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PREFACE

In the past decade, deep learning has created impressive success stories [34]. Arguably, how-
ever, few of the major concepts that led to these successes are fundamentally new. Many
originate from ideas that already appeared in the 1980s and 1990s. A few examples are convolu-
tional neural networks as the core building blocks of today’s computer vision applications [35],
backpropagation as the standard training procedure for neural networks [44], and automatic
differentiation concepts behind modern libraries [24]. What has changed in the past 10 years?
Certainly, some effective neural network architecture elements were presented, such as activa-
tion functions [32, 13], residual blocks [26], and the attention mechanism [4]. On top of that,
novel neural network optimization algorithms, such as Adam [31], were added to the deep
learning stack. However, two main developments stand out: advances in parallel computing
hardware and modern automatic differentiation libraries. While the former has significantly
increased the number of floating-point operations per second, which is a necessity for large
deep learning models, the latter enables broad accessibility of this technology and allows for
short development cycles. Today, everyone has access to powerful parallel processing hardware
via cloud computing and may start experimenting with deep learning systems by using freely
available automatic differentiation frameworks [10, 42, 38].

These advances have catalyzed the development of novel algorithms at the intersection of
deep learning and numerical optimization. For example, developing neural network optimization
algorithms has become much easier by exploiting the principles behind existing automatic
differentiation libraries, as we have performed in [18]. Also, the design of neural network
components as differentiable building blocks that can be incorporated in a plug-and-play
fashion into existing models is facilitated, such as our constraint module presented in [19]. The
formulation of numerical optimization objectives is equally eased: only the objective function
must be constructed, whereas derivatives are provided by the automatic differentiation engine. It
allows to experiment with complex objective functions, such as in [17], where our optimization
objective includes a differential equation solver.

Still, these fields face numerous challenges. For example, deep learning systems are to a
great extent based on heuristics, and designing a well-performing system requires intuition
as opposed to being based on a theoretical foundation. Such models are then employed as
black-box components in complex algorithmic pipelines, often without any guarantees. On
a general level, this lack of theoretical principles leads to a research procedure dominated
by trial and error, sarcastically termed “graduate student descent” in allusion to the gradient
descent optimization algorithm. In terms of large-scale numerical optimization, science and
engineering present various difficult non-convex optimization problems that challenge today’s
most powerful supercomputers. For decades, researchers have improved solution strategies
for such problems. Deep learning provides the opportunity to revisit these approaches from a
data-driven perspective and may push the frontier of scientific computing algorithms.

This publication-based dissertation comprises four publications that tackle different chal-
lenges at the intersection of deep learning and numerical optimization. It begins with a concise
introduction to numerical optimization, deep learning, and automatic differentiation, all of



which provide the basis for the presented research. It is intended to be accessible with a back-
ground in mathematics as taught in any of the STEM subjects. Subsequently, a summary of
the publications as a guide to the research contributions and a conclusion with open questions
that are raised by this dissertation are presented. The original publications are reprinted in the
appendix.

Despite being the single author of this dissertation, I use the plural pronoun we throughout
the text to show that my understanding is based on a multitude of sources and would not have
come into existence in isolation. Quite the opposite is the case, and I am grateful for the many
opportunities of fruitful interaction with my co-authors, my colleagues from our research group,
and our scientific community.

Thomas Frerix
Munich, December 2021



ABSTRACT

This dissertation presents research at the intersection of deep learning and numerical optimiza-
tion. In recent years, the development in these fields has led to impressive results on various
computational tasks. This progress is catalyzed by advances in parallel computation hardware
and automatic differentiation libraries, which enable new algorithms and their applications
in an increasing number of domains by writing differentiable codes, namely, parameterized
programs that can be optimized by derivative-based optimization. Despite these success stories,
numerous challenges remain.

The non-convex optimization problem for training a deep learning system is commonly
approached with heuristic first-order optimization, which leaves much room for the development
of neural network optimization algorithms. We contribute a framework to derive deep learning
optimization algorithms from an alternative view of the classical backpropagation algorithm.
We analyze one such method in detail, Proximal Backpropagation, which takes proximal steps
instead of gradient steps for certain components of the model. Our approach allows to examine
similar algorithms with an analogous analysis.

Another challenge is that deep learning models are often used as black-box functions within
a large algorithmic framework, without providing any guarantees about their predictions.
However, in many scenarios, prior knowledge about the learning task is available, for example
about the geometry or the physics of a problem. Incorporating this information into the model
is desirable, as otherwise the training procedure is data-inefficient and may even produce
detrimental results. Such prior knowledge can often be formulated as constraints on model
predictions. We develop a module to enforce constraints on the neural network output via a
differentiable parameterization of the feasible set in the specific case of homogeneous linear
inequality constraints.

The above approaches draw from ideas in numerical optimization to improve deep learning.
Vice versa, deep learning systems may be used to advance classical optimization procedures for
non-convex problems emerging from applications in science and engineering. We demonstrate
one such approach in the context of variational data assimilation. Here, we improve the
optimizability of the nonlinear least-squares problem by learning an approximate inverse to the
observation operator. We use this learned inverse to transform the objective function and to
improve the initialization of the optimizer. The outlined method may be used as a template to
improve solvers for nonlinear inverse problems.

In the final publication, we develop a continuous relaxation of a combinatorial optimization
problem with applications in numerical linear algebra, namely, the approximate factorization
of an orthogonal matrix as a product of Givens matrices. This setting may serve as a stepping
stone toward further improvements using deep learning.

The research contributions are framed by an introduction to deep learning, numerical
optimization, and automatic differentiation, all of which provide the basis for the presented
publications.



ZUSAMMENFASSUNG

Diese Dissertation présentiert Forschung an der Schnittstelle von Deep Learning und Nu-
merischer Optimierung. Die Entwicklung in diesen Bereichen hat in den letzten Jahren zu
beeindruckenden Resultaten bei einer Vielzahl von Anwendungen gefiihrt. Dies wird durch
Fortschritte bei parallelen Rechnerarchitekturen und Softwarebibliotheken zum Automatischen
Differenzieren katalysiert. So werden neue Algorithmen und deren Anwendung in einer zu-
nehmenden Anzahl von Feldern erméglicht, indem man differenzierbare Programme schreibt,
d. h. parametrisierte Programme, die ableitungsbasiert optimiert werden kénnen. Trotz dieser
Erfolgsgeschichten bleiben zahlreiche Herausforderungen.

Das nicht-konvexe Optimierungsproblem zum Trainieren eines Deep Learning Systems wird
tiblicherweise mit heuristischer Optimierung erster Ordnung angegangen, was viel Raum fiir die
Entwicklung von Optimierungsalgorithmen fiir Neuronale Netze lasst. Wir tragen ein Prinzip zur
Formulierung von Deep Learning Optimierungsalgorithmen bei, welches auf einer alternativen
Sichtweise auf den klassischen Backpropagation-Algorithmus basiert. Wir analysieren eine
spezifische Methode im Detail, Proximal Backpropagation, die fiir bestimmte Komponenten des
Modells proximale Schritte anstelle von Gradientenschritten anwendet. Unser Ansatz erlaubt
es, ahnliche Algorithmen mit einer analogen Herangehensweise zu untersuchen.

Eine weitere Herausforderung beim Deep Learning besteht darin, dass solche Modelle
oft als Black-Box Funktionen innerhalb eines gréf3eren algorithmischen Systems verwendet
werden, ohne Garantien fiir ihre Vorhersagen. In vielen Szenarien ist jedoch Vorwissen tiber die
entsprechende Anwendung vorhanden, beispielsweise iiber die Geometrie oder die Physik des
Problems. Es ist wiinschenswert, diese Informationen in das Modell zu integrieren, da ansonsten
der Trainingsprozess datenineffizient ist und sogar schédliche Ergebnisse erzeugen kénnte.
Wir entwickeln ein Modul, um solche Bedingungen fiir die Vorhersage des Neuronalen Netzes
zu forcieren, indem wir eine differenzierbare Parametrisierung der zulassigen Menge fiir den
speziellen Fall von homogenen linearen Ungleichungen formulieren.

Die obigen Ansitze entwickeln Deep Learning Komponenten basierend auf Ideen der
Numerischen Optimierung. Umgekehrt konnen Deep Learning Systeme verwendet werden, um
klassische Optimierungsverfahren fiir nicht-konvexe Probleme weiterzuentwickeln, welche die
Natur- und Ingenieurwissenschaften hervorbringen. Wir demonstrieren einen solchen Ansatz
im Kontext der variationsbasierten Datenassimilation. Hier verbessern wir die Optimierbarkeit
eines nichtlinearen kleinste Quadrate Ansatzes, indem wir eine approximative Inverse des
Beobachtungsoperators lernen. Wir verwenden diese gelernte Inverse, um die Zielfunktion zu
transformieren und die Initialisierung des Optimierers zu verbessern. Diese Methode kann als
Vorlage verwendet werden, um Lsungsansétze fiir nichtlineare inverse Probleme zu verbessern.

In einer abschliefenden Veroffentlichung entwickeln wir eine kontinuierliche Relaxierung
eines kombinatorischen Optimierungsproblems in der numerischen Linearen Algebra, ndmlich
die approximative Faktorisierung einer orthogonalen Matrix als Produkt von Givens-Matrizen.
Dies kann als Ansatz fiir weitere Verbesserungen durch Deep Learning dienen.

Die Grundlage fiir die Forschungsbeitrage bilden eine Einfiihrung in Deep Learning, Nume-
rische Optimierung und Automatisches Differenzieren.
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I INTRODUCTION

This introduction develops the major concepts in numerical optimization, deep learning, and
automatic differentiation, all of which form the foundation for the publications associated with
this dissertation. Training a deep learning model requires to optimize a non-convex function and
hence the theory of numerical optimization provides the basis for the development of novel deep
learning training algorithms, such as the one presented in [18]. Such large-scale optimization
algorithms are based on the efficient evaluation of derivatives, which can be provided by the
framework of automatic differentiation.

We begin by introducing the setting for smooth non-convex optimization and arrive at
L-BFGS as a default optimization algorithm for this setting, which we use in [17]. This lays out
the roadmap for many fundamental notions, which we encounter en passant.

For the introduction to deep learning, we develop the basic components of a deep learning
system and highlight the role of gradient-based optimization for its training. In particular, we
outline the idea of stochastic optimization and present Adam as a default optimizer for deep
learning models. We close by demonstrating the decisive role of parallel computation hardware
for deep learning.

In practice, the principles of automatic differentiation are often hidden behind the API of a
modern software library. Nevertheless, the fundamental principles are necessary to understand
how novel algorithms can be efficiently implemented by using existing libraries. We derive the
two common methods based on the chain rule of multivariate calculus, forward- and reverse-
mode automatic differentiation. Finally, we outline how implicit differentiation can be used to
differentiate through certain complex procedures.



INTRODUCTION

1.1 Numerical Optimization

Numerical optimization aims to find the optimal point and its associated value of a mathe-
matical function under specified constraints by means of an iterative procedure. We focus on
unconstrained minimization of an objective function f : R* — R:

min f(x) ¢))
This setting permeates many problems in scientific computing and engineering. In particular, it
is a core building block of machine learning systems [9].

Throughout this section, we assume that f is bounded from below to guarantee that a global
minimizer exists and that f is twice continuously differentiable, i.e., that the Hessian V2f is
element-wise continuous. It follows from Schwarz’s theorem that the Hessian is symmetric
and hence has real eigenvalues. This introduction is inspired by [40], which we recommend for
further reading.

1.1.1 Stationary Points and (Non-)Convexity

We begin with the notions that describe an optimization problem and its solution. A stationary
point x of the function f is characterized by the first-order criterion of a vanishing gradient,
Vf(x) = 0. Such stationary points can be further subdivided by a second-order criterion based
on the Hessian. A point x with Vf(x) =0isa

« (local) maximum if V2f(x) has only non-positive eigenvalues (negative semi-definite)
« (local) minimum if V*f(x) has only non-negative eigenvalues (positive semi-definite)
« saddle point if V*f(x) has positive and negative eigenvalues (indefinite)

A function f is convex, if and only if the Hessian is everywhere positive semi-definite, which
implies that every local minimum is also a global minimum. This makes globally minimizing a
convex function comparatively simple as we only have to find a stationary point. Hence, the
only quality criterion of an optimizer for a convex objective function is how fast it converges to
a stationary point.

Minimizing a non-convex function on the other hand can be difficult. An optimizer might get
stuck at an unfavorable stationary point, which could be a poor local minimum that is not global
or a saddle point. Consequently, there are two relevant quality criteria for the optimizer. First,
the quality of the stationary point, i.e., how close the function value at this point is compared
with the function value at the global minimum (which is of course not known). Secondly, how
fast it converges to a stationary point. Figure 1 juxtaposes a convex and a non-convex function.

1.1.2 First- and Second-Order Optimization

In this section, we develop and analyze optimization algorithms based on first and second
derivatives of the objective function. When examining Figure 1b, we have the whole picture of
the objective function over the domain of interest available, and it might seem like a simple
task to pick out a local or even global minimum. However, an iterative optimizer has only local
information around the current iterate at hand to make a decision about its next step. This
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(@) f(x) = x* (convex) (b) f(x) = 20 sin(x) + x* + 20 (non-convex)

Figure 1: Comparison of a convex and a non-convex function. While for the convex function every local
minimum is a global minimum, the non-convex function has local maxima and local minima in addition
to the global minimum.

situation is comparable to hiking downbhill in the dark. Here, a sensible strategy is to build a
local model of the surrounding landscape to make a decision about the next step.
To formalize this approach, we consider iterative descent algorithms of the form

Xfr1 = Xk + QkPr (2)

where ay is a step size in a descent direction pj. at iteration k. A step direction py is a descent
direction if —p Vf(xx) > 0, i.e., if px is strictly within £90° of the negative gradient. In this case,
it is possible to reduce the objective function, which can be deduced from a first-order Taylor
expansion around xg,

Fla + ap) - f(x) = aVf(a) pe + O(@?) . 3)

By definition of the descent direction pg, we have Vf(xx)” px < 0. For sufficiently small a, this
first-order term dominates the quadratically vanishing error term. We can therefore always
find a step size « such that f(xi.1) < f(xx). An algorithm is globally convergent if it converges
to a local minimum from any initial condition xp. In contrast, a locally convergent algorithm
may only converge when initialized from a restricted set of points, e.g., sufficiently close to a
local minimum. The convergence rate of an update scheme of the form (2) describes the progress
of an optimizer per update iteration toward a local minimizer x.. Convergence rates are often
provided as worst-case scenarios and performance may be better in practice.

Common numerical optimization algorithms build a local approximation of the objective
function via a Taylor expansion. According to Taylor’s theorem, a function can be expressed in
a neighborhood of a point x as

fx+ p) = F0) + U+ pTfG)p + OIplY). (@)

A first-order optimization algorithm uses only the linear term as an approximation to the
function. We can deduce that the step direction that locally most reduces the objective function
is in the direction of the negative gradient, p = -Vf(x). The resulting optimization algorithm is
gradient descent, which iterates

Xiy1 = Xk — aka(xk) . (5)
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If the step sizes o are chosen appropriately, then this iteration is globally convergent to a
stationary point and achieves a linear convergence rate, i.e.,

|xk+1 — x| = Cop||xk — x.| for some constant Cgp € (0,1) . (6)

A second-order method approximates the objective function up to the quadratic term. The
step direction that locally most reduces the objective function is p = ~V2f(x)"!Vf(x), which is
obtained by minimizing the quadratic approximation to f(x + p) — f(x) with respect to p under
the assumption that V2f(x) is positive definite. The resulting optimization algorithm in this
case is Newton’s algorithm to find a root of the function’s gradient,

Xjs1 = Xg — akvzf(xk)_IVf(xk) . (7)

Positive definiteness of the Hessian ensures that the step direction is a descent direction, since
then —p,ZVf (xx) = VF(xe) TV f(xx) "1V f (xx) > 0. If this condition is not satisfied, modifications to
the Hessian are necessary. For example, one might cut off the spectrum at a small positive number
or apply more advanced modifications that yield a better conditioned matrix [15]. However,
this might reduce convergence speed since the quality of the second-order approximation is
reduced. Close enough to a local minimum, Newton’s algorithm has a quadratic convergence
rate, i.e.,

2 for some constant Cy € (0, 1) . (8)

||xk+1 =X = CN||xk = X

Comparing the convergence rates of these two algorithms demonstrates the expected: using
the more accurate second-order model improves convergence. This makes it desirable to use
a second-order algorithm for optimization. However, such a convergence rate analysis only
captures optimization progress as a function of iterations and not as a function of computational
operations. In fact, a full Newton iteration (7) may be computation- and memory-expensive.
First, one has to calculate second derivatives of the objective function. Secondly, inverting
the Hessian matrix (or, numerically favorable, solving the linear system) for large problems
becomes infeasible as this generally requires ()(n®) operations in n dimensions. Thirdly, explicitly
constructing the Hessian matrix for high-dimensional problems quickly requires too much
memory.

1.1.3 Line Search: Globalization of Convergence

If the step size is not chosen appropriately, both gradient descent and Newton’s method may
not converge because they overshoot the local minimum, or they may converge slowly because
step sizes are too small. One approach to yield global convergence of both algorithms for
most functions is via a line search to find a suitable step size oy along the previously computed
search direction p;. We want to mention that counterexamples can be constructed for gradient
descent [8] and Newton’s method [29], which, however, are negligible in practice.

A line search analyzes the one-dimensional function

P(a) = f(xx + ap) - ©)

Exact line search for the global minimizer of ¢ is generally very costly, and instead an inexact
line search is typically performed. Just requiring f(xx + apx) < f(xx) is not enough to guarantee
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convergence to a stationary point. To state an explicit counterexample, we take f(x) = x* - 1
and follow a descent sequence of iterates x; = /(k + 1)/k for k € {1,2,... }. Then, f(xx) = 1/k
converges to zero, but the function’s minimum is f(0) = —-1. Hence, we need to guarantee a
sufficient decrease per iteration. To formulate appropriate conditions, we begin with the first-
order Taylor expansion (3). If we denote the remainder of quadratic order by R(«) € O(a?), then
for ¢; € (0,1) we can find an « such that R(a)/a < (c; — 1)Vf(xx)T px (recall that Vf(x)  pr < 0
by definition of a descent direction). This leads to a bound on the decrease of the objective
function. Requiring that the step size « satisfies this bound for a given constant ¢; € (0, 1) leads
to the Armijo condition,

flx + ape) = f(xx) < craVi(a) ' pr, ¢ €(0,1). (10)

This condition by itself does not suffice, since it is satisfied by arbitrarily small a. To rule out
such small step sizes, we consider the change in f along the search direction when varying a.
This slope is given by ¢’(a) = Vf(xx + api)’ p, with ¢’(0) < 0, since py is a descent direction.
We want to follow the descent direction at least until f is less decreasing by a factor c,, i.e.,
¢’ (@) = c,¢’(0). This condition is called the curvature condition as it describes a change in slope
of the function ¢ along the search direction. In terms of the function f it may be stated as

Vi(xi + api) pr = V() pr. e € (e 1) (11)

Together, conditions (10) and (11) are referred to as the Wolfe conditions. The restriction
0 < ¢1 < ¢; < 1 guarantees that both conditions can be satisfied at the same time.

A simpler line search procedure that guarantees (10) and avoids small step sizes may be
formulated as follows. A step size is tested for condition (10) and if it is not satisfied, the step
size is multiplied by a factor = € (0, 1). The algorithm is commonly started with a step size
a = 1 and thus unreasonably small step sizes are ruled out. Since it starts with a large step,
which is subsequently reduced, the approach is called backtracking line search. Backtracking
line search suffices to render gradient descent and Newton’s method (with possible Hessian
modification) globally convergent, apart from practically irrelevant counterexamples [8, 29].
This is a common procedure for Newton’s method, for which the step size @ = 1 is eventually
always accepted close enough to a local minimum. On the other hand, gradient descent is rarely
implemented with a line search algorithm in practice, since the additional function evaluations
render this procedure uneconomical. Instead, some heuristic schedule for annealing the step
size is typically chosen.

Algorithm 1 Backtracking line search

Require: c¢; € (0,1), 7 € (0,1), a > 0; typical values are ¢; = 1074, 7 = 1/2, 2 = 1
while f(x; + apy) > f(xi) + craVf(xe) pr do
a«— Ta
end while
return «
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1.1.4 Quasi-Newton Methods

Quasi-Newton methods are designed to retain some effectiveness of a second-order method while
ameliorating the issues of Newton’s method: the cost of computing second derivatives, a Hessian
that might not be positive-definite, and the cost of inverting the Hessian. A quasi-Newton
optimizer works with an approximate second-order model of the form

me(p) = [ + 9 () p + 2 p Bep (12

where By is a symmetric positive-definite matrix, which is updated at every iteration. The
matrix By is modeled to approximate the Hessian and hence the quadratic model (12) is an
approximation to the second-order Taylor expansion (4). The model (12) is convex and its
minimizer can be explicitly computed as

pr = —Bi'Vf(xe) - (13)

The matrix By, is now determined by requiring some properties of the model my and different
requirements would lead to different quasi-Newton methods. Here, we outline the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update. Besides symmetry and positive-definiteness of By, we
require that the model’s gradient aligns with the objective function’s gradient at two consecutive
iterations. Additionally, among all those matrices which satisfy these conditions, we want to
obtain the matrix which is closest to the previous iterate. Finally, instead of updating the matrix
By, we directly update its inverse matrix B}C’“’ := B!, Altogether, this yields the update rule:

B = VIB™ Vi + prsesy

Vi =T-peys{

Pk 1/(s{ yi) (14)
Sk = X~ Xk-1

vk o =Vflx) = Vf(xk-1)

We refer to [40] for a detailed derivation of this update rule. Iteration (14) can be implemented
with matrix-vector and outer products. It follows that the computational complexity of an
update in n dimensions is in @(n?). We can see that the algorithm uses only first-order informa-
tion to build the quadratic model and does not rely on second derivatives. Nevertheless, the
optimizer has a superlinear convergence rate [40]. BFGS works well in practice, but one decisive
problem remains for large-scale optimization: the matrix B™ in (14) is explicitly retained in
memory, which becomes quickly prohibitive. In contrast, memory-efficient algorithms employ
a matrix-free iteration step, i.e., they compute the matrix-vector product (13) without explicitly
constructing the iteration matrix in memory. Limited-Memory-BFGS (L-BFGS) does exactly this
kind of update while sacrificing accuracy of the quadratic model. The optimizer retains the m
most recent vectors (s;, y;) and constructs an approximation B}c“" to B by iteratively applying
(14) to a provided initial matrix B}:W’O. Crucially, this matrix is never explicitly constructed,
but the result of the matrix-vector product (13) can directly be computed. We refer to [40] for
implementation details, but mention that a B}Cnv update can be efficiently implemented at an
O(mn) computational cost. L-BFGS achieves only a linear worst-case convergence rate, but
typically works better in practice [30].
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BFGS and L-BFGS require a line search along the direction (13) that satisfies the Wolfe
conditions (Section 1.1.3). Backtracking line search is not sufficient, as the curvature condition
is required to guarantee that B{"" remains positive definite throughout the iterations.

L-BFGS is a good generic choice for a large-scale, smooth, and non-convex optimization
problem. We use the optimizer in [17] to solve an optimization problem in the context of
variational data assimilation.

1.1.5 Numerical Performance

We demonstrate the concepts outlined here by a numerical comparison of the introduced
optimizers. To this end, we optimized the (averaged) n-dimensional Rosenbrock function [43], a
classical test problem for non-convex optimization,

f(2) = 100(z;s1 — zl-z)2 +(1-z), z=(z1,....2,) €R". (15)

n-14<

1 n-1

1
The average here implies that the function’s scale is independent of the dimension. We use
n = 1000, for which the computational complexity for each iteration of the algorithms becomes
important. It is a difficult test problem, since the minimum lies in a narrow valley, where there
exist directions with very small and directions with very large curvature. This can be described
by the absolute value ratio of the Hessian’s largest and smallest eigenvalue, the condition number
at a point z € R". The condition number at the minimum is about 3600. To effectively deal
with this situation, an optimizer needs to take into account curvature information. Below we
describe the implementation details for all algorithms, as these highlight some important ideas
for their efficient implementation.

Gradient Descent

We implemented the update (5) with a backtracking line search as outlined in Algorithm 1.
The line search yields a convergent algorithm and effective progress per iteration. However,
the additional function evaluations incur an extra cost. Therefore, more economical (but less
effective) heuristics for the step size selection, such as an annealing schedule, are often chosen in
practice. We specified an initial step size & = 107! to the line search algorithm to avoid wasting
too many function evaluations on the line search and chose the other line search parameters as
the defaults described in Algorithm 1.

Newton’'s Method

As for gradient descent, we implemented the update (7) with a backtracking line search (Algo-
rithm 1) with initial step size ¢ = 1 and default parameters. To ensure a descent direction, we
modified the possibly non-positive definite Hessian by cutting off the eigenvalues at 1076.

BFGS

We implemented the update (14) with a Wolfe line search that guarantees that the matrix B{""
remains positive definite throughout the iterations. We initialized the update scheme with a
modified Hessian whose eigenvalues are cut off at 1073,
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L-BFGS
As for BFGS, we implemented the L-BFGS update with a Wolfe line search. We retained 10

vectors (s;, y;) to approximate the BFGS matrix. The initial matrix B}Cnv’o is crucial for good
performance of the optimizer and hence should be explicitly mentioned here. Following the

recommendation in [40], we initialized as

T
. s
B0 = Ve y (16)
Vi Yk

The intention behind this scaling is to have Bﬁcnv’o on the same scale as the inverse Hessian.

Results

We initialized all methods with a random vector for which entries were sampled from a standard
normal distribution and ensured that all optimizers converged to the same global minimizer,
which is the vector of all ones, z; = 1Vi € {1,..., n}. The optimization progress as a function of
iterations and as a function of time is shown in Figure 2 on a log scale. The top row shows long
term performance of the algorithms while the bottom row demonstrates their initial behavior.

Observing the optimization progress as a function of iterations (top left), we can indeed
see that the theoretical linear convergence rate (6) for gradient descent and the quadratic
convergence rate (8) for Newton’s method translate into much more effective optimization
for the latter. Gradient descent requires many more iterations to converge, which is cut off
in the plot to retain a separation of the other methods. Progress for the initial iterations of
Newton’s algorithm is slow (bottom left). In this regime, the Hessian is not positive definite
and our second-order model with Hessian modification has limited validity. Here, only small
step sizes are accepted by the backtracking line search. In fact, we can observe that for this
specific problem and initial condition the gradient direction is a better descent direction than
the modified Newton direction. BFGS and L-BFGS both eventually converge super-linearly.
Recalling their initialization, BFGS starts with a modified Newton update, whereas L-BFGS starts
with a (scaled) gradient descent update and only slowly accumulates curvature information.
This explains that L-BFGS is initially closer to gradient descent, while BFGS is initially closer to
Newton’s method.

As a function of time (top right), we can see that the quasi-Newton methods demonstrate
the best overall performance. Newton’s algorithm requires most time per iteration as second
derivatives are computed and the Hessian needs to be inverted. In addition, the line search is
costly with a poor second-order model, since many backtracking steps are required to then only
yield a small step size. Eventually, the step size of ¢ = 1 is directly accepted without additional
line search steps. It is this regime of optimization where Newton’s method exhibits a quadratic
convergence rate. BFGS and L-BFGS have a favorable computational complexity per iteration.
In particular the latter quickly yields fast optimization progress (bottom right).

Overall, the results support the statement that L-BFGS is the method of choice in a large-
scale setting as it exploits curvature information at a comparatively low computational cost
and the matrix-free implementation is memory-efficient. We employ L-BFGS to solve a difficult
non-convex optimization problem in [17].
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Figure 2: Comparison of different optimization algorithms for minimizing the averaged Rosenbrock
function (15) in n = 1000 dimensions. Optimization progress is shown as a function of iterations (left)
and as a function of runtime (right). The top and bottom row show the algorithms’ long and short term
behavior, respectively. Runtime is measured in units of the average objective function execution time, ff.
Note that the iteration and runtime plots do not show the same optimization time on their x-axis. The
iteration plots show a shorter optimization time to highlight a separation of the various algorithms.
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1.2 Deep Learning

In this section, we introduce the major concepts for building a deep learning model and define
the language to describe them. An overview of various types of deep learning models may be
found in [34] and the rich history of the field is summarized in [46]. Deep learning as a field is
evolving at a fast pace. Here, we present how the term is currently used in research and practice,
while we are aware that some concepts will likely be superseded a few years from now.

A neural network represents a parameterized function (or model) with the defining property
that this function is composed of a sequence of elementary components, termed layers. For
the purpose of this thesis, neural networks are used for machine learning: the parameters are
optimized such that the model interpolates an unknown function based on samples of this
function, called the training data. Finding a function by optimizing the parameters with respect
to a suitably designed loss is called the training phase of the learning algorithm. After training,
the model can be used on new samples, which is called the inference phase of the learning
algorithm. The goal is to optimize performance for these new samples and a model is said to
generalize well, if it yields good performance for these test data.

The capacity of the model describes the complexity of the underlying function that can be
expressed. If we allowed all possible functions as interpolants, infinitely many of them would
perfectly fit the training data. However, these may produce an arbitrarily large error on test
data points. Hence, we need to restrict the capacity of the model to allow only certain types
of interpolants, at best by incorporating prior knowledge about the underlying function to be
approximated. This process is called regularization. Explicit regularization modifies the loss
function, e.g., by adding a term that favors certain solutions. An example is an Ly-norm penalty
for the neural network parameters, so-called weight-decay, which favors models with smaller
parameters. In contrast, implicit regularization describes the notion that various aspects of
the architecture design and training process may implicitly restrict the capacity of the model.
Regularization may be used to impose prior knowledge about the task, a bias, onto the deep
learning model. Among all candidate functions that are a good fit to the data, the optimization
process is then biased toward those with desired properties. Altogether, machine learning with
neural networks consists of optimization with suitable regularization.

In recent years, neural network models with the following properties have emerged:

P1 They contain many layers, a property referred to as deep.
P2 Stochastic first-order optimization is used to optimize the model parameters.

P3 They are over-parameterized, i.e., the models contain more parameters than there are
training data points.

This setting in combination with a set of heuristics for effective training of such models is
commonly referred to as deep learning. A trend toward such models can be seen from the history
of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [45]. Table 1 summarizes
the winning models for the image classification task. Starting in 2012, deep learning models
have dominated the challenge and have continued to reduce the classification error. All of these
models are significantly over-parameterized compared with the 1.2 million training images.
Furthermore, we can deduce a tendency toward deeper models.
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YEAR  MODEL L P/10° P/N
2012 AlexNet [32] 9 60 50
2013 ZFNet [51] 8 63 53
2014  GoogLeNet [48] 22 7 6
2015 ResNet-152 [26] 152 60 50
2016 ResNeXt-101 [50] 101 83 69
2017 SENet-154 [28] 154 115 96

Table 1: ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winning models for image
classification between 2012 and 2017. The training data set contains 1.2 million images (N) with the task
of classifying these into 1000 classes. Reported parameter numbers (P) and parameterization factors
(P/N) are rounded. L denotes the number of layers. All models are over-parmeterized with a tendency
toward deeper models. *: The 2016 winner was the Trimps-Soushen model. However, the authors did
not publish their approach and hence we report here the closely following runner-up model.

From a classical optimization perspective, one cannot expect good performance in this
setting at first sight. P1 suggests that the function to be optimized is non-convex with possibly
many poor local optima and saddle points. P2 means that this non-convex function is optimized
with a first-order optimizer, which may get stuck at an unfavorable stationary point and for
which optimization progress may be slow. P3 implies that it is possible to perfectly fit the
training data and hence optimizing to a local optimum on this training data might result in
unfavorable generalization.

Nevertheless, deep learning has yielded impressive results in practice. Even though there is
currently no good theory to explain this success, recent research attempts to shed light on this
discrepancy between classical theory and empirical results [52, 5, 2, 41, 36]. In the following,
we summarize the common steps of designing a deep learning model.

1.2.1 Formalizing the Deep Learning Problem

Here, we establish a notation and formalize the major types of machine learning. A deep
learning algorithm interpolates an unknown function f : X — Y with a f-parameterized
model fy. Information about f is provided by samples (x, y) ~ D from this function according to
a data distribution D. The learning task is to solve the following optimization problem:

min ey plL(f5 %)) an

where L(fp; x, y) is a loss function that is designed for a specific setting (Section 1.2.3).

In a classification task, we predict a label y € Y for a data point x € X. An example of
classification is to predict a label for the content of an image. Here, the set ) contains all
possible labels and X ¢ R%? represents all possible images on an a x b pixel grid.

In a regression task, Y is a continuous space. An example is an auto-encoder, where the
neural network architecture should predict the input itself, while there exists an intermediate
layer of smaller dimension than the input. In this setting, the neural network is tasked to find
an average compression of the data.

For the purpose of this introduction, we focus on supervised learning, for which one is
provided with both x and y and the task is to predict y from x. Both examples above fall into

11
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this category. For completeness, we mention the concept of unsupervised learning, where no
direct correspondence y is provided for x. Instead, the machine learning algorithm exploits a
relationship between different input data points. An example is a clustering algorithm, which
assigns a common label to data points that are close with respect to some metric.

1.2.2 Compiling a Deep Learning Architecture

The architecture of a deep learning model describes the composition of parameterized elements.

Commonly, a component of the architecture consists of a linear (or, more precisely, affine) layer,

an element-wise nonlinear function, and an aggregation operation. Here, we describe common

choices for each of these elements. More formally, we want to represent a f-parameterized
: . _ 7l L

function fy : X — } as a sequence of layers, fy = fy © - f, where each layer represents

a function fgll with its parameters 6;. We denote intermediate values of the [-th layer by
al = fell(al‘l), the layer’s activations.
Linear layers are of the form a'*! = Wal + b where W is a weight-matrix and b a bias-vector
of suitable size. The matrix W may have no structure (fully-connected layer) or may have
additional structure. The most common structured linear layer is a convolutional layer. Such
a layer has the signature Conv(cin, Cout, Sr) and applies a different convolutional filter of size
sf x sf to each combination of the input channels ¢, and output channels c,yt. These filters are
the trainable parameters of the layer. Convolution is a translation equivariant operation, i.e., if
T is a translation operator, then Conv(7 (x)) = 7 (Conv(x)). This property matches well with
images, where a differently positioned object should induce equivalently shifted activations. As
a consequence, convolutional architectures are the most common building block of deep learning
models for computer vision. The choice of nonlinearity is crucial for optimization performance.
If smoothness of the parameterized function is not a requirement, then the rectified linear
unit (ReLU) [32] is often a good choice. Otherwise, a smooth approximation to this function
can be chosen, such as the exponential linear unit (ELU) [13] or the sigmoid-weighted linear
unit (SiLU) [14]. These activation functions are visualized in Figure 3. The most common
aggregation operation is some form of normalization of the neural network activations. A
prominent example is batch normalization, which normalizes the activations to zero mean and
unit variance across a mini-batch (see Section 1.2.4 for mini-batch optimization).

4 -
—— ReLU(x) = max(0, x)
--- ELU(x) = {x,x > 0;exp(x) - 1,x < 0}
27 e SiLU(x) = x/(1 + exp(-x))
O /e P
-2 | | |
-4 -2 0 2

Figure 3: Common choices for nonlinear activation functions. ReLU is an effective choice if smoothness
is not required. Otherwise, ELU or SiLU can be chosen as smooth approximations to ReLU.
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A modern deep learning architecture is composed of many of such smaller modules, which
define the class of possible functions that can be represented. Table 1 lists the number of
layers for successful computer vision models with the tendency toward more layers, i.e., deeper
architectures.

1.2.3 Designing a Loss Function

In the following, we derive the typical loss functions for a classification task and a regression
task. As outlined in Section 1.2.1, in a classification task the learning target is discrete, whereas
in a regression task the learning target is continuous.

Classification

To assign a class y € Y to an input x € & for a classification problem, we predict a discrete
distribution py(y|x), i.e., we assign a probability to each class y that the input x belongs to this
class. The neural network maps an input x to a vector fy(x) € RX, where K is the number
of classes and every entry of this vector assigns a score to the respective class. One way of
turning this score vector into a discrete probability distribution via a differentiable operation is
by applying a softmax operation,

exp([fo(*)]k(5))
Yyey exp([fo(x)]ky))

Here, k(y) is the index associated with the class y. This distribution is then compared with
the ground truth distribution g(y|y) = Ij;-,}, which is equal to one at the correct label and
zero otherwise. The parameters 0 are optimized to move the distribution py closer to q by
minimizing the Kullback-Leibler divergence from q to pg,

Po(¥|x) = softmax(fa(x))x(p) = vyey . (18)

. po(ylx)
KL(qllpo) = = ), a(¥|y)lo ( > > (19)
aw y%:, ! *\ g6l
== D dF»1ogpa(31x) + 3 q(71y)log((31y)) (20)
yey yey
cross entropy H(q,pp) independent of 0

Hence, minimizing the first term, called the cross entropy H(q, py) between distributions g and
po, forces py to approximate g:

L(6;x,y) == Y., q(F]y) log(pe(3Ix)) = ~log(pa(yx)) - (21)
yeY

Cross-entropy has the interesting property that it compensates the exponential scaling of the
softmax (18) in the following sense. If p(s) = softmax(s) is the discrete probability distribution
vector obtained as a softmax over a score vector s, then V H(q, p(s)) = p(s) - q for any discrete
probability distribution vector g. This implies that gradient descent on this loss induces a change
in the scores proportional to the discrepancy of the probability vectors.

13
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Regression

To arrive at a loss function for the regression problem, we assume that the unknown continuous
function f : X — Y to be interpolated can only be accessed via noisy samples. This assumption
can be modeled by y = f(x) + ¢, where ¢ is a random variable with zero mean. This means that
for provided (x, y) there is a probability p(y(0); x, y), centered around a mean y, that a predicted
vector y(0) = fp(x) is the true underlying value, p(y(0); x,y) = P[y(0) = f(x)]. Different
assumptions for the noise distribution ¢ lead to different loss functions. Here, we follow the
most common assumption that ¢ is normally distribution with unit variance, ¢ ~ N (0,1).
We want to find the parameters 6, that yield the most likely prediction j(6), an approach
appropriately termed maximum likelihood:

0. = argmax p(y(0); x, y) . (22)
OeR?
We may equivalently minimize the negative log-likelihood, which yields a linear least-squares
loss,

£00:%5) = S 1falx) - Y. 23)

Analogous to classification with a cross-entropy loss, this formulation also exhibits the property
that the gradient is linear in the discrepancy between the prediction and the fitting target,

VoL = folx) - y.

1.2.4 Training a Deep Learning Model

In this section, we outline the training procedure of a deep learning model, i.e., the phase of
optimizing the parameters of the model for a given data distribution, and we present Adam
as a default choice to train a deep learning model. In practice, we cannot directly solve (17),
since we only have access to a finite data set D of samples from D. Instead, we approximate the
expected value with the empirical mean,

1

L(0;D) = D)
(x

Y, Lfsxy) . (24)

,Y)ED

However, we are not interested in the loss on the available samples D, but only in the gen-
eralization to new samples (x, y) ~ D. This is the central philosophical difference between
a machine learning task and a pure optimization task. To model this aspect, we divide the
available samples up into a training, a validation, and a test data set, D = Dyyain | Dyal | Drest-
We still take minimization steps on the training loss £(8; Dyain), but not to global optimality.
Instead, we also monitor the validation loss £(8; Dy,1). We continue minimizing £(6; Diyain)
until £(0; Dya) starts to increase. At this point there is no further benefit to optimizing the
training loss since any further minimization only overfits to the training data. This principle
is called early stopping. The authors of [7] suggest that early stopping has the same effect as
explicit Ly-norm regularization of the parameters 6. To simulate the final model performance
on unseen data, the model is evaluated on the test set Dies;. To avoid that the model is tuned
toward these test data, it is explicitly separated from the model development process.

14
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A first-order optimizer is commonly used for training. To compute gradients of the loss with
respect to the model parameters, reverse-mode automatic differentiation is used (Section 1.3).
Since an error in the final loss is propagated in a backward pass of the model, the procedure is
referred to as backpropagation.

Deep learning models are trained with huge amounts of data, which cannot fit into memory.
Consequently, the training loss cannot be evaluated for all samples at the same time. Therefore,
the loss is evaluated only for a smaller mini-batch B c Dyy,in of samples at a time. A closer look
at the optimization objective function (24) reveals that even though we optimize with respect to
the parameters 0, the objective function is determined by the specific samples in a single batch.
Hence, evaluating the objective function batch-wise, implies that minimization steps are taken
on a different function each time. If these functions were not related, then there would not be
any hope for a meaningful optimization algorithm. However, the mini-batches are sampled
independently and uniformly with replacement from all available samples. We denote this
sampling distribution by . The single sample gradient VL(0; x, y) then becomes a random
variable, and we want to construct an estimator for the full-batch gradient based on sampled
mini-batch gradients. This concept is called stochastic optimization. We exploit linearity of the
expected value and the property that Var[Z; + Z,] = Var[Z] + Var[Z;] for uncorrelated random
variables Z; and Z,. It follows that the mini-batch gradient is an unbiased estimator and that its
variance is inversely proportional to the batch size:

EB- 1 (Dyain) [VL(O; B)] = VL(0; Dirain) (25)

1
2 VAT (1 ) U (D) [VL(G; X, )] (26)

Varg_ /(D) [VL(O; B)] = B

An epoch of training on a sequence of batches is completed once every sample is expected to
have been used once. If there are N samples in the data set and we sample batches of size B,
then this is the case after N/B batches. The batch size is typically chosen according to two
criteria. First, the computational hardware determines the available amount of memory and
parallelism. The batch size should be chosen to exploit the parallel architecture (Section 1.2.5).
Secondly, the size of the mini-batch determines the amount of noise in the gradient computation
as becomes evident through (26). On the one hand, this deteriorates the information provided
about the full-batch gradient. On the other hand, noisy mini-batch gradients have a regularizing
effect. Intuitively, the noise introduced to the gradient computation prevents the algorithm from
settling in a local minimum or saddle point of the training loss. The trade-off here is between
convergence speed and regularization strength. While large batches yield a faster converging
optimization algorithm, smaller mini-batches avoid getting stuck at unfavorable stationary
points.

The template algorithm for stochastic first-order optimization is stochastic gradient descent
(SGD). For a sequence of batches By ¢ Dy, with associated gradients gx = VL(6k; Bg), the
update equation for parameters 6y with step size oy is

Oks1 = O - o8k - (27)

SGD has several disadvantages. First, a step size sequence {ay }}.; has to be chosen. If the step
sizes are too large, then the optimization progress may be initially fast, but may prevent the
algorithm from converging. On the other hand, if the step sizes are too small, this may preclude
any reasonable optimization progress to begin with. Heuristics, such as a schedule for annealing
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the step size, are typically employed. Secondly, the gradients’ variance may be very high, which
significantly slows down convergence.

Various optimizers have been proposed in recent years to improve over SGD for neural
network training. The currently most broadly used optimizer is Adam [31], which stands for
adaptive moment estimation. Adam builds an exponential moving average of the gradients’
mean my and (uncentered) variance vy at each iteration k. The update rule is:

my = frmyy + (1 - B1)gk (28)
Ok = Povi-1 + (1 - fo)gi (29)
(30)
(31)

e = mi/(1 - BF) 30
O = vp/(1 - BY) 31
e
\/ZA)k + £

Here, the hyperparameters f;, f; € [0, 1) trade-off the current mini-batch gradient with the
current moment estimate, and the hyperparameter « is a fixed scale of the step size. In step
(32), a small number ¢ > 0 is added to avoid division by zero. The optimizer initializes my, v,
to all zeros. It is desirable in stochastic optimization to construct an unbiased estimator of the
full-batch objective function as in (25) for SGD. Let U be the i.i.d. uniform mini-batch sampling
distribution, then the element-wise expected value can be explicitly derived as Eg, .¢-[my] =
(1- ﬁlk)]Egk~U[gk] (and analogously for vy). It follows that the steps (30) and (31) correct for
the bias introduced by zero-initialized iterations (28) and (29). The parameter update (32)
displays that the step taken in the estimated gradient direction is modified by a factor 1/ \/sz
Hence, a smaller step is taken when the uncentered gradient variance is large in comparison
to the gradient mean. As a consequence, the algorithm adapts its step size in the course of
optimization. Crucially, the algorithm avoids tedious hyperparameter tuning, since the default
choices a = 1073, B; = 0.9, B, = 0.999 often already work well in practice for the commonly used
neural network architectures and data sets. These constants imply that the current batch only
marginally contributes to the current moment estimates. A noteworthy property is that the
update parameters may be chosen independent of the overall scale of the objective function,
since a scalar multiple of the objective function cancels in the update (32).

Opsr = Ok — (32)
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1.2.5 Hardware Acceleration

A computer’s central processing unit (CPU) is a generic computational device to support a
broad range of computational tasks. Hardware acceleration describes the notion of task-specific
computation hardware, which might not be as broadly applicable, but on the other hand is very
efficient at a particular task. A strong catalyst for recent success stories in deep learning and
automatic differentiation codes is the exploitation of parallel computation hardware, notably the
graphical processing unit (GPU). While a CPU supports a wide range of instructions on a few
cores at a relatively high clock speed, a GPU only supports a few instructions for floating-point
arithmetic on many cores at a lower clock speed. This renders GPUs extremely efficient at one
particular task: floating-point matrix multiplication. This becomes obvious by explicitly writing

down the matrix-multiplication of two matrices A, B € R™",

n
(AB)jj = ) AuBy; . (33)
k=1

Computing an element of the resulting matrix requires floating-point multiplication and sum-
mation. Additionally, all elements are independent and can therefore be computed in parallel.
The GPU may efficiently execute these computations in parallel on its many cores.

To train a deep learning model, we need to compute many such operations. The application
of a linear layer and an element-wise nonlinearity may both be executed in parallel. As we detail
in Section 1.3, computing derivatives of such a model equally requires parallelizable matrix
operations. Therefore, GPUs (and similar parallel processing architectures) are especially apt at
training deep learning models.

To compare CPU- and GPU-efficiency, we benchmarked both hardware types for the square
matrix multiplication (33). The results are shown in Figure 4. For the specific hardware tested,
we deduce a performance gain of GPU over CPU of a factor of 10 — 70. A factor of 50, for
example, would imply that a computation runs in 10 minutes as opposed to running overnight.
This difference becomes particular striking when taking into account that a training algorithm
for a deep learning model is not just transferred from a drawing board to code, but instead
many iterations of trial and error are typically necessary. Consequently, such drastic hardware
acceleration not only reduces execution time for the final model, but also significantly reduces
development time.
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CPU runtime / GPU runtime

matrix dimension / 1000

Figure 4: Comparison of CPU vs. GPU performance for the multiplication of two square matrices.
We implemented the matrix multiplication using JAX [10], which employs XLA JIT-compilation to the
respective hardware. We compared the runtime between execution on 24 Intel Xeon E5-2643 v3 CPUs
and execution on an NVIDIA Titan X GPU. As a performance measure, we used the average runtime
of 100 matrix multiplications for random matrices with i.i.d. sampled entries from a standard normal
distribution. The CPU/GPU runtime quotient as a function of the matrix dimension first increases up to
a factor of approximately 70 and then decreases again to a factor of approximately 10. For the smaller
matrices, the GPU’s parallel architecture cannot be fully exploited and the fewer but faster CPU cores
yield a relatively high throughput. For the very large matrices, the GPU’s parallel processing capabilities
are saturated, and additional computations are executed sequentially. Even in this saturated regime, the
GPU architecture is roughly a factor 10 faster than the CPU architecture. The peak relative performance
of the GPU occurs when its parallel processing capabilities can be fully exploited.
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1.3 Automatic Differentiation

The foregoing sections have demonstrated the central role of derivatives for numerical opti-
mization and the training of deep learning models. Hence, efficient algorithms to compute
derivatives in a large-scale setting are of paramount importance. This can be provided by
the framework of automatic differentiation, the evaluation of exact derivatives by means of an
algorithmic procedure. Here, exact means up to numerical errors, but without approximation
errors. In contrast, one may construct an approximation to the derivative by using function
evaluations (e.g., finite differences), an approach often termed numerical differentiation.

Modern automatic differentiation libraries provide this functionality while hiding the im-
plementation from the user. However, the design of novel features for deep learning models
and the efficient implementation of optimization algorithms require a deeper understanding
of the main principles. For the implementation of the algorithms presented in the associated
publications, we used the automatic differentiation libraries JAX [10] and PyTorch [42]. While
they differ in their details, both share the same fundamental concepts to compute derivatives,
which we outline in this section. To implement our neural network training algorithm Proximal
Backpropagation in [18], we modify the backward pass of reverse-mode automatic differen-
tiation (Section 1.3.2). In [19], we develop an approach to enforce a type of hard constraint
on neural network activations. The modularity of automatic differentiation codes allows us
to implement our approach as a differentiable module, which may be easily incorporated in
existing models. In [17], we design a complex objective function that requires a gradient with
respect to the initial state of a differential equation. We can build on JAX’s implementation
based on [12], which is why there is no need for a cumbersome implementation of this gradient
from scratch. Automatic differentiation codes often contain parallelizable computations such
as matrix multiplications or element-wise vector operations. In Section 1.2.5, we demonstrate
the significant impact of hardware accelerators for such systems. All codes for the associated
publications were executed on a graphical processing unit (GPU).

1.3.1 Computational Graphs

A computation can be represented by a directed, acyclic computational graph. Figure 5 shows
a computational graph for a simple function, in which each edge of the graph denotes an
elementary computation and each node (or vertex) is associated with the numerical value of the
computation at this stage. Such a graph admits a topological ordering, i.e., the nodes may be
sorted in a sequence in which each node depends only on previous nodes. A vertex v receives
computation results from its parent vertices and provides its own computation result to its
child vertices. To establish a notation for graph traversal, we denote the list of all vertices of
a computational graph G by V(G), the set of all parents of a vertex v by P(v), and the set of
all its children by C(v). For example, for the graph depicted in Figure 5, P(vs) = {vy, v2} and
C(v3) = {vs}.
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Figure 5: Computational graph with vertices enumerated as v;, in which each edge represents an elemen-
tary computation. Altogether, they evaluate f(x) = sin(x;) cos(xz) exp(x; x2) for an input x = (x1, x2) € R2.

1.3.2 Forward- and Reverse-Mode Automatic Differentiation

To introduce the two main modes of automatic differentiation, we assume a sequential compu-
tational graph, in which nodes are aggregated to layers and every layer depends only on its
directly preceding layer,

x =yl syt = f(x) . (34)

Explicitly, we have f : R* — R™, f = fLo fl-1 o ... f1. We denote intermediate variables as
y! = fi(y"1) € R™, with y° = x and y* = f(x). Note that conceptually this sequential model is
not a restriction. For a general computational graph, nodes that skip a level of the topological
ordering could be copied to obtain a sequential dependence. For example, the computation
depicted in Figure 5 may be represented in sequential form as shown in Figure 6. This would of
course introduce a memory overhead and would not lead to a sensible implementation for a
general computational graph.

E%H —),>\'U8H—sin—),>5
: . I N A : .
S b L

exp

Figure 6: Computational graph from Figure 5 represented in sequential form. The additional vertices
v, Vg9 (dashed circles) are added by an identity operation from v1, v2. The layers of the model may now
be aggregated (dotted rectangles) such that every layer depends only on its directly preceding layer.

Automatic differentiation is based on the chain rule of multivariate calculus. The difficulty
of presenting this subject is more a matter of notation than conceptual depth and hence we
make sure to carefully specify our notation. For a function f : R* — R™, x — f(x), we denote

the Jacobian by df/dx with elements
<af> _ofi (35)

ox ij 0X;
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Here, x; and f; are the component variables of the input and output, respectively. The chain
rule for the composition of two differentiable operations, x € R” — y € R* — f(x) € R™, may
then be written as

of _of 9y

= . 36
dx Jdyox (36)

This product is in general a matrix-matrix product. Computation of the partial derivatives can
thus be reduced to computing derivatives of more elementary intermediate functions. To keep
the notation concise, we overload function names and the names of their output variable. For
example, y in (36) represents the intermediate variable y € R® and the function y : R” — R%

For the general sequential composition (34) we have two choices of applying the chain rule.
We can either substitute in reverse-mode or in forward-mode:

af |o oyt

al = af — 8y (reverse-mode) 37)
x y x

of of | oy

% = afyl % (forward-mode) (38)

In both cases, the boxed part can be directly evaluated, while the other part is further substituted
to arrive at the same fully expanded expression,

of _of oyt oy'oyt
ax  ayllayl-2 " oylox

(39)

Note that with this notation, the evaluation order in reverse-mode is from left to right, while
the evaluation order in forward-mode is from right to left. Even though both approaches arrive
at this same expression, the computational complexity of the evaluation order differs. To clarify
this aspect, we consider a composition with two intermediate variables,

x€R"— yeR* — zeRl — f(x) e R™. (40)

The chain rule can be explicitly written as:

2} af 9z \ 0

of _ (fz) Y (reverse-mode) (41)
ox dz dy ) ox

2} of (9z d

o o (zy) (forward-mode) (42)
ox Jdz \ dydx

Here, the parentheses enclose the operation that is first evaluated in the respective case.
To compute this Jacobian df/dx, reverse-mode requires (mab + man) multiplications, while
forward-mode requires (nab + mbn) multiplications. It follows that reverse-mode is favorable if
(m - n)/mn < (b - a)/ab. Generalizing from this case, we could compute the number of arith-
metic operations necessary for the sequential computation (39) and then determine which mode
to use. However, pure forward- and reverse-mode automatic differentiation are only the two
extremes of a possible evaluation order. In general, an optimal evaluation order might constitute
a particular order of intermediate matrix products. Determining this optimal evaluation order
is an NP-complete problem [39].
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1.3.3 Implementing Automatic Differentiation

Implementing the chain rule directly as a sequence of matrix multiplications as in (39) has
several disadvantages. First, this requires to store the matrices explicitly in memory, which
becomes quickly prohibitive in a large-scale setting. Secondly, without explicitly implementing
sparse matrix multiplication, a matrix product might have a significant overhead, since many
common operations have a sparse Jacobian. Examples are element-wise operations, for which
the Jacobian is diagonal.

To avoid these issues, we consider general directed, acyclic computational graphs (Figure 5)
and require a topological ordering of the graph. We associate a variable v; with every vertex of
the graph and a Jacobian dv;/0v;, where v is a parent vertex to its child vertex v;. In contrast
to (34), each vertex now may have multiple parents from which it receives a function argument
and multiple children to which it passes its computation result. We do not construct a full
Jacobian, but instead only a Jacobian-vector product (JVP) or a vector-Jacobian product (VJP).
We consider once more our example (40) with two intermediate variables to demonstrate how
a JVP or VJP of the overall function may be computed from the same type of operation on
intermediate variables. A VJP of a vector ¢ € R™ and JVP of a vector p € R" with the Jacobian
df/ox € R™" can be expanded by the chain rule as:

no 1) 9k az; of
e <8X> 2o |2 ™ (Z azjq') (VJP) (43)

k J i

mo (N, v of |95 (v o
Ra(@p—zaszayfk(Zaxipi) (VP) (44)

J k i

Both formulations have a recursive structure: once a part in parentheses is evaluated, one is left
with the same operation at the previous/subsequent layer. In the following, we outline how to
compute VJPs and JVPs for general computational graphs using reverse- and forward-mode
automatic differentiation, respectively.

Notation

We explicitly distinguish a vertex variable v and its computed value » by bold face notation,
which helps to highlight at what point in the algorithm a variable is computed. Further, we
denote the set of all parent vertices of a vertex v by P(v) and the set of all child vertices by C(v).
To describe a parent vertex of a vertex v, we use the letter w, i.e., a dependency w +— v. Since
a node may depend on several parent vertices, all of these must be evaluated first. To make
this explicit, we write v = v(w € P(v)). We denote a Jacobian by dv/dw and use the notation
dv/dw to describe that this Jacobian is explicitly evaluated at a point w. More so, we imply that
all parents of v are already evaluated. The simple example v(w;, wy) = w{ wy demonstrates the
necessity for this convention. Nodes are vector-valued and we assume that there is a single
input node v;, and a single output node v,y This clarifies the subsequent presentation and is
without loss of generality, as one can always prepend an input node that distributes an input
vector to different vertices and append an output node that aggregates the computation result
into a single output vector.
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Reverse-Mode Automatic Differentiation

A VJP is computed in reverse-mode by evaluating an expression of the form

W= Z)‘_’T(Z:,) . (45)

veC(w

A node is implemented by providing a function v that computes the node’s value from its
parents’ values, v = v(w € P(v)). Furthermore, the VJP-rule ¢ (dv/dw) for all w € P(v) must
be specified. A forward-pass evaluates the computational graph at a provided point vy, = x.
The algorithm iterates over the graph in topological order and evaluates all nodes.

VJPs are computed in a subsequent backward pass over the topologically sorted graph. To
this end, a vector Oy, = q is provided for which the VJP should be computed. Now, we can
iterate over the transposed graph to compute the quantities (45). Again, the topological ordering
guarantees a viable computation order. This procedure is summarized in Algorithm 2. The
nodes’ values have to be stored to evaluate derivatives in the backward pass, which might incur a
significant memory cost. One approach to alleviate the memory burden is by checkpointing [23].
Here, only the values of some nodes are stored in a forward pass and during the backward pass
the computation is partially re-executed to obtain the missing values. This method therefore
trades-off memory cost with computation cost. We apply checkpointing in [17] to train a
memory-intensive model.

A full Jacobian may be computed by choosing q = e, k € {1,..., m} as a standard basis
vector. Then the vector e,f J is the k-th row of the Jacobian J and thus the full Jacobian can be
constructed row-wise. In particular, obtaining the gradient of a scalar function (m = 1), such as
during training of a deep learning model, requires only a single VJP backward pass.

Forward-Mode Automatic Differentiation

A JVP is computed in forward-mode as a directional derivative of a vertex variable v with
respect to the input vector x € R" in a direction p € R”,

Dpo(x) = (Z;C))p = > (jfv) Dpw(x) . (46)

weP(v)

In addition to the node’s function, every node needs to be provided with the JVP-rule (dv/ow)p
for all w € P(v). In a single forward pass, the JVPs are evaluated simultaneously with the
nodes’ values. The algorithm is initialized with v, = x and D, ui(x) = p. By iterating over
the topologically sorted graph, expression (46) is iteratively computed. Again, the topological
ordering guarantees that all parent vertices have completed their computation before their
child vertices. This procedure is summarized in Algorithm 3. In contrast to computing a VJP in
reverse-mode, values of past vertices can be discarded and hence the memory requirement does
not scale with the graph size.

A full Jacobian may be computed by choosing the standard basis vectors, p = e, k € {1,..., n}.
The vector Jey is the k-th column of the Jacobian J, which hence can be constructed column-
wise.
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Algorithm 2 Reverse-mode automatic differentiation via VJPs

Require: computational graph G associated with a function f : R* — R™; input vector
x € R™; vector g € R™ to evaluate a vector-Jacobian product ¢ (9f/ax)

G; «— toposort(G)
for v € V(G;) do > forward pass
if v = v, then
U—x
else
v «— v(w € P(v))
end if
if v = v,y then
U <—q
else
00
end if
end for
for v € reversed(V(G;)) do > backward pass
for w € P(v) do

return (vgyt, Oi)

Algorithm 3 Forward-mode automatic differentiation via JVPs

Require: computational graph G associated with a function f : R" — R™; input vector
x € R"; vector p € R" to evaluate a Jacobian-vector product (9f/dx)p

G «— toposort(G)
for v € V(G;) do > forward pass
if v = v, then
U—x
Dpou(x) < p
else
v «— v(w € P(v))
Dpo(x) <0
for w € P(v) do
Dpv(x) «<— Dpo(x) + (3—3) Dpw(x)
end for
end if
end for
return (vout, Dp Uout (X))
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Remarks on the VJP-/JVP-based Implementation of Automatic Differentiation

In both modes, the function needs to be evaluated in a forward pass to compute derivatives.
Hence, if a VJP/JVP is needed, the function value is obtained without additional cost. Using
the VJP/JVP-primitives yields a matrix-free implementation of reverse- and forward-mode
automatic differentiation, which avoids to store intermediate matrices explicitly in memory.
Also, both methods require the same amount of arithmetic operations to compute a single
VJP/JVP. This can be readily seen for the simple sequential example (40) and in the general case
by counting operations in the innermost loop of Algorithm 2 and Algorithm 3. For v € R™ we
need )’ ,ey(G) Lwep(v) oM multiplications in both cases. However, computing a VJP requires
two graph traversals and the storage of intermediate values as opposed to a single graph traversal
with a constant memory cost for a JVP. If a full Jacobian is required, it may be computed row-
wise via VJPs and column-wise via JVPs. Consequently, to compute the Jacobian of a function
f + R" — R™, a JVP-based computation is favorable for m » n and m = n, while a VJP-based
computation is favorable for m « n. In particular, when computing the gradient of a scalar
function with m = 1, reverse-mode automatic differentiation should be applied. This is, for
example, the case with gradient-based optimization in deep learning. A task that involves both
modes is the computation of a Hessian matrix of a scalar function f : R” — R. To compute the
Jacobian, it is favorable to use reverse-mode to obtain a mapping J : R” — R". Computing
derivatives of this mapping to obtain the Hessian is then advantageous in forward-mode. We
close this discussion by mentioning that there exist situations where a VJP/JVP implementation
to obtain a full Jacobian would require more floating-point operations than working with explicit
intermediate Jacobians. In such situations, the VJP/JVP implementation can be considered as a
trade-off between arithmetic operations and memory consumption. To state an explicit example,
consider the case of an L-layer sequential model (34) with dense Jacobians J; € R™*™-1. The
overall Jacobian is given by the product J = J; Ji-1 ... 1. A VJP/JVP effectively computes this
product by prepending and appending the identity matrix, respectively:

UcJi-1---h) Lo, U Ji-1---J1) UrJi-1---J1) I, (47)

direct VJP-based JVP-based

It follows that a VJP-based implementation incurs an additional cost of n]% nr-1 multiplications
and a JVP-based implementation has an overhead of n3n; multiplications.

All our computational cost estimates count floating-point multiplications. In practice,
however, exploiting a particular hardware accelerator is a decisive factor for an efficient imple-
mentation (Section 1.2.5).
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1.3.4 Implicit Differentiation

To compute derivatives, we have so far explicitly followed the execution of the computational
graph, either forward along the evaluation of the function itself (forward-mode) or backward in
a separate pass after evaluation of the function (reverse-mode). For certain computations, this
procedure is disadvantageous. Take for example an optimization problem such as the following
regularized least-squares problem for given A € R™" and b € R™,

x.(0) = argmin (0, x), f(0,x) = 1||Ax - bl% + Q||x||§, 0>0. (48)

+€R" 2 2
Different regularization parameters 6 yield different solutions x,, and we may ask how the
solution changes with a change in this parameter. We therefore consider the solution as a
function of the regularization parameter, x.(0), and are interested in the derivative dx./96. To
compute this derivative, we could explicitly follow the computational graph of an iterative
numerical solver. However, this computational graph may be very deep. Accumulating the
derivatives would require to traverse the whole graph and could lead to accumulating numerical
errors. Furthermore, if we applied reverse-mode automatic differentiation, we would have to
store intermediate values and the algorithm’s memory-requirement would be proportional to
the depth of the graph.

However, there is a different way of obtaining the derivative dx./00 without explicitly
following the computation. This is possible by exploiting a more abstract condition about
the solution, namely its first-order optimality condition. The optimal solution to this convex
problem can be explicitly computed by setting the gradient of the objective function equal to
zero,

Vif(0,x) = (ATA+0Dx - ATb=0. (49)

Obtaining the solution requires solving this linear system for x. Since the matrix (ATA + I) is
positive definite and hence invertible for all 8 > 0, the solution can be explicitly written as

x(0) = (ATA+ 0D 1ATD . (50)
We define the function F(6, x) := V. f(0, x) to characterize the solution by the condition
F(0,x.(0))=0. (51)

To be precise, we use the notation dF/d6 to denote the total derivative, while we reserve dF/36
for the partial derivative. We compute the total derivative of (51) with respect to the parameter
0 to obtain

dF T ox.
@(9, x(0)) = x.(0)+ (A A+ 9]1)89 =0. (52)
Rearranging this equation yields the result,
ox.
ag = —(ATA+ 0D 'x(6) . (53)

In particular, this Jacobian is independent of how the solution to the optimization problem was
actually computed, since it only depends on the minimizer x..
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We now generalize from this example to demonstrate how to differentiate through an
implicit condition. Suppose we can characterize our computation by an implicit condition of a
continuously differentiable function F,

F(0,%)=0, F:RPxR"—R". (54)

We want to find an explicit local parameterization x(6) around a point 0 for which x(é) = x and
F(0,x) = 0. In particular, we are interested in the derivative dx/90(6) at this point. To this end,
we compute the total derivative of (54),

oF ~ , ox

dF « ~  9F A . )
0= d—e(e, x(60)) = £(0, X) + 5(0, X) £(0) . (55)
—— ——
R Rm<n R

The solution for 9x/ 89(@) may be found by solving the resulting linear system. More precisely,
these are p linear systems with the same system matrix oF/ 8x(é, x). For uniqueness, we require
this matrix to be non-singular. A singular matrix would imply that there are several values
x that correspond to the value 0, 1ie., no explicit local parameterization x(6) is possible. This
procedure is summarized by the implicit function theorem.

One approach to solve these systems numerically is by applying an LU-factorization of the
system matrix at a computational cost of ()(n®) [49]. With this factorization at hand, solving each
system requires (9(n?) operations, so in sum O(pn?). Altogether, this implies a computational
cost of O(n® + pn?) operations to solve (55), which scales as O(n®), if p € O(n).

Derivatives that are computed via such an implicit condition may be used just as any
derivative obtained from an explicit formulation for forward- and reverse-mode automatic
differentiation by specifically defining a custom JVP-/VJP-rule.
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2.1 Proximal Backpropagation
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« writing the paper

Summary

First-order optimization is at the core of training a deep learning model. Consequently, novel
training algorithms may increase the speed of training (training efficiency) and improve the
generalization properties of the model (training effectiveness). In this paper, we outline a general
principle of obtaining neural network optimizers inspired by a quadratic penalty function, which
couples the layers of a deep neural network by Ly-norm terms. Formally, this function may be
written as

L-2

E(0,a,2) = Ly(¢(6"", a*?)) +
=1

N =

lo(z) - '3 + Zlg(6a" ) - 2. (56)

Here, the linear activations z' are the output of an affine function ¢ and the nonlinear activations
a’ are the output of a nonlinear activation function o, where the index I counts the layers of a
feed-forward neural network. The final neural network loss L, depends only on the previous
layer and a learning target y. In this formulation, the parameters 6 and the activations a, z are
optimization variables.

We do not directly minimize (56), but instead take sequential optimization steps on the
quadratic penalty terms in a backward pass through the network. We prove that a gradient
descent step on the original neural network loss is recovered for y = p = 1/7 by taking gradient
steps with step size 7 on these quadratic terms. More generally, this point of view now allows
to substitute these sequential gradient steps with other minimization steps yielding different
optimization algorithms. We derive one such algorithm, Proximal Backpropagation (ProxProp),
which takes a proximal step (or implicit gradient step) instead of an explicit gradient step to
update the parameters of the linear layers. A proximal step at iteration k with step size 7 on a
function f : R" — R is defined as

. 1

Xpe1 = argmin f(x) + —|[x - xif; (57)
x€R" 27

= X = TVf (Xk41) - (58)
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In other words, to obtain the next iterate, we minimize the objective function while remaining
somewhat close to the current iterate. This trade-off is mediated by the step size 7. By setting
the gradient of (57) equal to zero, we obtain (58). This is a gradient step for which the gradient
is evaluated at the next iterate. Hence, the term implicit gradient step. In our case, the function f
is one of the quadratic terms in (56) associated with the affine function ¢. It follows that in order
to perform the update, we have to solve a linear system. We demonstrate how to approximately
solve this system efficiently using a conjugate gradient solver. While gradient descent is not
guaranteed to converge with an arbitrary fixed step size, this iteration converges for any step
size 7 > 0. Indeed, we demonstrate numerically that the algorithm is stable for large step sizes.

In our convergence analysis, we prove that the update direction of ProxProp is a descent
direction and that fixed points of the update iteration are stationary points of the neural network
loss function. It follows that ProxProp minimizes this loss. With the same proof strategy, it is
possible to show that other update schemes based on this general principle minimize the neural
network loss. Importantly, algorithms derived from this principle may be implemented with
common deep learning frameworks by modifying the backward pass of a layer. Furthermore, the
ProxProp update direction may be used with other optimizers that only assume to be provided
with a descent direction.

We close by demonstrating that ProxProp yields comparable performance with gradient-
based optimization.
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Summary

Current deep learning systems are mostly unconstrained black-box systems. The data they are
trained with, however, often have properties that are amenable to a mathematical description.
For example, they may satisfy symmetric, geometric, or physical constraints. It is desirable
to incorporate such constraints into deep learning systems for two reasons. First, properties
should be guaranteed in applications where they are necessary to preclude detrimental behavior,
e.g., in medical applications. Secondly, learning (an approximation to) these properties from
scratch requires an enormous amount of training data, while such constraints often have a
relatively simple mathematical formulation. For constrained optimization problems, a large
body of theoretical results and optimization algorithms exists, which can provide inspiration for
constrained deep learning. While hand-designed solutions for specific applications have been
proposed, an efficient approach to incorporating generic constraint classes in deep learning
models does not yet exist. Generally, two different approaches are considered to enforce
constraints: soft constraints and hard constraints. In a soft constraint approach, a distance
function d(-, C) from the feasible set C is explicitly added to the objective function,

min f(x) + Ad(x,C) . (59)
x€R™
Here, the two components are traded-off via a parameter A. Hence, the optimizer is drawn

toward the feasible set, but there is no guarantee about constraint satisfaction of the result.
In contrast, a hard constraint approach directly searches for solutions over the feasible set,

min f(x) . (60)

In this paper, we present a method to enforce a specific type of hard constraint on neu-
ral network activations. This algorithm guarantees that neural network activations satisfy
homogeneous linear inequality constraints of the form

{xeR"| Ax <0}, AeR™", (61)
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for which the m constraints are provided by specifying the matrix A.

We design a constraint parameterization layer whose output parameterizes the feasible
set (61). This set can be represented by a polyhedral cone spanned by s rays {ry,..., rs}. This
duality, named after Minkowski and Weyl, may be written as

N
{xeR"| Ax < 0} = Z,ujrj Bi=0¢ . (62)
=1

The left-hand side is a natural way to specify such constraints by providing the matrix A,
while the right-hand side provides a parameterization of the feasible set by varying the conic
combination parameters y; = 0. We can switch between these dual points of view via Fukuda’s
double description method. The number s of rays depends on the matrix A and is a priori not
known.

Our algorithm proceeds in two stages starting with a matrix A that specifies the set of
constraints. Prior to training, we compute the conic representation using the double description
method. Then we incorporate this representation as a differentiable layer. While this procedure
may incur a significant computational cost prior to training, the layer subsequently enforces
these constraints at the cost of a fully-connected layer during training and inference. This is
the major advantage compared with unconstrained training followed by a projection onto the
feasible set, which requires solving a (convex) optimization problem during inference.

We consider generative modeling as a relevant application for constrained deep learning
and demonstrate this idea by training a constrained variational autoencoder. Our experiments
indicate that care must be taken when enforcing such hard constraints in neural network training.
While evaluating the hard-constrained network during inference is faster than adding a final
projection step, the loss converges slower compared with unconstrained training. This might
be a general problem when hard constraints are combined with gradient-based optimization.
Our intuition is that the constraints reduce the degrees of freedom during optimization, while
current research suggests that over-parameterization helps the commonly used optimizers.
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Summary

Combinatorial optimization problems can be difficult to solve. One solution strategy is to
formulate an easier to solve approximation to the original problem, a so-called relaxation.
Rather than the discrete combinatorial problem, the relaxed problem is often continuous. In
this paper, we propose a continuous relaxation of a combinatorial problem with applications in
numerical linear algebra: effectively factorizing an orthogonal matrix.

Our motivating example for factorizing orthogonal matrices is the Fast Fourier transform
(FFT), which speeds up Fourier transformation in n dimensions from ((n?) to @(nlog(n)), cat-
alyzing a revolution in large-scale signal processing. Can such speed-ups be obtained for general
orthogonal matrices? The formulation we analyze in this paper is a truncated factorization.
Suppose an orthogonal matrix can be approximated with a product of N factors, where the
computational cost of applying each factor is constant. Then, applying this approximation to a
vector requires O(N) operations in contrast to the ()(n?) operations of a dense matrix-vector
product. If the factorization is computed once and subsequently applied many times, it is
sensible to first invest computational resources in finding such a factorization.

A special orthogonal matrix can be considered as a rotation in high-dimensional space.
We analyze a factorization of an orthogonal matrix as a product of so-called Givens matrices.
Each Givens matrix G(i, j, &) rotates in a two-dimensional (i, j)-subspace by an angle «. In
n dimensions there exists a simple constructive algorithm to obtain a factorization with at
most n(n - 1)/2 factors, the dimension of the orthogonal group. However, finding the best
approximation with a limited number of factors poses a difficult combinatorial optimization
problem.

When considering the orthogonal group as a Lie group, multiplication with a Givens matrix
G(i,j, @) can be viewed as a step of size @ in the direction of the (i, j)-basis coordinate of the
manifold. Consequently, if we start with a matrix U to be factorized and take coordinate steps
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with Givens matrices G/ until we have reached the identity matrix (up to permutation), the
transposed sequence of these Givens factors represents a factorization of the original matrix,

GL..Glu=1. (63)

Since the permutation matrices are the sparsest elements of the orthogonal group, it is sensible
to choose the Givens factors by minimizing a sparsity-inducing objective function. We formulate
a relaxation of the factorization problem by minimizing the matrix L;-norm over the orthogonal
group, which we optimize with a manifold coordinate descent algorithm.

We demonstrate that effective factorization in the sense of N € O(nlog(n)) for a generic
orthogonal matrix is not possible. Therefore, we compare our algorithm with baseline methods
on matrices for which we can control complexity by construction. Finally, we demonstrate the
algorithm for factorizing the orthogonal matrix that diagonalizes the graph Laplacian. This
matrix can be used to perform a graph Fourier transform, which is an important operation in
graph signal processing.

A relaxation of the combinatorial problem with a continuous function can be the starting
point for deep learning approaches. We attempted to directly learn an objective function, which
yielded worse results than the L;-norm heuristic. Replacing an objective function entirely with a
deep learning model is generally difficult, since there is only little control over the mathematical
properties of the learned function.

34



SUMMARY OF PUBLICATIONS

2.4 Variational Data Assimilation with a Learned
Inverse Observation Operator

Citation

Thomas Frerix, Dmitrii Kochkov, Jamie A. Smith, Daniel Cremers, Michael P. Brenner, and
Stephan Hoyer. Variational Data Assimilation with a Learned Inverse Observation Operator. In:
Proceedings of the 38th International Conference on Machine Learning (ICML). 2021

Author Contributions

The author of this dissertation significantly contributed to

+ developing the main concepts
+ implementing the algorithm
» evaluating the numerical experiments

« writing the paper

Summary

Weather forecasting is indispensable for modern society. At the same time, numerical weather
prediction systems require enormous computational resources and to further improve forecasts
novel algorithmic ideas for more efficient algorithms are necessary. A core principle behind
such a prediction system is variational data assimilation. Here, a modeled dynamical system
is fitted to data by varying its initial state. This allows to combine prior knowledge about the
system with measurements. The dynamical system can subsequently be extrapolated into the
future.

In this paper, we present an approach to improve variational data assimilation with deep
learning. We use the following formulation of variational data assimilation:

T
Jew) = Y IHG) =yl xea = M(x) (64)
=0

Here, {xy, ..., x7} is the trajectory evolved through the dynamical system M from an initial
state xp and H is the observation operator, which maps physical states x; to observations
(or measurements) y;. The initial value problem (64) requires solving a difficult nonlinear
least-squares problem.

To improve optimizability, we learn an approximate inverse hy to the observation operator
H, which is parameterized by trainable parameters 6. The deep learning model is trained to
map a trajectory of measurements to a trajectory of corresponding physical states such that
ho(3o, ---» Y1) = (X0, ..., xT). We use this learned approximate inverse to improve two aspects of
the optimization setting. First, we transform the fitting targets to modify the objective function,

T
Jew) = Y ke = kool xte1 = M(x0) . (65)
t=0
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Here, hy(y:) denotes a single element of the inverted trajectory hg(yp, ..., yr). The problem
is now formulated in physics space instead of in observation space. This objective function
is easier to optimize, since we do not have to optimize through the observation operator H.
Because (65) is only an approximate surrogate for (64), local minimizers of this transformed
objective are not necessarily local minimizers of the original objective. We therefore employ a
hybrid strategy that first optimizes the approximate surrogate function (65) and then refines
the optimization result by minimizing the original function (64).

As a second application of the deep learning model, we use the first state of an inverted
trajectory hg(yp, ..., yT) to initialize the optimizer. Initialization is important for non-convex
optimization. The initial state determines the local minimum to which the optimizer is attracted
and close enough to this local optimum the problem appears locally convex.

We use L-BFGS as a generic non-convex optimizer and numerically evaluate the algorithm
on two chaotic dynamical systems, the Lorenz96 model and a two-dimensional turbulent fluid
flow. Our results suggest that far from a local minimum, initially optimizing the surrogate
model is efficient, while with an already very good initialization provided by the learned inverse,
it is more economical to directly optimize the original objective function.

Altogether, instead of replacing the forecasting system with a deep learning model, we
retain the structure of the problem, in particular the exact physics model. We use deep learning
only to improve the optimization procedure. This method may be used as a template to improve
optimizability of nonlinear inverse problems.
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III CONCLUDING REMARKS

3.1 Optimizers for Deep Learning

The current optimization techniques for deep learning employ the setting outlined in Sec-
tion 1.2.4, i.e., stochastic optimization with first-order methods that use an adaptive step size
scheme. However, frequently used data sets, neural network architectures, and optimizers have
coevolved toward the current state of deep learning. It implies that changing one aspect of
the deep learning setting independent of the others likely deteriorates performance, which
is an impediment for fundamentally new ideas. However, it does not imply that a radically
different deep learning setting will not work. In fact, several studies challenge this setting and
question, for example, the decisive role of stochastic gradient noise [22] or the restriction to
first-order methods [37]. In the following, we describe further research directions in neural
network optimization that are suggested by the roadmap of this dissertation.

As a direct extension of our work presented in [18], novel neural network optimization
algorithms can be derived from the layer-wise coupling point of view. Proximal Backpropagation
remains relatively close to the classical backpropagation algorithm, as it replaces certain gradient
steps with proximal steps. Further optimizers can be deduced by substituting the gradient steps
with different minimization steps that allow a similar analysis.

Shifting toward optimizers that consider curvature information, quasi-Newton methods,
such as L-BFGS, are successful solvers for large-scale non-convex optimization (Section 1.1.4).
This factor raises the question as to how such optimizers can be employed for deep learning
models, where stochastic mini-batch optimization is often required due to memory constraints.
Such a stochastic quasi-Newton method must satisfy several requirements:

R1 The quadratic model matrix must capture curvature information about the full-batch
objective function.

R2 The quadratic model matrix must remain positive definite to yield a descent direction.

R3 The optimization algorithm should find solutions with low generalization error instead
of aggressively optimizing the training loss.

When the quadratic model matrix is updated on the basis of different mini-batches at each
iteration, satisfying R1 is difficult. Specifically, the (L-)BFGS updating scheme (14) is based on
gradients evaluated at two different consecutive mini-batches. Propositions to ameliorate this
issue include the construction of overlapping mini-batches [6] and the inference of curvature
information based on intermittent Hessian evaluations [11]. In contrast to curvature estimation
based on sampled mini-batches, the authors of [47] fix the mini-batches prior to optimization
and then maintain a separate Hessian approximation for each of them. R2 must be satisfied
by a different method than a Wolfe line search, which is typically employed in the full-batch
case. In the stochastic setting, such a line search does not imply the curvature condition (11),
because it is based on different consecutive mini-batches. This issue is often circumvented by
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simply skipping an update of the quadratic model matrix if the curvature condition is violated.
Building further on these results, developing effective stochastic quasi-Newton methods for
large-scale deep learning systems is desirable.

Parallel to this line of thinking toward stochastic higher-order optimizers, an improved
understanding of the success of stochastic first-order optimizers in the over-parameterized
setting can aid the further development of training algorithms. Empirical evidence based
on model compression algorithms, such as knowledge distillation [27], indicates that over-
parameterization helps the optimization process, but is not necessary for the representation of
the learned function. In this approach, a small student neural network is trained on the output of
a large teacher neural network. This small student network has better generalization properties
compared with the same architecture trained directly on the raw data and may generalize
comparably or even better than the large teacher network [21, 3]. Over-parameterized neural
network models are often trained to perfect training accuracy and nevertheless generalize
well [52]. These empirical findings contradict the classical bias-variance trade-off for model
selection, and recent research challenges this notion for over-parameterized neural networks [5].
This observation of well-performing over-parameterized models is not new and has already
been observed in the 1990s [33]. However, no comprehensive theory has been proposed to date.
Specifically, the role of stochastic gradient descent for the successes of such systems remains
elusive. A current stream of research focuses on the implicit bias of (stochastic) gradient descent,
i.e., the tendency of an optimizer to converge to solutions with particular properties [2, 41, 36].

3.2 Constrained Deep Learning

Constraints on the output of a neural network can be implemented either as soft constraints
or as hard constraints. The former adds a term to the loss function that penalizes a distance
from the feasible set, typically an L,-norm distance; the latter incorporates a structure into the
architecture, such that the output of a layer is guaranteed to be feasible. Our experiments in [19]
suggest that optimizing a hard-constrained deep learning model may be difficult. Our intuition
here is that hard constraints restrict the model’s degrees of freedom, thereby reducing the amount
of over-parameterization, which is empirically found to help the optimization process [27]. By
contrast, a soft constraint approach works well with gradient-based optimization and scales to
the large-scale setting with many variables and constraints. However, a post-processing step
(e.g., a projection) must be taken to guarantee constraint satisfaction with soft constraints.

To incorporate a generic class of hard constraints, to our knowledge, no practically efficient
algorithm has been proposed to date. Two approaches to hard constraints appear in current
research: parameterization of feasible sets and implicit differentiation through constraint-
defining equations. Our contribution [19] is an example of the former approach. As an example
of the latter method, the authors of [1] implicitly differentiate through the optimality conditions
of a quadratic program, which comprises the projection onto a convex set as a special case.
Toward a scalable method to incorporate hard constraints, further understanding on how they
influence the optimization process is beneficial.
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3.3 Deep Learning for Variational Data Assimilation

Variational data assimilation combines physical modeling with measurements to make future
predictions by solving a difficult nonlinear least-squares problem. The central question for
improving optimizability with deep learning is to decide which elements of the classical algo-
rithm should be modified by deep learning components. On the one side of the spectrum is the
classical formulation without any deep learning, on the other side is an end-to-end deep learning
prediction. We advocate to stay close to the former by augmenting the classical formulation
with deep learning, rather than replacing it. Our approach presented in [17] is an example;
it improves optimizability by modifying the least-squares fitting targets through a learned
approximate inverse of the observation operator. The approach still uses the exact dynamical
system, and resulting trajectories satisfy the physical laws governing the dynamics, which is
an advantage over black-box predictions. However, this assumption can be further relaxed by
only requiring that the exact dynamical system be used for extrapolation into the future and
not during optimization. Instead, one may emulate the exact dynamical system M with an
approximate deep learning model my, i.e., optimizing the parameters 6 on the basis of simulated
trajectories, such that mg(x) =~ M(x) for physical states x. Rather than solving the equations
of motion for M, one can generate an approximate trajectory by sequentially applying the
model mg. Using my instead of M in a loss function avoids the need to repeatedly solve the
equations of motion during optimization, which is computationally expensive. In addition to
being efficient to evaluate and backpropagate through, the emulated model can be trained to
have favorable properties, such as smoother dependence of the trajectory on the initial state.
This emulated model can then be used in a hybrid approach, where one first optimizes with the
easier to optimize emulator and then fine-tunes with the exact model to obtain high-accuracy
solutions.

3.4 From Numerical Optimization to Deep Learning and Back

This dissertation presents research at the intersection of deep learning and numerical optimiza-
tion with the recurring theme that innovations in these domains are catalyzed by advances in
parallel computation hardware and automatic differentiation libraries. This trend will continue
and allow ever more complex end-to-end differentiable deep learning models and advanced
optimization pipelines that contain such models.

Judging by the effort that has been invested into developing elaborate methods for large-
scale non-convex optimization, it seems unlikely that heuristic first-order optimizers are the
best conceivable optimization procedures for deep learning. Therefore, pursuing research
on novel optimization procedures is worthwhile, even though the coevolved state of the deep
learning stack will initially be difficult to outperform. Moreover, deep learning currently requires
many heuristics with trial and error to arrive at a well-performing system. Any step toward a
comprehensive theory of deep learning will be invaluable in guiding the system and optimizer
design process. In the meantime, deep learning models are becoming an integral part of classical
algorithmic pipelines, where they may be used to perform data-driven modeling of otherwise
heuristic procedures. There is much room to reconsider algorithms in computational sciences
and to augment them with deep learning components.
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ABSTRACT

We propose proximal backpropagation (ProxProp) as a novel algorithm that takes
implicit instead of explicit gradient steps to update the network parameters during
neural network training. Our algorithm is motivated by the step size limitation
of explicit gradient descent, which poses an impediment for optimization. Prox-
Prop is developed from a general point of view on the backpropagation algorithm,
currently the most common technique to train neural networks via stochastic gra-
dient descent and variants thereof. Specifically, we show that backpropagation of
a prediction error is equivalent to sequential gradient descent steps on a quadratic
penalty energy, which comprises the network activations as variables of the op-
timization. We further analyze theoretical properties of ProxProp and in partic-
ular prove that the algorithm yields a descent direction in parameter space and
can therefore be combined with a wide variety of convergent algorithms. Finally,
we devise an efficient numerical implementation that integrates well with popular
deep learning frameworks. We conclude by demonstrating promising numerical
results and show that ProxProp can be effectively combined with common first
order optimizers such as Adam.

1 INTRODUCTION

In recent years neural networks have gained considerable attention in solving difficult correla-
tion tasks such as classification in computer vision (Krizhevsky et al., 2012) or sequence learn-
ing (Sutskever et al., 2014) and as building blocks of larger learning systems (Silver et al., 2016).
Training neural networks is accomplished by optimizing a nonconvex, possibly nonsmooth, nested
function of the network parameters. Since the introduction of stochastic gradient descent (SGD)
(Robbins & Monro, 1951; Bottou, 1991), several more sophisticated optimization methods have
been studied. One such class is that of quasi-Newton methods, as for example the comparison of
L-BFGS with SGD in (Le et al., 2011), Hessian-free approaches (Martens, 2010), and the Sum of
Functions Optimizer in (Sohl-Dickstein et al., 2013). Several works consider specific properties of
energy landscapes of deep learning models such as frequent saddle points (Dauphin et al., 2014) and
well-generalizable local optima (Chaudhari et al., 2017a). Among the most popular optimization
methods in currently used deep learning frameworks are momentum based improvements of classi-
cal SGD, notably Nesterov’s Accelerated Gradient (Nesterov, 1983; Sutskever et al., 2013), and the
Adam optimizer (Kingma & Ba, 2015), which uses estimates of first and second order moments of
the gradients for parameter updates.

Nevertheless, the optimization of these models remains challenging, as learning with SGD and its
variants requires careful weight initialization and a sufficiently small learning rate in order to yield
a stable and convergent algorithm. Moreover, SGD often has difficulties in propagating a learning
signal deeply into a network, commonly referred to as the vanishing gradient problem (Hochreiter
et al., 2001).

*contributed equally
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Figure 1: Notation overview. For an L-layer feed-forward network we denote the explicit layer-wise
activation variables as z; and a;. The transfer functions are denoted as ¢ and o. Layer [ is of size n;.

Training neural networks can be formulated as a constrained optimization problem by explicitly
introducing the network activations as variables of the optimization, which are coupled via layer-
wise constraints to enforce a feasible network configuration. The authors of (Carreira-Perpifidn &
Wang, 2014) have tackled this problem with a quadratic penalty approach, the method of auxiliary
coordinates (MAC). Closely related, (Taylor et al., 2016) introduce additional auxiliary variables
to further split linear and nonlinear transfer between layers and propose a primal dual algorithm for
optimization. From a different perspective, (LeCun, 1988) takes a Lagrangian approach to formulate
the constrained optimization problem.

In this work, we start from a constrained optimization point of view on the classical backpropagation
algorithm. We show that backpropagation can be interpreted as a method alternating between two
steps. First, a forward pass of the data with the current network weights. Secondly, an ordered
sequence of gradient descent steps on a quadratic penalty energy.

Using this point of view, instead of taking explicit gradient steps to update the network parameters
associated with the linear transfer functions, we propose to use implicit gradient steps (also known as
proximal steps, for the definition see (6)). We prove that such a model yields a descent direction and
can therefore be used in a wide variety of (provably convergent) algorithms under weak assumptions.
Since an exact proximal step may be costly, we further consider a matrix-free conjugate gradient
(CG) approximation, which can directly utilize the efficient pre-implemented forward and backward
operations of any deep learning framework. We prove that this approximation still yields a descent
direction and demonstrate the effectiveness of the proposed approach in PyTorch.

2 MODEL AND NOTATION

We propose a method to train a general L-layer neural network of the functional form

J(0; X, y) = Ly(¢(0L-1,0((- - ,0(d(01, X)) ---)). (1

Here, J(0; X, y) denotes the training loss as a function of the network parameters 0, the input data
X and the training targets y. As the final loss function £, we choose the softmax cross-entropy for
our classification experiments. ¢ is a linear transfer function and ¢ an elementwise nonlinear transfer
function. As an example, for fully-connected neural networks 8 = (W, b) and ¢(6,a) = Wa + bl.

While we assume the nonlinearities ¢ to be continuously differentiable functions for analysis pur-
poses, our numerical experiments indicate that the proposed scheme extends to rectified linear units
(ReLU), o(x) = max(0, x). Formally, the functions o and ¢ map between spaces of different di-
mensions depending on the layer. However, to keep the presentation clean, we do not state this
dependence explicitly. Figure 1 illustrates our notation for the fully-connected network architecture.

Throughout this paper, we denote the Euclidean norm for vectors and the Frobenius norm for matri-
ces by || - ||, induced by an inner product (-, -). We use the gradient symbol V to denote the transpose
of the Jacobian matrix, such that the chain rule applies in the form “inner derivative times outer
derivative”. For all computations involving matrix-valued functions and their gradient/Jacobian,
we uniquely identify all involved quantities with their vectorized form by flattening matrices in a
column-first order. Furthermore, we denote by A* the adjoint of a linear operator A.
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Algorithm 1 - Penalty formulation of BackProp Algorithm 2 - ProxProp

Input: Current parameters 8% Input: Current parameters 6°.

// Forward pass. // Forward pass.

for! =1to L —2do forlzltoL—2d0
2F = (0¥, ar_,), Nap=X. zl = $(0F,af ), /ayg=X.
af = o(zf). af = o(zf).

end for end for

// Perform minimization steps on (3). // Perform minimization steps on (3).

@ grad. stepon FE wrt. (0—1,a5—2) @ grad. stepon E wrt. (0—1,ar—2), Egs. 8, 12.

forl=L—2to1ldo forl=L—2to1ldo
® grad. step on E wrt. z; and a;—1, ® grad. step on E wrt. z; and a;—1, Egs. 9, 10.
© grad. step on E wrt. 6;. © prox step on E wrt. 0;, Eq. 11.

end for end for

Output: New parameters 0°F1, Output: New parameters 0%,

3 PENALTY FORMULATION OF BACKPROPAGATION

The gradient descent iteration on a nested function J(6; X, y),
6" = 0F —7vJ (0" X, y), )

is commonly implemented using the backpropagation algorithm (Rumelhart et al., 1986). As the
basis for our proposed optimization method, we derive a connection between the classical back-
propagation algorithm and quadratic penalty functions of the form

E(0,a,z) = Ly($(0L-1,a1—2 )+Z*||U (20) — arl® + *||¢ Orar-1) =2l 3

The approach of (Carreira-Perpifidn & Wang, 2014) is based on the minimization of (3), as under
mild conditions the limit p,y — oo leads to the convergence of the sequence of minimizers of £
to the minimizer of J (Nocedal & Wright, 2006, Theorem 17.1). In contrast to (Carreira-Perpifidn
& Wang, 2014) we do not optimize (3), but rather use a connection of (3) to the classical backprop-
agation algorithm to motivate a semi-implicit optimization algorithm for the original cost function

Indeed, the iteration shown in Algorithm 1 of forward passes followed by a sequential gradient
descent on the penalty function F is equivalent to the classical gradient descent iteration.
Proposition 1. Let £,, ¢ and o be continuously differentiable. For p = v = 1/7 and 6 as the

input to Algorithm 1, its output @*1 satisfies (2), i.e., Algorithm 1 computes one gradient descent
iteration on J.

Proof. For this and all further proofs we refer to Appendix A. O

4 PROXIMAL BACKPROPAGATION

The interpretation of Proposition 1 leads to the natural idea of replacing the explicit gradient steps
@, ® and (© in Algorithm 1 with other — possibly more powerful — minimization steps. We propose
Proximal Backpropagation (ProxProp) as one such algorithm that takes implicit instead of explicit
gradient steps to update the network parameters 6 in step (©). This algorithm is motivated by the step
size restriction of gradient descent.

4.1 GRADIENT DESCENT AND PROXIMAL MAPPINGS

Explicit gradient steps pose severe restrictions on the allowed step size 7: Even for a convex, twice
continuously differentiable, .Z-smooth function f : R™ — R, the convergence of the gradient
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descent algorithm can only be guaranteed for step sizes 0 < 7 < 2/.%. The Lipschitz constant
£ of the gradient V f is in this case equal to the largest eigenvalue of the Hessian H. With the
interpretation of backpropagation as in Proposition 1, gradient steps are taken on quadratic functions.
As an example for the first layer,

1
F(O) = 310X =z “)

In this case the Hessian is H = X X T, which is often ill-conditioned. For the CIFAR-10 dataset the
largest eigenvalue is 6.7-10%, which is seven orders of magnitude larger than the smallest eigenvalue.
Similar problems also arise in other layers where poorly conditioned matrices a; pose limitations for
guaranteeing the energy F to decrease.

The proximal mapping (Moreau, 1965) of a function f : R™ — R is defined as:

. 1
prox, ;(y) := argmin f(z) + o~ ||z — y]|*. )
zER™ T

By rearranging the optimality conditions to (5) and taking y = 2*, it can be interpreted as an implicit
gradient step evaluated at the new point z*+! (assuming differentiability of f):

1

2P = argmin f(2) + — ||z — 2¥|? = 2F — 7V f(2"). (6)
rER™ 2T

The iterative algorithm (6) is known as the proximal point algorithm (Martinet, 1970). In contrast

to explicit gradient descent this algorithm is unconditionally stable, i.e. the update scheme (6)

monotonically decreases f for any 7 > 0, since it holds by definition of the minimizer 2**! that
SR+ Lt = aM P < fak).

Thus proximal mappings yield unconditionally stable subproblems in the following sense: The up-
date in 6; provably decreases the penalty energy F(, a*, z*) from (3) for fixed activations (a*, z*)
for any choice of step size. This motivates us to use proximal steps as depicted in Algorithm 2.

4.2 PROXPROP

We propose to replace explicit gradient steps with proximal steps to update the network parameters
of the linear transfer function. More precisely, after the forward pass

o =o(0r 1),

(N
af = o(2f),

we keep the explicit gradient update equations for z; and a;. The last layer update is

ap = af = Ve, oLy ($(00-1,a1-2)), ®)
and for all other layers,
ot =af =o' (@) o(f) —a ), ©)
k+1/2 1 k41/2

aty* =af |~V <2||¢(917 )=zt 2) (ai1), (10)

where we use af’u/ * and zlk 2 to denote the updated variables before the forward pass of the next

iteration and multiplication in (9) is componentwise. However, instead of taking explicit gradient
steps to update the linear transfer parameters ;, we take proximal steps

.1 k 1
5t = argmin _||¢(0,af ) — 212 + 10 — 6F||%. (11)
2] 2 27’9

This update can be computed in closed form as it amounts to a linear solve (for details see Ap-
pendix B). While in principle one can take a proximal step on the final loss £, for efficiency rea-
sons we choose an explicit gradient step, as the proximal step does not have a closed form solution
in many scenarios (e.g. the softmax cross-entropy loss in classification problems). Specifically,

O =08y — 7V, Ly(d(0F 1. af ). (12)
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Note that we have eliminated the step sizes in the updates for z; and a;_1 in (9) and (10), as such
updates correspond to the choice of p = v = % in the penalty function (3) and are natural in the
sense of Proposition 1. For the proximal steps in the parameters 6 in (11) we have introduced a step
size Ty which — as we will see in Proposition 2 below — changes the descent metric opposed to 7
which rather rescales the magnitude of the update.

We refer to one sweep of updates according to equations (7) - (12) as ProxProp, as it closely re-
sembles the classical backpropagation (BackProp), but replaces the parameter update by a proximal
mapping instead of an explicit gradient descent step. In the following subsection we analyze the
convergence properties of ProxProp more closely.

4.2.1 CONVERGENCE OF PROXPROP

ProxProp inherits all convergence-relevant properties from the classical backpropagation algorithm,
despite replacing explicit gradient steps with proximal steps: It minimizes the original network
energy J(0; X, y) as its fixed-points are stationary points of J(6; X,y), and the update direction
0%+1 — @* is a descent direction such that it converges when combined with a suitable optimizer.
In particular, it is straight forward to combine ProxProp with popular optimizers such as Nesterov’s
accelerated gradient descent (Nesterov, 1983) or Adam (Kingma & Ba, 2015).

In the following, we give a detailed analysis of these properties.
Proposition 2. Forl =1,...,L —2, the update direction 8%+ — 0% computed by ProxProp meets

-1
ot — 07 = -1 (;IJr(Vaﬁ(-,af_l))(V¢(~,af_1))*> Vo, J(0"; X, y). (13)

In other words, ProxProp multiplies the gradient Vg, J with the inverse of the positive definite,
symmetric matrix

Mp = }91 (Vo af ) (Vo ab )", (14)

which depends on the activations afﬂl of the forward pass. Proposition 2 has some important impli-
cations:

Proposition 3. For any choice of T > 0 and 19 > 0, fixed points 0* of ProxProp are stationary
points of the original energy J(0; X, y).

Moreover, we can conclude convergence in the following sense.

Proposition 4. The ProxProp direction 811 — 0% is a descent direction. Moreover, under the
(weak) assumption that the activations af remain bounded, the angle o* between —V.J(0%; X, 1)
and %1 — 0% remains uniformly bounded away from /2, i.e.

Cos(ak) >c >0, vk >0, (15)

fOI" some constant c.

Proposition 4 immediately implies convergence of a whole class of algorithms that depend only on
a provided descent direction. We refer the reader to (Nocedal & Wright, 2006, Chapter 3.2) for
examples and more details.

Furthermore, Proposition 4 states convergence for any minimization scheme in step © of Algo-
rithm 2 that induces a descent direction in parameter space and thus provides the theoretical basis
for a wide range of neural network optimization algorithms.

Considering the advantages of proximal steps over gradient steps, it is tempting to also update the
auxiliary variables a and z in an implicit fashion. This corresponds to a proximal step in ®) of
Algorithm 2. However, one cannot expect an analogue version of Proposition 3 to hold anymore.
For example, if the update of ay,_o in (8) is replaced by a proximal step, the propagated error does
not correspond to the gradient of the loss function £, but to the gradient of its Moreau envelope.
Consequently, one would then minimize a different energy. While in principle this could result
in an optimization algorithm with, for example, favorable generalization properties, we focus on
minimizing the original network energy in this work and therefore do not further pursue the idea of
implicit steps on @ and z.
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4.2.2 INEXACT SOLUTION OF PROXIMAL STEPS

As we can see in Proposition 2, the ProxProp updates differ from vanilla gradient descent by the

variable metric induced by the matrices (M}")~! with M} defined in (14). Computing the ProxProp

update direction v} := %(Olk“ — 0F) therefore reduces to solving the linear equation

Mfvf = Vo, J(6%; X, y), (16)

which requires an efficient implementation. We propose to use a conjugate gradient (CG) method,
not only because it is one of the most efficient methods for iteratively solving linear systems in gen-
eral, but also because it can be implemented matrix-free: It merely requires the application of the
linear operator M}* which consists of the identity and an application of (V¢(-,af ))(Vo(-,af_,))*.
The latter, however, is preimplemented for many linear transfer functions ¢ in common deep learn-
ing frameworks, because ¢(x,a’ ) = (V¢(-,af ,))* () is nothing but a forward-pass in ¢, and
¢*(z,af_ 1) = (Vé(-,af_;))(z) provides the gradient with respect to the parameters 6 if z is the
backpropagated gradient up to that layer. Therefore, a CG solver is straight-forward to implement
in any deep learning framework using the existing, highly efficient and high level implementations
of ¢ and ¢*. For a fully connected network ¢ is a matrix multiplication and for a convolutional
network the convolution operation.

As we will analyze in more detail in Section 5.1, we approximate the solution to (16) with a few CG
iterations, as the advantage of highly precise solutions does not justify the additional computational
effort in obtaining them. Using any number of iterations provably does not harm the convergence
properties of ProxProp:

Proposition 5. The direction 13;‘ one obtains from approximating the solution vl’“ of (16) with the
CG method remains a descent direction for any number of iterations.

4.2.3 CONVERGENCE IN THE STOCHASTIC SETTING

While the above analysis considers only the full batch setting, we remark that convergence of Prox-
Prop can also be guaranteed in the stochastic setting under mild assumptions. Assuming that the
activations af remain bounded (as in Proposition 4), the eigenvalues of (M[)~! are uniformly
contained in the interval [\, 79| for some fixed A > 0. Therefore, our ProxProp updates fulfill As-
sumption 4.3 in (Bottou et al., 2016), presuming the classic stochastic gradient fulfills them. This
guarantees convergence of stochastic ProxProp updates in the sense of (Bottou et al., 2016, Theo-

rem 4.9), i.e. for a suitable sequence of diminishing step sizes.

5 NUMERICAL EVALUATION

ProxProp generally fits well with the API provided by modern deep learning frameworks, since it
can be implemented as a network layer with a custom backward pass for the proximal mapping. We
chose PyTorch for our implementation'. In particular, our implementation can use the API’s GPU
compute capabilities; all numerical experiments reported below were conducted on an NVIDIA
Titan X GPU. To directly compare the algorithms, we used our own layer for either proximal or gra-
dient update steps (cf. step (© in Algorithms 1 and 2). A ProxProp layer can be seamlessly integrated
in a larger network architecture, also with other parametrized layers such as BatchNormalization.

5.1 EXACT AND APPROXIMATE SOLUTIONS TO PROXIMAL STEPS

We study the behavior of ProxProp in comparison to classical BackProp for a supervised visual
learning problem on the CIFAR-10 dataset. We train a fully connected network with architecture
3072 — 4000 — 1000 — 4000 — 10 and ReLU nonlinearities. As the loss function, we chose the cross-
entropy between the probability distribution obtained by a softmax nonlinearity and the ground-truth
labels. We used a subset of 45000 images for training while keeping 5000 images as a validation
set. We initialized the parameters 6; uniformly in [~1/,/7;—1,1/,/n;—1], the default initialization
of PyTorch.

"https://github.com/tfrerix/proxprop
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Figure 2: Exact and inexact solvers for ProxProp compared with BackProp. Left: A more precise
solution of the proximal subproblem leads to overall faster convergence, while even a very inexact
solution (only 3 CG iterations) already outperforms classical backpropagation. Center & Right:
While the run time is comparable between the methods, the proposed ProxProp updates have better
generalization performance (= 54% for BackProp and ~ 56% for ours on the test set).

Figure 2 shows the decay of the full batch training loss over epochs (left) and training time (middle)
for a Nesterov momentum? based optimizer using a momentum of 1 = 0.95 and minibatches of
size 500. We used 7y = 0.05 for the ProxProp variants along with 7 = 1. For BackProp we chose
7 = 0.05 as the optimal value we found in a grid search.

As we can see in Figure 2, using implicit steps indeed improves the optimization progress per epoch.
Thanks to powerful linear algebra methods on the GPU, the exact ProxProp solution is competitive
with BackProp even in terms of runtime.

The advantage of the CG-based approximations, however, is that they generalize to arbitrary linear
transfer functions in a matrix-free manner, i.e. they are independent of whether the matrices M, l’“
can be formed efficiently. Moreover, the validation accuracies (right plot in Figure 2) suggest that
these approximations have generalization advantages in comparison to BackProp as well as the exact
ProxProp method. Finally, we found the exact solution to be significantly more sensitive to changes
of 7 than its CG-based approximations. We therefore focus on the CG-based variants of ProxProp
in the following. In particular, we can eliminate the hyperparameter 7y and consistently chose 79 = 1
for the rest of this paper, while one can in principle perform a hyperparameter search just as for the
learning rate 7. Consequently, there are no additional parameters compared with BackProp.

5.2 STABILITY FOR LARGER STEP SIZES

We compare the behavior of ProxProp and BackProp for different step sizes. Table 1 shows the
final full batch training loss after 50 epochs with various 7. The ProxProp based approaches remain
stable over a significantly larger range of 7. Even more importantly, deviating from the optimal step
size 7 by one order of magnitude resulted in a divergent algorithm for classical BackProp, but still
provides reasonable training results for ProxProp with 3 or 5 CG iterations. These results are in
accordance with our motivation developed in Section 4.1. From a practical point of view, this eases
hyperparameter search over 7.

7| 50 10 5 1 0.5 0.1 0.05 | 5-1073 | 5.10~*
BackProp - - - - - 0.524 | 0.091 0.637 1.531
ProxProp (cgl) | 77.9 | 0.079 | 0.145 | 0.667 0.991 1.481 | 1.593 1.881 2.184
ProxProp (cg3) | 94.7 | 0.644 | 0.031 | 2-1073 | 0.012 1.029 | 1.334 1.814 2.175
ProxProp (cg5) | 66.5 | 0.190 | 0.027 | 3-107% | 2-1073 | 0.399 | 1.049 1.765 2.175

Table 1: Full batch loss for conjugate gradient versions of ProxProp and BackProp after training for

50 epochs, where

[T

remain stable for a significantly wider range of step sizes.

indicates that the algorithm diverged to NaN. The implicit ProxProp algorithms

2PyTorch’s Nesterov SGD for direction d(8%): m*+! = pm* +d(6%), 0¥+ = 0% —r(um*+' +d(0%)).
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Figure 3: ProxProp as a first-order oracle in combination with the Adam optimizer. The proposed
method leads to faster decrease of the full batch loss in epochs and to an overall higher accuracy on
the validation set. The plots on the right hand side show data for a fixed runtime, which corresponds
to a varying number of epochs for the different optimizers.

5.3 PROXPROP AS A FIRST-ORDER ORACLE

We show that ProxProp can be used as a gradient oracle for first-order optimization algorithms. In
this section, we consider Adam (Kingma & Ba, 2015). Furthermore, to demonstrate our algorithm
on a generic architecture with layers commonly used in practice, we trained on a convolutional
neural network of the form:

Conv[16 x 32 x 32] — ReLU — Pool[16 x 16 x 16] — Conv[20 x 16 x 16] — ReL.U
— Pool[20 x 8 x 8] — Conv|[20 x 8 x 8] — ReLU — Pool[20 x 4 x 4] — FC + Softmax[10 x 1 x 1]

Here, the first dimension denotes the respective number of filters with kernel size 5 x 5 and max
pooling downsamples its input by a factor of two. We set the step size 7 = 10~2 for both BackProp
and ProxProp.

The results are shown in Fig. 3. Using parameter update directions induced by ProxProp within
Adam leads to a significantly faster decrease of the full batch training loss in epochs. While the
running time is higher than the highly optimized backpropagation method, we expect that it can be
improved through further engineering efforts. We deduce from Fig. 3 that the best validation accu-
racy (72.9%) of the proposed method is higher than the one obtained with classical backpropagation
(71.7%). Such a positive effect of proximal smoothing on the generalization capabilities of deep
networks is consistent with the observations of Chaudhari et al. (2017b). Finally, the accuracies on
the test set after 50 epochs are 70.7% for ProxProp and 69.6% for BackProp which suggests that the
proposed algorithm can lead to better generalization.
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6 CONCLUSION

We have proposed proximal backpropagation (ProxProp) as an effective method for training neural
networks. To this end, we first showed the equivalence of the classical backpropagation algorithm
with an algorithm that alternates between sequential gradient steps on a quadratic penalty function
and forward passes through the network. Subsequently, we developed a generalization of Back-
Prop, which replaces explicit gradient steps with implicit (proximal) steps, and proved that such a
scheme yields a descent direction, even if the implicit steps are approximated by conjugate gradient
iterations. Our numerical analysis demonstrates that ProxProp is stable across various choices of
step sizes and shows promising results when compared with common stochastic gradient descent
optimizers.

We believe that the interpretation of error backpropagation as the alternation between forward passes
and sequential minimization steps on a penalty functional provides a theoretical basis for the devel-
opment of further learning algorithms.
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APPENDIX

A THEORETICAL RESULTS

Proof of Proposition 1. We first take a gradient step on

L—2
E(0,a,z) = Ly(¢(0r-1,aL-2) *-ZE:‘*HG(Zﬂ —ar|*+ 47H¢(%7a¢ 1) =z, (17)

=1

with respect to (f1,_1, ar,—2). The gradient step with respect to 87,1 is the same as in the gradient
descent update,

Okt = 9% — rVJ(0": X ,y), (18)
since J depends on 67, only via L, o ¢.

The gradient descent step on ay,_» in @) yields
alZflz/z =aj_o —TVah(0F_1,af_,)- VgLy (3(0F -1, 0% —2)), 19)

where we use a" L / to denote the updated variable ay,_o before the forward pass of the next it-
eration. To keep the presentation as clear as possible we slightly abused the notation of a right
multiplication with V,¢(6% |, a% _,): While this notation is exact in the case of fully connected
layers, it represents the application of the corresponding linear operator in the more general case,
e.g. for convolutions.

For all layers [ < L — 2 note that due to the forward pass in Algorithm 1 we have

U(Zlk) = af? ¢(91k7 affl) = Zlk (20)
and we therefore get the following update equations in the gradient step (®)
T = o = Vo) (o) — af ) = o = Vo) (af —a ), @D

and in the gradient step © w.r.t. a;_1,

k+1/2 kt1/2
l+1/ =af | —7pVa(6F,af ) - (qﬁ(&f,af_l) - Y )

(22)
=af 1 —Vad(0], a7 ;) - (Zlk - sz+l/2) .
Equations (21) and (22) can be combined to obtain:
o = 2 =V () Vb 01, af) - (i — ). (23)
The above formula allows us to backtrack the differences of the old z and the updated 2 kt/2 up to

layer L — 2, where we can use equations (21) and (19) to relate the difference to the loss. Altogether,
we obtain

L-2
k+1/2
R A [ Vo) Vad(0h,1,ak) | - VoLy (607 1, af ,)). (24)
q=l
By inserting (24) into the gradient descent update equation with respect to 6; in © ,
O = 0% — Voo (0F aly) - (o — 5. )

we obtain the chain rule for update (18). ]

Proof of Proposition 2. Since only the updates for §;, [ = 1,..., L — 2, are performed implicitly,
one can replicate the proof of Proposition 1 exactly up to equation (24). Let us denote the right hand

side of (24) by gF, i.e. le 2 = 2F — gF and note that
™V, J (0% X, y) = Voo (-.a_,) - g (26)

11
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holds by the chain rule (as seen in (25)). We have eliminated the dependence of Vmﬁ(@fﬂ af_l) on

0F and wrote Vg¢(-,aF ) instead, because we assume ¢ to be linear in 6 such that V¢ does not
depend on the point # where the gradient is evaluated anymore.

We now rewrite the ProxProp update equation of the parameters 6 as follows

.1 & 1 .
! = angmin S16(0,af"y) — =7 + 56 - 617
o1 ) &
= argmin ||¢(0, i) — (= — g1)II* + 7||9 il
0
. @7
= argmin _||(6, a_y) — (6(6%, af_y) — gf)|* + o - il
(4 2 27’9
1 1
= argmin _||¢(0 — 0%, ai_y) + gF | + 5110 — 67,
6 2 27y
where we have used that ¢ is linear in 6. The optimality condition yields
1
0=Vo(,ai ) (@O =0 af 1)+ gr) + %(95“ -0 (28)

Again, due to the linearity of ¢ in 6, one has

o(0,af 1) = (Vo(-,ar1))*(6), (29)

where *, denotes the adjoint of a linear operator. We conclude

0= v¢(a af—l)(V(ﬁ('?af—l))*(gllH—l ) + Vé( al l)gl Tie(gl]ﬁ—l - elk)a

1 *
= (791 + Vo, a1) (Vo ) ) O = 07) = =Vo( ai1)gr = —7Ve,J (0% X, y),
(30)
which yields the assertion. O

Proof of Proposition 3. Under the assumption that 6% converges, 6 — 6, one finds that af —

a; and sz — Z = qﬁ(él, d;—1) converge to the respective activations of the parameters 6 due to
the forward pass and the continuity of the network. As we assume J(-; X, y) to be continuously
differentiable, we deduce from (30) that limy,_,. Vg, J(0%; X,y) = O0foralll = 1,..., L — 2. The
parameters of the last layer 67, _; are treated explicitly anyways, such that the above equation also
holds for [ = L — 1, which then yields the assertion. O

Proof of Proposition 4. As the matrices
1 *
My =1+ (vel, ai_1))(Vo(- ai-y)) 3D

(with the convention M f_l = I) are positive definite, so are their inverses, and the claim that
0Ft1 — 9% is a descent direction is immediate,
(6T =07, =V, J (6% Y, ) = T((M[) 'V, J(8";Y, ), Ve, J (6% Y, 2)). (32)

We still have to guarantee that this update direction does not become orthogonal to the gradient in
the limit & — oo. The largest eigenvalue of (M})~! is bounded from above by Tp. If the al 1

remain bounded, then so does V(- ar_ ;) and the largest eigenvalue of V(- af |)Veo(-,af_;)*
must be bounded by some constant ¢ Therefore, the smallest eigenvalue of (M)~ must remain
bounded from from below by (% + &)~L. Abbreviating v = Vg, J(0F;Y, z), it follows that

(M) "', v)

k\ __
os(a®) = 21z ool
A (MF)~D) 0]
33
= ) o o] 53

> Amin((Mlk)il)
- )‘maX((Mlk)_l)

12
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which yields the assertion. O

Proof of Proposition 5. According to (Nocedal & Wright, 2006, p. 109, Thm. 5.3) and (Nocedal &
Wright, 2006, p. 106, Thm. 5.2) the k-th iteration x, of the CG method for solving a linear system
Azx = b with starting point zo = 0 meets

1

i A, Az) — (b 34
xespan(bj};}‘lﬁ,%lb)2<x7 z) — (b, ), (34)

T = arg

i.e. is optimizing over an order-k Krylov subspace. The starting point xg = 0 can be chosen
without loss of generality. Suppose the starting point is Zo # 0, then one can optimize the variable

x = I — Zo with a starting point zg = 0 and b = b + AZy.

We will assume that the CG iteration has not converged yet as the claim for a fully converged CG

iteration immediately follow from Proposition 4. Writing the vectors b, Ab, ..., A*~1b as columns
of a matrix Ky, the condition 2 € span(b, Ab, ..., A¥~1b) can equivalently be expressed as x =
Kra for some a € RF. In terms of o our minimization problem becomes
1
ry = Kra = arg min — (o, (Ki)? AKRa) — (Kx)Tb, a), (35)
a€Rk 2

leading to the optimality condition

0= (/Ck)TA/CkOé — (/Ck)Tb,

(36)
= ap = Ki((Kr) " AKK) ™ (Ki) "D,
Note that A is symmetric positive definite and can therefore be written as \/ZT VA, leading to
(Ki)TAKy = (VAK)T (VAKy) 37)

being symmetric positive definite. Hence, the matrix ((Kj)? AK) ! is positive definite, too, and

(@, b) = (K ((Kr)" AKR) ™! (Ki) 70, ) (38)
= {((K) T AR~ (Ki) "D, (K1) Tb) > 0.
Note that (Kj)T'b is nonzero if b is nonzero, as ||b||? is its first entry.

To translate the general analysis of the CG iteration to our specific case, using any number of CG
iterations we find that an approximate solution f)lk of

M = =V, J (6% X, y) (39)

leads to
<17lk» _VOLJ(O]C; X7 y)> > 0,

i.e., to 17;“ being a descent direction. O

B PROXIMAL OPERATOR FOR LINEAR TRANSFER FUNCTIONS

In order to update the parameters 6; of the linear transfer function, we have to solve the problem

(11),
6% = argmin 1||¢>(t9,ak) — 22 4 i||9 Al (40)
0 2 2Ty
Since we assume that ¢ is linear in 6 for a fixed a”, there exists a matrix A* such that
vec(9F 1) = arg;nin %HAkvec(G) — vec (M2 12 4 %HVCC(G) —vec(0M)]?,  @D)
and the optimality condition yields

vec(0F 1Y) = (I + 19(AF)T AF) " (vec (%) + (A%)Tvec(2F+7?)). 42)

13
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In the main paper we sometimes use the more abstract but also more concise notion of V¢(-, a*),
which represents the linear operator

Vo(-,a®)(Y) = vec 1 ((AF)Tvec(Y)). (43)

To also make the above more specific, consider the example of ¢(6,a*) = 6a”. In this case the
variable # may remain in a matrix form and the solution of the proximal mapping becomes

—1
g1 _ (Zk+1/2 (@) + 19k> (ak(ak)T . 11) , (44)
To

To

Since a* € R™*V for some layer size n and batch size N, the size of the linear system is independent
of the batch size.

14
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Abstract

We propose a method to impose homogeneous linear in-
equality constraints of the form Az < 0 on neural net-
work activations. The proposed method allows a data-
driven training approach to be combined with modeling
prior knowledge about the task. One way to achieve this
task is by means of a projection step at test time after uncon-
strained training. However, this is an expensive operation.
By directly incorporating the constraints into the architec-
ture, we can significantly speed-up inference at test time;
for instance, our experiments show a speed-up of up to two
orders of magnitude over a projection method. Our algo-
rithm computes a suitable parameterization of the feasible
set at initialization and uses standard variants of stochastic
gradient descent to find solutions to the constrained net-
work. Thus, the modeling constraints are always satisfied
during training. Crucially, our approach avoids to solve
an optimization problem at each training step or to manu-
ally trade-off data and constraint fidelity with additional hy-
perparameters. We consider constrained generative model-
ing as an important application domain and experimentally
demonstrate the proposed method by constraining a varia-
tional autoencoder.

1. Introduction

Deep learning models [14] have demonstrated remark-
able success in tasks that require exploitation of subtle cor-
relations, such as computer vision [11] and sequence learn-
ing [20]. Typically, humans have strong prior knowledge
about a task, e.g., based on symmetry, geometry, or physics.
Learning such a priori assumptions in a purely data-driven
manner is inefficient and, in some situations, may not be
feasible at all. While certain prior knowledge was success-
fully imposed — for example translational symmetry through
convolutional architectures [13] — incorporating more gen-
eral modeling assumptions in the training of deep networks
remains an open challenge. Recently, generative neural net-
works have advanced significantly [8, 10]. With such mod-

Figure 1. Samples drawn from a variational autoencoder trained
on MNIST without constraints (left) and with a checkerboard con-
straint on the output domain (right). For a pixel intensity domain
[—1, 1], the checkerboard constraint forces the image tiles to have
average positive or negative brightness.

els, controlling the generative process beyond a data-driven,
black-box approach is particularly important.

In this paper, we present a method to impose prior
knowledge through homogeneous linear inequality con-
straints of the form Az < 0 on the activations of deep learn-
ing models. We directly impose these constraints through a
suitable parameterization of the feasible set. The main two
advantages of this approach are:

e The constraints are hard-constraints in the sense that
they are satisfied at any point during training and in-
ference.

e Inference on the constrained network incurs no over-
head compared to unconstrained inference.

In summary, the main contribution of our method is a repa-
rameterization that incorporates homogeneous linear in-
equality hard-constraints on neural network activations and
allows for efficient test time predictions, i.e., our method is
faster up to two orders of magnitude. The model can be op-
timized by standard variants of stochastic gradient descent.
As an application in generative modeling, we demonstrate
that our method is able to produce authentic samples from
a variational autoencoder while satisfying the imposed con-
straints.



2. Related work

Various works have introduced methods to impose some
type of hard constraint on neural network activations.

Mairquez-Neila et al. [15] formulated generic differen-
tiable equality constraints as soft constraints and employed
a Lagrangian approach to train their model. While this is
a principled approach to constrained optimization, it does
not scale well to practical deep neural network models with
their vast number of parameters. To make their method
computationally tractable, a subset of the constraints is se-
lected at each training step. In addition, these constraints
are locally linearized; thus, there is no guarantee that this
subset will be satisfied after a parameter update.

For the specific problem of weakly supervised segmen-
tation, Pathak et al. [18] proposed an optimization scheme
that alternates between optimizing the deep learning model
and fitting a constrained distribution to these intermediate
models. However, this method involves solving a (convex)
optimization problem at each training step. Furthermore,
the overall convergence path depends on how the alternat-
ing optimization steps are combined, which introduces an
additional hyperparameter that must be tuned. Briq et al.
[4] approached the weakly supervised segmentation prob-
lem with a layer that implements the orthogonal projection
onto a simplex, thereby directly constraining the activations
to a probability distribution. This optimization problem can
be solved efficiently, but does not generalize to other types
of inequality constraints.

OptNet, an approach to solve a generic quadratic pro-
gram as a differentiable network layer, was proposed by
Amos and Kolter [1]. OptNet backpropagates through the
first-order optimality conditions of the quadratic program,
and linear inequality constraints can be enforced as a spe-
cial case. The formulation is flexible; however, it scales cu-
bically with the number of variables and constraints. Thus,
it becomes prohibitively expensive to train large-scale deep
learning models.

Finally, several works have proposed handcrafted solu-
tions for specific applications, such as skeleton prediction
[21] and prediction of rigid body motion [5]. In contrast, to
avoid laborious architecture design, we argue for the value
of generically modeling constraint classes. In practice, this
makes constraint methods more accessible for a broader
class of problems.

Contribution In this work, we tackle the problem of im-
posing homogeneous linear inequality constraints on neural
network activations. Rather than solving an optimization
problem during training, we split this task into a feasibility
step at initialization and an optimality step during training.
At initialization, we compute a suitable parameterization of
the constraint set (a polyhedral cone) and use the neural net-

work training algorithm to find a good solution within this
feasible set. Conceptually, we are trading-off computational
cost during initialization to obtain a model that has no over-
head at test time. The proposed method is implemented as
a neural network layer that is specified by a set of homo-
geneous linear inequalities and whose output parameterizes
the feasible set.

3. Linear constraints for deep learning models

We consider a generic L layer neural network Fp with
model parameters 6 for inputs x as follows:

Fy(z) = f5 (o (fs" " Do £ @) .., ()

where fe(f) are affine functions, e.g., a fully-connected or
convolutional layer, and o is an elementwise non-linearityl,
e.g., a sigmoid or rectified linear unit (ReLU). In supervised
learning, training targets y are known and a loss £, (Fy(z))
is minimized as a function of the network parameters 6. A
typical loss for a classification task is the cross entropy be-
tween the network output and the empirical target distribu-
tion, while the mean-squared error is commonly used for
a regression task. The proposed method can be applied to
constrain any linear activations z() = féf)(a(l_l)) or non-
linear activations a() = o(2("). In most cases, one would
like to constrain the output Fy(x).

The feasible set for m linear inequality constraints in d
dimensions is the convex polyhedron

c:_{z

A suitable description of the convex polyhedron C is ob-
tained by the decomposition theorem for polyhedra.

Az<b,AeRde,beRm} CRY. (2

Theorem 1 (Decomposition of polyhedra,
Minkowski-Weyl). A set C C R? is a convex polyhe-
dron of the form (2) if and only if

., Up) + cone(ry, ..., rs)
n S
E )\ﬂ)i + E ,ujr]-
i=1 j=1

for finitely many vertices {vi,..

{ri,...,rs}h

Furthermore, C = {z|Az <0,A¢€ Rde} if and only
if

C = conv(vy,..

Moty 20,3 Xi=1p (3)
i=1

.,Un} and rays

C = cone(ry,...,rs) 4)

for finitely many rays {r1,...,rs}.

IFormally, o maps between different spaces for different layers and
may also be a different element-wise non-linearity for each layer. We omit
such details in favor of notational simplicity.



The theorem states that an intersection of half-spaces
(half-space or H-representation) can be written as the
Minkowski sum of a convex combination of the polyhe-
dron’s vertices and a conical combination of some rays
(vertex or V-representation). One can switch algorithmi-
cally between these two viewpoints via the double descrip-
tion method [7, 16], which we discuss in the following.
Thus, the H-representation, which is natural when mod-
eling inequality constraints, can be transformed into the
V-representation, which can be incorporated into gradient-
based neural network training.

In this paper, we focus on homogeneous constraints of
the form (4), for which the feasible set is a polyhedral cone.
Due to the special structure of this set, we can avoid to
work with the convex combination parameters in (3), which
is numerically advantageous (Section 3.5), and we can ef-
ficiently combine modeling constraints and domain con-
straints, such as a [—1, 1]-pixel domain for images (Sec-
tion 3.3). Such a polyhedral cone is shown in Figure 2.

3.1. Double description method

The double description method converts between the
half-space and vertex representation of a system of linear in-
equalities. It was originally proposed by Motzkin et al. [16]
and further refined by Fukuda and Prodon [7].> Here, we
are only interested in the conversion from H-representation
to V-representation for homogeneous constraints (4),

H — cone(ry,...,rs) . 5)

The core algorithm proceeds as follows. Let the rows of
A define a set of homogeneous inequalities and let R =
[r1,...,7s] be the matrix whose columns are the rays of
the corresponding cone. Here, (A, R) form a double de-
scription pair. The algorithm iteratively builds a double de-
scription pair (A**1, R¥+1) from (A*, R*) in the following
manner. The rows in A* represent a k-subset of the rows of
A and thus define a convex polyhedron associated with R
Adding a single row to A* introduces an additional half-
space constraint, which corresponds to a hyperplane. If the
vector r; — r; for two columns r;, 7; of R* intersects with
this hyperplane then this intersection point is added to R*.
Existing rays that are cut-off by the additional hyperplane
are removed from R*. The result is the double description
pair (A*+1, RE+1), This procedure is shown in Figure 2.
Adding a hyperplane might drastically increase the num-
ber of rays in intermediate representations, which, in turn,
contribute combinatorically in the subsequent iteration. In
fact, there exist worst case polyhedra for which the algo-
rithm has exponential run time as a function of the number
of inequalities and the input dimension, as well as the num-
ber of rays [3, 6]. Overall, one can expect the algorithm

2In our experiments we use pycddlib, which is a Python wrapper of
Fukuda’s cddlib.

Figure 2. Diagram illustrating an iteration of the double descrip-
tion method. Adding a constraint to the k-constraint set A" at
iteration k 4 1 introduces a hyperplane H. The intersection points
of H with the boundary of the current polyhedron R* (marked by
o) are added as rays ¢ and r7 to the polyhedral cone. The ray 72 is
cut-off by the hyperplane H and is removed from R*. The result
is the next iterate R**1.

to be efficient only for problems with a reasonably small
number m of inequalities and dimension d.

3.2. Integration in neural network architectures

We parameterize the homogeneous form (4) via a neural
network layer. This layer takes as input some (latent) repre-
sentation of the data, which is mapped to activations satisfy-
ing the desired hard constraints. The algorithm is provided
with the H-representation of linear inequality constraints,
i.e., a matrix A € R™>4 for m constraints in d dimensions
to specify the feasible set (4). At initialization, we con-
vert this to the V-representation via the double description
method (Section 3.1). This corresponds to computing the
set of rays {rq,...,7rs} to represent the polyhedral cone.
During training, the neural network training algorithm is
used to optimize within in the feasible set. There are two
critical aspects in this procedure. First, as outlined in Sec-
tion 3.1, the run-time complexity of the double description
method may be prohibitive. Conceptually, the proposed ap-
proach allows for significant compute time at initialization



to obtain an algorithm that is very efficient at training and
test time. Second, we must ensure that the mapping from
the latent representation to the parameters integrates well
with the training algorithm. We assume that the model is
trained with gradient-based backpropagation, as is common
for current deep learning applications. The constraint layer
comprises a batch normalization layer and an affine map-
ping (fully-connected layer with biases) followed by the
element-wise absolute value function that ensures the non-
negativity required by the conical combination parameters.
In theory, any function f : R — R>o would fulfill this re-
quirement; however, care must be taken to not interfere with
backpropagated gradients.

3.3. Combining modeling and domain constraints

Domain constraints are often formulated as unit box con-
straints, B := {x € R?| — 1 < x; < 1}, such as a pixel do-
main for images. Box constraints are particularly unfit to be
converted using the double description method because the
number of vertices is exponential in the dimension. There-
fore, we distinguish modeling constraints and domain con-
straints and only convert the former into V-representation.
Based on this representation, we obtain a point in the mod-
eling constraint set, z € C. However, this point may not
be in the unit box B. To arrive at a point in the intersec-
tion C N B, we normalize z by its infinity norm if = ¢ B,
& = o/ max{|z||. ,1}. Indeed, & € CN B since scaling by
a positive constant remains in the cone, i.e., if x € C, then
axr € CVa > 0.

3.4. Applications of homogeneous constraints

A natural application of constraints of the form Az < 0
is a parameterization of a set of binary classifiers. If each
row a; of A is such a binary classifier, then the method pre-
sented in this paper parameterizes the set {z]a} z < 0 Vi}.
Consequently, it can be guaranteed that neural network ac-
tivations satisfy a set of binary criteria. Another domain is
to express certain direct relations between neural network
activations. Notably, one can guarantee mathematical prop-
erties such as monotonicity via x;+1 > x; and convexity
via Tit1 — 2371 + T > 0.

3.5. Extension to general linear constraints

The proposed method takes advantage of the special
structure of a polyhedral cone to efficiently combine mod-
eling and domain constraints (Section 3.3). General lin-
ear inequality constraints of the form Ax < b without re-
strictions on A and b possibly require the conic and con-
vex component of (3) for their V-representation. The main
approach of this paper may be used in this case, i.e., our
layer additionally needs to predict convex combination pa-
rameters. However, we observed slow convergence, which
we ascribe to the simplex parameterization for the con-

vex combination parameters. We used a softmax function
fla)i = exp(x;)/ X2, exp(a;) to enforce the constraints
Ai > 0,57, \; = 1 of the convex combination param-
eters in (3). This function has vanishing gradients when
one z; is significantly greater than the other vector entries.
Furthermore, this most general setting does not allow for
efficient incorporation of domain constraints, as this would
require an efficient parameterization of the intersection of a
general convex polyhedron and the unit box.

4. Numerical results

We compare the proposed constraint parameterization
algorithm with an algorithm that trains without constraints,
but requires a projection step at test time. We call this lat-
ter algorithm test time projection. The proposed algorithm
optimizes over the feasible set, while the projection is re-
stricted to yielding a solution on the boundary of that set.
We analyze these algorithms in two different settings. In an
initial experiment, we learn the orthogonal projection onto a
constraint set to demonstrate properties of these algorithms.
Here, the result can be compared to the optimal solution
of the convex optimization problem. In a second experi-
ment, consistent with our motivation to constrain the output
of generative models, we apply these algorithms to a varia-
tional autoencoder. Finally, we evaluate the running time of
inference for these problems and show that the proposed al-
gorithm is significantly more efficient compared to the test
time projection method.

We used the MNIST dataset [12] for both experiments
(59000 training, 1000 validation, and 10000 test samples).
We chose PyTorch [17] for our implementation? and all ex-
periments were performed on a single Nvidia Titan X GPU.
All networks were optimized with the Adam optimizer and
we evaluated learning rates in the range [107°,1073]. The
initial learning rate was annealed by a factor of 1/2 if
progress on the validation loss stagnated for more than 5
epochs. We used OSQP [19] as an efficient solver to com-
pute orthogonal projections.

Both experiments were performed with a checkerboard
constraint with 16 tiles, where neighboring tiles are con-
strained to be on average either below or above pixel do-
main midpoint. For a [—1, 1]-pixel domain, the tiles” aver-
age intensity is positive or negative, respectively. The ini-
tial computational cost of converting these constraints into
V-representation via the double description method is neg-
ligible (less than 1s). We observed that it is numerically ad-
vantageous to activate unit box scaling after the constraint
parameterization model was initially optimized only with
modeling constraints for a specified number of epochs.

One might consider OptNet [1] and an analogous version
of the method introduced by Pathak et al. [18] as baselines.

3https://github.com/tfrerix/constrained-nets



However, these approaches incur a significant drawback
for the setup presented in this paper as they are are com-
putationally expensive at training time. An OptNet layer
solves a generic quadratic program as a differentiable net-
work layer, which scales cubically with the number of vari-
ables and constraints. The method by Pathak et al. [18] for
the regression problems in this paper alternates between op-
timization steps in the network parameters via a variant of
stochastic gradient descent and projecting the network out-
put onto the constraints, which is computationally expen-
sive.

4.1. Orthogonal projection onto a constraint set

We learn an orthogonal projection to demonstrate gen-
eral properties of both algorithms. For given linear inequal-
ities specified in H-representation, we solve the following
problem:

min|[z —yll, st Az<0 (6)
z€R4

where y is an MNIST image. Here, the problem is convex;
therefore, the global optimum can be readily computed and
compared to the performance of the learning algorithms. In
this setting, we can expect that training an unconstrained
network with subsequent projection onto the constraint set
at test time yields good results, which can be seen as fol-
lows. Let Pc(y) = argmin, e ||z — yl|, be the orthogonal
projection onto the constraint set C and denote the mean-
squared error as L, (z) := ||z — yl|,. Both mappings are
Lipschitz continuous with Lipschitz constant L = 1. Con-
sequently, for an output ¢ of an unconstrained model,

Ly(Pe(d)) — Ly(Pe(y))| <||Pe(d) — Pe(v)]],

SHQ_yHZ ) (7)

where, by definition, the term L£,(P¢(y)) is the optimal
value of problem (6). The training algorithm fits ¢ to y;
therefore, projecting the unconstrained output ¢ onto the
constraint set will yield an objective value that is close to
the optimal value of the constrained optimization problem.

To have a comparable number of parameters for both
methods, we use a single fully-connected layer in both
cases. For the unconstrained model, we employ an
F(C(784,784) layer, and for the constrained model we em-
ploy an F'C(784,n,.) layer with n,, = 1552 many rays to
represent the constraint set in V-representation. Addition-
ally, the constraint layer first applies a batch normalization
operation [9]. Both models were optimized with an initial
learning rate of 10—, which was annealed by a factor of 0.1
if progress on the validation loss stagnated for more than 5
epochs. The batch size was chosen to be 256. The unit box
constraints were activated after 25 epochs. Additionally, the
data for training the model with all constraints being active

is shown. This mode eventually results in worse general-
ization. Figure 3 shows that the mean-squared validation
objective for both algorithms converges close to the aver-
age optimum. The constraint parameterization method has
a larger variance and optimality gap, which hints at the nu-
merical difficulty of training the constrained network. To be
precise, the best average validation error during training is
within 9% of the optimum for the constraint parameteriza-
tion method and within 1% of the optimum for the test time
projection method. Figure 4 shows a test set sample and the
respective output of the learned models.

1.1
= constraint parameterization (box delay)

g 0.9 = constraint parameterization
= test time projection
g 07+ —— average optimal value
2
ERNER

0.3 T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100
training time [s]

Figure 3. Mean-squared validation loss averaged over all pixels
for 10 runs; shaded area denotes standard deviation. The objective
function (6) is computed on a held-out validation set for the pro-
posed constraint parameterization method and unconstrained opti-
mization with subsequent test time projection. The average opti-
mum over the validation set is obtained as a solution to a convex
optimization problem. For the box delay curve, the box constraints
are activated after 25 epochs (after ~ 30s), which results in better
generalization. The best average validation error during training
is within 9% of the optimum for the constraint parameterization
method with box constraint delay and within 1% of the optimum
for the test time projection method.

Figure 4. Learning to solve the orthogonal projection onto a con-
straint set as defined in (6). Top left: MNIST sample from a test
set. Top right: optimal projection by solving a quadratic program.
Bottom left: test time projection model inference. Bottom right:
constraint parameterization model inference (ours).




Table 1. Inference time for test time projection (TTP) and con-
straint parameterization (CP) methods. Mean and standard devia-
tion of running times are computed over 100 runs of 59000 sam-
ples with a batch size of 256.

METHOD PROJECTION VAE
TTP 82+ 1s 40£1s
CP (ours) 0.46 £0.02s 0.75+0.04s

4.2. Constrained generative modeling

Variational autoencoders (VAE) are a class of generative
models that are jointly trained to encode observations into
latent variables via an encoder or inference network and de-
code observations from latent variables using a decoder or
generative network [10]. We base our implementation on
[2]. The model has a fully-connected architecture:

encoder: F'C(784,256) — ReLU — F'C(256, 2)
decoder: FC(2,256) — ReLU — F'(C(256, 784)

— sigmoid — constraint

Here, ReLU(2) = max(0, =) and the sigmoid non-linearity
takes the form o(z) = 1/(1 + exp(—=x)). In contrast to
a standard VAE, we constrain the samples generated by
the model to obey a checkerboard constraint. The model
was optimized with an initial learning rate of 10~%, which
was annealed by a factor of 0.1 if progress on the vali-
dation loss stagnated for more than 5 epochs. The batch
size was chosen to be 64. The model was trained for 200
epochs while the unit box constraints were activated after
100 epochs. To generate images, we sample the latent space
prior z ~ N/(0,I) and evaluate the decoding neural net-
work (Figure 5). The model is able to sample authentic dig-
its while obeying the checkerboard constraint.

4.3. Fast inference with constrained networks

The main advantage of the proposed method over a sim-
ple projection method is a vast speed-up at test time. Since
the constraint is incorporated into the neural network archi-
tecture, a forward pass has almost no overhead compared
to an unconstrained network. On the other hand, for a net-
work that was trained without constraints, a final projection
step is necessary; this requires solving a convex optimiza-
tion problem, which is relatively costly. Table 1 shows in-
ference times for both models for the above numerical ex-
periments. The constraint parameterization approach is up
to two orders of magnitude faster at test time compared to
the test time projection algorithm.

5. Conclusion

To combine a data-driven task with modeling constraints,
we have developed a method to impose homogeneous linear

Projection Ours

Figure 5. Samples from a constrained variational autoencoder
trained with the test time projection method and our constraint
parameterization method. The images represent authentic digits
while satisfying the imposed checkerboard constraint. Inference
is significantly faster using our method.

inequality constraints on neural network activations. At ini-
tialization, a suitable parameterization is computed and sub-
sequently a standard variant of stochastic gradient descent
is used to train the reparameterized network. In this way, we
can efficiently guarantee that network activations satisfy the
constraints at any point during training. The main advan-
tage of our method over simply projecting onto the feasible
set after unconstrained training is a significant speed-up at
test time of up to two orders of magnitude. An important
application of the proposed method is generative modeling
with prior assumptions. Therefore, we demonstrated exper-
imentally that the proposed method can be used success-
fully to constrain the output of a variational autoencoder.
Our method is implemented as a layer, which is simple to
combine with existing and novel neural network architec-
tures in modern deep learning frameworks and is therefore
readily available in practice.
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Thomas Frerix' Joan Bruna

Abstract

We analyze effective approximation of unitary
matrices. In our formulation, a unitary matrix
is represented as a product of rotations in two-
dimensional subspaces, so-called Givens rota-
tions. Instead of the quadratic dimension depen-
dence when applying a dense matrix, applying
such an approximation scales with the number
factors, each of which can be implemented effi-
ciently. Consequently, in settings where an ap-
proximation is once computed and then applied
many times, such a representation becomes ad-
vantageous. Although effective Givens factoriza-
tion is not possible for generic unitary operators,
we show that minimizing a sparsity-inducing ob-
jective with a coordinate descent algorithm on
the unitary group yields good factorizations for
structured matrices. Canonical applications of
such a setup are orthogonal basis transforms. We
demonstrate numerical results of approximating
the graph Fourier transform, which is the matrix
obtained when diagonalizing a graph Laplacian.

1. Introduction

Unitary operators are ubiquitous in many areas, from numer-
ical linear algebra to quantum computing and cryptography.
Celebrated applications include the QR-decomposition and
the diagonalization of symmetric matrices (Golub & Van
Der Vorst, 2000). Without any assumptions on the struc-
ture of the matrix, applying a unitary transformation in d
dimensions requires O(d?) operations for the matrix-vector
product. In scenarios where a given unitary operator needs
to be intensively applied many times, using approximations
that trade-off accuracy with a better scaling behavior in the
dimension is desirable.

In this paper, we develop a method to compute approxima-
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tions of unitary matrices in the form of Givens factorization
(Givens, 1958). Givens rotations are localized in a two-
dimensional subspace of predefined coordinates. Therefore,
computations with Givens sequences scale with the number
of factors and the computational cost for applying each fac-
tor can be kept low since efficient implementations are possi-
ble (Golub & Van Loan, 2012). Our main motivation comes
from the success story of the Fast Fourier transform (FFT)
(Cooley & Tukey, 1965), which brought down the computa-
tional cost of applying a Fourier transform to O(dlog(d))
operations. This reduction led to a revolution in signal pro-
cessing and was recognized by Sullivan & Dongarra (2000)
as one of the most important algorithms of the 20th century.
However, this speed-up relies on the fact that the classical
Fourier transform is defined over a periodic grid, which pro-
vides many symmetries leveraged in the butterfly structure
of the FFT.

These symmetries do not carry over to unstructured domains
such as graphs and general unitary operators. In fact, using
simple covering bounds, we show that generic unitary ma-
trices require O(d?/ log d) Givens factors to be effectively
approximated. However, the question of approximating
with fewer factors in the presence of structure remains open:
given an element U € U(d), how to produce the best pos-
sible IV-term sequence of Givens rotations G . .. Gy that

minimizesHU -1, GjH ?

Due to the combinatorial nature of selecting Givens sub-
spaces, this is an NP-hard optimization problem. In this
paper, we propose a relaxation based on sparsity-inducing
norms over the unitary group. In essence, given a point
U € U(d), we use the gradient flow of a potential func-
tion f : U(d) — R to define a path that links U to its
nearest signed permutation matrix, the sparsest elements of
the group and thus the global minimizers of f. Then, our
algorithm tries to approximately follow this path using coor-
dinate descent with the Givens factors acting as generators
of the group.

We validate our algorithm on a family of structured orthog-
onal operators, constructed with a planted random sequence
of K Givens factors and demonstrate that effective approxi-
mation is possible in the regime K = O(dlog d). Finally,
we apply our algorithm to approximate a graph Fourier
transform (GFT), the orthogonal matrix obtained when di-
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agonalizing a graph Laplacian.

For ease of exposition, we restrict our discussion to approx-
imating orthogonal group elements. However, this does
not impose a restriction on the outlined approaches, as they
equally apply to the complex unitary group as well as the
real orthogonal group.

2. Related Work

Givens rotations were introduced by (Givens, 1958) to fac-
torize the unitary matrix that transforms a square matrix
into triangular form. The elementary operation of rotating
in a two-dimensional subspace led to numerous successful
applications in numerical linear algebra (Golub & Van Loan,
2012), in particular, for eigenvalue problems (Golub & Van
Der Vorst, 2000). In this context, a Givens sequence fac-
torizes a unitary basis transform, which is an operation of
paramount importance to signal processing.

In contrast to signal processing on a Euclidean domain, re-
cently there has been increased interest in signal processing
on irregular domains such as graphs (Shuman et al., 2013;
Bronstein et al., 2017). In this setting, Magoarou et al.
(2018) considered a truncated version of the classical Ja-
cobi algorithm (Jacobi, 1846) to approximate the orthogonal
matrix that diagonalizes a graph Laplacian. Other notable
strategies to efficiently approximate large matrices with pre-
sumed structure include multiresolution analysis (Kondor
et al., 2014) and sparsity (Kyng & Sachdeva, 2016).

In quantum computation, approximate representation of uni-
tary operators is a fundamental problem. Here, a unitary
operation that performs a computation on a quantum state
needs to be represented by or approximated with few ele-
mentary single- and two-qubit gates, ideally polynomial in
the number of qubits. In the literature of quantum comput-
ing, a Givens rotation is commonly referred to as a two-level
unitary matrix; a generic n-qubit unitary operator can be fac-
torized in such two-level matrices with O (4™) elementary
quantum gates (Vartiainen et al., 2004).

An alternative viewpoint on Givens sequences was ana-
lyzed by Shalit & Chechik (2014). The authors considered
manifold coordinate descent over the orthogonal group as
sequentially applying Givens factors. Consequently, the
minimizing sequence of this algorithm yields a Givens fac-
torization of the initial orthogonal matrix.

In this work, we analyze information theoretic properties
of approximating unitary matrices via Givens factorization.
We then propose to minimize a sparsity-inducing objective
via manifold coordinate descent in a regime where effec-
tive approximation is possible. Subsequently, we apply
this approach to approximate the graph Fourier transform
and demonstrate that the proposed method can find better

sequences compared to a truncated Jacobi algorithm. This
allows to efficiently transform a graph signal into the graph’s
approximate Fourier basis, an essential operation in graph
signal processing.

3. Givens Factorization and Elimination

Givens matrices represent rotations in a two-dimensional
subspace, while leaving all other dimensions invariant
(Givens, 1958; Golub & Van Loan, 2012). Such a counter-
clockwise rotation in the (7, j)-plane by an angle o can be
written as applying G7 (i, 7, ), where

.. 0 0 - 07
0 cos.(a) . sin'(oc) 0
G(i,j,a) = | : Do : (D
0 -+ —sin(a) -+ cos(a) -+ 0
(6 0 e b il

The trigonometric expressions appear in the ¢-th and j-th
rows and columns. Any orthogonal matrix U € R?*¢ that
is arotation, U € SO(d), can be decomposed into a product
of at most d(d — 1)/2 Givens rotations. In general, there
exist many possible factorizations. If U € O(d) \ SO(d),
then it cannot be represented directly by a sequence of
Givens rotations. However, a factorization can be obtained
up to permutation with a negative sign, e.g., by flipping two
columns.

In numerical linear algebra, Givens factors are often used to
selectively introduce zero matrix entries by controlling the
rotation angle. This leads to a constructive factorization al-
gorithm, which demonstrates a d(d — 1) /2-factorization. To
this end, we start with the matrix U € SO(d) and introduce
zeros on the lower diagonal column-wise from left to right
and bottom to top within every column. This is achieved by
choosing the rotation subspace (4, j) and a suitable rotation
angle to zero-out the matrix element (7, j). The elimination
order is illustrated for d = 4 by

2

S ¥ ¥k ¥
EE e

—= N W X
= Ot ¥ %

After N = d(d — 1)/2 steps, we have G% ...GTU = D,
where D is a diagonal matrix with Dy = —1 for an even
number of values and Dy, = 1 otherwise. This result can
be reduced to the identity by selecting two subspaces with
values D;; = D,;; = —1 and applying a rotation by an angle
a = m. We refer to this algorithm by structured elimination.

Apart from this sign ambiguity, we consider factorizations
in the broader sense up to signed permutation of the re-
sulting matrix columns. To be explicit, the set of signed
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permutation matrices is defined as P, == {P € R¥*4|P,; €
{—1,0,1},%; |Pyj| = 14,3, |Pij| = 1 Vi}. For a ma-
trix U € O(d), to measure approximation quality, we denote
an approximation by U and use a symmetrized Frobenius
norm criterion up to a signed permutation matrix as follows:

= min

-7
PePy

v-Up| . ®
F,sym F
The range of (3) over the orthogonal group is [0, v/2d)
as the maximum is obtained for the distance be-
tween Hadamard' matrices H(d) and the identity with
[H(d) = I|| gy /Vd = V225 d = o0. Since || Al[; =

Eznnr(o,n) {HAQPHg} , the criterion measures the average ap-

proximation quality over random Gaussian vectors when
applying U instead of U. The motivation for this defini-
tion is twofold. First, this definition allows us to discuss
Givens factorizations of orthogonal matrices with negative
determinant and henceforth we consider factorization over
the orthogonal group O(d) rather than the special orthogo-
nal group SO(d). Second, it enlarges the class of possible
factorization algorithms to those that cannot distinguish be-
tween signed permutation matrices. Observe that since the
cost of multiplying by a signed permutation matrix is O (d)
(Knuth, 1998), the computational efficiency arguments in
this paper are not affected by the permutation equivalence
class as we are discussing approximations in the regime of
O (dlog(d)) factors.

4. Information Theoretic Rate of Givens
Representation

The elimination algorithm discussed in Section 3 guarantees
to factorize any orthogonal matrix in at most d(d — 1)/2
Givens factors, which corresponds to the dimension of the
orthogonal group. Since each Givens factor is parametrized
by a single angle, it immediately follows that exact Givens
factorization for arbitrary elements U € O(d) necessarily
requires d(d — 1)/2 factors.

Hence, this leads to the question of approximate factoriza-
tion: if one tolerates a certain error ||U — Uz < e, is
it possible to find approximations U= IL,<n Gr with
N = o(d?), ideally with N = O(dlogd)? A covering
argument shows that generic orthogonal matrices in d di-
mensions require at least ©(d?/ log(d)) Givens factors to
achieve an e-approximate factorization. We denote by p
the uniform Haar measure on the unitary group, which we
normalize for each d, u(U(d)) = 1. For notational sim-
plicity, we carry out the proof for the operator 2-norm. An
analogous argument holds by replacing the operator 2-norm
with the Frobenius norm while re-scaling the error by v/d.

' A Hadamard matrix is an orthogonal matrix Hwhose entries
satisfy | H; ;| = 1/+/d for all i, j.

Lemma 1. Let [], .y G, be a product of Givens factors

with rotation angles v, and G,, be the respective perturbed
factors with rotation angles o, + 0., and perturbations
0 <94, <0. Then,

H Gn_

n<N

<2N§ . 4)

II G-

n<N F

Proof. For any orthogonal matrices U, U’, V, V', we have
HU’V’ — UVHF :H(U+U’ - )V — UVHF
<o =), Hw o],
=V =Vl v =Ulp, ®
by using the fact that the Frobenius norm is invariant to

orthogonal matrix multiplication. By iterating this relation,
we obtain

[[G.- 16

n<N n<N

S ZHG”_G"HF . (6)
F n<N

Since G,, and G, rotate in the same subspace,
|Gn — Gal| . = 2¢/1 — cos(8n) - (7)

Inequality (4) follows from /1 — cos(d,,) < 0, <4§. O

Theorem 1. Let ¢ > 0. If N =o(d?/log(d)), then as
d — oo,

[ {U € U(d)‘ it (U~ [16Gxl: < e} —0.

Proof. Consider an e-covering of the unitary group, i.e.,
a discrete set X’ such that infxecx |[U — X||2 < € for all
U € U(d). Since the manifold dimension of the unitary
group is d(d — 1) /2, we need |X| = ©(e~¥4=1)/2) many
balls for that cover. Let N := N(d) be the number of avail-
able Givens factors for approximation at dimension d, and
Ay ={X e U(d)|infg,..cy [IX = [T <y Gnll2 < €/2}
denote the set of unitary operators which can be effectively
approximated with N Givens terms. Now, suppose that
w(An) > ¢ > 0, i.e., the set of group elements admitting
an €/2-approximation has positive measure. This implies
that any e-cover of Ay must be of size ©(e~4?=1)/2) Let
us build such an e-cover.

If we discretize the rotation angle to a value § > 0, then
there are (d(d — 1)/24) many different quantized Givens
factors, denoted by G, and consequently (d(d — 1)/25)N
many different sequences. It follows that if § := 5, the
discrete set Y = {[],,«y Gi, } containing all possible se-

quences of length N of quantized Givens rotations is an
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e-cover of Ay . Indeed, by using Lemma 1 and the fact that
the operator 2-norm is bounded by the Frobenius norm, we
have VX € Ay,

€
-~ — €.

e €
IX=T] Gullz < 1X= ] Gull2+2N6 < S+

2
n<N n<N
. 2d(d-nN\ V.
Since |Y| = (f) , it follows that
N
<2d(d - 1)N> _ g UdD/2y
€
which implies N = O (d?/log d). O

An immediate consequence of Theorem 1 is that generic
effective approximation, i.e., with a number of factors
N = O(dlogd), is information theoretically impossible.
However, the situation may be entirely different for struc-
tured distributions of unitary operators. For that purpose,
we develop an algorithm to obtain effective approximations
based on sparsity-inducing norms.

5. Givens Factorization and Coordinate
Descent on O(d)

In this section, we offer an alternative viewpoint presented
by Shalit & Chechik (2014) that interprets Givens factoriza-
tion as manifold coordinate descent on the orthogonal group
over a certain potential energy.

The orthogonal group O(d) is a matrix Lie group with as-
sociated Lie algebra o(d) = Skew(d) = {X € R4 X =
-X T}, the set of d x d skew-symmetric matrices (Hall,
2003). The tangent space at an element U is T;O(d) =
{XU|X € Skew(d)} and the Riemannian directional
derivative of a differentiable function f in the direction
XU € TyO(d) is given by

Dx f(U) = L f(Exp(aX)U) : (8)

a=0

where Exp : 0(d) — O(d) is the matrix exponential. If we
choose the basis { X;; = e;e] —ejef |1 <i < j < d} for
the tangent space, then D, f(U) represents the directional
derivative in such a coordinate direction. A coordinate
descent algorithm uses a criterion to choose coordinates

(4,7) and a step size (rotation angle) « to iteratively update
UMl = Exp(—aX,;)U" . 9)

A greedy criterion determines the best descent on f by a
search over all possible coordinate directions {X;; }i<;<a
with the optimal step size obtained by a line search.

A Givens factor can be interpreted as a coordinate descent
step over the orthogonal group. This follows from the rela-
tion

Exp(—aX;;) = G (i,j,a) . (10)

In d = 3, an explicit example of the correspondence be-
tween Lie algebra and Lie group elements is

0 0 O 1 0 0
0 0 —a | — | 0 cos(a) —sin(a)
0 o O 0 sin(a) cos(a)

11

Suppose we want to minimize a function f over the orthog-
onal group,

pin f(U) (12)
Then minimizing (12) with manifold coordinate descent
iterations (9) yields a Givens factorization of the initial
point U°. A truncated sequence leads to an approximate
factorization. From this viewpoint, the quality of a Givens
factorization can be controlled by properties of the function
f. In the following, we construct an objective function that
results in approximate factorization with less than O(d?)
factors.

6. Sparsity-Inducing Dynamics

To factorize a matrix U € O(d) one may choose it as an
initial value to problem (12) when minimizing a suitable
potential function f with manifold coordinate descent. We
want to find a factorization up to signed permutation of the
matrix columns. As the signed permutation matrices are
the sparsest orthogonal matrices, we consider an energy
function that quickly enforces sparsity, the element-wise
L1-norm of a matrix,

d
fU)=d Uy =d > |Uy| . (13)

ij=1

Although f is convex in RY (since it is a norm), due to the
non-convexity of the domain, the problem ming coq f(U)
is non-convex . The landscape of f characterizes the class
of orthogonal matrices that admit effective Givens approxi-
mation. It is easy to see that the global minima of f in O(d)
consist of signed permutation matrices, with min f(U) = 1,
and the global maxima are located at Hadamard matrices,
with max f(U) = v/d. A more involved question concern-
ing the presence or absence of spurious local minima of f
is of interest. The following proposition partially addresses
this question by showing that critical points of f are neces-
sarily located at U € O(d) with some of its entries set to
zero.
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Proposition 1. Let 2 € R?*? and let

—sin(«)
cos(a)

cos(«)
sin(a)

R(a) = (14)

be a counter-clockwise rotation in the plane by an angle .
Consider the function g(o) = ”R(a)x”l. Then, at every
local minimum o™ of g there exist indices k,l such that

(R(a*)z) w =0

Proof. We show equivalently that any stationary point o*
with (R(a*)z) w 7 0 Vk,lis alocal maximum. At any
such point the function g is twice continuously differentiable
and the second derivative is

82
@é = —gla®) <0. (15)

a*

Consequently, any stationary point under this assumption
must be a local maximum. O

Proposition 1 implies that for a given subspace (3, j), the
best rotation angle can be found by checking all axis tran-
sitions for the 2D points (u;, u;;), k € {1,...d} and se-
lecting the angle that most minimizes the objective among
them. It also implies that any local minimum of f must
correspond to an orthogonal matrix with at least d zeros
placed at specific entries, such that no two rows or columns
have the same support. Indeed, Proposition 1 implies that
there exists a continuous path ¢t — U(t) = G(i, 7, a(t))
with a(0) = 0, generated by a Givens rotation of angle
a(t), such that f(U(t)) is non-increasing at ¢ = 0, provided
one can find two rows or columns of U with the same sup-
port. However, this result does not exclude the possibility
that f has spurious local minima at matrices U with the
above special sparsity pattern. In fact, we conjecture that
the landscape of f does have spurious local minima.

A manifold coordinate descent on the objective function
f is explicitly stated in Algorithm 1. The crucial step in-
volves optimizing this objective in the rotation angle « for a
given subspace (4, j), which is a non-convex optimization
problem. Nevertheless, the global optimum can be found as
stated by Proposition 1. In d dimensions, this step requires
d operations. Consequently, due to the squared dimension
dependence of the double for-loop, a naive implementation
of Algorithm 1 would require O (dg) operations . However,
applying the selected Givens factor in each step changes
only two rows of the matrix; thus, in the subsequent iter-
ation, only those pairs of rows that involve the previously
modified ones need to be re-computed. These are O (d)
rows and altogether the runtime of an iteration is O (d?).

Algorithm 1 Coordinate descent on the L -criterion
Input: initial value U° € O(d), f(U) =||U],
repeat

fori =1toddo
for j =1toddo
if a; not up-to-date then
aj; = argmin, (G (i, ], a)Uk)
end if
end for
end for
i*,j* = argmin, ; f(G" (i, j, aj;)U¥)
Uk+1 — GT(i*,j*, a:ﬁ*]*)Uk
until | U+

—1I|| < £ or mazIter is reached
F,sym

7. Numerical Experiments
7.1. Planted Models

Theorem 1 shows that we cannot expect to find good
approximations to Haar-sampled matrices with less than
O (d?/log(d)) Givens factors. Therefore, we focus on a
distribution for which we can control approximability. We
use the uniform distribution over the set {U € SO(d)|U =
G;---Gk,Gr = G(ig, jr, o)}, where each Gy, is ob-
tained by first sampling a subspace uniformly at random
(with replacement), and then sampling the corresponding
angle uniformly from (0, 27). We denote the resulting dis-
tribution by the K -planted distribution vx . While this dis-
tribution may be sparse in the number of Givens factors for
K < d(d — 1)/2, this does not imply that the resulting
matrices are sparse. In fact, products of Givens matrices be-
come dense quickly. It follows from the Coupon Collector’s
Lemma that matrices generated with ©(d log,(d)) Givens
factors are already dense with high probability. To visualize
this effect, Figure 1 shows the Ly-norm as a function of
planted Givens factors.

We compare the following factorization algorithms. A
greedy baseline iteratively finds the Givens factor that most
minimizes the objective (3). The structured elimination al-
gorithm described in Section 3 yields a sequence of Givens
factors that eliminate matrix entries in the order (2) and is
guaranteed to find a perfect factorization with d(d — 1)/2
factors. Our sparsity-inducing algorithm minimizes the L;-
criterion (13) via a manifold coordinate descent scheme.?

In an initial experiment, we demonstrate the approximation
effectiveness of these algorithms; the results are shown in
Figure 2. They indicate that minimizing the L;-criterion im-
proves over directly minimizing the Frobenius norm (greedy

2 An implementation of these algorithms can be found at
https://github.com/tfrerix/
givens—-factorization
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Figure 1. Average sparsity based on 100 samples of matrices drawn
from the K-planted distribution over SO(d) for increasing K.
Standard deviation is negligible and not shown. Matrices become
dense quickly as the number of planted Givens factors grows. In
particular, matrices sampled from the d log, (d)-planted distribu-
tion are already dense.

baseline). Next, we analyze the approximability of samples
drawn from the K -planted distribution v, as a function of
K. To obtain a Givens sequence, we factorize these sam-
ples with manifold coordinate descent on the L;-objective
(13). Along the optimization path, we define N (U) as the
number of Givens factors for which the normalized approxi-
mation error (3) is smaller than € = 0.1, i.e.,

HU—Gl...GNHF,
N SV~ 16
’ NG o (1o

We refer to a Givens sequence with such N (U) factors as an
e-factorizing sequence of U. In Figure 3, the sample average
N, =n"'3>" | N(U;) for n = 10 samples is shown as
a function of K. We are interested in the rate at which N,
grows for increasing K. The data in Figure 3 show that
for K = adlog,(d) and N. = Bdlog,(d), the ratio 5/« is
not independent of d. For the shown dimension regime this
implies that for K = O (d log(d)), N, grows polynomial
in d, albeit with small rate for few planted factors. To make
this relation more precise, we extract the exponent 1 of a
model N, ~ d". Figure 4 shows that the growth is slightly
superlinear in the few-factor regime and becomes quadratic
towards K = dlog,(d). Analytically characterizing such
growth is left for future work.

N(U) := min {

That said, our initial results suggest the existence of a
computational-to-statistical gap for the recovery (or detec-
tion) of sparse planted Givens factors. Indeed, Theorem 1
proves that recovery with K = O (d2 / log d) planted
factors is information-theoretically possible, whereas
our greedy recovery strategy is only effective for

1.2
1.0 o
<
-~ -
= 0.8
P
&
= 0.6
|
2 04
0.2
0.0 T T T T T
0 10 20 30 40 50
N/dlog,(d)
— ] structured elimination === greedy baseline

Figure 2. Average Frobenius norm approximation error in
d = 1024 dimensions when factorizing 10 samples drawn from
the dlog,(d)-planted distribution over SO(d) with d(d — 1)/2
factors. Shaded area denotes standard deviation.

K = O(dlogd). The mathematical analysis of our co-
ordinate descent algorithm in the regime where effective
approximation is feasible is beyond the scope of the present
paper. In particular, proving that N. = O (d log d) is suffi-
cient when K < dlog d remains an open question.

7.2. Application: Graph Fourier Transform

The method introduced in this paper is useful in situations
where one at first computes an approximation to a unitary
operator, which is subsequently applied many times. Hence,
the trade-off between initial computation and approximation
on the one hand and efficient application on the other hand
is in favor of the latter. Canonical examples for this scenario
are orthogonal basis transforms. In this paper, we draw mo-
tivation from the FFT, which yields a speed-up of applying
a Fourier transformation over a regular grid domain from
O(d?) to O(dlog(d)) time complexity (Cooley & Tukey,
1965). However, these speed-ups do not catrry over when
the domain is unstructured, such as general graphs. Here,
we compute an effective approximation of the graph Fourier
transformation (GFT). Consider a simple, undirected graph
with degree matrix D and adjacency matrix A. The unnor-
malized graph Laplacian is defined as L := D — A, which
is a positive semi-definite, symmetric matrix. The GFT is
represented by the orthogonal matrix that diagonalizes L.

A baseline for our method is the Jacobi algorithm (Jacobi,
1846), which diagonalizes a symmetric matrix L by greedily
minimizing the off-diagonal squared Frobenius norm,

d
off(L) =|Ll% = > Lix - (17)
k=1
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Figure 3. Average number of Givens factors necessary to factorize
a K-planted matrix in d € {256,512,1024} dimensions up to
desired accuracy as a function of K. Here, e = 0.1 is the accuracy
as defined in expression (16). Note that the x-axis is shown with
unequal spacing to highlight the relevant regime of the data. The
inset plot shows a zoom of the first data points.

This is achieved by zeroing-out the largest matrix element
in absolute value at every iteration. To this end, a Givens
matrix similarity transformation with a suitably chosen rota-
tion subspace and rotation angle is applied. However, the
Jacobi algorithm does not guarantee factorization in a fi-
nite number of steps; in particular, it may take more than
N = d(d —1)/2 iterations. In fact, the algorithm converges
linearly (Golub & Van Loan, 2012),

off(LFF1) < <1 - ;) off(LF) . (18)

If the iteration number £ is large enough, quadratic conver-
gence was shown by Schonhage (1964). Hence, the method
is ineffective for small iteration numbers and in high dimen-
sions. A truncated version of this algorithm was used by
Magoarou et al. (2018) to obtain an approximation to the
GFT. The objective (17) of the Jacobi method is motivated
by approximating the spectrum of the symmetric matrix
through the Gershgorin circle theorem (Gershgorin, 1931).
However, we argue here that a criterion focused on approx-
imating the eigenbasis of the symmetric matrix directly
yields a more effective approximation to this orthogonal
basis transformation. We consider the eigendecomposition
L = UAUT and compute an approximation of the orthog-
onal matrix U with the algorithms outlined in Section 7.1.
We demonstrate this procedure on Barabdasi-Albert random
graphs and several real world graphs.

The Barabasi-Albert model starts with ny unconnected ver-
tices and iteratively adds vertices to the graph, which are
connected to a number m of already existing ones with
a probability proportional to the degree of these vertices.
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K/dlogy(d)

Figure 4. Polynomial growth rate n of the model N ~ d" as a
function of the number of planted factors estimated from d €
{256,512,1024}. Note that the x-axis is shown with unequal
spacing to highlight the relevant regime of the data.

Table 1. Construction of Barabdsi-Albert graphs. An n-vertex
graph is constructed by choosing ng = my, initial vertices, then
adding vertices and connecting them to mj, of already existing
ones with a probability proportional to the degree of these ver-
tices. my, is chosen such that the number of resulting edges is
approximatly & - 0.25n(n — 1) /2.

n 64 128 256 512 1024
my 54 109 218 437 874
me 36 69 136 267 528

This construction is known as preferential attachment and
induces a scale-free degree distribution found in real world
graphs (Barabasi & Albert, 1999). The details of gener-
ating these graphs are described in Table 1. We approx-
imate the corresponding graph Laplacians with n log,(n)
factors leading to the results shown in Figure 5. While our
sparsity-inducing algorithm yields better factorizations in
most cases, there exist scenarios, where the greedy base-
line results in better approximations (d € {512,2014} for
~ 0.25nlog,(n) edges). Finally, we demonstrate approx-
imate factorization of the graph Laplacian of various real
world graphs listed in Table 2. Our L;-algorithm yiels the
best factorization for the Minnesota, HumanProtein, and
EMail graphs, while the greedy baseline algorithm is supe-
rior for the Facebook graph.

A simple strategy to improve the performance of our L
greedy method with mild computational overhead is to per-
form beam-search, which is beyond the scope of this paper.
Overall, it remains an open question to more closely charac-
terize the graphs for which our sparsity-inducing algorithm
yields effective approximations of the GFT.
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Figure 5. Approximate factorization of the graph Laplacian of n-
vertex Barabdsi-Albert graphs with n log, (n) factors. Data points
are averages of 10 samples, vertical lines denote standard de-
viation. The solid (—) lines show factorizations of graphs with
~ 0.5n(n — 1)/2 edges, while the dashed (- -) lines show factor-
izations of graphs with ~ 0.25n(n — 1)/2 edges.

Table 2. GFT approximation for real world graphs with n vertices
and n. edges.

n Ne
MINNESOTA 2642 3304
(Defferrard et al.)
HUMANPROTEIN 3133 6726
(Rual et al., 2005)
EMAIL 1133 5451
(Guimera et al., 2003)
FACEBOOK 2888 2981

(McAuley & Leskovec, 2012)

8. Discussion

We analyzed the problem of approximating orthogonal ma-
trices with few Givens factors. While a perfect factorization
in O (d?) is always possible, an approximation with fewer
factors is advantageous if the orthogonal matrix is applied
many times. We showed that effective Givens factorization
of generic orthogonal matrices is impossible and inspected
a distribution of planted factors, which allows us to control
approximability. Our initial results suggest that sparsity in-
ducing factorization is promising beyond the sparse matrix
regime. However, it remains an open problem to further
characterize the matrices that admit effective factorization
using manifold coordinate descent on an L -criterion.

This work opens up questions we believe are important both
from a theoretical and an applied perspective. On the theory
side, important problems arising from our analysis are: (i)
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Figure 6. Approximate factorization of the graph Laplacian of var-
ious n-vertex real world graphs with n log,(n) factors.

a complete description of the landscape of f(U) = ||U]1
over the orthogonal and unitary groups, (ii) a precise classi-
fication of the detection threshold K (d) below which it is
possible to discriminate a K-planted sample from a Haar
sample in polynomial time, and (iii) a guarantee that the
proposed sparse Givens coordinate descent algorithm re-
quires N = O(dlogd) terms for K < Cdlogd for some
constant C' > 0. These questions suggest a learning ap-
proach whereby our sparsity promoting potential f would
be replaced by a classifier fy trained to discriminate be-
tween K -planted and Haar distributions. From an applied
perspective, the method allows to approximately invert a
time-varying symmetric linear operator H (t). Similar to
the Woodbury formula for low-rank updates of an inverse,
one could set up an approximate Givens factorization of the
eigenbasis of H (ty), and update it efficiently at subsequent
times. If successful, this could dramatically improve the ef-
ficiency of second-order optimization schemes, where H (t)
is the Hessian of a loss function.
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Abstract

Variational data assimilation optimizes for an ini-
tial state of a dynamical system such that its evo-
lution fits observational data. The physical model
can subsequently be evolved into the future to
make predictions. This principle is a cornerstone
of large scale forecasting applications such as nu-
merical weather prediction. As such, it is imple-
mented in current operational systems of weather
forecasting agencies across the globe. However,
finding a good initial state poses a difficult opti-
mization problem in part due to the non-invertible
relationship between physical states and their cor-
responding observations. We learn a mapping
from observational data to physical states and
show how it can be used to improve optimizability.
We employ this mapping in two ways: to better
initialize the non-convex optimization problem,
and to reformulate the objective function in bet-
ter behaved physics space instead of observation
space. Our experimental results for the Lorenz96
model and a two-dimensional turbulent fluid flow
demonstrate that this procedure significantly im-
proves forecast quality for chaotic systems.

1. Introduction

Variational data assimilation provides the basis for numer-
ical weather prediction (ECMWEF, 2019), integrating the
non-linear partial differential equations describing the atmo-
sphere. The core algorithm is an optimization problem for
the initial state of the system, such that when the equations
of motion are evolved over time, the resulting trajectories
are close to the measurements. Continuing to evolve the
physical system into the future then yields a forecast (Fig-
ure la). Over the last decades, these algorithms have led
to a steady improvement in forecast quality, though further

'Google Research *Technical University of Munich
SHarvard University.  Correspondence to: Thomas Frerix
<thomas.frerix @tum.de>, Stephan Hoyer <shoyer@google.com>.

Proceedings of the 38" International Conference on Machine
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Figure 1. Overview of the proposed method. (a) The principle
of variational data assimilation. The goal is to optimize for an
initial state (large blue dot) of a physical system such that the
evolution over an assimilation window (solid line) is close to
measurements (small gray dots). The model is subsequently used
to make predictions into the future (dashed line). (b) Improving
optimizability of variational data assimilation. We use a learned
inverse observation operator to better initialize the optimization
problem (red dots) and to transform the non-convex objective
function to be better behaved. (¢) Data assimilation results of the
proposed method compared with a traditional algorithm. Depicted
is a vorticity prediction of a two-dimensional turbulent fluid flow.
The proposed method more accurately captures vorticity features
(yellow squares).

improvements are limited by computational resources. Data
assimilation accounts for a significant fraction of the compu-
tational cost for numerical weather prediction. This restricts
the amount of data that can be assimilated and only a small
volume of available satellite data is utilized for operational
forecasts (Bauer et al., 2015; Gustafsson et al., 2018).
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Weather forecasting systems are complex algorithmic
pipelines (Bauer et al., 2015). Recent work has shown that
in some cases forecasts can be improved by replacing the
entire system with a machine learned prediction (see, e.g.,
(Sgnderby et al., 2020; Ham et al., 2019)). This approach is
very powerful, but physical models remain more accurate
for global weather forecasting (Rasp et al., 2020). More-
over, they offer guarantees of generalization, interpretability
and physical consistency because they are built upon well-
known physical principles. In fact, some of the best pure
machine learning approaches rely upon pre-training with
simulation data due to insufficient historical observations
(Rasp & Thuerey, 2020; Ham et al., 2019). Additionally,
physical modeling facilitates the principled coupling of pro-
cesses on different characteristic spatial and time scales, e.g.,
the atmosphere, ocean, and land surfaces, which is critical
for complex forecasting applications (Bauer et al., 2015).
Consequently, a more promising approach may be to aug-
ment physical models with machine learning (Watt-Meyer
et al., 2021; Kochkov et al., 2021).

In this paper, we augment a traditional variational data as-
similation algorithm with machine learning. We use the
equations of motion to evolve the dynamical system, while
machine learning is used only to improve the optimization
problem for calculating the initial state. To this end, we
learn an approximate inverse to the observation operator.
Using this mapping, we provide an effective initialization
scheme for the non-convex optimization problem and trans-
form the objective function for the variational data assimila-
tion problem to be better behaved (Figure 1b). We generate
observational data from two model problems, a classical
model for data assimilation introduced by Lorenz (Lorenz,
1995), and a turbulent fluid flow in two spatial dimensions.
We demonstrate that the algorithm enhanced with machine
learning leads to a substantial performance improvements
over the baseline. Figure 1c shows an example of an im-
proved forecast.

2. Related Work

Data assimilation is a suitable formalism for combining
physical modeling with machine learning since large scale
applications are characterized by rich physics and large
amounts of data. Both approaches can be viewed in the
framework of Bayesian inference (Geer, 2020). Machine
learning approaches to modify the physical model for data
assimilation include a learned correction to an approximate
model (Farchi et al., 2020; Brajard et al., 2020a), training a
machine learning model to completely emulate the physics
(Brajard et al., 2020b), and learning a forcing term within
the weak-constraint 4D-Var formulation (Bonavita & Laloy-
aux, 2020). In contrast, we use an exact physical model
and modify the representation of observations using ma-

chine learning. Mack et al. (2020) formulate variational
data assimilation in a latent space derived by training an
autoeconder. The dimensionality reduction allows for sig-
nificantly faster optimization. However, this approach loses
physical guarantees for decoded states.

Integration of dynamical systems is a central component
of data assimilation. However, simulating high-resolution
dynamics quickly becomes computationally intractable. To
ameliorate this issue, several recent works combine tradi-
tional numerical solvers with machine learning to obtain
high-resolution physics from coarser simulations. Mesh-
freeFlowNet (Jiang et al., 2020) continuously parameterizes
the spatial domain by learning an interpolation function for
each grid cell. Um et al. (2020) incorporate a correction op-
erator directly into the numerical solver and train this func-
tion to nudge an inaccurate solution towards a more accurate
one. The authors of (Bar-Sinai et al., 2019; Zhuang et al.,
2020) learn a discretization scheme for PDEs that better
captures the unresolved physics, leading to improvements
over ad hoc finite difference discretization methods. Using
a fully differentiable computational fluid solver, Kochkov
et al. (2021) demonstrate that with this approach the grid
resolution can be reduced by an order of magnitude without
sacrificing accuracy. Similarly, we use a fully differentiable
solver for our model systems and our approach may there-
fore be complemented by such ideas.

Variational data assimilation requires solving a difficult op-
timization problem. Our approach of improving optimiz-
ability of this problem with machine learning can be con-
textualized with other works that employ machine learning
to transform a physics constrained optimization problem.
In the context of simulating mechanical materials, Beatson
et al. (2020) approximate the inner problem of a bi-level
optimization problem by a learned function, thus crucially
reducing the the computation cost. To optimize photonic de-
vice designs, Kudyshev et al. (2021) train for a compressed
design space with an adversarial autoencoder. This space is
then explored using an evolutionary algorithm. Ackmann
et al. (2020) learn a preconditioner to improve the solu-
tion of a linear system arising during the integration of a
shallow-water model. As with our approach, the precondi-
tioned system does not suffer from generalization issues of
the machine learning model. We can guarantee a certain per-
formance level by defaulting to a classical method. Various
works improve optimization problems not with a compo-
nent learned from training data, but by reparameterizing
the objective function with a neural network architecture.
The neural network here acts as an overparameterization
with a specific inductive bias, e.g., convolutional neural net-
works for building hierarchical, multi-scale representations
(Hoyer et al., 2019; Ulyanov et al., 2018) or fully-connected
networks for continuous representations (Mildenhall et al.,
2020).
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3. Variational Data Assimilation

The state of the art variational data assimilation algorithm is
called 4D-Var (Bannister, 2017). It minimizes an objective
function of the form

J(xo) =(x0 — mb)TB_l(mo — xb)

+ > (M) — y) "R (H(wr) — y)
Tt41 :M(xt) (1)

The goal is to produce a maximum likelihood estimate of the
initial state x( of a trajectory (x1, ..., xr) that is evolved
through a physics model M, given a sequence of obser-
vations (y1,...,yr). The observation operator H, maps
physical states into the space of observations. As an ex-
ample, the physics model could be the Navier Stokes equa-
tions for evolving a weather system, and the observation
operator could measure the state of the atmosphere at dis-
crete weather stations. The loss J(zo) models the initial
condition and conditional distribution of observations as
a multi-variate normal distribution. The first term incor-
porates a guess for the initial state x( (the so-called back-
ground state z*), where B is the background covariance
matrix, representing the uncertainty about this assumption,
i.e., 2o ~ N(2®, B). Similarly, the matrix R models the
observation error covariance, i.e., yz ~ N (H(z:), R). The
simplifying assumption of Gaussian background and obser-
vation errors may suffer from model misspecification when
applied to real-world data (Bocquet et al., 2010). Altogether,
this amounts to solving a non-linear least squares problem.
We denote the initialization of this optimization problem by
initial condition and refer to an initial state to describe the
first state x( of a physics trajectory.

4D-Var minimizes objective functions of the form (1)
via gradient based optimization. To forecast a trajectory
(z1,...,x7), the objective (1) is minimized to estimate x
over a fixed-length window of observations, the so-called
assimilation window, which is shifted in time. The fore-
cast state from a previous assimilation window becomes the
background state for the next assimilation window. Mini-
mizing (1) is a difficult optimization problem for various
reasons (Andersson et al., 2005): First, the physics model
M is in general non-linear or even chaotic, so that small
changes in the initial state can lead to large changes in an
integrated state. Secondly, the observation operator H that
reduces information from physics trajectories to observa-
tions is usually non-invertible and possibly non-linear.

In what follows, we focus on the difficulty posed by the
observation operator #, and learn an approximate inverse to
‘H that maps the observational data to the space of physical
states. For simplicity, we focus our analysis on a fixed time
horizon without a shifting assimilation window. Moreover,

we neglect prior modeling of the initial state, so that we
omit the first term in (1). Finally, we neglect an explicit
observation noise model, i.e., we set R to be the identity
matrix. This amounts to studying the following simplified
version of the 4D-Var model:
T
T(wo) = > |IH(ze) — el l5,

t=0

Tep1 = M(x)  (2)

The method presented in this paper is not restricted to this
setting, but equally applies to the general 4D-Var problem.
However, to study the effect of the observation operator
‘H on the optimization problem, additional aspects of the
problem are not necessary.

4. Learning an Inverse Observation Operator

To be precise, we distinguish the space P of physical states
or physics space and the space O of observations or observa-
tion space. The observation operator H : P — O maps the
physics space P to the observation space O. The variational
data assimilation objective (2) is formulated in observation
space. However, the non-invertibility (and potential non-
linearity) of H makes minimizing this objective difficult.
The key idea of this paper is to parameterize an approximate
inverse hg : O — P and to use machine learning to train
the parameters 6. The training target is to map observations
to corresponding physical states, in our notation to obtain
ho(y:) ~ x:. While in practice there is ample training
data from historical observations, in this work we revert to
simulations for generating training data.

In order to exploit both spatial and temporal correlations,
we construct a fully-convolutional architecture in space and
time. Fully-convolutional architectures are natural for sev-
eral reasons: they use local filters and therefore enforce the
locality of the underlying equations of motion. Addition-
ally, the number of parameters in a convolutional layer does
not increase with input size. This is vital because typical
physics models M are discretized over large grids.

We implement our models for the approximate inverse in
JAX (Bradbury et al., 2018) and use Flax as neural network
library, with the Adam optimizer (Kingma & Ba, 2015) and
learning rate of 10~ for training!. We also use JAX to im-
plement differentiable simulators for the physics model M
that arises inside the objective function (2) (Kochkov et al.,
2021). Operational numerical weather prediction models
similarly make use of differentiable simulators, where they
are known as adjoint models. All models can be trained and
optimized on a single NVIDIA V100 GPU.

We use the trained inverse observation operator for two
aspects of the optimization problem. First, we map the

"https://github.com/googleinterns/
invobs—-data-assimilation
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Figure 2. Variational data assimilation with a learned inverse ob-
servation operator. The learned inverse observation mapping is
denoted by red, hollow arrows. We approximately invert an ob-
servation trajectory and choose its first state as an initialization of
the non-convex optimization problem. The hybrid optimization
approach first minimizes (3) in physics space and subsequently
uses the optimization result to initialize refinement minimization
of (2) in observation space.

earliest trajectory of observations to a trajectory in physics
space and then use its first state as an initialization to the
optimization problem. Secondly, we substitute (2) with a
reformulated objective function in physics space:

T
J(xo) =Y _llee —ho(y)ll3, @41 = M(z) ()
t=0

An overview of this method is depicted in Figure 2. The ob-
jective functions (2) and (3) are not equivalent, rather we use
(3) as a proxy for (2). As we will show in Section 5, mini-
mizing (3) is a more benign optimization problem compared
to minimizing (2). However, the caveat with minimizing (3)
is that we can only expect hy to be an approximation that
does not even guarantee to map to a physical state, i.e., a
state that one could encounter under the statistically station-
ary dynamics of the model. As a consequence, we adopt a
hybrid approach where we first minimize (3) and use the
optimization result to initialize minimizing (2) for further
refinement.

5. Results

We demonstrate this approach on two chaotic dynamical sys-
tems, the Lorenz96 model (Lorenz, 1995) and Kolmogorov
flow (Chandler & Kerswell, 2013). As our baseline, we
follow a common approach (Bannister, 2008) and assimilate
in observation space over a set of uncorrelated variables,
i.e., we minimize (2) after a whitening transformation to
& = C~Y/2g, where C is the empirical covariance matrix

over a set of 10° independent samples from the stationary
distribution of the respective dynamical systems. The em-
pirical covariance matrix might not be positive definite, an
issue that is often encountered in applications (Tabeart et al.,
2020). To ensure positive definiteness, we threshold the
spectrum of C at 1076, To be precise, we solve

T
min_[[H(C2E) = w3, &an = CTEM(CH3)
[0 =0

4)

We use L-BFGS (Nocedal & Wright, 2006) as an optimizer
for assimilation, retaining a history of 10 vectors for the
Hessian approximation. An optimization step in physics
and observation space incurs a comparable computational
cost, since the inverse observation operator is applied prior
to optimization to modify the fitting targets.

We measure the quality of forecasts by an L; point-wise
error metric € between two states 21, zo:

e(z1,22) = |lz1 — 2211 /7, )

where we scale this metric to a relative error by dividing
by a mean error v of random independent states sampled
from the stationary distribution of the dynamical system.
This metric can be easily interpreted: an order unity error
implies the average performance of a random evolution of
the system. We compare the optimized forecasts with the
evolution from a ground truth initial state on a set of 100
test trajectories.

5.1. Lorenz96 Model

The single-level Lorenz96 model (Lorenz, 1995) is a pe-
riodic, one-dimensional model where each grid point is
evolved according to the equation of motion

% = —Xp-1(Xp—2 = Xp1) = X + F . (6)
Here, the first term models advection, the second term rep-
resents a linear damping, and F' is an external forcing. We
choose a grid of size K = 40 and an external forcing F' = §,
parameters where the system is chaotic with a Lyapunov
time of approximately 0.6 time units. For an observation
operator, we use subsampling. We integrate trajectories over
an assimilation window of 7' = 10 time steps with a time
increment of A¢ = 0.1 time units starting from an initial
condition in the statistically stationary regime, i.e., where
>, X7 fluctuates around a constant mean value.

We now demonstrate how a learned inverse observation oper-
ator significantly improves forecast results by providing an
effective initialization scheme for the non-convex optimiza-
tion problem and by formulating a more benign objective
function in physics space P instead of observation space O.
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LAYER (T, X, C)
INPUT (10, 10, 1)
Conv2D + BN + SILU (10, 10, 128)
UPSAMPLE + CONV2D + BN + SILU (10, 20, 64)
UPSAMPLE + CONV2D + BN + SILU (10, 40, 32)
Conv2D + BN + SILU (10, 40, 16)
CoNnv2D (10,40, 1)

Table 1. Fully-convolutional network for training the inverse ob-
servation operator for the Lorenz96 model. The table shows a
layer with its respective output array dimensions time (T), space
(X), and channel (C). The CONV2D layer applies periodic con-
volution in the space dimension and zero-padded convolution in
the time dimension. The filter size for all convolutional layers is
(3,3). BN denotes batch normalization. To upscale the grid by a
factor of 2 in layers two and three, we use cubic interpolation. As
a non-linearity we use the sigmoid-weighted linear unit (SILU),
silu(z) = /(1 + exp(—z)).

As an observation operator for the following experiments,
we observe every 4th grid point. To approximate the inverse
observation operator, we train a fully-convolutional network
as described in Table 1. We train on a dataset of 32000
independent observation trajectories with batch size 8 for
500 epochs.

For data assimilation, we compare two initialization
schemes. The baseline averaging initialization scheme ini-
tializes the optimizer with the observed grid points and uses
the average over a data set of independent states as an es-
timate of the unobserved grid points. This is equivalent
to a least-squares fit of the unobserved grid points. The
inverse initialization scheme uses the learned inverse ob-
servation operator to create the initialization. To this end,
we map a sequence of observations to a physical trajectory
and use its first state for initialization as depicted in Fig-
ure 2. Figure 3 shows a qualitative comparison of these
two initialization schemes, demonstrating that the learned
inverse mapping leads to a much more accurate initializa-
tion. We found that first optimizing for an initial condition
from a previous assimilation window, as in 4D-Var, does
not improve baseline initialization. We compare optimizing
in observation space (baseline) with the hybrid approach
of first optimizing in physics space and then refining the
results in observation space. For a fair comparison, both
optimization methods are limited to 500 optimization steps
with the hybrid method assigning 100 of these steps to op-
timization in physics space and the remaining 400 steps to
refinement in observation space. The forecast results are
shown in Figure 4. Inverse initialization improves forecasts
for observation space optimization compared with average
initialization. For the inaccurate averaging initialization,
hybrid optimization significantly improves forecast quality
compared with observation space optimization. This sug-

inverse init average init
} 1
I
5
0
75 - -
0 grid 40 0 grid 40

Figure 3. Comparison of initialization (solid red) with the ground
truth initial state (dashed blue). The observed grid points are
marked as yellow dots. The learned inverse observation mapping
takes a trajectory of such subsampled states as input and gener-
ates the inverse initialization. Inverse initialization is much more
accurate than averaging initialization.
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Figure 4. Forecast quality with a learned inverse observation oper-
ator for the Lorenz96 model. Quality measure is the L forecast
error relative to a random evolution of the system. Depicted is
the mean error based on a sample of 100 trajectories. The vertical
dashed line separates the assimilation window from the forecast
window. Inverse initialization improves forecasts for observation
space optimization compared with average initialization. For the
inaccurate averaging initialization, hybrid optimization signifi-
cantly improves forecast quality compared with observation space
optimization. Adding inverse initialization to the hybrid optimiza-
tion approach leads to a small additional improvement, which is
significant with a p-value of p < 1074

gests that by first optimizing in physics space, we obtain
an initialization for refinement in observation space that is
located at a favorable basin of attraction. Adding inverse
initialization to the hybrid optimization approach leads to a
small additional improvement.

Figure 5 shows an example forecast of the system. The
hybrid method initialized with the learned inverse mapping
is able to capture the ground truth evolution of the system.
In contrast, for the baseline method a visible approximation
error remains throughout the system integration.
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Figure 5. Forecast trajectory for the Lorenz96 model optimized
from the initial conditions depicted in Figure 3. The forecast trajec-
tory based on optimization with the inverse observation operator
(inverse initialization, hybrid optimization) is qualitatively much
closer to the ground truth evolution of the system than the baseline
method (averaging initialization, observation space optimization).

5.2. Two-Dimensional Turbulence

Next, we study data assimilation for a two-dimensional tur-
bulent fluid (Boffetta & Ecke, 2012). Machine learning in
this setting requires modeling richer physics and poses a
much more demanding computational problem. Further-
more, having in mind the application of data assimilation to
numerical weather prediction, this class of models can be
considered as the simplest approximation to modeling the
flow of the atmosphere.

We consider the incompressible Navier-Stokes equation for
a velocity field u and a pressure field p:
Ju 9
E—FuVu—uVu—l—Vp—F:O @)
V-u=0,

where v is the kinematic viscosity of the fluid. We choose
the external forcing F' to correspond to Kolmogorov flow
(Chandler & Kerswell, 2013), with linear damping (Boffetta
& Ecke, 2012) to ensure that the long-time behavior of the
solution is statistically stationary:

F = sin(kz)X — au (8)

For our experiments, we choose a domain [0, 27]? with peri-
odic boundary conditions, a wavenumber k = 4, a damping

LAYER (T, X, Y, C)
INPUT (10, 4,4,2)
CoNv3D + BN + SILU (10,4, 4, 64)
UPSAMPLE + CONV3D + BN + SILU (10, 8, 8, 32)
UPSAMPLE + CONV3D + BN + SILU (10, 16, 16, 16)
UPSAMPLE + CONV3D + BN + SILU (10, 32, 32, 8)
UPSAMPLE + CONV3D + BN + SILU (10, 64, 64, 4)
CoNv3D (10, 64, 64, 2)

Table 2. Fully-convolutional network for training the inverse ob-
servation operator for Kolmogorov flow. The table shows a
layer with its respective output array dimensions time (T), space
(X and Y), and channel (C). The CONV3D layer applies peri-
odic convolution in the two space dimensions and zero-padded
convolution in the time dimension. The filter size for all con-
volutional layers is (3,3,3). BN denotes batch normalization.
We upsample the grid using bicubic interpolation by a factor
of 2 and correspondingly halve the number of channels. As a
non-linearity we use the sigmoid-weighted linear unit (SILU),
silu(z) = z/(1 + exp(—x)).

coefficient « = 0.1, and a viscosity of v = 1072, We
discretize the solution on a 64 x 64 grid and use standard
numerical methods to solve the Navier-Stokes equation with
a differentiable solver written in JAX (Kochkov et al., 2021).
The Lyapunov time of the system is approximately 5.9 time
units. Our flows are initialized with a random velocity field
filtered with a spectral filter at a peak wavenumber 4, which
is then integrated to a statistically stationary regime of the
flow. We assimilate over trajectories of length 7' = 10
time steps, where the integration time between two such
snapshots is At ~ (.18, consisting of 25 internal solver in-
tegration steps. To save memory when computing gradients,
we checkpoint the state from the forward pass only at each
internal integration step rather than storing intermediate val-
ues (Griewank, 1994). This requires evaluating the forward
pass twice, but reduces memory usage by two orders of
magnitude.

We carry out data assimilation on the velocity field u of the
flow. To analyze our forecasts, we use vorticity w, the curl
of the velocity field,

_ %_aux
“"(ax ay>' 9)

Vorticity describes the local direction of movement of the
fluid. We visualize vorticity on a scale, which is cut off
at [—8, 8] with negative values (blue in Figures 6 and 9)
denoting clockwise rotation and positive values (red in Fig-
ures 6 and 9) denoting counter-clockwise rotation.

We again use equidistant subsampling for the observation
operator H. In contrast to the Lorenz96 model the solu-
tion is smooth over the grid points, so we can use bicubic
interpolation between observed grid points as the baseline
initialization scheme. We now demonstrate the effect of
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ground truth observed ground truth

Figure 6. Comparison of initialization schemes with the ground
truth initial state for Kolmogorov flow with a 16-subsampling ob-
servation operator (yellow dots). The learned inverse observation
operator is trained on a trajectory of subsampled velocity fields.
The observed ground truth vorticity exemplifies the amount of
information of a single state of this trajectory. The trained model
predicts a good approximation to the ground truth state only from
a sequence of 4 x 4 points.

a learned inverse observation operator, when this operator
observes every 16th grid point. For training, we employ a
fully-convolutional network as shown in Table 2. We train
on a dataset of 32000 independent observation trajectories
with batch size 8 for 500 epochs.

For data assimilation, we compare bicubic interpolation
as the baseline interpolation initialization with inverse ini-
tialization derived from the learned inverse observation op-
erator, as depicted in Figure 2. Figure 6 compares these
initialization methods with the ground truth initial state. As
with the Lorenz96 model analyzed in Section 5.1, we also
compare optimizing in observation space with the hybrid
approach of first optimizing in physics space and subse-
quently refining this solution in optimization space. We
limit both optimization methods to 1000 steps, with the
hybrid approach using 100 of these steps to optimize in
physics space and the remaining 900 to refine in observation
space. Figure 7 shows the results, with three implications
analogous to experiments on the Lorenz96 model. First, hy-
brid optimization improves assimilation quality even when
using the inaccurate interpolation initialization. This im-
plies that by first optimizing in physics space, we arrive at a
favorable basin of attraction for optimization in observation
space. Secondly, using inverse initialization for optimizing
in observation space significantly improves forecasts. Fi-
nally, adding inverse initialization to hybrid optimization
does not improve performance. This is presumably because
the initialized state is already a good approximation to the
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Figure 7. Data assimilation results for Kolmogorov flow using a
learned inverse observation operator. Quality measure is the L
forecast error relative to a random evolution of the system. De-
picted is the mean error based on a sample of 100 trajectories.
Trajectories are obtained by evolving the initial states returned by
corresponding optimization methods. Using the hybrid method for
optimization improves assimilation quality with inaccurate interpo-
lation initialization. The inverse initialization scheme significantly
improves forecasts for observation space optimization. Adding
inverse initialization to hybrid optimization does not improve per-
formance. The difference between observation space optimization
vs. hybrid optimization for both initialization schemes is signifi-
cant with a p-value of p < 1075,

optimization target, so there is no added advantage in opti-
mizing in physics space. In contrast, it is more sensible to
directly refine this state by optimizing in observation space.
This effect becomes evident when analyzing how each of
these optimization methods decreases the objective func-
tion in observation space during optimization, as depicted
in Figure 8. For the less accurate interpolation initializa-
tion, a more favorable basin of attraction can be reached for
some samples by first optimizing in physics space. However,
since inverting the observation space trajectory only approx-
imates the true trajectory, fitting against this target precludes
progress after an initial phase of optimization steps. Hence,
with a fixed budget of optimization steps there is a trade-off
between finding a favorable basin of attraction by optimiz-
ing in physics space and finding a higher-accuracy solution
by optimizing in observation space. Figure 9 qualitatively
compares vorticity forecasts for the baseline method (inter-
polation initialization, observation space optimization) with
our method based on the inverse observation operator for
initialization and hybrid space optimization. The dominant
features of the flow are visibly better predicted by the pro-
posed method. Note that the structure of initial states differs
from that of the following trajectories. Certain perturbations
vanish quickly during the evolution of the system and are
therefore not optimized to vanish in the initial state.



Variational Data Assimilation with a Learned Inverse Observation Operator

inverse init interpolation init

Q0 h —— hybrid opt
S ;|1 § ==~ observation opt
81011
2 \
© \
£ ’
g

-3
S 10 1
172]
O
=]
g N
51 1
S
210 11
= \
© \
g \
s
2.3
210 "1
172]
O
]

0 500 1000 0 500 1000
optimization step optimization step

Figure 8. Observation space data assimilation objective (2) during
optimization. Values are relative to the initial value on a log-scale
for two different samples (rows). Depicted are observation space
optimization (dashed blue) and hybrid optimization (solid red). For
both methods, we evaluate the same observation space objective
function along the optimization path. The vertical dashed line
signifies the change from physics space to observation space in
the hybrid method. For inaccurate interpolation initialization, a
favorable basin of attraction can be reached for some samples by
first optimizing in physics space. Inverse initialization provides
such a good initial condition that there is no added advantage of
first optimizing in physics space.

5.3. Result Summary

To summarize the results, we compare the relative perfor-
mance of each optimization setting for the first forecast state,
as depicted in Table 3. By using the learned inverse observa-
tion operator, the forecast error can be significantly reduced
for both models. The relative merit of exploiting this op-
erator for initialization and transformation of the objective
function depends on the properties of the physical model.
For the Lorenz96 model, hybrid optimization in addition
to inverse initialization notably improves performance. For
Kolmogorov flow, the learned inverse mapping already pro-
vides an extremely good initialization and hence optimizing
in physics space does not further reduce the forecast error.

6. Conclusion

Data assimilation is the perfect problem class to explore
the combination of physical modeling and machine learning
since applications naturally involve rich physics and vast
amounts of data. We demonstrate in this paper that a tra-
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Figure 9. Vorticity snapshots of a forecast trajectory for Kol-
mogorov flow. The proposed method (inverse initialization, hybrid
optimization) more accurately captures ground truth vorticity fea-
tures (yellow squares) compared with the baseline (interpolation
initialization, observation space optimization). Depicted are the
initial state and snapshots from the start and end of the forecast
window. Note that certain perturbations vanish quickly during the
evolution of the system and are therefore not optimized to vanish
in the initial state.

LORENZ96 KOLMOGOROV

OBS HYBRID | OBS HYBRID
BASELINE 1 0.08 1 0.88
INVERSE 0.25 0.07 0.20 0.23

Table 3. Mean L, forecast error of the first forecast state. All val-
ues are relative to the baseline method for the respective model.
The table compares both initialization schemes (baseline, inverse)
and optimization methods (observation space, hybrid) for the
Lorenz96 model and Kolmogorov flow. The best optimization
setting is emphasized in bold face. Using the learned inverse
observation operator improves optimizability for both models.

ditional variational data assimilation pipeline is improved
by using a learned inverse observation operator. Exploiting
this operator, we transform the 4D-Var optimization prob-
lem and show significantly enhanced forecast quality on
two canonical chaotic models, the Lorenz96 model and a
two-dimensional turbulent fluid flow. More broadly, our
work shows that the core functionality of modern machine
learning frameworks — support for automatic differentiation,
hardware accelerators and deep learning — can advance re-
search for data assimilation and other physics constrained
optimization problems.
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