TUTI

TECHNISCHE UNIVERSITAT MUNCHEN

TUM School of
Computation, Information and Technology

DOCTORAL THESIS

Persistent Memory in Database Systems

Alexander van Renen

Vollstandiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universitdt Miinchen zur Erlangung des
akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Stefanie Rinderle-Ma

Priifer der Dissertation: 1. Prof. Alfons Kemper, Ph.D.
2. Prof. Andy Pavlo, Ph.D.

3. Prof. Dr. Thomas Neumann

Die Dissertation wurde am 18.01.2022 bei der Technischen Universitdt Miinchen
eingereicht und durch die Fakultit fiir Informatik am 19.05.2022 angenommen.

iii

Abstract

Persistent memory is a promising new hardware that aims to close the gap between
traditional storage devices (such as SSD and HDD) and main memory (i.e., DRAM).
It inherits the persistency and capacity of SSDs while retaining the low latency and
high bandwidth of DRAM at affordable costs. However, there is no free lunch: per-
sistent memory is unlikely to outright eclipse either one and therefore exists as a
hybrid device between memory and storage. Nonetheless, its properties are unique
and it is up to the systems community to define its role in future software.

In this dissertation, we make two contributions towards this goal. First, we pro-
pose an optimized integration of persistent memory into database management sys-
tems that makes full use of its persistency, low latency and byte-addressability. Our
OLTP-focused system is build on a buffer manager that employs pointer swizzling
and different page sizes that can be lazily loaded. It is build to gracefully scale over
a three tier storage hierarchy with DRAM, persistent memory and SSDs delivering
competitive performance to layer-specialized systems.

Second, we provide one of the first evaluations of actual persistent memory hard-
ware. Our investigation of the bandwidth, latency, and special characteristics is an
essential contribution to understanding persistent memory and assists developers
in optimizing algorithms and data structures. Using these findings we define a set
of guidelines for the efficient use of persistent memory. Adhering to these insights
we design highly-tuned algorithms for logging, page propagation, and in-place up-
dates. Further, we suggest a novel technique to interleave multiple persistent writes
using user space threads that allows to largely avoid the memory stall associated
with a persistent write operation.

Zusammenfassung

Persistenter Speicher ist eine neue vielversprechende Hardware deren Ziel es ist die
Liicke zwischen klassischen Plattenspeicher (e.g., SSD oder HDD) und Hauptspei-
cher (i.e., DRAM) zu schlieien. Er versucht die positiven Eigenschaften der beiden
Seiten zu kombinieren: Persistenz und hohe Kapazititen mit niedriger Latenz und
hoher Bandbreite zu kompetitiven Preisen. Allerdings, kann man nicht alles ha-
ben und somit {ibertrifft die neue Hardware keine der bestehenden Technologien
in Leistung. Deswegen wird vermutet, dass sich persistenter Speicher zunachst als
Hybridgerat zwischen Hauptspeicher und Plattenspeicher etabiert. Nichtsdestotrotz
sind seine Eigenschaften einzigartig und es ist in den Handen der Gesellschaft fiir
Systementwicklung seine zukiinftige Rolle zu definieren.

Diese Dissertation macht zwei Beitrédge fiir in Bezug auf diese Herrausforderung;:
Als erstes wird eine optimierte Integration von persistentem Speicher in Datenbank-
managementsysteme erarbeitet, welche die Persistenz, niedrigen Latenz, und Byte-
weise Adressierbarkeit voll ausnutzt. Unser auf OLTP fokussiertes System setzt auf
einem Puffermanager mit Zeigerfaltung und variabel grofien Seiten, welche dyna-
misch geladen werden, auf. Es ist entworfen um fliissig {iber eine Speicherhierarchie
mit DRAM, persistenten Speicher und SSD zu skalieren wahrend es kompetitive
Performanz zu Systemen liefert die auf eine einzelne Ebene spezialisiert sind.

Als zweitens zeigen wir eine der ersten Auswertungen von echter persistenter
Speicher Hardware. Unsere Untersuchung von Bandbreite, Latenz und besonderen
Eigenschaften ist ein wesentlicher Beitrag zum Verstiandnis von dieser Hardware
und unterstiitzt somit Entwickler bei dem Entwurf von Algorithmen und Daten-
strukturen. Basierend auf diesen Erkenntnissen werden eine Reihe von Richtlini-
en fiir die effiziente Nutzung von persistentem Speicher definiert. Unter deren Be-
riicksichtigung werden dann hochgradig angepasste Algorithmen fiir Protokollie-
rung, Seitenzuriickschreibung und direkten Anderungen entwickelt. Dariiber hin-
aus schlagen wir eine neuartige Technik vor, um mehrere persistente Schreibopera-
tionen unter Verwendung von Nutzer-Ausfithrungsstrangen zu biindeln. Dies er-
moglicht es den mit einer synchronen persistenten Schreiboperation verbundenen
Systemstillstand weitgehend zu umgehen.b

Contents

Abstract

1 Introduction
1.1 PersistentMemory
1.1.1 Definition
1.1.2 Characteristics e
113 Challenges
1.14 Opportunities o
12 Research Methodology
1.2.1 Experimental Setup and Methods
1.2.2 EvaluationPlatforms
1.3 Related Work
1.3.1 Persistent Memory Development Kit (PMDK)
1.3.2 B-Tree-like Index Structures
1.3.3 Database Architectures.

2 Paper 1: Managing Non-Volatile Memory in Database Systems

3 Paper 2: Building Blocks for Persistent Memory

vii

Preface

Our world is powered by (or, more pessimistically: run by) information. Improving
the way we store and access information has been a major driving force for scientific,
cultural, and social advancements. Arguably, we have come a long way from ancient
stone carvings, over the development of ink and paper, to the printing press, and,
most recently, semiconductor-based computers. While a printing press could repro-
duce the same page several times per minute, a modern computer can duplicate
this entire dissertation several hunderet times per second and, unlike any preceding
device: run complex analytics on it.

This dissertation concerns itself with the storage mediums of modern computers
(i.e., the paper of a printing press). Specifically, it investigates the properties, best
usage practices, and integration strategies into existing software systems, such as
database management systems, for a novel storage technology: Persistent Memory
promises unprecedented speeds in combination with large capacities and competi-
tive prices. However, there is no free lunch and, thus, the role of Persistent Memory
in modern computer architectures is yet to be determined. And while Persistent
Memory, obviously, does not introduce the next printing press, it (and, therefore,
this dissertation) can hopefully be an improvement on one of its parts.

Chapter 1

Introduction

Database management systems belong to the most widely deployed software. For
instance, the SQLite developers estimates that there are around 1000 000 000 000 (one
trillion) actively used SQLite databases:

“Billions and billions of copies of SQLite exist in the wild.” — SQLite Website [Webb]

While SQLite might not be seen as the most innovative incarnation of a database
management system in existence, the point stands: databases are everywhere and
serve as the underpinning of many applications. One of the key reasons for this
popularity is the abstraction that database management systems implement: a high
level query language (e.g., SQL) on top of a common data layout (e.g., relational)
with useful consistency constraints (e.g., ACID). In particular, they hide all details
about the used hardware and, in turn, can transparently deliver the performance of
any new hardware to applications.

One such new hardware is persistent memory: a device that combines properties
of volatile main memory (DRAM) and non-volatile storage (e.g., SSD). Persistent
memory is a promising technology for improving database systems. In this disser-
tation, we investigate its properties, develop a set of efficient low-level algorithms,
and propose a novel approach to integrate it into database management systems.

In the following sections, we first describe what persistent memory is, how it
works, and where it fits into the existing memory hierarchy. We then lay out the
main challenges involving the integration of persistent memory into existing soft-
ware with a strong focus on database management systems. Afterwards, we sum-
marize the contributions made and methodologies used in the publications this dis-
sertation is comprised of. Lastly, we give a focused overview of related works in the
field of range index structures and full databases architectures for persistent mem-
ory.

1.1 Persistent Memory

As a basis for further discussion, we shall first introduce persistent memory into the
existing memory hierarchy, discuss its properties, and explain how it can be used.
We, intentionally, shall not dive too deep into the technical details and performance
characteristics of persistent memory, as their investigation and description is one of
the main contribution of this dissertation (see Chapter 3).

4 Chapter 1. Introduction

1.1.1 Definition

A traditional computer architecture, based on the von Neumann architecture [vIN45],
consists of a central processing unit, an input/ouput device, memory and storage'.
Throughout this dissertation, we differentiate between the terms memory and storage
in the following way:

Memory is volatile and, therefore, loses its state when not constantly supplied with
electrical energy. It usually has a smaller capacity than storage devices and
offers fine-granular access with low latencies. The most prominent example is
dynamic random access memory: DRAM, which is part of almost all modern
computing systems (home and server). One exception, which is not the fo-
cus of this work, are embedded systems where static random access memory
(SRAM) is commonly used.

Storage is non-volatile and, therefore, retains its state over long durations of time
(decades) without the need for electrical power. It usually has a larger capacity
than memory, no fine-grained access, higher latencies, and a lower bandwidth.
Typical examples include solid state drives (SSD) and hard disk drives (HDD).
Nowadays, at least one storage device is part of every common home and
server computer in order store data persistently.

In the current computer architecture both, memory and storage, have to exist
side by side: Due to the volatility of memory, data has to be written to a storage
device in order to retain the data for longer durations of time and across power
outages. Additionally, the low capacity and high price of memory devices make it
economically inefficient to store huge data sets. However, due the high latency of
storage devices, data has to be moved to memory in order to perform computations
on that data in an efficient manner. In fact, typical modern computers are not capable
of processing data directly on a storage device.

Persistent memory (PMem)” refers to a device that sits at the intersection be-
tween memory and storage, inheriting advantageous properties of both. Ideally,
persistent memory would make the separation of memory and storage obsolete and
replace both. However, as usual, there is likely no free lunch: persistent memory, as
a concept, is unlikely to be superior to both memory and storage at the same time.
Throughout this dissertation, we use the following definition of persistent memory,
which is in line with a common understanding in research and industry:

Persistent Memory refers to a fine-granular random-access device with low laten-
cies and high bandwidth. It offers large capacities and is capable of retaining
its state without electrical power over a long duration of time. More precisely,
its access granularity and latency needs to be sufficiently small that it can be
utilized directly by a CPU via load and store instructions. Further, its capacity
needs to be sufficiently large that it can be used as a permanent data storage
location for large amounts of data. And, for practical purposes, the cost of
persistent memory needs to be small enough to make it economically feasible.

This abstract idea of persistent memory has been around for several decades
(e.g., [AJ89]). However, making the transition from an idea to actual hardware took

n the original von Neumann architecture storage was considered a part of the input/output sys-
tem. Nowadays, however, it is often seen as a separate entity.

2 Also referred to as non-volatile memory (NVM), non-volatile random access memory (NVRAM),
or storage class memory (SCM).

1.1. Persistent Memory 5

Registers 8Bto512B | <1ns

Caches ~10MB | <10ns

DRAM ~100GB | <100ns o
g | =
e
=
2 |5

PMem ~500GB | ~400ns g |z
aQ, el
© =
° 18

SSDs ~1TB | ~10ps
HDDs ~5TB | ~10ms

FIGURE 1.1: Memory Hierarchy with persistent memory.

until recently: The first and, as of writing (mid 2021), only official release of a prac-
tical implementation of persistent memory happened in April of 2019: Intel intro-
duced the so-called Intel® Optane™ DC Persistent Memory [Intb, Intc] device. With
this being the only persistent memory hardware available, all non-simulation-based
research is conducted on this hardware and we therefore simply refer to it as persis-
tent memory. Note, however, that most ideas in this dissertation and other research
on persistent memory extend to the general concept of persistent memory, as previ-
ously defined, and is not tied to Intel’s incarnation of it.

Figure 1.1 shows the new memory hierarchy with persistent memory added. The
individual devices are depicted in a pyramid shape on the left. Typical performance
numbers for the individual layers are shown on the right. While the lower section of
the pyramid depicts storage devices (S5SDs and HDDs) the upper part shows mem-
ory devices (DRAM, caches, and registers). There is a clear gap in all relevant metrics
(bandwidth, latency, capacity, and cost) between the fastest storage device (SSD) and
the slowest memory device (DRAM)?.

This gap constitutes a crux in database design (and, in fact, all storage related
systems software) as data needs to be processed in memory, but persistently stored
on storage devices [GP87]. Disk-based database systems are designed around this
gap: data is bundled together into larger units (pages) which are then transferred
between memory and storage via a buffer manager. Logging is then needed to en-
sure durability guarantees for the data. This constitutes a major performance bot-
tleneck [HAMSO08] for database performance (around 45%). Decades of research
have produced countless techniques to optimize and avoid this jump across the gap.
Most recently, throughout the previous decade, in-memory database systems have
emerged [BZNO05, KN11, FCP*11, IGN 12, PAA"17]. Those argue that DRAM has

3Interestingly, this gap is visible in the hardware itself: While storage is attached via SATA or PCle,
memory is physically much closer to the CPU (dedicated memory controller for DRAM) or resides
directly on the CPU (cache ad registers). Latency correlates with physical distance to the CPU and
thus one might simply ask the question “How far from the CPU is the data” in order to determine its
latency and to some extend bandwidth.

6 Chapter 1. Introduction

evolved to a point where most data sets can be kept completely in DRAM. There-
fore, in-memory databases only log and periodically write snapshots to storage for
durability while keeping all data in-memory. However, the current DRAM tech-
nology is reaching capacity limits on a physical level, has never been cost efficient,
and real world data sets continue to grow. Thus, the research focus is starting
to shift back to database architectures that incorporate storage devices more ac-
tively [Lom19, NF20, HHL20].

With the arrival of persistent memory, systems researches are given a completely
new type of device that has the potential of closing or at least bridging the gap be-
tween memory and storage (cf. Figure 1.1). This first paper presented in this dis-
sertation aims to examine persistent, measure its performance characteristics, and
propose some optimized algorithms that can be used to construct larger systems (cf.
Chapter 3). The second paper proposes a database design that incorporates persis-
tent memory into a tradition, disk-based, database system architecture while still
utilizing all layers of the storage hierarchy (cf. Chapter 2). In the following, we de-
scribe the high level characteristics of persistent memory (Section 1.1.2) and present
the challenges (Section 1.1.3) and opportunities (Section 1.1.4) involving persistent
memory.

1.1.2 Characteristics

Having introduced the concept of persistent memory and placed it within the exist-
ing memory hierarchy, this section describes the history and properties of persistent
memory in more detail to set the scene for further discussion.

History of Persistent Memory

Building hardware that implements the idea of persistent memory has been an ac-
tive area of research among electrical engineers and physicists for decades. On a
physical level, persistent memory can, potentially, be based on a number of technolo-
gies. Some prominent candidates include: phase-change memory (PCM) [RBB"08,
LIMB09, WRK"10], memristors [SSSW08], or spin-transfer torque magnetic RAM
(SST-MRAM) [DS10, AKW13]. While more details about all of these technologies
can be found in the respective publications, we give a short primer on PCM as it is
the technology that is currently commercially available. The idea behind PCM is to
switch a chemical compound between an amorphous and crystalline state by heat-
ing it with electrical currents. Depending on the state (phase) of the compound, it
has different electrical resistance properties and can thus be used to store informa-
tion. As neither state deteriorates quickly over time, no energy is required to retain
the information over long durations of time.

In 2015, 3D XPoint was announced by Intel and Micron Technology. 3D XPoint
is a non-volatile memory technology based on PCM. In 2017, Intel started releas-
ing solid state drives (SSDs) based on 3D XPoint: the Intel® Optane™ SSD. Unlike
flash-based SSDs, the Optane SSDs are capable of sustaining a high write through-
put [WAAT19] for long durations of time. However, Optane SSDs are block-based
storage devices attached via M.2 or PCle and thus do not fall into the definition of
persistent memory.

In 2019, Intel released the Intel® Optane™ DC Persistent Memory Modules [Intb,
Intc] (Short: Optane DC PMM). Like, the Optane SSDs, the Optane DC PMM is
based on the 3D XPoint technology and therefore on phase change memory (PCM).
Optane DC PMMs fulfill the definition of true persistent memory: Low latencies and

1.1. Persistent Memory 7

TABLE 1.1: PMem Server — Configuration of the our persistent mem-

ory server at TUM.
CPU Intel Xeon Gold 6212U
Frequency 2.40GHz (3.90 GHz)
Cores 24
L1 I+D Cache (per core) 64 kB
L2 Cache (per core) 1MB
L3 Cache 35.8 MB
AVX-512 Units 2
CPU Supported Memory 1TB (DRAM + PMem)
DRAM 192 GB (6 x32 GB)
PMem 768 GB (6x 128 GB)

fine-granular access allow the CPU to interact with the memory directly via load and
store instructions. In addition, the bandwidth and capacity is between that of DRAM
and SSDs.

The first version of Optane DC PMM comes in three sizes per module: 128 GB,
256 GB, and 512 GB. Optane DC PMMs live on the memory bus and are managed
by the integrated memory controller on the CPU, just like DRAM. Each memory
channel needs to be equipped with one Optane DC PMM and one regular DRAM
DIMM. Intel’s Cascade Lake generation of CPUs supports six memory channels per
socket. Hence a fully equipped two socket server machine can host a total of 6 TB of
persistent memory. The persistent memory testing server (cf. Table 1.1) at Technical
University of Munich (TUM) has one fully equipped CPU with six times 128 GB
Optane DC PMM, amounting to 768 GB of persistent memory.

Persistent Memory Modes

The persistent memory hardware can be utilized in two distinct modes. In order
to switch between modes the system needs to be restarted. A detailed description
of how persistent memory can be configured can be found in Chapter 3. In the
following, we focus on the characteristics of these two modes and how they can be
used in system software (cf. Figure 1.2):

Memory Mode does not utilize the persistency of the Optane DC PMMs. Instead,
it exposes the persistent memory to the operating systems as regular, volatile
main memory. Therefore, existing software can transparently utilize the large
capacity of persistent memory without any changes to the source code. In
Memory Mode, the existing DRAM DIMMs on each memory channel operate
as a directly mapped cache for the corresponding Optane DC PMM. The data
that is written to the inherently non-volatile 3D XPoint medium (PCM) on the
Optane DC PMM is, however, still persistent and could be an angle of attack.
To circumvent this, the data on the Optane DC PMM is encrypted and the key
is kept in volatile memory. Thus making the persistently stored data useless
and as safe as data on DRAM DIMMs.

The Memory Mode offers an interesting opportunity to extend the system’s
main memory and safe operating costs by utilizing cheap Optane DC PMMs.
However, it does not expose the hardware’s persistency. Hence, in this mode
the Optane DC PMMs do not qualify as persistent memory according to our

8 Chapter 1. Introduction

Addr. Space Addr. Space
L] [N I
]

load/store load/store read /write

DRAM: “L4” [] | DAX [File System
PMem DRAM i} t] PMem

(A) Memory Mode: Persistent memory be- (B) App-Direct Mode: Persistent memory can
comes the system’s (volatile) main memory. be access directly via a direct access (DAX) en-
DRAM acts as a transparent “L4” cache. From abled file system (middle line) or via the oper-
a software point of view the architecture is ating systems read/write API (right line). In
conceptionally indistinguishable. addition, DRAM can be accessed as usual.

FIGURE 1.2: PMem Architecture: Comparison of Memory and App-
Direct Mode.

definition and are thus irrelevant for persistent memory research. While some
performance benchmarks of the Optane DC PMMs in Memory Mode are pro-
vided (Chapter 3), the main focus of this dissertation is on the App Direct
Mode. Further details on the Memory Mode and how applications are affected
by the higher latencies of the Optane DC PMMs and the DRAM cache can be
found in this survey [[YZ719]. In addition, there is active research on how
persistent memory can be utilized to supplement DRAM [OSR, LIMBO09].

App Direct Mode exposes the Optane DC PMMs as a persistent device to the oper-
ating system (e.g., /dev/pmem0 on Ubuntu). The device can then be partitioned
and mounted with a file system like any other device (e.g., SSD or HDD). Sim-
ilar to other storage devices, the file system layer can be used to allocate mem-
ory (i.e., create, delete, and truncate files) and manage access rights. The files
on the persistent memory device can be accessed just like regular files or can
be mapped directly into the virtual address space of a process. Once mapped,
the program can access the persistent memory directly via load and store in-
structions. A process can map many persistent memory regions and regular
volatile memory at the same time into its virtual memory address space. lLe.,
data can be written to persistent or regular memory depending on the applica-
tion’s needs. Details and requirements of this process are described in Chap-
ter 3 or can be found in many other early persistent memory publication (e.g.,
[Ouk18, LHO"19,1YZ"19, vRVL"19, YKH 20, Ler21]).

Persistent Programming Model

Even so the CPU can access persistent memory directly via load and store instruc-
tions, the data that is being written to a persistent memory address does not immedi-
ately become persistent. This is because the data needs to pass through store buffers,
caches, and the integrated memory controller before traveling over the memory bus
to the persistent memory hardware. On Intel’s Cascade Lake architecture, the asyn-
chronous DRAM refresh domain (short: ADR domain) is used to refer to the area
where data is guaranteed to be durable. It includes the Optane DC PMM and the
write pending queue on the integrated memory controller on the CPU. Hence, once
the data reaches the write pending queue, it falls withing the ADR domain and,

1.1. Persistent Memory 9

therefore, can be considered durable. The write pending queue itself does not use
3D XPoint hardware, but rather utilizes the energy stored in capacitors to flush the
queue to Optane DC PMMs in case of a power failure [YKH " 20].

Due to this architecture, a store instruction to a persistent memory address does
not immediately become durable: First, the data needs to pass through the store
buffer and the on-CPU caches (L1, L2, and L3) before it reaches the integrated mem-
ory controller and becomes durable. This can be achieved by flushing the cache line
on which the data resides (c1_flush) and then waiting for the flush operation to
complete (sfence):

void PersistentWrite(int* pmem_address, int value) {
+pmem_address = data;
cl_flush (pmem_address);
sfence ();

}

The first line of this function, simply writes the data (value) to the address on
persistent memory (pmem_address). This store instruction moves the value to the
CPU'’s store buffer from which it is then asynchronously written to the cache and
then further evicted to persistent memory. While unlikely, at this point in time the
process could be yielded or terminated (e.g., crash, shutdown, preemptive schedul-
ing, or a power failure). Hence, the value must be considered as potentially persistent:
the data could still be volatile or already durable; for the developer there is no way to
know. Once the data is in this state (i.e., submitted to the store buffer) there is no way
to prevent it from making its way to the ADR domain and become durable. How-
ever, we can force the data there using a persistency barrier: force the CPU to evict the
cache line the data resides on (line 2) and using a fence instruction to wait for the
eviction instruction to finish (line 3). Doing so forces the data into the ADR domain
and, thus, makes it persistent. By using this little building block (store instruction,
cache line eviction, and a memory fence) we can achieve persistent writes.

In summary, any data written to a persistent memory address can become durable
at any point in time after the write, oblivious to the software’s control. There is cur-
rently no method to prevent data from becoming durable. However, there are pro-
grammatic ways (persistency barrier) to force the data into the ADR domain and,
thus, make it durable.

1.1.3 Challenges

Novel technologies, such as persistent memory, come with a unique set of charac-
teristics. In this case: byte-addressable and durability with low latency and high
bandwidth. These characteristics present many new challenges for system architec-
tures, which are summarized in this section.

Additional Storage Hierarchy Layer

Even before the official release of Intel’s Optane DC PMMs, it was widely believed
that persistent memory will neither replace memory (DRAM) nor storage (SSDs or
HDDs), but rather exist as a new layer in the existing storage hierarchy:

“...not fast enough to replace main memory and they are not cheap enough to replace
disks, and they are not cheap enough to replace flash.” — Mike Stonebraker 2017 [Sto]

10 Chapter 1. Introduction

As it turns out, Stonebraker was exactly right and the bandwidth as well as the
latency of persistent memory is strictly worse than that of DRAM as the following
table from Chapter 3 summarizes:

peak required peak required read persistent

read BW #threads write BW #threads latency write lat.

DRAM 113.8GB/s 15 92.5GB/s 17 121ns null
PMem 39.1GB/s 17 12.5GB/s 3 403ns 99ns

The experiments were conducted on our evaluation machine (as described in Ta-
ble 1.1) in the context of the second publication of this dissertation (cf. Chapter 3) and
are similar in nature and result to those of other publications [LHO ™19, YKH " 20]. In
the experiment, we utilize SIMD instructions and an optimal number of threads (de-
picted as “required #threads” in the table). The latency numbers are measured with
a single thread and no other load on the system. Persistent writes are only reported
for persistent memory, as these are not possible on DRAM*. Next to the performance
gap between DRAM and persistent memory, it can be observed that the read-write
asymmetry is much larger on persistent memory, which is owed to the underlying
PCM hardware. The lower performance makes it impossible for persistent memory
to outright replace DRAM for many performance critical applications.

Compared to SSDs, the price per gigabyte of persistent memory is between 50 x
to 200x worse depending on the capacity of the used memory module (128 GB,
256 GB, or 512 GB). Further, the persistent memory capacity of a two socket machine
is limited to 6 TB (six 512 GB PMMs per CPU). In contrast, there are single SSDs with
more than 6 TB of capacity and a two socket machine could host tens of these. For
instance, Haas et al. [HHL20] have calculated that a machine can be equipped either
with 400 GB of persistent memory or 7.3 GB of flash-based SSDs for a price of $2000.
This shows that persistent memory is unlikely to become an economically feasible
substitute for current storage hardware in the near future.

Therefore, persistent memory neither replaces traditional storage mediums nor
main memory and must therefore be treated as new layer in the memory hierarchy.
In addition, its properties differ greatly from DRAM and SSDs: For example, as we
show in Chapter 3, unlike DRAM which loads 64 B blocks from the memory mod-
ule, persistent memory loads blocks of 256 B at a time. Thus, in order to avoid read
amplification, algorithms should be designed with this larger block size in mind.
In addition, the bandwidth of persistent memory is lower, the latency higher, and
it experiences a heavy read/write bandwidth asymmetry (reads are faster). How-
ever, persistent memory is a non-volatile memory device and can therefore be used
as durable storage, unlike DRAM. Compared to SSDs, persistent memory is not a
block-based devices but can be access in byte-granularity and with much lower la-
tencies, similar to DRAM.

Next to this unique set of characteristics, an additional layer in the memory hi-
erarchy provides a challenge on its own: Algorithms, data structures, and system
architectures need to be adjusted to utilize this new layer in an efficient way with-
out exceeding the complexity of the application. The difficulty of this problem is
evidenced by the number of research papers that are proposing numerous different

4Using the same instructions on DRAM that are used for a persistent write on persistent memory
(store, flush and fence), we would end up with the same latency: These instructions simply flush the
data to the integrated memory controller on the CPU. If we would forego the flush and fence instruc-
tion, we would be measuring plain store instructions (mov), which have a few cycles of latency [Fog].

1.1. Persistent Memory 11

approaches (cf. Section 1.3) of how persistent memory should best be integrated into
database systems.

Complex Programming Model

As detailed in the previous section (cf. Section 1.1.2), a simple write instruction
to persistent memory must be considered potentially persistent: The data could still
reside in a CPU cache (volatile) or it could be already written to persistent mem-
ory (durable)’. A persistent write (store, flush and fence) can be used to ensure the
durability of data. However, evicting a cache line and stalling on it is an expensive
operations which idles the CPU for hundreds of cycles (cf. Chapter 3). Thus, for ef-
ficiency reasons, not each individual write to persistent memory can be transformed
into a persistent write. Systems need to bundle multiple writes together between
persistency barriers (flush and fence). There is, however, no guarantee on the order
in which these writes will become durable due to the volatile caches. Hence, all write
operations must be carefully orchestrated to ensure that potentially persistent data
is always in a recoverable state. We call this property failure atomicity. Building fast
and correct algorithms that are failure atomic, is one of the major challenges when
working with persistent memory [GKL20].

struct ShadowData {
int size;
int valid;
char+ pmem;

};

void Write (ShadowDatax dest, charx src) {
// Write the actual data
memcpy (dest—>pmem, src, dest->size);
for(int off=0; off<dest—>size; off+=64) {
cl_flush (dest—>pmem + off);
}

sfence ();

// Set the data wvalid
dest—>valid = 1;
cl_flush(&dest);
sfence ();

}

The pseudo code above shows a typical pattern on which data structures for
persistent memory are build (similar to copy-on-write or shadow paging [APD15]):
First the actual data is written to a currently unused location and then a switch is
flipped that indicates that the data is now valid.

As illustrated by the example, great care has to be taken to ensure that all data
that could have potentially leaked into the persistency domain forms a valid state
of the respective data structure from which the application can recover. This poses
challenges to the developer and harbors a huge potential for rare and difficult to

STechnically, the data is already persistent once it reaches the integrated memory controller. For
ease presentation, we use this phrase to mean the data is persistent.

12 Chapter 1. Introduction

100GB/$ 4
10GB/$ |
1GB/$ |
100MB/$ |
10MB/$ |

1MB/$ |
MB/S 1 o™ P ¥ DRAM
100kB/$ |
10kB/$ L : ; ; ; ; ;
1990 1995 2000 2005 2010 2015 2020
Year

FIGURE 1.3: Price-performance Ratio of Storage — Storage and mem-
ory prices according to [McC] and PMem prices [Alc].

reproduce bugs. Unlike the very explicit read /write interface of traditional, block-
based storage devices, on persistent memory a simple variable assignment is (po-
tentially) a durable operation. Therefore, access to persistent memory has to be care-
fully scoped and rely on a set of well designed storage primitives that offer efficient
operations on persistent memory.

Persistent Memory Cost

Even though persistent memory appears to be much faster than flash storage, it still
needs to be economically viable: the benefits for applications have to outweigh its
price. The primary focus of systems research is creating software for existing hard-
ware, yet it is still important to consider the cost of that hardware as it determines
the composition of the server hardware. In the following, we report the prices as of
release and provide some observations and insights.

The Optane DC PMMs were initially available in three sizes: 128 GB, 256 GB, and
512 GB. After the initial release in April of 2019, Intel’s pricing guidance for these
three memory modules were reported at $577, $2125, and $6751 respectively [Alc].
In comparison, the largest commercially available DRAM DIMM had a capacity of
128 GB and was priced around $4500 at that time. Hence, getting large capacities
of persistent memory is cheaper compared to DRAM. However, SSDs offer larger
capacities (multiple terabytes per SSD) and lower prices.

Figure 1.3 compares the price-performance ratio (ignoring available capacities) of
DRAM, SSDs, and HDDs throughout the previous decades. The three available Op-
tance DC PMMs are highlighted in a red rectangle towards the right hand side. Only
the smallest Optane DC PMM (uppermost red “x”) has a comparable ratio to that
of DRAM, because the price per gigabyte for smaller DRAM DIMMs is much better.
However, as evidenced by the improving price-performance ratio of all other storage
and memory technologies over time, it is likely that persistent memory will improve
in that metric over time, as well. For example, around 2007 SSDs had already been
on the market a couple of years but still only provided a price-performance ratio
of 100 MB/$ which is comparable to that of the initial release of persistent memory
hardware in 2019. Since then the price-performance ratio of SSDs has improved one
hundred-fold to 10 GB/$ in 2019. While we can not predict the future, it seems likely
that there will be some improvement for persistent memory as well. However, much
of that is dependent on its initial adoption by the industry and the thus generated
revenue that can be utilized to improve the technology.

1.1. Persistent Memory 13

Endurance

Some research papers [APD15, vRLK 18] that were published before the release
of persistent memory analyze the wear (in terms of writes) of the particular data
structure or algorithm on the hardware. This is because many of the underlying
technologies for persistent memory, experience a low write endurance: around 10
writes for PCM [RBB*08]. Due to this, researchers already suggested wear level-
ing algorithms for persistent memory [QKF 09, Liul7] before the official release in
2019. Once published, Intel’s persistent memory modules were shipped with some
kind of wear leveling. No details on the algorithm were disclosed by Intel, but they
promise a lifetime of at least 5 years with 24/7 usage (350 PB data written) for a
256 GB module [Weba]. While the decision to include wear leveling was necessary
to avoid customers from burning through their persistent memory modules in a
manner of minutes to hours, it certainly increases the complexity of the hardware
and possibly limits the performance of the hardware. Hence, from a research per-
spective, it would be interesting to experiment with software-based wear leveling
(or algorithms that don’t cause a lot of wear). A well engineered system would po-
tentially not need hardware wear leveling and could benefit from a less complex and
possibly faster persistent memory hardware.

1.1.4 Opportunities

There exists a large interest in persistent memory in research and industry (cf. Sec-
tion 1.3). Further, Intel has developed the idea of persistent memory into a com-
mercially available product. This effort, despite the previously stated challenges,
suggests that there is a large interest and potential to this new technology. In the
following, we will try to mitigate some of the challenges by outlining gradual inte-
gration strategies for persistent memory into existing systems to overcome the in-
volved complexity. After that, we describe some of the scenarios in which persistent
memory could yield large improvements.

Integration Strategies

While the complexity of persistent memory, both as a new storage layer and with
its difficult programming model, pose a challenge, existing applications can adopt
persistent memory in a number of ways:

¢ Memory Mode: Applications can benefit from persistent memory without any
changes to the source code. In Memory Mode (cf. Section 1.1.2), the persistent
memory modules of the server are exposed as the systems main memory and
the regular DRAM serves as a large (“L4”) cache on top of the new persistent-
memory-module-backed main memory. In this mode, the non-volatility of
persistent memory is not utilized, but nonetheless, the application can ben-
efit from the larger capacity of persistent memory and the better price perfor-
mance ratio. This, for instance, allows in-memory data warehouses [ALR"17]
and other software with high memory demands [LIMB09, QSR, IYZ"19] to
transparently scale to even larger sizes. However, with the caveat that the per-
formance might be reduced if the working set exceeds the DRAM cache size.

* No Persistency: Even in the App Direct Mode persistent memory does not need
to be used as a non-volatile device: just because the data is retained does not

14 Chapter 1. Introduction

mean it has to be reused. Thus, persistent memory can be used as an exten-
sion of the applications memory. This can, for instance, be useful for spilling
intermediate results during query processing. In that case, only the code loca-
tions where the memory for spilling is allocated need to be altered, as writing
to the persistent memory is no different than writing to regular DRAM. This
approach, however, needs to be used with care if the written data contains
sensitive information, as it is retained on the device even if it is not reused.

¢ File System: Persistent memory is exposed to the operating system as a reg-
ular device and can be mounted with any compatible file system. For op-
timal performance, it is then mapped (mmap) directly into the programs ad-
dress space. However, working directly on persistent memory requires spe-
cial care. Instead, the program can simply use persistent memory via the file
system as a block-based device. While standard file systems, like Ext4, work
on persistent memory devices, there are already ones that are optimized for
persistent memory (e.g., BPFS [CNF09], SCMFS [WQR13], PMFS [RKK " 14],
NOVA [XS16, XZM"17], Strata [KFH "17], or Kuco [CLZ"21]). In this scenario,
persistent memory is essentially used as a fast SSD. Further, there it requires
no changes to the source code (only the path needs to be pointed to a persistent
memory device). However, it does not make use of the byte addressability of
persistent memory [[YZ19].

The listed integration strategies each only utilize a subset of the advantages of
persistent memory. However, depending on the use case, this (e.g., spilling interme-
diate results during query processing) might be enough.

Future Opportunities

Many of the areas where persistent memory could have a large impact (e.g., log-
ging, page flushing and caching, spilling, transactions, and persistent data struc-
tures) have, naturally, already been studied and are not re-iterated here. References
to these areas of works can be found in Section 1.3. Instead, we want to highlight
some less commonly focused areas for which persistent memory could be promis-
ing. Some of these scenarios might currently be out of reach due to economical
reasons. Other could help persistent memory to overcome its current cost-drawback
and fund further development.

¢ Larger Main Memory: The growth of DRAM capacity has slowed in the pre-
vious decade and it is widely believed that it is getting close to its physical
capacity limits [dra07]. Therefore, in the long run, a new technology is needed
to continue growing the size of big data systems. The prominent candidates
are persistent memory (PCM) and flash storage. While flash storage is more
complicated to access due the block-based interface it is already cheap, in con-
trast to persistent memory, and very affordable [LHKN18, NF20].

¢ Random Access Stores Engines: Graph and object oriented database systems
are, compared to relational ones, less popular. Broadly speaking, both data
models (graph and object) organize their data less sequential than the relation
schema and are therefore more prone to random accesses [JBGS21, BGJS21].
Persistent memory, unlike traditional storage mediums, like SSDs and HDDs,
offers fast random accesses and byte-granularity which might be a good fit for
these kind of access patterns.

1.1. Persistent Memory 15

* Whole System Persistency: With the introduction of persistent memory, the
gap between memory and storage has narrowed. The persistency domain is
a term used to describe the locations in which data is persistent. The border
of this domain (assuming Intel Optane DC PMMs) is the integrated memory
controller (iMC) on the CPU: Each byte that reaches the iMC can be consid-
ered persistent from a software point of view. However, the buffer on the iMC
is actually comprised of faster volatile memory. This can be observed in the
measured read/write latency of persistent memory [LC19, IYZ"19, vRVL"19,
vRVL™"20]: When there is no memory pressure, a persistent write takes around
100 ns, while a read take 400 ns. However, the write latency of phase change
memory, the underlying technology behind Intel’s persistent memory, is higher
than its read latency. This discrepancy is due to the fact that a write operation
only has to reach the volatile memory in the iMC, while a read has to fetch the
data from PCM. To still guarantee the durability of every byte that reaches the
iMC, the size-capped buffers on the iMC are flushed on a power failure using
the energy from capacitors.

While this is a great performance improvement, CPU caches and registers are
still volatile and pose great programming challenges for the development of
persistent memory systems as outlined in Section 1.1.3. An almost logical next
step is to further extend the persistency domain to include everything on the
CPU. This idea was already published in 2012 under the name of while-system
persistence [NH12]. Having access to large and cheap persistent memory, an
interesting step could be to start designing programming models and systems
for hardware that is completely persistent. Such a system would eliminate
volatile memory and therefore greatly simplify the von Neumann architecture,
improve performance (no more I/0), and simplify the programming model.
Note that the last aspect, would be a game changer for systems hardware con-
sidering the complexity involved in managing the transition from memory to
storage in, for example, database systems.

* Mobile Computing: A large issue with persistent memory is its price: As pre-
viously shown, it is currently not the most cost efficient option compared to
the faster DRAM and cheaper SSDs. In order to succeed there needs to be an
application that leads to initial revenue and, therefore, further development.
One such area could be mobile computing: the ability to instantly switch a
device on and off can increase the battery power. In addition, as mentioned
in the previous point, the reduced complexity could be beneficial for the de-
vice’s complexity, cost, and size. However Intel’s Optane PPM is currently
only available to server CPUs and motherboards.

¢ Instant Cloud: Software as a Service (SaaS) and, especially, lambda functions
allow for great elasticity for customers. A service can be spun up for short
duration of time and only be used as long as actually required. Using per-
sistent memory, much of the state of the customer’s software could be kept
alive and therefore allow for much faster start up times. In fact, early persis-
tent memory storage engines like SOFORT [OBL " 14] are designed to provide
almost instantaneous start up times. This could be developed into a “query
as a service”-architecture, where shot tasks can be run on a large, instantly
available state.

16 Chapter 1. Introduction

1.2 Research Methodology

At the start of this dissertation (2016), we sat out to explore how persistent memory
can be integrated into database management systems. However, due to persistent
memory becoming commercially available in 2019, the research question changed
and we explored what the characteristics of persistent memory are.

In the first publication [VRLK 18] (cf. Chapter 2) of this dissertation, we pro-
posed a novel idea that integrates persistent memory into the buffer manager while
utilizing its advantageous properties (e.g., byte-addressable). However, the system
was designed and developed on a simulation platform that aims to emulate the be-
havior of persistent memory and not on actual hardware. Using simulation was
a common approach, because real persistent memory hardware was not yet avail-
able in 2018. During this work, we realized that simulation-based research needs
to make many assumptions on the characteristics of the hardware. Therefore, a de-
tailed study of the persistent memory hardware would be necessary to aid future
researchers and systems designers, once the actual hardware became available. In
a cooperation with Intel, we were able to utilize an early prototype to design a set
of benchmarks to measure persistent memory performance and its special charac-
teristics. Based on those results, we developed a number of algorithms for common
tasks on persistent memory (e.g., efficient logging). Once persistent memory became
publicly available in 2019, we published these results in a short paper [VRVL"19]
based on the prototype hardware. Later, this short paper was invited to the “Best of
DaMoN’19” special issue of the VLDB Journal. This extended version [vRVL"20] in-
cludes several additional algorithms and was evaluated on actual persistent memory
hardware (no prototype). In the following, we will first describe our experimental
methods used through the whole dissertation and then detail the evaluation sys-
tems.

1.2.1 Experimental Setup and Methods

All proposed algorithms throughout the two publications this dissertation is com-
prised of were implemented from scratch. Similar to most systems and database
management software, the low-level programming languages C and, mostly, C+
were used. This allowed to embed assembly instructions directly into the source
code, which was required for some of the new instructions added specifically for
persistent memory (e.g., the cache line write back “clwb” instruction). In addition,
these languages gave us direct control of the applications memory management and
provided easy access to Intel’s intrinsics library [Inta], which was used for SIMD-
based algorithms. Lastly, both languages are considered to have very little overhead
which is essential for the development of highly efficient low-level algorithms.
Common strategies for ensuring code quality, such as unit and integration tests
as well as code reviews were used to ensure the correctness of the implemented
algorithms. Particularly useful was the method of A/B testing where a complex
implementation of an algorithms is validated by comparing its results with those
of a simple implementation over many randomly generated inputs. For tracking
down errors in our code, we used the gdb debugger [gdb] and tracing tools such
as valgrind [val] and the well known method of printf ()-debugging. To test for
failure atomicity on persistent memory (i.e., can a data structure resident on persis-
tent memory be recovered in case of a crash), we carefully inserted intentional crash
points into our source code at critical location to test the recovery policy. Similar
techniques for testing crash consistency have been proposed since then [OBLLI16,

1.2. Research Methodology 17

DLCL21] and are, for example, easily available in the form of the pmreorder tool
within the persistent memory development kit [PMD].

Obtaining statistically significant results can be difficult in many branches of sci-
ence where population numbers are often small. However, in computer science ex-
periments are mostly evaluated on automated machines and often run for very short
times. In our case, the experiments were conducted on a single machine and usually
only took microseconds or milliseconds to run. Therefore, it was feasible to run a
single experiment thousands or even millions of times. This allowed us to obtain
stable results and, as common in computer science, no explicit tests for statistical
significance were conducted due to the extremely high population counts. If not
otherwise mentioned, the number of iterations for an experiment was adjusted so
that it ran for roughly one minute. When reporting the time of a single experiment
run, the average time of these iterations were used. We did not report any latency
distributions or tail latencies for most experiments, because the time of a single ex-
periment was, as mentioned, very short (microseconds). For instance, many of our
experiments essentially measure the latency of a single store instruction (roughly
one hundred nanoseconds). Any high level, application facing algorithm were tail
latencies are important is comprised of several of those building blocks and thus
averages them as well. In addition, there is no easy way to keep track of the laten-
cies of single store instructions without significantly impacting the experiment (an
additional store instruction would be required which impacts the timing, memory
pressure and the caches).

1.2.2 Evaluation Platforms

Due to persistent memory hardware becoming available during the writing of this
dissertation, a number of different platforms were used for our evaluations. Due to a
lack of commercially available persistent memory hardware, we had to rely on sim-
ulators in the beginning. In particular, the SCM® emulation platform (SEP, described
in the following paragraphs). Later we were able to use Intel’s Early Prototype (AEP)
and then, once persistent memory became available, the actual Intel Optane PMMs.
In the following we describe the various platforms.

Simulators: In 2015, at the start of this dissertation, persistent memory was not
yet commercially available. However, the large interest in the technology had al-
ready lead to a number of simulation techniques: A common technique (e.g., used
by Mnemosyne [VTS11], FOEDUS [Kim15], and WORT [LLS"17]) was to manu-
ally insert delays whenever persistent memory was accessed. While this allowed to
model read/write asymmetry and gave fine control over the exact latency, it is not
possible to control bandwidth and the impact on CPU internals such as pipelining
and prefetching. In contrast, x86-64 simulators, such as PTLsim [You(7], can in prin-
ciple model the entire CPU accurately and, with the use of extensions, persistent
memory. However, many details of modern CPUs are not public and the execution
is very slow making larger experimental evaluations difficult. Another approach
suggests to utilize the different NUMA nodes of a multi-socket machine to emulate
persistent memory latencies and bandwidth. While this does not introduce artifi-
cial delays on the CPU that might impact the execution, the latency and bandwidth
can only be configured on a few discrete predefined levels (depending on the num-
ber of sockets and their distance) and there is no read /write asymmetry. Lastly, the
Quartz [VMCL15] system tracks read accesses to memory over a duration of time

6SCM := storage class memory, a different name for persistent memory.

18 Chapter 1. Introduction

(epoch) and then delays the program at the end of the epoch depending on the num-
ber of accesses. In addition, it allows to configure the bandwidth on a few discrete
levels by changing the DRAM thermal control settings [HR10]. However, writes
were not delayed and the read/write asymmetry was not implemented in the pub-
lic version. Next to these software-based simulation techniques, Intel had released
the SCM Emulation Platform (SEP) [Dul16], which provided a hardware-based sim-
ulation of persistent memory. The system added additional cycles when accessing
persistent memory to emulate a higher latency and, similar to Quartz, used DRAM
thermal control to configure the bandwidth. This allowed for an accurate simulation
(except for the read/write bandwidth asymmetry) and was therefore widely used
(e.g., [OBL"14, APD15, APP16, OLN"16]). However, it required special hardware
that was provided by Intel to selected industry and research partners and, thus, not
publicly available. The authors of this dissertation were graciously granted access
to one of those machines by Fujitsu Laboratories, to whom we are very grateful to.
We used the SEP machine in our first paper of this dissertation (Chapter 2).
However, independent of the simulator, in the absence of actual hardware all
characteristics of persistent memory, despite the multitude of simulators and many
configuration options, had to be estimated. To accommodate for this uncertainty, we,
as many others, varied certain key characteristics (such as latency) in our evaluation
(cf. Chapter 2). However, many details (such as the 256 byte blocks) were unknown
at that time and could not be accounted for.
Actual Hardware: Once Intel’s Optane DC Persistent Memory Modules became
commercially available in April of 2019 our university was able to obtain an eval-
uation platform (cf. Table 1.1) and all future research was conducted on it. The ac-
tual hardware gave us direct insight into the characteristics of Intel’s instantiation of
persistent memory and allowed us to work out all unknowns that were missing on
the simulation platforms (Chapter 3). We decided to obtain a two socket machine
equipped with only a single CPU in order to reduce cost. While the study of NUMA
effects in conjunction with persistent memory is promising, the topic of persistent
memory is grand enough and the machine can always be upgraded in the future.

1.3. Related Work 19

200 |

100 |

#Publications

1990 1995 2000 2005 2010 2015 2020
Year

FIGURE 1.4: PMem Publications — Number of publications relating
to persistent memory on dblp [TD].

1.3 Related Work

Persistent memory, as a novel storage medium, has already impacted many areas in
database systems in particular and systems software in general. Even so many of the
techniques proposed in this dissertation are generally applicable, their application
is focused on database systems. Therefore, the related work section also focuses on
the use of persistent memory in database systems.

Persistent memory has been the subject of much attention from research as well
as industry throughout the previous decade. With Intel’s release of Optane DC Per-
sistent Memory Modules in 2019, the number of yearly publications has climbed
well into the hundreds (cf. Figure 1.4). Therefore, this related work focuses on range
index structures and database system architectures for persistent memory. However,
many references regarding the history, hardware, transactions, and logging can be
found in earlier sections of this dissertation. In addition, we refer to the related work
sections of the publications of this dissertation (cf. Chapter 2 and Chapter 3).

1.3.1 Persistent Memory Development Kit (PMDK)

There are a multitude of logging algorithms and transaction libraries for persistent
memory. Most prominent is the persistent memory development kit (PMDK) [PMD],
a widely supported framework for the development of persistent memory applica-
tions. The PMDK provide several abstraction layers, starting with simple wrapper
functions around flush and fence operations (1ibpmem). Building on this, it offers
abstractions for logging (1ibpmemlog) and atomic block-based access to persistent
memory (libpmemblk). While the PMDK algorithms are often more generally ap-
plicable, they suffer in performance compared to specialized solutions [FHH 11,
CCA™, IKK16, KTB*19]. Using the logging functionality, the PMDK implements
a transaction library (libpmemobj). While this library provides a good baseline,
many optimizations have been suggested for more specialized transactions [LC97,
VTS11, GDV13, CCV15, KPS 16] including full integrations into programming lan-
guages [KTB19]. Gotze et al. [GTS20] evaluate these basic building blocks. Besides,
there are various algorithms to semi-automatically transform regular data structures
and algorithms for persistent memory [BC16, DDGZ18, LMK™ 19, FBW*20].

20 Chapter 1. Introduction

1.3.2 B-Tree-like Index Structures

B+-Trees [BM70] are the de-facto standard [Com79] range search data structure in
the context of database systems due to their high fan-out, page granularity, and bal-
anced structure. Consequently many research papers on persistent memory indexes
have focused on tree-like data structures that are often similar to B-Trees. In 2018,
Gotze et al. [GVRL'18] have summarized these by categorizing them by their in-
teraction pattern with persistent memory. In the following, we extend this list into
the present and order it chronologically. The list is focused on tree-like index struc-
tures, as those are more widely applicable due to their support for range queries.
However, there has also been work on hashing-based structures [BHC*™13, DHK 15,
SDUP15, NIK*17, ZH18, ZHW18, NCC"19, LHWL20] and log structured merge
trees [LOSL17, LOLS17, KBG*18, KLN 19, LCK*20, YCJ " 21].

Table 1.2 gives an overview of all index structures with a brief description, which
types of memory and storage it uses, and on which platform it was originally de-
ployed and tested.

PCM-Tree (2011) Chen et al. investigate efficient algorithms and data structures
for persistent memory [CGN11]. As one of the key optimization goals, they identify
the reduction of writes to persistent memory. Due to the read-write skew and the
lower latency of persistent memory, write operations are especially expensive and
should therefore be minimized. Based on this analysis, they propose to use non-
dense and unsorted BTree nodes on the leaf layer as this is updated most frequently.
This avoids many writes in case of inserts or deletions, as the key/value arrays does
not have to be compacted or expanded. Due to the lack of a name, we simply refer
to their idea as the PCM-Tree.

CDDS-Tree (2011) One of the first index structures proposed for persistent mem-
ory is the CDDSTree [VTRC11]. In the paper, Venkataraman et al. define the term
Consistent and Durable Data Structures (CDDS), which is a programming model for
data structures for persistent memory that ensures consistency and durability. This
is achieved by using versioning: every update or insert creates a new version of an
object (e.g, a tuple in a BTree). Once the object is created, fully persisted and linked
to the data structure, a global version number is atomically updated. Thus the data
structure is moved from one consistent state to another. Based on the CDDS model,
they design a B-Tree (coined the “CDDSTree”), that implements this model.

NV-Tree (2015) The NV-Tree [YWC"15] is a B+-Trees that is optimize to reduce
the number of writes to persistent memory. Based on the PCM-opt BTree, the NV-
Tree also employs non-dense and unordered nodes (slightly different implementa-
tion, however). In addition, they introduce the idea of selective consistency: The data
in inner nodes of a B+-Tree is redundant and can be reconstructed from the data in
the leaf nodes. Therefore, it is not necessary to ensure its consistency and durability
during operation. Instead, it can simply be reconstructed after a crash during the
recovery phase. The selective data consistency idea makes it possible to implement
all operations, including splits and merges, of leaf nodes using atomic operations
without the need for redo-logging. However, due to the recovery of the inner nodes,
the NV-Tree requires a recovery phase.

wB+Tree (2015) The wB+Tree [C]15] is a follow up work on the PCM-opt BTree.
In order to reduce the number of writes to persistent memory, it also uses non-dense
and unordered leaf nodes. To speed up key search operations within a node, a small
indirection array is used which contains slot indexes to the keys in sorted order. In
contrast to the NV-Tree, they ensure consistency for all nodes (inner and leaf) and

1.3. Related Work 21
TABLE 1.2: PMem Range Indexes: A cronological list of range
indexes for persistent memory. The evaluation column shows on
which platform the system has been evaluated in the original publi-
cation: PTLsim [You07], Quartz [VMCL15], SCM evaluation platform
(SEP) [Dul16], MultCallFlushLRU [WC08], or NVDIMM [JED]
Year Name Idea DRAM Evaluation
2011 PCM-Tree non-dense PTLsim
+unordered leafs
2011 CDDS-Tree BTree with versioning MultCallFlushLRU
2015 NV-Tree selective consistency NVDIMM
+write optimized leafs
2015 wB+Tree non-dense, 1nd1rec.t1y DRAM.or
ordered nodes, redo-logging PTLsim
2016 FPTree _ fingerprint SEP
selective persistency
2017 WORT three radix trees Quartz
atomic operations
. hybrid BTree + hash table DRAM +
2017 Hikv on DRAM and PMem manual delays
dense sorted arrays
2018 FAST+FAIR special shift functions Quartz
Bw-Tree [LLS13] flash-backed
2018 Bz-Iree persistent MwCAS NVDIMMs
indexed (DRAM) log PMEM
2019 DPTree with delta tree (DRAM) Optane
2019 RECIPE generic tr:‘msforma'tlc')n rules Optane
for non-blocking atomic indexes
top: Hybrid ART (DRAM)
2020 HART bottom: Bz-Tree (PMem) Optane
2020 RStore Log-structured Index Optane
2020 LB+-Trees B+-Tree optimized for 256 B Optane
2021 WOBTree sorted tree nodgs by replac1r'1g Quartz
array with in-place list
2021 UPSkipList atomic skip list for PMem Optane

22 Chapter 1. Introduction

thus retain a constant start up time. Node split and merge operations utilize a small
size-capped redo-log. All other operations are performed atomically.

FPTree (2016) The Fingerprint Tree (FPTree) [OLN " 16] is a BTree-like index struc-
ture with several unique features: (1) Selective Persistency: The authors take the
idea of selective consistency, introduced in the NV-Tree, even further and place in-
ner nodes on DRAM instead of persistent memory. Inner nodes in a BTree are sec-
ondary date, i.e., they can be reconstructed using the primary data in the leaf layer.
In addition to having the benefit that crash consistency can be avoided, the inner
nodes also benefit from the lower access latencies of DRAM. In case of a crash, they
can simply be reconstructed. (2) Fingerprinting: Due to the higher access latency of
persistent memory, the FPTree leaf nodes are designed in a way to reduce both reads
and writes. This is achieved by filling the first cache line of a node with one byte
tinger prints of each resident key. In case of a lookup, this array is probed and only
potential matches need to be retrieved. This lowers the number of required cache
lines to be loaded to two on average for a positive lookup.

WORT (2017) Lee et al. [LLS"17] investigate how radix trees can be adopted
for persistent memory and present three approaches: (1) The Write Optimal Radix
Tree (WORT) is a simple radix tree adopted for persistent memory. Compared to a
BTree, radix trees do not require sorted nodes and thus are well suited for persis-
tent memory. In fact, a new subtree can simply be added with a single 8 B atomic
write operation. However, radix trees often experience a high space consumption
due to underutilized nodes. (2) To overcome this, they make use of the adaptive
radix tree [LKN13] and propose the Write Optimal Adaptive Radix Tree (WOART).
Using several different and more intricate node types the under utilization can be
efficiently reduced. However, the additional complexity requires several writes per
node in order to add a new subtree, which in turn requires several synchronization
barriers to ensure failure atomicity on persistent memory. (3) To overcome this, they
propose a version that uses copy-on-write (ART+CoW): Instead of using a complex
algorithm to update a node in place, the copy and replace the node in its parent. In
there evaluation, the three variants show similar performance characteristics.

HiKv (2017) The hybrid index key value store (HiKv) [X]XS17] utilizes both
DRAM and PMem. The authors build a hash table on persistent memory to sup-
port point queries and to ensure persistency. In order to support scan operations,
they also maintain a BTree in DRAM which completely mirrors the data. Placing
the BTree in DRAM avoids the many costly writes to persistent memory required
by sorted BTree nodes as well as the complexity of other proposed node designs.
New tuples are synchronously inserted into the hash table (thus ensuring durabil-
ity) and placed into a update queue for the BTree in order to reduce the latency. The
update queue is processed by a background worker thread. Whenever an operation
requires the BTree (i.e., a scan), HiKv blocks all updates to the hash table until the
update queue is empty. With an empty update queue, a consistent state of the BTree
is reached and the scan can start executing on the BTree. During the scan the hash
table can resume updates, but the update queue must not be applied in the BTree in
order to keep the consistent state. While the design uses both DRAM and persistent
memory in an efficient way it does require roughly twice the amount of memory and
the queuing is questionable when faced with many scans.

FAST+FAIR (2018) Previous work has moved away from ordered B+-Tree nodes
by using additional indirections in the meta data, due to the high write amplifica-
tion. In contrast, Hwang et al. [HKWN18] propose the concept of endurable transient
inconsistent states (ETIS), which is an intermediate state of an update that can be tol-
erated and repaired by other operations. Their failure-atomic shift (FAST) algorithm

1.3. Related Work 23

allows inserting into an ordered dense array. The key idea is that dependent CPU
instructions are not reordered and node pointers in B+-Trees are unique: Each el-
ement is shifted by one position individually, which is a dependent operation and
therefore not reordered. In addition, child pointers are carefully duplicated to make
the inconsistent state detectable and therefore endurable. Based on the FAST and
their failure-atomic in-place rebalancing (FAIR), they augment an in-memory B+-
Tree (FAST+FAIR) to be crash consistent on persistent memory.

Bz-Tree (2018) Constructing failure atomic algorithms for complex data struc-
tures such as B+-Tree is difficult and incurs performance overheads, as evidenced
by HiKv moving the BTree to DRAM or FPTree implementing selective persistency.
The Bz-Tree [ALML18] tackles this challenge by using an indirection that is capable
of updating several bytes in a failure atomic and thread safe way. This helper func-
tion is called persistent multi-word compare and swap (PMwCAS) [WLL18] and based
on the (non-persistent) multi-world compare and swap (MwCAS) [HFP02]. They in-
tegrate PMwCAS into the Bw-Tree [LLS13], a lock free B+-Tree. They thus drastically
reduce the complexity while maintaining a instantly recoverable high performance
tree structure.

DPTree (2019) Because of the high write latency to of persistent memory, the
differential persistent tree (DPTree) [ZSC"19] is optimize to reduce writes by reduc-
ing the structural maintenance overhead (i.e., updates to meta information). This is
achieved by batching modifications: All updates are initially inserted into a small
DRAM-resident B+-Tree and, for durability, into a log on persistent memory. The
small buffer is periodically merged into a larger tree that contains all key value pairs.
This tree employs selective persistency: a linked list on persistent memory that is in-
dex with a DRAM-resident radix tree. The linked list nodes contain multiple key
value pairs. The meta information of these nodes (e.g., entry count, order, finger-
prints) is versioned and lazily reconstructed, thus allowing the merge procedure to
skip additional work to keep them crash consistent.

RECIPE (2019) Lee et al. [LMK " 19] propose a generic set of algorithm to trans-
form non-blocking concurrent data structures for DRAM to a failure atomic persis-
tent memory version. One of the key insights is that these data structures already
allow endurable transient inconsistent states (as proposed by FAST+FAIR) when, for
instance, a reader can see intermediate updates made by a writer. Lee et al. provide a
list of conditions and transformation rules which they demonstrate by applying it to
B+-trees, tries, radix trees, and hash tables with limited modifications to the source
code.

HART (2020) Based on the adaptive radix tree (ART) [LKN13], Zhang et al. pro-
pose the Hybrid ART (HART) [ZL]JW20]. Compared to WOART and ART+CoW,
the HART is a hybrid index that utilizes both DRAM and persistent memory in or-
der to make use of the advantages performance characteristics of DRAM. The upper
part of the index structure is an ART-like structure that captures a certain number
of bits from the keys and kept in DRAM. The lower part is organized as a BTree
(wB+Tree-like) and stored on persistent memory. It stores the entire key and is used
to recover the volatile ART after a restart. The boundary between the two structures
can adjusted depending on memory budgets and performance requirements.

RStore (2020) Lersch et al. [LSOL20] propose a key value store, called RStore, that
is optimized for predictable low latencies. This is in contrast to many other key value
stores which are often optimized for a high throughput but utilizing techniques such
as group commits and other batching techniques. However, low latencies are often
a requirement and persistent memory is well suited for it due to its non spinning
nature (compared to disk) and lack of garbage collection (compared to flash). RStore

24 Chapter 1. Introduction

achieves this by using selective persistency in form of a log-structured index: the
data is written to a log file on persistent memory, while an index on top of the log
file is constructed in DRAM. To remain competitive with throughout and scalability
they implement user space networking and a shared-nothing partitioning of the data
with message passing between the worker threads.

LB+-Trees (2020) Early performance studies [LC19, [YZ 19, vRVL" 19, vRVL*20]
of persistent memory not only showed that write operations should be avoided but
also that the write granularity of persistent memory is 256 B. Similar to in memory
structures that are optimized for the DRAM cache line size, they propose the LB+-
Tree [LCW20], which is optimized for the 256 B persistent memory block size. The
LB+-Tree is a B+-Tree with a node size of a multiple of 256 B. In addition, they
deploy several techniques to reduce the block writes, most prominent: they insert
entries into the first 256 B block of a node, which requires only a single block write
as the header of the node is also located in the first block. Once this block is full,
they move multiple entries to other blocks in bulk in order to retain the single block
write per insert property.

WOBTree (2021) WOBTree [WLZ"21] is a write optimized B+-Tree for persis-
tent memory. They propose to optimize a B-Tree for PMem by reducing the write
amplification based on cache line granularity (64 B). Note that the granularity can
be adjusted in their design and could therefore also be tuned to the 256 B persistent
memory blocks. This is achieved by logically splitting a B+-Tree node into several
subnodes that are aligned to cache lines boundaries. These are still stored in the
respective node (locality), but act as a ordered doubly linked list. Compared to a
sorted array-based node layout, the number of cache lines that have to be modified
is greatly reduced in this list-based structure. Modifications are implemented using
failure atomic updates. To speed up search operations on the list, bloom filters and
a small single layer index on top of the list is used.

UPSkipList (2021) While previous work has often tried to overcome the block-
based pages with sorted keys in B+-Trees, Chowdhury et al. [CG21] optimize a the
fine-granular skip list data structure for persistent memory. They utilize an existing
lock-free skip list [[HS08] and transform it into a failure atomic skip list for persistent
memory using the RECIPE. The RECIPE is extended to work on non-blocking atomic
data structures.

In science, the ability to repeat an experiment is crucial: It allows researchers
to compare results of other groups to their own. One big issue with many of the
persistent memory data structures is that they are not easy to compare: In the orig-
inal publications, they are tested on specific hardware (simulation, emulation, early
prototypes, and actual hardware), they are largely closed source, and they use dif-
ferent benchmarks. Therefore, it is difficult to compare the performance and thus
empirically determine the optimal index structure for a given problem. Recently, a
benchmark for persistent range indexes [LHO ™19, HLWO20] and an evaluation of
various hash-based approaches [HCW 21] has tried mitigating this problem.

1.3.3 Database Architectures

A big question concerning persistent memory is how it can be integrated into a
database management system [DAP ™, Ouk19]. As a first possible option, a database
(or key-value store) can simply be run on a persistent memory backed file sys-
tem [IYZ"19]. This approach requires little adjustments to the implementation, but
has a limited performance benefit as persistent memory is not fully utilized. As a

1.3. Related Work 25

next step, the storage sub-system (e.g., logging and buffer management) can be op-
timized for persistent memory. However, considering that persistent memory is a
radical new storage device with unique properties, this can still not fully utilize it.
The most disruptive approach is to optimize the database architecture for persistent
memory. In the following, we list several impactful approaches.

Arulraj et al. [APD15] have compared three database architectures for persistent
memory. They propose to use persistent memory as the primary location for table
data as well as index structures. In their work they compare engines based on in-
place update, log-structured storage, and copy-on-write algorithms. Each approach
is optimized for persistent memory. Their experimental results suggest that in-place
update-based engines are a promising candidate due to good performance and low
write amplification.

SOFORT [OBL"14] is a storage engine for systems with DRAM and persistent
memory. They, as the name suggests (“sofort” is German for “immediately”), opti-
mize for a near instantaneous restart time. Similar to SAP HANA [FCP 11, FML"12],
they use a columnar storage format and a delta-merge approach. Using multi-
version concurrency control, they organize their tables as append only structures on
persistent memory. This simplifies the code (only appends) and tuples of in-flight
transactions do not have to be deleted after a crash, as the version number automat-
ically marks them as invalid. Dictionary encoded columns keep their dictionary in
DRAM to speed up lookups and are recoved in parallel to speed up restart. For a
database with 10 M rows, they achieve recovery times below two seconds.

While SOFORT statically assigns tables to persistent memory and dictionary in-
dexes to DRAM, FOEDUS [Kim15] implements a more dynamic approach to make
better use of the fast DRAM: The database is organized as one large B+-Tree which
is based on Masstree [MKM12] and Foster B-Trees [GKK12] and called master tree.
The pages of the master tree are fixed-size and initially reside on persistent memory.
Whenever a page is accessed, it is copied to DRAM using a buffer pool and read
or written their. To ensure durability, they use redo logging. In contrast to tradi-
tional buffer pools, a dirty page is never directly written back to persistent memory.
Instead, the WAL is asynchronously and periodically merged into the master tree
nodes on persistent memory. Once merged, the dirty pages can be dropped from the
cache. They use pointer swizzling [GVK"14] to speed up tree traversal. Each page
reference contains a pointer to the copy of the page on persistent memory and on to
the one on DRAM (null if nonexistent).

Traditional database systems deploy fixed-size pages and write-ahead logging,
because SSDs and HDDs only have page-granular read/write capabilities. Given
that this assumption no longer holds true for persistent memory based storage, Arul-
raj et al. [APP16] propose a new recovery method: write-behind logging, which has
been integrated into Peloton [PAAT17]. Transactions make changes to a DRAM-
resident copy of the database. At group commit time, all changes are flushed to
persistent memory. This can be done without a single memory fence operations, as
the ordering of these writes is not important. In order to detect uncommitted tuples
after a crash, they use a multi-versioned storage layout (which is also used to imple-
ment multi-version concurrency control). Once all changes are flushed to persistent
memory, a group commit record is written that logs the new version ids and thus
marks the modifications as valid. To handle long running transactions, they allow
gaps in the ranges of valid version ids. This approach greatly reducing the write am-
plification of the system, as each tuple is only written once compared to WAL-based
systems. However, the current design requires two copies of the database (DRAM
and persistent memory) and lacks a WAL, which is often used for replicas.

26 Chapter 1. Introduction

SAP HANA [FCP"11, FML"12], as a large commercial in-memory database for
OLAP and OLTP, has been adopted for persistent memory [ALR"17]. They use a
three tier architecture where the primary location of durable data is on disk. Per-
sistent memory serves as an extension of DRAM and can be immediately reused
after a crash (essentially a persistent cache over SSD/HDD). HANA keeps the write-
optimized delta store on DRAM and places the large read-only portion of the tables
in persistent memory. This avoids the difficulties of in-place updates on persistent
memory, as it is only updated by the delta merge process. In addition, keeping the
delta store on DRAM retains the high performance of updates due to DRAM’s lower
latencies. Contrary to SOFORT, they place the string dictionaries on persistent mem-
ory to enable faster reload times. Queries read data directly from persistent memory.
They report only minor slow downs when running on persistent memory and can
benefit greatly from the faster restart time.

Much work on persistent memory was focused on transaction processing, the
high bandwidth and large capacity can also be beneficial for analytical processing
as shown by SAP HANA. However, the characteristics of persistent memory are
not quiet like DRAM. Therefore, Gotze et al. [GBS18] prose an analytical system for
persistent memory. The key idea is to adopt BDCC+ [BBS16] for persistent memory.
BDCC+ is a multidimensional clustering approach that maps multiple attributes to
a single artificial clustering key by which the table is ordered. In their work, they
design a novel storage format optimized for persistent memory and demonstrate
significant performance gains.

There have been multiple systems that aim to adopt persistent memory by in-
tegrating it via the buffer manager [LLO19, Kim15, vRLK 18, APM19]. A recent
incarnation of this approach is Spitfire [ZAPC21]: a three tier buffer manager for
DRAM, persistent memory, and SSD. They improve upon the HyMem [vRLK 18]
storage engine, which is one of the publications of this dissertation (cf. Chapter 2).
First, they implement a multi-threaded buffer manager, which makes the system
more realistic. In addition, it increases the memory pressure which can significantly
influence the replacement strategy. Using only a single thread in HyMem, we had
essentially unlimited DRAM and persistent memory bandwidth. Second, they con-
duct their research on actual persistent memory hardware. Having been published
before the release of Intel Optane DC Persistent Memory, HyMem was evaluated
on a simulation platform. Third, they process transactions directly on persistent
memory resident pages, while HyMem always needs to copy the page to DRAM.
Using multi-threading, actual hardware, and processing in persistent memory, Spit-
tire constitutes an advanced storage engine for the implementation and evaluation
of three tier buffer placement strategies and makes a number of significant advance-
ments: (1) Having the ability to process transactions directly on persistent memory
increases the number of decisions the data placement algorithm has to take. For ex-
ample: When a page is loaded from SSD, should it be placed in PMem or in DRAM?
Spitfire analyzes all possible data paths and breaks them down into four decisions.
They proposes a probabilistic approach where each data migration is controlled by a
tunable probability variable. (2) Having four probability variables, they use machine
learning to tune these during execution to the specific workload and the character-
istics of the underlying machine. Thus, Spitfire is a dynamic system that can still
adopt to likely changes of the still young persistent memory hardware.

27

Chapter 2

Paper 1: Managing Non-Volatile
Memory in Database Systems

This paper tries answering the question of how persistent memory (PMem) can
be integrated into an OLTP database management system. The proposed solution
(called: HyMem) is optimized for the special characteristics of PMem (e.g., random
access and byte-addressability) while still utilizing other layers in the memory hi-
erarchy (i.e., DRAM and SSD). I follow the design of a tradition storage engine
comprised of a B+-Tree [BM70], ARIES-style write-ahead logging [MHL"92], and
a buffer manager. The main contribution of this paper is the optimization and com-
bination of the individual components for PMem: The buffer manager lazily loads
individual cache lines from PMem into DRAM pages. Compared to a standard
buffer manager, which eagerly loads the entire page, this technique vastly reduces
the amount of I/O, because often only a portion of each page is needed, especially
in OLTP. Given that HyMem is only loading parts of a page, compacted DRAM
pages (“mini pages”) are used to reduces the memory footprint in the buffer cache
for sparsely populated pages.

Another contribution is the evaluation, which compares HyMem with four ex-
iting systems: an in-memory engine, a B+-Tree placed directly on PMem, a buffer
manager for DRAM and NVM, and a buffer manager for DRAM and SSD. HyMem
gracefully scales across all layers of the new memory hierarchy (i.e., with PMem)
and thus constitutes a cost efficient option [Lom18]. It offers, depending on the data
set size, competitive performance to systems dedicated to the particular layer:

DRAM: Leis et al. [LHKN18] have shown that a well designed buffer manager
can be competitive with the performance of in-memory systems. Building on these
results (mainly by using pointer swizzling) HyMem has competitive performance
with an in-memory DBMS. Unlike in-memory systems, HyMem is not limited to
DRAM, which is both capped in capacity and expensive.

PMem: Many PMem-based storage engines are not using DRAM, which is still
present in machines today. Utilizing the low latency and high bandwidth of DRAM
gives HyMem an edge when the data set fits into DRAM and its PMem-optimized
data migration policy allows it to stay competitive for larger data sets.

SSD/HDD: Compared to data structures that work directly (in-place) on PMem,
HyMem can easily support a third layer (i.e.: SSD or HDD) due to the use of fix-sized
pages. Therefore, HyMem can scale to larger-than-PMem data sets.

Contributions: The system implementation and evaluation as well as the writing
of the paper itself was done by the first author. Co-authors helped with the system
design, prove reading, and identifying related work. In particular, Fujitsu granted
us access and provided help with using a persistent memory system.

Managing Non-Volatile Memory in Database Systems

Alexander van Renen
Technische Universitat Miinchen
renen@in.tum.de

Thomas Neumann
Technische Universitat Miinchen
neumann@in.tum.de

Yoshiyasu Doi
Fujitsu Laboratories
yosh-d@jp.fujitsu.com

ABSTRACT

Non-volatile memory (NVM) is a new storage technology that
combines the performance and byte addressability of DRAM with
the persistence of traditional storage devices like flash (SSD). While
these properties make NVM highly promising, it is not yet clear how
to best integrate NVM into the storage layer of modern database
systems. Two system designs have been proposed. The first is to
use NVM exclusively, i.e., to store all data and index structures on
it. However, because NVM has a higher latency than DRAM, this
design can be less efficient than main-memory database systems.
For this reason, the second approach uses a page-based DRAM
cache in front of NVM. This approach, however, does not utilize the
byte addressability of NVM and, as a result, accessing an uncached
tuple on NVM requires retrieving an entire page.

In this work, we evaluate these two approaches and compare
them with in-memory databases as well as more traditional buffer
managers that use main memory as a cache in front of SSDs. This al-
lows us to determine how much performance gain can be expected
from NVM. We also propose a lightweight storage manager that si-
multaneously supports DRAM, NVM, and flash. Our design utilizes
the byte addressability of NVM and uses it as an additional caching
layer that improves performance without losing the benefits from
the even faster DRAM and the large capacities of SSDs.

ACM Reference Format:

Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann,
Takushi Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru
Sato. 2018. Managing Non-Volatile Memory in Database Systems. In SIG-
MOD’18: 2018 International Conference on Management of Data, June 10—
15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3183713.3196897

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06...$15.00
https://doi.org/10.1145/3183713.3196897

Viktor Leis
Technische Universitat Miinchen
leis@in.tum.de

Takushi Hashida

Fujitsu Laboratories
hashida.takushi@jp.fujitsu.com

Lilian Harada
Fujitsu Laboratories
harada lilian@jp.fujitsu.com

Alfons Kemper
Technische Universitat Miinchen
kemper@in.tum.de

Kazuichi Oe
Fujitsu Laboratories
ooe.kazuichi@jp.fujitsu.com

Mitsuru Sato
Fujitsu Laboratories
msato@jp.fujitsu.com

Main Memory DBMS
—

1
1
: \Our System :
— N :
\ NVM Direct '
—\
WM BM

SSD BM

Estimated Throughput

DRAM NVM
Data size

Figure 1: System designs under varying data sizes.

1 INTRODUCTION

Non-volatile memory (NVM), also known as Storage Class Memory
(SCM) and NVRAM, is a radically new and highly promising stor-
age device. Technologies like PCM, STT-RAM, and ReRAM have
slightly different features [35], but generally combine the byte ad-
dressability of DRAM with the persistence of storage technologies
like SSD (flash). Because commercial products are not yet available,
the precise characteristics, price, and capacity features of NVM
have not been publicly disclosed (and like all prior NVM research,
we have to resort to simulation for experiments). What is known,
however, is that for the foreseeable future, NVM will be slower (and
larger) than DRAM and, at the same time, much faster (but smaller)
than SSD [13]. Furthermore, NVM has an asymmetric read/write
latency—making writes much more expensive than reads. Given
these characteristics, we consider it unlikely that NVM can replace
DRAM or SSD outright.

While the novel properties of NVM make it particularly relevant
for database systems, they also present new architectural challenges.
Neither the traditional disk-based architecture nor modern main-
memory systems can fully utilize NVM without major changes
to their designs. The two components most affected by NVM are
logging/recovery and storage. Much of the recent research on NVM
has optimized logging and recovery [5, 16, 22, 36, 45]. In this work,
we instead focus on the storage/caching aspect, i.e., on dynamically
deciding where data should reside (DRAM, NVM, or SSD).

Two main approaches for integrating NVM into the storage
layer of a database system have been proposed. The first, suggested
by Arulraj et al. [4], is to use NVM as the primary storage for
relations as well as index structures and perform updates directly
on NVM. This way, the byte addressability of NVM can be fully
leveraged. A disadvantage is that this design can be slower than
main-memory database systems, which store relations and indexes
in main memory and thereby benefit from the lower latency of
DRAM. To hide the higher NVM latency, Kimura [25] proposed
using a database-managed DRAM cache in front of NVM. Similar
to a disk-based buffer pool, accesses are always performed on in-
memory copies of fixed-size pages. However, accessing an uncached
page becomes more expensive than directly accessing NVM, as an
entire page must be loaded even if only a single tuple is accessed.
Furthermore, neither of the two approaches supports very large
data sets, as the capacity of NVM is limited compared to SSDs.

In this work, we take a less disruptive approach and implement
NVM as an additional caching layer. We thus follow Michael Stone-
braker, who argued that NVM-DIMMs are ...

“...not fast enough to replace main memory and they are not cheap

enough to replace disks, and they are not cheap enough to replace
flash.” [41]

Figure 1 sketches the performance characteristics and capacity
restrictions of different system designs (Buffer Manager is abbrevi-
ated as BM). Besides the two NVM approaches (“Basic NVM BM”,
“NVM Direct”), we also show main-memory systems (“Main Mem-
ory”), and traditional SSD buffer managers (“SSD BM”). Each of
these designs offers a different tradeoff in terms of performance
and/or storage capacity. As indicated in the figure, all existing ap-
proaches exhibit steep performance cliffs (“SSD BM” at DRAM size
and “Basic NVM BM” at NVM size) or even hard limitations (“Main
Memory” at DRAM size, “NVM Direct” at NVM size).

In this work, we propose a novel storage engine that simulta-
neously supports DRAM, NVM, and flash while utilizing the byte
addressability of NVM. As the “3 Tier BM” line indicates, our ap-
proach avoids performance cliffs and performs better than or close
to that of specialized systems. NVM is used as an additional layer
in the storage hierarchy supplementing DRAM and SSD [7, 13].
Furthermore, by supporting SSDs, it can manage very large data
sets and is more economical [18] than the other approaches. These
robust results are achieved using a combination of techniques:

o To leverage the byte-addressability of NVM, we cache NVM
accesses in DRAM at cache-line granularity, which allows
for the selective loading of individual hot cache lines instead
of entire pages (which might contain mostly cold data).

o To more efficiently use the limited DRAM cache, our buffer
pool transparently and adaptively uses small page sizes.

o At the same time, our design also uses large page sizes for

staging data to SSD—thus enabling very large data sets.

We use lightweight buffer management techniques to reduce

the overhead of in-memory accesses.

Updates are performed in main memory rather than directly

on NVM, which increases endurance and hides write latency.

The rest of this paper is organized as follows. We first discuss
existing approaches for integrating NVM into database systems in
Section 2. We then introduce some key techniques of our storage

engine in Section 3 before describing how our approach supports
DRAM, NVM, and SSDs in Section 4. Section 5 evaluates our storage
engine by comparing it with the other designs. Related work is
discussed in Section 6, and we conclude the paper in Section 7.

2 BACKGROUND: NVM STORAGE

Several architectures for database systems optimized for NVM have
been proposed in the literature. In this section, we revisit the two
most promising of these designs and abstract their general concepts
into two representative system designs. They are illustrated in
Figure 2 alongside the approach that we propose in this paper.

2.1 NVM Direct

NVM, which offers latencies close to DRAM and byte addressability,
can be used as the primary storage layer. A thorough investiga-
tion of different architectures for NVM Direct systems has been
conducted by Arulraj et al. [4]. Their work categorizes database
systems into in-place update, log-structured, and copy-on-write
engines, before adapting and optimizing each one for NVM. Experi-
mental results suggest that in most cases an in-place update engine
achieves the highest performance as well as the lowest wear on the
NVM hardware. Therefore, we chose this in-place update engine
as a reference system for working directly on NVM (Figure 2a).

One challenge of using NVM is that writes are not immediately
persistent because NVM is behind the same CPU cache hierarchy as
DRAM and changes are initially written to the volatile CPU cache. It
is only when the corresponding cache line is evicted from the CPU
cache that the update becomes persistent (i.e., written to NVM).
Therefore, it is not possible to prevent a cache line from being
evicted and written to NVM, and each update might be persisted
at any time. It is, however, possible to force a write to NVM by
flushing the corresponding cache lines. These flushes are a building
block for a durable and recoverable system.

Logging is implemented as follows. A tuple is updated by first
writing a write-ahead log (WAL) entry that logs the tuple id and
the changes (before and after image). Then, the log entry needs
to be persisted to NVM by evicting the corresponding cache lines.
Intel CPUs with support for NVM like the Crystal Ridge Software
Emulation Platform [14], which is also used in our evaluation, pro-
vide a special instruction for that: clwb allows one to write a cache
line back to NVM without invalidating it (like a normal c1flush
instruction would). In addition, to ensure that neither the compiler,
nor the out-of-order execution of the CPU reorders subsequent
stores, a memory fence (sfence) has to be used. Thereafter, the
log entry is persistent and the recovery component can use it to
redo or undo the changes to the actual tuple. At this point, the
transaction can update and then persist the tuple itself. After the
transaction is completed, the entire log written by the transaction
can be truncated because all changes are already persisted to NVM.

As illustrated in Figure 2a, the design keeps all data in NVM.
DRAM is only used for temporary data and to keep a reference to
the NVM data. The log is written to NVM as well.

The NVM direct design has several advantages. By keeping the
log minimal (it contains only in-flight transactions), recovery is
very efficient. In addition, read operations are very simple because
the system can simple read the requested tuple directly from NVM.

a
il I}

| — page-grained- — — —

L1

DRAM DRAM

/\ full page mini page
I — cache-line-grained — - £ — — — - — — — _ 4
4 NVM

(a) NVM Direct

(b) Basic NVM BM

(c) Our NVM-Opt Three-Tier BM

Figure 2: NVM-Based Storage Engine Designs — NVM Direct (a) stores all data on NVM, which allows for cache-line-grained accesses.
Basic buffer managers (b) fixed-size pages in DRAM, but require page-grained accesses to NVM. Our design (c) uses fixed-size pages to enable
support for SSD and, in addition, supports cache-line-grained loading for NVM-resident data to DRAM. (B hot, [warm, ll cold cache lines)

However, there are also downsides. First, due to the higher latency
of NVM compared to DRAM, it becomes more difficult to achieve
a very high transaction throughput. Second, working directly on
NVM without a buffer wears out the limited NVM endurance, thus
potentially causing hardware failures. Third, an engine that works
directly on NVM is difficult to program, because there is no way
to prevent eviction and any modification is potentially persisted.
Therefore, any in-place write to NVM must leave the data structure
in a correct state (similar to lock-free data structures, which are
notoriously difficult).

2.2 Basic NVM Buffer Manager

Given the downsides of the NVM direct approach, using DRAM as
a cache in front of NVM may seem like a promising alternative. A
well-known technique for adaptive memory management between
a volatile and persistent layer is a buffer manager. It is used by most
traditional disk-based database systems and can easily be extended
to use NVM instead of SSD. We illustrate this idea in Figure 2b.

In buffer-managed systems, all pages are stored on the larger,
persistent layer (NVM). The smaller, volatile layer (DRAM) acts as a
software-managed cache called a buffer pool. Transactions operate
only in DRAM and use the fix and unfix functions to lock pages
into the buffer pool while they are accessed. In the traditional buffer
manager (DRAM + SSD/HDD), this was necessary because it is not
possible to make modifications directly on a block-oriented device.
In the case of NVM, we argue that it is still beneficial because of
the higher latency and the limited endurance of NVM.

An NVM-optimized variant of this approach has been introduced
in the context of the research prototype FOEDUS [25]. The memory
is divided into fixed-size pages, and transactions only operate in
DRAM. Instead of storing page identifiers, like a traditional buffer
manager, FOEDUS stores two pointers. One identifies the NVM-
resident copy of the page, the other one (if not null) the DRAM one.
When a page is not found in DRAM, it is loaded into a buffer pool.
FOEDUS uses an asynchronous process to combine WAL log entries
and merge them into the NVM-resident pages to achieve durability.

Thus, a page is never directly written back but only indirectly via
the log. The system is optimized for workloads fitting into DRAM.
NVM is mostly used for durability and cold data.

Our goal, in contrast, is to support workloads that also access
NVM-resident data frequently. Therefore, we extend the idea of
a buffer manager and optimize it to make NVM access cheap. A
non-optimized version is used as a baseline to represent layered
systems.

2.3 Recovery

Besides the storage layout, the logging and recovery components of
database systems are also greatly impacted by the upcoming NVM
hardware. Log entries can be written to NVM much faster than
to SSD. Therefore, from a performance perspective, it is always
beneficial to replace SSD storage with NVM as the logging device.

In this work, we focus on the storage layout and therefore im-
plement the same logging approach in each evaluated system. This
makes it possible to compare only the advantages and disadvan-
tages of the storage engine itself with less interference of other
database components.

We use write ahead logging with redo and undo information. The
undo entries enable one to perform rollback and to undo the effect
of loser transactions during recovery. The redo entries are used
to repeat the effects of committed transactions during recovery if
it was not yet persistent. The buffer-manager-based systems keep
a log sequence number per page to identify the state of the page
during recovery. In the NVM direct approach, this is not necessary,
as changes are always immediately written to NVM. Therefore,
only in-flight transactions need to be undone and every committed
transaction is durable already.

Logging for NVM-based systems can be and has been optimized
in prior work [5, 36]. While each of the described storage archi-
tectures can benefit from more advanced logging techniques, we
believe that the impact on the storage engine is largely orthogonal
and the two problems can be treated independently.

NVM , DRAM
m})[pld:?) r:O[d:O
header:z;"'{ resident:1010..1, | dirty:0010..0,
Tokyo - Tokyo
San Jose IS
Redwood City 4'% Munich
Mountain View ﬂ'»
I 251 more cache lines : I 251 more cache lines

l San Francisco ‘% l San Francisco ‘
1

Figure 3: Cache-Line-Grained Pages — The bit masks indicate
which cache lines are resident and which are dirty.

3 NVM BUFFER MANAGEMENT

The goal of our architectural blueprint is a system that performs
almost as well as a main-memory database system on smaller data
sets but scales across the NVM and SSD storage hierarchy while
gracefully degrading in performance (cf. Figure 1). For this pur-
pose, we design a novel DRAM-resident buffer manager that swaps
cache-line-grained data objects between DRAM and NVM—thereby
optimizing the bandwidth utilization by exploiting the byte address-
ability of NVM. As illustrated in Figure 2c, scaling beyond DRAM
to SSD sizes led us to rely on traditional page-grained swapping
between NVM and SSD. Between DRAM and NVM, we adaptively
differentiate between full-page memory allocation and mini-page
allocation to further optimize the DRAM utilization. This way, in-
dividual “hot” data objects resident on mostly “cold” pages are
extracted via the cache-line-grained swapping into smaller mem-
ory frames. Only if the mini page overflows, is it transparently
promoted to a full page—but it is still populated one cache-line at a
time. We also devise a pointer swizzling scheme that optimizes the
necessary page table indirection in order to achieve nearly the same
performance as pure main-memory systems, which obviate any
indirection but incur the memory wall problem once the database
size exceeds DRAM capacity.

3.1 Cache-Line-Grained Pages

Compared to flash, the low NVM latency (hundreds of nanoseconds)
makes it feasible to transfer individual cache lines instead of entire
pages. Using this, our so-called cache-line-grained pages are able
to extract only the hot data objects from an otherwise cold page.
Thus, we preserve bandwidth and thereby increase performance.
In the following, we discuss the details of this idea.

A single SSD access takes hundreds of micro seconds. It is there-
fore important to transfer large chunks (e.g., 16 kB) at a time in
order to amortize the high latency. Therefore, a traditional buffer
manager has to work in a page-grained fashion: When a transac-
tion fixes a page, the entire page is loaded into DRAM and the data
stored on it can be processed. Our buffer manager, in contrast, ini-
tially only allocates a page in DRAM without fully loading it from
NVM. Upon a transaction’s request for a certain memory region,
the buffer manager retrieves the corresponding cache lines of the
page (if not already loaded).

The page layout is illustrated in Figure 3. The cache-line-grained
pages maintain a bit mask (labeled resident) to track which cache

lines are already loaded. In the example, the first, third, and last
cache line isloaded, as indicated by a bit set to 1 at the corresponding
position in the bit mask. Similar to the resident bit mask, the dirty
bit mask is used to track and write back dirty cache lines. The r
and d bits indicate whether the entire page is resident and dirty,
respectively. To allow for the loading of cache lines on demand,
pages additionally store a pointer (nvm) to the underlying NVM
page. With 16 kB pages, there are 256 cache lines and therefore the
two bit masks require 32 byte each. Together with the remaining
fields (|nvm| + |pId| + |r| + |d| = (8 + 8 + 1 + 1) byte = 18 byte), the
entire header ((2 * 32 + 18)byte = 82 byte) fits into 2 cache lines
(128 byte) and thus incurs only a negligible space overhead of less
than 0.8 %.

While this cache-line-grained design includes an extra branch on
every access (to check the bit mask), it often reduces the amount of
memory loaded from NVM into DRAM drastically: As an example,
consider the leaf of a B-tree [6] where pairs of keys and values are
stored in sorted order. Assuming a page size of 16 kB and a key and
value size of 8 byte each, there are at most 16 kB+ (8 byte+8 byte) =
1024 entries on a single page. A lookup operation only requires
a binary search, which uses log2(1024) = 10 cache lines at most.
Therefore, our design only needs to access 64 byte * 10 = 640 byte,
instead of 16 kB. While this is already a huge difference, it can be
even greater. In the case of the YCSB and TPC-C benchmarks, which
we use in our evaluation (Section 5), we measured an average of
6.5 accessed cache lines per lookup.

A system allowing for cache-line-grained accesses is more dif-
ficult to program than a conventional page-based approach. The
reason for this is that all data needs to be made resident explicitly
before accessing it and marked dirty after modifying it. But working
with a cache-line-granularity is optional and it is also possible to
load and write back entire pages. Therefore, we only implement the
operations, that provide the most benefit, in a cache-line-grained
fashion: like lookup, insert, and delete. Other infrequent or compli-
cated operations (like restructuring the B-tree) are implemented by
loading and processing the full page (avoiding the residency checks).
The overhead of checking the residency of every single cache line
only pays off if we access a small number of cache lines. During scan
operations or the traversal of inner nodes in a B-tree, many cache
lines are accessed and cache-line-grained loading should therefore
not be used.

3.2 Mini Pages

Cache-line-grained pages reduce the consumed bandwidth to a min-
imum by only loading those cache lines that are actually needed.
However, the page layout described previously still consumes much
more DRAM than necessary. In this section, we introduce a second,
smaller page type called mini page, which reduces the wasted mem-
ory. Consider the B-tree leaf example from above: Merely 640 byte
out of 16 kB are accessed, but the system still allocates the 16 kB (ex-
cluding the header) in DRAM for the page. This problem is known
from traditional disk-based systems: An entire page is loaded and
stored in DRAM even if only a single tuple is required, wasting
valuable NVM bandwidth and DRAM capacity. In the following, we
will use the term full page to refer to a traditional page, as it was in-
troduced before. Note that both pages (mini and full) are able to use

NVM , DRAM
1
mb slots: [0, 2, 255] | pld: 3
header=1cl{F — — — — 7. Ao ey]
;|| count: 3 dirty: 0100..0, |fullO
Tokyo - Tokyo
San Jose 1_ | Munich
Redwood City / San Francisco
Mountain View :/\

I 251 more cache lines

l San Francisco

]
/. I 11 more cache lines
1
]

|

Figure 4: Mini Pages — The slots array indicates which cache
lines are loaded (max 16). If promoted, full points to the full page.

cache-line-grained loading to optimize bandwidth utilization—but
not DRAM utilization. Hence, the term cache-line-grained page can
refer either to a mini page or a full page.

The implementation of mini pages is illustrated in Figure 4. It
consumes only 1088 byte of memory and is able to store up to 16
cache lines. The slots array implements the indirection. It stores
the physical cache line id for each of the 16 cache line slots. For
example, the cache line with the content “San Francisco” is located at
the physical index 255 on the page but loaded into slot 2 on the mini
page. Therefore, the slots array stores the index 255 at position 2.
The array only requires 16 byte because each physical cache line id
fits into one byte. In total, the mini page header fits into a single
cache line: [nvm| + |slots| + |pId| + |count| + |dirty| + |full| =
(8+16+8+ 1+ 2+ 8) byte = 43 byte. This is a very low overhead
(0.3 %) when compared to the size of a full page, which would be
used in a system without mini pages. The count field indicates
how many cache lines are loaded, e.g., a value of three means that
the first three cache line slots of the mini page are occupied. The
additional dirty bit mask indicates which cache lines must be
written back to NVM when the page is evicted. In our example, the
cache line “Redwood City” changed to “Munich” and needs to be
written back.

Accessing memory on a mini page is more complicated than on
a full page. Due to the mapping of cache lines, data members on the
page can-not be directly accessed. Therefore, we use an abstract
interface that enables transparent page access:

void» MakeResident (Page« p, int offset, int n)

The function takes a page p as an input and returns a pointer
to the memory at the specified of fset with a length of n bytes.
In case p is a full page, the specified cache lines are loaded (if
not yet resident) and a pointer to it is returned. Otherwise, in
case of a mini page, the function searches the slots array for
the requested cache lines. If these are not yet resident, they are
loaded and added to the slots array. Afterwards, a pointer to the
offset in the (now) resident cache line is returned. Thus, this basic
interface transparently resolves the indirection within the mini
pages. Compared to a traditional page, the only difference is that
memory on mini pages can no longer be accessed directly but only
via this function.

Mini pages need to guarantee that the memory returned by these
functions is always contiguous, i.e., if more than one cache line is
requested (e.g., cache lines with id 3 and 4), they need to be stored

— <Kroot>

1 6| par O off: 0

— pld: 6 cnt: 1

1> | ptr [pId:S ...[pId:S

<swizzled leaf> <normal leaf>>
—

| — | par b [off: 12 par O | off: 0
— pld: 7| cnt: 0 pld: 5| cnt: 0
DRAM
NVM <swapped out leaf>>
l pld: 5 ‘ l pld: 6 ‘ l pld: 7 ‘ l pld: 8 ‘

Figure 5: Pointer Swizzling — A B-tree with a root (pId: 6) and
three child pages: A swizzled page (pId: 7), a normal DRAM page
(pId: 5) and a page currently not in DRAM (pId: 8).

consecutively (i.e., 4 needs to be stored directly after 3) in the mini
page’s data array. Otherwise, the returned pointer would only be
valid for the first cache line. To guarantee this, our implementation
maintains the cache lines in sorted order (w.r.t. their memory loca-
tions). The overhead of maintaining order is small because, there
are at most 16 elements and it is not on the critical path (only after
loading from NVM). The benefit of this approach is that it simplifies
implementation, as it avoids complicated reordering logic.

When a mini page does not have enough memory left to serve
a request, it is promoted to a full page. To do this, an empty full
page is allocated from the buffer manager and stored in the mini
page’s full member. Next, the current state of the mini page is
copied into the newly allocated full page: all resident cache lines,
the residency and dirty information. If the example mini page in
Figure 4 was promoted, the newly initialized full page would look
like the one in Figure 3. Finally, the page mapping table in the buffer
manager is updated to point to the full page. From now on, the mini
page is called partially promoted and all requests to the mini page
are forwarded to the full page. It is only safely garbage collected,
once the last transaction unfixes it. This is guaranteed to happen,
as the page mapping table points to the full page and therefore
no new references to the mini page are created. This feature is
convenient for the data structures using mini page because this way
its reference to the mini page is not invalidated when a promotion
happens. Thus, a promotion is hidden from data structures and
does not incur additional complexity.

3.3 Pointer Swizzling

While the buffer pool, allows the system to benefit from the low
latency DRAM cache, it also introduces a non-neglectable overhead.
In this section, we introduce pointer swizzling, a technique that
reduces this overhead (mainly the page table lookup) by dynam-
ically replacing page ids with physical pointers. In a traditional
buffer manager (DRAM+SSD/HDD), this overhead is only notice-
able if most of the working set fits into DRAM. Otherwise, the
page has to be loaded from SSD/HDD anyway, which is orders of
magnitude slower compared to the hash table lookup. In contrast to
traditional buffer managers, in our proposed system, this overhead
is also relevant for larger workloads. We cannot hide the overhead

behind even slower loads because (a) these loads are not that much
slower (NVM latency is a lot lower than that of flash) and (b) the
amount of data read is much less due to the cache-line-grained
loading. Therefore, it is important for our system to minimize these
management overheads as much as possible.

Pointer swizzling has recently been proposed in the context of
traditional buffer managers (DRAM + SSD/HDD) [17]. The idea is
to encode the address of the page directly in the page identifier for
DRAM-resident pages. The most significant bit of the page identifier
determines whether the remaining bits constitute a page identifier
or a pointer. Thus, when accessing a page, the system first checks
whether the most significant bit is set. If so, the remaining bits
encode a pointer that can be dereferenced directly. Otherwise, the
remaining bits are a page identifier and the system has to check the
hash table in the buffer manager to find the page or load it from
NVM if not present. This way, the hash table lookup is avoided for
DRAM-resident pages and thereby the overhead is reduced to a
single branch.

Figure 5 illustrates our implementation of pointer swizzling.
On the left-hand side, the buffer manager’s page mapping table
is shown. It maps page identifiers (numbers in the table) to pages
(represented by arrows). The example shows a B-tree with one root
node (pId 6) and three leaf nodes: The first one (pId 7) is a swizzled
leaf. The root can use a pointer (blue arrow) to access it instead of
the page id. The second one (pId 5)isanormal leaf (not swizzled)
and the third one (pId 8) is a swapped out leaf—currently not
located in DRAM.

In the example, the root page has one swizzled child (as indi-
cated by the cnt) field. A page with swizzled children can never be
swapped out because the pointer to the swizzled child would be per-
sisted. When a swizzled page (the left child with page identifier 7 in
the example) is swapped out, it needs to update its parent (located
via the par pointer): First, it decreases the child count, which is
located at a fixed offset. Second, it converts the pointer pointing to
itself back into a normal page identifier. The location of this pointer
can be found using the offset field (of f). The parent pointer (8 byte)
and the offset (2 byte) require an additional 10 byte of space in the
page header and therefore still fit into the mini page (1 cache line)
and full page header (2 cache lines). Pointer swizzling is compatible
with various data structures (trees, heaps, hashing); it only requires
fix-sized pages and these additional header fields.

Consider a swizzled mini page. When a mini page is promoted to
a full page, the swizzling information needs to be updated as well.
This happens when the partially promoted mini page is unfixed.
Until then it acts as a wrapper around the full page. When it is
unfixed, the pointer in the parent page needs to be redirected to
the full page. In addition, the pointer to the parent (par) and offset
(of f) in the mini page need to be copied to the full page.

4 THREE-TIER BUFFER MANAGEMENT

So far we have presented cache-line-grained loading, mini pages,
and pointer swizzling as building blocks for an efficient DRAM
buffer pool over an NVM storage layer. The next step towards our
goal of building a storage engine that scales across the NVM and
SSD hierarchy (cf. Figure 1) is to add flash (SSD) as a third layer. Such
a three-tier design drastically increases the maximum workload

Cache-line-grained Entire page
page (NVM-backed) (not NVM-backed)
..
@ @ DRAM

eviction
NVM page &ﬁ)

NVM | ®
eviction @

NVM

admission

Figure 6: Page Life Cycle — There are five possible page transi-
tions and the three critical decisions (DRAM eviction, NVM admis-
sion, and NVM eviction).

size in comparison to that of an in-memory or NVM-only system.
This section describes the involved buffer replacement strategies
and a low overhead way of adding this third layer.

Although adding support for SSDs does not improve perfor-
mance, it is still important, as it allows for the management of larger
data sets and can also be more economical: Real-world data is often
hot/cold clustered (e.g., older data is accessed less frequently). To
process the hot data as fast as possible, it should reside in main
memory. But it is neither a good practice to keep the cold data in
a separate system nor is it cheap to buy huge amounts of DRAM
to obtain enough storage to keep the cold data in DRAM as well.
Our layered approach solves this problem by providing close to
main memory speed for the hot data (provided it fits into DRAM)
while also supporting cheap SSD storage for cold data in a single
system. Beyond other systems, it even allows one to compactify the
individual working sets of an application via mini pages.

4.1 Design Outline

In our three-tier architecture, buffer management is done by using
both NVM and DRAM as selective caches over the SSD storage
layer (Section 4.2). Pages are only accessed (read and written) in
DRAM, and write ahead logging (WAL) is used to ensure durability.
When a page is evicted from DRAM, it is either admitted to NVM
or written back to SSD, depending on how hot the page is.

To locate pages on NVM, a page table (similar to the one in
DRAM,) is required. To avoid overheads, this can be implemented
by using a combined page table for both DRAM and NVM—reducing
the number of table lookups from two to one (Section 4.3).

For recovery (Section 4.4), we propose using textbook-style write
ahead logging and an ARIES-based restart procedure. In a three-tier
architecture, it becomes necessary to reuse the content of NVM-
resident pages to allow for faster restarts. Therefore, the content of
the combined mapping table is reconstructed after a restart.

4.2 Replacement Strategies

A three-tier architecture needs to manage two buffer pools (DRAM
and NVM) instead of one. In this section, we detail the page transi-
tions that can occur and describe the three necessary replacement
decisions: DRAM eviction, NVM eviction and NVM admission. The
process is illustrated in Figure 6 and can be used as an overview.

Initially, all newly-allocated pages start out on SSD. When a
transaction requests a page, it is loaded directly and completely into
DRAM ((@). The pages are loaded completely because the block-
based device only allows for a block-based access. We do not put
pages into NVM when they are loaded from SSD because accesses
are served directly from DRAM and putting them into NVM as
well would only waste NVM memory. Pages are only admitted to
NVM when they are swapped out of DRAM. Pages loaded directly
from SSD are not NVM-backed and therefore cannot operate in a
cache-line-grained fashion. This is only possible when the page is
loaded from NVM ((2)) and therefore NVM-backed.

When there are no more free slots available in DRAM, the buffer
manager needs to evict any of the DRAM-resident pages () in
order to make room for a new one. DRAM eviction is the first out
of three decisions our buffer manager has to perform. The goal is
simply to keep the hottest pages in DRAM. We use the well-known
clock (or second chance) algorithm, which performs reasonably
well in both overhead and quality. It continuously loops through
all pages in the buffer pool and swaps those pages out that have
not been touched since the previous iteration.

Once a page is chosen to be evicted from DRAM (@) and is
not already resident in NVM, it is considered for NVM admission,
which is the second out of three decisions. This decision is a more
difficult one because the goal is to identify warm pages instead of
hot pages. It has been studied in the context of the ARC replacement
strategy [34], where two queues are used to identify warm pages
in order to optimize the replacement of hot pages in a two-layer
system. Building on this idea, we use one set, which we call the
admission set, to identify recently accessed pages. The idea is to
admit pages to NVM that were recently denied admission. Each
time a page is considered for admission, the system checks whether
the page is in the admission queue. If so, it is removed from the set
and admitted into NVM ((@)). Otherwise, it is added to the set and
remains only on SSD ((8)). By limiting the size of the admission set,
we make sure that it only contains pages that were recently consid-
ered for admission. This way, pages that are frequently swapped
out of DRAM are admitted into NVM, but those that are only loaded
once do not pollute NVM.

The third replacement decision is NVM eviction, i.e., choosing
a page to be swapped out of NVM ((6)) when a new page is admitted.
To keep our implementation simple, we also use the clock algorithm
for this decision; however, as this is a rather expensive operation
(writing a page (16 kB) to NVM and, if it was dirty, to SSD), one
could opt for a slower algorithm that in turn yields better quality.

4.3 Combined Page Table

For workloads fitting into NVM, the third layer (SSD) is not used
and should therefore not cause an overhead. We achieve this by
the use of a combined page table, which stores both mappings (page
identifier — DRAM location and page identifier — NVM location)

= / pld: 7 pld: 6

— nvm O nvm Q

NVM
| e]

Figure 7: Single-Table Mapping — Using one hash table for
DRAM and NVM-resident pages eliminates most overhead for man-
aging the SSD layer. The hash table entries are identified by their
location in memory (DRAM or NVM).

lpId:S ‘

l pld: 5

in one hash table. The resulting structure is shown in Figure 7.
When retrieving a page, the memory address of the page can be
used to determine whether it is located in DRAM or NVM. If a
page is not found in DRAM, its NVM-resident copy is still found
and can be directly used without an additional hash table lookup.
Therefore, there are no extra steps involved compared to a two-
layer system. However, the size of the hash table differs because of
the additionally stored mapping for NVM pages. According to our
experimental results, the introduced overhead is less than 5 %.

4.4 System Restart

The page mapping table is performance critical and is therefore
stored in DRAM. After a restart, it needs to be rebuilt instead of re-
covering solely from SSD, which would have two major drawbacks:
First, the time until the system can process the first transaction
would be higher because more log entries have to be replayed, as
the SSD version of the pages are older than the NVM version. Sec-
ond, once the system is restarted, it takes a longer time to reach the
pre-crash throughput again because not only the DRAM cache but
also the NVM cache is empty. Therefore, our system reconstructs
the page mapping table after a restart. This requires scanning over
all NVM pages, reading their page identifiers and adding them to
the DRAM-resident page table. This technique was not feasible for
slow non random access mediums (like flash or HDD) but performs
reasonably well for NVM. Reading the page identifiers for 100 GB
of NVM takes slightly less than 1second, but allows for a faster
restart.

5 EVALUATION

In this section, we present an experimental analysis of our proposed
architecture and compare it with other NVM management tech-
niques. To provide a fair comparison, all evaluated architectures
are implemented within the same storage engine. Consequently, all
systems use the same logging scheme, B+-tree, and test driver. The
only difference is the way DRAM, NVM, or/and SSD are accessed.
This allows us to measure the difference between the architectures
mostly independent of individual implementation choices.

5.1 Experimental Setup

We conduct our experiments on the Crystal Ridge Software Em-
ulation Platform (SEP) provided by Intel [14]. It is a dual-socket

system equipped with Intel(R) Xeon(R) CPU E5-4620 v2 processors
(2.6 GHz, 8 cores, and 20 MB L3 cache). This processor is extended
to include the clwb instruction and is able to configure the NVM
latency between 165 ns to 1800 ns (unless otherwise noted, 500 ns
are used). The clwb instruction in combination with memory fences
(sfence) is used to persist a certain cache line. Unlike the c1flush
instruction, it does not invalidate the cache line, thus triggering a
reload on the next access, but only writes it back to the underly-
ing memory and marks it as unmodified. We use the libpmem [1]
library from the libpmem.io stack as a platform-independent wrap-
per around these instructions. The machine is equipped with 48 GB
of DRAM, out of which 32 GB are connected to the first socket. To
avoid NUMA effects, we conduct our experiments exclusively on
this socket. The simulated NVM-DIMMs are exposed as a block
device, which is formatted as an ext4 file system and mounted
with DAX (direct access) support enabled. This file system is then
mapped into the address space of our process and can be directly
accessed without file system overheads due to DAX. Note that
buffer-managed systems do not require a special NVM allocator [38]
because pointers into or the dynamic allocation of NVM are not
used.

We implement each table as a B+-tree using C++ templates
and 16 kB pages (page size is not restricted to the OS’s virtual
memory page size). The B-tree uses binary search and stores key
and payloads in separate arrays (sorted by keys).

When ingesting data in preparation for a benchmark, the load
factor of the B-tree is configured to 0.66. The term data size is used to
describe the total memory consumption of the B-tree after loading
the data. Therefore, if the flat data is 5GB in size, the resulting
data size would be around 7.5GB due to the tree structure and
the load factor. Transactions are executed on a single thread. By
using no-steal and no-force in the buffer manager in combination
with traditional write ahead logging (WAL), we ensure durability.
In all experiments, the transactions and the code executing them
are implemented in C++ and compiled together with our storage
engine into one binary.

5.2 Workloads

We used YCSB and TPC-C in our experiments, which mostly use
OLTP-style transactions. These are better suited to evaluate a stor-
age engine, as they pose a greater challenge than OLAP-style full
table scans.

YCSB is a popular key-value store benchmark framework [11].
It consists of a single table with a 4 byte primary key and 10 string
fields of 100 byte each. YCSB defines simple “CRUD”-style oper-
ations on this table, which can be combined into workloads. In
the YCSB experiments, we focus on point lookups, updates, and
range scans (inserts and deletes are evaluated using TPC-C). We
use Zipf-distributed (z = 1, non clustered popular keys) keys to
model real-world data skew [20]. The corresponding row is located
in the table and a (uniformly) randomly chosen field is read (lookup,
range scan) or updated (updates). We define three workloads, which
are generalizations of the five pre-defined example workloads (A-E)
in YCSB.

YCSB-RO uses 100 % point lookup operations (same as YCSB
“Workload C”).

i DRAM capacity NVM capacity

= | =2GB =10GB
= |
E 34 —=— Main Memory
.y & M —a— 3 Tier BM
=] ® .
2 N\ —o— Basic NVM BM
an 2% —s— NVM Direct
= —6— SSD BM
= i
o) |
A 1!
o) 1
8 1
= |
1
I

Data size [GB]

Figure 8: YCSB-RO - Performance for varying data sizes on read-
only YCSB workload. The capacity of DRAM, NVM, and SSD is set
to 2 GB, 10 GB, and 50 GB, respectively.

DRAM capacity . NVM capacity
80 =2GB ' =10GB
—H&— Main Memory
—&— 3 Tier BM
60 —o— Basic NVM BM

—»— NVM Direct

40

20

TPC-C Throughput [kTx/s]

5 20 40 60 80 160 10
(1 32 (7)) (82 (107) (132 (15.7)

Warehouses (Data size [GB])

Figure 9: TPC-C - Performance in TPC-C for an increasing num-
ber of warehouses. The capacity of DRAM, NVM, and SSD is set to
2 GB, 10 GB, and 50 GB, respectively.

YCSB-R/W uses x% update and (100 — x)% point lookup oper-
ations, where x can be configured between 0 to 100 (config-
urable mix of “Workload A” and “Workload C”).

YCSB-SCAN uses 100 % range scan operations. Each one has
a random length between 1 and 100 (like “Workload E”, but
without the 5% inserts).

TPC-C is considered the industry standard for benchmarking
transactional database systems. It is an insert-heavy workload that
emulates a wholesale supplier. Like most research TPC-C imple-
mentations (e.g., [25, 42]), we do not implement think times.

5.3 Architecture Comparison

In this paper, we set out to design a system that performs well in
all three layers (DRAM, NVM, and SSD) of next generation servers.
This experiment compares the performance of different storage

engines with two workloads: YCSB-RO (in Figure 8) and TPC-C
(in Figure 9). In both scenarios, we use 2 GB of DRAM, 10 GB of
NVM and 50 GB of SSD. The horizontal axis increases the workload
size by 1 GB at a time starting at 1 GB up to 15 GB.

The figures are divided into three areas by two dashed lines that
show the capacity of DRAM and NVM. Therefore, the area on the
left shows the performance for workloads fitting completely into
DRAM,; the one in the middle covers workloads fitting into NVM
and the one on the right is for workloads exceeding NVM capacity.
In the following, we describe the behavior of the different storage
engines in these areas.

DRAM Area: For both workloads the main-memory variant
(&) performs best (YCSB-RO with 3.6 MTx/s and TPC-C with
88kTx/s). It is clear that it is impossible for any buffer-managed
architecture (—4—, -, —¢-) to outperform a main memory system
in this area. The overheads of fixing and unfixing pages and, in
the case of our proposed system, checking the residency of indi-
vidual cache lines can be minimized but never completely avoided.
The basic buffer manager for DRAM and NVM (-6-) and the tradi-
tional buffer manager for DRAM and SSD (—¢-) have roughly the
same throughput as our approach (-4-) in the DRAM area. The key
differences related to performance are pointer swizzling and the
cache-line-grained access. Mini pages do not play a role here, as
they are rarely used (without the need to swap pages out, every
page becomes a full page eventually). Our system needs to check
whether a cache line is resident before accessing it. But, as the figure
shows, the pointer swizzling speedup is higher than the cache-line-
grained access slowdown. If the Basic NVM BM or the traditional
one was extended to use pointer swizzling as well, they would come
out slightly ahead. The NVM Direct system (=) performs worst
in the first area because it does not use the fast DRAM but only the
slower NVM.

NVM Area: In the NVM area, the line for the main memory
system (-5-) vanishes, because such a system cannot support work-
loads exceeding the size of DRAM. The NVM Direct system (=)
is not impacted by the fact that the workload no longer fits into
DRAM, as it is not using DRAM. Its performance is decreasing
because of the growing workload size and the fewer L3 cache hits.
The two buffer management systems suffer a lot, as they have to
start swapping pages in and out of SSD. The throughput of Basic
NVM BM (-6-) and the SSD BM (—%-) drop below that of NVM
Direct because page misses are more likely (due to the lack of mini
pages) and each page miss needs to retrieve an entire page (due to
the lack of cache-line-grained pages). Our three-tier system (—-)
also drops in performance, but is still able to outperform the NVM
Direct system due to the benefits of caching data in DRAM. The
performance decrease is less severe in TPC-C than in YCSB-RO.
This can be explained by the fact that the working set (the hot data)
in TPC-C is only a portion of the entire data and can therefore be
better cached in the buffer-managed systems.

SSD Area: In the last area, the NVM Direct system (=) and the
Basic NVM BM (-©-) can no longer handle the large amounts of
data and therefore no longer show up in the figure. Our system
() has another performance drop, as it needs to load more and
more data from SSD now. In the TPC-C experiment, this drop is
delayed and does not occur right after the dashed line, as the hot
data still fits into NVM at this point. Only when scaling the data size

YCSB-RO Throughput
relative to traditional BM
Do

0 B
v[\ S eS B % . 2\
P 9 (0 o
SRR NG P RN
2 C‘A&e x ‘20.‘“‘6 N
x x

Figure 10: Performance Drill Down - Effect of proposed opti-
mizations relative to a traditional buffer manager on NVM (YCSB-
RO with 10 GB of data, read only, 2 GB DRAM, and 10 GB NVM).

up to around 90 warehouses does it start accessing SSD and drops
in performance. This drop is unavoidable because even a single
SSD access (around 1 millisecond) every 26 transactions (number
of transaction executed per 1millisecond at 90 warehouses) will
cut the transaction rate in half. On the very right of both figures
(15 GB of data), the performance advantage of having NVM is still
present. The SSD BM (—¢-) is a factor of 4.3 slower in YCSB-RO and
2.8 in TPC-C.

These results show that a carefully engineered buffer manager
can outperform an NVM direct system, be competitive with an in-
memory system and greatly speed up workloads exceeding NVM
capacity.

5.4 Performance Drill Down

Traditionally, buffer management is viewed as a technique with
high overhead [21]. Therefore, working directly on NVM is, initially,
a good idea. In this section, we show that by leveraging the novel
properties of NVM (mainly byte addressability), it becomes possible
to outperform an NVM in-place engine. We first break down the
performance gains of the individual techniques proposed in our
architecture and then analyze their overheads. In both experiments,
we use 2 GB of DRAM, 10 GB of NVM, and around 6.5 million tuples,
which amount to roughly 10 GB.

5.4.1 Performance Gains Breakdown. The benefits of the pro-
posed techniques are shown using YCSB-RO in Figure 10. We first
measure the performance of our system configured as a Basic NVM
BM and then cumulatively enable the optimizations proposed in
this paper (cache-line-grained pages, mini pages and pointer swiz-
zling). The performance of the improvements is given relative to
that of the Basic NVM BM. For comparison, we also added a line
showing the performance of the NVM Direct engine.

As the first improvement, we add cache-line-grained accesses,
as described in Section 3.1. It allows the buffer manager to load
individual cache lines from NVM instead of having to load the entire
page, which dramatically reduces the number of loaded cache lines
by a factor of 55 from around 652.5M to 11.8 M.

The next improvement are mini pages, which are detailed in
Section 3.2. These pages can store less cache lines compared to a
full page, but in turn also require less storage. This allows them to
use the available DRAM more efficiently because, on many pages,

only a few cache lines are touched and thus more hot tuples are
kept in DRAM. Using mini pages, the number of loaded cache lines
is reduced by a factor of 2 and ends up at 5.6 M.

The last improvement, introduced in Section 3.3, is pointer swiz-
zling. It essentially avoids the costly hash table lookup to map the
page identifier to a page and replaces it with a single branch and
a pointer chase for hot pages. Thus, lowering the overhead of the
buffer manager indirection and making it more competitive with
the architectures that do not require this indirection.

Overall, the experiment shows that it is possible to leverage the
system’s DRAM to increase the throughput by deploying a buffer
manager. It also shows that it is necessary to specifically optimize
buffer managers for NVM to achieve good performance on these
new systems.

5.4.2 Overhead Analysis. On the other side, the proposed opti-
mizations also have overheads associated with them. To show these
CPU overheads, we measure YCSB-SCAN using a fill factor of 100%.
We start with our base line, the “Basic NVM Buffer Manager” in the
first row, and cumulatively add our optimizations showing their
throughput relative to the baseline:

Small Scan Full Scan
‘ (range = 100) ‘ (range = |tablel)
Basic NVM BM (100%) | 50000 scans/s 0.34 scans/s
+ Cache-Line-Grained 104.2 % 91.3%
+ Mini Pages 93.1% 90.8 %
+ Pointer Swizzling 93.8% 90.9 %

While the base line implementation loads each page completely
during the scan, the cache-line-grained one loads each tuple individ-
ually. Due to the perfect fill rate of leaf pages, almost no loads are
avoided when all tuples on a page are needed. But, for small scans,
cache-line-grained loading still benefits, as only around 3 pages
(50 tuples) are touched and the pages on the edges of the range are
not read completely. In the case of the full table scan, each page is
loaded completely and the tracking of individual cache lines has
no benefit and thus reduces the throughput.

The use of mini pages is almost never beneficial for scans because
due to the large YCSB tuples, the mini pages are promoted as soon
as more than 1 tuple is accessed. This happens frequently in both
cases, therefore, the system suffers in throughput.

Lastly, the use of pointer swizzling has little effect on the perfor-
mance of scans, as it is only used for finding the starting point of
the scan. The only difference is an additional branch when fixing
and unfixing a page during the scan and the increased memory con-
sumption (16 byte of additional data in the buffer frames header).

This experiment shows that the proposed techniques incur a max-
imum overhead of around 10 %. Note, however, that this overhead
can trivially be avoided using a hinting mechanism that selectively
disables cache-line-grained and mini pages for full table scans.

5.5 Hybrid Structures

Using only NVM can result in sub-optimal performance due to its
fairly high latency. Therefore, some NVM-optimized data structures
incorporate DRAM into their design. One recent proposal of a
hybrid data structure is the FPTree [39]. It is a B+-Tree that places

) 3t —#— 3 Tier BM \w hashing

& 1 —4— 3 Tier BM

E 2+ —8— FPTree

B

<

g le

I

=

&= 0 1 1 1 :
100% 80% 60% 40% 20%

DRAM Buffer Space

Figure 11: Hybrid DRAM-NVM Systems - Uniformly dis-
tributed lookup keys in tree with 100 M 8 byte keys values pairs.

its leaf nodes in NVM and its inner nodes in DRAM, thus gaining
fast lookups (as inner node traversal is fast due to low DRAM
latencies) and still being durable (as leaf nodes are in NVM and can
be used to reconstruct inner nodes upon a restart).

In the experiment shown in Figure 11, we compare our approach
with a reimplementation of the FPTree. For a fair comparison, we
use the same experimental setup as the original FPTree paper:
Uniformly-distributed point lookups in a single tree with 8 byte
integer keys and values. As in the paper, the FPTree is configured to
use 4096 entries in inner pages (64 kB) and 56 entries in leaf pages
(960 B). Our tree uses a page size of 16 kB for all nodes (around
1000 entires). We use 100 M tuples, resulting in a tree size of roughly
2.5 GB in both systems. The horizontal axis depicts the percentage
of pages that fit into DRAM for the buffer-managed systems.

The results show that our system () can only outperform the
FPTree (-8-) when 100 % of the data fits into the DRAM cache. This
is caused by a different leaf node layout in the trees: While our
leaves use a sorted array of keys and binary search, the FPTree uses
a hash-based leaf node layout (“fingerprints”). For point lookups,
this layout allows the FPTree to reduce the number of NVM accesses
in leaf nodes (from around 8 down to 2).

However, our proposed three-tier architecture is agnostic to
the leaf node design. Therefore, we can optimize our leaves for
point lookups by implementing a hashing structure (based on open
addressing). The resulting system (=) remains competitive with
the FPTree, even with lower DRAM cache sizes. While a hashing
layout performs well for point lookups, it introduces overheads for
scans (the nodes need to be sorted just in time) and lower bound
queries (nodes need to be scanned completely).

The most important advantage of a buffer-managed approach re-
garding performance is that it is able to adapt to skewed workloads.
In this experiment (Figure 11), we measured a uniformly-distributed
access pattern, which is the worst case for caching. When using
a Zipf distribution (z = 1), the buffer-managed system is able to
cache larger portions of the data with limited DRAM. This achieves
a 30 % higher throughput at 50 % DRAM and only slightly drops
beneath the FPTree line at 10 % DRAM.

5.6 Impact of NVM Characteristics

As of today, NVM is not commercially available as a byte address-
able storage device. Therefore, there is still uncertainty about the

21 —2— 3 Tier BM
—— NVM Direct
A —e— Basic NVM BM
1 4

CM
200 600 1,000 1,400 1,800
NVM latency [ns]

YCSB-RO Throughput [MTx/s]

0

Figure 12: NVM Latency - The impact of varying NVM latencies
on the YCSB-RO performance (YCSB with 10 GB of data, read only,
2 GB DRAM, and 10 GB NVM).

exact characteristics of the hardware. In this section, we evaluate
how the NVM latency and capacity impact the individual engines.

5.6.1 NMYV Latency. We first investigate how the three systems
perform under various NVM latencies. Our test platform allows us
to vary the latency between 165 ns to 1800 ns. We use the YCSB-RO
workload to determine in which areas the benefit of a buffer man-
ager outweigh the incurred overheads. The data size is 10 GB, the
NVM capacity is 10 GB, and the DRAM capacity is 2 GB. The results
are shown in Figure 12. The vertical axis shows the throughput,
while the horizontal one depicts the various NVM latencies.

At the lowest possible latency (around 165 ns), the NVM Di-
rect system (—¢) is slightly faster than our NVM optimized buffer
manager (—4-). At this point, the DRAM latency advantage is too
marginal for a buffer manager to be beneficial. With increasing
NVM latency, all systems become slower, but the buffer-managed
ones are not as much impacted by the latency increase because they
use the constantly fast DRAM as a cache. The NVM Direct system,
on the other hand, loads all its data from the increasingly slow
NVM. Starting at a latency of around 300 ns, the buffer manager
outperforms the NVM Direct system.

The Basic NVM BM (-©-) also decreases in performance with
an increasing NVM latency. The slope of the curve suggests that
for even higher latencies, this non-optimized approach would also
outperform the NVM Direct system. This is because the fast DRAM
cache becomes more valuable as the latency difference between
NVM and DRAM increases.

5.6.2 NVM Capacity. Besides latency, the exact capacity of NVM
is another unknown parameter. In this experiment, we look at the
ratio between the capacities of DRAM and NVM. The results are
shown in Figure 13. The NVM capacity is fixed at 10 GB. The DRAM
capacity is increased from 100 MB up to 10 GB (horizontal axis).
Consequently, a value of 20 % implies a DRAM capacity of 2 GB.

The NVM Direct engine (=) is not impacted by the changing
ratio between NVM and DRAM, as it is not using DRAM. The
other two engines benefit from more DRAM. The Basic NVM BM
(-e-), however, requires a lot more DRAM (around 80 % of NVM)
to outperform the NVM Direct engine. The 3 Tier BM (=), on

&

~

£ 27

=)

5

j=¥

=

=1}

=

é 1 Fdoe—n— —— e

o 4 —2— 3 Tier BM

& Me/e/e/ —»— NVM Direct

@ 4 —o— Basic NVM BM

>~ 0 t t t t |
1% 20% 40% 60% 80% 100%

DRAM ratio

Figure 13: DRAM Buffer Size - YCSB-RO performance for vary-
ing amounts of DRAM and a fixed NVM capacity (YCSB with 10 GB
of data, read only and 10 GB NVM).

the other hand, outperforms the NVM Direct engine very early on
(around 7 %). In addition, it is worth noting that starting at around
85 %, the 3 Tier BM does not require any NVM accesses anymore
due to the mini pages. Thus, from this point on, the performance
remains constant.

6 RELATED WORK

NVM will likely trigger a drastic redesign of existing database
systems. In this section, we first analyze the state of the art for
integrating NVM into database systems at the storage layer before
discussing other aspects.

The SOFORT database engine [36, 40] proposes a copy-on-write
architecture for NVM. All primary data is placed and modified
directly in NVM, thus eliminating the need to load it into main
memory after a restart. This way, SOFORT is able to achieve an
almost instantaneous restart and can resume working at a pre-
shutdown throughput instantly. The placement of secondary data,
like indexes, can be considered a tuning parameter: Placing sec-
ondary data in main memory allows the user to increase system
performance due to the lower latencies, but it also increases the
restart time, as the data needs to be reconstructed.

For systems that modify primary data directly in NVM, one
interesting question is the endurance of this storage technology.
NVM has a limited endurance [35], i.e., a given NVM cell will fail
after a certain number of write operations. Therefore, Arulraj et
al. [4] compare three generic approaches for data management on
an NVM-only architecture: in-place updates, copy-on-write and
log-structured (LSM) system. Their experiments suggest that an
in-place update architecture is usually best, as it delivers good
throughput while minimizing the wear on the NVM hardware. This
is not a coincidence, as these two goals (maximizing endurance
and throughput) are in support of each other: By minimizing the
number of accesses to NVM, one also improves performance, due
to the, compared to DRAM, relatively high NVM latency.

FOEDUS [25] tries to take advantage of this finding: Modify-
ing data directly on NVM has the advantage of fast restart times,
but it suffers from a higher access latency, leaves the available
DRAM unused, and wears out the NVM. FOEDUS therefore uses a

two-layered approach: data can reside either on NVM or DRAM.
The idea is similar to classic disk-based systems: The memory is
divided into fixed-size pages, which are loaded from NVM into a
DRAM-resident buffer pool for read and write operations. In order
to update the persistent state on NVM, FOEDUS periodically runs
an asynchronous process that updates the NVM-resident snapshot
using the databases log.

The SAP HANA in-memory database system integrates NVM
by utilizing its “delta” and “main” storage separation [2]. The im-
mutable and compressed bulk of the data (“main”) is stored on
NVM, while the updatable part (“delta”), which contains recent
changes, remains in main memory. This simple approach nicely
fits HANA’s architecture, but is not applicable to most database
systems. Another specific way of exploiting NVM is to use it as a
cache for LSM-based storage [30].

Microsoft Siberia [15] is an approach for extending the capacity
of main-memory database systems. By logging tuple accesses [31],
infrequently-accessed tuples are identified and eventually migrated
to “cold” storage [15] (e.g., SSD). This high-level concept could
also be used to add support for NVM-based cold storage for main-
memory systems.

There are also proposals to integrate persistency into NVM-
resident data structures. However, performing in-place updates
on NVM requires customized data structures to avoid data cor-
ruption [9]. Multiple NVM-specialized data structures, including
CDDS Tree [43], HiKv [46], NV-Tree [47], FPTree [39], WORT [26],
wBTree [10], and BzTree [3], have been proposed. These data struc-
tures optimize the node layout for NVM and explicitly manage
persistency using appropriate cache write back instructions. In our
design, in contrast, the data structure design is largely transpar-
ent to the storage engine (except for the requirement of fixed-size
pages). Furthermore, since the storage engine takes care of persis-
tency, write back instructions are inserted automatically.

In contrast to the approaches discussed above, we propose trans-
parently integrating NVM into the memory hierarchy. While some
systems use NVM mostly as a means to achieve durability or to
extend the main memory capacity, in our approach, NVM is an
integral part: We leverage not only the persistency but also the
byte addressability by loading individual cache lines from NVM
into DRAM. This way, we can deploy variable-size pages, which
allow us to keep hot tuples in DRAM instead of hot pages.

Our three-layer architecture unites DRAM, NVM, and SSD into
one transparent memory, thus enabling workloads that far exceed
the capabilities of main-memory databases. We are, to the best of our
knowledge, the first to study memory management in a database
context for DRAM, NVM, and SSDs. Three-layer architectures have
already been investigated [8, 12, 23, 32, 33] for different storage
layers (namely: DRAM, SSD, HDD). However, the vastly different
properties of NVM (low latency and byte addressability) compared
to traditional durable storage technologies (SSD and HDD) requires
a drastically different architecture. For instance, when loading data
from SSD, it has to be done in a page-grained fashion. This is neither
required nor the most efficient way of dealing with NVM.

While this paper focuses on storage, NVM also poses challenges
and opportunities for other aspects, for example, for testing [37],

memory allocation [38], and query processing [44]. Another compo-
nent affected by NVM is logging/recovery [5, 16, 22, 36, 45]. Write-
behind logging [5], for example, is a recovery protocol specifically
designed for multi-version databases that use NVM as primary
storage. On commit, all newly-created changes of a transaction
(versions) are persisted—instead of only persisting the traditional
write-ahead log. While our current implementation uses write-
ahead-logging and single-version storage, it would also be possible
to combine our storage engine with write-behind logging. We defer
evaluating different logging and recovery schemes to future work.
The pmem.io library [1] is the de facto standard for managing
NVM. It offers various abstraction levels, from low-level synchro-
nization utilities (libpmem) to full-fledged transactional support
(libpmemobj). Like all NVM-optimized database systems, we use the
low-level primitives in order to have full control over persistency.

7 CONCLUSIONS

NVM will have a major impact on current hardware and software
systems. We evaluated three approaches for integrating NVM into
the storage layer of a database system: One that works directly on
NVM, a FOEDUS-style buffer manager based on fixed-size pages,
and our novel cache-line optimized storage engine. We found that
by taking the byte addressability into account, it becomes possible
to outperform the other two approaches while supporting large
data sets on SSD as well.

This result is achieved using a number of techniques. While
a traditional buffer manager loads entire pages, we use NVM’s
byte-addressability to load individual cache lines instead, reducing
the transferred memory between DRAM and NVM enormously.
Enabled by the cache-line-grained pages, we introduce mini pages,
which store only a few cache lines but also use less memory. These
pages use the limited DRAM capacity more efficiently. We also
optimized our buffer manager for in-memory and in-non-volatile-
memory workloads by using pointer swizzling. This enables us
to be competitive with in-memory DBMSs and systems working
directly on NVM. In summary, we ended up with a system that
achieved a performance close to that of main-memory database
systems if the workload fits into DRAM. At the same time, our
system performs better than NVM-only systems if the workload
fits into NVM and similar to disk-based performance for even larger
workloads.

In isolation, each of these techniques is either well-known or
fairly simple. The novelty comes from combining these ideas into
a coherent and effective system design. We argue that conceptual
simplicity is a major advantage, or in the words of Jim Gray:

“Don’t be fooled by the many books on complexity or by the many
complex and arcane algorithms you find in this book or elsewhere.
Although there are no textbooks on simplicity, simple systems work and
complex don’t.” [19]

ACKNOWLEDGMENTS

We would like to thank Dieter Kasper and Andreas Blumle for
helping with the SEP system.

A APPENDIX
A.1 Multi Threading

In this paper, we compared 5 radically different storage system de-
signs. To keep the implementation effort reasonable and the compar-
ison fair, all implementations and experiments are single-threaded.
However, given current hardware trends, any modern storage en-
gine should efficiently support multi-threading. The FOEDUS [25]
and LeanStore [27] projects have shown that page-based storage en-
gines can efficiently be synchronized for modern multi-core CPUs.
The two key techniques for achieving this are version-based latches
that allow readers to proceed optimistically without physically ac-
quiring latches [29], and epoch-based memory reclamation [42].
Another alternative for implementing synchronization is hardware
transactional memory, which has been shown to be effective at syn-
chronizing B-trees [24, 28, 39]. In the following, we discuss some
additional synchronization aspects of our design. We assume the
use of per-page, version-based latches (and do not rely on hardware
transactional memory).

Cache-line-grained accesses may cause a read to physically
change a page if the requested page is not yet resident. There-
fore, such “cache line faults” make it necessary to upgrade the page
latch to exclusive mode. Note that this only affects a single (leaf)
page and is therefore unlikely to cause contention. Furthermore,
frequently-accessed (hot) pages will generally be fully resident and
will therefore not cause latch upgrades for read accesses. Another
aspect that requires some care is the promotion of mini pages to a
full pages, which becomes necessary once more than 16 cache lines
have been accessed. Promotion is done by exclusively latching the
mini page (source) and the full page (destination) before copying
the data.

In traditional (textbook-style) buffer managers, the mapping ta-
ble itself often becomes a synchronization bottleneck because all
page accesses have to touch this data structure. In our design, in
contrast, all frequently accessed pages will be swizzled. Accessing
a hot page therefore does not require accessing the mapping ta-
ble. Finally, regarding the replacement strategies, to achieve good
scalability, decentralized algorithms like Second Chance should be
preferred over centralized ones like LRU.

A.2 Scaling the Data Size

In this section, we evaluate the performance of the proposed system
under larger workloads. The results of this experiment are shown
in Figure 14. The vertical axis shows the throughput in million
transactions per second. On the horizontal axis, we scale up the
number of tuples and the capacity of the database proportionally.
The axis shows the data size, which is the required space for the
tuples once loaded into a B-tree. The DRAM capacity is set to a
fifth of that of NVM.

Starting at the bottom, the Basic NVM BM (-©-) is dominated by
the cost of reading entire pages from NVM. Therefore, the through-
put is barely impacted by the increasing number of tuples or the
larger control structures in the database.

The NVM Direct system (=) and the 3 Tier BM (=) both drop
in performance as the workload size is increased. But this decrease
is a lot more severe for the NVM Direct system (almost a factor of
two). This can be explained by the decreasing ratio of hot tuples

—2— 3 Tier BM
—— NVM Direct
—e— Basic NVM BM

q o——o- o

YCSB-RO Throughput [MTx/s]

0 1 1 1 1
10 20 40 60 80

Data size [GB]

Figure 14: Large Workloads — YCSB-RO point lookup perfor-
mance for large workload sizes. The NVM capacity is configured
to match the data size, and the DRAM capacity is set to a fifth of
that of NVM.

© 157 :

™ 4 —&— 3 Tier BM

= —«— NVM Direct

g —o— Basic NVM BM

£ 1T

3]

=

2

=

sl

2 05

Ao q

o))\S\e\e\e_e_‘l

3 —o

>-‘ O " " " " {
0% 20% 40% 60% 80% 100%

Write ratio

Figure 15: Update Performance - YCSB-R/W performance with
an increasing amount of write transactions (YCSB with 10 GB of
data, 2GB DRAM, and 10 GB NVM).

fitting into the L3 cache. Therefore, it is important to measure larger
workloads when working with NVM, as the L3 cache can speed up
small ones and hide the difference between DRAM and NVM.

Finally, there is a bump in the performance of the 3 Tier BM.
Before it starts to drop at around 30 GB, the performance increases.
This is an artifact of the Zipf distribution generator we used. The
ratio of accessed pages that fit into the buffer pool increases up to
30 GB.

A.3 Updates

We now analyze the impact of writes. To do this, we set up an ex-
periment where we run YCSB with an increasing amount of update
transactions. The results are shown in Figure 15. The horizontal
axis shows the percentage of update transactions, while the ver-
tical one depicts the throughput. We, again, measured the three
competing systems: Our NVM-optimized buffer manager (-4-), the
system working directly on NVM (=) and a basic buffer manager

for NVM (-&-). The systems are configured to use 2 GB of DRAM
and 10 GB of NVM. The size of the workload is 10 GB, just fitting
into NVM.

With an increasing amount of write transactions, all systems
degrade in performance, because more log entries and more tuple
data needs to be written back to NVM. Compared to the read-only
setting, the throughput of the Basic NVM BM is only half as high
in the write-only case. The other two systems, NVM Direct and
our NVM-optimized buffer manager, still outperform the Basic
NVM BM in every setting, but also drop by a similar factor in
performance. The experiment shows that our system is as stable
as the other systems under a write-heavy workload. In addition,
consider that the figure shows a rather unfavorable configuration.
Our system would benefit from a change of the workload size in
either direction: On the one hand, with a smaller workload, the
ratio of tuples fitting into DRAM becomes higher and therefore, the
buffer manager faster. On the other hand, with a larger workload,
the NVM direct system could not run at all because it would not fit
into NVM any more.

A.4 Endurance and Wear

In the previous experiments, our system has demonstrated a large
performance benefit for workloads fitting in DRAM and has allowed
for workloads larger than the capacity of NVM. We also showed that
with write-heavy workloads, the performance remains competitive.
In this section, we show another important advantage of using the
buffer manager instead of working directly on NVM.

NVM has a limited endurance and therefore wears out and even-
tually fails. By using a buffer manager, the life-time of NVM can be
greatly increased. To back up this hypothesis, we added counters
that measure the number of writes to each individual NVM cache
line. The results are shown in Figure 16.

The vertical axis shows the number of writes for each cache line.
The cache lines are ordered by the number of writes and displayed
on the horizontal axis. Both axes are logarithmic to better visualize
the data. In the experiment, we compare a write only run of YCSB
with 10 million transactions. As in the previous experiments, the
data size is 10 GB, the NVM capacity 10 GB and the capacity of
DRAM 2 GB.

The figure shows two advantages of our proposed system (—4-)
compared to the NVM Direct system (—¢). First, the total number
of writes to NVM is reduced down to 4.7 M from 25 M. Second, and
even more importantly, these write operations are spread out a lot
more evenly. While the NVM Direct system has several cache lines
that are written to 60 K times, the cache lines written to most with
the buffer-managed approach are written to 3 times. The reason for
this can easily be explained: The buffer manager caches pages that
are frequently accessed in DRAM to increase performance. As a
nice side effect, this also prevents many writes to these cache lines
in NVM.

A.5 Restart Time

One major advantage of NVM is fast recovery and restart time. In
our implementation, a write ahead log (WAL) is written to NVM.
The creation of a WAL has two advantages: First, high availability
is extremely important in a production environment and usually

<

g 10° | .

o —4— 3 Tier BM
2 —— NVM Direct
8

s 103

2

[+

]

3

E

5 10!

Z A A

100 10t 102 103 10 10 108
Cache Line Id (log scale)
Figure 16: NVM Wear — The sorted number of writes for each

cache line (YCSB-R/W (x = 100) with 10 GB of data, 2 GB DRAM,
and 10 GB NVM).

= N o o o P
o
o [
=)
= —4— 3 Tier BM
% —o— Basic NVM BM
2 057 —e— FPTree
é —«— NVM Direct
—o— SSD BM
0 t t * ; } |
0 5 10 15 20 25 30 35

Time after restart [s]

Figure 17: Restart Time — Ramp-up phase for uniformly dis-
tributed lookups with 100 M 8 byte key/8 byte value pairs. The en-
tire workload fits into the buffer pool.

achieved with hot standbys in the event the primary system goes
down. To keep the standby system up to date, it is necessary to
supply it with a stream of changes from the primary. Second, (in
comparison with hybrid and NVM-only systems) a write ahead log
bundles many small writes into one large sequential write at the
end of the transaction. This is beneficial considering the limited
endurance and asymmetric write latency of NVM.

In the experiment shown in Figure 17, we compare the through-
put immediately after a clean restart (until peak throughput is
reached). In the “NVM direct” system (=), the durable storage
and the working memory are the same (both NVM). Therefore,
these systems achieve a very fast, almost instantaneous, restart,
because nothing has to be loaded explicitly (except for warming
the CPU caches). FPTree (-8-), in contrast, must reconstruct its
inner pages by scanning all leaf nodes, which takes about 5 seconds
in our experiment. Once the reconstruction is completed, FPTree
reaches pre-restart throughput almost instantaneously. Traditional
buffer managed systems (——) can begin processing transactions
immediately after a restart, but they suffer in performance due to

a cold buffer cache and high SSD latencies. The basic NVM buffer
manager (-©-) is similar, but recovers much faster, as it can fill its
buffer cache from NVM instead of SSD. Our three-tier architecture
() needs to perform the reconstruction of the combined page
table (cf. Section 4.3), which is quite fast, however (around 200 ms).
It reaches peak performance slightly more slowly than the basic
NVM BM due to mini pages, which only get lazily promoted.

A.6 Debugging Cache-Line-Grained Access

To easily detect usage failures in mini pages, we developed a debug-
ging mode that checks both reads and writes. For reads, all cache
lines within the page are marked as uninitialized memory when it
is fixed. A memory checking tool (e.g., valgrind) can then be used
to detect invalid reads. To detect invalid writes, the page initializes
all cache lines to a specific (“magic”) sequence. When it is unfixed,
it validates that only those cache lines that are marked as dirty have
been changed (false positives are possible but very unlikely).

REFERENCES

[1] Persistent memory programming. http://www.pmem.io. Accessed: 2018-02-13.

[2] M. Andrei, C. Lemke, G. Radestock, R. Schulze, C. Thiel, R. Blanco, A. Meghlan,
M. Sharique, S. Seifert, S. Vishnoi, D. Booss, T. Peh, 1. Schreter, W. Thesing,
M. Wagle, and T. Willhalm. SAP HANA adoption of non-volatile memory. PVLDB,
10(12):1754-1765, 2017.

[3] J.Arulraj,].J. Levandoski, U. F. Minhas, and P. Larson. Bztree: A high-performance
latch-free range index for non-volatile memory. PVLDB, 11(5):553-565, 2018.

[4] J. Arulraj, A. Pavlo, and S. Dulloor. Let’s talk about storage & recovery methods
for non-volatile memory database systems. In SIGMOD, pages 707-722, 2015.

[5] J. Arulraj, M. Perron, and A. Pavlo. Write-behind logging. PVLDB, 10(4):337-348,
2016.

[6] R.Bayer and E. McCreight. Organization and maintenance of large ordered
indices. In SIGFIDET, pages 107-141, 1970.

[7] P.Bonnet. What’s up with the storage hierarchy? In CIDR, 2017.

[8] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and C. A. Lang. SSD
bufferpool extensions for database systems. PVLDB, 3(2):1435-1446, 2010.

[9] A. Chatzistergiou, M. Cintra, and S. Viglas. REWIND: recovery write-ahead

system for in-memory non-volatile data-structures. PVLDB, 8(5):497-508, 2015.

S. Chen and Q. Jin. Persistent B+-trees in non-volatile main memory. PVLDB,

8(7):786-797, 2015.

[11] B.F.Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
cloud serving systems with YCSB. In SoCC, pages 143-154, 2010.

[12] J. Do, D. Zhang, J. M. Patel, D. J. DeWitt, J. F. Naughton, and A. Halverson.
Turbocharging DBMS buffer pool using SSDs. In SIGMOD, pages 1113-1124,
2011.

[13] S.Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran, J. Jackson, and
K. Schwan. Data tiering in heterogeneous memory systems. In EuroSys, 2016.

[14] S.R.Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, and

J. Jackson. System software for persistent memory. In EuroSys, 2014.

A. Eldawy, J. J. Levandoski, and P. Larson. Trekking through siberia: Managing

cold data in a memory-optimized database. PVLDB, 7(11):931-942, 2014.

[16] R.Fang, H. Hsiao, B. He, C. Mohan, and Y. Wang. High performance database
logging using storage class memory. In ICDE, pages 1221-1231, 2011.

[17] G. Graefe, H. Volos, H. Kimura, H. A. Kuno, J. Tucek, M. Lillibridge, and A. C.
Veitch. In-memory performance for Big Data. PVLDB, 8(1):37-48, 2014.

[18] J. Gray and G. R. Putzolu. The 5 minute rule for trading memory for disk accesses
and the 10 byte rule for trading memory for CPU time. In SIGMOD, pages 395-398,
1987.

[19] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[20] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly
generating billion-record synthetic databases. In SIGMOD, pages 243-252, 1994.

[21] S.Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP through the
looking glass, and what we found there. In SIGMOD, pages 981-992, 2008.

[22] J. Huang, K. Schwan, and M. K. Qureshi. NVRAM-aware logging in transaction
systems. PVLDB, 8(4):389-400, 2014.

[23] W.Kang, S. Lee, and B. Moon. Flash as cache extension for online transactional
workloads. VLDB Journal, 25(5):673-694, 2016.

[24] T.Karnagel, R. Dementiev, R. Rajwar, K. Lai, T. Legler, B. Schlegel, and W. Lehner.
Improving in-memory database index performance with intel transactional syn-
chronization extensions. In HPCA, 2014.

(10

[15

[25] H.Kimura. FOEDUS: OLTP engine for a thousand cores and NVRAM. In SIGMOD,
pages 691-706, 2015.

[26] S.K.Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh. WORT: write optimal radix
tree for persistent memory storage systems. In FAST, pages 257-270, 2017.

[27] V. Leis, M. Haubenschild, A. Kemper, and T. Neumann. LeanStore: In-memory
data management beyond main memory. In ICDE, 2018.

[28] V. Leis, A. Kemper, and T. Neumann. Scaling HTM-supported database transac-

tions to many cores. IEEE Trans. Knowl. Data Eng., 28(2):297-310, 2016.

V. Leis, F. Scheibner, A. Kemper, and T. Neumann. The ART of practical synchro-

nization. In DaMoN, 2016.

L. Lersch, I. Oukid, W. Lehner, and I. Schreter. An analysis of LSM caching in

NVRAM. In DaMoN, 2017.

[31] J.J. Levandoski, P. Larson, and R. Stoica. Identifying hot and cold data in main-

memory databases. In ICDE, pages 26-37, 2013.

X. Liu and K. Salem. Hybrid storage management for database systems. PVLDB,

6(8):541-552, 2013.

[33] T.Luo,R.Lee, M. P. Mesnier, F. Chen, and X. Zhang. hStorage-DB: Heterogeneity-
aware data management to exploit the full capability of hybrid storage systems.
PVLDB, 5(10):1076-1087, 2012.

[34] N. Megiddo and D. S. Modha. ARC: a self-tuning, low overhead replacement

cache. In FAST, 2003.

S. Mittal and J. S. Vetter. A survey of software techniques for using non-volatile

memories for storage and main memory systems. IEEE Trans. Parallel Distrib.

Syst., 27(5):1537-1550, 2016.

[36] 1. Oukid, D. Booss, W. Lehner, P. Bumbulis, and T. Willhalm. SOFORT: a hybrid

SCM-DRAM storage engine for fast data recovery. In DaMoN, 2014.

L. Oukid, D. Booss, A. Lespinasse, and W. Lehner. On testing persistent-memory-

based software. In DaMoN, 2016.

[38] I Oukid, D. Booss, A. Lespinasse, W. Lehner, T. Willhalm, and G. Gomes. Memory

management techniques for large-scale persistent-main-memory systems. In

VLDB, 2017.

I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner. FPTree: A hybrid SCM-

DRAM persistent and concurrent B-tree for storage class memory. In SIGMOD,

pages 371-386, 2016.

[40] I Oukid, W. Lehner, T. Kissinger, T. Willhalm, and P. Bumbulis. Instant recovery
for main memory databases. In CIDR, 2015.

[41] M. Stonebraker. How hardware drives the shape of databases to come. https:
//www.nextplatform.com/2017/08/15/hardware- drives-shape-databases-come/.
Accessed: 2017-11-02.

[42] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions in
multicore in-memory databases. In SOSP, 2013.

[43] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell. Consistent and

durable data structures for non-volatile byte-addressable memory. In FAST, pages

61-75, 2011.

S. Viglas. Write-limited sorts and joins for persistent memory. PVLDB, 7(5):413~

424, 2014.

[45] T.Wang andR. Johnson. Scalable logging through emerging non-volatile memory.
PVLDB, 7(10):865-876, 2014.

[46] F.Xia, D. Jiang, J. Xiong, and N. Sun. Hikv: A hybrid index key-value store for
DRAM-NVM memory systems. In USENIX ATC, pages 349-362, 2017.

[47] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He. NV-Tree: Reducing
consistency cost for NVM-based single level systems. In FAST, pages 167-181,
2015.

[29

[30

[32

[35

[37

[39

[44

43

Chapter 3

Paper 2: Building Blocks for
Persistent Memory

This paper investigates the characteristics of Intel’s Optane DC Persistent Memory
Modules and proposes new designs for efficient storage primitives. The paper is an
extended version of a 2019 DaMoN short paper [VRVL"19].

The first part of the paper is comprised of a number of experiments to mea-
sure the basic performance characteristics of persistent memory: For instance, com-
pared to DRAM, PMem’s read latency is 3.3x higher and a persistent write takes
around 100ns in an otherwise idl system. Further, the multi-threaded read band-
width for 6 memory modules is with 39.1 GBs~! around 2.9x lower (113.8 GBs™! for
DRAM) and the write bandwidth is with 12.5GB s~ ! around 7.5x lower (92.5 GBs ™!
for DRAM). Lastly, the paper unveils an interesting artifact: Unlike the 64 B write
granularity on DRAM, PMem has a 256 B one.

The second part of the paper proposes a set of algorithms and programming
techniques for efficiently manipulating data on PMem:

Page Propagation: I compare two algorithms for writing larger chunks of mem-
ory (4kB) at a time in a failure atomic way. The first one is based on copy-on-write
using out-of-place updates and the second one does in-place-updates using a write
ahead log to ensure consistency. When tracking the dirty cache lines on a page, I
found that the second algorithm can be beneficial for up to 28 dirty cache lines.

Logging: I propose PopLog, a logging algorithm that minimizes persistency bar-
riers and compare it with two well-known copy-on-write-based techniques for SSDs
and the RAWL algorithm [VTS11]. The experiment showed that for these small
writes, the performance dominating factor is the number of persistency barriers.

In-place Updates: Similar to Kdppen et al. [KTB"19], I propose a technique to
update data on persistent memory in-place with a single persistency barrier. The
idea is to keep two versions of the data in a 8 B block (atomic update) and a flag that
indicates which one is valid. This approach can be very beneficial for write heavy
portions of a software system such as the meta data in a persistent memory allocator.

Asynchronous Writing: Whereas on DRAM writes slowly trickle through the
cache hierarchy, on PMem writes become synchronous operations, due to the per-
sistency barriers. I propose to use user space preemptive scheduling of multiple
logical threads of operation to avoid these stalls. In a sample implementation, based
on coroutines, I achieve speedups of up to 6.2 times over regular execution.

Contributions: The implementation and evaluation of all algorithms as well as
the writing of the paper itself was done by the first author. Co-authors helped with
the algorithm design, prove reading, and identifying related work.

The VLDB Journal (2020) 29:1223-1241
https://doi.org/10.1007/500778-020-00622-9

SPECIAL ISSUE PAPER

Building blocks for persistent memory

How to get the most out of your new memory?

Alexander van Renen'® - Lukas Vogel’

. Viktor Leis? - Thomas Neumann'

®

Check for
updates

- Alfons Kemper'

Received: 29 January 2020 / Revised: 6 July 2020 / Accepted: 15 July 2020 / Published online: 23 September 2020

© The Author(s) 2020

Abstract

I/O latency and throughput are two of the major performance bottlenecks for disk-based database systems. Persistent memory
(PMem) technologies, like Intel’s Optane DC persistent memory modules, promise to bridge the gap between NAND-based
flash (SSD) and DRAM, and thus eliminate the I/O bottleneck. In this paper, we provide the first comprehensive performance
evaluation of PMem on real hardware in terms of bandwidth and latency. Based on the results, we develop guidelines for
efficient PMem usage and four optimized low-level building blocks for PMem applications: log writing, block flushing,

in-place updates, and coroutines for write latency hiding.

Keywords Persistent memory - Systems - Databases

1 Introduction

Today, data management systems mainly rely on solid-state
drives (NAND flash) or magnetic disks to store data. These
storage technologies offer persistence and large capacities at
low cost. However, due to the high access latencies, most sys-
tems also use volatile main memory in the form of DRAM as
a cache. This yields the traditional two-layered architecture,
as DRAM cannot solely be used due to its volatility, high
cost, and limited capacity.

Novel storage technologies, such as Phase Change Mem-
ory, are shrinking this fundamental gap between memory and
storage. Specifically, Intel’s Optane DC Persistent Memory
Modules (Optane DC PMM) offer an amalgamation of the

Alexander van Renen
renen@in.tum.de

Lukas Vogel
vogell@in.tum.de

Viktor Leis
viktor.leis@uni-jena.de

Thomas Neumann
neumann @in.tum.de

Alfons Kemper
kemper @in.tum.de
Technical University of Munich, Munich, Germany

Friedrich Schiller University Jena, Jena, Germany

best properties of memory and storage—though as we show
in this paper, with some trade-offs. This Persistent Memory
(PMem) is durable, like storage, and directly addressable by
the CPU, like memory. The price, capacity, and latency lies
between DRAM and flash.

PMem promises to greatly improve the latency of storage
technologies, which in turn would greatly increase the per-
formance of data management systems. However, because
PMem is fundamentally different from existing, well-known
technologies, it also has different performance characteris-
tics to DRAM and flash. While we perform our evaluation in
a database context, these introduced techniques are transfer-
able to other systems, as evidenced by the fact that they are
also implemented by the Persistent Memory Development
Kit (PMDK) [43]. This paper is an extended version of an
originally released paper at DaMoN 2019 [47]. While the
experiments in the original paper were conducted on a proto-
type of Intel’s PMem hardware, all numbers in this paper are
measured on commercially available PMem hardware. Our
contributions can be summarized as follows':

— We provide the first analyses of actual (not prototyped or
simulated) PMem based on Intel’s Optane DC Persistent
Memory Modules (PMM). We highlight the impact of

I Source code: github.com/alexandervanrenen/pmembench.

@ Springer

1224

A.v.Renenetal.

Table 1 Server Platform—configuration of the used PMem server

CPU Intel Xeon Gold 6212U
Frequency 2.40 GHz (3.90 GHz)
Cores 24

L1 I+D Cache (per core) 64 kB

L2 Cache (per core) 1 MB

L3 Cache 35.8 MB

AVX-512 Units 2

CPU Supported Memory 1 TB (DRAM + PMem)
DRAM 192 GB (6 x 32 GB)
PMem 768 GB (6 x 128 GB)

the physical properties of PMem on software and derive
guidelines for efficient usage of PMem (Sect. 2).

— We investigate different algorithms for persisting large
data chunks (database pages) in a failure atomic fashion
to PMem. By combining a copy-on-write method with
temporary delta files, we achieve significant speedups
(Sect. 3.2).

— We introduce an algorithm for persisting small data
chunks (transactional log entries) that reduces the latency
by 2x compared to state-of-the-art algorithms (Sect 3.3).

— We introduce a new abstraction on top of PMem, called
Failure-Atomic Memory (FAM) that allows for fast in-
place updates on PMem (Sect. 3.4).

— We show how synchronous persistent writes to PMem
can be interleaved using fibers to avoid stalling on the
relatively high PMem latencies (Sect. 3.5).

2 PMem characteristics

In this section, we first describe the evaluation platform and
how a PMem system can be configured. Next, we show exper-
imental results for latency and bandwidth. Lastly, we evaluate
the interference of concurrently running PMem and DRAM
processes in a database-like workload. To provide a better
overview, we summarized all important characteristics of our
evaluation platform, which is used for all experiments con-
ducted throughout this paper, in Table 1.

2.1 Setup and configuration

There are two ways of using PMem: memory mode and app
direct mode. In memory mode, PMem replaces DRAM as the
(volatile) main memory, and DRAM serves as an additional
hardware managed caching layer (“L4 cache”). The advan-
tage of this mode is that it works transparently for legacy
software and thus offers a simple way of extending the main
memory capacity at low cost. However, this does not utilize

@ Springer

persistence, and performance may degrade due to the lower
bandwidth and higher latency of PMem. In fact, as we show
later, there is a & 10% overhead for accessing data when
DRAM acts as a L4 cache instead of normally.

Because it is not possible to leverage the persistency of
PMem in memory mode, we focus on app direct mode in
the remainder of this paper. App direct mode, unlike mem-
ory mode, leaves the regular memory system untouched. It
optionally allows programs to make use of PMem in the form
of memory mapped files. We describe this process from a
developer point of view in the following:

We are using a two-socket system with 24 physical (48
virtual) cores on each node. The machine is running Fedora
with a Linux kernel version 4.15.6. Each socket has 6 PMem
DIMMs with 128 GB each and 6 DRAM DIMMs with 32 GB
each.

To access PMem, the physical PMem DIMMs first have
to be grouped into so-called regions with ipmct1?:

ipmctl create -f -goal -socket 0

MemoryMode=0 \
PersistentMemoryType=AppDirect

To avoid complicating the following experiments with a dis-
cussion on NUMA effects (which are similar to the ones on
DRAM) we run all our experiments on socket 0.Once a
region is created, ndct1? is used to create a namespace on
top of it:
ndctl create-namespace --mode fsdax
--region 28

Next, we create a file system on top of this namespace
(mkfs . ext4*) and mount it (mount?) using the dax flag,
which enables direct cache-line-grained access to the device
by the CPU:

mkfs.ext4 /dev/pmem28
mount -o dax /dev/pmem28 /mnt/pmem28/

Programs can now create files on the newly mounted device
and map them into their address space using the mmap® sys-
tem call:
fd = open(("/mnt/pmem28/file", O_RDWR, O0);
res = ftruncate(fd, SIZE);

ptr = mmap(nullptr, SIZE, PROT_WRITE,
MAP_SHARED, fd, 0);

The pointer can be used to access the PMem directly, just
like regular memory. Section 3 discusses how to ensure that
a value written to PMem is actually persistent. In the remain-
der of this section, we discuss the bandwidth and latency of
PMem.

2 ipmctl: github.com/intel/ipmetl.

3 ndctl: github.com/pmem/ndctl.
4 mkfs.ext4: linux.die.net/man/8/mkfs.ext4.
mount : linux.die.net/man/8/mount.

mmap : man7.org/linux/man-pages/man2/mmap.2.html.

Building blocks for persistent memory

1225

403
400 | 382

x3.3
200 +

121 120
. H

PMem: DRAM PMem: Memory mode
App direct mode 8GB 320GB

Latency [ns]

Fig.1 Read latency—random access read latency

2.2 Latency

In this first set of experiment, we want to investigate the
latency of PMem. While bandwidth (discussed in the next
section) is critical for OLAP-style applications, latency is
much more important for OLTP-style workloads because the
access pattern shifts from large scan operations (sequential
I/0O) to point lookups (random I/O), which are usually latency
bound. OLTP-style applications are not limited to database
systems, but extends to any data intense application, where
the performance depends on random I/O.

In the experiments, we compare the latency of PMem to
that of DRAM, as both can be used via direct load and store
instructions by the CPU. With PMem being persistent, it can
also act as a replacement for traditional storage devices such
as SSDs and HDDs, which are orders of magnitude slower.
Therefore, while we focus the discussion in this section on the
comparison between PMem and DRAM, the extremely low
latency PMem is able to speed up applications that require
persistent storage such as logging, page propagation, or sim-
ple random reads/writes from/to a persistent medium.

To measure the latency for load operations on PMem, we
use a single thread and perform loads from random locations.
To study this effect, we prevented out-of-order execution by
chaining the loads such that the address for the load in step
i depends on the value read in step i — 1. This approach is
more reliable than using fencing operations (1fence), as
these still allow for speculative loads and introduce a small
CPU overhead. To minimize caching effects, we use an array
sufficiently larger (8 GB) than the CPU cache (32 MB). The
results of this experiment are shown in Fig. 1.

We can observe that DRAM read latency is lower than
PMem by a factor of 3.3. Note that this does not mean that
each access to PMem is that much slower, because many
applications can usually still benefit from spatial or temporal
locality (i.e., caching). When PMem is used in memory mode,
it replaces DRAM as main memory and DRAM acts as an
L4 cache. In this configuration, the data size is important:
When using only 8 GB (as in the app direct experiment) the
performance is similar to that of DRAM, because the DRAM
cache captures all accesses. However, when we increase the

702 758 787 BN flush B flush_opt
) 800 1 I clwh I non-temporal
. 600 |
=
S 400 |
3
200 89 92 10110197 11512413099

Random

Single

Sequential

Fig.2 Persistent write latency—access latency for writing cache lines
persistently

data size to 360 GB, the DRAM cache (192 GB) is not hit
that frequently and the performance degrades to what the
PMem is actually capable of.

To store data persistently on PMem, the data have to be
written (i.e., a store instruction), the cache line evicted, and
then an sfence has to be used to wait for the data to reach
PMem. This process is described in more detail in Sect. 3.1.
To measure the latency for persistent store operations’ on
PMem, we use a single thread that persistently stores data to
an array of 10 GB in size. Each store is aligned to a cache
line (64 bytes) boundary. The results are shown in Fig. 2.

The four bars on the left show the results for continu-
ously writing to the same cache line, in the middle we write
cache lines sequentially, and on the right randomly. In each
scenario, we use four different methods for flushing cache
lines. From left to right: £1ush, flushopt, clwb, and
non-temporal stores (_mm512_stream_si512).

When data are written to the same cache line, non-
temporal stores should be preferred. This pattern appears in
many data structures (e.g., array-like structures with a size
field) or algorithms (e.g., a global counter for time-stamping)
that have some kind of global variable that is often modified.
Therefore, for efficient usage of PMem, techniques similar
to the ones developed to avoid congestion in multi-threaded
programming have to be applied to PMem as well. Among
instructions without the non-temporal memory hint, there is
no significant difference, because the Cascade Lake CPUs do
not fully implement c1lwb. Intel has added opcode to allow
software to use it, but implement it as £1ush_opt for now.
Therefore, non-temporal operations and ¢ 1wb should be pre-
ferred over £f1lush and flush_opt.

2.3 Bandwidth
Having discussed latency of PMem in the previous sec-
tion, we now want to investigate the bandwidth for both

non-saturated and saturated PMem systems. For this, it
is important to know that the PMem hardware internally

7 We do not show non-persistent writes to PMem, as these are not
latency bound because they are cached just like DRAM writes.

@ Springer

1226

A.v.Renenetal.

‘ —6— non-temporal store —«— store+clwb —4— store —5— load ‘

(b) DRAM write bw

80
60
40
20

(a) PMem write bw

87 GB/s

(¢) PMem read bw (d) DRAM read bw

120 95 GB/s

w/ prefetcher

w/ prefetcher :

2 4 6 8 10 12 2 4 6 8 10 12

adjacent cache lines

adjacent cache lines

6 8 10 12
adjacent cache lines

2 4 6 8 10 12 5 4
adjacent cache lines

Fig.3 PMem bandwidth: varying access granularity—PMem bandwidth (a, ¢) with 24 threads compared to DRAM bandwidth (b, d) with a varying
number of adjacently accessed cache lines. We use a random access pattern that allows for out-of-order execution

(a) PMem write bw 256B (b) DRAM write bw 256B (€) PMem read bw 256B (d) DRAM read bw 256B

40 120
100
30 371 GB/s 80
20 60 93.7 GB/s
40

10

/ 20
1 10 20 3 "1 10 20 3 1 10 2 a0 ° 1 10 20 30
threads # threads # threads # threads
() PMem write bw 1IMB (f) DRAM write bw IMB (g) PMem read bw 1MB (h) DRAM read bw 1MB
” 80 92.5 GB/s 40 %38 ===
2 60 30 39.1 GB/s g 113.8 GB/s
5 40 20 60
20 10 20
0 t } } 0+ t t } 0 ; ; '
1 10 20 30 1 10 20 30 1 10 20 30
7 threads # threads 7 threads # threads

Fig.4 PMem bandwidth: varying thread count—PMem bandwidth (a, c, e, g) compared to DRAM bandwidth (b, d, f, h) for 256-byte (4 adjacent
cache lines) and 1 MB blocks with an increasing number of threads. We use a random access pattern that allows for out-of-order execution

works on 256-byte blocks. A small write-combining buffer
is used to avoid write amplification, because the transfer size
between PMem and CPU is, as for DRAM, 64 bytes (cache
lines).

This block-based (4 cache lines) design of PMem leads
to some interesting performance characteristics that we are
discussing in this section. The first experiment (cf. Fig. 3)
measures the bandwidth for loading/storing from/to inde-
pendent random locations (allowing out-of-order execution)
on PMem and DRAM. We use all 24 physical cores of the
machine to maximize the number of parallel accesses. The
figure shows store (PMem: a, DRAM: b) and load (PMem:
¢, DRAM: d) benchmarks. The performance depends sig-
nificantly on the number of consecutively accessed cache
lines on PMem, while there is no significant difference on
DRAM. Peak throughput can only be reached when a multi-
ple of the block size (4 cache lines = 256 bytes) is used, thus
confirming the 256-byte block-based architecture of PMem.
Obviously, this effect is mostly relevant for smaller chunk
sizes as the write/read amplification is bound to three cache
lines at most.

Before discussing the different write techniques, we want
to use Fig. 4 to derive peak bandwidth numbers: In the exper-

@ Springer

iment, we vary the number of threads on the horizontal axis
instead of the number of cache lines loaded/stored. The first
row (a, b, ¢, d) shows the bandwidth for writing PMem-block-
sized chunks (256 bytes) to random locations. The second
row (e, f, g, h) shows the same for 1 MB sized chunks. As
one would suspect, by using larger chunk sizes a higher band-
width can be achieved, the peaks are shown in Table 2.

Next to pure bandwidth numbers, the figure shows that the
“ramp up’-phase’ (number of threads required to reach the
peak bandwidth) is faster with larger chunk sizes. Addition-
ally, we observe that the throughput peaks on PMem when
using a small number of threads and then declines, while it
flattens out on DRAM. We suspect that this is only an artifact
of the first version of this new hardware and future versions
of this product will be able to handle higher request rates
without suffering in throughput.

This hole section is broken. There should NOT be a new
line before the icons. In addition, the icons are blury. (=),
regular stores followed by a clwb instruction (—), and
blind writes realized by a non-temporal (or streaming) store
(i.e., _mm512_stream_si512) (-e-). For both, DRAM
and PMem, the blind stores provide the best throughput
because the modified cache lines do not have to be loaded

Building blocks for persistent memory 1227
Table 2 Peak write and read . - .
bandwidth for DRAM and Peak read BW Required #threads Peak write BW Required #threads
PMem with an optimal number DRAM 113.8 15 92.5 17
of threads) '

PMem 39.1 17 12.5 3

first—thereby saving memory bandwidth. On PMem, how-
ever, there is an additional benefit when using non-temporal
stores as they bypass the cache and force the data to the PMem
DIMM directly.

To explain this, consider the stark performance difference
between DRAM and PMem when using stores followed by
clwb (=) in Fig. 4: On DRAM, the extra instruction only
adds additional CPU overhead to a very tight loop and thus
causes a slowdown compared to regular stores (—-). With
an increasing number of threads this overhead no longer
impacts the overall throughput, as the bottleneck shifts from
CPU-bound to memory-bound. On PMem, in contrast, the
performance of regular stores (-4-) can be increased by issu-
ing a clwb instruction after each store (—-). By forcing the
cache lines to PMem right after they are modified, we can
ensure that the ones that are modified together also arrive at
the PMem DIMM:s together and can thus be written together
by the write-combining buffers. In other words: By using the
clwb instruction, we are preserving the spatial locality of
the writes when going from the CPU to the PMem DIMMs.

Using clwb (=) becomes more important with several
threads than with a single one, because cache lines are evicted
more randomly from the last level CPU cache, and thus
arrive increasingly out of order at the PMem write-combining
buffer. Starting at 12 threads for 256B chunks, regular stores
followed by a clwb (—) become as fast as non-temporal
stores (-e-). However, this is likely due to the performance
drop experienced by the non-temporal stores due to the over-
saturation of PMem. Compared to DRAM, where there is
only a difference between blind writes (-e-) and regular ones
(&, =), on PMem there is also a difference whether we
ensure spatial locality of modified cache lines at the PMem
DIMM (=, -e-) or not (-+-). Thus, on PMem we end up with
three discrete optimal throughput numbers (when consider-
ing the peaks) for regular stores (—+-), regular stores followed
by a clwb instruction (=), and non-temporal store (-e-).
While there is a minor CPU overhead for using ¢1lwb, our
experiments do suggest that the potential bandwidth benefit
is worth it.

Lastly, we briefly want to show an interesting yet, PMem-
unrelated finding: The read benchmarks (c, d) show through-
put numbers with (w/ prefetcher) and without the hardware
prefetcherg. For both, PMem and DRAM, there is a signifi-

8 Intel hardware prefetcher can be disabled via wrmsr -all
O0xla4 7 https://software.intel.com/en-us/articles/disclosure-of-hw-
prefetcher-control-on-some-intel-processors.

cant performance drop when the prefetcher is enabled starting
at 10 consecutively accessed cache lines. This experiment
illustrates a PMem unrelated, yet interesting effect: when
reading chunks of more than 10 cache lines from random
locations with many threads (oversubscribed system), the
prefetcher can actually harm the effective bandwidth as it
unnecessarily loads cache lines.

In summary, judging from our experimental results, we
recommend the following guidelines for bandwidth-critical
applications:

— Algorithms should no longer be designed to fit data on
single cache lines (64 bytes) but rather cluster data on
PMem blocks (256 bytes).

— When possible, non-temporal stores should be utilized,
otherwise the regular stores should be followed by a
clwb instruction.

— Over-saturating PMem can lead to reduced performance
with as little as four threads.

— The experiments showed that currently the PMem read
bandwidth is 2.9x lower and the write bandwidth 7.4 x
lower than DRAM. Therefore, performance-critical code
should prefer DRAM over PMem (e.g., by buffering
writes in a DRAM cache).

2.4 Interference

Next to bandwidth and latency, another important question to
answer is how well DRAM, after decades of solitude, works
alongside with PMem. In contrast to Yoshida et al. [19],
who have already undertaken an extensive study in several
microbenchmarks, we show interference effects in a simu-
lated database workload. We simulate a database workload
made up of four tasks: table scans (sequential reads: “Sq”),
index lookups (random reads: “Rd”), logging (small sequen-
tial persistent writes: “Log”) and page propagation (large
random persistent writes: “Page”). Table scans and index
lookups can be executed either on DRAM (volatile: “V”)
or on PMem (persistent: “P”’). Page propagation and logging
are always done on PMem as they need to be persistent. Fig-
ure 5 shows the relative slowdown of 14 threads performing
table scans on DRAM (a), table scans on PMem (b), index
lookups on DRAM (c) and index lookups on PMem (d) when
executed together alongside with one other task (depicted on
the horizontal axis). The other task uses 1, 5 or 10 threads.
We find a significant slowdown (around 50%) for table
scans on DRAM (a) when large amounts of data are read from

@ Springer

1228

A.v.Renenetal.

(a) DRAM scan (Sq V)

—
o

Relative
performance
=3
o

SqV
+Sq P
+Rd V
+Rd P
+Log
+Page
Sq P
+Sq V
+Rd V
+Rd P
+Log

(b) PMem scan (Sq P)

1.0 1.0
0.5 0.5

+Page

(¢) DRAM index (Rd V) (d) PMem index (Rd P)

e = R - -
g g 9 T8 A 0 g g T oy 4 08
0 Ay n n [aW
O

Fig. 5 PMem versus DRAM interference—the relative slowdown of sequential scans (Sq) and random accesses (Rd) on DRAM (V) and PMem
(P) when executed together with other sequential scans, random lookups, log writing (Log), and page propagation (Page) with 1, 5, and 10 threads

or written to PMem. Concurrently performed index lookups,
only cause a minor slowdown, because they do not require a
lot of bandwidth. It is interesting to note, that writing data to
PMem via logging (“Log”) and page propagation (“Page”)
only consumes 6.4 GB/s and 9.2 GB/s of bandwidth, yet the
sequential DRAM read bandwidth drops from 113.5 GB/s
down to 65.6 GB/s and 49.2 GB/s, respectively. This leaves
a significant gap of “unused” bandwidth. Yoshida et al. [19]
suggest that this is caused by the CPU’s memory controller
prioritizing PMem write requests over DRAM requests.

The other way around, when performing table scans on
PMem (b) the slowdown caused by DRAM reads (“Sq V”’) is
not as pronounced. In this scenario, the only significant slow-
downs happen when another task is writing to PMem at the
same time. As before, this causes a significant slowdown of
more than 50% from 40.3 GB/s down to 15.6 GB/s for log-
ging and 13.0 GB/s for page propagation. Together with the
results from the table scan on DRAM (a), this suggests that
the amount of data that is written to PMem (page propagation
consumes more bandwidth than logging) is more important
than the number of persistency barriers (logging).

In the third scenario (c), the index lookups on DRAM
are mostly slowed down by other DRAM uses. This can be
explained by the smaller amount of bandwidth that is required
for random reads, compared to sequential reads (a). However,
this effect is not observable on PMem: for index lookups on
PMem (d), the experiment shows even larger slowdowns than
for table scans on PMem.

3 Building blocks for PMem

The low write latency of PMem (compared to other durable
storage devices) makes it an ideal candidate for use in
database systems, file systems, and other system software.
However, due to the CPU cache, writes to PMem are only
persisted once the corresponding cache line is flushed. Algo-
rithms have to explicitly order stores and cache line flushes
to ensure that a persistent data structure is always in a con-
sistent state (in case of a crash). We call this property failure

@ Springer

atomicity and discuss it in Sect. 3.1. Intel’s Persistent Mem-
ory Development Kit (PMDK) [43], an open-source library
for PMem, abstracts this complexity by providing two failure
atomic I/O primitives: log writing (libpmemlog) and block-
/page flushing (libpmemblk). In Sect. 3.3 and 3.2, we apply
the guidelines developed earlier (Sect. 2) to these two prob-
lems and analyze their performance. Afterwards, in Sect. 3.4
we introduce Failure-Atomic Memory (FAM), an abstraction
over persistent memory that enables fast in-place updates
while guaranteeing failure atomicity. Lastly, we show how
to use fibers’ (implemented as C++20 coroutines) to avoid
stalls on synchronous writes to PMem.

3.1 Failure atomicity

As mentioned earlier, when data are written to PMem, stores
are not immediately propagated to the PMem device, instead
they are buffered in the regular on-CPU cache. Therefore,
a whole cache line cannot be written as an atomic opera-
tion. Only updates made to a cache line (in 8-byte blocks)
by the CPU are atomic. While programs cannot prevent the
eviction of a cache line, they can force it by using explicit
write-back (clwb) or flush CPU instructions (flush or
flush_opt). This implies that any persistent data structure
on PMem always needs to be in a consistent (or recoverable)
state, as any modification to the structure could become per-
sistent immediately. Otherwise a system crash—interrupting
an update operation—could lead to an inconsistent state after
a restart. The following code snippet shows how an element
is appended to a pre-allocated buffer:

| struct Buffer {
2 int eles[128]
int next

}

| void append(Buffer* buf,

| int ele) {

| buf->eles [buf->next]=ele

| clwb (&buf->eles [buf->next])
| sfence ()
|

|

|

|

S UL W

buf->next++
clwb (&buf->next)
sfence ()

© 00~

9 user-land threads with cooperative multitasking.

Building blocks for persistent memory

1229

The new element is first copied into the next free slot
(line 3) and the corresponding cache line is forced to be
written back to PMem (line 4). Instead of using a regular
flush operation, c1wb (cache line write back) is used, which
is an optimized flush operation designed to evict the cache
line without invalidating it. Before the buffer’s size indicator
(next) can be changed, an sfence (store fence) must be
issued to prevent re-ordering by the compiler or hardware
(line 5). Once next has been written (line 6), it is persisted
to memory in the same fashion (line 7, 8). Note that persisting
the next field is not necessary for the failure atomicity of a
single append operation. However, it is convenient and often
required for subsequent code (e.g., another append). Here-
after, we will use the term persistency barrier and persist for
a combination of a clwb and a subsequent sfence:

void persist(void* ptr) { clwb(ptr); sfence(); }

Generally, a persistency barrier is an expensive operation
(= 100 ns, cf. Sect. 2.2), as it forces a synchronous write
to PMem (or, more precisely, to its internal battery-backed
buffers). Therefore, in addition to the guidelines laid out
in Sect. 2, it is also important to minimize the number of
persistency barriers while still maintaining failure atomicity.
While a hand-tuned implementation for a specific problem
can often outperform a generic library, the involved com-
plexity and proneness to errors needs to be considered. In the
following four sections, we introduce highly tuned building
blocks for various problems when dealing with PMem: page
propagation (3.2), logging (3.3), in-place updates (3.4), and
asynchronous writes via fibers (3.5).

3.2 Page propagation

One of the most important components of a storage engine
is the buffer manager. It is responsible for loading (swapping
in) pages from the SSD/HDD into DRAM whenever a page
is accessed by the query engine. When the buffer pool is full,
the buffer manager needs to evict pages in order to serve new
requests. When a dirty page (i.e., a modified one) is evicted,
it needs to be flushed to storage before it can be dropped from
the buffer pool, in order to ensure durability. This process has
to be carefully coordinated with the transaction and logging
controller, i.e., a page can only be flushed when the undo
information of all non-committed modifications is persisted
in the log file (otherwise a crash would lead to corrupted
data).

Flushing pages to persistent storage is an inherent I/O-
bound task. To reduce the latency for page requests, the buffer
manager continuously flushes dirty pages to persistent stor-
age in the background. This way, it can always serve requests
without stalling on a page flush. This makes flushing pages (in

a background thread) a mostly bandwidth-critical problem
(compared to log writing, where latency is most important).

For SSDs/HDDs, this architecture is strictly necessary
as pages have to be copied to DRAM before they can be
read or written by the CPU. When PMem is used instead
of SSDs/HDDs, the buffer pool becomes optional. How-
ever, as recent work [5,46] has shown, it is still beneficial
to use a buffer pool, due to the lower latencies and reduced
complexity when working on DRAM compared to PMem.
In addition, this architecture is used in most existing disk-
based database systems. Moreover, page propagation is also
required in many other system software, as evidenced by the
Persistent Memory Development Kit (PMDK [43]) offers
page propagation in their 1 ibpmemblk library.

In the following, we first discuss why page propagation
algorithms on PMem should be failure atomic. After that, we
describe the two well-known page propagation algorithms
(copy-on-write and log-based), show how they can be applied
to PMem and propose potential optimizations.

3.2.1 Failure-atomic page propagation

In order to prevent data corruption, the page propagation
algorithm needs to ensure that written data can always be
recovered. This can either be achieved by making the propa-
gation process failure atomic or by detecting and recovering
inconsistent pages later on. Using a failure-atomic page prop-
agation has the advantage that it reduces the complexity of
the system: There is no need to detect torn writes during
recovery and use a combination of logging and snapshotting
to repair inconsistent pages. While this is desirable for most
applications, one might argue that high-performance system
software (such as database systems) implements these func-
tionalities already and could therefore benefit from a faster
non-failure-atomic page propagation algorithm. In fact, at
any given point in time there is only a very small number
of pages that might experience a torn write during a crash:
The CPU cache is usually much smaller (tens of megabytes)
than the page volume in a database (hundreds of gigabytes).
However, in the following we show that failure-atomic page
propagation is as efficient as detecting torn writes on PMem
and therefore advantageous, due to its reduced complexity.
On SSDs and HDDs detecting torn writes relies on sequen-
tial write guarantees of the underlying hardware: A marker
(bit pattern) at the beginning and end of a page can be used to
validate if a page has been written completely. Without these
guarantees on PMem (only ensures atomic 8-byte writes), we
need to utilize persistency barriers to order stores and make
torn writes detectable. By utilizing two (or more) persistency
barriers torn writes could easily be detected on PMem (e.g.,
copy-on-write). However, such an algorithm already ensures

@ Springer

1230

A.v.Renenetal.

failure atomicity making torn write detection and recovery
unnecessary.

While it is possible to detect torn writes with a single per-
sistency barrier, it comes with some, arguably, unacceptable
overheads for page propagation'®: PopLog requires zero-
initialized memory and thus twice the bandwidth, RAWL
requires significant additional computation and some extra
storage, and FAM requires roughly twice the amount storage.

Alternatively, probabilistic (also called: optimistic) tech-
niques, as proposed by Lersch et al. [30], can be utilized: A
check sum of the page’s data is written as part of the page
and can be used to validate the page’s consistency during
recovery. When an inconsistency is detected the log and an
older snapshot (additional storage required) of the page is
used to restore the page. Cryptographic hash functions, such
as the Secure Hash Algorithm (SHA), make collisions prac-
tically impossible and should provide sufficient throughput
in a multi-threaded scenario (throughput of state-of-the-art
SIMD-optimized SHA-256 implementations is reported'!
at roughly 3.5 GB/s per core). In our implementation we
use CRC32, which is supported directly by modern CPUs
(_mm_crc32_u64) and works almost at line rate (we mea-
sured a throughput of 10.3 GBs™!). While CRC32 does not
provide as good of a collision resistance, it does model the
best case scenario for the check-sum-based page propagation
as it incurs the lowest overhead. However, our experimental
results, even for CRC32, showed no performance advantage
compared to the failure atomic copy-on-write implemen-
tation'?. Therefore, we argue that the additional system
complexity, recovery time, and storage overhead (for snap-
shots) is not worth it and failure-atomic page propagation
should be preferred.

3.2.2 Copy-on-write

When writing a page back from DRAM to PMem, Copy-on-
Write (CoW) does not overwrite the original PMem page.
Instead, the modified page is written to an unused PMem
page [4], thus avoiding any torn-write complications during
copy process. Once the page is fully written, it is atomically
set to valid.

10 These algorithms are discussed in Sect. 3.3 (logging) and Sect. 3.4
(in-place updates).

' https://github.com/minio/sha256-simd.

12 There is a slight (3 and 4%) advantage in a single threaded scenario.

@ Springer

Listing 1: Failure-atomic Page Flushing — Pseudo
code to flush a DRAM page (vp) to a PMem page (pp).

CoW nlog

// 1. Invalidate plog
plog.pid = INVALID;
persist (log.pid);

Il // 1. Write data
2 pp.tex = vp.tex
persist (pp)

// 2. Write to nlog
nlog <- vp.dirty_cls
persist (plog) ;

[
|
3 |
! [
5 // 2. Set PMem |
6 // page valid |
pp.pid = vp.pid |
8 sfence() [
| // 3. Set plog valid

| plog.pid = vp.pid;

|

|

[

[

[

9 pp.pvn = vp.pvn
10 persist(pp.pid,

11 pPP-pvn) persist (plog.pid);
12

13 // 4. Write to page
14 pp <- vp.dirty_cls
15 persist (pp);

This process is illustrated on the left of Listing 1. The
pseudo code shows the page propagation of a DRAM resident
volatile page (vp) to a used persistent page (pp). Once the
volatile page (vp) is written (line 2) and persisted using a
persistency barrier (line 3), it is marked as valid (line 7-11)
and the old PMem page can be reused. During recovery, the
headers of all PMem pages are inspected to determine the
physical location of each logical page. To avoid invalidating
unused pages before they can be written again, we use a per
page monotonically increasing page version number (pvn) to
determine the latest version of the page on disk.

We illustrate the use of the pvn in Fig. 6. Time progresses
from left to right. The three physical page slots in the left
most column (state 1) show the initial state on PMem: The
page slots in row (1) and (2) contain the latest valid persistent
copy of the logical page B and A, respectively. Both slots are
shaded in green to indicate that they currently hold a valid
page. The page slot in row @ contains an older version B,
which can be determined by inspecting the pvn: a lower pvn
indicates an older page version. The different versions of
page slot @ show each step (cf. Listing 1) of flushing a new
version of page A to this currently (state 1) unused slot. The
line numbers in the pseudo code where the transition might

) format: [pid[pvn, data |

-
5]
5@ AT
QCS line 1%119, %r,lg
@ [BI4 b} B[4 o AL o | A8]
state 1 state 2 state 3 state 4
Time

Fig.6 CoW page propagation—the flush process is optimized by using
a page version number (pvn) to avoid invalidating pages, which would
require an additional persistency barrier

Building blocks for persistent memory

1231

‘ —&— pLog —— CoW (only dirty cls in RAM) —e— CoW (all cls in RAM) ‘

(a) 1 thread, x dirty cls

400K

200K

Pages/s

28

(b) 7 threads, x dirty cls

(¢) x threads, 16 dirty cls

SOOTOCLRRRRR

) RRRRQLeeeeenc:

16 128 256 16
Dirty cache line count

Dirty cache line count

10 15 20 24
Thread count

128 256

Fig.7 Failure atomic page flush—flushing 16 kB pages (256cache lineseach) in a failure atomic way from DRAM to PMem

occur are written over the arrows. In each step, the pvn can
be used to determine the most recent version of each page.

In state 1, the page slot @ contains the old (no longer
needed) version of B and is therefore ready to be overwritten
by a new version of page A. In state 2, the pseudo code is
run until the persistency barrier in line 3 (persist). At this
point only the payload has been updated and the page would
therefore still be identified as an old version of B. Next, this
newly written version of page A has to be made valid by
updating the pid and pvn. It is crucial that the pid is updated
before the pvn, otherwise there is a brief time window in
which the updated pvn would identify the page as the latest
version of page B despite it storing data of page A. We ensure
this ordering by placing both (pid and pvn) on the same cache
line and separating the two store operations with an sfence.
This way, state 3 and state 4 are the only possible versions
of the page during these updates. In each case, the page is
correctly identified as an outdated version of page B or the
new version of page A. The final persistency barrier in line
10 ensures that the update is completed before continuing.
Note: If page slot (3) would have started out with a higher
pvn than the one of A (e.g., 10), it would have already been
identified as the latest version of A in state 3 (which is fine
because the payload has already been updated).

Using the pvn, it becomes unnecessary to invalidate the
old PMem page before writing the new one. This reduces
the number of persistency barriers from three down to two
(plus one s fence, which is much cheaper as it does not stall
on a preceding c1wb). Using this technique, we measured a
~ 10% increase in throughput.

In the context of a database system, it would still be nec-
essary to add a pvn next to the existing log sequence number
Isn. Otherwise, the example would contain an invalid config-
uration in state 3: The log entries between 4 and 8 would be
applied to an already updated page.

3.2.3 Micro log

The micro log technique (ulog) uses a small log file to record
changes that are going to be made to the page. In order
to know which cache lines have been changed, the page is

required to track modified areas since its last flush. During
recovery, all valid micro logs are reapplied, independent of
the page’s state. This forces us to invalidate the log (right-
hand side of Listing 1, line 1-3) before changing the content
(line 5-7), otherwise the changes would be applied to the
previous page in case of a crash. Only once the changes are
written, we set them to valid (line 8-10) and then apply them
to the actual page (line 13-15).

3.2.4 Experiments

Figure 7 details the page flush performance. All techniques
are implemented as a microbenchmark using non-temporal
stores (also known as streaming stores), which have been
shown to provide the highest throughput in Sect. 2. When
using copy-on-write (CoW), we differentiate whether all
cache lines are available in DRAM (-e-) or only the dirty
ones (=). As a performance metric, we chose the number
of pages that can be flushed to PMem per second. We vary
the number of dirty cache lines in (a) for a single thread and
in (b) for 7 threads. In (c), we vary the number of threads to
show the scale-out behavior.

The results show that the micro log (uLog) is beneficial
when the number of cache lines that have to be flushed is low.
We can observe this effect for a single thread in (a): Using
the uLog yields performance gains for up to 28 dirty cache
lines. In a multi-threaded scenario (c), the uLog’s advantage
continues up to 40cache lines. Therefore, a hybrid technique
based on a simple cost model should be used to choose the
better technique, depending on the number of dirty cache
lines (and single/multi threading).

The CoW approaches are largely independent of the num-
ber of dirty cache lines. As expected, the performance is
lower when cache lines have to be loaded from PMem first
(=). The throughput for CoW (-e-) with a single thread is
almost at 300 thousand pages per second, which corresponds
to a throughput of 4.9 GBs ™! and is thus significantly lower
than the raw throughput for writing to PMem of 7.7 GBs™!
(as measured in Sect. 2.3). This can be explained by (1) the
interference (cf. Sect. 2.4) when using DRAM and PMem
in parallel (note: the bandwidth experiments in Sect. 2.3

@ Springer

1232

A.v.Renenetal.

do not load the data that is written first, but simple write
register-resident constants to memory) and (2) the memory
stalls of using persistency barriers (& 6% slowdown). How-
ever, this gap tightens when using multiple threads (optimally
5): CoW is able to flush &~ 700 thousand pages per sec-
ond which corresponds to 11.3 GBs~! and is therefore at
90% of the maximum throughput of PMem (using 2 threads:
12.5 GBs™1).

In addition, as in the bandwidth experiments, we can see
a performance degradation when too many threads are used:
For optimal throughput it is important to tailor the number of
writer threads to the system. As (b) shows, the performance
degrades after reaching a peak at around 7-11 threads.

Lastly, the microbenchmarks in Sect. 2 suggested that non-
temporal stores should be preferred over regular stores. We
were able to confirm this finding in the page flushing exper-
iment (not shown in the chart).

3.3 Logging

Write-ahead logging (WAL) is used to ensure the atomicity
and durability of transactions in database systems as well as
many other system software such as file systems. In this sec-
tion, we device PMem techniques for efficient WAL logging.
In WAL, the durability is achieved by recording (logging) the
individual changes of a larger transaction in order to be able
to undo them in the event of a crash or rollback. If any of the
transaction’s changes to the data are persisted while the trans-
action is still active, the log has to be persisted as well. Before
a transaction is completed, all log entries of the transaction
have to be written persistently (thereby guaranteeing to the
user, that all changes of the transaction are durable). Logging
allows a database to only persist the delta of the modifica-
tions: For example, consider an insert into a table stored as a
B-Tree: Using logging, only the altered data needs to be per-
sisted instead of all modified nodes (pages). During restart,
the recovery component reads the log file, determines the
most recent fully persisted log entry, and applies the log to
the database.

Logging continues to constitute a major performance bot-
tleneck in database systems [17] when using traditional
storage devices (SSD/HDD): each transaction has to wait
until the log entry, recording its changes, is written. As a
mitigation, reduced consistency guarantees are offered and
complex group commit protocols are implemented. How-
ever, using PMem, a low-latency logging protocol can be
implemented that largely eliminates this problem.

In the following, we first explain the adoption of two well-
known logging algorithms for SSD/HDD to PMem (Classic
and Header). Next we discuss the RAWL algorithm [49] and
introduce the PopLog, which are both designed for PMem.
Lastly, we do an experimental evaluation of the described
algorithms.

@ Springer

3.3.1 Algorithms

Classic represents a form of logging commonly used in
database systems [45]. The following listing shows the algo-
rithm in pseudo code (left) and the file layout grammar
(right). For clarity, only information relevant to the proto-
col is depicted.

log << header << payload LogFile -> Entry*

persist (log) Entry -> header <
log << footer payload <>
persist(log) footer

A log entry is flushed in two steps: First, the header and
payload is appended to the log and persisted; second, the
footer, which contains a copy of the log sequence number
(Ism; an id given to each log entry). The Isn in the footer can
be used during recovery to determine whether a log entry
was completely written and therefore should be considered
as valid and applied to the database. Note that it takes two
persistency barriers. Without the first barrier, parts of the
payload could be missing even if the footer is present in
PMem, due to the flushes being reordered.

Header uses the same technique as libpmemlog in the
PMDK [43]. It is similar to appending elements to an array:

log << header << payload LogFile -> size <«

persist (log) Entryx*
log.size += entry_size Entry -> header <~
persist (log.size) payload

The log entry is also written in two steps: First, the header
and payload are appended to the tail of the log and persisted.
Next, the new size of the log is set in the header of the log
file and persisted. This eliminates the need to scan the log
file for the last valid entry during recovery because the valid
size is directly stored in the header.

RAWL is a logging technique specifically developed for

PMem in the context of the Mnemosyne library [49].

or(i=0;i<bit_cnt;i+=63) LogFile -> Entryx*

Entry -> B64x

B64 -> 1bit-valid <
63-b-payload

f [
{ [
3 b = payload[i:i+62]

4 log << b |
5 << validity_bit |
6 % [

persist (log)

In RAWL, the log file needs to be initialized to zero. This
is commonly done by database systems (e.g., PostgreSQL)
anyway to force the file system to actually allocate pages to
the file. Unlike the first two techniques, RAWL requires only a
single persistency barrier. This constitutes a large advantage
in terms of performance because persistency barriers cause
synchronous writes to PMem, which take around 100 ns as
shown in Fig. 2. To still be able to guarantee atomicity, each
8-byte block (atomic write unit for PMem) in the log file

Building blocks for persistent memory

1233

‘ —4— PopLog —— RAWL —&— HeaderDance —6— Classic —— Header

(a) Unaligned log entries

Throughput
[Log Entries / s

; o v A Sii ~ = o
56 128 256 384 512
Log entry size [byte]

(b) Aligned log entries

,i
S
=

o bt

S
=

Throughput
[Log Entries / s]

56 12‘8 256 384 512
Log entry size [byte]

Fig.8 Transaction log—the throughput for writing log entries of varying size to PMem

contains a validity bit and 63 bits of log data. When initially
writing the log file, data is chunked into 63 bit ranges and
concatenated with a set validity bit (validity_bit=1).
Once the log file is full, it can be reused by flipping the
validity bit.

PopLog is a novel technique we propose for PMem that
requires only one persistency barrier:

cnt = pop_count (header,
payload)

LogFile -> Entryx*
Entry -> header <>

log << header pop_cnt payload

<< cnt << payload
persist (log)

As in RAWL, before logging starts, the log file is initial-
ized to zero. When a log entry is written, the number of set
bits are counted (using the popcnt instruction). Next the
header, data, and bit count (cnt) is written to the log and
persisted together. Using the bit count, it is always possible
to determine the validity of a log entry: Either the cache line
containing the bit count was not flushed or it was. In the for-
mer case, the field contains the number zero (because the file
was zeroed) and the entry is invalid. In the latter case, the bit
count field can be used to determine whether all other cache
lines belonging to the log entry have been flushed as well.
Compared to RAWL, the code for writing and reading the log
is less complex and only requires a logarithmic space over-
head (pop_count field) instead of a linear one (1 validity
bit per 63 bits of log data).

3.3.2 Experiments

In Sect. 2.2, we showed that there is a large performance
penalty when the same cache line is persisted twice in a row.
This effect is very relevant for latency-critical systems, as
shown in Fig. 8. We use a micro-benchmark that measures the
throughput of flushing log entries of varying sizes. The left
chart shows a naive implementation, while the right one uses
padding on each log entry to align entries to cache line bound-
aries and thus avoid subsequent writes to the same cache line
(which have been shown to be slow: cf. Fig. 1). While padding

wastes some memory'?, the throughput greatly increases
(& 8x). The correct alignment also happens by “accident”
in the left chart when the log entries are just the right size.
These performance spikes happen 8 bytes earlier for RAWL
compared to PopLog, because of the validity bits used in
RAWL. This gap would widen with larger log entries (first
time at 512 bytes where two times 8 bytes are required).

As an alternative to padding, the cache lines that are per-
sisted twice (for two subsequent log entries) could also be
cached in a DRAM buffer and then flushed with a non-
temporal (or streaming) store operation. This would avoid
the need to re-load the evicted cache line and therefore avoid
the slowdown. The additional work caused by copying the
data into a DRAM buffer has a small performance penalty,
thus making this a trade-off between used space and latency.
In the shown experiment we used the padding approach and
thus traded space for latency.

However, even with padding, the Classic approach still
outperforms the Header one, because of the slowdown due to
the writes to the same cache line in the header when the size is
updated. This problem can be solved by using a dancing size
field: We use several size fields on different cache lines in the
header and only write one (round-robin) for each log entry.
By using 64 of these dancing size fields, the throughput of
Header can be increased to that of Classic. However, both of
these techniques still require persistency barriers and there-
fore cannot compete with RAWL and PopLog (= 2x faster).
PopLog slightly outperforms RAWL because less processing
is required and slightly less memory has to be copied.

The log implementation (libpmemlog) of PMDK [43] uses
the same approach as our naive Header implementation with-
out alignment and dancing. Therefore, it also yields the same
throughput, when its support for multi-threading is disabled
(not shown in the charts). It has the advantage that the log file
is dense and can be presented to the user as one continuous
memory segment. However, this leaves the user with the task
of reconstructing log entry boundaries manually. By moving

13 At most 1 cache line for PopLog, RAWL, and Header; up to
2 cache lines for Classic.

@ Springer

1234

A.v.Renenetal.

Table 3 Performance characteristics of in-place update techniques

Required #Cache lines written #Persists
Size (byte) 16B 32B 64B

CoW 2n+1 2

Log n—+c 2 2 3 2

FAM [8n/317 %8 1

this functionality into the library, a better logging strategy
can be implemented and the usability increased.

For validation, we have integrated all techniques into our
storage engine prototype HyMem [46]. Running a write-
heavy (100%) YCSB benchmark [11] on a single thread
with a DRAM-resident table, PopLog, Header, and Classic
achieves a throughput of 2M, 1.7M, and 1.5M transactions
per second, respectively.

3.4 In-place updates

In the previous two sections, we discussed page propagation
(writing out large chunks of data to random locations) and
log writing (writing out small pieces of data sequentially).
In the following, we want to investigate small (16- to 64-
byte) failure-atomic in-place updates, which are important as
they are the persistent equivalent to simply writing to volatile
memory. PMem only supports 8-byte failure-atomic writes.
Any data up to this size can simply be updated by a regular
store instruction followed by a persistency barrier (c1wb and
sfence). For larger in-place updates, as commonly used
in any PMem-based data structure [2,9,15,27,48,52], either
copy-on-write or log-based techniques are used. Both tech-
niques require at least two persistency barriers, thus slowing
down the update throughput.

In the following, we first detail these existing techniques
and then introduce a new approach that is able to perform
in-place updates with a single persistency barrier. To sim-
plify the examples, we will focus our discussion on updating
16 bytes. In the evaluation, toward the end of this section, we
evaluate the techniques for a variety of data sizes.

Table 3 shows a summary of the performance character-
istics of the three approaches. The first column displays the
size (in bytes) of the data structure to store n bytes of user
data. The next three columns, show how many cache lines
need to be written to PMem per update for three data sizes
(16 B, 32 B, and 64 B). The last column shows how many
persistency barriers are required per update. Note that 8 B
can be updated atomically by hardware and, therefore, do
not to be handled by a special algorithm.

@ Springer

3.4.1 CoW-based

Similar to Sect. 3.2.2 where copy-on-write (CoW) was used
for page propagation, the new data is first written to an unused
location, persisted, and then set valid:

struct CowBased {

1 void update(char [16] new) {
2 bool active

3

1

if (active) {

|
|
char a[16] | b = new; persist(b)
char b[16] | } else {
5} | a = new; persist(a)
6 I}
7 | active = lactive
|

persist (active)

In order to do this in-place, we need roughly twice the
required data plus a single boolean value that indicates which
field (a or b) is currently active. The memory consumption
could be optimized by sharing the “unused” buffer over mul-
tiple CoW structures. However, this would incur an additional
cache line miss (pointer chase). Additionally, by moving the
actual data behind a pointer (out-of-place), we would avoid
the actual issue we are trying to solve here: in-place updates.
Therefore, the depicted algorithm keeps both versions in-
place and could be used on a single node in a tree-like
data structure (thus avoid memory allocation and reclama-
tion issues and also keeping it in a flat memory format that
can be easily written to disc). The update process inherently
requires two persistency barriers to avoid any corruption
in case of a crash, because the new data needs to be fully
written before it can be set valid. For both, reading and writ-
ing, only one cache line has to be touched for 16 bytes of
data.

3.4.2 Log-based

Similar to Sect. 3.2.3 about the plog for page propagation,
the data is first written to a log, persisted, and then modified
in-place. In case of a crash, the log is used to undo or redo
the pending changes.

void update(char[16] new) {
log->Append (new)
log->Persist ()

data = new

persist (data)

}

| struct LogBased { |
2 PopLog* log |
3 char datal16] |
4} |
5 |

[

6

Unlike in the CoW-based technique, only a single log file
is required for all in-place updatable fields in a data struc-
ture (or the entire program). Therefore, the space overhead is
reduced to a constant amount (depending on the data size).
However, an update operation now touches at least two dis-
tinct cache lines and still requires at least two (depending on
the logging technique) persistency barriers: one for the log

Building blocks for persistent memory

1235

il @ © 1
| 4 bytes | . \[/4 bytes . 7)4 bytes | | \r4 bytes |
T T 1

extract most

1 1 1 1 b

significant bit

1 I

of each

Update([OxFEEEEEED | [0xCOOOOFEE | [0x22222222 | [OxAAAA7777 |)

I 4 byte

31 bit
shift left

31 bit input block
\“‘L—“i shift left

31 bit 31 bit
inc shift left inc shift left inc
3 v~ 1 ¥ vy 1Y

1

shift left l \n,%c|
v~ 1 ¥
1

[unused 0x3 [unused 0xD |

[1]0x00777DDD | 0x7EEEEEED | [1 [0xODAADDAA [0x40000FFE | |
| 1

[0x00777DDD | 0x22222222 | [1 [0xODAADDAA [0x2AAA7777 | |
i :

I I I
F F r

8 bytes 8 bytes

8 bytes 2 bit

I
F 1

31 bit 31 bit 8 bytes

Fig.9 In-place updates with a single persistency barrier—the input (top) is split into 31-bit blocks and stored in 8-byte blocks (bottom), which are
of which stores the previous (red) and new (green) state. In case of a crash, the version number (blue) can be used to recover the old state

and on for the data. To minimize the number of used per-
sistency barriers we used PopLog for the log-based in-place
updates.

Note that it is not possible to simply use PopLog or
RAWL for in-place updates directly: PopLog would require
to reset the data to zero, before writing the new data. If
the system crashes during these two steps, the old data
would not be recoverable. RAWL does not have this lim-
itation. However, if the system crashes after a few 8-byte
updates, these could also not be recovered. The fact that the
memory that we are writing already contains valid infor-
mation makes the in-place update problem distinct from

logging.

3.4.3 Failure-atomic memory (FAM)

While CoW-based and logging-based techniques are well
known in the field and have been used for decades, PMem
allows for some novel algorithms. Here we introduce failure-
atomic memory (FAM), which is an in-place update algo-
rithm tuned for actual PMem hardware. It improves the write
latency and throughput of small in-place updates, at the cost
of additional storage (compared to logging). FAM has an
advantage over the CoW- and log-based approaches because
it only requires a single persistency barrier per update. The
key idea is to split the user data into smaller chunks and
store them in recoverable 8-byte blocks (hereafter referred
to as FAM blocks or FAMBSs). Each FAMB is able to store
31bits of user data and can be written in a failure-atomic
way, due to the failure-atomic write granularity of PMem
(8 bytes). To make the FAMB recoverable, it stores a version
number (2 bits), the old version (31 bits), and the new version
(31 bits) of the user data. This allows for updates with only
a single persistency barrier, but requires more computation
and memory bandwidth when reading the data. For FAM to
be able to store 16 bytes of user data, 5 FAMBs (40 bytes)
are required:

struct FAMB {
int2 version

1 void updateFAMB(i, val) {
2

3 int31 old

4

5

1 = units[i]
1.version++
1l.01d = 1l.new
1l.new = val
units[i] =1

}

int31 new

}

7 struct FAM {

=}

|

|

|

|

|

|

|
8 FAMB units[5] |
9 } | void update (char[16] new) {
10 | new = cast<int32>(new)
11 | for(i=0; i<4; i++) {
12 | updateFAMB (i, new([i])
13 | high |= new[i] >> 31
14 | high = high << 1
15 | }
16 | updateFAMB(4, high)
17 | persist()
18 [}

The update of a single FAMB is shown in line 1-6: The
entire FAMB (8 bytes) is first loaded into memory. It is
important that it is copied into a local variable so that any
intermediate changes are not written back to memory. Next
(order irrelevant), the version is incremented (line 3), the cur-
rently stored user data (new) is copied to a backup location
(01d) (line 4), and the new user data is written (line 5). Once
the FAMB is updated it is written back to memory (6). This
process is performed for each 4-byte block of the user data.
Because FAMBs only store 31 bits of user data, the most sig-
nificant bits of each 4-byte input block are extracted (line
13-14) and stored in an additional fifth FAMB (line 16).

This whole process is visualized in Fig. 9: The four blocks
at the top visualize the user data (within the Update () call)
and the five blocks toward the bottom show the five FAMBs.
Our algorithm only ensures that no intermediate state of a sin-
gle FAMB is leaked to PMem, however individual FAMBs of
one FAM may be written back before others. In case of a crash
before everything is committed to PMem (persist), the
program can inspect the 2 bit version number during recov-
ery: If the version numbers of all FAMBs match, the FAM is
in a consistent state (either old or new). Otherwise, only some
FAMBs have been persisted and need to be rolled back. The
version number (2 bit) provides 4 states (0, 1, 2, and 3) and
increments may trigger overflows (inc (3) = 0), making
it possible to determine which FAMB has the more advanced

@ Springer

1236

A.v.Renenetal.

| —&— FAM —e— Logging —»— CoW |

(a) Sequential Write

(b) Sequential Read

(¢) Sequential Dependent Read

" 15M 80 M 1 80 M
~ 2] n
§ 10 M 4 }60M1% z on
g A ., T 40M | T 40M §
2 5M g 3
B ® x 20M £ 20M
0 ; | 0 : 0 ‘
16 64 128 16 64 128 16 64 128
Data Size [byte] Data Size [byte] Data Size [byte]
(d) Random Write (e) Random Read (f) Random Dependent Read
10M 40 M
@ w4 M
w SMI L 30M g —o &
5 M7 T 20M] g oM
< 4Mg o ~
S oom | x 10M o |
0 % 0 16 64 128

16 64 128 16
Data Size [byte]

Data Size [byte]

64 128)
Data Size [byte]

Fig. 10 In-place updates—performance of Failure-Atomic Memory (FAM) in comparison with CoW- and log-based updates and reads. While the
lines show the average throughput, the highlighted areas (mostly in (c) and (f)) indicate the 95% percentile over multiple runs

version and needs to be rolled back. A rollback requires
the version number to be decremented (with underflows:
dec (0) = 3) and the recovery of the old version (1.new
= 1.01d). In case of repeated crashes, a single FAMB is
only rolled back once because during subsequent recover-
ies the version number already matches the other FAMBs.
Hence, the recovery of FAM is idempotent and guarantees
progress as rollback actions do not need to be repeated.

FAM reduces the number of required persistency barri-
ers (roughly 100 ns) from two to one, by making use of the
failure-atomic 8-byte block on PMem. The additional pro-
cessing required for FAM can largely be hidden by the high
access latency of PMem. However, FAM requires one 8-byte
FAMB for each 31 bits of user data. Both the processing and
storage overhead (for smaller inputs) could be reduced if the
application is not using the entire domain of the data (only
31 bit out of the 32 bit). In our evaluation, we ignore this opti-
mization potential and measure the most generic version of
FAM that deals with opaque user data. Appendix A provides
and discusses a highly-optimized SIMD (AVX2) implemen-
tation of FAM.

3.4.4 Experiments

Figure 10 shows the performance evaluation of the three
introduced approaches for in-place updates. We plot the
throughput (vertical axis) over the size of the updates in byte
(horizontal axis). For each approach, we create a flat array
of 10 GB and perform 100 M operations on it. All in-place
updatable structures are aligned to cache lines boundaries to
minimize the number of cache line write backs (c1wb). The

@ Springer

logging-based approach is assigned a sufficiently large log
file for the workload, such that it never has to be re-initialized.
The figure shows performance for a sequential access pattern
(a, b, ¢) and a random access one (d, e, f). The throughput
of writes (a, d), reads (b, e), and dependent reads (c, f) are
depicted from left to right. For dependent reads, out of order
execution is prevented by making a read location dependent
on the previously read value.

Overall, the results show that the reduction in persistency
barriers of FAM pays off for write operations and still offers
reasonable performance when reading. Especially for small
data sizes (16 bytes), the FAM offers large performance gains
(2x for sequential and 1.6 x for random). Logging, performs
especially well in sequential reads (b, c), because there is no
indirection (CoW) or any other processing (FAM) required.
However, this advantage is largely lost for random reads as
those are dominated by access latency.

3.5 Coroutines

To avoid stalling the active thread of a program on high-
latency operations (like disk or network 1/0O), many libraries
implement asynchronous APIs. Internally, these libraries can
use multi-threading or work queues and offer some event-
or polling-based mechanism for the user to learn about com-
pleted operations. Alternatively, the user can utilize kernel or
user-land threads with a synchronous API. This has several
advantages, as the state of the thread of execution at the time
of the API call is automatically preserved and does not have to
be restored manually. Independent of how the asynchronous

Building blocks for persistent memory

1237

Insert 1 Insert 2 Insert 3
clwb sfence clwb sfence clwb sfence clwb sfence clwb sfence clwb sfence
1A 1B 2A 2B 3A 3B
sfence

clwb clwb clwb
| I I ' |

1A 2A 3A

Batch Insert A

clwb clwb clwb sfence
| ' i I |

1B 2B 3B

Batch Insert B

Fig. 11 Coroutines: interleaved inserts—by interleaving n write operation (c1wb) and sharing one synchronization barrier (s fence), the number

of memory stalls can be reduced from 7 to 1

execution is realized, the advantage is that the program can
make progress while waiting on a slow 1/O operation.

To avoid stalling on low-latency operations (such as
DRAM or PMem reads during pointer chasing), an asyn-
chronous API or kernel threads are infeasible as their
overhead would be to great. However, lightweight user-land
threads with cooperative multitasking have successfully been
used to mitigate the impact of memory stalls. The early works
of Chen et al. on group pre-fetching [8] and Kocberber et
al. on asynchronous memory access chaining (AMAC) [26]
implement the switching between different tasks by hand.
With the release of C++20, a low-overhead implementation
of cooperative multitasking in the form of coroutines has
become available as a language feature. Jonathan et al. [22]
showed that the performance of coroutines is competitive
with earlier manual implementations and greatly reduces
complexity. Given that memory latencies are already an issue
for data structures with random access patterns on DRAM,
this issue is only intensified on PMem due to the higher laten-
cies. Coroutines have successfully been shown to mitigate the
high latencies on PMem by Psaropoulos et al. [44] for index
joins and tuple reconstruction in database systems.

On DRAM, only read operations are synchronous and
write operations can always be performed in an asynchronous
way. On PMem, however, write operations become syn-
chronous as well when followed by a persistency barrier.
This leaves the CPU stalling until the written data has reach a
persistent location. To mitigate this, we propose to use corou-
tines (or cooperative multitasking, in general) for interleaving
a number of update operations. In the following section, we
introduce the FP-Tree [37], which will be used as an exam-
ple and in the evaluation. Afterwards, we discuss the use of
coroutines for read and write operations.

3.5.1 FP-tree implementation

The FP-Tree is a B-Tree-like data structure designed for
PMem. It uses sorted inner nodes that are placed in DRAM
to speed up the traversal. These volatile inner nodes can be

recovered after a crash from the leaf nodes which are placed
in PMem. Leaf nodes are not sorted but use hash-based finger
prints for efficient point lookups instead:

bit mask finger prints key value pairs

Leaf Node: |used| fps | kvs |

4bytes 32bytes 512 bytes

Each leaf node has a bit mask (used) indicating which
slots are filled, an array of finger prints (£ps) that stores a
1-byte hash of each key, and an array with key-value pairs
(kvs). We use these leaf nodes to measure the effect of inter-

leaving lookups as well as interleaving inserts.
3.5.2 Lookup implementation

Alookup is done by hashing the search key and comparing
it to each used finger print in the node. If there is a match,
the actual key for this finger print is retrieved and used to
validate the match before returning the result. For simplicity,
we only evaluated positive lookups and avoid control flow
divergence of the executed coroutines by prohibiting multiple
matching fingerprints. The non-interleaved lookup code (left)
can easily be extended using coroutines (right):

Val lookup(k) {
fp = hash(k)
_mm_prefetch (used)
co_await sched

1 Val lookup(k) {
2 fp = hash(k)

S UL ¢

for(s=0; s<32; s++) {
ok = used[s]

8 if (ok&&fps[sl==fp) {
9

10

11

12 if(k == kvs[s].k) {
13 return kvs[s].v

14 333}

for(s=0; s<32; s++) {
ok = used[s]
if (ok&&fps [s]==fp) {
_mm_prefetch (kvs[s])
co_await sched

-~

if (k == kvs[s].k) {
return kvs[s].v

|
|
|
|
|
|
|
|
|
|
|
|
|
| 333}

Before potential memory stalls we issue a prefetch
(_mm_prefetch) instruction to get the requested cache

@ Springer

1238

A.v.Renenetal.

’ —a— Coroutines read+write —6— Coroutines write —=— Coroutines read —«— No coroutines

(a) Inserts on PMem

==

(b) Lookups on PMem

(¢) Lookups on DRAM

— = D

Inserts/s
S N RO
Lookups/s
Ok 0O

Lookups/s
Ok NODO

1 8 16 24 32 1 8
active coroutines

16 24
active coroutines

8 16 24 32
active coroutines

[V 2
no
—_

Fig. 12 Coroutines on PMem—we use coroutines to hide read and write latencies of PMem for lookups and inserts on FP-Tree leaf nodes

line from the underlying memory (DRAM or PMem). Instead
of waiting for the cache line to be loaded, we use co_await
to return the control flow to the caller. The caller can then
continue execution by resuming the next active coroutine or
starting a new one. This way any number of lookups can be
executed in an interleaved fashion and while one is waiting
for memory to be loaded, another one can progress.

3.5.3 Insert implementation

As described in Sect. 3.4, PMem-based data structures use
a two phased update process: (1) write the new data and
persist it; (2) set a flag to mark the new data as valid and
persist the flag. In case of the FP-Tree, the flag is the used
bit mask and the data is the key-value pair (kvs) and the key’s
fingerprint £ps. We can interleave multiple writes, by issuing
the write and cache line write back instruction normally and
then using one storage fence (s fence) for a group of inserts
to force the data to PMem. Hence, the algorithm only has to
wait once for the completion of all cache evictions, but each
individual insert operation still has the guarantee that its data
was persisted before it continues. Figure 11 illustrates three
inserts with individual fences (top) and shared ones (bottom).

3.5.4 Experiments

Figure 12 shows the experimental results for inserts on PMem
(a), lookups on PMem (b), and lookups on DRAM (c). There
is no experiment for inserts on DRAM because writes on
DRAM are not persistent and, therefore, do not require inter-
leaving. The horizontal axis shows the group size: how many
coroutines are active at the same time. For both, reads and
writes the curve flattens out at around 20 active coroutines.
Due to the higher latencies of PMem, the impact of using
an interleaved execution to prevent stalls is more significant
than on DRAM: 6.2 x for inserts on PMem and 5x speed up
for lookups, compared to 2.6 x for lookups on DRAM.

The insert experiment (a) shows three different usages of
coroutines: only for reads (-2-), only for writes (-e-) and for

@ Springer

both (-=-). There is no benefit in using coroutines to inter-
leave only reads (-=-), because the CPU uses out-of-order
execution in the normal code path to prefetch data across
persistency barriers. This is possible, because a persistency
barrier is made up of a cache line write back (clwb) and
storage fence (sfence) instruction. The sfence instruc-
tion allows for reordering of loads and only “fences” stores.
To test this hypothesis, we used a memory fence (mfence)
instruction instead of the sfence. The mfence does not
allow for any reordering. In this scenario, the performance
of inserts with interleaved reads (=) becomes similar to that
of inserts with interleaved writes (-e-).

4 Related work

With PMem only being released recently, this is one of
the two [21] initial studies that have been performed on
the actual hardware. While our work proposes low-level
optimizations, Swanson et al. evaluate PMem with various
storage engines as well as file systems. Until now, software or
hardware-based simulations, or emulations based on specula-
tive performance characteristics, have been used to evaluate
possible system architectures [3,36,38,40]. The number of
persistent index structures [2,9,15,27-29,48,52,53] is large,
and has been summarized by Gotze et. al [16]. Similar tech-
niques have been used to build storage engines directly
on PMem [4,35]. These approaches use in-place updates
on PMem, which suffers from the lower-than-DRAM per-
formance. Therefore, a number of indexes [37,51] as well
as storage engines [1,7,12,23,24,32,33] integrate PMem as
a separate storage layer or an extension to the recovery
component [39,41]. Furthermore, buffer-managed architec-
tures [5,25,46] have been proposed to use PMem more
adaptively. Recovery has always been an essential (and
performance-critical) component of database systems [45].
Several designs have been proposed for database-specific
logging [6,14,18,42,50] and file systems [13]. There is also a
great body of work that researches transactional semantics for
PMem as alibrary to be easily used by other programs [31,34]

Building blocks for persistent memory

1239

(similar to the PMDK). While we focus on the currently avail-
able hardware, another interesting line of research considers
possible extensions to PMem, such as extending the persis-
tency domain to include CPU caches [10,20].

5 Conclusion

This is the first comprehensive evaluation of PMem on “real”
(non prototype) hardware. In our evaluation, we found sev-
eral guidelines for using PMem efficiently (cf. Sects. 2.3 and
2.2): (1) Instead of optimizing for cache lines (64 bytes) as on
DRAM, we have to optimize for PMem blocks (256 bytes).
(2) As in multi-threaded programming, writes to the same
cache line in close temporal proximity should be avoided.
(3) Forcing the data out of the on-CPU cache (using clwb
or non-temporal stores) is essential for a high write band-
width. (4) When using PMem and DRAM at the same time,
there are interference effects cause significant slowdowns.

Furthermore, we proposed and evaluated algorithms for
logging, page propagation, in-place updates, and interleaved
execution of PMem writes:

(1) Ourlogging experiments have shown that latency-critical
code should minimize the number of persistency barriers
and avoid subsequent writes to the same cache line.

(2) Our PopLog algorithm reduces the required persistency
barriers from two to one, thus doubling the throughput.

(3) For flushing database pages, a small log (uLog) can
be used to flush only dirty cache lines. The I/O prim-
itives introduced use an interface similar to the one in
PMDK [43], making them widely applicable.

(4) We introduced Failure-Atomic Memory (FAM), which
enables in-place updates with a single persistency barrier.

(5) We showed how cooperative multitasking (via corou-
tines) can be utilized to not only interleave loads but also
stores on PMem.

Acknowledgements This work was supported by Fujitsu Laboratories
LDT. and the DFG project KE401/22. Further, the authors would like
to dearly and explicitly thank Satoshi Imamura, Kazuichi Oe, Mitsuru
Sato, and Dieter Kasper from Fujitsu Laboratories for their continuous
support. Lastly, we want to express our sincere gratitude to our personal
friend Stefan Marcik for his keen insights into SIMD programming.

Funding Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix
A FAM implementation details

Listing 2 contains the AVX2 SIMD code for performing
updates with the FAM algorithm for 16 bytes. For better read-
ability the comments are provided inline.

Listing 2: Failure-Atomic Memory (FAM) Imple-
mentation — Pseudo code for updating a 16-byte FAM.

_m256i ADD, AND_1, AND_2, AND_3;

IADD = _mm256_setl_epi64x (0x4000000000000000L) ;
IAND_1 = _mm256_setl_epi64x (0xCO00000000000000L) ;
IAND_2 = _mm256_setl_epi64x (0Ox3FFFFFFFFFFFFFFFL) ;

IAND_3 = _mm_setl_epi32 (0x7FFFFFFF);

Updatel128 (int32_t* values) {
__m128i input32, msbs32;
__m2566i input64, fambs64, version, new_states, both;

// Load input ’values’ expand to 256bit register
input32 = _mm_loadu_si128((__m128i%*) values);
input32 = _mm_and_si128 (input32, AND_3);

input64 = _mm256_cvtepu32_epi64 (input32);

// Load FAMBs (fambs[0] stores the high bits)
fambs64 = _mm256_loadu_si256 ((__m256i*) &fambs[1]);

// Extract version bits
version = _mm256_add_epi64 (fambs64, ADD);
version = _mm256_and_si256 (version, AND_1);

// Shift old state and write new state
new_states = _mm256_slli_epi64 (fambs64, 31);

new_states = _mm256_and_si256 (new_states, AND_2);
new_states = _mm256_or_si256 (new_states, input64);
// Write

both = _mm256_or_si256 (version, new_states);

_mm256_storeu_si256 ((__m256i *) &fambs[1], both);

// Deal with most significant bits (msbs)
msbs32 = _mm_castsil28_ps (input32);
uint64_t msbs = _mm_movemask_ps (msbs32);

// Update msb FAMB

uint64_t fambO = fambs[0];

uint64_t new_version = (msbs + 1L<<62) & (3L<<62);
uint64_t old_msbs = famb0<<31;

fambs [0] = new_version | old_msbs | msbs;

// Done: persist
persist O ;

+

@ Springer

1240

A.v.Renenetal.

References

10.

11.

13.

14.

16.

17.

18.

19.

20.

21.

. Andrei, M., Lemke, C., Radestock, G., Schulze, R., Thiel, C.,

Blanco, R., Meghlan, A., Sharique, M., Seifert, S., Vishnoi, S.,
Booss, D., Peh, T., Schreter, ., Thesing, W., Wagle, M., Willhalm,
T.: SAP HANA adoption of non-volatile memory. PVLDB 10(12),
1754-1765 (2017)

Arulraj, J., Levandoski, J.J., Minhas, U.F., Larson, P.: Bztree: a
high-performance latch-free range index for non-volatile memory.
PVLDB 11(5), 553-565 (2018)

Arulraj, J., Pavlo, A.: How to build a non-volatile memory database
management system. In: SIGMOD (2017)

Arulraj, J., Pavlo, A., Dulloor, S.: Let’s talk about storage and
recovery methods for non-volatile memory database systems. In:
SIGMOD, pp. 707-722 (2015)

Arulraj, J., Pavlo, A., Malladi, K. T.: Multi-tier buffer management
and storage system design for non-volatile memory. arXiv (2019)
Arulraj, J., Perron, M., Pavlo, A.: Write-behind logging. PVLDB
10(4), 337-348 (2016)

Canim, M., Mihaila, G.A., Bhattacharjee, B., Ross, K.A., Lang,
C.A.: SSD bufferpool extensions for database systems. PVLDB
3(2), 1435-1446 (2010)

Chen, S., Ailamaki, A., Gibbons, P.B., Mowry, T.C.: Improving
hash join performance through prefetching. ACM Trans. Database
Syst. 32, 17 (2007)

Chen, S., Jin, Q.: Persistent B+-trees in non-volatile main memory.
PVLDB 8(7), 786-797 (2015)

Cohen, N., Aksun, D.T., Avni, H., Larus, J.R.: Fine-grain check-
pointing with in-cache-line logging. In: ASPLOS (2019)

Cooper, B.E, Silberstein, A., Tam, E., Ramakrishnan, R., Sears,
R.: Benchmarking cloud serving systems with YCSB. In: SoCC,
pp. 143-154 (2010)

. Do, J., Zhang, D., Patel, .M., DeWitt, D.J., Naughton, J.F,,

Halverson, A.: Turbocharging DBMS buffer pool using SSDs. In:
SIGMOD (2011)

Dulloor, S.R., Kumar, S., Keshavamurthy, A., Lantz, P., Reddy, D.,
Sankaran, R., Jackson, J.: System software for persistent memory.
In: EuroSys (2014)

Fang, R., Hsiao, H., He, B., Mohan, C., Wang, Y.: High perfor-
mance database logging using storage class memory. In: ICDE,
pp. 1221-1231 (2011)

. Gotze, P., Baumann, S., Sattler, K.: An NVM-aware storage layout

for analytical workloads. In: ICDE Workshops (2018)

Gotze, P, van Renen, A., Lersch, L., Leis, V., Oukid, I.: Data
management on non-volatile memory: a perspective. Datenbank-
Spektrum 18(3), 171-182 (2018)

Harizopoulos, S., Abadi, D.J., Madden, S., Stonebraker, M.: OLTP
through the looking glass, and what we found there. In: SIGMOD,
pp- 981-992 (2008)

Huang, J., Schwan, K., Qureshi, M.K.: NVRAM-aware logging in
transaction systems. PVLDB 8(4), 389-400 (2014)

Imamura, S., Yoshida, E.: The analysis of inter-process inter-
ference on a hybrid memory system. In: Proceedings of the
International Conference on High Performance Computing in Asia-
Pacific Region Workshops, HPCAsia2020, pp. 1-4. Association for
Computing Machinery, New York (2020). https://doi.org/10.1145/
3373271.3373272 (ISBN: 9781450376501)

Izraelevitz, J., Kelly, T., Kolli, A.: Failure-atomic persistent mem-
ory updates via JUSTDO logging. In: Conte, T., Zhou, Y. (eds.)
ASPLOS (2016)

Izraelevitz, J., Yang, J., Zhang, L., Kim, J., Liu, X., Memaripour,
A.,Soh, Y.J., Wang, Z., Xu, Y., Dulloor, S.R., Zhao, J., Swanson, S.:
Basic performance measurements of the intel optane DC persistent
memory module. In: CoRR (2019)

@ Springer

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

30.

40.

41.

42.

43.

44.

45.

46.

Jonathan, C., Minhas, U.F., Hunter, J., Levandoski, J.J., Nishanov,
G.V.: Exploiting coroutines to attack the “killer nanoseconds”. In:
PVLDB (2018)

Kang, W, Lee, S., Moon, B.: Flash as cache extension for online
transactional workloads. VLDB J. 25(5), 673-694 (2016)
Karnagel, T., Dementiev, R., Rajwar, R., Lai, K., Legler, T.,
Schlegel, B., Lehner, W.: Improving in-memory database index
performance with intel transactional synchronization extensions.
In: HPCA (2014)

Kimura, H.: FOEDUS: OLTP engine for a thousand cores and
NVRAM. In: SIGMOD, pp. 691-706 (2015)

Kogberber, Y.O., Falsafi, B., Grot, B.: Asynchronous memory
access chaining. In: PVLDB (2015)

Lee, S.K., Lim, K.H., Song, H., Nam, B., Noh, S.H.: WORT: write
optimal radix tree for persistent memory storage systems. In: FAST,
pp. 257-270 (2017)

Lee, S.K., Mohan, J., Kashyap, S., Kim, T., Chidambaram, V.:
RECIPE: converting concurrent DRAM indexes to persistent-
memory indexes. In: SOSP (2019)

Lersch, L., Hao, X., Oukid, 1., Wang, T., Willhalm, T.: Evaluating
persistent memory range indexes. In: PVLDB (2019)

Lersch, L., Lehner, W., Oukid, L.: Persistent buffer management
with optimistic consistency. In: DaMoN (2019)

Liu, M., Zhang, M., Chen, K., Qian, X., Wu, Y., Zheng, W., Ren,
J.: Dudetm: building durable transactions with decoupling for per-
sistent memory. In: ASPLOS (2017)

Liu, X., Salem, K.: Hybrid storage management for database sys-
tems. PVLDB 6(8), 541-552 (2013)

Luo, T., Lee, R., Mesnier, M.P,, Chen, F., Zhang, X.: hStorage-DB:
heterogeneity-aware data management to exploit the full capability
of hybrid storage systems. PVLDB 5(10), 10761087 (2012)
Memaripour, A., Badam, A., Phanishayee, A., Zhou, Y., Alagap-
pan, R., Strauss, K., Swanson, S.: Atomic in-place updates for
non-volatile main memories with kamino-tx. In: EuroSys (2017)
Oukid, I., Booss, D., Lehner, W., Bumbulis, P., Willhalm, T.:
SOFORT: a hybrid SCM-DRAM storage engine for fast data recov-
ery. In: DaMoN (2014)

Oukid, I., Booss, D., Lespinasse, A., Lehner, W., Willhalm,
T., Gomes, G.: Memory management techniques for large-scale
persistent-main-memory systems. In: PVLDB (2017)

Oukid, I., Lasperas, J., Nica, A., Willhalm, T., Lehner, W.: FPTree:
a hybrid SCM-DRAM persistent and concurrent B-tree for storage
class memory. In: SIGMOD, pp. 371-386 (2016)

Oukid, I., Lehner, W.: Data structure engineering for byte-
addressable non-volatile memory. In: SIGMOD (2017)

Oukid, I., Lehner, W., Kissinger, T., Willhalm, T., Bumbulis, P.:
Instant recovery for main memory databases. In: CIDR (2015)
Oukid, I, Lersch, L.: On the diversity of memory and storage tech-
nologies. Datenbank-Spektrum 18(2), 121-127 (2018)

Oukid, I., Nica, A., Bossle, D.D.S., Lehner, W., Bumbulis, P.,
Willhalm, T.: Adaptive recovery for SCM-enabled databases. In:
ADMS (2017)

Pelley, S., Wenisch, T.F.,, Gold, B.T., Bridge, B.: Storage manage-
ment in the NVRAM era. In: PVLDB (2013)

PMDK.: Persistent memory development kit. http://www.pmem.
io. Accessed 26 03 2019

Psaropoulos, G., Oukid, I. Legler, T., May, N., Ailamaki, A.: Bridg-
ing the latency gap between NVM and DRAM for latency-bound
operations. In: DaMoN (2019)

Sauer, C.: Modern techniques for transaction-oriented database
recovery. PhD thesis, Kaiserslautern University of Technology,
Germany (2017)

van Renen, A., Leis, V., Kemper, A., Neumann, T., Hashida, T., Oe,
K., Doi, Y., Harada, L., Sato, M.: Managing non-volatile memory
in database systems. In: SIGMOD (2018)

Building blocks for persistent memory

1241

47.

48.

49.

50.

51.

52.

van Renen, A., Vogel, L., Leis, V., Neumann, T., Kemper, A.: Per-
sistent memory I/O primitives. In: DaMoN (2019)

Venkataraman, S., Tolia, N., Ranganathan, P., Campbell, R.H.:
Consistent and durable data structures for non-volatile byte-
addressable memory. In: FAST, pp. 61-75 (2011)

Volos, H., Tack, A.J., Swift, M.M.: Mnemosyne: lightweight per-
sistent memory. In: ASPLOS (2011)

Wang, T., Johnson, R.: Scalable logging through emerging non-
volatile memory. PVLDB 7(10), 865-876 (2014)

Xia, F., Jiang, D., Xiong, J., Sun, N.: Hikv: a hybrid index key-
value store for DRAM-NVM memory systems. In: USENIX ATC,
pp- 349-362 (2017)

Yang, J., Wei, Q., Chen, C., Wang, C., Yong, K.L., He, B.: NV-tree:
reducing consistency cost for NVM-based single level systems. In:
FAST, pp. 167-181 (2015)

53. Zhou, X., Shou, L., Chen, K., Hu, W., Chen, G.: DPTree: differen-

tial indexing for persistent memory. In: PVLDB (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

63

Bibliography

[AJ89]

[AKW13]

[Alc]

[ALML18]

[ALRT17]

[APD15]

[APM19]

[APP16]

[BBS16]

[BC16]

[BGJS21]

[BHC'13]

R. Agrawal and H. V. Jagadish. Recovery Algorithms for Database Machines
with Non-Volatile Main Memory, page 269-285. 1989.

Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir Nikitin,
Xueti Tang, Daniel Lottis, Kiseok Moon, Xiao Luo, Eugene Chen, Adrian
Ong, Alexander Driskill-Smith, and Mohamad Krounbi. Spin-transfer
torque magnetic random access memory (STT-MRAM). ACM]. Emerg.
Technol. Comput. Syst., 2013.

Paul Alcorn. Intel optane DIMM pricing. https://www.tomshardware.
com/news/intel-optane-dimm-pricing-performance, 39007 .html.

Accessed: 2021-06-08.

Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas, and Per-Ake
Larson. Bztree: A high-performance latch-free range index for non-
volatile memory. VLDB, 2018.

Mihnea Andrei, Christian Lemke, Giinter Radestock, Robert Schulze,
Carsten Thiel, Rolando Blanco, Akanksha Meghlan, Muhammad
Sharique, Sebastian Seifert, Surendra Vishnoi, Daniel Booss, Thomas
Peh, Ivan Schreter, Werner Thesing, Mehul Wagle, and Thomas Will-
halm. SAP HANA adoption of non-volatile memory. VLDB, 2017.

Joy Arulraj, Andrew Pavlo, and Subramanya Dulloor. Let’s talk about
storage & recovery methods for non-volatile memory database systems.
In SIGMOD, 2015.

Joy Arulraj, Andy Pavlo, and Krishna Teja Malladi. Multi-tier buffer
management and storage system design for non-volatile memory. CoRR,
2019.

Joy Arulraj, Matthew Perron, and Andrew Pavlo. Write-behind logging.
VLDB, 2016.

Stephan Baumann, Peter A. Boncz, and Kai-Uwe Sattler. Bitwise dimen-
sional co-clustering for analytical workloads. VLDB ., 2016.

Hans-Juergen Boehm and Dhruva R. Chakrabarti. Persistence program-
ming models for non-volatile memory. In SIGPLAN, 2016.

Alexander Baumstark, Philipp Gotze, Muhammad Attahir Jibril, and
Kai-Uwe Sattler. Instant graph query recovery on persistent memory.
In DaMoN, 2021.

Katelin A. Bailey, Peter Hornyack, Luis Ceze, Steven D. Gribble, and
Henry M. Levy. Exploring storage class memory with key value stores.
In INFLOW, 2013.

https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html

64 BIBLIOGRAPHY

[BM70] Rudolf Bayer and Edward McCreight. Organization and maintenance
of large ordered indices. In SIGFIDET, 1970.

[BZNO5] Peter A. Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100:
Hyper-pipelining query execution. In CIDR, 2005.

[CCAT] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. nv-heaps.

[CCV15] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas.
REWIND: recovery write-ahead system for in-memory non-volatile
data-structures. VLDB, 2015.

[CG21] Sakib Chowdhury and Wojciech M. Golab. A scalable recoverable skip
list for persistent memory. In SPAA, 2021.

[CGN11] Shimin Chen, Phillip B. Gibbons, and Suman Nath. Rethinking database
algorithms for phase change memory. In CIDR, 2011.

[CJ15] Shimin Chen and Qin Jin. Persistent B+-trees in non-volatile main mem-
ory. VLDB, 2015.

[CLZ"21] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Jiwu Shu. Scalable persistent memory
file system with kernel-userspace collaboration. In USENIX FAST, 2021.

[CNFT09] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin C. Lee, Doug Burger, and Derrick Coetzee. Better I/O through
byte-addressable, persistent memory. In SOSP, 2009.

[Com79] Douglas Comer. The ubiquitous b-tree. ACM Comput. Surv., 1979.

[DAPT] Justin A. DeBrabant, Joy Arulraj, Andrew Pavlo, Michael Stonebraker,
Stanley B. Zdonik, and Subramanya Dulloor. A prolegomenon on OLTP
database systems for non-volatile memory. In ADMS, year = 2014,.

[DDGZ18] Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor
Zablotchi. Log-free concurrent data structures. In USENIX ATC, 2018.

[DHK"15] Biplob Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G.
Khatib, and Cristian Ungureanu. Revisiting hash table design for phase
change memory. In INFLOW, 2015.

[DLCL21] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. Fast, flexible, and com-
prehensive bug detection for persistent memory programs. In Tim Sher-
wood, Emery Berger, and Christos Kozyrakis, editors, ASPLOS, 2021.

[dra07] Process integration, devices, and structures. international technology
roadmap for semiconductors. 2007.

[DS10] Alexander Driskill-Smith. Latest advances and future prospects of STT-
RAM. In Non-Volatile Memories Workshop, 2010.

[Dull6] Subramanya R. Dulloor. Systems and applications for persistent memory.

PhD thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2016.

BIBLIOGRAPHY 65

[FBW+20]

[FCP+11]

[FHH*11]

[EML*+12]

[Fog]

[GBS18]

[gdb]

[GDV13]

[GKK12]

[GKL20]

[GPS7]

[GTS20]

[GVK*+14]

[GVRL*18]

[HAMSO08]

[HCW™21]

Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch,
and Erez Petrank. Nvtraverse: in NVRAM data structures, the destina-
tion is more important than the journey. In PLDI, 2020.

Franz Farber, Sang Kyun Cha, Jiirgen Primsch, Christof Bornhovd, Ste-
fan Sigg, and Wolfgang Lehner. SAP HANA database: data manage-
ment for modern business applications. SIGMOD, 2011.

Ru Fang, Hui-I Hsiao, Bin He, C. Mohan, and Yun Wang. High perfor-
mance database logging using storage class memory. In ICDE, 2011.

Franz Farber, Norman May, Wolfgang Lehner, Philipp Grofle, Ingo
Miiller, Hannes Rauhe, and Jonathan Dees. The SAP HANA database —
an architecture overview. IEEE Data Eng. Bull., 2012.

Agner Fog. Instruction tables. https://www.agner.org/optimize/
instruction_tables.pdf. Accessed: 2021-06-14.

Philipp Gotze, Stephan Baumann, and Kai-Uwe Sattler. An NVM-aware
storage layout for analytical workloads. In ICDE, 2018.

GDB: The GNU project debugger. https://www.gnu.org/software/
gdb/. Accessed: 2021-06-20.

Ellis Giles, Kshitij A. Doshi, and Peter J. Varman. Bridging the pro-
gramming gap between persistent and volatile memory using wrap. In
Computing Frontiers Conference, 2013.

Goetz Graefe, Hideaki Kimura, and Harumi A. Kuno. Foster b-trees.
ACM TODS, 2012.

Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. Understanding the
idiosyncrasies of real persistent memory. VLDB, 2020.

Jim Gray and Gianfranco R. Putzolu. The 5 minute rule for trading
memory for disk accesses and the 10 byte rule for trading memory for
CPU time. In SIGMOD, 1987.

Philipp Gotze, Arun Kumar Tharanatha, and Kai-Uwe Sattler. Data
structure primitives on persistent memory: an evaluation. In DaMoN,
2020.

Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi A. Kuno, Joseph
Tucek, Mark Lillibridge, and Alistair C. Veitch. In-memory performance
for big data. VLDB, 2014.

Philipp Gotze, Alexander van Renen, Lucas Lersch, Viktor Leis, and Is-
mail Oukid. Data management on non-volatile memory: A perspective.
Datenbank-Spektrum, 2018.

Stavros Harizopoulos, Daniel]J. Abadi, Samuel Madden, and Michael
Stonebraker. OLTP through the looking glass, and what we found there.
In SIGMOD, 2008.

Daokun Hu, Zhiwen Chen, Jianbing Wu, Jianhua Sun, and Hao Chen.
Persistent memory hash indexes: An experimental evaluation. VLDB,
2021.

https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/

66

BIBLIOGRAPHY

[HFPO02]

[HHL20]

[HKWN18]

[HLWO20]

[HR10]

[HS08]

[IGN+12]

[IKK16]

[Inta]

[Intb]

[Intc]

[IYZ*19]

[JBGS21]

[JED]

Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-word
compare-and-swap operation. In DISC, 2002.

Gabriel Haas, Michael Haubenschild, and Viktor Leis. Exploiting
directly-attached NVMe arrays in DBMS. In CIDR, 2020.

Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
Endurable transient inconsistency in byte-addressable persistent b+-
tree. In FAST, 2018.

Xiangpeng Hao, Lucas Lersch, Tianzheng Wang, and Ismail Oukid.
PiBench online: Interactive benchmarking of persistent memory in-
dexes. PVLDB, 2020.

Heather Hanson and Karthick Rajamani. What computer architects
need to know about memory throttling. In Computer Architecture -
ISCA 2010 International Workshops A4MMC, AMAS-BT, EAMA, WEED,
WIOSCA, Lecture Notes in Computer Science, pages 233-242. Springer,
2010.

Maurice Herlihy and Nir Shavit. The art of multiprocessor programming.
Morgan Kaufmann, 2008.

Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd
Mullender, and Martin L. Kersten. Monetdb: Two decades of research
in column-oriented database architectures. IEEE Data Eng. Bull., 2012.

Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic
persistent memory updates via JUSTDO logging. In ASPLOS, 2016.

Intel. Intel intrinsics guide. https://software.intel.com/sites/
landingpage/IntrinsicsGuide/. Accessed: 2021-06-20.

Intel. Product brief: Intel optane dc persistent memory. https:
//www.intel.com/content/dam/www/public/us/en/documents/
product-briefs/optane-dc-persistent-memory-brief.pdf. Ac-
cessed: 2021-03-26.

Intel. Product brief: Intel optane dc persistent memory. https://
www.intel.com/content/www/us/en/architecture-and-technology/
optane-dc-persistent-memory.html. Accessed: 2021-09-10.

Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. Basic performance measure-
ments of the Intel Optane DC persistent memory module. arXiv, 2019.
Accessed: 2021-05-27.

Muhammad Attahir Jibril, Alexander Baumstark, Philipp Gotze, and
Kai-Uwe Sattler. JIT happens: Transactional graph processing in persis-
tent memory meets just-in-time compilation. In EDBT, 2021.

JEDEC. JEDEC announces support for nvdimm hybrid mem-
ory modules. https://www.jedec.org/news/pressreleases/
jedec-announces-support-nvdimm-hybrid-memory-modules. Ac-

cessed: 2021-09-09.

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.jedec.org/news/pressreleases/jedec-announces-support-nvdimm-hybrid-memory-modules
https://www.jedec.org/news/pressreleases/jedec-announces-support-nvdimm-hybrid-memory-modules

BIBLIOGRAPHY 67

[KBG'18]

[KFH*17]

[Kim15]

[KLN*+19]

[KN11]

[KPS*16]

[KTB*19]

[LCY7]

[LC19]

[LCK*+20]

[LCW20]

[Ler21]

[LHKN18]

[LHO*+19]

[LHWL20]

Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Redesigning Isms for non-
volatile memory with novelsm. In USENIX ATC, 2018.

Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas E. Anderson. Strata: A cross media file system.
In SOSP, 2017.

Hideaki Kimura. FOEDUS: OLTP engine for a thousand cores and
NVRAM. In SIGMOD, 2015.

Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and
Young-ri Choi. SLM-DB: single-level key-value store with persistent
memory. In Arif Merchant and Hakim Weatherspoon, editors, FAST,
2019.

Alfons Kemper and Thomas Neumann. Hyper: A hybrid oltp&olap
main memory database system based on virtual memory snapshots. In
ICDE, 2011.

Aasheesh Kolli, Steven Pelley, Ali G. Saidi, Peter M. Chen, and
Thomas F. Wenisch. High-performance transactions for persistent mem-
ories. In ASPLOS, 2016.

Marcel Koppen, Jana Traue, Christoph Borchert, Jorg Nolte, and Olaf
Spinczyk. Cache-line transactions: Building blocks for persistent kernel
data structures enabled by AspectC++. In SOSP, 2019.

David E. Lowell and Peter M. Chen. Free transactions with rio vista. In
SOSP, 1997.

Jihang Liu and Shimin Chen. Initial experience with 3d xpoint main
memory. In ICDE, 2019.

Jihwan Lee, Won Gi Choi, Doyoung Kim, Hanseung Sung, and
Sanghyun Park. TLSM: tiered log-structured merge-tree utilizing non-
volatile memory. IEEE Access, 2020.

Jihang Liu, Shimin Chen, and Lujun Wang. Lb+-trees: Optimizing per-
sistent index performance on 3dxpoint memory. VLDB, 2020.

Lucas Lersch. Leveraging Non-Volatile Memory in Modern Storage Man-
agement Architectures. PhD thesis, Dresden University of Technology,
Germany, 2021.

Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neu-
mann. Leanstore: In-memory data management beyond main memory.
In ICDE, 2018.

Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and
Thomas Willhalm. Evaluating persistent memory range indexes. VLDB,
2019.

Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. Dash: Scal-
able hashing on persistent memory. VLDB, 2020.

68

BIBLIOGRAPHY

[LIMB09]

[Liul7]

[LKN13]

[LLO19]

[LLS13]

[LLS+17]

[LMK*19]

[LOLS17]

[Lom18]

[Lom19]

[LOSL17]

[LSOL20]

[McC]

[MHL92]

[MKM12]

[NCC*19]

Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Archi-
tecting phase change memory as a scalable dram alternative. In ISCA,
2009.

Qingyue Liu. Ouroboros wear-leveling: a two-level hierarchical wear-leveling
model for NVRAM. PhD thesis, 2017.

Viktor Leis, Alfons Kemper, and Thomas Neumann. The adaptive radix
tree: Artful indexing for main-memory databases. In ICDE, 2013.

Lucas Lersch, Wolfgang Lehner, and Ismail Oukid. Persistent buffer
management with optimistic consistency. In Thomas Neumann and Ken
Salem, editors, DaMoN, 2019.

Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. The bw-
tree: A b-tree for new hardware platforms. In ICDE, 2013.

Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and
Sam H. Noh. WORT: Write optimal radix tree for persistent memory
storage systems. In USENIX FAST, 2017.

Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. Recipe: converting concurrent DRAM indexes to
persistent-memory indexes. In SOSP, 2019.

Lucas Lersch, Ismail Oukid, Wolfgang Lehner, and Ivan Schreter. An
analysis of LSM caching in NVRAM. In DaMoN, 2017.

David B. Lomet. Cost/performance in modern data stores: how data
caching systems succeed. In DaMoN, 2018.

David B. Lomet. Cost/performance in modern data stores: How data
caching systems succeed. In ICDE, 2019.

Lucas Lersch, Ismail Oukid, Ivan Schreter, and Wolfgang Lehner. Re-
thinking DRAM caching for Isms in an NVRAM environment. In AD-
BIS, 2017.

Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolfgang Lehner. En-
abling low tail latency on multicore key-value stores. PVLDB, 2020.

John C. McCallum. Memory prices 1957+. https://jcmit.net/
memoryprice.htm. Accessed: 2021-06-08.

C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Pe-
ter M. Schwarz. ARIES: A transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-ahead log-
ging. ACM Trans. Database Syst., 1992.

Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache crafti-
ness for fast multicore key-value storage. In Pascal Felber, Frank Bellosa,
and Herbert Bos, editors, EuroSys, 2012.

Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H. Noh, and Beom-
seok Nam. FAST. 2019.

https://jcmit.net/memoryprice.htm
https://jcmit.net/memoryprice.htm

BIBLIOGRAPHY 69

[NF20]

[NH12]

[NIK+17]

[OBL*14]

[OBLL16]

[OLN"16]

[Ouk18]

[Ouk19]

[PAAT17]

[PMD]

[QKF+09]

[QSR]

[RBB'08]

[RKK*14]

Thomas Neumann and Michael J. Freitag. Umbra: A disk-based system
with in-memory performance. In CIDR, 2020.

Dushyanth Narayanan and Orion Hodson. Whole-system persistence.
In ASPLOS, 2012.

Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III,
Dhruva R. Chakrabarti, and Michael L. Scott. Dali: A periodically per-
sistent hash map. In DISC, 2017.

Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and
Thomas Willhalm. SOFORT: A hybrid SCM-DRAM storage engine for
fast data recovery. In DaMoN, 2014.

Ismail Oukid, Daniel Booss, Adrien Lespinasse, and Wolfgang Lehner.
On testing persistent-memory-based software. In DaMoN, 2016.

Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. FPTree: A hybrid SCM-DRAM persistent and con-
current b-tree for storage class memory. In SIGMOD, 2016.

Ismail Oukid. Architectural Principles for Database Systems on Storage-
Class Memory. PhD thesis, Dresden University of Technology, Germany,
2018.

Ismail Oukid. Architectural principles for database systems on storage-
class memory. In BTW, 2019.

Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin
Ma, Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Sid-
dharth Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi
Wang, Yingjun Wu, Ran Xian, and Tieying Zhang. Self-driving database
management systems. In CIDR, 2017.

PMDK: Persistent memory development kit. http://www.pmem.io. Ac-
cessed: 2021-06-20.

Moinuddin K. Qureshi, John P. Karidis, Michele Franceschini, Vijayalak-
shmi Srinivasan, Luis A. Lastras, and Biilent Abali. Enhancing lifetime
and security of PCM-based main memory with start-gap wear leveling.
In (MICRO-42, 2009.

Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers.
Scalable high performance main memory system using phase-change
memory technology. In ISCA), year = 2009,.

Simone Raoux, Geoffrey W. Burr, Matthew]. Breitwisch, Charles T. Ret-
tner, Yi-Chou Chen, Robert M. Shelby, Martin Salinga, Daniel Krebs,
Shih-Hung Chen, Hsiang-Lan Lung, and Chung Hon Lam. Phase-
change random access memory: A scalable technology. IBM |. Res. Dev.,
52, 2008.

Dulloor Subramanya Rao, Sanjay Kumar, Anil S. Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System soft-
ware for persistent memory. In EuroSys, 2014.

http://www.pmem.io

70

BIBLIOGRAPHY

[SDUP15]

[SSSWOS]

[Sto]

[TD]
[val]

[VMCL15]

[VN45]
[VRLK*18]

[VRVL*19]

[VRVL*20]

[VIRC11]

[VTS11]

[WAA19]

[WCO08]

[Weba]

[Webb]

David Schwalb, Markus Dreseler, Matthias Uflacker, and Hasso Plat-
tner. Nvc-hashmap: A persistent and concurrent hashmap for non-
volatile memories. In IMDM, 2015.

Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley
Williams. The missing memristor found. nature, 453, 2008.

Michael Stonebraker. How hardware drives the shape of
databases to come. https://www.nextplatform.com/2017/08/15/
hardware-drives-shape-databases-come/. Accessed: 2017-11-02.

Universitat Trier and Schloss Dagstuhl. Digital bibliography & library
project. https://dblp.org/. Accessed: 2021-08-01.

Valgrind. https://www.valgrind.org/. Accessed: 2021-06-20.

Haris Volos, Guilherme Magalhaes, Ludmila Cherkasova, and Jun Li.
Quartz: A lightweight performance emulator for persistent memory
software. In Proceedings of the 16th Annual Middleware Conference, 2015.

John von Neumann. First draft of a report on the EDVAC. 1945.

Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann,
Takushi Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mit-
suru Sato. Managing non-volatile memory in database systems. In SIG-
MOD, 2018.

Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and
Alfons Kemper. Persistent memory I/O primitives. In DaMoN, 2019.

Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and
Alfons Kemper. Building blocks for persistent memory. VLDB]., 2020.

Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and
Roy H. Campbell. Consistent and durable data structures for non-
volatile byte-addressable memory. In USENIX FAST, 2011.

Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:
Lightweight persistent memory. In ASPLOS, 2011.

Kan Wu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Towards an unwritten contract of intel optane SSD. In Daniel Peek and
Gala Yadgar, editors, USENIX HotStorage, 2019.

R. Clint Whaley and Anthony M. Castaldo. Achieving accurate and
context-sensitive timing for code optimization. Softw. Pract. Exp., 2008.

Intel Website. Intel optane technology delivers new lev-
els of endurance. https://www.intel.com/content/wuw/
us/en/architecture-and-technology/optane-technology/

delivering-new-levels-of-endurance-article-brief.html. Ac-

cessed: 2021-06-10.

SQLite Website. Most widely deployed and used database engine.
https://sqlite.org/mostdeployed.html. Accessed: 2020-09-30.

https://www.nextplatform.com/2017/08/15/hardware-drives-shape-databases-come/
https://www.nextplatform.com/2017/08/15/hardware-drives-shape-databases-come/
https://dblp.org/
https://www.valgrind.org/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/delivering-new-levels-of-endurance-article-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/delivering-new-levels-of-endurance-article-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/delivering-new-levels-of-endurance-article-brief.html
https://sqlite.org/mostdeployed.html

BIBLIOGRAPHY 71

[WLL18]

[WLZ*21]

[WQR13]

[WRK*10]

[X]XS17]

[XS16]

[XZM*17]

[YCJ+21]

[YKH*20]

[You07]

[YWC*15]

[ZAPC21]

[ZH18]

Tianzheng Wang, Justin J. Levandoski, and Per-Ake Larson. Easy lock-
free indexing in non-volatile memory. In ICDE, 2018.

Haitao Wang, Zhanhuai Li, Xiao Zhang, Xiaonan Zhao, and Song Jiang.
WOBTree: a write-optimized b+-tree for non-volatile memory. Frontiers
Comput. Sci., 2021.

XiaoJian Wu, Sheng Qiu, and A. L. Narasimha Reddy. SCMFS: A file
system for storage class memory and its extensions. ACM Trans. Storage,
2013.

H.-S. Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P.
Reifenberg, Bipin Rajendran, Mehdi Asheghi, and Kenneth E. Goodson.
Phase change memory. Proc. IEEE, 2010.

Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. HiKV: A hybrid index
key-value store for DRAM-NVM memory systems. In Dilma Da Silva
and Bryan Ford, editors, USENIX ATC, 2017.

Jian Xu and Steven Swanson. NOVA: A log-structured file system for
hybrid volatile/non-volatile main memories. In USENIX FAST, 2016.

Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadhara-
iah, Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy
Rudoff. NOVA-Fortis: A fault-tolerant non-volatile main memory file
system. In SOSP, 2017.

Baoyue Yan, Xuntao Cheng, Bo Jiang, Shibin Chen, Canfang Shang,
Jianying Wang, Kenry Huang, Xinjun Yang, Wei Cao, and Feifei Li. Re-
visiting the design of lsm-tree based OLTP storage engine with persis-
tent memory. VLDB, 2021.

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steven Swanson. An empirical guide to the behavior and use of scalable
persistent memory. In Sam H. Noh and Brent Welch, editors, USENIX
FAST, 2020.

Matt T. Yourst. PTLsim: A cycle accurate full system x86-64 microar-
chitectural simulator. In IEEE International Symposium on Performance
Analysis of Systems and Software. IEEE Computer Society, 2007.

Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. N'V-Tree: Reducing consistency cost for nvm-
based single level systems. In USENIX FAST, 2015.

Xinjing Zhou, Joy Arulraj, Andrew Pavlo, and David Cohen. Spitfire: A
three-tier buffer manager for volatile and non-volatile memory. In Guo-
liang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava, editors,
SIGMOD, 2021.

Pengfei Zuo and Yu Hua. A write-friendly and cache-optimized hashing
scheme for non-volatile memory systems. IEEE Trans. Parallel Distributed
Syst., 2018.

72 BIBLIOGRAPHY

[ZHW18] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and high-
performance hashing index scheme for persistent memory. In OSDI,
2018.

[ZLJW20] Junchen Zhang, Yongping Luo, Peiquan Jin, and Shouhong Wan. Opti-
mizing adaptive radix trees for nvm-based hybrid memory architecture.
In IEEE International Conference on Big Data, 2020.

[ZSC*19] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. Dptree:
Differential indexing for persistent memory. Proc. VLDB Endow., 2019.

	Abstract
	Introduction
	Persistent Memory
	Definition
	Characteristics
	Challenges
	Opportunities

	Research Methodology
	Experimental Setup and Methods
	Evaluation Platforms

	Related Work
	Persistent Memory Development Kit (PMDK)
	B-Tree-like Index Structures
	Database Architectures

	Paper 1: Managing Non-Volatile Memory in Database Systems
	Paper 2: Building Blocks for Persistent Memory

