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Abstract

The Koopman operator allows for handling nonlinear systems through a globally linear representation. In
general, the operator is infinite-dimensional - necessitating finite approximations - for which there is no
overarching framework. Although there are principled ways of learning such finite approximations, they
are in many instances overlooked in favor of, often ill-posed and unstructured methods. Also, Koopman
operator theory has long-standing connections to known system-theoretic and dynamical system notions
that are not universally recognized. Given the former and latter realities, this work aims to bridge the gap
between various concepts regarding both theory and tractable realizations. Firstly, we review data-driven
representations (both unstructured and structured) for Koopman operator dynamical models, categorizing
various existing methodologies and highlighting their differences. Furthermore, we provide concise insight
into the paradigm’s relation to system-theoretic notions and analyze the prospect of using the paradigm
for modeling control systems. Additionally, we outline the current challenges and comment on future
perspectives.

Keywords: Koopman operator, dynamical models, representation learning, system analysis, data-based
control

1. INTRODUCTION

Traditionally, systems are represented in the immediate state space, concerned with “dynamics of states”.
Although such representations enjoy incredible success, they reach limits when it comes to efficient prediction,
analysis and optimization-based control. The aforementioned motivated an increased interest in a system
representation inspired by Koopman operator theory, where a finite-dimensional nonlinear system is replaced
by an infinite-dimensional linear one. The paradigm is named after B.O. Koopman - the author of the seminal
work [1] on transformations of Hamiltonian systems in Hilbert space. The operator’s existence had an
important role in proving the Mean Ergodic Theorem of Neumann [2] and Birkhoff [3]. The first consideration
of the theory outside the measure-preserving context came through the works of Mezić et al. [4, 5] which
included ideas on finite-dimensional representations of the Koopman operator using eigenfunctions.

For complex systems, models coming from first-principles often times are not available or do not fully
resemble the true system due to unmodeled phenomena. The complexity of systems we encounter prompts a
shift from classical parametric techniques in favor of more flexible machine learning techniques (e.g. neural
networks or Gaussian processes) for prediction [6, 7], model-based control [8, 9] and analysis [10, 11, 12].
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The aforementioned learning approaches are, however, limited with regards to efficient prediction, analysis
and control, due to modeling the “dynamics of states”. Nevertheless, Koopman operator realizations are
inherently data-driven as one needs to discover suitable coordinates that represent the operator - leading to
globally linear models of nonlinear systems. As the modeling paradigm dictates the challenges in dealing
with a system, trading infinite-dimensionality for linearity allows us to employ efficient linear techniques for
nonlinear systems. The former leads to more challenging identification but efficacious prediction, analysis
and control.

Representations via the Koopman paradigm generalize the notion of mode analysis from linear to non-
linear systems allowing for amendable relevance determination of the constituents of the full dynamics as
for thermal analysis of buildings [13]. Furthermore, the spectrum of the Koopman operator allows one to
decompose the nonlinear system into different dynamic regimes (fast-slow dynamics) while linearly evolving
coordinates contain intrinsic information relevant for analysis i.e. regions of attraction [14]. Due to the lin-
ear dynamics of the new coordinates, prediction hardships through numerical integration and non-convexity
in optimization of “dynamics of states” have the potential to be alleviated as for model predictive control
[15, 16]. Moreover, one can argue that the Koopman operator paradigm delivers a global instead of a point-
wise system description as one iteration of the Koopman operator acting on an observable is equivalent to
an iteration along all of the trajectories of the system and it is not to be confused with a local linearization
around a working point.

Given the Koopman operator is generally infinite-dimensional, it necessitates finite realizations - a task
for which there is no overarching, general framework. The non-triviality of finite representations lead to
many data-driven approaches with various trains of thought, facilitating different properties of the Koopman
operator paradigm. Regarding the plethora of data-driven frameworks looking to deliver Koopman operator
dynamical models, this article - to the best of the authors’ knowledge - is the first work reviewing the
aforementioned in a systematic manner while giving theoretical insight.

A related review of the paradigm by Budǐsić et al. [17] gives a theoretical baseline with application ex-
amples but with the data-driven methodology limited to dynamic mode decomposition (DMD). We address
the abundance of novel data-driven methods that arose from and beside DMD for discovering Koopman op-
erator dynamical models in addition to siding with a more focused system and control-theoretic perspective.
Also, compared to work of Kaiser et al. [18], we take a rigorous approach focused on the Koopman operator
paradigm instead of an high-level overview of data-driven transfer operators. By taking such an approach,
the aim is to deliver a holistic and methodical backbone of Koopman operator-based dynamical models -
from surveying the data-driven representations, to system-theoretic connections and control.

The article is structured as follows. After the preliminaries on Koopman operator theory in Section 2, the
data-driven methods for Koopman-related model representation are presented in Section 3. An overview of
system-theoretic analysis via Koopman operator theory follows in Section 4. Furthermore, Section 5 analyzes
the inclusion of control into the representations and surveys their applications found in the literature. Before
the final outline concluding Section 6, we comment on future perspectives of Koopman-based methods.

Notation

Lower/upper case bold symbols x/X denote vectors/matrices. Symbols N/R/C denote sets of natu-
ral/real/complex numbers while N0 denotes all natural numbers with zero and R+,0/R+ all positive reals
with/without zero. The continuous/discrete-time dependence is denoted as yt(·) and yk, respectively with

t/k ∈ R+,0/N0 while ˙(·) := d(·)/dt, for brevity. Function spaces with a specific integrability/smoothness
order are denoted as L/C with the order (class) specified in their exponent. The braces ⟨·, ·⟩ denote the
inner product while ∥ · ∥ the Euclidean norm. A flow induced by a vector field ẋ = f(x) is denoted as F t(x)
with its associated family of composition (Koopman) operators {Kt

f}t∈R+,0
. A map i.e. x 7→ F (x) has its

associated family of composition operator iterates denoted as {Kn
F }n∈N0 .
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2. Koopman operator theory

Let us commence with the basic assumptions and definitions required for the introduction of the Koopman
operator paradigm.

Assumption 2.1. Consider a continuous-time dynamical system

ẋ = f(x), (1)

and a scalar observable function ψ : M 7→ C

y = ψ(x), (2)

on a smooth n-dimensional manifold M, x ∈ M, t ∈ R+,0 with a smooth and Lipschitz flow F t : M 7→ M
[19]:

x(t0) ≡ x0, F t(x0) := x0 +

∫ t0+t

t0

f(x(τ))dτ, (3)

with (3) forward-complete [20], i.e. F t(x) has a unique solution on [0,+∞) from the initial condition x at
t = 0 [21].

The system class satisfying the above assumption is quite substantial and it includes many physical systems
[22].

In most cases the iteration of a fixed time-t flow map is considered to represent the dynamical evolution
- where the notion of iteration represents consecutive compositions of a map with itself. In Figure 3 we
can recognize the traditional study of nonlinear system in terms of orbits of points x on a domain M as
dynamics of states [17]. In comparison, Figure 2 shows that the Koopman operator entails how hypersurfaces
(observables) over the state space propagate over time. An observable can be any kind of a measurement of
the system, e.g. a sensory measurement. In the following, we formally define the operator.

Definition 2.1 (Koopman Operator). For dynamical systems satisfying Assumption 2.1, the semigroup
of Koopman operators {Kt}t∈R+,0 : F 7→ F acts on scalar observable functions ψ : M 7→ C by composition

with the flow semigroup {F t}t∈R0,+
of the vector field f

Kt
fψ = ψ ◦ F t, (4)

on the state space M. When dealing with a map (discrete-time system) we have

KFψ = ψ ◦ F , (5)

where ◦ represents function composition. Given that, the Koopman operator is also referred to as the
composition operator. In the remainder of this work we use these terms interchangeably.

Property 2.1 (Linearity of K-operator). Consider the Koopman operator KF and two observables g1,
g2 ∈ F and a scalar α ∈ R. Using (5) it follows that

KF (αg1 + g2) = (αg1 + g2) ◦ F
= αg1 ◦ F + g2 ◦ F
= αKF g1 +KF g2,

(6)

showing the linearity of the operator.

Remark 2.1. Compared to compositions of nonlinear maps, the Koopman operator acts multiplicative in
time - due to Property 2.1 - as shown in Figure 1.
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Figure 1: Diagram of the Koopman operator system modeling concept (F (i) = F ◦ . . . ◦ F i-time iteration). The symbol
K = diag{K, . . . ,K} is there for element-wise multiplicative application to vector-valued observable ψ.

Assumption 2.2. There is a generator GK : D(GK) → F , D being the domain of the generator and F the
(Banach) space of observables.

Definition 2.2 (Infinitesimal generator). The operator GK, is the infinitesimal generator of the time-t
indexed semigroup of Koopman operators {Kt}t∈R+,0

GKψ = lim
t→0+

Ktψ − ψ

t
=

d

dt
ψ, (7)

[19, Section 3.3].

For a bounded generator GK, one obtains the time-t semigroup of Koopman operators as Kt = exp(GKt).
Analogous to the Koopman operator we use the same paradigm to get the linear evolution of the observ-
ables for the Koopman operator generator. Many nonlinear physical systems are continuous-time in nature
and thus hard to meaningfully discretize - making a good use-case for linear-in-time Koopman generator
representations to obtain exact discretization of the system’s modes.

2.1. Koopman operator and generator eigendecomposition

To replace a nonlinear system with a linear one, the linearity from Property 2.1 is only a helper tool and
the key is the existence of linearly evolving coordinates - the Koopman operator eigenfunctions.

Definition 2.3 (Koopman eigenfunction). An observable ϕ ∈ F is an eigenfunction if it satisfies

[GKϕ](x) = ϕ̇ (x) = sϕ(x), (8)

associated with the eigenvalue s ∈ C.

Property 2.2 (Linear coordinates). Since GK is the infinitesimal generator of the semigroup of Koop-
man operators {Kt}t∈R+,0

, the following is also satisfied for λt = exp(st)

[Kt
fϕ](x) = ϕ

(
F t(x)

)
= λtϕ (x) , (9)

along the vector field’s flow.

4



For the discrete-time case, the Koopman operator KF composes an observable with the map x 7→ F (x)
not parameterized by time (as opposed to a flow of an ODE) and in that case delivers a simpler and arguably
more intuitive eigenvalue equation

[KFϕ](x) = ϕ (F (x)) = λϕ (x) , (10)

with λ = exp (sts), where ts is the sampling time discrete-time dynamical system.
To exploit the property of eigenfunctions being linear coordinates, we need to be able to express the

evolution of an arbitrary observable using them. With that we can claim that we captured the effect of the
Koopman operator which is crucial for finite approximations that are presented in Section 3.

Property 2.3 (Spectral decomposition). We can write an observable via the eigenfunctions of the Koop-
man operator

ψ(x) =

∞∑

j=0

vj(ψ)ϕj(x), (11)

where the coefficients vj are Koopman operator modes of the corresponding eigenfunctions ϕj. Note that
associating modes to eigenvalues leads to a loss of generality [23, Remark 10].

Obviously, the infinite-dimensionality of the Koopman operator is due to the infinite-sum in (11) that
should not be confused with infinite-series expansions i.e. Taylor/Carleman [24] that do not necessarily pro-
vide dynamically closed (invariant) coordinates nor preserve global dynamical properties [25]. The Koopman
operator acts on an observable function as follows

Ktψ =

∞∑

j=1

vj(ψ)
(
Ktϕj

)
=

∞∑

j=1

vj(ψ)λ
t
jϕj , (12)

where λtj = exp(sjt) s.t. sj = γj + iωj with eigen-decay/growth γj and eigenfrequencies ωj [26]. The
above introduced decomposition is clearly amendable for linear prediction, however it is only a part of the
Koopman operator’s spectrum. Although the most successful dynamical models in the field focus on the
point spectrum, it is only a part of the full spectrum. In the following we extend to the full spectrum for
completeness.

Remark 2.2 (Full spectrum). In general, the spectral decomposition can include the continuous spec-
trum as well [5]. Given the system has an attractor A with a preserved measure µ(A) [27] we write the
Koopman operator spectrum as

Ktψ(x) =

∞∑

j=1

vj(ψ)λ
t
jϕj(x)

︸ ︷︷ ︸
point

+

∫ 2π

0

κtE(dκ)ψ(x)

︸ ︷︷ ︸
continuous

, (13)

where κt = exp(iθt) is the integrated function over frequency θ and E(κ) the projection-valued measure.
While the point spectrum extracts transient - Re(λtj) and oscillatory components of dynamics - Im(λtj)
(quasi-periodic [28]), the continuous part encodes the “chaotic” component of the dynamics correspond to
the on-attractor dynamics. The latter can also be seen as the extension of the notion of the point spectrum,
where eigenfunctions are replaced by eigenmeasures [29].

For a connection of the operator’s spectrum and it’s resolvent generalizing Laplace-domain theory to non-
linear dynamics, we point to Susuki et al. [30].

Property 2.4 (Koopman eigenfunction group). Under the assumption that the space F is chosen to
be a Banach algebra (e.g. C1(M)) the set of eigenfunctions forms an Abelian semigroup under point-wise
products of functions [23]. Thus, products of eigenfunctions are, again, eigenfunctions - if ϕ1, ϕ2 ∈ F are
eigenfunctions of the composition operator KF with eigenvalues λ1 and λ2, then ϕ1ϕ2 is an eigenfunction of
KF with eigenvalue λ1λ2.
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Definition 2.4 (Principle eigenpairs). Consider {Em}m∈N to be the eigenpair-semigroup of Koopman
operator KF with its minimal generator GE:

{Em} =

{(
m∏

i=1

λni
i ,

m∏

i=1

ϕni
i

)
| (λi, ϕi) ⊂ GE

}
, (14)

where m,ni ∈ N [31]. Then, the elements of GE are principle eigenvalues with corresponding eigenfunctions
of KF in {Em}m∈N.

Remark 2.3. Less formally, principle eigenpairs form the minimal set of Koopman operator eigenpairs that
can then be used to construct all other eigenpairs (14). This notion is first considered for linear systems in
[31] and extended to nonlinear systems to some extent in [32]. Our Definition 2.4 helps the simplicity of
exposition (although it originates from linear systems [31]). However, the repercussions of such a definition
are not rigorously studied with the exception of Bollt et al. [33] under the name “primary” eigenfunctions.

To give perspective and embed some of the dominant ideas when it comes to learning Koopman operator-
based representations (Section 3), we present the following nonlinear discrete-time dynamical system that
admits an exact finite-dimensional linear representations of the Koopman operator action.

Example 2.1 (Motivating example). Consider the map F : R2 7→ R2 inspired by Tu et al. [34]:

x 7→ F (x) =

[
ax1

bx2 +
(
b− a2

)
x21

]
, (15)

where a and b ∈ [0, 1]. The system has a stable equilibrium at the origin and invariant manifolds given by
x1 = 0 and x2 = −x21.

(a) Eigenfunction coordinates: The associated principle eigenvalue-eigenfunction pairs (λ, ϕ(x)) of the
system are (a, x1) and (b, x2+x

2
1). Utilizing the closedness of eigenfunctions under point-wise products

from Property 2.4 we can obtain more eigenfunction-eigenvalue pairs as powers of the principle ones
i.e. (a2, x21) - a product of (a, x1) with itself. Utilizing the newly obtained pair, the system from (15)
can be lifted into new linear-in-time coordinates ϕ(x) = [x1, x2 + x21, x

2
1]

⊤:

ϕ(x) 7→



a 0 0
0 b 0
0 0 a2




︸ ︷︷ ︸
Λ

ϕ(x). (16)

The result of (16) can be then be projected onto the respective vector of output functions e.g. system
states ψ(x) = [x1, x2]

⊤ using Property 2.3 via Koopman operator modes v1 = [1, 0]⊤, v2 = [0, 1]⊤

and v3 = [0,−1]⊤

[KF ](x) = F (x) = V Λϕ(x) (17)

with V = [v1 v2 v3] and offer an equivalent representation for the system (15). A derivation of
the solution can be found in the subsequent section, see also Remark 3.3. With that, the system’s
propagation does not necessitate the composition of nonlinear maps but only an initial nonlinear
transformation after which the evolution is linear

F (k)(x) = V Λkϕ(x) (18)

where k compositions of nonlinear functions are replaced with lifting ϕ(·) and subsequent linear evo-
lution through the composition operator paradigm.
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(b) Observables as coordinates: Interestingly, the dominant idea in the Koopman operator paradigm is to
find “good” coordinates what are not necessarily eigenfunctions but lie in the span of eigenfunctions.
For the same system (15) the choice of coordinates ψ(x) = [x1, x2, x

2
1]

⊤ still leads to the following
linear mapping

ψ(x) 7→



a 0 0
0 b (b− a2)
0 0 a2




︸ ︷︷ ︸
A

ψ(x). (19)

where not all coordinates are eigenfunctions i.e. x2. The result of (19) can be then be projected onto
the respective output observables of interest (system states) output matrix C = [I2 0]:

[KF ](x) = F (x) = CAψ(x). (20)

Here, the columns of the output matrixC (in system-theoretic sense) do not represent Koopman modes
but by diagonalizing K into Λ (16), one uncovers Koopman operator eigenvalues, eigenfunctions and

modes. As shown previously, one can opt to use F (k)(x) = CAkψ(x) for linear prediction as the
formulations (17) and (20) indeed are equivalent. The notions from this example have their continuous-
time analogue with the difference that one is capturing the effect of the Koopman generator operator
instead.
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Figure 2: Evolution of eigenfunctions over the state space from Example 2.1(a) for parameter values a = 0.9 and b = 0.8

To illustrate the concept of linear systems representing nonlinear evolution in original coordinates we show
the evolution of the respective eigenfunctions in Figure 2. The linear combination of the linearly evolving
eigenfunctions fully describes all trajectories of the nonlinear system from Example 2.1. This highlights
the globality of the Koopman operator description of nonlinear systems and contrasts it to the local point
dynamics study in originally nonlinear evolving coordinates of the x1-x2 plane. Already mentioned, the
evolution of points in the state space is replaced by the evolution of hypersurfaces over the state space.
Therefore, as all initial points start on the same initial surface (eigenfunctions) - they propagate linearly in
a closed form. In Figure 3 one can recognize how the modal decomposition exposes the dynamical factors
of the system that all evolve linearly and superposed give the original system’s evolution.

2.2. Koopman operator’s adjoint

Finally, we remark how the Koopman operator has its adjoint (in appropriate function spaces) - the
Perron-Frobenius operator. As opposed to the Koopman operator that advances trajectories of a dynamical
system forward in time, its Perron-Frobenius adjoint puts the dynamical effects into the density, pushing
forward (probability) densities over the state space [35] making it well suited for studying chaotic (stochastic)
dynamical systems [19, Chapter 4].
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Figure 3: The dynamical flows of the linearly evolving dynamical factors/modes superposed to form the nonlinear evolution in

original coordinates F (k)(x) = v1λk
1ϕ1(x) + v2λk

2ϕ2(x) + v3λk
3ϕ3(x).

Property 2.5 (Koopman operator and its adjoint). Given a measure µ on M and scalar-valued den-
sity ρ ∈ L1(M) observable ψ ∈ L∞(M), the following holds

〈
Ptρ, ρ

〉
=
〈
ψ,Ktψ

〉
, (21)

∫

x∈M

(
Ktρ(x)

)
µ(dx) =

∫

x∈M
ψ(x)Ptµ(dx), (22)

with t ∈ R+,0 where Pt denotes the semigroup of Perron-Frobenius (dual to Koopman) operators.

Interestingly, Koopman and Perron-Frobenius operators are also referred to as backward and forward as they
are solution operators of the backward and forward Kolmogorov (Fokker-Planck) equations, respectively [19,
Section 11]. Furthermore, the Perron-Frobenius operator generator GP of the stochastic differential equation
ρ̇ = GPρ corresponds to the Liouville (Fokker-Planck) operator.

3. Data-driven Koopman operator-based dynamical models

As the Koopman operator acts on a function space, it is infinite-dimensional in general. For a finite-
dimensional nonlinear system, infinitely many dimensions might be needed to render it linear. Thus, finding
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Nonlinear Dynamics

Lifting/Embedding

Eigenfunctions (Sec. 3.3)

[15, 38, 39]

Time-delays (Sec. 3.4)

[40, 41, 42, 27]
[43, 44, 45, 46]

Observables (Sec. 3.2)

LR: [36, 47, 48, 49]
[50, 51, 52, 53]

NR: [54, 55, 56, 57, 58]

Figure 4: A conceptual graph of the main branches of model representations employing the Koopman operator paradigm:
root - original system, level 1 - transformation type, level 2 - representation coordinates employed. The bottom split part of
the latter includes relevant references employing the methodology noted in the top part. LR and NR denote linear/nonlinear
reconstruction of the state, respectively.

a suitable finite-dimensional representation of the operator is required. Predetermining a function basis
on which the operator is projected represents the most widely used approach for finite-dimensional real-
izations. However, for an arbitrary basis type one might need infinitely many basis functions to have the
operator closed in that space. By choosing a basis that is not arbitrary - but one that is closed under
the operator - infinite dimensions are not required for a Koopman-invariant basis. Nevertheless, any set
of Koopman-invariant coordinates is not guaranteed to reconstruct the states of interest well. Even with
Koopman-invariant coordinates, one might need an infinite amount for exact state reconstruction - requiring
truncation. Therefore, learning “good” coordinates (lifting functions) that are genuinely linear and are able
to reconstruct the states of interest is non-trivial. The aforementioned reality lead to many different learning
approaches for representing the Koopman operator. In the following we review the data-driven approaches
for learning Koopman operator dynamical models found in the literature.

3.1. Origins and classification of Koopman operator discovery methods

A large class of algorithms for data-driven Koopman operator approximations is in some way related to
dynamic mode decomposition (DMD) [36]. DMD had major success in fluid flow modeling, reduced order
modeling (ROM) and Koopman operator approximations [34]. For a comprehensive dimension reduction and
dynamical systems view on DMD we point to [37]. We base our outline in this section on it, as it represents
a linear approximation of the Koopman operator with respect to the system state and many of the more
advanced methods from the literature stemmed from it. The key ideas of DMD methods are closely related
to model-reduction techniques and showed promise in data-based modeling of fluid flows [59]. Briefly, DMD
aims to extract dominant spatio-temporal modes from data, providing data-driven local-linear analysis of
nonlinear systems which made it one of the first Koopman operator approximation methods. Consider the
data being formatted into ‘snapshots’:

H1(x) = [x0, · · ·,xT−1] , (23)
+H1(x) = [x1, · · ·,xT ] , (24)

that are vector Hankel matrices with depth one of a T -step time-sequence. Then the best-fit matrix A is
obtained by minimizing

min
A

∥∥+H1(x)−A
[
H1(x)

]∥∥
F

(25)

with index F denoting the Frobenius norm. In closed form, the transition matrix is obtained as A =
+H1(x)[H1(x)]† - where † represents the Moore-Penrose pseudo-inverse. The utility of DMD for reduced
order modeling for high-dimensional snapshots involves taking the singular value decomposition of the
snapshot matrix H1(x).
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Regarding linear representations of nonlinear systems we focus on methods based on predicting output
functions of interest constructing a surrogate model of a system based on the Koopman operator paradigm.
As depicted in Figure 4, we classify the methods employed to predict the system’s outputs of interest into
three categories based on the lifting coordinates employed. Note that this is only a tentative classification
for better exposition as the methodologies are more closely related than Figure 4 would suggest. The firstly
developed train of thought considers a span of observables as coordinates looking to approximate the infinite-
dimensional Koopman operator - a spectrally indirect family of approaches. Other methods seeking to find
inherently Koopman-invariant coordinates consider direct discovery of eigenfunction coordinates - spectrally
direct. Worth noting is the fact that the latter methodologies deals with the point spectrum (recall Remark
2.2). Considering on-attractor (post-transient) behavior, time-delay coordinates of output functions (instead
of only spatial coordinates) give a useful linear representation of the system at hand. All of these frameworks
require sequential data e.g. from a system’s trajectory (to capture the spectrum), as opposed to learning
with non-sequential input-output samples encountered in function approximation.

3.2. Lifting to observables

Throughout the years many extensions of DMD came along, notably extended DMD (EDMD) [47]. It
involves - often heuristically predetermined - nonlinear maps of the data (e.g. radial basis functions or
monomials), hoping to capture the nonlinearity in the dynamics. For that, the data-snapshots (23-24) are
lifted through a feature map ψ(·) resulting in

H1
ψ(x) = [ψ(x0), · · ·,ψ(xT−1)] , (26)

+H1
ψ(x) = [ψ(x1), · · ·,ψ(xT )] , (27)

and compatible closed-form regression as in (25). In what follows, we outline a more general formulation for
obtaining Koopman operator dynamical models motivated by the aforementioned idea.

For a data-set D = {xi,yi}T−1
i=0 with dynamics yi = F (xi), the goal is to solve the following optimization

problem:

min
A,C,ψ(·)

T−1∑

i=0

linearity︷ ︸︸ ︷
∥zi+1 −Azi∥2 +

reconstruction︷ ︸︸ ︷
∥yi −Czi∥2 (28)

subject to: zi = ψ(xi) (29)

ψ ∈ F (30)

where F is a space of observables. Notice that this becomes equivalent to vanilla DMD (25) where there is
no “lifting” - ψ(x) = x. The targeted representation is in the form of a Koopman operator dynamical model

z0 = ψ(x0), (31)

zk+1 = Azk, (32)

yk = Czk, (33)

where the initial lift (31) leads to linear state-transition coordinates (32) which are then projected on
outputs of interest (33). Some EDMD variations and extensions include kernel EDMD [48] (using kernels
instead of fixed basis functions) with its generator version - gEDMD [53] and naturally structured EDMD
[50] (preserving the Markov property leading to stable finite-dimensional approximations). However, the
aforementioned EDMD approaches fix a lifting map (29) and then solve (28) as an convex, least-squares
optimization problem. The unstructured fixed-bases of the above EDMD methods often lead to data-
inefficient models of very high dimension and only locally accurate prediction. To tackle the aforementioned
issue, Li et al. [49] propose simultaneous learning of (29) with a neural network and an added L1-regularizer
in (28). Furthermore, Lian and Jones [52] propose the use of subspace identification methods [60] for solving
(28) independently of the lifting in (29) which is subsequently fitted.
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Note that all of the approaches mentioned until now are only able to represent purely transient (off-
attractor) dynamics, as there exists a finite-dimensional Koopman-invariant subspace that includes the state
itself for (almost) global linear representations. To be able to represent a wider range of dynamical regimes,
some approaches are considering a nonlinear reconstruction map to the original state instead of a linear one
(33) requiring invertibility and a suitably modified reconstruction loss compared to (28). Such a modification
does not require the state to lie in the span of lifted coordinates and can lead to lower-dimensional embeddings
as well. To discover such coordinates, machine learning tools such as neural network structures in various
forms, e.g. linear-recurrence and auto-encoding [54, 56, 57, 58] are employed. To tackle continuous spectra
as well, the work of Lusch et al. [55] frequency-parameterizes a low-dimensional Koopman embedding
using neural networks. Although nonlinear reconstructions can lead to lower-dimensional representations,
siding with linear reconstruction is useful for practical control design and amendable linear mode analysis
of nonlinear systems.

Considering a collection of observables (not necessarily eigenfunctions) as lifting coordinates is still the
most dominant train of thought in the data-driven frameworks for Koopman operator-based representations.
Nonetheless, such approaches often lead to lifting coordinates not being in the span of eigenfunctions -
providing only locally accurate prediction. Furthermore, unstructured operator approximation often does not
deliver approximation or convergence to the real eigenvalues/eigenfunctions as the approaches are spectrally
indirect. The aforementioned introduces dissonance into the analysis procedures for such models because
the spectrum is not close to the real one and thus is misrepresenting the properties of the underlying system.
Recalling Example 2.1, one can recognize that the problem of directly looking for eigenfunctions (spectrally
direct) is better posed for finding genuine linearly-evolving coordinates as there is more structure that can
be advantageously exploited. Thus, if one looks to exploit the paradigm for long-term prediction as well as
analysis, considering learning the Koopman operators in a spectrally direct fashion can be more efficacious.

3.3. Lifting to eigenfunction coordinates

In the following we present Koopman-operator representation approaches that are not purely data-
based but also structurally aware - looking to exploit the Koopman operator’s algebraic and geometric
properties. Due to a strong connection of Koopman operators and state space geometry, exploiting notions
from differential geometry can provide, to a degree, “supervision” to the generally unsupervised task of
learning Koopman operator eigenfunctions.

3.3.1. Theoretical basis

As opposed to other approaches that purely use data to obtain a span of - often not truly Koopman-
invariant - observables, the focus here is on using (generalized) eigenfunctions by design relevant for pre-
dicting output functions which calls for a more rigorous theoretical treatment.

Theorem 3.1 ([61]). Consider the domain X ⊆ M ⊆ Rn, x ∈ X and ẋ = f(x) such that f : X 7→ M, then
the corresponding Koopman operator has eigenfunctions ϕ(x) that are solutions of a linear partial differential
equation (PDE)

∂ϕ

∂x
f(x) = sϕ(x)

if X is compact and ϕ(x) ∈ C1(X) is in C1(X), or alternatively, if ϕ(x) is C2(X).

To highlight the connection of Koopman eigenfunctions with algebraic and geometric notions, we base
our exposition on Definition 2.2 that, when fixing time-t, turns into an eigenvalue problem

ϕ (F (x)) = λϕ (x) . (34)

Interestingly, the univariate version of the above equation is the Schröder’s functional equation ϕ ◦ F = λϕ
[62]. This equation studies how maps evolve under iteration and even pre-dates Koopman’s seminal work
[1]. Considering the Schröder’s equation in its multivariate form [63], we write

KFϕ = ϕ ◦ F = F ′(0)ϕ, (35)
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with F ′(0) being the linearization of F : X 7→ M around the origin. The full rank (univalent) solution of
(35) is analytic if 0 < ||F ′(0)|| < 1 [64] and delivers nontrivial principle eigenfunctions (Definition 2.4) of the
map F . Schröder’s equation (35) is also directly related to functional conjugation [65] on whose implications
we elaborate on in the following.

Definition 3.1 (Topological conjugacy). Consider maps F : M 7→ M and T : Y 7→ Y such that
∃d : M 7→ Y satisfying d ◦ F = T ◦ d. Then, the maps are topologically

i) conjugate if d is a homeomorphism

ii) semi-conjugate if d is C0 and surjective

Remark 3.1. Consider the maps from Figure 5. If conjugated, then F and T have the same dynamic
behavior while, if they are semi-conjugated, the dynamics of T are contained in F .

M M

Y Y

F

d d

T

Figure 5: Commutative diagram of topological conjugacy

Theorem 3.2 (Spectral equivalence [17]). Let the maps F : M 7→ M and T : Y 7→ Y be topologically
conjugate via the homeomorphism d : M 7→ Y such that d ◦ F = T ◦ d holds. If (λ, φ) is an eigenpair of
KT , then (λ, φ ◦ d) is an eigenpair of KF .

Lan and Mezić [66] consider extending the validity of the conjugacy via the Hartman-Grobman theorem to
the whole basin of attraction. The work of Mohr et al. [67] shows that a nonlinear system’s eigenfunctions
can be constructed by Theorem 3.2 from eigenpairs of its asymptotically stable liearization. For a more
detailed continuous-time treatment on conjugacy with connections to matching and rectification of vector
fields we point to [61].

Example 3.1. Consider again the system from Example 2.1

x 7→ F (x) =

[
ax1

bx2 +
(
b− a2

)
x21

]
, (36)

and its linearization

y 7→
[
a 0
0 b

]

︸ ︷︷ ︸
T=F ′(0)

y. (37)

Evidently, the principle eigenpairs of the linearized system are (a, ⟨wa,y⟩) and (b, ⟨wb,y⟩) with wa, wb the
eigenvectors of the adjoint of T [68]. By Theorem 3.2 we see there is a conjugacy map d(x) = [x1, x2+x

2
1]

⊤ =
x + h(x) (Figure 5) with the diffeomorphism’s residual h(x) = [0, x21]

⊤ allowing for construction of non-
trivial principal eigenfuncions of the nonlinear system from the ones of its conjugate linear system. Recognize
how the map −h(x) defines the invariant manifolds of the full nonlinear system (see Figure 6).

Remark 3.2 (Semi-conjugacy and ROM). Although for general observables infinite-dimensional, the
composition operator is one-dimensional for its eigenfunctions which are semi-conjugacies by definition
λ ◦ ϕ = ϕ ◦ F . This realization theoretically justifies the utility of the Koopman operator paradigm in
reduced order modeling (ROM) such as [27, 69, 70, 53].
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Figure 6: Warping the linear system to a nonlinear one through topological conjugacy for Example 2.1 with parameters a = 0.9
and b = 0.5.

3.3.2. Data-driven approaches

The data-driven frameworks utilizing the outlined theory assume the following Koopman operator dy-
namical model

z0 = ϕ(x0), (38)

zk+1 = Λzk, (39)

yk = V zk. (40)

where ϕ is (generalized) eigenfunction lifting with Λ being the eigenfunction transition map and V the
projection on the outputs (Koopman modes). Utilizing the introduced structural properties leads to a
modified optimization objective compared to (28)-(30). Formally, we can write

min
Λ,V ,ϕ(·)

T−1∑

i=0

∥zi+1 −Λzi∥2 + ∥yi − V zi∥2 (41)

subject to: zi = ϕ(xi) (42)

Λ ∈ Sλ, (43)

ϕ ∈ Sϕ, (44)

where Sϕ,Sλ represent structural constraints for eigenfunctions and eigenvalues, respectively. This leads to
a better-posed problem with a more restricted solution space than in (30). In order to provide eigenfunction
lifting by design some geometrical and topological considerations need to be made, which we present in the
following.

Learning via topological conjugacy. The assumed system form consists of a known linear part and an un-
known residual nonlinearity

ẋ = f(x) = Tx+ r(x). (45)

Utilizing topological conjugacy from Theorem 3.2 takes the role of constraints (43)-(44) - constraining the
choice of eigenvalues and coordinate-bases to genuine Koopman eigenfunctions. The conjugacy arises as a
solution of the following PDE

Th(x)− r(x) = ∂

∂x
h(x)(Tx+ r(x))

h(0) = 0,
∂h

∂x
(0) = 0

(46)

leading to the following equations via the method of characteristics

ẋ = Tx+ r(x)

ż = Tz − r(x) (47)
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after defining d(x) = x+ h(x) and z = h(x) [71].

Remark 3.3. Notice that considering the Koopman operator analogue of the infinitesimal (generator)
solution (47) for the system form KF [x] = Ax+ e(x)

KF [x] = Ax+ e(x)

KF [z] = Az − e(x) (48)

where recognizing KF [z] = Ad(x) − F (x) the principle eigenfunctions are dimension-wise components of
the diffeomorphism d(x) = x+ h(x) from Example 3.1.

Thus, one can approximately learn the solution of (46) by solving the following optimization problem
based on the dynamics residual r(x) samples

min
h(·)

T−1∑

i=0

∥ḋi − Tdi∥2 (49)

subject to: d(xi) = xi + h (xi) (50)

∂

∂x
h(0) = 0, (51)

as pursued in [38] in a similar manner where the goal is to learn an LTI system that can well approximate
the Koopman operator generator. Subsequently, one is able to have a recursive construction of eigenfunction
coordinates from the principal ones following Property 2.4 and Theorem 3.2. Using these properties takes
the role of (44) for learning Koopman-based dynamical models by lifting to eigenfunction coordinates by
design.

Learning by exploiting state space geometry. The approach of Korda et al. [15] optimizes generalized eigen-
functions, changing (38)-(40) to admit a continuous-time representation for the state evolution matrix to
a block diagonal Jordan matrix that is then discretized. Known from finite-dimensional operator theory,
generalized eigenfunctions do give rise to block diagonal Jordan blocks

Jλ =



λ 1

. . . 1
λ


 , (52)

that decompose the space of observables into invariant subspaces of the Koopman operator semigroup
spanned by generalized eigenfunctions [15]. The approach focuses on multi-step prediction error minimiza-
tion while using non-recurrent sets to construct generalized eigenfunctions. More specifically, the eigen-
functions are constructed by exploiting the existence of boundary functions - values of eigenfunctions on
non-recurrent sets of the state space - which serve as a structural constraint one eigenfunctions in (28)-(30).
It also needs a suitably rich choice of initial conditions and requires system trajectories for learning. Never-
theless, the method does not require any prior knowledge about the system and predicates solely on convex
optimization methods.

We also highlight some works not geared towards representing the original nonlinear system as (38)-(40)
but do seek to find solutions to the eigenvalue equations (8) and (4.3) for i.e. coherent structure extraction
[72, 73] or discovering conservation laws [74]. When it comes to identifying Koopman operator principle
eigenpairs, the work of Klus et al. [75] (generator version [53]) employs eigendecompositions of Koopman
operator using kernel methods. On the Koopman operator generator identification front, the work of Kaiser
et al. [76] discovers only lightly-damped Koopman generator eigenpairs (as vanilla DMD-based methods
converge to the strongest magnitude eigenvalues [23, Section 2]). However, the aforementioned approaches
[72, 73, 74, 75, 76] highly depend on the empirical choice of basis function or kernel parameters.
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3.4. Time-delay coordinates

While the two previously introduced methodologies considered spatial coordinates, for ergodic systems,
we turn to delay-coordinates approaches often employed for time-series prediction. These ideas are highly
represented in the literature as the original Koopman theory [1] is used to prove Birkoff’s ergodic theorem
[77]. In case that post-transient dynamics are of interest, purely spatial coordinates (Remark 2.2) are
of limited relevance on chaotic attractors. It is known from Takens embedding theory [78] that one can
provide a geometric reconstruction of a (strange) attractor of nonlinear systems by embedding scalar output
measurement (observation) y(k) := yk into a higher dimensional space of time-delay coordinates. This
viewpoint is naturally defined for sampled-data systems. Here the observable (measurement) coordinates

are based on the time-series {yk}T−1
k=0 , T ∈ N of scalar measurements yk = h(xk) represented through a

Hankel matrix

HL(y) :=




y0 y1 . . . yT−L

y1 y2 . . . yT−L+1

...
...

. . .
...

yL−1 yL . . . yT−1


 , (53)

with depth L ∈ N. The argument of the Takens delay-embedding theorem is that an attractor of a dynamical
system can be reconstructed using sufficiently time-delayed measurements yN

k of a scalar observable of
interest. The evolution of time-series sequences yN

k 7→ yN
k+1 of the form

yN
k :=

[
yk Kyk · · · KNyk

]⊤ ∈ RN≤L, (54)

becomes almost linear even when the measurement evolution yk 7→ yk+1 comes from a nonlinear ergodic
system [42].

Promising results of [44] use convolutions coordinates as a generalization of Hankel alternative view
of the Koopman (HAVOK) framework of Brunton et al. [42]. The latter work demonstrated the ability
to construct a linear system with intermittent forcing that is able to predict chaotic dynamics. Other
notable extensions and generalizations of DMD with time-delay coordinates include Hankel-DMD [27], Prony
approximation of Koopman operator [40] and higher order DMD [41] that employ a time-delayed observable
as a basis for DMD. Work of Arbabi et al. [27] establishes convergence of Hankel-DMD to the true Koopman
eigenfunctions and eigenvalues of the system. A notable use of combining both spatial observables and delay-
embeddings can be found in Arbabi et al. [79] for modeling nonlinear PDEs. However it is known that linear
models such as those generated by the Hankel-DMD can reconstruct an ergodic dynamical system only in
an asymptotic sense. A study of this limitation and the conservatism of Takens theorem regarding the
number of time-delays necessary can be found in [46]. As proven to useful for Hamiltonian systems and
post-transient behaviors of system with quasi-periodic dynamics and continuous spectra (cf. Remark 2.2),
the utility of this method is in the literature have been reserved to ergodic (measure-preserving) systems.
For a more detailed data-driven treatment of ergodic systems and Koopman spectra (beyond time-delay
coordinates) we point to the [45, 43].

Time-delays as they pertain to the Hankel matrix (53) also form the backbone of common linear-system
identification such as the Ho-Kalman algorithm [80] and the family of subspace state space identification
(4SID) methods [81]. Although suggested to be similar to dynamic mode decomposition on a few occasions
[34, 37], subspace-identification is fundamentally different from DMD. We elaborate on this notion in the
following remark.

Remark 3.4 (DMD vs 4SID). In essence, “vanilla” DMD is a regression procedure linearly mapping two
data ‘snapshots’ (sequence of spatial measurements, Hankel matrices, images, etc.) from instance k 7→ k+1
(allowing for dimension reduction via SVD [37]). On the other hand, 4SID is an unsupervised learning
method for causal linear systems that explicitly delivers state space matrices (32)-(33) via the system-
theoretic concept of observability [82] while not providing the coordinate transform of (31). Although both
methodologies might perform an SVD of the same Hankel matrix in the case of i.e. Hankel-DMD [27] or
HAVOK [42], they are fundamentally different and generally deliver different quantities. Nevertheless, for a
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Hankel matrix (53) of depth one, 4SID methods do become equivalent to vanilla DMD and thus equally as
ill-conditioned [23, Section 2].

Another family of approaches considers approximating the Koopman operator generator through advection-
diffusion operators [83, 43] and time-delay coordinates. Such approaches relate to manifold learning and
diffusion coordinates [84] as the data of the post-transient dynamics on an attractor forms a manifold. As
already mentioned, approaches here recover Koopman operator-related quantities asymptotically. Also a
recent approach of Takeishi et al. [28] uses the fact that the diffusion operator commutes with the Koopman
operator asymptotically and then constrains the learning algorithm to ensure best-possible commuting for
the finite-delay and finite-data case.

Remark 3.5 (Delay-coordinates and immersion). Recently, in [85] the authors propose a relation of
dynamical immersion to time-delay coordinates in Koopman operator theory. There, the immersion is
created by augmenting the full state with compositions of its state-transition map (delay-embedding). Such
immersion-based coordinates are shown to be useful in the context of transient dynamics akin the frameworks
in Section 3.2. While conceptually similar, the immersion-based time-delays are of the full state and assume
a known state transition map - different to the delay-embeddings considered in this section.

3.5. Robotics applications

With a focus on existing robotics applications, here we consider some notable data-driven approaches,
exploring the practical utility of the Koopman operator paradigm. A quite natural application can be found
in soft robotics. The reason is obvious - with soft robots we do not even know what the states of interest
are, let alone how to get them in a tractable way. That makes the Koopman operator dynamical models an
interesting choice for data-driven control of soft robotic systems [86, 87]. Notably, learning fast quad-rotor
landing of Folkestad et al. [88] represents one of few data-driven methods with a strong operator-theoretic
motivation for Koopman operator dynamical models in robotics - proposing to learn a diffeomorphism to
discover eigenfunction coordinates for linear control design and prediction

4. System analysis and Koopman operator paradigm

Representations of nonlinear systems via the “dynamics of states” (1) do not offer any intrinsic infor-
mation relevant for system analysis. However, approaches using the Koopman paradigm, contain ‘free’
information about the system of interest - invariant manifolds, fixed points, attractors and periodic orbits.
The aforementioned quantities encode a great deal of information about the system and are the basis for
system analysis through the Koopman operator paradigm.

4.1. Classical stability analysis and Koopman paradigm

In the following, we firstly highlight a natural connection of the Koopman paradigm to classical system-
theoretic analysis through the generator of the Koopman operator semigroup. In this classical view, we
use the fact that the Lyapunov function itself is a special kind of an observable [89, 89, 14, 90] with a
negative semi-definite derivative. With that in mind, one can argue that the Koopman operator notions have
implicitly been a part in Lyapunov stability analysis throughout the last century. Consider the deterministic
generator of the Koopman operator semigroup, already introduced in Definition 2.2.

Theorem 4.1 ([91]). Let there exist a proper Lyapunov function V ∈ C2 associated with the system (1)
for which the action of the Lie-derivative operator Lf along the vector field f results in

LfV (x) =
∂V

∂x
f(x) < 0, (55)

which holds for ∀x ∈ M\{x∗}. Then, the equilibrium point x∗ of (1) is asymptotically stable.
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Figure 7: The Lyapunov function for the nonlinear system from Example 2.1 (a = 0.9, b = 0.8) as a sum of squared eigenfunc-
tions V (x) = ϕ⊤(x)Pϕ(x) weighted by the solution of the Lyapunov equation Λ⊤PΛ− P + I = 0.

Remark 4.1. A Lyapunov function can be seen as a non-negative observable such that it is negative-
semidefinite under the action of the Koopman operator generator GKf

of the Koopman operator family
{Kt

f}t∈R+,0

GKf
V (x) ≤ 0, (56)

∀x ∈ M\{x∗}.

The intricate connection of operator spectra and Lyapunov stability for the continuous-time case has not
been rigorously extended to discrete-time maps. The transferability of continuous-time results is mentioned
in [92, 90] - pointing to the fact that operator-theoretic considerations have the ability to bridge the gap
between continuous- and discrete-time settings via the Spectral Mapping Theorem [93]. This is a promising
proposition, as conventional Lyapunov stability results for nonlinear systems are not directly transferable
from one setting to the other. In Figure 7 we demonstrate that the Koopman operator spectral analysis of
nonlinear maps mirrors classic linear stability analysis, by utilizing linear techniques to deliver a Lyapunov
function faithfully representing the nonlinear dynamic flow.

4.2. Analysis via the Koopman paradigm

The Koopman operator paradigm gives a proxy to spectral analysis of a nonlinear system through the
eigenfunctions and eigenvalues of the corresponding Koopman operator. Koopman operators are utilized in
the global analysis of complex dynamical systems as their eigenfunctions can be used for a many notions rel-
evant for analysis: metastable sets, splitting the dynamics into dominant slow/fast processes, or to separate
superimposed signals [94, 75]. More specifically, Koopman eigenfunctions provide a lot of information about
the original system, including a characterization of invariant sets such as stable and unstable manifolds
[95]. Furthermore, the Koopman paradigm is providing intrinsic information about state space geometry
i.e. through level sets of the state space with the same rate of convergence to the attractor - isostables
and sets with an identical phase value - isochrons. Apart from relating to Lyapunov functions, Koopman
eigenfunctinos are used to derive contracting metrics in [89]. Moreover, equivalences between contraction
theory and Koopman operators are explored in [96]. While for dissipative systems the Koopman operator
eigenfunctions capture isochrons and isostables, for ergodic systems they capture periodic partitions of the
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state space [5]. Furthermore, Koopman eigenfunctions with eigenvalue is 0/1 (continuous/discrete-time) re-
main constant over trajectories so that its level sets partition the state space into invariant regions - defining
the conserved quantity of the system. Also, the stable unstable and center manifolds of a system can be
expressed via the joint level sets of (generalized) Koopman operator eigenfunctions [97].

Property 4.1 ([14]). Consider X ⊆ Rn and a vector field f : X 7→ X with a full rank Jacobian f ′(x∗) and
eigenvalues Re{si} < 0 at the fixed point x∗. If the eigenfunctions of the Koopman operator are C1, then
ẋ = f(x) is globally asymptotically stable (GAS) in X.

The above result is a global equivalent of the well-known local stability result via Lyapunov’s indirect method
[98]. Given local stability is implied by stable f ′(x∗), but global stability is implied by C1-eigenfunctions
of the Koopman operator. Furthermore, works of Mauroy et al. [92, 99, 90] establish that joint-level sets
of Koopman (generalized) eigenfunctions (for Koopman eigenfunctions from Theorem 4.1) offer principled
parameterization of candidate Lyapunov functions i.e.

V (x) =

(
N∑

i=1

|ϕi(x)|p
) 1

p

, (57)

for p ∈ N. As the eigenfunctions can serve as evolution coordinates of nonlinear systems defined by their
corresponding eigenvalues, they are directly related the system’s contraction metrics. Nevertheless, the
Koopman operator paradigm provides a more general stability result than the one of Property 4.1.

Theorem 4.2 ([92]). Let X be a positive invariant compact set and that the Koopman operator Ktϕ = ϕ◦F t

admits an eigenfunction ϕs ∈ C0(X) with the eigenvalue Re{s} < 0. Then the zero level set

S0 = {x ∈ X | ϕs(x) = 0}

is forward invariant under F t and globally asymptotically stable.

The results of Theorem 4.2 are easily recognized in Figure 2 for the system from Example 2.1.

Example 4.1 ([92]). To highlight the globality of the spectral analysis via the Koopman operator, consider
a non-hyperbolic system ẋ = −x3 where the analysis via the indirect Lyapunov method is not possible. The
system admits a continuous (generalized) eigenfunction with ϕs(x) = exp

(
−1/

(
2x2
))

with the associated
eigenvalue s = −1. Given that, one can imply global asymptotic stability of the origin by Theorem 4.2.

4.3. Other properties via the Koopman paradigm

Here we consider some structural properties that can be recognized via the Koopman paradigm’s spectral
analysis. It is important to note that the choice of the observables’ space conditions the spectral properties of
the Koopman operator. The original theory of B.O. Koopman [1, 77] studied the ergodicity of Hamiltonian
flows naturally associated with the space of square-integrable observables.

Remark 4.2 ([19]). For conservative (Hamiltonian) systems the Koopman operator Kt : F 7→ F is unitary
on the Hilbert space L2(µ) of complex valued square-integrable functions tied with any Borel probability
measure µ

F = L2(M), F = F†, (58)

holding ∀s eigenvalues from the spectrum σ(K) of K. Thus, the Koopman operator Kt is unitary with
|exp(s)| = 1, s ∈ C.

If the system is measure preserving it possesses an invertible flow F t : X 7→ X. Then the relation between
the Koopman operator Kt and its dual Pt from Property 2.5 simplifies to

Ktψ(x) = ψ(F t(x)), Ptρ(x) = ρ
(
F−t(x)

)
(59)
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with F−t = (F t)−1 making the Koopman operator the inverse of its dual.
Dynamical systems with attractor(s) are not energy preserving and thus dissipative, making the Koopman

operator non-unitary. Furthermore, it is typically non-normal, and can have generalized eigenfunctions [29].
Dissipative systems are very amendable to the global stability analysis via the Koopman paradigm [92]. The
choice of the observables-space as F = C1(M) more easily uncovers principle eigenfunctions that are crucial
for stability analysis of the equilibrium of dynamical systems [90]. The Koopman operators for dissipative
systems assemble a contraction semigroup that has a corresponding dissipative generator [100]. We can
redefine the introduced eigenfunctions as ordinary eigenfunctions of a linear operator K acting in a compact
Hilbert space that solve the following

Kϕg = λϕg ⇔ (K − λg)ϕg = 0. (60)

In general, due to the geometric eigenspace being lower than the algebraic eigenspace dimension, a complete
basis for the space on which the linear operator acts upon can not always be obtained from (60), but from
generalized eigenfunctions. The notion of generalized eigenfunctions in the field is introduced and proved
through the case of finite-dimensional linear operators [31, 101] using Kato decomposition [102]. In the
following we just informally remark on these spectral objects.

Remark 4.3 (Generalized eigenfunctions). Generalized eigenfunctions ξg are the solution following
equality

(K − λg)
mgξg = 0 (61)

with integers g = 1, . . . , s and i = 0, ...,mg−1 being the counter of different eigenvalues (geometric eigenspace
dimension) and dimensions of algebraic corresponding eigenspaces, respectively. Let

ξ =
[
ξ11 , . . . , ξ

m1
1 , ξ12 , . . . , ξ

m2
2 , . . . , ξ1s , . . . , ξ

ms
s

]⊤
(62)

be the concatenation of all of the (generalized) eigenfunctions corresponding to the operator. Now consid-
ering the Koopman operator generator we have

GKξ
i
g = ξ̇ig = λgξ

i
g + ξi+1

g , (63)

that in the finite-dimensional case gives

ξ̇ = diag{Jλ1
, . . . ,Jλs

}ξ, (64)

where Jλg is the familiar Jordan block (52).

Example 4.2. Consider the case of a multiplicity of mg = 2 in (63) resulting in ξ̇1g = λgξ
1
g + ξ2g . The

function ξ2g in turn represents the one ordinary eigenfunction ϕg satisfying ϕ̇g = λgϕg giving the relation
(GK − λ)ξg = ϕg.

Remark 4.4. The utility of generalized eigenfunctions in spanning Koopman-invariant subspaces arising
from (4.3) generalizes to infinite-dimensional case for discrete spectrum of the Koopman operator. This is
courtesy of a compact operator defined on a Hilbert space (as it is a limit of finite-rank operators) [103].

5. Koopman-based control approaches and applications

Here, the focus is turned towards non-autonomous systems and approaches that still allow for exploiting
the Koopman operator paradigm to find efficient representations of control systems.

5.1. Extensions to control systems

As the Koopman operator dynamical models are naturally formed for autonomous systems, they require
modifications in the non-autonomous case. We present structured ways of including control for classes of
nonlinear systems and relate to the core of the Koopman operator theory. In order to do so we take an
“atomic” approach based on the Koopman eigenfunction evolution PDE (Theorem 3.1).
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5.1.1. Control-affine nonlinear systems

Here we offer a novel derivation of Koopman operator eigenfunctions in the case of control-affine systems.
Let us consider the class of such systems, in a single-input and single-output (SISO) form

ẋ = f(x) + g(x)u

y = h(x),
(65)

with f , g ∈ M the drift and control vector fields, respectively. By looking at the time-evolution of the
output/observable y

ẏ = Lfh(x) + Lgh(x)u, (66)

one obtains the familiar Lie-derivative expression. To have a globally linear description of such a system,
one can study the eigenspaces of the Lie-derivate operators (Koopman operator generators) acting on the
drift and control vector fields.

Theorem 5.1 (Bilinear eigenfunctions). Consider the control affine system (65) with the eigenfunctions
ϕi and ϕc,i of the drift and control vector fields, respectively. If span{ϕc,1, ϕc,2, . . . } ⊆ span{ϕ1, ϕ2, . . . } the
eigenfunction time-evolution is bilinearizable.

Proof. Given that span{ϕc,1, ϕc,2, . . . } ⊆ span{ϕ1, ϕ2, . . . }, we can write ϕc(·) = Cϕ(·) =
∑∞

i=1 ciϕi(·).
Then, the eigenfunction evolution for (66) results in

ϕ̇(x) = Lfϕ(x) + Lgϕc(x)u
= (Lf + LgCu)ϕ(x).

(67)

As Lg and C linear operators their composition LgC is as well. Thus, the eigenfunction evolution becomes
bilinearizable.

Corollary 5.1.1. By integrating the infinitesimal expression (67) we obtain

[Kt(u)ϕ](x) = exp[(Lf + LgCu)t]ϕ(x), (68)

giving rise to a control-parameterized family of time-t semigroups of Koopman operators {Kt(u)}t∈R0,+ .
Thus, the following ensues for the discrete-time case

[K(u)ϕ](x) = Kf (KgC)uϕ(x), (69)

following trivially by fixing the sampling time t = ts in (68).

One can see how the bilinear system theory of the continuous-time case (68) can now be replaced by linear
parameter-varying (LPV) theory [104] in the discrete-time case. Generalizing (69) for multiple-input and
multiple-output form is straight forward.

Remark 5.1 (State-independent vector field). For simpler control-affine systems with state-independent
control vector fields i.e. ẋ = f(x) + bu, any drift vector field admits the trivial principle eigenfunction
ϕ(·) = 1 with eigenvalue 0 allowing a bilinear representation without needing the conditions from Theorem
5.1. Another less restrictive option is to rewrite (67) by the chain rule [39]

ϕ̇(x) = sϕ(x) +
∂

∂x
ϕ(x)Bu, (70)

with s the eigenvalue corresponding to ϕ, but leads to a state-dependent input term in the evolution of
eigenfunctions.
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Example 5.1 (Koopman-bilinearizable system). Consider a continuous-time control system inspired
by [105]:

ẋ =

[
cx1

dx2 +
(
d− c2

)
x21

]
+
[
g1(x) g2(x)

]
u, (71)

with control vector fields g1(x) = [1, x21]
⊤. g2(x) = [0, 1]⊤ The system from can be lifted into eigenfunction-

coordinates ϕ(x) = [x1, x2 + x21, x
2
1, 1]

⊤ of the Koopman generator with the diagonal transition matrix of
respective eigenvalues Λ = diag{c, d, c2, 0}. Then, we can write

ż = Az +B1zu1 +B2zu2, (72)

by lifting the state x to z = ϕ(x). After applying (element-wise) the control vector field Lie-derivatives
with respect to the new coordinates, we obtain

B1 =




0 0 0 1
2 0 1 0
2 0 0 0
0 0 0 0


 ,B2 =




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 , (73)

allowing us to write Lgiϕ(x) = Biz.

Although the the eigenfunction evolution is bilinear, there are well studied tools to deal with such
problems cf. [106].

Remark 5.2 (Representation heuristic). Works considering Koopman operator dynamical modeling
often assume the following evolution ż = Az +Bu in the ”lifted” z-coordinates. Clearly, such a represen-
tation of the control effect is only local. Thus, the results of this section give a theoretical justification on
why many data-driven Koopman operator-related approaches for control systems are only well-versed for
short-term prediction.

5.1.2. General nonlinear control systems

As opposed to control-affine systems, general nonlinear control systems of the form ẋ = f(x,u) do not
admit a closed form representation for (bi)linear prediction via the Koopman operator paradigm. Nonethe-
less, meaningful representations are still possible. One can assume the existence of joint state-and-input
eigenfunctions [39], leading to the following eigenfunction PDE

ϕ̇(x,u) = Lfϕ(x,u) +
∂

∂u
ϕ(x,u)u̇, (74)

where s is the eigenvalue corresponding to ϕ. Given the relation above, the derivative of control u̇ is the
input to eigenfunction coordinates leading to integral or incremental control in the discrete-time analogue.
Nevertheless, the form admits general nonlinear control systems. In a similar vein, Korda et al. [15] make
the case that the form is non-restrictive as any system can be transformed by “state inflation” v̇ = u via
x = [ζ⊤,v⊤]⊤ into [

ζ̇
v̇

]

︸ ︷︷ ︸
ẋ

=

[
fζ(ζ,v)

0

]

︸ ︷︷ ︸
f(x)

+

[
0
I

]
v̇

︸ ︷︷ ︸
Bu

, (75)

again limiting our direct control to controlling the rate of change of the input signal. As a single Koopman
generator corresponds to a single ODE or PDE, the introduction of input dependence parameterizes the
differential equations with a possibly infinite set of inputs. However, restricting those to a finite set can be
represented as a system of switched Koopman operators. The authors in [69] utilize this for efficient model
predictive control.
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Optimal control

[107, 38, 15, 16]

Stabilization & estimation

[108, 109, 110, 111]
[112, 113, 114]

ROM control

[74, 69, 53]

Figure 8: Main branches of control-oriented approaches using the Koopman operator-based models. The bottom split part of
the latter includes relevant references employing the approach noted in the top part.

5.2. Control-oriented frameworks

Here we survey notable options for designing control-oriented frameworks based on the Koopman operator
theory (for a graphical overview cf. Figure 8).

5.2.1. Reduced order model (ROM) control

One simplifying perspective looks to use parts of the intrinsic dynamics information from the Koopman
operator for energy-based control or reduced order controllers. These approaches utilize Property 4.2 for
identifying the Hamiltonian from data - as it corresponds to a Koopman eigenfunction [74]. Furthermore,
when it comes to reduced order modeling the Koopman operator paradigm is put to use in [69, 53] for
data-driven switched control of systems governed by partial differential equations.

5.2.2. Optimal control

For optimization-based approaches such as model predictive control (MPC), the evident benefit is the
increased accuracy and validity in contrast to linear models based on a local linearization, while having
a reduced computational burden compared with schemes based on nonlinear models. A comparison of
the outputs of a convex program with Koopman-based (and another global linearization) models versus
the solutions of the original nonlinear programming problem can be found in Igarashi et al. [16]. For
a principled MPC treatment via the Koopman operator paradigm we point to Korda et al. [107] with
subsequent optimized versions for more efficacious prediction in Korda et al. [15] and Folkestadt et al. [38].

5.2.3. Stabilization and state-estimation

Regarding stabilization, lifted space-based control Lyapunov functions have been considered in a range
of works [108, 109, 110, 111] - showing promise for nonlinear optimal stabilization. Moreover, works on
observer synthesis [112, 113] and filtering [114] show improved efficacy via the use of Koopman operator
dynamical models.

5.3. Why not linearize via feedback?

The idea of embedding a system into possibly a higher-dimensional linear system is not a new concept
in the control community [115]. One of the reasons non-local linear representations of nonlinear dynam-
ics could be appealing is efficient controller design - both regarding computation and control effort. The
considered Koopman operator-based linearizations do not require compensating input injections as their
exact linearization counterparts such as input-output and feedback linearization. For systems with useful
(stabilizing) nonlinearities, feedback linearization approaches are known to be non-robust [116]. Further-
more, feedback linearizing controllers does not aid in respecting arbitrary cost functionals (in a receding
or infinite horizon fashion) for control design due to compensation-based policies [117]. One example of
the advantageous use of Koopman operator dynamical models with respect to feedback linearization can be
found in Kaiser et al. [39].

An interesting category of dynamically challenging systems are underwater vehicles, e.g. remotely oper-
ated vehicles (ROVs). They are nonlinear and stable due to the dampening effect of hydrodynamic forces.
Thus, ROVs present a real world example of a system with useful nonlinearities, whose cancellation (i.e. via
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feedback linearization) can render a stable system unstable for the smallest of modeling errors [118] while
using excessive amounts of control effort [119]. With the recent developments in efficient bio-inspired designs
of underwater vehicles [120, 121], the need for more efficacious controllers becomes increasingly important
for their autonomous operation. Given that, it is worthwhile considering Koopman operator dynamical
models for efficient optimal control, especially for “well-behaved” systems.

6. CONCLUSION

We systematically review all key aspects of Koopman operator dynamical models in order to provide
information relevant for data-driven representations, analysis and control through a holistic perspective.
Concerning representations, the current state-of-the-art looks to be geared more towards finding relevant
eigenfunctions for prediction, as opposed to a span of only approximately Koopman-invariant observables
without tapping into the operator’s spectrum directly. Current approaches are able to well represent a
system’s transient and quasi-periodic behavior while non-dissipative dynamics and continuous spectra are
still an open research question. The compelling feature of the paradigm is that, if representations can
be efficiently learned in a well-posed manner, a system’s prediction, analysis and control become greatly
simplified. At present, that involves employing modeling approaches for which there is no overarching data-
driven framework. Nevertheless, the recent developments in the field show promise in making Koopman
operator-based system modeling more viable than ever before. When the operator’s eigenfunctions are
shared between the continuous- and discrete-time representations of a system, they form meaningful and
amendable parameterizations of the system’s dynamics (even if learned via non-parametric methods).

The one main challenge in the field of Koopman operator dynamical models is learning genuinely invariant
coordinates under the Koopman operator. Moreover, the relevance determination of the coordinates together
with model order choice require a more rigorous consideration. In terms of safety-critical control, tractable
a priori error quantification is still unconquered - hindering the wider applicability of Koopman operator-
based frameworks. Also, the linear evolution has the potential to offer efficient uncertainty propagation - a
more challenging matter for models in “dynamics of states” representations.

While the heuristics of current data-driven approaches do work well under some circumstances, there
is evidence pointing to the fact that spectrally direct approaches lead to better performance with more
efficacious lifting bases. Nevertheless, there is still a considerable gap between the Koopman operator-
based system-theoretic considerations and their data-driven realizations - due to the incoherence between
the system and learning theory. Future works addressing this, at least for some classes of systems, are of
great importance on the way towards the development of an overarching framework. In turn, this would
allow meaningful comparisons to conventional system identification and control methods - which is currently
not possible in a principled way. Moreover, rigorous results on the general existence of finite-dimensional
exact representations, akin to the one from the motivating Example 2.1 are missing. Also, rigorous results
on spectral convergence and the convergence of modes (to reconstruct the observable to predict) are still
an open question. This analysis would split genuine time-linearity of the considered coordinates and their
relevance when one can meaningfully truncate the spectral decomposition. A priori certificates regarding
the quality of state-reconstruction given a desired linear system order - as well as the converse - are still
not rigorously considered. Nevertheless, the modes and the spectrum are interconnected, but if the learner
is constrained to only consider the Koopman-invariant coordinates - i.e. (generalized) eigenfunctions - one
could focus on finding a subset of those that efficiently reconstruct the observable to predict.

Furthermore, the general lack of comparison of the resulting control frameworks to exact linearization
procedures using feedback needs to be addressed. Such comparisons could better rectify under what circum-
stances the Koopman operator-based controllers are actually advantageous. It is also crucial to assess the
robustness of these controllers under external disturbances - something not addressed at present. Neverthe-
less, the limits of predicting general controlled systems demonstrated in Section 5 make the consideration
of iterative direct control design is more conceivable than obtaining globally predictive models. For model-
based reinforcement learning the paradigm poses an interesting prospect, as an almost global linear model
implicitly parameterizes both the optimal value function and the policy (through a set of lifted coordinates).
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Under changing conditions, exploring the possibilities of adaptive control and online learning remain an
exciting area yet to be investigated.
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[73] S. Klus, B. E. Husic, M. Mollenhauer, F. Noé, Kernel methods for detecting coherent structures in dynamical data, Chaos
29 (12). doi:10.1063/1.5100267.

[74] E. Kaiser, J. N. Kutz, S. L. Brunton, Discovering Conservation Laws from Data for Control, Proceedings of the IEEE
Conference on Decision and Control 2018-Decem (CDC) (2019) 6415–6421. doi:10.1109/CDC.2018.8618963.

[75] S. Klus, I. Schuster, K. Muandet, Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces,
Journal of Nonlinear Science 30 (1) (2020) 283–315. doi:10.1007/s00332-019-09574-z.

[76] E. Kaiser, J. N. Kutz, S. L. Brunton, Sparse identification of nonlinear dynamics for model predictive control in the
low-data limit, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2219). doi:

10.1098/rspa.2018.0335.
[77] B. O. Koopman, J. v. Neumann, Dynamical Systems of Continuous Spectra, Proceedings of the National Academy of

Sciences 18 (3) (1932) 255–263. doi:10.1073/pnas.18.3.255.
[78] F. Takens, Reconstruction and Observability, a Survey, IFAC Proceedings Volumes 31 (17) (1998) 427–429. doi:10.

1016/s1474-6670(17)40373-9.
[79] H. Arbabi, M. Korda, I. Mezic, A Data-Driven Koopman Model Predictive Control Framework for Nonlinear Partial

Differential Equations, Proceedings of the IEEE Conference on Decision and Control 2018-Decem (2019) 6409–6414.
doi:10.1109/CDC.2018.8619720.

[80] B. L. Ho, R. E. Kalman, Effective construction of linear state-variable models from input/output functions, At-
Automatisierungstechnik 14 (1-12) (1966) 545–548. doi:10.1524/auto.1966.14.112.545.

[81] S. J. Qin, W. Lin, L. Ljung, A novel subspace identification approach with enforced causal models.
[82] S. J. Qin, W. Lin, L. Ljung, A novel subspace identification approach with enforced causal models, Automatica 41 (12)

(2005) 2043–2053. doi:https://doi.org/10.1016/j.automatica.2005.06.010.
[83] T. Berry, J. Harlim, Variable bandwidth diffusion kernels, Applied and Computational Harmonic Analysis 40 (1) (2016)

68–96. doi:10.1016/j.acha.2015.01.001.
[84] R. R. Coifman, S. Lafon, Diffusion maps, Applied and Computational Harmonic Analysis 21 (1) (2006) 5–30. doi:

10.1016/j.acha.2006.04.006.
[85] Z. Wang, R. M. Jungers, Immersion-based model predictive control of constrained nonlinear systems: Polyflow approxi-

mationarXiv:2011.13255.
[86] D. Bruder, B. Gillespie, C. David Remy, R. Vasudevan, Modeling and Control of Soft Robots Using the Koopman

Operator and Model Predictive Control, 2019. arXiv:1902.02827, doi:10.15607/rss.2019.xv.060.
[87] D. Bruder, X. Fu, R. B. Gillespie, C. D. Remy, R. Vasudevan, Koopman-based Control of a Soft Continuum Manipulator

26

http://dx.doi.org/10.1038/s41467-018-07210-0
http://dx.doi.org/10.1137/18M1177846
http://dx.doi.org/10.24963/ijcai.2019/440
http://dx.doi.org/10.1137/19m1267246
http://dx.doi.org/10.1017/S0022112009992059
http://dx.doi.org/10.1016/S0005-1098(01)00235-7
http://dx.doi.org/10.1137/17M116207X
http://dx.doi.org/10.1007/BF01443992
http://dx.doi.org/10.11650/twjm/1500407524
http://arxiv.org/abs/1106.3370
http://arxiv.org/abs/1106.3370
http://arxiv.org/abs/1106.3370
http://dx.doi.org/10.1103/PhysRevD.83.065019
http://dx.doi.org/10.1016/j.physd.2012.08.017
http://arxiv.org/abs/1611.01209
http://arxiv.org/abs/1611.01209
http://arxiv.org/abs/1403.6559
http://dx.doi.org/10.1016/j.automatica.2019.05.016
http://dx.doi.org/10.1007/s00332-017-9437-7
http://arxiv.org/abs/2002.06094
http://arxiv.org/abs/2002.06094
http://arxiv.org/abs/2002.06094
http://arxiv.org/abs/1809.11092
http://dx.doi.org/10.1063/1.5063533
http://dx.doi.org/10.1063/1.5100267
http://dx.doi.org/10.1109/CDC.2018.8618963
http://dx.doi.org/10.1007/s00332-019-09574-z
http://dx.doi.org/10.1098/rspa.2018.0335
http://dx.doi.org/10.1098/rspa.2018.0335
http://dx.doi.org/10.1073/pnas.18.3.255
http://dx.doi.org/10.1016/s1474-6670(17)40373-9
http://dx.doi.org/10.1016/s1474-6670(17)40373-9
http://dx.doi.org/10.1109/CDC.2018.8619720
http://dx.doi.org/10.1524/auto.1966.14.112.545
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2005.06.010
http://dx.doi.org/10.1016/j.acha.2015.01.001
http://dx.doi.org/10.1016/j.acha.2006.04.006
http://dx.doi.org/10.1016/j.acha.2006.04.006
http://arxiv.org/abs/2011.13255
http://arxiv.org/abs/1902.02827
http://dx.doi.org/10.15607/rss.2019.xv.060


Under Variable Loading ConditionsarXiv:2002.01407.
[88] C. Folkestad, D. Pastor, J. W. Burdick, Episodic Koopman Learning of Nonlinear Robot Dynamics with Application to

Fast Multirotor LandingarXiv:2004.01708.
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