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Abstract

The online parameter estimation of permanent magnet synchronous machines has been
broadly reported in the literature. However, the parameters estimation accuracy might
suffer due to deficient machine models that neglect saturation and cross-coupling effects.
Furthermore, the availability of the estimated parameters might be subject to the ma-
chine’s excitation. Conversely, the superimposition of signals to improve the estimation
adds acoustic noise or torque pulsations that in some applications are unacceptable.

In this work, a polynomial based nonlinear Permanent Magnet Synchronous Machine
(PMSM) model is introduced. The validity of the proposed expressions is demonstrated
based on finite element analysis simulation results, but also on experimental data by
means of a fast and simple measurement procedure. A solution to the rank deficient
problem reported in the literature for online parameter identification approaches is pro-
vided. Where the polynomial formulation of the saturation and cross-coupling effects
with respect to the dq-axes currents leads to an identification scheme that over several
operating points forms an overdetermined system of equations with a unique solution.
Additionally, an equivalent dq-axes voltage model with two sets of iron loss resistors is
presented to model the influence of the iron losses on the flux-linkages. On the other
hand, the temperature dependency of the permanent magnet flux-linkage and the av-
erage winding resistance is modeled with a lumped-parameter thermal network, which
is derived through a model reduction approach, in order to generate a thermal network
that can be implemented on an embedded system.

To conclude, a hybrid online parameter setup is presented, which comprises the equiv-
alent dq-axes voltage circuit based on the proposed flux-linkage expressions and the ther-
mal model. The hybrid arrangement delivers average winding and magnet temperature
estimates, as well as flux-linkage coefficients and average winding resistance estimates.
A parameter identification algorithm based on constrained optimization in conjunction
with the machine’s thermal model enables the parameter estimation at any load con-
dition, as the thermal model takes over the estimation at machine’s operating regions
with insufficient current or speed excitation an vice-versa.
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Kurzfassung

Die Online-Parameteridentifikation von Permanentmagnet-Synchronmaschinen (PMSM)
wurde relativ oft in der Literatur untersucht. Jedoch leidet die Genauigkeit der geschätz-
ten Parameter, wenn nichtlineare Effekte in den Maschinenmodellen vernachlässigt wer-
den. Darüber hinaus ist die Verfügbarkeit der Parameterschätzungen abhängig von der
Maschinenerregung. Andererseits können kontinuierliche Erregungen durch überlagerte
hochfrequente Signale zu Geräuschentwicklung und unerwünschtem Drehmomentrippel
führen, die in manchen Anwendungen nicht zulässig sind.

In der vorliegenden Arbeit wird ein nichtlineares Polynom-basierendes PMSM-Modell
vorgestellt. Das aufgestellte Flussverkettung-Modell wird anhand von Finite-Elementen-
Simulationsergebnissen und Messdaten validiert. Eine Lösung zu den in der Literatur oft-
mals berichteten unbestimmten Gleichungssystemen in der Online-Parameteridentifika-
tion wird vorgeschlagen. Die polynomische Beschreibung der stromabhängigen Sätti-
gungs- und Kopplungseffekte ermöglicht ein Identifikationsschema, das über mehrere Ar-
beitspunkte ein überbestimmtes Gleichungssystem mit einer eindeutigen Lösung bildet.
Zusätzlich dazu wird ein dq-Ersatzschaltbild mit Eisenverlust-Ersatzwiderständen vor-
geschlagen, um den Einfluss von Eisenverlusten auf die Flussverkettungen über der
Frequenz zu modellieren. Außerdem wird die mittlere Temperaturentwicklung in den
Maschinenwicklungen und Magneten mittels einem thermischen Netzwerkmodell bes-
timmt. Das thermische Modell entsteht aus einem Modellordnungsreduktionsverfahren,
um eine Implementierung in einem eingebetteten System möglich zu machen.

Zum Schluss wird ein Hybrid-Online-Parameteridentifikationsverfahren vorgestellt,
welches aus der Zusammenstellung vom Flussverkettung-basierenden dq-Ersatzschaltbild
und thermischen Netzwerkmodell besteht. Das Hybridverfahren liefert die mittleren
Magnet- und Wicklungstemperaturen, Koeffizienten-Schätzungen der Flussverkettungs-
polynomen und dem Phasenwiderstand. Das Zusammenspiel zwischen dem mit vor-
gegebenen Nebenbedingungen Parameteridentifikationsoptimierungsverfahren und das
thermische Model erlaubt die Parameterbestimmung unabhängig vom Arbeitspunkt, da
das thermischen Netzwerkmodell indirekt die Parameterschätzung bei unzureichendem
Phasenstrom oder Rotor-Geschwindigkeit übernimmt und umgekehrt das Parameteri-
dentifikationsverfahren die Temperaturschätzung macht.
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1 Introduction

Due to the growing demand for more efficient and fault tolerant systems in the auto-
motive industry the parameter estimation of PMSM in embedded systems is gaining
importance. In a specific application like the steering system in passenger cars, the
system’s robustness is relying more and more on model based schemes. The knowledge
of PMSM’s parameters offers the possibility to improve the machine’s output perfor-
mance at all operating points; it opens the door to the development of more robust fault
diagnostic strategies and at higher level it helps for example to have a detailed motor
model for torque assist control in the steering system. The rise of the motor temperature
affects directly parameters such as winding resistances and the rotor flux linkage [2, 3].
These changes on the temperature can be originated by different operating points of the
machine or by changes in the ambient temperature and at the same time temperature
variations may cause significant deviations of the two parameters mentioned before with
respect to the room temperature values captured in the lab. If the system requires a high
fidelity motor model, winding, and rotor temperatures need to be directly measured, it
adds significant cost to the product.

On the other hand magnetic saturation is responsible for variations of the dq-axis in-
ductances [2, 4, 5, 6]. Depending on the application a full identification with respect to
the dq-axis currents may be needed. Parameter estimation of PMSM has been reported
extensively in the literature. One main issue when trying to estimate a set of motor
parameters is the lack of information. This is reflected in the fact the dq-axis model is
described by two equations having four unknown variables. The non-linear characteris-
tics of the machine pose then a challenge for a full parameter identification. Approaches
with additional machine’s excitation [7] or partial parameter identification [8, 9] have
been proposed to deal with deficient rank of the available equations and the current de-
pendency of the non-linear effects. Whereas in the former, the acoustic noise generated
by injected signals poses a problem for noise sensitive applications like a steering system.
However, the superposition of a signal partially solves the estimation of the machine’s
parameters when the machine is inactive or at no load conditions. Nevertheless this
identification is limited to current dependent parameters such as winding resistance or
the inductances, the permanent flux-linkage which is tied to the rotor speed through
the Back Electromotive Force (bemf) voltage cannot be determined with such methods.
Finally, the frequency of the injected signal is typically several times higher than the
machine’s fundamental frequency in order to avoid any interference with the normal
operation of the machine. As a result, the estimated parameters relate to the injected
frequency with its corresponding effects leading to a deviation of the values needed for
the fundamental frequency of operation. Hence a full parameter identification as pro-
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posed in the literature comes with certain trades, either side effects like acoustic noise or
parameters involving additional non-linear components such as frequency dependency
effects.

Besides temperature estimation based on parameter identification, machine thermal
models are employed to estimate the temperature development inside the machine [10].
However, the challenge that arises when using a machine thermal model in an embedded
system is temperature initial conditions, as the machine might be colder or warmer than
any predefined initial temperature of the thermal model.

1.1 Related Work

A variety of machine’s model simplifications have been reported in the literature [11,
12, 13] partly due to limitations on the computational capacity of embedded systems,
where to capture the nonlinear and cross-coupling effects of the dq-axes flux-linkages are
measured for different dq-axes current combinations. The flux-linkage data is saved as a
look-up table to be used in the embedded system. Nevertheless, the trade between mem-
ory and accuracy arises as the flux-linkage data points in the application are typically
obtained through simple linear interpolation methods and a reduced set of elements in
the look-up tables might lead to large errors. Specially when derivatives are needed,
the discretization error can be critical. Model based approaches such as flux-linkage
and current observers, require machine parameters [11] to perform the variables predic-
tion in combination with the flux data saved in look-up tables. The simplest analytical
model is the inductance based one and more advanced models include the cross-coupling
in the form of constant incremental inductances [14]. Considering the aspects already
mentioned, there is no established analytical machine model that includes the non-linear
and cross-coupling effects in the literature. However, there are contributions where the
dq-axes flux-linkages are described by Taylor series, as proposed in [15, 16] for a WFSM
or fourth degree polynomial expressions as presented in [17, 18] for a Interior Permanent
Magnet Synchronous Machine (IPMSM). Nevertheless, the polynomials are formulated
in the generic form with no simplification of coefficients according to the nature of the
flux-linkage surfaces with respect the dq-axes currents. Moreover, the polynomials co-
efficients were only obtained from finite element analysis (FEA) simulation data and
not from experimental data. In a similar fashion, polynomials of different grades have
been proposed to represent the dq-axes inductances of synchronous reluctance by the
authors in [19, 20, 21]. As the modeling approach focuses on the inductances, individ-
ual polynomial expressions for the absolute and incremental inductances are required.
Acknowledging the benefits of working the flux-linkages, because of their inclusion of
nonlinear effects and the possibility of derive the absolute and incremental inductances
from them, it is then crucial the measurement of the flux-linkages, which is widely re-
ported in the literature [4, 22, 23].
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1.1 Related Work

Since the advent of microprocessors, real time estimation of machines parameters or
temperatures has been a topic of research [10]. The interest in online estimation of elec-
tric machines has been pushed by the increasing demand for more efficient and robust
systems, specially in the automotive industry. Real time monitoring of the winding and
magnet temperatures can enable an optimal utilization of the maximum output power of
the machine or it can prevent an over heating of winding wires or the magnets. Similarly,
the estimation of the average winding resistance can be used to detect a failure in the
windings, such as an open circuit condition.

Parameter estimation of PMSMs has been reported extensively in the literature. One
main issue when trying to estimate a set of motor parameters is the limited informa-
tion available. This is reflected in the fact that the dq-axis model is described by two
equations having four unknown variables. Several system identification approaches have
been proposed in order to avoid this problem. In [24] an Extended Kalman Filter (EKF)
is used to determine three parameters, the phase resistance, the torque constant and the
average phase inductance. The algorithm is only active during transients to overcome
the rank-deficiency problem, however, the cross-coupling effects are neglected. An op-
timization algorithm is used in [25] to estimate the dq-axis inductances and the phase
resistance with previous knowledge of the permanent flux. Other kind of approach
involves the use of a Model Reference Adaptive System (MRAS) [8] to estimate the
resistance and the flux of a Surface-Mounted PMSM, where the magnetic saturation is
neglected by assuming the inductance constant. In [9] the q-axis inductance is assumed
constant, the phase resistance, d-axis inductance and the flux linkage are estimated at
specific operation conditions by means of an unknown input observer.

Optimization algorithms like Particle Swarm Optimization (PSO) have been presented
in [26, 27, 28] for parameter identification. In the first approach, four parameters are
determined at different machine operation points and in the second one the dq-axis
inductances are estimated offline by collecting data from different speed, voltages and
load conditions; the phase resistance and permanent flux-linkage are determined with
conventional methods and assumed constant for the estimation of the inductances. The
recursive least squares (RLS) algorithm has been employed extensively in the literature
for parameter identification. The proposed schemed by [2], a two level identification
of the resistance, permanent magnet flux-linkage and the dq-axes inductances was pre-
sented to offer a solution to the underdetermined system of equations. Consequently,
some solutions with RLS use fix parameters like the resistance and permanent flux to
identify the dq-axis inductances [6].

In order to overcome the rank-deficient problem, a signal can be superimposed to the
motor signals. In [29] a sinusoidal signal is injected into the d-axis current providing a full
rank solution for the four parameters estimation. The effects of the inverter non-linearity
are eliminated by using a power amplifier to drive the motor. The four electrical motor
parameters and the Voltage Source Inverter (VSI) non-linear behavior are estimated in
[30] by injecting different d-axis current levels in a steady state scheme. Pseudorandom
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sequence signals are used in [31] to guarantee persistent excitation in order to identify
the dq-axis inductances and the phase resistance. There are also approaches which ad-
dress specific solutions such a torque control as in [32], where the permanent magnet
flux-linkage is estimated with an observer for the special case of id = 0A. However,
parameters like the phase resistance need to be known before hand.

Many authors have proposed online parameter estimation schemes for general pur-
poses, most of the methods involve simplifications assuming some parameters as known,
and other solutions are aimed to improve the performance of a certain control scheme,
like sensorless control, adaptive control or maximum torque per ampere control strate-
gies. Depending on the application it may be acceptable to trade estimation accuracy
for simplicity when implementing such algorithms. However, for applications such as
Steering Systems, the use of active identification algorithms might end up with negative
side effects such as acoustic noise.

1.2 Contributions

1.2.1 Machine Model

This work proposes a solution for two aspects of the electrical machines modeling based
on the work presented by the author in [1]: the first one is the inclusion of saturation
and cross-coupling effects, the second one is the analytical model of those effects. A
generalized formulation of the dq-axes flux-linkages in terms of polynomials for a given
polynomial degree n is presented. Through the analytical description of the flux-linkages,
key parameters like absolute inductances, permanent flux-linkage or incremental induc-
tances are formulated in terms of the dq-axes currents. In particular, the polynomial
description of the dq-axes flux-linkages enables a clear the separation of the non-linear
effects that are rooted in the interaction between the permanent magnet flux-linkage
and the dq-axes currents. The interaction between the q-axis current and the perma-
nent magnet flux-linkage that impacts the torque production can be clearly identified, as
well as the cross-coupling terms between the dq-axes flux-linkages and the associated ab-
solute and incremental inductances. The flux-linkage model accuracy not only depends
on the chosen polynomial degree, but it also offers a straightforward implementation in
an embedded system for model based algorithms which require a machine model. Fur-
thermore, the interaction between winding current and permanent magnet flux-linkage
was modeled in order to take into account the effects of the magnet temperature on
the overall flux-linkage. Moreover, the analytical modeling approach was extended to
WFSMs, where a novel polynomial structure was presented to improve the model’s ac-
curacy when dealing with the strong nonlinear behavior that results from the interaction
between the rotor field winding flux and the armature flux.
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1.2.2 Machine Model Identification

In addition to the theoretical treatment, a fast and simple measurement procedure [1] is
presented in order to identify the polynomials coefficients experimentally, where a model
based approach is used to obtained the dq-axes flux-linkage and winding resistance with-
out previous knowledge of the latter as it is typically proposed in the literature [4, 33].
At a constant speed, current ramps with a duration of 3.6s are proposed to characterize
one quadrant of the machine. In a post-processing step, the polynomials coefficients are
determined showing a high degree of correspondence with the key machine parameters
such as the small signal dq-axes inductances, the open circuit bemf and DC-winding
resistance.

1.2.3 Parameter Estimation

The polynomial based machine model is then used as the foundation of an online param-
eter identification scheme for a PMSM, which is based on voltage and current signals
of the fundamental frequency. The machine’s non-linear effects are then described in
the form of polynomials with constant coefficients and in conjunction with a recursive
estimation scheme it provides a solution to the rank deficient problem. Regardless of
the load conditions, the coefficients that describe the flux-linkage’s cross-coupling and
saturation effects remain constant. Therefore by recollecting the data of several different
operating points a full-rank solution to the estimation problem can be found. Conse-
quently, the temperature dependent parameters such as the winding resistance and the
permanent flux-linkage are treated as constant values for short periods of time compared
to the machine’s thermal time constant. As a result, the parameter variation due to the
average winding and rotor magnets temperatures could be tracked. In order to account
for the speed dependent iron losses that interact with the flux-linkages, two equivalent
loss resistors were employed. The first one represents the magnetizing losses associated
to the dq-axes flux-linkages and the second one models the demagnetizing losses associ-
ated to the current dependent d-axis flux-linkage terms.

1.2.4 Machine Thermal Model

A reduced modeling method was proposed to generate a machine thermal model with-
out the knowledge of the machine’s geometry or materials characteristics. The proposed
approach was applied to an existing large Lumped-parameter thermal network (LPTN)
model and measured data. For a 66 nodes LPTN a maximum temperature deviation of
0.7◦C was achieved using a 13-nodes reduced network. Furthermore, using the generic
formulation of the reduced model, a 6-nodes network was obtained directly from mea-
sured temperature data. It delivered a maximum temperature of 3.4◦C at different test
profiles.
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1.2.5 Hybrid Online Parameter Identification

An online parameter identification algorithm was proposed, that is backed up by a ma-
chine’s thermal model. This hybrid setup seeks to provide a solution to the limitations
of each estimation method. Firstly, the proposed hybrid approach delivers parameter
estimates at any operating condition of the machine, as the thermal model takes over the
estimation of the average winding and magnet temperatures when the machine doesn’t
have enough excitation in terms of phase currents or rotor speed. The average winding
resistance and permanent magnet flux-linkage values are then derived from the corre-
sponding estimated temperatures. Secondly, the parameter estimates, when the machine
is operating in regions with proper excitation, are used to update the thermal model’s
winding and magnet temperatures in case where the identification algorithm started at
an initial thermal condition different to the real machine temperatures.

1.3 Outline

This work starts addressing the analytical model of PMSMs in Chapter 2, providing
general expressions to describe the dq-axes flux-linkage maps of such machines, while
using exemplary machines to illustrate and plot the aforementioned non-linear effects.
This approach, which was already presented by the author of this project in [1], was also
extended to consider permanent magnet remanence variations due to temperature effects
or manufacturing tolerances in this work. Moreover, the modeling approach is extended
to WFSMs where instead of rotor magnets, field coils generate a variable flux-linkage.
Similar to the PMSMs, the non-linear interaction between the dq-axes currents and the
rotor field current can be described in polynomial form.

In Chapter 3 the determination of the polynomial’s coefficients is discussed from an
offline and online perspective. Initially, the FEA models of Chapter 2 are used to demon-
strate the validity of the proposed analytical expressions. Furthermore, a measurement
procedure is presented to capture the flux-linkage information in terms of polynomial
coefficients of the three different PMSMs. In addition, this measurement method was
carried out to determine the coefficients of the flux-linkage expressions of an IPMSM for
different magnet temperatures.

Chapter 4 deals with the extension of the equivalent dq-axes circuit to consider elec-
tromagnetic losses as they interact directly with the flux-linkages. On the other hand,
together with the Joule loss, the iron losses form the set of heat sources of the thermal
model derived in Chapter 5. A model reduction approach was employed to generate
a machine’s thermal model. This method was validated in two steps, firstly using a
complex LPTN of a PMSM, secondly using measured temperature data of the IPMSM
already characterized in Chapter 2. The latter network was then employed to estimate
the average winding and magnet temperatures.
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1.3 Outline

Finally, in Chapter 6 a hybrid online parameter identification is presented. The flux-
linkage expressions of Chapter 3, the equivalent iron loss model of Chapter 4 and the
thermal model of Chapter 5 are combined to form a hybrid estimation scheme. Simulated
data and test bench data of the IPMSM in question are used to asses the performance
of the proposed method.

7





2 Non-Linear Machine Model

Electrical machines are typically described in terms of inductances, which for simplicity
are assumed to be constant. However, at machines with soft magnetic cores, the in-
ductances might exhibit a non-linear behavior. Therefore a model that captures those
non-linear characteristics should be considered.

2.1 Machine Model

The analysis of three phase machines is well documented in the literature [34, 35]. The
bemf, the induced voltage when there is no winding current excitation, is the result of
the magnetic flux produced by rotating magnets. This voltage is derived from Faraday’s
law, the bemf in one winding coil is defined as :

bemf =
dψ

dt
=
dψ

dθr
· dθr
dt

= ωr ·
dψ

dθr
(2.1)

where ψ in (2.1) is the flux-linkage in the coil, which is the product of the N coil turns
linking the magnetic flux φ as shown in (2.2). θr the electrical rotor position and ωr the
electrical angular velocity.

ψ = N · φ (2.2)

A magnetic flux is also created by a current carrying a conductor, such as current flowing
in a wound coil [35]. Being that the case, the flux-linkage per Ampere in the coil is defined
in terms of the inductance L as:

ψ = L · i (2.3)

the relationship (2.3) can then be used to obtain the voltage produced according to
Faraday’s law:

V =
dψ

dt
= L · di

dt
+ i · dL

dt
(2.4)

Nevertheless L in (2.3) can become nonlinear due to saturation effects in the machine’s
core material. This nonlinear relationship between flux-linkage and current leads to dif-
ferent definitions of inductance such as the absolute inductance Labs and the incremental
inductance Linc as expressed in (2.5).

Labs =
ψ

i
Linc =

dψ

di
(2.5)

Fig.2.1 exemplifies a nonlinear flux-linkage curve, the slope of the red line represents an
ideal constant inductance, whereas the slope of the yellow line makes emphasis on the
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incremental inductance at the intersection with the flux-linkage represented by the blue
curve.
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.u
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Flux-linkage vs. Current

Figure 2.1: Flux-Linkage vs. Current

The flux-linkage in each machine phase winding is the sum of flux-linkage contributions
from both magnets and windings. Consequently, the phase voltage is expressed in terms
of the bemf as in (2.1) and the inductance according to (2.4). The voltage equations of
a three phase PMSM’s can be written as:

Vpha = Rs · ipha + L · dia
dt

+ ia ·
dL

dt
+ bemfa

Vphb = Rs · iphb + L · dib
dt

+ ib ·
dL

dt
+ bemfb

Vphc = Rs · iphc + L · dic
dt

+ ic ·
dL

dt
+ bemfc

(2.6)

As a rotating system and assuming sinusoidal currents, the quantities in (2.6) change
with the rotor position over time. In order to facilitate the analysis of such machines,
a balanced three phase machine can be transformed into a two axes equivalent system
removing the rotor position dependency as shown in Fig. 2.2b. The new axes, the dq-
axes represent the magnetic path from the rotor perspective as illustrated in Fig. 2.2a.
The dq0 transformation [34] is performed with through the matrix in (2.7).
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 Sd
Sq
S0

 =
2

3

 cos(θr) cos(θr − 120◦) cos(θr + 120◦)
−sin(θr) −sin(θr − 120◦) −sin(θr + 120◦)

1
2

1
2

1
2

 Sa
Sb
Sc

 (2.7)

d-
ax
isq-

ax
is

(a) PMSM cross-section and DQ rotor refer-
ence axes.

a

b

c

d-axis

q-axis

θr

(b) 3-phase PMSM reference axes.

Figure 2.2: DQ reference axes in PMSMs.

In a balanced 3-phase winding system the zero sequence S0 is zero. The remaining
expressions Sd and Sq are the equivalent dq-axes quantities. Therefore the voltage
equations in (2.6) can be transformed in the following form:[

ud
uq

]
=

2

3

[
cos(θr) cos(θr − 120◦) cos(θr + 120◦)
−sin(θr) −sin(θr − 120◦) −sin(θr + 120◦)

] Vpha
Vphb
Vphc

 (2.8)

where ud and uq represent to the dq-axes voltages and consequently applying the same
transformation to the phase currents produces the dq-axes currents id and iq.

Finally, replacing (2.6) into (2.8), assuming a sinusoidal current excitation, leads to
the following dq-axes voltage expressions in terms of rotor angular velocity ωr and the
flux-linkages ψd and ψq:[

ud
uq

]
= Rs

[
id
iq

]
+ ωr

[
−ψq (id, iq)
ψd (id, iq)

]
+

[
ψ̇d (id, iq)

ψ̇q (id, iq)

]
(2.9)

where the flux-linkage derivatives presented in dot notation can be further developed in
the following form:

ψ̇ (i) =
dψ

dt
=
∂ψ

∂i
· di
dt

(2.10)
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Consequently, applying (2.10) to (2.9) produces the relationships in (2.11) in terms of
the incremental dq-axes inductances, Ldd, Lqq, Ldq and Lqd:[

ψ̇d (id, iq)

ψ̇q (id, iq)

]
=

[
Ldd(id, iq) Ldq(id, iq)
Lqd(id, iq) Lqq(id, iq)

] [
i̇d
i̇q

]
(2.11)

Similarly, the d-axis flux-linkage in (2.9) can be further developed, as the bemf voltages
are aligned with rotor position. Therefore, assuming sinusoidal bemf wave forms, leads
only to a d-axis flux-linkage contribution in the following form:

ψd (id, iq) = ωr · ψm + ψd0 (id, iq) (2.12)

where ψm is the permanent magnet flux-linkage and the subscript 0 refers to the d-
axis flux-linkage contribution of the currents only. Besides the voltage equations, the
electromagnetic torque Te can also be expressed in term of the dq quantities [14] as:

Te(id, iq) =
3

2
p (ψd(id, iq) · iq − ψq(id, iq) · id) (2.13)

where p is the number of pole pairs and the constant 3
2 relates to the number of

machine phases.

2.2 Flux-Linkage Mathematical Description

The nonlinear behavior of the flux-linkage in a PMSM can be traced back to the char-
acteristics of the electrical steel used in such machines. The nonlinear magnetization
curve, Fig. 2.3a, which is reflected in the relative permeability in Fig. 2.3b leads to
nonlinear magnetic circuit that describes the machine.

2 4 6 8 10 12

0.5

1

1.5

2

H(kA/m)

B
(T

)

NO30-15 at 50Hz

(a) Magnetization curve.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

·104

B(T)

R
el
at
iv
e
p
er
m
ea
b
il
it
y
µ
r

NO30-15 at 50Hz

(b) Relative permeability µr(B).

Figure 2.3: Nonlinear behavior of electrical steel NO30-15.
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2.2 Flux-Linkage Mathematical Description

These nonlinear magnetic circuit can be represented according to [36, 1], as shown
in Fig. 2.4. Where the iron reluctance R depends on its own magnetic flux and the
magnetic properties of the machine’s core material:

R(φ,A) =
l

Aµ0µr(B)
, where B =

φ

A
(2.14)

Where A is the machine’s section area of interest, l is its length, φ is the magnetic flux
crossing the area in question, µ0 is the magnetic permeability of free space and µr is the
relative permeability of the core material. As the most common magnetic materials used
in electric machines are electrical steels with characteristics like in Fig. 2.3, the steel
parts of the machine including stator and rotor exhibit a nonlinear magnetic behavior.

Rryoke

φr
Rm0

Rleakage

φl

Rairgap

φg

Rsteeth Rsyoke

Farmature

Magnet

Figure 2.4: Example of nonlinear magnetic equivalent circuit extracted from [1].

The equivalent circuit depicted in Fig. 2.4 help to visualize the key actors that describe
the machine, the armature Magneto Motive Force (m.m.f), Farmature, which depends of
the winding current, the permanent magnet flux and the different reluctances. This leads
to air-gap flux expressions depending on the already mentioned elements. Furthermore,
the dq-axes magnetic flux φgd and φgq can be expressed with respect the magnet remanent
flux φr and dq-axes currents id and iq, in the following form:

φgd = φrα (φr, id, iq) + idβ (φr, id, iq) + iqγ (φr, id, iq) (2.15)

φgq = φrA (φr, id, iq) + idB (φr, id, iq) + iqΓ (φr, id, iq) (2.16)

the functions A, B, Γ , α, β and γ represent the nonlinear behavior due to the interaction
between flux and iron reluctances. Assuming constant magnet temperature, φr can be
assumed to be constant as well. Therefore, the remaining variables are the dq-axes
currents. Following the same rationale presented in [1], by applying Taylor’s theorem
for multi-variable functions [37], the flux expressions (2.15) and (2.16) can be then
represented by a Taylor polynomial T with degree n and a reminder function En

1, as:

φgd(id, iq) = Tφgd (id, iq) + Edn(id, iq)

φgq(id, iq) = Tφgq (id, iq) + Eqn(id, iq)
(2.17)

1see Appendix A.1 further references.
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2 Non-Linear Machine Model

where the Taylor polynomials Tφgd and Tφgq are expressed in terms of the partial
derivatives of φgd and φgq evaluated at i = (id0 , iq0). Defining ∆id = id − id0 and
∆iq = iq − iq0 , the Taylor polynomial takes the form:

Tgd(id, iq) = φgd(i) + ∆id
∂φgd
∂id

(i) + ∆iq
∂φgd
∂iq

(i)

+
1

2!

[
(∆id)

2∂
2φgd
∂i2d

(i) + 2∆id∆iq
∂2φgd
∂id∂iq

(i) + (∆iq)
2∂

2φgd
∂i2q

(i)

]
+ ...

(2.18)

Tgq(id, iq) = φgq(i) + ∆id
∂φgq
∂id

(i) + ∆iq
∂φgq
∂iq

(i)

+
1

2!

[
(∆id)

2∂
2φgq
∂i2d

(i) + 2∆id∆iq
∂2φgq
∂id∂iq

(i) + (∆iq)
2∂

2φgq
∂i2q

(i)

]
+ ...

(2.19)

The polynomials in (2.18) and (2.18) define the general structure of the polynomial
itself, however due to the laborious task of determining the partial derivatives, a simpler
method is chosen to find the approximation polynomials. The least-square approxima-
tion method is preferred as it deals directly with the minimization of the approximation
error for a given interval, where the polynomial with minimum sum of least-squares is
sought:

minimize
m∑
k=0

(φgd(idk , iqk)− Tgd(idk , iqk))2 (2.20)

minimize
m∑
k=0

(φgq(idk , iqk)− Tgq(idk , iqk))2 (2.21)

(2.20) and (2.21) depict the minimization of a set of m discrete points which could be
for example the FEA simulation results of a given machine.

On the other hand, the polynomial structure can be simplified by replacing the
derivatives and constants by coefficients and the repetition of variables combinations
is avoided2. A generalization based on (2.18) and (2.19) is used to formulate the ap-
proximation polynomials with degree n:

φgd(id, iq) ≈ Tgd(id, iq) =
n∑
i=0

i∑
j=0

cd(i−j)(j)
i
(i−j)
d i(j)q (2.22)

φgq(id, iq) ≈ Tgq(id, iq) =
n∑
i=0

i∑
j=0

cq(i−j)(j)
i
(i−j)
d i(j)q (2.23)

2see A.12 in appendix A.1 for further information.
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2.2 Flux-Linkage Mathematical Description

With the minimization of the approximation error, expressions (2.22) and (2.23) are
then adopted to describe the magnetic fluxes for a given polynomial degree n. However
as the target machine model is a flux linkage one, it is prudent at this point to switch
from magnetic flux expressions to flux linkage expressions [38], for a given number of
turns N :

ψd (id, iq) = Nφgd (id, iq) (2.24)

ψq (id, iq) = Nφgq (id, iq) (2.25)

The dq-flux linkages can be expressed in polynomial form by replacing (2.22) and
(2.23) in (2.24) and (2.25). Furthermore new coefficients labels are introduced to em-
phasize that current-flux-linkage relationship relates to the inductance as discussed in
section 2.1. The resulting expressions for a given polynomial degree n are then written
in the following manner:

ψd (id, iq) =
∞∑
k=0

k∑
i=0

ldq(k−i)(i)i
(k−i)
d i(i)q (2.26)

ψq (id, iq) =
∞∑
k=0

k∑
i=0

lqd(k−i)(i)i
(k−i)
q i

(i)
d (2.27)

where ψd and ψq are the d- and q-axis flux-linkages respectively. The most relevant
aspect of the expressions (2.26) and (2.27) is the fact that it is a function only of the
currents along with constant coefficients. This formulation comes handy when these type
of expressions are used to identify the flux-linkages of a machine, because the coefficients
or constant values can be obtained for a given number of operating points and under
certain circumstances they are time invariant. This opens the door for new approaches
for online parameter identification, where routines at low execution rates can be used to
perform the parameter identification, instead of demanding algorithms that need to be
executed really fast in order to capture the nonlinear characteristics for each machine
operating point.
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2 Non-Linear Machine Model

2.2.1 Flux-Linkage Model

In general terms, expressions in (2.26) and (2.27) can describe the dq-axes flux-linkages,
however, there are some symmetry properties with respect the dq-axes currents that can
facilitate a simplification of the polynomials already introduced. The machine depicted
in Fig. 2.5 represents a 4-pole pair IPMSM with key parameters listed in table 2.1. The
2D FEA simulation results of this machine will be used to illustrate the properties in
question.

Figure 2.5: 4-pole pair IPMSM.

Table 2.1: IPMSM - Machine data

Nominal Torque 4.6Nm

Peak output power 600W

Number of pole pairs 4

Nominal voltage 12V

The d- and q-axis flux-linkages were obtained for several combinations of id and iq as
illustrated in Fig. 2.6. This approach intends to cover the machine’s four quadrants of
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2.2 Flux-Linkage Mathematical Description

operation in order to analyze the different symmetries found with respect the current
axes.

id

iq

Figure 2.6: FE Simulation current data points definition

Each operating point, that corresponds to a given d- and q-axis current is simulated
for one electrical cycle. The flux-linkage of three machine phases are transformed into
d- and q-axis flux-linkages using the Park transformation (2.7), as shown in Fig. 2.7.
The flux-linkage obtained contains several frequency components, as for example the 6th
electrical harmonic component in this machine. The d- and q-axis flux-linkages used for
further analysis correspond to the average value for one electrical cycle, which means,
that only the information of the fundamental frequency is considered.
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Figure 2.7: Example of the DQ-Flux-linkages
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2 Non-Linear Machine Model

As shown in Fig. 2.8b, the q-axis flux-linkage surface is symmetric along the q-
axis current, which means that ψq is an odd function with respect iq. The amount of
coefficients in the polynomial (2.27) can be reduced by setting the coefficients of terms
with even powers of iq to zero. Similarly, ψd exhibits a symmetric behavior with respect
iq as illustrated in Fig. 2.8a. Therefore, the coefficients of terms with odd powers of iq
in (2.26) can be set to zero.
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ψ
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(a) D-axis Flux-Linkage
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1
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id(p.u.)iq(p.u.)

ψ
q
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.u
.)

(b) Q-axis Flux-Linkage

Figure 2.8: IPMSM Flux-Linkage - FE Simulation

Given the aforementioned simplifications in (2.26) and (2.27), the d-axis flux-linkage
is rewritten in a simplified form for a polynomial degree n as [1]:

ψd (id, iq) =

P∑
k=0

n−2k∑
i=0

ldq(i)(2k)i
(i)
d i

(2k)
q

with, P =
n−mod(n, 2)

2
| n ∈ N+

(2.28)

where the sub-indexes in the notation ldq()() indicates the power of id and iq respectively.
For the polynomial degree n = 3, the resulting d-axis flux-linkage expression can be
written in the following form:

ψd (id, iq) = ldq00 + ldq10id + ldq02i
2
q + ldq20i

2
d + ldq12idi

2
q + ldq30i

3
d (2.29)

where the constant term ldq00 corresponds to the permanent magnet flux-linkage ψm.
Following the mentioned notation, ldq10 depicts the linear d-axis inductance and the re-
maining coefficients describe the cross-coupling and saturation effects.
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2.2 Flux-Linkage Mathematical Description

The simplification of (2.28) leads to the following q-axis flux-linkage expression for a
polynomial degree n:

ψq (id, iq) =

P∑
k=0

n−(2k+1)∑
i=0

lqd(2k+1)(i)i
(2k+1)
q i

(i)
d

with, P =
(n− 1)−mod((n− 1), 2)

2
| n ∈ N+

(2.30)

Where in this case, the sub-indexes in the notation lqd()() represent the power of iq and
id, respectably. The resulting ψq (id, iq) polynomial for n = 3 takes the following form:

ψq (id, iq) = lqd10iq + lqd11iqid + lqd30i
3
q + lqd12iqi

2
d (2.31)

where the coefficient lqd10 corresponds to the linear q-axis inductance and the other
coefficients depict the cross-saturation and saturation effects.

2.2.2 Considering Mutual Terms

The dq-axes flux-linkage expressions (2.28) and (2.30) describe the nonlinear and cross-
coupling effects from each axis, nevertheless the analysis of the magnetic coenergy enables
further simplifications of the flux-linkages polynomials. The magnetic coenergy Wc is
defined as [39]:

Wc =

∫
ψ di (2.32)

Mathematically, this is the area below the curve ψ vs. i as depicted in Fig. 2.9:
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Figure 2.9: Magnetic coenergy

Applying (2.32) to the dq-axes flux-linkages leads to the total coenergy Wcdq :

Wcdq =

∫
ψd(id, iq) did +

∫
ψq(id, iq) diq (2.33)
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2 Non-Linear Machine Model

The dq-axes flux-linkages can be then formulated in terms of the coenergy by calcu-
lating the partial derivative with respect to id and holding iq and vice versa [34, 40]:

∂Wcdq

∂id
= ψd(id, iq)

∂Wcdq

∂iq
= ψq(id, iq)

(2.34)

The cross partial derivatives of the dq-axes flux-linkages in terms of the coenergy
(2.34) lead to:

∂ψd(id, iq)

∂iq
=
∂2Wcdq

∂iq∂id

∂ψq(id, iq)

∂id
=
∂2Wcdq

∂id∂iq

(2.35)

Finally, with
∂2Wcdq

∂iq∂id
=
∂2Wcdq

∂id∂iq
, the following equality holds:

∂ψd(id, iq)

∂iq
=
∂ψq(id, iq)

∂id
(2.36)
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(a) Incremental inductance Ldq
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Figure 2.10: IPMSM Mutual Inductances - FE Data

The equality in (2.36) can be easily seen when the partial derivatives are applied to
the dq-flux linkages to obtain the mutual inductances. Figure 2.10 depicts the mutual
inductances Ldq(id, iq) and Lqd(id, iq) of the IPMSM using the flux-linkage information
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2.2 Flux-Linkage Mathematical Description

obtained from the 2D-FE simulation.

One key aspect of describing the flux-linkage mathematically as a polynomial, is the
fact that its derivatives with respect to the dq-currents can be easily calculated. The
partial derivatives in (2.36) result into the following expressions:

∂ψd
∂iq

=

P∑
k=1

n−2k∑
i=0

2k · ldq(i)(2k) · i(i)d · i(2k−1)
q

∂ψq
∂id

=

P∑
k=0

n−(2k+1)∑
i=1

i · lqd(2k+1)(i) · i(2k+1)
q · i(i−1)

d

(2.37)

As (2.36) holds, then the number of coefficients needed to describe the flux-linkages for
a given polynomial order can be reduced. By equating (2.37), expressions (2.28) and
(2.30) can be rewritten as:

ψd (id, iq) =
n∑
i=0

ldq(i)(0)i
(i)
d +

P∑
k=1

n−2k∑
i=0

cdq(i)(2k−1)

2k
i
(i)
d i

(2k)
q

with, P =
n−mod(n, 2)

2
| n ∈ N+ and ψm = ldq00

(2.38)

ψq (id, iq) =

P∑
k=0

lqd(2k+1)(0)i
(2k+1)
q +

P∑
k=0

n−(2k+1)∑
i=1

cdq(i−1)(2k+1)

i
i(2k+1)
q i

(i)
d

with, P =
(n− 1)−mod((n− 1), 2)

2
| n ∈ N+

(2.39)

where n is the given polynomial degree. The symbols cdq()() are coefficients with sub-
indexes indicating the power of id and iq, respectably. The mutual terms cdq()() that
appear in (2.38) and (2.39) describe the coupling between the d- and q-axes.

2.2.3 Machine Inductance Expressions

Recalling the definition of the inductances in (2.5), the absolute inductance is defined as
the flux-linkage to current ratio. In the case of the ψd only the terms that depend on id
contribute to the d-axis inductance Ld. Therefore the term ψd(0, iq) is subtracted from
ψd to obtain the flux-linkage related to Ld in the following manner:

Ld(id, iq) =
ψd(id, iq)− ψd(0, iq)

id
(2.40)

The d-axis absolute inductance according to (2.40) can be then expressed in a polynomial
form by replacing (2.38) in (2.40) as:

Ld(id, iq) =

n∑
i=1

ldq(i)(0)i
(i−1)
d +

P∑
k=1

n−2k∑
i=1

cdq(i)(2k−1)

2k
i
(i−1)
d i(2k)

q

with, P =
n−mod(n, 2)

2
| n ∈ N+

(2.41)
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2 Non-Linear Machine Model

The same procedure can be carried out for the absolute q-axis inductance Lq as shown
in (2.53).

Lq(id, iq) =
ψq(id, iq)

iq
(2.42)

Lq(id, iq) =
P∑
k=0

lqd(2k+1)(0)i
(2k)
q +

P∑
k=0

n−(2k+1)∑
i=1

Cdq(i−1)(2k+1)

i
i(2k)
q i

(i)
d

with, P =
(n− 1)−mod((n− 1), 2)

2
| n ∈ N+

(2.43)

Similarly to the absolute inductances, the incremental inductances can be easily formu-
lated with help of the flux-linkages. In this specific case, the fact that the flux-linkages
are described using analytic functions comes quite handy, as the derivatives of polyno-
mials are a straightforward calculation. Recalling again the definition of the incremental
inductances as the rate of change of flux-linkage with respect the current, they are ob-
tained by calculating the partial derivatives of the flux-linkage with respect the dq-axes
currents. This will result in the incremental self- and mutual-inductances, which are
then calculated in the following manner:

Ldd(id, iq) =
∂ψd(id, iq)

∂id
and Lqq(id, iq) =

∂ψq(id, iq)

∂iq
(2.44)

Ldd (id, iq) =
n∑
i=1

ildq(i)(0)i
(i−1)
d +

P∑
k=1

n−2k∑
i=1

icdq(i)(2k−1)

2k
i
(i−1)
d i(2k)

q

with, P =
n−mod(n, 2)

2
| n ∈ N+

(2.45)

Lqq (id, iq) =
P∑
k=0

(2k + 1)lqd(2k+1)(0)i
(2k)
q +

P∑
k=0

n−(2k+1)∑
i=1

(2k + 1)cdq(i−1)(2k+1)

i
i(2k)
q i

(i)
d

with, P =
(n− 1)−mod((n− 1), 2)

2
| n ∈ N+

(2.46)
The mutual incremental inductances where already mentioned in section 2.2.2, where
the energy conservation law was used to simplify further the flux-linkage expressions.
The mutual inductances Ldq and Lqd are calculated knowing before hand from (2.36)
that they are equal.

Ldq(id, iq) =
∂ψd(id, iq)

∂iq
=
∂ψq(id, iq)

∂id
= Lqd(id, iq) (2.47)

Ldq (id, iq) =Lqd(id, iq) =

P∑
k=1

n−2k∑
i=0

cdq(i)(2k−1)i
(i)
d i

(2k−1)
q

with, P =
n−mod(n, 2)

2
| n ∈ N+

(2.48)
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2.2 Flux-Linkage Mathematical Description

The advantage of having an analytical description of the flux-linkages is the fact that the
inductances, either the absolute or the differential ones can be calculated directly with
the help of the coefficients. There is no need for any data manipulation, like interpolation
and in the case of the differential inductances the calculation is straightforward as there
is no need for any discrete derivative of the data, it is just performed analytically.

2.2.4 Motor Torque Constant

As presented in [35] and [14], the concept of Kt originates from the idea of a motor with
no magnetic nonlinearities, where the permanent flux-linkage ψm and Kt are linearly
proportional. Specially the case where the d-axis current is zero leads to the interaction
between permanent flux-linkage and q-axis current, which is represented by ψd(0, iq).
Where iq contributes to the saturation of the resultant d-axis flux-linkage. This effect is
evident when looking at the relationship between electromagnetic torque Te and phase
current, which is known as motor torque constant Kt, with units Nm/A, is defined as:

Kt =
Te
iq

(2.49)
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Figure 2.11: IPMSM torque constant.

At the presence of reluctance torque , e.g. at IPMSMs, the current used to calculate
Kt is iq. Fig. 2.11 depicts the motor torque constant derived from FEA data of Fig. 2.8.
It can be appreciated in Fig. 2.11 the reduction of Kt of about 8% at increasing iq. The
torque is a function of stator current and flux-linkage, as in (2.13), the d-axis current is
set to zero and the d-axis flux-linkage is replaced by (2.38), the torque expression takes
the following form:

Te (0, iq) =
3

2
p · ψd(0, iq) · iq (2.50)
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Where ψd(0, iq) is the permanent magnet flux-linkage and the terms with coefficients of
the type cdq()() represent the cross-saturation in ψd due to iq. This means that even at
the absence of id, iq affects ψd. Replacing Te by (2.50) and I by iq in (2.49), it yields

Kt (iq) =
3

2
p

ψm +

R∑
k=1

cdq(0)(2k−1)
i
(2k)
q

2k


with, R =

n−mod(n, 2)

2
| n ∈ N+

(2.51)

If the machine is linear, all the coefficients multiplied by iq in (2.51) would be zero,
making Kt linearly proportional to ψm. In the case of a nonlinear machine, the terms
with coefficients cdq()() describe the cross-saturation due to iq. They even could be used
as design indicator to assess the saturation of Kt at maximum current magnitude.

2.2.5 Separation of Nonlinear Effects

Determining PMSM’s parameters in unsaturated and saturated conditions has been a
research topic for many years. There have been many reported approaches to capture
the saturation and cross-coupling effects. Especially in the domain of Finite Elements
Analysis, a method excels for its popularity, which is the frozen permeabilities method
[41]. The main premise of this approach is to run a FE simulation and store the magnetic
permeabilities and use these values for two further FE simulations where the influence
of the permanent magnets and the winding currents is simulated separately. To ob-
tain the different machine parameters such as absolute inductance, permanent magnet
flux-linkage and incremental inductance, the authors in [41] consider various simplified
machine models. With respect to the validity of the resulting parameters presented in
[41], it is acknowledged that the incremental inductances can be clearly determined.
They are defined as the flux-linkage rate of change with respect to the dq-axes currents,
so they can be evaluated if the flux-linkage and current information is available. The
challenging part appears when dealing with absolute inductance and permanent magnet
flux-linkage. The frozen permeabilities method is used as a way to separate those param-
eters. It is proposed in [41] to carry out three FE simulations in order to have enough
data to separate the parameters already mentioned, but it seems quite difficult to verify
the validity of this approach experimentally as it was reported in [42].

As this work proposes to model the nonlinear effects of PMSMs analytically, a straight
forward result is the implicit separation of contribution of the permanent magnets and
the winding currents. The absolute inductances can be clearly identified in the flux-
linkage expressions (2.38) and (2.39). The interaction between current and the per-
manent magnet flux-linkage that can be appreciated on the electromagnetic torque at
increasing iq and at the absent of id can be seen as well. In order to illustrate the
separation of these parameters and effects, a polynomial degree n = 3 is chosen for
simplicity:
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ψd(id, iq) = ψm +
cdq01i

2
q

2︸ ︷︷ ︸+ ldq10id + ldq20i
2
d + ldq30i

3
d +

cdq11idi
2
q

2︸ ︷︷ ︸
ψmsat(iq) Ld(id, iq)id

(2.52)

ψq(id, iq) = lqd10iq + lqd30i
3
q + cdq01idiq +

cdq11i
2
diq

2︸ ︷︷ ︸
Lq(id, iq)iq

(2.53)

Basically, what the groups of terms in (2.52) are indicating is the contribution of the
permanent magnet flux-linkage and of id with the corresponding cross-saturation due to
iq. Keeping that in mind, ψd can then rewritten in the following form :

ψd(id, iq) =ψm +

P∑
k=1

cdq(0)(2k−1)

2k
i(2k)
q︸ ︷︷ ︸

ψmsat(iq)

+

n∑
i=1

ldq(i)(0)i
(i)
d +

P∑
k=1

n−2k∑
i=1

cdq(i)(2k−1)

2k
i
(i)
d i

(2k)
q︸ ︷︷ ︸

ψd0(id, iq)

with, P =
n−mod(n, 2)

2
| n ∈ N+

(2.54)

the two flux-linkages terms presented in (2.54) clearly show the contribution of the per-
manent magnet flux-linkage and its dependency with respect iq and the flux-linkage
generated by id as well. With the proposed approach, the polynomial degree n is de-
termined by the number of operating points obtained in the FE simulation. This opens
the possibility to minimize or optimize the number of simulations required to describe
the machine. Which in the case of a FE simulation could mean a significant reduction
of computation time.

2.3 Considering Magnet-Flux variations

The main motivation to consider the effects of the permanent magnets on the overall
flux-linkage comes from the necessity to asses the impact of magnet flux-linkage varia-
tions on the dq-axes inductances. This need is due to the main target of creating an
algorithm for online parameter and temperature estimation, where the magnet temper-
ature is derived from the estimation of the permanent flux-linkage. On the other hand,
for simulation purposes, the inclusion of magnet temperature effects enables the cre-
ation of a high fidelity machine model that can be coupled to a machine thermal model.
The latter will facilitate the previous analysis required for the development of the on-
line estimation algorithm. As a final remark, a model or expression of the inductance
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2 Non-Linear Machine Model

dependency on the permanent magnet flux-linkage can help to estimate the expected
maximum and minimum limits the inductances for the online estimation.

It is important to note, that this work moves around permanent magnet synchronous
machines, where the rotor of the machine contains permanent magnets, contributing to a
bias magnetic flux which tend to be constant and can vary in the context of temperature
or manufacturing tolerances if normal operation is assumed. The potential of extending
the flux-linkage expressions to consider variable ψm allows the model to be extended
to wound field synchronous machines, where the flux-linkage due to the rotor’s current
excitation can be replaced by ψm.

The past sections introduced a simplified model that describes the flux-linkage includ-
ing saturation and cross-coupling effects that depends only on the dq-axes currents. The
polynomial degree determines the accuracy of the representation of the flux-linkages, but
it can even represent the classical linear inductance based model when choosing a first
degree polynomial. So far the permanent magnet flux-linkage ψm has been assumed to
remain constant. But in reality it depends on the rotor magnet characteristics, such as
material properties or even manufacturing process tolerances. Temperature can affect
the magnet materials [36, 43], high temperatures exposure, for long periods of time par-
ticularly coupled with high currents can lead to irreversible losses.

The most extreme scenario is when the so called Curie temperature is reached, as the
saturation magnetization of the material becomes zero [36, 44]. The reversible temper-
ature effects can be understood as the loss of remanence when the magnet temperature
increases. This loss is represented by two coefficients [44], the remanence Br temperature
coefficient α and the intrinsic coercivity Hci temperature coefficient β. Which means
that the temperature dependency is assumed to be linear in the form:

Br(T ) = BrT0 [1 + α(T − T0)] (2.55)

Hci(T ) = HciT0
[1 + β(T − T0)] (2.56)

The reversible temperature coefficients are normally specified for a determined range,
starting at room temperature. The coefficient is then fitted assuming a linear relation-
ship with the temperature. Extending this range could lead to a different value of the
temperature coefficient, as for wider temperature ranges the remanence and the intrinsic
coercivity have a nonlinear behavior with respect the temperature [44, 45]. Table 2.2
summarizes the remanence temperature coefficients of some magnet materials [46].
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2.3 Considering Magnet-Flux variations

Table 2.2: Typical reversible temperature coefficients

Material Grade Max. Temp. α β
(◦C) (%/◦C) (%/◦C)

Alnico, cast 5 100 −0.02 −0.01

Alnico, cast 8 100 −0.02 −0.01

SmCo5 20 MGOe 120 −0.04 −0.4

Sm2Co17 27 MGOe 120 −0.035 −0.2

NdFeB, bonded MQP-B 100 −0.11 −0.4

NdFeB, sintered L-38UHT 180 −0.10 −0.5

Ferrite, sintered C-5,-8 120 −0.20 0.27

Recalling the relationship between flux-density and magnetic flux as per (2.14) and
the equivalent magnetic circuit of a pole in a permanent magnet synchronous machine
of Fig. 2.4, the following expression is considered:

φr = BrA (2.57)

where Br is the remanence of the pole magnet, A is the corresponding area of the
magnet and φr is the magnetic flux in that area. The temperature dependency of Br
as in (2.55) will lead to variations in the biasing of the machine’s magnetic circuit over
the working temperature range of the machine. In addition to the temperature effects
on Br, the magnet manufacturing tolerances play another role in the final value of the
magnet remanence. For example, variations of dimensions and magnetization lead to a
certain distribution part to part of the Br value in the magnets. Therefore the expected
variations of the permanent magnet flux-linkage will be a combination of part-to-part
tolerances and temperature effects.

2.3.1 Flux-linkage Expressions

The flux-linkage expansions (2.26) and (2.27) that are valid for a given ψm0 can then
be reformulated to include the influence of the permanent magnet flux-linkage ψm. The
expansions can be rewritten in the following form for a given polynomial degree n:

ψd(id, iq, ψm) =

n∑
j=0

j∑
i=0

n−j∑
k=0

ldq(j−i)(i)(k)i
(j−i)
d i(i)q ψ

(k)
m (2.58)

ψq(id, iq, ψm) =
n∑
j=0

j∑
i=0

n−j∑
k=0

lqd(j−i)(i)(k)i
(j−i)
q i

(i)
d ψ

(k)
m (2.59)
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(d) ψq evaluated at (id, 0, ψm).

Figure 2.12: Flux-linkage at different ψm values

As in the previous section, these expansions can be simplified if the form of the flux-
linkages with respect to ψm is considered. The most evident relationships can be observed
in Fig. 2.12c and 2.12d, where the DQ-axes flux-linkages were obtained, through a 2D-
FE simulation of the same machine of section 2.2.1 for seven different ψm values raging
from 1p.u. to 0.78p.u., covering a reasonable variation range which can be the result of
magnet temperature and manufacturing tolerances.

ψd(0, iq, ψm) =ψd(0,−iq, ψm)

ψq(id, 0, ψm) =0
(2.60)

The expressions in (2.60) imply that the variables id and ψm contribute to ψq only at the
presence of iq and ψd is affected directly by iq regardless of id. In addition to (2.60), at
the absence of ψm, ψd with respect to id would follow the same law as ψq with respect iq,
as the winding currents will solely be responsible for the magnetic flux in the machine.
The latter leads to the equality ψd(id, iq, 0) = −ψd(−id, iq, 0). All these observations
enable the simplification or the exclusion of coefficients with determined powers, leading
to the following expressions:
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2.3 Considering Magnet-Flux variations

ψd (id, iq, ψm) =

P1∑
i=0

R1∑
j=0

S1∑
k=0

ldq(2i+1)(2j)(2k)i
(2i+1)
d i(2j)q ψ(2k)

m

+

P2∑
i=0

R2∑
j=0

S2∑
k=1

ldq(2i)(2j)(k)i
(2i)
d i(2j)q ψ(k)

m

with, P1 =
n− 1−mod(n− 1, 2)

2
| n ∈ N+

R1 =
n− (2i+ 1)−mod(n− (2i+ 1), 2)

2

S1 =
n− (2i+ 1)− 2j −mod(n− (2i+ 1)− 2j, 2)

2

P2 =
n−mod(n, 2)

2

R2 =
n− 2i−mod(n− 2i, 2)

2
S2 =n− 2i− 2j

(2.61)

ψq (id, iq, ψm) =
n∑
i=0

R∑
j=0

S∑
k=0

lqd(2j+1)(i)(2k+S)i
(2j+1)
q i

(i)
d ψ

(k)
m

with, R =
n− i− 1−mod(n− i− 1, 2)

2
| n ∈ N+

S = n− i− (2j + 1)

(2.62)

These two expressions (2.61) and (2.62) enable again the separation of the three param-
eters considered so far; dq-axes inductances and torque constant. This analytical way
of describing the flux-linkages is a tool for a clean representation of the nonlinear effects
that produces the interaction of the magnets and the winding currents. Not only the
saturation effects caused by large currents can be captured and isolated but the effects
of the bias flux coming from the magnets. The next subsection will look into the already
mentioned parameters and its dependency on ψm.

2.3.2 Inductance and Torque Constant Dependency on Magnet Flux-linkage

With the consideration of ψm as a third variable,in the flux-linkage expressions, the
absolute d-axis inductance (2.40) is then extended in the following form:

Ld(id, iq, ψm) =
ψd(id, iq, ψm)− ψd(0, iq, ψm)

id
(2.63)

Ultimately (2.63) depicts the effect that id has on ψd by subtracting the terms where
id is not involved. The absolute inductance expression is then obtained by replacing
(2.61) in (2.63) producing:
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Ld (id, iq, ψm) =

P1∑
i=0

R1∑
j=0

S1∑
k=0

ldq(2i+1)(2j)(2k)i
(2i)
d i(2j)q ψ(2k)

m

+

P2∑
i=1

R2∑
j=0

S2∑
k=1

ldq(2i)(2j)(k)i
(2i−1)
d i(2j)q ψ(k)

m

with, P1 =
n− 1−mod(n− 1, 2)

2
| n ∈ N+

R1 =
n− (2i+ 1)−mod(n− (2i+ 1), 2)

2

S1 =
n− (2i+ 1)− 2j −mod(n− (2i+ 1)− 2j, 2)

2

P2 =
n−mod(n, 2)

2

R2 =
n− 2i−mod(n− 2i, 2)

2
S2 =n− 2i− 2j

(2.64)

In a similar manner, the general formulation of the absolute q-axis inductance is
rewritten to account for ψm in the following way:

Lq(id, iq, ψm) =
ψq(id, iq, ψm)

iq
(2.65)

The final formulation of Lq depending on the currents and ψm can be found by re-
placing (2.62) into (2.65):

Lq (id, iq, ψm) =

n∑
i=0

R∑
j=0

S∑
k=0

lqd(2j+1)(i)(2k+S)i
(2j)
q i

(i)
d ψ

(k)
m

with, R =
n− i− 1−mod(n− i− 1, 2)

2
| n ∈ N+

S = n− i− (2j + 1)

(2.66)

The same treatment is applied to the torque constant, where interaction between iq
and ψm is also expressed in terms of flux-linkage. The electromagnetic torque as per
(2.13) is rewritten as :

Te (id, iq, ψm) =
3

2
p(ψd (id, iq, ψm) iq − ψq (id, iq, ψm) id) (2.67)

Given the definition of the torque constant (2.49), only the contribution of iq is taken
into account, letting id = 0 in (2.67) and replacing into (2.49) it yields:

Kt(iq, ψm) =
Te(0, iq, ψm)

iq
=

3

2
p · ψd(0, iq, ψm) (2.68)
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2.3 Considering Magnet-Flux variations

Finally, (2.61) is replaced into (2.68) leading to the following compact expression as
all the terms containing id equal zero:

Kt (iq, ψm) =
3

2
p

 R∑
j=0

n−2j∑
k=1

ldq(0)(2j)(k)i
(2j)
q ψ(k)

m


with, R =

n−mod(n, 2)

2
| n ∈ N+

(2.69)

Thanks to the polynomial representation of the flux-linkages, it is possible to clearly
identify the influence of ψm in the parameters of interest. It is then possible to formulate
the dq-axes flux-linkage expressions in a way that the absolute inductances and perma-
nent magnet flux-linkage terms are clearly grouped. This is done by making use of the
new expressions for Ld, Lq and Kt presented in (2.64), (2.66) and (2.69) respectively, in
the following form for n = 3 :

ψd(id, iq, ψm) = ldq001ψm + ldq021i
2
qψm︸ ︷︷ ︸

ψd(0, iq, ψm)

+
(
ldq100 + ldq102ψ

2
m + ldq201idψm + ldq300i

2
d + ldq120i

2
q

)
id︸ ︷︷ ︸

Ld(id, iq, ψm)id

(2.70)

The first term in (2.70) describes the permanent magnet flux and its q-axis current
dependency similar to the term in (2.52), with the additional information that the sat-
uration term is accompanied by ψm. This indicates that the saturation effect observed
in Kt depends directly on ψm itself. The immediate consequence of this dependency is
that the degree of saturation is also magnet temperature dependent. In the second term
of (2.70) it is evident the contribution of id and ψm to the linear inductance term, so
far represented by the coefficient ldq10 . The term ldq102idψ

2
m indicates the dependency

of Ld with respect to permanent magnet flux-linkage or the magnet temperature. The
coefficient ldq10 is actually represented by the coefficients with subscript 10X :

ldq10 = ldq100 + ldq102ψ
2
m (2.71)

expression (2.71) exposes then the linear inductance without the effect of the magnets
in the form of ldq100 . Additionally, ldq102 represents the biasing effect of the magnetic flux
produced by the magnets in the magnetic circuit, which leads to a different linear induc-
tance. Although it is common to assume the inductances are temperature independent,
the role of ψm in the resultant coefficient (2.71) becomes evident. However variations
of ψm would impact in this example the second term which at the same time is just a
fraction of ldq10 leading to small variations3.

3The effects of ψm on the inductances will be discussed graphically in section 3.3.4.2
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Analogue to the ψd, ψq can be written in terms of the absolute inductance as:

ψq(id, iq, ψm) =(
lqd100 + lqd102ψ

2
m + lqd300i

2
q + lqd110id + lqd111idψm + lqd120i

2
d

)
iq︸ ︷︷ ︸

Lq(id, iq, ψm)iq

(2.72)

Similarly the term lqd102iqψ
2
m in (2.72) shows the same dependency on the linear Lq

also named in the previous sections as lqd10 .

2.4 Considering Field Currents in Wound Field Synchronous
Machines

This section aims to look into the flux-linkage description of a wound field synchronous
machine. Which is a machine topology analogue to the PMSM, as instead of using per-
manent magnets, the magnetic circuit in the machine is biased with a DC-field generated
by a rotor coil, as shown in Fig. (2.13).

d-a
xis

q-
ax
is

Figure 2.13: Wound field synchronous machine

The FE drawing displayed in Fig. (2.13) corresponds to one pole of a 3-pole pair
WFSM. The constant flux coming from the rotor is aligned to the d-axis, in the same
way as the permanent magnet flux does in a PMSM. For this type of machine the
additional third variable, namely the field current if , plays an important role in the
determination, for example, of the optimal torque or efficiency maps at determined op-
erating points. With respect PMSMs, the FE simulation analysis is often restricted to
a few permanent magnet flux-linkage values corresponding to different magnet temper-
atures. So the required simulation data depends mainly on the variation of id and iq.
On the other hand, for WFSMs, the field current amount if should be considered for a
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2.4 Considering Field Currents in Wound Field Synchronous Machines

certain range increasing the simulation effort. This is then an important driver for the
use of an analytical description of the flux-linkages in a WFSM. The phase voltages of
the WFSM can be described in terms of flux-linkage [38] as:

Vabc = R · Iabc + Ψ̇abc (2.73)

The flux-linkage time derivative Ψ̇abc in (2.73) represents the contributions of stator
and rotor m.m.f. Similarly as with PMSM, the resulting air-gap flux is the interaction of
both fluxes, in this case we have the flux generated by the field current instead of the one
produced by the permanent magnet. The dq-frame equation takes then the following
form: [

ud

uq

]
= Rs

[
id

iq

]
+ ωr

[
−ψq (id, iq, if )

ψd (id, iq, if )

]
+

[
ψ̇d (id, iq, if )

ψ̇q (id, iq, if )

]
(2.74)

where if represents the rotor field current. Due to the similarities mentioned before,
for a given if , the dq-axes flux-linkages show the same properties as with a PMSM:

ψd(id, iq, if ) = ψd(id,−iq, if )

ψq(id, iq, if ) = −ψq(id,−iq, if )
(2.75)

By considering (2.75) it leads to a similar set of expression as in (2.61) and (2.62) :

ψd (id, iq, if ) =

P1∑
i=0

R1∑
j=0

S1∑
k=0

ldq(2i+1)(2j)(2k)i
(2i+1)
d i(2j)q i

(2k)
f

+

P2∑
i=0

R2∑
j=0

S2∑
k=1

ldq(2i)(2j)(k)i
(2i)
d i(2j)q i

(k)
f

with, P1 =
n− 1−mod(n− 1, 2)

2
| n ∈ N+

R1 =
n− (2i+ 1)−mod(n− (2i+ 1), 2)

2

S1 =
n− (2i+ 1)− 2j −mod(n− (2i+ 1)− 2j, 2)

2

P2 =
n−mod(n, 2)

2

R2 =
n− 2i−mod(n− 2i, 2)

2
S2 =n− 2i− 2j

(2.76)

ψq (id, iq, if ) =

n∑
i=0

R∑
j=0

S∑
k=0

lqd(2j+1)(i)(2k+S)i
(2j+1)
q i

(i)
d i

(k)
f

with, R =
n− i− 1−mod(n− i− 1, 2)

2
| n ∈ N+

S = n− i− (2j + 1)

(2.77)
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At this point it is important to consider, the case of a highly saturated machine or
with strong non-linear flux-linkage characteristics. The flux-linkages with respect if of
a traction machine with characteristic 2.3 are shown in Fig. 2.14, where the maximum
phase current is the same for each surface that corresponds to a if value. It can be
appreciated how the area covered by the dq flux-linkages decreases by increasing field
current, meaning that the magnetic material, in this case only the stator and rotor
steel, is being saturated. Apart from that, the relationship of d- and q-axis fluxes
along each surface indicates a accentuated curvature or non-linear trajectory. These
two characteristics make this machine a good exponent to validate the expressions in
(2.76) and (2.77), as it recognized that a polynomial approach may encounter certain
difficulties to describe accurately these type of machines.
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Figure 2.14: WFSM flux-linkages vs. rotor field current

Table 2.3: WFSM - Machine data

Output power 150kW

Number of pole pairs 3

Nominal voltage 400V

An alternative approach is proposed to enhance the capabilities of the polynomial
formulation. The starting point relies on the notion that the expressions (2.38) and
(2.39) evaluated a given field current value ifh can capture accurately the non-linear
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effects of the dq-axes flux-linkages.

ψd(id, iq)

∣∣∣∣
ifh

and ψq(id, iq)

∣∣∣∣
ifh

(2.78)

the structure of flux-linkage expressions used for the PMSM (2.38) and (2.39) are used
as the characteristics of the dq-axes flux-linkages observed at the PMSM still hold.
The magnetic circuit is the same with the difference that the biasing magnetic flux is
generated by a rotor coil instead of a magnet. Therefore the flux-linkages for a given ifh
are formulated in a similar fashion as:

ψd (id, iq)

∣∣∣∣
ifh

=
n∑
i=0

ldq(i)(0)i
(i)
d +

P∑
k=1

n−2k∑
i=0

cdq(i)(2k−1)

2k
i
(i)
d i

(2k)
q

with, P =
n−mod(n, 2)

2
| n ∈ N+

(2.79)

ψq (id, iq)

∣∣∣∣
ifh

=
P∑
k=0

lqd(2k+1)(0)i
(2k+1)
q +

P∑
k=0

n−(2k+1)∑
i=1

cdq(i−1)(2k+1)

i
i(2k+1)
q i

(i)
d

with, P =
(n− 1)−mod((n− 1), 2)

2
| n ∈ N+

(2.80)

the coefficients in (2.79) and (2.79) are valid only for each field current value. To fully de-
scribe the machine for a given range of if values, these coefficients are used to determine
their dependency on if through the following expressions:

ldq(i)(k)(if ) =

nf∑
m=0

ldq(i)(k)(m)
· imf

lqd(i)(k)(if ) =

nf∑
m=0

lqd(i)(k)(m)
· imf

(2.81)

where subscripts i and k correspond to the power of id and iq respectively and nf the
polynomial order used to described the coefficients with respect the field current. Finally,
(2.81) is replaced in (2.79) and (2.80) to get to the final expressions of the flux-linkages:

ψd (id, iq, if ) =
n∑
i=0

nf∑
m=1

ldq(i)(0)(m)i
(i)
d i

(m)
f +

P∑
k=1

n−2k∑
i=0

nf∑
m=0

cdq(i)(2k−1)(m)

2k
i
(i)
d i

(2k)
q i

(m)
f

with, P =
n−mod(n, 2)

2
| n ∈ N+

(2.82)
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ψq (id, iq, if ) =

P∑
k=0

nf∑
m=0

lqd(2k+1)(0)(m)i
(2k+1)
q i

(m)
f

+
P∑
k=0

n−(2k+1)∑
i=1

nf∑
m=0

cdq(i−1)(2k+1)(m)

i
i(2k+1)
q i

(i)
d i

(m)
f

with, P =
(n− 1)−mod((n− 1), 2)

2
| n ∈ N+

(2.83)

where n is the polynomial degree of the dq-axes current dependency and nf of the
coefficients depending on the field current. The d-axis flux-linkage ψd governed by the
contributions of id and if , this can be appreciated when rewriting the (2.82) as:

ψd(id, iq, if ) =

nf∑
m=1

ldq(0)(0)(m)i
(m)
f +

P∑
k=1

nf∑
m=0

cdq(0)(2k−1)(m)

2k
i(2k)
q i

(m)
f︸ ︷︷ ︸

ψf (iq, if )

+
n∑
i=1

nf∑
m=1

ldq(i)(0)(m)i
(i)
d i

(m)
f +

P∑
k=1

n−2k∑
i=1

nf∑
m=0

cdq(i)(2k−1)(m)

2k
i
(i)
d i

(2k)
q i

(m)
f︸ ︷︷ ︸

ψd0(id, iq, if )

with, P =
n−mod(n, 2)

2
| n ∈ N+

(2.84)

In (2.84) the d-axis flux-linkage was divided into flux contributions. ψf (id, iq, if ),
which covers the terms with field current contribution and the cross-saturation due to
iq. This expression is analogue to the one in (2.54), where the permanent flux-linkage
terms with the cross-saturation due to iq are grouped to form ψmsat .

Continuing with the same treatment as with PMSM, the terms in (2.82) and (2.83)
can be rearranged to separate the contributions of the dq-axes currents and the field
current. The contribution of the latter is labeled as magnetizing inductance Lmf , in the
following polynomial example for n = 3 :

ψd(id, iq, if ) = ldq00(if ) +
cdq01(if )i2q

2︸ ︷︷ ︸+ ldq10(if )id + ldq20(if )i2d + ldq30(if )i3d +
cdq11(if )idi

2
q

2︸ ︷︷ ︸
ψf (iq, if ) = Lmf (iq, if ) · if Ld(id, iq, if ) · id

(2.85)

ψq(id, iq, if ) = lqd10(if )iq + lqd30(if )i3q + cdq01(if )idiq +
cdq11(if )i2diq

2︸ ︷︷ ︸
Lq(id, iq, if ) · iq

(2.86)
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in (2.85) the cross-saturation due to iq is grouped into the magnetizing inductance
Lmf , as it accounts for magnetic saturation on the torque producing term. Finally the
three inductances can be written in analytical form as:

Lmf (iq, if ) =

n∑
i=0

nf∑
m=1

ldq(i)(0)(m)i
(i)
d i

(m−1)
f +

P∑
k=1

nf∑
m=0

cdq(i)(2k−1)(m)

2k
i(2k)
q i

(m−1)
f (2.87)

Ld (id, iq, if ) =
P∑
k=1

n−2k∑
i=1

nf∑
m=0

cdq(i)(2k−1)(m)

2k
i
(i−1)
d i(2k)

q i
(m)
f

with, P =
n−mod(n, 2)

2
| n ∈ N+

(2.88)

Lq (id, iq, if ) =
P∑
k=0

nf∑
m=0

lqd(2k+1)(0)(m)i
(2k)
q i

(m)
f

+

P∑
k=0

n−(2k+1)∑
i=1

nf∑
m=0

cdq(i−1)(2k+1)(m)

i
i(2k)
q i

(i)
d i

(m)
f

with, P =
(n− 1)−mod((n− 1), 2)

2
| n ∈ N+

(2.89)

From the general formulation of the electromagnetic torque (2.13) in terms of flux-
linkage, the following expression for the WFSM is obtained:

Te(id, iq, if ) =
3

2
p

[
ψd(id, iq, if ) · iq − ψq(id, iq, if ) · id

]
(2.90)

the torque expression (2.90) can be further developed using the separation of flux-linkage
contributions of (2.84):

Te(id, iq, if ) =
3

2
p

[(
ψf (iq, if ) + ψd0(id, iq, if )

)
· iq − ψq(id, iq, if ) · id

]
(2.91)

finally, in order to make a clear distinction of the various contributions, (2.91) is rewritten
in terms of inductances according to (2.87), (2.88) and (2.89), as:

Te (id, iq, if ) =
3

2
p

[
Lmf (iq, if ) · if · iq +

(
Ld(id, iq, if )− Lq(id, iq, if )

)
· id · iq

]
(2.92)

where it is then clear that at the absence of id, the field current is the main driver for
torque generation through the inductance Lmf or in more generic terms through the
flux-linkage ψf . This is then the basis for a formulation of the torque constant Kt for a
WFSM under the definition:

Kt (iq, if ) =
Te(0, iq, if )

iq
(2.93)
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expression (2.93) leads to the following relationships with respect to the field current
flux-linkage contribution:

Kt (iq, if ) =
3

2
p

(
Lmf (iq, if ) · if

)
=

3

2
p

(
ψf (iq, if )

)
(2.94)

Kt (iq, if ) =
3

2
p

( nf∑
m=1

ldq(0)(0)(m)i
(m)
f +

P∑
k=1

nf∑
m=0

cdq(0)(2k−1)(m)

2k
i(2k)
q i

(m)
f

)

with, P =
n−mod(n, 2)

2
| n ∈ N+

(2.95)

where Kt shows a cross-saturation with respect to iq in the same manner as with PMSMs
in (2.69).

This section showed the derivation of analytical expressions that described the flux-
linkages of a WFSM where the additional degree of complexity due to the field current
was addressed. A method was presented to cope with the additional simulation burden
of covering an extended region of operation of the machine due to the fact that if can
take any value up to a maximum value. Analytical formulation for figures of merit such
as the inductances and the torque constant were shown as well. Finally, the analytical
expressions shown so far will be validated against FE simulations data and measured
data in the following chapter.

A solution for two aspects of the electrical machines modeling was proposed in this
chapter. The first one is the inclusion of saturation and cross-coupling effects, the
second one is the analytical model of those effects. A generalized formulation of the
dq-axes flux-linkages in terms of polynomials for a given polynomial degree n was pre-
sented. Through the analytical description of the flux-linkages, key parameters like
absolute inductances, permanent flux-linkage or incremental inductances were formu-
lated in terms of the dq-axes currents. In particular, the polynomial description of the
dq-axes flux-linkages enabled a clear the separation of non-linear effects that are rooted
in the interaction between the permanent magnet flux-linkage and the dq-axes currents.
The interaction between the q-axis current and the permanent magnet flux-linkage that
impacts the torque production could be clearly identified, as well as the cross-coupling
terms between the dq-axes flux-linkages and the associated absolute and incremental
inductances. The flux-linkage model accuracy depends only on the chosen polynomial
degree and offers a straightforward implementation in an embedded system or model
based algorithm which requires a machine model. Furthermore, the interaction between
winding current and permanent magnet flux-linkage was modeled in order to take into
account the effects of the magnet temperature on the overall flux-linkage. Moreover, the
analytical modeling approach was extended to WFSMs, where a novel polynomial struc-
ture was presented to improve the model’s accuracy when dealing the strong nonlinear
behavior that results from the interaction between the rotor field winding flux and the
armature flux.
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3 Flux-Linkage Model Parameter
Identification

3.1 Optimization Theory

After having laid the grounds to describe the nonlinear behavior of the machine in
an analytical form, the next step is the identification of the model parameters. More
specifically the determination of the coefficients of (2.38) and (2.39). Firstly a method
to obtain the coefficients from FEA simulation results is needed, as this is the basis for
the generation of high fidelity models for analysis and simulation purposes. Secondly a
proper approach needs to be developed to capture these coefficients from experimental
data and thirdly a method or strategy needs to be elaborated to enable a proper online
estimation of the coefficients in question. These three steps lead to the need of a proper
identification method to get hold of the model parameters. By identification method
is meant an optimization algorithm that can be applied in the three scenarios already
mentioned. The decisive criteria for the selection of the identification method is the
number of unknown parameters and the characteristics of the system that is described
by these parameters. It is the line between nonlinear and linear that may lead to the
use of a determined approach. Additionally there is a fundamental difference between
offline and online identification procedures, as the offline processing of the data offers
wide range of possibilities, because with a standard PC many methods can be used to
extract the desired results. On the other hand the online identification is constrained by
the embedded system capabilities where it is supposed to run.

3.1.1 Optimization Methods

There is a variety of optimizations methods in the literature, where broadly speaking
three interesting categories can be recognized. Each category tries to address a spe-
cific type of problem. Some methods are meant to be used offline as they required a
finite amount of data to solve the problem in question, other approaches have recursive
structures where for each data point the knowledge of the previous data a solution is
provided. In addition to this, some approaches have a mathematical foundation and
others are based on heuristic techniques.

3.1.1.1 Linear Optimization

In this section, optimization methods that consider the linear systems are explored. This
type of the methods are often used in real applications where there are data points or
samples affected by external sources, for example white noise, when the error between
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Figure 3.1: Overview of system identification methods.

process and the system output is linear. This type of methods seek to optimize a loss
function defined as the error sum of squares of a system with output linearly dependent
on system parameters (3.1). This kind of system fits with the formulation of the flux-
linkage expressions (2.38) and (2.39).

y(x) =

n∑
i=1

θixi (3.1)

The most common method of this type is the least squares method presented by Gauss
[47], where the main idea is to find the output ŷ that best approximates to the ideal
system output y by having as a criteria the minimum sum of squared error. The opti-
mization problem can be then defined in matrix notation as the minimization of F (x).

min F (X) =
1

2
eT e

with e = y − ŷ and ŷ = θX
(3.2)
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3.1 Optimization Theory

Where the parameters vector is represented by X and the regressors matrix by θ. This
formulation of the F (X) is a quadratic function as shown in (3.3), with Hessian H and
first derivative h.

F (X) =
1

2
XTHX + hTX + h0 (3.3)

Taking into account that the minimum of the loss function F (X) is reached when its
gradient with respect to the parameter vector X is zero, a solution for the optimal
estimates X̂ can be formulated as in (3.4) using the orthogonal equation.

∂F (X)

∂X
= −θT (y − θX) = 0

X̂ = (θT θ)−1θT y

(3.4)

Ideally the residuals e = y− θX should be zero but in reality at the presence of noise in
the data points they are nonzero values. Actually the residuals can indicate the quality
of the estimated parameters itself. At this point it is important to point out the numer-
ical difficulties that may represent the inversion of the Hessian H = θT θ, for this reason,
there are several mathematical approaches that seek to offer an alternative for an ade-
quate matrix inversion. On the other hand even that minimization cannot deliver proper
results due to the nature of the noise in the system, for that there are modifications or
extensions to the classical least square method. The variations can range from giving
different weights to the squared error values as in the weighted least squares method or
the inclusion of equality constrains to the problem formulation.

One of the most known modification of the LS method is the recursive least squares
(RLS) method, which is a formulation of the least square problem intended to be used
online, in real time applications. As the LS method processes a whole set of data, it is
more fitted to be used offline. The computational cost would be big for an online usage,
for this reason a recursive calculation for each new data available is more convenient
for such cases. The RLS algorithm [47, 48], is then defined by (3.5) , where θ̂(k) is the
current estimate, x(k) the regressors vector, y(k) the target output and P (k)−1 is the
approximated Hessian XT (k)X(k).

θ̂(k) = θ̂(k − 1) + P (k)x(k)
[
y(k)− xT (k)θ̂(k − 1)

]
where P−1(k) = P−1(k − 1) + x(k)xT (k)

(3.5)

The update equation (3.5) requires the matrix inversion P (k) =
(
XT (k)X(k)

)−1
which

sets the computational complexity to O(n3). Therefore the RLS algorithm is reformu-
lated (see e.g. [48]) to the set of equations in (3.6), where for one output y the matrix
inversion is avoided reducing the algorithm complexity to O(n2). This new formulation
introduces the forgetting factor 0 ≤ λ ≤ 1 which intends to weigh past samples in an
exponential manner, in order to influence the convergence speed of the algorithm. If
the forgetting factor takes the value 1, all the data values, past and present are equally
weighted. Conversely if λ tends to zero, the latest data samples get more weight.
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3 Flux-Linkage Model Parameter Identification

Due to the low computational complexity of the algorithm depicted in (3.6), it is com-
monly used in online parameter estimation of electrical machines. The RLS algorithm
with λ = 1 is adequate for the estimation of time-invariant parameters, with proper tune
of the forgetting factor, tracking the variations of parameters over time is then feasible.
These characteristics make the recursive least squares (RLS) method attractive for the
online estimation of the coefficients in (2.38) and (2.39).

θ̂(k) = θ̂(k − 1) + γ(k)
[
y(k)− xT (k)θ̂(k − 1)

]
γ(k) =

1

xT (k)P (k − 1)x(k) + λ
P (k − 1)x(k)

P (k) =
1

λ
(I − γ(k)xT (k))P (k − 1)

(3.6)

3.1.1.2 Nonlinear Optimization

This section will explore the different algorithms in the area of nonlinear local optimiza-
tion. As the main objective is to obtain the coefficients of the nonlinear expressions
in (2.38) and (2.39). The main objective of the algorithms in this category is to find
the best solution of a problem that is mathematically defined. In general terms the
optimization problem is formulated in terms of an objective function that is minimized
when the optimal solution x is found. In the specific case of this work, a mathemati-
cal formulation of an objective function is possible as (2.38) and (2.39) are analytical
functions.

min f(x)

with x ∈ Rn (3.7)

The objective function in (3.7) can take various forms, it can be convex or non-convex.
Convex functions and convex sets are addressed by the optimization methods as it ex-
hibits at least one minimum. A convex set is defined in geometry as the set S of points,
in which any pair of points x1 and x2 can be connected by a line segment completely
contained in S as in Fig. 3.2, otherwise it is defined as a nonconvex set.

x1

x2

(a) Convex set.

x1

x2

(b) Non-convex set.

Figure 3.2: Types of convex sets.
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In the case of a function, as depicted in Fig 3.3, if there are function values equal or
less than a chord or line segment between two points of the function, then it is said that
the function is convex, in the opposite case it is a concave function .

x1 x2

x

(a) Convex function.

x1 x2

x

(b) Concave function.

x1 x2

(c) Nonconvex and nonconcave function.

Figure 3.3: Convex and nonconvex functions.

The focus in optimization theory lays on convex functions or sets as the objective
of the optimization procedures is to find the set of points at the minimum. Finding
the minima or the smallest value of the objective function could be a difficult task, as
a function can have more than one minimal value. Here is where the concept of the
global minimum and local minimum needs to be introduced as defined in Fig. 3.4. It is
important to acknowledge the type of function as many optimization algorithms perform
a local search of a minimum and conversely global optimization algorithms solve several
local problems.
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3 Flux-Linkage Model Parameter Identification

local minimum

global minimum

Figure 3.4: Types of minimum.

In the case that the objective function is convex or at least a convex region, the opti-
mization process can be carried out based in the objective function and its properties.
The line search method, an optimization algorithm set for an unconstrained problem, is
an iterative approach that seeks to find the minimum of a given objective function f(x).
An optimal direction vector dk with a step size αk is found at each iteration [49]. The
key point of this method is to find the most suitable step size. This method performs
a one-dimensional search, this means it handles a univariable objective function, never-
theless multivariable optimization can be based on this approach.

Most precise procedures involve the use of the gradient information of the objective
function on (3.7) to find the optimal solution. The Steepest descent method, on the
so-called Newton’s Methods, is a simple minimization procedure, it uses the negative
gradient of f(x) as its descent direction. This method performs well for finding local
minima but when approaching a stationary point it starts to get slow showing a zigzag-
ging trajectory towards the minimum. With regards of use of the objective function
information, the Newton’s method goes further, as it uses second-order Taylor expan-
sion or quadratic approximation of f(x) around the iteration point xk. To formulate
the quadratic approximation of f(x) not only the first derivative ∇f(x) but the second
derivative ∇2f(x) is required.

f(xk + s) ≈ f(xk) +∇f(xk)
T s+

1

2
sT∇2f(xk)s (3.8)

If the objective function is quadratic function and the Hessian∇2f(x) is positive definite,
the method can reach the minimum point with one iteration. This makes the Newton’s
method quite powerful but some drawbacks such as the expensive computational cost,
due to the effort to obtain the Hessian matrices and the difficulty when the Hessian is
not available. Alternative approaches emerged to offer a work around to those issues.
The Quasi-Newton’s methods are a group of methods which work with Hessian approxi-
mations maintaining a fast convergence speed making them quite powerful. Some of the
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most known methods to approximate the Hessian are the Symmetric Rank-One update,
the DFP update and the most popular BFGS update. In order to reduce the computa-
tional cost approaches like the Gauss-Newton or Levenberg-Marquardt methods neglect
the second order information of the quadratic approximation (3.8). This effectively re-
duces the performance for large residual problems [49, 47].

So far nonlinear unconstrained optimization methods were considered, now the opti-
mization problem can be defined as a nonlinear constrained optimization as in (3.9). The
idea of reducing the solution search space is quite compelling as in many situations there
is certain previous knowledge of the objective function. In the specific case of (2.38) and
(2.39) it is known before hand that coefficients like ψm, ldq10 and lqd10 are positive as
they relate directly to the permanent magnet flux-linkage, the linear d-axis inductance
and the linear q-inductance respectively. Incorporating constraints in the optimization
procedure means additional complexity to the method, nevertheless in general terms the
convergence of the algorithm improves.

min f(x)

with x ∈ Rn
ci = 0, i ∈ E
ci ≥ 0, i ∈ I

(3.9)

If the constraints in (3.9), equality and inequality constraints, are linear functions, then
it is said that the optimization problem is linearly constrained. Which is the case of
the specific optimization problem that needs to be formulated to find the coefficients of
(2.38) and (2.39), where the constraints consist of inequalities of some the coefficients in
question.

A method created to handle this type of problems is the quadratic programming (QP)
method. It is defined as a linearly constrained nonlinear optimization problem, where
the objective function is quadratic.

Minimize Q(x) =
1

2
xTGx+ gTx

aTi x = bi, i ε E

aTi x ≥ bi, i ε I

(3.10)

Where x is the set of unknown coefficients, G is the Hessian of the objective function
f(x) and g = ∇f(x)−Gx. The vectors ai and bi define the constraints of the problem.
Similarly to (3.9) in the QP formulation there are equality and inequality constraints
but the definition of the objective function is similar to (3.8) as it deals with quadratic
functions and the second-order Taylor expansion describes them, but as expected, the
minimum of the objective function can be determined with the two terms of the expan-
sion carrying the variables or unknowns, extensive analysis of the variations of the QP
algorithms can be found in [49, 50].
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3 Flux-Linkage Model Parameter Identification

3.1.1.3 Kalman Filtering

Originally intended to estimate the states of a time-variant discrete system, the Kalman
filter can be formulated to estimate the parameters of the system as well. It is an
algorithm that predicts and corrects the corresponding states based on the least squares
optimality. The Kalman filter is derived around linear dynamic systems [48, 51], it is
assumed that the system’s future states can be represented by (3.11). Where A(k) is the
transition matrix from the k state to the k+1 state, B(k) control-input matrix, v(k) the
system noise. On the other hand the measurement of the variable x(k) is modeled as
(3.12), where y(k) is the current measurement, C(k) is the noiseless connection between
state and observation and n(k) is the corresponding measurement noise.

x(k + 1) = A(k)x(k) +B(k)u(k) + v(k) (3.11)

y(k) = C(k)x(k) + n(k) (3.12)

Additionally it is assumed that the system noise and the measurement are uncorrelated
zero mean Gaussian white noise processes. Furthermore their covariance Q and R is
assumed to be known as well.

Q = E
[
v(k)vT (k)

]
(3.13)

R = E
[
n(k)nT (k)

]
(3.14)

Following into the derivation of the Kalman filter, the minimization of the mean squared
error (3.15) yields to the optimal filter as described in [48, 51], where P (k) is the covari-
ance matrix of the error e(k) = x(k)− x̂(k).

E
[
e(k)eT (k)

]
= P (k) (3.15)

The resulting recursive filter takes the form of (3.16), where K(k) is the Kalman gain.
It is important to remark at this point that the formulation of the filter in (3.16) implies
a high computational cost produced by the calculation of the covariance matrix P (k)
and the Kalman gain K(k), as for example, a matrix inversion is needed.

K(x) = P ′(k)C(k)T
(
C(k)P ′(k)C(k)T +R(k)

)−1

x̂(k) = x̂′(k) +K(x)
(
y(k)− C(k)x̂′(k)

)
P (k) = (I −K(k)C(k))P ′(k)

x̂′(k + 1) = A(k)x̂(k) +B(k)u(k)

P ′(k + 1) = A(k)P (k)AT (K) +Q(k)

(3.16)

At this point it is important to point out that the formulation of the Kalman filter is
quite similar to the RLS algorithm in (3.6). Both algorithms seek to minimize the least
squared error but with different assumptions, as the Kalman filter focuses on the process
noise. For a system of the form (3.17) and (3.18), the resultant update equations get
simplified to a point where it is similar to the RLS algorithm formulation.

x(k + 1) = x(k) + v(k) (3.17)

y(k) = C(k)x(k) + n(k) (3.18)
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The Kalman filter update equations get simplified to (3.19) where it is evident that the
Kalman Gain K(k) is similar to the adaptation matrix γ(k) of the RLS algorithm. The
difference relies on the forgetting factor λ and the covariance matrix R(k). In addition
to this, the system covariance matrix Q(k) plays a role in the update of the matrix P (k)
in the Kalman filter and in the RLS update equation this matrix is not considered or its
value would be zero. Having said that, for a forgetting factor λ = 1, where no variations
over time is expected, it would be equivalent to the assumption that covariance Q(k) of
the system is zero.

On the other hand in the Kalman gain the difference would be that each variable
is weighted differently due to the knowledge of R(k) but for the RLS, each variable is
weighted equally by the forgetting factor λ. This similarities make the Kalman filter
attractive in the sense that if the covariance matrix R(k) is known before hand the
Kalman filter would be the proper alternative.

x̂(k) = x̂(k − 1) +K(x) (y(k)− C(k)x̂(k − 1))

K(x) = P ′(k)C(k)T
(
C(k)P ′(k)C(k)T +R(k)

)−1

P (k) = (I −K(k)C(k))P (k − 1) +Q(k)

(3.19)

The set of equations in (3.16) were derived for a linear dynamic system but in many
applications a solution for a nonlinear system of the form is required. Therefore a new
update sequence is derived, the Extended Kalman Filter (EKF), for nonlinear systems
in the form of (3.20) and (3.21).

x(k + 1) = fk (x(k) + u(k)) + v(k) (3.20)

y(k) = gk(x(k)) + n(k) (3.21)

Where fk and gk are time varying functions. The future update is obtained from the non-
linear model. Additionally, the covariance matrix P (k) update is derived from Taylor’s
first order expansion of (3.20) and (3.21). By doing this approximation the filter isn’t
optimal anymore, as the linearization around operating points might lead to incorrect
results. On the other hand, the nonlinear transformations will change the distribution
of the random variables, so far expected to be Gaussian. Nevertheless the EKF is used
successfully in many applications such as in Navigation systems or in parameter estima-
tion.

K(x) = P ′(k)G(k)T
(
G(k)P ′(k)G(k)T +R(k)

)−1

x̂(k) = x̂′(k) +K(x)
(
y(k)− gk(x̂′(k))

)
P (k) = (I −K(k)G(k))P ′(k)

x̂′(k + 1) = fk(x̂(k), u(k))

P ′(k + 1) = F (k)P (k)F T (K) +Q(k)

with, F (k) =
∂fk(x, u)

∂x

∣∣∣∣
x=x̂(k),u=u(k)

and G(k) =
∂gk(x)

∂x

∣∣∣∣
x=x̂′(k)

(3.22)
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3.1.1.4 Metaheuristics

Metaheuristics are optimization methods which are not based directly on mathematical
assumptions but on the observation of the behavior in the nature itself. In this category,
methods like artificial neural networks or genetic algorithms can be found. As their
names hint it, those algorithms are based on the human neural networks behavior and
genetics. Their relevance for this work isn’t big for instance because their applicability
on an embedded system, the need for training data sets and convergence time. In this
category many methods are called global optimizers, as they are appropriate for large
amount of variables. Which means that in the case of a large search area, there might
be several minima, or in other words the objective function is non-convex (see Fig.3.4).
In those scenarios a global optimization method is the proper solution compared to the
gradient based algorithms of section 3.1.1.2, which are primarily local optimizers. They
would find the global minimum just in the cases where the objective functions are convex.

The scenario with a non-convex function leads to the logical conclusion to consider
the use of an global optimization method. On the other hand Metaheuristics approaches
are helpful when there isn’t an mathematical description of the system in consideration,
the so called black-box systems, in those cases the methods described in sections 3.1.1.1
to 3.1.1.3 are of no use. In [52] an hybrid optimization strategy is used to identify
the parameters of a PMSM’s thermal model. Where a global optimizer (Particle Swarm
Optimization) would make the initial search for the global optimum and a local optimizer
(Sequential Quadratic Programming) would find the more exact solution.

3.1.1.5 Particle Swarm Optimization

Due to the level of complexity of the optimization problem, it is reasonable to try
approaches with low level of implementation difficulty. The main objective is to develop
an algorithm that can be fitted in a embedded system, so the calculation effort should
be limited as much as possible. Kennedy and Eberhart [53] presented an optimization
method for nonlinear problems based on observations of the nature, in special the social
behavior of animals that interact as an entity like fish schooling or bird flocking. What
they proposed is at some extend similar to other approaches that try to imitate some
behavior observed in the nature like neural networks or genetic algorithms. The concept
behind consist of a swarm composed of n particles which are aware of their current
position and exchange their position with each other. The position is a m-dimensional
vector containing the parameters to be estimated. Each particle knows its best position
and has access to the best position of the swarm. The PSO-algorithm is defined by a
set of equations that describe the flocking behavior of birds:

−−→
vk+1
m = wm

−→
vkm + c1rand1

(−−−−→
pbestm −

−→
xkm

)
+ c2rand2

(−−−→
gbest−

−→
xkm

)
(3.23)

where:

• −→xm corresponds to the position the mth particle in other words it is the vector of
the estimated parameters of the mth particle.
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• −→vm corresponds to velocity vector of the mth particle.

• wm is called the inertia weight factor of the mth particle.

• c1 and c2 are two positive constants.

•
−−−−→
pbestm is the best position achieved by the mth particle.

•
−−−→
gbest is the best position recorded of the whole swarm.

As presented in [52], PSO can be used to calibrate a thermal model, where the PSO
performs a global search and then a gradient based optimizer finds the final optimal
solution of the model parameters. Furthermore, the authors of [28, 26] propose a scheme
where parameters of a PMSM are estimated online in an embedded system using PSO.
However, the estimation accuracy presented in [28] leaves room to certain considerations.
The bigger the swarm the better the accuracy of the estimates, or even increased number
of iterations with a small velocity factor might be necessary to improve the estimation
quality. As a global search algorithm PSO is attractive due to its simple structure,
however the local optimization methods discussed in the previous sections are capable
of delivering more accurate solutions.

3.1.2 Coefficient’s Calculation

The machine’s parameter identification is divided in two categories; the parameter iden-
tification from FE data and from measured data. The former is the determination of
a set of polynomial’s coefficients to minimize the approximation error between a func-
tion based on FEA simulation results and a given flux-linkage polynomial of degree n.
Furthermore, as discussed in section 2.2, the least-square approximation method [37] is
a suitable approach to minimize the approximation error for a given interval of dq-axes
currents. Consequently, the coefficients of the flux-linkage expressions (2.38) and (2.39)
are determined through the minimization of the least-squares. For this purpose any of
the methods discussed through the section 3.1.1 are applicable.
As seen through the section 3.1.1, the characteristics of the objective function are decisive
for the selection of the optimization method. In the case of the flux-linkage expressions,
the objective function is defined as:

f(x) =
N∑
k=1

(ψk − ψ̂k)2 (3.24)

were N is the number of data points and x the set of coefficients of the approximation
polynomial ψ̂. When N is selected to form a system of equations that at least equals
the number of variables in x, there is an unique solution x of the minimization problem
[54]. Therefore the objective function (3.24) becomes convex with one minima, which is
an important property that enables the consideration of local optimization methods.
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3 Flux-Linkage Model Parameter Identification

On the other hand, when dealing with measured data, two aspects need to be consid-
ered. The first one is the data noise that comes from the measurement devices and the
second one is if whether the minimization is performed offline in a personal computer or
online in an embedded system with limited computational resources. Under the consid-
eration of these two aspects, a traditional least-squares minimization cannot be adopted.
Therefore recursive or even simple algorithms are needed in order to be able to implement
the least-squares minimization in an embedded system properly. One important factor
to consider is the characteristics of the system to be identified. At simulation level, the
magnetic information such as flux-linkage can be easily extracted from a FEA model,
however when trying to obtain the flux-linkage experimentally, it is normally done with
an indirect measurement. Under normal conditions the flux-linkage cannot be obtained
directly, additional hardware needs to be placed into the machine, like a search coil, to
measure directly the flux-linkage. This is expensive and time consuming, thus it cannot
be done for a large amount of samples. So the alternative is to derive the flux-linkages
from indirect measurements such as the phase voltages (2.9) and the electromagnetic
torque (2.13) of the machine. Consequently the objective function when working with
measured data is formulated in terms of voltages and electromagnetic torque. However
it is still based on the flux-linkage expressions (2.38) and (2.39).

Numerically compact algorithms like PSO are very compelling for embedded applica-
tions, nevertheless simplicity comes with the cost of accuracy. Typically global search
methods are complemented with gradient based local optimizers [52] to improve the
solution’s accuracy. As the objective function (3.24) can be described analytically in
terms of polynomials, gradient based approaches, like the ones presented in sections
3.1.1.1 and 3.1.1.2 can be taken into account. In this group, Quadratic Programming
(QP) is a proper alternative for optimization problems where the objective function has
a quadratic form and the derivatives of the function are available. In addition to this,
the possibility to apply constraints to the problem makes the method attractive when
considering measured data. Conversely, at the minimization of least-squared errors of
noisy data, the Kalman filters introduced in section 3.1.1.3 seems to be the better option.
Similarly, the RLS algorithm is widely used in online applications, due to is compact
numerical formulation that has a low computational cost. However, gradient based ap-
proaches have similar characteristics, as they use the derivatives of the objective function
to find the optimal solution. They differ, in the degree of information taken from the
derivatives, as some approaches use the first derivative, others the second one and other
approaches approximate the latter for computational reasons.

Another aspect to consider is the fact that there is additional information contained
in the electrical and magnetic nature of the machine, that can be used during the op-
timization procedure. The permanent magnet flux-linkage ψm, the winding resistance
contained in the voltage equations, the dq-axes linear inductances all take positive val-
ues, which means that the search area for a solution during the optimization could be
constrained. This is specially interesting for the online identification as a robustness
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feature to bound parameters and guarantee a parameter prediction in valid ranges.

To summarize, the calculation of the polynomial’s coefficients in the case of FEA
simulation data can be carried out with a standard least-squares minimization methods.
On the other hand when dealing with measured data approaches like RLS or QP are
attractive, the former due to its low computational cost and the latter because of the
constraints. Whereas an unconstrained QP optimization of (3.24) can be seen as a
simple least-squares minimization.

3.2 Coefficient of Determination

To obtain certain degree of confidence on the flux-linkage meta-models presented through-
out chapter 2, a measure of model fitness was adopted. The Coefficient of Determination
(CoD), R2, also known as multiple correlation coefficient [55] offers well documented
measure of goodness of fit for regression models of the form:

y = β0 +

k∑
j=1

βjxj + ε (3.25)

where β represent the set of model parameters, xj the model variables and ε a residual
variable [56]. The general form in (3.25) describes actually the same polynomial structure
of the flux-linkage expressions already mentioned, making the CoD a suitable tool to asses
the polynomial degree chosen for a given machine design. The CoD is then defined as:

CoD = R2 = 1−
∑

(y − ŷ)2∑
(y − y)2

(3.26)

In (3.26), y is the arithmetic mean of the observed data set y and ŷ denotes the set
of fitted values. Therefore, the expression

∑
(y− y)2 is a sum of squares proportional to

the variance of the data set y. Moreover
∑

(y − ŷ)2 corresponds to the sum of squares
of residuals of the fitted function ŷ. Finally the CoD is a measure, that per definition
will deliver a value R2 = 1 for model that describes perfectly the reference data set and
R2 closer to 0 for models with worse predictions.

3.3 Offline Identification of PMSMs: FEA Simulation Data

This section presents the identification of the coefficients of expressions (2.38) and (2.39)
for a given polynomial degree n. For that purpose the least-square approximation
method is selected as discussed in section 2.2. To avoid numerical issues and to be
able to use similar optimization setups, the currents and the fluxes are normalized. In
general, the minimization of sum of the least squares can be carried out with a stan-
dard least-squares method. However, the use of constraints to solve an optimization
problem when dealing with measured data brings certain control over the solutions, as
valid parameter range can be defined before hand to guarantee a stable solution. For
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3 Flux-Linkage Model Parameter Identification

the sake of continuity, the optimization method used with FEA simulation results and
measured data will be the same. Whereas the task to solve remains the same, which is
the minimization of the error between the given target flux data and the approximation
polynomial. The optimization problem is then formulated as a constrained problem, a
quadratic programming (QP) problem, where permanent magnet flux-linkage and linear
inductances are positive. As the expressions (2.38) and (2.39) share the cross coupling
coefficients of the type cdq()() , the parameter identification is performed jointly using one
objective function:

fn(x) =
N∑
k=1

[
(ψd(idk , iqk)− ψ̂d(idk , iqk))2 + (ψq(idk , iqk)− ψ̂q(idk , iqk))2

]
with, ψ̂d = ∇ψdxT ; and ψ̂q = ∇ψqxT

(3.27)

Where x is the set of unknown coefficients, N is the number of the simulation data points
and n is the polynomial degree. The letters with a hat notation represent estimated
values and the letters with no hat notation are the values of the FE simulation data.
The constrained optimization problem can be then formulated in the following form:

Minimize Q(x) =
1

2
xTGx+ gTx

with, ψm > 0, ldq10 > 0 and lqd10 > 0

where, G = ∇ψd∇ψTd +∇ψq∇ψTq
g = −2ψd∇ψd − 2ψq∇ψq

(3.28)

Where G is the Hessian of the objective function f(x) and g = ∇f(x)−Gx. The symbol
x represents the set of coefficients to be identified and N the number of data points used
for the optimization1. The FEA simulation results of the machine depicted in Fig. 2.5
were used to illustrate the validity of the proposed flux-linkage expressions, as a starting
point the polynomial degrees n = 3 and n = 5 will be explored. Depending on the
chosen polynomial degree, the FEA simulation data points can be selected according to
the number of coefficients to be determined. The minimum amount data points Nd for
id is given by the rule:

Nd = n+ 1 +mod(n− 1, 2) (3.29)

where (3.29) takes into account the coefficients associated to id in the d-axis flux-linkage
expression (2.38) and in the case of an odd polynomial degree it adds an additional point
to create a symmetric data points grid along the d-axis current. In a similar fashion, the
rule for the minimum q-axis current data points Nq is given by the coefficients associated
to iq in the q-axis flux-linkage expression (2.39) and an additional data point along the
q-axis current is added to include iq = 0A, as it is required by the coefficients associated
to id in the d-axis flux-linkage expressions that are not coupled with iq.

Nq =
n− 1−mod(n− 1, 2)

2
+ 2 (3.30)

1The function quadprog of the commercial software MATLAB was used to solve the quadratic program-
ming problem.
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3.3 Offline Identification of PMSMs: FEA Simulation Data

The proposed minimum FEA data points grids for n = 3 and n = 5 are displayed in
Fig. 3.5 in an exemplary manner.

id

iq

(a) Proposed FEA data points grid for n = 3

id

iq

(b) Proposed FEA data points grid for n = 5

Figure 3.5: FE Simulation data point selection

As the symmetry shown by the flux-linkages with respect to iq the flux-linkage was al-
ready considered in the flux-linkage polynomials, the data points grid only need to cover
positive values of iq or the first two quadrants of the idq plane. With simulation data
points depending on the chosen polynomial degree, the amount of simulations required
to generate a flux-linkage model of the machine can be optimized and potentially the
overall simulation time can be reduced.

Proceeding according to the rules for simulation data points (3.29) and (3.30), the
FEA simulation data for the coefficient identification was obtained. However it can
observed in Fig. 3.5 that the data grid points for n = 3 are a subset of non-equidistant
data points of the data set for n = 5. Therefore the data grid points for n = 5 were used
to obtain the simulation data. Finally, the quadratic programming solver returned the
values in table 3.1.
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Table 3.1: Coefficients for n = 3 and n = 5

Coefficients (x) n=3 n=5

ldq00 7.89 7.89 mWb

ldq10 51.84 52.95 µH

ldq20 -53.32 -52.75 nH/A

ldq30 -0.32 -0.85 nH/A2

ldq40 − -5.54 pH/A3

ldq50 − -15.55 fH/A4

cdq01 -41.73 -13.62 nH/A

cdq11 -1.06 -1.53 nH/A2

cdq21 − -11.54 pH/A3

cdq31 − -33.44 fH/A4

cdq03 − -4.40 pH/A3

cdq13 − -18.39 fH/A4

lqd10 67.84 68.34 µH

lqd30 -0.32 -0.41 nH/A2

lqd50 − -7.27 fH/A4

The polynomial coefficients give a hint of the ratio flux-linkage/current. The most rel-
evant coefficients in this case ldq10 and lqd10 are related directly to the linear, unsaturated,
inductances. In this specific example the machine, an IPMSM, which is expected to have
reluctance, evidenced by the significant difference between dq-axes inductances. Looking
at the values of table 3.1 for n = 5, the linear q-axis inductance Lq = lqd10 = 68.34µH
is larger than the linear d-axis inductance Ld = ldq10 = 52.95µH, which is the expected
indication of reluctance in the IPMSM. Nevertheless it is important to remember that
those coefficients represent the unsaturated inductances or small signal inductances, were
the currents a so small that the following ratios are true:

ψd − ψm
id

≈ ldq10 = 52.95µH

ψq
iq
≈ lqd10 = 68.34µH

(3.31)
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3.3 Offline Identification of PMSMs: FEA Simulation Data

3.3.1 Flux-Linkages

A visualization with respect to the current phase advance angle γ is chosen, in order
to show how the different polynomial degrees represent the flux-linkages. This phase
advance angle, as depicted in Fig. 3.6, is defined in (3.32) and it will be addressed as
phase advance for future references.

γ = arctan(
−id
iq

) (3.32)

where minus sign of id indicates that γ is defined to be positive in the second quadrant
the currents plane, as it is the quadrant of interest when driving the machine in the field
weakening region2.

d-axis

q-axis

id

iqi

γ

Figure 3.6: Current phase advance angle.

2Recalling the definition of ψd = ψm + Ldid , the permanent magnet flux-linkage ψm can be weakened
only if id takes negative values, hence the adoption of a positive γ is more practical.
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(a) D-axis flux-linkage at increasing current.
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(b) Q-axis flux-linkage at increasing current.

Figure 3.7: IPMSM Flux-Linkages

The flux-linkages were plotted in Fig. 3.7 to visualize the accuracy of the expressions
with degree n = 3 and n = 5, where solid lines represent the FE data, dotted and dashed
lines correspond to the identified models. In this specific case where the saturation effects
are pronounced a high polynomial degree n = 5 seems to capture seemly well this effect.
Conversely, if the machine is analyzed in a reduced current region, a lower polynomial
degree e.g. n = 3 would be sufficient to describe the nonlinear effects. The goodness
of fit for the corresponding polynomial degrees can be evaluated with the metric, CoD,
introduced in (3.26). Table 3.2 summarizes the CoD for different polynomial degrees
starting with the linear model n = 1, where the closeness of n = 5 observed in Fig. 3.7
can be quantified with the largest CoD which is not a surprise. However the difference
in magnitude between the CoD for n = 3 and n = 5 confirms the degree of fitness of the
latter.

Table 3.2: IPMSM - Coefficient of determination

CoD

n = 1 0.9987

n = 3 0.99986

n = 5 0.9999945

One strong advantage of representing the flux-linkages in terms of a polynomial is that
it enables an analytical representation of the various characteristics of the machine, such
as the absolute and differential dq-axes inductances, the electromagnetic torque and the
motor torque constant Kt. This is the separation of these characteristics of the machine
in individual expressions which enables an easy and accurate analysis of them.
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3.3 Offline Identification of PMSMs: FEA Simulation Data

3.3.2 Machine Inductances

In the same way as with flux-linkages, the inductances can be compared against FEA
results. The polynomial degree is the key factor for the accuracy of the inductances.
Conventional approaches use the flux-linkage information at certain operating points to
obtain directly the inductances [57, 23], but the number of points is limited due to the
effort needed to obtain them. In [57] the authors propose to enhance the inductance
results by interpolating between data points.

In addition to this, the calculation of the differential inductances require the partial
derivative with respect to the current, which means further mathematical manipulation,
discretization errors and sensitivity to noise in the data. As the proposed approach is
based already on analytical functions, its derivative is easy to formulate in terms of the
polynomials coefficients and as a result it averages any noise in the input data. The
approach proposed by this work implicitly interpolates the single data points of the
flux-linkage data as an analytical function describes the given data points. The latter is
specially relevant when working with measured data.

The inductances can be evaluated for all data points of the FEA simulation according
to the definitions in section 2.2.3. For example the absolute inductances for n = 3 are
expressed as:

Ld(id, iq)

∣∣∣∣
n=3

= ldq10 + ldq20id + ldq30i
2
d +

cdq11i
2
q

2
(3.33)

Lq(id, iq)

∣∣∣∣
n=3

= lqd10 + lqd30i
2
q + cdq01id +

cdq11i
2
d

2
(3.34)

Ultimately, when talking about absolute inductances, what is being considered is the
ratio between flux-linkage and current. A few characteristics of this ratio for all current
values can be observed by looking at the dq-axes flux-linkages. It can be seen in Fig.
3.8a that ψd is biased by ψm, leading to saturation in the magnetic circuit producing
at the same time an asymmetric d-axis current dependency.In Fig. 3.8a, the saturation
degree decreases when id gets negative, straight part of ψd, and increases when id turns
positive, curved part of ψd. When id is positive, the magnetic flux due to the id flows in
the same direction as the permanent magnet one, saturating even more magnetic core of
the machine, reducing the net permeability of the core and thus decreasing the resulting
flux-linkage as well. On the other hand, the flux-linkage, ψq, is symmetric with respect
to iq, as can be seen in Fig. 3.8b, with no flux-linkage bias, the magnetic circuit behaves
in a symmetrical way with respect the q-axis current.
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Figure 3.8: FEA Flux-linkages.
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(a) D-axis absolute inductance for n = 5.
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(b) D-axis absolute inductance at zero iq.

Figure 3.9: D-axis absolute inductance.

These two properties have a direct impact on the absolute inductances Ld and Lq. As
a result Ld exhibits asymmetry with respect to id as in Fig.3.9b. More importantly, the
consequence of this asymmetry was the impossibility to simplify the coefficients 3 of the
polynomial with respect id. Consequently, when trying to describe two quadrants, the
polynomial accuracy achieved for ψd can differ from the one obtained for ψq, as can be
observed in Fig. 3.10b. However, if the approximation of ψd is limited to one quadrant,

3The asymmetry and symmetry of the dq-flux-linkages with respect to the currents were considered in
section 2.2.1 to simplify the number of coefficients of the flux-linkage expressions. The asymmetric
behavior of ψd with respect id led to no simplification.
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i.e. the second one, the accuracy of the polynomial with the same degree increases. This
is shown in the following section, nevertheless the reason for the improvement of the
approximation relies on the fact that more coefficients with their corresponding current
terms are available to describe nonlinear behavior in the reduced area of interest.
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(a) Q-axis absolute inductance for n = 5.
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(b) Q-axis absolute inductance at zero iq.

Figure 3.10: Q-axis absolute inductances.

In a similar manner, the differential inductances can be calculated according to (2.45),
(2.46) and (2.48) for the given polynomial degrees, for n = 3 the incremental inductances
would be:

Ldd(id, iq)

∣∣∣∣
n=3

= ldq10 + 2ldq20id + 3ldq30i
2
d +

cdq11i
2
q

2
(3.35)

Lqq(id, iq)

∣∣∣∣
n=3

= lqd10 + 3lqd30i
2
q + cdq01id +

cdq11i
2
d

2
(3.36)

Ldq(id, iq) = Lqd(id, iq)

∣∣∣∣
n=3

= cdq01iq + cdq11idiq (3.37)
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(a) Differential inductance Ldd.
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(b) Differential inductance Lqq.

Figure 3.11: Differential inductances.

The differential inductances exhibit the same characteristics as the absolute ones,
therefore, the coefficients analysis is the same as well. Even though the main objective
of the expressions (2.38) and (2.39) is not to obtain the machine inductances, it is a
by-product that help to analyze a machine design or it could be used to formulate a
phase variable model of the machine in terms of its inductances.

3.3.3 Electromagnetic Torque

One of the metrics to evaluate the accuracy of the flux-linkage expressions (2.38) and
(2.39), is the ability to describe the nonlinear behavior of the electromagnetic torque. Te
as defined in (2.13), indicates that all coefficients contribute to describe the development
of torque with respect to the currents id and iq.

As already mentioned in chapter 2.1, when the machine has saliency, a difference
between d-axis and q-axis inductances, an additional torque contribution arises, called
reluctance torque. The reluctance torque only appears when the d-axis current is non-
zero, otherwise only the torque contribution coming from the q-axis current is to be seen.
The polynomial form of expressions (2.38) and (2.39) enables the separation of this two
type of torque. Recalling the definition of electromagnetic torque:

Te(id, iq) =
3

2
p · (ψm · iq − (Ld − Lq) · id · iq) (3.38)

where the reluctance torque is the term that involves the inductances. Once the magnetic
circuit starts to saturate, (3.38) needs to include the nonlinear effects. By rewriting
(3.38) in terms of flux-linkages, according to (2.13), the expressions (2.38) and (2.39)
can be used to separate the nonlinear effects in order to capture the magnet torque and
the reluctance torque contributions correctly. For simplicity, n = 3 is chosen once again
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to demonstrate the nonlinear effects separation:

Te(id, iq)

∣∣∣∣
n=3

=
3

2
p

[(
ψm +

cdq01i
2
q

2

)
iq︸ ︷︷ ︸

−
(
ldq10 − lqd10 + (ldq20 − cdq01)id + ldq30i

2
d − lqd30i2q +

cdq11(i2q − i2d)
2

)
idiq︸ ︷︷ ︸

]
Trel

(3.39)
where the first group of terms along iq represent the main torque with its corresponding

saturation terms that solely come from the q-axis current. These were already addressed
in section 2.2.4, where the motor torque constant Kt were formulated to included the
saturation effects. On the other hand, the second group of terms describe the reluctance
torque Trel, including the classical inductance terms ldq10 − lqd10 but also the additional
coefficients that represent all the nonlinear effects.
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(b) Reluctance torque at increasing current.

Figure 3.12: IPMSM electromagnetic torque

The motor torque constant Kt, which depicts the torque current ratio at γ = 0◦, can
be expressed, with the help of (2.51), for n = 5 as:

Kt

∣∣∣∣
n=5

=
3

2
p

(
ψm +

cdq01i
2
q

2
+
cdq03i

4
q

4

)
(3.40)

where the saturation effects due to iq need to be captured with the proper polynomial
degree according to the saturation in the torque curve. This aspect is evident for the
machine chosen (IPMSM), in Fig. 3.13a the saturation of nearly 8% can be properly
described with n = 5:
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Figure 3.13: IPMSM torque constant

Similarly, the nonlinear effects of reluctance torque can be represented with the help
of flux-linkage expressions (2.38) and (2.39). The net electromagnetic torque depicted in
Fig. 3.12a shows how the pronounced saturation effects at increasing currents requires
a higher polynomial degree and how a linear model would reduce drastically the fidelity
of the model. This evident observation is the basis for a formulation of the online
identification problem. As in the literature many approaches have been proposed but
typically linear machine models are adopted. Making the approach valid for operating
regions where low magnetic saturation is at play.
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3.3.4 Permanent Magnet Flux Variations

In section 2.3 an expansion of the flux-linkage expressions with respect to the permanent
flux-linkage ψm was introduced. The new functions (2.61) and (2.62) can then depict
the influence of the permanent flux-linkage on the inductances for example. Similarly,
the magnet temperature effects on the flux-linkages can be captured as well. These two
aspects can help to estimate inductance tolerances and to create a high fidelity flux-
linkage model that can be coupled to a machine thermal model.

A FE simulation was carried out for different magnet remanence Br values. The
variation range for Br was selected for a NdFeB magnet with temperature coefficient
−0.11%/◦C maximum temperature of 180◦C (see table 2.2). From nominal value at
room temperature 21◦C up to the maximum temperature and a Br tolerance of 15%,
the resulting variation would correspond to the range 80%−100% of nominal Br. Seven
different values, [0.8 0.84 0.876 0.9 0.93 0.97 1] of Br (p.u.) , are then chosen
to run the parameter identification of the extended flux-linkage expressions.

One objective of this section is to visualize the influence of remanence variations on
the inductances, for that, a polynomial degree n needs to be selected in order to run the
optimization procedure for the given remanence values. As for the FE simulation setup,
is identical to the one used in section 2.2.1, where a set of different d-q axes currents
is chosen to capture the flux-linkages in four quadrants (see Fig. 2.6). The resulting
flux-linkages can be appreciated in Fig. 3.14.
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Figure 3.14: Flux-linkage at different Br
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3 Flux-Linkage Model Parameter Identification

Following the same steps as in the first part of this section, the flux-linkage data
showed Fig. 3.14 is used to obtain the coefficients of expressions (2.61) and (2.62). The
objective function in (3.27) needs to be modified to include the new variable ψm.

fn(x) =

N∑
k=1

[
(ψd(idk , iqk , ψmk

)− ψ̂d(idk , iqk , ψmk
))2 + (ψq(idk , iqk , ψmk

)− ψ̂q(idk , iqk , ψmk
))2
]

with, ψ̂d = ∇ψdxT ; and ψ̂q = ∇ψqxT
(3.41)

Where x is the set of unknown coefficients, N is the number of the simulation data
points and n is the polynomial degree. The letters with a hat notation represent esti-
mated values and the letters with no hat notation are the values of the FE simulation
data. The constrained optimization problem can be then formulated in the following
form:

Minimize Q(x) =
1

2
xTGx+ gTx

with, ldq100 > 0 and lqd100 > 0

where, G = ∇ψd∇ψTd +∇ψq∇ψTq
g = −2ψd∇ψd − 2ψq∇ψq

(3.42)

The problem formulation in (3.42) differs with (3.28) only in the constraint that con-
cerns ψm as it is in this case the new additional variable. For the optimization process,
the flux-linkages of three runs with different Br values are selected. The objective is to
emulate a real scenario, where the magnet temperature varies from room conditions up
to a maximum value of around 85◦C for a given temperature coefficient of −0.11%/◦C.

3.3.4.1 Flux-linkages

In reality it might be challenging to bring the magnet temperature of the machine over
160◦C or the limit 180◦C (as per table 2.2) and at the same time drive the machine at
maximum load. It is more convenient to establish a model that can be extrapolated to
that critical temperatures or Br values. With the latter in mind, the set of simulation
data is then reduced to: [0.93 0.97 1] of Br (p.u.) and the remaining four set of data
will be used to asses the extrapolation accuracy of the model.

The resulting flux-linkage curves obtained for n = 3 and n = 5 are shown in Fig. 3.15,
where n = 5 delivers an accurate description of the flux-linkages despite the additional
degree of freedom coming from ψm. The results in Fig. 3.15 are consistent with the ones
depicted in section 3.3.1 in terms of the accuracy obtained for a constant value of ψm
and polynomial degree. For this specific machine n = 5 is the common value that would
describe fairly accurately the associated saturation and non-linear effects.
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Figure 3.15: Flux-linkages at increasing current for different ψm.
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On the other hand, Fig. 3.16 shows the extrapolated flux-linkages for the extreme
values at ψm = 0.82p.u. and ψm = 0.78p.u., where the flux-linkage model can extrapolate
quite good the target curves. This extrapolation accuracy can be explained by a small
change in the flux biasing the lamination in the machine, (20%) of Br, which evidently
leads to a variation in the nonlinear characteristics of the materials that can be described
with a low polynomial order. As an example, for n = 5, the coefficients ldq02 and ldq10 ,
which relate to the Kt saturation and the linear d-axis inductance respectively, become
a function of ψm as shown in (3.43). In this example, the mentioned coefficients are
analytically described by polynomials of third and fourth degrees, which can track the
nonlinear behavior caused by a change in the given range of Br.

ψd(id, iq, ψm) =ldq001ψm + (ldq021ψm + ldq022ψ
2
m + ldq023ψ

3
m)︸ ︷︷ ︸ i2q

ldq02(ψm)

+
(
ldq100 + ldq102ψ

2
m + ldq104ψ

4
m

)︸ ︷︷ ︸ id + ...

ldq10(ψm)id

(3.43)

Despite the subset of the simulation data used for the determination of the coefficients
of the flux-linkage expressions, the predicted flux-linkage curves in Fig. 3.16 were close
to the actual data. This is then again backed up by the CoD in table 3.3 where the
coefficients exhibit digits with values of 9 in the place between thousandths and hundred
thousandths. The CoD of the first three positions in table 3.3 reflect the fact that they
were used for the coefficient determination and that is why those three CoD evidence a
better goodness of fit.

Table 3.3: IPMSM - CoD for n = 5

ψm CoD

1 0.9999957

0.97 0.9999958

0.93 0.9999951

0.89 0.99999

0.86 0.9999811

0.82 0.9999506

0.78 0.9998724
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Figure 3.16: Extrapolated flux-linkages at increasing current for different ψm.
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3.3.4.2 Machine inductances

Following the previous assessment steps, the accuracy of the inductances with respect
to ψm will be evaluated in this section. As hinted in (3.43), each coefficient presented
in (2.28) and (2.30) is then represented by a polynomial as a function of ψm. At the
same time, this could be seen as indirect temperature dependency of the inductances.
Recalling the definition of self-inductance according to [35] :

L =
ψ

i
=
N · φ
i

=
N · F · P

i
= N2 · P (3.44)

where N is the number of coil turns, i is the coil current, ψ is the flux-linkage N · φ.
The magnetic flux φ is equal to F ·P, where F is the m.m.f, defined as N · i and P is the
magnetic circuit permeance. Of all these variables, the permeance P is the one linked to
the relative permeability µr, which at the same time depends on φ, as it is the inverse
value of the magnetic reluctance already mentioned in (2.14). These relationships make
P current and magnetic flux dependent in a nonlinear manner, given the characteristics
of µr with respect φ as depicted in Fig. 2.3b. This flux dependency, which in part comes
from the contribution of the permanent magnet flux as shown in 2.4, is then captured in
(2.64) and (2.66), where the dq-axes inductances are formulated in terms of the currents
and ψm. Expressions (3.45) and (3.46) serve as an example to visualize the polynomials
containing ψm:

Ld(id, iq, ψm)

∣∣∣∣
n=3

= ldq100 + ldq102ψ
2
m︸ ︷︷ ︸+ldq201idψm + ldq300i

2
d + ldq120i

2
q

ldq10

(3.45)

Lq(id, iq, ψm)

∣∣∣∣
n=3

=

lqd100 + lqd102ψ
2
m︸ ︷︷ ︸+lqd300i

2
q + lqd110id + lqd111idψm + lqd120i

2
d

lqd10

(3.46)

The terms under braces in (3.45) and (3.46) represent the coefficients related to the
linear inductances introduced in section 3.3, ldq10 and lqd10 . The inclusion of ψm in
the formulation of these inductances is the direct indication of inductances with and
without magnets. The coefficients accompanied by ψm describe the saturation effect
that the bias flux of permanent magnets have on the magnetic circuit. An unsaturated
machine core, without magnets, delivers larger dq-axes inductances compared to the
ones at the presence of rotor magnet. As the magnet flux moves the operating point
of the magnetic materials, more specifically, its relative permeability, the resulting flux-
linkage increases at a lower rate with respect to the current leading to a decrease of the
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3.3 Offline Identification of PMSMs: FEA Simulation Data

inductances. This effect is reflected in (3.45) with the equivalent coefficient ldq10 :

ldq10 = ldq100 + ldq102ψ
2
m (3.47)

where in (3.47) a negative value of ldq102 leads to a decrease of ldq10 with respect to
ψm as shown in Fig. 3.17.
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Figure 3.17: D-axis inductances at different ψm.

Similarly, in (3.48) the equivalent coefficient lqd10 displays also a dependency on ψm.

lqd10 = lqd100 + lqd102ψ
2
m (3.48)

the coefficient along ψ2
m indicates the contribution of the permanent magnet flux-

linkage to the small signal q-axis inductance,, which is reflected in an increasing induc-
tance at decreasing ψm as displayed in Fig. 3.18.
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Figure 3.18: Inductances at different ψm.

The three bottom curves, ψm = [0.93 0.97 1] p.u. in Fig. 3.17 and 3.18 correspond
to the data sets used for the identification of the coefficients. Conversely, the remaining
top curves, correspond to the data set used to obtain extrapolated inductances.

The inductance obtained from extended flux-linkage expressions can fairly follow the
expect FEA inductances, where it is important to notice that the inductance variations
with respect to ψm are quite small and they can still be tracked by the polynomials.
This is an indication of the change of the coefficients when considering its online identi-
fication under magnet temperature variations. Specially the absolute inductances, Fig.
3.17a and 3.18a, will have an important impact on the online identification. This will be
addressed in chapter 6, where the information of the extended flux-linkage expressions
can be used to improve the performance of the estimation.

3.3.4.3 Torque constant

In 3.3.3 it was shown that the saturation of the torque constant Kt is exclusively due
to iq when ψm remains constant. On the other hand, when variations of the permanent
magnet flux-linkage are considered, ψm plays a role in the saturation terms as hinted in
(2.69). In order to visualize the torque constant dependency on ψm, Kt is formulated
with help of (2.69) for n = 5 :
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Kt(iq, ψm)

∣∣∣∣
n=5

=
3

2
p

(
ψm + ldq021i

2
qψm + ldq022i

2
qψ

2
m + ldq023i

2
qψ

3
m + ldq041i

4
qψm

)
(3.49)
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Figure 3.19: IPMSM torque constant at different ψm.

The accuracy obtained with n = 5, confirmed in Fig. 3.19, illustrates that the satu-
ration caused originally by iq is also related to ψm. Meaning that the saturation degree
seen in the main torque component can be interpreted as magnet temperature dependent
and is driven by iq.

By normalizing (3.49) with respect to 3
2pψm it is more evident how the saturation is

directly related to ψm:

Ktnorm

∣∣∣∣
n=5

= 1 + ldq021i
2
q + ldq041i

4
q + ldq022i

2
qψm + ldq023i

2
qψ

2
m︸ ︷︷ ︸ (3.50)

Even though the main contribution to the saturation comes from iq the last two terms
in (3.50) show the dependency with respect to ψm. This is the indication that the biasing
magnetic flux produced by the magnets might saturate the magnetic circuit in the case
that ldq022 and ldq023 become negative in the example (3.50).
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3.4 Offline Identification of WFSMs: FEA Simulation Data

This section addresses the parameter identification of the flux-linkage expressions pre-
sented in 2.4. The machine with characteristics shown in table 2.3 was simulated using
the 2D-FE software Ansys-Maxwell. Eleven values of the field current if , ranging from
zero to a maximum value were defined to run the simulation for different phase current
magnitude and phase advance γ values. The identification approach used was the same
as in the previous sections, the coefficients are determined through the formulation of an
optimization problem that minimize an objective function. In this case, two approaches
are going to be presented. The first approach concerns the flux-linkage expressions (2.76)
and (2.77), which are used to define the following objective function:

f1(x1) =

N∑
k=1

[
(ψd(idk , iqk , ifk)− ψ̂d(idk , iqk , ifk))2 + (ψq(idk , iqk , ifk)− ψ̂q(idk , iqk , ifk))2

]
with, ψ̂d = ∇ψdxT1 ; and ψ̂q = ∇ψqxT1

(3.51)
Where the subscript 1 denotes the first approach, x1 is the set of unknown coeffi-

cients, N is the number of the simulation data points. The letters with a hat notation
represent estimated values and the letters with no hat notation are the values of the FE
simulation data. For the optimization problem formulation of the WFSM, there is only
one constraint as that kind of machine may might exhibit negative saliency Ld > Lq
and positive Ld < Lq at different operating points. Therefore the only constraint to be
considered is the fact that the magnetizing field inductance Lmf is positive. Recalling
(2.88), the constraint is then formulated in terms of the linear magnetizing coefficient,
as ldq001 > 0.

The second approach is based on the alternative set of flux-linkage expressions (2.82)
and (2.83). Here the optimization process is divided in two steps. The first step focuses
on the identification of coefficients for a constant ifh value using the expressions (2.79)
and (2.80).

f2a(xh)

∣∣∣∣
ifh

=
N∑
k=1

[
(ψd(idk , iqk)− ψ̂d(idk , iqk))2 + (ψq(idk , iqk)− ψ̂q(idk , iqk))2

]
with, ψ̂d = ∇ψdxTh ; and ψ̂q = ∇ψqxTh

(3.52)
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in (3.52) the subscript 2a represents the first step of the second approach and xh is the
subset of coefficients valid for the given field current ifh . Similarly to the constraints in
the first approach, for this set of objective functions, the only constraint to consider is
the positive value of ldq00 > 0, which relates directly to the rotor field flux-linkage. The
second step is dedicated to the final identification of the coefficients only with respect
to if according to the polynomial structure in (2.81). For each set of coefficients ldq(i)(k)
and lqd(i)(k) the following objective function is defined:

f2b(lh)

∣∣∣∣
ifh

=

Nf∑
h=1

(
l()()(i)(k)(ifk)− l̂()()(i)(k)(ifk)

)2

with, ψ̂d = ∇ψdlTh ; and ψ̂q = ∇ψqlTh

(3.53)

where the subscripts (i)(k) represent the dq-axes current powers of the associated
coefficient and lh is the set of coefficients that describe the field current dependency of
coefficient l()()(i)(k) .

The polynomial degree n = 9 was selected to describe the dq-axes current dependency
of the flux-linkages. This was the result of a strong non-linear characteristics of the
flux-linkages. In approach 2, the polynomial degree nf to describe each coefficient was
set to 7. With a total number of 11 sets of flux-linkage data at different if values, a
subset of 8 field current values was sufficient to represent with satisfactory accuracy the
coefficients identified for each of the 11 operating points.

Fig. 3.20 summarizes the results with the two approaches. Three subsets are displayed
to cover the whole field current range. The red curves (n = 9) represent the first
approach which is based on (3.51) and the yellow ones (n = 9x7) correspond to the
second approach, which consists of the two step identification according to (3.52) and
(3.53). The first approach cannot describe correctly the flux-linkages for all operating
conditions, specially maximum field current value. This is more evident in Fig. 3.20e,
where estimate of the d-axis flux-linkage at negative γ values and high phase current
deviates the most.
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Figure 3.20: Flux-linkages at increasing current for different if values.
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The deviations observed at maximum phase current can be explained with Runge’s
phenomenon [58]. At high polynomial degrees, the approximated curves start to oscil-
late around the edge of the interpolated interval. This effect wasn’t evident with the
PMSM as the polynomial degrees were lower. In addition to this, the oscillations were
mitigated by using constrained optimization and minimizing the least squares to find
the coefficients [58]. Conversely, there is only one constraint for the objective function
(3.51) and the polynomial has three variables.
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Figure 3.21: Coefficients for different if values.

On the other hand, the curves with the second approach show no oscillations. The
identification problem was divided in two steps, reducing the effective degree of com-
plexity of the formulated polynomial. This means, the first step considers a reduced set
of data with two variables, namely id an iq and the second one identifies the coefficients
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of a polynomial with only one variable if from the set of coefficients obtained in the first
step. This piece-wise optimization leads to a better approximation accuracy. Fig. 3.21
depicts the three most representative coefficients, ldq00 which correspond to the biasing
DC flux-linkage produced by the rotor field current, ldq10 is the small signal d-axis in-
ductance and lqd10 the small signal q-axis inductance. Those coefficients were identified
using the general formulation (2.81) to describe their dependency on if as can be seen
in Fig 3.21. Additionally, a few aspects can be derived from the coefficients dependency
on if . The saturation seen at mid if values of the rotor dc flux-linkage in Fig. 3.21a is
a good indication of the limits of the design in terms of the definition of maximum field
current. Fig. 3.21b and 3.21c offer a first insight into the saliency of the machine, which
at lower if values is negative and in the upper mid region of if becomes positive.

−50 0 50
0

5 · 10−2

0.1

0.15

0.2

0.25

Current phase advance γ (◦)

T
e
(p
.u
.)

If = 0.2 p.u. n = 9x7 n = 9

(a) D-axis flux-linkage at if = 0.2 p.u..

−50 0 50
0

0.1

0.2

0.3

0.4

0.5

Current phase advance γ (◦)

T
e
(p
.u
.)

If = 0.5 p.u. n = 9x5 n = 9

(b) Q-axis flux-linkage at if = 0.5 p.u..

−50 0 50
0

0.2

0.4

0.6

Current phase advance γ (◦)

T
e
(p
.u
.)

If = 0.7 p.u. n = 9x7 n = 9

(c) D-axis flux-linkage at if = 0.7 p.u..

−50 0 50
0

0.2

0.4

0.6

Current phase advance γ (◦)

T
e
(p
.u
.)

If = 1 p.u. n = 9x7 n = 9

(d) Q-axis flux-linkage at if = 1 p.u..

Figure 3.22: WFSM flux-linkages at increasing current for different if values.
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Fig. 3.22 show the torque at different field current values, where the first hint of the
saliency seen in the coefficients ldq10 and lqd10 can be confirmed. The maximum torque
moves from negative to positive γ values at increasing if . Besides the better accuracy of
the second approach observed in Fig. 3.20, the analytical description of the flux-linkages
opens the door for a minimization of the number of simulation points. Instead of defining
small current steps to improve the resolution of the curves, specially the torque curve,
the flux-linkage expressions can be used to obtain a better resolution in order to capture,
for example, the maximum torque.
The magnetizing inductance Lmf , main driver of the torque generation, is obtained
according to (2.87) using only the second approach. Fig. 3.23 shows the dependency of
Lmf with respect to iq at increasing if .
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Figure 3.23: WFSM magnetizing inductance Lmf vs iq .

Similarly, the dq-axes inductances were obtained based on (2.88) and (2.89). Fig.
3.24 depict the inductances with respect to the d- and q-axis currents at increasing field
current. It is worth to note, that once a flux is produced by the rotor coil, the d-axis
inductance becomes asymmetric with respect to id, which is in line with the asymmetry
seen at the PMSM of section 3.3.2. In that case, there is a permanent flux excitation
coming from the rotor magnets. Conversely, at the absence of the rotor biasing flux, the
d-axis inductance is symmetric like the q-axis inductance with respect the d- and q-axis
currents respectively. Another important aspect is the saturation effect caused by the
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rotor flux. The inductance value decreases at increasing if , indicating a saturation in
the magnetic circuit of the machine.
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Figure 3.24: WFSM absolute inductances at different if values.

To finalize this section, the torque constant is evaluated according to (2.95) at different
if values. The behavior of Kt in Fig. 3.25 confirms the expected dependency of the
saturation with respect to the currents iq and if . The torque constant is described with
two groups of terms. The first one represents only the contribution of if and the second
one the mutual coupling between if and iq. What Fig. 3.25 shows is the expected strong
dependency of Kt with respect if , as it is torque generating variable. In addition to this,
a high mutual coupling between if and iq is observed at low if values, but once the
magnetic circuit is relatively saturated by the flux generated by the rotor, the mutual
saturation effect diminishes.
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Figure 3.25: WFSM torque constant at different if values.

This section presented a comparison of two approaches to describe the flux-linkages of
a WFSM. The machine used to illustrate the applicability of the expressions derived in
section 2.4 exhibited highly non-linear flux-linkage curves, leading to the use of a high
polynomial degree. The second approach, which split the identification process in two
steps, showed excellent results in handling three variables. The description of the flux-
linkages in an analytical form delivered an insight into the behavior observed through
all the curves presented in this section.

3.5 Offline Identification: Experimental Data

3.5.1 Constant Magnet Temperature

As mentioned in section 3.1.2, for the experimental parameter identification, the flux-
linkages need to be obtained indirectly from the machine voltages. But there are still
two options to consider, as the parameter identification is going to be carried out offline
and online. For the offline identification there are almost no constraints in terms of
machine excitation, amount of data and quality of the measured signals. On the other
hand, the online approach has certain limitations with regards of the machine excitation,
torque measurement availability and measured signal quality. These limitations will be
analyzed closely in chapter 6. As for the optimization procedure itself, it is still valid for
both options. The equations and the parameters to be constrained remain the same, the
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difference relies on the QP solver to be used and the constraints values. This section will
focus only on the offline parameter identification using experimental data as proposed
by the author of this project in [1]. Furthermore, the formulation of the optimization
problem will serve as the foundation for the online estimation scheme presented in chap-
ter 6.

In addition to dq-axes voltages, the electromagnetic torque is going to be used as
additional source of information, as it implies no extra effort to obtain and process the
readings or measurement of a torque sensor on the bench. The dq-axes voltages (2.9)
and electromagnetic torque (2.13) are used to describe the machine. As a consequence,
the polynomial terms of (2.28) and (2.30) are involved in all three equations. Therefore,
the objective function will be the combination of all three equations in the following
form for a polynomial degree n and a set of N data points:

fn(x) =

N∑
k=1

[
(udk − ûdk)2 + (uqk − ûqk)2 +

(
Tek − T̂ek

)2
]

with, ûd = ∇udxT ; ûq = ∇uqxT and T̂e = ∇TexT
(3.54)

where x represents the vector of unknown parameters and the letters with hat notation
correspond to estimated signal values and without hat notation measured data. The
voltage and torque expressions are formulated for a polynomial degree n in terms of
flux-linkages, average winding resistance Rs and rotor electrical speed ωr as:

ud (id, iq)

∣∣∣∣
n

= Rsid − ωrψq (id, iq) + ψ̇d (id, iq) (3.55)

uq (id, iq)

∣∣∣∣
n

= Rsiq + ωrψd (id, iq) + ψ̇q (id, iq) (3.56)

Te (id, iq)

∣∣∣∣
n

=
3

2
p(ψd (id, iq) iq − ψq (id, iq) id) (3.57)

The optimization problem can then be defined in the following form:

Minimize Q(x) =
1

2
xTGx+ gTx

with, ψmmin < ψm < ψmmax

Ldmin
< ldq10 < Ldmax

Lqmin < lqd10 < Lqmax

Rsmin < Rs < Rsmax

where, G = ∇ud∇uTd +∇uq∇uTq +∇Te∇T Te
g = −2ud∇ud − 2uq∇uq − 2Te∇Te

(3.58)

where the limits for the inequality constraints are obtained from the FEA simulation
results obtained in the previous chapter.
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Figure 3.26: Testrig setup.

The experimental identification procedure is based on the method proposed by the
author of this work in [1]. As illustrated in Fig. 3.26, the machine terminal voltage signals
u123, phase currents i123, the shaft torque Tshaft and the mechanical rotor position θm
are sampled at the same time to perform the parameter identification. With the rotor
position information, rotor speed and the dq-axes voltage and current signals can be
obtained. In order to capture the inverter nonlinear effects, all the signals are sampled
at a rate of 5MS/s considering the Pulse-width modulation (PWM) switching frequency
of 20kHz. In addition to this, the inverter’s dead time of 800ns can be captured with the
resulting sampling time of 200ns. To fully cover one quadrant of operation, the machine
speed is held constant to a value below base speed. In that way, the phase current can be
set for any combination of id and iq. A series of current ramps at constant phase advance
angles are set as shown in Fig. 3.27. As the winding resistance and the permanent flux-
linkage are temperature dependent. The current excitation is applied for a short period
compared to the thermal time constants of the machine. The selected ramp duration
was 3.2s, which for the machines in question lead to winding temperature rises of less
than 1◦K. The measurements were carried out at a room temperature of 22◦C.

81



3 Flux-Linkage Model Parameter Identification

−1 −0.8 −0.6 −0.4 −0.2 0

0

0.2

0.4

0.6

0.8

1

id(p.u.)

i q
(p
.u
.)

DQ-axes Currents

Figure 3.27: Test current ramps

As a post-processing step, the terminal voltages and phase currents are transformed
into the rotor reference frame applying the Park transformation. The dq-axes quantities
are afterwards low-pass filtered, avoiding in that way unwanted signal phase shifting. The
signals are filtered to extract the dc-component of the dq-axes signals, which contains
the information of the fundamental frequency of the signals. Therefore, the harmonic
components due to slotting and inverter switching can be attenuated. As a final step,
the filtered signals ud, uq, id, iq, Te and ωr are used to form the matrix G and the vector
g in (3.58) to solve the optimization problem.

To demonstrate the validity of the proposed method, the three machines listed in table
3.4 were considered: an IPMSM, a Surface Mounted Permanent Magnet Synchronous
Machine (SMPMSM) and an Outer Rotor Permanent Magnet Synchronous Machine
(ORPMSM).

Table 3.4: Machine to be identified

IPMSM SMPMSM ORPMSM

Nominal Torque 4.6Nm 4.9Nm 2.5Nm

Peak output power 600W 400W 250W

Number of pole pairs 4 7 7

Nominal voltage 12V 12V 48V

82



3.5 Offline Identification: Experimental Data

The three machines of table 3.4 present also different characteristics such as large
saliency (IPMSM and ORPMSM), high magnetic saturation (ORPMSM) and small
saliency (SMPMSM). In the case of the SMPMSM, the saliency should be then re-
flected in the coefficients. As it is expected that the linear dq-axes inductances are close
to each other, then the coefficients ldq10 and lqd10 should be quite similar. The selected
measurement speed for the IPMSM and SMPMSM was 900 rpm and for the ORPMSM
the speed was 800 rpm.

To asses the effectiveness of the proposed flux-linkage expressions, the degree of agree-
ment of the estimated voltage and torque signals will be verified with the CoD as it was
done with the FEA simulation data. In addition to this, four key machine parameters
will be compared against the identified ones: the dc average winding resistance Rs, the
permanent magnet flux-linkage ψm and the linear dq-axes inductances. Where Rs is
measured directly with a 4-terminal sensing measurement and the permanent magnet
flux-linkage ψm is derived from the induced bemf voltage. The linear inductances are
obtained from a line-to-line impedance measurement at low current amplitude (0.04 p.u.
peak). The imaginary part of the impedance corresponds to the inductance and over one
electrical revolution the maximum and minimum values represent the q-axis and d-axis
inductances respectively. As the measurement speed of the IPMSM and SMPMSM is
900 rpm, the corresponding bemf voltage was measured at that speed and the induc-
tances at a electrical frequency of 60 Hz for the 4-pole pair IPMSM and at 105 Hz for
the 7-pole pair SMPMSM. Similarly, the bemf voltage of the ORPMSM was measured
at 800 rpm and the inductances at 93 Hz.

The identified machine parameters are listed in tables 3.5, 3.6 and 3.7 for a polynomial
degree n = 3. The identified parameters of the IPMSM and the SMPMSM exhibit a
maximum deviation of 1.26% with respect to the measured parameters, whereas the
ORPMSM shows a maximum deviation at the linear d-axis inductance (ldq10) of 2.96%.
The closeness of identified parameters to measured ones confirms the correlation of the
polynomial approach with the machine magnetic characteristics.

Table 3.5: IPMSM Linear Parameters

4-pole pair IPMSM Measured Identified dev.

Winding resistance Rs 12.58mΩ 12.45mΩ -1.26%

Permanent flux linkage ψm 6.415mV.s 6.411mV.s -0.07%

D-axis inductance ldq10 56.52µH 56.30µH -0.39%

Q-axis inductance lqd10 70.31µH 70.73µH 0.61%
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Table 3.6: SMPMSM Linear Parameters

7-pole pair SMPMSM Measured Identified dev.

Winding resistance Rs 9.92mΩ 9.8mΩ -1.15%

Permanent flux linkage ψm 4.15mV.s 4.14mV.s -0.12%

D-axis inductance ldq10 77.01µH 76.23µH -1.01%

Q-axis inductance lqd10 77.82µH 78.32µH 0.64%

Table 3.7: ORPMSM Linear Parameters

7-pole pair ORPMSM Measured Identified dev.

Winding resistance Rs 63.42mΩ 62.76mΩ -1.05%

Permanent flux linkage ψm 8.11mV.s 8.16mV.s 0.64%

D-axis inductance ldq10 104.4µH 107.49µH 2.96%

Q-axis inductance lqd10 146.36µH 146.81µH 0.31%

The identified cross-saturation parameters listed in table 3.8 offer a deeper look into
the machine’s characteristics, as most of the coefficients of the ORPMSM are one two
order of magnitude larger than the ones of the IPMSM and the SMPMSM. This means
that in the region where the machines were identified the ORPMSM exhibits larger
magnetic saturation and cross-coupling effects.

Table 3.8: identified cross-saturation parameters

IPMSM SMPMSM ORPMSM

ldq20 −28.06nH/A −83.38nH/A −3.07µH/A

ldq30 −0.05fH/A2 −0.47nH/A2 −19.26nH/A2

cdq01 −30.37nH/A −35.04nH/A −1.06µH/A

cdq11 −0.74nH/A2 −0.54nH/A2 −32.94nH/A2

lqd30 −0.15nH/A2 −0.26nH/A2 −0.24nH/A2

Fig. 3.28a and 3.28b show the estimated voltages and torque signals against the
measured values for the different current ramps of Fig. 3.27 for the IPMSM, which shows
a rather linear behavior. Conversely, the dq-axes voltages of the ORPMSM exhibit a
nonlinear trajectory as shown in Fig. 3.28c.
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(d) Torque of the ORPMSM.

Figure 3.28: Estimated signals.

The electromagnetic torque was obtained by subtracting the shaft torque obtained at
the same rotor speed to eliminate the influence of the mechanical and iron losses on the
identification. With regards of the iron losses this is just an approximation as only the
open circuit losses were subtracted and the losses originated in the different operating
points might differ, however the measurement speed lays below base speed making iron
losses to be small and the loss variations for the various operating points small as well.
The curves in Fig. 3.28 depict the target signals used in the optimization’s objective
function and approximated voltage and torque expressions for n = 3. Another key as-
pect to asses the accuracy of the flux-linkage expressions, is the torque constant. kt is
obtained from the measured torque signal at zero advance current angle γ = 0◦.
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Figure 3.29: Torque constant.

The blue line in Fig. 3.29a represents the measured Kt, where it is worth to note that
the machine is not quite saturated showing only about 2% reduction at the maximum
measured current. The machine exhibits in this case a non-linear behavior that can be
described with n = 3. On the other hand as shown in Fig.3.29b, the higher saturation of
roughly 5% can be accurately described with n = 5. The form of non-linear relationship
of Kt with respect iq is better captured with that polynomial degree. This is actually
the key aspect, the form of the non-linear behavior determines the proper polynomial
degree. The outer rotor PMSM is a good example of high saturation, 8%, and low poly-
nomial order. For this machine n = 3 is more than sufficient to capture both maximum
saturation and curve trend.
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Table 3.9: CoD

n = 3 n = 5

IPMSM 0.9999519 0.9999626

SMPMSM 0.9999321 0.9999648

PMSM 0.9999417 0.9999459

In addition to the aspects analyzed so far, the CoD values in table 3.9 provide also
an indication of the agreement of the different polynomial degrees. According to the
CoD values of the IPMSM, the values achieved with n = 3 and n = 5 are very close.
Consequently the overall agreement of the approximation with both polynomial should
be similar. This is then reflected in the closeness of the Kt curves shown in Fig. 3.29a for
both polynomial degrees. Similarly, the CoD values obtained for the outer rotor PMSM
are also pretty close, leading to nearly identical Kt curves in Fig. 3.29c. On the other
hand, the CoD values of SMPMSM exhibit the largest deviation with CoD3 = 0.9999321
and CoD5 = 0.9999648, which is reflected in Fig. 3.29b as well, where the curve with
n = 5 shows a significant better agreement than with n = 3.

The correlation of the CoD value with the approximated curves is actually expected
as the CoD provides a measure through the optimization residuals, nevertheless it is
important to make a link between the absolute value of the CoD and the agreement
obtained with the model at key characteristics such as Kt, Rs, ψm and the linear or
small signal inductances. With that link in mind the selection of the optimal polynomial
degree can be done considering the aspects addressed so far.

After evaluating the agreement achieved with the polynomials, the resulting flux-
linkage expressions can be then used to evaluate the machine. The main objective of
the identification procedure is to obtain the dq-axes flux-linkages. One key aspect to
remember, is the fact that the flux-linkages are present in the dq-axes voltages as shown
in (3.55) and (3.56). This means that if Rs is correctly identified, what is then left, are
just the flux-linkages. The good agreement of the Rs identification could be then proved
in tables 3.5, 3.6 and 3.7. In addition to this, the agreement with the measured linear
parameters, inductances and ψm, and the ability to capture the nonlinear behavior of
Kt, are very good indicators for a high degree of confidence on the resulting flux-linkages.
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Figure 3.30: Identified flux-linkage surfaces.

88



3.5 Offline Identification: Experimental Data

Two representative examples of flux-linkages are shown in Figs. 3.30: the IPMSM, a
machine that exhibits low torque constant saturation and the outer rotor PMSM has
more pronounced saturation with respect to iq. This saturation aspect is then observable
in the d-axis flux-linkage surfaces plotted in Fig. 3.30e and 3.30f, where the decrease
of the flux-linkage by increasing iq is evident in Fig. 3.30f, the flux-linkage of the outer
rotor PMSM.
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Figure 3.31: 4-pole pair IPMSM Inductances.

Additionally, the inductances are an immediate byproduct of the flux-linkages expres-
sion, as they can be derived analytically from the flux-linkage expressions according to
(2.41), (2.43), (2.45) and (2.45). Fig. 3.31 shows the absolute and incremental induc-
tances of the IPMSM. Contrary to Kt, the inductances of this machine exhibit certain
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3 Flux-Linkage Model Parameter Identification

saturation or current dependency. The cross-coupling of Ld is specially interesting, as
the d-axis current dependency is much lower than the q-axis current. This makes the
cross-coupling effect relevant and at the same time it should not be neglected, which
denotes the relevance of the consideration of the nonlinear effects in such a machine.

Despite the larger ψd saturation of the outer rotor PMSM, the d-axis inductance
surface has a small cross-coupling with respect iq as shown in Fig. 3.32a and 3.32c.
This differs from the more coupled behavior exhibited by the d-axis inductance of the
IPMSM in Fig. 3.31a. However Ld presents higher id dependency that in the case of the
IPMSM. Conversely the q-axis inductances in both machines show a similar trend with
respect to self and mutual coupling.
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Figure 3.32: 7-pole pair outer rotor PMSM Inductances.
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This section dealt with the experimental determination of the dq-axes flux-linkage
of various machines, where a simple hardware setup was presented to capture voltage,
current, torque and rotor position signals. The coefficients of the dq-voltages and torque
expressions based on the flux-linkage polynomials (2.38) and (2.39) were determined by
performing a minimization of the sum of least-squares with constrained optimization.
In addition to this, it was shown that coefficients of the proposed expressions relate
with good accuracy to key machine parameters such as ψm and the small signal dq-axes
inductances. Moreover the nonlinear characteristic of the torque constant could be rep-
resented with good agreement depending on the polynomial degree used. Furthermore,
the use of the CoD gave more insight into the agreement with the different polynomial
degrees.

3.5.2 Magnet Temperature Variation

This section considers the identification of the flux-linkage coefficients for different mag-
net temperatures. In a real application the machine is designed to operate under certain
environmental and working conditions. The machine could be operated at ambient tem-
peratures several degree Celsius above room temperature (21◦C) or it could work under
high load for long periods of time which can lead to an overall increment of the machine
temperature components, including magnets and windings coils. For an online identifi-
cation of ψm and the average winding resistance Rs, the involvement of the flux-linkage
in the voltage equations, (3.55) and (3.56), means that any variation on ψm affects both
d- and q- axis voltages. A characterization for different magnet temperatures or per-
manent flux-linkage values can help to asses the impact of such variation on the online
estimation of the parameters of question.

In section 3.5.1 the main focus laid on the identification of the coefficients at room
temperature. The magnet temperature was held constant by running fast current ramps.
This means that ψm remained constant and the obtained flux-linkage coefficients were
valid for that flux-linkage value. Recalling section 3.3.4, the dependency of the flux-
linkages on ψm can be described according to (2.61) and (2.62). A similar approach as
with the FEA data is then taken, where three ψm values are chosen to find the coeffi-
cients of the flux-linkage expressions. These are 22◦C, 54◦C and 82◦C. They correspond
in p.u. to values of ψm = [1 0.97 0.94].

The test setup remained similar to the one presented in the previous section. How-
ever, the only modification was the introduction of a box to isolate the machine from
the ambient in order to avoid external temperature disturbances. By demanding high
currents, the machine magnets can be heated up to the desired temperature. The mag-
net temperature was obtained indirectly by measuring the bemf voltage and with the
help of the magnet’s temperature coefficient. A 4-pole pair IPMSM was used for the
identification which was provided with thermocouples in the windings in order to control
the winding temperature for each current ramp for the identification.
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3 Flux-Linkage Model Parameter Identification

The identification procedure of the previous section, 3.5.1, was applied to the measured
data at each temperature. As the final output of this procedure are the flux-linkages,
they can be used directly to obtain the coefficients of the expressions that consider the
dependency of ψm. The three sets of dq-axes flux-linkage data are summarized in (3.59),
where n = 5 was selected to capture the nonlinear effects in a compromise of accuracy
and numerical efficiency, as the analysis done so far on this machine, whether FEA or
experimental, have shown that n = 5 deliver satisfactory results.

ψd5(id, iq)

∣∣∣∣
ψm=1 p.u.

ψq5(id, iq)

∣∣∣∣
ψm=1 p.u.

ψd5(id, iq)

∣∣∣∣
ψm=0.97 p.u.

ψq5(id, iq)

∣∣∣∣
ψm=0.97 p.u.

ψd5(id, iq)

∣∣∣∣
ψm=0.94 p.u.

ψq5(id, iq)

∣∣∣∣
ψm=0.94 p.u.

(3.59)

The sets of dq-axes flux-linkages in (3.59) are shown in Fig. 3.33. As a visual aid, only
the flux-linkage curves corresponding to a few current ramps are plotted in order to show
the effect that the magnet temperature or the variation of ψm has on the origin of each
set of dq flux-linkages, as it moves along with the change of ψm.
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Figure 3.33: DQ-axes flux-linkages

As shown in section 3.3.4, the coefficients of the expressions for ψd(id, iq, ψm) and
ψq(id, iq, ψm) can be obtained with the following quadratic programming problem :
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3.5 Offline Identification: Experimental Data

fn(x) =

N∑
k=1

[
(ψd(idk , iqk , ψmk

)− ψ̂d(idk , iqk , ψmk
))2 + (ψq(idk , iqk , ψmk

)− ψ̂q(idk , iqk , ψmk
))2
]

with, ψ̂d = ∇ψdxT ; and ψ̂q = ∇ψqxT
(3.60)

Where x is the set of unknown coefficients, N is the number of the data points, n
is the polynomial degree and ψmk

represent the three values of ψm indicated in (3.59).
The letters with a hat notation represent estimated values and the letters with no hat
notation are the values of the identified flux-linkage data. The constrained optimization
problem can be then formulated in the following form:

Minimize Q(x) =
1

2
xTGx+ gTx

with, ldq100 > 0 and lqd100 > 0

where, G = ∇ψd∇ψTd +∇ψq∇ψTq
g = −2ψd∇ψd − 2ψq∇ψq

(3.61)

Due to the good agreement achieved with n = 5 at constant magnet temperature in
3.3.4, the QP-problem (3.61) with objective function (3.60) is then solved for n = 5 as
well. The identified coefficients listed in table 3.10 show the impact of the magnetic
saturation caused by ψm on the linear inductances represented by the coefficients ldq10x
and lqd10x .

Table 3.10: IPMSM linear signal inductance coefficients

extended coefficients

ldq100 61.75µH

ldq102 −0.0914H/Wb2

ldq104 0.0022H/Wb4

lqd100 85.03µH

lqd102 −0.2974H/Wb2

lqd104 0.0033H/Wb4

These coefficients can be traced back to ldq10 and lqd10 in the inductance expressions
(2.41) and (2.43) that only consider the current effects at a certain ψm. As a result of
the extension of the flux-linkage expressions, new coefficients appear to represent the
effects of ψm. To illustrate this, the coefficients ldq10x and lqd10x are rearranged to form
ldq10 and lqd10 with respect ψm:

ldq10(ψm) = ldq100 + ldq102 · ψ2
m + ldq104 · ψ4

m

lqd10(ψm) = lqd100 + lqd102 · ψ2
m + lqd104 · ψ4

m

(3.62)
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3 Flux-Linkage Model Parameter Identification

What (3.62) is expressing, is the fact that the coefficients of flux-linkage expressions
identified at a constant ψm are a function of ψm itself. The plots in Fig. 3.34 show the
agreement between the identified data at each magnet temperature and the flux-linkage
model coefficients identified with all the data.
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Figure 3.34: IPMSM - Inductances at different magnet temperatures

Finally Fig. 3.35 and 3.36 summarizes the sets of dq-axes flux-linkages used in the
objective function (3.60) compared with the flux-linkages derived from the expressions
with the identified coefficients.
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Figure 3.35: DQ-axes flux-linkages at different magnet temperatures.
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Figure 3.36: Flux-linkages at increasing current for different ψm.
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3 Flux-Linkage Model Parameter Identification

This section showed how to characterize or describe the flux-linkages of a 4-pole pair
IPMSM with respect to the permanent magnet flux-linkage or indirectly as a function of
the magnet temperature. This is the next level of high fidelity modeling, where not only
the nonlinear magnetic effects were captured but the dependency on permanent magnet
flux-linkage variations were introduced. Finally, such model can be used to improve or
complement a model used for an online parameter identification, specially the coefficients
concerning the linear inductances ldq10x and lqd10x as they are the dominant coefficients
driven by the dq-axes currents. The use of a polynomial degree 5 delivered a good agree-
ment with the target flux-linkages for the different magnet temperatures enabling the
consideration of the effects of magnet temperature on the dq-axes flux-linkages.

In addition to the theoretical treatment given to the machine model in chapter 2,
a fast and simple measurement procedure was presented to identify the polynomials
coefficients experimentally, where a model based approach was used to obtained the
dq-axes flux-linkage and winding resistance without previous knowledge of the latter
as typically proposed in the literature [4, 33]. At a constant speed, current ramps
with a duration of 3.6s were proposed to characterize one quadrant of the machine.
In a post-processing step the polynomials coefficients were determined showing a high
degree of correspondence with key machine parameters such as the small signal dq-axes
inductances, the open circuit bemf and DC-winding resistance.
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4 Considering Electromagnetic Losses

Electromagnetic power loss plays a significant role in the operation of the machine,
as losses can be regarded as heat sources that have a direct impact on temperature
dependent parameters like the winding resistance or the permanent magnet flux-linkage.
Those can be resistive loss in the windings or core loss in the stator and rotor. In general
terms the iron losses are a function of flux-density and frequency [14], which depends
on the core materials properties. This chapter will go through the relevant loss sources
and its modeling in order to capture its effects for a thermal model of a PMSM and an
extension of the dq-axes voltage equations to consider the iron losses. The latter serves
as an extension of the flux-linkage expressions ψd(id, iq) and ψq(id, iq) to improve the
machine model for the online identification.

4.1 Resistive Losses

One of the main heating sources in the PMSMs are the copper Joule losses. The as-
sociated resistance of each phase winding in the machine will generate the following
losses:

Pwinding = Rs · I2
rms (4.1)

where in (4.1), Rs represents the winding resistance of one machine phase and Iphaserms

root mean square (rms) value of the phase current. Assuming a balanced system, with
symmetric phase resistances, the total resistive loss of a three phase PMSM can then be
written in terms of the phase resistance and the current peak value in following form:

Presistive =
3

2
Rs · I2

peak (4.2)

The formulation of the total resistive losses in terms of the peak current value is conve-

nient, as the current vector length in the dq-frame, Ipeak =
√
i2d + i2q , corresponds to the

phase current peak value. This leads to the formulation of the resistive loss expressed
in dq-axes terms of (4.3).

Presistive =
3

2
Rs(i

2
d + i2q) (4.3)

4.2 Iron Losses

After Joule losses the core loss contributes importantly to the machine losses. The core
losses are the losses in the sheets in the stator and rotor of the machine. As these sheets
are commonly made of electrical steel their losses in this work will be regarded as iron
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losses. In classical theory the losses in ferromagnetic materials are composed of hys-
teresis and eddy-current losses, where the hysteresis loss is the result of the resistance
of the material to change its magnetic state. On the other hand, Eddy current losses
appear at the presence of space harmonics in the stator ampere-conductor distribution
and winding current’s time harmonics produced for example by the PWM operation
[35, 14].
This section will deal with the modeling of the iron losses in order to establish an equiv-
alent model to be used as a complement to the online parameter estimation algorithm,
in that way the robustness of the estimation with respect to the rotor velocity can be
improved.

4.2.1 Iron Losses Model

The Hysteresis loss is defined as the loss per cycle of the enclosed B-H loop as expressed
by Steinmetz [59]. The resultant power loss is proportional to the frequency and to
the flux density raised to a power n, commonly referred to the Steinmetz constant.
Depending on the material this exponent can be in the range 1.3− 2.6. The Steinmetz
equation is then formulated in the following form:

Phy = ChyB
αf (4.4)

Where Chy is a coefficient, B is the flux density, f is the frequency and α is the Steinmetz
coefficient. Besides the hysteresis losses, the classical losses play an important role in
the whole core losses. The induced currents generated by the emf in the stator produce
losses proportional to the electrical resistivity of the material in question. These losses
are the Eddy current losses which are proportional to the square of the flux density and
to the square of the frequency as expressed in the following equation:

Peddy = Ceddy(B · f)2 (4.5)

Where Ceddy is a coefficient, B is the flux density and f is the frequency. The Iron-
Losses play a significant role when the rotor speed is relatively high. On the other hand,
hysteresis loss and Eddy-current loss are additional heat sources that contributes to
thermal behavior of the machine. In addition to the consideration of the classical core
losses and the hysteresis losses, there has been proposed another core losses structure.
Bertotti [60] explains in a detailed way the physical meaning of the excess losses which
are associated to the classical losses . He then proposes a power losses separation where
exponents of the individual terms are fixed in the following manner:

Piron = ChyB
αf + Cexc(B · f)1.5 + Ceddy(B · f)2 (4.6)

where Cexc is the excess loss coefficient according to [60].

The machine’s shaft torque is the sum of the contributions of the electromagnetic
torque, viscous and Coulomb friction in the following form:

Tshaft = Te − kc · sign(ωm)− kvωm − Tiron (4.7)
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4.2 Iron Losses

where kc and kv are the Coulomb and viscous friction coefficients respectively, Te the
electromagnetic torque and Tiron the torque generated by the core losses. The shaft
torque expression can be used to write the shaft output power. The mechanical power
Pm, as in Fig. 4.1, can be expressed in terms of torque T and angular velocity ωm as
shown in (4.8).

Pm = T · wm (4.8)
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Figure 4.1: IPMSM open circuit shaft loss

At the same time fe, the fundamental frequency acting in the magnetic circuit, can
be used to express the angular velocity as:

wm =
2π · fe
p

(4.9)

where p is the number of pole pairs. Finally, the total output power can then be written
according to (4.8), using (4.7) and replacing (4.9) in (4.6) as:

Pshaft = Teωm − sign(ωm) · kcωm − kvω2
m − khyωm − kexcω1.5

m − keddyω2
m (4.10)

The loss coefficients khy, kexc and keddy are the result of expressing the iron losses in
terms of angular velocity instead of electrical frequency. In (4.10) the power loss due
to coulomb friction sign(ωm) · kc · ωm is proportional to ωm as the hysteresis loss term
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khy · ωm. Similarly, the viscous loss term and the eddy currents terms share the same
speed dependency ω2

m, making a separation of those terms parting from the overall losses
difficult.

Therefore, the experimental identification of these losses needs to be carried out in
a way that the mechanical losses can be captured separately from the electromagnetic
losses. This can be done, either with machines without magnets, so that the magnetic
circuit isn’t biased and therefore no iron losses are present or considering the electric
power balance to identify only core losses.

In [61] and [17] it is proposed the modeling and characterization of the iron-losses,
where the hysteresis losses and Eddy current losses are determined for open and short
circuit conditions, which corresponds magnetically speaking to a magnetizing and demag-
netizing path in the machine. The open circuit measurement should help to characterize
the iron losses coming from the torque generating flux and the short circuit should cap-
ture the losses seen in the path where the d-axis flux acts. They are combined and scaled
to the permanent magnet flux-linkage. The losses are determined for the losses structure
of (4.6). This is a compelling approach as the open and the short circuit measurements
are simple procedures, the challenging part is the separation of the mechanical losses
e.g. bearing losses and the iron losses. By extracting the magnets is possible to capture
only the mechanical losses and in that way a clean losses separation is possible. The
open circuit loss POCiron and the short circuit loss PSCiron are then formulated in a similar
manner as in (4.6) but in terms of ψ which corresponds to a flux-density B. In addition
to this, as reported by the authors in [62] and [63], it is a good approximation to assume
α = 2 in the hysteresis loss term. The resulting loss expressions are then formulated as:

POCiron(ψm) = ahyfe + aexcf
1.5
e + aeddyf

2
e (4.11)

PSCiron(ψd0) = bhyfe + bexcf
1.5
e + beddyf

2
e (4.12)

where fe is the electric frequency, ψd0 is the flux-linkage produced by the d-axis current
in the short-circuit case, ψm is the open circuit permanent magnet flux-linkage, the loss
coefficients a and b are obtained from the short circuit and open circuit operating points,
this means that they are derived from driving the machine at a constant magnetic flux
density.

The iron losses at open circuit (4.11) are driven by the flux density generated by the
magnets. In this case the flux-linkage remains constant and it is used as a reference value
which is then scaled for the different load conditions for given dq-axes flux-linkage values

with vector length ψ =
√
ψ2
d + ψ2

q . Furthermore, the frequency fe can be expressed in

terms of the rotor velocity ωr in the following form:

POCiron(ψ) =ahy ·
ωr
2π
·
(
ψ

ψm

)2

+ aexc ·
(
ψ

ψm
· ωr

2π

)1.5

+ aeddy ·
(
ψ

ψm
· ωr

2π

)2

with : ωr = 2πfe and ψ =
√
ψ2
d + ψ2

q

(4.13)
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Similarly, the short circuit iron losses can be written referenced to the d-axis flux-linkage
ψdSC

:

PSCiron(ψd0) =bhy ·
ωr
2π
·
(
ψd0
ψdSC

)2

+ bexc ·
(
ψd0
ψdSC

· ωr
2π

)1.5

+ beddy ·
(
ψd0
ψdSC

· ωr
2π

)2

with : ωr = 2πfe and ψd0 = ψd − ψm

(4.14)

Where in (4.14), ψdSC
represents the d-axis flux-linkage produced by id for the calculation

of the reference losses PSCiron. The iron losses can be included in the dq-axes equivalent
circuit of the machine in the form of resistors, it is based on the electrical power balance
equation, the input power Pin equals the resistive loss Presistive, iron losses Piron and the
power generated by the electromagnetic torque Pe and angular velocity:

Pin = Presistive + Piron + Pe (4.15)

By (4.3) in (4.15), the resistive losses and the electromagnetic power Pe can brought
together in terms of the dq-axes voltages and currents. It can then be rewritten in the
following way:

Pin =
3

2
· (ud · id + uq · iq) + Piron (4.16)

The iron losses can be fitted in form of a resistor, Rm in both d- and q-axis as shown
in Fig. 4.2. In the literature it has been modeled with different degrees of accuracy,
starting with the simple approach where only the eddy current losses are modeled as
reported in [64]. More detailed approaches as proposed in [62] and [63] consider the
hysteresis and eddy current losses in the calculation of the equivalent loss resistance
Rm. The authors of [65] go further and differentiate between the d- and q-axis iron loss
resistors and modeling them as two different components. Based on the findings showed
in [61], where iron losses for a magnetizing and demagnetizing path are considered as
in (4.11) and (4.12), the equivalent loss circuit needs to be extended. In order to do
the model extension, (4.13) and (4.14) are replaced in the electric power equation (4.16)
leading to the following expression:

Pin =
3

2

[
Rs · (i2d + i2q) + ωr · (ψd · iqm − ψq · idm) +

2

3

(
POCiron(ψ) + PSCiron(ψd0)

)]
(4.17)

To obtain the equivalent loss resistors it is needed the final connection to the dq-axes
voltage equations:

ud = Rsid − ωrψq
uq = Rsiq + ωrψm + ωrψd0

(4.18)

Where the terms ωrψq, ωrψm and ωrψd0 are considered voltage sources that have an
associated loss resistor. This can be clearly seen when looking at the two rearranged
iron loss equations for OC and SC, (4.19) and (4.20). They lead to an equivalent model
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where there is a magnetizing loss resistor Rm in the dq-axes voltages and a demagnetizing
loss resistor Rd only in the q-axis voltage circuit:

2

3
· POCiron =

2

3

(
ahy

2πψ2
mωr

+
aeddy

(2πψm)2
+

aexc

(2πψm)1.5 · √ψ · ωr

)
︸ ︷︷ ︸ ·(ψ2

d + ψ2
q ) · ω2

r

1

Rm

(4.19)

2

3
· PSCiron =

2

3

(
bhy

2πψ2
dSC

ωr
+

beddy
(2πψdSC

)2
+

bexc

(2πψdSC
)1.5 ·

√
ψdSC

· ωr

)
︸ ︷︷ ︸ ·ψ

2
d0 · ω2

r

1

Rd

(4.20)

(4.19) and (4.20) can be written in terms of Rm and Rd respectively as:

POCiron =
3

2

(
(ψd · ωr)2

Rm
+

(ψq · ωr)2

Rm

)
with : ψd = ψm + ψd0

(4.21)

PSCiron =
3

2

(ψd0 · ωr)2

Rd
(4.22)

which is the sum of the power dissipation of two resistors driven by two voltage sources.
This means that there is a loss resistor Rm connected to the voltage source ωr(ψm+ψd0)
and another resistor with the same value attached to −ωrψq, which are the voltage
sources in the dq-axes equations in (4.18). The equivalent dq-axes circuit with new loss
resistors based on (4.21),(4.22) and (4.18) can be seen in Fig. 4.2.

ud

Rs

id

Rm −ωrψq

idm

(a) D-axis equivalent circuit.

uq

Rs

iq

Rm

Rd

ωrψm

ωrψd0

iqm

(b) Q-axis equivalent circuit.

Figure 4.2: Voltage model considering iron losses

After having introduced the loss resistors into the dq-axes equivalent circuit, the re-
maining aspect is the definition of the single loss contributions for the two resistors,
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which are divided in hysteresis, eddy current and excess losses. This can be done with
(4.19) and (4.20), which for Rm results in the following terms:

1

Rm
=

1

Rmhy

+
1

Rmeddy

+
1

Rmexc

(4.23)

where,

Rmhy
=

3πψ2
mωr

ahy
Rmeddy

=
6(πψm)2

aeddy
Rmexc =

3(2πψm)1.5
√
ψ · ωr

2aexc
(4.24)

For Rd applies the same treatment:

1

Rd
=

1

Rdhy
+

1

Rdeddy
+

1

Rdexc
(4.25)

where,

Rdhy =
3πψ2

dSC
ωr

bhy
Rdeddy =

6(πψdSC
)2

beddy
Rdexc =

3(2πψdSC
)1.5
√
ψ · ωr

2bexc
(4.26)

The set of equations shown in (4.23), (4.24), (4.25) and (4.26) define a way to model the
iron losses in the machine, the parameters in those expressions such as the loss coefficients
a and b can be derived either from FEA simulation results or from measurements. Where
the experimental approach requires a way to isolate the mechanical losses from the
electromagnetic losses. To address this issue, in the next section a method to identify
the value of loss resistors Rm and Rd is presented.

4.2.2 Iron Loss Resistance Identification

One interesting aspect of this way of modeling the iron losses in the dq-voltage model
is that the losses could be obtained from other source, other than externally measuring
the machine’s torque over speed. The losses characterization doesn’t remain strictly to
torque-speed measurements in open and short circuit conditions. As already mentioned,
in the case of the measured losses, the main obstacle is the separation of the mechanical
losses and the iron losses, which would require the a machine without magnets. But if
the equivalent model in Fig. 4.2 is taken into account, the iron losses can be identified
in the form of the loss resistors parting from the machine input power. To perform
the identification of the losses from the input power, an expression for the input power
needs to be derived. This expression is then used to identify the unknown iron losses
resistances from measured input power data. From the equivalent model in Fig. 4.2, an
expression for the total input power losses can be derived, but it has to be in terms of
known signals or variables, as the magnetizing currents idm and iqm can not be obtained
by a direct measurement. To facilitate the analysis, the dq-axes voltages can be written
according to (4.18) in terms inductances instead of flux-linkages as:

ud = Rsid − ωrLqiqm (4.27)

uq = Rsiq + ωr (ψm + Ldidm) (4.28)
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Similarly, according to the equivalent circuit in Fig.4.2, the dq-axes currents can be
written in terms of the magnetizing currents as:

id = idm −
ωrLqiqm
Rm

(4.29)

iq = iqm +
ωrψm
Rm

+
ωrLdid
Rd

(4.30)

According to (4.29) and (4.30), the magnetizing current iqm can be expressed in the
following form:

iqm =
1

1 +
ω2
rLdLq

Rm

(
1
Rm

+ 1
Rd

) (iq − ψmωr
Rm

− idLdwelec
(

1

Rm
+

1

Rd

))
(4.31)

where (4.31) can be simplified assuming that :

ω2
rLdLq
Rm

(
1

Rm
+

1

Rd

)
� 1 (4.32)

which in the case of machines with reasonable core losses means that the order of mag-
nitude of the inductances is much smaller than the one of the resultant loss resistance:

ω2
rLdLq � Rm · (Rm||Rd) (4.33)

For example in the case of the IPMSM, the inductances are in the order of 56 − 70µH
and foreseeing loss resistance values in the order of > 1Ω, it is reasonable to assume
that the inequality (4.33) holds, leading to the following approximation:

1 +
ω2
rLdLq
Rm

(
1

Rm
+

1

Rd

)
≈ 1 (4.34)

The magnetizing current iqm in (4.31) can be then rewritten as:

iqm ≈ iq −
ψmωr
Rm

− idLdωr
(

1

Rm
+

1

Rd

)
(4.35)

Consequently, replacing (4.35) in (4.29) results in the magnetizing d-axis current idm to
be:

idm ≈ id +
ωrLqiq
Rm

− ω2
rψmLq
R2
m

− ω2
rLdLqid
Rm

(
1

Rm
+

1

Rd

)
(4.36)

Now that the magnetizing currents are expressed in terms of known variables, the q-axis
voltage expression can be formulated as:

uq = iqRs+ωrψm

(
1− ω2

rLqLd
R2
m

)
+ωrLdid

(
1− ω2

rLqLd
Rm

(
1

Rm
+

1

Rd

))
+
ω2
rLdLqiq
Rm

(4.37)
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The expression (4.37) exhibits terms in the same form as in the inequality (4.33) making
it possible to simplify it under the approximation (4.34) in the following fashion:

uq = iqRs + ωr (ψm + Ldid) +
ω2
rLdLqiq
Rm

(4.38)

the d-axis voltage is obtained by replacing (4.35) into (4.27):

ud = idRs − ωrLqiq +
ω2
rLqψm
Rm

+ ω2
r idLdLq

(
1

Rm
+

1

Rd

)
(4.39)

At this point, it is then possible to formulate the input power using the voltage expres-
sions and the currents giving as a result the following :

Pin =
3

2

[ (
i2d + i2q

)
Rs+ωr (iqψm + (Ld − Lq)idiq)

+
ω2
r

(
ψmLqid + LdLq

(
i2d + i2q

))
Rm

+
ω2
rLdLqi

2
d

Rd

] (4.40)

Parting from (4.40), it is then possible identify the resistances Rm and Rd. This can
be done with the corresponding current excitation and speed. If the flux-linkage is
maintained constant and the speed is varied, the resulting input power curves will only
change with respect to the electrical velocity. By using the identified flux-linkage model
parameters in table 3.10 for a 4-pole pair IPMSM, it is then possible to formulate Pin
in terms only two unknown variables namely, Rm and Rd. The known terms can be
extracted from the input power to reduce the problem only to the iron loss terms as in:

Piron =
3

2

[
ω2
r

(
ψmLqid + LdLq

(
i2d + i2q

))
Rm

+
ω2
rLdLqi

2
d

Rd

]
(4.41)

where the loss resistors are defined in the following manner to model the hysteresis
and Eddy current loss components as:

Rloss = (Rhysteresis0 · ωr)||Reddy (4.42)

the iron loss resistor as defined in 4.42 describes both losses as parallel connected resistors
with the hysteresis loss resistance depending on the electrical velocity in order to model
the direct proportionality of the hysteresis loss to the electrical frequency. The two
resistors connected in parallel can be represented in terms of the equivalent admittances
as:

Rloss =
1

1
Rhysteresis0

·ωr
+ 1

Reddy

=
1

Yhysteresis0
ωr

+ Yeddy
(4.43)

Expressing the hysteresis loss and eddy current loss components in terms of admittance
facilitates mathematically the formulation of the iron loss equation as it brings the
unknown variables to be multipliers. As the goal is to determine those resistance it
is simpler to formulate the minimization problem in a manner that the variables are
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multipliers. Consequently, the two resistors Rm and Rd are decomposed in to four
admittances in the following form:

Ymhy
=

1

Rmhy

=
1

Rmhy0
· ωr

=
Ymhy0

ωr
(4.44)

Ydhy =
1

Rdhy
=

1

Rdhy0 · ωr
=
Ydhy0
ωr

(4.45)

Ymeddy
=

1

Rmeddy

; Ydeddy =
1

Rdeddy
(4.46)

Replacing (4.23), (4.25), (4.44), (4.45) and (4.46) in (4.41) leaves the iron loss expres-
sion in the final form:

Piron =
3

2

[(
Ymhy0

ωr
+ Ymeddy

)
· (ω2

r (ψmLqid + LdLq(i
2
d + i2q)))+(

Ydhy0
ωr

+ Ydeddy

)
· (ω2

rLdLqi
2
d)

] (4.47)

Following the same approach as in the previous chapter, the loss admittance can be
obtained by minimizing the sum of the quadratic error of the iron loss expression (4.41)
as:

firon(x) =
N∑
k=1

[
(Piron − P̂iron)2

]
where, P̂iron = ∇PironxT

x = [Ymhy0
Ymeddy

Ydhy0Ydeddy ]

(4.48)

Where firon is the objective function and N is the number of the data points. The
letters with a hat notation represent estimated values and the letters with no hat notation
are the values of the identified data. The constrained optimization problem can be then
formulated in the following form as the loss admittances are positive:

Minimize Q(x) =
1

2
xTGx+ gTx

with, Ymhy0
> 0 Ymeddy

> 0

Ydhy0 > 0 Ydeddy > 0

where, G = ∇Pirond∇PironTd
g = −2Piron∇Piron

(4.49)

The optimization process is then performed as defined in (4.49), using the input power
data depicted in Fig. 4.3a. A low phase current value, 0.5 p.u., was selected for the
different speed ramps at phase advance angles of 25◦,45◦ ,65◦ and 90◦. A low current
magnitude makes the iron loss to have more weight in the input power than by choosing
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a large current magnitude [66]. In addition, the machine behaves linearly up to this
current magnitude, which facilitates the calculation of the inductances. By covering
different advance angles a quadrant is covered for each current magnitude guaranteeing
enough information to identify the loss resistors.
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Figure 4.3: 4-pole pair IPMSM input power measurement.

The identified loss resistance values are summarized in table 4.1, with a coefficient of
determination of Cod = 0.9624. Considering the ratio between input power, Fig 4.3a and
the iron losses in Fig 4.3, the resulting approximation error is sufficient to model the iron
losses with an average error less than 10%. However, the agreement displayed in Fig 4.3
indicates that the modeling assumption of constant loss resistance isn’t completely true,
nevertheless for a practical implementation in an embedded system the approximation
accuracy obtained with this assumption is very satisfactory.

Table 4.1: IPMSM loss resistances with PWM based excitation

Loss resistance

Rmhy0
3.26 mΩ · s/rad

Rmeddy
7.83Ω

Rdhy0 0.39 mΩ · s/rad

Rdeddy 7.18Ω

With the iron loss model represented by the loss resistances in table 4.1, it is then
possible to obtain the mechanical losses in the machine by subtracting the estimated
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open circuit iron losses. By recalling (4.10), the mechanical losses can be written as:

sign(ωm) · kcωm + kvω
2
m = Pshaft − Piron (4.50)

where the coefficients kc and kv are calculated similarly to the loss resistance by the
minimization of the least-square error. The resulting coefficients are listed in table 4.2.

Table 4.2: IPMSM mechanical loss coefficients

Loss coefficient

kc 26.2mNm

kv 0.25µNm · s

Once the iron and mechanical losses are known, the shaft loss measurement can be
decomposed in the different contributions as shown in Fig. 4.4a. Furthermore, the core
losses can be plotted separately as well as Fig. 4.4b.
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Figure 4.4: IPMSM open circuit shaft loss.

Finally, after separating mechanical and electromagnetic losses, the measured open
circuit shaft loss is then expressed as the sum of the iron losses and friction losses, where
the former are represented by the loss resistors in table 4.1 and the friction losses are
obtained through the coefficients in table 4.2.

To fully characterize the machine in the operating regions of interest, power loss maps
can be generated from the equivalent model. Moreover the hysteresis and Eddy current
loss components can be normalized, where the hysteresis loss is divided by fe and the
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Eddy current loss by f2
e . Fig. 4.5 depicts these two loss maps of the IPMSM using the

flux-linkage model obtained in section 3.5.1.
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(b) Eddy current loss map.

Figure 4.5: 4-pole pair IPMSM loss maps.

Conversely the loss map at a given rotor speed can be determined. As depicted in Fig.
4.6a, the per-unit total iron loss at 900 rpm is significantly small compared to the one at
4500 rpm, making for instance more convenient the identification of the flux-linkage at
low speeds. On the other hand is it crucial to consider the iron loss effects at increasing
rotor speed as they become larger, hence impacting the machine overall input power and
an online parameter identification.
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(a) Iron loss map at 900 rpm.
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(b) Iron loss map at 4500 rpm.

Figure 4.6: 4-pole pair IPMSM iron loss maps.

This chapter focused on the identification of the machine core losses, the iron losses
were modeled with a modified loss resistor arrangement to include the demagnetization
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loss according to the proposed method described in [61] in the equivalent dq-axes circuit.
Moreover the iron loss resistance values were determined with the help of this equivalent
circuit. As a final step, the mechanical loss coefficients were obtained from an open
circuit shaft loss measurement by subtracting the corresponding iron losses. Finally, the
core loss model will be used to model the power loss heat sources in the thermal model in
chapter 5 and also to improve the fidelity of the machine model for the online parameter
identification.
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5 Motor Thermal Model

One key aspect projected in this work for a robust online parameter identification is the
use of a thermal machine model to enhance the online estimation algorithm at every
operating condition of the machine. The rationale behind this, is the limitation that
online estimation algorithms may encounter. If it is a passive algorithm, which uses
measured signals as a result of the current operating point, then there is a big risk that
the operating point in terms of current and voltage magnitude and speed aren’t sufficient
to perform a proper parameter identification. As an example if the speed is close to zero
it is not possible to obtain the flux-linkages with enough precision.

Conversely, if the main target is to supervise the temperature of key components inside
the machine such as the phase windings and the magnets, a thermal model alone presents
its limitations if additional information isn’t available. If the system is started on ”warm”
conditions, where the elements of interest posses a undefined start temperature, much
different than the reference or ambient temperature, the thermal model will indicate or
estimate the wrong temperature of these elements for a certain period of time. In the
case that additional information is available, lets say, winding resistance or permanent
magnet flux-linkage estimation, the temperature coefficient of the copper or magnet
could be used to do a direct estimate of the temperature of this components to correct
the initial temperature values of the thermal model.

5.1 Thermal Modeling

The model of the thermal characteristics in a machine can be performed in different
manners. It can be as complex and detailed as numerical analysis such as FE analysis
or computational fluid analysis (CFD) or it can be described analytically in terms of the
materials properties of the machine and its geometry. Where the analytical approach can
be quite accurate or simplified through the use of lumped parameter thermal-network
(LPTN) as show by the authors of [67] and [68].

5.1.1 Lumped Parameter Modeling

From the different methods to model the thermal behavior of the components of a ma-
chine, the lumped parameter approached is a simple and good alternative for embedded
systems as shown by Mellor and Turner in [10]. The main idea is to model the heat
transfer in the machine using elements equivalent to the ones of an electrical network,
such as resistors, voltage sources or capacitors, as shown in table 5.1:

111



5 Motor Thermal Model

Table 5.1: Equivalent thermal to electrical elements

Component Thermal units Electrical units

R ◦C/W Ω

C J/◦C F

Voltage source ◦C V

Current source W A

The heat sources in the thermal network are modeled by current sources as shown in
table 5.1. There are three types of heat sources in the machine: the Joule losses, the core
losses and the mechanical losses. The resistive losses can be obtained from the winding
resistance and the current flowing through it. In addition to this, the temperature
coefficient of the copper needs to be taken into account as the resistance will vary with
the temperature as well. (4.3) describes the resistive power loss as a function of the
winding temperature:

Presistive =
3

2
Rs0

[
1 + tempcocu(Twinding − T0)

]
(i2d + i2q) (5.1)

where Rs0 is the average winding resistance, tempcocu is the temperature coefficient of
the copper, Twinding is the average winding temperature and T0 the reference tempera-
ture at which Rs0 holds. The expression in (5.1) represents the average power losses as
the heating process inside the machine is not homogeneous, certain parts of the windings
wire will develop different temperatures. Therefore additional nodes are introduced to
capture a more accurate thermal behavior. Typically the end windings, the end part of
the winding coils, are modeled with their own nodes.

The core losses are additional heat sources in the machine due to the hysteresis and
Eddy current losses addressed in chapter 4. The iron losses depend on the machine’s
operating point with regards of the dq-axis currents but the permanent magnet flux-
linkage ψm as well. The resulting expression of the losses is then written in terms of the
currents and ψm as:

Piron =
3

2

[
ω2
r ·
(
ψm(Tmagnet) · Lqid + LdLq

(
i2d + i2q

))
Rm

+
ω2
rLdLqi

2
d

Rd

]
(5.2)

where the iron loss resistors are defined as in (4.23) and (4.25) and ψm is magnet
temperature dependent according to (2.55) as:

ψm(Tmagnet) = ψmT0
[1 + tempcomagnet(Tmagnet − T0)] (5.3)

The term tempcomagnet is the equivalent temperature coefficient of the permanent flux-
linkage, ψmT0

is the flux-linkage obtained at the reference temperature T0 and Tmagnet
is the average magnet temperature.
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On the other hand, the mechanical losses, Coulomb and viscous friction losses, are
modeled with the coefficients kc and kv as per (4.10) to provide additional the heat
sources representing bearing and windage losses in the thermal network. The thermal
network loss sources are then summarized as:

Table 5.2: Power loss sources

Resistive losses Presistive
Iron losses Phy + Peddy

Mechanical losses Pcoulomb + Pviscous

The next step is then to define the calculation of the values of the passive elements in
the network, which are the thermal resistors and thermal capacitors values.

The equivalent elements in table 5.1 depict the process of various types of heat transfer,
such as conduction, convection and radiation. For instance, the thermal resistances can
be obtained according to geometry of the materials in place. The thermal resistance due
to the conduction of heat is defined as the transfer rate of heat between two points [69]:

Rcond =
T1 − T2

q
=

l

k ·A (5.4)

where T1 and T2 are the temperatures at the points of interest in the material, q is
the conduction heat rate , l is the path length, A the corresponding area and k is the
material’s thermal conductivity. Similarly, the convection thermal resistance depends
on the materials geometry as:

Rconv =
1

h ·A (5.5)

in this case h represents the convection heat transfer coefficient of the material in ques-
tion. Finally the associated thermal resistance to the thermal radiation between surfaces
is expressed in the same way as the one due to convection:

Rrad =
1

hr ·A
(5.6)

where hr is the radiation heat transfer coefficient between surfaces. In addition to the
thermal resistances that can be determined for certain parts in the machine of known
geometry and thermal characteristics, the thermal contact resistance needs to be consid-
ered as well. The interfacing between materials surfaces involves a combination of heat
transfer due to conduction in the areas in contact and due to convection or radiation
across gaps that may be present. Finally, the remaining passive element, the thermal
capacitance, will depend on the mass density and volume of the material in question.

An example of a thermal network can be seen in Fig. 5.1, where a LPTN of a 4 pole
pair IPMSM is displayed. The thermal network was created with commercial software
MotorCAD. The nodes of the thermal network in Fig. 5.1 represent the temperature
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in different sections of the machine. Therefore a detailed thermal network can end
up having a large amount of nodes which would make the model not suitable for an
embedded application.

Figure 5.1: MotorCAD - 4 pole pair IPMSM thermal network

Depending on the fidelity level expected of the model, the number of nodes and ele-
ments can be significantly large. This implies that the accuracy of the temperature es-
timation or modeling is directly dependent on the number of network nodes, as pointed
out in [68]. Which means that for a target group of temperatures in the machine, an
additional set of nodes may be required to increase the model’s order, in that way the
accuracy or quality of the estimated temperature in the target nodes can be improved
as shown in [70] and [71]. To summarize, a deep knowledge of all materials and geom-
etry of the different components in a machine are required to calculate and build the
thermal network. This is time consuming and it could require additional measurements
to characterize for example the contact thermal resistances between the different mate-
rials surfaces inside the machine. Furthermore, for a high fidelity model, the addition of
intermediate nodes could the necessary [71].

5.2 Modeling Approach

There are two main objectives in this work regarding the thermal model of the machine.
The first one is the derivation of a high fidelity thermal model that can be used for a sys-
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tem simulation in conjunction with the flux-linkage based high fidelity machine model.
This goal was set to facilitate the design of the online parameter identification algorithm
by creating a multi-physics model that covers the inverter, the machine’s torque gener-
ation and the machine thermal behavior.

The second a most important objective is the generation of a simple thermal model
that can be used in an embedded system to assist and enhance an online parameter
estimation algorithm. As seen in the previous section, deep knowledge of the machine
geometry and materials properties would be necessary for the creation of an analytical
thermal model of the machine. The intention of this work is to propose a modeling
approach where a thermal network can be derived, without special knowledge of the
machine and that is simple enough to be implemented in an embedded system. In other
words a model reduction methodology, with the intention to apply it, when possible, to
an existent high fidelity thermal model.

5.2.1 Model Reduction

In order to have a consistent workflow where there is a high fidelity model that can be
used for simulation and design purposes on a personal computer and a simple model
that can be implemented on a micro-controller, the concept of model reduction arises.
It is a way to generate a simplified model for online purposes. A simple model can be
derived from complex models, lets say, thermal networks with a high number of nodes as
shown in [70]. Additionally to this, if the model reduction technique is chosen properly,
it can serve as means to derive a high fidelity thermal model from FE simulation results
or measurements. Besides a FE thermal model or an existing complex thermal network,
the physical machine can be considered a high fidelity model itself, where the temper-
ature of selected places is known, through sensors and the heat sources are known as
well. This aspect is going to be explored and exploited in order to present a simple way
to obtain a lumped parameter thermal model of a PMSM. By simple is meant that the
machine itself can be considered as a black box, the geometry of the machine and ma-
terial knowledge aren’t needed, simplifying the effort necessary to generate the thermal
network. The model reduction technique can be applied actually twice; the first time to
derive the high fidelity model from FE data or measurements and the second time to
obtain a simplified model for use in an embedded system.

So far the concept of thermal network has been mentioned in general terms, but as
pointed out with table 5.1, there is an equivalence to resistive networks. This means that
Kirchhoff’s circuit laws apply to the thermal network. With that in mind the lumped
parameter thermal network can be formulated in the following form:

C · Ṫ = −G · T + Pl (5.7)

where C is the thermal capacitance matrix, T is a vector containing the temperature
value of each node, G is the conductance matrix and matrix Pl is the power loss in the
machine. Fig. 5.2 shows a simple thermal network where Ta is the ambient temperature,
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Cth is the thermal capacitance, Rth is the thermal resistance and P represents the power
losses.

P

Cth

Rth

Ta

Figure 5.2: Example of a simple LPTN.

The conductance matrix is defined as the inverse of the thermal resistance matrix R.
The thermal resistance matrix is built to describe the power exchange between nodes in
the network or in an equivalent way the thermal conductance Gth, as:

Pij =
Ti − Tj
Rthij

= Gthij · (Ti − Tj) (5.8)

Each resistor in the network could be connected to any other node in the network,
making R a square and symmetrical matrix with Rthij = Rthji . The elements Rthii are
the equivalent resistance at the corresponding node conversely the conductance Gthii is
the sum of all conductances between node i and the remaining nodes in the network.
For this reason, the formulation in terms of conductance is much more convenient as the
matrix can be easily formed.

The thermal network of the size of Fig. 5.1 consists of more than 50 nodes. This
is the result of a high fidelity model, where many sections of the machine are modeled
to create a more accurate model. At this point, a complex model would be available
and the remaining task would be the generation of a simple model, that can capture
certain target temperatures with acceptable accuracy and that can be implemented in
an embedded system considering the computational cost of running it online.

With respect to reduced models, there are approaches where the model is already
formulated in a reduced form due to previous experience with the machine in question
as reported in [72] and [73]. In [70] the lumped parameter thermal network approach
is expressed in its mathematical form according to (5.7) with the objective to obtain a
reduced model parting from a complex network. The proposed model reduction focuses
on the frequency domain where (5.7) is transformed into its Laplace representation,
where the frequency domain is obtained by setting s = jω. Afterwards, the matrices
are divided in association with target nodes and the remaining nodes. Through this
separation the heat source matrix Pl becomes complex, at which the imaginary parts
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are neglected in order to simplify the final model. Finally it was shown that the selec-
tion of additional nodes beside the target nodes was decisive to improve the reduced
model accuracy. On the other hand, the authors in [71] undertook a similar approach by
analyzing the model reduction problem from the Laplace perspective and encountering
the same mathematical issue of inverting the model matrices in the Laplace domain.
For that reason, a transfer function approach was adopted to formulate the reduced
model. Ladder network structures were proposed to model interaction between power
loss sources and the nodes of interest. Where the order of the proposed ladder networks
were increased in certain nodes to improve the model accuracy.

A common aspect on the aforementioned methods is the need for an additional treat-
ment to the reduced models to achieve the desired performance. However there is a key
aspect that is worth to recognize, which is the fact that the network reduction obtained
mathematically from the steady state perspective delivers an equivalent model with no
approximation or decreased accuracy. The steady state form of the network (5.7) can
be written as by letting the temperature derivatives to be zero:

Pl = G · T (5.9)

it gets reduced to a merely resistive network with power sources. It can be then rewritten
in terms of the target temperatures and the remaining ones as:[

Pl1
Pl2

]
=

[
G11 G12

G21 G22

]
·
[
T1

T2

]
(5.10)

where T1 refers to the target temperature nodes and T2 to the ones that will be
excluded from the reduced model. (5.10) can be rearranged to get an expression only in
terms of the target temperature nodes T1 as:

Pl1 −G12 ·G−1
22 · Pl2 =

(
G11 −G12 ·G−1

22 ·G21

)
· T1 (5.11)

at this point one remark needs to be made, the left side terms of (5.11) consider that
each node in the network is fed with a power loss source. In reality this is not the case,
as already shown in table 5.2 there is a limited number of power losses sources which
won’t be present in all nodes of a large thermal network. For this reason, those nodes are
considered as target nodes due to its relevance in the excitation of the thermal network.
Hence, the temperature nodes with subscript (1) group the nodes with associated power
sources and the ones with subscript (2) temperature nodes with power sources. Therefore
the power loss term Pl2 can be set to zero, thus reducing (5.11) in the following form:

Pl1 =

(
G11 −G12 ·G−1

22 ·G21

)
· T1 (5.12)

The conductance matrix of the reduced model can be then obtained from the parent
conductance matrix as:

Gr = G11 −G12 ·G−1
22 ·G21 (5.13)
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Finally, the steady-state equation of the reduced model results in:

Pl1 = Gr · T1 (5.14)

For steady-state conditions, the reduced model (5.14) delivers an exact solution, the
main resistive network in (5.9) was divided in two groups to obtain mathematically the
equivalent conductance (5.13) of the nodes of interest. The reduced model conductance
matrix will be of the same form as the thermal resistance matrix R, square and symmetric
with Grij = Grji , taking then the following form:

Gr =


Gr11 Gr12 . . . Gr1n
Gr21 Gr22 · · · Gr2n

...
...

. . .
...

Grn1 Grn2 · · · Grnn

 (5.15)

The conductance matrix (5.15) depicts a network where all nodes are interconnected
with each other through the conductances Grij and elements in the diagonal Grii are
defined as:

Grii = −
n∑
j=1

Grij with j 6= i (5.16)

Returning to the dynamic formulation of the temperature, the reduced model is formu-
lated as the steady state equivalent resistive network Gr with associated power losses
Plr = Pl1 and node capacitance matrix Cr:

Cr · Ṫ = −Gr · Tr + Plr (5.17)

where the vector Tr contains the target temperatures. The capacitance matrix Cr rep-
resents the thermal capacitances associated to each node. The elements in Cr denote a
capacitance between every node and one with respect to the reference point.

Cr =


C11 C12 . . . C1n

C21 C22 · · · C2n
...

...
. . .

...
Cn1 Cn2 · · · Cnn

 (5.18)

Consequently, the capacitances Cii represent the self capacitance of the node with respect
to the network reference. The mutual capacitances linking each node Cij contribute to
the dynamic characteristics of the network. Moreover, they can be used to increase the
model’s order, as the authors in [70] propose that those capacitances adopt a negative
value to improve the model’s performance. Despite the direct relationship between the
thermal resistances with the ones of the parent model with their physical corresponding
physical meaning. Matrix Cr represents the equivalent capacitances at each node in a
purely mathematical sense. As they help to model the dynamic behavior of the thermal
network and they don’t have a physical meaning. At this point the only unknown ele-
ment in (5.17) is the thermal matrix (5.18), which should be identified using temperature

118



5.2 Modeling Approach

data of each target node derived from the parent model.

The validity of the reduction process was tested with the machine thermal model of
Fig. 5.1, which consist of a lumped parameter thermal model of 66 nodes, of which only
12 nodes have power sources associated to them. The reduced model shall contain nodes
of interest, such as the winding and magnet temperature, moreover the nodes with power
sources associated to them are also considered in order to avoid unnecessary simplifi-
cations. Coincidentally, the target nodes have power sources as well, which leaves the
node count at 12 in addition to the ambient temperature node. Therefore the network
is reduced down to 13 nodes.

In order to achieve the most reduced form of the thermal network, the mutual capac-
itances Cij are assumed to be zero. This assumption is justify based on the findings
presented in [70] and [71], where the reduced network was modified in order to increase
the models order. However, a key factor stated by [70] was the introduction of additional
key temperature nodes to improve the model’s performance. The addition of nodes is
an intuitive approach and doesn’t require the modification of the network elements with
new arrangements.

Based on the assumption that each thermal node has a capacitance referred to ref-
erence as shown in Fig. 5.2, this capacitance should be the node’s dominant thermal
capacitance, consequently the linking capacitances between nodes as per (5.18) should
contribute to the high frequency or highly dynamic response [70]. Hence, neglecting the
mutual capacitances might have a negative impact on the model’s order which at the
same time can be compensated by introducing additional nodes to the reduce model.
The advantage of this modeling approach is its simplicity in terms of implementation.
Finally, the capacitance matrix Cr takes then the following form:

Cr =


C1 0 . . . 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · Cn

 (5.19)

The reduced network with 13 nodes takes then the general form displayed in Fig. 5.3,
where each node is connected to the other nodes through a thermal resistor according
to the conductance matrix Gr, each node besides the ambient temperature node has a
capacitance connected to the reference point as per matrix Cr in (5.19) and as mentioned
before those nodes are also fed with a power loss source.
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Figure 5.3: General thermal network for 13 nodes.

As the conductances of the parent model are known, the thermal conductances of the
reduced network in Fig. 5.3 are determined directly using (5.13). On the other hand,
the thermal capacitances are obtained using simulated temperature profiles. Based on
(5.17), the differential equation that involves the capacitance of the n-th node can be
formulated as:

Pln = Cn ·
dTn
dt

+Grn1 · T1...+Grnn · Tn...+Grnm · Tm (5.20)

where m is the total number of nodes of the network, T() are the node temperatures
and Pln is the power loss source associated to the node n. If each node temperature
T()) is known, (5.20) would only have one unknown variable namely Cn, as dTn

dt can be
calculated from Tn. With this in mind, for a set of simulated temperature profiles, the
capacitance of each node can be then obtained by minimizing the following objective
function:

fthermal(x) =
N∑
n=1

[
(Pln − P̂ln)2

]
where, P̂l = ∇Pl · xT

(5.21)
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Where fthermal is the objective function and N is the number of the data points.
The letters with a hat notation represent estimated values and the letters with no hat
notation are the values of the identified data. Similarly as in previous sections, the
quadratic programming is used for the possibility to limit the solution to positive thermal
capacitances.

Minimize Q(x) =
1

2
xTGx+ gTx

with, Cn > 0

where, G = ∇Pl∇PlT
g = −2Pl∇Pl

(5.22)

The flowchart in Fig. 5.4 summarizes the steps taken towards the reduction of the
parent model.

Parent model

Calculate thermal
conductances

Simulate a
temperature
profile from

parent model

Identify thermal
capacitances

Reduced ther-
mal model

Figure 5.4: Thermal model reduction.

The optimization problem formulated in (5.21) and (5.22) delivers then the capacitance
values to finally complete the reduced thermal network of Fig. 5.5.
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Figure 5.5: Reduced thermal network from parent MotorCAD model.

Im principle, the conductance reduction according to (5.13) leads to an interconnec-
tion between all the nodes, which traduces into thermal resistances connecting each node
with all the remaining nodes of the network as already shown in Fig. 5.3. However, the
resulting network in Fig. 5.5 exhibits less thermal resistors as in the generic formulation
of 13 nodes in Fig. 5.3. For large thermal resistance values1, the resistance was approx-
imated to an infinite value, leading in that way to a even more simplified form of the
network. Additionally, each node except for the ambient temperature node Ta has a ther-
mal capacitance that contributes to model the dynamic behavior of the thermal network.

The temperature of the average winding resistance and magnet are shown in Fig.
5.6, moreover they are compared against the simulated temperature obtained with the
reference model or parent model.

1Thermal resistors with values larger than 100kK/W were removed from the network.
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Figure 5.6: Reduced model temperature.

In Fig. 5.6b and 5.6d the error in steady state is zero due to the exact calculation of
the conductance matrix from the parent model and the thermal capacitances obtained
through the optimization process provide deviations below 0.7◦C. These deviation can
be observed for all the remaining nodes as depicted in Fig. 5.7
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Figure 5.7: Reduced temperature deviations of all nodes.

For the given test profiles the reduced model was able to predict the different node
temperatures with deviations below 0.7◦C, moreover the steady state temperature error
achieved for all the nodes is close to zero due to the direct reduction of the resistive
network from the parent model.

The two step model reduction could be successfully performed on the example model
presented in Fig. 5.1, where a reduced model consisting of a thermal resistive network
and thermal capacitances associated to each node was obtained as presented in Fig.
5.5. Furthermore, the interconnection of each node through resistances with the rest
of the nodes can be used as a generic start point for the formulation of the reduced
thermal network. Besides the possibility to reduce a known large thermal network into
a simpler one, a real machine can be directly modeled. Temperature sensors can be
placed in many sections inside a machine to capture the temperature behavior in the
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regions of interest. The generic network structure for n-nodes, i.e. Fig 5.3, can be used
in combination with the measured temperatures to fit the corresponding elements of
the network. Following that idea, a high fidelity thermal model of the machine could
be created without knowledge of the geometry and characteristics of the materials in
the machine. Similarly, a reduced thermal model with a small set of nodes could be
generated from the measurements as well.

5.2.2 Thermal Model Parameter Identification

This section will address the proposed approach to generate a thermal network based
on measurements. The target network according to (5.20) is determined with respect to
the nodes of interest; the ones where the relevant power loss sources are present and the
nodes of interest. The main objective is to estimate the average winding and magnet
temperatures. The machine considered in further steps is the IPMSM used in section
3.5.1 with characteristics listed in table 2.1. K-type thermocouples sensors were placed
in the machine as illustrated in Fig. 5.8. Additional sensors were placed to obtain the
ambient and test rig base plate temperatures. Moreover, the machine was placed in
a chamber to isolate it from any air flow disturbance and to guarantee consistent and
repeatable measurements.

Figure 5.8: Thermo couples positions.

The average value of the measured mid-point temperatures of phases U , V and W ,
positions 1, 2 and 3 in Fig. 5.8, is used to generate the average winding temperature
value. The final thermal network is ultimately defined to estimate the average winding
and magnet temperatures. Additional key nodes, such as the machine housing, motor
base plate and the chamber temperature, are included in order to increase the model’s
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order. These nodes are located along the path between the windings and the magnets to
the ambient temperature completing the modeling of the thermal behavior of the whole
machine setup. Table 5.3 and Fig. 5.9 summarize the different sections of the setup that
should be modeled in the thermal network.

base plate

chamber temperature

housing top-side

ambient temperature

Figure 5.9: Test rig - thermal couples positions .

Table 5.3: Thermal network nodes mapping

Name Node

base plate 1

chamber temperature 2

machine housing top-side 3

average winding temperature 4

average magnet temperature 5

ambient temperature 6

As shown in Fig. 5.5 and according to (5.18), each node has an associated thermal
capacitance except for the ambient temperature node, which is the reference node. As
for the heat sources, only nodes 4 and 5 will have one source, as they are directly related
to the iron losses and Joule losses. The network identification procedure is described in
the flow chart 5.10, where the first step involves the measurement of the corresponding
temperatures.

Once the nodes or places of interest are defined, the model identification is performed
in two steps. The first step considers only the steady state conditions, where the conduc-
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tance matrix Gr is determined. The second focuses on the identification of the thermal
capacitance of each node.

Measured data

Calculate magnet
temperature
from OC bemf

Get steady state
temperatures

Identify thermal
resistances

Identify thermal
capacitances

Thermal model

Figure 5.10: Thermal model identification.

The flowchart of Fig. 5.10 describes in general terms the procedure used to identify
the equivalent thermal network from measured data. The latter is generated through
a series of current and speed profiles. Analogue to a charge and discharge profile in
an electric circuit, the machine is excited with different phase current values at a given
rotor speed for a time period sufficient to reach a temperature steady state as shown in
Fig. 5.11.
Three regions result from the phase current and speed profiles defined in Fig. 5.11a
and 5.11b. The first region intends to generate enough heat to produce a temperature
change in the nodes of interest that depends on the heat sources, which are represented
by the winding Joule losses and the iron losses. On the other hand, the second region
represents phase where the winding Joule losses are switched off and only the iron losses
are generating heat as the rotor is still spinning. Finally the third region represents
the cool down phase the machine will tend to reach the reference temperature value.
To summarize, the three regions serve to isolate the different aspects of the thermal
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network, such as the operation of the machine under load conditions, the effects of the
open circuit iron losses and the passive cool down phase.
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(a) Phase current test profile.
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Figure 5.11: Measured data profile.

As there isn’t a sensor available to obtain the magnets temperature, it is determined
through an indirect measurement. The magnet temperature dependency of ψm is used
to calculate indirectly temperature variations. ψm is derived from the bemf voltage at
open circuit in the second profile part of Fig. 5.11 where the machine is not energized
but the rotor is still be driven at constant speed. The deviation of ψm with respect to
the room temperature value is used to calculate the delta temperature in the magnets.
The NdFeB magnets used in the machine have a Br temperature coefficient α of =
−0.11%/◦C. The average magnet temperature is then obtained in the following form:

Tmagnet =
1

α

(
ψm(T )

ψm(T0)
− 1

)
+ T0 (5.23)

The temperature values at the end of the first profile region are used to obtain the
thermal resistances, as the time duration of the first region is defined to reach steady
state conditions. At this point it is important to remark, that some thermal resistances
in the machine will vary with the rotor speed. The air flow in the air-gap affects the
convective heat flow between rotor and stator [74], therefore a speed dependency of the
resistance values associated to the magnet temperature node is expected. The lowest
rotor speed is chosen to start with the thermal resistance identification in order to take
into account the speed dependency of the resistances at increasing speed. The speed is
set to 100rpm because at that speed the bemf voltage is large enough to obtain a decent
estimation of the magnet temperature given the resolution of the data acquisition system
used.
After having defined the test profile, the remaining part is to determine the amount of
data required to identify the thermal network elements. The measured data is generated
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according to the size of the thermal network, as the number of unknown conductances
in Gr is given by (5.24):

Nres =
n · (n− 1)

2
(5.24)

where n is the number of nodes in the network and Nres the number of unknown conduc-
tances. The relationship in (5.24) is derived from the fact that the conductance matrix
Gr is symmetric and the diagonal is the sum of the row elements according to (5.16).
The measured data of one profile delivers n temperature values, which correspond to the
nodes in the network. In the case of a 6-nodes thermal network the number of unknown
elements is Nres = 15, therefore, the data of at least three sets2 of measurements is
required to recollect sufficient node temperature values. As a consequence of the mini-
mum required amount of data, phase current values from 20A up to 45A in steps of 5A
were set to generate enough data to solve the optimization problem of the conductance
identification. Table 5.4 summarizes the operating points of the profiles used to identify
the thermal elements of matrix Gr.

Table 5.4: Operating point of profiles according to definition in Fig. 5.11

Phase current Speed

20A 100 rpm

25A 100 rpm

30A 100 rpm

35A 100 rpm

40A 100 rpm

45A 100 rpm

Opposed to the steps taken to derive a reduced thermal network from a complex
model, the conductances need to be identified instead of being direct calculated. This is
done by means of least squares based on the thermal node equation (5.20) but assuming
thermal steady state, which means that the derivative of the node temperature is zero.
The steady state can then be described as:

Pln = Grn1 · T1...+Grnn · Tn...+Grnm · Tm (5.25)

2One measurement set corresponds to the steady temperature of 6 nodes for one profile or operating
condition, in order to have at least 15 different temperatures values, the temperature at three different
profiles needs to be capture to obtain 3 · 6 = 18 temperatures.
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where m is the total number of nodes of the network and n is the n − th node. The
expression in (5.25) is the basis for the formulation of the objective of the minimization
problem:

fthermal(x) =
N∑
n=1

[
(Pln − P̂ln)2

]
where, P̂l = ∇Pl · xT

(5.26)

Where fthermal is the objective function and N is the number of measured temperature
values obtained from the profiles in table 5.4. The letters with a hat notation represent
estimated values and the letters with no hat notation are the values of the identified
data. Similarly as in previous sections, quadratic programming is used and the solution
is limited to positive thermal conductances.
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Figure 5.12: Thermal network.

Fig. 5.12 shows thermal network that results from solving the minimization problem.
Similarly to the reduced model derived from the 66 nodes model in the previous section,
the thermal resistors with values larger than 100 kK/W were removed from the final
network. However the network elements are not completely identified, as the thermal
capacitances associated to the nodes are still unknown. Following the steps illustrated
in Fig. 5.10, the next procedure is the identification of the capacitances now that the
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thermal conductances of the network are available. For this step, the same temperature
node formulation, (5.20), of the previous section is employed and the same objective
function, (5.21), as well. As the number of capacitances to be determined is the number
of network nodes minus the reference node, the data of one profile is sufficient to identify
them. So the selection criteria is the run with more signal excitation, which in the case
of the profiles listed in table 5.4 refers to the profile with the highest phase current, 45A.

The verification of the identified parameters was performed in Matlab/Simulink, where
the thermal network is modeled in a state-space representation:

Ṫr = C−1
r · (−Gr · Tr + Plr) (5.27)

where Tr represents the target temperatures, Cr the identified capacitance matrix, Gr
the equivalent admittance matrix and Plr the power losses. Additionally, the room
temperature winding losses Pr0 , which are part of Plr , are updated according to the
copper temperature coefficient in the following form:

Presistive = Pr0

[
1 + tempcocu(Twinding − T0)

]
(5.28)

A recollection of the simulation results can be seen in Fig. 5.13 where the measured
average winding temperature, node 4, is plotted with the estimated temperature of the
thermal network and the deviation of the temperature estimates for all nodes is pre-
sented. The highest temperature deviation is observed at the profile with 45A with
values around ±2.5 ◦C, specially the deviations at the time mark of 500min evidences
the resistive network accuracy. However, the limitations of the reduced model are evi-
dent when looking at the dynamic sections of the profile where the error increases.

The identified thermal elements of the network in Fig. 5.12 are valid for 100 rpm as
the rotor speed influences the heat flow between rotor and stator. The consideration of
speed dependent effects are captured with additional measurements at different speeds.
As already mentioned, the speed variation of thermal conductances happens between
the magnet temperature node and the rest of the nodes, as it represents the air flow in
the air-gap, therefore the conductances associated to the magnet temperature (node 5)
are unknown parameters for the given speed and the remaining ones remain constant
with the value identified in the previous step at 100 rpm.
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Figure 5.13: Reduced model temperature.
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Fig. 5.14 summarizes the two step process to obtain the thermal network elements.

Measured data at
a reference speed

Identify thermal
conductances

and capacitances

Measured data at
additional speeds

Generate speed
dependent

conductance map

Thermal model

Figure 5.14: Thermal model identification for several rotor speeds.

The profiles used for the conductance identification for different speeds are listed in
table 5.5.

Table 5.5: Operating point of profiles for speed dependent terms.

Phase current Speed

50A 700 rpm

35A 1000 rpm

50A 1300 rpm

20A 2000 rpm

The conductance values at a given speed are interpolated using the values obtained
from the identification procedure shown in flowchart 5.14. The speed dependent conduc-
tances associated to node 5 were saved as a look-up table that depends on the current
speed as: Gr5m(wrpm), where m is the m − th node and wrpm the mechanical speed in
revolutions per second. Fig. 5.15 shows an example of the thermal resistance dependency
on the rotor mechanical speed.
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Figure 5.15: Speed dependent thermal resistance.

To summarize, the thermal network consist of a set of thermal capacitances Cn which
were identified with the data obtained from profiles listed in table 5.4, the thermal con-
ductances Grnm were identified with that data as well but they are mainly valid for
100 rpm. In a second step, the speed dependency of the magnet node related conduc-
tances is addressed by generating additional data from profiles at different speeds as
shown in table 5.5. The subset of conductances Gr5m form a map that depends on the
machine speed.

The validation of the thermal network is performed with two types of test profiles.
The first one, shown in Fig. 5.16, focuses on different load scenarios ranging from no
load to maximum load with different time duration.
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Figure 5.16: Test profile 1.
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Figure 5.17: Reduced model temperature.

The initial conditions of the thermal network in the Simulink model were set to the
ones of the measurement for each node. The corresponding temperature deviations and
exemplary average winding temperature estimation can be appreciated in Fig. 5.17.
The thermal network can predict the temperatures of interest with a maximum error of
3.4◦C at the most dynamic part of the profile.

The next validation test intends to cover real operating conditions of the application
where the machine is being used. The torque and speed profiles illustrated in Fig. 5.18
are an example of a typical Electric Power Steering (EPS) system parking cycle profile.
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Figure 5.18: Steering park cycle profile.

The load torque and speed have changes rapidly between negative and positive values
building a highly dynamic excitation. Moreover, in the first 50s of the profile the ma-
chine is driven at constant speed with no load in order to calculate the initial average
magnet temperature from the bemf voltage. In the same fashion, the last 50s of the
profile are used to obtain the end value the magnet temperature. Finally, the initial
conditions of each temperature node were set to match the initial state of the measured
temperatures.

Fig. 5.19 summarizes the key aspects of the thermal model performance for the profile
of Fig. 5.18. Although the profile is highly dynamic it has a short loading duration,
leading to a small temperature rise on magnets and windings. Nevertheless, the aver-
age winding temperature reflects seamlessly the profile regions with and without torque
load as shown in Fig. 5.19a. The maximum temperature deviation observed occurs at
node 4 (winding temperature) with an underestimation of 1.37◦C, conversely the mag-
net temperature remains almost unchanged for the duration of the profile, which can be
observed in the two temperature close-ups in Fig. 5.19c and 5.19d.
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Figure 5.19: Reduced model temperature.

It is important to notice that the node temperatures shown in Fig. 5.19 start at a
higher value than the 21◦C room temperature of the previous results. For the exercise
of validating the model, it is reasonable to set the thermal network to the same initial
conditions of the reference data, however in a real application this might not be possible.
In the specific case considered in this work, a EPS system, the thermal network would be
implemented in an embedded system, where normal operation conditions involve long
periods of time without any activity of the machine. It is then quite possible to en-
counter scenarios where the system starts to operate at any environmental conditions
from −40◦C to 85◦C due to the proximity of the EPS system to the combustion engine or
simply due to the seasonal temperature variations, winter or summer to name an exam-
ple. This problematic is an issue for thermal models in general that lack of any feedback
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on the initial temperatures. As in the application considered in this work, there is no
thermal sensor inside the machine, it is not possible to initialize the thermal network,
this could lead to large temperature estimation errors. A solution for this issue is the
topic of the next chapter, where the average winding resistance and permanent magnet
flux-linkage are estimated online in order to derive the corresponding temperature rises
to update the node temperatures of the thermal network identified in this chapter.

A reduced modeling method was proposed to generate a machine thermal model with-
out the knowledge of the machine’s geometry or materials characteristics. The proposed
approach was applied to an existing complex LPTN model or measured data. Where
the for a 66 nodes LPTN a maximum temperature deviation of 0.7◦C was achieved with
a 13-nodes reduced network. Furthermore, using the generic formulation of the reduced
model, a 6-nodes network was obtained directly from measured temperature data. The
effects of the heat flow speed dependency in the rotor air-gap were considered and dif-
ferent machine load profiles were used to validate the model. It delivered a maximum
temperature of 3.4◦C at different test profiles.
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The initial chapters of this work presented a method to model synchronous machines
and how to parameterize that model from FE data or measurements, how to obtain
and include the iron loss in the machine model and the previous chapter focused on the
thermal modeling of the machine. This final chapter will present the conjunction of all
these pieces in order to come up with an online parameter estimation scheme.

In addition to that, as shown with the experimental identification, constrained opti-
mization has the potential to make the identification robust compared to an unbounded
one. Therefore the online parameter identification based on QP will be discussed in this
chapter as well. The hardware used consist of a custom made inverter and the SoC
board ZedBoard1 which offers the flexibility to develop model based solutions in Mat-
lab/Simulink and enables the possibility to simulate and test the algorithms beforehand.
Table 6.1 summarizes the key aspects of the inverter used.

Table 6.1: Power electronics key figures.

nominal DC-link voltage 12V

rated phase current 160A

PWM switching frequency 20kHz

6.1 Hardware Setup

Continuing with the methodology adopted through all this work, the PMSM machine
model used for the online parameter identification is based on the rotor reference frame
voltage equations (2.9), the dq-axes flux-linkage expressions presented in (2.38)-(2.39)
and the iron loss model illustrated Fig. 4.2. The resulting voltage expressions with
consideration of the dynamic behavior are formulated in the following form:

ud = Rs · id − ωr · ψq (idm , iqm) + ψ̇d (idm , iqm) (6.1)

uq = Rs · iq + ωr · ψd (idm , iqm) + ψ̇q (idm , iqm) (6.2)

where subscript m indicates the magnetizing currents that result after considering the
iron loss effects. Expressions (6.1) and (6.2) define then the required data to implement
the online parameter estimation. The rotor reference frame quantities and the rotor
speed are the signals needed for the estimation algorithm. As for the phase currents,
they are available through current sensors placed in the machine phase terminals in the

1see Appendix A.3 for a more detailed description of the hardware system used.
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power electronics printed circuit board (PCB). Similarly, the rotor speed is captured
through an optical encoder attached to the machine shaft. At last, the voltages are
typically estimated through models that use the demanded dq-axes voltages and the
DC-link voltage as inputs. Nevertheless, the models need to be adjusted to include the
nonlinear characteristics of the VSI. On top of that, additional effects come into play,
as the inverter temperature affects the nonlinear behavior of the VSI as reported in
[75]. This nonlinear effects are typically characterized offline [76] to be used later in the
embedded system. On the other hand, a direct measurement of the phase voltages can be
implemented with a few passive electronic components. Furthermore, the advantage of
a voltage measurement is that all the VSI nonlinear effects, and temperature influences
are captured in the measurement. For these reasons and together with the goal of a
robust estimation, the voltage measurement option is preferred in this work.

Zedboard

Parameter identification

Minimize :

Q(x) =
1

2
xTGx+ gTx

low-pass filter

D

A

D

A

ωr

θm

u123

i123

θm

Figure 6.1: Hardware setup.

The main task in the voltage measurement setup is the extraction of the voltage signal
associated to fundamental frequency of operation of the machine. The PWM based
voltages are driven contain a large amount of harmonic distortion due to the nature of
the constant switching between the DC-link voltage and ground, this reduces the tasks
to a low-pass filter, which is intended to reject the high frequency harmonic content of
the voltage signals. Therefore a second order low-pass filter was chosen, as shown Fig.
6.2 which consist only of passive elements making it an attractive and low cost solution.
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Figure 6.2: Second order low-pass filter.

A second order low-pass filter was selected in a trade of simplicity and voltage ripple
minimization. The filter can be then designed according to specific conditions of the
application, firstly the machine speed range of operation and the PWM switching fre-
quency, fPWM , need to be taken into account to define the cut-off frequency. Fig. 6.2
depicts the low-pass filter circuit used for each of the three phase terminal voltages. The
transfer function of the filter can be easily described in the Laplace domain as shown in
(6.3).

H(s) =

R3

s2C1C2R1R2R3 + s(C1R1(R2 +R3) + C2R3(R1 +R2)) + (R1 +R2 +R3)

(6.3)

where symbol s represents the Laplace operator variable and H(s) denotes the trans-
fer function in question. The frequency response is then set in the way that the fre-
quency at 3dB of attenuation is one decade apart from fPWM , which means 2 kHz for
fPWM=20kHz. The resulting normalized Bode diagram in Fig. 6.3a shows then an
attenuation of 31dB at 20kHz. The final values of the resistors and capacitors are listed
in table 6.2.

Table 6.2: Loss-pass filter values.

R1 100 kΩ

R2 4.2 kΩ

R3 560Ω

C1 10nF

C2 100nF

The maximum mechanical speed of the application is 7000 rpm, which traduces in
466Hz for the 4-pole pair machine. The cut-off frequency of 2 kHz is then far enough to
avoid excessive attenuation of the signal’s fundamental frequency as can be appreciated
in Fig. 6.3a.
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Figure 6.3: Filter’s Bode diagram.

However, the phase shift produced by the filter on the input signal has a big impact
on the voltage signals, once they are transformed in to the rotor reference frame (2.7).
As illustrated in Fig. 6.4 the additional phase angle ∆θ compromise the real value of the
dq-axes components of the voltage vector, leading to deviations on the online parameter
identification.

d-axis

q-axis

u

u′
∆θ

Figure 6.4: Filter phase shift of the voltage signals.

The frequency dependent phase shift of Fig. 6.3b can be used to express it in the form
of a group delay as:

tdelay =
∆θ

ω
with ω = 2πf (6.4)

142



6.1 Hardware Setup

where the transport delay time tdelay remains almost constant for frequency values below
the cut-off frequency and specially for frequencies up to 466Hz as can be observed in
Fig. 6.5.
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Figure 6.5: Low-pass filter group delay.

Being the transport delay constant for the frequency range of interest enables an
easy form to compensate the phase shift expected in the filtered voltage signals. The
transport delay can be easily calculated from the transfer function (6.3), when parting
from the phase shift by replacing the Laplace operator s by jω:

∆θ = ∠H(jω) (6.5)

Further development of (6.5) leads then to :

∆θ = arctan
ω(C1R1(R2 +R3) + C2R3(R1 +R2))

R1 +R2 +R3 + ω2(C1C2R1R2R3)
(6.6)

As the transport delay is almost constant in the frequency range of interest and to
keep the things simple, the phase shift can be then calculated towards zero frequencies,
leading to the following simplified expression:

∆θ ≈ ω(C1R1(R2 +R3) + C2R3(R1 +R2))

R1 +R2 +R3
(6.7)

To obtain the transport delay2 (6.7) is replaced in (6.4):

tdelay ≈
(C1R1(R2 +R3) + C2R3(R1 +R2))

R1 +R2 +R3
(6.8)

2 The transport delay value obtained with (6.8) was cross-checked with the voltage step response of
the filter in question. The measurement results are shown in Appendix A.5.
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Finally, for the online parameter estimation, the phase shift of the filtered voltage signals
can be compensated with the knowledge of the transport delay in the following form:[

ud
uq

]
=

[
cos(tdelay · ωr) − sin(tdelay · ωr)
sin(tdelay · ωr) cos(tdelay · ωr)

]
·
[
u′d
u′q

]
(6.9)

where the primed symbols represent the filtered voltages and ωr the electrical angular
rotor frequency.

The second aspect to consider is the attenuation produced by the filter, which can be
regarded as small but it is still an additional source of error for the online estimation.
In the same way as with the phase shift calculation, it can be obtained analytically from
the filter’s transfer function (6.3) as:

|H(jω)| =
R3√

(R1 +R2 +R3 − ω2C1C2R1R2R3)2 + (ω(C1R1(R2 +R3) + C2R3(R1 +R2)))2

(6.10)
The attenuation factor is simply formulated with respect to the DC gain of the filter
and the angular rotor frequency in the following form:

Attfactor =√
(R1 +R2 +R3 − ω2

rC1C2R1R2R3)2 + (ωr(C1R1(R2 +R3) + C2R3(R1 +R2)))2

R1 +R2 +R3
(6.11)

the correction factor Attfactor is then saved in the embedded processor in the form of
look-up table. The resulting attenuation factor for the filter of parameters 6.2 is shown
in Fig. 6.6, where the voltage vector ~u is corrected around 1.2% at 5000prm.
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Figure 6.6: Compensation factor for the voltage attenuation
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This section addressed a way to get hold of the machine voltage signals for an online
parameter estimation. Instead of the conventional approach of modeling the inverter
non-linear characteristics to estimate the dq-axes voltages, a simple passive low-pass
filter was proposed to accurately capture the non-linear behavior contained in the voltage
signals. Furthermore, the two side effects produced by the filter, frequency dependent
phase shift and magnitude attenuation, were thoroughly addressed. Moreover correction
factors such as the transport delay tdelay and the magnitude compensation factor Attfactor
were analytically calculated minimizing the characterization effort of such filter approach.

6.2 Parameter Identification

The required signals to perform the online parameter identification have been considered
and a filter stage for the machine’s terminal voltages has been introduced, where the
attenuation and phase shift imposed on the voltage signals were analyzed as well. The
following step is then to define the parameter identification scheme and for that purpose
the machine is modeled by expressions (6.1) and (6.2) in a generic way. In addition, the
approach presented in section 2.2.1 provides a tool to describe the non-linear behavior of
the flux-linkages. Therefore, the online usage of the flux-linkage expressions is completely
aligned with the initial steps where FEA simulation data and test rig measurements
where used to obtain the coefficients or parameters of flux-linkage expressions based on
(2.38) and (2.39). Consequently, the machine3 used in this section underwent an offline
identification procedure in order to determine the appropriate polynomial degree for the
flux-linkage expressions and to obtain reference values for the polynomial coefficients. It
is then the machine that was characterized at different magnet temperatures in section
3.5.1. It was also shown that an appropriate polynomial degree for the machine was
n = 3. As a result the dq-axes voltage equations (6.1) and (6.2) can be written in terms
of the flux-linkage expressions (2.38) and (2.39) for n = 3 as:

ud = Rsid−ωriqm(lqd10 + lqd30i
2
qm + cdq01idm +

cdq11i
2
dm

2︸ ︷︷ ︸)
Lq(idm , iqm)

+(ldq10 + 2ldq20idm + 3ldq30i
2
dm +

cdq11i
2
qm

2︸ ︷︷ ︸)didmdt + (cdq01iqm + cdq11idmiqm︸ ︷︷ ︸)diqmdt
Ldd(idm , iqm) Ldq(idm , iqm)

(6.12)

3specification data of the machine can be found in appendix A.2
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uq = Rsiq+ωr(ψm +
cdq01i

2
qm

2︸ ︷︷ ︸) + ωridm(ldq10 + ldq20idm + ldq30i
2
dm +

cdq11i
2
qm

2︸ ︷︷ ︸)
ψm(iqm) Ld(idm , iqm)

+(cdq01iqm + cdq11idmiqm︸ ︷︷ ︸)didmdt + (lqd10 + 3lqd30i
2
qm + cdq01idm +

cdq11i
2
d

2︸ ︷︷ ︸)diqdt
Lqd(idm , iqm) Lqq(idm , iqm)

(6.13)
In addition to the steady state flux-linkage terms, the voltage expressions (6.12) and

(6.13) incorporate terms to describe the dynamic behavior of the voltages such as the
incremental self and mutual inductances. Due to the analytical formulation of the flux-
linkages an expression for the incremental inductances can be obtained according to
(2.11) as indicated under the braces in (6.12) and (6.13). On the other hand, the
iron loss effects are also included in the voltage formulation in the form of magnetizing
currents idqm which are derived from the equivalent loss resistors obtained in section
4.2.2. The equivalent circuit get then extended based on (6.12) and (6.13) as depicted
in Fig. 6.7.

ud

Rs

id

Rm

dψd
dt

−ωrψq

idm

(a) D-axis equivalent circuit.

uq

Rs

iq

Rm

dψq
dt

Rd

ωrψm

ωrψd0

iqm

(b) Q-axis equivalent circuit.

Figure 6.7: Voltage model considering iron losses

6.2.1 Optimization Solver

The parameter identification carried out in chapter 3 was based on least-square mini-
mization by means of QP optimization, initially for FEA simulation data and in a second
step the identification was performed using measured data. For practical reasons, the
QP optimizer used in both methods was the built-in Matlab function quadprog. How-
ever, for an implementation in an embedded system, the QP algorithm should be fast
and suitable for real-time applications.

Early QP methods like Online Active Set Strategy (qpCOMP), based on nonsmooth
equations/succesive quadratic programming, showed to be robust and fast compared
to other contemporary solvers [77, 78] despite being implemented in C there are no
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available files of the solver, as the implementation of such algorithm isn’t within the
scope of this work, it was discarded. On the other hand the interior-point based solver
Online Active Set Strategy (OOQP) [79] is an algorithm intended for object-oriented
designs. Even thought the solver package offers interfaces to different software platforms
including Matlab, porting the C++ code into C is also not an option. In contrast to the
previous solvers, Online Active Set Strategy (qpOASES) is an active set based method
[80] which is available in C, furthermore its use in areas such as model predictive control
was reported as well. Similarly, the method Operator Splitting Quadratic Program
(OSQP) is a solver based on the alternating direction method of multipliers (ADMM)
which delivers high accuracy solutions at low computational cost [81]. It is available in
the C language and suitable for embedded code generation as demonstrated in [82]. In
addition to this, the authors of the method carried out a benchmark against several open-
source and commercial available QP solvers demonstrating the excellent performance of
OSQP compared to the other methods. Furthermore OSQP outperformed qpOASES in
that benchmark in terms of less failure rate, as qpOASES wasn’t able to solve several
test problems. However the authors in [81] emphasize that the method ADMM in
OSQP leads inherently to reduced accuracy compared to interior-point based methods
like qpOASES but at the same time OSQP can deal with larger problems and a more
number of constraints than qpOASES. Finally OSQP was the selected method to solve
the online parameter identification problem in question.

6.2.2 Solver Performance

To evaluate the fitness of OSQP for the end application two aspects were considered,
accuracy and execution time in the target platform. The accuracy was assessed by
looking at the relative deviation of the solution with respect to quadprog when using
measured data. This was done with the data set obtained for the offline identification
of IPMSM4 presented in section 3.5.1. The deviation in percentage of each coefficient
with respect the values obtained with quadprog is listed in table 6.3. The comparison
was performed in Matlab but the version of OSQP was a C compiled one, which is exact
the same version that can be integrated in the target development environment.

4 details of the solver settings and the values of the identified coefficients can be found in Appendix
A.4
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Table 6.3: IPMSM - identified coefficients relative deviation

Parameter %

Rs −1.78e−6

ψm 1.62e−5

ldq10 4.46e−4

lqd10 −6.8e−6

ldq20 −15.4e−3

ldq30 −30.8e−3

cdq01 4.11e−4

cdq11 3.41e−4

It is important to notice that the values delivered by OSQP differ in a small magnitude,
below thirty thousandth of one percent. Therefore the proposed solver can be used
without concerns of accuracy reduction5. Moreover, as a consequence of the overall
insignificant deviations, the fitness of the model doesn’t get compromised. This is verified
through the CoD in table 6.4 as well.

Table 6.4: IPMSM - Coefficient of determination

CoD

quadprog 0.999921532634165

OSPQ 0.999921532634197

As already mentioned, the embedded system used is a ZedBoard. This is a SoC so-
lution with an advanced RISC machines (ARM) processor connected to Xilinx-FPGA,
where the development environment is Matlab/Simulink in conjunction with Xilinx/Vi-
vado to automatically generate the code that should run on the Zedboard. The C code
of the solver OSQP is allocated in the ARM processor part, whereas the motor control,
PWM generation, encoder unit and ADCs were implemented in the field-programmable
gate array (FPGA) part as illustrated in Fig. 6.8. The main function responsible for the
communication with external devices, the drive state machine6 is allocated in the ARM
processor

5comparisons with data sets of other machines are presented in Appendix A.4 as well
6The drive state machine monitors any fault in the hardware and motor control configuration.
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Figure 6.8: Software setup.

In order to asses the computational cost of OSQP in the Zedboard, the data used in
the previous step were imported into Simulink. For the time measurement two scenarios
were considered. The first one was normal operation, which is defined as the time
elapsed for one identification and the second one was truncated operation where the
maximum number of iterations to solve the problem is reached. The latter was created
by manipulating the input in a way that the gradient data differs significantly from the
original values.

Table 6.5: OSQP - computational time duration

Scenario average time

normal operation 2.62ms

max. iterations 4.74ms

The average time observed when the maximum number of iterations was reached in
table 6.5 is a good indication that the solver itself can be used for the intended purpose
as 4.74ms leaves plenty of room for the online identification algorithm. The rationale
behind this relies on the fact that the thermal constant of the temperature dependent
parameters in the voltage equations (6.12) and (6.13) are much larger than 4.74ms. The
profiles in Fig. 5.13 used to parameterize the thermal model evidenced thermal constants
in the order of hours, whereas for fast transients as in Fig. 5.17 winding temperature
changes were observed in the magnitude of seconds, furthermore data time resolution in
the order of hundred of milliseconds was more than sufficient to represent rapid changes
in temperature of Fig. 5.19. Therefore an execution period of the QP solver task of
20ms leaves plenty of room for additional overhead and it is still fast enough that the
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temperature dependent parameters can be considered constant for several consecutive
execution periods.

6.3 Identification Algorithm

Similar to the offline parameter identification presented in section 3.5.1, the QP solver
is used to minimize a sum of squared errors of the dq-axes voltage signals as :

f(x) =
N∑
k=1

[
(udk − ûdk)2 + (uqk − ûqk)2

]
with, ûd = ∇udxT ; ûq = ∇uqxT

(6.14)

where the N represents the number of data points available and the objective function
in (6.14) is used to formulate the optimization problem as well in the following form:

Minimize Q(x) =
1

2
xTGx+ gTx

with, ψmmin < ψm < ψmmax

Ldmin
< ldq10 < Ldmax

Lqmin < lqd10 < Lqmax

Rsmin < Rs < Rsmax

where, G = ∇ud∇uTd +∇uq∇uTq
g = −2ud∇ud − 2uq∇uq

(6.15)

where the matrix G and vector g are inputs to the OSQP solver. In the QP problems
solved so far, these two inputs were calculated just once using the available data. However
the optimization problem described by (6.14) and (6.15) shall be solved every 20ms as
defined in the previous section. This yields two options, the use of an input buffer with
a length N or a scheme where G and g are calculated recursively from the last input
data points. The former is equivalent to the offline approach with a finite set of data and
the latter refers to a recursive filter structure. The memory and computational cost of
the first option makes it not an adequate solution for an online algorithm, whereas the
second one requires less memory space and offers possibility to average the input values.
The proposed filter scheme is then depicted in Fig. 6.9, the task called QP interface
filters the input data to obtain G and g with the same filter structure and coefficients
b0 and b1.
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Figure 6.9: Identification block diagram.

The algorithm architecture depicted in Fig. 6.9, recollects the elements studied and
used so far. It is a QP based approach which seeks to minimize recursively the sum
of dq-axes voltage squared errors, while the solution space is constrained by upper and
lower boundaries of the target parameters represented by UB and LB respectively. It
is completely aligned with the previous steps based on FEA data and measured data in
terms of flux-linkage modeling and parameters.

6.3.1 Dynamic Constraints

As shown in Fig. 6.9, besides the already mentioned inputs G and g, the OSQP solver
also expects the constraints UB and LB, which define the valid solution range for each
target parameter in the solution vector x. If the constraints are ignored when solving
the optimization problem it then gets reduced to a mere least squared minimization
problem as already discussed in section 3.1.1. However the constraints offer the possibil-
ity the improve the robustness of the identification for all the machine’s operating range.

One of the main issues with a passive parameter identification is the signal’s informa-
tion, for example at decreasing rotor speeds, the flux-linkage terms ψdωr and ψqωr will
tend to zero. Similarly, the phase resistance voltage drops Rsid and Rsiq will tend to
zero at decreasing phase current as well. During the machine’s operation, certain work-
ing regions are critical to obtain an accurate estimation, due to the low magnitude of
the machine voltage that cannot be properly captured by the system’s ADC. Therefore
a minimum voltage magnitude for the resistive terms and for the speed dependent terms
is required. Likewise a minimum current magnitude Imin is introduced to guarantee a
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6 Online Parameter Estimation

significant voltage value of the resistive terms in the dq-axes voltage equations. On the
other hand, the flux-linkage terms are rotor speed dependent, for that reason a minimum
rotor speed ωrmin is introduced as well.

The keen reader would notice that the valid regions according to the current or rotor
speed don’t necessarily occur at the same time. Therefore scenarios where the rotor speed
is below ωrmin but the current is above Imin and vice-versa are plausible. In the former
case only the winding resistance identification would be reliable and in the latter ψm
could be estimated properly. In order to backup the identification algorithm in those two
scenarios, two dynamic constraints are introduced as proposed in Fig. 6.10, the first one
for Rs and the second one for ψm. They are dynamic because the constraints are given
by tolerance bands that depend either on Imin or ωrmin . Therefore, in the corresponding
invalid regions, the value of Rs or ψm is fixed through the tight tolerance band, as the
input signals quality in an invalid region might lead to reduced accuracy. Nevertheless,
the simple action of fixing the parameter’s value doesn’t improve the estimation but if
the parameter in question is derived from other source, performance and robustness of
the identification algorithm can be enhanced, more on this aspect is discussed in section
6.4.
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Figure 6.10: Example of dynamic tolerance bands.

6.4 Hybrid Identification Scheme

In the specific case of the identification of Rs active methods like the ones using signal
injection [29, 30, 7] exhibit a clear advantage, as the resistive voltage drop is actively
generated by the injected signal enabling an identification of Rs even at the absence of
the dq-axes currents of the fundamental frequency. However it is important to note that
advantage can be eclipsed by the additional noise created by the imposed high frequency
signal. On the other hand, the proposed method seeks to use the information provided
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6.4 Hybrid Identification Scheme

by the machine thermal model discussed in chapter 5 to backup the estimation of Rs
and ψm in the invalid regions of operation. The average winding temperature is used
to update the corresponding winding resistance and in the case of invalid rotor speed
region, ψm is derived from the average magnet temperature, as illustrated in Fig. 6.11.
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Figure 6.11: Identification block diagram.

The average winding temperature Tw and the average magnet temperature Tm are
used to calculate the winding resistance or permanent flux-linkage, in addition their
bounds are set to a minimum as shown in Fig. 6.10 in order to set them as constant
parameters and solve the QP problem for the remaining parameters, as explained in the
flow chart in Fig. 6.12.
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Figure 6.12: Identification block diagram.

Conversely the winding or magnet temperature are updated while the machine is
operating in corresponding valid regions, this helps to improve the thermal model’s
estimation and also to correct these temperature nodes in case the thermal model has
been initialized with the incorrect temperature. This is a plausible scenario when the
system has been inactive for long periods of time and external factors affect the machine
temperature. The flow chart in Fig. 6.13 describes then the update procedure of Tm
and Tw.
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Figure 6.13: Temperature nodes update.

A scheme to backup the online parameter estimation of Rs and ψm has been estab-
lished, however the remaining parameters or coefficients in (6.12) and (6.13) need to
be considered as well. The biasing effect of the permanent magnet flux-linkage on the
overall flux-linkages was presented in section 3.3.4 and the corresponding experimental
determination of the associated model coefficients was introduced in section 3.5.2 as well.
This machine characterization enables the analysis of the possible variations of the flux-
linkage coefficients with respect to ψm due to manufacturing tolerances or temperature
effects. According to (2.61) and (2.62), for n = 5, the coefficients with subscript ldq10x
and lqd10x depict ψm dependency of the main coefficients ldq10 and lqd10 as:
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ldq10(ψm) = ldq100 + ldq102 · ψ2
m + ldq104 · ψ4

m

lqd10(ψm) = lqd100 + lqd102 · ψ2
m + lqd104 · ψ4

m

(6.16)

where in (6.16), the upper and lower limits of ldq10 and lqd10 can be determined with
respect to ψm for an identified machine. In the case of the IPMSM identified in section
3.5.2, the extreme variations of ψm are given by manufacturing tolerances, defined per
specification at ±5%, and temperature effects. The latter is defined according to the
magnet’s maximum operating temperature and temperature coefficient7, leading to the
following variation range of the key parameters:

Table 6.6: IPMSM - coefficients expected variation with respect to ψm

n = 3 min. max.

ψm −18.36% 7.04%

ldq10 −0.94% 2.16%

lqd10 −2.45% 5.61%

The variation ranges of the parameters in table 6.6 can be used directly as the con-
straints of the QP problem. Interestingly, the narrow variation range for the parameter
ldq10 can be interpreted as virtual fixation of the parameter with respect to the remain-
ing ones. This narrow variation band which is due in part to the biasing effect of the
magnet’s flux on the core was already seen in the inductance plots in Fig. 3.17 and 3.18
when the extension of the flux-linkage expressions to consider the dependency of ψm was
presented.

6.5 Algorithm Simulation

The evaluation of the hybrid identification scheme is performed at simulation level using
the steering cycle profile from section 5.2.2. As shown in Fig. 6.14 the profile covers
different operating regions, where the resistance or flux-linkage cannot be identified
properly and even where no identification is possible at all.

7see table A.1 for detailed machine data.
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Figure 6.14: Steering Cycle.

With respect to the simulation model, the machine model used was based on the
extended flux-linkage model of the IPMSM described in section 3.5.2. This model not
only describes the flux-linkages in an accurate fashion but also considers the tempera-
ture effects on the flux-linkage itself, which is directly tied to the magnet temperature.
Moreover a machine thermal model including the nodes of the three phase winding tem-
peratures was coupled to the machine model in order to recreate the whole system.

The dq-voltage signals can be correctly estimated despite the highly dynamic nature
of the profile as can be seen in Fig. 6.15.
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Figure 6.15: Simulated steering park cycle - voltage signals.
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In a similar manner, the agreement achieved with the estimated electromagnetic torque
can be observed in Fig. 6.16.
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Figure 6.16: Simulated steering park cycle -torque signals.

In particular it is important to remember the almost static nature of the flux-linkage
expressions parameters, as the only time variant parameters are Rs and ψm. Although
they vary slowly with the associated machine temperatures, these two parameters can
be considered constant for the time span of 20ms used to solve the QP problem. Nev-
ertheless, quantization errors introduced by the analogue to digital converter (ADC)s
resolution, the signals ripple created by the PWM’s switching pattern are responsible
for the deviations of Rs and ψm observed in Fig. 6.17. However, despite all these error
sources, the deviation for Rs is smaller than 0.8% and for ψm it is even below 0.3%.

The identified resistance and permanent flux-linkage in Fig. 6.17 evidenced the ability
of the algorithm to follow the thermal effects on these parameters, but also effectiveness
of the hybrid scheme, where despite of having profile regions with insufficient or no exci-
tation the identification algorithm was able to provide a close estimate of the parameters
in question.
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Figure 6.17: Simulated temperature estimation.

As stated in the flow chart of Fig. 6.13, the corresponding winding and magnet tem-
peratures are derived either from the thermal model itself or the temperature dependent
parameters. The latter is formulated in terms of the associated temperature coefficients
and reference values as:

Twinding =
1

β
·
(
Rs(T )

Rs(T0)
− 1

)
+ T0 (6.17)

Tmagnet =
1

α
·
(
ψm(T )

ψm(T0)
− 1

)
+ T0 (6.18)

where β and α are the temperature coefficients of copper and the magnet material re-
spectively, T0 is the reference temperature, and the symbols Rs(T ) and ψm(T ) represent
the parameter values at a the temperature T . From (6.17) and (6.18), the impact of
the deviation of the estimated parameter can be calculated. In particular the parameter
with the smallest temperature coefficient will suffer large temperature variations. For
this reason, the expected parameter errors are expressed in terms of a given tempera-
ture deviation and the copper and magnet temperature coefficients values are replaced
in (6.17) and (6.18) producing the following expressions:

∆Twinding = 254 · ∆R

Rs0
(6.19)

∆Tmagnet = 909 · ∆ψ

ψm0

(6.20)

As a result, expressions (6.19) and (6.20) shows that for the same deviations ∆R
Rs0

and
∆ψ
ψm0

, the magnet temperature development is 3.57-times larger than the winding one.

Consequently, errors in the estimation of ψm will have a larger impact on the magnet
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temperature deviation than the impact of the estimation errors of Rs on the winding
temperature. This is relevant, for the minimum rotor speed threshold design and to
realize that the parameter estimation errors need to be small in order to obtain satis-
factory temperature estimations, at least for this work a band of ±5◦C is considered as
acceptable.

Finally, Fig. 6.18 shows that the winding and magnet temperatures could be tracked
with high closeness to the expected values. This simulation of the online estimation
algorithm provides an idea of the effectiveness of the hybrid scheme to deliver an reliable
estimate regardless of the machine’s operating conditions.
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Figure 6.18: Online temperature estimation.

6.6 Online Estimation

This section shall discuss the performance of the online parameter identification algo-
rithm on the test bench. As the embedded system used supports model based code
generation, the algorithm’s evaluation was realized in the same environment as the sim-
ulation of the algorithm but in the form of a hardware in the loop (HIL) setup.

6.6.1 Unbalanced Phase Resistance

The concept of average winding resistance relies on the fact that each of the three phase
resistances posses the same value. However, in reality this not the case, because of
manufacturing tolerances, asymmetric thermal behavior or fault conditions. In addition
to this, the machine could be connected to the inverter via long harness cables, which
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at the same time could lead to asymmetric resistances. Winding resistance variations
between phases due to manufacturing tolerances can be actually managed through a
design specification. On other scenarios where the machine is loaded at still stand for
longer periods of time can lead to asymmetric temperature development, producing
an imbalance among the phase resistances. Consequently, assuming that each phase
resistance is a variable on its own, it leads to a resistance matrix in the dq-reference in
the following form:

R =

[
Rdd Rdq
Rqd Rqq

]
(6.21)

where in (6.21), the sub-indexes d or q refers to the associated dq-axes currents. Further-
more the elements of this matrix can be expressed in terms of the winding resistances
and the rotor position. For the sake of simplicity, the average winding resistance Rs is
defined as:

Rs =
R1 +R2 +R3

3
(6.22)

The sub-indexes 1, 2, 3 represent the corresponding winding phases. Expression (6.22)
is used then to formulate the elements of (6.21) in the following:

Rdd = Rs +
(2R1 −R2 −R3)

6
cos(2ωrt) (6.23)

Rqq = Rs +
(2R1 −R2 −R3)

6
sin(2ωrt) (6.24)

Rdq = Rqd =
(R2 +R3 − 2R1)

6
sin(2ωrt)−

√
3(R2 −R3)

6
cos(2ωrt) (6.25)

Where ωrt is the formulation in time of the rotor position θ. As a result, two types of
terms arise, a constant component in the resistors (6.23) and (6.24) which is the expected
average resistance Rs and a dynamic component with twice the electrical frequency of
the machine. The latter becomes critical at low speeds and large resistance asymmetries,
however these terms could be used to asses the health of the machine windings, in case
of a faulty condition. In addition to this, under normal conditions, these rotor angle
dependent components can be filter out, minimizing its ripple on the estimated value of
Rs.
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Figure 6.19: Effects of asymmetric winding resistance.

Fig. 6.19 depicts the identified Rs at the presence of asymmetric machine harness
resistance for different speeds. Typically in a real application, the winding resistance
balance will be kept as small as possible , i.e. < 2.5%, for that reason a small ripple can
be expected and its attenuation can be easily done with a low-pass filter. However, a
degradation of winding or harness resistance could be detected through a larger ripple
or a large increase of Rs.

6.6.2 Test Profiles

The same test profile from the previous section was used to evaluate the algorithm on
the test bench, however the profile was modified to include twice the steering cycle, with
a long pause between them to recreate a warm start at the second cycle as shown in
Fig. 6.20. Two machine temperature scenarios were analyzed, mid and high magnet
temperature range. With the first steering cycle a cold start of identification is recre-
ated to evaluate the ability of the algorithm to track the machine’s temperature after a
system reset or initialization. The second cycle seeks to recreate again a warm start of
the algorithm.
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Figure 6.20: Steering park cycle profile.

The first measurement was performed at a magnet temperature around 36◦C. The
machine was previously loaded to achieve the expected magnet temperature, implying
a preheating of the windings as well. Fig. 6.21 summarizes the winding and magnet
temperature profiles, where the red curves represent the estimated values of the hybrid
temperature model, the blue ones the measured temperatures8
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Figure 6.21: Online temperature estimation.

8The magnet temperature was obtained indirectly by measuring the bemf-voltage as is chapter 5.
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The hybrid model was able to correct the temperature values to the actual ones
once the operating conditions permitted the activation of the parameter identification
algorithm. In addition to this the temperature correction lead to small temperature
deviations, below ±5◦C. Nevertheless, the major deviation that can be observed occurs
in the pause between 60s-100s, where the thermal model is running the estimation alone
as the online parameter estimation is inactive due to the lack of machine excitation. The
temperature deviations appears because only the winding and magnet nodes were up-
dated with actual temperature values and the remaining nodes started with the default
initial condition of 21◦C. For that reason the winding temperature node, which has a
better thermal contact to the remaining nodes is being driven rapidly again to the cooler
temperatures.

Consequently, the online parameter estimation algorithm was able to track variations
of Rs and ψm as can be seen in Fig. 6.22a. The main coefficients that describe the in-
ductances ldq10 and lqd10 could be estimated with a high degree of closeness to the values
obtained experimentally in the offline identification9. The dotted lines in Fig. 6.22b de-
pict the expected coefficient values considering its ψm dependency according to 6.16 and
the solid lines the identified values. On the one hand lqd10 matched closely the expected
value, however the coefficient ldq10 was off by nearly 3.5% which can be explained in part
due to the relatively small magnitude of the d-axis current in the steering cycle profile,
which is below 30A and combined with the ADC resolution and associated noise it could
lead to current signals errors.
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Figure 6.22: Identified parameters.

9This is the PMSM machine used to present the offline identification in section 3.5.1 and it was also
the example machine employed in section 3.5.2 to present the offline identification with consideration
of variations ψm.
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A similar picture can be observed with the second test profile, where the magnet
temperature was driven up to 81◦C and the winding temperature around 115◦C. The
hybrid thermal model can again update the node temperatures successfully to the actual
values as depicted in Fig. 6.23. Similarly to the previous case, the biggest temperature
deviation lays in the long pause between cycles due to the same reasons, but in this case
the rate of temperature decrease is pronounced as the remaining nodes are nearly 80◦C
”cooler”. However once the machine is excited again in the second cycle, around 100s,
the winding temperature gets corrected again.
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Figure 6.23: Online temperature estimation.

On the other hand the magnet temperature shows a maximum deviation of 4◦C, which
could be related to the small d-axis current leading to deviations in the d-axis inductance
estimates, that at the same time affects the estimation of ψm.

ψd = ψm + idLd(id, iq) (6.26)

A small error as 1% in the estimation of ldq10 leads in this case to a correction of 4◦C in
the estimated magnet temperature deviation as illustrated in Fig. 6.24.
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Figure 6.24: Effects of Ld on magnet temperature estimation.

Finally the main identified parameters are presented in Fig. 6.25, where the cool
down trajectory of the winding resistance is observed and the nearly constant magnet
temperature as well. With a similar behavior, the identified coefficients ldq10 and lqd10
also track the indirect effects caused by the magnet temperature, which had reduced
the value of ψm leading to a small increase of those two coefficients, as displayed in Fig.
6.25.
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Figure 6.25: Identified parameters.
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Specially in the coefficient lqd10 it was clear that the parameter identification could
track the temperature dependency as shown in the close up in Fig. 6.26.
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Figure 6.26: Temperature dependency of lqd10 .

The iron loss model presented in Chapter 4 was required for the thermal network
power source modeling and it is part of the equivalent dq-axes voltage model used for
the online identification as proposed in Fig. 6.7. The impact of the iron loss model on
the temperature estimation is depicted in Fig. 6.27.
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Figure 6.27: Online estimation with and without iron loss model
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It can be observed in Fig. 6.27a a negative impact on the predicted winding tempera-
ture, specially at the end of the cycle the deviation increases. Conversely, the estimated
magnet temperature without iron loss model is now closer to the expected temperature
depicted with the blue curve, with at improvement of 1.6 ◦C. However, this deviation
corresponds to 0.176% of change in ψm, which is fairly small.
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Figure 6.28: Online estimation with and without iron loss model

A closer look to the linear inductance coefficients ldq10 and lqd10 delivers additional
information to the impact of the iron loss model on the parameter identification. On
the one hand side, as shown in Fig. 6.28a, the identification of coefficient ldq10 without
iron loss model was nearly unaffected by it. As the maximum demanded d-axis current
during the cycle does not exceed 30A, its contribution to ψd is small compared to ψm.
As id would need to reach:

idsc =
ψm

Ld(id, iq)
(6.27)

to achieve a flux-linkage value equal to ψm. Therefore, under these operating condi-
tions the identification of ldq10 is less affected to the impact of the iron loss model than
ψm. On the other hand, the estimation of the q-axis linear inductance coefficient suffered
a reduction of around 1% as shown in Fig. 6.28b, which is the most perceptible deviation
of the four estimates displayed in Fig. 6.27. From the author’s perspective, the iron loss
model is worthwhile, as it helps to improve the average winding temperature estimation
and the coefficient lqd10 , despite of having little impact on the estimation of the magnet
temperature and coefficient ldq10 .
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6.6.3 Unconstrained Identification

The proposed hybrid parameter estimation scheme is not subjected to one identification
method. Returning to the summary delivered in section 3.1.1.1, it was remarked the
advantage of the RLS algorithm due to its low computational cost. This evident benefit
specially in embedded applications is supported by its popularity in the literature [2, 29,
83]. However, the essential difference with respect to the QP algorithm is the possibility
to define parameter constraints. The formulation of the RLS problem is done to minimize
the sum of the squared errors of the dq-axes voltages as well:

x̂(k) = x̂(k − 1) + γ(k)
[
y(k)− ϕT (k)x̂(k − 1)

]
γ(k) =

1

ϕT (k)P (k − 1)ϕ(k) + λ
P (k − 1)ϕ(k)

P (k) =
1

λ
(I − γ(k)ϕT (k))P (k − 1)

with,

ϕ(k) =

[
∇udk
∇uqk

]T
and y(k) =

[
udk
uqk

]
(6.28)

where λ is the forgetting factor, which determines the weight of past values. The com-
putational time duration of the algorithm presented in (6.28) was evaluated in the same
way as the QP solver with the software setup of Fig. 6.8 in the Zedboard environment.
This means that the RLS algorithm was implemented in the ARM processor as well.
The resulting average execution time was 123.96µs, which confirmed the expected low
computational cost of such method, opening then the option of running the algorithm
at faster rates compared to the QP solver, even 1ms would be an option. Consequently,
two algorithm setups with the parameters of table 6.7 where evaluated.

Table 6.7: RLS algorithms setups

Setup Name λ Texecution

RLS 1 0.99998 1ms

RLS 2 0.9998 20ms

The first remarkable aspect can be seen in Fig. 6.29, on the one hand the average
magnet temperature can be estimated by the variant RLS 1 and QP in the range of
±∆5K, as shown in Fig. 6.29b, on the other hand RLS 2 is able to deliver a closer
estimate of the winding temperature than RLS 1 as depicted in Fig. 6.29a. However,
overall the temperature estimates of the QP solver outperforms both RLS algorithms.
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Figure 6.29: Online temperature estimation.

A look into the coefficients ldq10 and lqd10 provides some insights into the source of the
estimates differences. Fig. 6.30a shows how both RLS estimates of ldq10 drift over time,
while the expected value should remain quite constant due to its permanent magnet
flux dependency. Conversely, the QP based approach presents a constant trend being
only affected by the transitions between valid and invalid signal regions and an offset.
In addition, both RLS estimates of lqd10 show an offset and a small drift as well, as
illustrated in Fig. 6.30b. All these effects indicate the limited estimation capabilities of
both RLS algorithms when dealing with many unknown parameters.
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Figure 6.30: Online temperature estimation.
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The proposed approach based on a QP solver was able to deliver consistent and ac-
curate results with respect to the expected values, furthermore the presented parameter
identification runs at a low execution rate reducing the computational burden.

The polynomial based machine model presented in chapter 2 was used as the foun-
dation of an online parameter identification scheme of a PMSM, which was based on
voltage and current signals of the fundamental frequency. The machine’s non-linear
effects are then described in the form of polynomials with constant coefficients and
in conjunction with a recursive estimation scheme provides a solution to the rank de-
ficient problem. Regardless of the load conditions, the coefficients that describe the
flux-linkage’s cross-coupling and saturation effects remain constant, therefore by recol-
lecting the data of several different operating points a full-rank solution to the estimation
problem could be found. Consequently, the temperature dependent parameters such as
the winding resistance and the permanent flux-linkage were treated as constant values
for short periods of time compared to the machine’s thermal time constant. As a result,
the parameter variation due to the average winding and rotor magnets temperatures
could be tracked. In order to account for the speed dependent iron losses that interact
with the flux-linkages, two equivalent loss resistors were employed, the first one repre-
senting the magnetizing losses associated to the dq-axes flux-linkages and the second one
representing the demagnetizing losses associated to the current dependent d-axis flux-
linkage terms. Moreover,the online parameter identification algorithm was backed up
by a machine’s thermal model. This hybrid setup provided a solution to the limitations
of both estimation methods. Firstly, the proposed hybrid approach delivers parameter
estimates at any operating condition of the machine, as the thermal model takes over the
estimation of the average winding and magnet temperatures when the machine doesn’t
have enough excitation in terms of phase currents or rotor speed. The average winding
resistance and permanent magnet flux-linkage values are then derived from the corre-
sponding estimated temperatures. Secondly, the parameter estimates, when the machine
is operating in regions with proper excitation, are used to update the thermal model’s
winding and magnet temperatures in case the identification algorithm is started at an
initial thermal condition different of the real machine temperatures.
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7.1 Summary

In this work a hybrid online parameter estimation scheme was presented. Firstly, a poly-
nomial based nonlinear machine model was introduced. This approach allowed the de-
scription of the saturation and cross-coupling effects of the dq-axes flux-linkages. More-
over, the polynomial’s structure was simplified considering the symmetry properties of
the machine’s flux-linkages and the energy conservation law. The proposed flux-linkage
expressions described the saturation of the torque constant caused by the q-axis current,
as well as the cross-coupling due to the dq-axes currents in the absolute and incremen-
tal inductances. To model the magnet temperature impact on the flux-linkages, the
proposed expressions were extended to consider the permanent magnet flux-linkage as
a third variable, enabling the representation of the inductances or the electromagnetic
torque with respect to the magnet temperature. In a similar manner, the mentioned
approach was also applied to machines with constant field excitation like Wound Field
Synchronous Machines (WFSM), where instead of permanent magnets, the rotor has field
windings that produce the necessary magnetic flux to emulate the permanent magnets.
Because of the highly nonlinear magnetic behavior over the whole range of operation of
such machines, a new polynomial structure was proposed to improve the accuracy of the
flux-linkage expressions. The derived flux-linkage expressions were validated using FEA
simulation data of an IPMSM and a WFSM, the former machine was simulated at differ-
ent magnet Br values to emulate various magnet temperatures. Afterwards, a fast and
simple measurement procedure was presented to identify the coefficients of the proposed
expressions on the test bench. This experimental validation was carried out on three
types of PMSMs: an inner rotor SMPMSM, an IPMSM, and an outer rotor SMPMSM.
Additionally, the extended model that considers the permanent magnet flux-linkage as
a third variable, was validated with measured data of the IPMSM at different magnet
temperatures. Aiming to the main objective of this work, namely the online parame-
ter identification of PMSMs, the proposed flux-linkage expressions offered a solution to
the rank deficient issue reported in the literature. Where the traditional formulation
of the inductances as a value determined by the instantaneous operating point leads to
approaches that require the solution of a underdetermined system of equations. The pro-
posed polynomials described the dq-axes current dependency of the flux-linkages, hence
the polynomial’s coefficients remain constant at any current condition. For this reason,
over several operating points, the resulting system of equations becomes overdetermined
with a unique solution. However, this is only valid for periods of time at constant magnet
and winding temperatures.
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As a following step, it was acknowledged that the formulation of the flux-linkages in
terms of dq-axes currents needed to be complemented to account for additional effects
caused by iron losses and machine temperature. By modeling the iron losses, the fre-
quency dependency of the flux-linkage polynomial’s coefficients could be reduced, leaving
them constant with respect to the machine’s speed. For that purpose, an equivalent dq-
axes voltage circuit with two sets of resistors modeling the iron losses of the magnetizing
and demagnetizing path. Each set consisting of resistors representing the hysteresis and
the eddy current losses. One set of resistors models the iron losses of the magnetizing
path and the second one the demagnetizing path. The determination of the resistors was
performed experimentally on the already characterized IPMSM, which was designated
as the target machine to be used for the online parameter identification.

The estimation of the permanent magnet flux-linkage and the average winding re-
sistance delivers indirectly the temperature in the magnets and windings. Hence, the
temperature estimates provided by a machine’s thermal model would enable the cal-
culation of the mentioned parameters as well. By running both estimation algorithms
in parallel, a hybrid online parameter identification can be arranged, where both algo-
rithms complement each other. Therefore, the derivation of a machine thermal model
was presented in chapter 5. The aim was to obtain a thermal model that could be
implemented in an embedded system. For that reason a model reduction approach was
presented, which does not require the knowledge of the machine’s geometry or its mate-
rial’s properties. The proposed model reduction method was based on a mathematical
simplification of resistive networks in order to find an equivalent network with a reduced
set of nodes and thermal capacitances associated to those target nodes to achieve the
desired dynamic response. The model reduction method was validated using simulation
data of a large thermal network and measured temperature data of the IPMSM. With
the use of the simulation data, the effectiveness of the reduced resistive network could
be demonstrated, as well as the dynamic response of the thermal network with the as-
sociated thermal capacitances. Moreover, the measured data was used to validate the
proposed method by considering a set of operating points at different load conditions and
machine speeds. The latter was modeled by saving the thermal resistances as a speed
dependent map. The resulting 6-node thermal network achieved a good agreement in
steady state, at dynamic load conditions including different machine speeds.

The final chapter of this work, introduced the hybrid online parameter setup, that
comprised the equivalent dq-axes voltage circuit, which is based on the flux-linkage ex-
pressions of chapter 2 and the thermal model of the IPMSM. This hybrid arrangement
sought to provide a solution to the limitations of each estimation method. Firstly, the
proposed hybrid approach delivers parameter estimates at any operating condition of
the machine, as the thermal model takes over the estimation of the average winding
and magnet temperatures when the machine doesn’t have enough excitation in terms
of phase currents or rotor speed. The average winding resistance and permanent mag-
net flux-linkage values are then derived from the corresponding estimated temperatures.
On the other hand, when the machine is operating in regions with proper excitation,
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the machine’s parameter estimates are used to update the thermal model’s winding and
magnet temperatures. Additionally, in order to enhance the parameter estimation al-
gorithm, a constrained optimization method was proposed to dynamically bound the
machine parameters according to the operating conditions. For instance, when the ma-
chine speed or the phase currents are too low to provide enough information to obtain
an estimate. The capabilities of the proposed identification algorithm were shown using
a profile containing dynamic load and still stand conditions. The hybrid setup was pre-
sented with the help of simulation data and the already mentioned profile. Afterwards,
the proposed method was tested experimentally considering two types of warm start
conditions. The parameter estimates of the average winding resistance and permanent
magnet flux-linkage provided sufficient information to correct the temperature in the
corresponding nodes of the thermal network to the actual temperature values. Then,
the performance of the hybrid algorithm was shown considering two different types of
identification algorithms, namely the proposed constrained optimization and a classical
recursive least-squares algorithm. The latter was outperformed by the constrained opti-
mization, which delivered overall better agreement at the estimation of average winding
and magnet temperatures, as well as the small signal dq-axes inductances estimation.

7.2 Future Work

Some aspects dealt in this work could served as a starting point for further analysis. The
flux-linkage expressions introduced throughout chapter 2 provided a model based on the
fundamental frequency of the machine. However, harmonic components due to slotting
and nonlinearities in the electromagnetic circuit are present in the flux-linkages. An ex-
tension of the proposed flux-linkage expressions to consider harmonics components is the
natural step towards a complete nonlinear machine model. In another perspective, the
demand for fault tolerant systems has brought the attention to new machine topologies
such as multiplex machines. Where dual three phase machines are used in order to fulfill
requirements of torque availability after a fault condition. The electromagnetic coupling
between winding sets is an important factor for the simulation of the torque capability
after a fault has occurred. Hence, the extension of the flux-linkage expressions presented
in this work to model multiplex and multi-phase machines would provide a high fidelity
machine model to investigate torque capability, torque ripple and phase current devel-
opment at several fault scenarios. In the case of multi-phase machines, an extension of
the flux-linkage expressions to include the influence of the zero sequence current would
be convenient.

The proposed online parameter identification scheme can also be extended to incor-
porate monitoring and diagnostic features of the machine. Due to the constrained opti-
mization performed to estimate the machine parameters, fault conditions such as open
phase winding or failures of the inverter’s switching elements could be monitored with
the help of the proposed parameter identification algorithm. In the sense of condition
monitoring, the polynomial’s coefficients could provide information related to degrada-
tion of the magnets or the magnetic circuit over time. Due to the analytical nature of the
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flux-linkage expressions, maximum torque per ampere or field-weakening strategies can
be implemented for an online usage. These algorithms can be formulated as optimization
problems which can be described mathematically with additional direct information such
as the derivatives of the flux-linkages with respect to the dq-axes currents. As a final
example, for torque controlled applications, the nonlinear description of the flux-linkage
in analytical form can be used to linearize the torque output.
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A Appendix

A.1 Taylor’s Theorem for Multi-variable Functions

For a n differentiable function f(x) it can found a polynomial P (x) with the same n
derivatives around the point x = a in the form:

P (a) = f(a), P
′
(a) = f

′
(a), · · · , P (n)(a) = f (n)(a), (A.1)

the polynomial of degree n that fulfills (A.1) has the following form:

P (x) =

n∑
k=0

ckx
n (A.2)

where the coefficients ck are determined based on (A.1) as:

ck =
f (k)(a)

k!
(A.3)

Finally, (A.3) leads to the Taylor polynomial:

P (x) =

n∑
k=0

f (k)(a)

k!
(x− a)n (A.4)

Now f(x) can be approximated by P (x) with an error En(x, a) = f(x)−P (x) according
to Taylor’s theorem [54]:

f(x) =

n∑
k=0

f (k)(a)

k!
(x− a)n + En(x, a) (A.5)

the error function or remainder can be written in terms of the n+ 1 derivative as1:

En(x, a) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1 (A.6)

where c is located between x and a.

The Taylor polynomial (A.4) can also be extended to multi-variable functions with
xT = [x1 x2 . . . xm] in the following manner:

1More information on the theorem’s proof and the error function can be found in [54]
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P (x) = f(a) +

m∑
i=1

∂f

∂xi
(a)(xi − ai) +

1

2

m∑
i=1

m∑
j=1

∂2

∂xi∂xj
(a)(xi − ai)(xj − aj) + . . . (A.7)

In the case of Taylor’s formula, the second order approximation is expressed as :

f(x) = f(a) + (x− a)T∇f(a) +
1

2
(x− a)TH(a)(x− a) + E2(x, a) (A.8)

where E2(x, a) is the Taylor remainder for the second order polynomial and H is the
Hessian matrix that contains the second partial derivatives of f :

H =



∂2f
∂x21

∂2f
∂x1x2

. . . ∂2f
∂x1xm

∂2f
∂x2x1

∂2f
∂x22

. . . ∂2f
∂x2xm

...
...

. . .
...

∂2f
∂xmx1

∂2f
∂xmx2

. . . ∂2f
∂x2m


(A.9)

The approximation of the function f is then defined by the polynomial degree n of
P (x) and the corresponding partial derivatives which permit the calculation of the unique
polynomial coefficients as defined in (A.1). However when n is large the calculation
of the partial derivatives becomes laborious, therefore another method to obtain the
polynomial coefficients is preferred. The least-square approximation [37] seeks to find a
polynomial of degree n with the smallest possible mean-square error for the interval [ab]
of an integrable function f(x): ∫ c

b
|f(x)− P (x)|2dx (A.10)

under the premise of the minimization of the polynomial error, the polynomial struc-
ture of (A.7) can be adopted and instead of using the partial derivatives, coefficients can
be used . This implies then that f(x) ≈ P (x), furthermore it is important to notice that

the Hessian matrix H is symmetric since ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

, which permits a simplification

in the formulation of the polynomial structure with unique terms. The second order
approximation of a function f with two variables xT = [x1 x2] around a = (0, 0) based
on (A.7) and replacing the partial derivatives and constants by coefficients takes the
following form:

P (x) = c00 + c10x1 + c01x2 + c20x
2
1 + c11x1x2 + c02x

2
2 (A.11)

where the subscripts in cij represent the power of the variables x1 and x2 respectively.
In the case of two variables, based on (A.11), the generalization of a n degree polynomial
P (x1, x2) can be expressed as:
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P (x) =

n∑
i=0

i∑
j=0

c(i−j)(j)x
(i−j)
1 x

(j)
2 (A.12)

The formulation of (A.12) guarantees that the combination of variables x1 and x2

with their respective power it is not repeated. Similarly the second order polynomial for
three variables xT = [x1 x2 x3] with unique variable combinations can be written as:

P (x) =c000 + c100x1 + c010x2 + c001x3 + c200x
2
1 + c110x1x2

+ c101x1x3 + c011x2x3 + c020x
2
2 + c002x

2
3

(A.13)

Keeping the convention of (A.11), the subscripts in cijk represent the power of the
variables x1, x2 and x3 respectively. The generalization of (A.13) for a function with
three variables is then formulated as:

P (x) =
n∑
i=0

i∑
j=0

n−i∑
k=0

c(i−j)(j)(k)x
(i−j)
1 x

(j)
2 x

(k)
3 (A.14)

At this point the least-square approximation for a given interval is determined by
minimizing the mean-square error (A.10). However in the case of discrete function, the
sum of the least-squares for a given set of data points is:

minimize
m∑
i=0

(f(xi)− P (xi))
2 (A.15)

A.2 Test Machines

The machine referred as IPMSM in this work corresponds to a machine with following
room temperature characteristics:

Table A.1: 4-pole pair IPMSM.

Nominal voltage 12V

rated phase current 140A

Max. speed 7000 rpm

pole pairs 4

Ke 43.86mV.s/rad

phase resistance 10.76 mΩ

Ld 55.77µH @ 60Hz

Lq 72.86µH @ 60Hz

Magnets operating temperature −40◦C to 180◦C
Magnet’s temperature coefficient −0.11%/◦C
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A.3 Hardware Implementation

Avnet ZedBoard

Processing system
ARM Cortex -A9

Programmable logic
Xilinx FPGA

Inverter interface
FMC-LPC

Figure A.1: Avnet ZeadBoard.

Table A.2: Avnet ZedBoard SoC.

Nominal voltage 12V

Xilinx SoC Zynq-7000 SoC XC7Z020-CLG484-1

processing system ARM Cortex-A9 MPCore

FPGA Xilinx Artix-7

188



A.4 OSQP Algorithm

Dyno
machine

Torque
sensor

Optical
encoder PMSM

Figure A.2: Testrig setup

Table A.3: Test rig setup.

Dyno machine Kollmorgen

Torque sensor Kistler 0.5Nm/5Nm

Optical encoder Kuebler 8142

A.4 OSQP Algorithm

The performance comparison of OSQP and the Matlab function quadprog was done
using the optimization problem of section 3.5.1, which seeks to minimize the voltage and
torque signals error using measured data. The identified set of coefficients used for the
performance evaluation and online parameter identification in chapter 6 are listed in the
following table:

Table A.4: IPMSM - identified coefficients

n = 3

Rs 11.01mΩ

ψm 6.32mV.s

ldq10 54.71µH

lqd10 72.86µH

ldq20 −56.74nH/A

ldq30 −0.24nH/A2

cdq01 −20.66nH/A

cdq11 −0.33nH/A2

lqd30 −0.72nH/A2

189



A Appendix

Table A.5: OSQP settings.

Parameter

sigma 1 · 10−12

eps abs 1 · 10−9

eps rel 1 · 10−9

eps prim inf 1 · 10−12

eps dual inf 1 · 10−12

scaling 24

check termination 2

A.5 Terminal Voltage Measurement

The transport delay of the filter in Fig. 6.2 was obtained based on the resistor and
capacitor values listed in table 6.2 with equation (6.8). However, the resulting transport
delay tdelay = 102.1µs was validated trough a direct measurement. The step response
of the low pass filter was measured and fitted to a expected waveform of second order
as shown in Fig. A.3 where the expression V (t) is the general formulation in time to
the Laplace transfer-function (6.3). The time constants τ1 and τ2 are related to the
impedance associated to the capacitors C1 and C2 in Fig. 6.2 as shown in (6.8). The
average transport delay tdelay = τ1 + τ2 obtained was tdelay = 103.7µs.

0 0.2 0.4 0.6 0.8 1

·10−3

0

0.2

0.4

0.6

time(s)
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Lowpass filter output voltage - terminal 1

V1 V (t) = a+ be−
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t
τ2

(a) Step response terminal voltage 1.
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0
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time(s)
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V1 V (t) = a+ be−
t
τ1 + ce−

t
τ2

(b) Step response terminal voltage 2.

Figure A.3: Filter characterization.
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