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   Abstract—The  rise  of  the  Internet  and  identity  authentication
systems  has  brought  convenience  to  people’s  lives  but  has  also
introduced the potential  risk of privacy leaks.  Existing biometric
authentication  systems  based  on  explicit  and static  features  bear
the risk of being attacked by mimicked data. This work proposes
a  highly  efficient  biometric  authentication  system  based  on
transient  eye  blink  signals  that  are  precisely  captured  by  a
neuromorphic  vision  sensor  with  microsecond-level  temporal
resolution.  The  neuromorphic  vision  sensor  only  transmits  the
local  pixel-level  changes  induced  by  the  eye  blinks  when  they
occur,  which  leads  to  advantageous  characteristics  such  as  an
ultra-low  latency  response.  We  first  propose  a  set  of  effective
biometric  features  describing  the  motion,  speed,  energy  and
frequency signal of eye blinks based on the microsecond temporal
resolution  of  event  densities.  We  then  train  the  ensemble  model
and  non-ensemble  model  with  our  NeuroBiometric  dataset  for
biometrics authentication. The experiments show that our system
is able to identify and verify the subjects with the ensemble model
at  an  accuracy  of  0.948  and with  the  non-ensemble  model  at  an
accuracy of  0.925.  The low false  positive  rates  (about  0.002)  and
the  highly  dynamic  features  are  not  only  hard to  reproduce  but
also avoid recording visible characteristics of a user’s appearance.
The  proposed  system  sheds  light  on  a  new  path  towards  safer
authentication using neuromorphic vision sensors.
    Index Terms—Biometrics,  biometric  autentication,  event-based
vision, neuromorphic vision.
 

I.  Introduction

B IOMETRIC  authentication  has  long  been  studied  by
analyzing  people’s  biological  and  behavioral

characteristics. Distinct biological characteristics from various
sensors  have  been  used  as  a  part  of  effective  biometrics  in
practical application scenarios, such as in privacy preservation
and identity recognition. Present systems based on fingerprint
scanners  [1]  or  cameras  [2]  have  enjoyed  great  popularity,
bringing  rapid  development  in  related  researches.  But  some
risks  still  exist,  including  the  risk  that  biometrics  based  on
static  physical  appearance  are  easier  to  fake  compared  with
those with highly dynamic features.

Inspired  by  electroencephalogram-based  robotics  control
[3]–[5],  some  research  [6],  [7]  has  focused  on  the  subtle
physiological  behavior  caused  by  bio-electric  currents,
especially  with  eye  movement.  Clearly,  eye  movement
features  consist  of  implicit  and  dynamic  patterns,  and  are
harder  to  artificially  generate.  Thus,  the  system  can  be  less
likely  to  be  spoofed.  These  implicit  dynamic  patterns  of  eye
blink  make  them  unique  in  identity  recognition,  and  are
difficult  to  be  captured  at  a  distance.  In  addition,  eye  blink
features  also  have  several  other  applications,  like  in  eye
detection  and  tracking  [7]  or  face  detection  [8].  Another
crucial  factor  is  the  sensor.  At  present,  an  iris  scanner  [9]
could  be  the  safest  but  its  expensive  cost  prevents  it  from
wider  application.  Another  method  studied  by  [10]  aims  to
utilize  the  electro-oculogram  (EOG)  with  the  Neurosky
Mindwave  headset  to  study  the  detected  voltage  changes
caused  by  blinks.  However,  wearing  the  devices  poses  a
certain interference with spontaneous blinking, which hinders
user convenience and exacerbates system complexity.

In  this  paper,  we  introduce  a  neuromorphic  vision-based
biometric  authentication  system,  incorporating  microsecond
level  event-driven  eye-blinking  characteristics.  The  main
device  in  our  system is  a  DAVIS  sensor  [11],  a  bio-inspired
dynamic vision sensor that works completely differently with
conventional  ones.  While  a  conventional  camera  records  the
entire  image  frames  at  a  fixed  frame  rate,  a  DAVIS  sensor
only  captures  and  transmits  the  intensity  changes  of  pixels
asynchronously caused by any subtle motions in a scene. Once
a  change  reaches  a  certain  threshold,  the  pixel  will  instantly
emit a signal called an event. Compared with other biometric
authentication  sensors,  it  has  no  direct  contact  with  the
subjects  and  is  purely  passive  that  it  only  captures  triggered
events  instead  of  radiating  rays.  In  this  work,  the  processing
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procedures are as follows: we first sum up the events for each
recording with a sliding window and then fit  a  median curve
to  describe  dynamic  features  in  time  and  frequency  domain.
After  that,  we  conduct  a  feature  selection  and  train  an
ensemble model and a non-ensemble model for authentication.
And  the  dataset1 will  be  available  online  to  encourage  the
comparison of any authentication method with this work.

The major contributions of our work can be summarized in
the following three aspects:

1)  Proposing  the  first-ever  neuromorphic  sensor-based
biometric  authentication  system.  It  is  capable  of  capturing
subtle  changes  of  human  eye  blinks  in  microsecond  level
latency which traditional CMOS cameras can not.

2) Constructing a series of new features out of our biometric
data  (eye  blinks):  duration  features,  speed  features,  energy
features, ratio features, and frequency features.

3)  The  system  provides  effective  feature  selection  and
identity  recognition  approaches  in  authentication,  and  it  is
proved to be robust and secure with a very low false-positive
rate. 

II.  Related Work

Existing explicit and static biometric authentication features
could  be  less  difficult  to  mimick  and  may  pose  a  threat  to
people’s privacy and security. To pursue more secure systems,
researchers proposed several implicit biometrics identification
approaches  [12],  [13].  Among  all  the  bio-signals,  eye
movement signals are relatively simpler to process in terms of
data  acquisition,  and  usually  utilizes  EOG  and  video-
oculography  (VOG)  to  study  biometric  authentication
systems. 

A.  EOG Based Methods
Researches  involving  EOG  based  methods  mainly  transfer

electrode  change  information  from  eyeball  rotation  into
biometric features with a head-mounted detector. The features
are  further  utilized to  train  learning models  for  the  biometric
authentication system. Reference [10] states that the biometric
features  that  describe  eye  blink  energy  are  important  for  the
identification of subjects. In [14], they adopt Shannon entropy
(SE)  to  extract  features  for  fast  EEG-based  person
identification.  [15]  proposes  a  discrete  wavelet  transform-
based feature extraction scheme for the classification of EEG
signals.  Reference  [16]  uses  the  Hilbert  transform  to  extract
the  average  phase-locking  values,  the  average  instantaneous
amplitudes  and  spectral  power  from  EEG  signals.  In  recent
works,  authentication  of  [17]  is  based  on  features  extracted
from eye blinking wave forms. Features used by [6] are made
up  of  event-related  potentials  generated  from  rapid  serial
visual  presentation  diagrams  and  morphological  features
extracted  from  eye  blinking  data.  In  addition  to  the  feature
extraction  process,  feature  selection  is  also  crucial  to  ensure
the  accuracy  and  effectiveness  of  the  system.  Reference  [18]
applies  feature  selection  approaches  like  discrete  Fourier
transform  coefficients  in  authentication  scenarios.  The
authentication  system  based  on  EOG  often  has  better

accuracy.  However,  it  is  only  acceptable  in  very  limited
scenarios like in the hospital because all subjects have to wear
a head-mounted device for long-duration records, which is not
practical in daily use. 

B.  VOG Based Methods
VOG based methods mainly achieve identity authentication

via  eye  detection  and  iris  recognition  with  images  clipped
from videos.  In the work [19],  the system detects iris  centers
on  low-resolution  images  in  the  visible  spectrum  with  an
efficient  two-stage  algorithm.  Reference  [20]  develops  a
general framework based on fixation density maps (FDMs) for
the  representation  of  eye  movements  recorded  under  the
influence  of  a  dynamic  visual  stimulus  with  commercial  iris
recognition devices. Another work [21] proposes and trains a
mixed  convolutional  and  residual  network  for  the  eye
recognition  task,  which  improves  the  system’s  anti-fake
capability.  Reference  [22]  provides  a  non-contact  technique
based on high-speed recording of the light reflected by eyelid
in  the  blinking  process  for  feature  extraction  and
authentication.  Reference  [23]  evaluates  features  generated
from  eye  fixations  and  saccades  with  linear  discriminant
analysis  (LDA).  But  identification  and  verification  based  on
VOG  have  an  unavoidable  defect.  Common  VOG  sensors
work at  a  fixed frame rate  so  it  is  difficult  to  achieve  a  very
high  time  resolution.  This  can  result  in  motion  blur  when
capturing  highly  dynamic  motions  like  a  blink.  Also,
capturing and transmitting the entire image frame continously
lowers the efficiency that the system can achieve. 

C.  Neuromorphic Vision Methods and Applications
The  DAVIS  sensor  is  an  emerging  bio-inspired

neuromorphic vision sensor that records the intensity changes
of  pixels  caused  by  motions  in  a  scene  asynchronously.  The
differences  between  conventional  cameras  and  neuromorphic
vision  sensors  are  depicted  in Fig. 1.  Compared  with  a
conventional  frame-based  camera,  it  has  significantly  higher
time  resolution  and  lower  latency  [24]–[26]  places  a  DAVIS
sensor  on  a  moving  pan-tilt  unit  on  a  robotic  platform  to
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Fig. 1.     The  differences  between  conventional  cameras  and  neuromorphic
vision  sensors.  A  green  ball  is  rotating  around  a  centering  black  ball.  (a)  A
conventional  camera  captures  all  pixel  intensities  at  a  fixed  frame rate,  e.g.,
black ball and green ball with motion blur. (b) A neuromorphic vision sensor
captures  only  intensity  changes  caused  by  the  motions  of  the  green  ball
asynchronously.
 

  
1 https://github.com/ispc-lab/NeuroBiometrics
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recognize fan-like objects. Reference [27] proposes a method
to  detect  faces  based  on  eye  blink  signals  recorded  with  a
DAVIS sensor. A comprehensive review of applications with
the DAVIS sensor is addressed in [28], [29]. 

III.  Approach

In  this  section,  we  first  illustrate  the  neuromorphic
biometrics  dataset.  Then  we  introduce  the  signal  processing
techniques and the extraction process of biometric features. 

A.  Neurmorphic Biometrics Dataset
To study the biometric authentication system with an event-

based neuromorphic vision sensor, we collected a new dataset
with eye blink signals  recorded by the DAVIS sensor named
NeuroBiometric  dataset.  The  DAVIS  sensor  we  used  is
DAVIS346,  which  has  a  resolution  of  346  ×  260  pixels,  a
temporal resolution of 1 μs and an outstanding dynamic range
(up to 140 dB). We have 45 volunteers (of whom, 23 are men
and  22  are  women)  to  participate  in  our  recording.  All  the
volunteers  are  in  a  normal  psychological  and  physiological
state.

The  dataset  collection  is  conducted  during  the  day  in  an
indoor  environment  with  natural  light  exposure.  Here,  the
light  intensity  is  approximately 1200 LUX.  The  value  is
measured  by  a  photometer  and  we  observe  that  the  light
intensity has limited influence on the authentication quality as
long  as  the  dataset  is  collected  under  the  natural  light  of  the
day. This is because proper event sequences can be generated
by  adjusting  the  aperture  through  the  camera  or  the  contrast
sensitivity  of  the  event  camera  (an  adjustable  parameter
relative to the event threshold) through the software kit, even
though  the  number  of  triggered  events  has  a  positive
correlation with light intensity.  Not to mention that the event
camera  has  a  higher  dynamic  range  compared  to  traditional
camera  (more  than  120  dB  versus  60  dB)  and  the  dynamic
range  of  the  natural  light  intensity  at  the  same  place  is  not
very high during a day.

Subjects  are  instructed  to  sit  in  front  of  a  DAVIS  sensor
with their head on a bracket for stabilization, then gaze ahead
and blink spontaneously.  Only the  facial  region that  includes
the  eyebrow  and  eye  is  recorded  by  the  DAVIS  sensor.  An
additional  60  seconds  of  break  time  after  every  120  seconds
recording  is  implemented  to  avoid  unusual  eye  blinks  due  to
potential  fatigue  and  distraction.  Each  subject  has  performed
at  least  4  blinking  sessions.  In  this  work,  we  select  480
seconds  (8  minutes)  of  valid  spontaneous  eye  blink  data  for
each  subject.  These  blinks  rate  varies  from  10  to  36  times
every minute, and the duration ranges from 250 to 500 ms. 

B.  Neurmorphic Signal Processing

c = d(logI)/dt

1)  Presentation  of  Event  and  Event  Density: The  DAVIS
sensor is a high-speed dynamic vision sensor that is sensitive
to intensity changes. Formally, each pixel circuit of a DAVIS
sensor  tracks the temporal  contrast  defined as ,
which  is  the  gradient  of  the  log-intensity  of  the  incoming
light.  Increase  of  light  intensity  generates  an  ON  event  (or
positive event), an OFF event (or negative event) is caused by
reduced  light  intensity.  An  event  will  be  triggered  when  the

(ts, x,y, p)
ts

(x,y) p

temporal contrast exceeds a threshold in either direction. Each
event  is  represented  by  a  4-dimensional  tuple ,
where  is the timestamp when an event is triggered at pixel
coordinates ;  is  the  polarity  of  the  event  (i.e.,
brightness increase (“ON”) or decrease (“OFF”)). The DAVIS
sensor  has  a  microsecond  level  accuracy,  and  a  typical  eye
blink can generate 50 K–200 K events.

e1,e2, ...,en
t1, t2, ..., tn

T DT W
D =
∑ j

x=i ex,T ≤ ti < ti+1 < · · · < t j < T +W

The original event data stream is a sequence of events sorted
by  time,  in  which  every  event  is  represented  by  a  4-d  tuple
mentioned above. The sequence of events could be described
as  a  series  of  events  with  corresponding
timestamps . We slide a particular window along the
time axis to select a certain number of events and define event
density  as  the  event  counts  in  the  window.  The timestamp is
marked by the absolute timestamp of the first event included.
Our  experiment  is  conducted  based  on  the  curves  between
event  density  and  the  timestamp.  Set  the  event  density  of
timestamp  as ,  and  the  windows  size  as ,

 Due  to  the  high
precision of the DAVIS sensor, we calculate the event density
in a window size of 10 ms. Figs. 2 and 3 show an example of
eye blink event density stream.
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Fig. 2.     (a) A 60-second raw event stream of eye blinks. (b) Event frames
sliced from raw blink stream, where positive events are in red and negative
events in green. (c) ON (positive) event frames sliced from raw blink stream.
(d) OFF (negative) event frames sliced from raw blink stream (better viewed
in color).
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Fig. 3.     Event density of a series of eye blinks, in the type of OFF event
(green line), ON event (red line), and overlay event of both (blue line). Those
curves are denoised (better viewed in color).
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2)  Filtration  and  Curve  Smoothing: Fig. 4 shows  the
original blink signal of different subjects recording at different
times. We observe that features like maximum peak value and
blink  duration  and  so  on  are  different  among  subjects.  The
maximum peak value and the  blink duration of  the  curves  in
both Figs. 4(c) and 4(d) are larger than those in 4(a) and 4(b).
However,  the  curve  is  not  smooth  enough  to  extract  features
so  that  we  propose  a  signal  processing  algorithm  named
filtration  and  curve  smoothing  to  smooth  the  curve. Fig. 5(a)
shows  a  sequence  of  event  density  data  with  an  eye  blink.
Ideally, few events are supposed to be triggered when there is
no  eye  blink.  However  high  frequency  and  low  energy  light
fluctuation cannot be averted completely. In the course of our
experiment,  noises  are  even  stronger  under  an  incandescent
light  condition.  We  apply  neighbor  pixel  communication
(NPC) filtering as a filtration algorithm to the DAVIS sensor.
The NPC structure is  designed to judge the validity of pixels
activity  through  the  communication  between  its  adjacent
pixels.  The  communication  of  adjacent  pixels  can  be
described  as  a  array,  where  is  odd.  The  validity  of
the central pixel is determined if the total amount of events in
the  array exceeds a defined threshold of  (in the order
of pixel). In this work,  and .

Fig. 5(b) shows the result of the NPC filtration algorithm as
a  comparison  to  the  initial  event  density  stream  as Fig. 5(a).

w w
w = 5

Additionally, a simple smoothing algorithm is also introduced
here,  which  replaces  each  point  of  the  event  density  curve
with  the  average  of  nearby  points,  where  is  a  positive
integer  called  the  smooth  width.  In  our  work, ,  and  the
time  unit  is  2  ms. Fig. 5(c) shows  the  effect  of  our  curve
smoothing  method.  In  combination  of  both  the  event  NPC
filtration and the smoothing method, Fig. 5(d) shows the event
density curve for the biometric feature extraction. 

C.  Neuro-Biometric Feature Extraction
Though eye blink frequency and speed can be significantly

influenced  by  emotion,  fatigue,  level  of  focus,  age  and  light
condition, spontaneous eye blink under a normal physical and
emotional  state  and  moderate  illumination  intensity  can  be
relatively  stable  to  one  specific  individual,  especially  when
focusing  on  the  pattern  of  eyelid  movement  during  a  single
eye blink.

Fig. 3 shows  an  event  density  stream  of  60  s  of  eye  blink
data. Since the DAVIS sensor can only detect changes of light
intensity,  few  events  would  be  triggered  when  eyes  are
gazing.  When  an  eye  blink  starts,  the  upper  eyelid  moving
downwards and actives most pixels around the eyelid and the
eyelash.  In  this  work,  eye  blink  dynamic  features  extracted
from eye blink signals are generally based on the active event
density  during  eye  blinks.  Just  as Fig. 6 shows,  4  curves
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Fig. 4.     Original eye blink signals of (a) subject A recorded early; (b) subject A recorded late; (c) subject B recorded early; (d) subject B recorded late (better
viewed in color).
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(named  ON,  OFF,  Overlap,  and  Splice  curve,  respectively)
between  event  density  and  timestamp  are  generated  to
describe the active event density. The ON curve represents its
event  density  and  is  the  summation  of  ON  events  in  the
sliding window while the OFF curve sums only OFF events as
its event density. Overlap events equals the summation of the
ON  curve  and  OFF  curve.  The  splice  curve  is  a  joint  curve
between the ON curve during the closure and the OFF curve
during the re-opening.

Regarding  the  single  eye  blink  event  density  stream  in
Fig. 7(a), the curve reaches two peaks: one during eye closing
and one during eye reopening. The lowest point between two
peaks  implies  a  fleeting  state  of  closed  eye  between  eye
closing  and  eye  reopening.  The  biological  principle  lying
behind the two peaks is brightness difference between eyelid,
iris and sclera. The sclera is brighter than the upper eyelid but
the upper  eyelid is  much brighter  than the iris.  Both ON and
OFF  events  are  triggered  during  the  whole  eye-blinking
movement.  The  iris  can  be  regarded  as  a  black  disk.  The
brightness  change  caused  by  the  upper  eyelid  transient
movement can be regarded as a horizontal  line,  the length of
which (iris plus sclera) increases until the middle after which
it reduces. This leads to two peaks in the blinking pattern. And
the  first  peak  is  higher  than  the  second  one  due  to  the  faster
rate of eye closure.

1)  Eye  Blink  Stage  Detection: Eye  blink  stage  can  be
intuitively divided into eye closing and eye re-opening. These
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Fig. 5.     Eye blink event density curves with (a) neither filtration nor smoothing; (b) NPC filtration; (c) a smoothing method with a window size of 10 ms; (d)
both filtration and smoothing method (better viewed in color).
 

 

6

4

2

0
0 50

le2

ON curve OFF curve

Time unit: 2 ms     1200 LUX
(a)

Ev
en

t d
en

si
ty

100 150 200 250 350 400300

6

4

2

0
0 50

le2
Overlap curve Splice curve

Time unit: 2 ms     1200 LUX
(b)

Ev
en

t d
en

si
ty

100 150 200 250 350 400300

 
Fig. 6.     (a)  ON  curve:  ON  event  density  stream  of  eye  blink.  OFF  curve:
OFF event density stream of eye blink. (b) Overlap curve: overlap stream of
eye blink contains both OFF and ON events. Splice curve: Spliced stream of
eye blink includes only OFF events during eye closing and ON events during
eye re-opening (better viewed in color).
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two  stages  of  eye  movement  have  many  similar  and
complementary features. The physical motion of the eye blink
can be divided into eye closing and eye reopening. During eye
closing,  the  upper  eyelid  moves  towards  the  lower  eyelid.
Negative  events  that  are  caused  by  the  eyelid  moving
downwards  generally  appear  in  higher  latitudes  than  positive
events do. Then after a short period of the eye closed state, the
eyelid moves upwards again and causes more positive events.
Based  on  the  opposite  movement  of  the  eyelid,  eye  closing,
and  eye  reopening  could  be  distinguished  by  the  distribution
of event polarity triggered by the DAVIS sensor.

With eye closing and eye re-opening, one thing in common
is  that  the  speed  of  eyelid  movement  raises  from  0  to  a
maximum, and then slows down to 0 again. Thus, there must
be  a  maximum  peak  of  event  density  during  both  the  eye
closing stream and eye re-opening stream. Significantly, both
of  the  maximum  peaks  can  be  influenced  by  the  width  and
thickness of the eyelid or the length of an eyelash.

3%−100%

In  addition  to  what  is  mentioned  above,  we  must  set  a
proper  boundary  of  the  eye  blink  event  density  curve.  We
propose that the threshold for a valid eye blink curve contains

 intensity of the maximum value in a series of eye
blink  data.  Event  density  under  the  threshold  would  be
considered as invalid noise.

P1
P2 P3

P4 P5

In this work, the five points mentioned in Fig. 7(b), namely,
the start of eye closing ( ), maximum peak of the eye closing
( ),  middle  of  eye  closed  state  ( ),  maximum peak  of  eye
re-opening ( ), and end of eye re-opening ( ), are critical to
the feature extraction of the eye blink event density stream.

2) Eye Blink Features: A set  of 21 basic features extracted
from  the  eye  blink  event  density  stream  (henceforth  referred
to  as eye  blink  stream)  are  used  for  further  derivation  and
feature selection. Basic features are grouped into 5 groups. A
detailed description of basic features can be found in Table I.
The explanations of these features are as below:

a) Duration features: Duration features describing the time
scales of different eye blink stages are shown in Fig. 7(a). The

Dc Dr
P1 P3 P3

P5 Ic
P1 P2

Ir
P3 P4

Lm

duration of an eye blink is defined as D, where  and  are
the duration of eye closing (  to ) and eye re-opening (
to ). In more detail,  is the projection on x-axis from start
of eye closing ( ) to the maximum peak of eye closing ( ),
while  is  the  projection  on  the x-axis  from eye  closed  state
( )  to  the  maximum  peak  of  eye  re-opening  ( ).  Another
duration  feature  calculates  the  projection  on  the x-axis  bet-
ween the eye closing peak and re-opening peak defined as .

Mc Mr
Ac Ar Mc/Ic Mr/Ir S c

S r

b) Energy features: Energy features of an eye blink stream
contain amplitudes, area and tangents in the curve. We define
M as  amplitude,  where  the  amplitude  of  the  eye  closing  and
eye  re-opening  maximum  peak  is  defined  as  and .
Tangent value ,  is defined as , .  calculates
the area between the eye closing stream and x-axis,  while 
calculates  the area between the eye re-opening stream and x-
axis. Illustration can be found in Fig. 7(b).

RL
Lm/D Rm

Mc/Mr Rs S c/S r

c)  Ratio  features: Ratio  features  describe  proportions  of
different  types  of  features.  The  proportion  of  time  is
defined as , while proportion of amplitude  is defined
as  and area ratio  is defined as .

d)  Frequency  features: Frequency  features  are  calculated
from  the  frequency  domain  transformed  from  an  eye  blink
stream  using  a  fast  Fourier  transform  (FFT)  algorithm.  Peak
amplitude  and  half-waveform  peak  amplitude  are  defined  as

 

TABLE I  
Summary of Dynamic Features Extracted From Eye Blink

Event Density Stream

Group Symbol Description

Duration

D Duration of eye blink

Dc Closure duration of eye blink
Dr Reopening duration of eye blink
Lm Projection on x-axis between the eye closing

peak and eye reopening peak
Ic Projection on x-axis between the start of eye

closing and eye closing peak
Ir Projection on x-axis between the start of eye

reopening and eye reopening peak

Energy

Mc Amplitude of eye closing peak
Mr Amplitude of eye reopening peak
Ac Angle between eye closing peak and x-axis
Ar Angle between eye reopening peak and x-axis
S c Area between eye closing curve and x-axis
S r Area between eye reopening curve and x-axis

Ratio

RL LmThe ratio of  to D
RM Mc MrThe ratio of  to 
RS S c S rThe ratio of  to 

Frequency

Fp FFT peak amplitude
HFp FFT half-waveform peak amplitude
Fa FFT arithmetic mean amplitude

Fmin FFT waveform minimum
R f Fp HFpRatio of  to ∑

f Fp HFpSum of  and 

Speed
Tm Mean of adjacent events time interval on pixel level
Tv Variance of adjacent events time interval

on pixel level
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Fig. 7.     The  visualization  of  feature  symbols  illustration  in  a  typical  eye
blink event density stream (better viewed in color).
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Fp HFp Fa Fmin
R f

Fp/HFp
∑

f Fp HFp

 and .  is  the  arithmetic  mean  amplitude. 
describes  the  waveform  minimum.  Ratio  is  defined  as

, and the sum  calculates the sum of  and .

(x,y)

Tm Tv

e)  Speed  features: The  features  listed  above  are  generally
based on the event  density  stream of  eye blinks,  while  speed
features  are  based  on  the  raw  data  recorded  by  the  DAVIS
sensor.  Regarding  a  pixel  identified  by  a  2-dim  coordinate

,  events  located  on  that  pixel  are  likely  to  be  triggered
more than once in  a  period (like  1  ms).  By assembling these
events  head-to-tail  in  sequence,  the  timestamp  intervals  of
these  events  indicate  how  fast  the  lightening  condition
changes  on  a  pixel-level.  The  parameters  related  to  the
distribution of time interval are regarded as speed features of
the  human  eye  blink.  The  mean  and  variance  of  adjacent
events time intervals on pixel-level are defined as  and .

3)  Derivation  of  Features: Basic  features  of  a  blinking
pattern  are  made up of  15 features  in  the  time domain and 6
features  in  frequency domain.  However,  blinks  vary  from 10
to  36  times  in  each  segment  of  our  dataset  so  that  we  select
the maximum, minimum and average values of each feature in
the  time  domain  to  extend  15  features  to  45.  Until  now,  45
features  in  time  domain  and  6  features  in  frequency  domain
are extracted from a single curve containing a certain number
of blinks.  In addition,  when processing the event  density,  we
generate  4  curves  from  4  different  types  of  density  streams,
namely, a positive event density stream (ON curve), negative
eye blink stream (OFF curve), spliced eye blink stream (Splice
curve),  and  overlapped  eye  blink  stream  (Overlap  curve).
Therefore, 51 features are quadrupled to form a feature set of
204  candidates.  Visualization  of  the  4  types  of  event  stream
can be found in Figs. 6(a) and 6(b). It is obvious that some of
features  are  highly  correlated.  Therefore,  it  is  necessary  to
conduct some experiments about feature selection to improve
the feature sets. 

IV.  Neurobiometric Feature Selection

To  determine  the  most  significant  features,  we  apply
recursive  feature  elimination  (RFE)  on  the  candidate  set  to
produce  feature  importance  rankings  and  a  reduced  feature
subset.  Then  we  further  compress  the  subset  size  by  two
different  approaches,  one  with  the  Pearson  correlation
coefficients  based  approach  and  the  other  using  a  coefficient
of variation (CoV) based bi-variate analysis. 

A.  Recursive Feature Elimination-Based Approach
First  we  calculate  a  feature  weights  ranking  with  the

recursive feature elimination method, using an estimator (e.g.,
SVM)  that  assigns  weights  to  each  candidate  feature.  We
recursively consider smaller and smaller subsets of features by
pruning  the  least  important  one  until  the  desired  size  is
reached.  During  each  iteration,  the  estimator’s  performance
over  the  subset  can  be  concluded  by  re-training  and  re-
evaluating  several  times  to  ensure  stability.  Then  these  test
points are fitted by a polynomial trend curve and the size of its
extreme point is taken as the new subset size. By doing so, we
select 135 significant features out of 204 candidates. 

B.  Pearson Correlation Coefficient-Based Approach
To  further  compress  the  subset  size  from  step  one,  we

α

xp

conduct  the  Pearson  correlation  coefficient  based  method  by
calculating the Pearson correlation coefficient and its p-value
between  each  pair  of  features.  In  the  matrix  of  feature
correlations,  weaker  correlation  means  they  are  more
independently  distributed.  Thus  feature  pairs  with  a
correlation coefficient higher than r and with a p-value below

 are selected. Then, we sort features by the number of times
each feature been selected in decreasing order. Lastly, the top

 percent features are removed. 

C.  Coefficient of Variation-Based Approach

CoV
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Features  with  more  variation  across  subjects  have  a  better
chance  of  capturing  subjects’ distinctive  information.  And

 can  be  a  good  measure  of  this  variation.  First,  we
calculate  the  mean  and  standard  deviation  for  every
feature  across  subjects,  and  compute .  Then,
we rank all  features  in  descending order  of  their  values
computed  across  all  subjects.  In  addition,  we  compute  the
range  for  each  feature  on  each  subject,
after  which  we  count  the  number  of  subject-  whose  lies
within range . The count reflects the number of subjects that
share  distribution  on  this  feature  and  may  lead  to
misidentification.  Thus,  features  with  lower  counts  are  better
in  distinguishing  subject  pairs.  We  rank  features  in  an
increasing order of their counts. Finally, we average the above
two rankings and only preserve a certain proportion from the
list bottom, removing a  percent of features. 

V.  Identification and Verification
 

A.  Identification Mode
To  evaluate  the  feature  selection  methods  and  the  two

classifiers in identification mode, 10% of the dataset for each
subject is selected to generate the test samples, the identity of
each  testing  subject  is  generated  by  classifiers.  The ACC for
this  experiment  represents  the  fraction  of  subject  identity
predictions that are correct. The ACC is calculated as follows:
 

ACC(i) =
T P+T N

T P+T N +FP+FN
(1)

where TP, TN, FP, FN stand for true positives, true negatives,
false positives, and false negative, respectively. After 10 times
repeat, the average ACC can be calculated as follows:
 

ACCav =
1

10

10∑
i=1

ACC(i). (2)

Besides,  we  evaluate  the  methods  with  a  new  variable,
feature  remain ratio  (FRR),  to  measure  the  remaining feature
number  that  a  feature  selection  approach  preserves.  A  lower
FRR value  means  that  the  system requires  fewer  features  for
authentication.  Hence,  it  is  considered  with  better  efficiency
and usability.
 

FRR =
Fselected

Ftotal
. (3)

In identification mode, ACC is evaluated under a number of
features  that  are  selected  with  the  principle  described  in
Section III.  It  is obvious that the higher ACC and lower FRR
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are, the better the system is. 

B.  Verification Mode
To evaluate the feature selection methods and the classifiers

in  verification  mode,  each  subject  in  the  database  tries  to
access  the  system with  the  true  identity  (the  genuine  identity
in  the  database)  and  false  identity  (one  of  the  remaining
identities in the database), respectively. The evaluation criteria
are  listed  as  follows:  false  positive  rate  (FPR)  defines  the
possibility of an imposter accepted by the proposed system:
 

FPR =
FP

T N +FP
. (4)

False negative rate (FNR)  defines the fraction of a genuine
subject rejected by the proposed system
 

FNR =
FN

FN +T P
. (5)

Obviously, an ideal system should have both lower FPR and
FNR, but higher ACC. In verification mode, FPR and FNR are
evaluated under different number of features that are selected
obeying the principle described in Section III. 

C.  Authentication Models
1)  Authentication  With  Support  Vector  Machine: Support

vector machine is a supervised classifier that is widely used.
Its  kernel  maps  data  from  low-dimension  space  to  higher-

dimension  space.  Different  kernel  functions  results  in  very
different prediction results. We test over four most commonly
used  kernel  functions:  linear  kernel,  polynomial  kernel,  RBF
kernel,  and sigmoid kernel.  Results  show that  a  linear  kernel
SVM  with  a  squared  penalty  parameter  of  0.75,  a  squared
hinge  loss  and  a  one-versus-one  multi-class  strategy  could
achieve  the  best  performance  among  non-ensemble  models.
Thus, this linear SVM is chosen for later experiments.

2)  Authentication  With  Bagging  Linear  Discriminant
Analysis: The  algorithm  uses  a  set  of  LDA  models  as  base-
classifiers to build an ensemble classifier. The LDA model is
a  classifier  with  a  linear  decision  boundary,  generated  by
using  Bayes’ rule.  It  fits  a  Gaussian  density  to  each  class.
Then  each  base  classifier  fits  random  subsets  of  the  dataset
using  the  bagging  (bootstrap  aggregating)  method  and
aggregates  their  predictions,  to  obtain  the  final  prediction.  It
reduces the variance of base estimators through randomization
and aggregation. In the bootstrap sampling, we sample 80% of
samples and 100% of features from the total train set. Then k
LDA  models  are  fitted  using  singular  value  decomposition
accordingly.  The  final  output  identity  of  each  sample  is
determined  by  voting  aggregation.  Though  increasing  the
number of k could enhance the model’s fitting capability at the
cost  of  inflating time consumption,  in  our  experiments,  30 is
taken  as  a  good  compromise  of  computation  speed  and
accuracy. 

VI.  Experiments
 

A.  Parameter Sets
In  this  section,  we  mainly  discuss  how to  find  the  optimal

parameter  set  for  each  procedure  in  the  proposed  algorithm.

Table II summarizes the relative parameters.

N
t w

1)  Filtration  and  Curve  Smoothing: The  hyper  parameters
related  to  filtration  and  curve  smoothing  are  the  number  of
adjacent pixels to communicate , the threshold to determine
the  validity  of  the  central  pixel ,  and  the  smooth  width .
Only  the  facial  region,  including  the  eyebrow  and  ocular
areas, is recorded in the lens area. We regard the lens area as a
two-dimensional tensor. The areas where the event signals are
triggered  by  the  eye  blink  are  concentrated  and  large,  while
the  areas  formed  by  the  noise  triggered  event  signals  are
discrete and small. We test three odd values (3, 5, 7) for N and
consider  the  central  pixel  whose  adjacent  pixels  account  for
more than 1/3 of the area as a valid one. Results show that a 5 × 5
area  with  the  threshold  equaling  to  8  could  achieve  the  best
performance  in  the  filtration  method.  The  time  unit  of  each
frame is 2 ms and the smooth width is 5 in our work.

Nb

sb

sb

2) Feature Extraction: As for the number of blinks ,  we
average  the  features  extracted  from n neighboring eye  blinks
respectively and train the mean with the proposed linear SVM.
The  number  of  blinks  ranges  from  1  to  7.  In Fig. 8(c),  we
observe that with an increase of blinks in a trial, the values of
FNR and FPR draws  nearer,  with FPR largely  remaining
steady and FNR gradually decreasing. At the same time, ACC
climbs  as  the  result  of  more  abundant  user  information.  The
variations  gradually  become  non-significant  when  blink
number reaches 5 and above. Though more blinks bring more
subject  characteristics  for  successful  authentication,  it
becomes  more  inconvenient  and  annoying  for  the  users  to
complete  a  trial.  Therefore,  a  compromise  is  made  to  set  the
number  blinks  to  5  in  a  single  trial.  An  example  showing  5
blinks and its fitting curve can be found in Figs. 9(a) and 9(b).
When it comes to scale of the starting threshold of a blink ,
we  observe  that  the  maximum  peak  of  eye  closing  is  about
100 times the start value of eye closing (shown in Fig. 4) in 4
curves. Therefore, we set  to 0.01.

α

3)  Feature  Selection: To  obtain  the  optimal  parameter  set
for  each  feature  selection  method,  we  first  calculate  the
average  accuracy  and FRR values  from  all  these  subsets.
Statistical  significance  level ,  the  primary  parameter  of

 

TABLE II  
Summary of Hyper Parameters in the Proposed Algorithm

Procedure Symbol Description

Filtration and curve
smoothing

N Number of adjacent pixels to
communicate

t Threshold to determine the validity
of the central pixel

w Smooth width

Feature extraction
Nb Number of blinks to merge as one
sb Scale of the starting threshold during

a blink

Feature selection

kRFE Number of features selected by RFE
xp Percent of redundant features removed

by P90
r ∈ {0.9,0.95}Correlation threshold, r 
α

α = 0.05
Statistical significance level, we use

xc Percent of redundant features removed
by CoV
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α

Pearson  correlation  coefficient-based  method,  determines
whether  the correlation is  obvious or  not.  In this  experiment,
we  set  as  0.05.  The  correlation  is  measured  by  correlation
threshold r,  whose  positive  value  is  the  positive  correlation
among variables. Threshold r varies from 0.9 to 0.95, with an
increase  of  0.01  in  each  trial.  However,  we  obverse  that  the
difference is insignificant among our settings so that we set r
to  0.9.  On  top  of  that,  we  perform  the  graphical  parameter
selection approach, by plotting the correlation graph between
thresholds and the above metrics as shown in Fig. 10.

xp xcWe can observe that as the thresholds of  or  increase,
the  average  accuracy  and FRR gradually  decrease.  And  as
FRR falls,  the accuracy remains largely unaffected until FRR

xp xc

goes  below  10% which  is  when  the  average  accuracy  starts
noticeably dropping. Thresholds  and  of 0.1 achieves the
best average accuracy in most scenarios and thus be chosen in
our evaluation, but when compromising for the less amount of
feature  numbers  (i.e.,  lower FRR),  we  could  even  push  the
threshold  up  to  0.8,  which  means  keeping  only  20  percent
from the already reduced feature set, and still maintaining the
accuracy steady. 

B.  Cross Validation Versus Random Segmentation
To  verify  the  rationality  of  the  data  partition,  we  perform

10-fold cross-validation and random segmentation (RS) on the
data  set,  respectively.  As  for  10-fold  cross-validation,  two
methods are adopted to split the data set, one of which (named
10-fold-A) guarantees the consistency of the sample numbers
for each subject in both the training and testing sets while the
other (named 10-fold-B) selects 10% of the whole data set as
test samples. As for RS, each subject has the same number of
samples  in  each  set.  Of  the  features  selected  by CoV,  all  the
generated  sets  are  trained  with  SVM.  Results  show  that  RS
reaches  the  lowest  accuracy  of  the  three  methods,  around
84%, while those split by 10-fold-B gain the highest accuracy,
about 92%. Meanwhile, the contingency of RS makes models
inaccurate.  When  considering  the  sample  equilibrium,  10-
fold-A with the accuracy of about 87% is chosen as the final
partition method. 

C.  Ensemble Versus Non-Ensemble Authentication
According to the result, we can determine that the proposed

system, i.e.,  SVM with a linear kernel function and the LDA
model, can reject almost all imposters and reach around 87%
accuracy when evaluating acceptance of the genuine users. On
average,  each  user  can  pass  the  authentication  of  the  system
within  0.3  times  of  trial. Fig. 10 shows  that  the  features
selected  by CoV gain  a  higher  accuracy  in  both  the
identification and verification model than Pearson selection in
most cases.

Table III displays the authentication summary with both the
ensemble  model  and  non-ensemble  model.  Both  models  test
the  feature  list  selected  by  RFE, CoV,  and  P90,  where  P90
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Fig. 9.     The visualization of event density curves for 5 eye blinks and their
median fitting curve (better viewed in color).
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Fig. 8.     (a) FNR and FPR across  different  thresholds  for  bagging  linear
discriminant. BC indicates  that  the  feature  sets  are  selected  by CoV and BP
indicates that the feature sets selected by the Pearson correlation coefficient.
(b) FNR and FPR across  different  thresholds  for  SVM.  (c) ACC, FNR,  and
FPR across  different  numbers  of  eye  blinks  in  a  trial  as  in Fig. 9(a)
demonstrated using SVM. SR means that the feature sets are selected only by
RFE approach.
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refers  to  the  Pearson  correlation  coefficient  based  feature
selection  approach  with  a  threshold r of  0.9.  The
authentication context based on the selection method CoV and
P90 can be more concise because the feature set size used by
them  is  already  reduced  by  RFE.  They  also  share  the  same
feature  size  at  the  same  time.  Furthermore,  the  feature  sets
selected by CoV and P90 are similar to each other. This proves
both the selection methods are effective to some degree. From
Table III, we can determine that the ensemble model reaches a
higher ACC and  lower FNR compared  the  other  models  and
that the P90 based method can select better features than CoV
in  the  selection  step  2  of  ensemble  model.  The  system  with
ensemble  model  and  P90  selection  method  presents  a  higher
availability and security (ACC ≈ 0.9481, FNR ≈ 0.1026, FPR ≈
0.0013). 

D.  Error Analysis
In  this  section,  we mainly  evaluate CoV and  P90 methods,

where Table III shows that  the  RFE-only  method has  similar
authentication performance but requires more features to train
with.

We  discuss  the  impact  on  verification  brought  by  altering
thresholds in Figs. 8(a) and 8(b).

Both  figures  present  different  performance  measures  in
varied selection methods with the threshold varying from 0.1
to  0.9.  The  threshold  increases  0.1  at  each  step.  We
introduce FPR and FNR to  represent  the  possibility  of  an
imposter  (with  an  arbitrary  false  identity  included  in  the
dataset) accepted by the system and a genuine subject rejected
by  it.  All  the  subjects  (45  in  total)  share  the  same  ensemble

 

TABLE III  
Authentication Summary of Feature Selection Approaches and Authentication Models. Symbol Meanings: n for

Selected Feature Set Size, N for the Original Feature Set Size, W for Number of Blinks in a Trial

Method
Feature selection Ensemble model Non-ensemble model

n N W ACC FNR FPR ACC FNR FPR

RFE 135 204 5 0.9498 0.0987 0.0016 0.9263 0.0987 0.0016

CoV 121 135 5 0.9479 0.1026 0.0016 0.9257 0.1477 0.0010

P90 121 135 5 0.9481 0.1026 0.0013 0.9242 0.1484 0.0033
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Fig. 10.     (a) FRR and ACC across different thresholds for identification using SVM. CoV refers to the coefficient of variation based feature selection approach.
P90 refers to the Pearson correlation coefficient based feature selection approach with a threshold r of 0.9.  (b) FRR and ACC across different thresholds for
verification using SVM. (c) FRR and ACC across different thresholds for identification using bagging linear discriminant. (d) FRR and ACC across different
thresholds for verification using bagging linear discriminant (better viewed in color).
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and  non-ensemble  models  which  are  trained  to  identify  the
genuine  user.  The  fraction  of  imposter  acceptance  is  nearly
1/45  of  that  of  genuine  user  rejection.  So TN is  higher  than
TP,  leading  to  lower FPR.  Even  though FPR is  much  lower
than FNR and EER (the point where FNR equals to FPR) may
be off  the  chart, FPR and FNR are  both  below 0.2  when the
threshold  is  less  than  0.8.  In  addition,  our  experiments  show
that each user can go through authentication within 0.3 times
of  the  trial.  Therefore,  the  system can  be  accepted. FNR and
FPR of both models have similar values, keeping in line with
the  threshold  varying  from  0.1  to  0.8  and  increasing  rapidly
(except  the FNR of  ensemble  model  with  the CoV
method) when the system removes 90% features.  In addition,
Fig. 10 shows  decreased  accuracy  with  a  threshold  of  0.9.
This  can  be  explained  by  the  fact  that  the  remaining  feature
sets are too small to depict the subject precisely. In Fig. 8(a),
we can observe that the ensemble model using the threshold of
0.7  can  gain  a  lower FPR at  the  cost  of  a  small  increase  in
FNR,  which  would  be  a  good  choice  for  faster  computation
and future utility. In terms of the non-ensemble model, it can
produce a desirable result with a threshold of 0.6 (FNR ≈ 0.15,
FPR ≈ 0.002). 

E.  Number of Subjects

xp

Since  there  is  no  other  open  data  set  to  evaluate  our
proposed  algorithm,  we  reduce  the  number  of  subjects  to
repeat  the  experiments.  The  chosen  system  is  the  ensemble
model and P90 selection method (with a threshold  equals to
0.3),  which  is  proved  to  be  the  most  effective  method  in
Sections VI-C and VI-D. The number of subjects varies from
20 to 45, with an increase of 5 in each step. Fig. 11 shows that
as the number of subjects increases, both the identification and
verification  accuracy  remain  largely  unchanged  while FPR
gradually  decreases.  The  test  with  40  subjects  achieves  the
best  average  identification  and  verification  accuracy.  The
more  subjects  participate  in  the  training,  the  lower FPR is.
Therefore,  our  authentication  system  demonstrates  both
usability and security.
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Fig. 11.     Accuracy  and  FPR  across  different  numbers  of  subjects  for
identification and verification using bagging linear discriminant.
  

VII.  Discussion
 

A.  Event Density Biometric
The  results  show  that  using  the  sole  biometric  of  event

density  can  still  enable  reliable  identity  authentication  with
promising performance. This type of authentication system is
very  easily  equipped,  as  it  only  requires  one  dynamic  vision
sensor to capture natural eye blinks from a subject. 

B.  Usability and Security to Blink Times
The  system’s  usability  and  security  level  is  a  compromise

that  can  be  adjusted  according  to  different  users’ needs  or
application scenarios. By increasing the number of blinks in a
single trial, as ACC increases and FNR decreases, the security
level  is  generally  improved.  However,  the  need  for  more
blinks  adds  to  the  unwillingness  to  perform  such
authentication and thus reduces the system’s overall usability.
Fortunately,  the  critical FPR is  reduced  to  a  very  low  level
and is not significantly changed with different blink numbers.
Therefore, though we have discovered that a blink number of
5 is sufficient and efficient enough in the trade-off, a smaller
number of blinks can also provide enough security guarantee
with a low FPR that rejects most false identity claims. 

C.  System Robustness
The system is proved to be capable of rejecting false claims

in our experiments with low FPR and thus can be considered
robust  against  an identity attack from a living human. As for
facing  synthetic  data  that  resembles  a  living  human,  our
authentication system is still able to function because it is built
using  a  particular  biometric,  the  event  density,  which  comes
with  an  extremely  high  scanning  rate  (e.g.,  500  Hz  in  our
implementation,  and  can  up  to 1000 Hz)  and  low  response
latency.  These  advantages  result  in  outstanding  temporal
resolution  and  enable  the  system  to  capture  and  learn  more
precise details from tested data. Moreover, the use of multiple
event  types  (ON,  OFF,  Overlay,  and  Splice  event  curves)
further  consolidates  the  robustness  of  the  authentication.
However,  discussing  the  performance  of  living  subject
detection is not a focus of this paper, and we may investigate
it in other works. 

D.  Face Movement
Current works only record and process the events triggered

by  eye  blinking  under  conditions  where  the  face  is  still.
However,  blinking,  an  unconscious  movement  triggered  by
biological  currents,  is  more  biologically  meaningful  in  the
field  of  authentication  in  nature  and  more  individually
encrypted  compared  to  other  explicit  biometrics.  Research
based  on  simple  eye  movements  can  better  extract  essential
information.  What’s  more,  judging  from  the  current  state  of
face  recognition  systems,  users  are  comfortable  with  the
requirement  to  keep  their  faces  motionless  when  using  the
systems. As for synthetic movement that is overlapped by face
and eye movements,  we proposed that  eye movement  can be
separated utilizing motion compensation or priori knowledge.
We will investigate this in future works. 

VIII.  Conclusion

Our  work  introduces  the  first-ever  neuromorphic  sensor-
based  human  authentication  system  using  the  easy-capture
biometrics of eye blinks. One neuromorphic sensor such as a
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dynamic vision sensor can be used to accurately identify and
verify  users  with  relatively  simple  computational  processes.
The  detailed  results  show  that  the  system  is  effective  and
efficient  based  on  different  feature  selection  approaches  and
authentication  models.  The  system  only  uses  implicit  and
highly  dynamic  features  of  the  user’s  eye  blinks  at  a
microsecond  level  time  resolution  and  at  an  asynchronous
pixel-level  vision resolution,  which not  only  ensures  security
but  also  avoids  recording  visible  characteristics  of  a  user’s
appearance. This work demonstrates a new way towards safer
authentication  using  neuromorphic  vision  sensors.  In  future
works,  experiments  may  extend  into  the  effects  of  the
temporal  evolution  of  human growth  or  other  changes.  Also,
to improve the system’s robustness against attacks, adversarial
samples  may  be  added  in  the  future  to  provide  more  safety
margin.
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