdt Erlangen-Niirnberg (FAU). This brought in several
modifications, of which a few important ones are listed below:

e Mapping InvasIC-specific function calls to shared-memory (pthread) routines,
e Using the common DRAM memory for global shared variables,

e Adapting synchronization primitives.

3.7.1 Two Methodologies for Shared Memory Programming

These modifications opened up two methodologies to enable the shared memory pro-
gramming paradigm - a software approach by using Virtual Shared Memory (VSM) [78]
and a hardware approach using the RBCC concept. A brief description on the working
principles of both these approaches is given below.

Working Principle - VSM

The software approach uses the concept of VSM to guarantee inter-tile coherency and
consistency. As the name states, VSM grants applications a virtual shared memory view
of the global memory. It uses a hardware Memory Management Unit (MMU) module in
order to fetch data (at page granularity) from the DRAM and store it in the TLM to be
used by the application. At every synchronization point, the VSM mechanism invokes a
software routine that checks for possible changes between different TLMs and updates
them accordingly. This ensures a coherent and consistent view of the memory for the
application.

16The video streaming application is an exception as it supports both shared memory and MPI-based
execution modes

60

3.7 Enabling Shared Memory Workloads

1073 FFT LUCB
/g 20 g 1.5
o 15} o
E Bl
= B =
= 10 =
2 205
S o0 =
o o
] "
M 0 T H 0 \
1 2 4 8 1 2 4 8
Degree of Parallelism Degree of Parallelism

Iy vSM In CRM

Figure 3.29: The execution time of two SPLASH-2 benchmarks using both VSM- and CRM-
based approaches to enable shared memory programming, for different DoPs

Working Principle - RBCC

The hardware approach makes use of the CRM to guarantee inter-tile coherency and
consistency. As application data resides in the DRAM, a coherence region is set up to
include the memory tile in addition to the participating compute tiles. The application’s
threads can then communicate directly via the coherent shared DRAM address space.
At every synchronization point, the CRM’s coherence barrier mechanism is invoked.
This makes sure that all coherence messages have been successfully executed, ensuring
a consistent view of the memory subsystem.

3.7.2 Experimental Setup and Evaluation

The work on adapting the SPLASH-2 benchmarks to be executable on the InvasIC target
architecture is currently ongoing. Therefore, only a few benchmark kernels have been
used to demonstrate the two different approaches. The FPGA prototyping platform
is set up similar to that of Section 3.6.1. The fft kernel is executed with the “-m12”
problem size, and the lucb kernel is executed with its default configuration. In order
to evaluate the cost of inter-tile communication, both benchmarks are executed with
different Degrees of Parallelism (DoPs) (1, 2, 4 and 8), assuming only one core per tile.
For example, a DoP of 4 spawns the benchmark of four tiles of the manycore system.
Figure 3.29 reports the execution time of the VSM and RBCC approaches, for different
DoPs !7. The execution time of both workloads reduce with increasing DoPs (except
for fft with a DoP of 2 using VSM). For the fft kernel, the RBCC-based approach
outperforms the VSM-based approach for all DoPs. For the lucb kernel, the same result
holds true, except for DoP(4), where both approaches exhibit the same performance.
The overall result indicates that the workloads generally execute faster (by up to 45%

"Due to ongoing implementation work, the VSM approach does not support the DoP of 8 yet

61

3 Region-based Cache Coherence (RBCC)

for fft and 34% for lucb) when using the RBCC-based approach compared to the VSM-
based approach. This is expected since RBCC uses a dedicated hardware CRM module
to handle inter-tile coherence, whereas, VSM orchestrates inter-tile communication and
synchronization in software. Moreover, the VSM approach requires an MMU module
which adds address translation overheads, that are not needed for the RBCC approach.
However, referring to the working principles, the VSM approach uses the faster TLM,
while the RBCC approach uses the global DRAM. Therefore, if application data can
be placed within TLMs instead of the DRAM, coherence regions can be set up for the
corresponding TLM address ranges. This would reduce memory access latencies, leading
to further reduction in benchmark execution time for the RBCC approach.

These results in no-way rule out the applicability of the software-based approach.
Most importantly, it can be used in computing platforms that do not support or cannot
afford hardware-based coherence. Another use-case is to combine VSM with RBCC.
This hybrid approach is described as part of future work in Chapter 5.

3.8 Additional Case-Study - RBCC and In-NoC Circuits (INCs)

The RBCC concept enables scalable and flexible inter-tile coherence for large tile-based
manycore architectures. This requires sending and receiving coherence messages via the
NoC interface of the manycore system. The latency of these coherence messages de-
pend on factors like the NoC traffic and the hop-distance between tiles that are part
of a coherence region. To reduce the latency of coherence messages, RBCC was com-
bined with the concept of In-NoC Circuits (INCs) [5]. This research study was done
in collaboration with colleagues from Institute for Information Processing Technologies
(ITIV), Karlsruhe Institute of Technology (KIT), who work on innovative NoC concepts.
This section provides a brief insight as to how the concept of RBCC was used with in
combination INCs. An in-depth description of the INC concept, design, implementation
and evaluation can be found in the research work [5].

3.8.1 Concept

An efficient NoC architecture plays an important role in optimizing inter-tile communi-
cation on manycore systems. NoCs generally use packet-switching for best-effort traffic
or circuit-switching for low-latency communication. The idea of INCs [5] is built on
hybrid NoC architectures that make use of both packet-switching and circuit-switching
schemes. The packet-switched layer is used for regular inter-tile communication, and
the circuit-switched layer is modified to be used as INCs for low-latency communication.
The INCs have been designed with the following properties:

e They start and terminate between two routers of a NoC,
e They can skip/jump-over certain routers,

e They are created and/or destroyed at run-time by analysing ongoing traffic.

62

3.8 Additional Case-Study - RBCC and In-NoC Circuits (INCs)

Router ! Router H Router H Router

l Router H Router H Router H Router | | Router H Router H Router H Router [

[Emer ! Router ! Router Router | Router H Router HEuler Router [| Router H Router H Router HEuter

l Router H Router H Router H Router | | Router H Router H?ouler Router [| Router H Router H Router HEuler

l Router H Router H Router H Router | ,Euter ! Router ! Router ; Router [,Euter ! Router H Router HEmer
Pure-Clustered Configuration Clustered-Corner Configuration Pure-Corner Configuration

Figure 3.30: Different coherence region configurations on a 4x4 tile-based manycore system

The INCs exhibit properties such as dynamicity and flexibility that are similar to RBCC.
This led to the idea of combining them together, i.e., dynamically establishing INCs
between tiles of a coherence region. As a result, the coherence messages are accelerated
by the INCs, without which they would use the regular packet-switched layer of the
NoC.

3.8.2 Experimental Setup and Evaluation

The primary goal of using INCs with RBCC is to minimize the disadvantages of coherence
regions that comprise of spatially distant tiles. In order to evaluate this, three different
coherence region configurations have been explored on a 4x4 tile-based manycore system
as illustrated in Figure 3.30. The INCs continuously monitor ongoing inter-tile coherence
traffic and dynamically establish low-latency links between the tiles of a coherence region.
The experiments were performed using two simulation platforms - the high-level cache
simulator introduced in Section 3.5.1 and a cycle-accurate network simulator developed
at the ITIV, KIT. The high-level cache simulator was modified to additionally provide
network-related traces, which were in-turn fed into the cycle-accurate network simulator.
A total of 8 benchmarks from the PARSEC and SPLASH-2 benchmark suites were
chosen.

Figure 3.31 reports the average delay of inter-tile coherence messages with and without
INCs for all benchmarks. The objective is for the clustered-corner and pure-corner con-
figurations to achieve similar performance as the pure-clustered configuration. Therefore,
the delay values have been normalized to that of the pure-clustered configuration. One
evident result is that, with INCs enabled, the latency of inter-tile coherence messages
is reduced for all benchmarks. For instance, enabling INC reduces the latency of inter-
tile coherence messages by up to 40% (fft) and 45% (canneal) for the clustered-corner
and pure-corner configurations respectively. This is a promising result, specifically for
creating coherence regions comprising of spatially distant tiles. Furthermore, for the
clustered-corner configuration, results show that with INC, the latency actually reduces
by 3% — 12% compared to the tightly-coupled pure-clustered configuration. This ad-
ditional reduction in latency is attributed to the fact that communication to/from the

63

3 Region-based Cache Coherence (RBCC)

Clustered-Corner Configuration

1.5
>
&
T 1p
A
&
£ 0
; Pure-Corner Configuration
= 2
<]
SO15
<
g 10
s
. 0.5 -
0
0\6 . XOQ % \360 \}X\c} ‘b»
\2»0\560 o %\&\@0\ %“@Q > ;

Iy Without INC In With INC

Figure 3.31: The normalized average delay of inter-tile coherence messages for the clustered-
corner and pure-corner configurations with and without INCs for all benchmarks.
Adapted from [5]

memory tile is also implicitly accelerated by the INCs. The take-away point is that
RBCC combined with low-latency INCs allows for spatially distant tiles to be part of a
coherence region, whilst maintaining reasonable inter-tile communication latencies.

64

4 Hybrid Voting-based Eviction Policy
(HyVE)

4.1 The HyVE Concept

The primary function of any eviction policy is to select one victim for eviction from a
given set of candidates (memory blocks). Standalone eviction policies make use of a
pre-defined eviction criterion to evict the optimal candidate. For example, standalone
eviction policies like LRU and LFU have been designed to optimize for eviction criteria
such as recency and frequency respectively. Optimizing for a single eviction criterion
might lead to sub-optimal eviction decisions, specifically for workloads that exhibit non-
uniform memory access patterns. The ever increasing complexity of modern applications
further accelerates the trend towards erratic memory access patterns.

This thesis proposes HyVE, a hybrid eviction policy that attempts to optimize for
several eviction criteria. The primary idea of HyVE is to combine several standalone
eviction policies together. To be incorporated within HyVE, the functionality of a stan-
dalone eviction policy requires slight modifications. Generally, standalone eviction poli-
cies select one eviction victim from a given set of candidates/memory blocks. This
process inherently discards all information on other candidates, which could be useful.
When used within HyVE, every stan-
dalone eviction policy is extended with
ranking capabilities. This tweak trans-
forms the binary victim-selection decision Candidate D‘
of the standalone eviction policies into a
process where each policy can additionally
express its opinion over all given candi-
dates. As a final step, this opinion infor-
mation is fed into a voting system, which
decides on the actual eviction victim.

Figure 4.1 demonstrates the concept Figure 4.1: An abstract example demonstrat-

....... Candidate A ©
Candidate B @ Candidate B . Candidate B ®

candidate C @ | [candidate c @
Candidate D Candidate D @

Candidate A @ Candidate A @

Evicted Victim
Candidate A

Voting Theory
Algorithm

of HyVE using three constituent eviction ing the basic concept of HyVE us-
policies. Instead of readily selecting an ing three eviction policies casting
eviction victim, each constituent eviction their votes on four candidates

policy within HyVE provides a rank to

each eviction candidate based on their individual optimization attributes. For exam-
ple, if Policy I was used as a standalone eviction policy, it would evict Candidate C.
But within HyVE, Policy I just expresses its opinion over each candidate. In the exam-
ple, Policy I expresses a strong preference to evict Candidate C followed by A, B and

65

4 Hybrid Voting-based Eviction Policy (HyVE)

D. Similarly, all constituent eviction policies within HyVE rank the candidates based
on their respective eviction criterion. The generated ranks are fed into a voting system
which determines the actual eviction victim. In the example, Candidate A is selected
as the eviction victim. Interestingly, none of the individual eviction policies indepen-
dently expressed a strong preference to evict Candidate A. Nevertheless, Candidate A
was evicted due to a consensus between all participating eviction policies within HyVE.
This ability of HyVE to take unique eviction decisions than its constituent eviction
policies makes it a new and unique eviction policy.

4.1.1 Voting Theory Background

HyVE requires a decision-making system to consolidate
the opinions of its constituent eviction policies. This is
done by borrowing concepts from the voting theory do- #Voters (V) Preferences
main. Voting theory studies how opinions expressed 3

Table 4.1: Ranking Distribution

by different decision makers can be consolidated to- 6 ;;iiz
gether [79]. Tt is mainly applied in two contexts namely 3 y>z>zx
formal and informal. Voting in the formal context is 6 >z >y
commonly used for political elections or by juries. In- 4 Z2>y>ua

formal voting is usually used by a group of people to
decide which restaurant/bar to visit or to determine which movie to watch. The most
common voting system in the informal context is plurality voting, which requires only
little information from the voters. Plurality voting only collects information on which
candidate is the best from each voter’s perspective, disregarding any additional infor-
mation on alternate candidates. The candidate that receives the most votes is elected.

Consider an example ranking distribution listed in Table 4.1, where a total of V = 27
voters express their preferences on C' = 3 candidates (z,y,z). If plurality voting is
used, only the best candidate from the voters’ perspective is considered, disregarding
any information on the other two candidates. For the example ranking distribution,
8 voters pick candidate z, 9 voters pick candidate y and 10 voters pick candidate z
as their most preferred candidate. Therefore, candidate z would be elected. Existing
standalone eviction policies can be viewed as using the plurality voting procedure to
determine the eviction victim.

In 1770, Jean-Charles de Borda highlighted that plurality voting may lead to a choice
that would lose, when compared to other alternatives, using pairwise comparisons by
a majority of voters. For this to be possible, each voter would need to express their
preference/opinion over all candidates, by providing ranks. Inspired by this idea, HyVE
tweaks standalone eviction policies to additionally provide rankings for all eviction can-
didates. These rankings are fed into a voting system to determine the eviction victim.
From HyVE’s perspective, its constituent eviction policies behave like voters and the
elected candidate is the eviction victim. In this thesis, HyVE is evaluated using two vot-
ing methodologies namely the Borda Count and the (basic) Condorcet Method. Both
voting methodologies make use of the additional preference/opinion information to de-
termine the eviction victim.

66

4.1 The HyVE Concept

Borda Count

Proposed by Jean-Charles de Borda, this methodology awards points to candidates based
on their position in the individual rankings. Given C candidates, a candidate will receive
n points when ranked first, (n — 1) points when second, (n — 2) points when third, and
so forth. The candidate which accumulates the maximum points is elected. The points
for each candidate C; € C' is calculated as:

B(Cy) = Zpoints(CZ-) (4.1)

The voting outcome is computed as max; B(C;), where V is the set of voters. For the
example ranking distribution,

max (B(z) = 55, B(y) =57, B(z) =50) = B(y) (4.2)

Therefore, candidate y is elected. From an implementation perspective, the candidates’
individual points B(x), B(y), B(z) are computed in parallel.

Condorcet Method

In this methodology, all pairwise comparisons are evaluated, and the candidate who wins
the most pairings is the preferred choice by a majority of voters. If C' is the number of
candidates, then the number of pairwise comparisons is given by:
C-(C-1)
2
If V is the number of voters and n;; are the number of voters who prefer candidate i
over candidate j, then i is said to be globally preferred to j if:

(4.3)

Nij > = (4'4)

2
For the example ranking distribution,

Ny = 14, ny, = 17, ny, = 14 (4.5)

Since candidate x won twice, candidate z is elected.

The Condorcet Method can also be represented as a graph, as
shown in Figure 4.2. It may happen that no candidate is elected
due to the Condorcet paradox (cycle in the graph) which can
occur when C' > 2. There exist several methods to eliminate
such conflicts, such as the Black method (falling back to the n,=17
Borda Count), the Copeland method, etc. Interested readers '

are encouraged to refer to the following books [80, 79] for further Figure 4.2: &Ongozcet
etho

information.

It is interesting to note that the three voting procedures elected different candidates
for the same ranking distribution. This already indicates the importance of the voting
methodology on eviction decisions.

67

4 Hybrid Voting-based Eviction Policy (HyVE)

4.2 HyVE: Features and Design

4.2.1 Rank Generation

The idea of HyVE is to combine several standalone eviction policies together to make
an eviction decision. A standalone eviction policy needs to be modified to additionally
provide ranks, in order to be incorporated as part of HyVE framework. The required
ranking extensions are generated by simply leveraging existing logic of the standalone
eviction policy. Most standalone eviction policies loop over the meta-data of all eviction
candidates to determine the eviction victim based on a given eviction criterion. Upon
finding an eviction victim, the knowledge gained over the remaining eviction candidates
are discarded. With HyVE, this additional knowledge is retained and processed to
generate the required ranks. For some standalone eviction policies (LRU, MRU, etc.),
ranks can be generated directly from its meta-data (age), whereas for other standalone
eviction policies (LFU, Re-Reference Interval Prediction (RRIP), etc.) the meta-data
requires sorting before the ranks can be generated. Section 4.3.1 describes this is in detail
for the explored standalone eviction policies. The small yet effective ranking-extension
modification allows HyVE to include virtually any standalone eviction policy.

4.2.2 Modular and Flexible Framework

The question “which, and how many standalone eviction policy should be incorporated

within the HyVE framework?” can only be answered depending on the configured system
architecture and class of applications. Therefore, HyVE is designed as a modular frame-
work, capable of incorporating almost any standalone eviction policy. Furthermore,
HyVE allows its constituent eviction policies to operate simultaneously in parallel. Each
policy generates ranks independently which are fed into the voting system for evaluation.
This modularity allows several standalone eviction policies to be accommodated within
the HyVE framework.

Modern applications may contain varying phases, each exhibiting different memory
access patterns. A fixed combination of standalone eviction policies making up HyVE
might not be able to deal with such erratic memory access patterns. Therefore, HyVE
is designed as a flexible framework, wherein, it can be configured as a subset, or even
reduced to one of its constituent eviction policies at run-time. Similarly, the voting
methodology is also made flexible, i.e., HyVE can be configured to switch to a different
voting procedure at run-time. This flexibility allows HyVE to offer different optimization
attributes, potentially covering a wider range of application characteristics.

Figure 4.3 illustrates the basic operation of standalone eviction policies and how they
are incorporated as part of the HyVE framework. When used independently, every
eviction policy selects an eviction candidate based on its respective evaluation metric.
Within HyVE, every eviction policy is considered as a voter, whose task is to indicate
their preference over the memory blocks (candidates), using an array of ranks. Finally,
the rank arrays from multiple eviction policies are evaluated using a voting system to
decide on an eviction victim. HyVE is made flexible by incorporating two additional
sub-modules namely, an eviction policy filter and a wvoting selector. These sub-modules

68

4.2 HyVE: Features and Design

Evaluation Metric | Evaluation Metrics of Different Eviction Policies
‘ Way 0 | Way 1 | Way 2 | Way 3 |
| | | I

[Eviction Policy | | Way0:| Way1: | Way2: |Way3 :

v
Eviction Candidate l ¢ l
Evaluation Metric I Policy | Policy Il | ... | Policy N
Way 0 | Way 1 | Way 2 | Way 3 . - ;
| a|y | a|y | a|y | a|y | Rankings Rankings Rankings
[Eviction Policy Il | - jf i 1
v | Eviction Policy Filter

Eviction Candidate

Rank Arrays
Evaluation Metric N

Way 0 [Way 1 [Way 2 [Way 3 . . :
(Wey o[Wey 1 [Wey 2| way3] Voting Engine |, Voting
- : (Borda, Condorcet, etc.) Selector
\ Eviction Policy N | l
Eviction Candidate Eviction Candidate

Figure 4.3: An example illustrating how standalone eviction policies are incorporated within
the HyVE framework using a 4 way cache structure

are configurable, i.e., they enable HyVE to allow/block a subset of constituent eviction
policies and/or switch the voting procedures at run-time.

4.2.3 Tie Handling

As HyVE adopts a voting system, ties can occur. When the Borda Count voting proce-
dure is used, all ties are resolved by evicting one of the tied candidates randomly. When
using the Condorcet Method voting procedure, ties are handled by falling-back to HyVE
with Borda Count. Algorithm 1 describes a pseudo code of HyVE’s eviction process
using three example standalone eviction policies.

69

4 Hybrid Voting-based Eviction Policy (HyVE)

Algorithm 1 HyVE’s eviction process using three constituent eviction policies

1: if hit(addr) == true then > Check if address is present
2: Update Policy Attributes

3: else > Miss Case
4: if emptyWay then > Found Empty Way
5: Fill Empty Way

6: Update Policy Attributes

7 else > Eviction Decision Required
8: ranks.Policyl = Policyl(addr)

9: ranks.Policy2 = Policy2(addr) Computed in Parallel
10: ranks.Policy3 = Policy3(addr)

11: if HyV E(ranks) # tie then

12: return victim

13: else > Tied Ranks
14: fallBack(HyV E(ranks))

15: return victim

16: end if

17: Update Policy Attributes

18: end if

19: end if

4.3 Case-Study 1: HyVE for Caches

As a first case-study, HyVE is evaluated for cache eviction polices with the focus on
LLCs in a manycore system.

4.3.1 Ingredients for HyVE

Six popular standalone eviction policies are chosen to build and evaluate HyVE, for
both the Borda Count and the Condorcet Method voting methodologies. It is impor-
tant to note that any standalone eviction policy can be incorporated within the HyVE
framework, and is not limited to the policies explored in this thesis.

Least Recently Used Policy: LRU is arguably the most common cache replacement pol-
icy. This policy stores the relative age information per cache block as meta-data, which
is used as an eviction criterion. Upon a set conflict, LRU evicts the oldest cache block,
making it a recency friendly eviction policy. Due to its popularity, several variants
of the LRU policy have been explored that optimize for area [81, 82, 83] and perfor-
mance [84, 85]. For the experiments in this thesis, a regular true LRU policy is used,
but any LRU variant can be used as part of HyVE.

LRU Insertion Policy: LIP is an insertion-based policy introduced by authors of [4],
whose eviction process is similar to that of the LRU policy. The difference is, LIP inserts
new/incoming cache blocks into the LRU position, instead of the MRU position. This
property makes LIP thrash resistant.

70

4.3 Case-Study 1: HyVE for Caches

Bimodal Insertion Policy: BIP was also introduced by authors of [4]. BIP is an adap-
tive eviction policy which combines LRU and LIP. For the most part, BIP follows LIP,
but switches to LRU based on a predefined bimodal throttle parameter (¢). By choosing
an appropriate € value, BIP can adapt to changes in the working-set, while retaining
LIP’s thrash resistant property. For the experiments, ¢ = 1/32, as recommended in [4].

Static Re-Reference Interval Prediction Policy: This policy views cache replacement
as a RRIP [50] problem. It uses a N-bit RRPV to track the re-reference interval of
each cache block. The RRPV value is set to 2 — 2 upon insertion and reset upon each
re-reference. SRRIP evicts a cache block with a RRPV of 2V — 1. If not present, the
RRPVs of all cache blocks are incremented till the maximum value is reached. The
SRRIP policy is scan resistant, and can be used in two modes - Hit Priority (HP) or
Frequency Priority (FP). For the experiments, SRRIP-HP is used as it is shown to
outperform SRRIP-FP [50].

Least Frequently Used Policy: LFU evicts a cache block based on a frequency attribute.
As meta-data, it stores the the number of times a cache block has been accessed. Upon
set conflicts the least frequently used cache block is evicted, making it scan resistant.

First In First Out Policy: The FIFO policy evicts cache blocks in the same order in
which they were added. Contrary to the previously mentioned policies, FIFO does not
update its state when a cache block is re-accessed. For example, in an N-way cache it
takes exactly N-misses to evict a newly inserted cache block. The FIFO eviction policy
attempts to discard stale data by retaining each cache block for a maximum of N misses.

Ranking Extensions

In addition to the standalone variant, each of the six eviction policies have been designed
as an alternative variant, extended with ranking capabilities to be used within the HyVE
framework. For the LRU policy, the age meta-data (A) of each cache block in a N way
cache lies in the range 0 < A < (N — 1). Furthermore, the age of each cache block is
unique. This simplifies the rank generation process for LRU, as the age information of
each cache block can be directly inferred as the rank. The same holds true for FIFO,
as its functionality is similar to LRU, except that the meta-data is not updated on a
cache-hit.

For the remaining standalone eviction policies, the meta-data may be in a format
which cannot be directly inferred as ranks. For example, LFU’s meta-data holds the
number of times a cache block has been accessed. These numbers do not necessarily
adhere to an ordered and unique format like LRU. Therefore, the meta-data of different
cache blocks are sorted, before converting them to ranks. For this purpose, a merge sort
algorithm is implemented in hardware. The cost and complexity of this implementation
is analysed in Section 4.4.8.

4.3.2 Exploring HyVE Flavours

With the described six standalone eviction policies, several HyVE variants/flavours can
be produced by combining them in different ways. Determining the HyVE flavour with

71

4 Hybrid Voting-based Eviction Policy (HyVE)

Table 4.2: List of all explored HyVE flavours categorized into groups of two, three and four

Flavors of 2 Flavours of 3
LRU, LIP LRU, LIP, LFU
HyVE-¢c LRU, LEU LRU, LIP, SRRIP
LRU, SRRIP LRU, LIP, FIFO
LRU, FIFO LRU, LFU, FIFO
LIP, LFU LRU, SRRIP, FIFO
HyVE-d LIP, SRRIP LIP, LFU, FIFO HyVE-a
LIP, FIFO LIP, SRRIP, FIFO
BIP, LFU BIP, LFU, FIFO HyVE-b
HyVE-e BIP, SRRIP BIP, SRRIP, FIFO
BIP, FIFO Flavours of 4

LFU, FIFO LRU, LIP, LFU, FIFO
SRRIP, FIFO LRU, LIP, SRRIP, FIFO

the best performance depends on factors such as the system architecture (cache size,
memory hierarchy, etc.) and application characteristics. Therefore, an empirical ap-
proach is chosen, where all HyVE flavours are systematically evaluated and analysed.
The total number of unique HyVE flavours that can be built using N = 6 standalone
eviction policies is computed as:

N

N
Z<k>:15+20+15+6~|—1:57 (4.6)
k=2

However, the goal of HyVE is not just to combine several standalone eviction policies
together, but to do so wherein each policy exhibits orthogonal optimization attributes.
Therefore, HyVE flavours containing eviction polices with similar optimization attributes
are omitted from evaluation. This step minimizes bias in the voting process, which allows
HyVE to consider the opinions of all its constituent eviction policies equally. So, from
the 57 possible HyVE flavours, any combination involving the following eviction policies
are omitted:

e (LRU, LIP, BIP), as BIP inherently combines LRU and LIP,
e (SRRIP, LFU), as both use frequency as the optimization metric (scan resistant).

These constraints reduce the total number of HyVE flavours to 23. Table 4.2 lists them
categorized into groups with two, three and four HyVE flavours.

72

4.4 Experimental Evaluation - HyVE for Caches

Table 4.3: Architecture configuration parameters for the sniper simulator

Parameters Configuration Details
Processing Core Quad-core operating at 2.66 GHz
Cache Line Size 64 B
Coherence MESI Protocol
Private L1 32 KiB, 8 ways, 4 cycle data & 1 cycle tag access latency, LRU Policy
Private L2 256 KiB, 8 ways, 8 cycle data & 3 cycle tag access latency, LRU Policy
Shared LLC {1,2,4,8} MiB, 16 ways, 30 cycle data & 10 cycle tag access latency, HyVE Policy
Main Memory 250 cycle memory access latency

4.4 Experimental Evaluation - HyVE for Caches

4.4.1 Simulation Framework

A manycore architecture simulator is required to evaluate the HyVE concept for LLCs.
HyVE’s performance needs to be evaluated and analysed against existing standalone
eviction policies for various benchmarks and cache parameters. A consequence of these
requirements results in a substantial amount of simulation runs. Cycle-accurate simula-
tors such as Gemb5 [76], though accurate are highly time consuming. Simulating a single
workload could consume several hours or even days, making it impractical.

The Sniper Multi-core Simulator

The sniper simulator [86] uses interval modelling to sacrifice some accuracy to reduce
simulation time. Additionally, it supports multi-threaded execution, which further cuts-
down the required simulation time. Therefore, this simulator is a viable option to explore
a large number of simulation scenarios with HyVE. The sniper simulator supports three
core models, each offering different levels of abstractions and simulation speeds:

e One-IPC (cache-only): Abstract simulation model with the least simulation time.
o Interval Model: Detailed model with average simulation time.

e Instruction-Window Centric Model: Most detailed simulation model consuming
the highest simulation time.

Initially, the sniper simulator’s One-IPC model is used to explore different Hy VE flavours
After the design-space has been narrowed-down to a few interesting HyVE flavours, the
sniper simulator’s Instruction-Window Centric model is used to evaluate HyVE with
other state-of-the-art eviction policies.

4.4.2 Experimental Setup

Target Architecture

The Intel Nehalem micro-architecture with four processing cores is used as a baseline
system for evaluation. Figure 4.4 and Table 4.3 illustrate the target architecture and its

73

4 Hybrid Voting-based Eviction Policy (HyVE)

configuration details. The L1 and L2 caches are private to the processing cores and use
LRU as the eviction policy. HyVE is deployed for the shared LLC.

For the experiments, 15 workloads from the PARSEC [87]
and SPLASH-2 [88] benchmark suites are executed using sim- @ @ @ @
large input-sets. Each benchmark is evenly parallelized onto

the four processing cores. By default, the Intel Nehalem micro- |) ” L2 ”) ” L2 |
architecture uses an 8 MiB LLC. To compensate for using the I I I I
simlarge input-set instead of the native input-set, the LLC size | L|3 |
is reduced to 4 MiB for all experiments. A cache size sensitivity DRAM
analysis is performed separately in Section 4.4.4 that evalu-
ates HyVE’s impact on four different LLC sizes (1 MiB, 2MiB, Figure 4.4: Target ar-
4MiB, 8 MiB). The HyVE flavours are initially evaluated using chitecture
Borda Count as the voting methodology, followed by compar-

isons to the Condorcet Method. Lastly, HyVE is compared to other state-of-the-art

eviction policies.

Initial Observations

All 23 HyVE flavours are simulated using 15 workloads from the PARSEC and SPLASH-
2 benchmark suites. Reporting the results of all 23 flavours is impractical. Therefore, a
detailed analysis of the following 5 HyVE flavours are presented in a concise manner:

e HyVE-a: LIP + LFU + FIFO
e HyVE-b: BIP + LFU + FIFO
e HyVE-c: LRU + LFU

e HyVE-d: LIP + SRRIP

e HyVE-e: BIP + SRRIP

The shortlisted variants consist of 2 HyVE flavours built with three standalone eviction
policies and 3 HyVE flavours built with two standalone eviction policies. The selected
5 HyVE flavours represent almost all characteristics and properties of HyVE observed
with other variants. Explorations with the remaining HyVE flavours are summarized
towards the end of the analysis.

4.4.3 Analysing HyVE Flavours

This subsection evaluates HyVE’s impact on the LLC for the 4 MiB cache configuration
using Borda Count as the voting methodology. Further, the performance of each HyVE
flavour is analysed in detail using evaluation metrics like the eviction count, novelty of
HyVE’s eviction decisions and the influence of HyVE’s constituent eviction policies on
its eviction decisions. Figures 4.5 to 4.9 these evaluation metrics for HyVE-a to HyVE-e
respectively. Each figure contains three types of plots:

74

4.4 Experimental Evaluation - HyVE for Caches

e (Cache Misses: This is a standard metric used to evaluate any cache eviction policy.
The figures report the LLC misses for a given HyVE flavour. The LLC misses of
its constituent eviction policies are also reported. The LLC misses are normalized
with respect to the LRU policy .

e FEuviction Count: The figures report an eviction count plot for a selected benchmark.
This metric helps to continuously visualize the performance of both HyVE and its
constituent eviction policies throughout the course of the application. The solid,
dashed and dotted lines represent the eviction count of the standalone polices.
The outline of the coloured area represents the given HyVE flavour’s eviction
count. This coloured area is further broken-down into two categorizes to analyse
the nature of HyVE’s decisions:

— Known Fviction Victim: This eviction decision would have been taken by at
least one of HyVE’s constituent eviction policies.

— New Fwviction Victim: This eviction decision would have been taken by none
of HyVE’s constituent eviction policies.

e Normalized Opinion: The figures also report an opinion plot for a selected bench-
mark. This metric visualizes the influence of HyVE’s constituent eviction policies
on the eviction decisions. This is also a continuous plot measured throughout the
course of the application. The opinion values are obtained by normalizing the
ranks generated by the constituent eviction policies at every eviction decision, i.e.,
the opinion values always sum up to 1.

HyVE-a Analysis

Figure 4.5 shows the normalized LLC misses for HyVE-a compared to its composing
standalone eviction policies (LIP, LFU and FIFO), for all benchmarks. With the ex-
ception of canneal and streamcluster, LIP and LFU greatly increase the cache misses
compared to LRU. FIFO performs similar to LRU, improving it by up to 5% for lu.cont
and radiz.

Despite two of its constituents exhibiting bad performance, HyVE-a manages to match
the performance of the better performing policy. It even outperforms its best constituent
policy for the benchmarks facesim, lu.cont, lu.ncont, radiz, water.nsq and water.sp. This
shows HyVE’s ability to make better eviction decisions by resolving to a consensus among
its constituent eviction policies.

Analysing the eviction plot for facesim, HyVE-a’s eviction count saturates compared
to the standalone eviction policies. Also, a majority of HyVE-a’s decisions are unique.
The opinion plot indicates that LFU had a strong opinion on most of HyVE-a’s eviction
decisions, followed by FIFO and LIP. However, the eviction plot does not support LFU’s
influence, as most of HyVE-a’s eviction decisions are unique. LFU has a high probability
that its frequency counters are often equal, and can thereby generate equal ranks. These
are falsely translated as strong opinions to evict any of the cache ways, resulting in LFU

!The y-axis is restricted at 40%

75

4 Hybrid Voting-based Eviction Policy (HyVE)

2 10/ facesim VA g wm R
25‘|* T i 2 204
0 LI LI, Ll 5 & Ll
= I S 3 N
= S 5 8 0.2 v Munn f
S s B g \ {'
>4 3 S
= < < = 0.0|facesim
2 <<g <5 %‘\‘\ i\\ &&&‘ii X o°°o°°o°°@\ %‘e‘ &%Q M - 5 5 :
?.i’] % & \\)oc“e{bo@q’o S icati i 1e9 icati i 1e9
N QB #Application Instructions #Application Instructions
<
g LIP mew LFU WEE FIFO EEE HyVE-a LIP N LFU BN FIFO LIP U LFU BN NEW
S =)
g2 25 2 £ 04)VVWWV o=
4 — o —
s 2 S MN‘M 3
0 El 9
9 2o-to [T 22420 I I -1.9—1.1_;5_l!l o 8 5 02Ny,
25 o149 1 - g E]
P 861261 1 = g
= z 0.0 | lu.cont
¥ D> &‘\‘ O o N eﬁ R &
& A &N S b g\ o"‘v‘ o
%‘\@‘ S T Zoi@“ S , 02 04 06 08 00 02 04 06 08
° & \@‘2’ “& #Application Instructions 1e9 #Application Instructions 1e9
(a) Cache Mlsses (b) Eviction Count (¢) Normalized Opinion

Figure 4.5: Normalized LLC misses for HyVE-a and its constituent eviction policies for all
benchmarks, an eviction count and opinion analysis plot for selected benchmarks

usually dominating the opinion plot. Accounting for this paradox, the major influencers
can be interpreted as FIFO and LIP. The strong presence of new eviction decisions
indicate that there was no clear winner, i.e., the eviction policies (voters) did not agree
with each other in selecting an eviction victim. Therefore HyVE-a made new eviction
decisions by resolving to a consensus, which resulted in a 15% reduction in cache misses
compared to its best composing standalone eviction policy (FIFO).

For the lu.cont benchmark, HyVE-a improves the cache performance compared to its
constituent eviction policies. The eviction plot shows that HyVE-a is closer to FIFO
(best performer) at the beginning of the benchmark. Towards the end of the benchmark,
HyVE-a is closer to LIP (poor performer), but saturates quickly. The opinion plot
shows FIFO’s growing influence during the initial phases, supporting the eviction plot.
Towards the end of the benchmark, HyVE-a is influenced by LIP’s opinion. It can be
that favouring LIP’s decision only towards the end of the benchmark improves Hy VE-
a’s performance. By favouring different eviction policies at different benchmark phases,
HyVE-a outperforms its best composing standalone eviction policies (FIFO) by 25%.

HyVE-b Analysis

Figure 4.6 shows the normalized LLC misses for HyVE-b, for all benchmarks. This
flavour is similar to HyVE-a, with BIP replacing LIP. BIP improves the cache perfor-
mance compared to LIP (Figure 4.5) for almost all benchmarks. HyVE-b mostly achieves
similar performance to FIFO. It fails to match the benefits of BIP, especially for bench-
marks barnes, canneal and lu.ncont. This can be accounted to the bad performance of
LFU for the corresponding benchmarks. For the water benchmarks, it reduces the cache
misses even though all three composing policies show poor performance.

The eviction plot for water.nsq shows HyVE-b’s eviction count closer to that of FIFO,
which is the better performer compared to BIP and LFU. The opinion plot indicates
that approximately all three eviction policies equally influence HyVE’s decisions. For

76

4.4 Experimental Evaluation - HyVE for Caches

this benchmark, HyVE-b’s cache misses are closer to the best composing standalone
eviction policy (FIFO), even improving it by > 5%.

For canneal, HyVE-b’s performance is closer to FIFO, even though both BIP and
LFU show improvements. The eviction plot for canneal shows HyVE-b’s eviction count
following FIFO which is a poor performer for this benchmark. Neglecting the LFU para-
dox, the opinion plot shows that FIFO’s opinion is influencing HyVE-b’s decisions, which
explains HyVE-b’s poor performance for this benchmark. This supports the statement
that there is no “magic recipe” for HyVE, and its benefits vary with the application
characteristics, as with any eviction policy.

Compared to HyVE-a, HyVE-b replaces LIP with BIP which is a better performer.
However, HyVE-a shows better performance than HyVE-b (except for the water bench-
marks). This shows that a poor performing standalone eviction policy could potentially
have a positive impact when used along other eviction polices within HyVE.

9 FFoY e 2 | ||
25~|— - 2 - 2 04 m ;
| | 2 2 X
0 - I . il E S W
=] =
) O 02
S -25 5 Tg
a 2 5 water.nsq
& o3 > 0.0 .
R \§°‘.<\Q’[befv\6\ “@2‘ S c,°°c, 00‘15‘ fa@ 0" KX A -
S d¥a 5 e &S 0.5 1.0 15 20 0.0 0.5 1.0 15 2.0
E \9 4 & \@7’ & #Application Instructions 1e9 #Application Instructions 1e9
E bip WM lfu WS fifo WS HyVE-b BIP B LFU BN FIFO B NEW
£ :
S — T
Z © icanneal a 4
g > 2 2
o 26-la-17, 1112 I IR LRLARTIC g02
-25 “3.91-20. 5 =
i 2 g0 0| canneal
c,@é‘&@& <\<\<\‘¢\x5=§2§ z
&‘ ﬁ‘& NCHIIES ¢ R s 0 2 4 6
\\) > ?,o 6‘ q\ P .
b & %\@% - #Application Instructions 1e8 #Application Instructions 1e8
(a) Cache Misses (b) Eviction Count (c) Normalized Opinion

Figure 4.6: Normalized LLC misses for HyVE-b and its constituent eviction policies for all
benchmarks, an eviction count and opinion analysis plot for selected benchmarks

HyVE-c Analysis

Figure 4.7 shows the cache misses for HyVE-c¢ (LRU and LFU). Except for canneal
and streamcluster, LRU outperforms LFU for all benchmarks. HyVE-c mostly ignores
the bad performance of LFU and matches the performance of the LRU policy, slightly
improving it for some benchmarks.

For bodytrack, HyVE-c has good performance compared to its best composing stan-
dalone eviction policy (LRU). The eviction plot shows HyVE’s eviction count following
the trend of LRU. The segmented area mostly contain unique evictions and LRU deci-
sions, indicating HyVE-c’s preference. The opinion plot shows that both policies have
approximately equal influence on the eviction decisions. Accounting for the LFU para-
dox, HyVE-c is expected to incline towards LRU. Comparing the cache misses, HyVE-c
not only leans towards LRU, but improves it by 9% which can be explained by its new
decisions.

7

4 Hybrid Voting-based Eviction Policy (HyVE)

Iy e fu mmm HyVE-c LRU BN LFU BEE NEW

£ | o [bodytrack { . LRU'r £06 L HET e e

& &3 = / W v —

=] = a

] e S04

= 2 32 8

£ 2 5

5 _5 1 E 0.2

Z P g S

H -37 2 bodytrack

2 Ry S S S Q K@ & & & & N Y

2 o o %s \‘“ X “6‘6\@0‘\0“:@‘;{?“2@‘&&%@%\ s\“\ RER “@@“&“ ‘—}?“\s@s‘& = - . . 0.0 . -

3 & #Application Instructions 1e9 #Application Instructions 1e9
(a) Cache Misses (b) Eviction Count (c) Normalized Opinion

Figure 4.7: Normalized LLC misses for HyVE-C and its constituent eviction policies for all
benchmarks, an eviction count and opinion analysis plot for selected benchmarks

HyVE-d Analysis

Figure 4.8 shows the cache misses for HyVE-d which combines LIP and SRRIP. Overall,
the SRRIP policy is a better performer compared to LIP, for all benchmarks. The
trend of HyVE-d is similar to SRRIP, even improving upon it for the barnes, canneal,
facesim and lu.ncont benchmarks. HyVE-d fails to achieve SRRIP’s performance for
the benchmarks fft and fmm.

For the lu.ncont benchmark, both LIP and SRRIP exhibit good performance compared
to the LRU policy. The eviction plot shows that HyVE-d’s eviction count is below that of
both the standalone eviction policies, but with a similar trend. The opinion plot clearly
show both policies having equal influence on the eviction decisions. For this benchmark,
HyVE-d reduces the cache misses by an additional 13% compared to the best performing
standalone SRRIP policy. This example shows HyVE combining two good performing
eviction policies to further improve cache performance.
lip s grip EEE HyVE-d LIP W SRRIP LIPU SRRIP W8 NEW

//
3 6QS~\)\Q.‘

e
-

E 04

zs—l—————————————

Juodun|

OI II I w ||

25 LR

= 0.2

W
-

Eviction Count [10A7]
N
A\

Normalized Opinions

i -36.
e @6‘&‘&‘\26\) 0 0.0

o%%e 3 Sadtetotetotitidel s NG e\ RS TR

e x\\‘&\ 2@“@%@@@ v%\“\ %00& Sa® 0 2 4 6 0 2 4 6

o #Application Instructions 18 #Application Instructions

(a) Cache Mlsses (b) Eviction Count (c) Normalized Opinion

L3 Misses Normalized to LRU [%]

1le8

Figure 4.8: Normalized LLC misses for HyVE-d and its constituent eviction policies for all
benchmarks, an eviction count and opinion analysis plot for selected benchmarks

HyVE-e Analysis

Figure 4.9 shows the cache misses for HyVE-e, which is similar to HyVE-d, with BIP
replacing LIP. Both BIP and SRRIP are strong policies, reducing the cache misses
significantly compared to LRU. HyVE-e matches the performance of the best composing
standalone eviction policy for most benchmarks, and even improves upon it for the barnes
and [u benchmarks. There are also cases where HyVE-e follows the lesser performing
policy (bodytrack).

78

4.4 Experimental Evaluation - HyVE for Caches

bip WS srrip EEEE HyVE-e BIP M SRRIP BIP U SRRIP W NEW

=
fmm _J
25— -—--
I 1 [l I n

o I . .I T
225 LI [_5-}5.}- -

| &
SRS S S S R o %6‘\\‘\“"6‘0\0‘0 «\\5\ ef,ou,q
(& SORNIN oooo B RN %‘és\ RO OREE T
v?% 65 N 6:\0 °<\° "‘?’ “:’ée\é \@g\ Q\Q\ S & q\@\‘z
&
¥ &\“\ oodz <&

[}

I
N

e
N

-38.1 |

Eviction Count [10A7]
SN
\
\
Normalized Opinions

o
=)

fmm
0.5 1.0 0.0 0.5 1.0

#Application Instructions 1e9 #Application Instructions

(a) Cache Mlsses (b) Eviction Count (c) Normalized Opinion

=)

o
o

L3 Misses Normalized to LRU [%]

1e9

Figure 4.9: Normalized LLC misses for HyVE-e and its constituent eviction policies for all
benchmarks, an eviction count and opinion analysis plot for selected benchmarks

For the fmm benchmark, SRRIP has a better performance than BIP. The eviction
plot also shows a similar trend for HyVE-e, as its eviction count lies between SRRIP
and BIP. The opinion plot shows that both policies have equal influence, but reassessing
the eviction plot, BIP agrees with a large number of HyVE-e’s eviction decisions. This

explains HyVE-e’s neutral performance for this benchmark, as it reduces the cache misses
by 4% compared to LRU, which is between SRRIP and BIP.

Summary of other HyVE flavours

The LLC performance of the remaining 18 HyVE flavours and the standalone eviction
policies are attached in Appendix A. On average, for all 15 benchmarks, 10 flavours
improve the LL.C performance compared to LRU, 6 flavours match the LLC performance
of LRU, and 2 flavours degrade the LLC performance compared to LRU. For the explored
benchmarks and HyVE flavours, Hy VE-a exhibits the best LLC performance on average,
covering a wide range of application characteristics.

4.4.4 Cache Size Sensitivity Analysis

The size of a cache is an important factor that influences the effectiveness of any evic-
tion policy. If a cache is over-dimensioned, i.e., all application data comfortably fit
into the cache, the smartness of an eviction policy has minimal impact on the appli-
cation’s performance. The same holds true if a cache is under-dimensioned, as severe
cache-thrashing makes any eviction policy ineffective. Therefore, the HyVE flavours are
evaluated for different cache sizes. Figure 4.10 shows the normalized LLC misses for
each HyVE flavour for the following cache sizes: 1 MiB, 2MiB, 4 MiB and 8 MiB. For
almost all benchmarks and cache sizes, HyVE-a and HyVE-b reduce the cache misses
compared to the LRU policy. With increasing cache size, this performance is either con-
stant or even improves, depending on the benchmark. The variant HyVE-c sometimes
improves the cache performance, but mostly shows no changes with LLC size variations.
Depending on the benchmark, HyVE-d and HyVE-e exhibit both good and bad cache
performance compared to the LRU policy. Overall, the cache size sensitivity analysis
shows that HyVE generally has a positive impact for different cache sizes. This shows
that HyVE is applicable to different LLC configurations.

79

4 Hybrid Voting-based Eviction Policy (HyVE)

= HyVE-a HyVE-b
o
L 20
I~
-
B . ' '
T 0 .. - - - U e A 1 T L 7"
3 "y w'e T I [1 | F
E
£
S 20 R
2 L | 20 ! |
o
i<
2
< S & DO R L O I I F S SR N §
& > N FFES S & % . & @ SIS 5
5 \o{é‘\&\@cé\‘@ &%\ ‘&{\\&% &@\QQQ é’o o-(’o Qc/o {b&bﬁ é‘&,b@(? P & &&c\z&v@‘b @%\(Q {\ &é‘ ;\&& OQQQQOQ oo*‘ oo‘o &&"'\0@@ &‘&’0‘ @*'%Q
| S CHREN N P Ol AR S S ¥
2 Q&b &S \&éo < S I \S\&b > oc?"b 0@“’0 éb‘o &S
3 N °© 5
B
_ HyVE-d
5 HyVE-c 50— _ N - e
- 20
=
e I Il II
= ol n - .
g0 g - e * o .]
FR N : | |" T Il
=
E
© 20
%]
[
% |
S 3 AL LIPS TS &R o > QLSS
5 m‘“ @Q’cqy& & &-\&% F L & & &&<§$} é'&%\é‘? é“@ &”&Q&% c‘”"\@ ® é‘%\ ‘x\"\\\ F& & &‘b&%\o& 'x&o‘@"&
S F @ & W S o & & RS P S N S & F
23S & VS & ~o°& R \gv“ T S
S N & N o © a}@
— HyVE-e
X
%50—
& LLC Size
S .
e i, kel o MR 1 MiB
20 1 I II I o -
= I | 2 MiB
g
= s 4 MiB
Z 50
P I . 5 MiB
2
£ S N D . Q@ S Q& QG S S
= & &E ng\& & \6‘& F& FITFEE z‘{‘&
O F & N ISP SR R RS
25 & F s S WS SE
- &\\} Qo OQ’ 0}56

Figure 4.10: Normalized LLC misses with different cache sizes for all HyVE flavours

4.4.5 Voting Methodology Analysis - Borda Count vs Condorcet Method

HyVE’s voting algorithm plays an important role in determining the eviction victim [22].
Therefore, HyVE is re-evaluated with a second voting procedure for all benchmarks.
For all 5 HyVE flavours, the voting methodology is switched from Borda Count to
the Condorcet Method. Figure 4.11 reports the LLC performance of all flavours for all
benchmarks. The LLC misses of each Hy VE flavour are normalized to that of their Borda
Count counterparts. For almost all benchmarks, HyVE with Borda Count outperforms
HyVE with the Condorcet Method. The exceptions are barnes, canneal, lu.cont and
streamcluster. This is an interesting result, especially from the voting theory perspective
which considers the Condorcet Method “fairer” than the Borda Count. Although in
theory, the Condorcet Method satisfies the Condorcet criterion, the results for cache
evictions are against it. This can be explained due to the small number of voters which
could easily bias HyVE with the Condorcet Method. This effect in particular can be

80

4.4 Experimental Evaluation - HyVE for Caches

HyVE-a HyVE-b mmm HyVE-c Wm HyVE-d M HyVE-c
o —
82 75 | —
EE 50 I -
Sl
LRl N A | Il ol
§_§ Ok —m= m_ - W _II,, | TR | I8 - i ml___ I,, II,, —— I,, I
23
M -25
=% I
~ 7 -50
S N > . & & &> N > > > & 5 N Q
q,@@ & Q&(b @5\® S -é‘& o & & & & &b\ *%& © &-Q% \é'%
) ® & 329\ NS & s &g S
R & & 2
A Q\y\ o & %\@

Figure 4.11: Normalized LLC misses of all HyVE flavours using the Condorcet Method

observed when three standalone eviction policies are involved, where two perform poorly.
With the Condorcet Method’s pairwise comparisons, the two poorly performing voters
have a greater influence on the decision process by taking advantage of two-against-one
situation. The positives and negatives of using HyVE with the Condorcet Method is
analysed in detail for two HyVE flavours and selected benchmarks.

HyVE-a-Condorcet. Figure 4.12 reports the eviction count plot of HyVE-a for four
representative benchmarks, both with Borda Count and the Condorcet Method voting
procedures. The plots show that HyVE-a with the Condorcet Method mostly follows
the joint decision of LIP and LFU, whereas HyVE-a with the Borda Count selects
new eviction candidates more often. This two-against-one situation is advantageous for
the canneal and streamcluster benchmarks as LIP and LFU have a better performance
than FIFO. However, the LLC performance suffers for bodytrack and water.sp, as FIFO
outperforms LIP and LFU.

HyVE-d-Condorcet. Figure 4.12 also reports the eviction count plot of Hy VE-d for four
example benchmarks, both for Borda Count and the Condorcet Method. It is important
to note that HyVE-d contains two voters. HyVE-d with the Condorcet Method only
selects new eviction victims for the lu.cont benchmark, whereas for the others, it follows
the trend of LIP. This can be due to the decisions of LIP being ranked relatively higher
for SRRIP, therefore often winning the pairwise comparisons. In the case of lu.cont,
new eviction victims are chosen most of the time allowing HyVE-d with the Condorcet
Method to perform better than its constituent eviction policies.

The analysis of these benchmarks show that HyVE with the Condorcet Method can
yet be used to obtain positive results, under certain conditions:

e If the rankings allow selecting new eviction victims,

e If the best constituent eviction policy exhibits good performance and is not hin-
dered by the two-against-one situation.

81

4 Hybrid Voting-based Eviction Policy (HyVE)
HyVE-a with Condorcet Method HyVE-a with Borda Count HyVE-d with Condorcet Method HyVE-d with Borda Count
bodytrack [‘ bodytrack 7 i 15000 facesim I .| 10000[FReesim_—_—] z

g
=

10000

5000

5000

@
S

Eviction Count [1045]
5]
3

Eviction Count [10/5]

o

#Application Instructions 1e9

5 canneal g fmm
Sa 2 40 ¢
z :
5
S 100 S 200
= 2 z
3 =2
s
=0 2 4 6 =8 05 10 15 05 0
#Application Instructions 1e8 #Application Instructions 1e8 #Application Instructions 1e9 #Application Instructions
5 str e i I o streamcluster T 150 lu.cont Tu.cont
S 15000 s
= 071 gV W =
£ 10000 L = 100
5 10 = e g
S ;/ (6]
5 5000 ——eZ 5 50
g 2= g
a0)
2 4 6 2 X 0.2 0.4 0.6 0.8 .2 . 0.6
#Application Instructions 1e9 #Application Instructions 1e9 #Application Instructions
o) —r -
é ater.sp \)/{4\?.\,... water.s| é 15000 Q
= $eed z S
3 210000
o 100 — o
= =
s 5
g)_r./ T g
Z - g
N 1 2 3 4 5 3 2 2 4 6
#Application Instructions 1e8 #Application Instructions 1e8 #Application Instructions 1e9 #Application Instructions 1e9
s LIP LIP U LFU =eeer FIFO evictions
B LFU BN LIP U FIFO —— LFU evictions B LIp Il LIP U SRRIP —— LFU evictions
B FIFO s NEW === LIP evictions Il SRRIP s NEW === LIP evictions

Figure 4.12: Eviction count plots for HyVE-a and HyVE-d using the Condorcet Method and
Borda Count voting methodologies, for four representative benchmarks each

These observations and analyses underline the fact that the outcome of a voting system
is only as good its voters. When using the Condorcet Method, the properties of the
standalone eviction policies must be carefully analysed, especially regarding the target
applications. The Borda Count on the other hand seems to be more forgiving with its
point-based system, compensating for majority-against-minority situations. From voting
theory’s perspective, a more democratic system like the Condorcet Method is favoured
for electoral systems. However, for the cache eviction task, the same voting system is
counterproductive due to the small number of voters. To conclude, for the evaluated
benchmarks and architecture configuration, the Condorcet Method does not yield much
benefits over Borda Count.

4.4.6 Comparison to State-of-the-art Policies

HyVE is compared to two state-of-the-art cache replacement policies, one which uses
the concept of SD, and another which uses a learning subsystem.

Set-Dueling (SD)

SD is the closest alternative to HyVE. It combines two standalone eviction policies
using the concept of DSS [53]. HyVE’s performance for LLCs is compared against the
DRRIP policy [50]. DRRIP can be viewed as a combination of SRRIP and BRRIP

82

4.4 Experimental Evaluation - HyVE for Caches

3 . HyVE-a HyVE-b HyVE-c HyVE-d HyVE-e mmmHyVE-DRRIP DRRIP mmHawkeye
S‘ avg: -7% avg: -4.9% avg: 0% avg: 12.2% avg: 2.3% avg: -7.4% avg: -5.5% avg: -9.2%
5
=]
- 25
3 |
N 1 -
=== = o H E e
£ LII II,,IilI | i I,,, ,,,II - LU i BN | LI LI |
S | | N O | M |
S 1 | ! 1 M 1
o -25 —
@ C
(2]
£
00 ¢ P S § # o & S S S S R O
| ?;\& & <\<‘Q’ & & & ® & o B &b \\?\ &S\e < 2 3
4 F @ ‘ b,z;\\ DRSS SRS & @

S 3 Y & P W

N\ <« &

Figure 4.13: The normalized LLC misses of all benchmarks using the HyVE flavours, DRRIP
and Hawkeye

using SD. For the experiments, SD has been implemented using a 10-bit PSEL counter
and 32 leader sets per eviction policy [4]. For the BRRIP implementation, the bimodal
throttle parameter e = 1/32 [50]. For a fair comparison to DRRIP, a new HyVE flavour
namely HyVE-DRRIP is introduced. HyVE-DRRIP combines the SRRIP and BRRIP
standalone eviction policies together using Borda Count as the voting methodology.

Hawkeye

Hawkeye [60] is a learning-based eviction policy that re-constructs Bélddy’s optimal al-
gorithm and predicts if an incoming memory block is cache-friendly or cache-averse.
For the experiments, the Hawkeye implementation has been ported from the cache re-
placement championship simulator [89] to the sniper simulator. Hawkeye requires the
program counter to perform predictions. Therefore, for these experiments,the sniper
simulator’s mode is switched from One-Instructions-per-Cycle (IPC) (cache-only) to the
Instruction-Window Centric model.

To compensate for the sniper simulator’s run-to-run variations, the simulations were
repeated seven times. Therefore, the results presented in this section are an average of
these seven simulation runs. Figure 4.13 compares the normalized LLC misses for the
HyVE flavours, DRRIP and Hawkeye for all benchmarks 2. Slight discrepancies between
results of Figure 4.13 and Figures 4.5 to 4.9 are due to the switch in the sniper simulator’s
core model. For the benchmarks bodytrack, lu.ncont, water.nsq and water.sp, there is at
least one HyVE flavour exhibiting better LLC performance compared to DRRIP and/or
Hawkeye. For the benchmarks barnes, canneal, facesim, fluidanimate, ocean.cont, radiz
and streamcluster, at least one of DRRIP and/or Hawkeye outperform HyVE. For the
benchmarks fft, fmm, lu.cont and ocean.ncont both HyVE and DRRIP /Hawkeye exhibit
the same LLC performance. On average, Hawkeye reduces the LLC misses by 9.2%,
DRRIP by 5.5% and HyVE by 7.4%, compared to the LRU policy.

2Note that the y-axis is restricted to 50%

83

4 Hybrid Voting-based Eviction Policy (HyVE)

N HyVE-a HyVE-b HyVE-c HyVE-d WesHyVE-e WM HyVE-DRRIP DRRIP W Hawkeye
—_— avg: 2.1% avg: 1.4% avg: 0% avg: -5.4% avg: -1.9% avg: 4.2% avg: 4.5% avg: 1.5%
S 50
E _
— 25
=] 1
h [| [|
g o e ST . e h o TR —
‘_és 1
5 -25
=z
T S PR

N RGN <Y & ® & e & 0 &® &

SO @ S W S o & ¢ N & &
s < KX R W S PRy <
QO QO 3 c}@;

Figure 4.14: The normalized IPC of all benchmarks using the HyVE flavours, DRRIP and
Hawkeye

Figure 4.14 reports the normalized IPC for the HyVE flavours, DRRIP and Hawkeye
for all benchmarks 2. On average, DRRIP exhibits the best IPC, improving upon the
LRU policy by 4.5%, followed by HyVE at 4.1% and Hawkeye at 1.5%. However, there
are benchmarks where each replacement policy has a unique advantage over the other.
HyVE introduces a new approach to tackle the cache replacement problem, borrowing
ideas from the voting theory domain. Therefore, the concepts of SD, learning-based or
HyVE can be viewed as unique and complementary to each other in solving the cache
replacement problem, each with its advantages and drawbacks.

4.4.7 Take-away Points

Overall, the results show that HyVE improves the LLC performance for several appli-
cations compared to its constituent eviction policies. This can be credited to its design
which combines several optimization criteria, and its ability to select new and unique
eviction candidates. However, the results also underline that a single HyVE flavour does
not, and even cannot guarantee the best performance for all applications. This state-
ment is true even for existing standalone and hybrid eviction policies. Furthermore,
deciding which, and how many standalone eviction policies to incorporate within the
HyVE framework depends on various factors such as:

e The manycore architecture, memory hierarchy and cache configuration,

e The class of applications to be executed on the manycore architecture,

e The acceptable hardware footprint.
The HyVE design includes an eviction policy filter and a voting selector module. These
modules can be configured/adapted at run-time depending on the factors mentioned

above, to further enhance HyVE’s performance. This is a research challenge in itself,
and is discussed as part of the future work in Chapter 5.

84

4.4 Experimental Evaluation - HyVE for Caches

4.4.8 Hardware Implementation

HyVE’s performance benefits as a cache eviction policy were evaluated using a simulation
platform. However, if its hardware implementation costs are too high, it may outweigh
the aforementioned performance benefits. Therefore, the HyVE framework has been
realized on a Virtex-7 FPGA prototyping platform. HyVE is implemented with Borda
Count as the voting methodology, as it showed better performance than the Condorcet
method. HyVE is integrated as part of a light-weight cache controller sub-module, which
is responsible for LLC eviction decisions. An example 4-way cache is used to analyse
the overheads of the HyVE framework.

FPGA Resource Utilization

Table 4.4 reports the FPGA resources in terms of LUTs and REGs for the six standalone
eviction policies and five flavours of HyVE. Additionally, each eviction policy’s area
footprint relative to the cache controller sub-module is reported in parentheses. To
further investigate the contributors to HyVE’s resource utilization, it is broken down as
a function of its constituent eviction policies, their ranking extensions and the voting
sub-module. Figure 4.15 illustrates this for the five HyVE flavours. The break-down
shows that HyVE’s constituent eviction policies are the major contributors to its area
footprint. HyVE’s ranking extensions do not add significant overheads, mainly due to
two reasons:

e The ranking extensions leverage existing logic from the standalone eviction policies,
e An efficient implementation of the hardware mergeSort() algorithm.

The voting sub-module mostly contributes constant overheads for a given number of
voters. Its area footprint is not dependent on the complexity of the standalone eviction
policies.

Computational Complexity and Timing

Table 4.4 also reports the logic delay for the six standalone eviction policies and five
HyVE flavours. HyVE’s logic delay numbers are very close to that of the standalone
eviction policies. This is due to a combination of the HyVE concept and its efficient real-
ization. HyVE’s operation can be broadly classified into two stages namely a rank gener-
ation phase and a rank evaluation phase. In the rank generation phase, the constituent
eviction policies provide a rank for each cache way. For certain standalone eviction
policies, the meta-data needs to be sorted first before a rank can be assigned. For this
purpose, a hardware mergeSort() algorithm is used. The mergeSort() is implemented
in an area efficient manner and scales with a complexity of O(#ways - log{#ways}).
Post sorting, each cache way is assigned a rank. It is important to note that all con-
stituent eviction policies within the HyVE framework operate in parallel during the
rank generation phase. In the rank evaluation phase, the generated ranks are fed into

85

4 Hybrid Voting-based Eviction Policy (HyVE)

Table 4.4: FPGA resource utilization (LUT, REG) and logic delay for all standalone eviction
policies and HyVE flavours using Borda Count

Eviction Policies LUT REG Logic Delay
LRU 22 (3%) 34 (7%) 1.169ns
LIP 26 (4%) 34 (7%) 1.267 ns
BIP 29 (4%) 40 (8%) 1.199ns
LFU 43 (6%) 50 (10%) 1.108 ns
FIFO 22 (3%) 34 (7%) 1.110ns
SRRIP 41 (6%) 50 (10%) 1.110ns
HyVE-a 158 (19%) 150 (24%) 1.130ns
HyVE-b 162 (20%) 156 (24%) 1.147 ns
HyVE-c 117 (15%) 106 (18%) 1.227ns
HyVE-d 133 (17%) 106 (18%) 1.192ns
HyVE-e 136 (17%) 112 (19%) 1.147ns
HyVE-a HyVE-b
LIP LFU FIFO BIP LFU FIFO
33 LUTs || 58 LUTs || 29 LUTs 37 LUTs || 58 LUTs || 29 LUTs
44 REGs || 60 REGs || 44 REGs 50 REGs || 60 REGs || 44 REGs
Ranking || Ranking || Ranking Ranking || Ranking || Ranking
Voting 38 LUTs, 2 REGs | | Voting 38 LUTs, 2 REGs
HyVE-c HyVE-d HyVE-e
LRU LFU LIP SRRIP BIP || SRRIP
29 LUTs || 58 LUTs 33 LUTs || 70 LUTs 37 LUTs || 69 LUTs
44 REGs | | 60 REGs 44 REGs || 60 REGs 50 REGs || 60 REGs
Ranking Ranking Ranking Ranking Ranking Ranking
i 30 LUTs i 30 LUTs i 30 LUTs
Voting . Voting R Voting e

Figure 4.15: Breaking-down the FPGA resource utilization for each HyVE flavour

the voting sub-module, which selects the eviction victim. In order to maximize through-
put, the rank generation and evaluation phases are pipelined. The efficient realization of
the HyVE concept allows designers to build HyVE with almost any standalone eviction
policy without much concern on the area and timing overheads.

86

4.5 Case-Study 2: HyVE for Sparse Directories

4.5 Case-Study 2: HyVE for Sparse Directories

The HyVE concept is evaluated for a second use-case in the context of sparse directory
eviction decisions. Commonly, sparse directories are used to support inter-tile coherence
for DSM-based tiled manycore systems. From a structural perspective, a cache memory
and a sparse directory are very similar. The basic functionality, which is to store and re-
tain important data for faster re-accesses applies for both hardware structures. However,
there exist several differences, which are summarized in Table 4.5. For cache memories,
the goal of eviction policies is to closely follow the Bélddy optimum solution [49]. This
unattainable eviction algorithm provides the ideal solution for the cache eviction prob-
lem by assuming knowledge of all future memory accesses. However, for sparse directory
structures, closeness to the Bélady optimum solution may not necessarily be the decisive
optimization factor.

From a storage perspective, a cache holds application data that are fetched from the
main memory. A sparse directory holds the sharer information for these application data.
The sharer information (represented as bit-vectors) are generated internally upon the
initial remote read request of an application data. This property decouples application
data access statistics like recency, frequency, etc. from the sparse directory, rendering
them pseudo-accurate. For example, in a cache, the LRU policy records the age meta-
data for each cache way. When a particular cache block is accessed, the age of the
respective cache way is updated to make it the youngest cache entry. Using the same
example for a sparse directory, the LRU policy may not produce the expected results.
A remote read request would only update the age meta-data in the sparse directory
on a cache miss, or when it receives an invalidation message. Conveying the exact age
meta-data on every cache access would drastically increase the system traffic. Therefore,
even though the memory block may have been accessed several times in the remote data
cache, the data usage pattern remains unknown to the sparse directory. This alters the
intended functionality of the LRU policy, as the age meta-data in the sparse directory
is not accurately represented.

The content within a cache memory and a sparse directory also play a major role at
the time of an eviction. For a cache, the modified application data are written back
to the main memory. The cost of this eviction process depends on various factors such
as the distance to the main memory, the network traffic, etc. For a sparse directory,

Table 4.5: Fundamental differences between a data cache and a sparse directory in the context
of eviction decisions

Properties Data Cache Sparse Directory
Storage Information Application Data Sharer Information
Source of Information Main Memory Internally Generated
Data Access Statistics Accurate Pseudo-accurate

Eviction Action Write-back/No Action Send Invalidations
Cost of Eviction Fixed/Variable Variable

87

4 Hybrid Voting-based Eviction Policy (HyVE)

invalidation messages are sent out when an entry is evicted. The number of invalidations
sent out depend on the content of the sharer information. Therefore, the cost of this
eviction process depends on factors such as the number of active sharers, their aggregated
invalidation distance (network hop count), the network traffic, etc. These differences
between a cache memory and sparse directory serve as motivation for alternate eviction
strategies that optimize for different eviction criteria.

4.5.1 Architecture-aware Eviction Policies

Sparse directories are used in tiled manycore systems which exhibit NUMA latencies.
The NUMA latencies greatly affect the cost of sparse directory evictions. An evic-
tion policy which considers and specifically optimizes for such architectural differences
could improve the performance of a sparse directory. This thesis introduces two such
architecturally-aware eviction policies that optimize for eviction criteria other than the
temporal attribute.

Least Number of Sharers (LNS) Policy

The Least Number of Sharers (LNS) policy is designed on the basis that a sparse direc-
tory entry with many sharers is more likely to be re-used. Therefore, during the eviction
process, it evicts the entry with the lowest number of sharers. This minimizes the num-
ber of invalidations sent out after an eviction, thereby reducing the cost of evictions for
the sparse directory.

For the eviction process, the
LNS policy does not need any ad- (010100110
ditional meta-data. It directly [(#Sharers: 4 S
uses the sharer information (bit- Yictim

vector) stored within the sparse Sharer Sharer
directory to count the number of nformation Information

sharers. This reduces the area . .
footprint of the LNS policy. Fig- Figure 4.16: An example demonstrating the LNS evic-

tion policy

[Way1
110100000 001111110 001011110
#Sharers: 6 #Sharers: 5

ure 4.16 illustrates an example
LNS eviction operation. Using the sharer information, LNS computes the total number
of sharers for each candidate within the sparse directory. The candidate with the lowest
number of sharers is evicted.

Shortest Distance First (SDF) Policy

The Shortest Distance First (SDF) policy is designed to reduce coherence-related network
traffic on a tiled manycore system. During the eviction process, the sparse directory entry
which would induce the shortest number of aggregated network hops for invalidations is
evicted.

For the eviction process, the SDF policy populates a small cost table depending on
the network topology at run-time. The table contains the number of hops required to

88

4.5 Case-Study 2: HyVE for Sparse Directories

reach every other tile, and is different for each tile in the manycore system. The size of
this cost table grows with the size of the manycore architecture.
Figure 4.17 illus-

trates an example SDF (010100110 110100000 001111110 001011110
#Hops: 9 #Hops: 10 #Hops: 11

eviction operation. Us-
ing the sharer infor-
mation in conjunc-
tion with the cost ta-
ble, the SDF policy Figure 4.17: An example demonstrating the SDF eviction policy

Victim
[TileID [876543210]
SDF #Hops [432321210)

Cost Table __--~

Sharer
Information

computes the cumu-

lative hop count for each eviction candidate of the sparse directory. The candidate
with the least aggregated hop distance is evicted For the example in Figure 4.17, the
cost table is populated assuming an XY routing algorithm.

4.5.2 Building HyVE for Sparse Directories

To ensure a fair voting system (similar to HyVE for LLCs), it is desirable that HyVE’s

constituent eviction policies optimize for non-overlapping eviction criteria. For sparse

directory eviction decisions, HyVE is built using three standalone eviction policies - the

commonly used LRU and the two architectural-aware LNS and SDF eviction policies.
The LRU policy is similar to T Wav3 |

that described in Section 4.3.1 Age: 2

and evicts old and potentially ir-

relevant data. Figure 4.18 il-

lustrates an example LRU evic-

tion operation. The efficiency of

the LRU policy is determined by Figure 4.18: An example demonstrating the LRU policy

its falsely-predicted eviction vic-

tims, i.e., the lower number of evicted victims returning to the sparse directory, the bet-

ter. The goal of the LRU policy is to minimize this eviction recurrence. The architecture-

aware eviction policies optimize for different criteria. The LNS policy attempts to min-

imize the total number of dirlnvs. The SDF policy aims to reduce the network load

generated by these dirlnvs. Each of the three standalone eviction policies optimize for

different eviction criteria that are summarized in Table 4.6. The three standalone evic-

tion policies are extended with ranking capabilities and incorporated into the HyVE

framework. An example HyVE victim selection decision is illustrated in Figure 4.19.

Table 4.6: Optimization attributes of the constituent eviction policies used for HyVE

Eviction Policy Optimizing Attribute Meta-data Storage
LRU Eviction Recurrence Age Entry per Memory Block
LNS Number of dirlnvs None
SDF Network Load of dirlnvs Cost Table per Tile

89

4 Hybrid Voting-based Eviction Policy (HyVE)

Age: 2 Age: 1 3 Age: 3 Age: 0
#Sharers: 4 #Sharers: 3 | 1 #Sharers: 6 #Sharers: 5
#Hops: 9 #Hops: 10 | 3 #Hops: 11 #Hops: 8
7 9 8
Victim

Figure 4.19: An example demonstrating HyVE with LRU, LNS and SDF as the constituent
eviction policies

4.6 Experimental Evaluation - HyVE for Sparse Directories

4.6.1 Target Architecture

Sparse directory structures are used to support inter-tile coherence for tile-based many-
core architectures. Therefore, HyVE for sparse directories is evaluated using a DSM-
based tiled manycore architecture, similar to that used to evaluate the RBCC concept.
For these experiments, HyVE has been integrated into the Directory sub-module of the
CRM which holds the sharer information.

4.6.2 Experimental Setup

HyVE for sparse directories is initially evaluated using a simulation platform. The
high-level SystemC simulation framework introduced in Section 3.5.1 which was used
to evaluate RBCC serves as the base platform. HyVE is integrated into the sparse
directory controller of the simulator, which is responsible for replacement decisions. A
configurable eviction policy parameter is used to switch between either of the standalone
eviction policies or HyVE for different simulation runs.

HyVE is evaluated using five workloads that exhibit diverse sharing and communi-
cation patterns, taken from the PARSEC and SPLASH-2 benchmark suites - canneal,
swaptions, fluidanimate, fft and lucb. The simsmall input set is used for all benchmarks.
This generates sufficient memory access traces for evaluation, whilst guaranteeing rea-
sonable simulation times. Each benchmark is executed with a parallelism of 16-threads,
that spawn four tiles of the manycore architecture.

The focus of these experiments are to evaluate the impact of sparse directory evictions
on the applications’ execution time. However, the size of the caches also influence the
application’s execution time as showcased by the HyVE for caches experiments. With
under/over-dimensioned caches, the application’s execution time would be dominated by
cache-related properties that outweigh the impact of sparse directories. After extensive
explorations, the cache sizes are fixed to lie between the range of under-dimensioned
and over-dimensioned, known as the “knees” of the benchmarks. The L1 cache is set to
256 sets, 4 ways and the L2 cache is set to 16 Ki sets, 4 ways. The cache line size for
both caches is 32 B. It is important to note that larger input sets would shift the knees
of the benchmarks towards larger cache and sparse directory configurations.

90

4.6 Experimental Evaluation - HyVE for Sparse Directories

Lastly, the global DRAM memory introduces variables like its access latency, memory
bottleneck, etc. which also influence the application’s execution time. As the focus is on
sparse directories, the DRAM memory is disabled for these experiments. Instead, the
size of the TLM is increased to 16 MiB. This ensures that all application data fits into the
distributed TLMs of the manycore system. With these cache and memory parameters,
a sweep of different sparse directory configurations ranging from 128 sets, 8 ways to
8 Ki sets, 4 ways are explored. HyVE is evaluated with Borda Count first, followed by
the Condorcet Method.

4.6.3 Results and Analysis

Figures 4.20 to 4.24 report the execution time of all benchmarks with standalone eviction
policies and HyVE for various sparse directory configurations. The Figures also contain
the execution time for three different Set-Dueling (SD) pairs, which is analysed in the
coming subsections. All execution times are normalized to that of an ideal non-sparse
directory which does not suffer from set-conflicts. Further, each benchmark is analysed
in detail using additional evaluation metrics such as:

e Fuviction Count: This metric reports the total number of sparse directory evictions
which is used to evaluate the efficiency of a given eviction policy.

e Directory-induced Invalidations (dirInvs): This metric represents the total number
of invalidation messages that were triggered due to sparse directory evictions. The
LNS policy attempts to minimize this evaluation metric at each eviction decision.

e Time for Directory-induced Invalidations (dirlnvs): This metric represents the
total time taken to send out invalidation messages that were triggered due to
sparse directory evictions. The SDF policy attempts to minimize this evaluation
metric at each eviction decision.

e Fuviction Recurrence: This metric represents the total number of times a sparse
directory entry was re-accessed after being evicted. The LRU policy attempts to
minimize this evaluation metric upon each eviction decision.

These supporting evaluation metrics are also reported in Figures 4.20 to 4.24, and are
normalized to that of the LRU policy.

Individual Benchmark Analysis

In general, the execution time of all benchmarks increases as the size of the sparse
directory decreases. This is an expected result caused by the additional directory-induced
invalidations.

canneal: For this benchmark, the LNS and SDF policies perform better than the LRU
policy for large sparse directory configurations. HyVE closely tracks both LNS and
SDF with a maximum performance degradation of 7.4%. With smaller sparse directory
configurations, the LRU policy exhibits better performance than LNS and SDF. As

91

4 Hybrid Voting-based Eviction Policy (HyVE)

w
o

i Eviction Count (x10°) dirInvs (x10°)
o canneal
£ 104
E::Z'S 8 8
=] 6 6
o
0= 2.0 4 4
=]
1) 2 2
o)
%15 0+ 0
Sl Time for dirInvs (sec) Eviction Recurrance (x10°)
3 g
N 81
_-::1.0 6
& °
4]
= _
005 4
P4 2 2
0.0 L IS il B
T o ¥ o W ® % ® ¥ ® % MR ¥ ® R H R KRR R F R AR F R KD R
§ ¢ ¢ 9 @ I ¢ o o ¢ I o SEEETETIISCCBREFTEEEEIISSBRE
2 8 28 2 2 8 8 3 & & & © TSR {gESPrITT gEER{ESre e~
«© <+ <t o~ o — —
I LRU LNS B SDF wm SD(Iru-Ins) B SD(Ins-sdf) B SD(Iru-sdf) m HyVE

Figure 4.20: The execution time and additional evaluation metrics for the canneal benchmark
using the standalone eviction policies and HyVE with Borda Count for different
sparse directory configurations (sets,ways)

for HyVE, it not only follows the LRU policy, but improves upon its results by further
reducing the execution time by up to 11%. Compared to the LNS and SDF polices, HyVE
reduces the execution time even up to 30%. This result underlines HyVE’s ability to
combine multiple opinions to achieve better performance, even when the LNS and SDF
policies have a negative impact when deployed as standalone eviction policies. These
results are also supported by the additional evaluation metrics. For example, HyVE has
a lower eviction count, generates lesser number of dirlnvs than LNS, consumes lesser

3.5 . Eviction Count (x10°) dirlnvs (x10°)
g swaptions 6 64
=
= 3.0 4 .
g
-g 2.5 2 21
3
® 2.0 0 0 +———T—T—T————
&8 Time for dirInvs (sec) Eviction Recurrance (x10°)
D15
o 2.54
N 31
= 2.0
T 1.0
E 1.54 21
=] 1.0
Z. 0.5 1
0.5
0.0 0.0+ 0
7 © <« ® % o w ® <% o w o I T T B T R B B R B S L T B R T
I © © «©) < < ~ o~) [© ggggggé;gﬁgggggggggagggﬁ
2 8 8 2 2 8 € v 5 & & € sS$§:8¢2¢8 NSNS 3888888 o=
@ < A N N — —
I LRU LNS B SDF e SD(Iru-Ins) B SD(Ins-sdf) B SD(Iru-sdf) m HyVE

Figure 4.21: The execution time and additional evaluation metrics for the swaptions bench-
mark using the standalone eviction policies and HyVE with Borda Count for
different sparse directory configurations (sets,ways)

92

4.6 Experimental Evaluation - HyVE for Sparse Directories

. L Eviction Count (x10°) dirInvs (x106)

o 3.0{ fluidanimate
g 6 6
Gl
o 25 N .
o
2
=] 2 2
5 2.0
(]
> 0 0
H 15 Time for dirInvs (sec) Eviction Recurrance (x10°)
i)
9] 5]
N 31 \
Td 1.0
g 2 31
~
Qo5 2

. 1]
Z 1

0.0 0 0

T3 23 5 523 S OS 2 308 35gzIiZoCEERUssiiIociis

2 8 82 2 2 8 8 3 & & & g T3S gsssgRgEsne e
© <+ <+ o~ o — —
I LRU LNS B SDF wm SD(Iru-Ins) B SD(Ins-sdf) B SD(Iru-sdf) m HyVE

Figure 4.22: The execution time and additional evaluation metrics for the fluidanimate bench-
mark using the standalone eviction policies and HyVE with Borda Count for dif-
ferent sparse directory configurations (sets,ways)

time for the dirlnvs than SDF, and exhibits a lower recurrence count than LRU. For
this benchmark, HyVE optimizes the eviction criteria of the standalone eviction policies
better than themselves, making it a unique eviction policy.

swaptions: This benchmark does not induce evictions for large sparse directory con-
figurations. Therefore there exist little differences between the eviction policies. As the
size of the sparse directory decreases, the LRU policy starts performing better than LNS
and SDF. HyVE tracks the performance of LRU and even improves upon it by up to

Eviction Count (x10°) dirInvs (x10°)
(]
g 3.0 10 10
A=}
= 8 8
=25 .
2 6 6
- 4 4
=1
O 2.0 2 2
(]
] 0 — T 0o+—T—T—T—T—T—T—T—T—T
= Time for dirInvs (sec) Eviction Recurrance (x10°)
= 1.5 2.0 2.5
&]) z
2.0
= 1.5
g 1.0 1.5
é 1.0 Lo
5 04
0.5
Z 05 0.5
0.0 0.0 0.0
. «© @© © «© © @© @ «© «© «© @ ©
¥R ¥ ® ¥ ® ¥ ® ¥ ® % ® SI82323333332 3822853333838
8§ £ £ 2 3 3 £ 3 2 g 8§ 22giffEEgRY zgggiLgEaggd
2 g g g g g g E E g g S ® F F NN - © F F NN~ -
@ < A o~ N — —
I LRU LNS B SDF pm SD(Iru-Ins) B SD(Ins-sdf) Hm SD(Iru-sdf) am HyVE

Figure 4.23: The execution time and additional evaluation metrics for the fft benchmark using
the standalone eviction policies and HyVE with Borda Count for different sparse
directory configurations (sets,ways)

93

4 Hybrid Voting-based Eviction Policy (HyVE)

Eviction Count (x10°) dirInvs (x10°)

@
w
w

]

g lucb

=

Z 3.0 2 2

2

451 2.5 1 1

o

» 2.0 0 0

54 Time for dirInvs (sec) Eviction Recurrance (x10°)

o 2.5

o 1.5

E 1.5 2.0

g 1.0 ol 15

5 1.0

Z 0.5 0.5 0.5

0.0 0.0 0.0
o © © =} =} o 3] ©o © =) - - -
2 82 8 3 2 8 € 5 5 & & € TSSR|gEgrPraa T gg8RKsgvrwaar
«© <+ <+ o o — —
Em LRU LNS B SDF SD(Iru-Ins) mm SD(Ins-sdf) B SD(Iru-sdf) . HyVE

Figure 4.24: The execution time and additional evaluation metrics for the lucb benchmark
using the standalone eviction policies and HyVE with Borda Count for different
sparse directory configurations (sets,ways)

10%. This result again highlights HyVE’s ability to combine several opinions to obtain
positive results. The additional evaluation metrics showcase similar trends to that of
the execution time, reinforcing the results.

fluidanimate: For this benchmark, the LNS and SDF policies exhibit poor performance
compared to the LRU policy. The additional evaluation metrics also support these
results. This deems the LNS and SDF eviction policies as unfit for this particular
benchmark. As HyVE uses LNS and SDF, its performance is also affected. The results
show that HyVE takes the positives of LRU by minimizing the eviction recurrence, but
is held back LNS and SDF in terms of the total number and time taken for dirlnvs. As
a result, HyVE mostly exhibits the same performance as the LRU policy for all sparse
directory configurations. This result highlights the importance of HyVE’s ingredients.

Jft and lucb: For these benchmarks, results show that the LNS and SDF eviction
policies are clearly not good candidates. The execution time and additional evaluation
metrics are similar to that of the fluidanimate benchmark. The major difference is that
the number of bad eviction decisions taken by LNS and SDF are much worse compared to
fluidanimate. Yet, HyVE manages to match the performance of the LRU policy. These
results again highlight the importance of consciously selecting the constituent eviction
policies to build HyVE.

Victim Distribution Analysis

HyVE’s decisions are further investigated by analysing its victim selection decisions. This
metric attempts to quantize which of HyVE’s constituent eviction policies contributed
to each of its eviction decisions, similar to the opinion plot of Section 4.4.3. Since there
are three voters, every HyVE eviction decision can be categorized as follows:

94

4.6 Experimental Evaluation - HyVE for Sparse Directories

canneal swaptions fluidanimate fft luchb

A L
Il [RU LRU + LNS LRU + LNS + SDF
Il NS LRU + SDF ..
B New Victim
SDF LNS + SDF

Figure 4.25: Victim distribution analysis of all benchmarks for the sparse directory configura-
tion - 128 sets, 8 ways using Borda Count as the voting procedure

e Majority Disagree: A scenario where two voters strongly oppose each other, making
the third voter’s opinion decide the eviction victim. Depending on the opposing
voters, the eviction victim is the same as either the LRU, LNS or SDF constituent
eviction policy.

e Majority Agree: A scenario where two voters agree on an eviction victim, thereby
rendering the third voter’s opinion useless. Given that there are voters, the eviction
victim is the same as either LRU+LNS, LRU+SDF or LNS+SDF.

e Unanimously Agree: A scenario where all voters have the same opinion on the
eviction candidates. In this case, the eviction victim is the same as all three
constituent eviction policies, i.e., LRU+LNS+SDF.

e All Disagree/New Victim: A scenario where all voters disagree, i.e., each of the
three constituent eviction policies select a different eviction victim. In such a case,
HyVE settles the dispute by resolving to a consensus, thereby selecting a new
eviction victim.

To maintain conciseness, the victim distribution analysis results are reported for one of
the sparse directory configurations - 128 sets, 8 ways in Figure 4.25. For the canneal
benchmark, the New Victim category dominates the victim selection distribution. This
is because, all three voters disagreed among each other at most eviction decisions. There-
fore, HyVE took-over the decision-making process by resolving to a consensus among its
voters. This idea of a consensus among the constituent eviction policies with different
points-of-view can explain why HyVE exhibits better performance than their standalone
counterparts.

The New Victim category also dominates the victim selection distribution for the
swaptions, fluidanimate and luchb benchmarks. However, the remainder of the pie chart
reports a large chunk categorized as Majority Disagree following the LRU policy. This
implies, when not resolving to a consensus among its voters, the eviction decisions for
these benchmarks fall under the Majority Disagree category, decided by the LRU policy.
An exception can be made for the swaptions benchmark, which reports an equal chunk

95

4 Hybrid Voting-based Eviction Policy (HyVE)

of the Majority Agree category following LNS+SDF as well. This implies that swaptions
occasionally followed the eviction decisions of LNS+SDF. This justifies the results for
these benchmarks where Hy VE mostly matched the performance of the LRU policy, with
swaptions improving upon it.

For the fft benchmark, the Majority Disagree category dominates the victim selection
distribution. Therefore HyVE’s eviction decisions mostly follow the LRU policy, which
is justified by the execution time results for this benchmark.

Condorcet Method Analysis

The benchmarks are also executed with Condorcet Method as the voting methodology.
These results and analyses are attached in Appendix B. The take-away point is, HyVE
with Borda Count outperforms HyVE with the Condorcet Method. Again, this is an
interesting result as the voting theory community consider the Condorcet Method a
“fairer” voting methodology than Borda Count. However, when applied for data man-
agement in cache-based memories, the idea of consensual decisions provided aggregating
different opinions seems to generally provides better outcomes.

Comparison to Set-Dueling (SD)

SD [4] is a state-of-the-art technique used to tackle the eviction problem. The primary
idea of SD involves two standalone eviction policies “dueling” against each other, in a
cache structure grouped into leader and follower sets. The concept of SD only allows
combining two standalone eviction policies. Therefore the three standalone eviction
policies used for HyVE are split into three unique pairs - SD(LRU-LNS), SD(LNS-SDF)
and SD(LRU-SDF). The leader sets are spread-out uniformly within the sparse directory
and the ratio of total sets to leader sets is equal to 16, as recommended in [4].

Figures 4.20 to 4.24 also report the execution time of HyVE with the Borda Count
and the three SD pairs for all benchmarks. Results show that, SD usually follows the
better performing eviction policy. Internal simulation counters report that the follower
sets selected the better performing eviction policy about more than 80% of the time,
with the exception of SD(LNS-SDF) where the number was more than 50%. As a
consequence, the performance of SD deteriorates if it combines two poorly performing
eviction policies. This is clearly seen for SD(LNS-SDF). Conceptually, HyVE differs
from SD as it can incorporate more than two eviction policies. This is useful when
designing an eviction policy that can optimize for several eviction criteria. This feature
coupled with the flexible framework allows HyVE to potentially cover a wide range of
application characteristics.

4.6.4 Highlighting HyVE’s Properties

Until now, HyVE was evaluated using standard benchmarks that use real-world memory
access patterns. However, these benchmarks may not expose all theoretical properties
of the standalone eviction policies or HyVE. Therefore, characteristic micro-benchmarks

96

4.6 Experimental Evaluation - HyVE for Sparse Directories

were designed to highlight the strengths and weaknesses of the eviction policies, specifi-
cally HyVE. The goal of this section is to showcase HyVE’s advertised abilities that may
not be observed using standard benchmarks.

Hardware Implementation

The proposed micro-benchmarks were designed to run without a dedicated OS (bare-
metal C code). This provided a good opportunity to both verify HyVE for sparse
directories on hardware, and to accelerate the experiments. HyVE for sparse directories
(LRU, LNS, SDF) has been synthesized on an FPGA prototyping platform, similar to
HyVE for LL.Cs. HyVE is integrated into the sparse directory controller module of a 4x4
tile-based manycore system, similar to that described in Section 3.6. As the simulation
experiments showed that Borda Count outperforms the Condorcet Method, HyVE for
sparse directories is designed with Borda Count as the voting methodology.

FPGA Resource Utilization. Table 4.7 reports the resource utilization of the sparse
directory controller module for a 128 set, 4 way configuration. The number of LUTs and
REGs for all three standalone eviction policies and HyVE are reported. As a reference,
the eviction policy’s area footprint relative to the sparse directory controller is reported
in parentheses. HyVE’s area footprint is greater than the standalone eviction policies,
but is still comparable to them. Figure 4.26 breaks down HyVE’s LUT utilization as
a function of its constituent eviction policies, the ranking extensions and the voting
overheads.

Computational Complexity and Timing. In order to determine the eviction victim,
the standalone eviction policies use a min() function which scales linearly with the
complexity of O(#ways). HyVE’s rank generation process uses a hardware mergeSort()
algorithm which scales with the complexity of O(#ways-log{#ways}). Table 4.7 reports
the logic delay numbers. Of the three standalone eviction policies, the SDF policy is the
slowest in term of logic delay. Therefore it is pipelined to reduce the maximum delay
path. Within the HyVE framework, SDF’s additional logic stage is spread over to the
rank evaluation phase. This maintains HyVE’s two stage execution.

Table 4.7: FPGA resource utilization (LUT, REG) and
logic delay for all standalone eviction policies LRU LNS SDF

and HyVE flavours using Borda Count 29 LUTs || 61LUTs [[238 LUTs
Eviction Policy ~ LUT REG Logic Delay ||*4REGSs || 12REGs || 12REGs
LRU 22 (32%) 34 (7.1%) 1.169us Ranking J| Ranking J| Ranking
LNS 38 (5.2%) 2 (0.4%) 1.130ms Voting 38 LUTs, 2 REGs
SDF 155 (18%) 31 (5.6%) 1.052 ns
HyVE 366 (34.2%) 70 (11%) 1.117ns* Figure 4.26: HyVE break-down

*Pipelined Implementation: Additional latency of 1 clock cycle

97

4 Hybrid Voting-based Eviction Policy (HyVE)

4.6.4.1 Experimental Setup

One of the challenges when trying to highlight HyVE’s properties was to create a test
environment where the memory access patterns of the micro-benchmarks could be care-
fully controlled. This is a key factor that allows designing specific test scenarios that
expose the properties of standalone eviction policies as well as HyVE. Therefore, a test
environment was designed with the following parameters:

e Home Tile: The tile whose TLM contains all data-sets that will be required by
the processing elements of remote tiles during benchmark execution.

e Team: A group of tiles that work on the same data-set.

e Data-set: A continuous memory address range that is exclusively accessed by a
single team during benchmark execution.

e Frequency: The rate at which a team requests a data-set entry from the home tile.

Figure 4.27 illustrates the team setup on a 4x4 tiled manycore architecture with three
differently sized teams placed at varying aggregate distances from the home tile. Tile
0 is designated as the Home Tile to hold all data-sets. This decision allows the micro-
benchmarks to use the maximum available hop-distance on the MPSoC. Team-1 consists
of a single tile (15), Team-2 consists of two tiles (8, 9) and Team-3 consists of three tiles
(1, 4, 5). This specific team groupings are designed intentionally to produce unique
characteristics. Team-1 has the maximum aggregate distance from the home tile, but
lowest number of sharers. This makes Team-1’s entries most favoured by the SDF policy
and least favoured by the LNS policy. Inversely, Team-3 has the minimum aggregate
distance, making it disfavoured by the SDF policy. However, it has the highest number
of sharers, which makes it favoured by the LNS policy. Team-2’s aggregate distance
and number of sharers lie in-between that of Team-1 and Team-3. This make it neutral
for both LNS and SDF policies. The LRU policy is not an architecture-aware eviction
policy. This makes it independent of architecture parameters like the teams’ size and
location. Figure 4.27 summarizes these team specific properties.

Team Setup Team Characteristics

@ ° Teams Member Ag_gregate Sharer
Tile IDs Distance Count
@ ¢ | |

©6O - -
3,8 5 2

Figure 4.27: The three team configurations and their respective characteristics on a 4x4 tiled
manycore architecture

98

4.6 Experimental Evaluation - HyVE for Sparse Directories

Table 4.8: The test scenarios with combinations of different data-set sizes and their properties

Test Scenario (T3-T2-T1) Test Property
S-S-L Favoured by LNS, Disfavoured by SDF
L-S-S Favoured by SDF, Disfavoured by LNS
L-S-L Neutral
XL-S-XL Favoured by LRU
XL-M-XL Disfavoured by LRU

S = 128 memory blocks; M = 256 memory blocks; L. = 384 memory blocks; XL = 512 memory blocks

Every team is allocated a unique data-set in the TLM of the home tile. The memory
addresses of these data-sets are chosen such that they induce set-conflicts in the home
tile’s sparse directory, thereby triggering evictions. To maintain fair competition between
the different teams, the following conditions are enforced:

e The size of a team’s data-set > sparse directory set count,

e The total accesses per tile across all teams is the same, i.e., smaller data-sets
correlate to higher memory access frequencies and larger data-sets correlate to
lower memory access frequencies.

For example, if the size of Team-1’s data-set = (2xTeam-2’s data-set) = (3xTeam-
3’s data-set). Each entry in Team-1’s data-set is accessed exactly once, while entries of
Team-2 and Team-3 are accessed twice and thrice respectively. Leveraging this principle,
five test scenarios are created using different data-set sizes for each team, which in-turn
varies their respective memory access frequencies. Each test scenario is designed with
different combinations of team data-set sizes (T3-T2-T1), reported in Table 4.8.

Each test scenario highlights the favouritism exhibited by a given standalone eviction
policy, as it only optimizes for one eviction criterion. Table 4.8 also reports each test
scenario’s favoured and disfavoured eviction policies. For example, LNS favours a Team-3
entry over other teams. Therefore, reducing Team-3’s data-set size increases its memory
access frequency. This would increase the performance of the LNS policy. The same
holds true for Team-1 and the SDF policy. The LRU policy favours entries based on
their access recency which is correlated to the data-set access frequency. Therefore,
LRU does not explicitly favour any team, but rather the most-recently refreshed data-
set entries. For better understanding, the pseudo-code of the test scenario is provided
in Algorithm 2.

4.6.4.2 Results and Analysis

Each test scenario is executed for all standalone eviction policies and HyVE. Figures 4.28
to 4.31 report the total number of evictions, total number of dirlnvs, total hop count for
dirInvs, total execution cycles (with and without BT), the average dirlnvs per eviction,
and the average hop count per dirlnv.

99

4 Hybrid Voting-based Eviction Policy (HyVE)

Algorithm 2 Execution flow of the test scenarios

1: Set Team.Dataset.Size for all Teams

2: Set Team.Address.Start for all Teams

3: Total Accesses = max(Teams.Dataset.Size)
4: while Access < Total Accesses do

5: for each Team in Teams do

6: Team. first Member.write(Team.Address)
7 if Team.members > 1 then

8: for each member in Team do

9: member.read(Team.Address)

10: end for

11: end if

12: if Team.Address = Team.Dataset.End then
13: Team.Address = Team.Address.Start
14: end if

15: end for

16: Access = Access + 1

17: end while

S-S-L and L-S-S. For both these test scenarios, the access frequency of either the
largest team (T3) or the farthest team (T1) is decreased. The effect of these two extreme
criteria is reflected in the either performance improvement or performance degradation
when using LNS or SDF respectively. For the S-S-L test scenario, Team-3 (highest sharer
count) has a higher access frequency than Team-1 (smallest sharer count), which results
in LNS making better eviction decisions. This can be observed in the total eviction
count and total dirlnv count plots where LNS is better than SDF. As a result, the total
execution cycles is also less for LNS compared to SDF. Conversely, for the L-S-S test
scenario, Team-1 (farthest and smallest sharer count) has a higher access frequency than

-103

Total Number of Evictions
w

[
T

S

S-S-L L-S-S L-S-L XL-S-XL XL-M-XL
LRU ' LNSHISDFIIHyVE

Figure 4.28: The total eviction count for multiple test scenarios using the micro-benchmarks

100

4.6 Experimental Evaluation - HyVE for Sparse Directories

103 -10°
12 2 30
: :
£ 10) s 251
= i t
= S 20
: L
-
El 2
> £
Z 5
3 II z
2 3
=
S-S-L L-S-S L-S-L XL-S-XL XL-M-XL S-S-L L-S-S L-S-L XL-S-XL XL-M-XL
LRU' ' LNSIISDFINHyVE LRU' ' LNSIISDFINHyVE

Figure 4.29: The total number of dirlnvs and the total number of dirInv hops for multiple test
scenarios using the micro-benchmarks

-108 -108
75 - 90 ——
" [Without BT ” With BT
g rap < gl
> A >
O 73} O
5 .1 g My
2 T2 =
gt Z 81
—_ 7 L — 78
El [E
° b ®
E 69f n B 750 L
= : . : - . - T - T T T T T 1 T T
S-S-L L-S-S L-S-L XL-S-XL XL-M-XL S-S-L L-S-S L-S-L XL-S-XL XL-M-XL

LRU "LNSuSDFIiHyVE

Figure 4.30: The total execution cycles for multiple test scenarios using the micro-benchmarks,
with and without the presence of BT

Team-3, which leads to SDF making the best decisions. For both these test scenarios,
HyVE closely follows the best decision maker, achieving the best results of either LNS
or SDF.

L-S-L. This is a neutral test scenario where the attributes of LNS and SDF are con-
sidered equally. Although Team-2 has the highest access frequency, its other attributes
(sharer count and distance) are set in-between that of Team-1 and Team-3. As a result,
both LNS and SDF exhibit equal performance in terms of the total eviction count. How-
ever, by observing the total number of dirlnvs plot, it can be seen that LNS is indeed
sending-out the least number dirlnvs, correctly optimizing for its eviction criteria. Sim-
ilarly, it can be seen that SDF is indeed attempting to minimize the network load, by
sending-out dirlnvs that traverse the least number of NoC hops. For this test scenario,
HyVE exhibits lower eviction counts than all its constituent eviction policies. Further,
in the presence of BT, HyVE is the best performing policy for this test scenario. This
highlights HyVE’s ability to incorporate multiple opinions and converge to new eviction
decisions, making it a unique eviction policy.

101

= N N w
(=2} [NV] = oo)
Average Hops per dirlInv

=
N

4 Hybrid Voting-based Eviction Policy (HyVE)
[||

L-S-S L-S-L

XL-S-XL XL-M-XL SSL LSS L-S-L XL-S-XL XL-M-XL
LRU""LNSuSDFIiHyVE

Average dirInvs per Eviction

o
o0

Figure 4.31: The average dirlnvs per eviction, and the average hops per dirlnv for multiple
test scenarios using the micro-benchmarks

XL-S-XL and XL-M-XL. To devise a test for eviction recurrence, Team-1 and Team-3
are fixed with polarizing distances and sharer counts. This ensures the lowest access
frequency compared to Team-2. In the XL-S-XL test scenario, LRU outperforms LNS
and SDF due to Team-2’s small data-set size. The data-set entries are accessed fre-
quently, refreshing their age and protecting them from evictions. Scaling-up Team-2’s
data-set size in the XL-M-XL test scenario results in loss of age-information. Although
the M-sized data-set has a relatively higher access frequency, it is not high enough to
refresh the data entry ages at the right time in the sparse directory. For these test sce-
narios, HyVE has the best performance when the age-information of the high-frequency
data-set (XL-S-XL) is updated early enough, even outperforming LRU. However, it suf-
fers from LRU’s poor decisions in the XL-M-XL test scenario. Nevertheless, HyVE still
exhibits a slightly better performance than LRU, owing to SDF and LNS making good
eviction decisions in the absence of the age-information. These experiments highlight
how different standalone eviction policies favour different memory access patterns. The
results also show that HyVE can potentially neutralize negative biases and converge to
democratic decisions.

102

5 Conclusion & Qutlook

This thesis presented and evaluated two concepts, both optimizing the memory subsys-
tem of modern computing systems. Both contributions are hardware-based solutions
that perform architectural and micro-architectural modifications to enhance the perfor-
mance of large manycore systems.

5.1 Conclusion

Region-based Cache Coherence (RBCC)

The need for hardware-based inter-tile coherence schemes on large tile-based manycore
systems have always been debated, as global coherence schemes consume significant
hardware area overheads, leading to scalability issues. As a result, alternative program-
ming models or software-based coherence schemes have been proposed for such manycore
systems. Moving away from the shared memory programming paradigm increases the
programming-effort, and software-based coherence schemes generally do not have the
same performance levels of their hardware counterparts. Therefore, this thesis proposed
an alternative hardware-based inter-tile coherence methodology, that addresses the scal-
ability challenges of global coherence schemes. The RBCC concept was motivated by the
fact that a single application rarely uses all available processing and memory resources
of a manycore system. Therefore, RBCC proposed an environment where inter-tile co-
herence could be established “as-required”, depending on the needs of the application.s
RBCC confined coherence support to within a subset of tiles (coherence region) of a
manycore system. This significantly limited the book-keeping overheads required for
inter-tile coherence. For example, RBCC reduced the directory overheads by 73% for a
64-tile manycore system with a maximum coherence region size of 8-tiles. The coherence
regions were also designed to be flexible, i.e., they could be created, destroyed, re-sized
and even re-located at run-time. RBCC also supported fine-granular sharing capabilities,
i.e., inter-tile coherence could be tailored to truly shared application data at run-time.
With these features, RBCC managed to create a coherence-on-demand environment for
users/applications. The RBCC concept was evaluated both on simulation as-well-as an
FPGA prototyping platform. Hardware-based inter-tile coherence enabled using RBCC
was evaluated against message-passing based scheme using a video streaming applica-
tion. Results showed that RBCC reduced the execution time by up to 42% compared to
the message-passing based scheme. Further, the video streaming application was used
to demonstrate the flexibility features of RBCC. The coherence region was expanded
and re-located at run-time for two different scenarios, both of which improved the appli-
cation’s execution time, with negligible re-configuration overheads. Lastly, the concept

103

5 Conclusion & Outlook

of RBCC was used to enable shared memory workloads (SPLASH-2 benchmarks) on
the DSM-based tiled manycore system. The performance of RBCC was compared to
an alternative software-based VSM approach. Initial results showed that RBCC reduces
the execution time by up to 45% compared to the VSM approach.

Hybrid Voting-based Eviction Policy (HyVE)

Cache memories are invaluable resources as they significantly reduce memory access la-
tencies. This makes cache data management an important optimization aspect as it
heavily influences the performance of a cache. For relatively simple applications, stan-
dalone eviction policy like LRU, LFU, LIP, etc. can maintain high cache hit rates. But
as the computational demands and capabilities of modern applications increase, cache
memories are subjected to non-uniform memory access patterns that cannot be opti-
mized by a single cache eviction algorithm. To solve this problem, this thesis introduced
HyVE, a modular framework that combined several standalone eviction policies together
and evaluated their opinions using voting theory. HyVE was designed to consider several
optimization criteria simultaneously, thereby making better eviction decisions than its
standalone counterparts. The concept of HyVE was applied and evaluated as part of
two case-studies - LLCs and sparse directories. For LLCs, different flavours of HyVE
were explored empirically. Results showed that HyVE reduced the LLC misses by up
to 25% compared to its standalone counterparts. HyVE was also compared to state-of-
the-art hybrid (DRRIP) and learning-based (Hawkeye) eviction policies. On average,
HyVE showed better performance than DRRIP (1.9%), but worse performance com-
pared to Hawkeye (-1.8%). For sparse directory evaluations, HyVE was constructed
with architecturally-aware eviction policies. Results showed that HyVE reduced the
application execution time by up to 11% compared to the LRU policy. For both case-
studies, there were applications where a given standalone eviction policy, a HyVE flavour
or one of the explored state-of-the-art eviction policies which exhibited a unique advan-
tage over the others. This re-emphasizes the statement that a single eviction policy does
not provide the best performance for all applications.

5.2 QOutlook

It is often stated that research work should open more doors than they close. The
contributions of this thesis - RBCC and HyVE should not be viewed as final solutions,
as there is always room for improvement.

Region-based Cache Coherence (RBCC)
Hybrid Hardware-Software Coherence Support

Towards the end of this thesis report, Section 3.7 described how shared memory program-
ming could be used on a DSM-based tiled manycore architecture with two approaches -
RBCC and VSM. These approaches could be combined together in two different ways.

104

5.2 Outlook

The first idea is to make use of VSM’s paging functionality to bring application data
into the TLMs, which allows for quick memory accesses. Then, coherence regions can
be set up for the corresponding TLM address ranges, guaranteeing coherency and con-
sistency of application data. This hybrid approach eliminates costly software routines
of the VSM approach at the expense of additional hardware resources of RBCC.

The second idea is to make use of the VSM mechanism if/when an application requests
for more processing and/or memory resources than the maximum coherence region size.
Instead of declining this request, the application could yet be executed across multiple
coherence regions, where RBCC guarantees inter-tile coherence within the coherence
regions, and the VSM mechanism guarantees coherence between the coherence regions.

Exploring Hybrid Programming Models

Similar to the second hybrid RBCC-VSM idea, RBCC could also be combined with
language-based software coherence schemes like X10. Currently, on the InvaslC target
architecture, one X10-place is defined as one tile. Therefore all inter-tile communication
is performed according to the Partitioned Global Address Space (PGAS) programming
model. By re-defining the notion of one X10-place to several tiles !, RBCC can be
used to maintain inter-tile coherence within an X10-place, and the PGAS programming
model can be used to communicate between different X10-places. Of course, re-defining
the size of one X10-place requires modifications to both the X10 run-time system and
the hardware design, similar to the RBCC and VSM approaches to shared memory
programming.

Accelerating Coherence Invalidations

Section 3.8 described how inter-tile coherence messages were accelerated using the con-
cept of In-NoC Circuit (INC). Recently, colleagues at ITIV, KIT proposed another NoC
optimization concept known as block-based multicast routing. The idea is for the NoC
to efficiently handle similar messages that are intended for different destinations. The
CRM’s remote invalidation messages contain the same information which needs to be
sent-out to multiple destination tiles, making them prime candidates to exploit this NoC
feature. Normally, the CRM sends-out invalidation messages sequentially. But with the
block-based multicast feature, the CRM could bundle several invalidations into a single
message 2. This approach could not only reduce the time taken by the CRM to send-out
several invalidations, but also reduce intra-tile bus traffic.

Hybrid Voting-based Eviction Policy (HyVE)

One of the “lessons learnt” from the HyVE explorations was that a HyVE flavour cannot
provide the best performance for all possible memory access patterns. To tackle this
problem, HyVE is equipped with an eviction policy filter and a voting selector module.

Tdeally, to the maximum size of a single coherence region
20One additional message is required for a set of invalidations that indicates the destination tiles

105

5 Conclusion & Outlook

This makes HyVE a highly flexible framework that is capable of changing to different
HyVE flavours and/or even the voting methodology at run-time.

Enabling Fine Granular Control

The eviction policy filter module could be further extended to make non-binary decisions.
Instead of entirely adding/removing a standalone eviction policy, the generated ranks
could be scaled-up or scaled-down. This would enable a weighted-HyVE framework,
where the opinions of each constituent eviction policy can be managed on a fine-granular
level.

Feedback Mechanisms

With ample fine-granular and run-time available control knobs, the challenge is to ef-
ficiently tune them to improve application performance. Decisions like “which HyVE
flavour to transform into?” or “when to transform into a different HyVE flavour?”
require additional information.

One approach, inspired by the concept of Set-Dueling (SD), is to extract this informa-
tion from the cache memories. SD uses a PSEL counter that indicates and selects the
better performing eviction policy, based on its cache hits. HyVE could be equipped with
a similar feedback mechanism, where the PSEL counter could “steer” HyVE’s decisions
towards the better performing policy. This option was explored as part of a master
thesis [90], leveraging the weighted-HyVE extensions. This showed promising results for
certain workloads, motivating for further explorations in this direction.

Alternatively, the tuning information can also be obtained from the application. One
approach could be to profile the expected class of applications and pre-determine the
best HyVE flavour. This could be further enhanced if applications can provide hints at
run-time, indicating the type of memory access patterns in its upcoming phase. This
information can be used to tune HyVE accordingly. If no application-specific information
is available, machine learning techniques could be used to predict the type of memory
access patterns. However, the challenge is to obtain a suitable and reliable training
input-set.

Lastly, when exploring add-on’s for HyVE, the expected hardware implementation
overheads and complexity should also be considered. It is crucial to maintain a light-
weight HyVE design that does not add to the latency of cache memory accesses. Ex-
ploring and overcoming these challenges would lead to a self-adapting HyVE framework
that could further enhance memory subsystem performance.

106

Bibliography

1]

G. Southern and J. Renau. Analysis of parsec workload scalability. In 2016 IEEE
International Symposium on Performance Analysis of Systems and Software (IS-
PASS), pages 133-142, 2016. doi:10.1109/ISPASS.2016.7482081.

A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, and J. Emer. Adaptive
insertion policies for managing shared caches. In 2008 International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 208-219, 2008.

A. Jain and C. Lin. Cache replacement policies. Synthesis Lec-
tures on Computer Architecture, 14(1):1-87, 2019. URL: https://doi.
org/10.2200/S00922ED1V01Y201905CAC047, arXiv:https://doi.org/10.2200/
S00922ED1V01Y201905CAC047, doi:10.2200/S00922ED1V01Y201905CAC047.

M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adaptive insertion
policies for high performance caching. In Proceedings of the 34th Annual Interna-
tional Symposium on Computer Architecture, ISCA *07, pages 381-391, New York,
NY, USA, 2007. ACM. URL: http://doi.acm.org/10.1145/1250662.1250709,
doi:10.1145/1250662.1250709.

L. Masing, A. Srivatsa, F. Kre}, N. Anantharajaiah, A. Herkersdorf, and
J. Becker. In-noc circuits for low-latency cache coherence in distributed shared-
memory architectures. In 2018 IEEE 12th International Symposium on Embed-
ded Multicore/Many-core Systems-on-Chip (MCSoC), pages 138-145, 2018. doi:
10.1109/MCS0C2018.2018.00033.

R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of ion-implanted mosfet’s with very small physical dimensions.
IEEE Journal of Solid-State Circuits, 9(5):256-268, 1974. doi:10.1109/JSSC.
1974.1050511.

G. E. Moore. Cramming more components onto integrated circuits, reprinted from
electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEFE Solid-State Circuits
Society Newsletter, 11(3):33-35, 2006. doi:10.1109/N-SSC.2006.4785860.

T. N. Theis and H. . P. Wong. The end of moore’s law: A new beginning for
information technology. Computing in Science Engineering, 19(2):41-50, 2017. doi:
10.1109/MCSE.2017.29.

A. Gupta, W. dietrich Weber, and T. Mowry. Reducing memory and traffic require-
ments for scalable directory-based cache coherence schemes. In In International
Conference on Parallel Processing, pages 312—-321, 1990.

107

http://dx.doi.org/10.1109/ISPASS.2016.7482081
https://doi.org/10.2200/S00922ED1V01Y201905CAC047
https://doi.org/10.2200/S00922ED1V01Y201905CAC047
http://arxiv.org/abs/https://doi.org/10.2200/S00922ED1V01Y201905CAC047
http://arxiv.org/abs/https://doi.org/10.2200/S00922ED1V01Y201905CAC047
http://dx.doi.org/10.2200/S00922ED1V01Y201905CAC047
http://doi.acm.org/10.1145/1250662.1250709
http://dx.doi.org/10.1145/1250662.1250709
http://dx.doi.org/10.1109/MCSoC2018.2018.00033
http://dx.doi.org/10.1109/MCSoC2018.2018.00033
http://dx.doi.org/10.1109/JSSC.1974.1050511
http://dx.doi.org/10.1109/JSSC.1974.1050511
http://dx.doi.org/10.1109/N-SSC.2006.4785860
http://dx.doi.org/10.1109/MCSE.2017.29
http://dx.doi.org/10.1109/MCSE.2017.29

BIBLIOGRAPHY

[10]

[11]

[14]

[15]

[17]

18]

108

J. Teich et al. Invasive computing: An overview. In Multiprocessor System-on-Chip,
2011.

B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S.
Adve, N. P. Carter, and C.-T. Chou. Denovo: Rethinking the memory hierarchy for
disciplined parallelism. In 2011 International Conference on Parallel Architectures
and Compilation Techniques, pages 155-166, 2011. doi:10.1109/PACT.2011.21.

J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel. Cohesion: An
adaptive hybrid memory model for accelerators. IEEE Micro, 31(1):42-55, 2011.
doi:10.1109/MM.2011.8.

J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wil-
son, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Sali-
hundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries,
T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. V. D. Wijn-
gaart, and T. Mattson. A 48-core ia-32 message-passing processor with dvfs in 45nm
cmos. In 2010 IEEFE International Solid-State Circuits Conference - (ISSCC), pages
108-109, 2010. doi:10.1109/ISSCC.2010.5434077.

M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip cache coherence is
here to stay. Commun. ACM, 55(7):78-89, July 2012. URL: https://doi.org/10.
1145/2209249.2209269, doi:10.1145/2209249.2209269.

H. Shan, J. Singh, L. Oliker, and R. Biswas. Message passing vs. shared address
space on a cluster of smps. In Proceedings 15th International Parallel and Distributed
Processing Symposium. IPDPS 2001, pages 8 pp.—, 2001. doi:10.1109/IPDPS.
2001.925009.

A. Bilas, C. Liao, and J. Singh. Using network interface support to avoid asyn-
chronous protocol processing in shared virtual memory systems. In Proceedings of
the 26th International Symposium on Computer Architecture (Cat. No.99CB36367),
pages 282-293, 1999. doi:10.1109/ISCA.1999.765958.

A. Srivatsa, S. Rheindt, T. Wild, and A. Herkersdorf. Region based cache coherence
for tiled mpsocs. In 2017 30th IEEE International System-on-Chip Conference
(SOCC), pages 286291, 2017.

A. Srivatsa, S. Rheindt, D. Gabriel, T. Wild, and A. Herkersdorf. Cod: Coherence-
on-demand — runtime adaptable working set coherence for dsm-based manycore
architectures. In D. N. Pnevmatikatos, M. Pelcat, and M. Jung, editors, Embedded
Computer Systems: Architectures, Modeling, and Simulation, pages 18-33, Cham,
2019. Springer International Publishing.

A. Srivatsa, M. Mansour, S. Rheindt, D. Gabriel, T. Wild, and A. Herkersdorf.
Dynaco: Dynamic coherence management for tiled manycore architectures. Inter-
national Journal of Parallel Programming, Jan 2021. URL: https://doi.org/10.
1007/s10766-020-00688-6, doi:10.1007/s10766-020-00688-6.

http://dx.doi.org/10.1109/PACT.2011.21
http://dx.doi.org/10.1109/MM.2011.8
http://dx.doi.org/10.1109/ISSCC.2010.5434077
https://doi.org/10.1145/2209249.2209269
https://doi.org/10.1145/2209249.2209269
http://dx.doi.org/10.1145/2209249.2209269
http://dx.doi.org/10.1109/IPDPS.2001.925009
http://dx.doi.org/10.1109/IPDPS.2001.925009
http://dx.doi.org/10.1109/ISCA.1999.765958
https://doi.org/10.1007/s10766-020-00688-6
https://doi.org/10.1007/s10766-020-00688-6
http://dx.doi.org/10.1007/s10766-020-00688-6

[20]

21]

[26]

BIBLIOGRAPHY

A. Srivatsa, S. Rheindt, O. Lenke, L. Nolte, T. Wild, and A. Herkersdorf. Tack-
ling the MPSoC Data Locality Challenge, pages 85-117. 04 2021. doi:10.1002/
9781119818298. chb.

A. Srivatsa, S. Nagel, N. Fasfous, N. Anh Vu Doan, T. Wild, and A. Herkers-
dorf. Hyve: A hybrid voting-based eviction policy for caches. In 2020 IEEE
Nordic Circuits and Systems Conference (NorCAS), pages 1-7, 2020. doi:10.
1109/NorCAS51424.2020.9265136.

N. A. V. Doan, A. Srivatsa, N. Fasfous, S. Nagel, T. Wild, and A. Herkersdorf. On-
chip democracy: A study on the use of voting systems for computer cache memory
management. In 2020 IEEFE International Conference on Industrial Engineering and
Engineering Management (IEEM), pages 984-988, 2020. doi:10.1109/IEEM45057.
2020.9309925.

A. Srivatsa, N. Fasfous, N. Anh Vu Doan, S. Nagel, T. Wild, and A. Herkersdorf.
Exploring a hybrid voting-based eviction policy for caches and sparse directories on
manycore architectures. In Microprocessors and Microsystems: Embedded Hardware
Design (MICPRO), 2021.

A. Srivatsa, N. Fasfous, N. A. V. Doan, T. Wild, and A. Herkersdorf. Method for
evicting data from memory. In Publication Number: WO/2021/175725, Interna-
tional Application Number: PCT/EP2021/054888, Sep 2021.

S. J. Eggers and R. H. Katz. Evaluating the performance of four snooping cache
coherency protocols. In Proceedings of the 16th Annual International Symposium on
Computer Architecture, ISCA ’89, page 2-15, New York, NY, USA, 1989. Associ-
ation for Computing Machinery. URL: https://doi.org/10.1145/74925.74927,
doi:10.1145/74925.74927.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The directory-
based cache coherence protocol for the dash multiprocessor. SIGARCH Comput. Ar-
chit. News, 18(2SI):148-159, May 1990. URL: https://doi.org/10.1145/325096.
325132, doi:10.1145/325096.325132.

M. P. Forum. Mpi: A message-passing interface standard. Technical report, USA,
1994.

R. F. van der Wijngaart, T. G. Mattson, and W. Haas. Light-weight communi-
cations on intel’s single-chip cloud computer processor. SIGOPS Oper. Syst. Rewv.,
45(1):73-83, February 2011. URL: https://doi.org/10.1145/1945023.1945033,
doi:10.1145/1945023.1945033.

B. D. de Dinechin. Kalray mppa®): Massively parallel processor array: Revisiting
dsp acceleration with the kalray mppa manycore processor. In 2015 IEEE Hot Chips
27 Symposium (HCS), pages 1-27, 2015. doi:10.1109/HOTCHIPS.2015.7477332.

109

http://dx.doi.org/10.1002/9781119818298.ch5
http://dx.doi.org/10.1002/9781119818298.ch5
http://dx.doi.org/10.1109/NorCAS51424.2020.9265136
http://dx.doi.org/10.1109/NorCAS51424.2020.9265136
http://dx.doi.org/10.1109/IEEM45057.2020.9309925
http://dx.doi.org/10.1109/IEEM45057.2020.9309925
https://doi.org/10.1145/74925.74927
http://dx.doi.org/10.1145/74925.74927
https://doi.org/10.1145/325096.325132
https://doi.org/10.1145/325096.325132
http://dx.doi.org/10.1145/325096.325132
https://doi.org/10.1145/1945023.1945033
http://dx.doi.org/10.1145/1945023.1945033
http://dx.doi.org/10.1109/HOTCHIPS.2015.7477332

BIBLIOGRAPHY

[30]

31]

32]

[33]

[35]

110

E. Rustad. Whitepaper: A qualitative discussion of numaconnect vs infiniband
and other high-speed networks. June 2019. URL: https://www.numascale.com/
wp-content/uploads/2019/06/numascale-vs-infiniband.pdf.

D. Eadline. Whitepaper: Redefining scalable openmp and mpi price-to-performance
with numascale’s numaconnect. June 2019. URL: https://www.numascale.com/
wp-content/uploads/2019/06/WhitePaper-Redefining-Scalable-Price.pdf.

S. Nirnberger, G. Drescher, R. Rotta, J. Nolte, and W. Schroder-Preikschat. Shared
memory in the many-core age. In Furo-Par 2014: Parallel Processing Workshops,
pages 351-362, Cham, 2014. Springer International Publishing.

B. Fleisch and G. Popek. Mirage: A coherent distributed shared memory design.
In Proceedings of the Twelfth ACM Symposium on Operating Systems Principles,
SOSP 89, page 211-223, New York, NY, USA, 1989. Association for Computing
Machinery. URL: https://doi.org/10.1145/74850.74871, doi:10.1145/74850.
74871.

J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed shared mem-
ory based on type-specific memory coherence. In Proceedings of the Second ACM
SIGPLAN Symposium on Principles & Practice of Parallel Programming, PPOPP
’90, page 168-176, New York, NY, USA, 1990. Association for Computing Machin-
ery. URL: https://doi.org/10.1145/99163.99182, doi:10.1145/99163.99182.

J. Cordsen, T. Garnatz, M. Sander, A. Gerischer, M. Gubitoso, U. Haack, and
W. Schroder-Preikchat. Vote for peace: implementation and performance of a
parallel operating system. IEFE Concurrency, 5(2):16-27, 1997. doi:10.1109/
4434 .588280.

K. Li. Ivy: A shared virtual memory system for parallel computing. In ICPP, 1988.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. X10: An object-oriented approach to non-uniform clus-
ter computing. In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
'05, page 519-538, New York, NY, USA, 2005. Association for Computing Machin-
ery. URL: https://doi.org/10.1145/1094811.1094852, doi:10.1145/1094811.
1094852.

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,
C.-C. Miao, J. F. Brown III, and A. Agarwal. On-chip interconnection architecture
of the tile processor. IEEE Micro, 27(5):15-31, September 2007.

Tile processor architecture overview for the tilepro series. Tilera Corporation, March
2011. URL: https://www.inf.pucrs.br/~moraes/prototip/artigos/tilera_
architecture.pdf.

https://www.numascale.com/wp-content/uploads/2019/06/numascale-vs-infiniband.pdf
https://www.numascale.com/wp-content/uploads/2019/06/numascale-vs-infiniband.pdf
https://www.numascale.com/wp-content/uploads/2019/06/WhitePaper-Redefining-Scalable-Price.pdf
https://www.numascale.com/wp-content/uploads/2019/06/WhitePaper-Redefining-Scalable-Price.pdf
https://doi.org/10.1145/74850.74871
http://dx.doi.org/10.1145/74850.74871
http://dx.doi.org/10.1145/74850.74871
https://doi.org/10.1145/99163.99182
http://dx.doi.org/10.1145/99163.99182
http://dx.doi.org/10.1109/4434.588280
http://dx.doi.org/10.1109/4434.588280
https://doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1145/1094811.1094852
https://www.inf.pucrs.br/~moraes/prototip/artigos/tilera_architecture.pdf
https://www.inf.pucrs.br/~moraes/prototip/artigos/tilera_architecture.pdf

[40]

[41]

[42]

[43]

[45]

[46]

[49]

[50]

BIBLIOGRAPHY

R. E. Kessler. The cavium 32 core octeon ii 68xx. In 2011 IEEE Hot Chips 23
Symposium (HCS), pages 1-33, Aug 2011. doi:10.1109/HOTCHIPS.2011.7477487.

J. Hennessy, M. Heinrich, and A. Gupta. Cache-coherent distributed shared mem-
ory: perspectives on its development and future challenges. Proceedings of the IEEE,
87(3):418-429, March 1999. doi:10.1109/5.747863.

Y. Yao, G. Wang, Z. Ge, T. Mitra, W. Chen, and N. Zhang. Selectdirectory: A
selective directory for cache coherence in many-core architectures. In 2015 Design,
Automation Test in Europe Conference Ezhibition (DATE), pages 175-180, March
2015.

S. Demetriades and S. Cho. Stash directory: A scalable directory for many-core
coherence. In 2014 IEEFE 20th International Symposium on High Performance Com-
puter Architecture (HPCA), pages 177-188, Feb 2014. doi:10.1109/HPCA.2014.
6835928.

M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi. Cuckoo directory: A
scalable directory for many-core systems. In 2011 IEEE 17th International Sym-
posium on High Performance Computer Architecture, pages 169-180, Feb 2011.
doi:10.1109/HPCA.2011.5749726.

D. Chaiken, J. Kubiatowicz, and A. Agarwal. Limitless directories: A scalable
cache coherence scheme. ASPLOS IV, pages 224-234, New York, USA, 1991. ACM.
doi:10.1145/106972.106995.

D. Sanchez and C. Kozyrakis. Scd: A scalable coherence directory with flexible
sharer set encoding. In IEEFE International Symposium on High-Performance Comp
Architecture, pages 1-12, Feb 2012. doi:10.1109/HPCA.2012.6168950.

A. Sodani et al. Knights landing: Second-generation intel xeon phi product. IEEFE
Micro, 36(2):34-46, Mar 2016. doi:10.1109/MM.2016.25.

Y. Fu, T. M. Nguyen, and D. Wentzlaff. Coherence domain restriction on large scale
systems. In 48th Intl. Symp. on Microarchitecture, MICRO-48, pages 686—698, New
York, USA, 2015. ACM. doi:10.1145/2830772.2830832.

L. A. Belady. A study of replacement algorithms for a virtual-storage computer.
IBM Systems Journal, 5(2):78-101, 1966. doi:10.1147/sj.52.0078.

A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High performance cache
replacement using re-reference interval prediction (rrip). In Proceedings of the 37th
Annual International Symposium on Computer Architecture, ISCA ’10, pages 60-71,
New York, NY, USA, 2010. ACM. URL: http://doi.acm.org/10.1145/1815961.
1815971, doi:10.1145/1815961.1815971.

N. Megiddo and D. S. Modha. Outperforming Iru with an adaptive replacement
cache algorithm. Computer, 37(4):58-65, April 2004. doi:10.1109/MC.2004.
1297303.

111

http://dx.doi.org/10.1109/HOTCHIPS.2011.7477487
http://dx.doi.org/10.1109/5.747863
http://dx.doi.org/10.1109/HPCA.2014.6835928
http://dx.doi.org/10.1109/HPCA.2014.6835928
http://dx.doi.org/10.1109/HPCA.2011.5749726
http://dx.doi.org/10.1145/106972.106995
http://dx.doi.org/10.1109/HPCA.2012.6168950
http://dx.doi.org/10.1109/MM.2016.25
http://dx.doi.org/10.1145/2830772.2830832
http://dx.doi.org/10.1147/sj.52.0078
http://doi.acm.org/10.1145/1815961.1815971
http://doi.acm.org/10.1145/1815961.1815971
http://dx.doi.org/10.1145/1815961.1815971
http://dx.doi.org/10.1109/MC.2004.1297303
http://dx.doi.org/10.1109/MC.2004.1297303

BIBLIOGRAPHY

[52]

[58]

[59]

[61]

112

K. M. AnandKumar, A. S, D. Ganesh, and M. S. Christy. A hybrid cache replace-
ment policy for heterogeneous multi-cores. In 2014 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), pages 594—
599, Sep. 2014. doi:10.1109/ICACCI.2014.6968209.

M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case for mlp-aware
cache replacement. In 33rd International Symposium on Computer Architecture
(ISCA’06), pages 167-178, 2006.

R. Karedla, J. S. Love, and B. G. Wherry. Caching strategies to improve disk
system performance. Computer, 27(3):38-46, 1994.

H. Gao and C. Wilkerson. A dueling segmented Iru replacement algorithm with
adaptive bypassing. JWAC 2010 - 1st JILP Worshop on Computer Architecture
Competitions: cache replacement Championship, 06 2010.

S. M. Khan, Y. Tian, and D. A. Jiménez. Sampling dead block prediction for
last-level caches. In 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 175-186, 2010.

C. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, and J. Emer. Ship:
Signature-based hit predictor for high performance caching. In 2011 j4th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 430—
441, 2011.

E. Teran, Z. Wang, and D. A. Jiménez. Perceptron learning for reuse prediction.
In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 1-12, 2016.

D. A. Jiménez and E. Teran. Multiperspective reuse prediction. In 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 436—
448, 2017.

A. Jain and C. Lin. Back to the future: Leveraging belady’s algorithm for
improved cache replacement. In Proceedings of the 43rd International Sympo-
stum on Computer Architecture, ISCA 16, page 78-89. IEEE Press, 2016. URL:
https://doi.org/10.1109/ISCA.2016.17, doi:10.1109/ISCA.2016.17.

D. Lenoski, K. Gharachorloo, J. Laudon, A. Gupta, J. Hennessy, M. Horowitz,
and M. Lam. Design of scalable shared-memory multiprocessors: the dash ap-
proach. In Digest of Papers Compcon Spring ’90. Thirty-Fifth IEEE Computer
Society International Conference on Intellectual Leverage, pages 62-67, 1990. doi:
10.1109/CMPCON. 1990.63654.

D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. Lam. The stanford dash multiprocessor. Computer, 25(3):63—
79, 1992. doi:10.1109/2.121510.

http://dx.doi.org/10.1109/ICACCI.2014.6968209
https://doi.org/10.1109/ISCA.2016.17
http://dx.doi.org/10.1109/ISCA.2016.17
http://dx.doi.org/10.1109/CMPCON.1990.63654
http://dx.doi.org/10.1109/CMPCON.1990.63654
http://dx.doi.org/10.1109/2.121510

[63]

[66]

[67]

BIBLIOGRAPHY

X. Shi, F. Su, and J. Peir. Directory lookaside table: Enabling scalable, low-
conflict, many-core cache coherence directory. In 2014 20th IEEE International
Conference on Parallel and Distributed Systems (ICPADS), pages 111-118, Dec
2014. doi:10.1109/PADSW.2014.7097798.

S. Shukla and M. Chaudhuri. Tiny directory: Efficient shared memory in many-core
systems with ultra-low-overhead coherence tracking. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 205216,
2017. doi:10.1109/HPCA.2017.24.

D. Sanchez and C. Kozyrakis. The zcache: Decoupling ways and associativ-
ity. In Proceedings of the 2010 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO ’43, pages 187-198, Washington, DC, USA,
2010. IEEE Computer Society. URL: https://doi.org/10.1109/MICRO.2010. 20,
doi:10.1109/MICRO.2010.20.

A. Kalbande. Hardware support for configurable cache coherence in tiled many-core
architectures. Master’s thesis, Technical University of Munich, Germany, 2015.

J. Torrellas, H. S. Lam, and J. L. Hennessy. False sharing and spatial locality
in multiprocessor caches. IEEE Transactions on Computers, 43(6):651-663, June
1994. doi:10.1109/12.286299.

T. E. Jeremiassen and S. J. Eggers. Reducing false sharing on shared mem-
ory multiprocessors through compile time data transformations. In Proceedings
of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP ’95, page 179-188, New York, NY, USA, 1995. Associa-
tion for Computing Machinery. URL: https://doi.org/10.1145/209936.209955,
doi:10.1145/209936.209955.

T. Liu, C. Tian, Z. Hu, and E. D. Berger. Predator: Predictive false sharing
detection. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’14, page 3-14, New York, NY,
USA, 2014. Association for Computing Machinery. URL: https://doi.org/10.
1145/2555243.2555244, doi:10.1145/2555243.2555244.

T. Liu and X. Liu. Cheetah: Detecting false sharing efficiently and effectively.
In Proceedings of the 2016 International Symposium on Code Generation and
Optimization, CGO ’16, page 1-11, New York, NY, USA, 2016. Association
for Computing Machinery. URL: https://doi.org/10.1145/2854038.2854039,
doi:10.1145/2854038.2854039.

T. Liu and E. D. Berger. Sheriff: Precise detection and automatic mitigation of

false sharing. SIGPLAN Not., 46(10):3-18, October 2011. URL: https://doi.
org/10.1145/2076021.2048070, doi:10.1145/2076021.2048070.

113

http://dx.doi.org/10.1109/PADSW.2014.7097798
http://dx.doi.org/10.1109/HPCA.2017.24
https://doi.org/10.1109/MICRO.2010.20
http://dx.doi.org/10.1109/MICRO.2010.20
http://dx.doi.org/10.1109/12.286299
https://doi.org/10.1145/209936.209955
http://dx.doi.org/10.1145/209936.209955
https://doi.org/10.1145/2555243.2555244
https://doi.org/10.1145/2555243.2555244
http://dx.doi.org/10.1145/2555243.2555244
https://doi.org/10.1145/2854038.2854039
http://dx.doi.org/10.1145/2854038.2854039
https://doi.org/10.1145/2076021.2048070
https://doi.org/10.1145/2076021.2048070
http://dx.doi.org/10.1145/2076021.2048070

BIBLIOGRAPHY

[72]

[74]

[75]

[76]

114

V. W. Freeh and G. R. Andrews. Dynamically controlling false sharing in dis-
tributed shared memory. In Proceedings of 5th IEEE International Symposium
on High Performance Distributed Computing, pages 403—411, Aug 1996. doi:
10.1109/HPDC. 1996 .546211.

M. Waliullah and P. Stenstrom. Classification and elimination of conflicts in hard-
ware transactional memory systems. In 2011 23rd International Symposium on
Computer Architecture and High Performance Computing, pages 96—103, Oct 2011.
doi:10.1109/SBAC-PAD.2011.18.

P. R. Panda. Systemc: A modeling platform supporting multiple design ab-
stractions. In Proceedings of the 14th International Symposium on Systems Syn-
thesis, ISSS 01, pages 75-80, New York, NY, USA, 2001. ACM. URL: http:
//doi.acm.org/10.1145/500001.500018, doi:10.1145/500001.500018.

J. Aynsley. OSCI TLM-2.0 language reference manual. Open SystemC Initiative,
ja32 edition, jul. 2009.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gemb simulator. SIGARCH Comput. Archit. News,
39(2):1-7, August 2011. URL: http://doi.acm.org/10.1145/2024716.2024718,
doi:10.1145/2024716.2024718.

M. Gebhart, J. Hestness, E. Fatehi, P. Gratz, and S. W. Keckler. Running parsec
2.1 on mb5. Technical report, The University of Texas at Austin, Department of
Computer Science, October 2009.

T. Langer, J. Rabenstein, T. Honig, and W. Schréder-Preikschat. No coherence? no
problem! virtual shared memory for mpsocs. In 2021 SC Workshops Supplementary
Proceedings (SCWS), 2021.

H. Nurmi. Voting Theory, pages 101-123. Springer Netherlands, Dordrecht,
2010. URL: https://doi.org/10.1007/978-90-481-9045-4_7, doi:10.1007/
978-90-481-9045-4_7.

W. D. Wallis. The Mathematics of Elections and Voting. Springer International
Publishing, 2014.

K. So and R. N. Rechtschaffen. Cache operations by mru change. IEEE Transactions
on Computers, 37(6):700-709, June 1988. doi:10.1109/12.2208.

H. Al-Zoubi, A. Milenkovic, and M. Milenkovic. Performance evaluation of cache re-
placement policies for the spec cpu2000 benchmark suite. In Proceedings of the 42Nd
Annual Southeast Regional Conference, ACM-SE 42, pages 267-272, New York,
NY, USA, 2004. ACM. URL: http://doi.acm.org/10.1145/986537.986601,
doi:10.1145/986537.986601.

http://dx.doi.org/10.1109/HPDC.1996.546211
http://dx.doi.org/10.1109/HPDC.1996.546211
http://dx.doi.org/10.1109/SBAC-PAD.2011.18
http://doi.acm.org/10.1145/500001.500018
http://doi.acm.org/10.1145/500001.500018
http://dx.doi.org/10.1145/500001.500018
http://doi.acm.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
https://doi.org/10.1007/978-90-481-9045-4_7
http://dx.doi.org/10.1007/978-90-481-9045-4_7
http://dx.doi.org/10.1007/978-90-481-9045-4_7
http://dx.doi.org/10.1109/12.2208
http://doi.acm.org/10.1145/986537.986601
http://dx.doi.org/10.1145/986537.986601

[83]

[85]

BIBLIOGRAPHY

H. Ghasemzadeh, S. Sepideh Mazrouee, and M. R. Kakoee. Modified pseudo Iru
replacement algorithm. In Proceedings of the 13th Annual IEEE International
Symposium and Workshop on FEngineering of Computer Based Systems, ECBS
06, pages 368-376, Washington, DC, USA, 2006. IEEE Computer Society. URL:
http://dx.doi.org/10.1109/ECBS.2006.52, doi:10.1109/ECBS.2006.52.

T. Johnson and D. Shasha. 2q: A low overhead high performance buffer manage-
ment replacement algorithm. In Proceedings of the 20th International Conference on
Very Large Data Bases, VLDB 94, pages 439-450, San Francisco, CA, USA, 1994.
Morgan Kaufmann Publishers Inc. URL: http://dl.acm.org/citation.cfm?id=
645920.672996.

E. J. O’Neil, P. E. O’Neil, and G. Weikum. The Iru-k page replacement algorithm
for database disk buffering. In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’93, pages 297-306, New York, NY,
USA, 1993. ACM. URL: http://doi.acm.org/10.1145/170035.170081, doi:10.
1145/170035.170081.

T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout. An evaluation of
high-level mechanistic core models. ACM Transactions on Architecture and Code
Optimization (TACO), 2014. doi:10.1145/2629677.

C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Univer-
sity, January 2011.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2 programs:
Characterization and methodological considerations. In Proceedings of the 22Nd
Annual International Symposium on Computer Architecture, ISCA ’95, pages 24-36,
New York, NY, USA, 1995. ACM. URL: http://doi.acm.org/10.1145/223982.
223990, doi:10.1145/223982.223990.

T. C. Simulator. URL: https://github.com/ChampSim/ChampSim.

S. Nagel. Exploring a hybrid voting-based eviction policy for last level caches.
Master’s thesis, Technical University of Munich, June 2020.

115

http://dx.doi.org/10.1109/ECBS.2006.52
http://dx.doi.org/10.1109/ECBS.2006.52
http://dl.acm.org/citation.cfm?id=645920.672996
http://dl.acm.org/citation.cfm?id=645920.672996
http://doi.acm.org/10.1145/170035.170081
http://dx.doi.org/10.1145/170035.170081
http://dx.doi.org/10.1145/170035.170081
http://dx.doi.org/10.1145/2629677
http://doi.acm.org/10.1145/223982.223990
http://doi.acm.org/10.1145/223982.223990
http://dx.doi.org/10.1145/223982.223990
https://github.com/ChampSim/ChampSim

A Results of all Explored HyVE Flavours

The evaluations of HyVE for LLCs explored various HyVE flavours consisting of two,
three and four standalone eviction policies as listed in Table 4.2. Section 4.4.3 analysed
five HyVE flavours in detail. The LLC performances of remaining 18 HyVE flavours
are reported in Figure A.2. To make comparisons easy, the LLC performances of the
standalone eviction policies as well as the already analysed 5 HyVE flavours are reported
in Figures A.1 and A.3 respectively. Note that all LLC misses are normalized to that of
the LRU policy.

LIP BIP

N

[®A
—

—

—
—
n
—
—

7

L3 Misses Normalized
to LRU [%]

L3 Misses Normalized
to LRU [%]

o

<9}

N

S —

i %

o= |
D O et e e __I__'__.__ -

%) ~ 1.3 48-1.7 5.1-2.7

Q

g2 25

=

™ EF DL LSS SR

| K F &7 > IO S P Y-

L EES &@9&\0 & 090‘%0\&@'&6

Figure A.1: Normalized LLC misses of the standalone eviction policies for all benchmarks

117

A Results of all Explored HyVE Flavours

LRU, FIFO
BIP, LFU

SRRIP, FIFO
LRU, LIP, FIFO

LRU, LIP, SRRIP, FIFO

2,
& ° o, 9
& B), % =
= 2%, R
) g 7 = NN
=] = - a 2 NS
] & =] [-3 0y %0 K
= : = 2 4 200 A
ar 1) = & |- %2 ar
=] = =) 7] ! %, % =
- - ~ I X4 =
o~ = f 0,7 -
| 2 | % M
= ! 2 .x&o =
!)
| Uy Y
! 2,2,
I %,
, %
W 5
| %e«\ém\o
.\%QOQ
]
2
! m@@&w
I %, ..\e
| 25,2,
I + 0\ 2
, 2%
o) !)
2 = } 0, 4 =
71 =] ! 2, ¢, =
o = ! %, 4 -
2 =) L; N e 2 90«00 [
= o ar =3 e %0
- 3 = ! 2,2, %
ar & - ~ | 0, &
= -t - 1 y
5 A S =) i %7 &
&~ -4 I 0% —
= | | \%As\]
” %%,
1 2,
| ««\\% %
I 7,
%
< %7
L &%&o@
” w7
“% Q,
n o 4 %Y g ° 8 07
[%] ngT 0 [%] NaT 01 [%] naT 01 [%] NgT O [%] ngT1 01 [%] NYT 0

POZIPWLION S3SSIA €71 PIZI[BULION] SISSTIAl €T PIZI[BULION SISSTIAl €T PaZI[PWLION S3SSTIAl €71 PIZI[BULION] SISSTIAL €T PIZI[BULION SISSTIAL €T

Normalized LLC misses of the 18 remaining HyVE flavours for all benchmarks

Figure A.2

118

V2 % ' %
LT ” | Y
s % - &1 4%
S % ! " I
v ..I/" 4, % | ow\% %
TSN X . 4, U
v _ &«0@\ &% v .«0% &mv
| QO owm\ iy | &A\O,\ o,vx\
) C b xoco.o T - 2%,
S N N e .. L %, %
53] — | 2 % I~ — O %2 m\ooowv
> e I T E— St S e N
> — (Y, V0 2 2, . %
= S — 2 s - %)%
! & h NQC.Q\ Iﬁ &C.Q\ _ﬁ o
-2 % | X4 | S
|2 Q¥ - ¥ . M 8%
ke %, j %, e
| &c\c\ \Qoo Iﬁ < &.V,W\ .\va ,II r\oyv\ ,\wamv
IS @, N o Crh 2 ! +9,%
i N i A\.\x@ v _v 2%,
ol %% == %% e R M N
e &Q\Q«U IJ o &%Q@O o |) &QOC«\.Q%
e R N S e % } _)
! %e@&xw)oo _ == %@Q&\\\.o B ﬁII ,\00 Qooov o
»\%Q (% ' .\AOQOQ W — \QOCQWCO
AL = 1%, EUUUNIE| QY
* A * 8, ot e&wx
.............. T T o v %%y - %,
el .\@,xov% | N — L %,
) RN, 1 % &NN s < 2
=g Aw\ 2 AV,\ 2, - NQ \\v
s 2%, | S =5 % %
e R ! 2, & - | 2.2,
by 22 s | 22 O S Pt B 2
R R— +_1_AM - A\OC. .&oov ¢ v QOC. % S wo— Jeeen e oo mvmw\&mu
K — | G Y W Yo %% - %
2 —— | § | S LR %,
2 =dleyt pI T TR e w Y
. o .
18 %? Nl % [9] NY'T 0
B % ﬁ %S PaZI[RWLION SISSIIAL €T
.............. v %, %%,
; X7 ! ,
.............. s B Ax.\xez % | G
1 28,0 *_ i V) ovC
| T %, 2 N ;4 %, 2
[ol &@Q& g &wx«\ooc
ﬁ @Q&x\&o X %%,
n o W oo@ 9 n o Ao% 4
o o o o
[9] N1 01 [9] NA'T 02

PaZI[eWLION SISSIIA €1 POZI[EUWION SOSSIAL €71

119

Normalized LLC misses of the already analysed 5 Hy VE flavours for all benchmarks

Figure A.3

B Analysing HyVE with the Condorcet
Method for Sparse Directories

Figure B.1 reports the execution time for all benchmarks using the Condorcet Method as
the voting methodology. In general, HyVE with the Condorcet Method exhibits poorer
performance than HyVE with Borda Count, similar to the results with HyVE for LLCs.
This can be specifically observed for the results of fft and lucb.

Figure B.2 reports the victim selection distribution analysis for HyVE with the Con-
dorcet Method with the sparse directory configuration of 128 sets, 8 ways. Interestingly,
the victim selection distribution for HyVE with Condorcet contains significant eviction
decisions categorized as Majority Agree following LNS+SDF. This implies that HyVE’s
decisions were mostly biased by LNS and SDF which exhibit poor performance. Fur-
ther, both LNS and SDF use the same sharer information (bit-vector) to determine the
eviction victim. Though they optimize for different eviction criteria, due to this common-
ality, their decisions tend to be similar. This can be observed for the lucb benchmark,
where HyVE with the Condorcet Method almost always follows the eviction decisions
of LNS+4SDF'. This results in a two-against-one situation, omitting the influence of the
LRU policy altogether. The same effect is observed for swaptions, where HyVE with
the Condorcet Method has a worse execution time than HyVE with Borda Count. This
influences HyVE’s behaviour, leading it to closely track the performance of LNS and
SDF.

From these results, one could conclude that the Borda Count is a superior voting
procedure than the Condorcet Method. However, from the voting theory perspective,
the Condorcet Method is the fairer voting methodology. Perhaps for eviction decisions,
a fairer voting procedure may not be the best choice as the Borda Count compensates
for some bias due its point-based ranking system. Further, from the experiments with
HyVE for LLCs, the Condorcet Method is known exhibit bias when incorporated into
a voting system with a small number of voters. As a take-away point, the statement
‘HyVE with Borda Count seems to outperform HyVE with the Condorcet Method for
the cache eviction problem’ holds true.

121

B Analysing HyVE with the Condorcet Method for Sparse Directories

8'871 8’871
¥'95z $'95T
—————8'95C ——89GT
Al — TS
a . v E
T34 —— TN wmww,
——————3 224 ——————P'V701 G R By 77 e o1
B 701 — 701 - — —
—_—7'8%0C — e 18707
” ———8'870C ——— 88707
=]
..m 79607 e 7'9607 8'821
W =yg9607| — e 8960 e $'9G T,
G
s E— 7618 ——— 77618 ———— 3967
n (=} n (=} n [=} n [=} [=} n (=] n (=} n (=}
13%) %) ~ ~ — — =) =) ™ ~ ~ — — o =) | 1,171 G
QWIL], UOTINDOXH POZI[RULION QWILL, UOTINDOXH POZI[RULION -
371G
w~wNH w~wNH R — (.
— 201
$'96¢ ————————— R4 e,
— 37701
8'95¢ ——3'9GT
e 7'8%0C
v'z1s —_ 771G
———LiU4
8°C1S A
=—"7960%
79201 ——=¥'¥701
4 39607
3701 ———0yT0T| =
— — 17618
e — (f —— Lf n o n o n o n o
ey =—er0c 2 2 2 2 2 2 2 2
-
e — 00T () T, m — 88702 OUWIL], UOTINOSXY PIZI[RULION
.m e 59607 .m e 59607
m 89607 m ———— e leTo]0) 2
S 9w o ®w o u1vu 9 S v o 1w o 1’ o
o o~ o~ — — o (=} ™ o (9] — — o o
QWIL], UOTINDOXH POZI[BULION QWIL], UOTINO9XH POZI[RULION

The execution time of all benchmarks using the standalone eviction policies and

HyVE with the Condorcet Method for different sparse directory configurations

Figure B.1

122

lucb

fluidanimate

canneal swaptions

s A

LRU LRU+ LNS " LRU + LNS + SDF
Il NS LRU + SDF ..
B New Victim
[SDF LNS + SDF

Figure B.2: Victim distribution analysis of all benchmarks for the sparse directory configuration
- 128 sets, 8 ways using the Condorcet Method as the voting procedure

123

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Glossary
	Acronyms
	1 Introduction
	1.1 Background
	1.1.1 The Walls of Computer Architecture
	1.1.2 Cache Memories
	1.1.3 The Evolution of Manycore Architectures
	1.1.4 The Need for Cache Coherence
	1.1.5 Cache Data Management
	1.1.6 Resource-Aware Computing

	1.2 Problem Statements
	1.2.1 Scalable Cache Coherence
	1.2.2 Optimizing Cache Data Management

	1.3 Contributions
	1.3.1 Region-based Cache Coherence(RBCC)
	1.3.2 Hybrid Voting-based Eviction Policy(HyVE)

	1.4 Organization

	2 State of the Art
	2.1 Cache Coherence
	2.1.1 No Hardware Coherence Support
	2.1.1.1 MPI-based Communication
	2.1.1.2 Software-based Coherence Schemes

	2.1.2 Hardware Coherence Support
	2.1.2.1 Overcoming Scalability Limitations
	2.1.2.2 Alternatives to Global Coherence

	2.1.3 How is RBCC Different?

	2.2 Eviction Policies
	2.2.1 Standalone Cache Eviction Policies
	2.2.2 Hybrid Cache Eviction Policies
	2.2.3 Learning-based Cache Eviction Policies
	2.2.4 Eviction Policies for Sparse Directories
	2.2.5 How is HyVE Different?

	3 Region-based Cache Coherence(RBCC)
	3.1 The RBCC Concept
	3.1.1 Target Architecture

	3.2 RBCC Features
	3.2.1 Scalability
	3.2.2 Flexibility
	3.2.3 Coherence-on-Demand
	3.2.4 Auxiliary Features

	3.3 RBCC Design
	3.3.1 The Coherence Region Manager(CRM)
	3.3.2 Architectural Design
	3.3.3 The CRM and its Sub-modules

	3.4 RBCC Functionality
	3.4.1 Coherence Region Configuration
	3.4.2 Coherence-on-Demand: RBCC-malloc()
	3.4.3 Coherence Operations
	3.4.4 Coherence Barrier Mechanism
	3.4.5 False Sharing Resolution
	3.4.6 Auxiliary Functions

	3.5 Concept Evaluation - High-Level Simulation
	3.5.1 Simulation Framework
	3.5.1.1 Extracting Traces from the Gem5 Simulator
	3.5.1.2 Data Placement Strategies

	3.5.2 Experimental Setup
	3.5.3 Results and Analysis

	3.6 Hardware Implementation and Evaluation - FPGA Prototype
	3.6.1 Hardware Setup
	3.6.2 FPGA Resource Utilization and Timing
	3.6.3 Experimental Setup
	3.6.4 Results and Analysis
	3.6.4.1 RBCC mode versus MP mode
	3.6.4.2 Run-time Re-configuration Analysis
	3.6.4.3 RBCC-malloc() Analysis

	3.7 Enabling Shared Memory Workloads
	3.7.1 Two Methodologies for Shared Memory Programming
	3.7.2 Experimental Setup and Evaluation

	3.8 Additional Case-Study - RBCC and In-NoC Circuits(INCs)
	3.8.1 Concept
	3.8.2 Experimental Setup and Evaluation

	4 Hybrid Voting-based Eviction Policy(HyVE)
	4.1 The HyVE Concept
	4.1.1 Voting Theory Background

	4.2 HyVE: Features and Design
	4.2.1 Rank Generation
	4.2.2 Modular and Flexible Framework
	4.2.3 Tie Handling

	4.3 Case-Study 1: HyVE for Caches
	4.3.1 Ingredients for HyVE
	4.3.2 Exploring HyVE Flavours

	4.4 Experimental Evaluation - HyVE for Caches
	4.4.1 Simulation Framework
	4.4.2 Experimental Setup
	4.4.3 Analysing HyVE Flavours
	4.4.4 Cache Size Sensitivity Analysis
	4.4.5 Voting Methodology Analysis - Borda Count vs Condorcet Method
	4.4.6 Comparison to State-of-the-art Policies
	4.4.7 Take-away Points
	4.4.8 Hardware Implementation

	4.5 Case-Study 2: HyVE for Sparse Directories
	4.5.1 Architecture-aware Eviction Policies
	4.5.2 Building HyVE for Sparse Directories

	4.6 Experimental Evaluation - HyVE for Sparse Directories
	4.6.1 Target Architecture
	4.6.2 Experimental Setup
	4.6.3 Results and Analysis
	4.6.4 Highlighting HyVE's Properties
	4.6.4.1 Experimental Setup
	4.6.4.2 Results and Analysis

	5 Conclusion & Outlook
	5.1 Conclusion
	5.2 Outlook

	Bibliography
	A Results of all Explored HyVE Flavours
	B Analysing HyVE with the Condorcet Method for Sparse Directories

