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Abstract

As the engineering of distributed embedded systems is getting more and more complex, due
to increasingly sophisticated functionalities demanding more and more powerful hardware,
model-based development of software-intensive embedded systems has become a de-facto
standard in recent years. Among other advantages, it enables frontloading techniques like
design space exploration which support a system architect already at early stages of devel-
opment.
In this thesis, we present an approach which is capable of automatically exploring E/E

architectures. Based on the concept of viewpoints, we will introduce dedicated technical
meta-models, a language to formally describe an E/E architecture exploration problem
and an automatic exploration approach using satisfiability modulo theories (SMT). We
will furthermore introduce a dedicated methodology and show how such an exploration
integrates into a system development process. In the end, we will evaluate our approach by
applying it to an industrial use-case provided by Continental.
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1. Introduction

The design of distributed, embedded systems is characterized by an ever-growing complexity
of those systems. This is caused by an increasing set of functionality, as well as an increase
in complexity in the underlying Hardware Architecture and topology. Considering the
automotive domain, the introduction of more and more autonomous functions not only
increases the amount of software in the vehicles but also demands hardware capable of
executing this software.

The so called Electronic/Electric Architecture (E/E Architecture) is a topology of dif-
ferent computational resources, which are referred to as Electronic Control Units (ECUs)
and communication resources (buses), which are referred to as buses. The ECUs execute
software which is deployed onto them. The buses enable communication between different
ECUs. Considering the increasing amount of software due to a rising number especially of
autonomous functionality, the trend does not only demand more powerful hardware but also
increases the difficulty of integrating such software into hardware. Moreover, there exist
multiple variants for each of the Hardware Resources which are differing in their capabilities
and most importantly in their costs. Additionally, those E/E Architectures have to comply
to development standards like ISO 26262, the safety standard for passenger vehicles. So
the design of E/E Architectures for future vehicles gets increasingly complex. In particular,
due the fact that the above mentioned aspects of software, hardware and its variants and
integration are each getting more complex but still have to be considered jointly.

1.1. Systems engineering and its complexity

In the following, we take a closer look at the rising complexity of systems engineering
focusing on the design of E/E Architectures. Thereby, we focus on four different design
aspects, namely, the complexity of software and hardware and their integration as well as
of variability especially of hardware.

Software complexity The main driver of complexity of software for distributed embedded
systems are increasingly sophisticated functionalities, e.g., in the automotive domain, due
to the trend towards more and more autonomous vehicles, resulting in a rising number of
driver assistance and autonomous functions. In 2007, e.g., a premium car contained already
270 user functions resulting in 2500 ”atomic” software functions [1]. A substantial part of
this complexity is caused by the intricate dependencies of these functions, complicated by
the different, and most often contradicting, requirements of these functions.

1



1. Introduction

Another driver of complexity are new arising use-cases like plug&play capability of sys-
tems enabling, for instance, software updates, adding new software and moving software
functionality from one ECU to another ECU. As a next step this capability has to be
provided over the air. Consequently, further use-cases arise, where vehicle functions are
executed in the cloud. Figure 1.1 provides an outline of such future scenarios in the top
row.

All of these use-cases share one common problem: it has to be ensured/verified that
requirements of the system are still met. This entails that mechanisms have to be provided
which enable the verification of those systems at any point in time. As of now these
mechanisms can only be provided during development and due to extensive testing.

Hardware complexity The main driver of complexity considering the hardware in dis-
tributed embedded systems is the mere number of heterogeneous electrical control units
(ECUs) connected via multiple networks (different buses and gateways). In 2007, those
automotive E/E Architectures contained up to 67 ECUs [1]. In 2010, they were already
consisting of up to 100 ECUs [2][3].

As a result, the trend goes toward more centralized, multi-core architectures as the E/E
Architecture would otherwise get too complex, on the one hand, and, on the other hand,
increasingly sophisticated driver assistance and autonomous functions require more pow-
erful hardware [4]. Tier-1 suppliers, like Bosch [5], illustrate such a trend (Figure 1.1)
from distributed E/E Architectures to domain centralized E/E Architectures and finally to
vehicle centralized E/E Architectures. This means that more and more software will be inte-
grated into more and more powerful ECUs, braking the ”one function per ECU” paradigm.
Regarding the trend depicted by Bosch, the first step consists of domain centralization re-
sulting in domain control units, comprising functionality (software) of certain domains like
e.g. powertrain or multimedia. The following step would be vehicle centralization where
there are logical control units with a domain independent distribution of functionality (soft-
ware) enabling adding or moving or removing of certain functionality independent of the
control units including functionality which can be executed in the cloud. In the aerospace
domain, e.g., the concept of centralized architectures can already be found in the IMA [6]
or ARINC 653 [7] standard.

Consequently, E/E Architectures are changing from approximately 100 ECUs connected
via various buses and gateways to smaller more centralized architectures with more powerful
resources considering e.g. computational capabilities. Yet, a figure like 1.1 only proposes
a vague vision of an E/E architecture of the future. In particular, how the different steps
will be accomplished from Modular, Integration, Domain Centralization, Domain Fusion,
Vehicle Fusion and Vehicle Computing is thus an open question. Thus, the design of such
architectures as an interplay of software and hardware gets increasingly complex.

Integration complexity The development according to a standard like ISO 26262 as men-
tioned before, distinguishes between software and hardware. Hence the integration of both

2



1.1. Systems engineering and its complexity

Figure 1.1.: Trends in Automotive E/E Architectures [5]

is a substantial part. One part of the this integration is the deployment of software to
hardware where the software will be executed. Considering a distributed embedded system
this deployment has a big implication as it poses a certain demand on the communication
resources which are used, due to the fact, that executing a certain software function on
one ECU in the system may require input from another software function located on a
different ECU. Moreover, such deployment has to meet given requirements (e.g. busload,
safety, etc.) which have to hold. Recapitulating, that the number of software functions is
ever growing while the E/E Architecture of the future will change from large distributed to
more centralized systems, the integration of both software and hardware - and consequently
the overall system design - is getting more complex, too.

Variability complexity Variability is a fourth driver of complexity as products are not only
more and more tailored towards individual needs but also due to regionalization, covering
aspects such as customer needs and legal issues.

Considering (software) functions of a system, the number functions differs due to customer
needs and region specific variants. This means that some functions may be optional and
some functions may be required only in specific regions or even forbidden in some other
regions.

Considering the system hardware, the the set of deployed functions may have an impact
as e.g. less functions may require less ECUs resulting in a cheaper system/product. On the
other hand, parts of the hardware (e.g. ECUs and buses) may exist in different variants
considering cost, performance and safety attributes to mention just a few.

Thus during system design, one has to cope with the rising demand of individualization of
products, while at the same time trying to minimize, in particular, the cost of the product

3



1. Introduction

regarding all possible product variants.

1.2. Problem statement

In order to effectively manage the ever increasing complexity in the design of embedded sys-
tems, development processes in general, and model-based approaches in particular, support
the development. They are assuming an idealized (component-based) model of computa-
tion, abstracting away from implementation issues like interference aspects of the execution
platform resulting from shared computation or memory resources.

One of the biggest advantage of such model-based approaches - in contrast to document
based approaches - is the possibility to provide formalisms to enable the automation of
development steps. However, as system models provide an abstraction and are thus sim-
plifying the physical system, ISO 26262, e.g., demands that the assumptions behind those
abstractions are not violated which has to be ensured in each development step. For in-
stance, during SW-/HW-integration, platform mechanisms must avoid an overload in bus
communication, such that messages do not arrive too late or even get lost. The distribution
of software across different execution platforms is thus highly affecting different aspects
of such an integration. Due to the rising complexity of today’s E/E Architectures caused
by more and more complex functions that have to integrated into increasingly powerful
hardware and the trend towards more centralized E/E Architectures, there is a need for au-
tomated support during system design.In this thesis, we therefore answer one of the major
industrial needs for an automated system design support by answering the following overall
question:

”How can we support a system architect during the design of future
E/E Architectures?”

The definition of ”how” certainly involves an automated design support regarding the
rising complexity of today’s E/E Architectures which can no longer be dealt with manually.
Moreover, the given system complexity influences the development in a way that develop-
ment approaches/processes have to be capable of appropriately supporting the design of
E/E Architectures which also demands sound methodologies. Hence, it is not enough to
just provide an automation for a certain development step, but also a methodology telling
how an automatized support works and which can be integrated into a development ap-
proach/process. As model-based approaches provide formalism which enable automation,
we need dedicated models which precisely define an E/E Architecture. This entails that
the following research question has to be answered:

RQ1 Which models are needed to precisely describe an E/E Architecture and how are
they defined?

4



1.2. Problem statement

A model-based definition is the first step towards a semi-automatic design of E/E Archi-
tectures. It enables a formal definition of both the architecture and requirements for the
design of the architectures that need to be satisfied. Consequently, this leads to a second
research question, which as to be answered:

RQ2 How to formalize E/E Architecture models and how to formalize requirements
which have to be satisfied by an E/E Architecture?

A formalization of models and their requirements is needed, in order to enable an explo-
ration of E/E Architecture, meaning a semi-automatic approach to automatically synthesize
E/E Architectures. exploration problem which can then be solved automatically. Further-
more, a detailed understanding of today’s E/E Architectures is required.

First of all, in order to find an optimized or even optimal E/E Architecture, variability
aspects have to be considered. This entails taking into account all possible variants of
Hardware Resources, namely computation or communication resources. For example, a
computation resource like a sensor or actuator may exist in different variants. Those variants
could be differing in properties such as cost or performance, but also in the set of possible
interfaces enabling connections to differing communication resources (e.g. CAN buses). A
decision in favor of a certain variant is thus affecting the whole E/E Architecture as its
interface limits the set of possible communication resources that can be used.

Second of all, striving for an optimal E/E Architecture is furthermore closely intertwined
with the deployment of software to computation resources, due to the fact that, software is
demanding a certain amount of computational resources (memory, performance,..) in order
to be executed. In the same way, communication resources (e.g. buses) provide a certain
throughput of information which is required for exchanging messages between the software
of the different computational resources.

By targeting the industrial need of reducing the complexity in systems engineering and
especially E/E Architecture design, more automation needs to be introduced in the engi-
neering processes. This requires exploration approaches that, based on well defined models,
enable an automatic exploration of the deployment of software tasks to computation re-
sources and of software signals to communication resources. At the same time, variability
aspects of Hardware Resources have to be considered as well, which demands answering the
following research question:

RQ3 How can we formally define an E/E Architecture exploration problem which en-
ables the calculation of valid and optimized or even optimal E/E Architectures taking into
account deployment and variability aspects?

The capability of modeling, formalizing and automatic exploration enables to considerably
support a system architect in developing an E/E Architecture. However, those three aspects
have to be connected to provide a sound and reproducible approach. Hence, it has to be
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1. Introduction

ensured that those aspects can be integrated into an existing development approach. Thus,
we have to finally provide an answer to the following question:

RQ4 How does a dedicated exploration methodology for E/E Architectures look like
and how does it integrate into an existing development process?

Based on answering these four research questions, we describe the contribution of this
thesis in the following.

1.3. Contribution

Based on the provided research questions, the contribution of this thesis emerges in a gap
to the state-of-the-art. Section 1.3.1 will give an overview of this gap. (A detailed overview
of the related work of this thesis will be given in Chapter 3.) In Section 1.3.2, we describe
the contribution of this thesis in terms of the identified gap to SOTA relating them to the
four research questions.

1.3.1. Gap to SOTA

Architecture description languages This thesis provides a E/E Architecture exploration,
thus the architecture description languages (ADLs) are a core principle. Considering such
ADLs, there are a few wide-spread languages in particular the Unified Modeling Language
UML [8]. There are two main derivatives of this language: the ”Systems Modeling Lan-
guage” SysML [9], an extension focusing on system modeling and ”Modeling and Analysis
of Real-Time and Embedded Systems” Marte [10] an extension focusing on real time and
scheduling aspects. The UML is a general purpose modeling language which does not in-
clude any hardware specific aspects and mainly targets software modeling. The SysML has
been built to enable systems modeling. However, it also does not provide any E/E specific
hardware related models which enable modeling of E/E Architectures. UML Marte dis-
tinguishes between different hardware elements (processor, bus) and provides deployment
models. However, all three languages do not support variant modeling and thus do not
support modeling variability aspects.
The” AUTomotive Open System ARchitecture” AUTOSAR [11], is a modeling language

which has been explicitly created for the automotive domain. Although this modeling ap-
proach especially targets E/E Architectures, it focuses on implementation specific aspects
which makes it unsuitable to use in early stages of development (frontloading) and further-
more provides no variant modeling capability. The East ADL2 [12] provides a high level
abstraction of AUTOSAR enables modeling a E/E Architecture and also variability aspects.
However, the language is missing the consideration of the software when modeling an E/E
Architecture.
Lastly, the ”Architecture Analysis & Design Language” AADL [13] is a modeling lan-

guage which has been built for the aerospace domain and supports modeling Hardware
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Architectures and Software Architectures and also deployment aspects. However, it also
does not support variant modeling.

This means that there is a lack of adequate architecture description languages target-
ing automotive E/E Architectures. Section 3.1 gives a more detailed overview over these
architecture description languages.

Domain specific languages Regarding the area of languages which enable the formaliza-
tion of models, there is mainly the Objective Constraint Language (OCL) [14] enabling
the formalization of constraints for UML Models. However this language does not provide
formalisms for optimization and is a comprehensive standard which does not capture any
domain specificities of automotive E/E Architectures.

On the other hand, a language like SMTlib2 (Satisfiability Modulo Theories Library) [15]
provides a formalism which is bound the use of SMT solvers and is not intended to cover
automotive domain specific aspects.

This entails that there is no domain specific language which would enable a formalized
description of E/E Architectures. Section 3.2 gives a more detailed overview over those
languages.

Exploration/synthesis approaches A variety of work has been conducted in the area of
design space exploration. Especially the deployment problem deploying software units (com-
ponents, tasks, etc.), representing a certain functionality, on computation units has been
widely studied. Although some of them are variability aspects of the deployment, a lot of
them are considering a fixed Hardware Topology.

There is also variety of work on the topology of Hardware Architectures which is close
to the exploration of automotive E/E Architectures. However, those techniques either
do not consider the deployment aspects which can heavily influence the creation of an
E/E Architecture or they are not taking into account different variants of hardware parts.
Exploring Hardware Topologies has been studied mainly on a system-on-chip level and not
on a distributed system level like the automotive E/E Architecture, focusing only on the
specifics of one hardware part.

Lastly, there are also generic exploration approaches which, however, do not cover domain
specific aspects and are thus not usable for exploring E/E Architectures.

This thesis focuses on a combined exploration approach which solves E/E Architecture ex-
ploration problem. Thus we are taking into account an appropriate architecture description
language, a domain specific language in order to formalize the problem and a dedicated ex-
ploration approach which can automatically calculate E/E Architectures. Section 3.3 gives
a detailed overview over design space exploration approaches.

Engineering methodologies There a few model-based engineering methodologies, which
propose approaches in order to develop systems in a model-based way. SPES [16] and CE-
SAR [17] are two academic approaches which propose system modeling on different levels
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of abstraction. IBM Harmony [18] and the AUTOSAR methodology [19] are industrial
methodologies which propose specifying modeling approaches for the SysML and the AU-
TOSAR architecture modeling language. However, they are not providing a methodology
enabling exploration in order to automatically calculate (E/E) architectures.

To the best of our knowledge, there are no system development methodologies which
actively enable the use of exploration techniques. Section 3.4 gives a more detailed overview
over the four mentioned methodologies.

In summary, a comprehensive automated exploration approach, considering modeling,
language, exploration as well as methodological aspects, is yet missing.

1.3.2. Contribution

The contribution of this thesis is the provision of a holistic exploration approach for E/E
Architectures, answering the overall problem statement (Section 1.2) of how a system ar-
chitect can be supported during the development of future E/E Architectures. This entails
the definition of dedicated models for modeling the E/E Architecture. Furthermore, a ded-
icated domain specific language which is capable of formalizing those models and which is
enabling the automatic calculation of E/E Architectures. Thirdly, an exploration which is
capable of processing this formalized description in order to automatically calculate opti-
mal E/E Architectures. And lastly a methodology, which provides an integration of models
language and exploration and integrates into an existing development approach.

Specifically, this thesis provides the following contributions.

1. A E/E Architecture Viewpoint which provides meta-models for modeling an E/E
Architecture on different levels of abstraction: software, hardware and deployment
of software to hardware. The software model provide a meta-models for Tasks and
Signals which together form a Task Architecture. The hardware models provide meta-
models for modeling the hardware of a E/E Architecture in terms of computation
and communication resources and their variants and meta-models for modeling the
topology of an E/E Architecture. (RQ1)

2. A Specification Viewpoint which provides a domain specific language which is able
to formally describe the models defined the E/E Architecture Viewpoint to descrip-
tion exploration problem. Moreover, this specification is able to define optimization
objectives which enable an optimization of E/E Architectures and constraints which
enable the formal description of requirements which have to hold when modeling an
E/E Architecture. (RQ2)

3. An Exploration Viewpoint which provides a translation of this language into SMT
in order to be solved by the state of the art SMT solver Z3 developed at Microsoft.
This viewpoint furthermore enables to find contradicting constraints (validation) and
to calculate optimal E/E Architectures in terms of the topology and the deployment
of software to hardware (exploration). (RQ3)
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4. A methodology which provides a holistic architecture exploration approach, on the
one hand integrating the three viewpoint to form a sound exploration approach, and,
on the other hand, integrating this exploration approach into a standard development
process and into a existing systems engineering methodology. (RQ4)

1.4. Solution

Based on these four contributions, the intended solution of this thesis is schematically shown
in figure 1.2.

Figure 1.2.: Schematic illustration of the solution and structure of this thesis

The E/E Architecture Viewpoint, consists of different models for software, hardware and
deployment - enabling a comprehensive hardware description - is the basis for the definition
of E/E Architecture models. Specifically, the task architecture as well as the Hardware
Resources (ECUs, Buses and variants of both) serve as input for the Specification Viewpoint.

The exploration problem is formalized in the Specification Viewpoint using a domain
specific language (DSL). This DSL enables the formalization of the architecture models in
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terms of constraints, which restrict the set of possible architectures and objectives, enabling
optimization of architectures. Additionally, requirements for an E/E Architecture can be
formalized in this language as constraints and objectives.

The Exploration Viewpoint, transforms the formalized description into a solving tech-
niques which is capable of automatically calculating the constraints, finding contradictions
between them and calculating optimal architecture solutions. Due to the fact that the
Specification Viewpoint is situated between E/E Architecture and Exploration Viewpoint,
we divide problem description and solution calculation which enables to use any possible
solving technique. In this thesis, we will use the Z3 SMT solver. However, e.g. Integer
Linear Programming (ILP) or evolutionary algorithm approaches could be used as well.
The solutions during the exploration calculate optimal Hardware Topologies and the re-
lated Task and Signal Deployments onto the Hardware Topologies which corresponds to an
E/E Architecture.
As briefly described above, the methodology describes the interaction between the differ-

ent viewpoints and how they can be integrated into an existing development methodology
SPES and into a customized V-Model XT development process.

1.5. Publications

This thesis is based on the following publications.

� MODELS Conference 2016, OSS4MDE workshop:
Eder et al. ”Usable Design Space Exploration in AutoFOCUS3” [20]

� MODELS Conference 2017, practice and innovation track:
Eder et al. ”Bringing DSE to life: exploring the design space of an industrial auto-
motive use-case” [21]

� MODELS Conference 2018, doctoral symposium:
Eder et al. ”Exploration of hardware topologies based on functions, variability and
timing” [22]

� MODELS Conference 2018, practice and innovation track:
Eder et al. ”From deployment to platform synthesis - automatic synthesis of dis-
tributed automotive architectures” [23]

� SoSyM Journal 2020, special issue:
Eder et al. ”Hardware Architecture Exploration - Automatic Exploration of Dis-
tributed Automotive Hardware Architectures” [24]

1.6. Outline

In the following, we depict the outline of this thesis. Figure 1.2 serve as reference, as it
shows the distribution of the contribution over Chapters 4 - 7.
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Chapter 1 introduces this thesis by providing a motivation, problem statement, contri-
bution and solution which summarizes the following chapters.
In Chapter 2 we are introducing relevant aspects when developing automotive E/E Ar-

chitectures. This entails especially how those architectures are developed in compliance
with ISO26262 which is the safety norm for passenger vehicles, how they are developed in
a model-based way and how the current trends of E/E Architectures predict.
Chapter 3 describes the related work of thesis which is based on the gap to the state of the

art which has been introduced in the introduction in Section 1.3.1. It is therefore divided
into architecture modeling languages, domain specific languages, exploration approaches
and development methodologies.
In Chapter 4 we are describing the methodology for the exploration of E/E Architectures.

Moreover, we show how our approach seamlessly integrates into a customized V-Model XT
development process and how it integrates into the existing embedded system development
methodology SPES.
Chapter 5 describes the E/E Architecture Viewpoint where we propose meta-models

for Software and Hardware Architecture (including the description of variants for Hardware
Resources) and the deployment of software onto Hardware Architectures in order to describe
an E/E Architecture.
In Chapter 6 we introduce a domain specific language which is capable of formalizing

an E/E Architecture exploration problem in terms of constraints and objectives. We will
furthermore provide specific constraint and objective patterns which are common in the
automotive domain.
Chapter 7 describes the transformation of the domain specific language into SMT, the

validation of constraints to find contradictions and exploration which find optimal solutions
of E/E Architectures.
In Chapter 8 we are evaluating this thesis. On the one hand we are evaluating the

methodology by comparing it to the state of practice of E/E Architecture development and
on the other hand we give two automotive use cases where we successfully applied approach
for industrial sized E/E Architectures.
Chapter 9 then concludes this thesis by summarizing it and giving an outlook on future

work.
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2. Automotive architectures and standards

In this chapter, we provide an overview over automotive Electric/Electronic architectures
(E/E Architectures). We especially to focus on one of the most important standard that
influences the development of such architectures: ISO26262 (International Standard Orga-
nization Norm 26262). ISO 26262 is the functional safety standard for passenger vehicles
and an adaption of IEC 61508.
In Section 2.1, we have a closer look at ISO 26262 and standard compliant engineering.
In Section 2.2, we elaborate on model-based systems engineering which is, according to

ISO 26262, one way to develop automotive systems. In this Section, we introduce the impor-
tant aspects of MbSE covering the concept of Viewpoint/View and Component/Interface
which are used throughout this thesis.
In Section 2.3, we have a look at state-of-the-art of E/E Architectures and at future

trends, as E/E Architectures are eventually evolving from federated, distributed to central-
ized architectures.

2.1. ISO 26262 compliant engineering

In order to develop safe passenger cars, the development has to comply to the international
safety standard ISO 26262. This standard proposes a certain development process which
an automotive company has to adhere to (Section 2.1.1). Furthermore, this standard intro-
duces a component model to describe E/E Architectures (Section 2.1.2) easing the safety
classification of E/E Architectures in terms of automotive safety integrity levels (ASIL)
(Section 2.1.3).

2.1.1. Development process

The engineering of automotive E/E systems is driven by the development of safe products.
Thus, development processes of automotive systems must adhere to ISO 26262.
”ISO 26262 is intended to be applied to safety-related systems that include one or more

E/E systems and that are installed in series production passenger cars with a max gross
weight up to 3,5 t” [25]. It ”is the adaptation of IEC 61508 [(International Electrotechnical
Commission Norm on Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems) [26]] to comply with needs specific to the application sector of E/E
systems within road vehicles” [25]. Hence, it ”applies to all activities during the safety
lifecycle of safety-related systems comprised of electrical, electronic, and software elements
that provide safety-related functions” [25].
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2. Automotive architectures and standards

Figure 2.1.: Automotive system development according to ISO 26262 [25]

As illustrated in Figure 2.1, ISO 26262 uses the V-Model as a basis to describe the
development process focusing on the safety aspects of passenger cars. The following Chapter
statements refer to ISO 26262. In Chapter 4.7 System design the development is divided
into 5. Product development on hardware level and 6. Product development on software
level. Chapter 4.8 Item Integration and Testing is requiring the integration of both software
and hardware level as well as testing. Figure 2.2 schematically depicts this process.

In this way, ISO 26262 enables to divide the system into sub-systems, which can be
developed by suppliers. In the end, all sub-systems are composed again.

2.1.2. ISO 26262 component model

Figure 2.3 illustrates the component model proposed by ISO 26262. A system can be
composed of n (sub-) systems each of which implements a set of functions m. An Item is
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Figure 2.2.: System design example taken from ISO 26262 [25]

thereby defining a system or (sub-) systems of consideration. A system is composed of n
components. A component, similar to the system, can be composed n components. Thus,
it is possible to model a hierarchic component model. An atomic component which is not
further hierarchically decomposed is either a software part of a hardware unit. Lastly, an
element describes a sub-set of (sub-) systems, components, software parts and hardware
units.

Figure 2.3.: ISO 26262 component model [25]
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Figure 2.4 gives an exemplary overview how an automotive system is composed using
the component model introduced above. Hence, a system consists of E/E Components,
Communication and Other technology Components. An E/E Component is defined as either
a Sensor, a Controller or an Actuator. Each component can be split into Hardware Parts
and Software Units which are the atomic parts in the component model.

Figure 2.4.: ISO 26262 component model in system development [25]

2.1.3. Automotive Safety Integrity Level

According to ISO 26262, the functional safety has to be classified. In order to do that,
there exist Automotive Safety Integrity Levels (ASIL) from A to D. Hereby, ASIL A is
the lowest rating in terms of risk protential and ASIL D the highest. They act as risk
reduction requirements for a certain functionality. Unlike IEC 61508, which proposes the
Safety Integrity Level (SIL), they are not defined probabilistically. Table 2.1 shows how an
ASIL is determined.

The ASIL rating is determined according to

� the severity S (1-3), denoting the potentially caused damage,

� the exposure E (1-4), denoting the likelihood a driver will encounter such a situation,

� the controllability C (1-3), denoting how easy it is for the driver to handle the situa-
tion.

For example, considering a windshield wiper malfunction on the highway during heavy
rain may have life-threatening severity (S3) if an accident happens. Regarding the exposure,
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Controllability

Severity Exposure
C1
(simple)

C2
(normal)

C3
(difficult)

S1

(Light/moderate)

E1 (very low) QM QM QM
E2 (low) QM QM QM
E3 (medium) QM QM A
E4 (high) QM A B

S2

(Severe)

E1 (very low) QM QM QM
E2 (low) QM QM A
E3 (medium) QM A B
E4 (high) A B C

S3

(Life-threatening)

E1 (very low) QM QM A
E2 (low) QM A B
E3 (medium) A B C
E4 (high) B C D

Table 2.1.: ASIL determination

heavy rain in a middle European country could be rated high (E4). The controllability of
such an event would be difficult as the driver could not see anything and would thus not be
able to control the car anymore (C3). As a consequence, the windshield wiper would have
to be developed as an ASIL D item.

Considering the component model of Figure 2.4, the ASIL would propagate from the item
to the element level. Hence, the software part(s) and hardware unit(s) have to be developed,
taking into account the items ASIL. In the example, the windshields wipers software and
hardware would have to be developed according to ASIL D.

2.2. Foundations in model-based systems engineering

Model-based Systems Engineering (MbSE) is one way to develop systems. It is an engi-
neering approach that, opposed to document-based approaches, provides formalisms which
enable frontloading techniques. As MbSE abstracts away from resource specific imple-
mentation issues, it enables techniques such as analysis, synthesis or simulation already at
early stages of development. ISO 26262 also encourages the use of MbSE especially for
engineering software units of automotive systems [25].

In the following, we will have a closer look at the general concepts of MbSE in Section
2.2.1. We furthermore introduce two of its key aspects, namely the concept of viewpoints
and views in Section 2.2.2 and the concept of components and interfaces in Section 2.2.3.

17



2. Automotive architectures and standards

2.2.1. Model-based systems engineering (MbSE)

The International Council of System Engineering (INCOSE) is a non-profit organization
whose mission is ”To address complex societal and technical challenges by enabling, pro-
moting, and advancing systems engineering and systems approaches.” 1. They define Model-
Based Engineering as

”An approach to engineering that uses models as an integral part of the technical
baseline that includes the requirements, analysis, design, implementation, and
verification of a capability, system, and/or product throughout the acquisition
life cycle.” [27]

Their definition is based on the final report of the Model-Based Engineering Subcommittee
of the (US) National Defense Industrial Association (NDIA) [28].
Hence, this approach can replace document-based development approaches using system

models during all activities throughout the development life-cycle. Furthermore, as models
provide an abstraction of the system, they abstract away from resource specific implemen-
tation issues and, because of their fiormal character, enable a variety of automations, at
early stages of development. Among others, this has the following advantages:

� Simulation
Simulation is the execution of models that are described using a behavioral specifi-
cation. Simulation is used in early design phases supporting the understanding of
(composed) models, namely the desired (sub-) systems behavior, independent from
the their implementation and technical realization. Thus, this can be seen as an early
stage systems test.

� Analysis
Because of the formal nature of models, (sub-)systems can be checked for correctness.
Model checking [29], for instance, is an automated verification technique, which can
prove the correctness of models and thus the correctness of the system, w.r.t. certain
properties (e.g. formalized requirements), itself. Hence, (sub-)systems can be formally
verified already at early stages of development.

� Synthesis
A model-based approach enables the synthesis of new models out of existing ones.
Given a formal model of requirements and a model of the system, synthesis methods
enable the automatic generation of further system artifacts (e.g. by using mathemat-
ical solvers). One example is the automatic generation of (automotive) deployments
from software components to hardware components. (In this thesis, we use the word
exploration as a synonym for model synthesis.)

In particular, this thesis covers the model synthesis aspect. This means the automatic
generation of automotive E/E Architectures given a set of formalized requirements.

1https://www.incose.org/about-incose (accessed 2020-05-05)
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2.2. Foundations in model-based systems engineering

2.2.2. Viewpoints and Views

The concept of Viewpoint and View can be found in the ISO-42010 standard [30] on ar-
chitecture description in systems and software engineering. Figure 2.5 depicts an overview

Figure 2.5.: Architecture description and its relation to viewpoints and views according to
ISO 42010 [30]

over Viewpoints on Architecture Descriptions. An Architecture Viewpoint frames certain
Concerns of specific Stakeholders considering a System-of-Interest. An Architecture View-
point governs an Architecture View which consists of an arbitrary number of Architecture
Models and which address the Concerns of certain Stakeholders.

Considering, for example, the E/E Architecture of an automotive system, there might be
a dedicated architecture viewpoint which is the Concern of a system architect. Considering

19



2. Automotive architectures and standards

an exploration of these E/E Architectures, there is a need for additional viewpoints focusing
especially on formalization and automation aspects.

In short, a viewpoint can be described as the standpoint from which one is looking at
a system of interest and the view in turn is what one sees. The concept of viewpoint can
moreover be found in the ISO- standard which provides a general reference model for open
distributed processing (RM-ODP) [31].
Model-based design methodologies propose to divide a system under development into

different viewpoints in order to cope with the rising complexity of today’s embedded sys-
tem development. A viewpoint describes the system from the perspective of a specific
stakeholder. A view in turn describes the models and languages used to describe a specific
viewpoint. SPES 2020 [16] and the EAST-ADL2 [12] [32] are examples of such development
methodologies which are using this approach.
One of the advantages of this approach is that the system’s functionality can be developed

independently from the hardware realization. In the SPES 2020 methodology, for example,
this is realized by a logical and technical architecture of the system. In the EAST-ADL2 it
is realized by a Functional Design Architecture and a Hardware Design Architecture.

2.2.3. Components and Interfaces

The notion of components which exchange information via interfaces is a wide spread theory
of computation. It is opposing a classical object oriented approach as it is allowing the
concurrent modeling of interaction in contrast to sequential interaction and is based on the
exchange of information rather than exchange of control [33]. Broy et al., for example,
describe an algebraic theory over this model of computation [34, 35]. Using such a theory
to define the semantics of models enables well-defined operations on those components.

Figure 2.6.: [34]

One important aspect is the concept of compositionality. Given two components c1 and
c2 (Figure 2.6 top) which execute two functions f and g and exchange message m which is
the computational result of c1, the composition of c1 and c2 (c1 ⊗ c2, Figure 2.6 bottom)
is equivalent given the semantics proposed by Broy [34].
This fact is especially useful, due to the fact that automotive systems are usually devel-

oped by different suppliers each of which develop a certain part (sub-system) of the system.
If the whole system (consisting out of an arbitrary number of sub-systems, similar to c1
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and c2) is formally described using components and interfaces with the described semantics,
while each supplier develops one sub-system, one can give mathematical evidence that the
composition of all sub-systems is correct.

2.3. E/E Architectures

Building upon the component model proposed by ISO 26262 (cf. Section 2.1.2; Figure 2.4),
we will define an automotive E/E Architecture as a topology network composed of E/E
components (e.g. Sensors, Controllers or Actuators) which are connected by Communication
components (e.g. buses). Considering the definition (of ISO 26262) of an E/E component,
the architecture can be divided into software and hardware. In this way, hardware parts
together with Communication components (e.g. bus systems like CAN) form the hardware
topology of the system, whereby each hardware part can execute specific software units.
The software units can exchange information realized by messages which are sent via the
Communcation components. The E/E Architecture is thus controlling the mechanical parts
of a vehicle.

Figure 2.7.: E/E Architecture of a BMW 7-series in 2005 taken from Zeller et al. [2]

Figure 2.7 schematically shows such an exemplary E/E Architecture. The E/E com-
ponents are visualized as rectangles and and the Communication components, in form of
buses, is visualized as lines between the E/E components. Thus the software units which
are part of an E/E component can exchange messages through these connections.
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2.3.1. State-of-the-art

Since the introduction of the first Electronic Control Unit (ECU) in 1968 [36], the E/E Ar-
chitecture has evolved as a federated, distributed system. Over the years, new functionality
was added in a bottom up manner introducing new ECUs which had to be connected to each
other to exchange information [37]. Considering the structure of the automotive industry,
this not only encouraged but enabled to optimize a system of OEMs (Original Equipment
Manufacturer) and Suppliers, where a supplier is responsible for the development of a dis-
tinct ECU and its software which is in the end integrated by the OEM. However, as those
architectures were never designed or re-designed in a top-down manner [37], the E/E Ar-
chitecture evolved into an ever growing distributed system, which is hard to maintain and
difficult to test. One of the biggest difficulties is the non-determinism of communication in
such systems as an efficient communication via the bus systems can only be achieved by a
significant amount of multiplexing [1].

Figure 2.7 illustrates an exemplary E/E Architecture of a BMW 7-series in 2005, con-
sisting of 62 ECUs, taking into account standard and optional equipment. Those ECUs
are connected via different bus systems like the Safety-CAN for safety related functionality
or MOST which is often used for multimedia applications as it provides a high through-
put. One can easily see, that the E/E Architectures shows a typical matrix organization
projecting the organization structure of an OEM as mentioned above. Taking into account
that in 2010 such architecture was already consisting of up to 100 ECUs [2][3], they may
not be optimal considering that each newly introduced ECU rises the complexity in terms
of communication and possibly introduces new defects. Especially, with the emergence of
driver assistance functions and eventually autonomous driving functions, today’s E/E Ar-
chitecture cannot cover the upcoming requirements of those features in an efficient manner
[38].

2.3.2. Trends

As future E/E Architectures will have to carry an ever increasing amount of software im-
plementing a variety of functions the trend of E/E Architectures goes from federated, dis-
tributed towards centralized architectures. In 2006, Broy already envisioned the future of
the E/E Architecture as a more centralized architecture with only few dedicated ECUs
[37]. Kugele et al. propose Service Oriented Architectures (SOA) as one way of reducing
the complexity of developing E/E Architectures going away from the traditional ECU-based
development [39], which would also encourage a centralized E/E Architecture. In the fol-
lowing, we want to have a closer look at the current trends E/E Architecture development
from an industrial and research perspective.

According to Traub et al. (BMW), the development will no longer be focused on locally
optimizing an ECU but rather system-level optimization driven by system architects [40].
Going away from the sender- receiver communication paradigm in today’s E/E Architec-
tures, future communication will be handled by a central communication server [40].
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Figure 2.8.: E/E Architecture realized with a central communication server [40]

Figure 2.8 schematically shows such an architecture where a central information server is
connected to the cars ECUs via different bus systems such as Ethernet, FlexRay, CAN and
LIN. Handling not only the communication inside the vehicle through a central server, this
architecture offers a variety of interfaces accessible through this server for, among others,
diagnostics or logging.
Benckendorff et al. (Bosch) analyze the current and future E/E Architecture trends [5].

In terms of topology patterns, they are comparing ring, linear bus topology (backbone) and
star topologies. They are arguing that ring topologies do not play a central role, today.
Figure 2.9 shows the two main topology types: backbone and star. They are arguing that
star architectures will play a central role in the future in order to handle the increasing
amount of signals and their prioritization as well as security needs.

Figure 2.9.: Future E/E Architecture patterns [5]

Figure 2.9 illustrates the supposed star and backbone pattern evolution for passenger
cars (PC) according to Benckendorff et al. In the next few years star topologies will thus

23



2. Automotive architectures and standards

be the predominant pattern for E/E Architectures [5]. This corresponds to the trend of
continuously centralized architectures.

Figure 2.10.: Future use CAN bus types in E/E Architectures [5]

Due to the increasing network demand, they argue that the trend considering CAN
buses goes towards CAN with flexible data-rate (CAN FD) which is shown in Figure 2.10.
Additionally, Ethernet will also be increasingly used within E/E Architectures, because of
its high throughput.
Sommer et al. [4] and Büchel et al. [41] present a vision of future in-vehicle architec-

tures from a research perspective. They are referencing respective standards in avionic
like IMA (Integrated Modular Avionics [6]) which propose the existence of a centralized
vehicle control-computer. Their so called RACE architecture thus consists of a centralized
computer which executes high level functionality. This computer is connected to few ECUs
(which are called vehicle control-computers) responsible for controlling and collecting data
from sensors and actuators of the vehicle. Figure 2.11 schematically shows the RACE ar-
chitecture where the central vehicle control computer is connected to the actuator ECUs
and sensors of the car.
Backed by frequent discussions with Continental, not only in the course of an ongoing col-

laboration in [21] and [23], there is a clear trend towards centralized E/E Architectures. So
the big challenge is the transition from federated, distributed architectures to centralized
architecture. Considering that the architectures represent organizational and OEM/sup-
plier structures this transition can not be ad-hoc. Braun et al. also identified corporate
structure as the most important barrier considering innovations of E/E Architectures [42].
Furthermore, cost, weight and quality are identified as the important criteria regarding
future E/E Architectures. Hence, one of the most important industrial asked questions is
how to gradually develop more and more centralized E/E Architectures while controlling
cost, weight and quality.
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Figure 2.11.: E/E Architecture of the RACE car [4]
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3. Related work

This chapter summarizes the related work of this dissertation. Section 3.1 describes existing
architecture description languages. Section 3.2 describes domain specific languages which
are relevant in the context of this thesis. In Section 3.3 existing work related to design space
exploration aspects is described. As this thesis focuses especially on solving exploration
problems, deployment, topology and generic synthesis approaches are described in this
Section. Lastly, Section 3.4 covers two industrial and two related academic model-based
development methodologies.

3.1. Architecture Description Languages (ADL)

There exist a variety of architecture modeling languages both from academia as well as
industry. In the following, we will present some of theses architecture description languages
(ADLs) which are related to this thesis, are originally from both domains and could thus
be used to model an E/E Architecture.

3.1.1. UML/SysML

The SysML (Systems Modeling Language [9]) is modeling language derived from the UML
2 (Unified Modeling Language [8]). It reuses most of the concepts of UML 2 and provides
additional extensions in order to provide a systems engineering language. The goal hereby
is to ”support[s] the specification, analysis, design, verification, and validation of a broad
range of complex systems. These systems may include hardware, software, information,
processes, personnel, and facilities.”. [9]
One of the main concepts in the SysML is a Block. A Block inherits from a UML Class

and is used to specify hierarchies and interconnections. Its purpose is to define a collection
of features to describe a system or other elements of interest (Hardware, Software, Data,
Procedure, etc.). [9]
SysMLPorts are used to describe the interface of a Block. They can also by typed by a

Block. The SysML also provides the more specific concepts of Proxy Ports and Full Ports.
(”Proxy ports define the boundary by specifying which features of the owning block or
internal parts are visible through external connectors, while fullPorts define the boundary
with their own features.” [9])
SysML Parts are used to describe the internal structure of a Block. They are typed

by Blocks and can therefore be regarded as an instance of a specific Block. The inter-
connection between Parts orPorts can be realized by Connectors (e.g. BindingConnector,
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BidirectionalConnector, UnidirectionalConnector). The internal structure of a Block can
thus be described through different Parts (which are typed by different Blocks) exchanging
information throughPorts attached to those Parts and connected via Connector. Figure
3.1 exemplary depicts the internal structure of a Block by using a internal block diagram
(ibd).

Figure 3.1.: Internal block diagram of a SysML Block ’Block1’ which contains two Parts
which are connected with a Connector between two Ports attached to the
Parts. The colon separates the name (left-side) from the type (right side) of
the respective model element. Both Parts and Ports can thus be typed by
Blocks.

The UML is a general purpose modeling language which mainly targets software modeling
and does not include any hardware specific aspects needed for modeling E/E Architectures.
The SysML has been built to enable systems modeling. However, it also does not provide
any E/E specific hardware models which enable modeling E/E Architectures and it does
not support variant modeling and thus does not support modeling variability aspects.

3.1.2. UML Marte

Marte (Modeling and Analysis of Real-Time and Embedded Systems) is a UML profile
extending the UML with concepts for developing real-time embedded systems with the
focus on performance and schedulability analysis [43][10]. Figure 3.2 schematically depicts
the structure of Marte. Refining a Generic Resource Model, Marte consists of a design
model on the one hand, and an analysis model on the other hand.

The Marte design model distinguishes between Software Resource Modeling (SRM) and
Hardware Resource Modeling (HRM). The SRM provides modeling elements such as semaphores
and task in order to model the software of a real time system. By using special stereo-
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Figure 3.2.: General structure of UML Marte taken from [43]

types SwSchedulableResource or MessageComResource a UML Class can be described as
schedulable resource like a task or as a message which is exchanged between communicating
resources.

The HRM provides modeling elements to describe the hardware execution platform. It
furthermore restricts the allocation relationship such that only application elements can be
allocated to platform model elements [43]. By using special stereotypes like e.g. HwProces-
sor or HwBus a UML Class can be described as a computation resource (comparable to a
ECU) or a communication resource (comparable to a bus).

UML Marte distinguishes between different hardware elements (processor, bus) and pro-
vides deployment models. However, it also does not support variant modeling and thus
does not support modeling variability aspects.
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3.1.3. AUTOSAR

AUTomotive Open System ARchitecture (AUTOSAR) is a development partnership among
Automotive OEMs and suppliers. The core partners - which also founded the partnership -
BMW Group, Bosch, Continental, Daimler, Ford, GM, PSA Groupe, Toyota and Volkswa-
gen state, that ”[t]he objective of AUTOSAR is to establish an open industry standard for
the automotive software architecture between suppliers and manufacturers”[11].

Figure 3.3.: AUTOSAR layered architecture taken from [44]

Figure 3.3 illustrates the layered architecture of AUTOSAR. Basically, it consists of three
Layers which run on an electronic control unit (ECU).

The AUTOSAR Software Layer consists of Software Components that are modeled in a
typical component based fashion.

The AUTOSAR Runtime Environment (RTE) provides communication services to the
Software Layer abstracting away from the hardware specific implementations and thus mak-
ing the Software Components independent from the ECU. The RTE enables communication
within or between ECUs.

The Basic Software Layer which covers the lower hardware level implementations. Based
on the specific ECU-Hardware it provides an interface for the RTE to e.g. the operating
system, lower level communication implementation or drivers.

Although this modeling approach especially targets E/E Architectures, it focuses on im-
plementation specific aspects which makes it unsuitable to use in early stages of development
(frontloading). Furthermore, it does not provide variant modeling capability.
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3.1.4. EAST ADL2

EAST-ADL2 (Electronics Architecture and Software Technology - Architecture Description
Language 2) is an architecture description language which was developed in the course
of the ITEA EAST-EEA and ATESST project [12]. The purpose of this to build a a
high level abstraction up on AUTOSAR. As AUTOSAR is providing detailed models on
implementation levels, the goal of EAST-ADL2 is to cover, among others, higher level
requirements, behavior, software and hardware models. Therefore, it provides a basis for
documentation and management of system models on various abstraction levels [12].The
EAST-ADL2 can be used through a UML2 profile which specifies this domain specific
language.

Figure 3.4.: EAST ADL2 structure taken from [45]

Figure 3.4 shows a schematic overview over EAST-ADL2. Where the Implementation
Level is modeled and described using AUTOSAR consisting out of Application Software
the Basic Software and Hardware, the EAST-ADL2 extensions are described on higher
abstraction levels (Design, Analysis and Vehicle Level). On each of these levels different
additional models can be described. They are described orthogonal to the abstraction levels
in Figure 3.4 (Environmental Model, Behavior Model, Dependability Model, ...). Variability
modeling is one of them, allowing to introduce variants on every level of those abstractions.
On the Design Level, the FunctionalDesignArchitecture and the HardwareDesignArchitec-
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ture are defined. This means, that the hardware topology and its resources can be defined
as well as the functions which will be allocated onto the hardware resources. An E/E
Architecture exploration could thus be performed on the design level of EAST-ADL2.

However, the design level is missing a proper consideration of the software architecture as
it is only regarding a FunctionalDesignArchitecture. This means that functions are directly
deployed to the hardware design architecture. So the definition of an E/E Architecture on
the design level is missing the software aspect.

3.1.5. AADL

”In November 2004, the Society of Automotive Engineers (SAE) released the aerospace stan-
dard AS5506, named the Architecture Analysis & Design Language (AADL). The AADL
is a modeling language that supports early and repeated analyses of a system’s architec-
ture with respect to performance-critical properties through an extendable notation, a tool
framework, and precisely defined semantics [13].

The language employs formal modeling concepts for the description and analysis of ap-
plication system architectures in terms of distinct components and their interactions. It
includes abstractions of software, computational hardware, and system components for
(a) specifying and analyzing real-time embedded and high dependability systems, complex
systems of systems, and specialized performance capability systems and (b) mapping of
software onto computational hardware elements.” [13]

The AADL distinguishes between the application software on the on hand, and execution
platform on the other hand. A system in the AADL is thus a composite out of application
software and execution platform.

The application software is composed out of the following elements.

� Thread: Active component that can execute concurrently and be organized into
thread groups.

� Thread group: Component abstraction for logically organizing thread, data, and
thread group components within a process.

� Process: Protected address space whose boundaries are enforced at runtime.

� Data: Data types and static data in source text.

� Subprogram: Concepts such as call-return and calls-on methods (modeled using a
subprogram component that represents a callable piece of source code).

The execution platform is composed out of the following elements:

� Processor: Schedules and executes threads.

� Memory: Stores code and data.
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� Device: Represents sensors, actuators, or other components that interface with the
external environment.

� Bus: Interconnects processors, memory, and devices.

Although the AADL supports modeling hardware architectures and software architectures
and also deployment aspects, it has been built for the aerospace domain and is thus not
properly suited for modeling automotive E/E Architectures. Moreover, it does not support
variant modeling.

3.2. Domain specific languages

Considering the formalization of constraints, there exist only a few languages in literature.
In particular, there is only one domain specific language which is used to describe constraints
over (UML) models which is the Object Constraint Language introduced in Section 3.2.1.
A language like SMTlib, introduced in Section 3.2.2, is not explicitly targeted at defining
constraints over models and bound to the usage of SMT Solvers.

3.2.1. Object Constraint Language (OCL)

The object constraint language (OCL) [14], which is part of UML, allows not only to express
constraints over UML models but also queries, manipulation and specification requirements,
model transformations, well-formedness rules and code generation templates. By that it has
become a default language for any type of constraint-based model driven engineering [46].
OCL is defined as a general purpose formal language complementing the UML. Its most
important types of expressions according to Cabot et al [46] are:

� Invariants: specify conditions a system has to comply with.

� Initialization expressions: specify initial values of objects upon creation.

� Derived Elements: similar to initialization expression, but constraining the values
of an objective throughout its life span.

� Query operations: similar to database queries, which query a model and return
information.

� Operation contracts: specify pre- and postconditions of the system after the exe-
cution of an operation.

Although this language allows to define constraints in the form of invariants, it does not
support the formalization of optimization objectives. Furthermore, it is a very comprehen-
sive and complex language which is general purpose by design and thus only specific to the
domain of models in general.
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Based on OCL, Maoz et.al [86], e.g., introduce a framework to verify extra-functional
properties in component and connector models. Although, they provide language constructs
which are similar to few of the constraint patterns which will be introduced in Chapter 6,
it is rather targeted at verification than exploration of models.

3.2.2. SMTLib

SMT-lib2 is a language standard supported by most SMT solvers. ”Satisfiability Modulo
Theories (SMT) is an area of automated deduction that studies methods for checking the
satisfiability of first-order formulas with respect to some logical theory T of interest” [47,
15, 48]. In particular a theory T does not have to be finite which distinguishes SMT from
general automated deduction [48].

SMTlib is a international initiative to standardize the language of SMT solvers. Among
others, two of the most well known SMT-solvers are Z31, which is developed by Microsoft,
and yices2 (current version yices2) which is developed at Standford Research Institute.
In this thesis, we will focus especially on z3, as this SMT-solver additionally provides an
optimization extension [49].

SMTLib provides a a low-level formalism which is bound the use of SMT solvers, is not
targeted at models and does not cover automotive domain specific aspects.

3.3. Model exploration/synthesis approaches

There exists a variety of model synthesis approaches in literature. (In this thesis we use
the word exploration to talk about the generation of models out of existing models. In this
Section we synonymously use the word synthesis as some of the literature uses this word.)
Most prominently, the so called deployment or mapping problem has been well studied
allocating certain elements on resources according to constraints. Usually those approaches
propose to formalize a synthesis problem such that it can automatically be solved by solvers.
In the following, we will elaborate on the main contributions of those approaches and how
our work differs from them.

3.3.1. Deployment

There has been a variety of works conducted in the area of deployment synthesis often
combined with schedule synthesis.

Schätz and Voss et al. [50, 51, 52] propose a joint synthesis of deployment and schedule
for mixed critical, shared-memory applications in [50]. They enable the calculation of
optimized deployments w.r.t memory of cores and criticality of tasks on the one hand, and

1https://github.com/Z3Prover
2https://yices.csl.sri.com/
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on the other hand, optimized task and message schedules (considering a global discrete time
base). The approach is formalized in SMT and executed by SMT-solvers.

In [51], Schätz et al. build up on this approach, especially in the context of the auto-
motive safety norm ISO 26262. Furthermore, they address the challenges of integrating
the approach into a development process using AUTOSAR and answering the question of
how a middleware like SysGO’s PikeOS may be used to implement such an approach. The
approach is formalized in SMT and executed by SMT-solvers. Both approaches are based
on the constraint-based model-transformation presented in [52].

Both approaches [50] and [51] optimize a deployment of software tasks to computing re-
sources by multiple optimization criteria, considering different constraints and additionally
calculating schedules for these deployments. However they are only considering a fixed
hardware topology with no variability considerations. A similar approach is presented by
Kugele et al. [53].

Becker and Voss [54] present the deployment problem in the context of fail operational
systems is presented by Becker and Voss in [54]. They propose an approach where a graceful
degradation is ensured in case of hardware system failure by pre-calculating deployments for
possible failure scenarios of the system. Thus, they consider different degraded hardware
topologies in order to reconfigure the deployment of SW-components and ensure a fault
tolerant behavior of the system. The approach is formalized and solved using SMT.

This approach focuses more on the fail operational aspect of embedded systems by pre-
calculating possible deployments to enable graceful degradation in case of a certain system
failure. Thus, a fixed hardware topology and no variability and timing is regarded in this
approach.

Ross et al. [55] describe the synthesis and exploration of multi-level, multi-perspective
architectures of automotive embedded systems. They are considering a system model con-
sisting of a feature model, a functional analysis architecture and a hardware architecture
containing a device node classification communication and power topology. So, multiple
layers (multi-layer) are considered. At the same time they are describing different perspec-
tives (multi-perspective) for these layers such as variability, latency mass, and cost. Using
this multi-level, multi-perspective approach they are synthesizing candidate architectures.
They are showing the applicability of their work by using two uses cases: an automotive
power window system and a central door locking system.

This work considers multiple layers in the system specifically the deployment of (software)
functions or components to the hardware layer considering execution units, communication
units and the power topology. However, even through, they are considering variability
though all layers, they are considering a fixed hardware topology, varying only in the type
or optionality of components.
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Aleti et al. [56] propose ”an adaptive approach for controlling parameter values of ge-
netic algorithms” [56] in order to solve the deployment problem. Based on a component
model they are directly solving the deployment problem without using a formal language
in between.

Besides using genetic algorithms, their work is only calculating the deployment of software
components onto an existing hardware architecture. So the hardware topology is not open
to exploration and furthermore does not contain variable elements.

Wozniak et. al [57] propose two approaches, using either mixed integer linear program-
ming (MILP) or genetic algorithms to solve not only the deployment problem but to also
the partitioning, scheduling and ordering problem. Using AUTOSAR models as input they
are directly formalizing the problem to be solved.

Although this approach takes into account scheduling, partitioning and ordering, the
underlying hardware topology is fixed and cannot be changed during the exploration. Fur-
thermore, hardware variability is not covered by the approach.

Campeanu et al. [58, 59] present an deployment optimization approach based on mixed
integer nonlinear programming. They especially focus on the deployment on CPUs and
GPUs within a single hardware platform. They are also directly formulating the problem
without the use of an intermediate language.

As the approach only calculated deployment for a single hardware platform, the topology
is not open to exploration, meaning that there are no hardware variants covered by this
approach.

Leserf et al. [60] perform an architecture optimization based on SysML models. They
are also directly formalizing, without an intermediate language, the constraint satisfaction
problem (CSP) in order to automatically solve it.

Although they are taking into account variability of the hardware elements the hardware
topology is not open to exploration as only some hardware elements can be exchanged with
others or omitted.

Lukasiewycz et al. [61] a design space exploration of embedded platforms by also con-
sidering product line optimization. Their two staged approach aims at firstly selecting
candidate platforms which are in a second step optimized according to e.g. cost. They are
proposing their own optimization algorithm which can be included into a heuristic approach
like evolution¡ry algorithms.

Although they are considering variability through a product line of embedded platforms
they only optimize a single platform and the respective deployment. Moreover, the sequen-
tial two step approach may not lead two optimal results as optimization in step two cannot
alter decisions which were taken in step one.
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Metzner and Herde [62] present a approach to solve the task deployment problem of
distributed architectures. The approach is optimizing the the deployment also taking into
account the task scheduling. They are using a SAT-based approach together with a an
included nonlinear integer optimization to solve the task scheduling problem.

Although this approach considers takes task models as an input when exploring the design
space of possible deployments, the underlying hardware architecture is fixed and does not
contain any variable elements.

Basten et al. [63] present the Octopus Toolset for the design space exploration of embed-
ded systems. It ingrates Uppaal and CPN Tools among others and uses the Y-chart DSE
method [64]. They are optimizing application (software) , platform (hardware) and the
mapping (deployment) between application and platform independently form each other.

Although the approach integrates tools to optimize and simulate resulting exploration
solutions, including schedule optimization the platform is considered interdependently from
the deployment and the application such that the topology cannot be altered and explored.

Peng et al. [65] propose a deployment optimization approach based on evolutionary
algorithms. They are using AUTOSAR models as input to calculate optimized deployments.
They are also considering scheduling in their approach.

However, the underlying hardware architecture, onto which software components are
deployed, is fixed and is thus not open to exploration. Furthermore, variability in the
hardware architecture is not considered in this approach.

Graf et al. [66] propose a multi variant design space exploration approach. They are using
an over specified (150%) application model (software) together with an architecture tem-
plate (hardware) to calculate different variants of cars and set up a a so called ”Baukasten”
from which all variants are built up. They are formulating the exploration problem directly
(without the use of any intermediate language) as an integer linear program (ILP) to be
solved in a hybrid optimization technique using a Pseudo Boolean solver and evolutionary
algorithms as proposed by Lukasiewycz et al. [67].

Although this approach is using variants in the application model (software) the ar-
chitecture template (hardware) is fixed considering the topology and cannot be changed.
The approach is furthermore directly formulated as an ILP problem with no intermediate
language, which would make it independent from the applied solving technique.

Thiruvady at al. [68] are using an Ant Colony Optimization Problem together with
a constraint programming approach to calculate the automotive component deployment
problem. They are taking into account three types of constraints (memory, collocation and
communication) which are directly formalized without the use an intermediate language.

Although this approach is solving the deployment problem, the hardware topology is
fixed and cannot be explored. Thus, variants of different hardware elements are also not
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considered.

Kang et al. [69] propose a framework capable of optimizing reliability-aware mappings
(deployments) onto mixed critical, multi-core systems. Their approach also considers the
timing of tasks when calculating mappings.

Although this approach is calculating optimized deployments which are considered safety
and reliability a fixed topology of hardware resources is considered and no variants in the
hardware resources.

Pohlmann et al. [70] are proposing different viewpoints on hardware platform modeling in
order to calculate a safe deployment. They are furthmore introducing a hardware platform
description language to model hardware platforms.

This approach provides different views on hardware modeling and how a safe deployment
can be performed. There is no automation approach of the deployment provided, meaning
that the hardware topology cannot be explored and neither is the variability of hardware
resources considered.

3.3.2. Hardware Topology

Bajaj et al. [71] propose an optimized calculation of of cyber-physical system architec-
tures in with focus on safety and reliability. Taking into consideration the reliability of the
system by using its interconnection structure, they are synthesizing topologies considering
an upper bound of system failure probability which has to be met while optimizing costs
such as number and weight of components. They are using a integer linear programming
(ILP) based algorithms to generate architecture solutions. They are evaluating their ap-
proach by applying it to a passenger aircraft use case selecting optimal architectures for
power generation and distribution.

This approach calculates an optimal hardware network topology using different optimiza-
tion objectives while at the same time regarding constraints which have to be met. Thus,
this approach starts with a completely unfixed hardware topology calculating an optimal
topology of hardware resources. However, they do not consider the deployment of soft-
ware tasks which could (heavily) influence the topology considering the computation and
communication resource usage. The authors are furthermore not considering variability.

Glass et al. [72] present a multi objective routing and topology optimization approach for
networked embedded system is presented. They are deploying a network of communication
processes to a set of resources which are themselves connected. The former can be regarded
as a network of software tasks whereas the latter represents the hardware network topology.
Their approach, which uses multi objective evolutionary algorithm (MOEA) approach to
calculate solutions, especially focuses on optimizing the routing of the hardware network
topology considering weighted routing hops. By that, they are optimizing the topology of
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the whole network by considering the deployment of processes to resources and optimally
routing the consequential communication need between resources.

Although this work considers the optimization of a network topology of an embedded
system, the network itself is fixed. Thus, the topology of the system may only change in
the in the usage or non-usage of resources. Variability of resources is not considered in this
work.

Pasricha et al. [73], Pinto et al. [74], Zverlov et al. [75], Mantovani et al. [76]
present different approaches in the area of System-on-chip topology exploration. The main
difference here is that these approaches do not consider a distributed embedded system
but rather one specific hardware element of this systems which is optimized. Thus, those
approaches consider more detailed information of the hardware an the wiring. Such explo-
rations are generating topologies in terms of cores and their connections to internal bus
systems and while at the same time calculating schedules for these internal architectures.

3.3.3. Generic synthesis approaches

Peter and Givargis [77] propose an approach similar to our work, consisting out of a
component model which is formalized using their CoDeL language which is then transformed
into SMT to synthesize systems. Their language CoDeL is a component-based description
language which on the one hand is able top express the system model in terms of components
and interfaces and on the other hand the requirements of the system in terms of constraints
which have to hold in order synthesis a valid system.

Although they evaluate their work by using a deployment problem, they provides a rather
generic synthesis approach. In particular, domain specific aspects like the variability of
system components are not included. Moreover the resulting architecture is not optimized
during the synthesis but rather a valid system is calculated.

Jackson et al. [78, 79], Kang et al, [80] present approaches implemented in the FOR-
MULA framework. The FORMULA framework [78, 79] offers a formal specification lan-
guage and an automatic model synthesis. The framework provides a generic solution to
encode and solve design space exploration problems using SMT. There is further theoretical
work conducted considering the performance by introducing symmetry breaking predicates
into the resulting SMT problem formulation [80].

Although the FORMULA framework is a powerful tool which enables the almost any
type of design space exploration it is therefore very generic. This means, that a E/E Archi-
tecture exploration problem would have to be formalized manually. This requires a lot of in
depth mathematical knowledge. Furthermore, despite offering a language and exploration
possibility, there exists no possibility to define a system model (software architecture, hard-
ware architecture). A system model can only be used as input for an exploration if it is
manually formalized first using their language.
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3.4. Engineering methodologies

In the following, we give an overview over existing engineering methodologies. Sections 3.4.1
and 3.4.2 will cover the two academic methodology SPES and CESAR whereas Sections 3.4.3
and 3.4.4 will introduce the two industrial methodologies IBM Harmony and the Autosar
methodology. Those methodologies are not an exhaustive overview but cover the most
relevant methodologies for this thesis.

3.4.1. SPES

The SPES (Software Platform Embedded Systems) methodology which was developed in the
course of two consecutive German research projects [16, 81] funded by the German Federal
Ministry of Education and Research. The projects included academic as well as industrial
partners with the goal of developing an applicable methodology for the development of
future embedded systems.

Figure 3.5 shows that the SPES methodology divides the system development into four
viewpoints: requirements, functional, logical and technical viewpoint. Those viewpoints
can be engineered on different levels of granularity.

Thereby, the methodology is based on the notion of components, their respective inter-
faces and the composition of components (compositionality), as described in Chapter 2.2.3.
This concept enables the description of sub-systems on each granularity level, which are
in the end again composed to form the specified system. Usually the logical architecture
is used as a starting point for a new granularity level. The architecture has been built
according to the functions identified in the functional viewpoint which were derived from
the requirements in the requirements viewpoint. This entails that each logical component
and its interfaces are implementing certain functions and as such also the requirements. By
that, a logical component can be engineered on a new level of granularity, where it can be
developed as a sub-system according to its functions and interfaces. This enables to split
the development of the system over different teams inside a company, including suppliers.
The key aspect is that as long as the a logical component is developed exactly according
to its interface provided by functions and requirements the system can be easily composed
in the end. Thus, this enables a modular and re-usable system development which are core
aspects of the SPES methodology.

In the following, we will give a short overview over each of the four viewpoints.

Requirements Viewpoint The requirements viewpoint provides means to systematically
capture the requirements of a system using models. This viewpoint distinguishes between
4 different types of requirement models: (1) Context models document the environment
(=context) of the system but are not part of the system, (2) Goal models document the ob-
jectives of the different stakeholders, (3) scenario models document the interaction between
the system under development and its context and (4) solution-oriented requirements docu-
menting a solution specific description of behavior, operations and information structure of
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Figure 3.5.: The SPES matrix depiction the four viewpoints Requirements, Functional, Log-
ical and Technical on the x-axis and the granularity levels on the y-axis. [16]

the system. Thus, the requirements viewpoint aims to gain a comprehensive understanding
of the system easing the subsequent architecture steps.

Functional Viewpoint The functional viewpoint describes the behavior of the system de-
rived from the (behavioral) requirements of the system. It provides two types of models:
the functional black box and white box model. The functional black-box model translates
the requirement models into a hierarchy of user function and their dependencies. In the
functional white-box model, those user functions are further refined and already present
an abstract solution of the respective functionality. Thus, the functional viewpoint aims
to formally describe the system behavior and to improve the understanding of relations
between different functions.

Logical Viewpoint The logical viewpoint describes the logical structure of the system in
terms of a network of interacting components. It follows a typical component-based ap-
proach like e.g. proposed in [34]. A component in this logical architecture represents a
certain functionality by processing the given inputs attached to the component and pro-
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ducing a certain output. The design of the logical architecture depicting the logical view
onto a system is driven by achieving maximum reuse and satisfying extra-functional re-
quirements. On the one hand, this distinguishes this viewpoint from the the functional
viewpoint (especially the functional white box model) where the focus lies purely on the
functionality of the system. On the other hand, the logical viewpoint does not describe a
technical realization of the system which is the difference to the technical viewpoint.

Technical viewpoint In the technical viewpoint, the system is described in terms of its
platform/hardware specific aspects. The design of a technical architecture depicting the
technical view onto a system, thus, covering the topology of hardware communication (e.g.
bus systems like CAN) and processing resources (e.g. ECUs), on the one hand. On the
other hand, this architecture details the specific aspects of these resources like e.g. the
characteristics of multi-core platforms as opposed to single-core platforms, hierarchy aspects
within the resources themselves or middle-ware aspects of the resources.

However, SPES is not providing a dedicated methodology enabling exploration in order
to automatically calculate E/E Architectures.

3.4.2. CESAR

CESAR (Cost-efficient Methods and Processes for Safety-relevant Embedded Systems) was
a European research project in the course of the ARTEMIS 3 joint undertaking which is a
European public and private partnership in the field of embedded systems [17]. The goal
of this project was to provide a component-based system development process. By that,
they claim to have created a de facto European standard for embedded systems design
[17]. They created the so called Reference Technology Platform (RTP) which serves as a
generic model-based tool integration platform composed of (interoperable) tools, methods
and processes.

CESAR is based on a model-based approach, using models throughout the development
of a (embedded) system. Figure 3.6 schematically illustrates the structure of the proposed
development during system design in the early stages of development referring to the left
part of the V-Model.

The Operational Analysis aims to create operational scenarios of the system. Through
the description of activity or use-case diagrams the interaction of the system is described
with the environment. The Functional/Non-Functional Analysis refines those scenarios into
formalized functional and non-functional requirements. Based on this analysis the logical
and physical architecture of the system is defined. Multiple viewpoints are used here in order
to capture the specific aspects of different stakeholders, working on the development of those
architectures. The logical architecture is created by refining the functions of the preceding
step into sub-functions and deploying them to logical components. The physical architecture
is created representing the physical parts of the system. The logical components are then

3https://artemis-ia.eu/
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Figure 3.6.: System design in CESAR [17]

allocated to the physical components. CESAR explicitly mentions exploration methods
which can be used to explore both logical and physical architectures and to explore possible
deployments between the two architectures.

In comparison to the SPES methodology, CESAR shares many commonalities. Func-
tional analysis, logical architecture and physical architecture can be found in SPES in
the functional, logical and technical viewpoint. The requirements viewpoint in SPES can
be described as a combination of operational analysis and with part of the functional/non-
functional analysis, as requirements are described in both step (operational analysis, functional/non-
functional analysis) in CESAR. This methodology does also not provide a dedicated method-
ology enabling exploration in order to automatically calculate E/E Architectures.

3.4.3. IBM Harmony

With the tool independent Rational Integrated Systems/Embedded Software Development
Process Harmony, IBM provides a general Model-Driven Development systems development
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process. Based on this process they created a SysML profile of this process for Model-
Based Systems Engineering with Rational Rhapsody and Rational Harmony for Systems
Engineering [18]. It aims to provide system engineers with an integrated system and software
development process.

Figure 3.7 shows a high-level overview over the IBM Harmony process. It is based on
the general V-Model and consists of two main parts: Harmony for Systems Engineering
and Harmony for Embedded Real-Time Development. Harmony for Systems Engineering
describes a top-down design flow starting with the requirements analysis, system functional
analysis and design synthesis using models on each level. While (executable) uses-cases
are predominantly used in the first two phases, the system architecture is created during
design synthesis. The system architecture baseline marks the transition to the Harmony
for Embedded Real-Time development, analyzing, designing and implementing the software
followed by the different test phases starting from unit to system acceptance test on the
right side of the V-Model.

Figure 3.7.: Overview of the IBM Harmony process [18]

Although this process provides a seamless model driven development approach using
models in all development phases, it only covers behavioral models until the software imple-
mentation models. The first three phases (requirements analysis, system functional analysis
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and design synthesis) are similar to CESAR (operational analysis, functional/nf analysis,
logical architecture) and SPES (requirements, functional and logical viewpoint). However,
the modeling of technical/hardware aspects of the system is missing entirely. In CESAR,
this is covered by the physical architecture and in SPES by the technical viewpoint.

3.4.4. AUTOSAR methodology

In addition to the AUTOSAR ADL (introduced in Section 3.1.3), the open industry stan-
dard also provides a methodology [19]. Figure 3.8 illustrates an overview over the general
workflow which is proposed by the AUTOSAR methodology. The methodology thereby
distinguishes between the development of Basic Software, System, Virtual Function Bus,
Software Components, and the ECU executable displayed in dashed rectangles. Here, arti-
facts are displayed as envelopes (e.g. System Constraint Description) which are input and
output of certain process steps (e.g. Develop System).
The AUTOSAR methodology is hence describing a workflow how one specific ECU can be

implemented. The last development step describes how the software integrates into the ECU
(Integrate Software for ECU ). Compared to the other engineering methodologies - SPES,
CESAR and IBM Harmony - the AUTOSAR methodology covers the low level development
and implementation during system development, whereas the other methodologies propose
a high level design of systems starting from requirements to functional, logical and technical
design. Thereby, high-level development describes early design phases in the development,
enabling to choose between different system designs. Low-level development describes the
implementation of the system in terms of implementation of a concrete realization (e.g. cod-
ing). Due to this fact, in the AUTOSAR methodology, hardware and software are already
fixed at this stage and there is no designated exploration of different possible architecture
designs.

45



3. Related work

Figure 3.8.: General workflow of the AUTOSAR methodology [19]
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4. E/E Architecture Exploration
Methodology

In this Chapter, we describe a methodology to automatically explore the design space
of E/E Architectures. Therefore, in Section 4.1, we describe an exploration process, its
composition by means of viewpoints and the relations between those viewpoints. Building
upon this process, will show how our approach can be integrated into a development process
in Section 4.2. On the one hand, we describe how the proposed process and viewpoints
integrate into a customized V-Model XT development approach. On the other hand, we
demonstrate how our approach integrates into the existing system engineering methodology
SPES.

The following Chapter has been published in Eder et al. [24] in a first version but has
been largely adapted and rewritten in the course of this thesis.

4.1. Exploration Process

In order to be able to perform an exploration of E/E Architectures, we are structuring
the exploration according to the concept of viewpoints (cf. Section 2.2.2). Each viewpoint
describes different views on a specific exploration aspect. We identified three different
Exploration Viewpoints:

1. E/E Architecture Viewpoint

Describes dedicated meta-models in order to to describe an E/E Architecture covering
software, hardware and deployment aspects.

2. Specification Viewpoint

Describes a domain specific language, enabling the formalization of an E/E Architec-
ture exploration problem.

3. Exploration Viewpoint

Describes how an automatic exploration of E/E Architectures can be preformed.

In the following, we introduce each of the viewpoints and show their relations in terms
of process steps.
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Figure 4.1.: Structure of the proposed viewpoints and their relations. The numbers in
brackets (1)-(6) illustrate the different process steps and are described in more
detail below.

4.1.1. E/E Architecture Viewpoint

The E/E Architecture Viewpoint describes all models which enable modeling an E/E Ar-
chitecture. They are described in detail in chapter 5 and consist of the following models.

� Software Architecture

Describes software models representing the the behavior of the system in terms of
functionality.

� Hardware Architecture

Describes hardware models in terms of, e.g., computation and communication models.

� Deployment

Describes the connection between Software Architecture and Hardware Architecture.
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The purpose of those models is to enable the design of E/E Architectures already at early
stages of development. The process steps between the E/E Architecture Viewpoint, the
Specification and the Exploration Viewpoint are as follows.

(1) In order to support an automatic exploration of E/E Architectures, part of the soft-
ware and hardware models are used as an input for the Specification Viewpoint.

(6) After an exploration has been performed in the Exploration Viewpoint, the results,
in form of hardware and deployment models, are fed back into the E/E Architecture
Viewpoint.

4.1.2. Specification Viewpoint

The Specification Viewpoint provides means to formally describe an E/E Architecture ex-
ploration problem. This is achieved by a domain specific language (DSL) which is explained
in more detail in Chapter 6. This viewpoint can be described by the following concepts.

� Domain Specific Language

A DSL enables to abstract away from exploration specific implementations and enables
using different exploration technologies on the basis of a single language which has to
be transformed into the respective technology.

� Constraints

On the one hand, the DSL enables the formalization of constraints. This allows the
formalization of certain requirements which have to hold in order to explore a valid
E/E Architectures.

� Objectives

On the other hand, the DSL enables the formalization of objectives. This allows the
formalization of optimization goals (which may also be derived from certain require-
ments) which optimize an E/E Architecture, e.g. considering cost.

The process steps of the Specification Viewpoint to the E/E Architecture Viewpoint and
the Exploration are as follows:

(1) The E/E Architecture models which are received in the Specification Viewpoint, are
transformed into language constructs. By that, an E/E Architecture exploration
problem is formalized.

(2) After all constraints and objectives have been defined, this formalized E/E Architec-
ture exploration problem is passed to the Exploration Viewpoint.
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4.1.3. Exploration Viewpoint

The Exploration Viewpoint, provides the specific technologies which enable an automatic
calculation of E/E Architectures. In this thesis, we are using the Z3 SMT solver in order
to solve an E/E Architecture exploration problem. The viewpoint is described in detail in
Chapter 7. In general, we distinguish between two steps, in this viewpoint.

� Validation

The Validation step, checks for contradictions in the E/E Architecture exploration
problem. If there are contradictions, there is no solution for the problem and thus no
E/E Architecture can be generated. This means that the contradictions have to be
resolved at first.

� Exploration

In the Exploration step, the goal is to calculate different optimized E/E Architectures.
As the optimization objectives in an E/E Architecture exploration are often inversely
influencing each other, the results mostly depict trade-offs (e.g. low costs mean higher
energy consumption, lower energy consumption mean higher costs).

The process steps within the Exploration Viewpoint and to the Specification and E/E
Architecture Viewpoint are as follows.

(2) The constraints and objectives which describe the E/E Architecture exploration prob-
lem in the Specification Viewpoint, are transformed into SMT, in order to be solved
by the Z3 SMT solver.

(3) Using this solver, the validation step is then checking for contradictions between the
constraints.

(4) In case there are contradictions, the contradicting constraints are highlighted and have
to be resolved. Such a contradiction may give a hint about contradicting requirements,
as the constraints might be derived from the requirements of the system. After the
contradictions have been resolved, step (2) has to be performed again.

(5) After a successful validation, multiple optimized E/E Architectures can be generated
in the exploration step.

(6) After one E/E Architecture has been chosen, the solution is transformed into Hard-
ware and Deployment models in the E/E Architecture Viewpoint.

4.2. Integration into the development process

In the following, we describe how the proposed exploration methodology integrates into
system development. Hence, we show, on the one hand, how the the approach integrates
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into the V-Modell XT development approach (Section 4.2.1) and, on the other hand, into
the embedded system development methodology SPES (Section 4.2.2).

4.2.1. V-Modell XT

The V-Modell XT1 is a de-facto standard for the development of software intensive embed-
ded systems in Germany. It has been developed in order to react to a rising number of
(economically) non-successful or failing projects developing software intensive systems [82].
The XT stands for extreme tailoring which is the main idea of the standard, namwley the
provision of a framework of building blocks which can be tailored to the needs of specific
projects. The V-Modell XT is a trademark of the Federal Republic of Germany.

It proposes several reference implementations like, e.g., reference products, reference pro-
cesses and reference roles. In the following, we focus on the proposed reference roles and
schematically define a development process, based on some of those roles. We then integrate
our exploration methodology into such a development process and show that there is an
additional role needed, in order to support an exploration.

4.2.1.1. Roles in V-Modell XT

The V-Modell XT proposes several reference roles in the development process. In the
following, we have a closer look at a selected number of roles, that enable an integration of
the proposed exploration methodology into such a development process.

� Requirements Analyst

Creation, assessment and refinement of functional and non-functional requirements.

� System Architect

Design of the System Architecture which entails the technical design, the tracing to
the requirements, definition of interfaces and specification of HW/SW interfaces.

� Software Architect

Design of the software architecture and realization of requirements and definition of
software units. The software architect also contributes to the design of the system
architecture.

� Software Developer

Realization (programming) of software units and integration into the system.

� Hardware Architect

Design of the Hardware Architecture and realization of requirements and definition
of hardware units. Selection of mechanical or electronic components.

1http://ftp.tu-clausthal.de/pub/institute/informatik/v-modell-xt/Releases/2.3/

V-Modell-XT-Gesamt.pdf
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� Hardware Developer

Realization of hardware units and integration into the system.

� System Integrator

Integration of the different hardware and software units which form the overall system.

Figure 4.2 illustrates these roles aligned to the different design stages of a classical V-
Model development approach: requirements analysis, high-level design, low-level design, unit
design and integration. Despite the sequential order, the different stages are supposed to
be executed in parallel, iteratively refining the system under development.

Figure 4.2.: Roles at different stages in the development process using a customized V-
Modell XT. (Each development stage (written in gray) is accompanied by the
role which is responsible in this stage (written in black below the stage).)

The E/E Architecture Viewpoint (highlighted green in Figure 4.2) is mainly used during
High-Level and Low-Level (System) Design. Thus, it is used already at early stages of
development, where a system architect is defining the system architecture. Considering
an automotive E/E Architecture, this entails answering the following questions: how to
design the system architecture of the system and how to distribute functionality within the
system?
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In order to answer these questions, the system architect needs to aggregate knowledge
from the requirements analysis stage and from the low-level design stage. On the one
hand, the requirements analysis might provide constraints and objectives for the system
architecture such as compliance with a safety standard. On the other hand, the low-level
design implicitly provides system constraints such as available memory of certain hardware.

As introduced in Section 4.1.1, the E/E Architecture Viewpoint distinguishes between
software and hardware architecture models. Thus, the software architect and hardware ar-
chitect are also involved in the creation of the system architecture. Consequently, regarding
the roles which we just introduced, the software architect is responsible for the software ar-
chitecture and the hardware architect for the hardware architecture. The system architect is
responsible for the whole E/E Architecture Viewpoint, deciding especially about the design
of the hardware architecture, according to the available hardware resources and according
to the deployment of the software architecture onto the hardware architecture.

4.2.1.2. Exploration Engineer as a new role

In order to support the system architect in building the E/E Architecture, the Specification
and Exploration Viewpoint provide means to automatically calculate a system architecture
given the input of the different models provided in the E/E Architecture Viewpoint.

Those viewpoints are located in parallel to the E/E Architecture Viewpoint (highlighted
in yellow and green in Figure 4.2) as they shall support the system architect ’s work to come
up with a system architecture already at early stages of the development. Hence, their
purpose is to enable and support frontloading activities allowing to estimate, for instance
the cost of a system architecture, as well as to find contradicting system configurations
and/or requirements as early as possible.

Because of that, we propose the new role of an exploration engineer which supports a
system architect already at early stages of development. The exploration engineer is respon-
sible for the Specification and the Exploration Viewpoint. He/she is able to aggregate the
information of the E/E Architecture Viewpoint which is provided by the system architect
and is furthermore able to use and extend a dedicated domain specific language, capable
of expressing all necessary properties of the system. His/her task is then to formalize the
input of the E/E Architecture Viewpoint in terms of constraints and objectives, by using
this domain specific language. This formalization is then used in the Exploration View-
point to automatically validate the constraints ensuring that there are no contradicting
requirements, on the one hand. On the other hand, after a successful validation, the ex-
ploration automatically calculates different system architectures. Those solutions are then
transformed back into the E/E Architecture Viewpoint and can thus be used by the system
architect. By that, the exploration engineer can support the system architect in designing
the system architecture.
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4.2.2. Integration into the SPES methodology

The development methodology SPES (Software Platform Embedded Systems [16][81]) has
been developed throughout two consecutive German research projects (see also Chapter
3.4.1). Figure 4.3 shows, that SPES divides system development into four viewpoints: the
requirements, the functional, the logical and the technical viewpoint. The models in each
viewpoint can be developed on different levels of granularity.

Figure 4.3.: Integration of the E/E Architecture Viewpoint into the technical viewpoint in
SPES [16]

The methodology is especially targeted at developing embedded systems and can be
described as a framework which is tailored to domain and project specific needs. In this
work, we show how the proposed exploration methodology seamlessly integrates into the
SPES framework and how it integrates both development methodologies into the bigger
picture of the general V-Modell XT development approach.

Figure 4.4 exemplarily depicts the transition between requirements, functional, logical
and technical viewpoint on one level of granularity. Starting from the requirements view-
point describing, e.g., a use case model we are deriving the systems functionality from this
diagram in the functional viewpoint. In the functional viewpoint, the functionality of the
system is decomposed into two sub-functions. Those functions are the basis for the creation
of the logical architecture in the logical viewpoint. This architecture is the first draft of the
system architecture including all functional (through the deployment of functions to logical
components) and non-functional aspects of the system but still platform independent. In
the technical viewpoint, the implementation of the system is described in terms of software
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Figure 4.4.: Schematic transition from functional to logical to technical viewpoint

and hardware architectures and deployment. Hereby the logical components from the log-
ical viewpoint are allocated to software tasks which realize the functionality of the logical
component. However, SPES remains rather vague about the different meta-models and
their dependencies in the technical viewpoint. Therefore, the proposed E/E Architecture
Viewpoint in this thesis, provides dedicated technical meta-models (Chapter 5) and is thus
an extension of the technical viewpoint of SPES. Additionally, with the Specification and
Exploration Viewpoint, it provides a powerful extension to the technical viewpoint enabling
the automatic generation of E/E Architectures.
Considering the development process according to the V-Model XT, depicted in 4.2.1, the

SPES methodology seamlessly integrates into the tailored development process as illustrated
in Figure 4.5. Therefore, we distribute the development stages, roles and viewpoints as
follows:

� The Requirements Viewpoint can be mapped to the stage of requirements analysis
which is part of the responsibility of the requirements analyst.

� The Functional Viewpoint is also part of requirements analysis as it structures the re-
quirements as system functions. It is also part of the responsibility of the requirements
analyst.

� The Logical Viewpoint describes the system architecture in terms of logical compo-
nents but is still platform independent. It is created during High-Level Design and is
part of the responsibility of the system architect.

� The Technical Viewpoint describes the technical realization of the system. It is part
of the High-Level Design but also of the Low-Level Design as it considers the system
architecture on the logical as well as on the software and hardware level. Consequently,
it is part of the responsibility of the system architect, and the software and hardware
architect.
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Figure 4.5.: Integration of the SPES Viewpoints and the proposed E/E Architecture View-
point (green) into the tailored V-Model XT development approach. (Each
development stage (written in gray) is accompanied by the role which is re-
sponsible in this stage (written in black below the stage).)
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Figure 5.1.: Overview of viewpoints

The E/E Architecture Viewpoint describes the structure and the meta-models in order
to describe an E/E Architecture. In this viewpoint, the system is described in terms of its
technical aspects. We therefore distinguish between three different types of models:

1. Software Architecture

a) Run-Time Software

b) Design-Time Software

2. Hardware Architecture

a) Hardware Resources

b) Hardware Topology

3. Deployment

57



5. E/E Architecture Viewpoint

a) Task Deployment

b) Signal Deployment

1 The Software Architecture can be divided into a dynamic part called run-time software
(1a) and a static part called design time software (1b). The run-time software is described
through a Task Architecture and a schedule of Tasks and messages. The design-time soft-
ware includes the description of the operating system, middleware and virtualization aspects
like for example partitioning. In this thesis, we will focus only on the run-time software, in
particular on the Task Architecture. Thus the scheduling aspects as well as the design-time
software is only mentioned for the sake of completeness here, and will not be described in
detail in the following.

2 The Hardware Architecture describes the Hardware Resources (2a) and the Hardware
Topology (2b). The Hardware Resources describe a set of computation resources (Processin-
gUnits) and communications resources (Buses). The specific properties of those resources
are described as annotations such as safety level or memory while Connectors attached to
the resources describe possible interfaces between processing and communication resources.
Furthermore, variability of those resources is described if more than one variant of a spe-
cific resource exists. Variants of a specific resource differ in their properties. The Hardware
Topology describes the connections between computation and communication resources ac-
cording to the interfaces described by Connectors.

3 The Deployment is connecting the Software Architecture and the Hardware Archi-
tecture by deploying the Task Architecture onto the Hardware Topology. Specifically, it
describes the Task to ProcessingUnit deployment (3a), which defines where a Task is ex-
ecuted at run time and it describes the Signal to Bus deployment (3b) which determines
the communication resource that is used to send this Signal.

An automotive E/E Architecture can thus be described by a Task Architecture, a Hard-
ware Topology and a Deployment of the Task Architecture onto the Hardware Topology.

In the following, we describe each of the previously mentioned models in detail by means of
their meta-models accompanied by an example. The Software Architecture will be explained
in Section 5.1, the Hardware Architecture in Section 5.2 and the Deployment in Section 5.3.

This Chapter has been published in Eder et al. [24] in a first version and has been taken
over and adapted for this thesis.

5.1. Software Architecture

The dynamic part of the Software Architecture is the run-time software. It is composed
of a Task Architecture consisting of Tasks which communicate via Signals and a schedule
of Tasks and Signals. It is called run-time software due to the fact that Tasks, Signals
and schedules are executed/sent at run-time. Thus it describes the dynamic part of the
Software Architecture.
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Considering an E/E Architecture, the Software Architecture describes the software as
Tasks - which can be executed on a ProcessingUnit (ECU) - and Signals exchanged between
Tasks - which can be sent via Buses.

5.1.1. Meta-Model

Figure 5.2.: Meta-Model of the Task Architecture

Figure 5.2 shows the meta-model of the Task Architecture. A TaskArchitecture consists
of 0..* Tasks and 0..* Signals. Each Task may contain 0..* TaskPorts. A TaskPort can
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either be of type TaskOutputPort or TaskInputPort. A TaskOutputPort is the source of a
Signal sent between two Tasks. A TaskInputPort is the target of a Signal. Thus the Task
Architecture is described in a typical component-based way like e.g. proposed in [34].
Task, TaskPort and Signal inherit from the abstract interface IModelElement. Therefore,

we also refer to them as model elements. IModelElement is a generalized concept to describe
elements which can be created and/or altered e.g. by a user. At this level the concept of
IAnnotatedSpecifications (also referred to as annotation in the following) is implemented.
Any model element may contain an arbitrary number of IAnnotatedSpecifications. Figure
5.2 depicts exemplary annotations for elements of the Task Architecture. Specifically, the
model elements of the Task Architecture contain the following annotations:

1. Task

� RAM [Byte] (memory : int) describes the amount of Random Access Memory
which is required to execute the Task

� Flash [Byte] (flash : int) describes the amount of Flash memory which required
to store the execution specification (e.g. Code) and execute the Task.

� Safety [ASIL] (asil : ASIL) describes the automotive safety level ASIL of this
Task

2. TaskOutputPort

� Size [Byte] describes the size of the Signal which is sent by this TaskOutputPort

5.1.2. Example

Figure 5.3 shows an instantiated Task Architecture. It consists of Task 1 which has one
TaskOutputPort atttached and Task 2 which has one TaskInputPort attached. Through
those TaskPorts Task 1 communicates with Task 2 via a Signal whose source is the Task-
OutputPort at Task 1 and whose source is the TaskInputPort at Task 2. Moreover, using
the concept of annotations we can describe that Task 1 requires 64kByte of RAM and has
an Automotive Safety Integrity Level (ASIL) A. The size of the Signal which is produced
by Task 1 is 16 kByte. Task 2 requires 128kByte of RAM and an ASIL D.

Figure 5.3.: Exemplary Task Architecture with two Tasks, two TaskPorts and one Signal
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5.2. Hardware Architecture

The Hardware Architecture describes the Hardware Resources and their Hardware Topology.
The Hardware Architecture also covers variability of resources.

Considering an E/E Architecture, the Hardware Architecture describes ProcessingUnits
(ECUs) and Buses (Hardware Resources) which are connected with each other to enable a
communication between ProcessingUnits via Buses (Hardware Topology).

5.2.1. Hardware Resources

The Hardware Resources describe a 150% model [83, 84] of all ProcessingUnits and Buses,
and their respective interfaces. In particular, this means that all variants of a specific
Hardware Resource are described. Additionally, different types of resources are defined
here, too.

5.2.1.1. Meta-Model

Figure 5.4.: Hardware Resource types

Figure 5.4 exemplarily shows the different types of ProcessingUnits and Buses. In this
meta-model, both elements are described as an interface. Additionally, this meta-model is
extended by an interface layer which details the types of ProcessingUnits. A ProcessingUnit
may thus be e.g. of type ISensor and more specifically of type IRadarSensor. For reasons of
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clarity and comprehensibility we are only showing part of the whole technical meta-model
here. A ProcessingUnit can furthermore be of type IActuator or of a different type of sensor
like ICameraSensor to mention just a few.

In order to be able to express variability aspects in the E/E Architecture Viewpoint, we
introduced the concept of a variation point [83]. As proposed in [85], we integrated this
concept directly into the meta-model.
Figure 5.5 illustrates, how variability is integrated into the meta-model of the Hardware

Resources. The interface IAlternative depicts the different variants of a specific Hardware
Resource. The base class AlternativeVariationPointBase contains an arbitrary number of
IAlternatives. An AbstractComponent is thus a container for variants of either IProcessin-
gUnits or IBuses. An AlternativeBase is a base class for any IAlternative.

Hence, a specific IProcessingUnit or IBus can be expressed as an abstract element. This
entails that e.g. a CAN Bus can be expressed as a Variation Point through an AbstractBus
element. This abstract element in turn can contain alternative variants (like e.g. CAN FD
(Flexible Data-Rate), CAN HI (Highspeed) or CAN LO (Lowspeed). This means that the
abstract element represents three different variants of a CAN Bus which in this case differ
e.g. in their bandwidth value.

Figure 5.5.: Variability in the Hardware Architecture

Specifically, the model elements of the Hardware Resources contain the following anno-
tations:

1. ProcessingUnit
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� RAM [Byte] (memory : int) describes the amount of Random Access Memory
which is required to execute the Task

� Flash [Byte] (flash : int) describes the amount of Flash memory which required
to store the execution specification (e.g. Code) and execute the Task.

� Safety [ASIL] (asil : int) describes the automotive safety level ASIL of this
ProcessingUnit

� Cost [e] or [$] (cost : int) describes the cost of this ProcessingUnit

� Power Consumption [W] (power : int) describes the power consumption of this
ProcessingUnit in watts

2. Bus

� Bandwidth [Byte/ms] (bw : int) describes the maximum bandwidth of the refer-
ring Bus

5.2.1.2. Example

Figure 5.6 shows an exemplary set of Hardware Resources.

Figure 5.6.: Exemplary set of Hardware Resources. Green Elements depict AbstractCompo-
nents which contain different variants of this resource (Abstract Bus contains
two variants, Abstract Steering Actor and Abstract Radar Sensor also contain
two variants each). Non-green resources (Brake Actor and Bus 2 ) depict con-
crete resources for which no variants exist. The Connectors are shown as black
(IProcessingUnit) or white (IBus) circles.
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5.2.2. Hardware Topology

The Hardware Topology, as opposed to the Hardware Resources, describes a 100% model
of all Hardware Resources. This means that, based on the interfaces of the Hardware
Resources, a fixed connection between the different Hardware Resources is described.

5.2.2.1. Meta-Model

Figure 5.7 depicts the general meta-model of the Hardware Topology. A Hardware Topol-
ogy consists of an arbitrary number of IPhysicalPlatformArchitectureElements which can
be of type IProcessingUnit, IBus or IPowerSupply. A IProcessingUnit is able to execute
Software. Connectors may be attached to it in order to establish a BusConnection to the
Connectors of IBuses. A IPowerSupply maybe connected to IProcessingUnits via a Pow-
erConnection between two PowerConnectors (one attached to each element) in order to
supply an IProcessingUnit with electric power.

Figure 5.7.: Meta-model of the Hardware Topology
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5.2.2.2. Example

Figure 5.8 shows an exemplary Hardware Topology.

Figure 5.8.: Exemplary Hardware Topology. Concrete IProcessingUnits (red) are connected
to concrete IBuses (blue) via their Connectors (black and white circles). A
Hardware Topology does not contain any AbstractComponents. It is depicting
a concrete Hardware Topology.

5.3. Deployment

The Deployment describes the connection between the Software Architecture and the Hard-
ware Architectures. Specifically, all the Tasks of the Task Architecture are allocated to a
ProcessingUnit in the Hardware Topology, which entails that a Task will be executed on the
ProcessingUnit it is allocated to. Similarly, the Signals are allocated to Buses, which means
that a Signal will be sent via the Bus it is allocated to. Hence, a Deployment is defined as
a set of Allocations, where an Allocation defines the assignment of one Task/Signal to one
ProcessingUnit/Bus.

The Deployment completes the description of an E/E Architecture as it connects the
Software Architecture - described as a Task Architecture - and the Hardware Architecture
- described as a Hardware Topology of Hardware Resources.

5.3.1. Meta-Model

Figure 5.9 shows the deployment meta-model. A Deployment consists of an arbitrary num-
ber of Allocations. An Allocation is described using generic types. An Allocation source S
must of type IModelElement and a target T also of type IModelElement. Hence, we can
derive two specific Deployment, TaskDeployment and SignalDeployment. A TaskDeploy-
ment consists of Allocations from Task to ProcessingUnit. A SignalDeployment consists of
Allocations from Signal to Bus.

5.3.2. Example

Figure 5.10 depicts an exemplary Deployment. It shows how Software and Hardware Ar-
chitecture are combined by deploying the Tasks and Signals of the Task Architecture onto
a Hardware Topology.
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Figure 5.9.: Meta-model of the Deployment

Figure 5.10.: Exemplary Deployment. Task 1 is allocated to Steering Actor variant 1 and
Task 2 is allocated to Radar Sensor variant 2. Consequently, the Signal which
is sent between Task 1 and Task 2 is allocated to Bus 1, as both IProcessin-
gUnits are connected to that bus via their Connectors.
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Figure 6.1.: Overview of viewpoints

The Specification Viewpoint provides means in order to formally describe an E/E Archi-
tecture Exploration problem. Therefore, we provide a domain specific modeling language
(DSML) in order to define such a problem (cf. Section 6.1). The DSML provides an abstrac-
tion between the models described in the E/E Architecture Viewpoint and the definition of
an E/E Architecture Exploration problem in the Exploration Viewpoint. Furthermore, we
provide a set of language patterns to support re-usability (cf. Section 6.2). These patterns
are commonly used for exploration tasks when engineering E/E Architectures.

This Chapter has been published in Eder et al. [24] in a first version and has been taken
over and adapted for this thesis.
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Table 6.1.: DSML Grammar
<DSML-Formula> ::= <Constraint>| <Objective>

<Objective> ::= min <ArithExpr>| max <ArithExpr>

<Constraint> ::= <BooleanExpr>

<ArithExpr> ::=
<ArithExpr><ArithOperator><ArithExpr>|
<AggrFunExpr>| <AtomicArithExpr>| <ModeElemPropertyFun>

<BooleanExpr> ::=

<BooleanExpr><BooleanOperator><BooleanExpr>|
<ArithExpr><CmpOperator><ArithExpr>|
<ModelElement><EquOperator><ModelElement>|
NOT <BooleanExpr>| <QuantifierExpr>| <AtomicBoolExpr>

<QuantifierExpr> ::=
forAll <ModelElementSet><BooleanExpr>|
exists <ModelElementSet><BooleanExpr>

<BooleanOperator> ::= AND | OR

<CmpOperator> ::= < | > | <= | >= | <EquOperator>

<EquOperator> ::= == | !=
<ArithOperator> ::= + | – | * | /
<ModelElementSet> ::= <ModelElement>*

<AtomicBoolExpr> ::= True | False
<AtomicArithExpr> ::= Integer | Double

<AggrFunExpr> ::=
Sum <ModelElementSet><BoolExpr><ArithExpr>|
Count <ModelElementSet>

<ModelElement> ::=
Task | Signal | ProcessingUnit | Bus | Connector |
<ModelElementFunExpr>

<ModElemProperty> ::= SafetyLevel | RAM | Flash | Power | Cost | Size | Bandwidth

<ModElemPropertyFun> ::= property <ModelElement><ModElemProperty>

<ModelElementFunExpr> ::=
start <ModelElement>| end <ModelElement>|
connected <ModelElement>| allocate <ModelElement>

6.1. A language for technical architecture exploration

The domain specific modeling language (DSML) is used to define constraints and objectives
over model elements and their properties. Constraints are restricting the set of possible
solutions and objectives are optimizing a solution into a certain direction. Both constraints
and objectives can be formalized forms of system requirements. A simplified version of the
grammar is presented in Table 6.1.

A DSML-Formula is either a Constraint or an Objective. A Constraint is a BooleanExpr
which basically correspond to first-order logic with a set of predefined model element types
and functions evaluating to either true or false. An Objective corresponds to a minimization
or a maximization of an ArithExpr.

6.1.1. Boolean expressions

A BooleanExpr can be

� concatenation of two BooleanExpr with a binary BooleanOperator AND or OR
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<BooleanExpr><BooleanOperator><BooleanExpr>,

� concatenation of two ArithExpr with a binary CmpOperator or EquOperator <, >,
<=, >=, ==, ̸=
(<ArithExpr><CmpOperator><ArithExpr>| <ArithExpr><EquOperator>
<ArithExpr>),

� concatenation of two ModelElement with a binary EquOperator ==, ̸=
(<ModelElement><EquOperator><ModelElement>)

� negation of a BooleanExpr
(NOT <BooleanExpr>),

� an AtomicBoolExpr evaluating either to true or false
(TRUE or FALSE ),

� a QuantifierExpr which a allows quantification over a set of elements.

6.1.2. Quantifier expressions

A QuantifierExpr can either be a

� universal quantifier forAll iterating over all ModelElements of a ModelElementSet and
demanding that a given BoolExpr has to hold for all of these elements
(∀ModelElement ∈ ModelElementSet.BoolExpr) or a

� existantial quantifier exists iterating over all ModelElements of a ModelElementSet
and demanding that a given BoolExpr has to hold for at least one of these elements
(∃ModelElement ∈ ModelElementSet.BoolExpr)

6.1.3. Arithmetic expressions

An ArithExpr can be a

� concatenation of two ArithExpr with a binary ArithOperator +, –, *, /
(<ArithExpr ><ArithOperator><ArithExpr>),

� an AtomicBoolExpr evaluating either to an Integer or Double value,

� a AggrFunExpr which is an aggregating function which evaluates to an ArithExpr,

� a ModelElemPropertyExpr which evaluates an arithmetic property of a ModelElement
an thus evaluates to an ArithExpr.
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6.1.4. Aggregation function expressions

An AggrFunExpr can be a

� a Sum over the ModelElements out of a given ModelElementSet for which a given
predicate BoolExpr holds and which sums up the values of a certain ArithExpr for
each ModelElement
((
∑

{ModelElement∈ModelElementSet|BoolExpr}ArithExpr))

� a Count function which calculates the cardinality of a ModelElementSet
(|ModelElementSet|).

6.1.5. Model element function expressions

A ModelElemFunExpr can be a

� start function which evaluates the start of a given ModelElement by returning the
respective ModelElement
(start : ModelElement → ModelElement)

� end function which evaluates the end of a given ModelElement by returning the re-
spective ModelElement
(end : ModelElement → ModelElement)

� connected function which evaluates the connection of a certain ModelElement by re-
turning the ModelElement it is connected to
(connected : ModelElement → ModelElement)

� allocate function which evaluates the Allocation of a certain ModelElement by return-
ing the ModelElement it is allocated to
(allocate : ModelElement → ModelElement)

6.1.6. Model element expressions

Expressions related to ModelElements can be

� a ModelElement corresponds to a Task, Signal, ProcessingUnit, Bus or Connector.
The elements correspond to the models introduced in 5.1 and 5.2.

� a ModelElementSet consists out of a set of ModelElements
({ModelElement1,ModelElement2, ...,ModelElementn}),

� a ModElemPropertyFun which evaluates the property (ModElemProperty) of a certain
ModelElement. The ModElemProperty are equal to the annotations of the models
introduced in 5.1 and 5.2 and can be of type:

– SafetyLevel
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– RAM

– Flash

– Power

– Cost

– Size

– Bandwidth

(property : ModelElement×ModElemProperty → ArithExpr)

6.2. Language Patterns

Requirements in system engineering serve as an input to this approach as they correspond
to constraints and objectives. However, those requirements need to be formalized in order
to be used as an input. Such a formalization of requirements to constraints and optimization
objectives is a task that requires a certain know-how in formal methods. From our experi-
ence, practitioners are not always willing to deal with the full power of formal methods and
languages. A way to simplify this process is to restrict it by providing patterns.
We distinguish between Basic Patterns (Section 6.2.1) which are inherent to any E/E

Architecture Exploration problem and Constraint (Section 6.2.2) and Objective Patterns
(Section 6.2.3)) which can be individually defined.
In the following formulas (and unless denoted otherwise), we will use the following ab-

breviations for ModelElementSets:

� T refers to the set of all Tasks (part of the Software Architecture introduced in
Chapter 5.1).

� S refers to the set of all Signals part of the Software Architecture introduced in
Chapter 5.1).

� B refers to the set of all Buses (part of the Hardware Architecture introduced in
Chapter 5.2).

� P refers to the set of all ProcessingUnits (part of the Hardware Architecture intro-
duced in Chapter 5.2).

� C refers to the set of all Connectors (part of the Hardware Architecture introduced
in Chapter 5.2).

6.2.1. Basic Patterns

The Basic Patterns describe Constraint Patterns which are necessary in order to describe a
correct E/E Architecture. Thus, they are inherent to any formalization of an E/E Architec-
ture Exploration problem. There exist two kinds of Basic Patterns which will be described
in the following: the Topology Pattern and the Variability Pattern.
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6.2.1.1. Topology Pattern

The Topology Pattern describes a specific constraint which is necessary in order to set up
a valid Deployment from Tasks to ProcessingUnits as well as a valid Hardware Topology of
ProcessingUnits and connected Buses.

The connected function is defined to take a ModelElement as input and also return a
ModelElement. In order to define valid routes between ProcessingUnits and Buses we will
define two connected functions:

connectedP : Connector → ProcessingUnit (6.1)

connectedB : Connector → Bus (6.2)

Function 6.1 defines the connection of a ProcessingUnit to a certain Connector. Similarly
function definition 6.2 defines the connection of a Bus to a certain connector.

Together, those functions can then be combined to describe valid communication routes
between ProcessingUnits and Buses. In particular, that means that a route between a
ProcessingUnit p and a Bus b exists only if they have the same Connector c attached to
them.We therefore define an intermediate helper function route, which enables the definition
of the Hardware Topology, as follows:

route(p, b) := ∃c ∈ C.connectedP (c) = p ∧ connectedB(c) = b (6.3)

Moreover, the Connector element allows defining typed connections between Processin-
gUnits and Buses such that a specific ProcessingUnit variant may only be connected to a
specific Bus variant. Figure 6.2 schematically illustrates such a usage of Connectors. The
Connectors (red shapes) can be attached to variants (as introduced in the meta-model in
Figure 5.7) of a certain abstract ProcessingUnit or abstract Bus via the connected function.
Definition 6.3 enables to define all possible routes between the elements (dashed lines in fig.
6.2).

Having introduced the definition of routes between ProcessingUnits and Buses, they
have to be linked to the deployment of Tasks and Signals. Definition (6.4-6.6) describes
the Topology Pattern which is necessary to create a correct E/E Architecture. Here, the
Allocation (of Tasks and Signals) is brought together with the Hardware Topology (defined
by using Definition 6.3) by connecting the Signals of the Software Architecture via the start
and end function to the Allocation of Tasks to ProcessingUnits.
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Figure 6.2.: Schematic usage of Connectors and corresponding routes in a Hardware Topol-
ogy

∀s ∈ S.∃b ∈ B.∀ p1, p2 ∈ P.

allocate(start(s), p1) ∧ allocate(end(s), p2) (6.4)

⇒
((p1 ̸= p2) ∧ route(p1, b) ∧ route(p2, b) ∧ allocate(s) = b)∨ (6.5)

((p1 = p2) ∧ allocate(s) = bnull) (6.6)

The Topology Pattern (Definition 6.4-6.6) entails, that two Tasks communicating with
each other through a Signal s (implicitly start(s) = task1 and end(s) = task2)) may only
be allocated to two ProcessingUnits p1, p2 (line 6.4) if there is a route existing between
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those ProcessingUnits. In this case, the Signal s has to be allocated to the Bus b which is
connected to both p1, p2 (line 6.5). In order to avoid unnecessary Signal to Bus Allocations,
s is allocated to a so called ”null bus” (bnull) if both start and end Task of Signal s are
allocated to the same ProcessingUnit (line 6.6). Note: the ”null bus” is only temporarily
created and removed afterwards.

6.2.1.2. Variability Pattern

The variability of Hardware Resources expressed through variants of ProcessingUnits and
Buses as introduced in the meta-model in 5.5 is described by the Variability Pattern.

Expression (6.7) describes the variability constraint for a Hardware Resource (Processin-
gUnit or Bus). Here, the set V AR denotes all variants of a specific ProcessingUnit or Bus out
of the set of all ProcessingUnits and Buses (V AR ⊂ ProcessingUnits or V AR ⊂ Buses)
and the set T of all Tasks of the Software Architecture.

(
∑

{v∈V AR|∃t∈T.allocate(t)=p}
1) ≤ 1 (6.7)

The proposed variation point semantic is that either one specific variant v ∈ V AR is
chosen (at least one Task or Signal is allocated to exactly one ProcessingUnit or Bus
variant) or none (no Task or Signal is allocated to any variant).

Considering the introduced Basic Patterns (Topology and Variability Pattern), we are
now able to define an E/E Architecture Exploration problem. The Constraint and Objective
Patterns which we first introduced in [21] and which will be presented in the following, can
now be additionally added in order to meet specific automotive requirements which have to
hold for an E/E Architecture.

6.2.2. Constraint Patterns

In the following, we present automotive specific patterns depicting typical constraints in
this domain, however, are also applicable in other domains. Those patterns were identified
in the collaboration with Continental.

6.2.2.1. Allocation/Dislocation Pattern

The Allocation/Dislocation Pattern defines whether one specific Task t ∈ T or one specific
Signal s ∈ S must to be allocated (cf. eq. 6.8) or must not be allocated (cf. eq. 6.9) to a
ProcessingUnit p ∈ P or Bus b ∈ B.

t ∈ T, p ∈ P.allocate(t) = p

s ∈ S, b ∈ B.allocate(s) = b (6.8)
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t ∈ T, p ∈ P.¬(allocate(t) = p)

s ∈ S, b ∈ B.¬(allocate(s) = B) (6.9)

The Allocation/Dislocation Pattern is one of the most frequently used patterns in the
automotive domain. There are many software artifacts such as Tasks which have to run on
a certain ProcessingUnit, due to legacy system configurations or due to the fact that one
department is developing the software (Tasks) for a specific ProcessingUnit.

6.2.2.2. Function Coupling/De-Coupling Pattern

The Function Coupling Pattern ensures that a set of certain Tasks must be allocated to the
same ProcessingUnit. Therefore, the user is choosing a set of Tasks T ′ ⊆ T , whereby each
t ∈ T ′ has to be allocated to one ProcessingUnit p ∈ P .

∃p ∈ P,∀t ∈ T ′.allocate(t) = p (6.10)

The Function De-Coupling Pattern ensures that a set of user defined Tasks T ′ ⊆ T must
not be allocated to the same ProcessingUnit. This entails, that every Task defined in this
pattern is allocated to a different ProcessingUnit.

∀p1 ∈ P,∀p2 ∈ P,∀t1 ∈ T ′,∀t2 ∈ T ′.

(allocate(t1) = p1) ∧ (allocate(t2) = p2) ⇒ (p1 ̸= p2) ∨ (t1 = t2) (6.11)

The Function De-Coupling Pattern is mainly used in order to describe safety requirements
(a group of Tasks which have to or must not run on the same ProcessingUnit).

6.2.2.3. Safety Pattern

In this pattern, the user is restricting the Allocation of Tasks using their ASIL value. For
each Task t ∈ T it has to be determined, which ProcessingUnit p ∈ P it may be allocated
to. A Task may only be allocated to a ProcessingUnit, if its ASIL is not higher than the
ASIL of the ProcessingUnit.

∀t ∈ T, ∀p ∈ P.(allocate(t) = p) ⇒ (safetyLevel(t) ≤ safetyLevel(p)) (6.12)

Safety-compliant deployment is one way to ensure that safety critical Tasks are allocated
to ProcessingUnits which are reliable enough. This constraint is derived from the ISO26262
[25] standard.
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6.2.2.4. Memory Pattern

The Memory Pattern limits the amount of Tasks t ∈ T which can be allocated to a Pro-
cessingUnit p ∈ P based on the memory provided by this ProcessingUnit. Considering
equation 6.13, the sum of the memory of all Tasks allocated to a certain ProcessingUnit p
may not exceed the memory provided by the this ProcessingUnit.

∀p ∈ P.(
∑

{t∈T |allocate(t)=p}
memory(t)) ≤ memory(p) (6.13)

The Memory Pattern can be used to define constraints for read-only memory (flash) or
random access memory (RAM) which would consequently result in two Constraint Patterns.
The required flash memory of a Task is in general known during development time. The
required RAM can be estimated or can be determined empirically.

6.2.3. Objective Patterns

In addition to Constraint Patterns, which are used to restrict the set of possible solutions, it
is necessary to define Optimization Patterns. An Optimization Pattern is used to search for
an optimized E/E Architectures. By nature, the number of objectives is not limited, which
allows for multi-objective optimization. An Objective Pattern consists of an ”optimization
direction” (maximize or minimize) and an AggrFunExpr (optimizing the expression in the
chosen optimization direction).

6.2.3.1. Property Objective Pattern

The goal of this pattern is to minimize or maximize a certain system level property of
the Hardware Resources which form the Hardware Topology. A certain property of all
ProcessingUnits P is therefore summed up, if at least one Task t ∈ T is allocated to
ProcessingUnit p ∈ P ({p ∈ P |∃t ∈ T.allocate(t) = p}). Expression 6.14 describes the
Objective Pattern for any property of a ProcessingUnit p ∈ P . For instance, a minimization
means that if we can omit one ProcessingUnit with a certain property(p) (by not allocating
any Task to it) we can reduce the the overall sum of all properties of our E/E Architecture
(e.g. cost, power, ...).

min/max(
∑

{p∈P |∃t∈T.allocate(t)=p}
property(p)) (6.14)

One example for such an objective is the minimization of costs of Hardware Resources.
This means, that omitting one ProcessingUnit with a certain cost can reduce the cost of the
whole E/E Architecture. All other available properties are described by the ModelElem-
Property expression in the DSML (Table 6.1).
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6.2.3.2. Cardinality Objective Pattern

The goal of this pattern is to minimize the amount (cardinality) of ProcessingUnits which
are used in the E/E Architecture independent from their properties. A ProcessingUnit is
referred to as used, if at least one Task is allocated to it.

min |{p ∈ P |∃t ∈ T.allocate(t) = p}| (6.15)

6.2.3.3. Bandwidth Objective Pattern

The Bandwidth Objective Pattern is a modified version of the Property Objective Pattern.
It is minimizing the busload of one specific Bus bmin. The busload is estimated by summing
up the size of all Signals (defined at the output port of the sending Task) which are allocated
to this specific bus bmin. This sum is then minimized.

min(
∑

{s∈S|allocate(s)=bmin}
size(s)) (6.16)

The goal of this pattern is to minimize the bandwidth of a specific Bus in order to provide
an estimate whether it can be minimized to zero such that this Bus might be omitted.
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Figure 7.1.: Overview of viewpoints

The Exploration Viewpoint describes the formal E/E Architecture exploration problem
definition using the language introduced in Section 6 and its translation into SMT (Satisfi-
ability Modulo Theories) in order to be solved by a corresponding solver.

In Section 7.1 we define the E/E Architecture exploration problem. Section 7.2 will then
introduce a meta-model to store the exploration problem definition. Section 7.3 shows the
transformation of the E/E Architecture exploration problem expressed in the DSL into
SMT. Lastly, in Section 7.4 we describe the results after a validation and exploration and
how different solutions can be compared.

This Chapter has been published in Eder et al. [24] in a first version and has been taken
over, adapted and considerably extended in this thesis.
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7.1. E/E Architecture exploration problem definition

An E/E Architecture exploration problem E is defined as a tuple

E =< C,O >

where

1. C is the set of all constraints,

2. O is the set of all optimization objectives.

On the one hand, the set of constraints consists out of the basic patterns introduced
in Section 6.2.1, the topology pattern and the variability pattern. On the other hand, it
consists of the constraint patterns introduced in Section 6.2.2 which can be individually
defined for any exploration.
We therefore define the set of Constraints C as

C :={ctop, ccon0 , ..., cconi , cv0 , ..., cvj , cprop0 , ..., cpropk , cpat0 , ..., cpatn}

where

1. ctop is the topology pattern constraint as defined in Section 6.2.1.1,

2. ccon0 , ..., cconi are i connection constraint defining the Connectors of all ProcessingU-
nits and Buses via the connectedP and connectedB function (as defined in function
definition 6.1) and 6.2 in Section 6.2.1.1).

3. cv0 , ..., cvj are j variability constraints defined in the variability pattern in Section
6.2.1.2. Each abstract variation point is formalized by exactly one variability con-
straint.

4. cprop0 , ..., cpropk are k property constraints determining the property value of eachMod-
elElement by using the property function. (as defined by theModelElemPropertyFun
in Section 6.1.6)

5. cpat0 , ..., cpatn are n individually - for each E/E Architecture exploration problem -
defined constraints by using the constraints patterns introduced in Section 6.2.2.

The set of objectives consists out of the objective patterns introduced in 6.2.3 and can
also be defined individually for each exploration.
We therefore define the set of Objectives O as

O := {opat0 , ..., opatm}
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where

opat0 , ..., opatm are m individually - for each E/E Architecture exploration problem - de-
fined optimization objectives by using the objective patterns introduced in Section 6.2.3.

7.2. DSE Meta-Model

As introduced in the last Section, an E/E Architecture exploration problem consists out
of constraints, which limit the set of possible solutions, and optimization objectives, which
optimize this limited set of solutions towards a certain directions.

Figure 7.2 illustrates a meta-model capable of storing such an E/E Architecture ex-
ploration problem. Built upon the meta-model proposed in [87], an ExplorationProblem is
described as a set of ExplorationTargets. An ExplorationTarget is either an ExplorationCon-
straint or an ExplorationObjective. Each ExplorationTarget can be of a certain Category. In
Eder et al. [21], we identified five different categories which could also be further extended.

� Allocation Predefined Allocations of Tasks/Signals to Hardware Resources which
may not be changed, due to, e.g., required hardware interfaces.

� Memory Describing constraints and objectives concerning the overall memory con-
sumption of the Hardware Resources.

� Safety Describing Automotive Safety Integrity Level (ASIL) [25] constraints which
have to be considered by a Allocation.

� Cost Describing constraints and objectives considering the costs of Hardware Re-
sources.

� Energy Describing constraints and objectives regarding the energy consumption of
the Hardware Resources.

Furthermore, an ExplorationProblem consists of an arbitrary number of RuleSets. A
RuleSet can by either of type ConstraintRuleSet or ObjectiveRuleSet. RuleSets enable
structuring an E/E Architecture exploration problem. They always contain a subset of
references to ExplorationTargets contained in the ExplorationProblem. A RuleSet may
thus describe different variations of an exploration problem which may result in different
solutions. This enables a system designer to compare the solutions of differing RuleSets,
which all refer to the same system model.

It does furthermore not force a system designer to use all of the constraints and objectives.
The concept of a RuleSet is especially helpful when contradicting constraints (respectively
contradicting requirements) are detected. It enables a system designer to select and dese-
lect constraints from a RuleSet. Such a relaxation leverages the handling of contradicting
requirements as the constraints are derived from the requirements of the system.
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Thus, the meta-model in Figure 7.2 shows how we can categorize and store an E/E
Architecture exploration problem.

Figure 7.2.: Exploration Meta-Model

7.3. Translation into SMT

The model element sets T, S, P,B,C (Tasks, Signals, ProcessingUnits, Buses, Connectors;
as defined in the beginning of Section 6.2) are translated into enumerations in SMT. There-
fore, we use the SMT declare-datatypes expression for non-parametric datatypes (see 0
after Name declaration (Task 0 )). Exemplarily, three enumeration types are defined in the
following for every enumeration type.

(declare -datatypes ((Task 0)) ((( task_1) (task_2) (task_3 ))))

(declare -datatypes (( Signal 0)) ((( signal_1) (signal_2) (signal_3 ))))
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(declare -datatypes (( ProcessingUnit 0)) ((( pu_1) (pu_2) (pu_3 ))))

(declare -datatypes ((Bus 0)) ((( bus_1) (bus_2) (bus_3 ))))

(declare -datatypes (( Connector 0)) ((( con_1) (con_2) (con_3 ))))

All of the ModelElementFunExpr which are defined in the DSML are translated using an
uninterpreted function of SMT.

(declare -fun start (Signall) Task)

(declare -fun end (Signal) Task)

(declare -fun allocate (Task) ProcessingUnit)

(declare -fun allocate (Signal) Bus)

(declare -fun connectedP (Connector) ProcessingUnit)

(declare -fun connectedB (Connector) Bus)

For every ModelElementProperty which is used in the exploration, an uninterpreted func-
tion is defined.

(declare -fun safetyLevel (Task) Int)

(declare -fun safetyLevel (ProcessingUnit) Int)

(declare -fun ram (Task) Int)

(declare -fun ram (ProcessingUnit) Int)

(declare -fun flash (Task) Int)

(declare -fun flash (ProcessingUnit) Int)

(declare -fun power (ProcessingUnit) int)

(declare -fun cost (ProcessingUnit) int)

(declare -fun size (Signal) int)

The topology pattern constraint ctop (Section 6.2.1.1) is translated into a quantified SMT
formula. It refers to the datatypes defined above.

(assert

(forall ((s0 Signal ))

(exists ((b4 Bus))

(forall ((e1 ProcessingUnit ))

(forall ((e2 ProcessingUnit ))

(exists ((c3 Connector ))

(exists ((c5 Connector ))

(let ((a!1 (and (= (allocate (f_start s0)) e1)

(= (allocate (f_end s0)) e2)))

(a!2 (xor (and (not (= e1 e2))

(= (connectedP c3) e1)

(= (connectedB c3) b4)

(= (connectedP c5) e2)

(= (connectedB c5) b4)

(= (allocate s0) b4))

(and (= e1 e2) (= (allocate s0) bus_null )))))

(=> a!1 a!2)))))))))

The connected constraints ccon0 , ..., cconi are translated using the respective functions
for each ProcessingUnit and Bus. The special Connector semantics introduced in Section
6.2.1.1 are taken care of by an or expression.

(assert (and (= (connectedP connector_1) pu_1 )))

(assert (and (or (= (connectedB connector_1) bus_1)

(= (connectedB connector_1) bus_2 ))))

...

The variability pattern constraints cv0 , ..., cvj (Section 6.2.1.2) are translated for every
ProcessingUnit or Bus which is a variation point (definition 6.7) into SMT using an if-then-
else (ite) expression in SMT.
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(assert (let ((a!1 (ite (or (= (allocate task_1) pu_1)

(= (allocate task_2) pu_1)

(= (allocate task_3) pu_1))

1

0))

(a!2 (ite (or (= (allocate task_1) pu_2)

(= (allocate task_2) pu_2)

(= (allocate task_3) pu_2))

1

0)))

(<= (+ a!1 a!2) 1.0)))

The properties of ModelElements cprop0 , ..., cpropk are translated using the respective func-
tions for each ModelElement.

(assert (= (safetyLevel task_1) 2)) ; ASIL B

(assert (not (= (ram pu_1) 512))

...

The constraint patterns cpat0 , ..., cpatn (Section 6.2.2) are translated as follows.

The allocation pattern (Section 6.2.2.1) demanding the Allocation of a Task task 1 onto
a ProcessingUnit pu 1 is translated as stated below. The dislocation would be translated
accordingly with a negation.

(assert (= (allocate task_1) pu_1))

(assert (not (= (allocate task_1) pu1))

...

The function coupling pattern and de-coupling patterns (Section 6.2.2.2) are translated
as follows.

The function coupling pattern (cf. definition 6.10) is translated by unfolding both quan-
tifiers iterating over Tasks and ProcessingUnits.

(assert (or (and (= (allocate task_1) pu_1)

(= (allocate task_2) pu_1))

(and (= (allocate task_1) pu_2)

(= (allocate task_2) pu_2))

(and (= (allocate task_1) pu_3)

(= (allocate task_2) pu_3 ))))

The function de-coupling pattern (cf. definition 6.10) is also translated by unfolding the
four quantifiers iterating over both Task sets and ProcessingUnit sets. Due to reasons of
readability, we only show part of the SMT formulation here.

(assert (let ((a!1 (=> (and (= (allocate task_1) pu_1)

(= (allocate task_1) pu_1))

(or (not (= pu_1 pu_1))

(= task_1 task_1 ))))

(a!2 (=> (and (= (allocate task_1) pu_1)

(= (allocate task_2) pu_1))

(or (not (= pu_1 pu_1))

(= task_1 task_2 ))))

(a!3 (=> (and (= (allocate task_2) pu_1)

(= (allocate task_1) pu_1))

(or (not (= pu_1 pu_1))

(= task_2 task_1 ))))

...

(and a!1 a!2 a!3 ...)))
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The safety pattern (Section 6.2.2.3) is also translated by unfolding both quantifiers iter-
ating over Tasks and ProcessingUnit sets. Due to reasons of readability, we also only show
the SMT formulation for ProcessingUnit pu 1 here.

(assert (and (=> (= (allocate task_1) pu_2)

(<= (safetyLevel task_1)

(safetyLevel pu_2 )))

(=> (= (allocate task_2) pu_2)

(<= (safetyLevel task_2)

(safetyLevel pu_2 )))

(=> (= (allocate task_3) pu_2)

(<= (safetyLevel task_3)

(safetyLevel pu_2 )))))

(assert (and (=> (= (allocate task_1) pu_1)

...

The memory pattern (Section 6.2.2.4) is also translated by unfolding both quantifiers
iterating over Tasks and ProcessingUnit sets. The sum is calculated by using the if-then-
else statement in SMT which returns zero if the respective Task is not allocated to the
respective ProcessingUnit (otherwise the value returned by the memory function). Due
to reasons of readability, we also only show the SMT formulation for ProcessingUnit pu 1
here. We are illustrating the translation for RAM memory here. The translation for flash
memory is accordingly.

(assert (let ((a!1 (+ (ite (= (allocate task_1) pu_1)

(ram task_1)

0)

(ite (= (allocate task_2) pu_1)

(ram task_2)

0)

(ite (= (allocate task_3) pu_1)

(ram task_3)

0))))

(and (<= a!1 (ram pu_1 )))))

(assert (let ((a!1 (+ (ite (= (allocate task_1) pu_2)

...

The objective patterns opat0 , ..., opatm (Section 6.2.3) are translated as follows.
The property objective pattern (Section 6.2.3.3) is translated into SMT by summing up

all property values of ProcessingUnits where at least one Task is allocated to. This sum is
then minimized.

(minimize (let ((a!1 (ite (or (= (allocate task_1) pu_1)

(= (allocate task_2) pu_1)

(= (allocate task_3) pu_1))

(power pu_1)

0))

(a!2 (ite (or (= (allocate task_1) pu_2)

(= (allocate task_2) pu_2)

(= (allocate task_3) pu_2))

(power pu_2)

0))

(a!3 ...

...

(+ a!1 a!2 a!3 ... )))

The translation of the bandwidth objective pattern (Section 6.2.3.3) needs a help function
and constraint. The help function weight is used to calculate the weight of the Bus which
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shall be minimized. The constraint defines the value of the weight function by summing
up all the sizes of all Signals which are allocated to the Bus to be minimized. The weight
function is then used to create the objective.

(declare -fun weight (BusImpl) Real)

(assert (let ((a!1 (+ (ite (= (allocate signal_1) bus_1)

(size signal_1)

0)

(ite (= (allocate signal_2) bus_1)

(size signal_2)

0))))

(and (= (weight bus_1) a!1))))

(minimize (weight bus_1))

The cardinality objective pattern (Section 6.2.3.2) is translated similarly to the property
objective pattern, except that it only counts the ProcessingUnits where at least one Task
is allocated to. This value is then again minimized.

(minimize (let ((a!1 (ite (or (= (allocate task_1) pu_1)

(= (allocate task_2) pu_1)

(= (allocate task_3) pu_1))

1

0))

(a!2 (ite (or (= (allocate task_1) pu_2)

(= (allocate task_2) pu_2)

(= (allocate task_3) pu_2))

1

0))

(a!3 ...

...

(+ a!1 a!2 a!3 ...)))

7.4. E/E Architecture exploration solutions

Considering the translated constraints and objectives into SMT, they can now be solved
by an SMT solver. We are using the Z3 SMT solver 1. When solving such a problem, we
distinguish between two different types as depicted in the overview in Figure 7.1, Valida-
tion and Exploration. Validation focuses on finding contradicting constraints which may
give a hint at contradicting requirements and will be described in more detail in Section
7.4.1. Exploration focuses on finding different optimized E/E Architectures entailing the
exploration of Hardware Topologies together with a Task and Signal Deployment and will
be described in more detail in Section 7.4.2.

7.4.1. Validation

During validation we focus on finding contradicting constraints. Those contradictions may
give a hint about contradicting requirements. Regarding Figure 7.3 for instance, there is

1https://github.com/Z3Prover
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a predefined Allocation of a certain Task to a certain ProcessingUnit, e.g., due to the fact
that the ProcessingUnit and the functionality of the Task are developed by the same de-
partment. This would be enforced by defining an allocation constraint (cf. Section 6.2.2.1).
Furthermore, a safety constraint would be defined because the resulting architecture has to
apply to ISO 26262 (cf. Section 6.2.2.3). This means that all Tasks ASIL has to be smaller
or equal to the ASIL of the ProcessingUnit. If the allocation constraint contradicts this
safety constraint (e.g. if the ASIL of the Task is higher than the ASIL of the ProcessingU-
nit it has to be allocated to) there would not be any solution. Although this example may
sound trivial, we have to imagine that industrial sized automotive architectures have sizes
of at least 100 Tasks and 60 ProcessingUnit. Finding such contradictions is a manually
almost unsolvable Task, especially, considering that there are many more constraints which
also interfere with each other.

1. Allocation Constraint (red arrow):

allocate(Task1) = ProcessingUnit1

2. Safety Constraint:

allocate(Task1) = ProcessingUnit1 ⇒
(safetyLevel(Task1) ≤
safetyLevel(ProcessingUnit1))

Remark: we left out quantifiers in the formulas above in
order to increase the readability.

Figure 7.3.: The scheme on the left side is showing one Task called Task1 and one Pro-
cessingUnit called ProcessingUnit1. On the right side we are considering to
exemplary constraints which have to hold: (1) an allocation constraint (red
arrow on the left) and (2) a safety constraint.

In order to find such contradictions, we are using the unsat-core feature of the Z3 SMT-
Solver1. This features returns a minimal set of contradicting constraints which has to be
resolved in order to get a solution. Coming back to the example mentioned above, there
are two contradicting constraints, an allocation constraint and a safety constraint. There
may exist a variety of reasons for this contradictions such as

1. The contradiction is caused by contradicting requirements, as the constraints are
derived from the requirements of the system.

In the example this means, that we defined a safety constraint according to a safety
requirement which demands compliance to ISO 26262. Moreover, the allocation con-
straint was defined because of a requirement demanding that the functionality of
Task 1 has to be executed on Processing Unit 1. This entails that those requirements
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are contradicting each other.

2. The contradiction is caused by changed properties in the Software Architecture or the
Hardware Architecture.

Considering that parts of the Software and Hardware Architecture and also constraints
are reused in order to build a new system, there might be small changes. In the
example, this could be caused by a changed ASIL of ProcessingUnit or Task which
causes a contradiction. Regarding that there was no contradiction before, the ASIL
of Processing Unit 1 may have been lowered from ASIL D to ASIL B or the ASIL of
Task 1 may have been increased frmo ASIL B to ASIL D.

3. Contradictions are hiding each other.

This means that through resolving a contradiction a new contradiction appears. In the
example, this could happen, for example, if we change the ASIL of ProcessingUnit1
to ASIL D (e.g. due to the fact that we changed to a different vendor). Considering
that we have an additional memory constraint demanding that the memory usage
of Tasks may not exceed the provided memory by the ProcessingUnit, this memory
constraint may now cause a new contradiction which was hidden before. This means
that that the contradiction between allocation and safety constraint was hiding the
contradiction to the memory constraint. When trying to resolve this contradiction we
have to keep in my mind that through changing the ASIL of ProcessingUnit1 to D in
the first place, changed the whole problem, as any Task can now be allocated to this
unit because of ASIL D being the highest possible criticality level. It requires a good
knowledge about the system in order to backtrack and resolve those contradictions.

Thus, resolving contradictions is non-trivial and has to be manually performed by the
Exploration Engineer and the System Architect.

7.4.2. Exploration

During exploration we focus on finding an optimized or even optimal E/E Architecture
by means of a Hardware Topology together with a Task and Signal Deployment. This
step is performed after a successful validation which entails that there are no contradicting
constraints. In particular, the optimization objectives are in focus here. In order to calculate
optimized solutions, we are using the optimizing solver of the z3 SMT Solver [49] (with the
pareto option). The goal of the exploration is to provide different optimized solutions to
the System Architect, among which he can then choose the best one. As the optimization
objectives are not independent the solutions are pareto optimal and the architect has to
manually resolve this trade-off.

In the following, we will first describe metrics which characterize an E/E Architecture.
Secondly, we will illustrate how different solutions are compared (based on the introduced
metrics) supporting the System Architect in the decision process.
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7.4.2.1. Metrics

In order to compare different architecture solutions, we want to describe metrics which
characterize them. The following list is non-exhaustive and is based on the optimization
objectives which can optimize those metrics (see also the Property Objective Pattern in
Section 6.2.3.1). There maybe more metrics added in order to describe a solution in more
detail.

1. Cost

Describes the overall sum of costs of all ProcessingUnits in the Hardware Topology.

2. Number of ProcessingUnits/buses

Describes the number of ProcessingUnits/Buses in the Hardware Topology.

3. Weight

Describes the weight of the Hardware Topology as the overall sum of weights of all
ProcessingUnits.

4. Power consumption

Describes the power consumption of the Hardware Topology as the overall sum of
power consumption of all ProcessingUnits.

5. Memory usage

Describes the memory usage in the Hardware Topology as the overall sum of memory
(either flash or ram memory) of all ProcessingUnits.

6. Busload

Describes the busload of a certain Bus in the Hardware Topology as the sum of Signal
sizes which are sent via this Bus.

7.4.2.2. Solution comparison

Considering the metrics which quantify the different Hardware Topology solutions and thus
an E/E Architecture, we can now compare them. On the one hand, we are using a spider
chart representation which qualitatively shows the difference between the different Hardware
Topologies and, on the other hand, a simple table which quantitatively shows the difference.
In order to illustrate how different Hardware Topologies can be compared, we have a closer
look at three exemplary solutions. Those solutions were generated out of a set of Hardware
Resources which are schematically depicted in Figure 7.4. There are three ProcessingUnits
and two Buses which each have two different variants. During the exploration one of the
variants is chosen or none and an optimal connection between ProcessingUnits and Buses
is calculated.
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Figure 7.4.: Exemplary set of Hardware Resources consisting of 3 ProcessingUnits and 2
Buses each having 2 variants.

Figure 7.5 shows three possible solutions out of the Hardware Resources shown in Figure
7.4. The spider chart representation on top shows the qualitative comparison between three
solutions according to the metrics introduced in 7.4.2.1. On the bottom the three different
Hardware Topologies are depicted, where the red colored variants show the variants which
have been chosen during the exploration.

The trade-off between the solutions can easily be seen as Topology 2 is dominating each
other solution except in the busload direction. This makes sense as Topology 2 only uses
one Bus which thus has to realize the whole communication of Signals whereas both other
solutions use two Buses which results in a more distributed communication.

Considering Topology 1 and 3 we can also see a trade-off. Where Topology 1 is more
optimal considering cost and weight, Topology 3 is more optimal considering power con-
sumption, Flash Memory and Busload.

E/E Arch 1 E/E Arch 2 E/E Arch 3

Cost 9 8 11

Weight 11 9 13

Power Consumption 12 7 11

Flash Memory 14 9 12

Busload 12 20 11

Number of processing units 9 6 9

Table 7.1.: Table visualization of metrics

Table 7.1 shows the same solutions as illustrated in Figure 7.5 in a table representation.
Here, the trade-off between the solutions can not be seen as easily as in the spider chart.
However, the table gives the exact number of each metric. By that, the System Designer
and the Exploration Engineer can decide which solution will be chosen.
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Figure 7.5.: Spider-chart visualization of metrics of three different Hardware Topologies
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8. Evaluation

Throughout an ongoing collaboration with an automotive Tier-1 supplier, resulting in three
publications [21] (MODELS 17), [23] (MODELS 18) and [24] (SoSyM Journal) we gained
insights into the state of practice, considering the configuration of several concrete E/E
Architectures. In the following, we evaluate this work against the state of practice. In
particular, we compare the combination of the presented viewpoints and the proposed
methodology against the industrial practice (Chapters 4-7).

We evaluate this thesis by setting up key performance indicators (KPIs), namely a set
of evaluation criteria, enabling a comparison of the state of practice against the proposed
E/E Architecture exploration methodology (cf. Section 8.1). Afterwards, we present two
case studies conducted in an industrial collaboration focusing on solving the Deployment
onto E/E Architectures as well as on exploring E/E Architectures (cf. Section 8.2).

8.1. Evaluation criteria and comparison to state of practice

In the following, we describe criteria which serve as means to evaluate this thesis. The
following 6 KPIs are defined to compare the creation of E/E Architectures in industrial
practice against the proposed approach of this thesis.

K1: Execution type [manual, semi-automatic, automatic]

K2: Execution duration [short[h], medium[d], long[w]]

K3: Process type [static, iterative]

K4: Reaction speed [slow, fast]

K5: Optimization potential [little, considerable]

K6: Verification type [informal, formal]

Table 8.1 illustrates the results of this comparison which leads to individual conclusions.
In each of the following Sections, we will at first describe the definition of the respective
KPI. Based on this definition, we will rate the state of practice and the proposed exploration
approach of this thesis. Lastly, we will explain how the proposed exploration approach
improves the state of practice.

93



8. Evaluation

KPIs State of Practice Exploration

K1 - Execution type manual semi-automatic

K2 - Execution duration long short to medium

K3 - Process type static dynamic/iterative

K4 - Reaction speed slow fast

K5 - Optimization potential little considerable

K6 - Verification type informal formal

Table 8.1.: Result of the evaluation comparing the generation of E/E Architecture in prac-
tice against the proposed exploration approach.

8.1.1. K1 - Execution type

Description The KPI execution type refers to how steps in the development process can
be performed. These steps (e.g. according to the V-Model) can be executed in the following
three ways:

1. Manual:

The execution type of a development step is completely manual. This entails that
least one system architect performing all necessary development steps her-/himself.
Considering the creation of an E/E Architecture, this means that all the models (cf.
Chapter 5) are created manually, mostly based on implicit knowledge. For instance,
either based on legacy designs or on personal experiences.

2. Semi-automatic:

The execution type of a development step can be performed using a considerate amount
of automation. This entails, that the development steps are partly performed auto-
matically, supporting a responsible person. However, a reasonable amount of steps
need to be performed in a manual way.

3. Automatic:

The execution of a development step can be performed completely automated. All
necessary development steps can be performed automatically involving no or almost
no manual work. By nature, this requires a substantial confidence in the underlying
mechanisms and tools.

KPI State of Practice Exploration

K1 manual semi-automatic
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State of practice Considering the state of practice, the creation of an E/E Architecture
is performed manually, meaning that all of the models described in the E/E Architecture
Viewpoint (cf. Chapter 5) are created manually. In particular, the Software Architecture
(e.g. Task Architecture), the Hardware Architecture (especially the Hardware Topology)
and its connection (using a Deployment) are created manually.

For example, regarding a Task Architecture consisting of only 30 Tasks which have to
be allocated to only 10 ProcessingUnits already opens up a design space of 1030 Alloca-
tion possibilities (without consideration of any constraints). Additionally, the requirements
which have to hold for such a Deployment have to be checked manually. This entails, for
instance, checking if the memory of any ProcessingUnit suffices w.r.t. the Tasks allocated
to this ProcessingUnit or checking if any Signal can be allocated to a certain Bus w.r.t. to
the bandwidth of that Bus.

Exploration This thesis proposes a semi-automatic exploration methodology, meaning
that parts of the models described in the E/E Architecture Viewpoint (cf. Chapter 5) can
be created/calculated automatically. In particular, this means that not only the Hardware
Topology can be calculated automatically but also (and at the same time) the Deployment
of Tasks to ProcessingUnits and Signals to Buses. Hereby, requirements (in the form of
constraints) which have to hold, are automatically satisfied. The proposed exploration is
semi-automatic, due to the fact that not all of the models described in the E/E Architecture
Viewpoint are calculated automatically. Still, the solutions resulting from the automatic
exploration (Hardware Topology and Task/Signal Deployment) have to be reviewed by a
system architect.

Improvement to state of practice The semi-automatic exploration approach considerably
improves the state of practice as it does not only automatize a process which has been done
manually. It also provides means to cope with the future challenge of building E/E Ar-
chitectures. These architectures include increasingly complex features like driver assistance
and automated driving Tasks while the Hardware Topology gradually gets more and more
centralized. Regarding this rising complexity, the manual creation of these architecture gets
a manually unsolvable task.

8.1.2. K2 - Execution duration

Description The KPI execution duration provides a measure of how long it takes to per-
form a certain development step. There are three types of time intervals, which we distin-
guish here.

1. Short [h]:

We specify the execution duration of a certain development step as short if it takes 0
to 8 hours. As 8 hours is the usual unit to calculate a work day, we therefore specify
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that the successful execution of a development step as short, if a system architect can
execute this Task within one day.

2. Medium [d]:

We specify the execution duration of a certain development step as medium if it takes
1 to 5 days. As 5 days is the usual unit to calculate a work week, we therefore specify
the successful execution of a development step as medium if a system architect can
execute this Task within one week.

3. Long [w]:

We specify the execution duration of a certain development step as long if it takes
more than 1 week and up to 4 weeks. As 4 weeks is the usual unit to calculate a
man-month, we specify the successful execution of a development step as long, if a
system architect cannot execute this development step within one week but within 4
weeks. Without loss of generality, we consider every development step to be dividable
into parts which can be executed within 4 weeks at most.

KPI State of Practice Exploration

K2 long short to medium

State of practice The execution duration in industrial practice is long. Taking into
account that the execution type (cf. K1 in Section 8.1.1) is manual, not only the Hardware
Topology has to be created manually but also the Deployment. As a small industrial sized
architecture already consists of 31 Tasks and 18 ProcessingUnits [21] the manual creation
of an E/E Architecture takes weeks even for an experienced architect. This is due to the
fact that, he does not only have to check architectural constraints (”Is it possible to send
a Signal between Task a and b if they are allocated onto ProcessingUnits x and y?)” but
also standard compliance such as compliance to ISO 26262 or resource requirements (”Is
the memory of each processing sufficient?). Due to the intricate dependencies of both Task
and Hardware Topology, a mistake in this manual process may cause a huge backtracking
process even extending the duration of the process.

Exploration Considering the proposed exploration methodology, the execution duration
is short to medium. Depending on the size of the architecture and if a validation or an
exploration of E/E Architectures is considered, it may take a few minutes to a few hours.
Especially, finding contradictions during validation phase typically takes only a few seconds
to a few minutes even for big architectures. An exploration of E/E Architectures typically
takes a few hours. For example, for the use case presented in [21] the calculation of a Pareto
optimized solution took 60s. In the use case presented in [23] it took 2h to calculate Pareto
optimized E/E Architectures.

96



8.1. Evaluation criteria and comparison to state of practice

Improvement to state of practice Due to the fact that, the execution duration is much
shorter using the exploration approach (hours versus weeks), efficiency can be substantially
increased. On the one hand, this may not be too surprising, as we are comparing a manual
against a semi-automatic approach. However, on the other hand, the exploration can sig-
nificantly reduce the manual workload of responsible system architects or teams as it can
save at least a few days of work. Considering that, for example, such an exploration has to
be performed quarterly, the exploration can even save weeks of work per year.

8.1.3. K3 - Process type

Description The KPI process type specifies, in which way the development steps are per-
formed during the development of a system. We distinguish two basic types of processes
here:

1. Static (”waterfall”):

We specify the process type to be static, if the development steps have to be executed
in a sequentially fixed order, with no or little possibility to be changed. This entails,
that in case of a problem, the process has to be backtracked sequentially until the
problem is solved. After its resumption, the same process steps which have just been
backtracked, have to be performed again. The development process is thus statically
defined which requires again well-defined additional processes to react to changes or
problems. Hence, we refer to a waterfall-like process type here.

2. Iterative/Dynamic (”agile”)

We specify the process type to be iterative/dynamic if the development steps do not
have to be executed in a sequentially fixed order. The development can easily react to
changes and does not require static processes to act to changes or problems. Hence,
we refer to an agile process type here.

KPI State of Practice Exploration

K3 static agile/iterative

State of practice The type of process is static. Taking into account the insight we gained
into industrial practice, there are two sequential steps which are performed: (1) creating
and analyzing different possible Hardware Topologies and choosing the most suitable one,
(2) creating the Task and Signal Deployment onto the chosen hardware topology. This
static process is also a consequence of the manual execution type (K1 in Section 8.1.1) as,
due to the complexity of today’s systems, the two development steps cannot be performed
manually at the same time. Moreover, this entails, that changes in either Hardware Topology
or Deployment would require a further sequential execution of both process steps. This is
also reflected in a slow reaction to changes (K4 in Section 8.1.4).
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Exploration The proposed exploration methodology supports an agile/iterative process.
On the one hand, due to the fact that, the two development steps of (1) creating and
analyzing Hardware Topologies and (2) creating the Task and Signal Deployment onto the
Hardware Topologies can be calculated at the same time. On the other hand, the approach
proposes a methodology which enables an agile development which only requires another
exploration iteration if a change occurs.

Improvement to state of practice The proposed agile exploration methodology consider-
ably improves the state of practice. It is able to replace a static and sequential process of
finding valid and also optimized Hardware Topologies and respective Deployments by an ag-
ile process which can perform both process steps at the same time. Due to the lightweight
nature of the process, this enables many exploration iterations which eases the task of
finding an E/E Architecture.

8.1.4. K4 - Reaction speed

Description The KPI reaction speed specifies, how fast the development process is able to
react to sudden changes during the development. We distinguish two (extreme) types here:

1. Slow:

We specify the reaction speed to be slow, if a change process has to be triggered in
order to adapt to changes. Typically, this sets off a big chain of change requests
which potentially involves different organizational departments. In the end, each
single change has to be integrated into the E/E Architecture.

2. Fast

We specify the reaction speed to be fast, if a change does not trigger a heavyweight
change process. This means that a change can be covered by a light-weight process,
involving only a few or even one department. Hence, the integration of the change
into the E/E Architecture requires only a small effort.

KPI State of Practice Exploration

K4 slow fast

State of practice The reaction speed to architectural changes in the E/E Architecture
is slow, due to the fact that this triggers a (heavyweight) change process. As the E/E
Architecture of a vehicle usually reflects the organization structure of a company (e.g. one
department is responsible for one ProcessingUnit including its software (Tasks )), a change
in the architecture has to be handled by different departments, thus involving several people
in the change process. E.g. if a Signal Allocation has to be changed from Bus x to Bus
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y, this possibly affects all ProcessingUnits (and thus departments) which are connected to
Bus y because a new Signal is sent via this bus, but also Bus x because a Signal has been
removed.

Exploration The proposed exploration approach enables a fast reaction to changes. Con-
sidering the example above, an Exploration Engineer would have to create a new Signal
Allocation constraint and then run a new exploration iteration. If the change leads to a
problem, the Exploration Engineer immediately gets the feedback in the form of contradict-
ing constraints which point to the cause of the problem. Thus, the problem can be solved
immediately.

Improvement to state of practice Due to the proposed new role of an Exploration Engi-
neer, the reaction to a change can be improved significantly. On the one hand, because the
responsibility for reacting to the change is not split over different people but can be done by
one person who can then distribute the results of the change. This would improve a heavy
change process to a lightweight process where a change can be reflected by a new exploration
iteration. On the other hand, due to the fast reaction time to changes, the exploration can
detect contradictions earlier and embraces change requests, which are otherwise avoided as
far as possible, due to the fact that they trigger a heavyweight change process.

8.1.5. K5 - Optimization potential

Description The KPI optimization potential specifies, the possibility of optimizing the
E/E Architecture during development. We distinguish two (extreme) types:

1. Little (optimization potential)

We specify the optimization potential to be little, if the development process is not
explicitly supporting an optimization of the E/E Architecture during development.
In particular, this may be the case, if the development process is static (see K3
in Section 8.1.3) and manual (see K1 in Section 8.1.1). Due to the nature of the
consequent process, an architectural optimization would only be possible by applying
the optimization to the E/E Architecture and triggering a change process to verify the
correctness of the optimized architecture. Considering a manual development process,
this would require an immense effort of rework. In the worst case, this results in the
reversion of the optimization, due to the fact that, the requirements of the system can
no longer be satisfied.

2. Considerable (optimization potential)

We specify the optimization potential to be considerable, if the development process
is actively supporting an optimization of the E/E Architecture during development.
In particular, this may be the case, in an agile (see K3 in Section 8.1.3) and at least
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semi-automatic (see K1 in Section 8.1.1) process. This means, that applying an archi-
tectural optimization to the system does not trigger a static (possibly heavyweight)
change process. An optimization is automatically verified within one development
iteration. Even if the optimization is rejected, e.g., caused by contradictions with the
requirements of the system, the effort was low, due to the nature of the agile and
semi-automatic process.

KPI State of Practice Exploration

K5 little considerable

State of practice The optimization potential for E/E Architectures is little. For example,
if one would optimize the costs of an E/E Architecture, one way to optimize would be to
reduce the Hardware Topology by one processing unit. This means, that the costs of this
ProcessingUnit could be saved. However, this also means that the Deployment of Tasks
and Signals onto the Hardware Topology has to be redone manually (K1 in Section 8.1.1),
checking if the constraints of the system can still be satisfied. In the worst case, this is
not possible and the optimization cannot be performed. As the process type is manual
(K3 in Section 8.1.3), this takes a considerable amount of time which would have been in
vain in the depicted case. Considering the insight we gained into industrial practice, the
optimization is limited to choosing up front between different manually created Hardware
Topologies. After one Hardware Topology has been chosen, the Task/Signal Deployment is
done manually. As the Deployment is not considered during Hardware Topology creation,
possible optimization potential is lost.

Exploration The proposed exploration methodology enables the formulation of optimiza-
tion objectives that can be considered in every exploration iteration, thus, providing consid-
erable optimization potential. Due to the fact that, Task/Signal Deployment and Hardware
Topology are calculated at the same time, the resulting E/E Architecture is optimized con-
sidering the Hardware Topology and the Deployment.

Improvement to state of practice The improvement to the state of practice are twofold:
On the one hand, the effort of optimization is reduced to the formulation of formalized op-
timization objective which are then automatically considered in every exploration iteration.
On the other hand, the optimization is even more precise as it does consider the Hardware
Resources and the Task/Signal Deployment at the same time.
For instance, it might be favorable to choose a more expensive Hardware Resource over

a cheaper one. Assuming, an expensive sensor ProcessingUnit, this could mean that the
sensor data can already be pre-processed on the unit itself. This pre-processed data is then
sent via a Bus to a receiving task. In case of a cheaper sensor, that is not able to pre-process
data, this leads to sending raw data via the bus. Consequently, this requires a significant
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higher amount of bandwidth of the Bus which is connected to this sensor. Our exploration
approach is automatically considering such decisions when optimizing E/E Architectures.

8.1.6. K6 - Verification type

Description The KPI verification type specifies, how the correctness of the E/E Architec-
ture can be verified. We distinguish two types here:

1. Informal

We specify the verification type as informal, if the requirements of the architecture
can only be captured informally. This means, that the verification of the system
under development has to be performed, e.g., by a manual review. This may involve
multiple persons, resulting in an error-prone and opinion-based process. Furthermore,
this consequently shifts efforts to later stages of development - e.g. testing - which
could mean that only during testing, some of the problems become visible which have
been overlooked in a review.

2. Formal

We specify the verification type as formal if the requirements of the system can be
captured formally. This means that the verification of the system under development
can be done automatically. Hence, the process of verification is objective and discov-
ers, e.g., contradictions of requirements. As such, the process requires less persons and
enables verification already at early stages of development. This entails that problems
can also be solved earlier. However, it still relies on correctly formalized requirements.

KPI State of Practice Exploration

K6 informal formal

State of practice Requirements for E/E Architectures can only be captured informally
and thus only be checked manually. This means that, for example, safety requirements,
considering the adherence to ASILs, have to be enforced manually which may lead to
erroneous architectures (”Is the ASIL of the Task allocated onto a ProcessingUnit small
or equal to the processing unit’s ASIL?”). Furthermore, resource requirements like the
sufficiency of flash memory or RAM have to be checked (”is there sufficient memory on
a ProcessingUnit to execute the allocated Tasks?”). Errors in those manual checks which
have to be done via reviews, may, in the worst case, only be discovered during testing of
the system.

Exploration The proposed exploration methodology enables formal capturing of require-
ments for E/E Architectures. Thus, they can be checked automatically. For instance, safety

101



8. Evaluation

requirements or memory requirements, can be captured formally by an Exploration Engi-
neer using constraint patterns as proposed (cf. Chapter 6). This does not only enable
automatic checks of requirements but also early detection of contradictions.

Improvement to state of practice The possibility to formally capture requirements and
also check them automatically is considerably improving the state of practice. This enables
an early automatic verification of the E/E Architecture, which entails a detection of possible
defects already at early stages of development. That also means that they are easier and less
costly to solve. In the course of industrial collaborations, for instance, we were thus able
to find contractions in existing E/E Architectures showing, e.g., contradictions in Signal
Deployments which were pointing to inapplicable communication routes.

8.2. Exploration in industrial context

In the following, we describe two case studies which we conducted together with an auto-
motive Tier-1 supplier. In Section 8.2.1, we will briefly describe a Deployment case study,
where we explored different Task/Signal Deployments. This work was published in Eder et
al. [21] on MODELS conference in 2017.
In Section 8.2.2, we will describe a E/E Architecture case study where different possible

E/E Architectures (Hardware Topologies and Task/Signal Deployment) are explored. This
case study is based on two publications on MODELS conference 2018 [23] and in SoSyM
Journal [24].

8.2.1. Deployment exploration study

We conducted a deployment exploration study with an automotive tier-1 supplier to show
the applicability of exploration approaches in general. This work was mainly focused on
exploring optimized Task and Signal Deployments. In this work, we could already show that
an exploration approach can significantly improve the state of practice. Not only, because
an exploration approach enables automation but also due to the fact that it provides an
objective approach. This was in particular helpful for the tier-1 supplier as they could get
rid of opinion-based solutions. For more detailed insights into this case study, we would
like to refer to Eder et al. 2017 [21].

8.2.2. E/E Architecture exploration study

In this Section, we describe an E/E Architecture exploration study. We calculate a Hardware
Topology based on a set of available Hardware Resources and the Deployment of Tasks and
Signals to these Hardware Resources. The study is an adapted form of the use cases
presented in [23] and [24].
In Section 8.2.2.1, we describe the models according to the introduced E/E Architecture

Viewpoint (Chapter 5). In Section 8.2.2.2, we describe the constraints and optimization
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objectives according to the introduced Specification Viewpoint (Chapter 6). In Section
8.2.2.3, we describe the validation and exploration according to the introduced Exploration
Viewpoint (Chapter 7) and discuss the E/E Architecture results.

8.2.2.1. Model

In the following, we describe the models which are the basis for calculating optimal E/E
Architectures. On the one hand, a Task Architecture and, on the other hand, a Hardware
Architecture in terms of Hardware Resources.

Task Architecture The Task Architecture considered here, consists of

� 26 Tasks connected with

� 69 Signals.

Table A.1 (in the appendix) shows flash, RAM and safety level (ASIL) annotations of
the Tasks.

Hardware resources The Hardware Resources considered here, consist of

� 6 ProcessingUnits where

– 5 ProcessingUnit are concrete (CAM2, CAM1, FCU, Steering, Brake) and

– 1 ProcessingUnit is variable (RAD) and contains 3 different variants (PU RAD A,
PU RAD B, PU RAD C) where one variant is chosen during exploration,

� 4 Buses (GSML, CAN FD, CAN FD 1, CAN FD 2).

Figure 8.1 illustrates the ”150% model” [84] of all ProcessingUnits and their possible
connections to different Buses. For example, the FCU ProcessingUnit can be connected to
any of the CAN FD Buses and to the GSML Bus. During the exploration the connections
of the FCU ProcessingUnit are chosen entailing the following decisions:

� Is a connection to the GSML bus needed?

� Is a connection to one (and only one) of the CAN FD Buses required?

In both cases, the exploration can also result in no connection between the FCU Processin-
gUnit and the Buses.

Table A.2 (in the appendix) shows flash, RAM, hardware cost, power consumption, safety
level (ASIL) and weight annotations of the Hardware Resources.
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Figure 8.1.: 150% model of Hardware Resources including all possible connections between
ProcessingUnits (red: concrete units, green: variable unit) and Buses (blue).

8.2.2.2. Language patterns

The Task Architecture, the Hardware Architecture (in terms of Hardware Resources) and
the respective annotations are formalized using the DSML (cf. Chapter 6) in the form of
the introduced basic patterns. Additionally, we consider the following language patterns:

� Constraints

104



8.2. Exploration in industrial context

– Memory Pattern (see also 6.2.2.4) for

* RAM (The sum of RAM of all Tasks allocated to a ProcessingUnit may not
exceed the RAM provided by that ProcessingUnit)

* Flash memory (The sum of flash memory of all Tasks allocated to a Pro-
cessingUnit may not exceed the flash memory provided by that Processin-
gUnit)

– Safety Pattern (see also Section 6.2.2.3) (The ASIL of a Task allocated to a
ProcessingUnit must be smaller or equal the ASIL of that ProcessingUnit )

� Optimization Objectives

– Property Objective Pattern for (see also Section 6.2.3.1) (A certain property of
ProcessingUnits shall be minimized such that the resulting Hardware Topology
is minimal considering that property)

* Cost

* Power consumption average

* Weight

– Bandwidth Objective Pattern (see also Section 6.2.3.3) (The used bandwidth
(’used’ by the Signals which are sent via that Bus) of a given Bus shall be
minimized). This objective pattern is used for all Buses (CAN FD, CAN FD 1
CAN FD 2, GSML).

8.2.2.3. E/E Architecture Exploration

In the following, the generated E/E Architecture solutions are described. As the validation
phase was successful, and there are no contradicting constraints, we focus on the exploration
in this section.

At first, we describe the different solutions according to their metrics. Then, we have a
closer look at the the different Hardware Topology solutions in order to compare them, and
show the trade off analysis, which has to be conducted by a system architect.
Table 8.2 illustrates the metrics for seven different calculated solutions. Six of the metrics

where used as optimization objectives. The number of ProcessingUnits (PUs) was not
optimized. The table cells colored in green highlight optimal (minimal) values of each
metric. A bandwidth value value of 0 means, that a Bus can be omitted. The table
illustrates the pareto optimality of the different solutions. For instance, considering the
power consumption, Solution 2 has a smaller and thus more optimal value compared to
Solution 3. However, taking into account the cost and weight, Solution 3 is more optimal.
This entails, that there is no solution which is optimal considering all objectives.
In order to choose a solution, a system architect has to consider the different Hardware

Topologies of the solutions, too. Figure 8.2 shows the Hardware Topology of Solution 2 and
Figure 8.3 of Solution 3. Solution 2, uses the Brake PU which is connected to CAN FD 2
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Solution 0 4 55 14 875 40 0 0 80015

Solution 1 4 55 14 875 42 0 0 80013

Solution 2 4 65 13 1025 0 0 42 80013

Solution 3 4 55 14 875 0 40 0 80015

Solution 4 4 55 14 875 0 42 0 80013

Solution 5 4 61 15 925 0 35 5 80140

Solution 6 4 75 22 1275 0 30 13 80013

Table 8.2.: Table describing the metrics of the E/E Architecture solutions (cells highlighted
in green illustrate optimal values)

but does not use any of the Abstract PU RAD variants. Solution 3, in contrast, does not
use the Brake PU but uses PU RAD A. So the different metrics of those two solutions are
a result of one ProcessingUnit which differs.
Taking into account Solution 5, which is shown in Figure 8.4, the topology of a solution

may not only differ in the ProcessingUnits which are used, but also in the communication
of the the different ProcessingUnits. Solution 5 uses three Buses as opposed to Solution 2
and Solution 3 (2 Buses). Furthermore, in Solution 5, PU RAD C was chosen which is
connected via the additional CAN FD 2 to PU Steering. Considering the metrics, this
solution is less optimal than Solutions 2 and Solution 3 in power consumption. It is less
expensive than Solution 2, but more expensive than Solution 3 considering cost and weight.
All solutions have in common, that the GSML Bus is used. This is due to the fact, that
the data which is sent from the Task Camera, can only be sent via this Bus because of its
size. Such a trade-off can only be solved by a system architect, who has to decide which
solution can be chosen, due to the fact that he/she knows if, e.g., 1 more Watt of power is
acceptable compared to e10 costs less.

The Hardware Topologies and Deployments of all solutions can be found in the appendix
of this thesis (Chapter B).
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Figure 8.2.: Hardware Topology of Solution 2

Figure 8.3.: Hardware Topology of Solution 3
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Figure 8.4.: Hardware Topology of Solution 5
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9. Conclusion

In the following, we conclude this thesis by giving a short summary of all chapters in Section
9.1 and discuss the limitations of the presented approach in Section 9.2. In Section 9.4 we
give an overall conclusion of this thesis and provide an outlook on future work in Section
9.3.

9.1. Summary

In Chapter 1, we described the motivation for this thesis which is the rising complexity
of today’s systems which makes their engineering more and more difficult. We thereby fo-
cused on 4 different aspects of complexity: software, hardware, integration and variability.
Considering the engineering of automotive E/E Architectures, those architectures are con-
sisting of more than 100 ECUs. As those distributed architectures are getting too complex
and thus almost impossible to be built manually, which, most of all, involves adherence to
ISO 26262. Due to this fact, the trend goes towards more centralized E/E Architectures,
consisting of less but more powerful ECUs. Yet, the problem is how get from existing
E/E Architectures to more centralized ones in the future. Hence, this thesis provides an
approach to support a system architect in building future E/E Architectures, by providing
dedicated models, a dedicated domain specific language, an exploration technique to find
architectures and a methodology which integrates into an existing development approach.

In Chapter 2, we introduce the specifics of engineering automotive systems. First of all,
due to the fact that safety plays an important role, this entails adherence to ISO26262,
the safety standard for engineering E/E Architecture of passenger vehicles. It includes
a dedicated model-based development process which is proposed by this standard. As
model-based software engineering is, on the one hand, proposed by ISO 26262 and, on the
other hand, promises to overcome the engineering complexity, we are introducing its most
important aspects in this Chapter: viewpoints, components and interfaces. Lastly, we are
also describing the general concept of automotive E/E Architectures, the current state of
the architectures and future trends which focus on a minimization and centralization of
E/E Architectures.

In Chapter 3, we elaborate on the related work of this thesis. There are four different
areas which we are considering: architecture description languages (ADLs), domain specific
languages (DSLs), Synthesis approaches (Design Space Exploration - DSE) and engineering
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methodologies. Considering model-based ADLs, we are considering and comparing the
UML and SysML, the UML Marte which is a real time extension of UML, AUTOSAR
which is built for engineering automotive software systems, EAST ADL2 which provides a
high level abstraction of AUTOSAR and the AADL which is built for engineering avionic
systems. Regarding DSLs, there is one main language which is used in the modeling domain,
the OCL. There are also more technology specific languages like SMTlib2 which are bound
to a solving technique (SMT solvers in the case of SMTlib2). Considering synthesis or
design space exploration approaches, we show that there has been done a lot of work in the
area of solving the deployment problem. Furthermore there is also work which has been
conducted in the area of Hardware or Topology synthesis (mostly for On-Chip-Networks).
Lastly, there are also generic approaches independent from the specific problem or domain.
Finally, we give an overview over engineering methodologies, focusing on two academic and
two industrial approaches. SPES and CESAR are examples for academic approaches which
have been developed in the course of research projects. IBM Harmony and AUTOSAR are
industrial methodologies which haven been built for systems modeling with the SysML (IBM
Harmony) and systems modeling with the AUTOSAR language. Thus, this Chapter covers
the related work of the four main chapters, the three viewpoint Chapters E/E Architecture
(ADLs), Specification (DSLs) and Exploration (DSE) and the methodology Chapter.

In Chapter 4, we are introducing the methodology proposed in this thesis. On the one
hand, we are introducing the Model, Specification and Exploration Viewpoint and their
connection with each other. Part of the models in the E/E Architecture Viewpoint are
input to the Specification Viewpoint where those models, together with constraints and
objectives are formalized using the domain specific language which is introduced in the
Specification Viewpoint. This formalization is then passed to the Exploration Viewpoint
where it is validated and explored. The validation is focusing on finding contradicting con-
straints which my give a hint about contradicting requirements which have to be resolved
before continuing with the exploration. The exploration is then finding different Hardware
Topology and deployment solutions which is fed back into the E/E Architecture Viewpoint.
On the other hand, we show how our exploration integrates into the SPES system engineer-
ing methodology and how our methodology can be integrated into a customized V-Model
XT development approach. We conclude by proposing a new role in the development pro-
cess: the exploration engineer. The exploration engineer would support a system architect
which is responsible for creating the system architecture (E/E Architecture Viewpoint) by
providing the knowledge of how to automate the process of finding such architectures via
formalization (Specification Viewpoint) and exploration (Exploration Viewpoint).

In Chapter 5, we are introducing the E/E Architecture Viewpoint providing all the nec-
essary meta-models to create a model of an automotive E/E Architecture in early design
phases. We thereby distinguish between models for Software and Hardware Architecture
and the Deployment. The model of the Software Architecture which is considered in this
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thesis is the Task Architecture consisting of Tasks which execute a certain functionality and
communicate with each other via Signals (further software models like partitions or sched-
ules are not considered in the thesis). Considering the models of the Hardware Architecture
we distinguish between Hardware Resources and Hardware Topology. Hardware Resources
are the computation (ProcessingUnits/ ECUs) and communication resources (Buses) for
which different variants may exist. The Hardware Topology consists of Hardware Resources
which are connected with each other and thus form the topology of an E/E Architecture.
The deployment is connecting both software and Hardware Architecture. Tasks are allo-
cated to a computation resource in the Hardware Topology and Signals are allocated to
communication resources. Thus, an instance of an E/E Architecture can be described by a
Hardware Topology and a Task/Signal deployment.

In Chapter 6, we are introducing the Specification Viewpoint providing a domain specific
language capable of formalizing a E/E Architecture exploration problem. We therefore
introduce a grammar defining how expressions in our language can be composed. Based
on this grammar we are then defining language patterns which are inherent to an automo-
tive E/E Architecture exploration problem definition. There are three types of patterns,
basic patterns, constraint patterns and objective patterns. The basic patterns are nec-
essary in order to formalize a E/E Architecture exploration problem. On the one hand,
they formalize how a correct Hardware Topology can be built. On the other hand, they
formalize the variability of Hardware Resources such that a correct variant of a resource
is chosen. The constraint and objective patterns show formalized requirements which are
typically encountered in the automotive domain and which we created during industrial
collaborations with Continental. The constraint patterns (allocation/dislocation, function
coupling/de-coupling, safety, memory) have to hold in order to form a valid and thus cor-
rect E/E Architecture. The objective patterns (property, cardinality, bandwidth) enable
the optimization of an E/E Architecture into a certain direction e.g. the minimization of
costs.

In Chapter 7, we are introducing the Exploration Viewpoint based on an SMT formu-
lation in Z3, in order to solve the exploration problem which has been formalized in the
Specification Viewpoint. We therefore provide a problem definition which is stored in a
dedicated meta-model. As we chose to use SMT solving as solving technique in this thesis,
we are providing a transformation of all patterns introduced in the Specification Viewpoint
into SMT. Furthermore, we show how solutions are generated for both phases of validation
and exploration. During the validation phase, we make use of the unsat core feature of
the Z3 SMT solver which enables the calculation of contradicting constraints. When there
are no contradicting constraints the exploration phase can be conducted. In this phase,
different optimized solutions are calculated due to the formalized optimization objectives.
We are furthermore providing metrics and visualization techniques in order to enable an
efficient comparison of the different solutions.
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In Chapter 8, we evaluate the work of this thesis by comparing the state of practice
considering modeling an E/E Architecture in early phases of development, against our pro-
posed exploration approach. In order to do so, we are defining a set of evaluation criteria
which enable us to compare both approaches (Execution type of development steps, Execu-
tion duration of development steps, Process type support, Reaction speed to architectural
changes, Optimization potential, Architecture verification type). Furthermore, we show the
application of your approach to two industrial use cases which have been conducted during
a collaboration with Continental. The first use case shows the application to calculate so-
lutions for a deployment problem of Tasks onto ProcessingUnits and Signals onto Buses.
The second use case shows the application of our approach to simultaneously calculate a
Hardware Topology together with a deployment of Tasks and Signals, while also consider-
ing variability of Hardware Resources. Thus, this results in the calculation of a whole E/E
Architecture.

In Chapter 9, we are concluding this thesis by giving a summary of all chapters, a con-
clusion of the underlying work by reconsidering the problem and contribution statement
of this thesis and by giving an outlook on future work, entailing work which has not been
dealt with in this thesis and possible extensions of this work.

9.2. Limitations

Before concluding this thesis, we discuss the limitations of the approach presented in this
thesis. The allocation model presented in Chapter 5 allocates Tasks to ProcessingUnits.
Thus, we assume a so called ”bare-metal” execution of Tasks on the processing units.
This assumption does not consider that a ProcessingUnits might have a real time operating
system, providing a virtualization layer, that guarantees a timely execution of tasks. Such a
guarantee might be necessary especially considering safety critical tasks like the calculation
of an emergency brake. Furthermore, such an operating system would consume additional
resources, e.g., RAM or Flash memory. This implies that less resources are actually available
influencing the number of Tasks that may be allocated to such a ProcessingUnit. (Limitation
1)

Another limitation of the presented approach is, that the timing of tasks is not considered
and the timing of signals is only roughly estimated through the usage of the Bandwidth
Objective Pattern. For example, the timing of two tasks exchanging information via a signal
might have a certain end-to-end deadline which has to be met, e.g., due to the fact that a
braking signal is transmitted. The Bandwidth Objective Pattern only takes care that an
overload of a certain bus is prevented by minimizing its busload. (Limitation 2)

A third limitation of the presented approach is the solving technology that we use in the
exploration viewpoint. A SMT solver provides an exact method to calculate the solution
of a given problem, in our case, an E/E architecture exploration problem. An automotive
subsystem like presented in [23] took 2h to calculate optimized solutions. Considering the
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calculation of an E/E Architecture of a whole car, this time might rise up to days due to
the nature of the exact method SMT. Such a high calculation time might be infeasible for
a System Architect, who has to re-explore an architecture whenever something changes e.g.
a new constraint has to be added or a processing unit has to be removed. (Limitation 3)

9.3. Future Work

Finally, we want to elaborate on possible future work of this thesis which can extend and
improve the presented exploration approach. Considering the evaluation against the state
of practice there are two criteria which could be improved: the execution type which is semi-
automatic (see also Section 8.1.1) and the execution duration which is short to medium (see
also Section 8.1.2). Considering possible extensions of our approach, they could be achieved
by considering additional models in the E/E Architecture Viewpoint.

Considering the evaluation, the execution type of our approach is semi-automatic. This
means that part of the work is automated (Hardware Topology and deployment calculation),
whereas other parts are done manually. This includes the creation of the Task Architecture.
Regarding the SPES methodology, this means answering the question of how to automati-
cally get from the a logical architecture of a system created in the logical viewpoint, to the
Task Architecture in the technical viewpoint. Due to the fact, that the logical architecture
is independent from technical aspects of the system, an automatic calculation of the Task
Architecture would have to cover this aspect, especially as logical components may also
be realized by Hardware Resources. Among others, this entails the following questions:
How can we automatically distinguish between logical components which can be realized as
Tasks as opposed to Hardware Resources? What are rules for the creation of a Task out of
a set of logical components and how many logical components can be realized by a Task?
Which of the properties of logical components have to be taken into account?

Taking into account the approach itself, it could be made even more precise by consider-
ing additional models in the exploration by extending the E/E Architecture Viewpoint. On
the one hand, by considering a virtualization layer in the software architectures enabling
partitioning (Limitation 1), on the other hand, considering the timing of Tasks and Pro-
cessingUnits, resulting not only in a more precise solution but also in the calculation of
respective schedules (Limitation 2).

A virtualization layer would enable the modeling of partitions which can be used to
separate critical from non-critical parts of the software which can thus still be executed on
the same Hardware Resource. In particular, considering more powerful Hardware Resources,
like multi-core ProcessingUnits, such a virtualization layer can ensure e.g. different safety
integrity levels on the same ProcessingUnit. Regarding the trend towards more central
E/E Architectures, such a mix of criticalities is necessary to ensure safety, if only few
ProcessingUnits build an E/E Architecture.

The consideration of timing would make our approach even more precise, due to the fact
that, it can influence the Allocation of Tasks to ProcessingUnits and Signals to Buses.
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It would extend the existing approach by additional calculation of schedules of Tasks and
Signals which ensures that timing requirements are met in the calculated Hardware Topology
and deployment.

The execution duration of our approach is small [h] to medium [d], depending on the size
of the architectures. Considering industrial sized architectures, the execution duration is
mostly medium which means that a calculation can last days (Limitation 3). This entails
that the execution duration could still be improved. In the Specification Viewpoint, we
presented a domain specific language capable of formalizing a E/E Architecture exploration
problem. Due to the fact that this language is independent from the exploration technique
(Exploration Viewpoint) which is used to solve the problem, other solving techniques could
be used. In this thesis the Exploration Viewpoint is based on SMT but could be replaced
by a different technology.

Inter Linear Programming (ILP) could be another exact approach which is based on
a integer encoding of the problem as opposed to a Boolean encoding in SMT. Heuristic
methods, like evolutionary algorithms could be promising to reduce the calculation duration,
however at the cost of precision, as they are not exact methods and might not be able
to calculate optimal solutions like an SMT approach. The most promising results could
probably be achieved by a mix of different technologies covering the strengths of each
method. Combining heuristics with an SMT approach, e.g., may overcome precision issues
while at the same time speeding up the calculation.

9.4. Conclusion

In this thesis, we provide a holistic exploration approach enabling the automatic calculation
of E/E Architectures to answer the overall problem asked in the introduction ”How can we
support a system architect during the development of future E/E Architectures?”. In or-
der to achieve this, we introduced a comprehensive approach, covering modeling aspects in
the E/E Architecture Viewpoint, formalization aspects in the Specification Viewpoint and
automatic calculation of solutions in the Exploration Viewpoint. Those three viewpoints
provide the answers for research questions RQ1 (Which models are needed to precisely
describe an E/E Architecture and how are they defined?), RQ2 (How to formalize E/E
Architecture models and how to formalize requirements which have to be satisfied by an
E/E Architecture?), and RQ3 (How can we formally define an E/E Architecture explo-
ration problem which enables the calculation of valid and optimized or even optimal E/E
Architectures taking into account deployment and variability aspects?). They are further-
more complemented by an exploration methodology which is integrated into an exemplary
V-Modell XT development process showing how our approach can be seamlessly integrated
into existing development processes, answering RQ4 (How does a dedicated exploration
methodology for E/E Architectures look like and how does it integrate into an existing
development process?).

The scientific contribution of this thesis therefore lies in the combined usage of techniques,
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which, by themselves, are scientifically understood and have mostly been solved. However,
a comprehensive approach taking into account the different aspects which are considered
in thesis is missing. This also entails a dedicated exploration methodology which can be
seamlessly integrated into an existing development process.
Through continuous collaborations with Continental [21, 23, 24] we could get a deep

insight into industrial practice considering the modeling of E/E Architectures at early stages
of development. We therefore see the need of a new role of an exploration engineer in
the development process. A system architect, which is responsible for modeling an E/E
Architecture has a deep knowledge and experience in building those architectures. He is thus
able to create those architectures. However, this Task gets increasingly complex considering
the rising complexity of E/E Architectures, regarding the intricate dependencies which are
introduced by driver assistance and automated driving functions. We have observed a
rising industrial need for automated support, as the process of building E/E Architectures
is mostly based on experiences of few people and is also opinion driven as we already pointed
out in [21]. So there is a need, not only for an automatized but also an objective approach
which can calculate different E/E Architectures enabling a quantitative comparison.
Additionally, through this collaboration, we were able to evaluate our approach against

the state of practice which shows that our approach can considerably improve the state of
practice. Not only due to the fact that a manual process is automated and the duration of
creating an E/E Architecture is thus reduced and no longer requires the manual work of a
system architect. But also because the introduced approach allows for an agile process as
opposed to a waterfall-like process. This is because each change can be covered by a new
automatic exploration run and has not to be covered manually. Hence, a complex change
process does not have to be triggered. Furthermore, each exploration also automatically
takes care about the correctness of results which had to be checked manually before. Lastly,
the possibility to optimize E/E Architectures can have a considerable impact as this was
almost impossible before, due to the manual process. This means that an optimization can
e.g. reduce the costs of an E/E Architecture which can have a big impact considering the
mass production of vehicles.

115





A. E/E architecture evaluation model
annotations

The following tables show the annotation values which were used for the evaluation of the
E/E architecture exploration in Section 8.2.2.1.

Task\Annotation Flash [kByte] RAM [kByte] ASIL

Acceleration Pedal 5.000 2.000 B
Arbitrator 5.000 2.000 D
Brake Pedal 5.000 2.000 D
Hydraulic Modulator 5.000 2.000 B
LOC 1.000 1.000 B
ACC 81.000 3.600 D
ADAS Monitoring 22.000 2.000 D
Boundary 10.000 4.000 C
Camera 30.000 120.000 B
Control Signal 10.000 4.000 B
DMC 10.000 4.000 B
Data Processing 10.000 10.000 D
Driver Monitoring 10.000 4.000 B
EBS 5.000 5.000 D
EPS 15.000 6.000 D
LRR 5.000 9.800 B
Mode Control 10.000 2.000 D
Safety 6.000 3.000 D
SituationAssessment 10.000 4.000 D
Trajectory 30.000 2.000 D

Table A.1.: Annotations of Tasks
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A. E/E architecture evaluation model annotations

HW Resource\Annotation Flash [kB] RAM [kB] ASIL Bandwidth [B/ms]

PU Brake 40.000 30.000 D -
PU CAM1 30.000 120.000 C -
PU CAM2 40.000 30.000 D -
PU FCU 100.000 20.000 D -
PU Steering 40.000 20.000 D -
Abstract PU RAD - - - -
- PU RAD A 20.000 5.000 D -
- PU RAD B 40.000 15.000 C -
- PU RAD C 50.000 20.000 B -

Can FD - - - 1.500
Can FD 1 - - - 1.500
Can FD 2 - - - 1.500
GSML - - - 200.000

Table A.2.: Annotations of ProcessingUnits and Buses
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B. E/E architecture evaluation solutions

The following figures show each of the solutions described in the evaluation in Section 8.2.2.
Each E/E architecture solution is described with the Hardware Topology and the respective
Deployment.

Bandwidth [Byte/ms]

# PUs Cost[e] Power[W] Weight[g]

C
a
n
F
D

C
a
n
F
D

1

C
a
n
F
D

2

G
S
M
L

Solution 0 4 55 14 875 40 0 0 80015

Solution 1 4 55 14 875 42 0 0 80013

Solution 2 4 65 13 1025 0 0 42 80013

Solution 3 4 55 14 875 0 40 0 80015

Solution 4 4 55 14 875 0 42 0 80013

Solution 5 4 61 15 925 0 35 5 80140

Solution 6 4 75 22 1275 0 30 13 80013

Table B.1.: Table describing the metrics of the E/E architecture solutions (equal to table
8.2)
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B. E/E architecture evaluation solutions

Figure B.1.: Hardware Topology of Solution 0
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Task Processing Unit

Acceleration Pedal PU CAM2
Arbitrator PU Steering
Brake Pedal PU RAD A
Hydraulic Modulator PU Steering
LOC PU Steering
ACC PU FCU
ADAS Monitoring PU FCU
Boundary PU CAM2
Camera PU CAM2
Control Signal PU RAD A
DMC PU Steering
Data Processing PU FCU
Driver Monitoring PU RAD A
EBS PU Steering
EPS PU Steering
LRR PU FCU
Mode Control PU FCU
Safety PU Steering
SituationAssessment PU FCU
Trajectory PU Steering

Table B.2.: Deployment of Solution 0
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B. E/E architecture evaluation solutions

Figure B.2.: Hardware Topology of Solution 1
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Task Processing Unit

Acceleration Pedal PU RAD A
Arbitrator PU Steering
Brake Pedal PU RAD A
Hydraulic Modulator PU Steering
LOC PU Steering
ACC PU FCU
ADAS Monitoring PU FCU
Boundary PU CAM2
Camera PU CAM2
Control Signal PU RAD A
DMC PU Steering
Data Processing PU FCU
Driver Monitoring PU RAD A
EBS PU Steering
EPS PU Steering
LRR PU FCU
Mode Control PU FCU
Safety PU Steering
SituationAssessment PU FCU
Trajectory PU Steering

Table B.3.: Deployment of Solution 1
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B. E/E architecture evaluation solutions

Figure B.3.: Hardware Topology of Solution 2
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Task Processing Unit

Acceleration Pedal PU Brake
Arbitrator PU Steering
Brake Pedal PU Brake
Hydraulic Modulator PU Steering
LOC PU Steering
ACC PU FCU
ADAS Monitoring PU FCU
Boundary PU CAM2
Camera PU CAM2
Control Signal PU Brake
DMC PU Steering
Data Processing PU FCU
Driver Monitoring PU Brake
EBS PU Steering
EPS PU Steering
LRR PU FCU
Mode Control PU FCU
Safety PU Steering
SituationAssessment PU FCU
Trajectory PU Steering

Table B.4.: Deployment of Solution 2
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B. E/E architecture evaluation solutions

Figure B.4.: Hardware Topology of Solution 3
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Task Processing Unit

Acceleration Pedal PU CAM2
Arbitrator PU Steering
Brake Pedal PU RAD A
Hydraulic Modulator PU Steering
LOC PU Steering
ACC PU FCU
ADAS Monitoring PU FCU
Boundary PU CAM2
Camera PU CAM2
Control Signal PU RAD A
DMC PU Steering
Data Processing PU FCU
Driver Monitoring PU RAD A
EBS PU Steering
EPS PU Steering
LRR PU FCU
Mode Control PU FCU
Safety PU Steering
SituationAssessment PU FCU
Trajectory PU Steering

Table B.5.: Deployment of Solution 3
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B. E/E architecture evaluation solutions

Figure B.5.: Hardware Topology of Solution 4
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Task Processing Unit

Acceleration Pedal PU RAD A
Arbitrator PU Steering
Brake Pedal PU RAD A
Hydraulic Modulator PU Steering
LOC PU Steering
ACC PU FCU
ADAS Monitoring PU FCU
Boundary PU CAM2
Camera PU CAM2
Control Signal PU RAD A
DMC PU Steering
Data Processing PU FCU
Driver Monitoring PU RAD A
EBS PU Steering
EPS PU Steering
LRR PU FCU
Mode Control PU FCU
Safety PU Steering
SituationAssessment PU FCU
Trajectory PU Steering

Table B.6.: Deployment of Solution 4
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B. E/E architecture evaluation solutions

Figure B.6.: Hardware Topology of Solution 5
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Task Processing Unit

Acceleration Pedal PU RAD C
Arbitrator PU Steering
Brake Pedal PU FCU
Hydraulic Modulator PU Steering
LOC PU Steering
ACC PU FCU
ADAS Monitoring PU FCU
Boundary PU CAM2
Camera PU CAM2
Control Signal PU RAD C
DMC PU Steering
Data Processing PU FCU
Driver Monitoring PU RAD C
EBS PU Steering
EPS PU Steering
LRR PU CAM2
Mode Control PU FCU
Safety PU Steering
SituationAssessment PU FCU
Trajectory PU Steering

Table B.7.: Deployment of Solution 5
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B. E/E architecture evaluation solutions

Figure B.7.: Hardware Topology of Solution 6
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Task Processing Unit

Acceleration Pedal PU FCU
Arbitrator PU CAM1
Brake Pedal PU FCU
Hydraulic Modulator PU Steering
LOC PU Steering
ACC PU FCU
ADAS Monitoring PU FCU
Boundary PU CAM2
Camera PU CAM2
Control Signal PU CAM1
DMC PU CAM1
Data Processing PU FCU
Driver Monitoring PU Steering
EBS PU Steering
EPS PU CAM1
LRR PU FCU
Mode Control PU CAM1
Safety PU Steering
SituationAssessment PU FCU
Trajectory PU CAM1

Table B.8.: Deployment of Solution 6
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