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Abstract—The rapid development of microfluidic biochips
requires matching automated synthesis methods. In particular,
high-level synthesis methods for microfluidic chips need to
consider various bio-constraints regarding time and device occu-
pancy. Recent biochemical applications show that the duration
of some bio-operations cannot be predicted in advance, which
increases the likelihood that current synthesis methods would
waste on-chip resources or even violate given bio-constraints.
In this work, we present a relative-scheduling-based high-level
synthesis method to optimize the bio-assay schedules and the
usage of on-chip devices considering bio-operations with inde-
terminate durations. Experimental results show that our method
significantly reduces the total execution time of bioassays without
violating bio-constraints when using the same on-chip resources.

I. INTRODUCTION

A flow-based microfluidic biochip is a lab-on-a-chip (LoC)
that integrates multiple miniaturized devices into a coin-sized
fluidic circuit. It enables different fluidic operations to be
performed in parallel with different reagents at submillimeter
scale [1], and is used for numerous high-throughput applica-
tions covering in situ click chemistry [2], synthetic biology [3],
cell culturing [4] and protein analysis [5].

High-level synthesis (HLS) of flow-based microfluidic bio-
chips from bio-assay protocols has been known as an efficient
design methodology [6]. Similar to HLS of electronic circuits,
scheduling and binding are the two primary tasks in HLS of
flow-based biochips. The goal of scheduling and binding in
flow-based biochip design is to improve the efficiency of the
target assay and the biochip in terms of assay duration and
the number of on-chip devices. It is worth noting that the
scheduling and binding results need to strictly satisfy potential
bio-constraints.

Traditional HLS methods mostly assume that for a given
bio-assay, the duration of each fluidic operation is fixed and
can be known prior to the execution of the assay. This
assumption, however, does not always hold. For example,
some fluidic operations such as single-cell isolation have a
certain chance to fail. In order to achieve the target products,
the operations may need to be repeated multiple times and
their exact duration remains unknown at design time [7].
The unknown duration does not only bring indeterminacy to
scheduling, but also increases the difficulty in binding, as it is
not clear to the designer when the devices occupied by these
operations can be available for binding again.

What makes this indeterminacy more crucial is that there
are sometimes strict time-constraints on the delay between two
dependent operations. For example, some operations involve
reagents that are prone to over-reaction, and therefore require
their succeeding operations to start within short time after

the reagents have been treated [8]. Without modelling the
indeterminacy in the scheduling methods, the synthesized
results are likely to violate the time-constraints.

We present in this paper a high-level synthesis method
based on relative scheduling to prevent the potential conflict
caused by indeterminate duration and time constraints. Given
the sequencing graph of a bio-assay, our method automatic-
ally synthesizes a high-level description of the required on-
chip devices, schedules the fluidic operations, and binds the
operations to the synthesized devices. We formally model
the time dependency between operations with indeterminate
duration and their succeeding operations, so that we can in-
tegrate the indeterminacy into a comprehensive mixed-integer
linear programming (MILP) model to optimize the time- and
resource efficiency of the target application. We investigate the
performance of our HLS method with real-world test cases and
show that our method significantly reduces the total duration
of bio-assays without violating time- and device-constraints.

II. RELATED WORK

Minhass et al. proposed a series of early architectural
synthesis works [9], [10], [11] for flow-based microfluidic
biochips that set many standards for later HLS research. These
works assume that a bioassay and a library of on-chip devices
are given and perform resource constrained list-scheduling
and binding. To this end, each operation was marked with an
explicit duration and assigned to a fixed slot in the schedule.
Later HLS research mostly adopted this problem formulation
and added several practical constraints to the synthesis process.
Tseng et al. [12] and Liu et al. [13] investigated the storage
of intermediate assay products. Li et al. [14] modelled imme-
diate execution, which requires two dependent operations to
be scheduled one-after-the-other without delay. Our method
considers these constraints and in particular, we generalize
the immediate execution constraint to a time constraint that
specifies a given upper bound on the delay between two
dependent operations.

Li et al. [15] proposed to model on-chip devices with
a combinable device library to enable flexible binding op-
tions. Besides, [15] considered operations with indeterminate
duration for the first time. Two heuristic algorithms were
applied to divide bio-assays that involve such operations into
multiple sub-assays, and thereby operations with indeterminate
duration can be scheduled to the end of each sub-assay without
competing for resources with other operations. However,
this method cannot correctly model the storage- and time-
constraints, and the division of the assay leads to suboptimal
synthesis results. In this work, we adopt the combinable device
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library from [15]. Instead of dividing the synthesis problem,
we introduced a time property called nominal schedule to
model the indeterminate delay between dependent operations
and solve the HLS problem as a whole.

Ku et al. [16] proposed a relative scheduling method to
schedule operations with unbounded execution delays for
digital application-specific integrated circuits (ASICs). Given
a sequencing graph of dependent operations and time con-
straints, [16] introduced a property called well-posedness to
detect and resolve potential conflicts caused by the unbounded
execution delay. In this work, we adapt the well-posedness
check proposed in [16] to microfluidic scenario as a prepro-
cessing step before HLS.

Taking the preprocessed sequencing graph as an input, we
propose to perform scheduling and binding simultaneously
to optimize the time and resource efficiency of a flow-based
biochip application. In particular, we formally model the time
and device dependency between sequential operations with an
integer linear programming method to synthesize conflict-free
scheduling and binding results. To improve the efficiency of
the synthesis, we propose two heuristic methods to reduce the
search space of our model.

III. PROBLEM STATEMENT

We model a bio-assay as a sequencing graph, in which
vertices represent fluidic operations and edges represent the
dependency between operations. Specifically, there are two
types of operations: operations with fixed duration, which
are represented as single-line vertices, and operations with
indeterminate duration, which are represented as double-line
vertices. Besides, if there are time constraints on the delay
between two dependent operations, we will integrate the
constraints into the sequencing graph by adding a dotted edge
from the child vertex to the parent vertex.

o1

o3 o4

o2

Figure 1: An example of the input sequencing graph

Figure 1(a) shows an example of the input sequencing
graph. The target bio-assay consists of four operations, among
which o1 and o2 are operations with indeterminate duration,
and o3 and o4 are operations with fixed duration. There is
a time constraint on the delay between o3 and o4, which
requires that the start time of o4 must be no later than the
end time of o3 plus a given delay upper bound. Note that
the duration of each operation and the delay upper bound are
also given as input of the HLS problem. For operations with
indeterminate duration, their duration is modelled as the sum
of their minimum duration and an indeterminate delay.

Besides time constraints, we assume that the input also
specifies for each operation its device requirement, including
the size, shape, and integrated components of the required

on-chip device. This requirement can be modelled with the
component-oriented device library proposed in [15].

The goal of our HLS approach is to synthesize:
• a logic description of the required flow-based microfluidic

biochip, including the number and the specifications of
the on-chip devices and their logic connections;

• a binding solution that specifies for each operation an
on-chip device to execute the operation;

• a schedule of the bio-assay that specifies the start time
of each operation. If the target assay involves operations
with indeterminate duration, the start time should be
specified relative to the indeterminate duration.

The synthesized scheduling and binding results must satisfy
all device- and time-constraints. Besides, the number of on-
chip devices and the total duration of the assay should be
minimized.

IV. PREPROCESSING

A time constraint on dependent operations may not be
satisfiable if the start time of the child operation depends on
the completion of an operation with indeterminate duration.

For example, in the sequencing graph shown in Figure 1, if
we denote the start time of o3 and o4 as t3 and t4, the duration
of o3 as τ3, and the upper bound of the delay between the end
time of o3 and the start time of o4 as c, the time constraint
represented by the dotted line can be formulated as:

t4≤ t3+τ3+c. (1)

However, as o4 is also the child operation of o2, it can only
start after o2 ends. If we denote the start time of o2 as t2
and the duration of o2 as τ2+δ2, in which τ2 is the minimum
duration of o2 and δ2 is the indeterminate delay of o2, the
dependency between o2 and o4 can be formulated as:

t2+τ2+δ2≤ t4. (2)

Thus, whether the time constraint is satisfiable depends on
whether the following inequation can be satisfied:

t2+τ2+δ2≤ t3+τ3+c. (3)

As the left-hand side of the inequation contains an indeterm-
inate delay δ2, and a scheduling method can only manage t2
and t3, no scheduling method can guarantee the satisfiability
of this constraint.

o1
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Figure 2: A revised sequencing graph.

In order to synthesize feasible scheduling results despite the
indeterminacy, we revise the sequencing graph by adding an
auxiliary dependency between o2 and o3, as shown in Figure 2,
in which the auxiliary dependency is represented by a dashed



directed edge. By adding this dependency, we require that o3
can only start after the completion of o2, i.e.

t2+τ2+δ2≤ t3, (4)

and thus make sure that constraint (3) is always satisfied,
which further ensures that the indeterminate duration will not
harm the satisfiability of the time constraint.

The above described approach was adopted from the ap-
proach proposed in [16] for resolving similar conflicts in
electronic circuit design. Specifically, given an acyclic graph
G=(V,E) and a set A⊆V of vertices representing operations
with indeterminate duration1, [16] introduced a property called
well-posedness. A directed edge (i,j) is considered well-posed
if there is no vertex v∈A that is a predecessor of i but not
a predecessor of j. If all edges in the graph are well-posed,
the graph is free from satisfiability concerns caused by the
indeterminacy.

For example, in Figure 1, edge (o4,o3) is not well-posed,
because o2, as an operation with indeterminate duration, is a
predecessor of o4 but not a predecessor of o3. This indicates
that the satisfiability of the time constraint modelled by (o4,o3)
is dependent on the indeterminate duration of o2. By adding
an extra dependency from o2 to o3, as shown in Figure 2,
(o4,o3) becomes well-posed and the concern is thus resolved.

We implement this well-posedness check to revise the input
sequencing graph before starting the HLS process. With the
revised graph as the new input, we propose a mathematical
modelling method to synthesize the scheduling and binding
solutions.

V. METHOD

We model the HLS problem for flow-based microfluidic bio-
chips with mixed-integer linear programming. For the sake of
simplicity, we refer to operations with indeterminate duration
as indeterminate operations.

A. Nominal Schedule

For bio-assays that involve indeterminate operations, we
introduce a time property called nominal schedule to exclude
the indeterminacy in the model. Specifically, we consider a
bio-assay as a combination of sequential determinate execution
stages. Between two neighboring determinate execution stages,
there is an indeterminate gap which refers to the indeterminate
delay of the operations that start in the earlier determinate
execution stage.

For example, Figure 3 illustrates a possible schedule for the
input sequencing graph shown in Figure 2. The assay consists
of two determinate execution stages: operations o1 and o2 start
in stage 1; operations o3 and o4 start in stage 2. Between
stage 1 and stage 2, there is an indeterminate gap ∆1, which
represents the potential delay of o1 and o2. In other words, we
model the actual completion time of o1 and o2 as the duration
of stage 1 added with ∆1.

By introducing the indeterminate gap, we are able to model
the start time of operations that are the successors of inde-
terminate operations. For example, the start time of o3 can be
modelled as τ2+∆1, in which τ2 is the duration as well as the
completion time of stage 1, and ∆1 is the indeterminate gap

1originally formulated as ”unbounded execution delay” in [16].
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Figure 3: An example of the input sequencing graph

between stage 1 and stage 2. Similarly, the start time of o4 can
be modelled as τ2+∆1+τ3, in which τ3 is the duration of o3.
The completion time of both stages τ2 and τ2+∆1+τ3+τ4
are determined by the end time of the latest operation in each
determinate execution stage.

In this manner, we can model the actual duration of an assay
as the sum of the duration of all determinate execution stages
and all the indeterminate gaps between stages. For example,
the total duration of the assay shown in Figure 3 is modelled
as τ2+∆1+τ3+τ4, in which τ2 is the duration of stage 1; ∆1

is the indeterminate gap, and τ3+τ4 is the duration of stage
2. This is also the completion time of stage 2 in this example.
We notice that in this model, if we put aside the indeterminate
part that we cannot control, the duration of the assay depends
only on the duration of the determinate execution stages. Thus,
the optimization of the actual schedule can be simplified as
optimizing the total duration of the determinate execution
stages.

In contrast to the actual schedule of an assay, we introduce a
nominal schedule which puts aside the indeterminate gaps and
only models the determinate execution stages. For example,
in contrast to the actual completion time of o1, which is τ1+
δ1, the nominal completion time of o1 is τ1. Similarly, the
nominal completion time of o2, o3 and o4 is τ2, τ2+τ3, and
τ2+τ3+τ4, respectively. Thus, the nominal duration of the
whole assay is τ2+τ3+τ4, which is the completion time of
the latest operation. In order to get the actual schedule of an
operation, we just need to add the indeterminate gaps back to
the nominal schedule. For example, in Figure 3, since there is
an indeterminate gap ∆1 before stage 2, the actual completion
time of o3 in stage 2 is τ2+τ3+∆1.

As a conclusion, when we add the indeterminate gaps back
to the nominal schedule, we get exactly the actual schedule
of the assay. Thus, we can focus on optimizing the nominal
schedule despite the indeterminacy of the assay.

B. Mathematical Model

We introduce a set O for all operations specified in the given
assay, and a subset O⊆O for all indeterminate operations
specified in the assay. The notations of variables and constants
in our model are listed in Table I. In particular, we represent
binary variables with b and integer variables with v.

1) Assignment of the determinate execution stages

Since determinate execution stages are separated by inde-
terminate gaps, which is shaped by at least one indeterminate



Table I: Notation of Variables and Constants

Binary Variables

operation-stage-mapping bstageo,k

operation-device-mapping bdeviceo,j

same-device-indicator bsame device
o1,o2

auxiliary variables q1,q2,...

Integer Variables

operation-stage-index vs id
o

stage completion time vTk
operation start time vto

occupation start time vd.starto

occupation end time vd.end
o

product transportation time vtrans
p,c

Constants

operation duration τo

product exportation time θ

very large integer M

operation, an assay can have at most |O|+1 determinate
execution stages, where |O| is the number of indeterminate
operations in the assay.

To model the stage assignment, we introduce |O|+1 binary
variables bstage

o,k for each operation o∈O with 1≤k≤|O|+1.
bstage
o,k =1 indicates that operation o is assigned to stage k.

To model that each operation must be assigned to exactly
one determinate execution stage, we introduce the following
constraint:

∀o∈O :
∑

1≤k≤|O|+1

bstage
o,k =1. (5)

Besides, we introduce an integer variable vs id
o to model

the exact stage index of operation o∈O with the following
constraint:

vs id
o =

∑
1≤k≤|O|+1

k ·bstage
o,k . (6)

For example, if operation o3 is assigned to stage 2, bstage
o,2 will

be set to 1, while bstage
o,1 , bstage

o,3 , ···, bstage
o,|O|+1 will be set to 0. Thus,

vs id
o will be calculated as 0·1+1·2+0·3+···+0·(|O|+1)=2.

To model the completion time of each determinate execution
stage, we introduce |O|+2 integer variables vTk for 0≤k≤
|O|+1. In particular, vT0 is introduced as an auxiliary variable
and its value is constantly set to 0.

We introduce the following constraint to model that the
determinate exectuion stages are sequentially ordered:

∀1≤k≤|O|+1: vTk−1≤vTk . (7)

To model the start time of each operation o ∈O, we
introduce an integer variable vto. We introduce the following
constraints to model that if an operation is assigned to stage
k, its nominal start time and completion time must be within
the range of [vTk−1,v

T
k ]:

∀1≤k≤|O|+1: vTk−1≤vto+(1−bstage
o,k )·M, (8)

vTk ≥vto+τo−(1−bstage
o,k )·M, (9)

in which τo is a constant representing the given duration
operation o and M is an extremely large auxiliary constant.
If an operation o is assigned to stage k, bstage

o,k will be set to 1,
thus, constraints (8) and (9) become:

vTk−1≤vto, vTk ≥vto+τo, (10)

which confine the range of the start and the completion time
of o. On the other hand, if operation o is not assigned to stage
k, i.e. bstage

o,k =0, constraints (8) and (9) will become:

vTk−1≤vto+M, vTk ≥vto+τo−M. (11)

Since M is an extremely large constant, these constraints are
always satisfied and thus do not confine the nominal schedule
of o.

Since the duration of indeterminate operations cannot be
predicted, we introduce the following constraint to assume that
an indeterminate operation will be in progress till the end of
the corresponding execution stage:

∀o∈O ∀1≤k≤|O|+1:vto+τo+(1−bstage
o,k )·M≥vTk . (12)

If indeterminate operation o is assigned to stage k, i.e. bstage
o,k =

1, constraint (12) is equivalent to:

vto+τo≥vTk . (13)

As the completion time of o cannot be larger than the com-
pletion time of stage k owing to constraint (9), this constraint
means that the completion time of o is equal to the completion
time of stage k. On the other hand, if operation o is not
assigned to stage k, i.e. bstage

o,k =0, constraint (12) is equivalent
to:

vto+τo+M≥vTk ,

which is a tautology since M is an extremely large constant.
Additionally, since the potential delay of indeterminate

operations is unpredictable but non-negligible, if an indeterm-
inate operation is assigned to a device, the device must be
regarded as occupied till the end of the stage. Take Figure 1
again as an example. o1 and o2 are both indeterminate oper-
ations and both assigned to stage 1 with the same scheduled
start time at 0. The completion time of stage 1 is τ2, dominated
by the nominal completion time of o2. Though the nominal
completion time of o1 is τ1 and τ1<τ2, the device bound by
o1 cannot be regarded as free from the time τ1 to τ2 due to
the indeterminate delay. Consequently, aligning the completion
time of indeterminate operations to the end of their stage
using constraint (12) will not harm the optimality of the stage
completion time in our model. Furthermore, the device bound
to o1 can be released before the start of o1 for other usage.

Moreover, since the end time of an indeterminate operation
is considered identical to the completion time of its execution
stage, if an indeterminate operation p has a child operation c,
c must be executed in a subsequent stage. We formulate the
constraint as:

vs id
p <vs id

c . (14)



2) Operation dependency and storage of intermediate
products

For sequential operations, the products of an earlier opera-
tion may need to be temporarily stored in its current device
if the device of the later operation is not ready for use. In
other words, an operation may occupy its device even after
its completion. For example, suppose that there are three
operations o1, o2 and o3 and two devices A and B: o1 is
bound to device A; o2 and o3 are bound to device B; o1 is
the parent operation of o2; and o3 starts before o2. Suppose
that when o1 is completed, o3 is still in progress and occupies
device B. In this case, the product of o1 cannot be delivered
to device B for o2 to start. Instead, it needs to be temporarily
stored in device A to wait for the completion of o3 despite
the completion of o1.

To accurately model the dynamic device usage during the
assay execution process, we introduce two integer variables
vd.start
o and vd.end

o for each operation o∈O to represent the
time that o starts and ends to occupy a device, respectively.
In particular, we introduce the following constraints to make
sure that the nominal schedule of o is within the range
[vd.start

o ,vd.end
o ]:

vd.start
o ≤vto, (15)

vd.end
o ≥vto+τo. (16)

Besides, if an operation has multiple child operations, dif-
ferent child operations may require the products of the parent
operation at different times. The parent operation will occupy
the device that it is bound to until its latest child operation is
ready to receive the product. For example, suppose that there
is an operation o1 that has two child operations o2 and o3; o1,
o2 and o3 are bound to devices A, B and C, respectively.
At the time when o1 completes, device B is available for
carrying out o2 but device C is occupied by other operations
and cannot carry out o3. In this case, some product of o1 will
keep occupying device A until device C is ready.

Furthermore, we introduce an integer variable vtrans
p,c for each

pair of parent-child operations to model the time that a parent
operation op starts to transport its product to a child operation
oc. Suppose that θ denotes a constant duration to transport a
fluid from one device to another. vtrans

p,c +θ is the latest time that
operation oc starts to occupy its device. We therefore construct
the following constraints:

vtrans
p,c ≥vtp+τp, (17)

vtrans
p,c ≤vd.end

p , (18)

vtrans
p,c +θ ·(1−bsame device

p,c )≥vd.start
c , (19)

vtrans
p,c +θ ·(1−bsame device

p,c )≤vtc. (20)

Constraint (17) describes that the parent operation op can only
send product to its child operation oc when op itself is done,
and constraint (18) describes that op can only send products
to oc when op still occupies the device. The binary variable
bsame device
p,c introduced in constraint (19) indicates whether
op and oc are bound to the same device. With bsame device

p,c ,
constraint (19) describes that if op and oc are bound to different
devices, oc must start to occupy its device before the product of
op arrive at vtrans

p,c +θ. Constraint (20) describes that oc can only

start after it receives all products from its parent operations.
If both op and oc are bound to the same device, bsame device

p,c
will be set to 1, and therefore, constraint (19) and constraint
(20) become:

vtrans
p,c ≥vd.start

c , (21)

vtrans
p,c ≤vtc, (22)

so that the fluid transportation time θ can be saved.
We introduce a set D for all initiated devices. The con-

straints used to confirm whether two operations are bound to
the same device are as follows:

∀dj ∈D : qj≤bdevicep,j , (23)

qj≤bdevicec,j , (24)

bsame device
p,c =

∑
∀dj∈D

qj , (25)

bdevicep,j +bdevicec,j −bsame device
p,c ≤1. (26)

where the binary variable bdeviceo,j =1 indicates that operation o
is bound to device j and qj is an auxiliary variable. Constraints
(23), (24) and (25) describes that if parent operation op and
child operation oc are bound to different devices, at least one
of bdevicep,j and bdevicec,j must be 0. Consequently, all qj and then
bsame device
p,c must be set to 0.

Nevertheless, when both operations op and oc are bound
to the same device dj , the auxiliary variable qj may still be
set to 0 according constraints (23) and (24). To prevent this
situation, constraint (26) is introduced. If both operations op
and oc are bound to the same device dj , both variables bdevicep,j

and bdevicec,j , and consequently the variable bsame device
p,c , must

be set to 1.

3) Upper bound of the delay between dependent operations

If an upper bound is specified for the delay between two
dependent operations op and oc, i.e. oc must start within a
given time π after the completion of op, we need to ensure that
op and oc are assigned to the same determinate execution stage
to prevent that the upper bound is violated by the indeterminate
gap. To note is that the duration of the parent operation op
should be determinate. To this end, we introduce the following
constraints:

vs id
p =vs id

c , (27)

vtc≥vtp+τp+π. (28)

4) Device conflicts and device consistency

Besides the above introduced constraints, we also need to
introduce some device-related constraints to prevent operations
that have overlapping schedules from being bound to the same
device.

We prevent overlapping schedules by applying the following
constraints:

∀oa,ob∈O,
vd.starta +(1−q1)·M≥vd.endb , (29)

vd.startb +(1−q2)·M≥vd.enda , (30)

q1+q2 =bsame device
a,b . (31)



Algorithm 1: Device specification
settledOperations: set of settled operations;
specDeviceOperation: map of specified

device-operation pairs;
O: set of all operations;
D: set of all initiated devices;
isDeviceConflict(o1,o2): function returns binary

value, TRUE if both operations cannot be
executed in the same device due to their
requirements;

init undirected graph G;
for oi in O do

G.addVertex(oi)
for oa,ob in O do

if isDeviceConflict(oa,ob) then
G.addEdge(oa,ob)

settledOperations=findMaxClique(G);

deviceIndex=1;
for so in settledOperations do

specDeviceOperation[deviceIndex]=so;
deviceIndex+=1;

for oi in O do
if oi is in settledOperations then

bdevicei,specDeviceOperation.find(i) =1;
for dj in D\ {specDeviceOperation.find(i)}

do
bdevicei,j =0;

where M is an extremely large auxiliary constant. q1 and
q2 are auxiliary variables, one of which has to be set to 1
according to (31) if two operations oa and ob are bound to the
same device.

For example, suppose that operation a and operation b are
bound to the same device. In this case, the auxiliary variables
q1 and q2 will be set to 1 and 0, or 0 and 1, respectively,
according to constraint (31). Constraints (29) and (30) will
thus become

vd.starta ≥vd.endb , (32)

vd.startb +M≥vd.enda . (33)

and prevent the overlap of time intervals [vd.start
a ,vd.end

a ] and
[vd.start

b ,vd.end
b ].

Device consistency means that an operation can only be
bound to a device that satisfies all its requirements. For
example, some operations can only be performed in the
device containing heating units, and some operations cannot
be performed in the device that is too small due to the large
volume of solution required. Related constraints are widely
applied in many conventional HLS models [14], [15], [17],
[18], and thus we omit an exhaustive description of them in
this paper.

5) Modelling objective

We can model the total duration of the nominal schedule as
the completion time of the last determinate execution stage, i.e.

Algorithm 2: Minimum-stage calculation
O: set of all operations;
oi.modified predecessors: set of modified
predecessors of operation oi. The predecessors
can be defined by the bio-assay itself or the
pre-processing;
oi.min stage: variable indicating the minimum
stage of operation oi;

for oi in O do
oi.min stage=1;
set tempSet;
for opre in oi.modified predecessors do

if opre is indeterminate then
tempSet.insert(opre.min stage);

if tempSet not empty then
oi.min stage=
max(oi.min stage,max(tempSet)+1);

for s id in range(1,oi.min stage) do
bstagei,sid

=0;

vT|O|+1. It is noteworthy that if several indeterminate operations
have been assigned to the same determinate execution stage,
the number of actual stages may be smaller than |O|+1. In this
case, the duration of the redundant stages will be automatically
set to 0 by the MILP solver, and vT|O|+1 will be equal to the
completion time of the last stage with non-zero duration.

Thus, we set the objective of our MILP model as follows:

Minimize: α·vT|O|+1+β ·vd, (34)

in which vd stands for the number of used on-chip devices
and is modelled with the device-related constraints. α and β
are adjustable weight coefficients which allow us to control
the optimization priority.

C. Problem Space Reduction

Solving an MILP model is NP-hard for an optimization
problem. To ensure the efficiency of our method, we propose
two approaches to trim the redundant problem space without
harming the optimality of our solutions.

1) Device specification

We propose an algorithm to estimate the least number of
required devices considering bio-assay-specified constraints.
The core idea is to detect operations that must be performed
in different devices. First, we detect operations with different
device requirements, such as volumes, shapes, and accessories
like heating units. In particular, operations with mutually
exclusive device requirements must be assigned to different
devices. For example, among all the operations, if there are
an operation that needs a ring-shaped mixer as its container
and another operation that needs a reaction chamber as its
container, we need to prepare at least one ring-shaped mixer
and one reaction chamber to perform the assay. Second, we
detect operations that need to be performed with overlapping
schedules, such as in parallel. These operations also need to



be assigned to different devices. Any operations that should be
assigned to different devices are said to be mutually exclusive.

The detailed steps of our algorithm are shown in Algorithm
1. Specifically, we first create an undirected empty graph G
and insert all operations as vertices into G. If two operations
are mutually exclusive, we add an edge between the vertices
representing the two operations. If G contains a clique con-
sisting of n vertices, we need to prepare at least n devices
to execute all the operations. The maximal cliques can be
found by several algorithms such as Enumeration algorithm
and Bron–Kerbosch algorithm [19].

In addition to estimating the least number of required
devices, our algorithm can also be used for model reduction.
Specifically, when we construct the n devices for the n
operations in the maximal clique, we also determine their bind-
ing relation so that some operation-device-mapping variables
bdeviceo,j are set to constant values. Note that this determination
will not harm the optimality of our solutions, considering that
each operation eventually has to be assigned to a device that
meets all the requirements. Besides, if an operation is bound
to a device, it means that the other devices will not be used to
carry out this operation. We thereby set some more variables
to constants.

2) Earliest-stage calculation

In our method, we create determinate execution stages and
assign operations to the stages. Here, we propose an algorithm
to calculate the earliest stage that an operation can be assigned
to. The algorithm is described in Algorithm 2. Specifically, if a
parent operation op is determinate, its child operation oc can
be assigned to the stage that op is assigned to, but if op is
indeterminate, oc can only be assigned to the next stage at the
earliest. Based on this observation, we apply BFS to check all
the operations in the sequencing graph. For an operation o1,
if all its predecessors are determinate operations, the earliest
stage that o1 can be assigned to is the first stage. If o1 itself
is an indeterminate operation and it has a child operation o2,
then the earliest stage that o2 can be assigned to is the second
stage. Similarly, if o2 is an indeterminate operation and it has a
child operation o3, the earliest stage that o3 can be assigned to
is the third stage. By applying this algorithm, some operation-
stage-mapping variables bstageo,k and other related variables can
be set to constants.

VI. EXPERIMENTAL RESULTS

We implemented our algorithm in C++ and run it on a
computer with 2.9GHz CPU. The mathematical model was
solved by the MILP solver Gurobi.

We compared our method with the state of the art HLS
method proposed in [15], which was also the only method
that could model operations with indeterminate duration. In
addition, we compared our method with the representative
HLS method proposed in [9], which however could not
support indeterminate operations. To enable the method of
[9] to support indeterminate operations, we integrated the
modification algorithm in [15] to the method. We applied our
input preprocessing approach to revise the sequencing graph
so that the methods could deliver feasible scheduling results.
Since the state of the art methods did not consider the storage
of indeterminate products, there were potential risks that the

Table II: Three Real-World Flow-Based Biochip Applications

name of application # of operations # of indeterminate operations
kinase [20] 8 0
cDNA [21] 6 1

RTqPCR [22] 6 1

binding results synthesized by the state of the art method might
not be feasible. We ignored this concern regarding the state of
the art method in our following comparisons.

As shown in table II, we tested the HLS methods with
three real-world flow-based biochip applications: kinase [20],
which consists of 8 operations and no indeterminate operation;
cDNA [21], which consists of 6 operations including one
indeterminate operation; and RTqPCR [22], which consists of
6 operations including one indeterminate operation. We replic-
ated each assay multiple times to investigate the performance
of the HLS methods at different scales. In our experiments,
each synthesis was done within two hours, and thus we omit
the program runtime information in the tables and figures for
simplicity. Figure 4 shows the comparison results.

Specifically, we compare the number of used devices and the
total duration of the assay under the same device constraints.
In order to compare the performance of the methods in the case
of a sufficient number of devices, we set the initial number of
devices to be far greater than the minimum feasible device
number. For the kinase assay which does not involve any
indeterminate operation, our synthesis results are comparable
to the state of the art method [15], while the method [9]
needs more total duration. Our method uses slightly more
devices or requires longer duration for some test cases, because
we accurately model the storage of intermediate products,
which is neglected by the state of the art method. For the
other two test cases that involve indeterminate operations, our
method achieves up to 40% improvement in minimizing the
assay duration compared to the state of the art method [15].
Specifically, in the second case, cDNA, both methods [15] and
[9] have exactly the same performance on both optimization
metrics. Our method needs the same number of devices, but
our total duration is much shorter than theirs. For the third
test case, our method requires fewer devices when the original
assay is replicated for six, seven, and eight times. Regarding
the total duration, our duration is stable and the minimum,
while the duration of the state of the art method [15] fluctuates.
When the number of indeterminate operations is odd, the total
duration of the state of the art method is greater than when
the number is even. This is because our nominal scheduling
method allows us to synthesize the HLS problem as a whole
and thus we can find the global optimal solution, while the
state of the art method partitions the HLS problem into several
sub-problems and thus can only achieve a combination of local
optimal solutions.

Next, we investigate the performance of the HLS methods
with respect to different device constraints. We replicate the
RTqPCR assay for four times and use the new assay as the
test case. We set the maximum number of devices to 3, 4, 5,
6, 7, and 8, i.e. the number of devices used for the application
cannot exceed these numbers. Figure 5 shows the comparison
results.

Specifically, as our algorithm does not partition the HLS



Figure 4: Comparison between our method and the state of the
art methods for synthesizing each assay at different scales.

problem, we are able to synthesize the devices considering the
whole assay. On the other hand, the state of the art methods
can only synthesize the devices considering each sub-assay,
which limits the maximum capacity of the devices that can be
used for carrying out the assay. Thus, our method in genral
achieves 20%−45% improvement in minimizing the total
duration compared to the state of the art method [15].

At last, we investigate the HLS methods using some syn-
thesized test cases by combining different assays, as shown in
Figure 6. As the operations of the synthesized test cases have
weaker dependencies and diverge more in device requirements,
the optimization space becomes larger. We compare the per-
formance of the methods by limiting the number of devices
to the minimum feasible number for test case. The minimum
feasible number of devices is the least number of devices to
carry out an assay regardless of the total duration. As shown
in Figure 6, the minimum feasible numbers of devices are the
same for different methods for each synthesized test case. Even
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Figure 5: Comparison between our method and the state of
the art methods for synthesized test cases.
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Figure 6: Comparison between our method and the state of
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with the same number of devices, our method outperforms the
state of the art methods in terms of the total duration. This
demonstrates that our method is generally applicable despite
the variation in dependency and device requirements.

VII. CONCLUSION

In this work, we have proposed a novel high-level synthesis
approach for flow-based microfluidic biochips. Specifically,
we have proposed to revise the input sequencing graph based
on relative scheduling to avoid potential conflicts caused by
indeterminate operations and time constraints. Furthermore,
we have proposed a nominal scheduling approach to model
the high-level synthesis problem as a whole despite the
indeterminacy of operation duration. We also proposed two
model reduction approaches to improve the efficiency of the
synthesis. Our method is guaranteed to achieve the global
optimal solution of the scheduling and binding results. Experi-
mental results have demonstrated that our method significantly
improves the device usage and minimizes the total duration of
the input applications by up to 40%.
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