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Abstract

A defining feature of the past decade has been the increased emergence of automation in
various fields. Early automation was mostly employed in safe, often restricted areas such as
the isolated work space of a factory. However, recent research has attempted to introduce au-
tomation in safety-critical applications, e.g., automated vehicles sharing a road with human
drivers and pedestrians, or robots collaborating with humans. What makes this challenging
is uncertainty and, particularly, predicting uncertain future behavior of other agents.

Taking into account this uncertainty is, therefore, a major challenge when designing con-
trollers for safety-critical applications. Model Predictive Control (MPC) has been shown to
be a suitable method for such tasks, as MPC is able to satisfy input and state constraints,
potentially subject to uncertainty. There are two main MPC approaches when uncertainty is
present, robust Model Predictive Control (RMPC) and stochastic Model Predictive Control
(SMPC). RMPC uses worst-case uncertainty realizations to provide robust, but conservative
control behavior, which satisfies all constraints under any possible uncertainty realization.
Alternatively, SMPC reduces this conservatism by neglecting the more unlikely uncertainty
realizations. Instead of treating constraints robustly, SMPC employs chance constraints,
which only need to be satisfied with a chosen probability. However, these chance constraints
allow a small probability of constraint violation, which is unsuitable for safety-critical appli-
cations. Hence, new MPC approaches are required that allow for non-conservative control
without sacrificing constraint satisfaction.

This thesis focuses on facilitating the use of MPC for safety-critical applications subject
to uncertainty. On the one hand, this is achieved by ensuring safe control behavior, i.e.,
satisfying all constraints. On the other hand, existing MPC methods are advanced to increase
efficiency, i.e., maximizing the desired control objectives.

We provide two new contributions to safety. We propose a safe SMPC algorithm, which
is particularly suitable for automated vehicles. This safety algorithm allows us to safely
apply SMPC inputs. This is achieved by using a backup safety planner, which overwrites
the SMPC input in cases where applying the SMPC input would lead to a state that is not
safe anymore. This procedure yields similar control behavior to SMPC for most uncertainty
realizations, but provides a safety guarantee if unlikely uncertainty realizations occur. This
safe SMPC algorithm is based on assumptions on the constraints and uncertainty bound.
For situations where these assumptions are violated, we propose a novel MPC method that
minimizes the constraint violation probability. For both of these safety algorithms, we prove
recursive feasibility of the MPC optimal control problems, and we address stability for the
latter approach.

Besides focusing on safety, we address further aspects of MPC. We propose a combination
of increasing the sampling time along the prediction horizon and using simplified models
for long-term predictions to enable an extended MPC prediction horizon without increased
computational complexity. This method can handle system uncertainty, where we propose
to use robust constraints for the short-term horizon and chance constraints for long-term
predictions to decrease conservatism.

Furthermore, we propose two advances to SMPC for application-specific uncertainty. First,
we design an SMPC method specifically suited for applications with a two-fold uncertainty
structure. This method efficiently considers task uncertainty and task execution uncertainty
of other agents, e.g., a vehicle choosing between multiple possible maneuvers where each
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maneuver may be executed in various ways. Second, we propose a grid-based SMPC method
for two-dimensional applications, which allows for a simple chance constraint reformulation,
based on a grid-based representation of the environment and a risk threshold parameter.

We evaluate all methods in simulation studies, specifically focusing on automated vehicle
examples. The simulation results show that the proposed methods enable increased efficiency
with respect to comparable MPC methods and that safety is enhanced, even in complex
situations.
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Zusammenfassung

Im letzten Jahrzehnt hat die Automatisierung in verschiedenen Bereichen stark zugenommen.
Erste Einsitze von Automatisierung fanden meist in sicheren, oft eingeschrankten Bereichen
statt, z. B. in einer abgegrenzten Flache einer Fabrik. Forschung der letzten Jahre fokussierte
sich darauf, die Automatisierung in sicherheitskritischen Anwendungen zu erleichtern, z. B.
bei automatisierten Fahrzeugen, die die Strafle mit menschlichen Fahrern und Fugéngern
teilen, oder bei Robotern, die mit Menschen zusammenarbeiten. Eine Herausforderung bei
diesen Forschungsvorhaben ist die Unsicherheit und insbesondere die Vorhersage unsicheren
Verhaltens.

Die Beriicksichtigung dieser Unsicherheit ist daher eine grofle Herausforderung beim Ent-
wurf von Regelungen, insbesondere fiir sicherheitskritische Anwendungen. Model Predictive
Control (MPC) hat sich als geeignetes Verfahren fiir solche Aufgaben erwiesen, da MPC mit
Eingangs- und Zustandsnebenbedingungen umgehen, aber auch Unsicherheit berticksichtigen
kann. Robust Model Predictive Control (RMPC) beriicksichtigt Worst-Case-Unsicherheits-
realisierungen, um ein robustes, aber konservatives Steuerungsverhalten zu erreichen. Al-
ternativ dazu reduziert stochastic Model Predictive Control (SMPC) dieses konservative
Verhalten durch Vernachliassigung unwahrscheinlicher Unsicherheitsrealisierungen. Anstatt
Einschrankungen robust zu behandeln, verwendet SMPC daher probabilistische Nebenbe-
dingungen (chance constraints), die nur bis zu einem vordefinierten Risikoparameter erfiillt
werden miissen. Diese probabilistischen Nebenbedingungen erlauben jedoch eine geringe
Wahrscheinlichkeit der Verletzung einer Nebenbedingung, was fiir sicherheitskritische An-
wendungen ungeeignet ist.

Diese Dissertation konzentriert sich darauf, den Einsatz von MPC fiir sicherheitskritis-
che Anwendungen zu erleichtern. FKEinerseits wird dies durch den Fokus auf Sicherheits-
garantien (Erfillung aller Nebenbedingungen) erreicht. Andererseits werden bestehende
MPC-Methoden weiterentwickelt, um die Effizienz zu erhohen (Maximierung der gewiin-
schten Regelziele).

Wir liefern zwei Beitrage zu Sicherheit. Wir schlagen einen sicheren SMPC-Algorithmus
vor, der es ermoglicht, SMPC-Stellgroflen sicher anzuwenden, was besonders fiir autonome
Fahrzeuge wichtig ist. Dies wird durch die Verwendung eines Backup-Sicherheitsplaners er-
reicht, der die SMPC-Stellgréfle ersetzt, wenn die SMPC-Stellgrofie zu einem Zustand fithren
wiirde, fiir den im Anschluss keine sichere Trajektorie mehr bestimmt werden kann. Dieses
Verfahren ergibt ein ahnliches Regelverhalten wie SMPC fiir die meisten Unsicherheitsre-
alisierungen, bietet aber eine Sicherheitsgarantie, wenn unwahrscheinliche Unsicherheitsre-
alisierungen auftreten. Dieser sichere SMPC-Algorithmus basiert auf Annahmen fiir die
Nebenbedingungen und Unsicherheitsgrenzen. Fiir den Fall, dass diese Annahmen verletzt
werden, schlagen wir eine neuartige MPC-Methode vor, die die Wahrscheinlichkeit der Ver-
letzung von Nebenbedingungen minimiert. Fir beide Sicherheitsalgorithmen beweisen wir
die rekursive Machbarkeit der MPC-Optimierungsprobleme und untersuchen die Konvergenz
fiir den letztgenannten Ansatz.

Neben dem Fokus auf Sicherheit befassen wir uns mit weiteren Aspekten von MPC.
Wir schlagen eine Kombination aus zunehmenden Abtastzeiten iiber den Horizont und der
Verwendung vereinfachter Modelle fiir langfristige Pridiktionen vor, um einen erweiterten
MPC-Prédiktionshorizont ohne erhohte Rechenkomplexitdt zu ermoglichen. Diese Meth-
ode kann mit Systemunsicherheiten umgehen. Wir schlagen vor, aus Sicherheitsgriinden



fiir kurzfristige Pradiktionen robuste Nebenbedingungen und fiir langfristige Pradiktionen
probabilistische Nebenbedingungen zu verwenden, um die Effizienz hochzuhalten.

Dariiber hinaus schlagen wir zwei Verbesserungen fiir SMPC vor. Erstens entwerfen
wir eine SMPC-Methode, die speziell fiir Anwendungen mit einer zweifaltigen Unsicher-
heitsstruktur geeignet ist. Diese Methode berticksichtigt effizient Aufgabenunsicherheit und
die Unsicherheit der Aufgabenausfithrung durch andere Agenten, z.B. ein Fahrzeug, das
zwischen mehreren méglichen Mandvern wéahlt, wobei jedes Manover auf verschiedene Weise
ausgefithrt werden kann. Zweitens schlagen wir eine Grid-basierte SMPC-Methode fiir
zweidimensionale Anwendungen vor, die eine einfache Umformulierung der probabilistis-
che Nebenbedingungen auf der Grundlage eines Grids und eines Risikoschwellenparameters
ermoglicht.

Wir evaluieren alle Methoden in Simulationsstudien, wobei wir uns speziell auf Beispiele
fiir automatisierte Fahrzeuge konzentrieren, da das automatisierte Fahren zusammen mit der
Robotik wohl die bedeutendsten sicherheitskritischen Anwendungen der jiingsten Forschung
sind. Die Simulationsergebnisse zeigen, dass die vorgeschlagenen Methoden eine Effizienz-
steigerung gegeniiber vergleichbaren MPC-Methoden ermoglichen und die Sicherheit auch in
komplexen Situationen erhohen.
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Introduction

Increased demand for automation in industry applications has led to a variety of research
directions, focusing on solving challenges arising from new application requirements. In
previous decades, safety in automation had often been ensured by preventing any inter-
actions between automated machines and dynamic objects in the environment, e.g., only
allowing industrial robots to operate within an isolated work space. However, requiring au-
tomated machines to work in separated work spaces majorly limits the potential benefits
of automation. The recent demand for interactive automation has resulted in various new
open problems, especially in sensing, perception, prediction, planning, and control. A major
challenge is dealing with uncertainty that is present in dynamic environments. Whereas
uncertainty of the automated agent, e.g., due to state estimation errors, can often be limited
and quantified, uncertainty of other agents in the environment is usually more difficult to
quantify, e.g., predicting future behavior of other vehicles on the road.

In general, sensing, perception, and prediction modules provide a stochastic representation
of the environment and its potential future evolution. For planning and control, the challenge
is then to provide suitable behavior of the automated agent. Since many of these automated
agents act in safety-critical environments, the main tasks are guaranteeing safety (satisfying
all constraints) and enabling efficient behavior (maximizing control objectives). However,
these objectives are often conflicting.

This conflict becomes apparent when considering the example of a self-driving vehicle. In
dense traffic, moving slowly or stopping is safe, but not efficient. For self-driving vehicles,
uncertainty arises from multiple sources, e.g., localization errors regarding the self-driving
vehicle as well as prediction uncertainty regarding the future behavior of other traffic partici-
pants. These predictions are especially challenging: predicting a sudden change in pedestrian
motion is tricky, other vehicles may perform one of multiple possible maneuvers, and ma-
neuver execution may also vary, e.g., a fast or slow lane change. In order to enable efficient
behavior of the self-driving vehicle, these uncertainties must be taken into account during
the motion planning phase. However, efficient planning does not necessarily result in safe
vehicle behavior. Efficiently maneuvering through dense traffic may require overly optimistic
vehicle behavior, assuming that other vehicles follow the most likely paths in the future. As
not all possible actions by other vehicles and traffic participant are taken into account this
way, collision avoidance cannot be guaranteed. While planning vehicle motion that accounts
for all possible future actions of other vehicles leads to safe behavior of the self-driving vehi-
cle, this robust way of motion planning is often highly conservative and, in the worst case,
requires the vehicle to stop and wait until traffic is less dense.

In general, motion planning is comprised of multiple tasks, such as path or trajectory
planning and specifically maneuver planning for cars. Over the past decades, a variety
of motion planning approaches have been proposed, especially for automated vehicles and



1 Introduction

mobile robots. Among these approaches are graph-based planners based on the Dijkstra algo-
rithm [6,60], A* [20,82], or rapidly-exploring random trees (RRTs) [109,120], as well as meth-
ods focusing on artificial forces such as artificial potential fields [100,101,200]. Furthermore,
learning-based methods for motion planning have emerged, using neural networks [18,161]
or reinforcement learning methods [113,143,196]. Extensive surveys on path planning may
be found in [93,204], whereas [54] specifically focuses on motion planning for autonomous
driving on highways.

Motion planning often requires considering constraints in dynamic environments, e.g., road
limits or collision avoidance with obstacles. Furthermore, for many applications it is possible
to obtain prediction models, allowing for approximated forecasting of future behavior based
on the current system state and planned system inputs. Model Predictive Control (MPC) is a
motion planning approach that enables using these prediction models and has the capability
to consider constraints on the system state and input. In MPC, a finite horizon optimal
control problem is repeatedly solved. At each time step, only the first input element of the
optimized input sequence is applied to the system. Then, in the subsequent time step, the
MPC optimal control problem is solved again with a shifted horizon.

Early work on MPC began in the 1970s [56, 162, 163]. Key requirements for each MPC
algorithm are stability and recursive feasibility. Recursive feasibility ensures that if the MPC
optimal control problem is feasible at one time step, it must be guaranteed that the MPC
optimal control problem remains feasible at the subsequent time step. Major contributions
to stability and recursive feasibility began in the late 1980s and 1990s [96, 131, 136, 141].
Standard MPC, however, does not consider uncertainties. This led to the developments of
robust Model Predictive Control (RMPC) [9] and more recently stochastic Model Predictive
Control (SMPC) [68,134]. RMPC treats uncertainties robustly by considering worst-case
uncertainty realizations. However, the robust constraints of RMPC may lead to overly con-
servative and inefficient control behavior. SMPC relaxes the conservative robust constraints
of RMPC with probabilistic chance constraints. Unlike a robust constraint, a chance con-
straint is only required to hold up to a predefined probability value, also known as the risk
parameter. The downside of reducing conservatism with SMPC is that constraint violations
are allowed based on the risk parameter. Both RMPC and SMPC have been successfully
developed for applications subject to uncertainty [71,107,121,144,198].

This thesis focuses on MPC for systems with uncertainty. We focus on general MPC
algorithms, applicable to a broad system class, and specifically apply MPC to automated
vehicle scenarios subject to environment uncertainty. A major aim of this thesis is to combine
efficient and safe motion planning. In order to achieve this aim, on the one hand, we
extend current SMPC and RMPC methods to increase efficiency, and on the other hand,
we provide safety guarantees for MPC methods considering system uncertainty. The novel
MPC algorithms are evaluated in simulations, exhibiting beneficial behavior. In summary,
this thesis advances MPC for safe and efficient control of safety-critical systems.

1.1 Challenges in Model Predictive Control for
Systems with Uncertainty

Various challenges arise when designing control algorithms for systems with uncertainty.
Here, we focus specifically on MPC designed for systems subject to uncertainty. We believe



1.1 Challenges in Model Predictive Control for Systems with Uncertainty

that the following challenges are fundamental in order to successfully design MPC for safety-
critical applications.

Challenge 1. How may application-specific environment uncertainties be handled effi-
ciently within SMPC?

Chance constraints in SMPC cannot be handled directly by a solver, requiring a deter-
ministic, and potentially approximating, reformulation. If the underlying uncertainty is
Gaussian, an analytic chance constraint reformulation is possible. For other, potentially
unknown probability distributions, sampling-based SMPC methods may be applied. How-
ever, these sampling-based methods are often overly conservative, scale poorly with a larger
state space, and providing theoretic guarantees is challenging. In applications, we often find
probability distributions that are either difficult to model or are too complex to be han-
dled suitably with current SMPC approaches. These challenges require new approaches to
formulate SMPC chance constraints for application uncertainty and subsequently determine
tractable chance constraint expressions.

Challenge 2. How may detailed prediction models be combined with long prediction hori-
zons in MPC while keeping computational complexity manageable?

MPC requires a prediction model, which is used on a finite horizon. When designing MPC
for an application, model complexity and horizon length must be chosen. In general, detailed
prediction models and long prediction horizons are beneficial for performance; however, com-
putational complexity significantly increases with more detailed models and larger horizons.
This trade-off can be improved by using models of different granularity with approximated
long-term models [7], move-blocking techniques [39,75,177,180], and non-uniform prediction
horizons [188,191] to allow for longer horizons. However, safely and efficiently incorporating
uncertainty into these methods remains a challenge. Especially when dealing with simplified
models for the long-term prediction horizon, it is important to consider uncertainty that
arises from using a more coarse model.

Challenge 3. How may safety be guaranteed within SMPC?

The benefit of SMPC, i.e., relaxing robust constraints to reduce conservatism, is at the
same time also its disadvantage: a small probability of constraint violation is allowed.
Whereas this is acceptable for certain applications, potential constraint violation is intol-
erable for safety-critical applications. It is therefore of fundamental interest to develop
SMPC methods that are able to reduce conservatism, compared to robust approaches, but
still allow for a safety guarantee.

Challenge 4. How may constraint violation probability be minimized?

Addressing safety in control usually relies on assumptions, e.g., knowing the probability
distribution and bounds of the uncertainty a priori and having time-invariant constraints.
Once the application violates these assumptions, proven theoretic guarantees are lost. Con-
sider an automated driving example where another vehicle suddenly behaves in an unpre-
dictable manner, e.g., the other vehicle performs an illegal lane change. In this case, it may
not be possible to guarantee collision avoidance anymore, as it is a regular assumption for
collision avoidance algorithms that other vehicle adhere to traffic rules. In these situations,
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Figure 1.1: Areas of contribution within this dissertation.

the focus changes from guaranteeing collision avoidance to minimizing the collision probabil-
ity. How to deal with this issue is still an open challenge in MPC. It is therefore fundamental
to address minimizing constraint violation probability in MPC.

The following section summarizes how these four challenges are addressed within this the-
sis. As each chapter may cover more than one of the challenges, we describe the contribution
of each chapter in the following.

1.2 Main Contributions and Outline

This thesis proposes MPC approaches for systems with uncertainty, addressing the previously
introduced challenges. We specifically focus on ensuring safety while still enabling efficient
system behavior. The majority of this work centers around SMPC, but RMPC is also
addressed. The main application examples of this thesis are automated vehicles and mobile
robots, as these applications are a prime example for safety-critical applications, requiring
safety guarantees in addition to efficient behavior.

First, Chapter 2 introduces SMPC theory and the state of the art. The following main
part consists of four chapters, proposing novel MPC algorithms for systems with uncer-
tainty. In Chapter 3, we present two approaches to exploit application-specific uncertainty
to reformulate chance constraints in SMPC. Chapter 4 presents our approaches to enabling
extended MPC prediction horizons and combining RMPC as well as SMPC to handle un-
certainty. A safety guarantee for SMPC, with application focus on automated vehicles, is
developed in Chapter 5, whereas Chapter 6 provides an approach to minimize constraint
violation probability in MPC in case of unforeseen events. Chapter 7 provides an overview
of our additional work not covered in detail within this thesis. Conclusive remarks and an
outlook to future research directions are given in Chapter 8. The areas of contribution are
summarized in Figure 1.1.



1.2 Main Contributions and Outline

Chapter 2: Introduction to SMPC. Before presenting the contributions of this thesis,
we briefly introduce SMPC. First, the state of the art in SMPC is presented. Then, we explain
the theory behind SMPC, specifically focusing on reformulating SMPC chance constraints
into tractable expressions for the optimal control problem. Eventually, we illustrate the idea
of SMPC in a simple simulation example.

Chapter 3: SMPC chance constraint reformulation. Challenge 1 is addressed within
this chapter by providing novel approaches to consider and reformulate chance constraints ef-
ficiently. Here, efficiency refers to reducing conservative control behavior, which often results
from uncertainty approximations when obtaining a tractable chance constraint expression.
First, we propose an SMPC approach specifically suited for applications with a task un-
certainty and a task execution uncertainty. This includes robotic applications, or automated
vehicles with maneuver and maneuver execution uncertainty. The proposed method exploits
these different uncertainty types and distributions, which then allows us to formulate a less
conservative SMPC optimal control problem compared to standard SMPC approaches.
The second presented SMPC method proposes a novel chance constraint reformulation
specifically suited for vehicle applications. A two-dimensional space is divided into a grid,
and each cell of this grid is assigned a probability of being inadmissible. Then, based
on a probability threshold parameter, a convex set of admissible cells is generated, which
then yields a convex SMPC optimal control problem. This grid-based SMPC approach
is especially useful for vehicle application where (dynamic) occupancy grids are used for
perception and prediction. The grid-based SMPC allows for the direct use of the data from
occupancy grids. The results presented in this chapter have been published in [28,30, 36].

Chapter 4: Detailed prediction models and long prediction horizons. This chap-
ter majorly focuses on Challenge 2, but also addresses efficient uncertainty handling (Chal-
lenge 1) and safe planning (Challenge 3). The proposed approaches depend on two ideas:
MPC with models of different granularity [7] and MPC with a non-uniformly spaced opti-
mization horizon, i.e., larger sampling time steps for long-term predictions [188,191]. First,
we propose an MPC approach that combines these two ideas and ensures recursive feasi-
bility of the MPC optimal control problem. This approach allows us to use an extended
MPC prediction horizon as, compared to standard MPC, the model complexity is reduced
by using a coarse prediction model for long-term predictions and less optimization variables
are used due to the non-uniform horizon. Second, we consider system uncertainty, extending
the previously proposed approach. We use robust constraints for the short-term horizon to
ensure immediate constraint satisfaction and employ chance constraints for the long-term
horizon, with a coarse model and larger sampling time steps, allowing for less conservative
planning. The results presented in this chapter have been published in [33-35].

Chapter 5: Safety in SMPC. This chapter focuses on safety for SMPC, addressing Chal-
lenge 3. While chance constraints in SMPC allow for optimistic control behavior by planning
less conservatively than RMPC, constraint violations are possible. The trade-off between
efficiency and safety is problematic in safety-critical applications such as automated vehi-
cles. We therefore propose a safe SMPC algorithm, particularly suitable for vehicles, which
exploits the benefits of planning with SMPC while still guaranteeing collision avoidance.
This safety guarantee is ensured by using a failsafe backup planner, which may overwrite
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the SMPC input. The resulting control behavior is similar to SMPC. However, in case of
unlikely events, e.g., emergency scenarios, the proposed failsafe SMPC algorithm ensures
safe vehicle behavior, unlike SMPC. The results presented in this chapter have partly been
published in [32].

Chapter 6: Minimizing constraint violation probability in MPC. The major focus
of this chapter is providing a solution to Challenge 4 by considering unmodeled or unforeseen
system and uncertainty behavior. However, the proposed approach is also relevant for Chal-
lenge 3. Previously, safety was guaranteed by ensuring that all constraints are satisfied at
all times, based on system assumptions. In applications, assumptions may fail, which causes
issues for RMPC and SMPC approaches. In cases where constraint satisfaction may not
be guaranteed anymore, the probability of collision should still be minimized. We therefore
propose a novel MPC approach, which minimizes the probability of constraint violations.
This proposed method is suited for safety-critical applications, as control objectives are max-
imized whenever safety can be guaranteed but the probability of future constraint violation is
minimized whenever a safety guarantee is not possible. The proposed MPC method comple-
ments SMPC and RMPC. The results presented in this chapter have partly been published
in [29].

1.3 List of Publications

The contributions presented in this thesis are based on the following works by the author.

o Chapter 3 is based on:

— T. Briidigam, M. Olbrich, M. Leibold, and D. Wollherr, “Combining stochastic
and scenario model predictive control to handle target vehicle uncertainty in au-

tonomous driving,” in 2018 IEEE 21st International Conference on Intelligent
Transportation Systems (ITSC), Maui, HI, USA, 2018, pp. 1317-1324.

— T. Briidigam, J. Zhan, D. Wollherr, and M. Leibold, “Collision avoidance with
stochastic model predictive control for systems with a twofold uncertainty struc-
ture,” in 2021 IEEE 2/th International Conference on Intelligent Transportation
Systems (ITSC), Indianapolis, IN, USA, 2021, pp. 432-438.

— T. Briiddigam, F. di Luzio, L. Pallottino, D. Wollherr, and M. Leibold, “Grid-based
stochastic model predictive control for trajectory planning in uncertain environ-

ments,” in 2020 IEEFE 23rd International Conference on Intelligent Transporta-
tion Systems (ITSC), Rhodes, Greece, 2020, pp. 1-8.

o Chapter 4 is based on:

— T. Briiddigam, D. Prader, D. Wollherr, and M. Leibold, “Model predictive con-
trol with models of different granularity and a non-uniformly spaced prediction
horizon,” in 2021 American Control Conference (ACC), New Orleans, LA, USA,
2021, pp. 3876-3881.

— T. Briidigam, J. Teutsch, D. Wollherr, and M. Leibold, “Combined robust and
stochastic model predictive control for models of different granularity,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 7123-7129, 2020, 21st IFAC World Congress.
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Introduction to Stochastic MPC 2

SMPC is a major focus of this thesis. Therefore, in the following, we provide a brief overview
of recent SMPC literature that is relevant throughout this thesis. Then, each of the following
chapters includes a related work section specifically suited for the content of the respective
chapter. In this chapter, in addition to the SMPC literature overview, we briefly introduce
theory of SMPC, state fundamental definitions for MPC properties, and give a simple SMPC
simulation example, which illustrates the idea and implementation of SMPC.

2.1 State of the Art in Stochastic MPC

Standard MPC does not consider uncertainty. However, most applications are either sub-
ject to uncertainty or the prediction model used for MPC is only an approximation and,
therefore, does not allow for a perfect prediction. Hence, uncertainty is introduced into
the MPC formulation. For bounded uncertainties it is possible to define an RMPC optimal
control problem, which guarantees constraint satisfaction given any assumed uncertainty
realization [9,160]. However, these RMPC solutions are often conservative and potentially
computationally complex.

SMPC reduces this conservatism and, depending on the problem and approach, provides
computational complexity similar to standard MPC. Instead of considering worst-case un-
certainty realizations, relaxed formulations are used in SMPC. On the one hand, this affects
the computation of the objective function, for example using the expected value and not
a robust formulation. On the other hand, SMPC employs chance constraints instead of
robust constraints. Depending on a predefined risk parameter, the chance constraint only
needs to be satisfied to a certain degree, allowing to neglect unlikely uncertainty realiza-
tions. Extensive surveys on SMPC are found in [68,134]. A performance analysis comparing
MPC and SMPC is presented in [178]. The majority of SMPC approaches consider linear
systems; however, there are SMPC approaches suitable for nonlinear systems, e.g., early
work [122,192] and subsequent research [37,65,135]. In the following, we discuss SMPC ap-
proaches relevant for this thesis, focusing on three general approaches to reformulate chance
constraints: SMPC based on analytic reformulation, affine-disturbance feedback SMPC, and
sampling-based SMPC.

If the system is subject to additive uncertainty that is normally distributed, the chance
constraint within the optimal control problem can be reformulated exactly into a determin-
istic expression [150,176]. This reformulation is also known as constraint tightening. For
general distributions with known mean and covariance matrix, Chebyshev’s inequality can
be used [66,67] and is also applicable to output-feedback MPC [67], however, the resulting
constraint tightening is conservative [67,68]. A similar approach is used in stochastic tube
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MPC where state and input are split into a deterministic and probabilistic part [44, 105].
Then, a predefined stabilizing state feedback matrix is used to control the nominal system
and error dynamics, whereas the decision variables of the optimal control problem account
for the uncertainty.

Instead of using a predefined state feedback law, affine-disturbance feedback SMPC ap-
proaches consider a feedback law that depends on an affine function of past disturbances
[104, 147].  An equivalent exists between state feedback control policies and disturbance
feedback control policies [76,134].

Sampling-based SMPC approaches are suitable for arbitrary uncertainty distributions. In
particle SMPC, the risk parameter defines the amount of uncertainty samples drawn for
which the constraints may be violated [15]. In scenario Model Predictive Control (SCMPC),
based on the scenario approach [41,43], the risk parameter is used to define a number
of samples for which the constraints must hold [42,171]. Whereas these sampling-based
SMPC approaches are useful to deal with arbitrary uncertainties, large state spaces may be
computationally challenging and it is, in general, difficult to provide guarantees.

Besides these main three SMPC ideas, other SMPC approaches exist that solve specific
problems. Whereas the previously presented SMPC approaches consider open-loop chance
constraint satisfaction, [86] guarantees closed-loop chance constraint satisfaction. In [149],
an adaptive SMPC approach is proposed, where the constraint tightening depends on the
observed probability of constraint satisfaction. Covariance-steering SMPC steers the covari-
ance of the probabilistic system towards a target value while an expectation value-based cost
function is minimized. SMPC has recently also been used in data-driven control, enabling
less conservative handling of noisy data and system disturbances [98,151].

Two main properties for MPC algorithms are recursive feasibility and stability. Recursive
feasibility ensures that if the MPC optimal control problem is feasible at a time step, a
solution to the MPC optimal control problem also exists at the next time step. For stability,
various definitions exist, where SMPC requires accounting for uncertainty in the stability
proofs. As previously mentioned, sampling-based approaches, in general, do not provide a
recursive feasibility guarantee. In contrast, stochastic tube MPC is designed to guarantee
recursive feasibility. For disturbance-feedback SMPC; it is also possible to provide a recursive
feasibility guarantee, e.g., for bounded disturbances [104]. In [116] an SMPC approach is
proposed, based on [104,105], with an additional first step constraint, a terminal constraint,
and a tuning parameter enabling to shift priority between performance and a larger feasible
region. These measures ensure recursive feasibility, and stability is proved in probability.
Mean square stability of SMPC is proved, for example, in [45,67], and stability based on
the expected value is ensured in [13]. Stability of SMPC without a terminal constraint is
addressed in [118]. An extensive literature overview of recursive feasibility and stability in
SMPC is given in [68, Table 3]

Due to its reduced conservatism, SMPC has been applied to various applications; however,
the majority of work only focuses on simulations. The probability of constraint violation,
due to the chance constraint, makes SMPC suitable for applications where rare constraint
violations are tolerable. Examples are energy control [148], power systems [90,107], battery
control [164] and general automotive applications [14,15], process control [91,176], and fi-
nance [154]. But even for safety-critical applications, SMPC solutions have been proposed.
Most commonly, these are automotive applications, specifically automated driving. Exam-
ples are [50, 51, 187] for road vehicles using an analytic chance constraint reformulation,

10
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SCMPC [51,53,170] for automated highway driving, [179] for general path planning, and the
related method [210] for racing, affine-disturbance feedback SMPC for racing [114] and road
vehicles [142], or even nonlinear SMPC for adapting to changing conditions with respect to
tire-road interaction [193]. Other safety-critical SMPC applications include, for example,
autonomous space maneuvers [125] or microair vehicles [212].

The problem of employing SMPC with chance constraints to safety-critical applications
such as automated driving is the non-zero constraint violation probability. Whereas this
problem has hardly been addressed for SMPC, recent MPC research has increasingly fo-
cused on safety. Combining MPC and control barrier functions has been proposed in [77,208],
where control barrier functions handle safety similarly to how Lyapunov functions are used
for stability. Whereas these proposed ideas are promising, challenges remain such as guaran-
teeing recursive feasibility. In [194,195] an MPC safety filter is proposed for learning-based
controllers, which is also suitable for other controllers. Contingency MPC provides an alter-
nate trajectory to potentially problematic events that might occur [2,3]. However, exploiting
the advantages of SMPC (planning optimistically with chance constraints) while still guar-
anteeing safety (satisfying all hard constraints) remains an unaddressed problem.

2.2 Fundamentals on Stochastic MPC

In the following, based on [25], we introduce fundamentals of MPC and SMPC, followed by
a simple SMPC simulation example in the next section. We first introduce a system with
constraints in Section 2.2.1 and a problem formulation in Section 2.2.2. Then, we introduce
the MPC optimal control problem for the undisturbed system in Section 2.2.3, followed
by the SMPC formulation for the system subject to uncertainty in Section 2.2.4 including
approaches to reformulate chance constraints.

2.2.1 System and Constraints
We consider the discrete-time, linear system
i1 = Awt + B’U,t + Ewt (21)

with time step ¢, state ; € R™ with the initial state x;, at t = %¢, input u, € R", and
uncertainty w; € W; € R™. The input is bounded by u; € U; and the state is subject to the
constraint x; € X;. The constraint sets may also be time-invariant, i.e., Yy = U and X, = X.

In this thesis, we consider discrete-time systems since MPC uses discrete-time predic-
tion models. We only specifically state the continuous-time system if necessary from an
application perspective. Furthermore, t generally represents time steps since we focus on
discrete-time systems; in cases where ¢ denotes time, this is specifically mentioned. This
section focuses on linear systems; however, nonlinear systems ;.1 = f(x;, u;, w;) can also

be handled by MPC.

2.2.2 Problem Formulation

We want to minimize an infinite horizon objective function

Js = min i [ (2, uy) (2.2)

t=to

11
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with stage cost [ (&, u¢). This allows us to formulate the following objective.

Objective 2.1. Based on an initial state x;, and system (2.1), we aim to maximize a desired
control objective, described by minimizing the infinite horizon objective function J, while
accounting for input constraints U; and state constraints X;.

In the following, we briefly discuss how achieving Objective 2.1 is approached by MPC.

2.2.3 Model Predictive Control

First, we look at the undisturbed system with w; = 0. We use MPC to tackle the previously
stated Objective 2.1. The MPC optimal control problem with finite horizon N and sampling
time At, solved at each time step ¢, is given by

N-1

H}}tn > (l ("Bt+k|t7 ut+k|t)) + Vi (wt+N|t) (2.3a)

St Tygppy1e = Axppgy + By (2.3b)

Upipt € Upppe, k€ lonaa (2.3¢)

Tophye € Xppne, ke (2.3d)

Ty = Ty (2.3e)

with input sequence U = (ty, ..., Wi n—1)¢) and the state sequence X; = (i1t ... Trpnpe)

resulting from (2.3b) where @, 4, denotes the state prediction after k steps starting at ;.
We approximate with Vi (xy) the cost-to-go after N prediction steps. Note that we omit
denoting a terminal constraint x,ynj; € Xiipnpe in (2.3) for clarity. The prediction within
an MPC optimal control problem is open-loop, whereas repetitively applying the optimized
first input u; = Uy, and resolving the optimal control problem at every time step ¢ yields
the closed-loop behavior of MPC. The constraint sets may not only change at time steps ¢,
but U and X1, may also vary between prediction steps & within the MPC optimal
control problem. Depending on the stage cost [ (g, uy), potentially including a time-variant
reference value .y, as well as the constraints Uy 4, and Xy, the MPC optimal control
problem may be time-variant or time-invariant.

Within this thesis, we make notation simplifications to improve readability if suitable. If
the time step t, at which the MPC optimal control problem is solved, is irrelevant, we assume
t = 0. This simplifies the optimal control problem (2.3) and the subscript notation, yielding

N-1
m'}nz (I (g, ur)) + Vi () (2.4a)
k=0
s.t. @ = Az, + Buy, (2.4b)
uy € Uy, ke H07N,1 (2.4C)
x € Ay, kelyn (2.4d)

with input sequence U = (uy, ..., unx_1) and the resulting state sequence X = (xy, ..., Zx),
where we neglect specifically denoting g = a;. With this simplification, it follows from
context whether a subscript integer of an input or state indicates a prediction step k or a
time step t. In general, the elements of an input sequence are clear from context; however,
we add a subscript if necessary for clarification, e.g., Up.ny_1 = (ug, ..., un_1).

12
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Remark 2.1. If the MPC optimal control problem is solved using a simultaneous approach
instead of a sequential approach, the state sequence is an additional decision variable, i.e.,
(2.4a) changes to

min Y- (L (@e.ws) + Vi(@w). (2.5)

In this thesis, both simultaneous and sequential approaches are used to solve MPC optimal
control problems. Therefore, we simplify notation by omitting to specifically denote the state
sequence X as a decision variable since this does not affect the underlying theory.

2.2.4 Stochastic MPC for Systems with Uncertainty

We now consider system (2.1) subject to uncertainty. In SMPC, uncertainty affecting con-
straints is considered by replacing the state constraint (2.4d) with a chance constraint

Pr(zy € Ay) > f (2.6)

where [ is a risk parameter. The constraint (2.4d) is not required to hold always, but only
up to a level specified by the predefined risk parameter 3. The higher the risk parameter is
chosen, the lower the risk allowed.

Remark 2.2. The risk parameter may also be defined as f=1- B, where 3 in (2.6) is
replaced with 1 — 3. It then holds that increasing the risk parameter B also increases risk.

This chance constraint is required to be reformulated in order to be used within the
optimal control problem. In the following, we briefly discuss how (2.6) may be reformulated
analytically and with the scenario approach, representing two major SMPC directions.

Remark 2.3. In this thesis, we mostly consider environment uncertainty, affecting the con-
straint set Xy. Therefore, in this section, we focus on chance constraints and chance con-
straint reformulation. We refer to [68, Section 3.4] for details on how uncertainty may be
considered within SMPC objective functions.

Analytic Chance Constraint Reformulation

An analytic chance constraint reformulation requires an assumption about the uncertainty
and the constraint.

Assumption 2.1. The uncertainty w; ~ N(0,3,) is a zero-mean, normally distributed
uncertainty with covariance matriz 33,,.

Assumption 2.2. We consider polytopic constraints (2.4d), i.e., x) € Xy = {:13 ’ nga: < hj}
with g; € R™ and j € I ,,,, with a total of ni. inequality constraints.

In the following, we only consider one inequality constraint for simplicity, i.e., ni. = 1.
For normally distributed uncertainties according to Assumptions 2.1 and state constraints
according to Assumption 2.2, an error propagation is possible for the prediction horizon.
This is achieved by first splitting the system dynamics (2.1) into a deterministic and a
probabilistic part

T = 2 + €. (27)

13
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Furthermore, the input is also split into two parts, a feedback law stabilizing the deterministic
system, as well as a new input ¢ accounting for uncertainty, yielding

Ui = Kwk + Ci (28)

where K is a stabilizing state feedback matrix.
Splitting the system state results in the new system models

Zk+1™— AKZk + BCk (29&)
€ri1— AKek + Ewk (29b)

Assumption 2.3. Within an MPC optimal control problem, the initial error ey and the
initial error covariance matriz 35 are known.

It is often assumed that ey = 0 and X§ = 0. Given Assumptions 2.1, 2.3, and let
er ~ N (0,X$) with error covariance matrix X¢, then it follows with (2.9b) that

31 = cov (epy1)= cov (Akey + Ewy) (2.10a)
= cov (Akey) + cov (BEwy) (2.10b)
= AxX; (Ak) + ES,E’ (2.10c)

for every prediction step. The error covariance matrix depends on the previous error prop-
agated through the system, as well as the covariance of the uncertainty additionally added
at each step. Note the difference between the uncertainty covariance matrix 3, and the
error covariance matrix 37, which is computed for every prediction step k, based on the
prediction model and on X,,.

Then, the analytic chance constraint reformulation of (2.6) yields

g,;rzk S hk — Yk (211&)
= \/2g] Zigr erf 128 — 1) (2.11Db)

where erf™'(-) denotes the inverse error function. In other words, the state constraint is
tightened by the tightening parameter ~y;, which itself depends on the risk parameter 5 and
the error covariance matrix 3. Based on Appendix A, details on how to obtain (2.11) are
given in Appendix B.

The full SMPC optimal control problem with an analytically reformulated chance con-
straint is

N-1

min Y (I (zk, cx — Kay)) + Vi (2n) (2.12a)
(cormen—1) =

s.t. zpy = Az + B(ey — Kzy) (2.12b)

c, — Kz, € Uy, ke lon-1 (2.12¢)

9p 2 < by — Y, kel n (2.12d)

Y= 1/2g] Z¢gr erf (28— 1), kel n (2.12¢)

where (¢, ..., cy_1) replace the decision variables (ug, ..., uy_1).
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In general, the risk parameter is bounded by 0.5 < § < 1. If the state is exactly on the
constraint, given the normal distribution, the probability of violating the constraint in the
next step without tightening the constraint is exactly 50 %. Therefore, no constraint tight-
ening corresponds to a risk parameter of 5 = 0.5. A risk parameter § = 1 would guarantee
constraint satisfaction. Given the unbounded uncertainty due to the normal distribution, it
would follow that 7, = oo (as erf !(1) = oo). Obviously, this is not practical. While it is
mathematically possible to choose 8 < 0.5, this is not reasonable, as this equals to soften-
ing the original hard constraint (constraint softening instead of constraint tightening). The
results of this analytic chance constraint reformulation may be generalized using Cantelli’s
inequality, where we provide details in Appendix B.2.

Scenario Approach for Stochastic MPC

Often, uncertainties do not follow Assumption 2.1 or the uncertainty distribution may not
even be known. For these uncertainties, SCMPC is suitable. In the following, based on [171],
we briefly summarize how the scenario approach is used in SMPC to reformulate chance
constraints.

Assumption 2.4. Uncertainty realizations w; are independent and identically distributed
(i.i.d.). It is possible to obtain a sufficient number of i.i.d. samples of w;.

Instead of considering (2.6), here we use
Pr(z, ¢ X)) < B (2.13)

where 3 is the permissible upper bound of the constraint violation probability, as mentioned
in Remark 2.2.

The idea of the scenario approach is to first draw K samples of the uncertainty and then
ensure that the predicted states ax; within the MPC optimal control problem satisfy the
constraint x; € X}, for all uncertainty samples. Therefore, a larger sample size K decreases
the risk. Hence, the risk parameter 3 is bounded by

~ 1
p X)) <p<——r 2.14
e f %) <P S (2.14)
which allows us to compute the minimum sample size for which (2.13) is ensured, i.e.,
1
K>~<=—-1. (2.15)
B

Then, the SCMPC optimal control problem is given by

mmz Z ( (a:k ,uk)) +Vf(a;§\°;)) (2.16a)

_17

st. o)) = Azl + Buy, + Ew” (2.16b)
uy, € Uy, ke lon_1 (2.16¢)
az(w) € Xk, ke ]Il N, W € HLK (216d)

with sampled scenarios wk affectmg the states a:,(C +)1

This brief presentation of SCMPC only covers the basic idea of the chance constraint
reformulation and excludes extensions such as a sample-and-remove strategy [171].
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2.3 Fundamental Definitions

In the following, we introduce basic definitions that are important for MPC and are used
throughout this thesis. Instead of the linear system (2.1), here, we consider the general
nonlinear system

Lir1 = f(iUn Ut,’wt) (2-17)
with «; € R, u, € U, and w; € W.

Invariant Sets

Often, proofs in MPC are based on positively invariant sets. A positively invariant set
ensures that once the set is reached by a state, the state remains within this set. The
following definitions are based on [17].

Definition 2.1 (Positively Invariant Set). A set Xy is positively invariant for the au-
tonomous, undisturbed system xi 1 = f(x4,0,0) if f(x,0,0) € Xy for all &, € Xyis.

Definition 2.2 (Robustly Positively Invariant Set). A set X5 is robustly positively invariant
for the autonomous system x,y1 = f(ay, 0, wy) if f(a,0,w;) € Xy for all x; € Xy and for
all w; € W.

Definition 2.3 (Controlled Invariant Set). A set X is controlled invariant for the undis-
turbed system x;1 = f(xy, uy,0) if there exists wy € U such that f(x,,uy, 0) € Xs for all
T € Xcis-

Definition 2.4 (Robustly Controlled Invariant Set). A set X5 is robustly controlled invari-
ant for the system x; 1 = f(xy, wy, wy) if there exists uwy € U such that f(xy, wy, wy) € Xigis
for all x; € X, and for all wy € W.

Recursive Feasibility

A fundamental requirement for MPC optimal control problems is recursive feasibility, which
is addressed in multiple following chapters.

Definition 2.5 (Recursive Feasibility). An MPC optimal control problem with input sequence
U, is recursively feasible for system (2.17) if the existence of an admissible input sequence U,
implies the existence of an admissible input sequence Uy for allt > 0.

We consider the set of feasible input sequences
D(x:) = {U: | up € Upp Yk € Lo n-1} (2.18)

for time step ¢, where U, , represents the set of admissible input elements at prediction step k&
that satisfy all constraints of an MPC optimal control problem. This allows us to summarize
the definition of recursive feasibility with

Note that proving recursive feasibility requires considering the system uncertainty w;. It
is not always possible to ensure recursive feasibility, especially in real-world applications due
to unexpected uncertainty. Often, recovery strategies are then employed until the MPC
optimal control problem becomes feasible again.
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Input-to-State Stability

There are various definitions for stability. Here, we use the idea of input-to-state stability,
based on [76]. If a system is input-to-state stable (ISS), it is ensured that the system state
remains bounded for a bounded disturbance (or system input). In the following, we consider
the autonomous system (2.17) with u; = 0, which we denote by x;11 = f'(x;, wy).

Definition 2.6 (Input-to-State Stability). The origin of a system f'(xy, wy) is 1SS, with
region of attraction X5 C R™ that contains the origin, if Xy is robustly positively invariant

and if there exist a continuous function V : X5 — Rso and functions o, as, 03 € Ko,
v € K such that for all x; € X5 and w, € VW it holds that

ay((la]]) < V() < as([la]]), (2.20a)
V(' (@, wi) = V() < —as(||aee]]) + y([[wl]). (2.200)

For ISS, function V (+) is called an ISS Lyapunov function. If the origin of a system is ISS,
it is guaranteed that the change in V' is bounded as long as the uncertainty is bounded. If
the uncertainty is zero, the origin of an ISS system is asymptotically stable with region of
attraction X.

It is possible to formulate the descent property (2.21) of Definition 2.6 in an alternative
way.

Lemma 2.1 (Lipschitz ISS Lyapunov Function [76]). Let f': X5 x W — R™ be Lipschitz
continuous on Xus X W. Let X, € R™ contain the origin and be a robustly positively

invariant set for the function f'(x,,w;). Let there exist a Lipschitz continuous function
V 1 Xis = R such that for all ©, € X5 it holds that

ay((la]]) < V() < as([la]]), (2.21a)
V(f'(2:,0)) = Vi(z:) < —as(||2]) (2.21b)

with functions oy, e, a3 € Ko. Then, V(+) is an 1SS Lyapunov function and the origin is
ISS for system f'(x;, w;) with region of attraction Xys.

Lemma 2.1 ensures that the origin of a system subject to uncertainty is ISS if the undis-
turbed system is asymptotically stable and the system is Lipschitz continuous with respect
to state x; and uncertainty w;.

Remark 2.4. Instead of analyzing input-to-state stability with respect to a disturbance w;,
it 1s also possible to investigate if an origin is ISS with respect to a system input w;.

2.4 Stochastic MPC - a Simulation Example

After having introduced the basic theoretic concept of SMPC and chance constraint refor-
mulation, we now provide a simple simulation example. We consider the system example
described in [116] and use the MPC toolbox of [79]. While this example system is considered
here without any physical context, the system represents a linearization of a Buck-Boost
DC-DC converter [44,110].
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2.4.1 Simulation Setup

We consider system (2.1) with states &; = (z1,, z24)", input u;, uncertainty w,, and

1 0.0075 4.798 10
A= l—0.143 0.996] , B= lo.115] , B = [() 1] : (2.22)

We consider a normally distributed uncertainty w; ~ N (0, X,,) with covariance matrix

0.8 0 ] . (2.23)

= [ 0 0.8
The initial state x;, = (—1.3, 3.5)" is given. In addition, we consider input constraints
—02<u; <02 Vt>t (2.24)
and a state constraint bounding the state x; by
T < Tiim VE 2t (2.25)

where z1 jjm = 2.8 is the limit.
For the MPC optimal control problem, we choose

10
Q= lo 10}, R=1, (2.26)

a prediction horizon N = 11, and a sampling time At = 0.1.

2.4.2 Simulation Results

In the following, we first analyze the autonomous, unconstrained system behavior. Then, we
apply MPC to the undisturbed, constrained system. Eventually, we investigate the results
when employing SMPC with the disturbed, constrained system.

Autonomous, undisturbed system

First, we look at the autonomous, unconstrained and undisturbed system with u; = 0 and
w; = 0. The system behavior increases the x;-value drastically before moving towards the
origin, as shown in Figure 2.1 (black line).

MPC for the undisturbed system

We again consider the undisturbed system with w; = 0. We analyze the system behavior
when using the MPC optimal control problem (2.4).

Applying MPC (2.4) with no state constraints, i.e., without (2.4d), results in a curved
motion towards the origin where z; first increases (beyond the value 2.8), Figure 2.1 (dashed
blue line). When considering the state constraint (2.4d), the MPC causes x; to increase
until the value z; = 2.8 is reached, Figure 2.1 (blue line). Then, the states move towards
the origin along the constraint.
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Figure 2.1: Undisturbed system with different controllers.

SMPC for the disturbed system

We now consider system (2.1) subject to uncertainty. Assuming we again used the MPC
optimal control problem (2.4), the MPC would not account for uncertainty and the state
constraint may be violated frequently. In order to cope with this, the SMPC optimal control
problem (2.12) is employed with 5 = 0.9, accounting for the uncertainty w,; with the chance
constraint

Pr(z, <28) >4 (2.27)

If (2.12) is applied to control the undisturbed system, the states do not converge fully
towards the state constraint, but a safety margin is established, providing space to account for
uncertainty (the constraint is tightened), as seen in Figure 2.1 (dashed red line). Increasing
the risk parameter § increases the margin between the state constraint and the state values,
again resulting in a lower probability of constraint violation.

Figure 2.2 shows five resulting runs of applying SMPC to the disturbed system. The
tightened constraint allows for satisfaction of the state constraint under most uncertainty
realizations (filled red circles); however, as the chance constraint and risk parameter allow
for constraint violation, the state constraint is occasionally violated (blank red circles).

In general, SMPC chance constraints affect the open loop constraint satisfaction proba-
bility, as the chance constraints are employed within the open loop optimal control problem.
If an analytic reformulation of chance constraints is not possible, the closed loop constraint
satisfaction probability may differ, often yielding more conservative behavior than specified
by the SMPC risk parameter.
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Five simulation runs with SMPC applied to the disturbed system.



Advanced Stochastic MPC Ap-
proaches to Application-specific 3

Uncertainty

This chapter proposes advances to SMPC. On the one hand, we focus on application-specific
uncertainty distributions. On the other hand, we propose a novel way of reformulating SMPC
chance constraints for applications with a two-dimensional output space, e.g., vehicles in a
planar environment. Both SMPC methods are evaluated in automated driving simulations.
The content of this chapter was published in [28, 30, 36].

3.1 Introduction

Advances in research on automated systems are facilitating the use of controllers for com-
plex applications, which is especially evident when looking into recent developments for
automated vehicles. In many of these applications, there is one controlled agent, e.g., a
vehicle or mobile robot, which is required to act and move among other agents. In order to
move efficiently and avoid collisions, it is necessary for the controlled agent to anticipate the
future behavior of the surrounding agents.

The challenge here is that future behavior of other agents is subject to uncertainty. In
many applications, this uncertainty is either a combination of multiple different probability
distributions or difficult to describe mathematically in general. As an example, consider
automated vehicles where the future motion of other surrounding vehicles is first subject
to specific maneuvers, such as lane keeping or lane changing. Second, the execution of
these maneuvers may vary again. A lane change may be executed quickly and aggressively,
or slowly over a longer period of time. In this case, maneuver and maneuver execution
uncertainty must be considered individually such that collision constraints in an optimal
control problem are not overly conservative.

Such application uncertainties are challenging to handle for current SMPC approaches,
which often either assume normally distributed system uncertainties or do not scale well
with a larger system state and when considering an increased number of dynamic obstacles.

In this chapter, we propose two novel SMPC approaches. First, we present a general
stochastic + scenario Model Predictive Control (S+SC MPC) algorithm, applicable to a
variety of automated systems. We specifically focus on collision avoidance, which requires
considering multiple other agents that may perform multiple different tasks. The proposed
S+SC MPC approach utilizes an SCMPC approach for task uncertainty and an analytic
SMPC approach for task execution uncertainty. Combining these two approaches into a
single MPC optimal control problem allows us to efficiently consider the twofold uncertainty
structure of many practical applications with task and task execution uncertainty, e.g.,
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3 Advanced Stochastic MPC Approaches to Application-specific Uncertainty

automated vehicles [28,50,53,139,170]. An automated vehicle simulation study illustrates
the applicability of the proposed S+SC MPC algorithm.

Second, we present a grid-based SMPC method for trajectory planning in uncertain en-
vironments. While it is possible to apply the proposed method to various autonomous
systems, here we focus on automated vehicles. The proposed method provides a simple
strategy to handle arbitrary uncertainty of future vehicle motion. The computational effort
of the SMPC optimal control problem is manageable and the approach scales well with an
increased number of surrounding vehicles or other obstacles. We consider a grid for the
environment, i.e., the road. For every predicted step, each cell then is assigned a probability
value, representing its occupancy probability by an obstacle. All cells with an occupancy
probability value larger than a predefined SMPC risk parameter are inadmissible, where the
risk parameter works as a threshold. Given the admissible cells, convex admissible state
constraints are defined for the optimal control problem. The two main benefits of using a
grid-based SMPC approach for autonomous driving, compared to other SMPC approaches,
are the following. First, it is not required to generate and consider an individual chance
constraint for each vehicle or obstacle considered. The probability grid is generated given
all obstacles and then the risk parameter threshold is applied to all cells, yielding a deter-
ministic reformulation of the chance-constrained optimal control problem. This results in an
optimal control problem with convex state constraints, which is computationally efficient to
solve. However, the stochastic nature of the problem is still accounted for as a probabilistic
grid is initially generated. Second, it is not necessary to decide on a most likely behavior of
other vehicles, as multiple predicted behavior options with arbitrary probability distribution
can be considered. These properties facilitate the application to autonomous driving. The
effectiveness of the presented approach is demonstrated in a highway simulation.

In summary, we present the following contributions.

o An SMPC approach for applications with a two-fold uncertainty structure by combining
analytic and sampling-based chance constraint reformulations.

o A novel grid-based SMPC approach for chance constraint reformulation.

o Adaptation of the proposed SMPC methods for suitable application in automated
driving.

Whereas both proposed methods are evaluated in automated driving simulations, a general
application is possible.

3.1.1 Related Work

SMPC approaches [68,134] provide more efficient solutions compared to RMPC by utilizing
probabilistic chance constraints instead of hard constraints. These chance constraints en-
able increased efficiency by allowing for a small probability of constraint violation, limited
by a predefined acceptable risk. Various SMPC methods exist, approximating the chance
constraint to obtain a tractable representation that may be solved in an optimal control prob-
lem. In general, each SMPC method considers one type of uncertainty within the prediction
model.

Analytic SMPC approaches [50, 105, 176] yield an analytic approximation of the chance
constraint, but these approaches are mostly restricted to Gaussian uncertainties. In particle-
based SMPC [15] and SCMPC [171], samples of the uncertainty are drawn that are then
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used to approximate the chance constraint. While arbitrary uncertainty distributions are
possible, large numbers of samples are required to provide sufficient approximations for some
uncertainty distributions, which increases computational complexity. If complex uncertainty
structures best describe the system behavior, the chance constraint approximations of these
SMPC approaches are not necessarily suitable.

Robots and automated vehicles often use a grid-based representation of the environment,
e.g., an occupancy grid (OG). An OG [190] is a mapping grid of the environment where
each grid cell is assigned a probability that a certain area is occupied. In [55] and [189]
first approaches of OGs for autonomous vehicles have been proposed. In OGs, concepts
like objects, pedestrians, and vehicles do not exist and data fusion from multiple sensors is
efficient. As summarized in [168], OGs have been developed in many ways with focus on
autonomous driving for both highway and urban traffic scenarios, e.g., in [185,186]. Research
has been mainly carried out on how to treat data in order to determine a correspondence
between sensors and grid cells, and how occupancy probability is assigned and updated with
the accumulation of new data. However, the direct use of OGs to account for uncertainty in
planning algorithms has received little attention.

3.1.2 Chapter Overview

Section 3.2 presents an SMPC method for systems with a two-fold uncertainty structure.
First, we formulate the problem in Section 3.2.1. Then, the method is introduced in Sec-
tion 3.2.2, followed by a simulation study in Section 3.2.3, and a discussion in Section 3.2.4.
Second, we present a novel grid-based SMPC method in Section 3.3. The structure of this
section is similar to before. We first state the problem in Section 3.3.1. Afterwards, we de-
velop the method in Section 3.3.2, then show simulation results in Section 3.3.3, and discuss

the method in Section 3.3.4. Section 3.4 provides a summary and conclusion of the proposed
SMPC advances.

3.2 Exploiting Uncertainty Structures by Combining
Stochastic and Scenario MPC

In the following, we present an SMPC approach for systems with a two-fold uncertainty
structure: task uncertainty and task execution uncertainty. This is achieved by combining
ideas from analytic chance constraint reformulations and sampling-based SMPC. This section
is based on the work published in [30, 36].

3.2.1 Problem Formulation

MPC for collision avoidance with multiple agents requires two prediction models, one for the
controlled agent (CA) and one for the dynamic obstacles (DOs) to be avoided.
We consider the CA dynamics

i1 = f (x, uy) (3.1)

depending on the nonlinear function f with state x; and input u; at time step t.
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T T T T

Figure 3.1: Example illustration of a robot arm with two possible task goals (red and blue
circles) and different task execution possibilities. Black shows the initial config-
uration, colors indicate task execution possibilities.

Two types of uncertainties are considered for the DOs: task uncertainty and task execution
uncertainty. This distinction reflects the situation of many applications, where the motion
of surrounding agents is divided into discrete tasks with multiple task execution possibilities.
An example is shown in Figure 3.1, displaying a robotic arm with two possible task goals
and different execution strategies.

Definition 3.1 (Tasks). At each time step, a DO decides to evecute exactly one task T;
defined by the task set T = {T;|i=1,...,n7}. Each task T; is assigned a probability p;,
subject to the probability distribution Pr, where Y77 p; =1 and 0 <p; < ... <p,, <1. A
DO input corresponding to task T; is denoted by uPO(T;).

Definition 3.2 (Task Execution). Fach task T; is subject to a nominal motion governed by
the DO dynamics, a reference state, and an additive Gaussian uncertainty w§* ~ N (0, )
with covariance matriz 37, representing uncertainty while executing task T;.

We consider multiple DOs. The dynamics for a single DO is then given by
oD% — AP0GP0 4 BYOuP (T;) + B™Owf 32)

with the DO state 2P©, the input u,© as well as the state and input matrices AP, BP©,
EP°. A DO stabilizing feedback controller is assumed of the form

up® (Th) = K™ (2° — 2% (1)) (3.3)

with feedback matrix KPP and a reference state m?r(gf depending on task T;. The nominal
state, assuming zero uncertainty and task T;, follows

T3 = APz + BPOul® (T)). (3.4)

Collisions with DOs are avoided by determining a set of safe states for the CA.
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Definition 3.3 (Safe Set). The safe set X% for time step t ensures that all CA states
x; € X guarantee collision avoidance at time step t.

We now formulate the optimal control problem to be solved within this section. Without
loss of generality, the SMPC optimal control problem starts at time step 0 where prediction
steps are denoted by k. The SMPC optimal control problem is given by

m[}nJ (o, U) (3.5a)
s.t. @py1 = f (xr, ug) (3.5b)
zpo, = APOzPC + BPOuPC (T)) + EPOw™ (3.5¢)
uy, € U, k€ Tons (3.5d)
x, € X, kel n (3.5¢)
Pr(zp € ) > 8, kel (3.5f)

with U = (uy,...,un_1), cost function J, horizon N, actuator constraints U, and deter-
ministic state constraints X. As the DO dynamics (3.5¢) are subject to uncertainty, the
chance constraint (3.5f) is employed for collision avoidance. At each prediction step ¢, the
probability of the CA state x;, lying within the safe set X5 must be larger than the risk
parameter 5 := [ (8% 3%*), 0 < § < 1. The function (8%, 3) indicates that overall
risk parameter 3 depends on a task uncertainty risk parameter 5% and a task execution
uncertainty risk parameter 3°*.

It is not possible to directly solve the chance-constrained optimal control problem, which
yields the following objective.

Objective 3.1. In order to allow for efficient trajectory planning, the probabilistic safety
constraint (3.5f) must be reformulated into a tractable expression, considering the task un-
certainty (Definition 3.1) and the task execution uncertainty (Definition 3.2) of multiple
dynamic obstacles.

In the following, a method is derived that approximates the chance constraint (3.5f) to ob-
tain a tractable optimal control problem. We first focus on task uncertainty, followed by task
execution uncertainty, which then allows us to consider both uncertainties simultaneously.

3.2.2 Method

In the following, the S+SC MPC framework is derived, using chance constraint reformulation
ideas from SCMPC and analytic SMPC approaches. Whereas both of these methods have
been introduced before, we provide a novel way to use a combination for application-specific
uncertainty. We first individually consider how chance constraints are reformulated into
tractable expressions for task uncertainty and task execution uncertainty. Then, the overall
MPC optimal control problem is stated, considering both uncertainty types.

Chance Constraint Reformulation based on Scenario MPC for Task Uncertainty

We first focus on task uncertainty. At each time step, one task is performed. The con-
trol action, corresponding to different tasks, may significantly vary between different tasks.
Therefore, describing task uncertainty with Gaussian noise is impractical, rendering analytic
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SMPC approaches inapplicable. Considering every possible task may lead to highly conser-
vative control behavior. However, applying SCMPC-based chance constraint reformulation
is a suitable approach to handle task uncertainty. Within SCMPC, task uncertainty is ap-
proximated by a small number of samples, as the number of possible tasks is usually small.
In this section, no task execution uncertainty is considered, i.e., wy* = 0.

Here, a similar SCMPC chance constraint reformulation approach is used as in Sec-
tion 2.2.4, which is based on [171]. By drawing K samples from the probability distribution
Pr, the task uncertainty is approximated. A task 7T is assigned to each of the K samples
w € . An agent may execute the same task for multiple time steps. However, the agent
task may change at every time step.

Assumption 3.1. Within each MPC optimal control problem, each sampled task is assumed
to be executed for the entire prediction horizon.

In other words, within the prediction, a sampled task is assumed to continue. This as-
sumption is reasonable, as a new optimal control problem with new samples is initiated at
each time step, making it possible to account for different agent tasks at consecutive time
steps.

If Assumption 3.1 holds, a DO input sequence is obtained for each sample in €2. The re-
sulting input sequence UP° (w) = (uODO (W), ..oy uR°, (w)) depends on the individual inputs
uP© (T;), performing task T; corresponding to sample w. Based on UP° (w), the predicted
DO states for each sample are obtained according to the DO dynamics (3.2) with wg* = 0,
resulting in the predicted states £2° (w;) for k= 1,..., N.

Depending on the predicted DO states, a safe set X% (w;) may be computed for each
drawn sample w. Each safe set, corresponding to a sample w, delivers an individual con-
straint in the optimal control problem. Therefore, for the SCMPC approach, the chance

constraint (3.5f) is adapted to
Pr(zp € X (w)) > " YweQ, kel (3.6)

Multiple methods exist to generate safe sets, e.g., signed distance [174] or grid-based methods
[28].

The sample size K depends on the chosen risk parameter. We propose a strategy to obtain
K that focuses on the least likely task 77 in 7, with probability p;.

Theorem 3.1. The sample size K with

1— ta
K >log, (pf) (5.7)

ensures that the probability of not having sampled the least probable task Ty, if it later occurs,
is lower than the allowed risk 1 — %, i.e., (3.6) is satisfied.

Proof. The proof is based on [30]. Given i.i.d. samples, the worst-case probability of not
sampling task 77, if it later occurs, is given by p;(1 — p;)X. The sample size K in (3.7)
then follows from solving for K with 1 — 8% > p;(1 — p;)¥, i.e., bounding the worst-case
probability given the risk parameter 5. ]
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If the least likely task T} is actually performed by the DO, this worst-case probability of
not having sampled task 7T} is lower than the acceptable risk, defined by the SCMPC risk
parameter 3%,

After having introduced an SCMPC approach to handle task uncertainty, the following
section introduces an analytic SMPC approximation for task execution uncertainty.

Analytic Chance Constraint reformulation for Task Execution Uncertainty

We now focus on task execution uncertainty, assuming only one task is possible. In the DO
dynamics (3.2), task execution uncertainty is described by the additive Gaussian uncertainty,
representing uncertainty considering the nominal trajectory of a task. Approximating a
Gaussian distribution potentially requires a large number of samples, therefore, an analytic
SMPC-based chance constraint reformulation approach is more suitable than an SCMPC-
based approach.

Assumption 3.2. The constraint x; € X may be described by a set of functions
dy (x4, 2)°) >0 & @€ AT (3.8)

with di, = (dg.1, ..., dkynd)T, where nq denotes the number of constraint functions.

In order to find an analytic approximation for the chance constraint (3.5f) with only one
task, a linearized description of the chance constraint is required. Therefore, the nonlinear
constraint (3.8) is linearized around the nominal states with P° = ZP° + eP© and the
prediction error eP©. Based on wg*, the prediction error follows eP?° ~ N (0, Ee) where,
similar to (2.10),

= ADOEQADOT + EDOZZXEDOT (39)

with ARO = APO ¢ BDOKDO.
The resulting linearized description of (3.8) is

dk (a:k,fEC)) + Vd?oego 2 0 (310)
with
ody,
vdP© 3.11
k 8w}20 o ele ( )

The linearized chance constraint is then given by
Pr (Vd%ep® > —dj (), 2.°)) > B, (3.12)

which is still a probabilistic expression. However, (3.12) may be approximated into an
analytic expression similar to [30] and as outlined in Section 2.2.4.

Theorem 3.2. The probabilistic chance constraint (3.12) may be approximated by the ana-
lytic expression

dpi (a:k,a:k ) > Vri (3.15a)

\/QVdDOEe O erf~1 (1 — 28%) (3.13b)

With Y = (Veds s Vemy) | and 0.5 < = < 1.
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Proof. The proof follows [30,50]. Due to (3.9) it holds that
VdPOel0 ~ N (0, VdPOx; v ") (3.14)

in (3.12). The quantile function for univariate normal distributions allows us to reformu-
late (3.12) into (3.13). O

Note that Vdp? is defined similar to (3.11). The individual approaches for handling task
uncertainty and task execution uncertainty are combined in the following section.
S+SC MPC Optimal Control Problem

The previous results are now combined in order to obtain the S+SC MPC framework, which
is able to efficiently handle the mixed uncertainty structure. In addition, multiple DOs are
considered with the DO dynamics

DO,j _ 4DO,j,.DO,j DO,j,,DO.j (j DO,j ,,,€X,J
x, . =AY + B a7 (T ) + BV wy, (3.15)

with stabilizing feedback matrix K7 for the DOs j = 1,...,npo.
The tractable S+SC MPC optimal control problem for multiple DOs is then given by

N-1

mUin Z (l (a:k, uk)) + Vi (LBN) (3.16&)
k=0

s.t. Tpa1 = F (g, ug) (3.16Db)
Ty = APOITY 4 BPOIu (W) (3.16¢)
Uup € L{, ke ]IO7N71 (316d)
T, € X, ke ]Il,N (3166)
dl; (o0, TR0 ) > A, kel (3.16f)
V= \/QVdg?’jEZ’de],i?’jT erf™1 (1 — 26%) (3.16g)

with w’ € 7 where the sample size K; of €/ is determined according to (3.7) for each DO,
given the DOs j =1,...,npo, aswellas ¢t =1,...,nq.

In (3.16f), an individual approximated chance constraint is generated for each sample
w, depending on K;. While this approach is reasonable for a small number of samples, it
becomes computationally expensive for larger K;. A possible alternative for application is
to combine similar individual task in order to reduce the number of total constraints. This
approach is illustrated in the simulation example in Section 3.2.3.

If it is required to guarantee safety or recursive feasibility, the proposed S+SC MPC
method may be extended by the safety framework for SMPC approaches that is explained
in detail in Chapter 5.

3.2.3 Simulation Study

To evaluate the effectiveness of the S+-SC MPC algorithm presented in Section 3.2.2, a high-
way scenario involving five target vehicles (TVs) is simulated, using the Control Toolbox [73].
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Figure 3.2: S+SC MPC initial scenario configuration. © 2021 IEEE.

Here, the CA and DOs become ego vehicle (EV) and TVs, respectively. The initial vehicle
configuration is depicted in Figure 3.2.

We first present the results of the simulation study with the proposed S+SC MPC al-
gorithm, and then, for comparison, we investigate the stand-alone algorithms SMPC and
SCMPC. Eventually, we investigate applying S+SC MPC to varying scenario configurations.

Simulation Setup

All simulations are run on an Intel i5-2500K CPU @ 3.30GHz with 15.6GB RAM. Each
simulation consists of Ny, = 100 MPC iterations, which is equivalent to a scenario duration
of 20s with At = 0.2s. In the following, SI units are assumed for variables and parameters
expressed without units.

As a special case of (3.1), the EV dynamics are represented using the linear, discrete-time

point mass model
z, = Az, + BuyV (3.17)

with the EV states ¢y = (zx, Vo, U, vy,k)T and inputs u, = (u%k,uy,k)T where

1 At 0 O 0.5A¢2 0
0 1 0 0 At 0

A= 0 0 1 At B = 0 0.5A¢2 (3.18)
0 0 0 1 0 At

The TV dynamics are assumed to be subject to uncertainties. In the case of vehicles,
tasks are maneuvers. Therefore, we consider maneuver uncertainty and maneuver execution
uncertainty. The TV dynamics are in the form of (3.2) with AP°, BP© | states, and inputs
similar to (3.18) as well as EP© = diag (0.05, 0.067, 0.013, 0.03) accounting for diverse TV
uncertainty in longitudinal and lateral direction. The covariance matrix of the normally
distributed TV maneuver execution uncertainty w* ~ AN (0,37*) is an identity matrix
3¢ = diag(1, 1, 1, 1). Furthermore, additive measurement noise w}*** ~ N (0, Ef’meas) is

considered for z}V and yfV with 3} = diag (0.16, 0.01). The TVs have multiple maneuver
options with associated maneuver probabilities. The possible maneuvers consist of lane
changes to left (LCL) and right (LCR), lane keeping (LK), accelerating (AC), braking (BR),
and insignificant acceleration (IA), as well as a combination of the lateral and longitudinal
maneuvers, resulting in a total of nine possible maneuvers.

The road consists of three lanes with lane width [, = 3.5m, where the center of the
left lane represents y = 0. All vehicles are l,, = 6m in length and wy, = 2m in width.
The initial lateral position of all vehicles coincides with the lateral center of the vehicles’
respective lanes with zero lateral velocity. The initial longitudinal positions and velocities
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EV TVl TV2 TV3 TV4 TV
x-position (m) 0 -25 25 40  -30  -10
z-velocity (ms™') 27 17 27 27 27 22

Table 3.1: Initial Vehicle Configuration.

of all vehicles are summarized in Table 3.1. The TV reference state is chosen as @y, =

TV TV T TV TV : ' -
(0, Vg ref k> Yref koo 0) , where v, 1o, and y,.¢, may vary over time depending on the scenario.

The feedback controller for the TVs is

0 —-1.0 O 0

DO _
K™= 0 0 —-08 —22|°

(3.19)

To prevent collisions, a region around the TV is inadmissible for the EV. This is referred
to as the safety constraint, where the admissible area is the safe set X5, We impose a
safety constraint modeled as an ellipse. Its definition adheres to

(A’ | (Au)’

2 2
ay br

dy = —1>0, (3.20)

where we decompose the distance between the EV and TV into a longitudinal and a lateral
component Axy, = 22V — 71V and Ay, = yEY — 71V,

The ellipse center coincides with the TV center. Therefore, (3.20) is fulfilled if the EV
center lies outside the inner space or on the edge of the ellipse, i.e., dp > 0. The parameters
a, = 30 and b, = 2 represent the semi-major and semi-minor axis of the ellipse, respectively.
The values of a, and b, are chosen conservatively, i.e., the area covered by the safety ellipse
is larger than the vehicle shape.

To reduce the number of constraints for sampled TV maneuvers, we first introduce a
method to adapt the safety constraint ellipse (3.20), generating one ellipse that covers mul-
tiple individual safety constraint ellipses. As an example, we assume that all possible ma-
neuvers are sampled. Then, as mentioned as a possibility in Section 3.2.2, we combine the
individual constraint ellipses of all sampled maneuvers at each prediction step, as shown in
Figure 3.3. If less maneuvers are sampled, the aggregated ellipse only covers the sampled
maneuvers.

The result is the aggregated ellipse

- (Am)” (A’

dy, = 251> 3.21
AZy =z — 2}, (3.21Db)
Ay = yr — Gp ", (3.21c)
TV,IA TV,BR TV,AC

FIV Tk T . R (3.21d)
TV,LK TV,LCL TV,LCR

v =t T ; * B (3.21¢)
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I T F+2
prediction step

Figure 3.3: Qualitative depiction of the aggregated safety constraint ellipse. Safety ellipses
for step k£ + 1 omitted. © 2021 IEEE.

with center (:T:;fv,gjkTV). The longitudinal and lateral position of the TV corresponding to
the respective maneuvers are indicated by the variables z, " and g, " where
M € {IA,BR, AC,LK,LCL,LCR} . (3.22)

The aggregated ellipse has the adjusted semi-major and semi-minor axes

2 -

ar = ay + 0.5 \va AC _ " BR‘ + l (br,k - br) , (3.23a)
lane

bes = by + 0.5 [y P — gV LOR] (3.23b)

By generating the aggregated safety ellipse, the number of necessary constraints is reduced.
As seen in Figure 3.3, the aggregated ellipse does not necessarily cover all individual safety
ellipses perfectly, which is still reasonable as the individual safety ellipses are designed larger
than necessary.

For the MPC optimal control problem (3.16), a prediction horizon N = 12 is selected. The
cost function terms are set to [ = ||Amk||2Q + |lugll% Vi = [[Azy||%, with the cost function
weights @, S € R and R € R*? as well as Az, = &} — Trerr with reference ey
For positional reference tracking in y-direction, the EV reference is set to its current lane
center, while vy et = 0 and vy yer = 27ms~!. For the cost function, the first element of
Az is neglected, since no reference for zj, is imposed. Here, Q = S = diag(0, 3, 0.5, 0.1),
R = diag(1, 0.1) are selected.

While the maneuver probabilities are scenario specific and different task uncertainty risk
parameters 3% are evaluated, the task execution risk parameter is chosen to be 3 = 0.8.
Apart from the safety constraint, the EV plans its motion subject to the constraints

175< gy <875 (3.24)
=5 < Uy <5 (3.25)
05 < u,, <05 (3.26)
1 <Auyp< 1 (3.27)
0.2 < Auyy 0.2 (3.28)

with Aug = Ugp — Up g1, DUy = Uy — Uy p—1-
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Recovery SMPC Optimal Control Problem

As feasibility can become an issue for the MPC problem (3.16), we implement a recovery
strategy that relies on an alternative MPC problem. The MPC problem (3.16) is altered
by introducing a slack variable o to soften the chance-constraint. This results in a recovery
strategy MPC problem that is solved if the original MPC problem (3.16) becomes infeasible.
For the next time step ¢ + 1, the original MPC (3.16) problem is solved again. The recovery
problem is given by

rgglz (@, ug) + Aoy) + Vi (xn) (3.29a)
st. xp1 = F (xr, ug) (3.29Dh)
Tffl’]l ADO’jTE?J + BP0y %9 (wj) (3.29¢)
up €U, kelon_ (3.29d)
x, € X, kel n (3.29¢)
&y (rTy?) 2 A, —0n 0x >0, kel (3.29f)

Thi= \/ 2VAPOISe VAR erf ! (1 - 265) (3.29g)

with the recovery strategy trajectory risk parameter S5 = 0.995 and the positive slack
variable o that transforms the deterministic chance-constraint (3.16f) into a soft constraint.
The scalar slack variable weight A = 50 may be chosen depending on the selected ratio
between performance and conservatism.

Remark 3.1. Within the recovery strategy optimal control problem, a different risk param-
eter Y can be chosen than the risk parameter B in the original optimal control prob-
lem (3.16) to put increased focus on constraint satisfaction.

In case the recovery problem fails, the solver selects the last feasible point as the solution
to the optimal control problem.

Highway Driving with Multiple Target Vehicles

In the following, the S+SC MPC algorithm is evaluated in the previously displayed scenario.
As mentioned, the maneuver risk parameter 5% is varied, resulting in a varying sample
size K. Monte Carlo simulations are conducted 150 times for each risk parameter value.
Each simulation consists of two parts. For the first 20 steps, the EV follows a conservative
behavior with 5% = 0.999, representing a behavior prediction initialization phase. The EV
assumes that the TV probabilities for lane changes or changes in acceleration are p*© = 0.80
and p*® = pBR = 0.40. In case a lane change is possible to the left or right, p"C is assigned
equally. In the second part from step 21 to step 100, it is assumed that the EV has adapted
its behavior prediction. Therefore, the probabilities of TV maneuvers change to p“© = 0.20
and pA¢ = pPR = 0.10. For the second part of the simulation, different risk parameters
g2 € {0.99, 0.95, 0.89, 0.83} are evaluated. Within the actual simulation, all TVs maintain
their respective lanes, except TV4, which moves to the center lane. The reference velocities

: et TVL _ -1 ,TV2 _ -1 ,TV3 _ -1 TV4 _ -1
in a-direction are v, ;¢ = 22ms™ ", v, )¢ = 22ms ", v, = 1Tms ™, v, = 17ms™,
vIVE = 27ms L

z,ref
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Figure 3.4: S+SC MPC vehicle motion. The EV is shown in red, T'Vs in blue. Fading boxes
represent past states. © 2021 IEEE.

risk parameter 3% 0.99 0.95 0.89 0.83
closed-loop collisions 0 0 0 0
cost Jsim 3.64-10* 3.40-10* 3.59-10* 3.76-10%
infeasible OCP steps 26.3 25.2 24.2 26.6
infeasible recovery OCP steps 2.2 3.2 5.2 7.4

Table 3.2: S+SC MPC simulation results.

The result of an individual example with 5% = 0.95 is illustrated in Figure 3.4. While there
initially is a gap between TV3 and TV5, the EV does not plan to overtake, as a potential
lane change of either TV3 or TV5 would result in an inevitable collision. Therefore, the EV
slows down such that TV5 passes TV3 first. Subsequently, the EV safely moves to the left
lane to overtake TV3 (Figure 3.4b).

Even though SMPC, in general, allows for a small probability of constraint violation, in
regular scenarios collisions are avoided as the repetitively updated SMPC inputs allows for
constant adjustment. For example, it may not be possible to satisfy the chance constraint
for a late prediction step within the SMPC horizon, due to an unexpected uncertainty
realization. The optimal control problem is therefore infeasible, i.e., the solver is unable to
obtain an admissible input sequence. However, a collision may still be prevented in the next
steps, depending on the future uncertainty realizations. Here, we designed a challenging
situation for the EV, as lane changes are considered to be probable for all TVs and must be
accounted for. The results of the Monte Carlo simulations are shown in Table 3.2.
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SMPC SCMPC
risk parameter 0.8 0.99 0.95 0.89 0.83
closed-loop collisions 79 ‘ 49 43 45 41
cost Jgm 3.22-104 \ 6.77-10* 6.27-10* 6.88-10* 7.08-10%
infeasible OCP steps 31.2 ‘ 54.1 53.6 55.7 54.7
infeasible rec. OCP step ~ 21.8 | 33.8 33.6 34.1 34.3

Table 3.3: SMPC and SCMPC simulation results.

Summarizing the simulation results, the first important observation is that no collisions
occurred. While the safety ellipse is slightly violated in some simulation runs, the safety
ellipse is chosen large enough that no collisions followed.

The performance is evaluated by computing the cost at each time step, based on the actual
states and inputs, with

99
Jam =3 (18201 [3 + llwilly) (3.30)
t=0

The cost remains on a similar level for all risk parameters, where the best choice in this
scenario is 8% = 0.95. Lower risk increases conservatism, while high risk results in less
smooth control inputs, again increasing the cost.

As mentioned before, the potential lane changes of all TVs pose a challenging situation for
the EV, resulting in steps where the optimal control problem becomes infeasible. However,
the steps with successfully solved recovery optimal control problems are significantly more
likely, especially for a low accepted level of risk. The average computation time per optimal
control problem is 214 ms.

Comparison to SMPC and SCMPC. We now compare the results of S+SC MPC to
treating the two-fold uncertainty structure with an analytic SMPC chance constraint refor-
mulation (similar to (2.12)) or an SCMPC-based chance constraint reformulation (similar
to (2.16)). The results are shown in Table 3.3. First, an analytic SMPC algorithm, in-
spired by [50], is analyzed with §* = 0.8. The advantage of S+SC MPC is that the mixed
uncertainty structure is exploited. Applying only analytic SMPC, in order to account for
maneuver and execution uncertainty, multiple possible maneuvers would need to be approx-
imated by a Gaussian uncertainty. However, this would result in a major increase of the
safety ellipse, covering the entire road width, rendering overtaking other TVs impossible.
Therefore, in the analytic SMPC simulation, the SMPC chance constraint only accounts for
maneuver execution uncertainty for the most likely maneuver.

A total of 79 collisions occurred. While the cost is slightly lower compared to S+SC
MPC, significantly more steps with infeasible optimal control problems occur, especially for
the recovery problem.

In the SCMPC simulation, inspired by [170], the maneuver execution uncertainty is ap-
proximated by samples. To compare a similar situation as in the SMPC simulation, no
task uncertainty is considered here. Again, a significant number of simulation runs result in
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collisions, while the cost also increases compared to S+SC MPC. The steps with infeasible
optimal control problems (OCPs) appear more often than in the S+SC MPC simulation
runs. The computation times for SMPC and SCMPC are similar to S+SC MPC.

Vehicle settings. So far, only one vehicle setting is considered with fixed initial positions.
Therefore, we additionally ran 150 simulations with randomly chosen TV settings for each
simulation run (similar initial EV state as before). The TVs get assigned random initial
positions z3V € [~150, 150] and are placed on one of the three lanes, i.e., yo € {0, 3.5, 7}.
The constant longitudinal velocity for each TV is randomly chosen according to vIV €
[17, 27] with v," = 0. It is ensured that all vehicles positioned on similar lanes have a
longitudinal distance of at least 50, and velocities are selected such that TV collisions are
avoided. The proposed S+SC MPC method successfully handled all 150 simulation runs and
no collisions occurred.

Overall, S+SC MPC allows us to exploit the uncertainty structure of the simulation set-
ting, achieving adequate performance and avoiding collisions. While the results presented
here are promising, it is to note that the benefits of the proposed method depend on the
application setting and to which degree the uncertainty structure may be exploited.

3.2.4 Discussion

In the presented approach there are two risk parameters to be chosen, 8% and 3°*. By
adjusting the task risk parameter 3%, a trade-off is possible between performance and risk in
the presence of multiple agent tasks. A lower value for 8% leads to more samples considered,
increasing the probability of having a larger restricted area. As handling uncertainty within
the task execution by only using SCMPC would require extensive modeling and sampling
to cover all possible cases, a different approach, similar to SMPC with chance-constraints,
is taken to ensure a specified level of constraint violation is not exceeded. This leads to
the task execution risk parameter 5, which influences how much risk is accepted for the
controlled agent in the presence of dynamic obstacle task execution uncertainty.

As shown in the simulation, it may be useful not to consider each possible task individu-
ally. Depending on the application, tasks that are similar can be combined, which reduces
the complexity of the optimal control problem. However, this approach comes with two chal-
lenges. The first one is that how to combine tasks, and how many tasks should reasonable
be combined, is highly application-specific. Second, combining multiple tasks yields an addi-
tional trade-off: either the combined constraint over-approximates the individual constraints
resulting in more conservative control behavior; or the combined constraint does not fully
cover the individual constraints, increasing the probability of constraint violation.

3.3 Grid-based Stochastic MPC

In the previous section, traditional SMPC chance constraint reformulation approaches were
used to consider application-specific uncertainty. Here, based on occupancy grids, we provide
a new approach to consider prediction uncertainty of surrounding vehicles within an SMPC
optimal control problem. Occupancy probabilities are assigned to each grid cell. Then, a
threshold parameter (similar to a risk parameter) provides the admissible cells, which are
then used for trajectory planning. This section is based on the work published in [28].
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3.3.1 Problem Formulation

MPC requires system models for the prediction of futures states within the prediction hori-
zon. We specifically consider trajectory planning for vehicles, where the controlled vehicle
is known as the EV and surrounding vehicles as T'Vs.

We consider a nonlinear EV model

T = [ (x4, uy) (3.31)

with EV state ; and EV input w;. Control constraints are imposed on both the steering
angle and the acceleration, i.e., Upin < U < Upay, summarized as u; € U. The EV is subject
to state constraints x; € X}, such as road restrictions, and specifically safety constraints
x; € X which ensure collision avoidance with other vehicles.

It is necessary for the EV to predict the future TV motion. It is assumed that the future
TV motion is described by a linear discrete-time point-mass model subject to prediction
uncertainty

z. = Az} + Bu!" + Ew/" (3.32)
T
where Y = (x?v,viy,ygv,v;m is the TV state at time step ¢, represented by longi-
T
tudinal and lateral positions and velocities, and ulV = (ufy,ug}/) is the control input

consisting of longitudinal and lateral acceleration with the assumed to be known TV refer-
ence trajectory ere}/t and feedback law

TV _ TV _ TV |0 k2 O 0
wV =K (2 - al,), K_lo Oy kol (3.33)

The uncertainty in the prediction is taken into account by the random variable w!V and the
uncertainty input matrix E.

The presented vehicle models are then usable in an MPC optimal control problem to
predict the future EV and TV states.

Objective 3.2. The goal is to develop a grid-based SMPC method, applicable to automated
vehicles, where the chance constraint reformulation is based on a grid-based description of
the environment, e.q., an occupancy grid for vehicles on a road.

Focusing on vehicles allows us to develop a grid-based SMPC method more comprehen-
sively. However, T'Vs can be interpreted as dynamic obstacles in non-vehicle related trajec-
tory planning tasks.

3.3.2 Method

The following presents the main contribution of this section. Surrounding T'Vs have uncertain
behavior. EV safety constraints must therefore consider the stochastic nature of the future
TV motion to avoid collisions. Assuming a grid representation of the environment, we derive
a grid-based SMPC approach, which enables a simple approach to obtain a reformulated
SMPC optimal control problem with tractable constraints.

The idea of the method is the following. First, for each time step of the SMPC prediction
horizon, a probabilistic occupancy grid is computed. A probability is assigned to each cell of
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this grid, indicating the probability that the cell is occupied by a TV. Then, we formulate a
probabilistic constraint expression to avoid collisions between the EV and TV. A tractable
expression of the probabilistic constraint expression is found by deriving a binary grid in
order to clearly identify the admissible road grid cells. The admissible road grid cells are
then used to obtain a convex hull in which the EV can operate. Finally, we solve the optimal
control problem of the SMPC.

In the following sections, we describe the method in detail, starting with the probabilistic
occupancy grid.

Probabilistic Grid

The environment is represented by a grid C%, which is an evenly spaced field of cells cg’- € CC.
Each cell has dimensions [, and [, accounting for length and width, respectively, and is
identified in a two-dimensional space by two indices ¢ and j. Due to clarity, the cell indices
are omitted when irrelevant in the following. The level of approximation depends on the size
of the cell.

Probabilistic grid setup. For every prediction step k, an individual probabilistic grid
(PG) is generated in order to represent occupancy probabilities of each grid cell. The PG,
represented by a matrix PY, consists of elements p;; that describe the occupancy probability.
Note that the PG used here is defined differently compared to standard OG literature.

Remark 3.2. The probability p;; does not necessarily correspond to the exact probability that
cell cl-Gj s occupied by a TV. This is necessary as the proposed method later considers the
vehicle shape and combines grids of multiple individual T'Vs.

In the following, we provide a brief example of how cell probabilities may be assigned,
based on a Gaussian distribution.

Example 3.1. In the following, we assume a bivariate Gaussian probability distribution
for the TV motion prediction in order to demonstrate the method. The probability density
function (PDF) is given by

exp <_; (CG . CS,TV)T 2;1 (CG _ CE,TV))

<) = .
frorv () FRioy (3.34)

where CS7TV is the cell corresponding to the estimated TV center at prediction step k and X

s a covariance matriz.
The covariance matriz Xy in (3.34) is obtained by using a recursive technique similar to
(2.10), yielding
Y1 =(A+BK)X,(A+ BK)' + EX, E' (3.35)

given the assumed TV prediction model (3.32), the initial condition 3y = 0, and the uncer-
tainty covariance matriz 3.,.

Note that it is possible to apply arbitrary probability distributions within the proposed
method.
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(a) Probability occupancy grid given TV (b) Probability occupancy grid taking into
CoG. account the TV dimensions.

Figure 3.5: Illustration for building the TV probability occupancy grid. The black point
represents ¢ ¥, © 2020 IEEE.

Vehicle dimensions. We need to consider the TV dimensions, which we illustrate by
continuing Example 3.1. The initially determined probabilities for each cell, according to
(3.34), are displayed in Figure 3.5a. The black point represents ckG’TV, i.e., the center of
gravity (CoG) of the TV, the green dashed line represents the normal distribution on the
x-p-plane passing through ckG’TV, while the red dashed line represents the normal distribution
on the y-p-plane. Then, we start to expand the maximum value computed with (3.34) along
both dimensions x and y in order to cover the vehicle area. The final result is displayed
in Figure 3.5b, where the distance between the two green dashed lines equals the width of
the vehicle, and the distance between the red dashed lines equals the length. As mentioned
in Remark 3.2, Figure 3.5b does not show a PDF, as the grid probabilities were artificially

expanded. In the following, the PG is extended for the case of multiple vehicles.

Multiple target vehicles. The presented PG can easily be extended to scenarios with
more than one TV by computing a PG for each TV and then adding up the probabilities of
the different grids for each cell. If a certain area on the road can potentially be occupied by
more than one vehicle in the future, its probability to be occupied increases. This yields

npo

Pij= Y Dijny (3.36)

ny=1

where npo is the number of TVs (or dynamic obstacles) localized in the detection range of
the EV.

We additionally consider ny; possible TV maneuvers. This is achieved by computing a
PG for each maneuver and weigh it with the probability that this maneuver is actually
performed, resulting in

npo "M

Pi= D D P Pidme i (3.37)

ny=1nm=1
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Figure 3.6: Probabilistic Grid of a prediction step. The EV is on the left in blue and two
T'Vs are displayed on the right. © 2020 IEEE.

where pnMwnm is the probability that the maneuver n,, is performed by TV n,. A resulting
example grid with two TVs is shown in Figure 3.6.

In the following, the PG, considering all surrounding T'Vs, is adapted to be included in an
SMPC optimal control problem.

Binary Grid

SMPC requires deterministic expressions of probabilistic constraints. We achieve this by

transforming the probabilistic grid P% into a binary grid (BG), represented by a matrix B¢

with elements b;;, by imposing a probability threshold p,
17 if iJ > )

= { Pig = P (3.38)

0, otherwise.

The value 1 indicates that a certain cell CS is considered to be occupied and therefore
inadmissible. The parameter py, is a trade-off between risk and conservatism: the lower the
threshold, the more conservative the controller. By transforming the probabilistic grid P¢
into the binary grid B¢, we make a clear distinction between admissible and inadmissible
space for the EV.

Remark 3.3. The threshold parameter py, in the proposed grid-based SMPC replaces the
SMPC risk parameter 3.

This makes it possible to determine a hard constraint
x € xpm, (3.39)

where X24™ includes all admissible cells in the BG. The constraint (3.39) can generally be
handled in an optimal control problem.

This approach resembles the use of chance constraints in other SMPC approaches, as cells
with low occupancy probability are considered as safe, depending on the threshold py,. We
then obtain constraints (3.39) that can be handled by a solver. In the next section, we show
how to derive a linear inequality description of the constraint in (3.39).
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Convex Hull of the Admissible Cells

In order to obtain a fast SMPC framework, it is not sufficient to define a deterministic con-
straint reformulation, as seen above, it is also beneficial to find a linear inequality description
of the safety constraint. This is achieved by applying Bresenham’s line algorithm [22]. Given
two points in a grid, which are connected by a straight line, Bresenham’s line algorithm yields
all cells which are touched by the connecting line.

Remark 3.4. Fven if it was developed in the field of computer graphics to select the bitmaps
of an image, Bresenham’s algorithm is applicable here - instead of bitmaps, we have grid
cells.

The goal here is to find a convex hull for all admissible cells of the BG, applying Bre-
senham’s algorithm. The convex hull, consisting of valid cells, can be described by linear
constraints.

The basic steps of obtaining the convex hull of all admissible cells are shown in Figure 3.7,
where the blue cells represent the EV vehicle and the gray cells represent the inadmissible
space according to (3.38). The scenario is a straight road with direction of motion along
the z-axis. First, valid cells in the EV detection range are determined (Figure 3.7a). Then,
using Bresenham’s algorithm, it is checked whether the cells on the detection range boundary
allow for straight connecting lines to the EV without intersecting occupied cells. Second,
the area of valid cells around the EV is enlarged (Figure 3.7b), resulting in a convex hull
(Figure 3.7c). The detailed approach is described in Algorithm 1.

Algorithm 1 Admissible Safe State Space search

1: Input: x, BY
2: Identify EV center (Figure 3.7a, yellow) and select rear corners cfl and CS'Q (Figure 3.7a,
brown)
3: Select admissible cells in the detection range of the EV and store them in a matrix C
(Figure 3.7a, cyan)
for all cells ¢ in ange do
Verify free path from ¢ to cgl, and from c% to CS2
if free paths are confirmed then
Store % in matrix C$,,
end if
end for
10: Select vertex cells of CS, (Figure 3.7b, orange)
11: Extend rear corners cfl and CSQ if connections are possible to the previously obtained
vertex cells without intersecting inadmissible cells (Figure 3.7b, orange)
12: Obtain convex hull of admissible cells (Figure 3.7c, light blue)

13: Output: Linear inequality representation (3.40) of convex hull

G

range

Algorithm 1 is used for each prediction step k of the prediction horizon N. This results
in a linear inequality description of a convex hull, i.e.,

Hex, < hie, (3.40)

This linear safety constraint is now included in an MPC optimal control problem. Note
that there is no guarantee that an admissible convex hull is found for each prediction step k
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(a) The yellow cell represents the EV center, brown cells show the rear corners of the EV,
cyan cells (ange) indicate the cells in the (approximated) EV detection range. Bresenham’s
algorithm evaluates if cells are free between the rear corner cells and the detection range

cells (orange line). If a free path from a cell ¢ of C$, . to both cfl and cS’z is verified, the
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Yy
[~~~ L—
[~ //
=<
L \\
L—1 [~~~

o

(b) The end points of the green column are identified and denoted as vertex cells. To obtain a
larger convex hull, the rear corner cells crcfl and CSQ are moved outside the vehicle bounds
if connections are possible to the previously obtained vertex cells without intersecting inad-
missible cells.

>
(c) The light blue area displays the convex hull of admissible cells, the vertex cells are marked
with orange cells.

Figure 3.7: Illustration of the steps in Algorithm 1. © 2020 IEEE.
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within the prediction horizon N. It is, however, assumed that a convex hull can always be
found for £ = 1. If no admissible convex hull is found at prediction step k, the convex hull
of step k — 1 is used.

Grid-based Model Predictive Controller

Given the convex hull representing the admissible EV states, we can formulate a tractable
SMPC optimal control problem, which is denoted as a standard MPC optimal control prob-
lem without prediction uncertainty, as uncertainty is handled within the linear safety con-
straint. The optimal control problem is given by

N-1
min Y (|Azilly + ull) + 1Az (3.41a)
k=0

s.t. Lpy1 = f (mk,uk) (341b)

zpy, = Az’ + Bu;" (3.41c)

ulV =K (azgv - a:rTe}/k> (3.41d)

U € Z/{k, ke ]IO,Nfl (3416)

x, € Ay, ke ]Il,N (341f)

Hy*w, <h{™, kel (3.41g)

with the EV input U = (ug,...,u N,l)T and Axy, = T — Trerr With maneuver-dependent

EV reference @y, weighting matrices Q,S € R¥™* and R € R**? a discrete-time EV
prediction model f (xy, uy), based on (3.31), and the input and state constraints Uy, and Xj.
The TV model for the prediction is according to (3.32), (3.33).

In this optimal control problem, the safety constraint (3.39) is formulated as the inequality
constraint (3.41g) according to (3.40).

3.3.3 Simulation Study

This SMPC algorithm is now applied to an autonomous driving scenario. In the following,
we first provide the general setup that has been used for the simulations. Then, we present
the results of a first simulation, a highway scenario where an EV overtakes two TVs, to
demonstrate the method. Eventually, we show the results of a second simulation with mul-
tiple TVs to analyze the computational cost obtained with the proposed grid-based SMPC
method.

Simulation Setup

The presented method has been implemented in MATLAB using the MPC routine developed
in [79] as a base implementation. Each vehicle has been modeled as a rectangle with length
and width of 6 m and 2m. Simulations are run with sampling time At = 0.2s. The scenario
is a two-lane highway with a lane width [, = 3.5m. Cell dimensions are [, = 0.5m and

l, =0.25m.
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3.3 Grid-based Stochastic MPC

We consider the continuous-time EV model

= vcos(¢ + a), (3.42a)
y=vsin(y + a), (3.42b)
Y= lEsin(a), (3.42¢)
= a, (3.42d)
a= arctan (lr ii I tan (6f)> (3.42¢)

where x and y represent the longitudinal and lateral position of the vehicle CoG, v and a
denote the longitudinal velocity and acceleration, o denotes the body slip angle, ¢ is the
steering angle of the front wheels, [, and [; are the distances from the vehicle CoG to the rear
and front axles, respectively. We denote with x = (m,y,¢,v)T and u = (J, a)T the state
and the control input of the EV. Model (3.42) is discretized by the forward-Euler method
with sampling time At.

The EV employs two simple policies to decide on a reference lane yyer

1) if the actual lane is occupied 20 m in front of it, the EV moves to the nearest free lane,
otherwise it keeps its actual lane

2) when it passes a TV and the longitudinal distance between their CoGs is larger than
15m, the EV will overtake the TV by positioning itself in front of the TV.

The EV is subject to the following constraints u € U,

Im <y <6m, (3.43a)
—3deg <6 < 3deg, (3.43b)
—5m/s* <a < —5m/s? (3.43c)

in addition to the safety inequality constraints (3.40).
We consider a discrete-time point-mass TV prediction model for (3.32) with

1 At 0 0 0.5 (At)® 0
01 0 0 At 0

A=1lo 0 1 a> B= 0 0.5 (At)? (3:44)
00 0 1 0 At

The selected TV controller matrix values are (kig, ko1, ko) = (=1, —0.8, —2.2). We as-
sume Gaussian noise w;¥ ~ N(0,3%,) with covariance matrix ¥, = diag (1, 1, 1, 1) and
disturbance matrix E = diag (0.05, 0.067, 0.013, 0.03).

Here, only the two most likely TV maneuvers are considered: a lane keeping (LK) and
a lane changing (LC) maneuver with constant longitudinal velocity where each of them is
weighted with a probability for the respective maneuver being executed. Note that more
maneuvers could be considered. Here, we randomly assign a probability in the range of 0.8
to 1 to one of the predicted maneuvers. The second maneuver is given a probability such
that the sum equals one.

The SMPC has a prediction horizon N = 20, weighting matrices Q = diag (0, 2, 0.5, 0.1)
and R = diag (0.1, 1), and a probability threshold py, = 0.15. Algorithm 1 is used to find a
convex hull at each time step k of the prediction horizon N.
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Overtaking Scenario

This scenario consists of a straight two-lane road with two TVs. The center of the right lane
is set to 1.75m, the left lane to 5.25m. The EV is positioned on the left lane with initial
state & = (10, lr, 0, 26), where [t = 5.25m. The two TVs start with the initial states
™1 = (40, 27, 5.25, 0), and V2 = (90, 27, 1.75, 0). TV, is positioned on the left lane,
TVs5 on the right one. A probability 0.8 is assigned to the LK maneuver and 0.2 to the LC
maneuver for both TVs. In the simulation, the TVs follow the maneuver with the higher
probability. Therefore, both TVs will actually proceed along their lane.

Figures 3.8, 3.9, and 3.10 show the simulation results. Figure 3.8 illustrates the vehicle
motion, Figure 3.9 displays the EV velocity and steering angle, and Figure 3.10 shows the
distance between the EV and the two TVs. At the beginning, the EV accelerates to reach
its reference velocity of 30m/s, as shown in the first plot of Figure 3.9. When the lane is
occupied by TV; 20m in front of the EV, the EV starts a LC maneuver, moving to the right
lane, as shown in Figure 3.8a. In Figure 3.10a, it can be seen that once the maneuver is
completed, the longitudinal distance between EV and TV, is approximately 16 m. As soon
as it passes TV and the distance between their CoGs is larger than 15 m, the reference lane
for the EV changes and the EV starts to move towards the left lane to finish overtaking TV;.
Figure 3.8b shows a sequence of this phase. When the EV has completed the maneuver, i.e.,
when it lies completely in the left lane, the longitudinal distance with respect to TV; is
about 17m. Once it reaches and passes TV,, the EV performs a new LC maneuver by
moving to the right lane again. Once the EV lies on the right lane, the relative distance
between the CoGs of the two vehicles is approximately 21 m. This last phase is represented
in Figure 3.8c.

For the presented scenario, and with the given policies, we can see that there is no decel-
eration by the EV while performing LC maneuvers, but only changes in the steering angle ¢
and, therefore, in the vehicle heading . Collisions are avoided. As the simulated (not the
predicted) TV motion is deterministic in this scenario, one simulation is sufficient for the
proposed method. For the presented grid-based SMPC method, additional simulations with
identical initialization result in the same behavior. This is in contrast to SMPC methods
based on sampling, where the different samples drawn for each simulation change the control
behavior of each simulation.

Given this setup and the policy to compute the reference lane for the EV, the MATLAB
solver fmincon always finds a feasible solution. Therefore, bounds on control signal and
space constraints are respected. However, it is important to mention that these results are
obtained with the choice py, = 0.15, and no further research has been conducted on different
values. The effect of varying risk parameters is studied in other SMPC works, e.g., [30,50].

Computational Cost Evaluation

To evaluate the computational cost of the algorithm, we use the following more complex
setup. The general setup is the one of the overtaking scenario. For each simulation, the EV
is randomly positioned on one of the two lanes and a random reference lane is assigned. The
same applies to each TV. The first TV is positioned in front of the EV with a longitudinal
distance of 40 m. If more TVs are simulated, these are positioned every 50 m. For each TV,
one probability is sampled in the range 0.8 to 1 and assigned randomly to one of the two
maneuvers, LC or LK, and the second value is assigned to the other maneuver such that the
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(a) The EV moving to the free lane to avoid collision with TVj.
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(c) EV overtaking TVj.

Figure 3.8: Grid-based SMPC vehicle motion during the overtaking maneuvers. Blue boxes
represent the EV, red boxes represent TV1 and TV2, respectively. Fading boxes
show past states. © 2020 IEEE.
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Figure 3.9: Grid-based SMPC EV velocity and steering over time t. © 2020 IEEE.
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Figure 3.10: Grid-based SMPC longitudinal and lateral distance between EV and TVs in
absolute value terms over time ¢. © 2020 IEEE.

sum of the probabilities equals one. The actual behavior of a TV follows the maneuver with
higher probability. We simulated three scenarios with one, two, and three TVs, and each
of them has been run 10 times on a standard desktop computer with an Intel i5 processor

(3.3GHz).
Table 3.4 shows the mean ., and the standard deviation o of the algorithm computation

# of TVs Het (S) Oct (S)

1TV 0.45 0.48
2TVs 0.44 0.43
3 TVs 0.42 0.36

Table 3.4: Mean and standard-deviation per algorithm iteration for scenarios with a different
number of TVs .

time per iteration. By increasing the number of TVs in the EV detection range for the sce-
nario, the computation time mean p.; remains almost constant, while the standard deviation
o shows larger variations. The computational cost of the algorithm is mainly due to the
complexity of the nonlinear EV model (3.42), and not dependent on the number of TVs in
the scenario. The computational effort generating the PG and calculating the convex hull is
comparatively small, as this is done prior to solving the optimal control problem. This is a
major advantage over for example [30], where the computation time increases significantly
with an increasing number of TVs.

3.3.4 Discussion

In Section 3.3.2, we introduced the probability threshold parameter py,, which allows for
transforming the PG into a BG, in order to obtain a deterministic safety constraint expres-
sion. This parameter is a trade-off between conservatism and risk. By setting a low value
for pi,, a high number of cells will be considered occupied. At a certain step, the road can
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seem fully occupied, resulting in a conservative maneuver for the EV. On the other hand, a
high value of py, will reduce the number of occupied cells considered by the algorithm and,
at certain step of the prediction horizon, the road can seem free. This can yield a more
aggressive controller and potentially a collision between the vehicles.

Therefore, the parameter py, has to be chosen by evaluating a trade-off between conser-
vatism and risk for the planning algorithm, depending on the kind of distribution one decides
to adopt. It can also be beneficial to apply a time-varying probability threshold, adapting
to different situations. In general, selecting a suitable threshold is challenging, similar to
choosing a risk parameter in other SMPC approaches. Note that the risk parameter and the
considered probabilities do not perfectly represent true probabilities.

In the simulations, a nonlinear EV model is used to increase the accuracy of the EV
predictions, whereas a simpler, linear TV model is used in combination with noise, as the
TV behavior is subject to uncertainty. However, applying a linearized EV prediction model
allows us to solve a QP problem, given the safety constraint (3.40), a quadratic cost function,
as well as linear input and state constraints. This is highly beneficial when a fast algorithm
is needed that still considers stochastic behavior of surrounding vehicles.

3.4 Conclusion

The proposed methods in this chapter address application-specific challenges for SMPC,
considering different sources and descriptions of uncertainty. First, we propose the S+SC
MPC method, which allows us to consider the specific uncertainty structure found in many
applications, where both task uncertainty and task execution uncertainty are present. As
SCMPC is suitable for non-Gaussian task uncertainty and SMPC copes well with Gaussian
execution uncertainty, the combination shows promising results. Whereas in this chapter the
S+SC MPC method is applied to a vehicle scenario, the framework is designed in a general
way, such that it is applicable also to other applications, e.g., human-robot collaboration. In
such robotics settings, a robotic arm may have the option of moving to one of several items,
while the exact motion towards the specific item may vary. Without specifically focusing on
agents, the proposed framework may also be applicable to process control or finance.

Second, we presented a novel and simple approach to apply SMPC to trajectory planning
in uncertain environments, by using a probabilistic grid. This allows for efficient trajectory
planning while considering stochastic behavior of surrounding objects. The proposed method
scales well with an increasing number of objects considered, here shown for three objects, and
can handle arbitrary probability distributions of future object motion. It is still of interest
to obtain simulation results for more complex scenarios, as well as combine the proposed
approach with occupancy grids. While we applied the proposed method to an automated
vehicle example, other applications are possible. It is especially interesting to apply the
grid-based SMPC approach to three-dimensional applications, e.g., trajectory planning for
robots.
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Probabilistic MPC for Extended
Prediction Horizons

4

Long prediction horizons and detailed prediction models negatively affect the computational
effort of MPC. Here, methods are derived to extend prediction horizons without increasing
the computational effort. These methods are based on MPC work using models of different
granularity [7] and a non-uniformly spaced optimization horizon [188,191]. We also consider
how system uncertainty may be handled differently for short-term and long-term predic-
tions within the proposed MPC optimal control problems. The content of this chapter was
published in [33-35].

4.1 Introduction

When designing an MPC controller, horizon length and model accuracy need to be chosen to
fit the control task. Using a precise model over a long prediction horizon generally improves
the prediction, but increases the computational effort. Considering uncertainties in the
prediction leads to safer control actions, but further increases the computational cost and
leads to a more conservative behavior, especially if uncertainty increases over time.

Detailed models provide precise short-term predictions, however, even small model inac-
curacies can accumulate over a long prediction horizon, leading to the question how detailed
a long-term prediction model needs to be. In certain applications, it is useful to plan pre-
cisely for the short-term future while only roughly planning the long-term future. Consider
the task of controlling an automated vehicle. Whereas precise planning with a detailed
prediction model is fundamental for the immediate future, long-term aims, such as smart
lane change decisions, do not require a detailed prediction model. However, accounting for
long-term aims is still beneficial, for example switching to the right lane early in dense traffic
facilitates a right turn later. This is especially relevant for urban automated driving [12].

In this chapter, we propose two MPC schemes. First, we present an MPC scheme that
combines the approaches of [7] and [188,191] for undisturbed systems. The prediction hori-
zon is divided into two segments: A detailed model with relatively small sampling time
is combined with an approximated, coarse model and larger sampling time. This enables
using benefits of both individual methods. Computational effort due to model complexity
is reduced by using the simplified model for the long-term horizon. Furthermore, the time
covered by the prediction horizon is extended by choosing larger sampling times while the
amount of decision variables remains constant. Recursive feasibility of the proposed method
is guaranteed.

The presented approach is beneficial for tasks requiring precise control for the short-term
future, ensured by a small sampling time and a detailed model, where additionally long-
term, coarse planning is advantageous. The long-term planning allows us to incorporate
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long-term goals into short-term planning in such a way that it does not compromise the
required short-term precision, i.e., the cost-to-go is improved. We show the effectiveness of
the proposed method in a brief collision avoidance simulation.

Second, we focus on systems subject to uncertainty by extending the previously introduced
method with robust constraints on the short-term prediction horizon and chance constraints
for long-term predictions. For the short term, the overall error of the prediction is reduced by
the detailed model, due to a small modeling error and manageable system uncertainty. For
long-term predictions, the prediction error increases. This prediction error is increasingly in-
fluenced by the propagated system uncertainty, decreasing the benefit of applying a detailed
prediction model. Therefore, the less detailed, coarse model is used for long-term predic-
tions to reduce computational complexity. Applying RMPC for the long term would result
in a conservative solution of the optimal control problem. Therefore, SMPC with chance
constraints is used for the long-term to reduce conservatism, as precise and robust control
actions are often not sensible for long-term planning. The proposed method enables robust
planning for the immediate future while still considering a longer horizon without overly
restrictive solutions due to increased system uncertainty. This approach can be beneficial
in safety-critical applications such as autonomous driving, where collision avoidance must
be ensured in the immediate future, while considering a longer horizon allows for efficient
planning.

The SMPC approach in the long-term horizon is implemented similarly to [116]. This al-
lows us to consider an arbitrarily distributed and bounded disturbance in the coarse model,
following from a suitable projection of the disturbance in the detailed model. Further-
more, the SMPC computations caused by the chance constraints are evaluated offline using
sampling-based methods or deterministic approaches. The method is then evaluated on a
mobile robot control scenario, showing the overall efficient performance. As part of the simu-
lation analysis, the reduction of conservatism compared to RMPC is discussed by examining
the tightening of the constraints in detail.

Summarizing, the contributions of this chapter are the following.

e Combination of MPC with models of different granularity and MPC with a non-
uniformly spaced horizon for extended MPC prediction horizons.

o Proof of recursive feasibility for an undisturbed system.

o Specific consideration of uncertainty in the short-term and long-term predictions, fo-
cusing on safety and efficient planning, respectively.

Here, safety refers to robustly satisfying constraints within the MPC optimal control problem
for the short-term horizon.

4.1.1 Related Work

Various approaches have been suggested to tackle the issue of long prediction horizons and
model accuracy in MPC. Hierarchical MPC methods [169] use multiple MPC levels with
varying complexity. However, the optimal control problems are solved individually, e.g., a
high level regulator with slow time scale on a reduced order model and a low level regulator
with fast time scale in [69]. Hierarchical MPC schemes are especially popular for chemical
applications where different time scales are present.
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MPC with move blocking [39, 40, 75, 180] provides an approach to reduce the number
of decision variables within the optimal control problem. Regarding input move blocking,
certain inputs along the prediction horizon are set equal to previous input values. However,
shifting the blocked inputs when solving the optimal control problem is an issue. A flexible
move blocking strategy was proposed in [177], adapting the blocking when relevant.

In [7] an MPC scheme is proposed, which uses two different models over the prediction
horizon. A detailed model for the short-term horizon is combined with an approximated,
coarse prediction model for the long-term horizon. A robust MPC approach [133] is chosen
for the long-term horizon to account for model mismatch. While recursive feasibility is
guaranteed, stability is not shown. In [206] a real-time iteration scheme for nonlinear MPC
is presented, where constraints in the later part of the prediction horizon are replaced by
logarithmic barriers.

A different approach to reduce computational effort is presented in [188,191]. Onuly a
single prediction model is employed over the prediction horizon; however, the sampling time
is varied, resulting in an MPC scheme with a non-uniformly spaced horizon (NUSH). The
sampling time increases along the prediction horizon, making it possible to extend the time
covered by the horizon while keeping the amount of decision variables constant. While sta-
bility, based on dissipativity, is shown, recursive feasibility is not addressed. Both MPC
with models of different granularity and MPC with a non-uniformly spaced optimization
horizon exploit less detailed planning for the long-term future in order to reduce computa-
tional complexity. However, both methods only focus on one specific aspect of reducing the
computational complexity and do not fully consider system uncertainty.

Figure 4.1 illustrates the different MPC algorithms relevant for this chapter and our con-
tributions. In [34], we adapted the MPC method with models of different granularity of [7]
such that RMPC is used for the short-term horizon and SMPC is employed for long-term
predictions. In [33], we consider the undisturbed systems and combine the methods of [7]
and [188,191]. Then, in [35] our previous contributions are combined for a modular MPC
framework to employ extended prediction horizons.

4.1.2 Chapter Overview

This chapter is structured as follows. Before presenting the contributions, we introduce pre-
liminaries in Section 4.2, addressing MPC with models of different granularity and MPC
with a non-uniformly spaced optimization horizon. We present two methods in this chap-
ter. Section 4.3 proposes an MPC method based on models of different granularity and a
non-uniformly spaced optimization horizon. After stating the problem formulation in Sec-
tion 4.3.1, the optimal control problem of this method is shown in Section 4.3.2 including a
proof of recursive feasibility. A simulation study and a subsequent discussion are given in
Section 4.3.3 and Section 4.3.4, respectively. The first proposed method is then extended to
systems subject to uncertainty in Section 4.4. We first formulate the updated problem in
Section 4.4.1, then develop the method in Section 4.4.2. Subsequently, we show simulation
results in Section 4.4.3 and discuss the findings in Section 4.4.4. We draw conclusive remarks
in Section 4.5.
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Standard MPC detailed model — MPC
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NUSH MPC [188, 191] detailed model — MPC
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Granularity R+SMPC [34]
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Figure 4.1: Overview of methods for extended MPC horizons with long-term horizon Ny, and
long-term time step Aty.

4.2 Preliminaries

Before presenting the proposed methods, we briefly review MPC with models of different
granularity and MPC with a non-uniformly spaced optimization horizon. These preliminaries
are simplified versions of [7] and [188].

4.2.1 MPC with Models of Different Granularity

The main idea of MPC with models of different granularity becomes clear when investigating
the structure of the MPC optimal control problem

N-1 Ni—1
m{}nkz_% (I (zk, ur)) + k;v (he (&k, vr)) + Vie (€n,,) (4.1a)
s.t. xp1 = Az + Buy, (4.1Db)

u, €U, ke lon-1 (4.1c)

T, € X, kel (4.1d)

(&€n,vN) = Proj (zn, un) (4.1e)

&1 = Aw&k + Bl (4.1f)

v, €U, ke lyn, (4.1g)

& €8, kelyw,. (4.1h)

In summary, the optimization horizon is split and individual costs, prediction models, and
constraints are defined for both the short-term and long-term horizon, i.e.; (4.1b) - (4.1d)
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and (4.1f) - (4.1h), respectively.

The short-term part (4.1b) - (4.1d) is similar to (2.3) and we consider the long-term horizon
Ny, the long-term stage cost [y and terminal cost Vi, the long-term prediction model (4.1f)
with input vy, state &, system matrix Ay, input matrix By, as well as the input constraint
set U, and state constraint set Z. We denote the overall input sequence as

-
U= (ug,...,un,Vn,...,Un,—1) (4.2)
and the state sequence as

X: (CC(),...,wN,EN,...,ENlt>T. (43)

In general, the coarse long-term prediction model is a simplification of the detailed pre-
diction model. A projection function (4.1e) is used in order to connect these models within
the prediction [7].

Assumption 4.1. (a) There exists a surjective projection function Proj : R"™ x R™ —
R™ x R™ which maps the detailed model states x; and inputs uy to the coarse model states
& and inputs vy, i.e., (&, Vi) = Proj (zg, uy).

(b) The projection (=,U,) = Proj (X,U) defines the admissible constraint sets.

This setup allows for the use of a coarse prediction model for long-term predictions, which
reduces computational effort. However, a detailed model is still used for short-term pre-
dictions. Therefore, accurate predictions are possible, which immediately affect the next
applied MPC input, whereas the coarse long-term prediction model allows us to loosely plan
the long-term future.

4.2.2 MPC with a Non-uniformly Spaced Prediction Horizon

In [188,191], an approach is presented that uses varying sampling times within the prediction
horizon of the MPC scheme. This allows us to extend the prediction horizon time without
increasing the number of decision variables or to consider the same horizon time with a
reduced number of decision variables. Within an optimal control problem, we achieve the
latter by extending the long-term prediction by selecting a different sampling time Aty for
the long-term prediction horizon, yielding

N-1

mt}nz (I (g, ug, AL)) + Vi (zy, Aty) (4.4a)
k=0

s.t. L1 = A(At,)mk + B(At,)uk (44b)
u, €U, kelyn- 4.4c¢)
T, € X, kelin 4.4d)

with i different sampling time steps At;. Note that the same sampling time step At; can
be used for multiple prediction steps. It is often sufficient to only choose two different time
steps: At for short-term predictions and Aty for long-term predictions.

We consider a quadratic cost function

@y, uy, At;) = wkTQAtiwk + ungiuk. (4.5)
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We need to take into account the different sampling times in the weighting matrices Qay,
and Ry, of the quadratic cost functions (4.5). This is achieved by adapting the original
weighting matrices Q and R for the states and inputs for the long-term prediction to

At; At;

AtOQ, RAtz R ( 6)

QAti - Ato .

This increase of the long-term prediction weighting matrices is necessary to maintain balance
in the cost function, as increasing the sampling time decreases the number of steps within a
given prediction period.

4.3 MPC with Models of Different Granularity and a
Non-uniformly Spaced Prediction Horizon

In the following, we propose an MPC method where the optimization horizon is split into a
short-term horizon and long-term horizon. The short-term horizon uses a detailed prediction
model and regular sampling time steps. The long-term horizon employs a coarse prediction
model and larger sampling time steps. A control invariant set at the last short-term horizon
step makes it possible to ensure recursive feasibility of the MPC optimal control problem.
This section is based on the work published in [33].

4.3.1 Problem Formulation

Similar to [7], we consider two nonlinear, discrete-time prediction models and constraints

i1 =f(xk, uy) (4.7a) Eiv1 =f1e(&r i) (4.8)
st. xpe X (4.7b) st. & eB (4.8b)
u, €U (4.7¢) v, €U, (4.8¢)

with inputs u;, € R™ and v, € R™, and states x;, € R" and &, € R". Here, model (4.8)
is considered to be an approximation of model (4.7). The state and input constraints are
given by the state and input constraint sets X, U, and E, U,,, respectively.

We now extend the models (4.7) and (4.8) including different sampling times

L1 :f(a:k, ug, At) (49&) €k+1 :flt (£k7 Vi, Atlt) (410&)
st. xpeX (4.9b) st. &2 (4.10b)
up, €U (49(3) v, €U, (4.10(3)

where At and Aty are the sampling times for the respective prediction models. The two
models are linked given a projection function as defined in Assumption 4.1 [7].

Objective 4.1. The goal is to develop a recursively feasible MPC method that allows us to
employ an extended prediction horizon while keeping the computational complexity manage-

able.

In order to achieve Objective 4.1, the previously presented approaches, MPC with models
of different granularity and MPC with a non-uniformly spaced horizon, are now combined.
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4.3.2 Method

In this section, the MPC optimal control problem will be presented, which includes models
of different granularity and a non-uniformly spaced prediction horizon. Recursive feasibility
of the approach is shown, followed by a discussion.

Given the methods presented in Section 4.2, we combine a detailed model and small
sampling time for the short-term horizon with a coarse model and larger sampling time
for the long-term horizon. The idea is displayed in Figure 4.1. The MPC optimal control
problem is given by

N-1 Ni—1
{uo?.l.i,EN}, ];) (l(xg, ug, At)) + Vi(xn) + kZN (b (&p, vk, Atiy)) + Vi (€n,,)  (4.11a)
T =

s.t. @y = flag, uy, At) (4.11b)

u, €U, kelyn (4.11c)

xp € X kel vy (4.11d)

vy e X C X (4.11e)

(€n,vn) = Proj (xn,un) CE XU, (4.11f)

Erv1 = fi(&k, vk, Atyy) (4.11g)

v, € Uy € Iy yy 1 (4.11h)

& € B,k €lniin, (4.111)

with the standard sampling time At and a larger sampling time Aty > At, as well as a
control invariant set X;. The input wy is necessary to evaluate (4.11f).

The stage costs [(x, ug, At) and Iy (&x, Vg, Aty) depend on the respective sampling time.
For a quadratic cost function, a similar approach to [188], presented in Section 4.2, can be
applied to adapt the weighting matrices, based on At and At;;. The terminal cost functions
are given by V¢ and Viy.

Remark 4.1. Ideally, the constraint sets E and U, of the coarse model are computed using
the projection function (E,U,) = Proj(X,U). If the main focus is to improve the cost-to-go
and feasibility issues occur, the constraint sets E and U, may be chosen to depend more
loosely on X and U.

The proposed MPC scheme allows us to apply an accurate prediction model with small
sampling time for precise short-term predictions, while still considering long-term aims, with
a less accurate long-term prediction. In the following, recursive feasibility of the MPC scheme
is shown.

Recursive feasibility. Here, it is not possible to apply standard MPC theory to prove
recursive feasibility, e.g., shifting the previous input sequence and a control invariant terminal
constraint, as the sampling time changes for the long-term horizon, i.e., At < Aty. In the
following, we specifically denote the time step t.

We use Definition 2.5 with the input sequence

ﬁt = (ut\h y ooy Wik Nty Vi Nty -+ Vt+(N1t—1)|t> (4-12)

for the following proof of recursive feasibility. To prove recursive feasibility, the initial optimal
control problem must be feasible and Xy must be control invariant.
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Assumption 4.2. The optimal control problem (4.11) s initially feasible, i.e., a solution
U, to (4.11), according to (4.12), exists for t = 0.

Assumption 4.3. The terminal set X; is control invariant according to Definition 2.4.
Additionally, the difference in sampling time must be considered.

Assumption 4.4. A control invariant set B can be obtained, such that for all x) € X, it
follows that &, € Es.

This assumption implicates the following. If a control invariant set for a state a; with
model (4.9) exists, a control invariant set also exists for the corresponding state & with
model (4.10), given the different sampling time.

Theorem 4.1. Let Assumptions 4.1, 4.2, 4.3, and 4.4 hold. Then, the MPC optimal control
problem (4.11) is recursively feasible.

The theorem is proved by showing that a feasible U,,; exists, given a feasible U,.

Proof. Due to Assumption 4.2, an input

ﬁt = (ut|t> ooy Wit N[ty Vt4N|ty ++-s Vt+(N1t—1)|t) (4-13)

exists. First, the focus is on the short-term horizon, using U,. Shifting the initial inputs
(Wyit, .., Uy (v—1)|t) Dy one step yields the input sequence (wei1|(t+1); -, Wit41)+(N—2)|(t+1))5 BS
the previous input sequence remains feasible for step t+1. According to (4.11e), ;| lies in
the control invariant set A}, therefore, @ 11)+(v—1)|t+1) € Xr and an input w(y1)+(N-1)|t+1)
exists such that x4 1)4n)¢+1) € Ar. This implies an input w41)4n+1) exists, yielding the
input sequence

Uiy = (ut+1|(t+1)7 sy Wt 1) +(N=1)|(t+1) 5 u(t+1)+N|(t+1)) : (4.14)

Next, the long-term horizon is considered. Given Assumption 4.4, &y € g and vy exists.
As B is a control invariant set, an input sequence

Uy = (V(t+1)+N\(t+1)7 s V(t+1)+(N1t71)|(t+1)> (4.15)

exists, yielding
fftﬂ = (ut+1|(t+1)7 ooy W(t41)+N|(t+1) s V(t+1)+N|(t4+1) 5 -+ U(t—i—l)—i—(Nlt—l)\(t—f—l)) . (4-16)
Therefore, the MPC optimal control problem (4.11) is recursively feasible. ]

Note that u np; is not part of the cost function (4.11a) and does not guarantee Ty (N1 €
X, but uy | is necessary to evaluate (4.11f).

4.3.3 Simulation Study

We evaluate the proposed MPC method in a setting similar to the one described in [7]. A
mobile robot is steered along a path with obstacles, as illustrated in Figure 4.2. The aim is
to reach the target point while avoiding obstacles. All quantities are given in SI units. The
simulations were carried out in MATLAB with the fmincon solver on a standard desktop
computer.
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Figure 4.2: NUSH+Granularity MPC simulation scenario. © 2021 IEEE.

Simulation Setup

Two system models are considered, where the nonlinearity is found in the constraints. The
detailed prediction model is given by

1 At 0 0 0 0
01 0 0 AtL 0

T =g 0 1 Af T, + m o | (4.17)
0 0 0 1 0 At+

with state vector & = (Tr, Ve, Uk, Vyk) |, input wy = (Fyx, 1) ", sampling time At, and
mass m = 0.5. The state vector consists of x— and y—positions, as well as x— and y—velocity
v, and vy, the inputs are forces in x— and y—direction, F, and F},. The following constraints,
X and U, are employed for states and inputs

=3 < v, <3 (4.18a)
—5< y <5 (4.18b)
=3 < vy, <3 (4.18c¢)
—3<F, <3 (4.18d)
—0.5 < F, < 0.5. (4.18e)
The control invariant set A} is given by
Vg, N = 0, Uy, N = 0, -5 S YN S 5. (419)

This ensures that at the end of the first horizon segment, the robot can come to a standstill
by applying negative acceleration and a zero lateral acceleration, which avoids any constraint
violations.
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The approximated, coarse model, based on (4.17), is given by
10 At 0
Ert1 = lo 11 &+ l 0 At] Vg (4.20)

with state & = (z1,yx)" and input v, = (vyx,vyx) . The models (4.17) and (4.20) are
linked by the projection matrix

5)-rol23) - B

The coarse model is subject to constraints 2 and U, similar to (4.18), i.e.,

O = O O

0
0
0
1

o O OO
o O OO

0
1
0
0

o O O

—5< yp <5 (4.22a)
—3< v, <3 (4.22D)
—3 <u,; <3, (4.22¢)

where the control invariant set Zs is defined as in (4.19).
Additionally, obstacles according to Figure 4.2 are considered as ellipsoidal constraints in
both the detailed and the coarse model. Given the ellipse equation

__,.0OB\ 2 OB\ 2
(W) +<ykby> <1 (4.23)
ar r

with ellipse parameters a, and b, and origin offset (98, y©B), we consider the two overlapping
obstacles with parameters (a, 1, b, 1, 298, y9B) = (1.5, 1.5, 10, —0.1) and (a, 2, by 2, 2$8, y9B) =
(5, 1.4, 15.2, 1.3).

The position of the two obstacles allows us to analyze the benefit of a longer prediction
horizon. Passing the obstacles above results in a longer path. However, the circular obstacle
is positioned in such a way (y°B < 0) that it is more rewarding to pass the obstacle above.
A longer prediction horizon now makes it possible to choose the path with higher short-term
cost, as it has lower cost in the long-term.

We compare three MPC setups to evaluate the proposed method: standard MPC, MPC
with models of different granularity, and the proposed approach. The standard MPC has
a shorter horizon to then show the advantage of using a longer prediction horizon. The
aim is to reach the reference point (Zyef, Yrer) = (20, 0), resulting in the reference states
Tret = (20, 0, 0, 0)" and &,f = (20, 0)T. The initial state is o = (0, 0, 0, 0). All stage costs
have the quadratic form

Uy, uy, At)= (xy — wref)TQ<$k — Tyer) + u;Ruk (4.24a)
e (&k, Vi, At)= (& — &ret) " Qan, (€ — &ret) + v Ran, Vi (4.24Db)

with Q = diag(1, 0, 5, 0), R = diag(0.1, 0.1) and Qay,, = diag(1, 5), Ray, = diag(0.01, 0.01).
While velocities are not penalized in [(xy, uy, At), they are penalized slightly in [ (&, vx)
in order to have a non-zero matrix Rj,. Terminal cost functions are chosen as Vi(xy) =

(.’Bk - "Eref)TQ<wk - wref) and va,lt(ﬁk) = <€k - £ref)TQAt1c (‘Sk - gref)-

The three controllers have the following characteristics.
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4.3 MPC with Models of Different Granularity and a Non-uniformly Spaced Horizon

A) Standard MPC: uses a prediction horizon N = 10 with sampling time At = 0.2 for
model (4.17), constraints (4.18), and terminal constraints (4.19), as well as stage cost
(@, uy) and terminal cost Vi(xy).

B) MPC with models of different granularity: uses the horizons N = 10 and Ny, = 16 with
sampling time At = 0.2 with model (4.17) and constraints (4.18) for the short-term
horizon N = 10, and model (4.20), constraints (4.22), and terminal constraints (4.19),
between N = 10 and the long-term horizon Ny, = 16. The stage costs are [(xy, ug, At)
and Uy (&k, Vg, Aty) with terminal costs Vi(xn) and Vi (&Eny, )-

C) Proposed NUSH+Granularity MPC scheme: uses two horizons. For the short-term
horizon N = 10 with sampling time At = 0.2, model (4.17) and constraints (4.18)
are employed, as well as (4.19) for the control invariant set X;. Between N = 10 and
the long-term horizon Ny, = 16 the increased sampling time Aty = 0.4 is chosen with
the model (4.20), constraints (4.22), and control invariant set Zs according to (4.19).
Terminal costs Vi(xy) and Vi (€n, ) are used with the stage costs I(x, ug, At) and

llt (€k7 Vg, Atlt): (ék - Eref)TQAtlc (Sk - Eref) + VI;FRAtlt 14> (425)

with Qay, = diag(2, 10), Ray, = diag(0.02, 0.02) according to (4.6). The weights are
increased, as the sampling time is larger compared to the short-term horizon, resulting
in less states and inputs considered in the cost function.

The main properties of the analyzed MPC schemes (bold font) used for the simulation are
summarized in Table 4.1. Properties and results are also provided for further MPC schemes
that are not discussed in detail.

method N At Ny — N Aty cost J
standard MPC 10 0.2 5.9-10°
standard MPC 13 0.2 5.9-10°
standard MPC 16 0.2 5.9 -10°
standard MPC 8§ 04 6.0 - 10°

NUSH MPC [188] 10 0.2 3 (detailed) 0.4 5.9-103
gran. MPC [7] 10 0.2 6 (coarse) 0.2 5.6-10°
proposed MPC 10 0.2 3 (coarse) 0.4 5.6-103

Table 4.1: Comparison of MPC setups: short-term horizon (detailed prediction model), long-
term horizon (detailed or coarse prediction model), sampling time, and cost.

As shown, the decision variables vary between the three methods. While the horizon of
the proposed method and MPC with models of different granularity covers the same horizon,
less decision variables are necessary for the proposed approach.
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proposed method

—MPC gran. MPC

0 5 10 15 20
T

Figure 4.3: Simulation results: the standard MPC controller (red) chooses a longer path due
to the shorter horizon, while both other approaches find the shorter path. © 2021
IEEE.

Simulation Results

In this section, we will compare the simulation results of the three methods. Each simula-
tion was run for 50 iterations. We will first focus on the individual simulations and then
investigate the overall result.

The simulation results of the individual controllers are illustrated in Figure 4.3. As the
center of the circular obstacle is set slightly below y = 0, the standard MPC controller
moves the robot towards the top. If only the circular obstacle were present, this would be
the behavior with the lowest cost. However, due to the short horizon the ellipsoidal obstacle
is only detected later. As the cost would be larger to change the path, the robot continues
the longer path. Both the MPC with models of different granularity and the proposed MPC
scheme detect the ellipsoidal obstacle before deciding on a path. Therefore, both methods
select the shorter path below the circular obstacle, resulting in lower overall costs.

The overall cost Jg, for each simulation run is analyzed by comparing the real cost which
occurred for each step, i.e.,

Neim—1
Jom = > Uxepr, u, At) (4.26)
t=0

according to (4.24a) with Ny, = 50 simulation steps. The overall results are shown in
Table 4.1. The standard MPC with N = 10 has the lowest computational effort, the average
computation time per iteration is 0.27s (100 %). However, as described before, the shorter
horizon results in higher costs, as the longer path is chosen, illustrated by the increased
cost compared to the other two methods. In this example, the computational effort of the
proposed method is 0.41s (151 %). Eventually, we compare the proposed method with MPC
with models of different granularity. While the costs are equal, the proposed method reduces
the computational effort by 33 % compared to MPC with models of different granularity
(226 %).

All three controllers reach the target state eventually; however, cost and computational
effort vary. Whereas the proposed method proved to be beneficial here, this is highly scenario
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dependent. It will be of interest to apply the proposed MPC scheme to more challenging
automated vehicle scenarios, considering dynamic obstacles with uncertain behavior [30,53].

4.3.4 Discussion

The presented method divides the prediction horizon into two segments. Multiple segments
extending the original horizon with different simpler models and larger sampling times are
also possible. However, the effort of designing and setting up multiple segments could be
higher than the resulting benefit.

The proposed approach can be interpreted and applied in two ways with respect to stan-
dard MPC: extending or splitting the horizon. In a first interpretation, the second horizon
segment is regarded as an extended horizon compared to the standard MPC horizon. This
allows for longer predictions, while the computational effort is only slightly increased due
to a simplified model and larger sampling times. A second interpretation is as follows. The
time span covered by the prediction horizon is equal for standard MPC and the proposed
method. But computational complexity is reduced as the detailed model is only employed
for the short-term prediction and less decision variables are used, given the non-uniformly
spaced horizon.

In contrast to [7] and other literature, in the optimal control problem (4.11) the control
invariant set X} is at the end of the first horizon segment (a ). This is necessary to guarantee
recursive feasibility. If the control invariant set were at the end of the overall horizon,
recursive feasibility could not be guaranteed, as the different sampling times in the short-
and long-term horizon do not allow standard MPC theory to guarantee recursive feasibility,
i.e., reusing the shifted horizon for the next time step is not possible. This is similar to
guaranteeing stability in MPC with a non-uniformly spaced horizon [188]. However, if we
interpret the proposed method as an approach that extends the standard horizon with a
long-term horizon to improve the prediction at only slightly increased computational effort,
it is suitable to place a control invariant set at the end of the short-term horizon.

The predicted states in the long-term horizon do not affect recursive feasibility, as xy € A}
ensures that the optimal control problem remains recursively feasible. The long-term horizon
is considered as an improvement for the cost-to-go. Therefore, the constraints for the long-
term horizon do not necessarily have to exactly match the constraints of the short-term
horizon. A set Eg must still be provided, however, to ensure that the proof of Theorem 4.1
remains valid. Nevertheless, there is a certain degree of freedom to select Ej.

As stability was not yet shown for MPC with models of different granularity, the focus
of this section was to first guarantee recursive feasibility, which is guaranteed for MPC
with models of different granularity but not for MPC with a non-uniformly spaced horizon.
Dissipativity theory could be of interest, similar to the stability guarantee in [188], when
investigating stability for the proposed method.

In [7] a robust MPC scheme was employed for the long-term horizon to address consis-
tency of the models. While this was omitted here to focus on the combination of different
models and varying sampling time, a robust MPC scheme could be applied for the long-term
prediction together with additive noise to the coarse system model (4.10).

It is also important to note that not any simplified model is suitable to be combined with
a detailed model. It must be possible to find a projection function, which is more likely if
the coarse model is a reduced model of the detailed model. Finding a reduced model for
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a detailed nonlinear model is challenging. However, for detailed linear models, it is often
straightforward to obtain a reduced model that ensures that Assumption 4.1 is fulfilled. An
example was addressed in the simulation study.

4.4 Extending the MPC Prediction Horizon for
Systems with Uncertainty

After having considered undisturbed systems, we now present a method for systems subject
to uncertainty. Again, the horizon is split into a short-term and a long-term horizon, where
the latter employs a coarse prediction model and increasing sampling time steps. In addition,
the short-term prediction considers robust constraints and the long-term prediction uses
chance constraints. This setup enables safe planning for the immediate future together with
less conservative long-term planning. This section is based on the work published in [34,35].

4.4.1 Problem Formulation

In general, a single prediction model and a constant sampling time At is employed within
MPC. Here, we consider two prediction models of different granularity, i.e., different level of
detail, and different sampling time for a linear, discrete-time system with additive distur-
bance, i.e.,

€k+1: Alt(Atlt)Sk + Blt(AtIt)Vk + 5k7 (427b)

where At < Aty are the sampling times for the respective prediction horizons, x € R",
&, € R™ denote the states, and u, € R™, v, € R™ the inputs at the prediction step
k, with A € R">" B ¢ R"*" A, € R B, € R"*™. The bounded disturbance
wi € W C R denotes additive uncertainty within the system model, where W is a compact,
convex set and includes the origin. While (4.27a) is a more detailed model, (4.27b) is a coarse
representation of system (4.27a) with an additive bounded disturbance &, which acts as a
projection, or an over-approximation, of the bounded disturbance wj from the detailed
model. Based on the detailed model, the coarse representation may be obtained by only
considering a subset of states of the detailed model [7] or by model reduction techniques [80].
Furthermore, it is assumed that the PDF f5(d) of §j. is known, and that the realizations of
d; for k € N are i.i.d. with zero-mean.
The states and inputs of both models are linearly constrained for all £ € N by

e X ={x € R"™ | Hx < h}, (4.28a)
up, €U ={u € R™ | Gu < g}, (4.28Db)
£ €E = {€ e R™ | Hyt < by}, (4.28¢)
vy eU, ={veR™ |Gy < gy}, (4.28d)

where the constraints for the coarse model follow from the constraints of the detailed model.
These two models provide the basis of the proposed MPC method of this section.

Objective 4.2. The aim is to extend the MPC method, developed in the previous Section 4.3,
to systems subject to uncertainty.
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Achieving Objective 4.2 requires treating constraints subject to uncertainty differently
in short-term and long-term predictions. The focus on short-term predictions is robust
constraint satisfaction for safety reasons, whereas long-term predictions must ensure that
considering uncertainty does not lead to overly conservative control behavior.

4.4.2 Method

In the following, an MPC optimal control problem is derived with robust constraints and a
detailed model for short-term predictions, as well as chance constraints and a coarse model
for long-term predictions, where the horizon for the short-term and long-term prediction
is spaced differently. The proposed combined robust and stochastic MPC method, using
NUSH and models of different granularity, is referred to as NG R+SMPC. We will first
present the general structure of the proposed NG R+SMPC optimal control problem, where
we briefly introduce the ideas of MPC with models of different granularity and MPC with
a non-uniformly spaced optimization horizon. Then, details are provided on the robust
constraints and chance constraints. Eventually, the resulting overall NG R+SMPC optimal
control problem is shown. The proposed method is illustrated in Figure 4.1.

MPC Optimal Control Problem

We first formulate an MPC optimal control problem with two prediction stages and a total of
Ny prediction steps. The detailed model (4.27a) is used for the short-term prediction, with
N prediction steps and sampling time At, to guarantee robust constraint satisfaction in the
immediate future. Additionally, the coarse model (4.27b) is used for the long-term prediction,
with Ny — N prediction steps and sampling time Aty, to reduce the computational cost while
considering the uncertainties in a probabilistic manner by turning the state constraints into
chance constraints. The overall prediction time is NAt + (N, — N)Aty;.
The general optimal control problem is given by

N-1 Nie—1
mﬁ@n E (;;) (I (g, ug, At)) + kz;v (h (&ks Vi, Atye)) + Vire (€ny, Atlt)) (4.29a)
s.t. 1 = A(At)zy, + B(At)uy, + wy, (4.29b)
uy, €U, k€ Tons (4.29¢)
r,c X YVwp,eW, kelin (4.29d)
(v, vn) = Proj (zy, uy) (4.29¢)
Err1 = A (Aty)&r + By (Aty)vy + 6 (4.29f)
v, €Uy, k€ Iy N1 (4.29g)
Pr (& € E) > 5, ke lyn, (4.29h)

with the input sequence

U= (’U,Q,...,’U,N,I/N,...,I/Nlt_l)T (430)

and state sequences

X = (3’50,...,mN,EN,...,5N1t>T. (431)
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The cost functions are defined as

(@, w, At) = [ gy + 7 (4.32a)
hi (&, vk, Atyy) = IIEkIIZAm + HV’C”;NM ; (4.32b)
Vi (&, Aty) = H&“H?’Am (4.32¢)

with the positive definite weighting matrices @ € R"=*"= R € R"™>"u  Qp,, € R,
Rpy, € R™*™ and Pay, € R™*™. The risk parameter 8 € [0,1) in (4.29h) specifies the
desired probability of state constraint satisfaction in the long-term prediction. Note that uy
is needed to compute (4.29¢).

In the following, we modify (4.29) to obtain a tractable optimal control problem.

Robust Constraints with a Detailed Model

For the short-term prediction with robust constraints, we define a disturbance-free reference
system with tighter constraints [160]. Therefore, the input is decomposed into a stabilizing
state feedback and a new decision variable ¢, for the controller, resulting in

Ur = Kin + cg. (433)

with feedback gain K. The actual system model and the nominal system model are given
by
Lp1=— AKiL‘k + BCk + wyg, (434&)
Tp 1= AgTy + Bey, (434b)

with the nominal states @, and the stabilized system matrix Ax = A+ BK. The deviation
e, ‘= x;, — Ty, of the actual system yields the error update

€ri1 — AKek + wy, (435)
with zero initial deviation, i.e.,
eg=0 & x5y == (436)

Based on the Minkowski set addition [160], the set containing ey, is given by

k—1
Si=PAW=Wa AW S --- & A'W. (4.37)

i=0
Now, (4.37) allows us to compute the minimal disturbance invariant set S... This invariant
set helps to define an outer-bounding tube around the states of the nominal system @,
which includes the states of the actual system a; for any possible disturbance sequence, i.e.,

T € {jk} D Se. (438)

With (4.38), tighter constraint sets for states and inputs of the nominal system are computed,
yielding

X oS, (4.39a)

X
U=UO KS., (4.39b)
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given that the set W is small enough such that S, C int (X) and KS., C int (/) hold [133].

Although using the nominal system (4.34b) and the tightened constraint sets (4.39) for the
short-term prediction would lead to robust constraint satisfaction, it is possible to improve
this method by making use of an additional degree of freedom to the controller, namely the
initial state of the nominal system %, [133]. There is no guarantee that setting the initial
state of the nominal system @, equal to the actual initial state &y enhances convergence to
the reference of the nominal state trajectory. In order to determine an improved center of
the tube, the controller considers the initial state of the nominal system Z, as an additional
decision variable to the inputs ¢g. It is necessary that the actual initial (current) state xg
remains in the tube with the initial nominal state &, as its center, i.e.,

o € {To} B Soo & Ty — Ty € Swo, (4.40)

which is treated as a constraint for this decision variable. This method yields faster conver-
gence and additionally has pleasing theoretical properties considering stability [133,160].

Chance Constraints with a Coarse Model

It is necessary to reformulate the probabilistic constraint (4.29h) into a deterministic state-
ment in order to implement the SMPC scheme. Similar to RMPC, the goal is to find tight-
ened constraints for the (deterministic) nominal states for each prediction step, considering
the evolution of the disturbance in the actual system.

We first decompose the states &, into a deterministic and a probabilistic part and the
inputs v, into a stabilizing state feedback and a new decision variable ny, i.e.,

&r= Gk + €k, (4.41a)
V= K&k + Mk, (4.41Db)
which yields
Cr1= Ak 1tCk + Bum, (4.42a)
€r11= Ak 1€k + Oy, (4.42b)

where Ak, = Ay, + By Ky, is the stabilized system matrix.

Due to 0y being a projection, or an over-approximation, of the disturbance in the detailed
model, it follows from (4.36) that €y = 0. Thus, with (4.42b), the probabilistic error € is
expressed via the disturbances dg to d,_1 as

k-1
€ = Z A%Jtdk_l_i, k>0 (443)

=0

and its probability distribution may be computed if the distribution of all §; is known.

State constraint tightening. The constraint (4.29h) may be rewritten in terms of the
decomposed state (4.41a) as

Pr ([Hlt]j Cr < [hu]; — [Hul; Ek) =B, j€lin, (4.44)
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as

where [Hy|; and [hy]; denote the j-th row and entry of a matrix Hy, and vector hy, and ny,
Vj €L, 37 €Rsit.

is the number of rows and entries of H); and hy. Based on [116], (4.44) may be formulated

[HyJ; G < 7, Pr (7 < [h]; — [Hyl; &) > 5.

J
Resulting from this expression, suitable tightened state constraints for the nominal state
Cr € B, which guarantee the satisfaction of constraint (4.29h), are defined using

(4.45)
Ek = {C - Rn5|H1tC < Tk}, ke ]IN,Nlta (446)
T
where 1, = ([Tk]l, e [Tk]n5> is found by solving
Vi€, k€lvn : [T, = max 7
st. Pr(r < [hul, — [Hyl, ex) > 8.
Input constraint tightening.

in [116].

In addition, tightened constraints for the input v} have
is decreased by applying a stochastic constraint tightening in the predictions, as described

(4.47)
to be found, due to the state-feedback of the disturbed state € in (4.41b). Conservatism
Similar to (4.46) and (4.47), the tightened input constraint set is defined by

Uy ={v e R"|Gyv < Y}, k €lnn, -1,
where 9y, = ([9]1, ..., [Ox]n,) " is found by solving

Vi € ling,, k €y,

[¥y]; = max )
be different from /.

(4.48)
9
s.t. Pr (79 < [glt]j — [Glt]j Klt€k> > Bu,
probabilistic chance constraint is provided.

where ng is the number of rows and entries of Gy and gi;. The probabilistic level 3, may

(4.49)
If these computations are solved, a deterministic expression of the
In comparison to our earlier work [34] where the disturbance was assumed to be normally

distributed, here, the proposed general reformulation of the chance constraint is valid for
arbitrary probability distributions of the disturbance d;. Assuming a normally distributed
to retrieve the PDF.

disturbance simplifies the problems (4.47) and (4.49), due to the fact that the error € is
Computational Considerations

also normally distributed at all times k, and only its covariance matrix has to be computed

approximated set is chosen as

constraints. For RMPC, it is possible to compute the tightened constraint sets (4.39) offline

Using RMPC or SMPC requires additional computational cost to compute the tightened
66

by first finding a disturbance invariant outer approximation Se approx Of the minimal distur-

bance invariant set So. A method to find such an approximation is described in [158]. The
Soo,approx - (1 - as)S )

(4.50)
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with o € [0,1), s € N, and S, according to (4.37). The approximation (4.50) is valid, i.e.,
Soo approx 18 @ disturbance invariant set and Soo € Soo approx, if the parameters o and s fulfill
the condition (Ag)* W C a V.

For constraint tightening in the SMPC part, we need to solve the chance-constrained
problems (4.47) and (4.49). In order to overcome the difficulty of finding a deterministic
solution, sampling techniques to solve chance-constrained problems can be applied offline.
They are independent of the underlying distribution, easy to implement, and it is possible
to give specific guarantees about their solution [116,117]. In particular, they enable directly
using complicated simulations or measurements of the error, instead of determining a PDF.
In the following, we elaborate on the offline sampling approach presented in [116].

The idea is to draw a sufficiently large number n,, of i.i.d. samples of the disturbance
6 and require the constraint to hold for all, but a fixed number w of samples. Under the
condition f.n, > k with g =1 — 3, the explicit conditions

1
5COHf

Bong, — 1+ \/3511)7% In 52 (4.51)

conf

S w S Bubnw - \/ZBubnw In

must hold such that the solution to the sampled program is equal to the chance-constrained
programs (4.47) and (4.49) for some § € [1— fBup, 1 — B with confidence 1 — Seont [43,116]. Tt
(1)

is now possible to compute a set of error evolutions &; ;, = {[Hlt]j €} } ) for each state
i=1,...,n4

constraint (i.e., row of Hy;) and prediction step k with € computed according to (4.43) using
the drawn samples of the disturbance realizations. The tightening of each constraint at each
predicted time step k is then retrieved by

(7], = [Pl — q1-w/nes (4.52)

with q1_,/n, being the (1—-)-quantile of the set &; . The parameter q_,/n, can be seen as
a tightening parameter, which tightens the constraints for the nominal system, such that the
chance constraints for the actual disturbed system are fulfilled with the given probability level
and confidence. The same procedure is applied to compute the input constraint tightening
9y by replacing Hy, and hy with Gy, and gy;. However, as shown in [116], if the tightened
constraints are derived via a sampling approach, the results on chance constraint satisfaction
do not hold with certainty but only with confidence (1 — Beont)”.
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Optimal Control Problem

Using the results from this section for the optimal control problem (4.29), the overall
NG R+SMPC optimal control problem is given by

N-—1 Nig—1
mgn E (Z (l (Tk, ka + ¢, At)) + Z (l]t (Ck, KltCk + Mk, Atlt)) + ‘/f’]t (CNlt)) (453&)

k=0 k=N
s.b. xp —Tp € So (4.53b)
Ty = ATy + Bey (4.53¢)
Kz, +c, €U, ke€lon (4.53d)
T, € X, kelyy (4.53¢)
(Cn,vn) = Proj (Zn, KTy + cn) (4.53f)
Ny = vy — Ky (4.53g)
Cr+1 = Ak 1tCk + By (4.53h)
KiyCp +m € Uy i, k€ ly N1 (4.531)
¢y € By, ke lnn, (4.53))
with the input sequence
C = (co,...,cN,nN,...,ant)T (4.54)
and state sequences )
X = (ZTo, .., T Cns o Coy ) | (4.55)

The stage cost functions and terminal cost function depend on different weighting matrices,
according to (4.32). Similar to [133], the feedback control law 7v*(-), which results from the
solution of the above stated optimal control problem (4.53), follows

This is simplified by
7 (xg) = KT)+ c) + K (g — T;) = Kxo + ¢, (4.57)

where ¢ is the first element of the optimal control sequence C* and x is the actually sampled
system state. Except considering (4.53b) within the optimal control problem, constraint
tightening is performed offline, as mentioned in Section 4.4.2.

4.4.3 Simulation Study

In this section, we analyze the previously introduced method in a scenario based on [7],
i.e., motion control of a mobile robot in a known environment consisting of boundaries, a
dynamic obstacle, and a static obstacle. The simulation is based on a kinematic robot model.
All stated values and axis types are given in SI units. The robot and the dynamic obstacle
both have a radius of 0.5. The objective for the controlled robot is to get from the starting
point (0, 0) to the target point (19, 0) without colliding with any obstacles. The simulation
scenario is shown in Figure 4.4.
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Figure 4.4: NG R+SMPC simulation scenario.

Simulation Setup

The controlled robot knows the velocity and starting position of the dynamic obstacle, and
the additional uncertainty for velocities in 2- and y-direction, w,, and w,,, where |w,,| < 0.1

and ‘wvy <0.1.

Detailed model and constraints. The detailed model for the short-term prediction is
given by

1 At 0 0 A0
0 1 0 0 At 0
0 0 0 1 0 At

with sampling time At = 0.2 and states @y = (2, Vg k) Yk, vyyk)T consisting of the position
(xk, yx) in the z-y-plane and the velocities v, j, v, in both directions, as well as the inputs
u = (agk, ay,k)T representing the acceleration in both directions. The disturbance w, has
zero mean and is bounded by the set W = {wy, | |wg|s < 0.1}, accounting for w,, and w,, .
Actuator limitations are taken into account by box-constraints, bounding the inputs w; by
laz x| < 3 and |a, x| < 3. The lateral position is constrained by —0.5 < y; < 2.5 to ensure
that the robot with radius 0.5 does not leave the environment boundaries. The velocities
are constrained by |v, x| < 3 and |v, | < 3.

Similar to other works, e.g., [23,89,172], the safety constraint for collision avoidance with
the dynamic obstacle is defined by a nonlinear safety ellipse

(xk - $50)2 (yk - yz?())Z
a? b2

d =

—1>0, (4.59)

with the ellipse parameters a, = b, = 1 describing a circle and the obstacle position
(x],go,y,?o) If d;, > 0 holds, the center of the robot is outside of the ellipse and the con-
straint is satisfied. The corners of the static box-obstacle are at the points (11,3), (11,2),
(15,2), and (15, 3), resulting in linear inequality constraints.

In order to determine the tightened constraints for the RMPC approach in the short-term
prediction, we compute a disturbance invariant outer approximation of the minimal distur-
bance invariant set Sy, via (4.50) with oz = 0.1457 and s = 11 using the Multi-Parametric
Toolbox 3 [83] in MATLAB, by applying the input decomposition (4.33) with the feedback
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gain
3.77 4.67 0 0
K==V 0 377 467/ (4.60)
This yields the slightly adapted constraints for the nominal inputs @y, i.e., |G, = |y x| <

1.60, while the constraints for the state @) of the nominal system are given by —0.29 <7, <
2.29, |0, x| <2.32, and |7, x| < 2.32. The tighter safety constraint is challenging to compute,
due to the nonlinearity of (4.59). For simplicity, we over-approximate this constraint by
an ellipse similar to (4.59), enlarged by the maximal distance between the boundary of
the tube and its center, based on the procedure of Section 4.4.2. Considering the position
dimensions of the tube, the reduced tube results in a square with width 2-0.71. The maximal
distance between center and boundary results in v/2-0.71, which yields the tightened ellipse
parameters @, = b, = 2.0.

Coarse model and constraints. The coarse model of the robot depends on At;; and is
given by

1o Aty 0

where Aty = 2At = 0.4, the states & = (a:k,yk)T consider only the position in the z-y-
plane, and the velocities in both directions are treated as the inputs, i.e., vy = (vy4, ’Uy7k)T.
The random disturbance d; is assumed to be distributed according to a truncated normal
distribution with zero mean and the covariance matrix 35 = diag(0.1,0.1), truncated at the
bounds of the interval [—0.1,0.1] x [—0.1,0.1].

The projection function, which maps the states and inputs of the detailed model to the
states and inputs of the coarse model, is given by

(on) =)

The tightened constraints for the coarse model are computed as described in Section 4.4.2,
i.e., solving (4.47) and (4.49), using the proposed sampling approach of Section 4.4.2. In this
example, for 3 = 0.99, Beons = 1074, f = 0.95(1 — 3), and B, = 1.05(1 — 3), the conditions
are fulfilled for n, = 941012 and w = 9454, and the tightened constraints are computed
according to (4.52). For the computation of €, we apply the input decomposition (4.42)
with the state-feedback gain

<zg>. (4.62)

o O O
o= OO
o O = O
_ o O O
o O O O
o O O O

(4.63)

0 0.83

083 0
Klt:_[ ‘|

It is not possible to compute the tighter safety constraint using the proposed sampling
method, due to the nonlinearity of (4.59). Similar to the robust prediction stage, we over-
approximate this constraint by an enlarged ellipse, considering the worst-case constraint
tightening of each prediction step k for constraints on the robot position.
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Figure 4.5: Dependency of the constraint tightening parameter on the risk parameter.

Objective function. For the optimal control problem, we use the quadratic cost functions
2
(@, wr, At)= || — (19, 0, 0, o)THQ + ]| (4.64a)

2
e (G vy A= [|Ge = (19, 0T+ vz, (4.64b)
tg ¢

2
with the terminal cost function Vi () = HCk — (19, O)THP . The weighting matrices are
Aty

defined as Q = diag (1, 0.1, 1, 0.1) and R = diag (0.1, 0.1), as well as Qa, = 2 diag (1, 1)
and Ra;, = 2 diag (0.1, 0.1) according to (4.6), and Pay, = diag(2.36, 2.36). The expec-
tation values follow directly from the zero-mean uncertainties. We choose the short-term
horizon N = 8 and the long-term horizon Ny — N = 6, resulting in N, = 14 and a horizon
time window of NAt + (Ny — N)Aty = 4, which is larger than the constant sampling time
horizon (N, — N)At = 2.8.

Discussion of constraint tightening. According to (4.52), the tighter constraints are
computed by subtracting qi_,/n, from the constraint bound hy. For our example and
chosen probability distribution of the disturbance d;, the maximum value of the quantile,
i.e., the constraint tightening parameter, does not exceed the value 0.27 for any k of the
prediction, even for a relatively large risk parameter g = 0.99. For comparison, the equivalent
constraint tightening value in the robust case (i.e, 5 = 1) equals 0.71. Figure 4.5 illustrates
the dependence of the constraint tightening parameter ¢/, on the risk parameter § for
k =20 and 8 < 0.99. The parameters have been computed for 5 < 0.99 with confidence
1 — Beont = 0.999. For higher probabilistic levels, the number of required samples increases
drastically, which causes computational difficulties. For this reason, larger values of  are
omitted. The robust tightening parameter, i.e., setting f = 1, was determined using the
Multi-Parametric Toolbox 3 [83].

The reason for this significant difference between the constraint tightening of SMPC and
RMPC is that the worst-case error evolution scenario caused by the disturbance, and sce-
narios close to the worst-case, are very unlikely. Using an SMPC scheme for the long-term
prediction drastically reduces the conservatism of the controller, compared to using RMPC
over the full horizon.
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Simulation Results

We will first analyze the behavior of the robot and then evaluate the performance, i.e.,
cost and computational effort of the proposed method. For an appropriate comparison, we
additionally implement the three different methods from the simulations of [34] to evaluate
and compare our proposed control scheme, resulting in the following four MPC schemes.
Note that these MPC schemes are different than the ones presented in previous simulation
in Section 4.3.3.

A) Single model RMPC: RMPC with the detailed model and the sampling time At = 0.2
over the full horizon.

B) Single model R+SMPC: RMPC with the detailed model for short-term predictions
and SMPC with the detailed model for long-term predictions, with the sampling time
At = 0.2 over the full horizon.

C) Granularity R+SMPC [34]: RMPC with the detailed model for short-term predictions
and SMPC with the coarse model for long-term predictions, with the sampling time
At = 0.2 over the full horizon.

D) NG R+SMPC (proposed method): RMPC with the detailed model and a sampling
time of At = 0.2 for short-term predictions and SMPC with the coarse model and a
sampling time of Aty = 0.4 for long-term predictions.

The simulations were carried out in MATLAB using FORCES Pro [62,206].

Controlled robot behavior. The resulting trajectory for one example simulation of the
proposed NG R+SMPC method is displayed in Figure 4.6.

We now compare the behavior of the proposed method to the three other approaches.
Both single model R+SMPC (B) and granularity R+SMPC (C) yield a similar trajectory
to the NG R+SMPC method (D) simulation. Therefore, a display of the results is omitted.

The result of applying the single model RMPC (A) approach is shown in Figure 4.7. Unlike
the first simulation with the proposed method, the robust approach is more conservative
and fails to pass the dynamic obstacle. Whereas only the constraints for the next predicted
step are displayed in Figure 4.7, the robust constraints are enforced on the entire horizon,
forcing the robot to stop in front of the static obstacle in order to avoid potential constraint
violations.

Cost and computational effort. After having analyzed the behavior of the proposed
method, the cost and computational effort is now evaluated for 100 simulations with random
initial dynamic obstacle position and velocity. For each time step, a mean value over all
simulations is calculated for cost and computational effort.

We compare the cost of the four approaches by evaluating the cost

Nsimfl
Jsim = Z l($t+1,’ut,At) (465)
=0
with [ (@1, ug, At) = ||z — (19, 0, 0, O)T||%2At1 + ||u;€||fqm1 and Ny, simulation steps.

Figure 4.8 shows that the costs for single model R+SMPC (B) and granularity R+SMPC (C)

72



4.4 Extending the MPC Prediction Horizon for Systems with Uncertainty
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(c) Simulation step 23.

Figure 4.6: Simulation results of the proposed NG R+SMPC method (D). Previous robot
steps are shown in orange. The planned RMPC and SMPC trajectory parts are
shown in red circles and pink asterisks, respectively. Dotted red lines display the
constraints for the (first step) nominal states of the RMPC.

Figure 4.7: Simulation results of the RMPC method (A). Previous robot steps are shown in
orange. The planned RMPC trajectory parts are shown in red circles. Dotted
red lines display the constraints for the (first step) nominal states of the RMPC.
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Figure 4.8: Cost per step for the four approaches, averaged over 100 simulation runs. NG
R+SMPC, Granularity R+SMPC, and single model R+SMPC yield similar cost;
hence, only NG R4+SMPC is displayed.

are equal to the cost of the proposed NG R+SMPC method (D). Applying the single model
RMPC method (A) results in a more conservative robot behavior, i.e., the robot does not
pass the dynamic obstacle in front of the static box-obstacle in 35 of 100 simulation runs.
This can also be seen in the cost, which is similar to the other methods at first, but then
remains at a higher level as the robot is unable to move closer to the target point in 35
simulation runs. All other methods are able to overtake the dynamical obstacle in all 100
simulations.

We now evaluate the computation time to solve the optimization problems at each time
step. The results, based on the 100 simulation runs, are displayed in Figure 4.9. For this
simulation setup, the computational effort of the proposed NG R+SMPC method (D) is
32 % lower than single model RMPC (A), 43 % lower than single model R+SMPC (B), and
38 % lower than the Granularity R+SMPC approach (C).

In summary, for this simulation the proposed NG R+SMPC method results in less compu-
tational effort compared to a single model R+SMPC or a Granularity R+SMPC approach,
while the performance remains similar. The proposed approach is less conservative com-
pared to a single model RMPC approach, in addition to having less computational effort. If
recursive feasibility is required, the proposed approach could be incorporated into the failsafe
SMPC framework presented in Chapter 5.

4.4.4 Discussion

The proposed NG R+SMPC method enables robust planning for a short-term horizon and
consider long-term targets, but with a reduced number of decision variables. Applying
chance constraints instead of robust constraints for the long-term prediction reduces conser-
vatism, depending on the underlying probability distribution of the disturbance. Robustly
accounting for uncertainties over a long horizon is often highly restrictive and the worst-case
scenarios are generally unlikely. Additionally, using the coarse model with a larger sampling
time potentially decreases the computational effort. Note that it is possible to combine more
than two models of different granularity and to add more segments with differently spaced
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Figure 4.9: Computational effort per step for the four approaches, averaged over 100 simu-
lation runs. Dashed lines represent mean values over all steps.

sampling horizons.

Obtaining the projection mentioned in Assumption 4.1 and guaranteeing consistency be-
tween the models via a robust approach as proposed in [7] or by finding additional constraints
for the coarse model can be challenging, especially for complex systems. Determining suit-
able coarse models and the corresponding uncertainties remains a topic for further study.

The bounded disturbance in the coarse model of the proposed method allows us to inves-
tigate a proof of recursive feasibility in the future, which may be accomplished in probability
with even tighter constraints for the SMPC scheme, similar to [116].

Besides the fact that stability for MPC with models of different granularity was not yet
shown, the standard approach to show stability of an MPC scheme, e.g., [160, Chapter 2.4],
cannot be applied to methods with non-uniformly spaced prediction horizons. However,
dissipativity theory could be of interest for investigating stability of the proposed method,
similar to the stability guarantee in [188].

This chapter was mostly based on [35]. Compared to our earlier work [34], there are three
main improvements. The computation time is decreased by including the NUSH scheme, the
SMPC constraint tightening is now done offline, and the proposed method is able to han-
dle bounded uncertainties with arbitrary distributions instead of only normally distributed
uncertainties.

4.5 Conclusion

In this chapter, we proposed two strategies to increase the MPC prediction horizon length
while keeping computational complexity manageable. First, the undisturbed case is consid-
ered. We proposed an MPC scheme that combines a detailed model with smaller sampling
time and an approximated, coarse model with larger sampling time. The presented method
allows for precise planning on a short-term horizon while still considering long-term goals by
improving the cost-to-go. The coarse model combined with increased sampling time allows
for reduced computational effort. While recursive feasibility is guaranteed, stability is still
an open challenge.
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Second, we extended the previously proposed method by considering uncertainty within
the MPC optimal control problem. We derived a mixed RMPC and SMPC method, which
uses two models for the prediction horizon with different sampling times. RMPC is used
with a detailed model for short-term predictions, while chance-constrained SMPC is com-
bined with a coarse model for long-term predictions. The more general formulation of the
disturbance in the SMPC horizon facilitates a more detailed analysis of a suitable projection
of the disturbance in the short-term horizon and opens the way for an analysis of recursive
feasibility and stability, which is a topic for further research. The proposed MPC method
provides benefits for applications where robust constraint satisfaction is required, while con-
sidering long-term targets with less restrictive chance constraints using the coarse model and
a larger sampling time.
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This chapter focuses on guaranteeing safety for SMPC while maintaining efficiency advan-
tages of SMPC. We first design a safe SMPC algorithm that is designed for use in automated
driving and then present a general safe SMPC approach. Part of the content of this chapter
was published in [31,32], particularly Section 5.2.

5.1 Introduction

Designing controllers for safety-critical systems requires considering two major challenges.
Safety must be ensured for a system subject to uncertainty, and the controller should reduce
conservatism to enable efficient system behavior, i.e., maximizing desired objectives. As it
is possible to define safety via input and state constraints, MPC is a suitable method to
control safety-critical systems subject to uncertainty.

A prominent example of control in safety-critical systems is automated driving. After
pioneering work [24,58,59] in the 1980s and 1990s, research in automated driving has seen
significant progress over the past decade. Improvements in computer vision-based sensing
and the use of these sensor data in control algorithms enable automated vehicles to detect
and react to hazards in dynamic traffic and a constantly changing environment. A majority
of road accidents are still caused by human errors; therefore, increasing the level of vehicle
autonomy has great potential to reduce the overall number of accidents. Automated vehicles
are especially relevant in critical situations where a significant number of human drivers is
incapable of performing necessary maneuvers in time [97]. While there are various control
methods for vehicle trajectory planning, MPC has proved to be a suitable approach for
automated vehicle trajectory planning [94,112], which is in large parts due to the ability of
MPC to consider uncertainty of other traffic participants and the environment.

In MPC, system uncertainty is addressed by RMPC [129] or SMPC [68,134]. The con-
servatism resulting from robustly handling uncertainty in MPC is reduced by SMPC, where
robust constraints are reformulated into probabilistic constraints. This probabilistic refor-
mulation increases efficiency, but it also allows for a small probability of constraint violation,
i.e, a probability of collision for vehicles. However, guaranteeing safety within SMPC has
hardly been investigated.

In comparison to SMPC, trajectory planning based on reachability analysis provides formal
safety guarantees [123,182]. This approach is especially applicable to automated vehicles.
Here, worst-case predictions are obtained for other surrounding vehicles in order to plan
failsafe vehicle trajectories, referred to as failsafe trajectory planning (FTP), which is closely
related to RMPC.

In this chapter, we tackle the challenge of safe and efficient control. We first present
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a novel MPC trajectory planner that combines the advantages of SMPC and failsafe tra-
jectory planning for automated vehicles in environments with uncertainty. A trajectory is
planned with SMPC, providing optimistic and efficient planning. In a regular setting, the
first optimized SMPC input is then applied to the vehicle. In addition to SMPC, for ev-
ery time step a failsafe trajectory is planned, given the first optimized SMPC input. The
optimistic SMPC input is only applied to the vehicle if it is still possible to find a failsafe
backup trajectory after having applied the first SMPC input. This ensures that the efficient
SMPC trajectory is executed as long as a backup exists, therefore guaranteeing safety. The
proposed method is referred to as stochastic Model Predictive Control + failsafe trajectory
planning (SMPC+FTP). For SMPC+FTP, we present a detailed case differentiation to gen-
erate safety constraints with respect to other surrounding vehicles, both for the SMPC and
the FTP optimal control problem.

We then generalize the SMPC+FTP approach such that it is applicable to general safety-
critical application. In the general safe SMPC algorithm, the SMPC input is only applied
if the resulting state remains in a robust positively invariant set, which ensures that a safe
trajectory may be obtained in the next step. Whereas the design of both the SMPC+FTP
method and the safe SMPC algorithm guarantees recursive feasibility, input-to-state stability
is only guaranteed for the safe SMPC algorithm. With this proposed safety algorithm,
for a given safety-critical application and based on desired control objectives, the most
suitable SMPC approach can be chosen. This choice may be made independently of required
properties, which are later ensured by the proposed safety algorithm.

In summary, the contributions of this chapter are as follows:

e A novel SMPC+FTP method providing efficient and safe trajectory planning for au-
tomated highway driving, including lane change decisions.

o An elaborate case differentiation for highway safety constraints.
o A proof of recursive feasibility of the proposed SMPC+FTP method.

o A general safe SMPC algorithm, compatible with any SMPC for linear systems with
additive uncertainty and polytopic constraints.

o Guarantees for recursive feasibility and input-to-state stability for the safe SMPC al-
gorithm.

e No influence of the SMPC risk parameter on safety for both proposed methods, sim-
plifying risk parameter tuning.

The proposed methods combine advantages of stochastic and robust predictive control. For
SMPC+FTP a simulation study of two complex highway scenarios demonstrates the benefits
of optimistic trajectory planning in a regular scenario, while the ability of SMPC+FTP to
guarantee safety is shown in an emergency scenario. The advantages of the proposed safe
SMPC algorithm are demonstrated in a simple simulation example.

5.1.1 Related Work

Whereas general literature on SMPC has been covered in detail in Section 2.1, here, we
briefly focus on safety in MPC, especially RMPC. We then present a detailed overview of
trajectory planning for automated vehicles.
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Safety in MPC

RMPC handles system uncertainty in a robust, but conservative way [9, 132], where tube-
based MPC is the most common approach [102,108,130]. Stability and recursive feasibility
guarantees are possible if the uncertainty bound is known initially. RMPC has success-
fully been applied to safety-critical applications such as automated driving [61, 71, 181],
autonomous racing [198], and robotic manipulation [144].

Further approaches have recently been proposed to address safety in probability within
MPC. A combination of MPC and control barrier functions consider safety similarly to
how Lyapunov functions are used for stability [77,208]. However, guaranteeing recursive
feasibility in the presence of uncertainty remains a challenge. In [194, 195] a predictive
safety filter is proposed to guarantee safety in probability for reinforcement learning. This is
achieved by enforcing that only those reinforcement learning-based inputs may be applied,
which allow for satisfaction of a soft-constrained optimal control problem.

Trajectory Planning for Automated Vehicles

Trajectory planning for automated vehicles is a widely studied area of research. There
are various methods in non-MPC related fields, such as using partially observable Markov
decision processes (POMDP) [87] or reinforcement learning [138]. Learning-based methods
are also popular for autonomous racing [92,167,184,197]. When considering automated road
vehicles, planning trajectories with MPC has the advantage of iteratively replanning the
vehicle trajectory with constraints, accounting for a changing environment.

Standard MPC has been developed for cooperative adaptive cruise control, focusing on
cooperative driving [95,127] and vehicle platooning [52]. MPC is also designed specifically
to plan trajectories for a single autonomous vehicle [81] or for combined maneuver and
trajectory planning [201]. MPC was also combined with potential-field methods in order
to avoid static and dynamic obstacles [159]. Extensive surveys cover MPC for autonomous
ground vehicles [203] and MPC for advanced driver-assistance systems [140].

The main focus of this chapter is trajectory planning with robust or stochastic MPC, as
well as failsafe trajectory planning (FTP). Failsafe trajectory planning is defined as planning
collision-free vehicle trajectories, accounting for any legal future motion of surrounding ve-
hicles [152]. For bounded uncertainties in real-world applications, FTP is applied based on
finding worst-case sets. Combined with reachability analysis, formal safety guarantees are
given [182]. The computation of these reachable sets is connected to control invariant sets
in RMPC as stated in [74]. An approach to include reachability analysis into MPC is given
in [175].

In [4] a method is proposed to compute the set of all future locations possibly occupied by
traffic participants. The remaining safe space is admissible to plan emergency trajectories.
This FTP is presented in [123]. First, given the most likely motion of surrounding vehicles,
an optimal trajectory is determined. Then, an emergency trajectory is connected to the
last point of the optimal trajectory for which collision avoidance is still guaranteed. The
safe space is determined by an over-approximated set of any possible future vehicle motion.
The failsafe trajectory is generated in such a way that the controlled vehicle comes to a
standstill. In [152] an FTP method is introduced which generates failsafe trajectories in
real-time. The method is tested in various simulations based on the CommonRoad bench-
mark framework [5]. A motion planning framework is introduced in [126] which combines
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reachability analysis with optimization-based trajectory planning. In [61] an RMPC method
is suggested, which uses a combination of a potential field like function and reachability
sets to obtain safe zones on the road. A further RMPC method for collision avoidance with
moving obstacles is presented in [181].

SMPC has been intensively studied in the context of automated vehicles. These works
focus on the trade-off between risk and conservatism, defined by probabilistic constraints,
i.e., chance constraints [176]. On the one hand, taking into account unlikely uncertainty
realizations drastically reduces efficiency, on the other hand, planning too optimistically in-
creases risk. A major challenge in SMPC is reformulating the probabilistic chance constraint
into a tractable constraint, which can be handled by a solver.

An SMPC particle approach is shown in [15] with a simple vehicle braking scenario, where
particles approximate the uncertainty. An SMPC trajectory planner for automated vehicles
in the presence of fixed obstacles is presented in [111]. In [50] the environment is mod-
eled by an Interacting Multiple Model Kalman filter. Given the most likely prediction for
surrounding vehicles, a vehicle trajectory is then planned with SMPC assuming Gaussian
uncertainty. Varying risk parameters, denoting the level of accepted risk, are studied, illus-
trating the trade-off between risk and conservatism. In [187] an SMPC lane change controller
is presented, where the lane change risk is considered using predicted time-to-collision.

A different SMPC approach is utilized in [53,170], focusing on SCMPC based on [43,171].
In SCMPC samples of the uncertainty are drawn, which must then satisfy the constraints
to find a tractable chance constraint expression. While [170] focuses on simple lane change
scenarios, the work is extended in [53] and experimental results are presented.

In summary, SMPC approaches provide efficient vehicle trajectories for the majority of
uncertainty realizations in regular situations. However, for unlikely uncertainty realizations,
safety issues occur.

5.1.2 Chapter Overview

The chapter is structured as follows. Section 5.2 introduces the SMPC+FTP approach for
automated vehicles and Section 5.3 proposes the general safe SMPC algorithm. The basics
of SMPC and FTP are introduced in Section 5.2.1, whereas the relevant vehicle models and
the problem statement are presented in Section 5.2.2. The proposed SMPC+FTP approach
is derived in Section 5.2.3, and details for the respective SMPC and FTP optimal control
problems are provided in Section 5.2.4 and Section 5.2.5. The simulation results are presented
in Section 5.2.6. A discussion is given in Section 5.2.7. The problem formulation for the safe
SMPC algorithm, the derivation of the proposed method, and its properties are presented in
Sections 5.3.1, 5.3.2, and 5.3.3, respectively. A simulation example is shown in Section 5.3.4.
Conclusive remarks, addressing both methods, are given in Section 5.4.

5.2 Stochastic MPC with a Safety Guarantee for
Automated Driving

In the following, we propose an SMPC algorithm with a safety guarantee for automated
driving. Safety is guaranteed with a failsafe backup planning algorithm, which overwrites
the SMPC input if necessary, based on the first predicted SMPC input.
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5.2.1 Preliminaries

In the following, we briefly introduce the general MPC optimal control problems for SMPC
and FTP in order to highlight the difference between these two planning approaches.

SMPC with Chance Constraints

Whereas standard MPC considers hard constraints, this is problematic if uncertainties are
present. Hard constraints subject to uncertainty can be considered by chance constraints.
This yields the SMPC optimal control problem

mlnz wk, uk + Vi (JJN) (5 1&)

s.t. Jik+1 = f (xk, uy) (5.1b)

uy € Uy, ke H07N_1 (5 1C)

Ty € Xk, ke HI,N (5 1d)

Pr (mk € X,gsafe(w)) >pB, keln (5.1e)

with the optimized input sequence U = (uy, . .. ,uN_l)T, states xj, prediction model f, and

the normally distributed, zero mean uncertainty w ~ N (0, X*) with covariance matrix X*.
The cost function consists of the stage cost [(xy, ux) and the terminal cost Vi (xy). States
and inputs are bounded by the state and input constraint sets &, and Uy, respectively, and
the safety constraint &} . (w) depends on the uncertainty w. The probabilistic chance
constraint is given by (5.1e). The safety constraint xp € A r(w) is required to hold
according to the risk parameter 5. For 8 < 1 a non-zero constraint violation probability is
therefore allowed.

The chance constraint (5.1e) cannot be handled by a solver directly, but is required to
be reformulated into a deterministic expression. Details on the reformulation are given in
Section 5.2.4.

In this section, uncertainty is considered regarding surrounding vehicles. The safe set
= . (w) therefore depends on how the uncertainty w affects the surrounding vehicles. This
is described in Section 5.2.2. Note that SMPC optimal control problems can consider an
expectation value in the cost function; however, this is omitted here as no expectation value
will be necessary for the automated driving optimal control problem, i.e., the prediction
model (5.1b) does not include uncertainty. In the simulation study in Section 5.2.6, the un-
certainty in the safe set =), ¢ (w) is governed by uncertainty in the behavior of surrounding
vehicles.

Failsafe Trajectory Planning

We also consider an MPC optimal control problem for FTP, i.e., a failsafe MPC optimal
control problem. In contrast to SMPC, FTP considers the worst-case realizations of the
uncertainty, resulting in safe, yet conservative optimized inputs. The FTP optimal control
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problem is given by

N-1

min }  ([(& wr)) + Vi (§n) (5.2a
k=0

st. &1 = f (&, u) (5.2b
Uup € Uk, ke H07N_1 (5.2C

&k € By, kelin (5.2d
&k € Epsare(w), k€N (5.2e
£N S EN,safe<w>7 (52f

)
)
)
)
)
)
which is similar to the SMPC problem (5.1). However, the safety constraint (5.2e) is not
a chance constraint, as in (5.1e), but a hard constraint. In contrast to SMPC, for FTP
the safe set By gate(w) is constructed based on reachability analysis to ensure formal safety
guarantees. This is strongly connected to the computation of invariant sets in RMPC. In
addition to constraint (5.2e), a terminal constraint (5.2f) is required, which ensures that
the terminal prediction state £y may remain in a safe state beyond the prediction horizon.
Based on this safe terminal set Epy safe(w) it is guaranteed that there exist system inputs
u+ with k™ > N that result in safe states §+. Note that the safe set 2} . (w) in (5.1e) is
not necessarily computed in the same way as the safe set By, sare(w) in (5.2¢),(5.2f). Details
on the F'TP optimal control problem are provided in Section 5.2.5.

5.2.2 Problem Formulation

MPC requires a system model for the controlled vehicle, known as the EV, and surrounding
vehicles, referred to as TVs, in order to predict future states within the optimal control
problem.

Ego Vehicle Model

We use a road-aligned, kinematic bicycle model to predict the EV states on a finite horizon,
as suggested in [103]. The continuous-time system, similar to (3.42), is given by

s=vcos(P™ + ), (5.3a)

d= vsin(¢™ + a), (5.3b)

Y= lg sin a, (5.3¢)

U= a, (5.3d)
Ly

a= arctan <lr T tan (5f) ) (5.3¢)

where [, and [; are the distances from the vehicle center of gravity to the rear and front axles,
respectively. The state vector is € = (s,d,¥"™,v)" and the input vector is u = (a,d).
The vehicle velocity is given by v, acceleration and steering angle are denoted by a and
d0¢, respectively. We consider the longitudinal position s of the vehicle along the road, the
lateral vehicle deviation d from the centerline of the right lane, and the orientation ™ of
the vehicle with respect to the road. We refer to [157] and [49, Chapter 3] for further details
on vehicle models. The nonlinear vehicle model (5.3) is summarized as & = f° (x, u).
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5.2 Stochastic MPC with a Safety Guarantee for Automated Driving

Each MPC optimal control problem is initialized with a linearization of the nonlinear
prediction model (5.3) around the current vehicle state £* = xo and the input u* = (0, 0)".
Selecting a non-zero reference input u* often results in large differences Au = u;, — u* for
prediction steps far ahead, increasing the inaccuracy of the linearization. The linearized
continuous-time vehicle model is then given by

"+ Az = f°(x",0)+ A (x — z*) + Biu (5.4)
with the Jacobian matrices
A= |Y R (5.5)
aw (m*;u/*) 8“ (m*,u*)

A discrete-time model is required for MPC, therefore the linearized prediction model (5.4)
is discretized with sampling time At. This yields the discrete states & = (s, dg, V52, vp)
and inputs uy = (a, d;x) ' for prediction step k, as well as the linearized, discretized system

LTri1= Lo + Atfc (330, O) + Ad (CUk — CU()) + Bduk (56&)
= f* (@0, Tp, ur) (5.6b)

where Ay and By are matrices of the linearized system obtained from A;, B; with zero-order
hold. The nonlinear term f°(x*,u*) in (5.4) is approximated by a forward Euler method
since xg is known. The linearized, discretized matrices Aq and By are given in Appendix C.1.

The following sections derive an SMPC method and constraints to avoid collisions with
surrounding vehicles. However, even if no other vehicles are present, certain constraints are
required. Acceleration and steering angle are bounded by

UWUmin S Uy, S Umax (57&)
A,u’min S Auk S Aufmax (57b)

: _ _ T _ T
with Augi; = Upy1 — U and Umayx = (Gmax; O max) > Umin = (Gmin, Ogmin) - Further, road
and velocity constraints are considered, resulting in

dy, € x'ane (5.8a)
0 < v < VUpax (5.8b)

where X'#%¢ represents road boundaries and vyay is the maximal velocity. Negative velocities
are not allowed, i.e., v, > 0.

In the following, we refer to input constraints by the set of admissible inputs U/ and state
constraints are denoted by the set of admissible states X.

Target Vehicle Model

In order to avoid collisions, the EV is also required to predict the future states of surrounding
TVs. The prediction model for the TVs used by the EV is a linear, discrete-time point-mass
model given by

x, = Az." + Bu, " (5.9a)
ulV =4, " +wp (5.9b)

83



5 Safety for Stochastic MPC

where a; ¥ = (2 ¥, v ), yp ¥, v, )" is the TV state with longitudinal position and velocity

xp, v, ) and lateral position and velocity iV, v,y. The linear TV model allows us to
propagate the uncertainty, which is necessary for the MPC approach in the following sections.
The TV model used in this chapter is only one possible option. Other linear TV prediction
models can be utilized.

The system and input matrices are

1 At 0 0 0.5A¢2 0
01 0 0 At 0

A=10 0 1 Al B=| 0 osa2 (5.10)
00 0 1 0 At

with sampling time At. The TV input consists of a feedback controller 4} and a perturba-
tion on the input, which is assumed to be an independent, identically distributed disturbance
vector w; V. This setup assumes that the TV is following a given reference while deviations
are allowed. The TV feedback controller is given by

i = K (x}¥ - zL})) (5.11)

with the TV reference x},. The feedback matrix K is obtained by a linear-quadratic regu-
lator strategy. If the TV input computed by (5.11) exceeds the limits u}Y. = (amax, Gy max) "
and wY = (@min, Gy min) |, summarized as U, the TV inputs are bounded to satisfy U'V.

We assume that w}"V is subject to a Gaussian distribution with zero mean and covariance
matrix X1V, which is denoted by wiV ~ N (0, EEV). We also consider sensor noise in the

measurement of the TV state, i.e.,
&Y =x) " + wp™s (5.12)

where ]V is the measured initial state of the TV by the EV. The sensor noise wi™ =

(w§ens, wgegj,wge;iwgegjf is assumed to be a truncated Gaussian noise with wg™® € YW

and wi™ ~ N (0, X5) where W™ is a compact and convex set
Problem Statement

We now formulate the objective addressed in this section.

Objective 5.1. The aim is to develop a trajectory planner for automated highway driv-
ing that exploits the advantages of SMPC while guaranteeing that no self-inflicted collisions
occur.

We approach Objective 5.1 by developing a safety strategy for SMPC that is applicable
to automated vehicles, which is shown in the following.

5.2.3 Method

SMPC and failsafe trajectory planning both have their individual advantages, i.e., efficient
trajectories in an uncertain environment and guaranteed safe motion planning, respectively.
In the following, we present a combined SMPC and FTP framework, SMPC+FTP, which
exploits advantages of both methods to plan efficient and safe trajectories for autonomous
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vehicles. This section introduces the setup of the SMPC+FTP framework and gives a proof
for recursive feasibility.

Before presenting the SMPC+FTP method, we need to define requirements for a safe ego
vehicle state as well as a safe input sequence

Usafe = (usafe,07 Usafe,1y -+ usafe,ns)T (513)

with ng + 1 individual inputs. Note that ng is not directly related to the MPC prediction
horizon.

Definition 5.1 (Safe State). The state of an ego vehicle, fully located in one lane, is con-
sidered to be safe if there is no lateral vehicle motion, i.e., Y™ = 0, and if the ego vehicle
velocity is lower than the velocity of the target vehicle in front on the same lane (or if the
ego vehicle velocity is zero). The set of safe states is indicated by Xafe-

Definition 5.2 (Safe Input Sequence). An input sequence Uy (5.13) is considered safe if
consecutively applying all elements of Ugage results in a state trajectory that avoids collisions,
i.e., T € Xafe, Vt € 11 n.41, and eventually leads to zero velocity, i.e., vy 11 = 0.

The definition of safe states and safe input sequences requires assumptions for T'Vs.
Assumption 5.1. Target vehicles adhere to the traffic rules.

Assumption 5.2. The upper bound of the ego vehicle deceleration is at least as large as the
upper bound of the target vehicle deceleration.

Based on Assumptions 5.1 and 5.2 and given a safe initial EV state, there exists a safe
input sequence Ug,g, consisting of deceleration and zero steering, which results in an EV
zero velocity state in the current EV lane, i.e., zero velocity in z-direction and y-direction.
TVs behaving against traffic rules cannot be reliably accounted for by any prediction and
the deceleration assumption is necessary to avoid colliding with a braking TV in front.

At the initialization of each optimal control problem, the current EV state &, and the
current TV state &3V are known to the EV. Additionally, a safe input sequence Uy, is
available from the SMPC+FTP problem solved at the previous time step. Later, we will
focus on obtaining a safe input sequence for the SMPC+FTP iteration at the next time step,
given the safe input sequence of the current time step.

The SMPC+FTP method uses both SMPC and FTP, i.e., at every time step an SMPC
optimal control problem and an FTP optimal control problem are solved. The general idea is
that the first input ugypco of the SMPC input sequence Usyipe = (Usypc,o, -+ UsSMPON—1)
must only be applied if, based on the first SMPC input ugmpc o, a failsafe trajectory can be
found. Compared to regular SMPC methods, this approach guarantees that applying the
optimistic SMPC input ugypco does not lead to unsafe behavior. The algorithm outline is
shown in Figure 5.1.

SMPC

In the first phase of SMPC+FTP, an SMPC problem is solved on a finite horizon Ngypc,
yielding the input sequence Usypc = (Usmpc o, ...,uSMpQNSMP(j,l)T. This SMPC optimiza-
tion takes into account the uncertain environment and constraints due to other traffic par-
ticipants, i.e., target vehicles. Collision constraints are formulated as chance-constraints,
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environment
¥

[ solve SMPC ]

Usafe

feasible infeasible

= Uswmpc

SMPC Mode FTP Mode
solve FTP
. solve FTP
with uSMpCIO
feasible infeasible infeasible feasible
= Uprp Backup Mode = Uprp
aPP'Y Usmpc,0 ] [ apply Ugate o ] [ apply uprp

)

!
shift Usafe
= Usafe

[ update Ug,¢e
|

Figure 5.1: SMPC+FTP procedure for each time step. Blue shows the ideal mode with
an applied SMPC input, orange represents the safe alternative mode with an
applied FTP input, and red indicates an infeasible FTP problem, which requires
applying a safe backup input. © 2021 IEEE.

86



5.2 Stochastic MPC with a Safety Guarantee for Automated Driving

based on a probabilistic TV prediction. Therefore, the planned SMPC trajectory provides
an efficient and optimistic future trajectory for the EV, as it is not required to avoid collision
with T'Vs for worst-case scenarios.

FTP

The second phase of SMPC+FTP is based on FTP to ensure that the planned EV trajectory
remains safe. A failsafe MPC optimal control problem with the horizon Ngrp is solved, using
a worst-case TV prediction, resulting in an input sequence Uprp = (uptp ) -\ UFTP, NFTP_I)T'
The failsafe trajectory is required to avoid collision with the worst-case TV prediction and
after applying the full failsafe input sequence Uprp, the terminal state oy, must be a safe
state according to Definition 5.1. The exact FTP formulation depends on the feasibility of
the SMPC optimal control problem.

Feasible SMPC (SMPC mode). If the SMPC optimal control problem yields a solution,
FTP is used to decide whether applying the first SMPC input ugypc o is safe. Therefore, an
FTP optimal control problem is formulated starting with the EV state obtained by applying
the first SMPC input ugympc o, i-€., the initial FTP optimal control problem state is

xy = f (@0, To, Usmpc,o) (5.14)

with f (@, o, usmpc,o) according to (5.6).

If feasible, the FTP optimal control problem yields a failsafe input sequence Ufpp, based
on x;. Therefore, the first element ugypc, of the SMPC input sequence is applied safely,
as shown by the blue path in Figure 5.1. The resulting new safe input sequence is given by

Usafe: (Ulf?TPa Ubrake) (515&)
Ubrake: ((amina O)T s (a'mim 0) T, - ) (515b)

where a,;, is the maximal deceleration and Uy, is a braking sequence to bring the EV to
a standstill. The safe input sequence Us,g ensures a safe state after the full failsafe input
sequence Ul.pp was applied and then initiates braking to reach zero velocity. Note that @
is only applied in Uy, . until a standstill is reached; subsequently no deceleration is applied.

Infeasible SMPC (FTP mode). If the SMPC optimal control problem is infeasible,
the FTP optimal control problem is solved with initial state xy for the FTP optimal control
problem. If an F'TP solution Uprp is found, the first element of Uprp, i.e., uprp o, is applied,
as indicated by the orange path in Figure 5.1. The updated safe input sequence follows from

Usafe - (UFTP,lzNFTp—la Ubrake) (516)

with Uprake according to (5.15b) where

Urrp 1:Nppp—1 = (UWFTP 1, o) WETP, Nprpp—1) (5.17)

consists of all input elements of Uprp except the first input wprp o.
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Infeasible FTP (Backup mode). In case of an infeasible FTP optimal control problem,
no new input is generated at the current time step t. However, by definition the safe input
sequence obtained at the previous time step t — 1 remains safe for the current time step t¢.
Therefore, in case that no solution exists to the FTP optimal control problem, the first
element of the still valid, safe input sequence Us,g. is applied, which is denoted by wsafe -
This procedure is highlighted in red in Figure 5.1.

Continuously applying the elements of Uy, results in a safe trajectory according to Defi-
nition 5.2. If the FTP optimal control problem remains infeasible for consecutive time steps,
multiple subsequent input elements of a single safe input sequence are potentially applied
until the FTP optimal control problem becomes feasible again.

This procedure requires shifting U,g after each SMPC+FTP iteration where the FTP
optimal control problem was infeasible, i.e., if the first input element wgafe o of Uge Was
applied. The shifted updated input sequence is obtained by

0
< n,
safe — Usafe [I | = (usafe,h Usafe,2y -+ usafe,ns) (518)
Ns

with Ugge € R+ identity matrix I,,, € R™*" and 0,,, € R'*". The shifted safe input

sequence Ug;, consists of all elements of U, except the already applied input wgafe 0.

Then, the safe input sequence is updated at the end of the SMPC+FTP iteration by
selecting

Usafe = Ny (519)

safe’

which initializes the safe input sequence for the next SMPC+FTP iteration.

Summary of SMPC+FTP

Within the SMPC+FTP method, four cases are considered. These cases are summarized in
the following.

SMPC and FTP feasible (SMPC mode). At time step ¢, the first SMPC input
ugMpc 0, Obtained at time step ¢, is applied and a new safe input sequence Us,y is obtained
according to (5.15).

SMPC infeasible and FTP feasible (FTP mode). At time step ¢, the first FTP input
upTp0, obtained at time step ¢, is applied and a new safe input sequence U,y is obtained
according to (5.16).

SMPC feasible and FTP infeasible (Backup mode). At time step ¢, no new input
sequence is obtained. The first input element of the safe input sequence wg,se o, obtained at
time step ¢ — 1, is applied. The safe input sequence Ug, remains valid for the next time
step t + 1 and is updated according to (5.19).

SMPC infeasible and FTP infeasible (Backup mode). As in the previous case, at
time step ¢, no new input sequence is obtained. The input wg,fe o, obtained at time step ¢t —1,
is applied and Ug,y. is generated based on (5.19) for the next time step ¢ + 1.
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Following this procedure, in regular cases the SMPC inputs are applied, resulting in ef-
ficient performance, whereas FTP guarantees safety for all possible cases, including rare
events.

h

Recursive Feasibility

A disadvantage of various SMPC algorithms is that recursive feasibility of the optimal control
problem cannot be guaranteed. In this section, recursive feasibility of the SMPC+FTP
method is proved, which follows directly from the design of the proposed approach. We use
Definition 2.5, i.e., if the optimization problem can be solved at step ¢, it can also be solved
at step t + 1 for all t € N. In this section, it is necessary to denote the time step t. The safe
input sequence updated at time step ¢ is denoted by Usafe -

Definition 5.3 (Safe Feasible Trajectory). Let there exist a safe set Xgge and let X; be
a control invariant set. Let XY = (x,...,@n) denote a trajectory starting at initial
state x, at time step t with N trajectory steps obtained by applying the input sequence
U, = (ug, ...,y n—1) with iy = f (g, uy). Then, the set T'y of safe feasible trajectories,

eventually converging into the set X;, is defined as

Iy = {ng

Tiyi € Xaate, 1 € o N, Tiyn € Xf} . (5.20)

A safe feasible trajectory satisfies all constraints given by X, and ends in the control
invariant set AX}.

Assumption 5.3. The ego vehicle prediction models (5.3) and (5.6) correspond to the dy-
namics of the real system. The target vehicle model (5.9) represents an over-approzimation
of the real target vehicle dynamics.

Here, over-approximation means that the possible states reachable with the TV model
include all possible states obtained with the real TV dynamics.

Assumption 5.4. At the initial time step t = 0, the initial ego vehicle state is safe and

there exists a known initial safe input sequence Uggeinit, Such that Xz "™ is a safe feasible

Usafe,init

trajectory, i.e., Xz, el
We now show recursive feasibility of the proposed method.

Theorem 5.1. Let Assumptions 5.3 and 5.4 hold. Then, for the SMPC+FTP approach
there exists a feasible trajectory X;Jtt € I'; that is guaranteed to be safe at all time steps

teN.

Proof. Recursive feasibility is proved by induction by showing that T'; # () = 'y, # () for
all t € N.

At time step ¢ = 0, it holds that xo:*"™* € Ty, i.e., an initially safe trajectory exists
according to Assumption 5.4. If the FTP optimal control problem can be solved at step
t = 0, a new safe input set Ugfeo is obtained according to (5.15) or (5.16). This new safe
input set Usgeo remains valid at step ¢ = 1 and ensures that a safe trajectory exists, i.e.,

xglc]fafe’o € I';. If the FTP optimal control problem is infeasible at step ¢ = 0, the shifted
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previous safe input set remains valid, i.e., Ugfe o = Ug;fe,imt. In this case, the shifted safe

input set Usageo = US; guarantees that X;]fafe’o € I';. Therefore, I'y # 0 = IT'y # 0.

safe,init

For t = 1 it holds that ngafc’o € I';. A feasible FTP optimal control problem yields the
new safe input sequences Ugye 1, such that there exists a safe trajectory XxU;afevl eIy If
the FTP optimal control problem is infeasible, reusing the still valid previous safe input set

. . U,
Usae 0, 1.€., setting Usare1 = Ugye o, ensures that xz;"' € T's.

For time step ¢ > 2, it holds that x+ ="' € T;. If the FTP optimal control problem
is feasible, this yields the new safe input sequences Ugye, such that there exists a safe
trajectory xa € I'ty1. If the FTP optimal control problem is infeasible, the previous safe

Usafe,t

input set Ugager—1 18 still valid and choosing Usager = Ugy, ;1 ensures that xaz, 1" € iy

Usafe,t
t+1

Usave,t

Therefore, xz,;1" € T'tyq holds for all ¢ € N, ie., the proposed method is safe and
recursively feasible. O]

Note that the worst-case behavior of the TVs depends on the traffic rules. Therefore, safety
and recursive feasibility of the SMPC+FTP method can only be guaranteed if surrounding
TVs adhere to the underlying traffic rules, as stated in Assumption 5.1. However, no specific
traffic rules are required to prove Theorem 5.1.

The two MPC optimal control problems, SMPC and FTP, are solved successively. In the
following, the respective optimal control problems are derived.

5.2.4 Method Details - Stochastic MPC

SMPC solves an optimal control problem with chance constraints, accounting for TV uncer-
tainty, depending on a risk factor 5. First, a safety area is defined around each predicted TV
state, which accounts for the EV and TV shape. Then, this safety area is increased to ac-
count for TV uncertainty, given a predefined risk parameter. Eventually, a linear constraint
is generated for each TV, depending on the positioning of the EV and the TV.

Deterministic Target Vehicle Prediction

For SMPC a simple TV prediction is applied, representing the most likely TV behavior with
wiV = 0, ie, ul¥Y = afV. It is assumed that the current TV maneuver continues for
the prediction horizon Ngypc. Therefore, TV model (5.9) is applied where the TV reference
x,.y ), depends on the current TV maneuver. The reference velocity v, ;. is set to the current
TV velocity v, y. The TV reference lateral velocity is chosen to be v, v, = 0. The reference
lateral position LY, is the current TV lane center. A new reference lane is selected if part
of the TV shape lies in this adjacent lane and the lateral velocity moves the TV towards this

adjacent lane.

Target Vehicle Safety Area

Collisions with TVs are avoided by ensuring the necessary distance between the EV and
TV. Here, a safety rectangle around the TV is defined. While it is possible to choose other
shapes, rectangles makes it possible to easily generate linear constraints, as described later
in this section.

The safety rectangle with length a, and width b, is illustrated in Figure 5.2. In order to
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Figure 5.2: Target vehicle safety rectangle. © 2021 IEEE.

ensure that the vehicle shapes do not intersect, the vehicle centers need to be distanced at
least by the vehicle length [, and width w.,. For the safety rectangle width this yields

br = Wyeh T lsafe (521)

where (g, is a possible additional safety margin.
Calculating the safety rectangle length a, requires a velocity dependent part a, (:1:, mTV),
compensating for a potential velocity difference between the EV and the TV, resulting in

ay = lveh + tsafe 1+ Qr (w; wTV) . (522)

The velocity dependent part @, needs to account for the difference in traveled distance
between the EV and TV if both vehicles initiate maximal braking, e.g., in an emergency
braking scenario. Here, in addition to Assumption 5.2, zero reaction time is assumed. The
traveled distance Ax of a vehicle until standstill is described by

Az (tstop): Umtstop + 0-5amin (tstop)2

1
= ——(v,) (5.23a)
Gmin
tstop: _avai (523b)

with maximal longitudinal deceleration amin, time to standstill ¢p, and initial EV and TV
velocity v and vV, respectively. Based on the difference in traveled distance

ATV (15,) = A (1) = = (7 = (1)), (5.24)

stop stop T
Qmin

assuming similar maximal deceleration for the EV and TV, the velocity dependent safety
distance is obtained by

Qy (:c,:cTV) =3 ! max {0, (vz - (UEV)2>} (5.25)

Qmin

where the max-operator ensures that the safety rectangle length does not decrease for
viV > .

For the SMPC optimal control problem, the safety rectangle is calculated for prediction
time step k, based on the TV prediction V. However, only the initial EV state x, is
considered in the velocity depended part a,. This is necessary in order to generate linear

safety constraints. The resulting safety rectangle parameters are

br,k: Wyeh + Lsafe (5263)
Ay = lveh + lsafe + ar (IB(), 93;5\/) . (526b)
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Chance Constraint Reformulation

The TV safety rectangle given by (5.26) does not account for TV uncertainty. In the follow-
ing, the safety rectangle is enlarged, depending on the TV uncertainty and a risk parameter
B. The chance constraint, similar to (5.1e), is given by

Pr (@), € X e (wiV)) > 8 (5.27)

where the safe set &} ¢ ('wk ) for the EV state depends on the previously defined safety

rectangle parameters of (5.26) and the TV uncertainty wj V.

The chance constraint (5.27) cannot be handled by a solver directly. We derive a de-
terministic approximation for this probabilistic expression, which is inspired by the SMPC
approach [50].

According to (5.9) the TV state follows

z. ), = Az, + BK (wg — wrefk) + Bw}", (5.28)
while the predicted TV state is given by
&4t = Aa}Y + BK (2} — xlY,), (5.29)
yielding the prediction error
e, =, —x.’. (5.30)

Similar as described in Section 2.2.4, the TV prediction (5.29) is now split into a deter-
ministic and a stochastic part

mg-‘:\-/l = "L'k+1 +(A+ BK)e, — Bw, "' = 1’5}:1 + €k+1 (5.31)
which results in the prediction error update

eri1 = (A+ BK)e, — Bw!". (5.32)

Given the sensor noise wi™ according to (5.12), the initial error follows ey ~ N (0, X§)

with 3§ = 3%, As we consider Gaussian distributions, a recursive computation of the
prediction error covariance matrix 3¢ is possible, yielding

¢, =BXIVB" + (A+ BK)Z¢ (A + BK)'. (5.33)

Based on the prediction error covariance matrix 3¢, the TV safety rectangle is increased.
Given a predefined SMPC risk parameter 3, the aim is to find a region around the predicted
TV state that contains the true TV state with probability 8. As the TV safety rectangle
only considers positions, we define the reduced error €, = (e%k,ey,k)T with the reduced
covariance matrix

dlag( Og.k> yk) (5.34)

with variances o2, and o}, for the longitudinal and lateral TV position, corresponding to
the first and third dlagonal element of 3f.
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Figure 5.3: Exemplary bivariate Gaussian probability distribution function of the prediction
error €, including an isoline (dotted black line). © 2021 IEEE.

Lemma 5.1. The reduced error covariance matriz 22 corresponding to the position coordi-
nates is obtained from 3¢ by omitting the correlation to the respective velocities.

Proof. The proof is given in Appendix C.2. O

The reduced error covariance matrix f)i is now used to enlarge the safety rectangle to
account for uncertainty. Note that the error covariance matrix 3¢ is still required to com-
pute (5.33).

The bivariate Gaussian distribution described by 3¢ with mean g = (i, ty) = 0 consists
of independent random variables for longitudinal and lateral position. This allows us to find
a confidence region around the predicted TV state mean, bounded by an ellipsoidal isoline
enclosing the highest density region, as illustrated in Figure 5.3. The aim is to find an
isoline that contains the prediction error with a probability according to risk parameter (.
The isoline ellipse equation is denoted by

)T

~ —1
(ék . IJ')T (Ez) (ék — “,): 4 (5353)
2 2
(€xk : He)”  (eyn : M) _ (5.35b)
O-IIZ,k O-yzk

with tolerance level 3. The tolerance level s depends on the risk parameter S and indicates
the necessary constraint tightening in order to ensure that the prediction error remains below
a probability 8. The tolerance level s is determined based on the cumulative distribution
function F'(s¢,n,,) of the chi-square distribution be{ with n,, degrees of freedom. In this case,
n,, = 2 as the reduced error €, consists of two elements. Given the risk parameter 5 and the
quantile function F'~1 of the chi-square distribution x3, it follows that

x=F18,2), (5.36)

which ensures that the probability of the true TV state lying within the isoline is 8 - 100 %.
The ellipse semi-major and semi-minor axes are then given by

Crxk = O-x,k\/; (537&)
Coeyk = Oy i/ 7. (5.37h)
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While an ellipse, according to (5.35), describes the desired confidence region, the constraint
generation method used in this chapter requires a rectangular TV safety area. We therefore
over-approximate the ellipse by a rectangle. In order to include this uncertainty consideration
in the rectangle parameters a,; and b, of (5.26), the rectangle parameters are increased
based on the ellipse semi-major axis e, ,; and semi-minor axis e, , x, resulting in

br,k: Wyeh + lsafe 1 € x,k (538&)
Qr k= lven + Lsafe + Gr (330, m;fv> + €y k- (538b)

Note that this chance constraint reformulation is not typical for SMPC, but was specifically
designed for this application task. The updated safety rectangle parameters are now used
to generate the safety constraints for the SMPC optimal control problem.

SMPC Constraint Generation

Given the safety rectangles for each TV, linear constraints to avoid collisions can be defined
for each prediction step and for each TV. Each linear constraint has the form

0> g, (3307 wg\/) Uk + Gu (330, mgv) Tk + G (580, mgv) (5.39)

where ¢, and ¢, are the coefficients for the EV states y; and zj, and ¢ is the intercept.
The coefficients ¢, g, and ¢ of the linear constraint depend on the current EV state xg
and the predicted mean TV states x}V. This results in multiple constraint generation cases,
extending the case differentiation in [53].

The cases are distinguished based on the initial vehicle configuration at the beginning of
the optimal control problem, i.e., k = 0. While the predicted TV state x}V is considered to
build the constraint (5.39) at prediction step k for a specific case, only the initial EV state
x is considered in order to generate linear constraints.

We briefly discuss a shortened overview of constraint cases that are considered, summarized
in Table 5.1. Example cases are illustrated in Figure 5.4a. A complete overview of cases,
requirements, and constraint parameters ¢, ¢,, ¢ from (5.39) is found in Appendix C.3.

In summary, no constraints are generated if the longitudinal distance between the EV and
TV is larger than p,, (case A). If the EV is close enough to the TV (longitudinal distance
smaller than pese), overtaking is possible by employing an inclined constraint (cases D and
E). If the TV is located behind the EV, no constraints are necessary as it is the responsibility
of the TV to avoid a collision (case J). For all other cases, horizontal and vertical constraints
are employed.

These constraint generation cases are now used to formulate safety constraints in the
SMPC optimal control problem.
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(b) Constraint generation cases for FTP.

Figure 5.4: Selected constraint generation cases. Driving direction is from left to right. The
EV and TV are shown in blue and red, respectively. The dashed red line repre-
sents the safety area around the TV. © 2021 IEEE.
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case  EV setting (w.r.t. TV) SMPC FTP
A, A" large dist. (> prar) no constraint no constraint
B, B*  behind TV (> pelose) vertical constraint vertical constraint

virtual TVs

C, C* ahead of TV (> peose)  vertical constraint tixed constraints

same lane as TV

D,D behind TV (< pee) inclined constraint vertical constraint
. right lane next to TV. . . . . .
E, E behind TV (< peee) inclined constraint vertical constraint
F, F~* left of TV horizontal constraint horizontal constraint
close to TV (< pelose)
. 2 lanes right of TV . . . .
G, G behind TV (< poo) horizontal constraint horizontal constraint
. right of TV : . : .
H, H ahcad of TV (< petoee) horizontal constraint horizontal constraint
j - same lane as TV o constraint virtual TVs
’ ahead of TV (< pelose) mixed constraints

Table 5.1: Constraint generation cases.

SMPC Optimal Control Problem

With the definition of the safety constraints, the deterministic optimal control problem
replacing the SMPC problem is given by

Nsmpc

min 3 (A2l + el + 1 Auc 5) (5.40)
st. g = 9 (xo, Tk, up) (5.40b)
z. = Az’ + Ba " (5.40¢)
up €U, k € To Neypo—1 (5.40d)
x), € X, k € To Neypo (5.40e)
0> gy (o 2fY) i + ¢ (o, 2w+ a (0. 21Y) b € Tovayee (5.400)

with Az, = @ — Tirer, EV reference state @y e, and the linear function f4 according to
(5.6). For the input difference Au, we set u_; to the applied input of the previous time step.
The cost function sum limits are shifted to include a terminal cost for . The weighting
matrices are given by Q, S, and R. We consider constant input constraints ¢ according to
(5.7) and state constraints X according to (5.8).

Remark 5.1. For clarity, safety constraint (5.40f) only considers one TV. If multiple TVs
need to be considered, an individual constraint (5.40f) must be generated for each TV.

The resulting SMPC optimal control problem (5.40) is a quadratic program with linear
constraints, accounting for uncertainty with the chance constraint reformulation described
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previously. This optimal control problem can be solved efficiently, where the major calcula-
tion steps to obtain the linear constraints (5.40f) are performed offline.

5.2.5 Method Details - Failsafe MPC

While the SMPC algorithm only accounts for all possible TV uncertainty in order to plan an
optimistic trajectory, the backup FTP algorithm needs to consider worst-case uncertainty
realizations. This is achieved based on reachability analysis. First, the worst-case TV occu-
pancy prediction is determined. Then, linear safety constraints are generated. Eventually,
given a safe invariant terminal set, the FTP optimal control problem is solved.

Target Vehicle Occupancy Prediction

Similar to the SMPC algorithm, a rectangular safety area surrounding each TV is defined.
However, for the FTP the maximal reachable area needs to be determined. First, it is
necessary to define certain traffic rules to which the TV adheres, according to Assumption 5.1:

» Road boundaries apply.

« Negative velocities are forbidden.

« Collisions with vehicles directly in front of the TV (in the same lane) must be avoided.
« Only a single lane change is allowed (within the prediction horizon).

» No lane change is allowed if the TV velocity is below a predefined minimal lane change
velocity vr,c min-

o No lane change is allowed if the distance to a vehicle on the new lane becomes too
small.

As linear dynamics are assumed for the TV motion, the minimal and maximal possible
TV inputs are used to determine the maximal reachable set, inspired by [4,123,152].

The set of all possible locations reachable for a TV at prediction step k is denoted by the
reachable set R}, including the TV and shape. While referring to RV as the reachable set
of the TV, we additionally enlarge this set accounting for the EV shape. This is necessary
as the set R}V is later used to avoid collisions by keeping the EV center outside of R}V.
Given the state sequence X%T\y to the TV dynamics (5.9) starting at the initial state &g

applying an input sequence U, | = ('u,gv, . ’U,EYJ, we define the reachable set

TV _ urv
Ry™ = {X@OTV

WV e U™ Vie ., &V e XOTV} . (5.41)

The initial state for the reachable set R}V is not the TV state x{V, but depends on the
sensor uncertainty as well as the TV and EV shape. This initial set is given by

TV : sens T ~TV
To' F e (wp™) = (lven, 0, Wyen, 0) < &7,

JAﬁoTV S CUOTV + max (w(s)ens) + (lveh7 07 Wyeh, O>T} (542)

’lUBens EWsens

™V _ | TV
X —{mo
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Figure 5.5: Target vehicle occupancy sets for multiple prediction steps with the EV in blue
and TVs in red. Areas shaded in red depict areas possibly occupied by a TV. As
the T'Vs must avoid collision with vehicles in front, the left TV cannot occupy the
area in the EV lane close to the EV. A TV double lane change is not considered.
© 2021 IEEE.

As we assume a linear TV prediction model, the reachable set R} is calculated for prediction
steps k > 0 by applying the maximal and minimal inputs u™V € YTV while adhering to traffic
rules.

The reachable set is only calculated at discrete time steps. In order to account for a
continuous system, the final reachable set ﬁfv is obtained by building a rectangular convex
hull, covering two consecutive prediction steps, i.e.,

ﬁgv = conv (ngl, R;fv) (5.43)

where conv(-) denotes the convex hull operation.

A special case is considered if the TV is located behind the EV in the same lane. The
TV must not collide with the EV in the same lane, however, the TV is allowed to switch
lanes in order to pass the EV. Here, this is accounted for by treating this special case in
the following way. Three placeholder TV reachable sets describe the possible TV behavior.
The first placeholder TV reachable set is based in the EV lane such that collisions with the
EV are avoided. The other two placeholder TV reachable sets cover the admissible adjacent
lanes left and right of the EV, representing the reachable sets for a potential TV lane change.
Figure 5.5 shows an example of areas possibly occupied by TVs for multiple prediction steps.

FTP Constraint Generation

Once the reachable sets ﬁ;fv for each TV are determined, linear constraints are generated.
We again consider different cases regarding varying EV and TV positions. The cases are
similar to those of SMPC with a few variations as stated in Table 5.1. FTP cases are denoted
with an asterisk. Note that, in contrast to other parts of this thesis, the asterisk does not
denote an optimal solution here. Exemplary FTP cases are illustrated in Figure 5.4b. Again,
a complete overview of the FTP cases is found in Appendix C.3.

We briefly discuss the major differences to the SMPC constraint generation cases. Over-
taking is not initiated given the vertical constraints in cases D* and E*. If the TV is located
behind the EV, we consider possible TV lane changes by introducing placeholder TVs (cases

C* and J*). Here, p5IP is used instead of peiose-
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Overall, the constraints generated for FTP are more conservative than for SMPC. This
is due to the FTP aim of finding a trajectory that ends in a safe state. This would be
complicated by incentivizing FTP to plan overtaking maneuvers. Details on finding a safe
terminal state for the FTP optimal control problem are given in the following.

Safe Invariant Terminal Set

In addition to the regular safety constraints, a safe invariant terminal set is required to ensure
safe EV inputs after the finite MPC prediction horizon. The FTP inputs are designed in
such a way that they remain safe over the prediction horizon. However, after Ngprp inputs
are applied and no new F'TP solution is obtained, an emergency strategy has to be applied to
come to a standstill. This is achieved by braking, while maintaining a constant steering angle
0¢ = 0, according to (5.15) and (5.16). Therefore, the terminal state of the FTP optimal
control problem needs to fulfill certain requirements. First, the vehicle orientation must be
aligned with the road, i.e., Y™ = 0. This guarantees that braking and a constant steering
angle 6 = 0 keep the EV within its current lane. Second, the distance to a TV in front
of the EV must be large enough that no collision occurs if both vehicles initiate maximal
deceleration. This is accounted for by

oy < :c — As%S 5.44a
NpTp,min
UN S UNprp,max (544b)

with the minimal terminal safety distance As}_ . ., and the maximal terminal safety ve-
locity

UNgp,max = UNFTP min \/ZASNFTP min@z,min (545)

where vV . is the lowest predicted longitudinal TV velocity. Both (5.44) and (5.45)
combined ensure that the minimal terminal safety distance Asy ., is large enough such
that, given a maximal EV velocity vng,pmax, maximal deceleration of the EV guarantees
collision avoidance for k& > Nprpp. This less intuitive terminal constraint again has the

advantage of yielding linear constraints.

FTP Optimal Control Problem

An optimal control problem with a similar structure compared to (5.40) is applied for the
FTP, yielding

Nprp
min Y (1Al + -l + | Awieil[5) (5.46a)
st. ey = 9 (xo, p, up) (5.46b)
u, €U, k€ Iy Nppp—1 (5.46¢)
T, € X, k€ 11 Nprp (5.46d)
0>gq, (:vo,ﬁ;fv> Yr + o (mo,ﬁgv) Tp + @ (mo,ﬁzv) , k€ o Nprp (5.46e)
on STy = ASR i min ON < UNprp max (5.46f)

with the linear function f¢ according to (5.6). The safety constraint (5.40f) is now changed
to constraint (5.46e), accounting for the worst-case TV uncertainty realizations. Similar to
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Figure 5.6: Setup for both investigated scenarios (regular and emergency scenario). © 2021
IEEE.

the SMPC optimal control problem, (5.46) is a quadratic program with linear constraints,
which can be solved efficiently.

Remark 5.2. Similar to Remark 5.1, (5.46) only considers one TV. If multiple TVs need
to be considered, an individual constraints must be generated for each TV.

5.2.6 Simulation Study

We evaluate the proposed SMPC+FTP algorithm in different settings. In the following,
the simulation setup is introduced first. Then, SMPC+FTP is analyzed and compared to a
standard SMPC approach and an FTP approach in two scenarios.

Simulation Setup

In this simulation section, we analyze the scenario illustrated in Figure 5.6. The EV is
located on the right lane on a three-lane highway. We consider five TVs surrounding the EV
on the highway. The goal for the EV is to maneuver safely and efficiently through traffic. The
specific aims are to avoid collisions while maintaining a velocity close to a chosen reference
velocity.

We consider two different scenarios:

1) Regular scenario: All TVs keep their initial velocities and lanes.

2) Emergency scenario: One of the TVs (TV5) performs an emergency braking maneuver.
This causes TV4 to avoid TV5 by moving to the center lane. This is followed by a soft
braking maneuver of TV1 to account for possible hazards. Eventually, TV4 moves to
the left lane again to pass TV2.

The first scenario represents a regular scenario with no unexpected TV behavior. The second
scenario covers a rare case, where a series of unexpected TV actions results in a challenging
situation for the autonomous EV.

The simulations are carried out in Matlab using the fmincon solver on a computer with
an AMD Ryzen 7 1700X processor. The algorithms are based on the NMPC toolbox [79]. In
the following, setup parameters are introduced that remain constant throughout the different
simulations. All quantities are given in SI units. Units are omitted if clear by context.
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scalars vectors matrices
0 —0.55 0 0
_ _ T _
Wiane = 3.5 Umax = (5, 0.2) K=o 0 —063 —115
lyen = 5 Upin = (=9, —0.2)7 »TV — diag(0.44, 0.09)
Wyeh = 2 ug’x = (5, 0.4)T Q= diag(O, 0.2, 10, ().25)
li=1.=2 uE{l = (—9, —0.4)T R = diag(0.33, 5)

Umax = 35 wi™T = (0.25, 0.03, 0.25, 0.03)T S = diag(0.33, 15)

Table 5.2: General simulation parameters.

vehicle initial state vehicle initial state
EV (0, 0, 0, 27)T TV3 (—245, 20, 0, O)T
TV1 (70, 20, 0, 0)T TV4 (=35, 32, 7, 0)T

TV2 (125, 20, 3.5, 0) TV5 (40, 32, 7,0)"

Table 5.3: Initial vehicle states.

All MPC algorithms use a sampling time At = 0.2s with SMPC horizon Ngypc = 10
and the FTP horizon Nprp = 10. The linearized, discrete-time EV prediction model and
constraints follow (5.6)-(5.8), whereas the TV prediction model is given by (5.9)-(5.11).
Table 5.2 shows the other main simulation parameters. The lane boundaries follow from
the lane and vehicle width. Additionally, the safety parameters are g, = 0.01, prar = 200,
Pelose = 90, phP = max{10, [voNerpAt|}, vic, min = 10, and As% . = 22.5.

close N ,min

In all scenarios, the initial EV reference is set to (d&3;, ¥ er, rer) = (0, 0, 27). While
the reference orientation and velocity remain constant throughout the simulation, the EV
reference for the lateral position is always set to the current EV lane center.

Whereas the MPC optimal control problems use the linearized, discrete-time prediction
model (5.6), the inputs are applied to a simulation using the continuous-time system (5.3).

Given this simulation setup, we now investigate the individual scenarios and analyze the

proposed SMPC+FTP method.

Regular Highway Scenario

We first analyze a regular highway scenario. The initial states of the vehicles are given in
Table 5.3. The five TVs shown in Figure 5.6 all maintain their initial velocities and lanes,
therefore, z ), = §".

In the following, the SMPC+FTP solution is shown in detail and comparisons are made

to an SMPC and an FTP method.

SMPC+FTP. Applying the proposed SMPC+FTP approach to the regular highway sce-
nario yields efficient EV behavior in traffic. The SMPC risk parameter is chosen to be
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Figure 5.7: SMPC+FTP states and inputs for the regular scenario. Vehicle motion in the
gray areas is illustrated in Figure 5.8. © 2021 IEEE.

B = 0.8. The inputs and important states are shown in Figure 5.7, vehicle motion is dis-
played in Figure 5.8.

The EV approaches TV1 due to the velocity difference. The EV then changes lanes to
the center lane with a moderate steering angle of 6 < 0.04. Once TV2 is reached, the EV
again changes lanes and eventually passes TV2. The vehicle orientation remains at a limited
level, i.e., ™ < 0.11. Throughout the scenario, the EV maintains the reference velocity,
and acceleration inputs are small.

The average computation time to solve the SMPC and FTP optimal control problems
are 0.11s and 0.15 s, respectively. Lower computational effort is possible with other solvers.
If applied in a setting that requires online computation, optimal control problems with
computation times exceeding the requirements are considered as infeasible. In this case, the
previously calculated, still valid safe input sequence would be used.

We will now take a closer look at the constraints for SMPC and FTP. SMPC constraints
for time step ¢ = 22 are illustrated in Figure 5.9. For TV1 in the same lane as the EV, an
inclined constraint is generated (case D). At each prediction step, the constraint connects
the initial EV shape with the TV1 safety rectangle at the predicted position. The predicted
SMPC trajectory for the EV stays above the constraint line. It is to note that only the
respective predicted state must satisfy the illustrated constraint. Predicted states farther in
the future satisfy respective constraints depending on a TV safety rectangle for a predicted
TV position farther ahead. For TV2 case E is active, also resulting in an inclined constraint.
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Regular scenario - overtaking maneuver of TV1
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Figure 5.8: Sequences of the regular scenario with SMPC+FTP. Fading boxes show past
states. The EV is shown in blue. © 2021 IEEE.

Regular scenario - SMPC constraints and predictions
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Figure 5.9: SMPC constraints for the regular scenario at time step ¢ = 22 and prediction
step k = 1. The EV shape and planned trajectory are shown in blue. TVs as
well as respective safety rectangles and constraints have the same color. Initial
states are marked by a circle, prediction states are represented by crosses with a
bold cross indicating the displayed prediction step. © 2021 IEEE.
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Regular scenario - FTP constraints and predictions
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Figure 5.10: FTP constraints for the regular scenario at time step t = 22 and prediction
step k = 1. The EV is shown in blue. TVs as well as respective reachable sets
and constraints have the same color. Initial states are marked by a circle. The
initial F'TP state starts after the first SMPC input is applied. Prediction states
are represented by crosses with a bold cross indicating the displayed prediction
step. For reference, the planned SMPC trajectory is given by dark blue asterisks
with a dark blue circle indicating the initial EV state. © 2021 IEEE.

Both TV4 and TV5 are two lanes left of the EV, yielding cases G and H, resulting in
horizontal constraints to the right side of the TVs. TV3 is not shown in Figure 5.9 due to
clarity.

The FTP constraints at step ¢t = 22 are shown in Figure 5.10. The constraints are more
conservative compared to the SMPC constraints. The reachable TV sets extend further
to the back than the front, as maximal deceleration is larger than maximal acceleration.
Additionally, the convex hull of reachable sets over two consecutive steps is considered.
Constraints for TV1 and TV2 are built according to cases D* and B*, respectively. Both
constraints for TV4 and TV5 are generated given cases H* and G*. While the SMPC
trajectory moves towards the center lane to overtake TV1, the FTP trajectory finds a vehicle
motion that, for the final prediction step, remains in the current lane with ¢** = 0 and enough
distance to TV1, i.e., a safe terminal state. As the FTP optimal control problem yields a
solution, the first input ugmpcp of the planned SMPC trajectory is then applied.

Comparison to SMPC and FTP. Throughout the entire simulation, both the SMPC
and FTP optimal control problems remain feasible. Therefore, only SMPC inputs are ap-
plied. Only using an SMPC algorithm without FTP would therefore yield the same result
for this regular scenario.

Unlike SMPC, applying only FTP results in a different solution. As the constraints are
more conservative compared to SMPC, the EV never changes lanes to overtake. As indicated
by the FTP prediction in Figure 5.10, the FTP constraints keep the EV in its current lane.

We will use the following metric to compare the performance of SMPC+FTP and FTP.
Based on the cost function of the optimal control problem, the applied inputs and resulting
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risk parameter 0.8 09 095 099 0.999
cost Jgim 11.21 11.35 11.58 11.34 11.31

Table 5.4: Risk parameter analysis.

states for the entire simulation are analyzed according to

]Vsim*1

Jam = > (1A0allg + i + 1w 5) (5.47)

t=0

with the simulation steps Ngn,.

The overall cost for SMPC+FTP is Jg, = 11.32, while the overall FTP cost is Jgm =
4.03-10*. The cost comparison shows that the SMPC+FTP approach yields a more efficient
behavior than an FTP approach. In this case, increased efficiency results from keeping the
velocity close to the reference velocity.

Risk parameter variation. In the previously discussed simulation, the risk parameter
was chosen to be § = 0.8. Here, we briefly analyze the effect of varying risk parameters on
the EV performance. The analyzed risk parameters range from g = 0.8 to § = 0.999. The
overall simulation cost, according to (5.47), for each risk parameter is given in Table 5.4.
The overall costs of the simulation results show that the SMPC behavior and costs for this
regular scenario are very similar. However, it can be beneficial regarding the cost to choose
a larger risk parameter, as inputs are changed more smoothly. In all five examples the EV
behavior is almost similar.

Varying simulation settings. In the previous analysis, only one vehicle configuration is
considered. In order to show that the SMPC+FTP method is suitable for various scenarios,
we ran 1000 simulations, each consisting of 125 simulation steps, with randomly selected
initial vehicle positions and velocities for each simulation run. The EV is located on one of
the three lanes, i.e., dy € {0, 3.5, 7}, with initial longitudinal position s; = 0 and velocity
vg = 27. The five TVs are randomly placed on one of the three lanes with an initial

longitudinal position z3V € [—100, 200], constant velocity vIV € [20, 32], and constant

vyT V' = 0. It is ensured that all vehicles positioned on the same lane have an initial longitudinal
distance Ax > 50 and that TV velocities are chosen such that TVs do not collide with each
other.

The SMPC+FTP method successfully handled all 1000 simulation runs and no collisions

occurred.

Emergency Highway Scenario

After having shown the efficient SMPC+FTP planning for a regular highway scenario, we
now illustrate the safety property of the proposed algorithm in an emergency scenario. The
initial vehicle states are the same as in the regular scenario. However, in this emergency
scenario the TVs change their velocities and lateral positions. Starting at time step ¢t = 20,
TV5 initiates an emergency braking maneuver with maximal deceleration until reaching a
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Regular scenario - overtaking maneuver of TV1
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Figure 5.11: Sequences of the emergency scenario collision applying only SMPC. Fading
boxes show past states. The EV is shown in blue. © 2021 IEEE.

complete halt. This causes TV4 to change lanes to the center lane in order to avoid TV5.

TV1 reduces its velocity to v1V! = 10ms~!. After having passed TV5, TV4 moves to the

left lane to then pass the slower TV2. TV1 also increases its velocity to vX V! = 20ms~?.
In the following, SMPC without FTP is analyzed first. Then, we present the solution of

the SMPC+FTP algorithm.

SMPC. Applying only SMPC results in optimistic EV trajectory planning, while not
considering highly unlikely events. Even though TV4 is slowly moving to the center lane,
the EV still moves to the center lane to overtake TV1, as a TV4 lane change is still unlikely.
However, at step t = 25, TV4 continues to increase its lateral velocity towards the center
lane. At this point, there exists no feasible SMPC solution anymore that satisfies the chance
constraint. This causes the EV to collide with TV4. The collision sequence is illustrated in
Figure 5.11. While SMPC performs well in regular scenarios without unlikely uncertainty
realizations, these rare situations cause major safety issues.

SMPC+FTP. We now show how the proposed SMPC+FTP method handles the emer-
gency scenario. The EV states and inputs are given in Figure 5.12.

Initially, the EV attempts to switch lanes and overtake TV1. However, at step t = 27,
the SMPC is unable to find a solution. The FTP problem is still solved successfully and
the first planned FTP input is applied. For the next four steps, the SMPC optimal control
problem remains infeasible, indicated by the pink lines in Figure 5.12, and the FTP inputs
are applied, which are obtained by successfully solving the FTP optimal control problems
(FTP Mode). The EV slows down and returns to the right lane, as illustrated in the
first sequence of Figure 5.13. At step t = 37, the SMPC problem is feasible and the EV
plans to overtake TV1 again. However, as TV4 is still too close, the FTP is unable to
find a new safe backup trajectory if the next planned SMPC input were applied, i.e., the
FTP optimal control problem becomes infeasible. The safe input sequence obtained at the
previous time step ¢ = 36 is applied to the EV (Backup Mode), as indicated by the red line
in Figure 5.12. The EV remains in the right lane until TV4 is far enough away to safely
change to the center lane, as shown in the second sequence of Figure 5.13. Eventually, the
EV passes TV2 by smoothly switching to the left lane with a small steering angle change.
The average computation time for solving the SMPC and FTP optimal control problems are
0.15s and 0.22s, respectively. The values are higher compared to the regular scenario, as
the computation time for infeasible optimal control problems is significantly larger.
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SMPC+FTP states and inputs for the emergency scenario. Pink vertical lines
represent infeasible SMPC and feasible FTP solutions (FTP Mode), red vertical
lines show infeasible FTP solutions (Backup Mode). Vehicle motion in the gray
areas is illustrated in Figure 5.13. © 2021 IEEE.
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It is also possible to only apply FTP in this emergency scenario. While this leads to
safe vehicle behavior throughout the simulation, the EV does not overtake TV1 and TV2.
Comparing the cost yields the following result. Applying FTP to the emergency scenario
yields a cost of Jgm = 4.28 - 10*, while the SMPC+FTP cost is Jgm = 3.34 - 10%.

In summary, the simulation scenarios in this section have shown the benefits of the pro-
posed SMPC+FTP method. SMPC optimistically plans trajectories, which are executed as
long as there always exists a safe backup trajectory, computed by FTP. In regular scenar-
ios, SMPC+FTP provides benefits known from SMPC. In emergency scenarios, the safety
guarantee of FTP holds while the EV is still more efficient compared to applying pure FTP.

5.2.7 Discussion

In some FTP approaches it is required that the vehicle comes to a standstill at the end of
the failsafe trajectory. Here, we only require a certain distance to vehicles ahead and zero
orientation offset with respect to the road for the terminal state. This enables the use of a
relatively short F'TP horizon.

It is possible to get oscillating behavior between applied SMPC inputs and the activation
of FTP. In other words, in step one the SMPC input is applied, which potentially causes the
FTP to intervene in the next step. Then, a safe state is again achieved, leading to another,
potentially over-aggressive SMPC input, again requiring FTP in the subsequent step. This
can be avoided by designing the SMPC controller and its constraints less aggressively, as
done in the simulation study.

Regarding the simulation, simulating each scenario once is adequate. While the TV is
assumed to behave probabilistically by the EV, the actual TV behavior here is deterministic.
And whereas SCMPC depends on drawn samples, which vary between simulations, the
applied SMPC approach uses a chance constraint reformulation that always yields the same
constraint, given the same uncertainty distribution.

In the emergency scenario, multiple TVs change velocities or lanes. This scenario was
chosen such that the SMPC method causes a collision, which usually does not happen even
for highly unlikely TV trajectories. The chance constraint within SMPC does allow for a
small probability of constraint violation, however, in most cases the iterative structure of
MPC handles potential future constraint violations. Furthermore, constraint violations do
not necessarily cause collisions, as the safety area around a TV is larger than the actual TV
shape.

Comparing the planned SMPC trajectories for the EV at two consecutive time steps with-
out any major environment changes, one would assume that the planned trajectory remains
similar. However, this is not the case. The constraints with respect to other TVs are gen-
erated based on the EV state at the beginning of the optimal control problem in order to
formulate linear constraints. Therefore, in the next step, the constraint generation is based
on an updated initial EV state, resulting in a slightly different planned SMPC trajectory
compared to the previously planned trajectory. This could be addressed by using EV pre-
dictions for the constraint generation, however, this would require nonlinear constraints.

The applied vehicle inputs in the emergency scenario lead to relatively high steering angles.
This is not ideal for a smooth vehicle motion. Even though this behavior is acceptable in rare
cases, the motion could be optimized by defining more cases for the constraint generation.

The individual SMPC and FTP algorithms in this chapter are possible controller real-
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izations, specifically designed for highway scenarios with multiple TVs. The properties of
the combined SMPC+FTP method are not restricted to the suggested SMPC and FTP tra-
jectory planners described in Section 5.2.4 and Section 5.2.5, respectively. Other SMPC or
FTP approaches can be applied.

In dense traffic or unclear traffic situations, humans often do not wait until the desired
maneuver is entirely realizable. Instead, humans often slowly initiate maneuvers, causing
other vehicles to react. For example, cutting into a lane is often preceded by slight motion
towards the other lane so that other vehicles leave extra space. Therefore, it is possible to
execute the lane change maneuver successfully, even though it was not possible to safely plan
the entire lane change maneuver initially. The SMPC+FTP framework enables automated
vehicle motion that comes close to this efficient human behavior.

5.3 General Safe Stochastic MPC

In the following, we extend the previously presented SMPC+FTP approach to a general safe
SMPC alorithm for linear systems subject to additive uncertainty.

5.3.1 Problem Formulation
We consider a linear, discrete-time system
Ly = Awt —+ But + E’wt = _f(zct, Uy, ’wt) (548)

with states ; € R inputs u; € R™, and uncertainties w;, € R™ at time step t, as well
as the known system matrices A, B, and E with appropriate dimensions. System (5.48) is
subject to input constraints u; € U and state constraints x; € X.

Assumption 5.5. The uncertainty w; is i.i.d. and bounded by w; € W .

The general task is to drive the state of system (5.48) to the origin while keeping inputs
low. We achieve this by repeatedly solving an optimal control problem

min J (s, Uy) (5.49a)

St. Tppkiae = f(wt+k|ta Uikt wt+k|t) (5-49b)

ut—‘rk‘\t € U, ke I[(),N_l (549C)

wt_i'_k‘t € X, ke I[l,N (549d)

with the finite input sequence Uy = (wy, ..., Wi n—1¢) and the objective function

N-1

J(x, Uy) = Z (l ($t+k|t, ut+k|t)) + Vf(mtJert) (5.50)
k=0

with prediction horizon NN, stage cost [, and the terminal cost function V;. At each time
step, the first element u, = wu,; is applied to the system. This may be expressed as a control
law u; = u(xy).

We consider uncertainty in the state constraint (5.49d) with the chance constraint

Pr(piu; € X) > 5, (5.51)

where a lower risk parameter (3, yields a higher probability of constraint violations.
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Property Definitions

If MPC is employed in safety-critical applications, three properties are required. First,
safety must be ensured. Second, if the MPC optimal control problem is feasible at a time
step, a solution must also exist at the next time step, known as recursive feasibility of the
optimal control problem. Third, the closed-loop system behavior must be stable. We refer to
Section 2.3 for definitions of a robustly positively invariant set X};s (Definition 2.2), recursive
feasibility (Definition 2.5), and input-to-state stability (Definition 2.6). Additionally, we use
the following definitions.

Definition 5.4 (Safety). The state x;, of system (5.48) is safe at time step to if it is
guaranteed that there exist inputs u;, t > to such that the constraints u; € U and x;, € X
are satisfied for all t > t.

Definition 5.5 (Safe Input Sequence). An input sequence Uy = (wy, ..., U 1) with uyy; €

U Vi =1y n_1 is safe for system (5.48) if consecutively applying the individual input ele-
ments yields the safe state sequence (Tit1, ..., Tipn) with individual safe states &y Vi =1 v
according to Definition 5.4.

Problem Statement

The aim of this section is to design a general SMPC algorithm that exploits the advantage
of reduced conservatism in SMPC while ensuring the previously mentioned properties.

Objective 5.2. The SMPC algorithm (5.49) for system (5.48), where the chance constraint
(5.51) replaces the hard constraint (5.49d), must maximize the control objective (5.50) while
guaranteeing safety (Definition 5.4 ), recursive feasibility (Definition 2.5), and stability (Def-
inition 2.6).

In the following, we propose an SMPC algorithm including a safe backup (predictive)
controller that ensures satisfaction of all requirements listed in Objective 5.2.

5.3.2 Method

We first describe the general safe SMPC algorithm and then briefly address possible suitable
MPC variants.

General Safe SMPC Algorithm

SMPC allows for a certain probability of constraint violation. Therefore, in order to use
SMPC in a safe way, it needs to be ensured that applying an SMPC input is safe.

We propose an MPC algorithm that consists of an SMPC part and a backup predictive
controller. The general safe SMPC algorithm, illustrated in Figure 5.14, yields an input u;
at each time step ¢, which is determined based on the following two modes:

 Stochastic mode (with optimal control problem P%(x;))

« Backup mode (with optimal control problem PP(x,))
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—;[ solve SMPC P5(x;) ]
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Figure 5.14: Safe SMPC algorithm.

We consider the general SMPC optimal control problem P*(x;) with horizon N given by

r%_isn J(x, UY) (5.52a)
st. @ippg1 = F(@iqme, (I Wiy k)t) (5.52b)
u§+k|t € L{, ke ]IO,N—l (552C)
Pr (pip: € X) > B, kelyy (5.52d)

yielding the optimal input sequence U;* = (uf";, e U N_1|t) with the SMPC control law
u’(x;) = uf;. Any SMPC method may be used to reformulate the chance constraint (5.52d)
into a tractable formulation, depending on the uncertainty distribution.

We consider a backup MPC controller with horizon NP and optimal control problem
PP(x;) with cost function J°(x;, UP), yielding the optimal cost J°* = J®(x;, UP*) with
input sequence UP* = (u?ﬁ, o u?j‘; Nb_1| t), and control law uP(x;) = uaj, resulting in the
closed-loop system

T =f (wt,ub(mt),’wt) (5.53)

for system (5.48). Multiple backup controllers are possible in this algorithm, as long as they
fulfill the following assumption.

Assumption 5.6. The backup MPC optimal control problem PP(x;), with value function
Jb* and control law uP(x;), is chosen such that P°(x;) is recursively feasible, ©; € X and
uy € U for all t, and such that the origin of the closed-loop system (5.53) is 1SS with region
of attraction X,s, where Xyg is robustly positively invariant for all wy € WW.

Various MPC schemes exist that fulfill Assumption 5.6, as discussed in Section 5.3.2. The
safe SMPC algorithm only applies SMPC inputs if it is guaranteed that the backup optimal
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control problem P"(x;) may still be solved at the next time step. Applying the first SMPC
input w®(x;) to the nominal system yields the next nominal state

T, = Az, + Bu'(xy). (5.54)

It is guaranteed that the backup optimal control problem is feasible for any first step uncer-
tainty w; € W if B
Ty, € Xy (5.55)

where X, = Xiis © W, which ensures that @, | € X.
We are now able to propose two different modes within the safe SMPC algorithm, both
evaluated at time step t¢.

Stochastic mode. The control law u;, = u®*(x;) is applied if the SMPC optimal control
problem is feasible and if (5.55) is fulfilled, i.e., Us* # 0 and T, | € Xys.

Backup mode. If the SMPC optimal control problem is infeasible or if (5.55) is not
satisfied, i.e., Us* = 0 or @, ¢ Xy, the backup MPC optimal control problem is solved
and the control law u; = u(x;) is applied.

Note that in the stochastic mode, only one optimal control problem is solved, while the
backup mode requires solving two optimal control problems.

MPC Details

The proposed algorithm allows us to consider any SMPC approach to solve (5.52), e.g.,
SMPC with exact chance constraint reformulations based on normal distributions, affine
disturbance feedback SMPC, or sampling-based SMPC. A suitable SMPC method may be
chosen depending on the type of uncertainty and the type of system.

Assumption 5.6 allows us to employ various MPC schemes for the backup controller,
which enables application of a wider class of backup controllers compared to [32]. The most
intuitive choice are RMPC approaches that guarantee recursive feasibility and stability for
a bounded uncertainty. The backup MPC can also be based on other approaches, such as
MPC based on reachability analysis [175] or the failsafe MPC idea described in Section 5.2.1.
It is even possible to consider recursively feasible SMPC approaches as backup controllers,
e.g., [116], if Assumption 5.6 may be satisfied.

5.3.3 Properties

In the following, we show that the proposed SMPC algorithm is recursively feasible, safe,
and ISS.

Recursive Feasibility

Based on Definition 2.5, we first prove recursive feasibility of the optimal control problem of
the safe SMPC algorithm described in Section 5.3.2.

Theorem 5.2. Let Assumptions 5.5 and 5.6 hold and let the system input w, be determined
based on the proposed safe SMPC algorithm in Section 5.3.2. Then, for an admissible uy,
obtaining a solution w; is feasible for all t > 0.
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Proof. The proof is based on showing that at any time step t it is guaranteed that an
admissible input wu; is applied at ¢ and an admissible input u;+ may be obtained at the next
time step ¢7.

If Us* # 0 and T3, € Xyis, ur = u’(x;) exists and x5, € Xy, which guarantees that a
solution Uy, exists for PP(x;11).

In the backup mode, Utb* exists for Pb(wt) as ¢; € Xy and Assumption 5.6 ensures that
P"(x;, 1) remains feasible.

Hence, all possibilities are covered. This holds for all ¢ > 0, i.e., admissible inputs are
guaranteed at subsequent time steps, which concludes the proof. O

Note that no terminal constraint is necessary for the SMPC optimal control problem to
ensure recursive feasibility of the overall algorithm. Based on guaranteed recursive feasibility
of the safe SMPC algorithm, safety and stability are now discussed.

Safety

We require that the SMPC algorithm described in Section 5.3.2 is safe. Based on Defini-
tion 5.4, this requirement demands that all constraints are met at all time steps, which we
show in the following.

Theorem 5.3. Let Assumptions 5.5 and 5.6 hold and let the system input w; be determined
based on the proposed safe SMPC' algorithm in Section 5.3.2. Then, for a safe initial state
xg, safety according to Definition 5.4 is guaranteed for t > 0.

Proof. The proof is based on Theorem 5.2; hence, it is guaranteed that one of the two modes
is applicable at each time step ¢. In the stochastic mode, u; € U and (5.55) ensures that
x; € X for all w, € W. The backup mode guarantees, by design, that u, € U and ; € X
for all w; € W. Hence, in both modes it is guaranteed that x; € X and uw; € U, which holds
for all t > 0 as the proposed SMPC algorithm is recursively feasible. n

As shown, safety is ensured by the backup predictive controller and (5.55). This enables
the use of chance constraints within the SMPC optimal control problem P*(«;), which allow
for constraint violations in the open-loop prediction.

Stability

In MPC, stability is often proved by showing that the value function is decreasing for subse-
quent time steps, also known as the descent property. These proofs are based on the MPC
idea of a moving horizon, where the previously planned input sequence remains valid and
only one additional input element is added to the input sequence for the next time step. For
the proposed safe SMPC algorithm, however, this assumption does not hold. Since switching
between different modes is possible, the predicted input and state trajectories may vary at
each time step. We tackle this challenge by using Lemma 2.1 based on [76]. This lemma
ensures that the origin of a system subject to uncertainty is ISS if the undisturbed system
is asymptotically stable and the system is Lipschitz continuous with respect to state  and
uncertainty w.

Assumption 5.7. The cost function J® is selected according to (5.50). The stage cost is
ChOS@n as l(mt+k|t,ut+k‘t) = T;:-MtQTt-I—Mt —+ ut+k|tTRut+k|t w’lth Q = QT - 0 and R =
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R" = 0 where Ty denotes the nominal states. The terminal cost ‘/f(a:t+N|t) is chosen
as a Lyapunov function in a terminal set Xy for the undisturbed closed-loop system x;y1 =
(A + BK)x; such that for all x, € X;

Vi((A+ BK)x;) — Vi(z;) < —z,' (Q + K" RK)z; (5.56)
where K is a stabilizing feedback matriz.
We can now formulate the ISS property of a system controlled with the proposed algorithm.

Theorem 5.4. Let Assumptions 5.5-5.7 hold and let the system input u; be determined based
on the proposed safe SMPC algorithm in Section 5.3.2. Then, for xy € Xs, the origin is
ISS for system (5.48) and x; € Xys, t> 0.

Proof. We prove 1SS by showing that V(x;) = J"* is an ISS Lyapunov function for (5.48)
where V() satisfies (2.21a) and (2.21b). Any input prediction in either of the two modes
can be described by wi ) = u?+k‘t — Wik, k € o n—1 where @,y represents the offset
between the backup MPC input element u';rk‘t and the input element obtained in the safe
SMPC algorithm w ;. As wiyp’ and u'tDJrklt are bounded, @, is bounded, allowing us

a
to define the new bounded uncertainty w; ; = (ﬁ; e wt+k|tT> . This yields the closed
loop system

f(xy, uy, wy))= Az + Bu, + Ew, (5.57a)
= Ax, + Bu®(x;) — B, + Ew, (5.57b)
= Aa:t + Bub(a:t) + [—B, E]’d)t (557C)

which can be abbreviated by f'(x;, w;).

Function f’ is continuous and f’(0,0) = 0. With Assumption 5.7, it holds that V()
is positive definite and continuous on X,. Hence, based on [99, Lemma 4.3|, functions
aq, ap € Ky exist such that aq(||z:]]) < V(xy) < ao]|ze]]), i-e., (2.21a) is fulfilled.

Due to Assumption 5.6, V(x;) = JP* is an ISS Lyapunov function for the undisturbed
system with @, = 0, i.e., V(f'(x,0)) — V(x;) < —as(||x¢]]). With J® designed according
to Assumption 5.7 and a bounded X, J"* is Lipschitz continuous. Hence, Lemma 2.1 is
fulfilled and V'(+) is an ISS Lyapunov function for f'(x;, w;) with ; € Ay, i.e., it holds that
V(f(xy,wy)) — V(xe) < —ag(||e]]) + v(]|wy]]). It follows that the origin is ISS with the
safe SMPC algorithm. O

Note that tuning the risk parameter in the SMPC optimal control problem does not affect
recursive feasibility, safety, or stability. This allows us to choose a risk parameter that yields
the most efficient behavior.

5.3.4 Simulation Study

We analyze the proposed algorithm in a numerical example, similar to the example in Sec-
tion 2.4, and specifically elaborate on the advantages over SMPC and RMPC. Simulations
are carried out in Matlab where the set calculations are done with the Mutli-Parametric
Toolbox 3 and the MPC routine is based on [79].
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Simulation Setup

We consider the discrete-time system

— 1 0.0075 - 4.798 N 10 w (5.58)
17120143 0996 | TP o115 T o 1| W '

with @; = (214, 724)" and the normally distributed uncertainty w; ~ N (0,%,,), w, € W
where ¥,, = diag(0.06, 0.06) and W = {w; | ||w||o < 0.07}. The input is bounded by
|us] < 0.2 and we employ the state constraint z;, < 2.8. Additionally, we define |z, < 10
and |zg,| < 10 to obtain a bounded set X', however, in the following simulation only z;; < 2.8
is relevant. The initial state is o = (—1.3, 3.5)"

For the SMPC optimal control problem, we approximate the uncertainty with the non-
truncated normal distribution w ~ N (0,3,,) and use an analytic chance constraint refor-
mulation approach as described in Section 2.2.4. We split the state into a deterministic and
a probabilistic part x; = z; + e;, yielding an adapted input u; = Kx; + ¢; with a stabilizing
feedback matrix K and the new input decision variable ¢;. The state constraint is considered
as the chance constraint Pr(x; € 2.8) >  with § = 0.8. The normal distribution w yields
the constraint tightening

xl,kg 2.8 — Yk (559&)
= 1/2(1, 0)TEg(1, 0) erf (26 — 1) (5.59b)

with the error covariance matrix
Y = ASIAL + 5, (5.60)

where 3§ = diag(0, 0) and Ax = A+ BK.

For the backup MPC, we use an RMPC approach according to [128], satisfying Assump-
tion 5.6. This approach yields the tightened state constraint z; < 1.72 and tightened input
constraint —0.018 < @w; < 0.025. The terminal constraint A; is chosen to be a maximal
robust control invariant set.

For SMPC and RMPC we employ a sampling time At = 0.1, a horizon N = N® = 11,
and we use the stabilizing feedback gain K = [—0.29, 0.49].

For both the SMPC and RMPC optimal control problem, we use the cost according
to Assumption 5.7 with @ = diag(1, 10) and R = 1. We choose Vi(z) = ||x||3, with

1.91 —-5.06

Q= [_ 506 395 41, which satisfies the discrete-time algebraic Riccati equation.

Simulation Results

We first analyze the resulting trajectories of a simulation with zero uncertainty using the
proposed safe SMPC algorithm as well as pure RMPC and SMPC, where § = 0.8. The pure
RMPC is based on the backup RMPC controller in Section 5.3.4 and the pure SMPC uses
the SMPC part described in Section 5.3.4. The results are shown in Figure 5.15.

Whereas the autonomous system with u,; = 0 violates the state constraint z; < 2.8, the
pure SMPC trajectory moves as close towards the state constraint as the constraint tightening
&, according to (5.59), allows. State and input constraints are tightened more conservatively
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Figure 5.15: Simulation results for the autonomous system, RMPC, SMPC, and safe SMPC,
all without applied system uncertainty.

method avg. cost avg. violations per run
RMPC 3.56e3 0

SMPC 0.88e3 0.89

safe SMPC  1.13e3 0

Table 5.5: Safe SMPC comparison.

for pure RMPC, requiring a large number of steps to eventually reach the origin. The safe
SMPC approach is initially similar to pure SMPC, as x; is at a large enough distance to the
state constraint. Once (5.55) is not satisfied anymore, the safety mechanism of the proposed
algorithm is triggered and the backup mode becomes active. For the following steps, the
input of the safe backup RMPC is applied. SMPC inputs are applied as soon as it is possible
to satisfy (5.55) again.

The procedure of the safe SMPC approach is illustrated in Figure 5.16, showing the
resulting trajectories of 10 simulation runs subject to uncertainty. Switching to the backup
RMPC inputs ensures that the state constraint is never violated.

Analyzing 100 simulation runs of each safe SMPC, pure RMPC, and pure SMPC with
Ngm = 80 simulation steps highlights the advantages of the proposed method. The results
are given in Table 5.5. The cost is determined by

Nsim

Jaim =Y (lillg + lusllg) - (5.61)

k=1

Whereas SMPC yields the lowest cost, constraint violations occur regularly. RMPC avoids
constraint violations but the cost is majorly increased compared to SMPC. The proposed

safe SMPC guarantees constraint satisfaction with only slightly higher cost compared to
SMPC, combining the advantages of SMPC and RMPC.
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Figure 5.16: Resulting safe SMPC trajectories for 10 simulation runs with uncertainty;
SMPC inputs in red, safe backup inputs in blue.

5.4 Conclusion

In this chapter, we presented safety strategies for SMPC. We first showed a safe and efficient
SMPC+FTP method for self-driving vehicles. While SMPC is used to plan optimistic and
efficient vehicle trajectories, a failsafe trajectory planning MPC problem ensures that only
those SMPC inputs are applied, which keep the vehicle in a safe state. We then generalized
the SMPC+FTP method to linear systems subject to additive uncertainty. This safe SMPC
algorithm offers the possibility to provide a safety guarantee for general SMPC approaches.
In addition, recursive feasibility and stability is guaranteed, without the need of a terminal
constraint for SMPC.

The efficiency of the SMPC+FTP method depends on the proposed constraint genera-
tion. Extending and refining the case differentiation will have a positive effect on efficiency.
Considering urban automated driving, the SMPC+FTP approach remains valid, however,
the case differentiation must be adapted to fit the urban traffic environment.

The safe SMPC algorithm is not limited to SMPC. Instead of using SMPC, other con-
trollers, e.g., learning-based methods, can be used. This would allow us to ensure safety and
stability for learning-based controllers.

The presented safety methods for SMPC are suitable to be applied to further safety-
critical transportation applications, such as currently developed air taxis. However, it is
also possible to extend the application area to non-transportation applications, such as
human-robot collaboration, where uncertainty is always present while safety must still be
guaranteed.
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Minimizing Constraint Violation G
Probability in MPC

SMPC ensures that constraints are only violated up to a level allowed by the risk parameter.
This chapter focuses on minimizing constraint violation probability in MPC, which is espe-
cially relevant for safety-critical systems. Part of the content of this chapter was published
in [29], particularly Section 5.2.

6.1 Introduction

Autonomous systems in safety-critical applications, such as autonomous driving or human-
robot interaction, depend on controllers that are able to safely and efficiently cope with
uncertainties. In these applications, autonomous vehicles and robots must avoid collisions
to ensure safety while also optimizing other objectives, e.g., energy consumption. For this
problem setup, MPC is a promising method due to its ability to cope with hard constraints
while optimizing an objective function.

When uncertainty is present, constraints are handled in a robust way by RMPC [9]. Ini-
tially known bounds on the uncertainty enable a stability guarantee and recursive feasibility
of the RMPC optimal control problem. Nevertheless, robustly accounting for uncertainty
comes with issues. On the one hand, if the uncertainty bound was initially not estimated or
chosen large enough, all guarantees are lost. On the other hand, if uncertainty bounds are
chosen too large, potentially to account for rare worst-case events, RMPC becomes highly
conservative.

The issue of conservatism in RMPC is addressed by SMPC [68,134]. In SMPC, constraints
subject to uncertainty are handled as chance constraints. Again, multiple issues arise. Sim-
ilar to RMPC, wrong initial assumptions for the uncertainty cause feasibility issues of the
SMPC optimal control problem. A further drawback of chance constraints in SMPC appears
if the optimal solution is ‘on the chance constraint” even though other solutions are possible
with no or only minimal effect on the cost function. In other words, a solution to the SMPC
optimal control problem minimizes the cost function and satisfies the required probability
for the chance constraint. There might be other solutions with low cost that have a chance
constraint violation probability less than required by the risk parameter or even zero. How-
ever, the SMPC optimal control problem is considered to be solved once a solution is found
with minimal cost, which satisfies the chance constraint. This means that the solution with
a lower constraint violation probability is not found. Furthermore, choosing a suitable risk
parameter is challenging, as high values increase risk while low values reduce efficiency.

These issues are especially relevant in safety-critical systems. One example is an au-
tonomous vehicle that plans to avoid collisions in an uncertain environment, e.g., a car
avoiding a bicycle with uncertain behavior. If the support of the uncertainty is not known
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a priori, RMPC algorithms are either not applicable or require that the vehicle does not
move until all surrounding vehicles are distanced enough. This, however, is not practical.
Therefore, the collision constraint, for example realized with a norm constraint, could be
transformed into a chance constraint in an SMPC approach, allowing for a small collision
probability. While this yields a more efficient solution than RMPC, a collision might result.
Further, if the chance constraint in SMPC cannot be satisfied anymore because an unlikely
scenario occurred or the uncertainty support changed, the optimal control problem becomes
infeasible. Alternative control laws and recovery strategies can then be used to regain a feasi-
ble controller, or trajectories can be calculated that yield minimal intrusion [211]. However,
in such scenarios where the chance constraint cannot be satisfied, the controller ideally yields
the safest solution possible, which is not guaranteed with standard recovery strategies. In
the example of the autonomous vehicle, the safest solution is the one with the lowest collision
probability.

Therefore, when designing MPC for safety-critical systems, the following requirements
must be addressed:

o Minimal constraint violation probability.

o Ability to cope with time-variant uncertainty bounds and constraints.
e Recursive feasibility of the MPC optimal control problem.

o Stability.

Whereas RMPC and SMPC partially consider these requirements, both methods are im-
practical for safety-critical systems due to the above-mentioned issues.

In this chapter, we propose a novel MPC strategy that minimizes the probability that
constraint are violated. In the following, we will refer to the proposed method as CVPM-
MPC, i.e., MPC with constraint violation probability minimization (CVPM).

We first present an approach specifically suited for collision avoidance, which satisfies
general hard constraints over the entire prediction horizon, but additionally minimizes the
probability of violating a norm constraint in the next predicted step while also optimizing
for other control objectives. This is achieved by first calculating a set that constrains the
system inputs such that only those inputs are allowed that minimize the constraint violation
probability. This is then followed by an optimal control problem that optimizes further
required objectives such as fast reference tracking or energy consumption. In this subsequent
optimal control problem, only those inputs are admissible that minimize the norm constraint
violation probability. It can be difficult to determine a tightened set of admissible inputs that
guarantee minimal constraint violation probability. Therefore, we suggest an approach that
allows for the computation of this tightened input set, given uncertainties with symmetric,
unimodal probability density function, i.e., the relative likelihood of uncertainty realizations
decreases with increased distance to the mean. This tractable approach yields a convex
set of inputs that minimize the constraint violation probability. Guarantees are provided
for recursive feasibility and convergence of the proposed MPC algorithm. A simulation for
a vehicle collision avoidance scenario is shown to display the effectiveness of the proposed
method and highlight its advantages compared to SMPC and RMPC.

Second, we generalize the norm-based CVPM-MPC approach for linear systems with poly-
topic constraints. Additionally, the general CVPM-MPC method makes it possible to mini-
mize constraint violation probability over multiple prediction steps. We guarantee recursive
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feasibility of the MPC algorithm for time-variant uncertainty bounds and time-variant con-
straints. Furthermore, we prove input-to-state stability of the system origin, assuming a
constant uncertainty bound. The benefits of the proposed approach is demonstrated in a
numerical simulation.

In summary, the contributions are as follows.

e A novel CVPM-MPC method for norm constraints or linear constraints, which mini-
mizes the constraint violation probability while optimizing further objectives.

o Control behavior with safer solutions than SMPC and less conservatism than RMPC.
» Ability to handle time-varying uncertainty bounds and constraints.

o Guarantee of recursive feasibility when using CVPM-MPC with norm constraints or
linear constraints, and input-to-state stability for CVPM-MPC with linear state con-
straints.

The proposed CVPM-MPC method can be beneficial in multiple applications, especially
in safety-critical applications such as autonomous driving or human-robot interaction where
the risk measure regarding collision is norm-based [50,173,205]. In these safety-critical
applications, there is a clear priority on maximizing the probability of safety, i.e., the con-
straint violation probability of safety constraints needs to be minimal, before optimizing
other objectives, e.g., energy consumption.

6.1.1 Related Work

Classic MPC methods deal well with deterministic systems and provide guarantees for sta-
bility as well as recursive feasibility [78,132,155], where recursive feasibility ensures that the
MPC optimal control problem remains feasible at future time steps if it is initially feasible.

More advanced MPC algorithms are necessary in the presence of uncertainty in the system.
RMPC methods [129] provide control laws that satisfy the control objectives and constraints
by accounting for the worst-case realization of the uncertainty, assuming that the bound,
i.e., the support, of the probability distribution for the uncertainty is known a priori [124,
133]. The most prominent RMPC approaches are min-max MPC [156], considering maximal
uncertainties, and tube-based MPC [102,108,130], which defines a tube around the nominal
state trajectory in order to account for uncertainty. A different approach is proposed in
[175] where MPC is combined with reachability analysis, designed for safety-critical systems
and specifically considering computation time. In contrast to other methods, no Lyapunov
function is required, which might be hard to obtain. Recursive feasibility is ensured based
on the solution of the previous time step, whereas convergence is shown based on dual-mode
MPC [137]. A major drawback of RMPC is its conservative control law due to accounting
for the worst-case uncertainty realization. This can be problematic in applications with high
levels of uncertainty, e.g., autonomous driving in dense traffic.

This issue is addressed by SMPC methods, which exploit knowledge of the uncertainty by
introducing chance constraints and potentially applying an expectation value based objective
function. In many applications, it is acceptable to allow for a small probability of constraint
violation. This results in a positive effect on performance, as the control law is no longer
required to account for unlikely uncertainty realizations.
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Recursive feasibility of SMPC for bounded disturbances is addressed in [104]. A further
approach addressing recursive feasibility in SMPC are stochastic tube methods [44,105] using
constraint tightening. In [116] an approach is suggested that combines the works of [104]
and [105] where a tuning parameter is introduced that allows for shifting priority between
performance and an increased feasible region. Covariance steering-based SMPC [145, 146]
is a further SMPC approach, which ensures recursive feasibility for linear systems with
unbounded noise. Recursive feasibility in SMPC for probabilistically constrained Markovian
jump linear systems is addressed in [119]

Due to its ability to efficiently cope with environments subject to uncertainty, SMPC
has become increasingly popular in applications. In most SMPC applications, constraint
violations are not critical, e.g., energy control in buildings [121, 148] or hybrid electrical
vehicles [57,209]. However, the possible constraint violation and the resulting infeasibility of
the optimal control problem are limiting factors when designing an efficient SMPC algorithm
in practice, especially in safety-critical applications.

However, safety within SMPC is only specifically addressed in few works. In [211] an
approach is presented, where a least-intrusive trajectory is found if a collision is inevitable.
Recently, robust and stochastic MPC have also been used to provide safety for reinforce-
ment learning [194,195,207]. A different, yet promising way to include safety into MPC are
the recently proposed methods combining control barrier functions with MPC [77,165,208].
However, major challenges remain, e.g., considering uncertainty and the guarantee of recur-
sive feasibility.

All the previously described SMPC approaches fail, however, once unexpected changes
arise, potentially due to changing uncertainties or changing constraints. While slack variables
can be introduced or alternative problems can be solved [45,46] to regain feasibility, there is
no guarantee that the obtained solution is optimal from a safety point of view.

In summary, previous MPC approaches only cover parts of the requirements for safety-
critical systems. The major challenge, reasonably minimizing constraint violation probabil-
ity, is still an open problem and, therefore, addressed in the following.

6.1.2 Chapter Overview

The remainder of the chapter is structured as follows. Section 6.2 introduces CVPM-MPC
for norm constraints and in Section 6.3 the CVPM-MPC method for linear constraints is
proposed. A problem formulation is given in Section 6.2.1. The norm-constrained CVPM-
MPC method is introduced in Section 6.2.2, first focusing on minimizing the constraint
violation probability, then introducing the resulting MPC algorithm. Section 6.2.3 analyzes
the properties of the norm-based CVPM-MPC method, guarantees on recursive feasibility
and convergence. An example of the applied method is given in Section 6.2.4, simulating
a vehicle collision avoidance scenario. The norm-based CVPM-MPC method is discussed
in Section 6.2.5. Then, after providing an updated, more general problem formulation in
Section 6.3.1, Section 6.3.2 proposes the CVPM-MPC method for linear constraints. This
is followed by details on the properties in Section 6.3.3. A numerical example is shown in
Section 6.3.4, demonstrating the benefits of applying CVPM-MPC to safety-critical systems.
A discussion is given in Section 6.3.5. Section 6.4 provides conclusive remarks.
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6.2 CVPM-MPC for Norm Constraints

The safety-critical aspect of safety-critical systems usually addresses collision avoidance,
e.g., in robotics or automated driving. Here, we present an MPC method that minimizes the
constraint violation probability of a norm-based constraint, which can be used to represent
collision avoidance.

6.2.1 Problem Formulation

In this section, we define the system class and the general MPC algorithm. Additionally,
a probabilistic norm constraint is introduced. Based on these preliminaries, the problem
statement is given subsequently.

System Dynamics and Control Objective

Consider the controlled linear, time-invariant, discrete-time system

Tip1= A:Bt + B'l,l,t7 (61&)

with time step ¢, states x; € R™ control input u; € R™, output y; € R™,  and matrices
A e R=>e B e R=*" (C € RMWwX"=,

Furthermore, we consider a dynamic obstacle (DO), which is a system subject to uncer-
tainty. The uncertain system dynamics are given by

Yoa =y, + w0+, (6.2a)

depending on the output yP° € R™ at time step ¢, a deterministic, known input uP® € R",
and a stochastic part w; € R™, which is the realization of a random variable W;. The

nominal prediction of y29 is indicated by gP9 = yP° + uP®, consisting of the previous

output yP° and the deterministic, known input «P°.

Assumption 6.1. The random variables Wy (w;) ~ fw, with the probability distribution
pw, and density function fw, have zero mean and are truncated with the initially known,
convex and bounded support supp (fw,).

The support of fy, is given by

supp (fw,) = {w: | [willy < Wmaxt} (6.3)

where Wmax, ¢ € RZO'
The controller for (6.1) is designed to optimize a finite horizon objective function while
accounting for input and state constraints.
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Model Predictive Control

We consider an MPC algorithm with a finite horizon objective function J, similar to Sec-
tion 2.2.3. The finite horizon cost J (g, U), with the MPC horizon N, continuous stage
cost [ (x;,u;) = ijQmj + ujTRuj with [(0,0) =0, Q@ € R, R € R™™ and Q > 0,
R > 0, and continuous terminal cost V; with V;(0) = 0, is then given by

T (20, U) = kz_ (1 (@, ) + Vi) (6.4)

with the input sequence U = (uy, ..., uny_1).
We first formulate the MPC optimal control problem, including a terminal state constraint
A}, resulting in

min J (o, U) (6.5a)
st. xp 1 = Axy, + Buy, (6.5b)
up €U, kelyn (6.5¢)
xreX, kely (6.5d)
Ty € Ar (6.5¢)

The input uy is bounded by the non-empty input value space 4 C R™. The convex state
constraint is given by X.

Assumption 6.2. For all ) € &}, there exists an admissible wy such that xp,, € Aj.

Assumption 6.3. The stage cost | (xy, uy) is continuous, positive definite, and 1(0,0) = 0.
The terminal cost Vi is a Lyapunov function in Xj.

We denote with U, ;. the set of admissible inputs u;, such that all constraints of (6.5) are
satisfied for j € Iy.y_1, i.e.,

u%k = {’U,k ‘ u; € U Vj S ]Ik,N—la T;c X VJ € Hk—i-l,Na N € Xf}7 ke HO:N—I (66)
where the special case U, is given by
Up . = {ug | (6.5¢), (6.5d), (6.5¢)} . (6.7)

Remark 6.1. Instead of steering x; to the origin as in (6.4), specific references Xyers can be
tracked, as described in Rawlings et al. [160, Chapter 1.5].

MPC with a Probabilistic Norm Constraint

In the following, the uncertain system (6.2) is considered and a probabilistic norm constraint
is introduced.

Assumption 6.4. The initial state yP© and deterministic input ub® are known at the

beginning of each MPC optimal control problem.
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Here, we consider an additional constraint for the MPC problem (6.5), which is the norm
constraint

o —wP°[, > (6.8)

representing a constraint on the 2-norm Hyt —yPo

, e.g., the distance between two points
must not be smaller than a minimal value h; that can be used for collision avoidance. While
(6.8) is a hard constraint, we will first transform (6.8) into a chance constraint and later, in
Section 6.2.2, we will minimize the probability that this norm constraint is violated.

Remark 6.2. [t is also possible to consider a p-norm constraint with Hyt — yPOH instead
p

of the 2-norm. Similar to the 2-norm, all p-norms are convex. Without loss of generality we
will consider the 2-norm as most applications require a 2-norm to represent the Euclidean
distance.

As yPO© is subject to uncertainty, the norm constraint (6.8) is difficult, potentially im-
possible, to fulfill, or it might lead to overly conservative control inputs. The hard norm
constraint (6.8) can be relaxed if substituted by the chance constraint

Pr (Hyt - yPOHQ < ht) <0G (6.9)
with
p; = Pr (Hyt — y?ouz < ht> (6.10)

where f3; is a risk parameter and p; denotes the constraint violation probability for the norm
constraint (6.8). We obtain p; = 0 if the maximal uncertainty value wp,x—1 cannot cause
| = w2, <.

The following example will illustrate the idea of the chance constraint. A similar example
is analyzed in a simulation in Section 6.2.4.

Example 6.1. We consider a controlled object with position y, and a dynamic obstacle with
position yP© where Hyt — yPOH2 is the distance between both objects. The objects collide

if Hyt — yIPOH2 < hy. An interpretation for (6.9) is that p; represents the probability of a

collision and this constraint violation probability is bounded by a predefined risk parameter [;.

We now consider the chance constraint (6.9) within the MPC optimal control problem.
Whereas it is possible to consider the norm constraint (6.8) over multiple steps, within the
MPC optimal control problem, we only consider the norm constraint for the next predicted
step k = 1 with a horizon N > 1. Applying (6.8) over the entire horizon N results in a
conservative control law similar to RMPC. The one-step chance constraint is given by

Pr (| - yPOH2 <h) < B (6.11)

where we define
p1 (ug) = Pr (Hyl - ’!/1130H2 < h1) : (6.12)

Note that the dependence of p; (ug) on yo and yP© is omitted due to clarity, as these values
will not be decision variables in the MPC optimal control problem.

Only the general MPC problem (6.5) is addressed in Assumptions 6.2 and 6.3. The norm
constraint (6.8) is not considered in these assumptions, as it is specifically addressed in the
method presented in Sections 6.2.2 and 6.2.3.
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Remark 6.3. The norm constraint (6.8) is only considered in the first prediction step, i.e.,
at step k = 1, as we later minimize the probability of constraint violation for the first step.
However, if this norm constraint is required to be considered at future steps k € lo.n, this
can be achieved by treating (6.8) as a chance constraint, similar to (6.11), resulting in

Pr (Hyk - y,?on < hi) < B, k€ Ly (6.13)

This chance constraint (6.13) is then added to (6.5) and subsequently needs to be considered
n (6.6). Assumptions 6.2 and 6.3 still need to be fulfilled if chance constraints are included
for k € Iy n in the optimal control problem.

Problem Statement

Instead of only bounding the chance constraint (6.11) by the risk parameter (;, we aim at
minimizing the constraint violation probability p; within the MPC optimal control problem.

Objective 6.1. The goal is to solve the MPC problem

J* = ml}n J (x,U) (6.14a)
s.t. Ty, = Axy + Buy (6.14b)

yr = Cxy (6.14c)

Uy € Upp, k €lgn_y (6.14d)

while it needs to be quaranteed that

up = arg min Pr (Hy1 - y?OH2 < h1> (6.15)

ugEUgz,0
and that the MPC problem remains recursively feasible.

In Objective 6.1, (6.14d) summarizes the constraints of the initial MPC problem (6.5),
according to the definition of U, in (6.6), and (6.15) ensures that p; is minimized.

This problem formulation allows us to find a method that additionally handles a fur-
ther important challenge in safety-critical applications, which are problematic in SMPC
and RMPC. It is fundamental to maintain recursive feasibility of the MPC optimal control
problem for an unexpectedly increasing uncertainty support.

Here, we propose a novel MPC approach, CVPM-MPC, that first ensures the minimal
constraint violation probability p;, but then still optimizes the cost function J(xg, U). This
approach yields a control input resulting in the lowest possible constraint violation probabil-
ity, given input and state constraints, while still optimizing further objectives. The CVPM-
MPC method guarantees recursive feasibility, also for a changing uncertainty support, and
ensures convergence of the MPC algorithm.

6.2.2 Method

In this section, we derive the CVPM-MPC method to minimize the constraint violation
probability p; for the first predicted step £ = 1 in an MPC problem. First, a general
approach is presented to find a tightened admissible input set that minimizes the first step
constraint violation probability. In the following part, it is shown how this approach can
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f CVPM-MPC \

System State x R 4
i Minimization of Updated Input .
Uncertain System State y5° | Constraint Violation Set Ueypm,0 MPC W't!‘ Input ug
" . Cost Function System
Input Constraints Probability J
State Constraints | Pr (Hyl _ yr,1|‘2 < hl)

J

Figure 6.1: Visualization of the CVPM-MPC method: Given an input set and state con-
straints, as well as the current system state and uncertain system state, an
updated input set is determined. This updated input set minimizes the norm
constraint violation probability for the next step. Then, an MPC optimal control
problem is solved. The updated input set ensures constraint violation probability
minimization while optimizing for other objectives.

be incorporated into MPC. A visualization of the method is displayed in Figure 6.1. As
determining the tightened input set within the CVPM-MPC method is difficult in general, we
then provide an alternative, computable approach, assuming an uncertainty with symmetric,
unimodal PDF. A solution approach for a multi-step CVPM-MPC is described in [29].

General Method to Minimize Constraint Violation Probability for One-Step
Problem

When minimizing p; over uy within the MPC algorithm, three different cases need to be
considered. In each case, a set Usypm o is determined, which consists of inputs g that mini-
mize the constraint violation probability. Ideally, even considering the bounded uncertainty,
satisfaction of the constraint (6.8) may be guaranteed in the next step, for all choices of
uy € Uy o, which will be referred to as case 1. However, for stochastic systems we potentially
have the situation that case 1 cannot be guaranteed. Here, two cases need to be distin-
guished. First, given the uncertainty, there is no choice for uy that guarantees constraint
satisfaction (case 2). Second, some choices for uy guarantee constraint satisfaction, while
other choices do not lead to such a guarantee (case 3). Depending on the case, Ueypm,o 18
determined differently as described in the following.

Case 1 (guaranteed constraint satisfaction). The probability of violating the norm
constraint is zero independent of the choice for ug, i.e.,

pi(ug) =0 Vug € Uyp. (6.16)
Therefore, every ug € Uy is a valid input, resulting in
ucvpm,O = Z/{:t,O‘ (617)

Case 2 (impossible constraint satisfaction guarantee). There is no choice for wu
such that constraint satisfaction can be guaranteed in the presence of uncertainty, i.e.,

p1(ug) >0 Vg € Upp. (6.18)
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As it is impossible to guarantee p; = 0, the aim is to minimize p;. Selecting

ucvpm,O = {uO

up = argmin p; (uo)} (6.19)

w0 EU,0

yields the set Ucypm,0, which only consists of inputs ug that minimize p;.

Case 3 (possible constraint satisfaction guarantee). If only some inputs u, guarantee
satisfaction of the norm constraint (6.8), i.e.,

3 Ug € Z/[m70 s.t. P1 ('U,()) = O, (620)

then the set

Uevpmo = {0 | (p1 (uo) = 0) A (uo € Uszp)} (6.21)

consists of these inputs that yield constraint satisfaction.

In all three cases Ueypm o needs to be found, requiring the following strong assumption.
Assumption 6.5. The set Ugypmo can be determined for all cases 1-5.

While it is possible to approximate Uevpm o by sampling, finding an analytic solution for
Ucypm,o highly depends on the probability distribution. However, if Ueypm,0 can be determined,
the CVPM-MPC method guarantees minimal constraint violation probability for p;.

Theorem 6.1. If Assumption 6.5 holds, minimization of the constraint violation probability
of p1 is guaranteed by selecting Ueypm,o according to cases 1-3.

Proof. The proof follows straightforward from the definition of the three cases. All possibili-
ties are covered regarding the guarantee of constraint satisfaction, i.e., guaranteed constraint
satisfaction (case 1), impossible constraint satisfaction guarantee (case 2), and the case where
constraint satisfaction is only guaranteed for some but not all wy € Uy (case 3). If py =0
is possible, i.e., case 1 or 3, (6.17) and (6.21) guarantee that Ue.ypm o consists only of inputs
uy € Uy that yield p; = 0. If no ug € U, ¢ guarantees p; = 0, minimal constraint violation
is guaranteed by only allowing inputs g € U, ¢ that minimize p; according to (6.19). O

In dynamic environments the worst-case uncertainty wpyax may change over time, which
influences the probability of constraint violations. If the support changes, the CVPM-MPC
approach still minimizes this constraint violation probability.

Corollary 6.1. If the uncertainty support supp (fw,) changes from step t to t + 1, the
CVPM-MPC problem solved at step t + 1 guarantees that the constraint violation probability
Diao 1S minimized.

Proof. The proof follows directly from the problem definition. First, the CVPM-MPC ap-
proach ensures that the constraint violation probability is minimized for each step, which
allows p;io > pyyq if the uncertainty support increases. Second, minimizing p;, o is indepen-
dent of minimizing p;.1. O

The MPC problem (6.14) is now adapted given the set Ueypmo to guarantee minimal
constraint violation probability of the norm constraint while still optimizing for further
objectives.
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6.2 CVPM-MPC for Norm Constraints

Model Predictive Control with Minimal First Step Constraint Violation
Probability

Applying the previously determined Ueypm o yields the CVPM-MPC problem

mUin J (xo,U) (6.22a)
s.t. Ty = Az + Buy (6.22Db)
yr = Cxy, (6.22¢)
U cl. (6.22d)

The set U defines the admissible inputs that yield minimal constraint violation probability
combined with keeping the inputs and states within the input and state constraint sets. The
set U is given by

Z/{g = {U | (Uo S Z/{Cmep) A (’U,k € Z/[%k, ke Hl:N—l)} (623)

where Uy, is defined in (6.6) and Ueypm o is obtained as described previously.

The complete CVPM-MPC problem (6.22) allows us to optimize a cost function and satisfy
state and input constraints while minimization of the constraint violation probability p; is
ensured.

Minimal Constraint Violation Probability for One-Step Problem with
Symmetric Unimodal PDF

The previously proposed CVMP-MPC method only guarantees minimal constraint violation
probability if Assumption 6.5 is fulfilled. Therefore, it must be possible to always determine
Ucvpm,0, Which is a strong assumption. In the following, we provide an adapted approach of
the CVMP-MPC method, which guarantees minimal constraint violation probability if the
PDF of the uncertainty is symmetric and unimodal.

We first give a definition of symmetric, unimodal PDFs. Further, we introduce a substitute
expression for the constraint violation probability p;. Then, the three cases are adapted in
order to minimize p; for the PDF addressed in the following. For each case a convex set of
admissible inputs Ueypm o is determined.

Symmetric unimodal PDF. We first define the class of symmetric, unimodal probability
distributions.

Definition 6.1 (Symmetric Unimodal Distribution). A probability distribution is symmetric
and unimodal if its PDF has a single mode, i.e., a single global maximum, which coincides
with its mean p and

flptm)=fp+7) YV nl, =7l (6.24)

With Definition 6.1 it is ensured that the PDF has its peak at mean g and that the PDF
is strictly radially decreasing. As the probability distribution is symmetric, all realizations
with similar distance to p have the same relative likelihood. Since there is only one global

maximum of the PDF at p, realizations with increasing distance to p have a lower relative
likelihood.
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6 Minimizing Constraint Violation Probability in MPC

The constraint violation probability p; is a probabilistic expression and cannot directly
be used in the optimal control problem. The following assumption will allow us to find a
deterministic substitute for p;.

Assumption 6.6. The PDF fw, for W, in (6.2) is symmetric and unimodal with mean
pn=0.

Example 6.2. An example for an admissible probability distribution pw, with symmetric,
unimodal PDF is a truncated isotropic bivariate normal distribution N (0, X) with covariance
matrix

Y. = diag (0%,02) =0’l, 0 =0, =09 (6.25)

with variance o and identity matriz I. The support in each direction is required to be
equal, which can be achieved by over-approximating. Distributions with o, # oo can be
over-approzrimated by choosing

Y = omax], Omax = max (o1, 09). (6.26)

We now address the relation between p; and fyw, considering Assumption 6.6. The following
lemma shows that the constraint violation probability p; can be decreased by choosing u;_;
such that the distance is increased between the next system output y; and the next known,
nominal random system output yP°

ﬁJemma 6H1 If Assumption 6.6 holds, the probability p; is decreasing for an increasing norm
DO
Yt .

Proof. The proof is derived in Appendix D.1. O]

The lemma shows that the probability of violating the norm constraint (6.8) decreases if
the difference between y; and yP© increases. Lemma 6.1 now allows us to find a substitute
function for p;.

Substitute probability function. The probability p; cannot be used directly to obtain
the set Ucypm,o. Therefore, a substitution is required for p,. Based on Lemma 6.1, the
probability ps decreases for an increasing norm Hyk — y?oH . This property is used to choose
a substitution for the constraint violation probability pr. Here, the substitute function is
selected to be

o (o —w2°,) = Hyk -9 (627

While py is decreasing with the norm Hyk — the function p (Hyk — DOH2> is increasing

with Hyk — P H2 Therefore, increasing the Value of function p (Hyk — DOH ) yields a
reduced probability p,, which is exploited in the following to minimize constraint violation
probability.

Remark 6.4. While o (Hyk —yEOH2> Hyk — DOH2 is adequate for most safety-critical

applications, other scalar functions ¢ (Hyk — P 2) are possible, as long as they are twice
differentiable and strictly monotonically increasing.
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6.2 CVPM-MPC for Norm Constraints

Considering the constraint violation probability for the first predicted step & = 1, this
probability p; is minimized for a maximal o <Hy1 — ﬂ?OH). However, since fyw, is truncated
and p; is bounded, there potentially are multiple admissible inputs that result in an equal
constraint violation probability. The aim is now to find the convex set Ueypm o including all
INputs Ueypmo € Ueypmo that result in a minimal p;. As u© is deterministic and known
according to Assumption 6.4, o (Hyl —Q?OHZ) is a deterministic expression that can be

evaluated.
The set Usvpm,o can then be found by comparing the Worst case uncertainty wmyaxo with
the minimum and maximum possible values of o (Hy1 H ), i.e., Omin1 and Qmax1, Te-

spectively. The maximal value gmax,1 is determined by

w0 EUz,0 w0 EU,0

oma = max o ([ - 52°],) :g( max (| - 52, )) (6.25)

corresponding to the largest distance between y; and yP©. Analogously omin; can be found

by

ot = uin o (o -5°]) = o (i (o -9]))- @)

ugEUL 0 uo €Uz 0

The result for gmin,1 can be obtained by determining the minimum value of Hyl — P , a8

the objective function p (Hy1 — ylfon) and U, are convex. The following lemma provides
a strategy to find Omax1-

Lemma 6.2. Let the non-empty convex polytope V C R™, n, € N, be bounded by a finite
set of hyperplanes, such that V has a finite number of edge vertices with a convex function
vV — R. Then, a global mazrimum

Prmax = Max @ (v) (6.30)

is obtained by searching for the maximum value of ¢ on the boundary OV of its domain V.

Proof. This proof is based on Bauer’s maximum principle [8]. We consider any two points
vy, V9 € OV on the boundary of V. Any point on the line between vy, v, can be described by
b = \yv1 + (1 — A\p)ve, using the definition of convexity. Due to the convexity of ¢ it holds
that ¢ (b) < max{p (v1),¢ (v2)}. Any point on the line between vy, vs can be reached by
a convex combination. Since vy, v, can be chosen arbitrarily, every point b in the interior of
V can be reached. Therefore, a global maximum ¢, .. is found on the boundary 9V. O

Determination of the updated admissible input set. We again investigate three
cases. The resulting set Ueypm,0, depending on the three cases, is then used in the CVPM-
MPC problem (6.22) to guarantee minimal constraint violation probability of the norm
constraint. In order to distinguish between the cases, we will consider the relation

b =991, = -+ = 31— 98], > a1

which follows using a reverse triangle inequality as shown in Appendix D.2, given the dynam-
ics of the uncertain system (6.2). Here, hy +wpmayx o represents the necessary distance between
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6 Minimizing Constraint Violation Probability in MPC

y, and PO, consisting of the required minimal distance h; at step k = 1 and the maximal
random system step Wmaxo at k = 0, such that Hy1 — y]foH2 > hy for all ||lwol|ly, < Wmaxo-

Case 1 (guaranteed constraint satisfaction). For any u, € U, constraint satisfac-
tion is guaranteed, i.e., p; = 0 for

Qmin,l Z 0 (hl + wmax,O) . (632)

The initial state configuration of the controlled and stochastic system is such that the min-
imum value possible for o (Hy1 — y]fOHQ), Omin,1, Still yields a larger value than inserting h,

combined with the worst-case wyax o into g, which moves y]fo closest to y,. This results in a
guaranteed constraint satisfaction p; = 0. Therefore, every uy € Uy o is an admissible input,
ie.,

z/{cvpm,O = Z/{w,O- (633)

Case 2 (impossible constraint satisfaction guarantee). There is no input uy € Uy o
that can guarantee p; = 0, i.e.,

Omax,1 <o (hl + wmax,O) . (634)

The largest value for o <Hy1 - @?O‘U that can be achieved with wy € Uy o i Omax,1, corre-

sponding to the lowest possible p;. However, to guarantee constraint satisfaction of (6.8),

Omax.1 18 required to be larger or at least equal to 9(h1 4+ Wmax0), With the worst-case absolute

value wWaxo for the realization of wy. Constraint satisfaction cannot be guaranteed here.
The solution corresponding to @max,1 is denoted by wcypm . Minimal p; is achieved with

Ueypm,0 = ArgMmMax g (Hy1 — @?OHQ) (6.35)

ugEUZ,0

as o (Hy1 — Q]fon) increases and p; decreases with an increasing norm.
Therefore,

Uerom 0 = { Uevpm o | (6.36)

is selected since the input choice Ucypm,0 guarantees the lowest constraint violation probability
when p; > 0.

Remark 6.5. If (6.35) yields more than one solution, Ueypm o in (6.36) may also consist of
more than one element, i.e., all solutions of (6.35). However, there can be restrictions if
convexity of Uevpm,o 15 Tequired.

Case 3 (possible constraint satisfaction guarantee). The final case yields p; = 0
for some ug and applies if

Qmax,l Z Q(hl + wmaX,O) > Qmin,l- (637)

While some uy € U, cannot guarantee zero constraint violation probability, it is possible
to find ug such that

o(|lyr —7°],) = 0 (1 + wmaxo) (6.38)
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6.2 CVPM-MPC for Norm Constraints

Therefore, for some wug constraint satisfaction can be guaranteed in the presence of uncer-
tainty. Hence, the task is to find a set

Uevmo = {uo | (o (||lyr = 37°||,) = 0 (1 + wamaxo)) A (w0 € Usn) } (6.39)

which consists of all inputs wy € Uy that yield constraint satisfaction and therefore p; = 0.
The first part of the set in (6.39),

Unnodes,0 = {UO ’ 0 (Hyl - glleH2> >0 (hl + wmaX,O)} ) (6'40)

describes a super-level set, including only inputs uy that lead to p; = 0. This super-level
set is generally non-convex. In order to receive a convex set Ueypm,o for the optimal control
problem, an approximation is performed, based on the boundary

OUmodes0 = {Uo ‘ 0 (Hyl - QPOHQ) =0 (h + wmax,O)} : (6.41)
Proposition 6.1. An approzimated, convex solution of (6.39) in case 3 is obtained by
ucvpm,O - Z/A{cvpm,O - {UO ’ Z/AIO (US) N ux,O} (642)

with
o () = {uo | (Vg ([ (up) = 52°],)) " (o — i) = 0} (6.43)

the gradient operator Ve, and a point ul € OUmodes,o N Uz that is an admissible input.

Remark 6.6. While it was previously not explicitly stated that y, depends on wug, in Propo-
sition 6.1 the dependence of y1 on ug is stated for clarity.

Proof. The set Upodes,o is non-empty and non-convex with the boundary point w; € OUmodes.o
of Unmodeso- There exists a supporting hyperplane to Umodeso at wf [21]. This support-
ing hyperplane is then used to approximate the non-convex set Upodeso. The gradient

Vs (o

ary OUmodeso at uo, pomting away from the convex set Upodeso. The scalar product of

Vs (o
prooduct of Vuo ( (Hy1 ug) H )) and any point in the half plane not containing Umnedes,o

Y1 (u) H )) is a vector that is orthogonal to the hyperplane on the bound-

1 (ug) H )) and any point ug on this hyperplane is zero, whereas the scalar

is positive. Therefore, (6. 43) approx1mates Unodes0- As the intersection of two convex sets
yields a convex set [21], the resulting approximated set Ueypmo is convex as well. O

An approach to finding u is solving the system
0 (Hyl (’U,Ek)) - g]IDOH2> = Q(hl + wmaX,O) (644)
with uf € Uz . The choice of uf is not unique. It is possible that Z/A{Cmep is empty due to
approximating even though case 3 applies.

Remark 6.7. IfZ/A{Cme,O = ) in case 3, then uy can be determined by following the procedure
of case 2.

Following the approach in Remark 6.7 still provides a solution that minimizes p;. However,
in case 2 only a single option Ueypm,0 = Ucvpm,0 is given, whereas case 3 has the advantage of
providing a set Ueypm,0 With multiple possible inputs ug. Case 3 therefore offers the possibility
to then optimize to account for further objectives, given the set of admissible inputs Ueypm,o-
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6 Minimizing Constraint Violation Probability in MPC

6.2.3 Properties

In the following, two important properties are analyzed. First, recursive feasibility of the pro-
posed method is shown, which follows directly from the design of the CVPM-MPC method.
This is followed by a proof of convergence, requires certain assumptions. The main challenge
for these proofs is that the set of admissible inputs for the MPC optimal control problem
changes at each time step.

Recursive Feasibility

Recursive feasibility guarantees that if the MPC optimal control problem is solvable at step
t, it is also solvable at step ¢ 4+ 1. This needs to hold as MPC requires the solution of an
optimal control problem at every time step. We use Definition 2.5 for recursive feasibility.
In the following, recursive feasibility will be established for the proposed method.

Theorem 6.2. The CVPM-MPC algorithm in (6.22) is recursively feasible with the general
CVPM approach of Section 6.2.2.

The proof is divided into two parts. First it is shown that Ueypmo # 0 at any step. Then,
recursive feasibility of the optimal control problem (6.22) is shown.

Proof. As shown in the proof of Theorem 6.1, the three cases (6.16), (6.18), and (6.20) cover
all possibilities with individual, nonempty sets Ucypm,0. This yields that there always exists
a Ug € ucvpm,O-

As ug € Uy, it holds that conditions (6.5¢), (6.5d), (6.5¢) can be fulfilled with wj € Uy
for k € I;.y_1 according to (6.6) and due to Assumption 6.2. No input wg is possible that
would cause Uy = 0 for k € I;.y—1. Therefore, feasible solutions wy exist and Uy is a
non-empty set for k € Iy.y_1.

The first condition in (6.23) considers the first input wg, while the second condition covers
the following inputs w; with k& € I;.5_;. Therefore, the two conditions are independent and
U; # 0 for any MPC optimal control problem. The MPC algorithm (6.22) is guaranteed
recursively feasible. O

The proof for the general CVPM-MPC method can be extended for the CVPM-MPC
approach for uncertainties with symmetric, unimodal PDFs.

Corollary 6.2. If Assumption 6.6 holds, the CVPM-MPC algorithm in (6.22) is recursively
feasible with the CVPM approach for uncertainties with symmetric, unimodal PDFs.

Proof. The proof follows straightforward from Theorem 6.2, showing that Ueypm+ 7# 0 for all
three cases (6.32), (6.34), and (6.37). According to Lemma 6.2, 0min 1 and gmax1 can always
be found. Given any value for ¢ (A1 + Wmax0), exactly one of the three cases is applicable,
yielding Ueypmo # 0. For cases 1 and 2 no approximation is necessary. If LAICme,O = () for
case 3, the approach of case 2 is used according to Remark 6.7, i.e., Uevpmo = {Ucvpm,o}-
Therefore, Ueypm, # 0 for all three cases. O

Theorem 6.2 and Corollary 6.2 show that if the MPC problem (6.5) is designed to be
recursively feasible, the CVPM-MPC algorithm (6.22), based on (6.5), remains recursively
feasible. According to Corollary 6.1, minimizing p; is independent of the uncertainty support,
therefore, recursive feasibility is guaranteed if the uncertainty support changes.
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6.2 CVPM-MPC for Norm Constraints

Convergence

In the following, convergence of the proposed method is shown. Here, the MPC optimal
control problem starts at x;. It is possible to track a reference varying from the origin,
however, without loss of generality we will only consider the regulation of the origin here.

The uncertain output yP° can potentially lie close to the origin or even directly in the
origin. In order to minimize p;, an area around yP© is then inadmissible for the system
output y;. This can lead to the scenario where the origin is inadmissible for the controlled
system, i.e., 0 € X, where

Xevr ={xe | pr (u1) >0, &, = Azy 1 + Buy_1 } (6.45)

denotes the bounded and open set of states x; with p; > 0, i.e., constraint violation is
possible for all ; € X, ;. An inadmissible origin is an issue when investigating the stability
of the proposed algorithm. However, we will provide a convergence guarantee under the
following two Assumptions concerning the stochastic nature of yP©.

Assumption 6.7. (a) There exists a to < oo such that for all t > to it holds that
0¢ Xoyr V>t (6.46)

(b) There ezists a t,o < oo and a finite sequence of inputs u; such that y, = 0 for all
t> tyo > to.
(¢) There exists a teaser,3 < 00 and for all t > tease13 > to

Jug st p(u—1) =0 (6.47)
G/I'Ld z/{cvpm,t 7é Q)

Assumption 6.7 (a) is important such that even if y°© is occupying the space around the
origin for some time, eventually yP° has enough distance to the origin and, therefore, the
origin becomes admissible for the controlled system, as the boundedness of the stochastic
system state yields a closed admissible space for the controlled system. Assumption 6.7 (b)
ensures that there is a possibility for the controlled system to reach the origin.

With Assumption 6.7 (c) it is guaranteed that either case 1 or case 3 is applicable if
Assumption 6.7 (a) holds. This ensures that p, = 0 at some time after the origin becomes
admissible for the controlled system.

Lemma 6.3. If Assumption 6.7 holds, there exists a closed, control invariant set X, =
X\ Xeyt fort > teasers, which contains the origin.

Proof. As cases 1 or 3 are applied, the space blocked by X.,; around yP° with non-zero
constraint violation probability can be regarded as a hard constraint. This yields x; ¢ Xy
for all t > tcaser3- As X is closed and X, is open, the resulting set X, is closed. As
x, €EX, CX , there exists a u; such that x;,; € X according to Theorem 6.2. Additionally,
Assumption 6.7 (c) ensures that Ueypm+ is not empty, therefore x,yq € X, and X, is control
invariant. ]

The set X consists of the states that ensure constraint satisfaction of X and yield p; = 0
for ¢ Z tcasel,?)'
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6 Minimizing Constraint Violation Probability in MPC

Assumption 6.8. The terminal constraint set X; is a subset of /?t, i.e., Xt C )N(t.
In the following, convergence of the proposed method is addressed.

Theorem 6.3. If Assumptions 6.3 and 6.7 hold, the proposed CVPM-MPC method in Sec-
tion 6.2.2 satisfies that x; converges to 0 for t — co.

Proof. First, the MPC algorithm in (6.5) will be considered without the norm constraint
(6.8). As V (o, U) is a Lyapunov function in X', given Assumption 6.3, the MPC algorithm
of (6.22) without (6.8) is asymptotically stable, following the MPC stability proof of [160,
Chapter 2.4].

Now the CVPM-MPC method is considered. According to Theorem 6.2, for all ¢, x; € X
there exists a feasible U; such that x;,; remains in X'. Lemma 6.3 ensures that xy € X, for
t" > tcase1,3, where X ¢+ replaces X' to ensure constraint satisfaction of the norm constraint.
The set X, is closed, control invariant, contains the origin according to Assumption 6.7, and
Xy C Xy, given Assumption 6.8. Therefore, the system (6.1), controlled by the CVPM-MPC
algorithm in (6.22), is asymptotically stable and converges to 0 for t > ¢’ and t — oo, similar
to the MPC algorithm in (6.5). O

In Theorem 6.3 it is only shown that the system converges to the origin once the random
system fulfills Assumption 6.7. However, every time the stochastic output allows the system
to reach the origin, the system will move towards the origin. Once the origin is reached, the
system state x; remains at 0 until y°© changes in such a way that the origin has non-zero
constraint violation probability. As the main goal is to ensure minimum constraint violation
probability of (6.9), y, will move away from the origin to minimize p; if y°© behaves in such
a way that it causes p; > 0 in the origin.

Corollary 6.3. If Assumptions 6.7 holds, the proposed CVPM-MPC method for uncertain-

ties with symmetric, unimodal PDFs satisfies that &, € X for all t and that x; converges to
0 fort — oo.

Proof. The proof is similar to the proof of Theorem 6.3. The set X.,: in (6.45) can be
expressed as

Koy ={@ | 0 (|9 = 77°],) < 0 + wmari 1), 91 = Cmi}- (6.48)
Equation (6.46) is satisfied by
o([lo=5°|) = o + wmai1) V=10 (6.49)
while (6.47) transforms into
Jupq st o (Hyt — g?OHQ) > 0 (ht + Winaxt—1) (6.50)

for the CVPM-MPC method for uncertainties with symmetric, unimodal PDFs.

Similar to Lemma 6.3, given the open and constant set &¢y ;, X, is closed, constant, control
invariant, and contains the origin given Assumption 6.7. With the MPC algorithm (6.5) and
t >t t — oo the system (6.1) is asymptotically stable and therefore converges to 0. O

Therefore, if the origin is admissible, the controlled system will converge. However, satis-
fying the norm constraint has priority over converging to the origin. Compared to standard
MPC methods, the origin is not necessarily within the constraint set X'. Therefore, the stan-
dard MPC stability approach cannot be applied, but convergence under mild assumptions
is proved in Theorem 6.3.
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Figure 6.2: Vehicle avoidance scenario. Approximated shapes of the controlled vehicle (car)
and obstacle (bicycle) are indicated by black lines within the objects.

6.2.4 Simulation Study

In the following, a simulation is presented and discussed to further explain the general
idea and its application. This collision avoidance scenario with two vehicles illustrates an
application where the proposed method is beneficial. The simulations were run in MATLAB
on a standard desktop computer using MPT3 [83] and YALMIP [115]. Solving a single
optimal control problem of the MPC algorithm takes 54 ms on average. All quantities are
given in SI units.

Collision Avoidance Simulation

A collision occurs if the distance between two objects becomes too small. This distance can
be represented by a norm constraint. The priority is then enforcing the norm constraint, or
if not feasible, minimizing the probability of violating the norm constraint.

We consider the example mentioned in Sections 6.1 where a controlled vehicle avoids
collision with a bicycle, referred to as obstacle in the following. The controlled vehicle
is approximated by the radius r. = 2.0 and the obstacle is approximated by the radius
rpo = 0.8 and is subject to stochastic motion in a bounded area, e.g., a road. The circles
are chosen to fully cover the individual shapes of the controlled vehicle and obstacle. The
scenario setup is shown in Figure 6.2. The discrete-time system dynamics of the controlled
vehicle in z- and y-direction are given by

|10 exp(At) —1 0
Li1—= |f) 1‘| Ty + [ 0 exp(At) _1 Uy, (651&)
10
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where = (z,y)" and (v,,v,)" are the position and velocity in a two-dimensional environ-
ment, respectively. The inputs are given by (uy,u)'. System (6.51) is similar to (6.1). We

will consider the input constraints

Uy

U= {u = (“z> ’ 1<v, <9, |v,| < 3.5}. (6.52)

In z-direction there exists a minimum velocity v, min = 1 to ensure that the controlled
vehicle is always moving forward, which also limits the potential oscillating behavior due to
the CVPM-MPC approach. We also consider the state constraint

X = {x = @ ‘ylb <y< yub} (6.53)

where yy, = 2.0 and y,, = 8.0 are the boundaries of the road minus the radius r..
The assumed behavior of the obstacle with random behavior is given by

t—1
y0 =00+ Y (ul + w) (6.54)
=0

depending on the initial output y©, the input uP°, and the realization w; of the random
variable W, ~ fyw, and y, = (2P°,4P°)T. We assume fy, to be symmetric, unimodal, and
truncated, resulting in the support of fyw,

supp (fw,) = {w, | ||'wt||2 < Wmax,t } (6.55)

where Wy, is the radius of the support boundary of W,. The physical interpretation of
Wmax,t 15 that it is the maximum uncertain distance the obstacle can move in one step,
additionally to the deterministic distance uP©. At step ¢, the controlled vehicle knows the
obstacle position yP° and deterministic input uP®, but w; is unknown. The deterministic
input represents the forward motion of the dynamic obstacle; the random variable denotes
the uncertainty within the forward motion. Without the deterministic input the dynamic
obstacle would only move around its initial position yP© due to the zero-mean random
variable. The combination of a deterministic input with the random variable with zero
mean is similar to a random variable with non-zero mean, where the controlled vehicle
knows the mean. In general, the exact PDF is not required to be known. The proposed
CVPM-MPC approach is applicable as long as the actual PDF adheres to Assumption 6.6
and the uncertainty bounds are known.

As the main aim of this simulation is to minimize the collision probability, an expression
for this probability is necessary in order to analyze the simulation results. The collision
probability at step ¢ between the two vehicles will be denoted by pc,; and it has finite
support as fw, is truncated. In this example, a norm constraint is used to avoid a collision,
i.e., the norm constraint violation probability is minimized. Therefore, the probability of
a collision pe, is defined analogous to p; in Section 6.2.1. The derivation and expression
for the collision probability pe,; is omitted here due to readability. Details can be found in
Appendix D.3.

The collision probability pe,: depends on the Euclidean distance

(6.56)

I —
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between the controlled vehicle and obstacle. Similar to (6.8) a norm constraint can be for-
mulated where h; = dgafe s can be interpreted as the minimal distance between the controlled
vehicle and the obstacle such that a collision is avoided. The support of peo, results from
adding the radius of the controlled vehicle and the obstacle to supp (fw,), i-e.,

supp (pcol,t) = {yt | dt S dsafe,t} (657)

where dgafe t = Wmax,t—1 +Tpo + 7 is the safety distance required to avoid a collision between
the controlled vehicle and the obstacle, taking into account the radius of both vehicles,
rpo and 7., and the maximal obstacle step Wmax¢—1. Similar to Lemma 6.1 for p;, peor+ is
decreasing for increasing d;.

We choose a quadratic function for g(-), which is strictly monotonically increasing with &.
This yields

2
0w =5°],) = v =9, (6:58)
which can be considered a substitution of the probability function pee ;.
The controlled vehicle uses the CVPM-MPC algorithm (6.22) with N = 10 and
10 0.01 0
Q= [O 11 , R= l 0 0.011 ' (6.59)

The z-position references for the controlled vehicle are obtained by Zier; = To + Vg rert At,
where v, . is the reference velocity in z-direction.

In the following, two scenarios will be analyzed. In the first scenario, the controlled
vehicle is located close to its state boundary, i.e., the road boundary, showing that the norm
constraint can be minimized in the presence of state constraints. In the second scenario,
the obstacle uncertainty support will suddenly increase. The orientation v of the controlled
vehicle in Figure 6.3 and Figure 6.5 is approximated by

W = arctan 2. (6.60)

Uy

Active state constraints. In the first simulation, it is shown that the proposed method
is applicable if state constraints are active. The reference velocity and y-position for the
controlled vehicle are set to vy, = 5.0 and yef = 8.0, respectively, with initial position
Yo = (0, 8)T. The obstacle motion consists of a deterministic part uP° = (0.5, 0)" combined
with random behavior subject to a Gaussian uncertainty with wmax; = 0.15, with mean y-
position y, = 4.0 and a mean z-velocity v,, = 5.0. Therefore, the x-position reference of
the controlled vehicle is the same as the mean x-position of the obstacle in every step. Here,
a sine motion is applied to the y-position of the obstacle with constant z-velocity, which
is one possible outcome given the Gaussian uncertainty. The sine motion ensures that the
maximal uncertainty values appear in the simulation, while the constant obstacle x-velocity
keeps the controlled vehicle and the obstacle close together.

The vehicle configurations at different time steps are shown in Figure 6.3 and the further
results of the simulation are displayed in Figure 6.4. Initially, the controlled vehicle and
obstacle have the same z-position. Starting at time t = 3.9 s the controlled vehicle needs to
slow down to maintain a safe distance to the obstacle. As the maximal obstacle uncertainty

139



6 Minimizing Constraint Violation Probability in MPC

Y
o N M O
T
@

-15 -10 -5 0 5 10 15
T
t=3.9s
10
8_
6 <
> )
4t ~
2_
0
5 10 15 20 25 30 35
t=4.5s
10
8‘ @
6 -
> @}
al .
2_
0
5 10 15 20 25 30 35 40
T
t=>5.0s

)
o N b~ O
T
D

Figure 6.3: Vehicle configurations for the simulation with active state constraints. The con-
trolled vehicle boundary is shown as a solid blue line and the obstacle boundary
is a solid orange line. The dashed orange circle represents the possible obstacle
location at the next time step.
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Figure 6.4: Simulation results for the simulation with active state constraint. The controlled
vehicle is close to the state constraint. The gray area denotes actions by the
controlled vehicle to avoid collision. The collision probability remains 0.
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is known by the controlled vehicle, the collision probability is kept at zero. After time
t = 4.5, the obstacle moves away from the controlled vehicle, resulting in increased input
uy in order to get closer to the x-position reference. At time ¢ = 5.0s, the controlled vehicle
catches up with its z-position reference, which is then followed by constant inputs. Between
time t = 9.0s and ¢t = 11.0s similar behavior can be observed. It can be seen that the
CVPM-MPC ensures p;, = 0 with active state constraints. As mentioned in Section 6.2.3,
the motion of the obstacle can result in an inadmissible origin, i.e., Assumption 6.7 (c) is
violated and the controlled vehicle cannot keep its reference velocity. However, as shown
in Theorem 6.3, once the obstacle moves away the velocity of the controlled vehicle again
reaches the reference velocity.

This first simulation scenario is also used for a Monte Carlo simulation with 2000 sim-
ulation runs to evaluate the effectiveness of constraint violation probability minimization.
Instead of applying the deterministic sine motion to the obstacle y-position and keeping the
z-velocity constant, in addition to the deterministic part uP© = (0.5, 0)T a random step is
applied to the obstacle. This random step is based on a truncated bivariate normal distri-
bution with covariance matrix ¥ = diag(o?, 0?), 0 = 0.05, mean 0, and Wyax; = 0.15. The
covariance matrix was chosen in such a way that truncating the normal distribution does not
have a large effect, i.e., the non-truncated normal distribution has a probability of less than
1 % that ||wt|l, > Wmax The results underline the effectiveness of the CVPM-MPC method.
In 98.8 % of the simulations the constraint violation probability remained at peo = 0. The
maximal constraint violation observed was peo: = 0.21 %. No collisions occurred in any of
the 2000 simulation runs.

Change of uncertainty property. In the second simulation, we show that the proposed
method is capable of dealing with varying uncertainty support of the obstacle. The controlled
vehicle aims to obtain the reference velocity v, ,ef = 4.0 while maintaining y,er = 4.0 with
the initial position yo = (0,4)". The obstacle moves with a constant input uP° = (0.25, 0) "
at yP© = 4.0. We consider here that the obstacle uncertainty support suddenly changes,
for example due to a changing environment. At first the expected uncertainty support is
Wmax,t = 0.15 and at time ¢ = 2.0s it changes to Wpax: = 0.9, while returning to wmax: =
0.15 at time t = 4.0s. In the simulation, the obstacle does not move randomly, which
helps to better understand the action of the controlled vehicle once the uncertainty support
changes. At each time step, the controlled vehicle knows the current uncertainty support of
the obstacle.

The vehicle configurations at different time steps are shown in Figure 6.5 and the results
of the simulation are displayed in Figure 6.6. As the controlled vehicle has a higher
velocity it will eventually pass the obstacle, therefore, the distance Az = z — 2P° turns
positive. At time ¢t = 0.8s, the controlled vehicle gets close enough to the obstacle that
the controlled vehicle moves away from y,f to maintain v, ,.f and ensures that the distance
d; = Hyt — yPOH2 > dsafet- AS Wiax+ increases at time ¢t = 2.0's, so does the required distance
between the controlled vehicle and obstacle, causing the controlled vehicle to move further
away from y.. Due to input limitations, the controlled vehicle cannot move fast enough.
This results in d; < dsafet, i-€., Peore > 0 at time ¢ = 2.05, i.e., there is a probability of collision
for the next time step. However, d, is increased to a maximal level, given u, € U;, resulting
in a minimal constraint violation probability pe. .. Once the distance satisfies d; > dsafe
at time t = 2.2, peor becomes zero, and the controlled vehicle moves along the obstacle
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Figure 6.5: Vehicle configurations for the simulation with changing uncertainty support. The
controlled vehicle and obstacle boundaries are shown as solid blue and orange
lines, respectively. The dashed orange circle represents the possible obstacle
location at the next time step.
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Figure 6.6: Simulation results for the simulation with changing uncertainty support. The
gray area represents a higher uncertainty support. Once the uncertainty support
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boundary for the next step, as seen for time ¢ = 2.3s. At time ¢ = 4.0, Wyax decreases,
and the controlled vehicle converges to yer at time ¢ = 4.8s.

In order to validate the probability of constraint violation, the simulation was run 2000
times with an arbitrary random obstacle step at time ¢ = 2.0 s, which is the first step with the
increased uncertainty bound wpax; = 0.9. The vehicles collided in 144 simulations, yielding
a collision probability of 0.072 compared to the calculated collision probability 0.0723, as
described in Appendix D.3.

Comparison to Robust MPC and Stochastic MPC

If RMPC and SMPC are applied in the previous simulations, certain problems arise, mainly
due to infeasibility of the optimal control problem. This could be solved by providing rigorous
alternative optimal control problems, predefined alternative inputs, or highly conservative
worst-case considerations. However, there is no ideal RMPC or SMPC approach to deal with
the scenario in the simulation. In the following, we will compare the simulation results of
the proposed method to RMPC and SMPC qualitatively and quantitatively.

We will first consider the behavior with RMPC [160] applied to the controlled vehicle. In
the first simulation, RMPC delivers safe results similar to the CVPM-MPC method while
remaining behind the obstacle in order to account for the worst-case obstacle behavior. In
the second simulation, two cases can be distinguished. If the initially considered uncertainty
support is Wyax ¢ = 0.15, the behavior is similar to the proposed method until the uncertainty
support changes. As it is impossible to find a state with zero collision probability after the
uncertainty support is altered, the RMPC optimal control problem becomes infeasible. If
the considered uncertainty support is initially chosen such that the larger support after time
t = 2.0s is covered, RMPC yields a safe solution, however, it is passing the obstacle at a
larger distance than initially required. In many applications it is also difficult to choose the
worst-case uncertainty support a priori, as higher supports might occur later, resulting in
even more conservative RMPC solutions.

It is now assumed that the controlled vehicle is controlled using SMPC [50] with a chance
constraint with risk parameter 5, > 0 for collision avoidance. In the second simulation,
before the uncertainty support changes, the controlled vehicle passes the obstacle a little
closer than with the proposed CVPM-MPC method, as the chance constraint allows for
small constraint violations. However, whereas the proposed CVPM-MPC method ensures
safety while only passing the vehicle with little more distance, the SMPC approach would
pass the obstacle ‘on the chance constraint’, i.e., as close as ; allows, sacrificing guaranteed
safety for small cost improvements. In other words, leaving slightly more space between the
controlled vehicle and the obstacle would result in p; = 0 with only little higher cost.

When the uncertainty support changes, the SMPC solution is as close to the obstacle as
B¢ allowed in the previous step. The chance constraint cannot be met anymore because
the uncertainty support increased, resulting in a constraint violation probability larger than
allowed by ;. The SMPC optimal control problem then becomes infeasible, requiring an
alternative optimal control problem to be defined beforehand. In the first simulation, a
similar situation occurs. If the chance constraint allows the controlled vehicle to be in a
position that yields peo1+ > B due to the unconsidered worst-case obstacle motion, this leads
to infeasibility of the optimal control problem.

We evaluate the performance of CVPM-MPC by comparing the overall cost to implementa-
tions of RMPC [160] and SMPC [50] for the simulation scenario with a changing uncertainty
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method SMPC changing constant support constant support
risk parameter 5;  support Wmax,t = 0.15 Wmax,t = 0.90
CVPM-MPC - 1.43-102 - -
RMPC - 5.93 - 102 1.63 - 102 1.01-10%
SMPC 0.8 1.03-102 0.87 - 102 1.12-10?2
SMPC 0.9 1.16 - 102 0.89 - 102 1.32 - 102
SMPC 0.95 1.31-10? 0.91 - 102 1.51-102
SMPC 0.99 1.61 - 102 0.95 - 102 1.97 - 102

Table 6.1: Performance Comparison.

bound. Performance is compared based on the cost function of the optimal control problem,
where the applied states and resulting states of the entire simulation are evaluated according
to

J\[sim*1

Jsim = Z (thHthH + 'u,tTRut) (6.61)

t=0

with Ngn, simulation steps. For SMPC four different risk parameters are analyzed. The
results are shown in Table 6.1.

We first consider the changing uncertainty support as in the previously presented simula-
tion. The CVPM-MPC method performs significantly better than RMPC, while SMPC has
slightly lower cost, except for a conservative choice 3; = 0.99, where the SMPC cost is even
larger.

However, both the RMPC and SMPC optimal control problems become infeasible for some
steps when the uncertainty support changes at time ¢ = 2.0s. Therefore, we analyze how
RMPC and SMPC perform if only a small, constant support of wmax = 0.15 or only a large,
constant support of Wpax; = 0.9 is assumed and applied. For SMPC a non-truncated Gaus-
sian distribution is necessary to compute an analytic solution. The distribution is selected
to have zero mean and covariance matrix ¥ = diag (02, 0) with 0915 = 0.05 and 0o = 0.3.
The covariance values are choses such that og 15 and 0g9 approximate a distribution with
SUpport Wmaxt = 0.15 or wmaxs = 0.90, respectively. For both support cases the CVPM-
MPC performance is always better compared to the RMPC performance, with a significant
advantage if wyaxy = 0.90 is assumed for RMPC. If a small support is assumed, SMPC is
less conservative. If SMPC considers a large support, SMPC is only less conservative for
lower risk parameters. Nevertheless, assuming wmax; = 0.90 for RMPC and SMPC is only
a partly satisfactory solution. In addition to increased cost, feasibility becomes an issue in
the case that the uncertainty support increases again.

The comparison shows that the proposed method offers certain advantages over RMPC
and SMPC, especially guaranteeing recursive feasibility of the optimal control problem in
the presence of a changing uncertainty support.
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6.2.5 Discussion

The proposed algorithm is not a combination of RMPC in the first step and, potentially,
SMPC in the following steps. While there are some similarities to this combination, we
solve a different problem. The most important difference is that the constraint violation
probability is minimized in the first predicted step and the initial uncertainty probability
is not required to be zero. RMPC approaches require constraint satisfaction initially and
ensure that constraints are satisfied throughout the prediction horizon.

Our proposed CVPM-MPC method is more closely related to SMPC than RMPC, as con-
straint violations are possible. Nevertheless, the suggested method can be interpreted as
lying between SMPC and RMPC. The results are more conservative than SMPC, as a zero
percent constraint violation probability is found if possible, i.e., p, = 0 in (6.9), but less
conservative than RMPC. An advantage over both, SMPC and RMPC, is the ability to min-
imize the constraint violation probability and to successfully cope with sudden uncertainty
support changes, as recursive feasibility can still be guaranteed. The uncertainty support
can change due to unexpected events or modeling inaccuracies.

In SMPC with chance constraints, recursive feasibility is a major issue. For example,
an unexpected realization of the uncertainty at step t, where the uncertainty realization
likelihood lies below the chance constraint risk parameter at step t, leads to a state at step
t + 1 with no solution to the optimal control problem if the required risk parameter of the
chance constraint cannot be met. An option to regain feasibility is to solve an alternative
optimal control problem or apply an input that was previously defined. However, these
alternatives do not necessarily lead to a solution that yields the lowest constraint violation
probability. Furthermore, it is possible to soften chance constraints by using slack variables in
the cost function. However, this approach is not acceptable in applications where the chance
constraint represents a safety constraint. If a slack variable is introduced, it competes with
other objectives within the cost function and does not ensure constraint satisfaction. The
proposed CVPM-MPC method always finds the optimal input that results in the lowest
constraint violation probability while remaining recursively feasible.

RMPC guarantees recursive feasibility but at the cost of reduced efficiency, as worst-case
scenarios need to be taken into account. Additionally, if the support of the uncertainty can
suddenly change over time, e.g., the future motion of an object becomes more uncertain due
to a changing environment, RMPC can become too conservative to be applicable. A robust
solution can only be obtained by always considering the largest possible uncertainty support.
The proposed method deals with this by adjusting to changing uncertainty supports at every
step. A suddenly or unexpectedly increasing uncertainty support, e.g., due to an inaccurate
prediction model, may lead to increased constraint violation probability for a limited time
after the support changes. Before the support changes, the optimized inputs of the proposed
algorithm lead to a less conservative result than RMPC while ensuring that the constraint
violation probability is kept at a minimal level immediately after the change.

In the proposed method, we only consider minimizing the constraint violation for the first
predicted step. It is possible to consider multiple steps by increasing the uncertainty sup-
port for each considered step; however, this leads to a more conservative solution. For every
additionally predicted step in which the constraint violation probability is minimized, the
maximal possible uncertainty value must be considered. This yields a highly restrictive set
of admissible inputs that minimize the constraint violation probability over multiple pre-
dicted steps. As it is assumed that the support of the uncertainty PDF can change over
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time, considering multiple steps with the initially known support does not guarantee lower
constraint violation probability for multiple steps. If the support increases the previously
obtained multi-step CVPM-MPC solution becomes invalid. Therefore, given an updated
uncertainty support at each step, it is a reasonable approach to only minimize the constraint
violation probability for the first predicted step, resulting in the safest solution at the cur-
rent step. It is possible to consider the norm constraint for collision avoidance in multiple
predicted steps by either formulating a chance constraint, as mentioned in Remark 6.3, or a
robust constraint. However, this can result in infeasibility of the optimal control problem,
particularly if the uncertainty support varies over time. Despite only considering the norm
constraint for the next predicted step, it is still beneficial to use an MPC horizon N > 1.
Other objectives are optimized over the entire horizon, given that the first input is included
in the set Ueypm,0, Which potentially consists of multiple admissible inputs that all minimize
the constraint violation for the next step.

Applying the CVPM-MPC approach possibly results in oscillating behavior. As long
as case 1 is valid, the proposed method does not affect the optimal control problem, as
Ueypm,o = Uzp. Once case 2 is active, a solution is found that minimizes the probability
of constraint violation, ignoring the reference and potentially moving from the reference,
as only one input is admissible. When case 1 is valid again, the reference is tracked again
until, possibly, case 2 becomes active again. This can be improved by considering the norm
constraint as a chance constraint for multiple predicted steps, however, recursive feasibility
is not guaranteed, as mentioned before.

The main focus of the suggested method is to minimize the constraint violation probability.
It is clear that stability cannot always be guaranteed, as the origin can be excluded from the
admissible state set. We consider a narrow road where a bicycle is between the controlled
vehicle and the vehicle reference point. If the road is too narrow for the vehicle to pass, it
will remain behind the bicycle and never reach the reference point, i.e., Assumption 6.7 (b)
is violated. However, Assumption 6.7 implies that the origin is not inadmissible at all times,
and once the origin is admissible, the controlled system converges.

It is also important to note that minimizing the constraint violation probability has priority
over other optimization objectives. Especially in safety-critical applications this can be
of major interest, e.g., an autonomous car must ensure that the collision probability is
always minimal, prior to reducing energy or increasing passenger comfort. If SMPC were
to be applied in such scenarios, the question would arise of how to choose the SMPC risk
parameter ;. A large (3, yields efficient behavior but might be unacceptable due to an
insufficient safety level. Finding a reduced value for 5, in SMPC is challenging, as even very
small risk parameters allow for constraint violations, while 5; = 0 does not yield a chance
constraint and the advantages of SMPC are lost. In the proposed CVPM-MPC, the task of
appropriately choosing the risk parameter is not required. However, there is also no bound
for the possible constraint violation probability.

Additionally, in safety-critical systems a further aspect reduces the usability of chance
constraints in SMPC. A solution is valid as long as the probability of violating the safety
constraint satisfies the risk parameter. Assuming there exists a solution with lower, or even
zero, constraint violation probability, the optimal control problem solution will still be ‘on the
chance constraint’ if this results in lower objective costs, i.e., allow for constraint violations
according to the risk parameter. We consider again the example in the introduction of a car
overtaking a bicycle. Using a chance constraint with £, > 0, the car will pass the bicycle but
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will choose a trajectory around the bicycle that allows for a collision with a low probability
due to §; > 0. Given a finite bicycle uncertainty support, passing the bicycle with slightly
more distance yields zero collision probability with only a small increase of cost. However,
in practice, this slightly increased cost is acceptable if thereby safety is guaranteed.

For the approach in Section 6.2.2; the PDF fy, does not need to be known exactly as long
as it fulfills Assumption 6.6. If fy, is symmetric and unimodal, it is ensured that increasing
Hyt — QPOH2 results in a lower constraint violation probability p;.

The proposed method is especially useful in collision avoidance applications, which are
either in two- or three-dimensional space. While applying the proposed method in two-
dimensional space is straightforward, three-dimensional applications can be more challenging
to solve, especially finding u in (6.42). For collision avoidance scenarios, possible uncertainty
in (6.1) can be considered by increased uncertainty in (6.2).

The structure of CVPM-MPC considers two main aims: minimizing constraint viola-
tion probability and optimizing additional objectives, such as energy consumption. Multi-
objective MPC [10,199] is an MPC scheme to trade-off multiple opposing objectives within
one optimal control problem, where each individual objective is assigned a weighting factor.
In our case, we do not aim at a trade-off, but one of the two objectives is regarded first.
Only if optimizing the first objective, i.e., minimizing constraint violation probability, en-
ables multiple possible inputs, further objectives are taken into account. In multi-objective
MPC this translates to assigning a weight of zero to all additional objectives. While this
could be an approach to minimize constraint violation probability, other objectives would
not be optimized. Therefore, compared to multi-objective MPC, the proposed CVPM-MPC
method provides a solution to safety-critical problems where constraint violation probability
needs to be minimized and further objectives should be optimized if possible.

6.3 CVPM-MPC for Linear Systems with Linear
Constraints

In the following, we generalize the CVPM-MPC method for linear systems with additive
uncertainty and linear constraints. In contrast to Section 6.2, only two cases are necessary,
which simplifies the method.

6.3.1 Problem Formulation

In the following, we first state the system dynamics and uncertainty considered. Then, the
MPC setup is introduced, including the constraint for which the violation probability must
be minimized.

System Dynamics
We consider the following linear, discrete-time system

Liy1 = Aa:t + BUt + E’wt (662)

with state ; € R" and input u; € R™ at time step ¢, as well as the bounded uncertainty
w; € Wy, CR™, where A, B, E have appropriate dimensions and W, may vary over time.
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Assumption 6.9. The uncertainty w,; is a truncated Gaussian uncertainty with w; ~
N (0,X,,) with covariance matriz X,,, bounded by Wi.

Remark 6.8. The uncertainty w; may have any symmetric unimodal distribution. However,
here we focus on a Gaussian distribution for clarity.

In the following, a system prediction is required for MPC. Based on the initial state x,
we denote the augmented system dynamics, delivering all predictions, by

xz, = Ayxo + Byuy 1 + Eywy (6.63)
where
Ly = (wh ceey wk)T7 Up-—1 = (u07 -'-7uk71>T, Wip—_1 = (’LU(), ...,’wk,l)T (664)
and
r T
Ak: ATv (A2)T y T (Ak)T ) (6653)
[ B o ..
AB B ... 0
Bi=| . : s (6.65Db)
_Akle A2B ... B
[ E 0 ... 0
AFE FE ... 0
E;= : : : (6.65¢)
_AkflE AE . E

The augmented system dynamics (6.63) allows us to express all resulting prediction states
in a concise way.

Model Predictive Control

MPC is applied to control system (6.62). The MPC cost function of this section is given by

N-1

J(@o,un1) = Y. (T} Q) + u Ruy) + T QTN (6.66)
k=0

with weighting matrices @, R and the terminal weighting matrix Qy, where xy is known
and T denotes the mean of xy,.

Remark 6.9. In (6.66) a simple cost function is chosen based on the predicted mean states;
however, other cost functions are possible that specifically consider the uncertainty of the
state prediction [68].

Furthermore, we define the set of admissible inputs
U= {QN_l e RN ‘ u, €UVEk € ]IO,N_l} (6.67)

for wy_1 with the bounded polytopic constraint set . In addition, we introduce the time-
varying constraint

), € X, (6.68)

150



6.3 CVPM-MPC for Linear Systems with Linear Constraints

Assumption 6.10. The constraint set X; is closed, bounded, and contains the origin.

The constraint (6.68) may be expressed in augmented form by

zy, = (21, .., xn) €EXV =X x X, x - x & (6.69)

C

where N, < N defines a sub-horizon where the state constraint (6.68) is considered.

Problem Statement

As the predicted state xj is subject to uncertainty, this uncertainty must be specifically
addressed. RMPC is designed in such a way that the constraint is satisfied for any possi-
ble worst-case uncertainty realization. In SMPC, constraint (6.68) is treated as a chance
constraint, which is only required to hold up to a predefined confidence level.

However, both RMPC and SMPC do not provide adequate solutions if the probability of
violating constraint (6.69) must be minimized. This problem may be formulated as

min Pr (zy, ¢ 4") (6.70)

UNc—-1

where the input sequence uy, 1 ensures that the probability of constraint violation is mini-
mal. Given this constraint violation probability minimization, we now formulate the problem
to be addressed within this section.

Objective 6.2. The MPC problem to be solved is

minJ(xo, un_1) (6.71a)
unN-—1
st uny_1 €U (6.71b)
where it must hold that
uy,_1 = arg min Pr (zy, ¢ 4,). (6.72)
UN.—1

Note that wy._1 is part of uy_y with

uy, 1= (uo, ..., un.1) ", (6.73a)
UN_1—= ('Ll,o, ceey 'U,Nfl)T, (673b)

i.e., for N, < N we obtain
uN—1 = ('l,l,o,...,'l,l,chl,...,’U,N,1>T. (674)

In the following section, an MPC method is derived that provides a strategy to solve
Objective 6.2.

6.3.2 Method

We next describe the CVPM-MPC method to solve Objective 6.2. Major properties of the
CVPM-MPC method are derived in Section 6.3.3.
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Figure 6.7: CVPM-MPC method for linear systems with linear constraints.

CVPM-MPC

The general idea of CVPM-MPC is to solve an MPC optimal control problem where only
those inputs are allowed that enable minimal constraint violation probability. Therefore,
in order to set up the MPC formulation, a set must be found that includes all inputs that
minimize constraint violation probability.

Definition 6.2 (Optimal CVPM Input Set). The optimal CVPM input set Ueypm consists
only of admissible input sequences uy_1 that minimize the constraint violation probability
Pr (ENC ¢ XtNC). The optimal CVPM input set containing only the input sequences wn, 1
is denoted by Ueypm N.—1-

The MPC problem is then solved with Uypm as the constraint set for control inputs. The
structure of the CVPM-MPC method is illustrated in Figure 6.7.

Determining the set Ueypm is based on two cases, depending on whether an input sequence
w1 exists that guarantees constraint satisfaction.

Definition 6.3 (CVPM Safe Case). The safe case refers to the case where an admissible
input sequence wyn_1 exists that guarantees constraint satisfaction, i.e.,

Juy g €Ust. Przy, ¢ X)) =0. (6.75)

Definition 6.4 (CVPM Probabilistic Case). The probabilistic case refers to the case where
no input sequence uy_1 exists that guarantees constraint satisfaction, i.e.,

Pr(zy, ¢ 4N) >0V uy, €U (6.76)

If the state constraint is not considered for the entire MPC horizon, i.e., N. < N, it
must hold that the first N, inputs un,—1 € Uy, . Here, Uy._; is a projection of the set U
spanning over the first N inputs, i.e., projy.__; (U).
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The applicable case depends on the possibility of satisfying the constraint (6.69), i.e., in
each MPC iteration, one of the two cases is applied. We first define a set containing all input
sequences that result in constraint satisfaction.

Definition 6.5 (Zero Violation Set). The zero violation set Uy y, 1, with respect to the
state constraint X;, contains those inputs wy_1 where the resulting predicted state trajectory

satisfies (6.69) and the inputs satisfy (6.67).

These definitions allow us to determine which of the two cases occurs. We consider the
optimal CVPM input set

Z/{cvpm,chl = ZL{NC—l N ZL{X7NC_1, (677)

which consists of the intersection of the admissible input set Uy, _; and the set Uy .1,
whose input sequences guarantee constraint satisfaction.

If the optimal input set is not empty, i.e., Upmn.—1 # 0, the safe case is active, as
an admissible input sequence exists that allows for constraint satisfaction. However, if
Uevpm N.—1 = 0, any admissible input sequence leads to a constraint violation probability
larger than zero, which requires the probabilistic case.

For both cases, it is necessary to obtain the set Ucypm,n.—1, Which is addressed in the
following.

Safe case. For the safe case, the set Ueypm n.—1 1S determined according to (6.77). While
the set of admissible inputs Uy, _; is given according to (6.67), the set zero violation set
Uy n.—1 must be determined.

Lemma 6.4. For the safe case, the set Uy .y is obtained by
Uy = (X" 6 (Bx. o W) & {~An.o}) o B, (6.78)
where {—An.xo} is a singleton.

Proof. The proof is given in Appendix D.4. n

However, it is not guaranteed that the elements of U y y _; are also part of U y__;, requiring
the intersection (6.77). If the resulting set Ueypm, n.—1 IS not empty, i.e., Uevpm n.—1 F 0, an
input sequence Ueypm n.—1 €Xists guaranteeing constraint satisfaction of (6.69) for N..

Based on the previous results, it is possible to obtain a set of states Xeases (for the current
MPC iteration) for which case 1 is applicable. This set is given by

Xeases = (XtNC S) (ENC o WtNC) S ((_BNC> OUNC)) oAn,, (6.79)
which is obtained similarly to (6.78).

Lemma 6.5. For time-invariant W, =W and X; = X, the set Xases 1S T0bUStly positively
movariant.

Proof. If &; € Xeases, Where Xeases is defined in (6.79), it follows that @11 € X C Xeases, 1.6,
Xeases 18 Tobustly positively invariant. O
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6 Minimizing Constraint Violation Probability in MPC

Probabilistic case. If determining U y y,_; results in an empty set Ueypm,n, -1 according to
(6.77), Ueypm,N.—1 must be determined differently. In the safe case, Ueypm, n.—1 consists of those
input sequences that guarantee constraint satisfaction. However, if such an input sequence
does not exist, minimal constraint violation probability must be ensured. Therefore, in the
probabilistic case, Ueypm,n,—1 comprises the input sequence wjy ; that result in minimal
constraint violation probability.

This input sequence uy,__, is obtained by solving the optimal control problem

Uy :arggr}vlin Pr (QNC ¢ XtNC) (6.80a)

c—1

st. wun—1 €Uy, . (6.80b)

Later in this section, we elaborate on finding a solution to the optimal control problem
(6.80). As previously mentioned, once u}, _, is obtained, it follows that

ucvpm,chl = {@*Nc—l}' (681)

Now that the set Ueypm n.—1 has been determined for both cases, we may formulate the
CVPM-MPC optimal control problem.

CVPM-MPC formulation. Given the set Ueypm n.—1, the optimal CVPM-MPC set Ueypm
is constructed by

ucvpm - {@N—l | Un.-1 S Z/{cvpm,NC—l A UnN_1 € M}, (682)

where the first N, inputs ensure constraint violation probability minimization of (6.69).
With this updated input constraint set, the CVPM-MPC optimal control problem is given
by

uy_, = arg minJ (o, uy-_1) (6.83a)
UN-1
st un—1 € Uevpm (6.83b)
with Ueypm according to (6.82). The CVPM-MPC optimal control problem (6.83) yields

satisfaction of the input constraint & as well as minimal constraint violation probability.
The closed-loop system to (6.62) is then given by

Liy1 = Amt + B'U/: + E'wt (684)
where uj is the first element of u},_; obtained at time step ¢.
Remark 6.10. For N. = N and the probabilistic case, no optimization is necessary, as
Ucypm,N.—1 only consists of one input sequence, which minimizes constraint violation prob-
ability. Fven for N, < N no optimization is necessary, as only the first input is applied.

However, obtaining an optimized input sequence is useful to warm start the optimal control
problem at the next time step.
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Probability Optimization in the Probabilistic Case

In the probabilistic case, the input sequence w}y, _;, which leads to minimal constraint vi-
olation probability, is defined as the solution to the optimal control problem (6.80). As it
is challenging to solve this optimal control problem online, we propose an approximation in
the following.

Given the Gaussian uncertainty w;, ~ N (0,3,,), the mean &y, of the state sequence x .
is

zN, = AN To + By un, 1 (6.85)
The covariance matrix of the state sequence xy, is determined by

Say, = EnZuwy BN, (6.86)

LN
with
Yy, = diag (e, -, Xw) (6.87)

where X, refers to the covariance matrix of the disturbance sequence wy,. Given the
mean and the covariance matrix for the state sequence ., we obtain

zy, ~ N (2x, By ) (6.88)

showing that the state sequence is subject to a Gaussian distribution.
The constraint violation probability is determined by integrating the PDF values in outside
of XNe ie.,

PF(&NC ¢ XtNC) =

=c / exp <_; (@NC _ §)T 2;}1{6 (@Nc — £>>d§, (6.89a)
RnaNe\ X, Ne
e= (2m)"e det 2y, ) (6.89)

which must be minimized. However, instead of minimizing Pr (@ N & XN C), it is equivalent
to solve

max Pr (@NC c Xth) (6.90)
UN.—1
with
PT(QNC € XtNC) =
=c [ ex (_; (x. —€) 55! (2. - §)>d£. (6.91)

Xth

As we consider the probabilistic case, part of the mean state sequence &y, is not in XV, As
an optimization using (6.91) is non-convex, we approximate (6.91). For this approximation,
we first define a set with sufficiently small probability density values. An example of such a
low-probability set is given in Figure 6.8.
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Figure 6.8: Example illustration of PDF values and a low-probability set Aj, (dark red) given
a bivariate normal distribution.

Definition 6.6 (Low-probability Set). The low-probability set X, € R™e is located suffi-
ciently far enough from the mean &y, such that the PDF values within X, are small compared
to the PDF values around Zy,.

We can now approximate (6.91), based on a low-probability set &},. We assume that the
probabilities within Aj, are of equal value relative to probabilities around y,. We then
approximate the integral in (6.91) with a multiplication of the PDF value evaluated at any
point £ € A}, within the polytope P (&j,) of Ay, yielding

Pr (@NC € Xth) A ¢ exp <_; (iNC _ §)T 2;}1’6 (iNC — §))73 (le) . (6.92)

Note that £ is the augmented form of a point £. In (6.91), £ is an integration variable.
In (6.92), &€ represents a sequence of elements in Aj,, and is later determined as part of an
optimization.

Remark 6.11. As we consider a bounded uncertainty, and therefore, the PDF is zero within
X,, a straightforward choice for the low-probability set is Xy, C X,Ne.

As we aim at maximizing Pr (@ N. € XtNC>, it is sufficient to solve the quadratic optimal
control problem

uy,, =arg min (2n. - §)T Sor, (2v. — €) (6.93a)
st un—1 €U 1, (6.93D)
e, (6.93c)

zy, = AN, o + By un,-1. (6.93d)

Assumption 6.11. The CVPM-MPC method is recursively feasible.
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Recursive feasibility of the proposed MPC method is shown in Section 6.3.3. However,
the following Lemma requires recursive feasibility as a prerequisite. Therefore, recursive
feasibility is introduced as an assumption here, which is later proved.

Lemma 6.6. Let Assumptions 6.10 and 6.11 hold. Then, the optimization (6.93) always
has a solution.

Proof. The optimal control problem (6.93) is a convex quadratic program because the Hes-
sian of the optimization is the inverse of a covariance matrix and is, therefore, always positive
definite. Hence, a single minimum exists if the set ;" and the admissible input set Uy,
are non-empty. The set X, is non-empty as it contains at least the origin due to Assump-
tion 6.10 and the admissible input set Uy, is non-empty if Assumption 6.11 holds. O]

The presented approach in this section ensures that a solution may always be obtained
for the probabilistic case.

6.3.3 Properties

In the following, properties of the CVPM-MPC method are analyzed. First, recursive fea-
sibility is shown. Then, we focus on stability. In order to ensure these two properties, an
assumption is required on the base MPC problem (6.71).

Assumption 6.12. The system matriz A is stable, i.e. the eigenvalues of A are within the
unit circle.

If Assumption 6.12 is not fulfilled, the system may be stabilized with a feedback controller
before MPC is applied.

Recursive Feasibility

Recursive feasibility is a fundamental property to be proved for MPC algorithms. We use
Definition 2.5 for recursive feasibility. We first focus on showing recursive feasibility in case
of regular disturbances w; € W, i.e., at this point we first consider a constant uncertainty
bound W. The proof of recursive feasibility for CVPM-MPC is based on the recursive
feasibility of the base MPC problem (6.71).

Assumption 6.13. The base MPC problem (6.71) is recursively feasible.

As (6.71) does not consider state constraints, the zero input is feasible at any time step,
which ensures recursive feasibility of the base MPC problem. Hence, a feasible initial state
x( leads to a non-empty admissible input set .

Inputs not included in U result in a potential loss of recursive feasibility. Therefore, in
order to show recursive feasibility of CVPM-MPC, it must be guaranteed that Uspm is a
subset of U.

Lemma 6.7. Let Assumption 6.13 hold. Then, the CVPM-MPC input set Upypr, @5 a non-
empty subset of U.
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Proof. We initially focus on the inputs wuy,—1 € Ueypm n.—1- In the safe case, Ueypm,n.—1 C
Uy, according to (6.77). Therefore, for all input sequences un,—1 € Ueypm,n.—1 it holds
that un,—1 € Uy._;. In the probabilistic case, un.—1 € Uy, _; according to (6.80b). If
Uevpm,Ne—1 = () in the safe case, the probabilistic case ensures that Uevpm No—1 F () given
Lemma 6.6 and Uy__; # 0 according to Assumption 6.13.

For N. = N, un,—1 = uny—1 and Ueypm Ne—1 = Ueypm C U in (6.82), ensuring that an input
sequence uy_1 exists at each time step.

For N. < N, we now focus on the remaining inputs of the input sequence uy_1, given
un,—1, which consists of the first N, input elements. As un,—1 € Uevpmn.—1 € Uy, 1, it
is guaranteed that wy_; € U exists, obtained according to (6.82), given Assumption 6.13.
This implies that Ueypm € U.

Therefore, it holds that Ueypm € U and Ueypm # O for all ¢ € N, O

This preliminary result allows us to conclude recursive feasibility of the CVPM-MPC
method.

Theorem 6.4. Let Assumption 6.13 hold. Then the CVPM-MPC problem (6.83) is recur-
sively feasible.

Proof. If Assumption 6.13 holds, the base MPC method is recursively feasible. According
to Lemma 6.7, the CVPM-MPC method always determines an input sequence that is part
of the admissible input set U of the base MPC problem. Therefore, recursive feasibility is
maintained. O

The CVPM-MPC method is designed such that unmodeled disturbances w; ¢ W may
also be handled, which is similar to considering a time-varying uncertainty bound W;,.

Corollary 6.4. The proposed CVPM-MPC method remains recursively feasible if an un-
modeled disturbance occurs.

Proof. The base MPC problem (6.71) does not consider w; and is, therefore, recursively
feasible for w; ¢ W. If Ueypm n.—1 = 0 in the safe case after w; ¢ VW, Lemma 6.6 ensures that
Uevpm N.—1 # 0 in the probabilistic case, as w; € W is not required for the probabilistic case.
Therefore, similar to Theorem 6.4, the CVPM-MPC method remains recursively feasible
for w, ¢ W, i.e., the CVPM-MPC method remains recursively feasible for a time-variant
uncertainty bound W;. m

As previously mentioned, by proving that the CVPM-MPC method is recursively feasible,
Assumption 6.11 is reasonable.

Stability

Stability of the CVPM-MPC method is guaranteed by two steps. We show that both the
safe case and the probabilistic case ensure input-to-state stability, proving that the CVPM-
MPC method is ISS. In the following, we use Definition 2.6 for input-to-state stability and
Lemma 2.1 to prove that our proposed method is ISS.

In this section, we consider the following notation. The input sequence

UN_1|t = (ut|t7 e Ut+N—1|t) (6-94)

obtained at time step t yields the state sequence (@41, ..., Zisn)) Where @y, = a;,. The
following three assumptions are necessary.
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6.3 CVPM-MPC for Linear Systems with Linear Constraints

Assumption 6.14. The uncertainty bound and the constraint set are constant, i.e., Wy = W
and Xy = X, respectively.

Assumption 6.15. For the stage cost it holds that Q = Q" = 0 and R=R" > 0.
Assumption 6.16. The terminal cost weight Q¢ is a solution of the Lyapunov equation
AQAT +Q - Q. =0. (6.95)

Based on these assumptions, we first show that for the safe case the origin of the closed-
loop system (6.84) is ISS.

Lemma 6.8. Let Assumptions 6.14, 6.15, 6.16 hold. Then, for x; € X.ases, the origin of
the closed-loop system (6.84) is ISS.

Proof. The proof is given in Appendix D.5. O]

Consecutively applying the safe case yields similar behavior to robust MPC solutions. If

the safe case is not applicable, i.e., @; & X.ases, it needs to be ensured that the system is still
ISS.

Lemma 6.9. Let Assumptions 6.12, 6.14, 6.15, 6.16 hold. For x; ¢ X.ases, the origin of the
closed-loop system (6.84) is ISS.

Proof. The proof is given in Appendix D.6. O

Based on Lemma 6.8 and Lemma 6.9, we can now formulate the stability theorem for
CVPM-MPC.

Theorem 6.5. Let Assumptions 6.12, 6.14, 6.15, 6.16 hold. The origin of the closed-loop
system (6.84), controlled by the CVPM-MPC method, is ISS.

Proof. Based on Lemma 6.8 and Lemma 6.9, the origin of system (6.84) is ISS for all x; €
R"=. O

In the following section, the properties are analyzed in a simulation example.

6.3.4 Simulation Study

In the following, we introduce a brief numerical example to show the advantages of CVPM-
MPC. We demonstrate the capability of CVPM-MPC handling changing uncertainty bounds
and highlight recursive feasibility and stability of the proposed method.

Simulation Setup

We consider a discrete-time linear system. The system matrix, input matrix, and disturbance
matrix are given by

0.61 0.55 0.85 -0.78 10
A= [0.62 -0.62] B = [0.61 0.53] B = lo 1] ’ (6.96)
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6 Minimizing Constraint Violation Probability in MPC

respectively. The system matrix A is stable, satisfying Assumption 6.12. The inputs are
limited by a box constraint with a maximum value of 3 with the polytopic description of the
input constraint

3

-1 3
3 (6.97)
3

In the simulation, two different kinds of disturbances are considered: modeled and unmodeled
disturbances. The uncertainty set is given by

-1 0 0.1
-t [9 ]z ! o0
0 1 0.1
with the covariance matrix
Y= [0(')1 0?11 (6.99)

where a time-variance is considered later.
The MPC employs a horizon of N, = N = 10 with sampling time At = 0.1 and the state
weighting matrix and input weighting matrix are

Q- [é ﬂ R-= lé ﬂ , (6.100)

respectively, according to Assumption 6.15. The terminal cost Q; is determined according
to Assumption 6.16.

The simulation was run in MATLAB on a standard desktop computer. The computation
of the polyhedra is done with the MPT3 toolbox presented in [83]. The average computation
time of one step is 60 ms.

We consider the constant state constraint set

-1 0 2
0 -1 2

X=X=<=x 1 o0l®=1s (6.101)
0 1 2

Note that the uncertainty and state constraint satisfy Assumptions 6.9 and 6.10, respec-
tively.

Simulation Results

The following simulation shows convergence to the origin from an initial state with non-zero
constraint violation probability. At time step ¢t = 8, an unmodeled disturbance affects the
system for one time step, which is handled by the CVPM-MPC method. An unmodeled
disturbance may be interpreted as an increase of W; for one time step or as w; ¢ W;.
Figure 6.9 illustrates the simulation results at four different time steps. The state con-
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Figure 6.9: Simulation of CVPM-MPC with an unmodeled disturbance (green: Safe Case;
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6 Minimizing Constraint Violation Probability in MPC

straint &} is indicated by the blue box. The set X .ss is marked in gray. If the system
state lies within X.s, the safe case is applicable. The initial state &y = (8, 8)" does not
allow for zero constraint violation probability in the next step, i.e., g & Xeases; therefore,
the probabilistic case is required, indicated by the red dot in Figure 6.9(a).

Applying the CVPM-MPC procedure for the probabilistic case moves the system state
into the set Xeases, as seen in Figure 6.9(b). In X s the control input is determined based
on the safe case, as indicated by the green dots, since it is possible to reach X, in the next
step. The subsequent steps with the safe case move the system state towards the origin;
however, due to the disturbance, the origin is not reached perfectly.

At time step t = 8, an unmodeled disturbance occurs, which moves the system state
outside of Xiuses, as illustrated in Figure 6.9(c). Note that input-to-state stability is not
guaranteed in this step as the uncertainty bound increased. Similar to the initial simulation
state, the probabilistic case is required because it is not possible to reach the constraint
set A} in the next step. By switching from the safe case to the probabilistic case, recursive
feasibility is maintained.

Afterwards, only modeled disturbances are present, allowing the CVPM-MPC method
to steer the system state back to X..ees Within one step. Input-to-state stability is again
guaranteed. Subsequently, CVPM-MPC first ensures that the state constraint is satisfied
and then the system state is moved towards the origin, as seen in Figure 6.9(d).

In summary, the CVPM-MPC approach yields input-to-state stability as long as mod-
eled disturbances occur. In the presence of unmodeled disturbances, recursive feasibility is
maintained and the system returns to constraint satisfaction as soon as possible.

6.3.5 Discussion

In contrast to the CVPM-MPC method presented in Section 6.2, the CVPM-MPC approach
proposed in this section is more general. Here, we consider general linear constraints for a
system with additive uncertainty, whereas Section 6.2 specifically focuses on two systems, one
with uncertainty, and a norm-based constraint describing a relation between these two sys-
tems. The proposed approach here significantly extends the possible applications to all linear
or linearized systems where constraints are linear or where constraints may be linearized.
Furthermore, three cases were necessary for the CVPM-MPC method in Section 6.2, whereas
this section provides a different CVPM-MPC framework, reducing the necessary cases such
that only two cases need to be considered.

In Section 6.3.3, stability is discussed. As seen in the simulation example, the CVPM-MPC
method is capable of remaining feasible even if unmodeled disturbances are present. The
stability results may not hold in case of unmodeled disturbances, as a bounded uncertainty
is assumed in the proofs (Assumption 6.14). The proposed method, however, allows us to
update the assumed uncertainty bound in any step. Therefore, the stability proof becomes
valid again for an increased uncertainty bound once the uncertainty bound is updated.
If the uncertainty bound is not known initially, a conservative guess may be chosen and
then the bound may be tightened over time, based on recorded data. The potential short
loss of a stability guarantee is acceptable, however, as the main focus in this section is
the minimization of constraint violation probability. Note that recursive feasibility remains
guaranteed even for unmodeled disturbances.

Similar to unmodeled disturbances, the proposed CVPM-MPC method can cope with
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time-varying constraints. While this was not specifically shown in the simulation, chang-
ing constraints yields similar behavior compared to unmodeled disturbances, which were
addressed within the simulation. Recursive feasibility remains guaranteed and stability is
maintained once the adapted constraint is considered.

Considering time-variant constraints and changing uncertainty bounds is especially rele-
vant for applications where environments change constantly, e.g., new cars appearing within
the detection range of an autonomous vehicle or humans entering the workspace of a robot.

6.4 Conclusion

The proposed CVPM-MPC algorithm yields a minimal violation probability for constraints
while also optimizing further objectives. The ability of CVPM-MPC to cope with time-
variant constraints and uncertainty bounds provides a significant benefit for safety-critical
systems. Recursive feasibility is guaranteed and, for linear constraints, stability is ensured
if the uncertainty distribution is time-invariant. While the suggested method is inspired by
RMPC and SMPC, it provides feasible and efficient solutions in scenarios where RMPC and
SMPC encounter difficulties or are not applicable.

As norm constraints are especially useful in collision avoidance applications, the advan-
tages of the norm-constrained CVPM-MPC method can be exploited in applications such
as autonomous vehicles or robots, especially in shared environments with humans. A brief
example is introduced where a controlled vehicle is overtaking a bicycle while minimizing the
collision probability. Especially for collision avoidance, it is also of interest not only to focus
on the collision probability but to consider the severity of collision if a collision is inevitable.
Besides the previously mentioned applications, CVPM-MPC may also be useful in other
areas where norm constraints are considered, such as portfolio optimization in finance.

The generalized CVPM-MPC is suitable for linear and linearized systems, enabling the
use in applications such as quadcopter control or automated vehicles. Furthermore, the
proposed CVPM-MPC method may be extended to consider probabilistic constraints and
robust state constraints simultaneously. This extension would allow practitioners to employ
robust constraints where possible and necessary, as well as probabilistic CVPM constraints
if suitable.

Whereas robust methods guarantee safety for predictable events, unpredictable environ-
ment changes are not covered. This is especially tricky if ethical concerns are relevant for
applications, e.g., how autonomous systems should behave if collision avoidance cannot be
guaranteed [72]. CVPM-MPC provides a novel way to handle such scenarios and ethical
issues.

163






Further Work 7

Besides the previously presented contributions, we have made further advances to MPC
for automated vehicles. The first contribution, legible MPC, enables more efficient traffic
flow without increasing risk by planning legible trajectories for an automated vehicle. The
second contribution, Gaussian process-based SMPC for racing, demonstrates how learning-
based methods can be combined with SMPC in order to improve performance, which may be
exploited in autonomous racing. In this chapter, we briefly describe these two contributions.
Details may be found in the respective publications.

7.1 Legible Model Predictive Control for Automated
Vehicles

The following is based on the work published in [26]. Safety and efficiency are two defining
factors for autonomous vehicles. While we presented multiple approaches to safely handle
automated driving, approaches for higher efficiency are usually designed on an individual ba-
sis and are often accompanied by an increased risk of collision. Consider a highway scenario
with two autonomous vehicles intending to overtake a leading vehicle. If both vehicles pur-
sue a safe course, this can lead to a situation where both cars hesitate; each vehicle inhibits
the other from overtaking due to safety constraints, resulting in an unresolved standoff, as
algorithms of autonomous vehicles are typically conservative. As turn signals are, if at all,
often only used when the lane change actually occurs, they are not sufficient for reasonable
predictions. This raises the question of how to improve efficiency in such scenarios, while
keeping risk at a similar level. It is assumed that vehicle-to-vehicle (V2V) communication
is not a dependable solution in the near future as this would require a substantial num-
ber of vehicles communicating with each other. Furthermore, in other scenarios aiming at
increasing legibility for pedestrians or bicycles, V2V communication is not applicable.
There are various definitions of legible behavior, usually related to robots. Among others,
[1] and [106] state that legibility results from predictability. A further definition of legibility
in human-robot interaction is provided by [63,64]. There, it is declared that a motion is
legible if it allows the spectator to confidently derive the robot’s correct goal given an initial
trajectory. Predictable motion is defined as the trajectory observers would expect if they
knew the robot’s goal prior to the execution. To illustrate this, [63] provides an example
of a robot reaching out to grasp the right one of two bottles that are located next to each
other. Knowing which bottle the goal is, the observer would predict the robot to follow a
straight path to the bottle. However, the beginning of this trajectory would make it difficult
for another spectator, who does not have knowledge of the goal, to infer which bottle the
robot is aiming to grasp. Therefore, the robot should start a motion that exaggerates its
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movement to the right to emphasize its goal, the right bottle, which is then considered a
legible motion.

In our work published in [26], in addition to focusing on the individual behavior of an
autonomous vehicle, we also consider how to support other traffic participants in correctly
inferring the future maneuvers of the controlled autonomous vehicle. This enables secure and
efficient traffic flow. We propose a legibility-based MPC method that provides a framework
to improve the readability of planned maneuvers while simultaneously optimizing factors
such as comfort and energy efficiency. Legibility is introduced into the optimal control
problem as part of the objective function. Safety is not affected by considering legibility in
the MPC optimal control problem, as the safety constraints remain unchanged. Thus, traffic
efficiency is positively influenced without increasing the risk of collision.

7.2 Gaussian Process-based SMPC for Overtaking in
Autonomous Racing

The following is based on [27]. A fundamental aspect of racing is overtaking other racing
cars. Whereas previous research on autonomous racing has majorly focused on lap-time
optimization [92, 166, 167, 183,184, 197], in [27] we propose a combined Gaussian Process
(GP) and SMPC method to plan overtaking maneuvers in autonomous racing.

Gaussian process regression is a powerful non-parametric tool used to infer values of an
unknown function given previously collected measurements. In addition to exhibiting very
good generalization properties, a major advantage of GPs is that they come equipped with
a measure of model uncertainty, making them particularly beneficial for safety-critical appli-
cations. These characteristics have made GPs particularly attractive for developing control
algorithms [47,48,70,88]. In the context of autonomous driving, GPs have also seen a rise in
interest. In [85,92], GP regression is used to improve the model of the autonomous vehicle
using collected data, which in turn leads to an improvement in control performance. GPs
have also been employed to predict the behavior of cut-in maneuvers of surrounding vehicles
and obtain safe autonomous vehicle control [202].

Our work [27] outlines a combined GP and SMPC approach for autonomous overtaking
maneuvers in racing. The major challenge is to plan trajectories for a controlled racing car
such that a leading racing car may be passed. Based on previous behavior of the leading
vehicle, given the interaction between both vehicles, a GP is trained. The GP predictions
for the leading vehicle are then used in an SMPC algorithm to plan efficient overtaking
maneuvers. The proposed method has the potential to be a powerful method in autonomous
racing. Ideally, the GP identifies weaknesses in the driving behavior of the leading vehicle
while the controlled trailing vehicle is trying to overtake. The SMPC planner allows us
to efficiently consider the GP output and to plan optimistic vehicle trajectories, which are
fundamental for racing. Given an increased sample set of data, the controlled racing car
increases its chances of finding the right spot on a race track and a suitable driving approach
to successfully overtake.

In summary, the long-term goal is to develop a method for competitive racing: First,
the controlled autonomous racing car learns weak spots of other (leading) vehicles while
driving behind those vehicle. Then, the SMPC approach enables optimistically overtaking
the leading vehicle at the right part of the race track, based on the results of the GP.
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Conclusion

Ever increasing needs for automation require control algorithms that are suited for safety-
critical applications in uncertain environments. Examples for such safety-critical applications
are robots acting in a shared work space with humans or automated vehicles avoiding colli-
sions with surrounding vehicles and pedestrians. MPC has shown promise to be a capable
method for such systems. Whereas RMPC is often too conservative, SMPC makes it possible
to plan optimistic control behavior with the disadvantage of allowing for a small probability
of constraint violation. These issues require new solutions to make MPC a suitable and
reliable method for safety-critical systems.

This thesis has focused on advancing SMPC, as well as guaranteeing safety for MPC in
safety-critical applications subject to uncertainty. The most prominent application examples
throughout this thesis were automated vehicles and mobile robots, as both currently are
highly relevant safety-critical applications.

8.1 Summary of Contributions

After briefly introducing SMPC and providing a simple simulation example in Chapter 2, the
subsequent four chapters present the contributions of this thesis, covering SMPC advances,
approaches to increase efficiency in control behavior, and safety guarantees.

Chapter 3 proposes two SMPC advances, specifically focusing on the reformulation of
SMPC chance constraints. First, an SMPC method is proposed that combines analytic and
sampling-based chance constraint reformulation. This combination allows us to efficiently
consider two vastly different types of uncertainty within applications: task uncertainty and
task execution uncertainty of other agents. Second, we propose a novel grid-based approach
to evaluate the chance constraint, specifically designed for two-dimensional applications.
This grid-based SMPC approach allows us to directly use occupancy grid data, obtained
in the sensing and perception module. Based on a risk threshold, the grid is divided into
admissible and inadmissible cells. Then, an MPC optimal control problem is solved, plan-
ning trajectories only on the admissible cells, yielding a computationally efficient way to
reformulate chance constraints.

In Chapter 4, the focus is on extending the MPC prediction horizon without increasing
computational complexity. We first consider the undisturbed case and combine two known
approaches: MPC for models of different granularity and MPC with a non-uniformly spaced
optimization horizon. Then, uncertainty is introduced into the algorithm. We use robust
constraints for short-term planning to ensure safety, and we employ chance constraints on
the long-term horizon, together with a simplified model and larger sampling time steps. This
allows us to improve long-term planning without overly conservative long-term constraints
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and without large computational effort. For the undisturbed case, we provide a recursive
feasibility guarantee for the MPC optimal control problem.

The next two chapters address safety within MPC. Chapter 5 proposes a safety algorithm
for SMPC, particularly suitable for automated vehicles. The algorithm is designed in such a
way that the optimistic SMPC inputs are applied as long as a safe backup planner is still able
to find a safe backup trajectory. An autonomous highway driving simulation study shows that
in regular scenarios, this procedure yields similar behavior to SMPC. However, in emergency
scenarios where applying SMPC inputs results in collisions, the proposed algorithm ensures
safety. We prove recursive feasibility of the safe SMPC algorithm designed for vehicles
and guarantee that no self-inflicted collisions occur. Additionally, we prove input-to-state
stability for the general safe SMPC algorithm.

In Chapter 6, we propose a novel MPC approach that handles unexpected events. In-
stead of focusing on hard constraints or chance constraints, we minimize the probability of
constraint violation. The proposed MPC algorithm is recursively feasible and input-to-state
stability is ensured for time-invariant uncertainty bounds.

8.2 Implications

In the introduction, we outlined four key challenges to successfully design MPC for safety-
critical applications. In the following, we revisit these challenges and elaborate on implica-
tions regarding the contributions of this thesis.

Challenge 1: SMPC chance constraint reformulation. SMPC chance constraints
require tractable surrogates within the optimal control problem. Whereas multiple ideas
for such chance constraint reformulations exist, each one is accompanied by limitations or
disadvantages. We proposed two application-oriented approaches, one to formulate chance
constraints and one to obtain a tractable chance constraint reformulation.

In Chapter 3, we proposed a general algorithm to formulate SMPC chance constraints
based on applications with task and task execution uncertainty. However, task does not
need to be taken literally here. This SMPC algorithm is also applicable to distantly related
applications, e.g., portfolio optimization [84,153] or dynamic option hedging [11,154] where
uncertainty in the stock market may be described by bullish or bearish markets with varying
individual trends.

The second proposed approach, grid-based SMPC, focuses on the chance constraint refor-
mulation. This grid-based approach enables to exploit data from occupancy grids, making
it possible to further merge sensing, perception, and planning, especially for automated ve-
hicles. As each part of the road is given a probability of occupation, this grid-based SMPC
approach facilitates a comprehensible trade-off between efficiency and risk, potentially help-
ing to simplify type approval of automated vehicles.

Challenge 2: Extending the MPC prediction horizon. The proposed modular MPC
approach described in Chapter 4 allows us to increase the MPC prediction horizon without
significantly increasing computational complexity. Depending on the particular application
and demands, different aspects of the proposed method may be employed. A non-uniformly
spaced prediction horizon, potentially with more than two different sampling time step sizes,
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can be combined with multiple prediction models of varying complexity. Furthermore, de-
pending on the system uncertainty and control requirements, robust constraints or chance
constraints can be employed for the short-term or long-term prediction. This flexibility
makes it possible to customize controllers for a broad class of systems and application sce-
narios. However, the discontinuity between different prediction models and the changing
sampling time step size make the proofs of theoretic guarantees challenging.

Challenge 3: Safety in SMPC. Designing SMPC for safety-critical applications subject
to uncertainty is a research area that has just started to draw attention recently. Our safety
algorithm for SMPC in Chapter 5 avails the domain of safety-critical applications for SMPC.
Having provided a safety guarantee for general SMPC approaches therefore justifies an in-
creased research focus on SMPC, as application opportunities are vast if the disadvantage of
a non-zero constraint violation probability is canceled. Furthermore, our safety framework
for SMPC may also be used to provide safety guarantees for other control methods or to
provide a safety filter for human actions, e.g., as part of advanced driver assistance systems.

Challenge 4: Minimal constraint violation probability with MPC. Typically,
safety is guaranteed for the case that certain assumptions hold. However, in many prac-
tical applications, assumptions either have to be overly conservative or will be violated at
some point. If violated, the theoretic safety guarantees are obsolete in practice. To counter
this issue, we proposed a novel MPC method in Chapter 6, minimizing constraint violation
probability, which is a new way of considering uncertainty within MPC that lies between
RMPC and SMPC: as long as uncertainty and constraint assumptions hold, robust safety is
guaranteed; once an unexpected event occurs, the solution with minimal future constraint
violation probability is found. Together with the proposed safe SMPC algorithm of Chap-
ter b, these two approaches cover safety-critical application scenarios where assumptions are
either met or violated.

8.3 Future Research Directions

This thesis provided significant research contributions towards safely applying MPC in safety-
critical applications. Nevertheless, many challenges remain unsolved and contributions made
here are only the starting point for future research directions. In the following, we highlight
open research questions and opportunities.

Extended prediction horizons for MPC. For the proposed methods that extend the
MPC prediction horizon, theoretic properties still remain mostly unaddressed. Passivity
theory may be used to show stability for our MPC methods including a non-uniformly
spaced optimization horizon. Future work may also focus on investigating possibilities to
relax the requirements for the link between the detailed and coarse model. This link is, to
this point, very application-dependent and limits the applicability. This challenge may be
addressed by considering methods of model order reduction [80].

Grid-based stochastic MPC. The proposed grid-based SMPC method is designed for
two-dimensional applications and specifically for automated vehicles. Besides testing with
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real-world data, future research efforts may focus on further exploiting occupancy grid data
obtained during sensing and perception, effectively merging the sensing and planning mod-
ules. Furthermore, the proposed idea is extendable to three-dimensional applications, en-
abling the use for robots, drones, and underwater vehicles.

Safe MPC for uncertain systems. The major contribution of this thesis is in the area
of safety within MPC for systems subject to uncertainty. However, open challenges still
remain. The presented safe SMPC approach for automated highway driving may be extended
to other scenarios that automated vehicles encounter, specifically in urban environments.
Furthermore, our safe SMPC approach can be used in further safety-critical systems, such
as robotics.

As we first proposed MPC with minimal constraint violation probability, this method
offers various opportunities for improvement. A wider system class may be considered and
robust constraints as well as chance constraints can be included. Then, depending on the
application and uncertainty, a constraint can be considered robustly, as a chance constraint,
or the constraint violation probability is minimized.

Eventually, MPC with constraint violation probability minimization may serve as a further
backup to the proposed safe SMPC approach, e.g., covering those scenarios in automated
driving where other traffic participants violate traffic rules. Then, the combined method
causes no self-inflicted collisions and minimizes collision probability even if other traffic par-
ticipants behave illegally. This approach could not only drastically increase the applicability
of MPC for vehicles, but also pave the way to tackle frequently debated ethical issues regard-
ing automated vehicles [72] and would, therefore, improve public perception of automated
driving.

Data-driven stochastic MPC. MPC uses system models for predictions; however, the
behavior of real systems is often difficult to model. This challenge is addressed by data-driven
control. In the case of MPC, results of behavioral systems theory are applicable, where
system predictions are possible only using past system data. A combination of data-driven
control with ideas of SMPC will enable efficient control of unknown systems in uncertain
environments. Particular challenges within data-driven stochastic MPC are handling noisy
data in the data collection phase and considering disturbances and measurement noise in
the control phase.
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Probability Theory A

The following sections provide details on necessary fundamentals of probability theory.

A.1 Normal Distributions

A normal distribution (also known as a Gaussian distribution) is characterized by its mean
p and its covariance X, abbreviated by N (u, X). A special case is given by the standard
normal distribution where g = 0 and 3 = I. In the following, we consider a random variable
W subject to a univariate normal distribution with mean g, variance o2, and standard
deviation o.

The probability density function (PDF) of the random variable W is given by

futw) = ~——esp (=5 (1)) (A1)

;27T 2 o

where it holds that

/O:o fw(w)dw = 1. (A.2)

The factor % accounts for the adjusted variance compared to the standard normal distribu-
tion.
For a continuous distribution, the PDF at a specific point w does not yield a probability.

Therefore, we introduce the cumulative distribution function (CDF) F(w) with random
variable W

Flw) = Pr(W < w) = [ “;o v (w)dw= ; 1+ erf (“;;;)] (A.3a)
1 1 W — [
=2+2erf<a 2). (A.3Db)

For w = pu, the cumulative probability is exactly 0.5.
In the CDF, only one side of the distribution is considered, i.e., W < w. If we consider
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both sides of the distribution, i.e., —w < W < w, we obtain

Pr(—w < W <w)= /_1; fw (w)dw (A.4a)
= /_Ow fw (w)dw + /Ow fw (w)dw (A.4Db)
—9 /0 " o (w)dw (A.4c)

_9 ( A “;O fiv(w)dw - [ OOO fW(w)dw) (A.4d)

—9 ((; + ;erf (“;;5‘)) - ;) (A.de)
= erf (i%) . (A.4f)

A.2 Chebyshev’s Inequality

Chebyshev’s inequality provides a bound for probability distributions and indicates how
likely it is that a random variable differs from the mean given a certain threshold c,.
For a random variable W with zero mean distribution, i.e., 4 = 0, and variance o2, it

holds that

0.2

Pr(Wlzew) < 5 (A.5)
t

=

where ¢, > 0. Complementary, it holds that

0.2

Pr(|W|<cn) 21— —-. (A.6)
Cth
The zero mean results may be extended to distributions with mean u # 0, yielding
2
o
Pr(|W — p| > en)< —- (A.7a)
Cih
o2
Pr(|W —p| <ecm)>1— —-. (A.7h)
Cth

Cantelli’s inequality. The one-sided Chabyshev’s inequality is also known as the Can-
telli’s inequality where only a single tail of the distribution is considered. Cantelli’s inequality
for zero mean and non-zero mean distributions is given by

0.2

P > < - A.
r(W > cp)< P (A.8a)
o A.8b
Pr(W —pu> < . .
r( > )< o) ( )
from which it follows that
2
Pr(W<Cth):1—Pr(W—,chth)21—% (A.9a)
o° + ¢,
2
Pr(W—p<en)=1—Pr(W—p>cp)>1——"—r. (A.9b)
o° + ¢,
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Analytic SMPC Chance Con-
straint Reformulation

B

In the following, a brief derivation of chance constraints in SMPC for systems with additive
uncertainties is provided. Here, we omit explicitly denoting the prediction step k.

Starting from the chance constraint (2.6), Assumption 2.2, and the reformulated system
state (2.7), we rewrite the chance constraint as

Pr (gTz +g'e< h) > p. (B.1)

The chance constraint (B.1) is not a deterministic expression. It is necessary to reformulate
the chance constraint such that a tractable expression is obtained, which is then used to
solve the optimal control problem. For zero uncertainty, the deterministic part of the state
must satisfy the state constraint. However, if uncertainty is present, the constraint must be
tightened by a tightening parameter . This tightening parameter is determined depending
on the uncertainty and the risk parameter 3. We therefore reformulate the chance constraint
(B.1) into

g'z<h-— v (B.2a)
Pr (gTe < 'y): o] (B.2b)

where (B.2b) ensures that the tightening parameter is chosen in such a way, that the uncer-
tainty only causes constraint violations as allowed by the risk parameter.

It is to note that (B.2) is still not a deterministic expression. In the following, we derive
how (B.2b) is reformulated into a deterministic approximation, based on the underlying
uncertainty distribution.

B.1 Normally Distributed Uncertainty

First, we analyze the chance constraint reformulation for an uncertainty w according to
Assumption 2.1. Similar reformulations are also used in [16,30,50,67,150].

Given the normal distribution with zero mean and the error propagation (2.10), the error
is also normally distributed according to

e~N(0,X°). (B.3)
It follows that the state expression is also normally distributed according to

ge~N <O, 02) (B.4)

where g'e is scalar and we abbreviate the variance with 02 = g 3¢g.
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This now allows us to reformulate the chance constraint (B.2b). Based on the CDF F(v)
of a normal distribution

Pr(gTe <) = F(y) = ; <1 + orf ((&5)) _ 8, (B.5)

it is possible to find a deterministic expression for the tightening parameter vy with the

following reformulation:
1 gl
2 ( " <<f\/§ )) ’ (.6

erf <72>— 28 — 1 (B.6b)

=120 erf 126 — 1) (B.6¢)

Details on the CDF of a normal distribution are found in Appendix A.1. Inserting the
variance o2 = g' X¢g, we obtain the tightening parameter

v=V2Vo? erf 71 (28 — 1) (B.7a)

—V2\/g Seg et (28 - 1) (B.7h)

— /29T S¢g erf (28 - 1), (B.7c)

as stated in (2.11b). The error function erf(-) and the inverse error function erf™'(-) are

displayed in Figure B.1.

Error Function Inverse Error Function

o
1,
5 3
3 2
= .07
G 5
<
1t
2t
-2 -1 0 1 2 1 05 0 05 1
w w

Figure B.1: Error function and inverse error function.

Remark B.1. Note that a similar expression to [68, Section 3.2.1] is obtained by considering
the risk parameter = 1 — 3 introduced in Remark 2.2. Then, with variance o and based on
the CDF Fyq(7) of the standard normal distribution, it follows that

Pr(gle <) =F(y)=1-7 (B.8a)
y=F1(1-8) =0k (1-5), (B.8b)
which yields

v =\gTSeg Fol(1-5). (B.9)
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B.2 General Probability Distributions

B.2 General Probability Distributions

A chance constraint reformulation of (B.2b) is also possible for general probability distribu-
tions.

Assumption B.1. The uncertainty w is a univariate distribution with zero mean and vari-
2

ance o°.
While a normal distribution allows for an exact reformulation, chance constraints for
general distributions are often only approximated. An overview is found in [68].
Based on the Cantelli’s inequality, see Appendix A, it is possible to determine a bound on
the CDF, yielding

0.2

el (B.10)

Pr(gTe<7)21—

where the risk parameter represents the required bound. Reformulating results in

0.2

1-— e 3 (B.11a)
o’=v*(1 - B)+o*(1 - B) (B.11b)

o+ (B —1)=~*(1- ) (B.11c)
Y=o 1_55 (B.11d)

representing a constraint tightening parameter for general probability distributions. We can
rewrite this expression as

Y= oF(B) (B.12)

where the quantile function F'~*(j) is considered as the inverse CDF. Unlike the reformula-
tion for the norm constraint, the risk parameter here may take values 0 < g < 1.
A comparison between constraint tightening based on (B.7c), i.e,

F7Y(B) = V2erf (28 — 1), (B.13)

and (B.11d), i.e., 1/3/(1 — (), is shown in Figure B.2. Note that the constraint tightening in
Figure B.2 is not 7, as variance is not considered. It is obvious that the constraint tightening
for general probability distributions according to (B.11d) is more conservative.
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8 T T T T T T T T T

normal distribution
general distribution

constraint tightening

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
risk parameter 3

Figure B.2: Constraint tightening comparison between (B.7c¢) and (B.11d).
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Details on Safety for Stochastic C
MPC

This appendix chapter provides additional information for Chapter 5, which addressed safety
in SMPC.

C.1 Linearized and Discretized Vehicle Model

The linearized, discrete-time system matrices Aq and By in (5.6) are given by

(1 0 —Atvsin z1 Atvcosz — 22;1%
0 1 Atvcosz Atvsinz 4 25224
gl | Artsnt; . (C.1a)
0 0 0 1
:At2 coszi __ At’varsinz _ zgsinz
At? gin 21 At%}m%os 21 4 28 cozsgzl
Be= | s 2 ” C.1b
! At#inéf AtZ'y ( )
At 0
with
[, tan d
21= ¢ + arctan < l inl f) (C.22)
r f
2= At*vtan & (C.2b)
2= (I, tan &) (C.20)
1
z 2
7= (b <(l+3[)2 + 1) (C.2d)
r f
= v (tandr)” +1) (C.2¢)
3
r f
2= 5 *3%5 C.28)
24 26
28= Atl, 25 (C.21)
Z .
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C.2 Proof of Lemma 5.1

Proof. As longitudinal and lateral motion are uncorrelated, the covariance matrix is given
in terms of a block diagonal matrix

e - 0
i = [ 0" = ] , (C3)
Y,k
with ) )
e o= O—zvx
e — [ k 8 k] 7

T,k 0-7);,; k

) (C.4)
e — Uy,k Jyvy,k

ok [Ujvyyk agy7k‘| ’
and each direction is computed independently. We will show that the error for the position
coordinate z is distributed with a PDF only depending on O'ik. Let ., = (x4, v%k)T
be the state vector projected onto its longitudinal coordinates with the estimated states
Zor = Bk, Opp)' and e, ), = &y g — X, then e, . is Gaussian distributed with the bivariate
probability function

1 1 e \1
fe(€rr) = QWW exp <—2e;k (Ewk) e$7k> . (C.5)

We obtain the marginal PDF by integrating f.(e, ) over the longitudinal velocity, i.e.,

fea(€sr) = /_ f(exr)dvg i, (C.6)
which yields
1 1
feu(€rk) = ———==exp (—m2> : C.7
(ers) = = oxp (gt ()

As (C.7) corresponds to the univariate Gaussian distribution of the x-coordinate with only
0.k, the z-direction is computed independently of o, ; and o4y, &, which proves the lemma.
The same proof holds for the lateral direction. O

C.3 Constraint Generation

Here, we give a complete overview of the cases considered. The cases and conditions for

SMPC are found in Table C.1. The values c?;//yT,y , 1 € {1,2,3,4} indicate the corner z-
position and y-position of the EV shape or TV safety rectangle, according to Figure C.1.
While the main idea of the cases is already given in Section 5.2.4, some extra details were not
previously mentioned for clarity. In the brief constraint generation overview, we only used
the constant part peose. However, this was a simplification; we employ a function pejese(Av)
consisting of a constant part peese and a variable part max{0, sign (Av) AvNAt}, i.e., the
necessary distance between the EV and TV depends on the velocity difference. A larger
velocity difference results in greater difference of distance covered by the EV and TV within

the prediction time NAt. This yields
Pelose(AV) = perose + max{0, sign (Av) AvNAt}. (C.8)
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Figure C.1: Corner description for the EV shape and TV safety rectangle. © 2021 IEEE.

As the general plan for the EV is to overtake only on the left, case E is extended slightly
compared to Section 5.2.4. When the EV is too close to the TV, based on a left-lane margin
Pim, & vertical constraint behind the TV replaces the inclined constraint (case E3). It is only
planned to overtake TVs on a lane left of the EV if the EV velocity is larger than the TV
velocity (case Eg). For cases D and E the constraint slope is bounded such that it does not
lie within with the EV shape or the TV safety rectangle.

The cases and conditions for FTP are similar to the SMPC cases. A complete description
is given in Table C.2. The main idea of the FTP cases are described in Section 5.2.5.
Here, we give a detailed description of the cases where three placeholder TV predictions are
considered (cases J* and C*). The cases with a TV prediction in the same lane as the EV are
denoted by Jg, Cg, while cases with a TV prediction in a lane to the left or right of the TV
are denoted by Ji, Cf and Jg, Cg, respectively. The slopes for cases Cj and Cj; are limited
to ¢z < 0 and g, > 0, respectively. If the values for g, exceed the respective limits, the
cases Cf j, and Cf , are applied. The cases F5 and Hj represent scenarios where the EV
center is not in the TV lane, but the EV shape is already in the TV lane. In these cases,
where the EV is behind the TV, vertical constraints behind the TV are built. The cases F*
and H* are split into F7, F; and H}, Hj, respectively.
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C Details on Safety for Stochastic MPC

Table C.1: SMPC constraints.
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Table C.2: FTP constraints.
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Details on Minimizing Con-
straint Violation Probability in D

MPC

This appendix chapter provides additional information for Chapter 6, which focuses on
minimizing constraint violation probability in MPC for systems subject to uncertainty.

D.1 Proof of Lemma 6.1

Proof. According to Assumption 6.6, fw, is symmetric and unimodal, and therefore fy,
is decreasing with increasing |lwyl|,, i.e., the larger ||wl|,, the lower its PDF value. The
uncertainty realization with the highest relative likelihood is the mode of fy, with w; = 0,
yielding the most likely random output y2 +1 =yp +1 It follows that

fw, (@1) < fw, (wy) for [[@e]ly > [Jwel], (D.1)

where g29 = yP9 + w, is less likely than y29 = yP9 + w; and

Hyt+1 yt+1H >Hyt+1 yt+1H (D.2)

due to ||y, > [|wel,-
It follows that the larger Hyt“ @?ﬁ

the higher the PDF value of a large HytH —y29 H2
, the higher the PDF value of

due to (D.1). Therefore, the larger the norm Hyt+1 7o
Hym yt+1H > h;. This results in

H’gtﬂ — §P+O1H2 > H'yt+1 — §?+O1H2 < Dt+1 (’&ta ytDO> < Pry1 (ut, y?O> (D.3)

with 941 # Y11 and gy = C (Axy + Bu,) according to (6.1).
The same holds for Hyt — ﬂPOHZ instead of Hytﬂ — g9 ’2, showing that p; is decreasing

with increasing Hyt — yPOH2. O

D.2 Derivation of Equation (6.31)

For (6.31), in the following, it is shown that Hyk —y,?OH2 > h; holds if Hyk — DOH2 >
hi + Wmax x—1. From (6.2) it follows that

o~ 521, = o~ (580 + w12, = Dy
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Using the reverse triangle inequality vields
i = TR0 = wia |, > [ = RO, = lwally| > (D.5)
with
o =720, = llwrall) = | = 72|, — lwwall,. (D.6)

Given (6.3) it follows that

|y =92, = llwilly > [ — 72°), = waass (D.7)
for all ||we_1]l, < Wmars_1. Therefore, if
|y —BR°)|, = w1 > I, (D.8)
is fulfilled, (D.4) holds, i.e.,
loe =920, = Tt + Wi =y — w2, = e (D.9)

Equation (6.31) in Section 6.2.2 is obtained for k£ = 1.

D.3 Collision Probability Function

Here the collision probability pe: is described in detail, which is only needed for the evalu-
ation of the simulation but not the proposed method. The PDF fy, is chosen to be

2

1
fw () = ava® 7 O ST S Wma (D.10)
0 otherwise

where 7; is used instead of w; and

supp (fw,) = {7 | 0 < 7 < Winax,e} (D.11)
with variance o = 1 and
2= @ (Wnaxt) — P (0), (D.12)
o (7)=10.5 <1 + erf (k)) , (D.13)
such that
/ fw, (n)dr = 1. (D.14)
supp( fw, )

As the main aim of this simulation is to minimize the constraint violation probability, i.e.,
the collision probability, an expression for this probability is necessary in order to analyze
the simulation results. The controlled vehicle and the obstacle collide if their bodies overlap,
i.e., Teomp > Hyt — yPOH2 with the combined radius 7eomp = 7 + ™po. A collision at step t is
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D.3 Collision Probability Function

Wmax,t—1

Figure D.1: Collision probability calculation. The blue circle combines the radius of the
controlled vehicle and the obstacle, the dashed orange circle represents the area
potentially covered by the uncertainty. The striped area represents one half of
the intersection between the two circles.

7°|

inevitable, if Hyt — )2 + Wimaxt—1 < Teomb, 1-€., even for the best-case wmax+—1 the objects

will collide at step t. For Hyt — y}?OH — Wmax,t—1 = Tcomb it follows that pe+ = 0.

The collision probability is calculated according to the following procedure. We consider
a circle where the radius is the required distance re,,, and a circle with radius 7. The
intersection of both circles can be interpreted as the collision probability, by integrating the
intersection area of both circles, weighted with fy, (7;). This is illustrated in Figure D.1. In
case that there is no intersection area, then pe,1; = 0. If an intersection exists, there are two
intersection points. The intersection area is therefore bounded on one side by the arc with
radius 7.omp and on the other side by the arc of the boundary of the uncertainty. As the
intersection area is symmetric, it is sufficient to derive the calculation for one half, i.e., the
area between the line connecting ﬂ?o and y; and the intersection point piy 1 as depicted by
the striped area in Figure D.1. This yields an angle 6,1 € [0;0.57] between the two lines
connecting PO and y; as well as PO and piy1. The distance riy (6) between yP© and
the controlled vehicle boundary between the two intersection points follows from the law of
cosines

Teomb’ = Tint (0)2 + df — 2d,rint (0) cos(0) (D.15)

where d;, = Hyt — ﬂPOHQ and 0 € [0; Oyt 1] with

Hinm: Sil’l_1 (CLH) y (D].6)

2wmax,t—1

2 2 2
\/4dt wmax,t712 - (dt - Tcomb2 + wmax,t712)

o (D.17)

ap=—

This yields

Fine () = 0.5 <2dt cos(8) — \/(2d, cos(8))? — 4 (d} — rcome)) . (D.18)
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The intersection area on both sides of the line between y; and y>©, weighted with the
PDF fw, ., yields the collision probability

9int,1 Wmax,t—1
Pcolt = 2 / % / .sz (Tt) thd0 (Dlg)
0 ’r‘int(G)

for d; + Wmaxt1—1 = Tcomb, depending on the angle 6y ;.
This yields the overall collision probability

1 if dt + Wmax,t—1 < Tcombs
Pcolt = 0 if dt — Wmax,t—1 Z Tcomb, (D2O)
(D.19)  otherwise.

For reasons of readability, the dependence on ¢ for pint, Oint,1, Tint, and ay is omitted.

D.4 Proof of Lemma 6.4

The following proof is based on [19].

Proof. The set U y . consists of all input sequences wy,_; that yield constraint satisfaction
of zy, € XNe given the uncertainty Wy,—1 € WHe with Whe = W x - x W. It follows
that

Ux n.—1 Z{uNc—l N, € AN Vwn,-1 € WNC} (D.21a)
={un1 | Anzo + By + Exwy1 € XY Vay_, e WY} (D21b)
Z{uNc—l An.xo+ Byuy, 1 € XS Ep, o WNC} (D.21c)
={un1 |z = Ayo + Byauy1z € XV 0 By o W} (D.21d)
I{MNCA Byun, 1=2— Ayxoz € XN O Ep o WNC} (D.21e)
Z{ﬂNc—l Byuy_ € XN Ey oW g {_ANcwo}} (D.21f)
Z{QNC—l un.-1 € (XNC o En, o WY@ {—ANCZBO}) o ENC} (D.21g)
and, therefore,
Uy -1 = (A © Ex o WY & {~Ay.20}) 0 B, (D.22)
O

D.5 Proof of Lemma 6.8

First, some preparations are introduced before starting the proof. We use system (6.84) for
f (@, ui(x;), wy) where the applied input u,(;) is a control law, depending on a;. Therefore,
we can write f(x,, uy(z), w;) as f(x, w;). The optimal input u}(x,) is obtained by the
MPC optimal control problem (6.83). Based on (6.66), we abbreviate the stage cost by
I(x,u;) = =] Qz; + u] Ru, and the terminal cost by Vi(x;) = = Q..
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We define @, = xy,, yielding

Typpp= ATy i1 + By (D.23a)

Typp= AT + BU ey Tiy = Tye. (D.23b)
We obtain @, 1141 = A%y + Buy, + Ew,, depending on the uncertainty w; at time step
t = t. We then define T, ;41 = ®¢;1)141, Which allows us to write
k—1 '
it+k|t+1 = .1416_1 (Afﬂt + E'LUt> + Z A(k_l)_JBut+j|t (D24)
3=0

for all £ > 1. It follows that for H?vfuo it holds that

k—1

§t+k|t+1 = Akfr‘t + Z A(k_l)_]B'U,Z_’_j‘t + Ak_lE’LUt (D25a)
j=0

=T}, + A" Ew,. (D.25b)

We now prove Lemma 6.8.

Proof. For x; € X.uses with Assumption 6.14, X..es is robust positively invariant according
to Lemma 6.5.

We consider V(x;) = J*(x;) where J*(x;) is the optimal cost based on (6.66) with the
feedback law wy_1(x;) obtained according to (6.83) where Ueypm follows from the the safe
case. As V is continuous, positive definite, and radially unbounded based on Assumption 6.15
and 6.16, oy, e € Ko exist such that aq(|z¢|) < V(x:) < ao|a,]) is fulfilled [99]. Addition-
ally, V' is Lipschitz continuous on X,..s as V' only consists of quadratic terms and X.ees is
bounded.

Next, we prove the descent property (2.21). Based on Un_qp = (u;“lt, "'7,u’;<+N—1\t> we
obtain

N-1
S ()= 1 (Ttlhur\t) + : (l (E:—Hc\t? u:—&-k\t)) + Vi@ ) (D.26a)
=1
=1 (jﬂt) u:n) +q (j;tut) (D.26b)

where ¢ (f;‘ +1|t) summarizes the total cost starting at Zj,,,, which is used similarly in [38].

For t 41 with wy, yp g = (ujﬂ‘tﬂ, "'7ur+N|t+1) the optimal cost is

2

“(xes1) Z ( (wt+k|t+17u;€k+k|t+l)) +l(ftJrNh:JrlaUerNhtH) + Vi@ npaperr). (D27)

With the non-optimal input sequence (u;f s e Uiy N_1|t), we obtain

N-—
“(x141)< Z ( (wt+k|t+1>u:+k|t>) + Vf(TH_MHl) (D.28a)
k=1

= q (Frr141) (D.28b)
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where Ty 111 = Ty p + A¥1Gw; according to (D.25) and ¢ (Tt+1|t+1> =q (Efﬂ‘t + Ewt).
Note that at 41 the optimal input at prediction step k is u} TP based on Ty )41, whereas
Uy iy, Obtained at ¢, is not optimal as @;11).+1 was affected by w;.

Due to optimality, it holds that J*(x:11) < J(@11). With (D.26) and (D.28) we obtain

S (@e1) — T (@) < g (ft+1\t+1) -1 (Tﬂt,uat) —q (Tfﬂ\t) : (D.29)

Due to Assumptions 6.15 and 6.16, bounded sets X.ases and U, and since ¢(-) is the sum of
quadratic terms, ¢(-) is Lipschitz continuous, i.e.,

|0 (Fp 1 + Bwr) = q (F740) | < L |[®ii0 + Bwe = Zyyy, ]| = Lol|Gw,|] - (D.30)
with Lipschitz constant L,. Given (D.29) and (D.30),

J*(thrl) < -l |t7ut|t) + L HthH

~1(Tys, 0) + L] |G|
—az([|zi]) + Lo|| Ew]. (D.31)

/\

I/\ I/\

It is straightforward that the previous procedure, considering J(x;.1) — J*(a;), holds for any
t > 0. Therefore, all requirements of Definition 2.6 are fulfilled, i.e., V' is an ISS Lyapunov
function and the origin of system (6.84) is ISS if &; € Xeages- O

D.6 Proof of Lemma 6.9

Unlike the safe case, only one input is admissible according to (6.81). Therefore, in addition
to w;, this input is considered a disturbance in order to show input-to-state stability again.

Proof. We consider the combined input w} = (w,, w,”)7, the system f(x,, w]) = Az, +E'w)

with G’ = [B, E], and the candidate Lyapunov function V'(x;) = J'(x;) where

N-1
I (@) = YU (@r) + Vi (Zern) (D.32)
k=0
1 1
with I (1) = [[Terllo = (@THCQ@M)Q and VY (Tyn) = |[Trinllo, = (EL—NQtTt-FN)Q'

Note that (D.32) does not consider the input sequence (compared to (6.66)) as we treat the
input sequence as a disturbance. Similar to Lemma 6.8, V' is continuous, positive definite,
and radially unbounded based on Assumption 6.15 and 6.16; hence, V' fulfills requirement
(2.20). As V" is a sum of norms, V' is Lipschitz continuous on R"=. Additionally, it holds
that f(a,, w)) € R™ for all &, € R", i.e., R is robust positively invariant for f.

Due to Assumption 6.12, A is stable Hence the undisturbed system (6.62) with w; =0
is asymptotically stable and it holds that V' is a Lyapunov function with

V' (F(@.0) = V() < —as(l[l)). (D.33)

As fisa linear function, it follows that f is Lipschitz continuous on R™ x U x W.
As V' and f are Lipschitz continuous, it holds that

V' (F@ew) = V' (F(0,0))|| < Ly | F(@rw) = f(@,0)| < Ly Lyllwil|  (D33a)
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for all w; € W with respective Lipschitz constants L{, and L.
We obtain

V! (@i, w)) = V(@)= V' (f(@,w) = V'(@)+ (V' (f(@,0) = V' (f(2,0)) (D.34a)
_ ( f(@,0) V(@) +V' (f(miw}) — V' (F(z.,0))) (D.34b)

as(|[a|) +Ly Lyl[wi]. (D.34c)

| /\

It follows that for &; € R"*, which includes @; ¢ Xeases, the origin of (6.84) is ISS. O
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Acronyms

BG

CA
CDF
CoG
CVPM

DO
EV
FTP

i.i.d.
ISS

LC
LK

MPC
NUSH

oCP
oG

PDF
PG

RMPC

S+SC MPC
SCMPC
SMPC
SMPC+FTP

TV
V2V

binary grid.

controlled agent.

cumulative distribution function.

center of gravity.

constraint violation probability minimization.

dynamic obstacle.
ego vehicle.
failsafe trajectory planning.

independent and identically distributed.
input-to-state stable.

lane changing.
lane keeping.

Model Predictive Control.
non-uniformly spaced horizon.

optimal control problem.
occupancy grid.

probability density function.
probabilistic grid.

robust Model Predictive Control.

stochastic + scenario Model Predictive Control.

scenario Model Predictive Control.

stochastic Model Predictive Control.

stochastic Model Predictive Control + failsafe trajectory planning.

target vehicle.

vehicle-to-vehicle.
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Notation

Mathematical Conventions and Operators

Sets, Spaces, and Function Classes

0 empty set

N set of all natural numbers

N> set of all non-negative natural numbers

R set of all real numbers

R> set of all non-negative real numbers

R set of all positive real numbers

R™ n-dimensional Euclidean space (n omitted for n = 1)
R™*™ set of real-valued n x m matrices

{a,b,c} set of elements (order irrelevant)

(a,b,c) sequence of elements (order relevant)

[a, b] closed (real) interval between a and b

la, b] open (real) interval between a and b

K class of positive definite and strictly increasing functions
Koo class of positive definite, strictly increasing, and unbounded functions

Scalars, Vectors, and Matrices

Scalars are indicated by standard letters (a, A), lowercase bold letters denote vectors (a),
and uppercase bold letters are used for matrices (A). Sets are typically written as calligraphic
letters (A). Zero vectors and zero matrices are denotes by 0, the identity matrix is denoted
by I, all with appropriate dimensions. Dimensions may be explicitly denoted, e.g., I,,«, €
R™*™  The i-th element of a vector is denoted by a;. The element in the i-th row and j-th
column of a matrix A is indicated by a,; and the i-th row of a matrix A is denoted by [A];.
The i-th entry of a vector a may similarly be expressed by [a]; to improve clarity.
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Notation

Operators
]Ia,b

A>0
AX0
A=<0
A=0

diag(a, -, an)

blkdiag(A;, - , A,)
0A
int(A)
conv(-)
cov(-)
proj(-)
A

\Y%

Ao B
Ao B
()7
supp (-)

exp(-)

194

integer interval between (and including) a and b
absolute value of a

cardinality of set A

norm of vector a

Euclidean norm of vector a

p-norm of vector a

weighted norm of vector a, i.e., ||al|l4 = VaT Aa
transpose of matrix A

inverse of a square matrix A

symmetric, positive definite matrix A
symmetric, positive semi-definite matrix A
symmetric, negative definite matrix A
symmetric, negative semi-definite matrix A

diagonal n x n matrix where the i-th diagonal matrix element is
equal to a;

block-diagonal matrix where the i-th matrix block is equal to A;
boundary of set A

interior of set A

convex hull

covariance matrix

projection

difference, depending on respective variable and context
gradient operator

set addition, A® B:={a+bla € A bc B}

set subtraction A6 B:={x e R" |{z} & B C A}
sequence shift operator

support

exponential function



Notation

Stochastic
Pr(A)

p
P
u

qQ

fr,fw

Fp, Fw

probability of event A

probability (value)

probability distribution (of a random variable)
mean

standard deviation

variance

covariance matrix

probability density function (or probability mass function) related to
probability distribution P or related to random variable W

cumulative distribution function related to probability distribution P
or related to random variable W

cumulative distribution function

quantile function

normal distribution with mean p and covariance matrix 3
expected value

chi-square distribution with n degrees of freedom

Accents, Subscripts, and Superscripts

Q; 1kt

estimated values
optimal value or solution
mean value

augmented vector or system description

adapted value

value at prediction step t + k, evaluated at time step t; abbreviated
to (+)ey if clear from context

i-th element of vector a at time step ¢

i-th element of vector a at prediction step t + k, evaluated at time
step t
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Notation

G

DO

E

<

TV

[
col

cv

Ib

It
max
min
ref
st

()
()
()
()
()
()
()
(+)evpm
()
()
()
()
()
()
()

ub

related to a grid representation

related to a dynamic obstacle

related to the ego vehicle

related to a target vehicle

related to a controlled system

collision

constraint violation

constraint violation probability minimization
lower bound

related to the long-term system model
maximal value

minimal value

reference

related to the short-term system model

upper bound

Variables and Constants

Systems, Control Theory, and Optimization

A
Ak

196

system matrix

stabilized system matrix Ax = A+ BK
input matrix

new input decision variable (u = K + ¢)
output matrix

constraint function

error

uncertainty input matrix

uncertainty input matrix of long-term system model



Notation

X R T S m T T Qe =

o~

“m R m OO T o= S

~+

system dynamics
constraint vector
constraint matrix
constraint value

constraint vector
constraint matrix

cost function

prediction step (within optimal control problem)

scenario MPC samples

feedback matrix with individual elements k;;
stage cost (within objective function)

dimension, e.g., state dimension n, or input dimension n,,

prediction horizon

optimal control problem

state weighting matrix
terminal state weighting matrix
input weighting matrix
reachset

input rate weighting matrix
minimal disturbance invariant set
time or (current) time step
sampling time

control input

sequence of control inputs

set of admissible control inputs

set of admissible control inputs of long-term system model

value function

terminal cost function
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Notation

w system uncertainty

w™Mess measurement, uncertainty, noise

w™ (task) execution uncertainty

w'™? task uncertainty

w set of possible uncertainty realizations

x system state

X sequence of states

X set of admissible system states

Xe set of admissible terminal system states

Asafe set of safe states

Jpadm set of admissible states

Y system output

z deterministic part of system state (x = z + e)

15} chance constraint risk parameter

3 alternative chance constraint risk parameter (5 =1-7)

~ constraint tightening

r set of safe feasible trajectories

1) system uncertainty of long-term system model

€ error of long-term system model

¢ deterministic part of system state of long-term system model
(€=C¢+e€)

n new input decision variable of long-term system model
(v=K&+n)

> tolerance level

A slack variable

A horizon length for multi-step CVPM-MPC method

v control input of long-term system model

I3 system state of long-term system model

(1

set of admissible system states of long-term system model
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Notation

Y

3

o(+)

Xz,

set of admissible terminal system states for the long-term system
model

policies
substitute probability function

state sequence resulting from the initial state x; and the input
sequence U

samples

set of samples

Vehicles and Robotics

a

Gy

Gy

acceleration

acceleration in z-direction

acceleration in y-direction

rectangle length or ellipse semi-major axis
rectangle width or ellipse semi-minor axis
binary grid

cell in a grid

grid

distance or distance constraint

safety distance

lateral displacement in road-aligned frame
force in x-direction

force in y-direction

distances from the vehicle CoG to the front axle
distances from the vehicle CoG to the rear axle
cell length

cell width

vehicle length
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Notation

m mass

M maneuver

M maneuver set

N, number of maneuvers

N, number of vehicles

Dt probability threshold value
PC probability grid

r radius

s longitudinal position in road-aligned frame
T task

T task set

v velocity

Vg velocity in x-direction

vy velocity in y-direction
Wiane lane width

Wyeh vehicle width

x x-position

Y yY-position

« steering variable

¢ steering angle (front)

0 angle

Lsafe safety margin

K road curvature

P distance measure

Y heading angle

(R orientation offset in road-aligned frame
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