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Abstract

The past decade’s explosion in the amount and diversity of available data has
had a considerable impact on the field of machine learning. This increase in size,
dimensionality, and variety of datasets came not only with new opportunities, but
also with significant challenges, like the so-called “curse of dimensionality”. Sparse
grids are a numerical approach that can offer relief in this regard and have already
been successfully used in various learning scenarios, however many aspects remain
to be examined.

In this work, we explore and extend the use of spatially adaptive sparse grids
for several specific learning tasks, examining the relationships between algorithm
development, high-performance aspects, and user-oriented implementation. To this
end, our contributions are multiple. In the area of density estimation, we introduce
several new sparse grid-based algorithms which solve the problems of estimating
differences, ratios, partial derivatives, and partial derivative ratios of probability
densities, providing analysis of their theoretical properties and numerical accuracy.
Our various tests show that these new methods can not only equal, but also surpass
existing kernel-based approaches. In the area of classification and regression with
sparse grids, we focus on high-performance aspects of code implementation, as well
as their practical application. Specifically, we provide a code optimization study of
a legacy regression/classification implementation for the recent Knight’s Landing
architecture, obtaining speed-ups versus older architectures comparable to those
obtained in literature on similar computational kernels. The same regression code
is then used on real-world financial data to improve the runtimes in our study of
time series prediction using spatially adaptive sparse grids. We show there that
modified linear basis functions can produce significantly better results than those
obtained previously with the regular linear basis and the Combination Technique.
Lastly, we bring contributions also to the area of sparse grid-based clustering, where
we take a user-oriented approach to adapting, developing, and implementing two
new methods, used for finding and analyzing deterministic, respectively uncertain,
clusters in data. Tests on artificial and real datasets show that our approaches
ease the ability of users to gain insight into the structure of datasets by providing
compelling visual aid and relevant metrics for deterministic and statistical analysis.

All these results thus advance the field of spatially adaptive sparse grids, as
applied to learning tasks, answering previously raised questions and introducing
brand new avenues of future research.
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1 Introduction

A true boom in the amount, dimensionality, and sheer diversity of data available
and required to learn from took place over the past decade. This information ex-
plosion has aided in the evolution of machine learning into an essential, vibrant,
and complex field of study, with far-reaching and varied applications in many as-
pects of everyday life. However, this increase in both amount and complexity of
the available datasets for learning tasks has brought to the front new challenges,
one of the most prevalent being the so-called “curse of dimensionality” [6]. This
term encompasses issues deriving from the exponential decrease in representation
and prediction reliability encountered with the increase of data dimensionality, in
the absence of an equally exponential increase in the amount of available data.
Sparse grids, devised by Smolyak [76] and popularized later by Zenger [91], are a
numerical method that tries to lessen the negative impact of this curse. In this
thesis, we explore and expand the applicability of spatially adaptive sparse grids in
various machine leaning scenarios.

While sparse grids were (re)introduced in the contemporary era in the context of
solving differential equations, it soon became apparent that this numerical method
had the potential for a far wider reach. We can trace back some of the earliest algo-
rithms dealing with sparse grids in learning tasks specifically to the works of Garcke
and Griebel. Their initial directions of study were geared on dimension-adaptive
solutions to the regression/classification scenarios [28]. Further work followed suit,
with focus on different basis functions [26] and an extension of these learning sce-
narios to the semi-supervised setting using the intrinsic geometric characteristics
of the input datasets [27], results that Garcke coalesced in his PhD thesis [40]. He
followed this with a better combination technique approach for solving the regres-
sion problem on sparse grids [22]. It has to be noted that the majority of these
early solutions were designed with dimensionally adaptive sparse grids in mind, i.e.,
using the combination technique. Since then other interesting contributions have
been made, for example an integrated preprocessing step of input data transfor-
mation to better fit the intrinsic axis-aligned grid point distribution of the sparse
grids [10]. Solutions to the regression/classification problem have seen a big boost
with the introduction of the spatially adaptive sparse grids, Pflüger proving that
this approach can deliver high accuracies in these learning scenarios [64]. Algo-
rithmically, this sparse grid approach to regression/classification has not changed
significantly since, although its use-cases have been extended. Relevant to our
work, Garcke et al. [9, 25] combined the delay embedding technique with sparse
grid-based regression to successfully address the problem of time series prediction.
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1 Introduction

Another machine learning topic of interest in the community is density estima-
tion. First algorithmic contributions in this direction came from Peherstorfer [58],
who first introduced sparse grid density estimation by adapting a spline-smoothing
approach [60]. This has opened further research avenues, as both density-based
clustering [61] and density-based classification [59] could then be performed using
sparse grids, however no concrete steps have since been taken into investigating
further the application of sparse grids to estimating more complex quantities than
a single density.

It goes without saying that performance considerations cannot be made indepen-
dently of the algorithmic development. Pflüger gathered his contributions into a
library called SG++1, which has since expanded to contain many different mod-
ules pertaining to various applications. Generic node level optimizations and vec-
torizable code have been included from the start in order to obtain fast time-to-
solution [64]. More hardware-aware approaches for the regression/classification
problem have since been implemented by Heinecke [34], who used architecture-
specific code (intrinsics) and manual vectorization techniques to optimize the vector-
matrix multiplications required by the sparse grid solution for certain Intel proces-
sors. Although subsequently Pfander et al. [63] introduced a new subspace-based
approach to obtain even better performance on CPUs and GPUs via an OpenCL
implementation, the approach of Heinecke remains an interesting study case which
so far was not fully explored in relation to newer CPU architectures.

In terms of an open-source, consolidated code base, SG++ is one of the largest
(if not the largest) software libraries for sparse grids and its various applications
that can be currently found. Since its inception, this toolbox has been constantly
improved, expanded, and used as the basis of work on numerous theses and publica-
tions2. Most of its modules, ranging from basic sparse grid tasks like interpolation,
to solving PDEs, quadrature, or optimization problems, are constructed and coded
to be easily understood by future developers and to be easily used by even the
less experienced users. In the machine learning module however, the data mining
submodule stands out by its design as an easy to use, intuitive, and encompassing
solution to various learning tasks using sparse grids. Röhner [69] took the density-
based estimator and classifier of Peherstorfer, improved on both the algorithmic
and performance aspects, added new functionality, and encapsulated everything
in a customizable, extensible, and user-friendly framework. However, while sparse
grid-based solutions to supervised learning tasks, such as density estimation and
classification, which do not particularly require intrinsically user or expert knowl-
edge in their assessment, can profit from this user-oriented nature of the data mining
pipeline, the same cannot be said about supervised learning tasks, like clustering,
where aiding a user in order to make informed decisions based on the results of the
learning process can be critical.

1https://sgpp.sparsegrids.org/
2A non-exhaustive selection of such contributions can be found at: https://sgpp.sparsegrids.
org/publications/
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Our contributions in this thesis revolve around addressing exactly these three
research directions mentioned. Firstly, we explore sparse grid-based solutions to
the problem of estimating certain functions (e.g., differences, ratios, derivatives)
of densities. We focus here on devising good quality, mathematically sound algo-
rithmic solutions, getting our queues from existing kernel-based counterparts which
have proven successful in various applications. Secondly, we investigate the capabil-
ities of the legacy high-performance code of Heinecke to unlock the computational
potential of one of the newest CPU architectures through code optimization, in
order to obtain an improved time-to-solution for regression tasks. With the ability
of such an optimized code to handle larger datasets, we also subsequently address
the question of using spatially adaptive sparse grids for the problem of time series
prediction in the context of currency exchange rates, where up to now only non-
adaptive sparse grids using the combination technique were investigated. Lastly,
we address the lack of a user-oriented sparse grid clustering software solution by
integrating into the data mining pipeline and then extending the approach of Pe-
herstorfer with new functionality. This results in two significant contributions: a
practical hierarchical clustering algorithm and, to our knowledge, the first attempt
at an uncertain clustering approach based on the standard sparse grid method.

Intrinsically, these three research directions lend themselves to be pursued each
with a focus on either the algorithmic development aspects, the performance of the
implemented numerical solution, or the user-oriented design and implementation
decisions that create easy-to-use software. Throughout the thesis, while each of
our contributions will be presented mostly from one of these three perspectives
outlined, we will constantly be making references to the other two as needed, rein-
forcing the reality that these facets, while significant on their own, are (or at least
should be) intertwined to various degrees in any good implementation of any nu-
merical solution. Using different versions of the SG++ library as our basis for our
implementations should already hint to the importance we place on this marriage
of improved algorithms, good performance, and increased usability. Our hope is
that this will also be one of the underlying take-aways of our work, besides our
main, strictly scientific, contributions to the field of sparse grid-based learning.

The rest of the thesis follows a well-defined, natural structure. Chapter 2 lays out
in the first part the theoretical foundations of spatially adaptive sparse grids, with
which in the second part we present the main building blocks on which our work
is constructed, i.e., the existing sparse grid algorithmic and numerical solutions to
the different learning tasks. The following Chapters 3 to 5 will each be dedicated to
one of our three research directions stated above and each with their own focus on
different aspects of numerical software design and implementation. Finally, we will
conclude our work and provide an outlook on future contributions in Chapter 6.
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2 Foundations of Sparse Grids and
Their Applications

As mentioned already in Chapter 1, the curse of dimensionality is noted as one of the
main obstacles pertaining to the problem of handling high-dimensional functions
numerically on a grid. Sparse grids are a method of delaying the onset of this
“curse” (something which, even though highly desired, cannot unfortunately be
completely avoided with current approaches). At its core, the idea of sparse grids
is to create a suitable trade-off between the number of grid points required to
approximate a function and the error such an approximation incurs, while keeping
enough useful properties of the underlying data structure to allow efficient storing
and evaluation.

The concept of such a method has quite a long history, although its first proper
mathematical derivation is usually regarded to be the one given by Smolyak [76].
The method started its modern revitalization with the works of Zenger, who coined
the term “sparse grids” [91]. Most early work on hierarchical basis functions for
sparse grids and their applications was done through the contributions of Bungartz
and Griebel [11]. There has since been no short supply of work done in extending
the range of applications of sparse grids to diverse fields, such as interpolation [11,
74], quadrature [29], machine learning tasks [28, 64, 58, 69], optimization [84],
PDEs [11, 91] or uncertainty quantification [21, 17]. In terms of software solutions,
the most relevant for our contributions is the continuous development of the SG++
library, initially set up through the work of Pflüger [64] and continuously developed
since, however we would be remiss not to mention the existence of other sparse grid
toolboxes [5, 45, 77].

There is nowadays no short supply of resources when it comes to learning about
sparse grids in general and spatially adaptive sparse grids in particular (e.g., [11,
64, 23], to name but a few). This chapter thus does not intend to reinvent the wheel
in that regard, however, as we will treat different existing and new applications of
sparse grids, some of which will require additional mathematical derivations, we
consider important to begin with a uniform treatment of the underlying mathe-
matical formulation. For the most part we employ a similar notation to the one
in [83] and a perspective on hierarchical sparse grids similar to [69], which we found
the most suitable for the purposes of our thesis.

The chapter is structured in two parts. In the first section the focus will be on
introducing the notions common to all sparse grid-based learning methods, with
application-related specifics being treated in the second part. In this way, the
following chapters will be able to more clearly focus on our specific contributions.
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2 Foundations of Sparse Grids and Their Applications

2.1 Introduction into Spatially Adaptive Sparse Grids

2.1.1 Hierarchical Representation of Grid Points

The one-dimensional case. Without loss of generality, up to a linear transfor-
mation of coordinate, we consider our computational domain to be the compact
unit interval Ω = [0, 1], which is a standard assumption made in the context of
sparse grids. To discretize such a domain the straight-forward approach would be
to generate equally-spaced grid points. We will restrict ourselves for now to zero-
boundary functions, thus we can ignore grid points on the boundary ∂Ω. (The
boundaries will be treated in their own section.) For a given discretization level
l ∈ N0 we can thus define 2l − 1 points given by

xl,i = i · 2−l, 1 ≤ i < 2l. (2.1)

These grid points are uniquely determined by their level-index pair (l, i), and
we can use them to, e.g., compute an interpolant of a function r passing through
points r(xl,i).

This same set of grid points can however be constructed also in a hierarchical
manner. This stems from the precise position of grid points that we allow and the
observation that specific grid points at lower levels appear as grid points at higher
levels. We can therefore define the hierarchical level-index of a grid point (l, i) as
the pair (l′, i′) that satisfies the conditions{

xl′,i′ = xl,i,

xl′,i′ = xl′′,i′′ ⇒ l′′ ≥ l′, ∀l′′, i′′ ∈ N0 subject to Eq. (2.1).
(2.2)

The uniqueness of such a pair can be quite easily proven: l′ is the lowest level
at which grid point xl,i can appear, and i′ is its unique identifier at level l′ based
on Eq. (2.1). To distinguish between the two representations, we will call (l, i) the
nodal level-index pair. Fig. 2.1 shows the relationship between the two representa-
tions for level 4 discretization grid points on the unit interval. Additionally, simple
formulas that can compute the hierarchical level-index pair from the nodal ones,
and vice versa, exist [83].

Fig. 2.1 shows that the set of grid points of nodal level l are nothing more than
the reunion of all the sets of grid points of hierarchical levels l′ ≤ l. Moreover, in
each hierarchical level l′ the indices i′ that can exist are odd integers, forming the
set

Il′ =
{

1 ≤ i′ < 2l
′ | i′ ≡ 1 (mod 2)

}
. (2.3)

The multi-dimensional case. The generalization to the domain Ω = [0, 1]d can
be easily done by extending the definition of the nodal and hierarchical representa-
tions, respectively, to the d-dimensional case. We will however now discuss about
a discretization (nodal) level vector l ∈ Nd

0 which produces grid points
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2.1 Introduction into Spatially Adaptive Sparse Grids

0 1

(1, 1)
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(4, 6)

(4, 7)

(4, 7)
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(2, 3)
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(4, 11)

(4, 11)
(4, 12)

(3, 7)

(4, 13)

(4, 13)
(4, 14)

(4, 15)

(4, 15)

Figure 2.1: Example of one-dimensional discretization level 4 grid points inside the unit
interval. The orange diamonds mark the nodal level-index pairs (l, i), and
the blue circles mark the corresponding hierarchical level-index pairs (l′, i′).

xl,i = (xl1,i1 , . . . , xld,id) , 1 ≤ ik < 2lk , k = 1, . . . , d. (2.4)

In order to obtain the corresponding hierarchical multi-index sets, we apply the
Cartesian product on the univariate sets of each dimension:

Il′ = Il′1 × · · · × Il′d . (2.5)

The same as for the one-dimensional case, the set of grid points of hierarchical
level l′ is given by the multi-level-index pairs {(l′, i′) | i′ ∈ Il′}. Surprisingly, this
Cartesian product of index sets is enough to maintain the fundamental property of
the hierarchical representation: the set of grid points of nodal level vector l is given
by the reunion of all sets of grid points with hierarchical level vectors l′ ≤ l, where

l′ ≤ l⇔ l′k ≤ lk, k = 1, . . . , d. (2.6)

Hierarchical relationships. There are some direct implications of this hierarchical
representation. Given the tree-like structure of the univariate grid points in terms
of levels, it is only natural that graph theory terminology was imported in the
sparse grid vocabulary. Therefore, the one-dimensional level-index pairs (lc, ic) and
(lp, ip) are in a child-parent relationship if

lp = lc − 1,

ip = 2 ·
⌊
ic

4

⌋
+ 1,

(2.7)
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2 Foundations of Sparse Grids and Their Applications

root = (1,1)

(3,5)

Figure 2.2: Example of relationships in the univariate grid point hierarchy of discretiza-
tion level 5. With point (3, 5) as reference, its ancestors and descendants
are contained in the blue and orange areas, respectively, marking in each
via hashed areas the direct parent and the two children, respectively. All
grid points inside the green rectangle are leaves. To avoid clutter, we only
show the hierarchical level-index pairs of the reference grid point and of the
root (1, 1).

or, alternatively, {
lc = lp + 1,

ic = 2 · ip ± 1.
(2.8)

The two formulations are given for completeness, as they are otherwise equivalent.
Usually we are given one of the level-index pairs and are looking for the other,
therefore one or the other formulation will be useful at any given time. Based on
this relationship, grid point xlp,ip is called the hierarchical parent of grid point xlc,ic ,
and, conversely, xlc,ic is the hierarchical child of grid point xlp,ip .

Some interesting properties stem from these definitions. Firstly, x1,1 is the only
grid point that has no parent, so it can be considered the root of the hierarchy.
There are grid points that have less than two children; these are called leaves. Sec-
ondly, in this one dimensional case each grid point has at most one parent (with
the root having none) and at most 2 children (leaves have none; in an incomplete
hierarchy grid points with only one child can exist). Lastly, the child-parent re-
lationship can be applied recursively. Starting with a given grid point, going up
the hierarchy from parent to parent up to the root we get the set of hierarchical
ancestors. Similarly, starting at a given grid point and going down the hierarchy
from child to child, considering always both children until we reach only leaves,
we get the set of hierarchical descendants. Fig. 2.2 shows some of these univariate
relationships on a level 5 discretization grid.
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2.1 Introduction into Spatially Adaptive Sparse Grids

To extend these concepts to the d-dimensional case, all we have to do is define
the child-parent condition for multi-level-index pairs (l, i), as all other terms are
defined in relation to this concept. Therefore, the multi-level-index pairs (lc, ic) and
(lp, ip) are in a child-parent relationship if the univariate level-index pairs (lck, i

c
k)

and (lpk, i
p
k) respectively are in a child-parent relationship as described by Eq. (2.7)

or, alternatively, Eq. (2.8).

Using this definition, we can see that in the multivariate case grid point x1 is
the root. Regarding the number of parents and children, respectively, of a generic
grid point, they now increase proportional to d: any grid point except the root has
d parents, one in each dimension, and any grid point except the leaves can have
up to 2d children, two in each direction. While the notion of descendants of a grid
point can still be easily understood and even visualized, the ancestors of a grid
point now form a more complex set. This fact comes into play when one would
want to implement a hierarchical traversal of all grid points, useful for evaluating on
the grid or when discussing spatial refinement (the latter which will be introduced
later, in Section 2.1.5).

2.1.2 Spaces, Subspaces, and Linear Basis Functions

The nodal space. Let us return to the one-dimensional case. There, for each
grid point xl,i we can attach a basis function ϕl,i : [0, 1] → R. As the name
suggests, the minimum condition we require (for now) from these functions is for
them to be linearly independent for a given nodal level l. This means that any
linear combination of these basis functions will be unique in the nodal space given
by

Vl = span
{
ϕl,i | 1 ≤ i < 2l

}
. (2.9)

For any d-dimensional domain Ω = [0, 1]d we can extend all these definitions
by means of tensor products, which will keep the important linear independence
property. For each multi-dimensional grid point xl,i, with l = (l1, . . . , ld) , i =
(i1, . . . , id), the corresponding basis functions will thus be

ϕl,i : [0, 1]d → R, ϕl,i(x) =
d∏

k=1

ϕlk,ik(xk), (2.10)

which define the corresponding nodal space

Vl = span
{
ϕl,i | 1 ≤ i < 2l

}
, (2.11)

where by 1 ≤ i < 2l we mean 1 ≤ ik < 2lk , k = 1, . . . , d.

If we consider that for the case d = 1 we treat one-dimensional vectors just
as scalars, we can give a unified formulation for the solution of an interpolation
problem would look like in Vl for arbitrary values of d. For any real valued function

9
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r : [0, 1]d → R and given discretization level vector l, we can find then a unique
interpolant

r(x) ≈ rl(x) =
∑

1≤i<2l

αiϕl,i(x) (2.12)

by solving the system of equations∑
1≤i<2l

αiϕl,i(xl,i) = r(xl,i) (2.13)

for coefficients αi.

Finally, a useful notation that we will use moving forward is Vdl , denoting the
isotropic nodal space of level l for given or arbitrary dimension d. So, in this
notation, V1

l ≡ Vl, and Vdl ≡ Vl, with lk = l, k = 1, . . . , d, for any d > 1.

Hierarchical subspaces and hierarchical splitting. We have already introduce a
split of the set of grid points along hierarchical levels l′ with multi-index sets Il′ .
We can extend this to basis functions. Therefore, using the unified notation for
an arbitrary d-dimensional case, we can introduce the corresponding hierarchical
subspaces Wl′ defined by

Wl′ = span {ϕl′,i′ | i′ ∈ Il′} , (2.14)

containing the corresponding hiearchical basis functions ϕl′,i′ .

It is straight-forward that Wl′ ⊆ Vl. However, that is quite a weak property and
we would like to have also the stronger hierarchical splitting

Vl =
⊕
l′≤l
Wl′ . (2.15)

This condition would guarantee that the nodal space can be decomposed into
the direct sum of all coarser or same level hierarchical subspaces, allowing us thus
to build successively higher level nodal spaces by simply adding the corresponding
missing intermediate subspaces. This property is key to the construction of sparse
grids, which will be introduced shortly.

For isotropic spaces, Eq. (2.15) becomes

Vl ≡ Vl =
⊕
‖l′‖∞≤l

Wl′ , (2.16)

where by ‖l′‖∞ = max1≤k≤d l′k we denote the infinity, or maximum, norm.

In general, the hierarchical splitting condition is not easily attainable and it is
highly dependable on the type of basis functions chosen.

10



2.1 Introduction into Spatially Adaptive Sparse Grids

The piecewise linear basis. In order to more easily understand the construction
of sparse grids and their interpolants, we will introduce now our first type of basis.
In the following we will restrict ourselves to presenting only the 1-dimensional case.
This is done for two reasons: the multi-dimensional case builds upon the univariate
formulation by means of Eq. (2.10), and [83] proved that the general hierarchical
splitting property can be reduced to proving its one-dimensional counterpart, which
is a simpler task.

This simple basis is formed using the piecewise linear (or hat) functions

ϕ1
l,i(x) = max

(
1−

∣∣x · 2l − i∣∣ , 0) , (2.17)

whose supports are given by

supp(ϕ1
l,i) = [xl,i−1, xl,i+1] . (2.18)

Here, the superscript “1” denotes the degree of the functions (in a polynomial
sense), a notation which will link to the B-spline basis functions which will be
introduced later in the chapter.

The piecewise linear are by far the most used basis functions, their attractiveness
stemming from their simplicity, ease of evaluation, and narrow support. Being non-
zero only in their corresponding intervals

(
2l(i− 1), 2l(i+ 1)

)
, it is also straight-

forward to prove that they are indeed linearly independent, and moreover satisfy
the hierarchical splitting property (Eq. (2.15)). The level 3 univariate hat functions
are shown in Fig. 2.3.

An important property of these functions is that the hierarchical splitting con-
ditions applies to this basis even in the absence of any boundary treatment, a
property that is not shared by general basis functions. Both the boundary issue
and higher-degree bases will be treated later in the chapter.

2.1.3 Full Grids vs. Sparse Grids

Interpolation on the full grid. We have introduced the individual grid points, we
have associated basis functions to them, and then grouped those functions into a
nodal space that can be decomposed into hierarchical subspaces. With grid points
and basis functions being in a on-to-one correspondence, it is only natural to also
better define the sets and subsets of grid points in this nodal-hierarchical dichotomy.
Therefore, the set

{
xl,i | 1 ≤ i < 2l

}
of all grid points of level l form a full grid,

while the subsets {xl′,i′ | i′ ∈ Il′} of grid points corresponding to each subspace
Wl′ form subspace grids. (We have imported here a useful terminology introduced
in [69]. There full grids are called instead “component grids”.) For full grids, in
the case where the same discretization level l is being used in all dimensions, so for
isotropic full grids, we can eliminate the vector notation and denote those grids by
the scalar level value (e.g., 3-dimensional full grid of level l = 2, instead of level
vector l = (2, 2, 2)).
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(a) Nodal hat functions

ϕ1
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3,3 ϕ1
3,5 ϕ1
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2,1 ϕ1

2,3

0 1

ϕ1
1,1
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(b) Hierarchical hat functions in level-wise de-
composition

Figure 2.3: The 1-dimensional nodal and hierarchical piecewise linear basis functions up
to level 3. Both sets of functions span the same space. Due to their linear
nature, these basis functions satisfy the hierarchical splitting condition on
the whole unit interval even without boundary grid points.

For bases that satisfy hierarchical splitting, it is clear that the solution of the
interpolation problem in Vl from Eq. (2.12) does not change whether we consider
the nodal representation or the hierarchical one on a full grid. Therefore it holds:

rl(x) =
∑
l′≤l

∑
i′∈Il′

αl′,i′ϕl′,i′(x). (2.19)

In this formula, the coefficients αl′,i′ are called the (hierarchical) surpluses. The
process of finding these hierarchical coefficients that satisfy the interpolation condi-
tions is called hierarchization, and, depending on the basis functions used, can have
different efficient implementations [64, 83]. The topic of hierarchization algorithms
will however not be covered further in this thesis. Nonetheless, a visualization of
the difference between nodal and hierarchical representations is given in Fig. 2.4 on
a simple one-dimensional interpolation scenario using the already introduced hat
functions.

Always using the full grid for our numerical solutions quickly becomes unusable
due to the curse of dimensionality. For the isotropic full grid of level l in d dimen-
sions, the interpolation error with hat functions on the full grid of a smooth enough
function (i.e., in order two mixed Sobolev space H2

mix, so with bounded weak mixed
derivatives up to order two) can be shown to be quadratic in the mesh size, i.e.,

‖r(x)− rl(x)‖L2 ∈ O(2−2l), (2.20)
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0 1

(a) 1D interpolation on the level 3 nodal hat
functions

0 1

(b) 1D interpolation on the level 3 hierarchical
hat functions

Figure 2.4: Example of a one-dimensional interpolation in both the nodal and hierar-
chical piecewise linear basis of level 3. In both representations the basis
functions ϕ are shown scaled by their corresponding surpluses α (nodal and
hierarchical, respectively). While the nodal surpluses are equal to the val-
ues of the interpolated function (in orange) at the respective grid points,
the corresponding hierarchical surpluses require to be computed taking into
account also the ancestral hierarchical surpluses (see, e.g., [83] for more
details).

however at the cost of
(
2l − 1

)d ∈ O(2ld) grid points [11, 28].

Building the sparse grid. This is where the hierarchical splitting again comes into
play: by choosing subspaces with lower contributions to the total approximation
error, we can eliminate a significant number of grid points with only a minimal
impact on the error. The optimization problem of finding such a subset of subspaces
is of course influenced by the norm we choose for the error. In our case, where we
use the L2 norm, and under the same assumption of the isotropic case of level l, the
solution to such an optimization problem turns out to be the subset of hierarchical
grids of levels ‖l′‖1 ≤ l + d − 1, where ‖l′‖1 =

∑d
k=1 l

′
k is the 1-norm of vector l′.

We call such a grid the regular sparse grid of level l.
In comparison to the corresponding isotropic full grid of same level from before,

on the sparse grid the error worsens only slightly to O(2−2l · ld−1) (in the same
space of H2

mix), while the size of the grid (i.e., the number of grid points) reduces
to just

∑l−1
j=0 2j

(
d−1+j
d−1

)
∈ O(2l · ld−1) [11, 28]. Fig. 2.5 shows the construction of a

2D sparse grid and the reduction in required grid points it provides.

The combination technique. There exists a second way of interpolating a func-
tion on the same set of grid points as the ones of the regular sparse grid of level
l. Instead of direct computation, the combination technique proposes to use multi-
ple solutions on coarser, anisotropic, full grids, building the sparse grid solution as
their linear combination. This is done with three practical observations in mind.
Firstly, as already stated, grid points on lower levels appear in higher ones as well,
so combining their contributions in grids of different discretization levels requires no
interpolations. Secondly, many numerical methods use full grids in order to solve
a variety of problems, therefore there is a simple way of directly coupling those
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W(1,·)

W(·,1)

W(2,·)

W(·,2)

W(3,·)

W(·,3)

(a) Hierarchical subspaces Wl′ of nodal space Vl for l =
(3, 3). Combining all hierarchical subspaces produces a
full grid. Highlighted subspaces (in blue) combine to
form a regular sparse grid. Each subspace shows the
grid points it contains, as well as their minimal supports
(which coincide with the supports of the nodal basis
functions at the grid points).

(b) The two-dimensional level
3 full grid (top) and cor-
responding regular sparse
grid, respectively.

Figure 2.5: The two-dimensional level 3 subspaces and the construction of the corre-
sponding level 3 regular sparse grid.

full grids into the combination technique. Lastly, as we combine (independent)
solutions on multiple grids, this computation can easily be parallelized.

Now that we know what this approach proposes, we can give its mathemati-
cal formulation. The counterpart of the interpolation solution Eq. (2.12) in the
combination technique for the isotropic case of level l is

r(x) ≈ rl(x)combi =
d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
‖l̂‖1=l+(d−1)−k

rl̂(x)

 , (2.21)

where by rl̂ we denoted the interpolation solution on the full grid of level l̂.
Fig. 2.6 exemplifies this combination formula for a 2D level 3 sparse grid.

Although it is clear the same grid points are being used, it can be proven, while
not directly evident, that the combination technique solution and the regular sparse
grid solution to the interpolation problem coincide (for the same grid level l) [64].
However, in learning tasks, as the ones treated in this thesis and which do not use
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V(1,·)

V(·,1)

V(2,·)

V(·,2)

V(3,·)

V(·,3)

Figure 2.6: The two-dimensional level 3 combination technique. As opposed to Fig. 2.5a,
here the components are not hierarchical subspaces but rather nodal ones
(i.e., full grids). However, the same grid points are being used. With orange
we have marked the components contributing with a negative sign in the
formula of Eq. (2.21), and with green those contributing with a positive
sign.

interpolation, the two approaches diverge slightly numerically, each having their
own characteristics in different application scenarios [22].

Further aspects related to the combination technique, such as dimensionally
adaptive sparse grids, will not be covered in this thesis. For our purposes, this
introduction to the combination technique will be sufficient moving forward, but
interested parties can find more in, e.g., [28, 23, 69, 83].

2.1.4 Boundary Grid Points, Modified Bases and Higher-Degree
Bases

The boundary issue. We have postponed until now the discussion regarding the
boundary treatment. That is because this topic is quite extensive on its own, linking
also into the issue of hierarchical splitting and many options exist [64, 83]).

In order to approximate functions that are not zero on the boundary of the
domain Ω the straight-forward approach is to add grid points that live on that
boundary ∂Ω. The simplest option in our univariate hierarchical representation
would be to add these points in their own level l′ = 0, i.e., grid points at indices
i = 0 and i = 2l for a given discretization level l. In the generic d-dimensional case
this translates to multiple subspace grids of levels l′ for which ∃k : l′k = 0.
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ϕ1
3,1 ϕ1
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(a) Univariate level 3 hierarchical piecewise lin-
ear basis with level 0 boundary functions ϕ0,0

and ϕ0,1.

(b) Example of a 2D regular sparse grid
with level 0 boundary points (marked
in blue).

Figure 2.7: A solution to the boundary issue on sparse grids using hierarchical bases.
Adding level 0 functions is the simplest way to allow non-zero boundary
values. This however leads to a drastic increase in total grid points. For
example, in two dimensions for discretization level l we have 22(l−1) + 1
inner points and 2l+2 boundary points. For more details on how the size
of grids changes with the increase in dimensions and discretization level, as
well as other options, like adding boundary points on levels other than 0
(see, e.g., [83]).

As can be seen from Fig. 2.7, this method unfortunately has the unwanted side-
effect that it increases the number of total grid points significantly. An option to
reduce this effect is to add these boundary points in one or more higher levels,
which reduces the amount of boundary points, at the cost of loosing efficiency in
the computation of hierarchical surpluses. For brevity, we will not address those
variants in this thesis, but for more details see, e.g., [83].

Modified hat functions. Another option to avoid the boundary issue was intro-
duced by Pflüger [64], who proposes instead of augmenting the grid with boundary
points to modify the basis functions by means of non-zero extensions towards the
boundary ∂Ω.

As the multivariate case will again be constructed via the usual tensor product,
we are only interested in the univariate case. The idea of Pflüger for applying this
process to hat functions was to have in each level l the inner indices i = 1 and
i = 2l − 1 linearly extrapolate outwards. For all other indices, as their influence
is zero on the boundary, the basis remains unchanged. This results in a slightly
more complex definition for these modified hat functions, but which can still be
implemented and evaluated in practice quite efficiently:

ϕ1,mod
l,i (x) =


1, l = 1, i = 1,

max
(
2− x · 2l

)
, l ≥ 2, i = 1,

ϕ1,mod
l,i (1− x), l ≥ 2, i = 2l − 1,

ϕ1
l,i(x), otherwise.

(2.22)

The basis is exemplified in Fig. 2.8.
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3,7
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2,3

0 1

Figure 2.8: The level 3 modified hat functions. We denote by dashed curves the portions
of the original (unmodified) basis functions which do not overlap with the
modified ones.

Two remarks need to be made. Firstly, the modified hat functions provide only an
educated guess regarding the values of the true values of the interpolated function
at the boundary, under assumptions that either the function does not change too
much close to the boundary, or that the accuracy close to the boundary is of no
concern. Secondly, in many applications, as we will see in this thesis, we can
transform our datasets such that they are fully inside the domain (0, 1)d and have
no boundary influence, thus in those scenarios we can simply ignore the boundaries
altogether and use the regular hat functions that go to zero at the boundary by
default.

Higher-degree bases – not-a-knot B-splines. While hat functions are often
enough to obtain a continuous grid interpolant, sometimes we require additional
properties (e.g., continuous differentiation) from our numerical representation. B-
splines offer a good compromise between additional computational effort for basis
evaluation, minimal function support, and sufficient degree of smoothness.

Valentin [83] worked extensively on finding viable sparse grid bases using B-
splines, which is not a simple task due to the fact that the hierarchical splitting
condition and the hierarchization process are non-trivial for any kind of generic (i.e.,
non-linear) basis functions. In the following we will restrict ourselves to presenting
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the basics of construction not-a-knot B-splines and their modified counterparts,
with proofs and intermediary results left for interested parties to be found in the
cited reference.

The building block to our basis function is the non-uniform B-spline. As usual,
we restrict ourselves to presenting the 1-dimensional case, as the d-dimensional
case can be obtained via the already known tensor product approach. For a given
degree n ∈ N0 and number of splines m ∈ N0, let ξ = (ξ0, . . . , ξm+n) be an ordered
increasing set of real numbers called the knot sequence. Then, for k = 0, . . . ,m−1,
we can define the non-uniform B-splines by the recurrence

bnk,ξ(x) =


x− ξk

ξk+n − ξk
bn−1
k,ξ (x) +

ξk+n+1 − x
ξk+n+1 − ξk+1

bn−1
k+1,ξ(x), n ≥ 1,

χ[ξk,ξk+1)(x), n = 0,

(2.23)

these m splines forming a basis (which denotes the “B” in the name “B-splines”).
The not-a-knot B-splines are a type of non-uniform spline where the knot se-

quence is a carefully chosen subset of the set of grid points for a given discretization
level l. This restricts us to using only odd degree B-splines (i.e., n = 1, 3, 5, . . . ),
however, when taking into account also boundary grid points, guarantees the hi-
erarchical splitting condition on the whole unit domain. This not-a-knot sequence,
for level l and odd degree n is given by

ξn,nakl =
(
ξn,nakl,0 , . . . , ξn,nakl,m+n

)
, m = 2l + 1,

ξn,nakl,k =


xl,k−n, k = 0, . . . , n,

xl,k−(n+1)/2, k = n+ 1, . . . , 2l,

xl,k−1, k = 2l + 1. . . . , 2l + n+ 1.

(2.24)

Using this knot sequence we can define the not-a-knot B-spline basis as

ϕn,nakl,i =

{
Ll,i, l < dlog2(n+ 1)e,
bn
i,ξn,nakl

, l ≥ dlog2(n+ 1)e, i = 0, . . . , 2l, (2.25)

where

Ll,i : [0, 1]→ R, Ll,i(x) =
∏

i′ = 0, . . . , 2l

i′ 6= i

x− xl,i′
xl,i − xl,i′

(2.26)

are Lagrange polynomials.
Two remarks have to be made regarding this basis. Firstly, one need to note that

the basis is defined for grids that contain boundary points, as this is a necessary
condition for the hierarchical splitting to hold, as was proven by Valentin [83].
Secondly, for degree n = 1 not only does the not-a-knot sequence coincide with the
full set of grid points, but the not-a-knot B-splines coincide with the hat functions,
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Figure 2.9: The level 3 modified not-a-knot B-spline functions of degree 3. We denote
by dashed curves the portions of the original (unmodified) basis functions
which do not overlap with the modified ones.

i.e., ϕ1
l,i ≡ ϕ1,nak

l,i , which justifies the superscript notation we introduced in that
section.

For practical reasons, and for the purpose of our thesis, we will not use this basis
due to the increasing number of boundary grid points it entails. We will instead
use the modified not-a-knot B-splines, which are constructed by a similar procedure
as modified hat functions and are defined for a given level l and for inner indices
i = 1, . . . , 2l − 1 by

ϕn,nak,modl,i (x) =



1, l = 1, i = 1,

ϕn,nakl,1 (x)−
d2

dx2
ϕn,nakl,1 (0)

d2

dx2
ϕn,nakl,0 (0)

ϕn,nakl,0 (x), l ≥ 2, i = 1,

ϕn,nak,modl,1 (1− x), l ≥ 2, i = 2l − 1,

ϕn,nakl,i (x), otherwise.

(2.27)

The basis is exemplified in Fig. 2.9.
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2.1.5 Spatial Adaptivity

The issue with using only regular sparse grids to approximate all kind of func-
tions is that we can only increase accuracy by increasing the level, which adds new
grid points in specific places in the domain, however in a spread-out fashion. Real
world functions do not exhibit in general smoothness in the whole domain, therefore
ideally we would like to invest grid points only in areas where these smoothness
conditions are not met, or where the target function is suspected of having inter-
esting characteristics that we want to be reflected in our grid-based approximation.
This is the main idea behind spatial adaptivity: the (re)distribution of grid points
in places of interest inside the computational domain in order to reduce some ap-
proximation error for the problem we are trying to solve. For this purpose, spatial
adaptivity requires the use of the hierarchical representation of grid points.

This is however not the only method of refinement used with sparse grids. The
combination technique naturally lends itself to a dimension-wise adaptivity strategy
instead, where we add or remove grid points at the subspace level, instead of the
more localized approach of spatial adaptivity. This comes with both pros and
cons, as on the one hand it can more easily increase or decrease the resolution in
certain dimensions of interest, but on the other hand it can lead to a more steep
increase in used grid points, especially when the phenomena we want to capture
with the sparse grid in a certain direction does not span the whole domain, or
when the directions of interest are not axis-aligned. Some of these drawbacks were
addressed by Obersteiner [55] who implemented a spatially adaptive combination
technique using dimension-wise refinement, with significant improvement to the
regular adaptivity strategy for interpolation and quadrature tasks.

We could say that selecting a certain level sparse grid is already a sort of a priori
adaptivity step. There have also been ideas put forward that propose the use of
pre-refined (or pre-coarsened, depending how they are constructed) sparse grids for
certain applications (e.g., [62]). However, in general and also in this thesis, when
discussing sparse grid adaptivity we refer to the a posteriori approach, where we use
error estimates of the current grid approximation to add and/or remove grid points
in order to improve the numerical solution of our problem. In the following we
will explore in more detail the process of spatial adaptivity applied to hierarchical
sparse grids.

Grid refinement. The main procedure mentioned the most when referring to grid
adaptivity is refinement, i.e., the process of adding new grid points. For spatially
adaptive sparse grids we need to take into account the nature of the underlying
data structure. It is clear that only leaf grid points are able to be refined, as they
still have hierarchical children to be added. While it is possible to add only specific
children (as, e.g., the refinement strategy for classification in [69]), for our purposes
we focus on the original, and most widespread, approach of always adding all 2d
hierarchical children of any refined grid point. It also has to be noted that in the
multivariate case it is not guaranteed when adding a new grid point that all its
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initial grid
grid point

refinement #1
grid point

refinement #2
grid point

coarsening #1

Figure 2.10: Examples of a spatial adaptivity step on a two-dimensional sparse grid.
Here, we perform two grid point refinements followed by one grid point
coarsening, starting from a level 2 regular sparse grid. Refining a point
( ) adds to the grid all its children ( ), and those children’s hierarchical
parents that are missing ( ). Coarsening a point ( ) removes it from the
grid, together with all its children ( ).

hierarchical ancestors actually exist, therefore any such missing ancestor has to
also be added to the grid in order to fulfill the requirements of algorithms that
require efficient traversals of the grid hierarchy[64].

The spatial refinement step we use is as follows: based on a so-called refinement
criterion, we score leaf grid points and rank them to reflect their importance or
need for refinement. We decide on how many of them to consider, and only choose
that number of top ranked points. For each of them we add all missing hierarchical
children, for each child making sure all of its ancestors exist in the grid.

The grid points allowed to be refined are called refinable. This can be changed on
a problem-specific basis, however in this thesis we consider the maximal refinable
set, i.e., the set of all leaf points.

Grid coarsening. Especially when working with a limited number (or budget)
of grid points, a second type of adaptive step can be required: coarsening, i.e.,
the process of removing existing points from the sparse grid. Grid coarsening is
comparatively more seldom used in the context of sparse grids, even though it does
improve the ability to tailor the computational grid to the underlying data or target
function we work with.

The spatial coarsening step goes as follows: based on a so-called coarsening
criterion, we score all grid points and rank them to reflect their need for removal.
We decide on how many of them to consider, and only choose that number of top
ranked points. For each of them we delete it along with all its hierarchical children.

The grid points allowed to be coarsened are called coarsenable. Some applications
could possibly add an additional restriction on which points can be coarsened. In
this thesis however we only consider the maximal coarsenable set, i.e., the set of all
grid points.
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The adaptive step. One step of grid adaptivity can contain a refinement step, or
both a coarsening and a refinement step (see Fig. 2.10 for an example). Performing
only coarsening is never done, to our knowledge. Mixing the types of adaptive
steps on the course of a sparse grid run (which normally might encompass multiple
adaptivity steps) is also never performed as far as we know, meaning that one has to
decide whether to include coarsening at the start of a sparse grid-based simulation.

Whether it is better in general to perform a grid coarsening before or after the
corresponding refinement step is an open question. By coarsening after refining,
on the one hand we can trim out unwanted children from the maximum of 2d
introduced by each refined point. On the other hand, as we apply the point-
wise operations multiple times in each refinement/coarsening step, poorly chosen
adaptivity criteria can lead to the removal of too many new points, some as soon as
they are introduced by the refinement, leading to a waste of computational effort.
Either way, we recommend that in general the number of coarsened points to be
kept well below that of refined ones, and that coarsening be performed before the
corresponding refinement in each adaptivity step.

Adaptivity criteria. A multitude of adaptivity criteria for sparse grids have been
proposed. While it is in principle possible to use a different criterion for coarsening
than for refinement, that is not done in practice as far as we know. As scores are
supposed to measure some error contribution, a practical option to reduce some of
the computational effort, which we also employ, is to use a single ranking approach,
where we score all grid points once per adaptivity step and choose from top ranks
points for refinement and from bottom ranks points for coarsening (or vice versa,
depending on whether the scores are meant to reflect a direct or inverse relation
to the error). Of course, in both cases we restrict our choices of ranked points to
those which are refinable and coarsenable, respectively. Throughout this thesis we
will use exclusively this single scoring method, with high ranks always marking grid
points needed to be refined.

The first criterion we will use in this thesis is also the simplest. This surplus-based
adaptivity scorer ranks grid points by the absolute value of their corresponding
hierarchical surplus:

scores(xl,i) = |αl′,i′|. (2.28)

It has shown that refining using this criterion reduces the overall L2 interpolation
error [11], making a great default choice for a variety of applications [64, 34, 58].

The simple surplus-based criterion was noted to be prone to overfit when used
for some learning scenarios [64, 69]. Therefore the surplus-volume criterion tries
to alleviate this issue by including the support of each grid point in the score
calculation:

scoresV ol(xl,i) = |αl′,i′ | · |supp(ϕl′,i′)|, (2.29)
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where supp(ϕl′,i′) =
∏d

k=1 supp(ϕl′k,i′k) is the multivariate support obtained via the
Cartesian product of the component univariate supports.

The last criterion we will discuss is the one introduced by Peherstorfer specifically
for the problem of density estimation using sparse grids [58]. The surplus-value
score is more data-driven, being a combination of the absolute magnitude of the
corresponding hierarchical surpluses and the value of the approximation at the
respective grid point:

scoresV al(xl,i) = |αl′,i′| · rl(xl,i). (2.30)

For the problem of more complex density estimators, which will be covered in
Chapter 3, we adjust this criterion to take into account the fact that our target func-
tions are not expected to be probability density functions, therefore negative values
can occur. Therefore, in those scenarios, we will work with a surplus-absolute-value
score

scoresAbsV al(xl,i) = |αl′,i′| · |rl(xl,i)|. (2.31)

2.1.6 Additional remarks

Moving forward, we will consider more often than not the case of a generic spatially
adaptive sparse grid, defined only by the number of grid points it contains (or the
size of the grid) N and, possibly, the number of dimensions (or dimensionality) d.
In this case, the hierarchical basis functions span a now level-independent space VN
and any function r ∈ VN living on the grid can to be written as

r(x) =
N∑
k=1

αkϕk(x), (2.32)

where index k follows a non-specific traversal of all grid points, and αk are the
hierarchical surpluses corresponding to the hierarchical basis functions ϕk.

2.2 Learning with Sparse Grids - Current State

Having introduced spatially adaptive sparse grids, we can now introduce some of
the application areas in which we have brought contributions with our thesis. These
refer to problems in the field of machine learning, where some of the more consistent
increase in contributions from the sparse grid community took place over the past
couple decades. In this section we will introduce the main existing approaches that
our work is based on, allowing us later to do a better-informed and more objective
assessment of the place our thesis takes in the larger context. We will focus here
primarily on the relevant notations and the more theoretical aspects upon which
we will build in the following chapters.
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As mentioned already in the introductory Chapter 1, our work in this thesis
brings contributions which have come together by addressing them each with a
specific focus. Therefore, in the following we will present the learning tasks solved
using sparse grids also each with a spotlight on one of the three aspects we want to
highlight: for the density estimation task there will be a more algorithmic focus,
for the regression and classification task we will delve specifically more on the high-
performance computing aspects, and for the clustering task we will focus on the
usability aspects and the interaction of software implementations and their users.

It has to be stated that, while the methods we will be covering, not just in this
section but throughout the thesis, will be presented as viewed primarily from one of
three perspectives, usually these three facets are inexorably linked, and an interplay
of them cannot be understated or dismissed. It is clear that any good new algorithm
has to keep also a performance focus of its subsequent implementation as early on
in its development as possible. Conversely, as certain algorithms reach their limits
in terms of the possible performance they can deliver, innovative new approaches
come naturally as a response in order to allow for a faster time-to-solution. On the
software side of things, pieces of code seldom find satisfying or complete usefulness
independent of larger contexts (i.e., numerical libraries). Especially when want-
ing to increase the reach and applicability of algorithms, maximizing the usability
aspects of these pieces of software has to also be taken into account.

Having established the overarching frame of view in which we will address these
sparse grid-based methods, let us then begin our rundown of these building blocks
which form the foundation of our contributions in this thesis.

2.2.1 Density Estimation using Sparse Grids

Problem statement. The problem of density estimation can be stated generically
as:

Given a set of independent and identically distributed samples in Ω ⊆
Rd, Sp = {xpi }

Mp

i=1 with density p(x), estimate the value of p(x).

Short history of the methods. While not the earliest machine learning tasks
to receive a sparse grid treatment, the problem of sparse grid density estimation
(SGDE) is one that is particularly important among sparse grid algorithms not
only due to the fact that its solution has nice theoretical and numerical proper-
ties in of itself, but also because it provided the means to both reach previously
unattainable machine learning tasks (i.e., clustering [61]) and improve on already
existing solutions (i.e., classification [59]).

The algorithm introduced by Peherstorfer [60] to solve the density estimation
task is based on the derivations of Hegland et al. [33], who used a spline smoothing
approach to find the desired estimate as the solution of a variational equation.
Peherstorfer restricted then the search space to that of sparse grid-based functions.
For the purposes of this thesis, we will reframe the mathematical derivation of
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the algorithm more into the key of a straight-forward squared loss optimization
problem, similar to a constrained kernel density estimation (KDE) (introduced
in its modern form by Rosenblatt [67] and Parzen [57]) with a mean integrated
squared error (MISE) optimality criterion. This will more closely resemble thus
the derivations we will obtain for our new density estimators in Chapter 3.

In the following we will introduce mathematically the algorithm of Peherstorfer,
present some of the numerical properties of the method, and then shortly introduce
the existing implementation that we will use as a template for our own new density
estimators to be introduced in Chapter 3.

The sparse grid algorithm. We begin the mathematical derivation of SGDE by
searching for a function r(x) in a suitable function space V that minimizes the
regularized squared loss given by

J(r) =

∫
Ω

[r(x)− p(x)]2 dx+ λ‖Λr‖2
L2 . (2.33)

The first term of the loss is meant to guarantee that our target function is close
to the exact value. The second term ‖Λr‖2

L2 imposes a smoothness constraint,
similar to those found in kernel-based methods, in order to avoid possible overfitting
problems; the operator Λ is also not imposed. The relationship between these two
effects (accuracy and smoothness) is controlled via the regularization parameter λ.

In order to find our target r(x) we employ techniques of calculus of variations,
such that our minimization problem is replaced by the corresponding weak form

∫
Ω

s(x) r(x) dx−
∫

Ω

s(x) p(x) dx+ λ

∫
Ω

Λs(x) Λr(x) dx = 0, ∀s ∈ V. (2.34)

The exact density p(x) is, of course, unknown, therefore we need to use some
sample-based approximation. While one may consider more complex options, in
practice the usual empirical estimator

p(x) ≈ 1

Mp

Mp∑
i=1

δxpi (2.35)

is enough, where δxpi is the Dirac delta function centered at xpi . This approxima-
tion via an empirical estimator can also be seen as an initial overfitted guess at the
target density from a spline smoothing perspective, especially if we look at the ori-
gin of the method that Peherstorfer applied to sparse grids. Introducing Eq. (2.35)
in Eq. (2.34), we can move the r-independent term on the right-hand side and
obtain

∫
Ω

s(x) r(x) dx+ λ

∫
Ω

Λs(x) Λr(x) dx =
1

Mp

Mp∑
i=1

s(xpi ), ∀s ∈ V. (2.36)
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Until now we have worked in an arbitrary domain Ω and with functions of an
arbitrary space V . At this point we decide to restrict our solution to the domain
of sparse grids, therefore we impose Ω = [0, 1]d and V = VN . Moreover, we use
Galerkin projection in order to transform our variational problem into a linear
system of equations, meaning we consider

r(x) :=
N∑
k=1

αkϕk(x), s(x) := ϕl(x), l = 1, . . . , N, (2.37)

which results in

N∑
k=1

αk

∫
Ω

ϕk(x)ϕl(x) dx+ λ

N∑
k=1

αk

∫
Ω

Λϕk(x) Λϕl(x) dx

=
1

Mp

Mp∑
i=1

ϕl(x
p
i ), l = 1, . . . , N.

(2.38)

It is usual to write this equation in its equivalent matrix-vector form

(R+ λC)α = bp, (2.39)

where Rk,l = 〈ϕk, ϕl〉L2 , Ck,l = 〈Λϕk,Λϕl〉L2 , bp = 1
Mp
Bpep, with Bp

l,i = ϕl(x
p
i )

and ep is the all-ones vector of length Mp.
This representation of the right-hand side as a multiplication of a matrix B of

evaluations of all grid basis functions at all input data points and of a vector of ones
e is used to more closely depict the way the matrix-vector operations are actually
implemented in the code of the SG++ library.

The choice of regularization. The choices of different regularization operators
Λ has been quite extensively studied [64]. As pointed out also in [58] and [83],
the hierarchical surpluses αk themselves are linked to the second derivative of the
target function interpolated on the sparse grid, so for many applications a simple
yet useful choice in practice is

‖Λr‖2
L2 =

N∑
k=1

|αk|2, (2.40)

which results in using the identity matrix C = I in Eq. (2.39). This avoids the
dimensionality-dependent computations of using for example the Laplacian Λ = ∇,
while obtaining similar regularization properties at virtually no added computa-
tional cost. This behavior was initially observed in classification and regression by
Pflüger [64], but Peherstorfer then saw similar benefits when applied to density es-
timation [60]. Therefore, for the purposes of our thesis, we will use only the simple
identity regularization as well.
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Properties of the linear system. The main reason this sparse grid-based density
estimator is a very powerful approach is because it breaks the dependency of the
resulting linear system to be solved on the number of input data samples, which
is usually a significant drawback in the more well-known kernel-based approaches.
Indeed, as can be seen from Eq. (2.39), the system matrix R grows only with the
number of grid points. While for full grids this might not even be an advantage at
all, when employing sparse grids normally the number of grid points can be even
orders of magnitude less than the number of input data points. The only place the
input dataset is used in this formulation is in the right-hand side term, but also
there, with the reduced number of basis functions to iterate through, one expects
fewer computations to be done overall than an equivalent kernel-based approach.
This is of course just strictly in terms of maximum computations to be performed,
excluding all the possibilities of speed-ups due to efficient implementations and
parallelization opportunities that both approaches can provide.

As the system matrix does not change with extra input datasets, one can pre-
compute these matrices and store them efficiently using algebraic method, namely
matrix decomposition techniques. Peherstorfer observed already the potential of
this approach by proposing the use of lower-upper (LU) and eigenvalue decompo-
sitions of R in what is called an offline/online splitting: a more expensive offline
step to learn the decomposition for a given grid, then repeated online applications
of the decomposed matrix to learn from consecutive batches of data, in a similar
approach to classical techniques in stream learning.

The data mining pipeline of SG++. To properly conclude this rundown on the
existing work related to the SGDE method we could not omit the implementation
aspects. The piece of software of interest to us in the context of density-based
learning is the data mining pipeline of Röhner[69], who created it as a submodule
of the larger SG++ sparse grid library (originally by Pflüger [64]) and upon which
we will build our own implementation of the new density estimators in Chapter 3.

In this code, Röhner extended significantly the offline/online splitting introduced
by Peherstorfer. Firstly, he expanded the choices of possible decomposition, such
that now the default recommended options are in fact some of the more recent
additions, namely the orthogonal and Cholesky decompositions. Secondly, the
pipeline supports spatial adaptivity in most system matrix decompositions, such
that changes in the grid (i.e., refinement and coarsening steps) as well as in the
regularization parameter λ will result in efficient updates of the existing decompo-
sition of R, not in a full recalculation of the system matrix. Added performance
was introduced by Röhner by offering ScaLAPACK1-based variants to all these
decompositions, which parallelizes the matrix-vector operations done when solving
the linear system in Eq. (2.39).

One additional important aspect of the data mining pipeline is its batch learning
process [69]. What this entails is the processing of subsets of the input dataset

1http://performance.netlib.org/scalapack/
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(called batches) and the incremental build of the final solution to the density es-
timation problem from the results on each successive batch. This allows not only
an affordable way to deal with very large datasets for which the effort can now be
split and even parallelized, but also allows for the implementation of a concept drift
approach, where batches have a time component, thus older data can be discounted
at a different rate than newer data. In the case of SGDE, one important remark
has to be made: splitting the computation on different batches does allow us a
simple way to recover the exact solution we would obtain when processing the full
dataset. This is due to the fact that the whole left-hand side of the linear system
in Eq. (2.39) is independent of the input dataset. In the case of our new estima-
tors in Chapter 3, we will see that the recovery of the exact full dataset solution
from batches can sometimes be more problematic, as it will be addressed in the
implementation details of each of those methods.

While some more details regarding the structure and other functionalities of the
data mining pipeline will be given in Chapter 5, we cannot understate the benefits
and importance of working with a well-crafted piece of software, that has what
we will call later in the thesis a high degree of usability. This aspect is extremely
relevant, as our own density estimators which we will introduce in Chapter 3 were
integrated into this existing framework, and thus could benefit directly from a lot
of preexisting functionalities. For example, the opportunities for parallelizing the
batch processing and ScaLAPACK-based speed-ups of matrix-vector operations
(where applicable), as well as hyper-parameter optimization and visualization of
results, come with very little added cost due to the modular fashion in which
the pipeline is constructed. The former two functionalities in particular will be
expanded upon for each new density estimator, as their implementation involved
more effort and was more algorithm dependent. The latter two functionalities
are mostly independent of the algorithms, so they will not be detailed further
(although more information for interested parties can be found in [69]). We thus
chose deliberately to only focus in this thesis on discussing those functionalities
of the pipeline that required more significant work on our part in the process of
integrating our new algorithms and which differ thus from those already existing
which apply also to the regular density estimation algorithm.

2.2.2 Classification and Regression with Sparse Grids

Problem statements. The problem of regression for machine learning can be
formulated as:

Given a set of training data points S = {xi}Mi=1 in Ω ∈ Rd and a
corresponding set of scalar targets {yi}Mi=1 ∈ R, best approximate the
function f that satisfies f(xi) = yi, ∀i = 1, . . . ,M .

With this formulation, the task of classification can be viewed to a great ex-
tent as nothing more than a particular case of regression, where the targets are
restricted to non-negative integers representing the possible class labels: {yi}Mi=1 ∈
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{1, 2, . . . , k}, k ∈ N0. Especially in the context of the standard sparse grid ap-
proach to solving the two tasks (which we will introduce shortly), there is little to
no difference in terms of solving these tasks. This is why in various sections of this
thesis we might refer, when needed, to a combined “regression/classification” task,
instead of specifically one or the other of the problems.

Short history of the methods. We can trace back some of the earliest algorithms
dealing with sparse grids in learning tasks to the works of Garcke and Griebel.
Their initial directions of study were on dimension-adaptive solutions to the re-
gression/classification scenarios [28]. Further work followed suit, with focus on
different basis functions [26] and an extension of these learning scenarios to the
semi-supervised setting using the intrinsic geometric characteristics of the input
datasets [27], results that Garcke coalesced in his PhD thesis [40]. He followed this
with a better combination technique approach for solving the regression problem on
sparse grids [22]. It has to be noted that the majority of these early solutions were
designed with dimensionally adaptive sparse grids in mind, i.e., using the combina-
tion technique. Since then other interesting additions to this approach have been
made, for example an integrated preprocessing step of input data transformation to
better fit the intrinsic axis-aligned grid point distribution of the sparse grids [10].
Solutions to the regression/classification problem have seen a big boost with the
introduction of the spatially adaptive sparse grids, Pflüger proving that this ap-
proach can deliver high accuracies in these learning scenarios [64]. Algorithmically,
this sparse grid approach to regression/classification has not changed significantly
since, although its applications have been extended. Relevant to our work, Gar-
cke et al. [9, 25] combined the delay embedding approach with sparse grid-based
regression to solve the problem of time series prediction successfully, the details of
which will be expanded upon in Section 4.2.

In the following we will give a short theoretical introduction to the method, which
is necessary to the understanding of the optimization efforts which will be described
in Chapter 4.

The sparse grid algorithm. In order to solve the regression/classification prob-
lem, we start by searching for a function in a suitable space f ∈ V that minimizes
the regularized squared error

J(f) =
1

M

M∑
i=1

[yi − f(xi)]
2 + λ‖Λf‖2

L2 , (2.41)

where the first term contains the cumulated error in approximation at the data
points and the second term combats the tendency for overfitting by imposing a
smoothness constraint.

Restricting the search for a solution to the sparse grid space V = VN , i.e., f(x) :=∑N
j=1 αjϕj(x), we obtain:
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J(fN) =
1

M

M∑
i=1

[
yi −

N∑
j=1

αjϕj(xi)

]2

+ λ‖Λf‖2
L2 . (2.42)

We require then for this error to be minimized with respect to all αk, k = 1, . . . , N ,
i.e., we impose ∂J(fN )

∂αk
= 0, resulting, after maneuvering the terms, in the linear sys-

tem:

N∑
j=1

αj
1

M

M∑
i=1

ϕj(xi)ϕk(xi) + λ

N∑
j=1

αj

∫
Ω

Λϕj(x) Λϕk(x) dx

=
1

M

M∑
i=1

ϕk(xi) yi, k = 1, . . . , N,

(2.43)

or, in matrix-vector form:(
1

M
BBT + λC

)
α =

1

M
By, (2.44)

where, similarly to the notation introduced by Eq. (2.39), Cj,k = 〈Λϕj,Λϕk〉L2 and
Bk,i = ϕk(xi).

Implications from a numerical and practical perspective of this resulting linear
system will be covered in more details while discussing the code optimization pro-
cess in Chapter 4.

2.2.3 Clustering using Sparse Grids

Problem statement. We need, as we have done before, to first define the problem
we are trying to solve. The well-known task of clustering can be stated simply as:

Given a set of data points S = {xi}Mi=1 in Ω ∈ Rd, split it into meaningful
subsets (called clusters).

While everyone can agree that the description of the task is simple, the main
reason why solving the problem of clustering is so equally sought after and hard to
achieve is the fact that there is no unique definition of what the term “meaningful”
actually represents, as it is something that changes not only in term of the context
and type of input data, but also in terms of the algorithmic approaches taken.

The sparse grid algorithm. The idea introduced by Peherstorfer [61] for cluster-
ing using sparse grids is centered on a simple density-based description of clusters:
on the one hand, data points that lie in high density regions are assumed to be
more closely related to each other than to those that lie in low density regions,
and on the other hand, data points lying in similarly high density regions that are
completely separated by low density regions are supposed to be unrelated. This
can be easily explained with the sketch in Fig. 2.11.
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A B C

1

2

Figure 2.11: Sketch of an estimated density and the relationships between data points
in terms of density levels. Points A and B (and, similarly, A and C)
are well separated by a region of low density (line 1), so it is very likely
that they belong in different clusters. Points B and C however are less
separated, as the minimal density level between them is relatively very
high (line 2), therefore it is less likely that they are in different clusters.
Clearly this understanding of similarities in terms of densities has some
limitations, especially in terms of defining more clearly how to identify
these density levels that separate clusters. Such aspects are addressed by
our contributions in this thesis, which will be expanded upon in Chapter 5.

The sparse grid approach is based on two components. Firstly, we require to
approximate the densities at each data point. This is naturally done by performing
SGDE on the input dataset. Secondly, we need a method to relate the data points
to each other in a way that allows the handling of these density-based relations in
order to define the different clusters. The method chosen by Peherstorfer is that of
a similarity graph. The basic steps of Peherstorfer’s algorithm can be summarized
as:

Step 1: Estimate the density distribution of the input dataset S.

Step 2: Construct a similarity graph G for the data points in S.

Step 3: Use the estimated densities to split G into subsets.

Step 4: Assign labels to each obtained subset.

We will now go more into the details of each of these steps. The first one simply
requires us to perform the SGDE algorithm, which we have already described in
Chapter 3, therefore we won’t go into any more details about it here.

The second step is done with a nearest neighbor algorithm using the Euclidean
distance as a similarity metric. Peherstorfer opted for the naive approach of com-
puting all M2 pairwise distances, arguing that the computational costs can be offset
by the simple parallelization options such an approach offers. (This and other per-
formance aspects will be addressed shortly.) Using these distances a n-nearest
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neighbor graph is constructed, such that vertices represent data point and edges
are linking each vertex to its closest (by distance) n neighbors. The value of n is a
parameter of the clustering algorithm that has to be decided upon in advance.

The third step of the algorithm is where we merge the graph representation with
the estimated density. The algorithm proposes to eliminate from the nearest neigh-
bor graph all vertices (i.e., the data points) with a low density value together with
their edges, as well as any additional edge that bridges two high density vertices
over a low density region. In order to split the similarity graph into meaningful
subsets by this method, we have to first define what we consider a low and high
density region, respectively, for this density-based clustering. Peherstorfer intro-
duced another parameter, a density threshold ε, such that density values below ε
will be denoted as “low”, and those above it as “high”. While for vertices it is easy
to decide in which category they are by simply evaluating the sparse grid density
estimation at that data point, for edges the approach taken was to evaluate the
density at the geometric midpoint of the edge. After this vertices and edges are
eliminated, we are left with a graph Ĝ ⊆ G containing a certain number of, e.g., k
connected components which we need to find.

The forth step is now simple: we identify these k connected components of the
remaining graph and assign to each a unique label 1, ..., k, representing a cluster.
Each data point, or graph vertex, in Ĝ will thus be assigned the label of the
component containing it. The remaining data points in G \ Ĝ, eliminated in step
3, are considered noise for the purposes of our thesis.

We need to make a couple small remarks on the algorithm described so far.
Firstly, in the original description by Peherstorfer, steps 1 and 2 are in reverse
order. This is however actually of no consequence, as their respective operations
are completely independent, meaning not only that the order does not matter,
but also that they could be performed in parallel. We have chosen this particular
ordering for the purposes of our thesis as it more clearly reflects our implementation
(which will be addressed later). Secondly, the algorithm description we have opted
for in our thesis contains only 4 steps, while the original in [61] contained 5, with
the additional (last) step described as a classifier trainer on existing clusters in
order to assign also to the eliminated low density data points one of the obtained
labels 1, ..., k. This is not an omission on our part, rather a conscious decision.
Even Peherstorfer actually considered this extra step as optional, with low density
points being just as well be classified as noise, an approach we have also taken in our
implementation in Chapter 5, leaving the study of the best methods to implement
such a fifth step as a future possible contribution.

Performance aspects. As already mentioned, one reason the naive nearest neigh-
bor approach was used by Peherstorfer is because it lends itself to be easily par-
allelized. The main existing contribution in this regard, i.e., with a heavy HPC
focus, was done by Pfander et al. [62], who have implemented a full OpenCL-
based pipeline for the density-based clustering with sparse grids. For the density
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estimation component they straight-forward parallelized the computation of the
right-hand side, and for the system matrix they opted not to decompose it, instead
optimizing directly the matrix-vector operations of the conjugate gradient solver of
the linear system. The graph creation, as mentioned, was easily parallelized across
the data points. The graph pruning, i.e., removing the low density vertices and
edges, can be done in two steps, each of them parallelizable across the data points.
Lastly, the operation of determining the connected components was not distributed,
but was still optimized for shared memory. Pfander et al. proved in their work that
a highly optimized implementation of this approach allows the handling of datasets
of up to 108 elements, viable on compute clusters.

This implementation however lacked the ability to adapt the sparse grid, which
normally would lead to a significant decrease in performance due to the fact that
the linear system needs to be solved again after each refinement and/or coarsening
step. They assessed though that some of these performance losses could be offset
by the use of a less naive, sub-quadratic, yet still parallelizable, approach for the
nearest neighbor algorithm. Both hash- and tree-based methods are known to
perform sub-quadratically and be parallelizable, an aspect which motivated one of
our own implementation choices in Section 5.1.

All these are in line with our overall approach to our contributions to clustering
methods in Chapter 5, where, although we have focused mainly on the usability
criteria, we also took the algorithmic and high-performance aspects into account in
both design and implementation.
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3 Contributions with an Algorithmic
Focus

While the modern study of probability and statistics is old (tracing back to the
works of Pascal and Fermat in the 17th century), interest in the task of estimat-
ing (probability) density functions is comparably recent. First attempts at the
mathematical formalism of the problem and initial numerical solutions have been
provided in the works of Rosenblatt and Parzen in the 1950s and 1960s, who are
usually also credited with the creation of the well-known kernel density estima-
tion (KDE) method (see, e.g., [41] for a rundown of early contributions in the
field). Since then most effort has been placed in improving and expanding these
kind of kernel-based estimators, which do offer some nice properties, as they are
non-parametric, however grow with the number of data points.

As mentioned in Chapter 2, Peherstorfer [60] was the one who introduced den-
sity estimation to the sparse grids community, and his contribution has been the
basis for a significant amount of related work in the field and specifically in the
SG++ library, most of it centered around the data mining pipeline of Röhner [69].
Contributions so far have only focused on improvements in the implementation of
the method, or on expanding the range of applications, especially in the direction
of density-based classification.

Our work in this chapter was motivated by, to the best of our knowledge, the
lack of any study into more complex density estimators using sparse grids. In this
category we include the solutions to the problems of estimating the difference and
ratio of two probability functions, as well as the estimation of the derivative and
derivative-ratio of a probability function. The same as with the original density
estimation problem, these new estimators could become the basis of future work in
various applications.

The chapter is structured as follows. First we will shortly describe and moti-
vate the need for new density estimators. Then, for each such estimator we will
present their purpose, the existing kernel-based counterparts, we will introduce
mathematical derivations for our sparse grid-based methods, discuss properties and
implementation considerations, and in the end present comparative results against
kernel-based variants on various datasets.
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3.1 Introduction to Complex Density Estimators

By a complex estimator we will refer to the solution of estimating directly a function
(other than the identity) of one or more probability densities from corresponding
independent samples of those probability distributions. Probably the most well-
known places where complex estimators can be used are in the computation of
divergences in statistics, which come under the form of integrals over functions of
probability densities. Having not just accurate, but also easily integrable numeri-
cal approximations of those functions would allow for simpler computation of such
quantities. Applications of such estimators are varied, kernel-based approaches hav-
ing been used (besides the already mentioned divergence estimation [72]) for tasks
such as time series segmentation [48], covariate shift adaptation[79], probabilistic
classification [81], mode and ridge seeking [71] and feature selection [72], to name
a few.

As hinted already, kernel-based approaches have been known for quite some time
(for example, early work on direct density ratio estimation are already two decades
old, as stated in [80]). However, since the introduction of sparse grid density esti-
mation no attempts have been made (to the best of our knowledge) to assess the
suitability of sparse grids in solving similar tasks. Our work comes thus to intro-
duce such sparse grid variants for complex estimators that have found success in
kernel-based implementations and assess their numerical properties, opening the
possibility of future uses in various applications previously unattainable by existing
sparse grid methods.

Before delving into these new algorithms, we want to address one final motivating
aspect for our work. With an existing sparse grid-based algorithm for approximat-
ing quite well a probability density from samples, one could naturally pose the
question of whether we actually need any direct procedures for estimating func-
tions of densities. We bring two arguments to the affirmative. The first one is
generic and is similar to the concept of transductive learning introduced by Vapnik
in the late 1990s [81]: it is usually beneficial to avoid solving more general interme-
diate problems. Especially in the case of working with functions of more than one
density (like the difference or ratio), estimating the result directly is less work than
estimating the individual densities first. The second argument is more practical:
increasing accuracy in individual estimated densities would not necessarily result
in a similar increase of accuracy in a function that operates on those densities, as
errors can easily get amplified. Therefore, in order to reduce the errors in the actual
target of our estimation, it can be better to use a direct approach. This holds es-
pecially true when employing spatially adaptive sparse grids, where refinement and
coarsening criteria would be much more complicated to devise for each individual
density estimation than for the direct complex estimator.

For each proposed algorithm the corresponding section will focus first on the
problem formulation, the mathematical derivation, the algebraic properties of the
obtained linear system, and implementation and performance details. The numer-
ical results subsection will then address the goals of the testing procedure, before
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describing how the tests are carried out in terms of the implemented pipeline, qual-
ity measures, and parameters used for both our sparse grid-based methods and the
kernel-based counterparts we compare against. Our tests have been carried out on
various single and mixed data distributions of different sizes and dimensionality
in order to assess all relevant practical properties of our methods. We will then
conclude each section with a short summary of the important aspects our tests re-
vealed and a discussion on the usefulness and applicability of each method moving
forward.

3.2 Density Difference Estimation

The problem statement. The first problem we want to address using sparse grids
is density difference estimation (DDE). Mathematically, we can formulate this task
as:

Given two sets of independent and identically distributed samples in
Ω ⊆ Rd, Sp = {xpi }

Mp

i=1 with density p(x), respectively Sq = {xqj}
Mq

j=1

with density q(x), estimate the difference p(x)− q(x).

Existing approaches. To our knowledge, the method proposed by Sugiyama et
al. [78], called least squares density difference (LSDD), and with which we will
compare later our sparse grid approach, is indeed the first attempt at a direct
solve of the density difference estimation problem. As stated in their work, pre-
viously only studies on the suitability of differences of independent kernel density
estimations (KDEs) have been investigated. A second variant, called constrained
LSDD (CLSDD), showed a slightly improved accuracy, however at a higher com-
putational cost [53]. Our literature review has seen neither a significant usage of
this constrained variant in various applications of kernel-based density difference
estimation, nor a freely available software implementation as in the case of LSDD,
and as such we have restricted ourselves to compare our approach to the original
version.

3.2.1 Sparse Grid Density Difference Estimation

Mathematical derivation. The derivation of the linear system of equations to be
solved in our sparse grid density difference estimation (SGDDE) algorithm follows
quite closely the derivation in the case of regular density estimation (Eqs. (2.33)
to (2.39)), with the obvious difference that the target function is now given by
p(x)− q(x).

Thus, we search for a function r(x) ∈ V in a suitable space that minimizes the
regularized squared loss

J(r) =

∫
Ω

{r(x)− [p(x)− q(x)]}2 dx+ λ‖Λr‖2
L2 . (3.1)
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The corresponding variational equation will then be given by

∫
Ω

s(x) r(x) dx−
∫

Ω

s(x) [p(x)− q(x)] dx+ λ

∫
Ω

Λs(x) Λr(x) dx = 0, ∀s ∈ V.
(3.2)

Replacing the expectations in the second integral with the empirical estimators

p(x) ≈ 1

Mp

Mp∑
i=1

δxpi , q(x) ≈ 1

Mq

Mq∑
j=1

δxqj , (3.3)

and moving the second term to the right-hand side, we get

∫
Ω

s(x) r(x) dx+ λ

∫
Ω

Λs(x) Λr(x) dx =
1

Mp

Mp∑
i=1

s(xpi ) −
1

Mq

Mq∑
j=1

s(xqj), ∀s ∈ V.

(3.4)
Using the sparse grid Ritz-Galerkin projection, we can restrict our search to the

sparse grid space V = VN with N grid points, i.e., r(x) :=
∑N

k=1 αkϕk(x) and
s(x) := ϕl(x), obtaining

N∑
k=1

αk

∫
Ω

ϕk(x)ϕl(x) dx+ λ
N∑
k=1

αk

∫
Ω

Λϕk(x) Λϕl(x) dx

=
1

Mp

Mp∑
i=1

ϕl(x
p
i ) −

1

Mq

Mq∑
j=1

ϕl(x
q
j), l = 1, . . . , N.

(3.5)

In matrix-vector form, the resulting linear system to solve for surpluses α is thus

(R+ λC)α = bp − bq, (3.6)

with Rk,l = 〈ϕk, ϕl〉L2 , Ck,l = 〈Λϕk,Λϕl〉L2 , bp = 1
Mp
Bpep, and bq = 1

Mq
Bqeq.

As in Eq. (2.39), Bp
l,i = ϕl(x

p
i ), and correspondingly Bq

l,j = ϕl(x
q
j), with ep and eq

all-ones vectors of lengths Mp and Mq, respectively.

Properties of the linear system. Comparing the resulting linear systems, there
is little differentiation between the usual density estimation and SGDDE. The only
changes are those affecting the right-hand side, which now is computed based on
two different input datasets, doubling thus the amount of operations usually per-
formed on computing the term. However, as we work on independent datasets,
the operations can in principle be performed in parallel up to the actual difference
operation on the resulting vectors with data points contributions. Regarding the
system matrix of SGDDE, it remains the same as in the case of SGDE, therefore
it inherits all the benefits already described in Section 2.2.1.
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3.2 Density Difference Estimation

Accuracy considerations. We are able to provide for this method a proof of
consistency, in the sense that we can show that

Pr

(
lim

Mp,Mq , N →∞
‖r − (p− q)‖2

L2 = 0

)
= 1, (3.7)

with r ∈ VN ⊂ H2
mix being the solution of the sparse grid linear system in Eq. (3.6).

This consistency assertion simply states that as we approach infinitely many sam-
ples from both input distributions on a sparse grid with a number of grid points
approaching infinity our numerical solution approaches the exact density difference.
Note that due to the fact that we operate with probability density functions we
require the formulation of consistency to also be probabilistic, which however does
not detract from its implications. Furthermore, in order for the sparse grid error
bounds (as presented in Chapter 2) to hold we have to make the mild assumption
that our target density difference function p−q is also in H2

mix. While this assump-
tion is necessary theoretically, in practice sparse grids can deliver good results also
for functions that violate this condition (see, e.g., [64]).

The proof of the consistency assertion in Eq. (3.7) follows the one described
in [60]. If r̃ ∈ VN is the sparse grid interpolant of the target density difference
p− q, we can write the error as

‖r − (p− q)‖2
L2 = 〈r − (p− q), r − r̃〉L2 + 〈r − (p− q), r̃ − (p− q)〉L2 . (3.8)

We will treat these two summands independently. For the first term of Eq. (3.8),
as we consider the behavior at the limits Mp → ∞ and Mq → ∞, we can assume
no overfitting takes place and thus no regularization is needed, i.e., λ = 0. Further-
more, as both r and r̃ are functions represented on sparse grids, their difference
will also be representable in the same sparse grid space. Therefore, if we denote
s := r − r̃ ∈ VN and we use Eq. (3.4), we can write:

〈r − (p− q), r − r̃〉L2 = 〈r − (p− q), s〉L2

= 〈r, s〉L2 −
(
〈p, s〉L2 − 〈q, s〉L2

)
=

1

Mp

Mp∑
i=1

s(xpi ) −
1

Mq

Mq∑
j=1

s(xqj)−
(
Ep(s(x))− Eq(s(x))

)
,

(3.9)
where by Ef (X) we denote the expected value of X with respect to a density
function f .

For the second term of Eq. (3.8) we can provide the upper bound

|〈r − (p− q), r̃ − (p− q)〉L2| ≤ ‖r − (p− q)‖L2 · ‖r̃ − (p− q)‖L2

≤ 1

4
‖r − (p− q)‖2

L2 + ‖r̃ − (p− q)‖2
L2

≤ 1

4
‖r − (p− q)‖2

L2 +O
(
2−2l · ld−1

)
.

(3.10)
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In the first step we have applied directly the Cauchy–Bunyakovsky-Schwarz in-
equality. In the second step we have used Young’s inequality for products via a
small mathematical artifice, in the form of

a · b =
a√
2
· b
√

2 ≤ 1

2

(
a√
2

)2

+
1

2

(
b
√

2
)2

=
1

4
a2 + b2. (3.11)

The third and last step in Eq. (3.10) uses the sparse grid interpolation error bound
for piecewise linear basis functions under the already mentioned assumption of
p− q ∈ H2

mix. Here we assume the sparse grid is regular and of level l.
Combining Eqs. (3.9) and (3.10) into Eq. (3.8), we obtain after shuffling terms:

‖r − (p− q)‖2
L2 ≤

4

3
O
(
2−2l · ld−1

)
+

4

3

(
1

Mp

Mp∑
i=1

s(xpi ) −
1

Mq

Mq∑
j=1

s(xqj)−
(
Ep(s(x))− Eq(s(x))

))
.

(3.12)
Under the limit N →∞, which translates to l →∞, the sparse grid error term

converges to zero, while the second term probabilistically disappears due to the
strong law of large numbers for Mp,Mq → ∞ as the sample averages converge to
their respective density’s expected values. Therefore, as asserted, the sparse grid
method is consistent: Pr

(
‖r − (p− q)‖2

L2 = 0
)

= 1.

Implementation details. The data mining pipeline as it was designed before
our contributions worked on the assumption that a single input dataset would
be enough. However, some of our new algorithms, SGDDE as an example, require
the usage of more than one input dataset. Besides of course the extra code required
to allow the processing of these new input parameters, one important aspect we
wanted to keep form the regular SGDE implementation was the incremental batch
learning of the input datasets.

The critical part of the whole batch processing concept is the combination step,
i.e., the calculation that performs the incremental update of the right-hand side to
account for the contribution of the current batch. Using a notation similar to [69],
we can consider that datasets Sp and Sq are being processed simultaneously in

batches of sizes M̃
(k)
p and M̃

(k)
q , respectively, resulting in the batch right-hand sides

b̃p
(k)

and b̃q
(k)

, respectively (computed as in Eq. (2.39)). If we denote M
(k)
p =∑k

i=1 M̃
(i)
p and M

(k)
q =

∑k
i=1 M̃

(i)
q , the update rule for the right-hand side of the

SGDDE linear system after k batches can be written as:

bp(k) − bq(k) =

(
M

(k−1)
p

M
(k)
p

bp
(k−1) − M

(k−1)
q

M
(k)
q

bq
(k−1)

)
+

(
M̃

(k)
p

M
(k)
p

b̃p
(k) − M̃

(k)
q

M
(k)
q

b̃q
(k)

)
.

(3.13)
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This is of course just the difference between the SGDE update rule as applied
on Sp and the one on Sq. This combination step holds only under an important
condition: the grid has to remain the same during this whole process. The reason
the grid could change is that adaptivity steps can take place between batches,
not only at the end of a learning epoch (i.e., after going through the whole input
datasets). This is yet another functionality stemming from this batch processing
concept of the data mining pipeline, which allows in fact for the resulting sparse
grid approximation to vary spatially, meaning that at different grid points only
certain amounts of past batches can contribute to the estimation.

One would assume that also splitting the two datasets Sp and Sq into equal
number of batches would need to be enforced additionally in order to properly apply
batching. We consider this to be more of a conceptual condition for the combination
step rather than a necessarily mathematical one, as there is no requirement in
Eq. (3.13) for either M̃

(k)
p or M̃

(k)
q to be non-zero for any batch number k. However,

it is hard to retrieve a proper understanding of what processing such a lob-sided
batch would represent practically. With also good indications that not only the
absolute (batch) sizes, but also the relationship between the (batch) sizes of the two
input datasets affect the quality of the estimation (as shown in [78] and also in our
experimental results to be presented), maintaining a proportionally stable batch
size relationship between for the two input datasets is recommended, especially
when grid adaptivity is being used.

The treatment of concept drift (similarly to the SGDE method described in [69])
can also be performed here. While not implemented in our code, the corresponding
required modifications on Eq. (3.13) are presented in Appendix A.1.

Performance considerations. SGDDE resembles closely the general form of the
SGDE linear system, therefore it can benefit from all the increased performance op-
portunities offered by the data mining pipeline when it comes to parallel processing
of the matrix-vector operations. As such, in particular the ScaLAPACK implemen-
tations of all the system matrix decomposition strategies existing for SGDE can
be used with minimal additional coding by the SGDDE implementation, offering
considerable speed-ups (see [69] for details).

3.2.2 Numerical results

Goals. As SGDDE is a brand new method, the tests we have performed were
done to assess the main qualitative properties of the estimator, as well as any
possible weaknesses or caveats one should look out for and which might not be
obvious from the mathematical model. Towards this purpose we have ran a wide
array of tests with varying parameters (input datasets size, data dimensionality,
grid level, regularization strength, adaptivity settings) in controlled scenarios, i.e.,
using samples from known data distributions, which is a well-known approach in
this context. Additionally, we wanted to also assess the place our method takes in
the current field of available approaches to solving the density difference estimation
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problem, and as such we have ran all tests also on an equivalent kernel-based method
(i.e., LSDD) with which we could compare our SGDDE result.

Quality criteria. By using samples drawn from known probability density func-
tions, i.e., with analytical solutions, we have a direct means of exactly evaluating
the accuracy of our method, as well as as being able to directly compare errors
between methods (in our case, SGDDE and LSDD). In order to obtain a compre-
hensive view of the performance of the implementations in terms of accuracy, we
employed three measures:

� The root mean squared error (RMSE), given by

RMSE =

√√√√ 1

M

M∑
i=1

(r(xi)− r̃(xi))2, (3.14)

which is probably the simplest and most often used measure. A small RMSE
shows that on average the errors are well-balanced across the points at which
we evaluate our estimator. This error is the value we actually use to differ-
entiate between test cases and choose the best results.

� The mean absolute error (MAE), given by

MAE =
1

M

M∑
i=1

|r(xi)− r̃(xi)| , (3.15)

as opposed to RMSE, gives a more uniform treatment of individual error
terms due to their equal weighting. As such, it provides a better insight of
how well the approximation at the evaluation points is overall.

� The maximum absolute error (MaxAE), given by

MaxAE = max
i=1,...,M

|r(xi)− r̃(xi)| , (3.16)

is generally used to detect outliers, in the sense of individual high error terms.
Between approximations with equivalent MAE values, the one with the small-
est MaxAE is preferable, as it signals a smaller spread of possible error mag-
nitudes across the evaluation domain.

The evaluation points xi chosen depend on the dimensionality of the input
datasets. For one- and two-dimensional tests we can do an exhaustive equidistant
evaluation grid of size 100, respectively 100×100, covering the whole computational
domain. For higher-dimensional tests, where this approach would fast become com-
putationally unfeasible, we consider as evaluation points the union set Sp

⋃Sq of
both input datasets.
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The testing pipeline. Our tests were performed using the Python1 programming
language [68], which was motivated by multiple factors. Firstly, the language is
especially suitable at easily handling both the pre- and post-processing steps for our
tests, which involve both input-output (IO) and numerical operations, like setting
up the input configuration files for the SG++ runs, handling multi-dimensional
and complex data structures, computing quantity of interest, and plotting and
saving to file the final results. Secondly, no suitable implementation of the LSDD
method, which we wanted to compare against, was available in SG++’s native
implementation language (C++), but a Python variant did exist. This will be the
case with all other kernel-based estimators mentioned in this chapter. With SG++
providing code wrappers for Python, a cohesive testing pipeline could be set up
incorporating all aspects we required. Finally, Python is a powerful language in
no small part due to its packages, which are in effect specialized mini-libraries. Of
particular help were the packages of the SciPy ecosystem2, especially scipy, which
provided the functionalities needed to handle the probability data distributions
used to sample our input datasets.

The testing pipeline works as follows: we first generate input datasets by sam-
pling from certain single and mixed probability distributions (see Appendix B for
more details on the different sample distributions used in our thesis) and we gen-
erate the appropriate configuration files needed for the SG++ runs. We then run
both the respective SG++ and the kernel-based methods to obtain the density dif-
ference estimations. Lastly, we compute the quality criteria, we create plots (where
suitable, i.e., for one- and two-dimensional cases), and save all results to file for
further post-processing. This testing pipeline was implemented to allow the control
of all important parameters of the sparse grid- and kernel-based methods.

Testing parameters. As our tests will compare our method to the kernel-based
approach of LSDD, we need to address the parameters these implementations re-
quire. For LSDD we use an existing Python code3 that implements the method as
described in [78]. We use 5-fold cross-validation to select the best parameters from
a grid space of 9 values for the kernel width σK = {10−3, 10−2.6875, . . . , 10−0.5} and 5
values for the regularization parameter λK = {10−4, 10−3, . . . , 100}. Here we use the
subscript K to differentiate the parameters of the kernel-based approach to those
of our sparse grid method. This search space was chosen such that it fits with the
targeted computational domain of the sparse grids, i.e., the unit hypercube, while

1We refer specifically to Python 3, however, for brevity, we decided to omit the distinction. While
we are aware that there still might be software that operates with Python 2, even though it
reached its end-of-life on April 20, 2020, SG++ is not one of those pieces of software, therefore
its code wrappers work only with Python 3 and any backward-compatibility in this regard is
broken.

2https://www.scipy.org/citing.html
3Python code written by M.C. du Plessis, available at http://www.ms.k.u-tokyo.ac.jp/sugi/
software.html#LSDD
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offering a good trade-off between the added computational effort of cross-validation
and a large enough search space in order to obtain credible and fair results.

In order to have a reasonable trade-off between performance and time-to-solution,
we use the strategy from [78] to also limit the size of the system matrix of the LSDD
linear system by fixing the maximum number of parameters (i.e., data points where
to place the Gaussian kernels) to a fixed value b, meaning that the system matrix
will be of fixed size b × b instead of M ×M , where M is, usually, taken as Mq.
By comparison, the linear system to be solved in SGDDE has a system matrix of
size N × N , where N is the grid size. For one- and two-dimensional tests we use
b = 100, while for higher-dimensional tests where we use larger dataset sizes and
also the number of grid points increases we consider b =

⌊
M
50

⌋
.

For our sparse grid method we perform a separate grid search, combining different
regularization parameter values λ, various grid discretization levels, grid adaptiv-
ity settings or dataset batching strategies. The actual search space for each test
scenario will be mentioned explicitly when presenting the results in the following,
and unless otherwise specified we will only be presenting the best parameter com-
bination results in each case. For our tests we use only the linear basis functions,
with no boundary points, due to the fact that we choose data distributions that
have negligible values outside of the unit domain required by sparse grids. Addi-
tionally, and valid for all testing of our complex estimators, we use a simple sample
rejection strategy to make sure we do not have any input data points outside of
the interval, e.g., [0.05, 0.95] (unless otherwise specified) in each dimension, such
that we reduce even more any negative influences we might have due to data points
too close to the boundary. These requirements for the input datasets are not actu-
ally restrictive due to the fact that, on the one hand, the difference of two density
functions is well-behaved, in the sense that the tails of the difference density has
a similar decay behavior as the input densities and, on the other hand, any input
dataset can be easily transformed to fit in the required suitable sparse grid domain.
However, for fairness of the testing procedure, we always choose parameters for the
data distributions that fit directly, as best possible, in our desired computational
domain.

1D results. The one-dimensional scenarios we first tested were

N1 :=

{
Sp ∈ N (µ = 0.5 + ε, Σ = 0.01) , ε ∈ {−0.2,−0.1, 0, 0.1, 0.2},
Sq ∈ N (µ = 0.5, Σ = 0.01)

and

SN 1 :=

{
Sp ∈ SN (ξ = 0.5 + ε, Ω = 0.01, α = −5) , ε ∈ {−0.2,−0.1, 0, 0.1, 0.2},
Sq ∈ SN (ξ = 0.5, Ω = 0.01, α = −5)

,

i.e., we kept the Sq dataset fixed and tested 5 different shifted Sp distributions.
The normal distribution is the standard default option in such cases. We however
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wanted to investigate also more realistic scenarios, which is why we also tested a
skewed distribution. These tests act as a first validation of the sparse grid approach,
as well as the simplest comparison scenario with the kernel-based approach. The
sampling sizes we used were Mp = Mq = {200, 500, 750, 1000}. These small sizes
were chosen specifically due to the fact that these are the main cases where the ker-
nel method has seen most practical use. While it is known that in general sparse
grid methods work best for larger datasets, we wanted to specifically test towards
the lower bounds of usability for our new method in the hopes that it can achieve
similar accuracies as the kernel-based approach. For the sparse grid runs we per-
formed a grid search using 4 regularization parameters λ = {10−2, 10−3, 10−4, 10−5}
and grid levels l = {3, 4, 5}.

The best results obtained in the two test scenarios in terms of minimum RMSE
per test case are shown in Fig. 3.1 and Fig. 3.2, respectively. We observe that even
for small datasets we obtained good accuracies, on par or even better than those
obtained using the kernel-based approach. We got for LSDD similar RMSE values
as those in literature for same-sized datasets and distributions (e.g., those in [78]),
which validates also our choice of search space for the LSDD parameters. Of course,
a more dense search space could bring some accuracy improvements, however we
wanted to balance out as much as possible the computational effort compared to
the sparse grid approach.

2D results. To assess the performance changes brought by the interaction of sep-
arate spatial dimensions, our next tests focused on 2D scenarios, whose parameters
are tabulated in Table 3.1. The wide range of scenarios (short- and long-tailed,
skewed and non-skewed, single and mixed distributions) are meant to truly push
both methods in terms of approximation prowess. For the sparse grid runs we
have again investigated the same range of grid levels and regularization parameter
values, for 7 dataset sizes between 200 and 5000 (with Mp = Mq).

Results for minimum RMSE per test case are shown in Fig. 3.3. We observe that
our sparse grid approach has good results also in the two-dimensional case, although
at slightly lower accuracies than LSDD. This is not surprising, considering that the
grid level is still relatively low, no adaptivity is being used, and the number of data
points is also relatively low. For data distributions with strong axes alignment,
like in our mST 2 test case, favorable to sparse grids, SGDDE performed even
better than the Gaussian kernels of LSDD, which suffer from having to use the
same parameters for each of the b chosen kernels. For a more complete view of the
obtained results we also show in Fig. 3.4 a visual side-by-side comparison of the
methods in two of these test cases for the largest dataset size and the best obtained
parameters.

Higher-dimensional results. Lastly, the final tests were meant to compare the
performance of the two density difference methods for larger datasets and in higher
dimensions. Specifically, we ran tests on datasets of sizes Mp = Mq = {5000,
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Table 3.1: Parameters of the 2D DDE test scenarios.

test
name

distrib.
type(s)

distribution parameters

N2 N P: µ = [0.4, 0.5]T , Σ = [[0.005, 0.01]; [0.01, 0.04]]

Q: µ = [0.5, 0.5]T , Σ = [[0.03, 0]; [0, 0.01]]

SN 2 SN
P:

{
ξ = [0.5, 0.5]T , Ω = [[0.02, 0.02]; [0.02, 0.08]],

α = [5, −2]T

Q:

{
ξ = [0.4, 0.5]T , Ω = [[0.06, 0]; [0, 0.02]],

α = [2, −2]T

T2 T
P:

{
µ = [0.4, 0.5]T , Σ = [[0.005, 0.01]; [0.01, 0.04]],

ν = 10

Q:

{
µ = [0.5, 0.5]T , Σ = [[0.03, 0]; [0, 0.01]],

ν = 5

ST 2 ST
P:

{
ξ = [0.5, 0.5]T , Ω = [[0.015, 0.015]; [0.015, 0.045]],

α = [3, −2]T , ν = 10

Q:

{
ξ = [0.4, 0.5]T , Ω = [[0.03, 0]; [0, 0.015]],

α = [2, −2]T , ν = 5

mN2

P: 0.35 · N
+ 0.2 · N

+ 0.45 · N
Q: 0.4 · N

+ 0.3 · N
+ 0.3 · N

P:


µ = [0.25, 0.5]T , Σ = [[0.0045, 0.0075]; [0.0075, 0.02]]

µ = [0.5, 0.5]T , Σ = [[0.0045, 0.0075]; [0.0075, 0.02]]

µ = [0.65, 0.4]T , Σ = [[0.0045, 0.0075]; [0.0075, 0.02]]

Q:


µ = [0.5, 0.5]T , Σ = [[0.03, 0]; [0, 0.01]]

µ = [0.5, 0.75]T , Σ = [[0.03, 0]; [0, 0.001]]

µ = [0.5, 0.25]T , Σ = [[0.03, 0]; [0, 0.001]]

mST 2

P: 0.5 · ST
+ 0.5 · ST

Q: 0.5 · ST
+ 0.5 · ST

P:


ξ = [0.45, 0.65]T , Ω = [[0.025, 0]; [0, 0.005]]

α = [0, 3]T , ν = 1

ξ = [0.65, 0.45]T , Ω = [[0.005, 0]; [0, 0.025]]

α = [3, 0]T , ν = 1

Q:


ξ = [0.45, 0.55]T , Ω = [[0.025, 0]; [0, 0.005]]

α = [0, −3]T , ν = 1

ξ = [0.55, 0.45]T , Ω = [[0.005, 0]; [0, 0.025]]

α = [−3, 0]T , ν = 1
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Figure 3.4: Visual inspection of the DDE results for the ST 2 (top) and mN2 test scenar-
ios. We compare the contour plot and heatmap of both LSDD and SGDDE
for the best obtained parameters against the analytical solution, for the
largest dataset size considered. We observe that both numerical solutions
manage to capture well the target density difference. All other 2D test
scenarios show similar visual properties.
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Table 3.2: Parameters of the higher-dimensional DDE test scenarios.

test
name

distribution parameters

SN 3

P:

{
ξ = [0.5, 0.5, 0.5]T , Ω = diag[0.01, 0.015, 0.015],

α = [0, 2, −2]T

Q:

{
ξ = [0.4, 0.4, 0.4]T , Ω = diag[0.01, 0.015, 0.015],

α = [0, −2, 2]T

SN 5

P:


ξ = [0.5, 0.5, 0.5, 0.5, 0.5]T ,

Ω = diag[0.01, 0.01, 0.015, 0.015, 0.015],

α = [0, 0, 2, −2, 2]T

Q:


ξ = [0.4, 0.4, 0.4, 0.4, 0.4]T ,

Ω = diag[0.01, 0.01, 0.015, 0.015, 0.015],

α = [0, 0, 2, 2, −2]T

SN 7

P:


ξ = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]T ,

Ω = diag[0.01, 0.01, 0.01, 0.015, 0.015, 0.015, 0.015],

α = [0, 0, 2, −2, 2, 2, −2]T

Q:


ξ = [0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4]T ,

Ω = diag[0.01, 0.01, 0.01, 0.015, 0.015, 0.015, 0.015],

α = [0, 0, 2, 2, −2, −2, 2]T

10000, 20000}, drawn from skew-normal distributions, whose parameters are given
in Table 3.2. To have a fair comparison in terms of computational effort and
accuracies, we use b = 100, 200, 400 kernels for LSDD, respectively, based on the
increase in dataset sizes. For the sparse grid method we have additionally compared
the performance between a fixed grid of level 6 and adaptive grids using the three
refinement scores of (absolute) surplus (s), surplus-volume (sVol), and surplus-
absolute-value (sAbsVal), as introduced in Chapter 2. For adaptivity we started
with a level 3 grid and performed 5 adaptive steps of refining 15/20/30 grid points
(for the 3/5/7-dimensional cases, respectively). For the regularization parameter
we search for the best of 5 values λ = {10−1, . . . , 10−5}.

The results of these higher-dimensional tests are presented in Fig. 3.5. While for
the 3-dimensional case the kernel method performed better, as the dimensionality
of the datasets increases we observe that the kernel-based approach becomes less
accurate. As mentioned before, for these higher-dimensional cases the metrics are
computed at the locations of the input datasets Sp

⋃Sq, where we would expect
LSDD to perform as best as possible for the parameters used. We also observe that
the sparse grid method quickly saturates in terms in performance for the 5- and 7-
dimensional cases due to the fact that we require a better combination of increase in
both grid points and data points, not just the latter, in order to obtain a nice scaling
in accuracy over the dataset sizes. Lastly, while in general the amount of adaptivity
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Figure 3.5: DDE results on higher-dimensional datasets. The error evaluations now
take place at the input data points instead of an evaluation grid. While
in 3 dimensions the kernel method obtains better accuracies, SGDDE takes
over as the superior method already from dimension 5. From the 3 adaptive
grids none has enough grid points to overtake the regular higher level grid
in terms of accuracy, but we do observe that the surplus-absolute-value
strategy provides the highest benefits.
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we have considered did not push the metrics below those of the high level grid, we
observe that the best refinement strategy remains the surplus-absolute-value, which
Peherstorfer also used for the closely related method of SGDE [58].

Discussion of results. As expected from the similar type of obtained linear sys-
tem like SGDE, SGDDE performed well overall, especially when enough grid and
data points were invested. With a system matrix that is data-independent, the
method can also scale well with the dataset. In our tests we have refrained from
comparing runtimes, as neither the LSDD implementation nor the Python-wrapped
SGDDE version we have used are optimal in terms of parallel performance. How-
ever, we observed in practice that SGDDE is faster than LSDD in both time to
solution and evaluation time in single thread settings, even when accounting for
cross-validation/parameters search space, therefore we expect any parallelized ver-
sions of the two to further capitalize on this performance difference.

Regarding accuracies we have shown that SGDDE can be a good choice even for
smaller datasets, where usually sparse grid methods do not perform well. While
the kernel-based approaches provide a smoother approximation (compared to our
piecewise multi-linear sparse grid-based estimator), that might not always be re-
quired in practice. In higher dimensions and with enough data points the sparse
grid method proved to be superior even when the number of unknowns were quite
similar (grid points vs. number of kernels). This gives us hope that SGDDE could
be a viable alternative to LSDD in some of the most used applications of density
difference estimators.

Finally, an aspect where SGDDE can further improve based on LSDD is in prop-
erly handling hyperparameters. Currently there is no cross-validation parameter
tuning process integrated in the SG++ data mining pipeline for methods that can
handle multiple input datasets. Implementing such a procedure will unlock also for
SGDDE the hyperparameter optimization strategies existing in the pipeline.

3.3 Density Ratio Estimation

Problem statement. The problem of density ratio estimation (DRE) can be for-
mulated as follows:

Given two sets of independent and identically distributed samples in
Ω ⊆ Rd, Sp = {xpi }

Mp

i=1 with density p(x), respectively Sq = {xqj}
Mq

j=1

with density q(x), estimate the ratio p(x)
q(x)

.

Existing approaches. While differences of probability densities look more natural
to estimate, the ratio of two densities usually is a more powerful tool, which is why
this quantity is also sometimes referred as the importance of the two distributions,
a term most usually associated with the technique of importance sampling. This is
also the context in which first contributions to direct density ratio estimation have
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been made, most notably the kernel mean matching (KMM) method [37] and the
Kullback-Leibler importance estimation procedure (KLIEP) [79]. A more efficient
approach that also borrows many of the advantages of the previous methods is
the least squares importance fitting (LSIF) method and its more numerically stable
counterpart, called unconstrained LSIF (uLSIF) [43], which is also the method
we will be comparing our sparse grid approach to. Importance estimation has
seen a very significant rise in interest, with a considerable amount of applications
being linked to this learning task [80, 81]. Other more recent approaches that have
seen good performance are the spectral series density ratio estimator of Izbicki et
al. [38], which sees benefits in high-dimensional cases, and the nearest neighbor-
based approach of Kremer et al. [46], which was used to tackle large astronomical
datasets.

3.3.1 Sparse Grids Density Ratio Estimation

Mathematical derivation. Our algorithm for sparse grid density ratio estimation
(SGDRE) starts with a similar loss function as the one used for LSIF (and, im-
plicitly, uLSIF). That is partly because, as also stated in [43], this loss function
formulation agrees with the various applications where the estimator can be used,
and partly because this is a known technique of handling the implicit non-linearity
of the ratio operation when moving to the variational description. Thus, in our
sparse grid approach, we search for a function in a suitable space r(x) ∈ V that
minimizes the regularized squared loss function

J(r) =

∫
Ω

[
r(x)− p(x)

q(x)

]2

q(x) dx+ λ‖Λr‖2
L2 . (3.17)

As such, the corresponding variational equation will be given by

∫
Ω

s(x) r(x) q(x) dx−
∫

Ω

s(x) p(x) dx+λ

∫
Ω

Λs(x) Λr(x) dx = 0, ∀s ∈ V. (3.18)

Replacing the expectations in the second integral with the same empirical es-
timators from Eq. (2.35) and moving the second term to the right-hand side, we
obtain

1

Mq

Mq∑
j=1

s(xqj) r(x
q
j) + λ

∫
Ω

Λs(x) Λr(x) dx =
1

Mp

Mp∑
i=1

s(xpi ), ∀s ∈ V. (3.19)

Restricting our search to the sparse grid space V = VN in the Ritz-Galerkin
approach, i.e., r(x) :=

∑N
k=1 αkϕk(x) and s(x) := ϕl(x), we get
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N∑
k=1

[
αk

1

Mq

Mq∑
j=1

ϕl(x
q
j)ϕk(x

q
j)

]
+ λ

N∑
k=1

αk

∫
Ω

Λϕk(x) Λϕl(x) dx

=
1

Mp

Mp∑
i=1

ϕl(x
p
i ), l = 1, . . . , N.

(3.20)

In matrix-vector form, the resulting linear system of SGDRE to solve for surpluses
α is thus (

1

Mq

BqBqT + λC

)
α =

1

Mp

Bpep, (3.21)

where we use the same notation as in Eq. (3.6).

Properties of the linear system. As can be seen from Eq. (3.21), the system
matrix for density ratio estimation is not data-independent anymore. Therefore,
the system matrix now also grows with respect to the size of the input data, not
just with respect to the grid size. However, it should be noted that the interaction
between the two probability distributions p and q has been split in the linear system.
For SGDDE, the right-hand side coalesced both contributions from Sp and Sq, but
for SGDRE the right-hand side now only grows with Mp, while the system matrix
of the left-hand side grows with Mq. This is not very surprising, as the expectation
under probability term we considered in the loss function of Eq. (3.17) already
shows that the samples of distribution q bare a greater role in the final estimate.

The linear system we obtain in this density ratio scenario is very similar to the one
for regression and classification which is covered extensively in Chapter 4. Without
going here into more details, we can view the Sp samples as the target and the Sq
samples as the source, such that our SGDRE algorithm learns a direct mapping
between the two, which in essence is what the importance (or ratio) of the two
represents.

Accuracy considerations. While stemming from a similar derivation based on
the same spline smoothing idea, the nature of the density ratio estimator does
not lend itself to a similar proof of consistency as in the case of SGDDE. With
a linear system that resembles the one obtained in the case of regression tasks,
we can only assess that a similar convergence behavior can be obtain as in those
scenarios. While it is true that work on obtaining convergence rate bounds took
place only for wavelet-based basis functions, which can form a Riesz frame with
nice analytical properties [8], in practice sparse grid regression showed that it can
obtain good results also for other bases, e.g., the hierarchical hat functions or the
uniform B-splines basis [64]. Therefore, we expect that our sparse grid density
ratio estimator will show similar behaviors (for both basis that form a Riesz frame,
where theoretical bounds can be set, but also for more general bases).
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Implementation details. Being another method that utilizes two datasets as in-
puts, SGDRE can reuse many of the interfaces and preprocessing code introduced
for density difference estimation. However, no system matrix decomposition algo-
rithms can be applied anymore. Also, the batch processing system of the pipeline
is less powerful when it comes to SGDRE, as it works fundamentally differently.
The main advantage of splitting the input datasets into batches in the previous
density estimators was the ability to recover, on a fixed grid, the results on the
full input datasets from the individual batch contributions, as only the right-hand
side changed from one evaluation to the next. This is not the case anymore in the
SGDRE case. However, batches can still be used in an implicit pseudo-concept drift
adaptation, where we do not remember any of the previous batches, but allow grid
adaptivity to carry on influences from past batches into the future. This aspect is
however not covered in our work.

Performance considerations. Neither parallelizing across batches nor the
ScaLAPACK variants for SGDE-like system matrix decompositions can be used
for SGDRE. However, as our algorithm is similar to classical sparse grid-based
regression/classification, optimizations such as the ones mentioned in Chapter 4
could be introduced in the data mining pipeline. We can expect that whenever
these optimizations will actually be integrated into the pipeline the performance
obtained will be quite similar to those presented there, especially considering that
the right-hand side calculations can be done independently from the system matrix
ones, with the number of additional operations in comparison to a usual regres-
sion/classification problem being at most in o(1) with respect to the sizes of the
grid and of the input datasets.

3.3.2 Numerical results

Goals. Similarly to SGDDE, SGDRE is also a brand new sparse grid method,
therefore we perform tests to assess the properties of the method, strong points
and weaknesses. This time however, with a regression-like type of linear system,
we have less information on the approximation accuracies we can expect for such an
estimator. Additionally, we want to assess to what degree our approach compares
favorably to the equivalent kernel-based uLSIF method. We again use known data
distributions in order to properly control the testing scenarios.

Quality criteria. For this method we use the same metrics of mean absolute error
(MAE), root mean squared error (RMSE), and maximum absolute error (MaxAE)
introduced in previously for DDE in order to compare both our sparse grid-based
and the kernel-based methods against analytical solutions to the density ratio esti-
mation problem on various datasets.
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For one- and two-dimensional datasets we again evaluate our estimators on a grid
of 100 equidistant points per dimension, while in the higher dimensional scenarios
we use as evaluation points the reunion of all input data points, i.e., Sp

⋃Sq.
The testing pipeline. Being also a method requiring two input datasets, we use
mostly unchanged the testing pipeline for density difference estimation, simply us-
ing a python variable to differentiate between the two learning tasks. Therefore,
again we use the Python language to perform all the tests, as well as a selection
of various data distributions from which to sample our input datasets (see Ap-
pendix B).

Testing parameters. For the kernel-based uLSIF method we use an existing
Python code4 that implements actually a relative density ratio estimation kernel-
based algorithm, which however can be reduced to the simple density ratio case via
the ω = 0 parameter (more details in the next section). The important aspect for
our purposes is that this code follows, under this setting, the uLSIF algorithm as
described in [43]. The same as for DDE, we use the code’s 5-fold cross-validation
to select the best hyperparameters from a search space of 9 values for the ker-
nel width σK = {10−3, 10−2.6875, . . . , 10−0.5} and 5 values for the regularization
parameter λK = {10−4, 10−3, . . . , 100} (with the subscript K used here simply to
differentiate these parameters from those for our sparse grid method).

Again we use the strategy of limiting the number of kernels used to b = 100
for the 1- and 2-dimensional test cases, increasing it to b =

⌊
M
50

⌋
for the higher-

dimensional datasets, where M is usually taken to be Mq. Therefore, while for the
sparse grid method we work with matrices of sizes Mp ×N and Mq ×N , where N
is the number of grid points, in uLSIF the matrices used are of sizes Mp × b and
Mq × b, respectively. However, similarly to DDE, we still end up with a N × N
system matrix in the case of SGDRE, respectively b× b for uLSIF.

1D results. As opposed to density differences, there is no expectation for den-
sity ratios to have “nice” properties even when the input datasets follow simple
distributions. By “nice” we refer to having both a (mostly) compact support and
bounded values. Therefore, for a first test we have considered the one-dimensional
scenario

N1 :=

{
Sp ∈ N (µ = 0.55, Σ = 0.0125)

Sq ∈ N (µ = 0.45, Σ = 0.05)

for which we try to approximate both the direct ratio P/Q and the inverse Q/P. For
the first case the chosen distribution parameters produce a “nice” result, therefore
we can default to using linear hat functions as sparse grid basis. For the inverse
ratio, where we expect the opposite properties from the analytical result, we opt

4Python code written by Koji Makiyama and Ameya Daigavane, available at https://github.
com/hoxo-m/densratio_py
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for the modified linear basis functions for SGDRE in order to avoid increasing our
grid size with boundary points. In both cases we fix the numerator dataset size at
200 and vary the denominator dataset size through the values {200, 500, 750, 1000}.
This was done in order to not only assess the performance on smaller datasets, where
sparse grids usually do not perform the best, but also because in the task of impor-
tance estimation the denominator density is the one for which more samples (and
information) are usually available. For SGDRE we search for the best hyperparam-
eters in a search space of 4 regularization parameters λ = {10−2, 10−3, 10−4, 10−5}
and 3 grid levels l = {3, 4, 5}.

Results for best RMSE values per test are shown in Fig. 3.6. For the direct
ratio case (P/Q), which we will call also the “linear” case, based on the nature
of basis functions we have to use for sparse grids, we observe that, when good
parameters are chosen via the uLSIF cross-validation algorithm, we obtained very
similar results between our approach and the kernel-based one. Compared to LSDD,
the cross-validation algorithm for uLSIF selects good parameters less consistently,
the method being still prone to overfitting. In the specific set of results we show here
this happened for Mp values of 500 and 750. In the inverse ratio case (Q/P), which
we call also the “modlinear” case, we can observe that the sparse grid method
improves consistently over the kernel-based method due to the fact that kernel
positions are linked to data points and thus the approximation accuracies towards
the boundaries of the computational domain suffer significantly. Overall, for both
methods, we see that unilaterally increasing the denominator dataset size did not
seem to have any direct effect on the overall accuracy of the estimation.

2D results. The next step was to evaluate multi-dimensional test cases. For this
we started with the linear cases in two dimensions, i.e., those scenarios where we
expect “nice” density ratios P/Q and thus the kernel method performs best and
where we can use the linear basis functions for SGDRE. The parameters for the
input datasets are tabulated in Table 3.3. We test a wide range of distributions
to account for different scenarios that could appear in real datasets. For SGDRE
we search for the best hyperparameters (regularization parameter and grid level)
in the same space of values as for the 1D tests, and we again consider 7 different
dataset sizes (with Mp = Mq) between 200 and 5000.

The results for minimal RMSE per test case are shown in Fig. 3.7. SGDRE looks
to be able to come close to the accuracies of uLSIF even for smaller datasets, al-
though the kernel-based approach proves to be more accurate. We also can observe
a quite good converge rate with increasing dataset sizes, due to the fact that enough
grid points are being invested. We again see here some minor inconsistencies in the
cross-validation parameter selection for the kernel-based method which results in
less than optimal parameters and thus less than optimal accuracies. Also visu-
ally these slightly overfitted uLSIF results are less problematic in the 2D scenarios
than in the one-dimensional tests (as exemplified for a couple scenarios in Fig. 3.8),
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Figure 3.6: 1D results on direct (P/Q) and inverse (Q/P) density ratio estimation on
normal-distributed input datasets. The P/Q ratio fades towards the bound-
ary and thus we use linear basis functions on SGDRE; the opposite hap-
pens for the Q/P ratio, thus we need to use the modlinear basis. In gen-
eral, we have observed some consistency issues with the uLSIF implemen-
tation, with non-optimal kernel parameters being sometimes selected in the
cross-validation procedure, as exemplified here in the linear case. When
best parameters have been chosen, we can see that SGDRE can obtain on
par results to uLSIF. For the inverse ratio, which is non-zero towards the
boundary, the modlinear basis functions show their superiority to the kernel
method, which can only provide good accuracies at the input data points,
not over the whole unit domain.
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Table 3.3: Parameters of the 2D DRE test scenarios.

test
name

distrib.
type(s)

distribution parameters

N2 N P: µ = [0.55, 0.5]T , Σ = [[0.008, 0.0015]; [0.0015, 0.0065]]

Q: µ = [0.5, 0.35]T , Σ = [[0.04, 0]; [0, 0.015]]

SN 2 SN
P:


ξ = [0.55, 0.5]T ,

Ω = [[0.014, 0.002625]; [0.002625, 0.011375]],

α = [−1, 2]T

Q:

{
ξ = [0.5, 0.35]T , Ω = [[0.07, 0]; [0, 0.02625]],

α = [−1, 1]T

T2 T
P:


µ = [0.55, 0.5]T ,

Σ = [[0.008, 0.0015]; [0.0015, 0.0065]],

ν = 10

Q:

{
µ = [0.5, 0.35]T , Σ = [[0.04, 0]; [0, 0.015]],

ν = 5

ST 2 ST
P:


ξ = [0.55, 0.5]T ,

Ω = [[0.01, 0.001875]; [0.001875, 0.008125]],

α = [−1, 2]T , ν = 10

Q:

{
ξ = [0.5, 0.35]T , Ω = [[0.05, 0]; [0, 0.01875]],

α = [−1, 1]T , ν = 5

mN2

P: 0.35 · N
+ 0.2 · N

+ 0.45 · N
Q: 0.4 · N

+ 0.3 · N
+ 0.3 · N

P:


µ = [0.25, 0.6]T , Σ = [[0.0015, 0.0005]; [0.0005, 0.0045]]

µ = [0.5, 0.5]T , Σ = [[0.0015, 0.0005]; [0.0005, 0.0045]]

µ = [0.65, 0.4]T , Σ = [[0.0015, 0.0005]; [0.0005, 0.0045]]

Q:


µ = [0.5, 0.5]T , Σ = [[0.03, 0]; [0, 0.01]]

µ = [0.5, 0.75]T , Σ = [[0.03, 0]; [0, 0.001]]

µ = [0.5, 0.25]T , Σ = [[0.03, 0]; [0, 0.001]]
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Figure 3.8: Visual inspection of the DRE results for the SN 2 (top) and ST 2 test scenar-
ios. We compare the contour plot and heatmap of both uLSIF and SGDRE
for the best obtained parameters against the analytical solution for the di-
rect ratio P/Q, for the largest dataset size considered. We can observe here
some of the overfitting problems that the integrated hyperparameter selec-
tion procedure of uLSIF does not always overcome, although the method
still produces very good results nonetheless. All other 2D test scenarios
show similar visual properties for the sparse grid-based approach, while the
kernel-based method suffers from more severe overfitting in other cases, as
revealed in the numerical results.
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therefore overall uLSIF does look as quite a robust method, in line with existing
results [43].

Discussion of results. For “nice” ratios, as was shown, the sparse grid approach
with linear basis functions worked well, obtaining comparable results with the kernel
method. We did observe for uLSIF a tendency to not select the best parameters,
meaning that a better cross-validation approach might be needed, however the
differences in obtained accuracies from the selected non-optimal hyperparameters
were less strong in two dimensions that were found in the 1D case.

While performed, we will not present here results for the corresponding modlinear
cases (i.e., for estimating inverse ratios Q/P for the same data distributions). Also
results for higher dimensional datasets have been skipped. This is due to the
fact that in multiple dimensions, in practice, it is impossible to actually predict,
let alone ensure, boundedness of the target density ratio, which results in errors
of very high magnitude for any kind of estimator, making comparisons between
approaches unfeasible. These issues will be addressed in the next section with the
introduction of relative density ratios.

3.4 Relative Density Ratio Estimation

Problem statement. The problem of relative density ratio estimation (RDRE)
can be mathematically stated as [89]:

Given two sets of independent and identically distributed samples in
Ω ⊆ Rd, Sp = {xpi }

Mp

i=1 with density p(x), respectively Sq = {xqj}
Mq

j=1

with density q(x), estimate the ω-relative ratio p(x)
qω(x)

= p(x)
ω·p(x)+(1−ω)·q(x)

,
0 ≤ ω < 1.

To avoid notation confusion between the relative density ratio parameter and the
sparse grid variable we use here ω as main parameter for the method instead of α,
which is used in literature.

Existing approaches. As shown by Kanamori et al. in [43], the problem of density
ratio estimation can be ill-posed with regards to the possible unboundedness of the
target function to be found. This is backed up by our own results with SGDRE.
That is why Yamada et al. propose a slightly modified problem statement in
the form of relative density ratio estimation [89], which we also import. Their
relative unconstrained least squares importance fitting (RuLSIF) method is simply
an extension of the uLSIF algorithm, in general offering some better situational
convergence speed at a slightly higher computational cost.
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3.4.1 Sparse Grid Relative Density Ratio Estimation

Mathematical derivation The derivations for sparse grid relative density ratio
estimation (SGRDRE) will follow similar steps as for usual SGDRE, with the dif-
ference in the more complex denominator term. Thus, we start by searching for
a function r(x) in a suitable space V that minimizes the regularized squared loss
function

J(r) =

∫
Ω

[
r(x)− px

qω(x)

]2

qω(x) dx+ λ‖Λr‖2
L2 . (3.22)

The corresponding variational equation will be given by

∫
Ω

s(x) r(x) qω(x) dx−
∫

Ω

s(x) p(x) dx+ λ

∫
Ω

Λs(x) Λr(x) dx = 0, ∀s ∈ V.
(3.23)

Replacing the expectations in the second integral with the empirical estimators
(Eq. (2.35)), expanding the first term, and moving the second term to the right-
hand side, we obtain

ω

Mp

Mp∑
i=1

s(xpi ) r(x
p
i ) +

1− ω
Mq

Mq∑
j=1

s(xqj) r(x
q
j)

+ λ

∫
Ω

Λs(x) Λr(x) dx =
1

Mp

Mp∑
i=1

s(xpi ), ∀s ∈ V.
(3.24)

Searching for a sparse grid solution r(x) :=
∑N

k=1 αkϕk(x) in the space V = VN
with test functions s(x) := ϕl(x) in the Ritz-Galerkin projection, we get

N∑
k=1

[
αk

ω

Mp

Mp∑
i=1

ϕl(x
p
i )ϕk(x

p
i )

]
+

N∑
k=1

[
αk

1− ω
Mq

Mq∑
j=1

ϕl(x
q
j)ϕk(x

q
j)

]

+ λ

N∑
k=1

αk

∫
Ω

Λϕk(x) Λϕl(x) dx =
1

Mp

Mp∑
i=1

ϕl(x
p
i ), l = 1, . . . , N.

(3.25)

In matrix-vector form, the resulting linear system to solve for surpluses α is thus(
ω

Mp

BpBpT +
1− ω
Mq

BqBqT + λC

)
α =

1

Mp

Bpep, (3.26)

with the by now familiar notation of Eq. (3.6).
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Properties of the linear system. Firstly we will investigate the meaning of the
two edge cases:

� For ω = 0, the relative ratio becomes the actual density ratio p(x)
q(x)

, and our
sparse grid linear system also becomes identical to the one for SGDRE
(Eq. (3.21)), as expected.

� In the limit ω → 1, the relative ratio is the unit function, and our sparse grid
algorithm becomes a least squares regression on the samples of distribution
p, being fitted to those same Sp samples.

Therefore, the obtained linear system seems to maintain consistency with existing
sparse grid approaches, with the ω-weights of the relative ratio denominator finding
themselves now in the system matrix formulation. With still a data-dependent
left-hand side, the properties of the obtained linear system for relative density ratio
estimation are also carried over from SGDRE.

Accuracy considerations. Similarly to the particular case of density ratio esti-
mation, for SGRDRE we can only expect to be able to assess some theoretical
convergence rates for specific types of basis functions [8], while we hope to obtain
for the hat functions and other more general bases convergence rates similar to the
regular sparse grid regression solution.

Implementation details. Once SGDRE has been implemented, extending the
method to SGRDRE is relatively straight-forward, with basically the same func-
tionality lending itself to be reused with minimal changes. As stated, SGRDRE
can also be used, in the limit case ω = 0, to solve the direct density ratio estimation
problem. We suggest for this purpose to always revert to using the SGDRE ap-
proach in order to avoid the (albeit relatively small) performance penalty incurred
by the overhead of the relative density ratio implementation.

Performance considerations. The system matrix we obtain for relative density
ratio estimation now extends the dependency from one of the input datasets to
both of them, therefore the amount of computation needed for the left-hand side of
the system almost doubles. However, as before, the computations involving Bp and
Bq in the system matrix calculation can for the most part be done independently,
therefore also in parallel (which is additional to the rest of the optimizations that
can be done in the usual regression/classification scenario, as mentioned briefly
for SGDRE and treated extensively in Chapter 4). Currently however, no such
parallelization is implemented in our code, as it extends beyond the scope of our
thesis.
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3.4.2 Numerical results

Goals. The test we performed for SGRDRE had two purposes. On one hand we
again wanted to assess the method itself, compared to a kernel-based counterpart,
on various known distributions, to find strong and weak points of the approach and
predict how well it could perform in various applications. On the other hand, this
method is a direct extension to SGDRE, therefore we wanted to observe to what
extent it can provide relief to the issues of density ratio unboundedness we have
already noted in the previous section.

Quality criteria. Again we use the metrics of mean absolute error (MAE), root
mean squared error (RMSE), and maximum absolute error (MaxAE) to compare
both our sparse grid- and the kernel-based methods with the analytical solutions
to the relative density ratio estimation problem on input datasets sampled from
known distributions.

The evaluation for 1- and 2-dimensional datasets is performed once more on a
grid of 100 equidistant points per dimension, while in the higher dimensional tests
we evaluate at the reunion of all input data points, i.e., Sp

⋃Sq.
The testing pipeline. As mentioned for DRE, all density ratio tests were carried
out with the same code as for DDE, with a variable being used to distinguished
between the two testing sub-pipelines. We also continue using the wide range of
data distributions to sample from for our input datasets described in Appendix B.

Testing parameters. In our testing pipeline we compare our sparse grid method
with an existing Python implementation of RulSIF5, now for values of the ω pa-
rameter (named α in the RuLSIF implementation and literature [89]) other than 0.
We keep the strategy of choosing hyperparameters via 5-fold cross-validation from
9 different kernel widths σK = {10−3, 10−2.6875, . . . , 10−0.5} and 5 regularization pa-
rameter values λK = {10−4, 10−3, . . . , 100} (the subscript K used to distinguish
from any similar sparse grid parameters).

Identical to the uLSIF method, only b kernels are used in order to limit the
computational demands, with b = 100 for 1- and 2-dimensional tests, where we use
smaller dataset sizes, and b =

⌊
M
50

⌋
for the higher-dimensional tests, where M is

usually the size of the denominator dataset (when Mp 6= Mq).

1D results. The first tests we performed extend the results shown for DRE by
looking into the effects of the ω parameter for both direct (P/Q) and inverse (Q/P)
ratios. We consider here ω = {0.1, 0.2, 0.3, 0.4, 0.5}. The scenario parameters are

5Python code written by Koji Makiyama and Ameya Daigavane, available at https://github.
com/hoxo-m/densratio_py
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again

N1 :=

{
Sp ∈ N (µ = 0.55, Σ = 0.0125)

Sq ∈ N (µ = 0.45, Σ = 0.05)
,

with sampled datasets of size 200 for the numerator input and {200, 500, 750, 1000}
for the denominator input. We again look for the best results for hyperparameters
λ = {10−2, 10−3, 10−4, 10−5} and l = {3, 4, 5}.

The errors obtained in our tests are shown in Figs. 3.9 and 3.10, with minimal
RMSE as main criterion. The first thing we can observe is a far more consistent
cross-validation hyperparameter selection for RuLSIF, reflected in error values more
closely packed in amplitude across the board. SGRDRE accuracies again are in line
with the SGDRE results, with error closely matching those for RuLSIF. For the
modlinear scenarios we more clearly see here the ability of the sparse grid-based
approach to estimate the density ratios also outside of the support of the input
datasets, which is one of the downsides of the kernel-based method. We also re-
confirmed the fact that a unilateral increase of the denominator dataset size does
not impact significantly the estimator, therefore a balanced increase of both input
datasets sizes is preferred. One aspect to note, that is not explicitly visible from
the data presented here, is that the sparse grid results were best in general for the
lowest grid level l = 3, as the higher level grids showed already a slight overfitting.
The rest of our tests will show that this was not a significant issue in higher-
dimensional scenarios, which is anyway where sparse grids are actually most useful
as a numerical method.

2D results. While for DRE we saw the performance of the sparse grid approach
when the ratio to be estimated has a so-called “nice” distribution, in practice that is
seldom the case. For the two-dimensional tests we wanted to assess the performance
on quite unfavorable scenarios, where a non-zero ω value is needed to counteract
an otherwise unbounded density ratio. The test scenarios are the same as those for
DRE, i.e., those presented in Table 3.3, with the usual sparse grid hyperparameter
search space being used and the previously considered dataset sizes, although now
estimating the inverse (relative) ratios (Q/P) in each scenario.

Results for ω = 0.2 and ω = 0.4, based on minimal RMSE, are shown in Figs. 3.11
and 3.12, respectively. We see, as expected, across the board better accuracies
from the sparse grid method compared to RuLSIF, which cannot provide good
default estimates in areas where data points do not exist, in general, and towards
the boundary of the numerical domain, in particular. We need to note that the
very low error values obtained for the smallest datasets, which do not fit in the
expected convergence rate curve we see for the larger input sizes, are a consequence
of the fact that in our tests grids tended to perform in general surprisingly well
on these datasets, which were not particularly axis-aligned or otherwise exhibiting
properties traditionally considered well-suitable for sparse grids. One should not
expect however this to always be the case. For completeness, we present also
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Table 3.4: Parameters of the higher-dimensional RDRE test scenarios.

test
name

distribution parameters

SN 3

P:

{
ξ = [0.5, 0.5, 0.5]T , Ω = diag[0.01, 0.015, 0.015],

α = [0, 2, −2]T

Q:

{
ξ = [0.4, 0.4, 0.4]T , Ω = diag[0.01, 0.015, 0.015],

α = [0, −2, 2]T

SN 5

P:


ξ = [0.5, 0.5, 0.5, 0.5, 0.5]T ,

Ω = diag[0.01, 0.01, 0.015, 0.015, 0.015],

α = [0, 0, 2, −2, 2]T

Q:


ξ = [0.4, 0.4, 0.4, 0.4, 0.4]T ,

Ω = diag[0.01, 0.01, 0.015, 0.015, 0.015],

α = [0, 0, 2, 2, −2]T

selected representative visual results for some of the test scenarios in Fig. 3.13.
Similar visual differences have been obtained for all 2D test cases.

Higher-dimensional results. Having now a sparse grid method for estimating
density ratios (even if modified) irrespective of the nature of the input datasets (by
countering the possible unboundedness via the ω parameter), we have performed
our final tests on higher-dimensional scenarios and, correspondingly, larger datasets.
Specifically, we ran tests with sample sizes Mp = Mq = {5000, 10000, 20000} drawn
from skew-normal distributions of dimensionality 3 and 5, whose parameters can be
found in Table 3.4, using a relative density ratio parameter ω = 0.1. For SGRDRE
we test both a fixed level 6 grid case, as well as 3 adaptive grids using the surplus,
surplus-volume, and surplus-absolute-value adaptivity scores, respectively, using
5 refinement steps with 10/20 refined grid points per step for the 3/5-dimensional
datasets, respectively. Again, we look for the best regularization parameter amongst
5 values λ = {10−1, . . . , 10−5}.

Results for minimal RMSE per test are shown in Fig. 3.14. We observe again the
superiority of SGRDRE to RuLSIF, even though now the errors are not computed
in the whole domain, but at the data points, which is advantageous for kernel-based
methods. Additionally, as opposed to what we saw for SGDDE, the adaptive grids
here show on par result to the high level regular grid, meaning that the density
ratio method can benefit easier from well-placed grid points. In terms of the best
adaptivity strategy, no definitive conclusion could be drawn from our tests, with
some differences only seen in the MaxAE values.

Discussion of results. Overall, for both DRE and RDRE, our sparse grid ap-
proach obtained on par or better results for the cases where density ratios had
bounded, low-tailed distributions, where we could use linear basis functions. How-
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Figure 3.13: Visual inspection of the RDRE results for the SN 2 ω = 0.2 (top) and
ω = 0.4 test scenarios. We compare the contour plot and heatmap of
both RuLSIF and SGRDRE for the best obtained parameters against the
analytical solution for the inverse ratio Q/P, for the largest dataset size
considered. We observe clearly the inability of the kernel-based approach
to provide a good representation in the whole domain. Additionally, over-
fitting plagued the RuLSIF method for most of our test scenarios, with
the cross-validation-based hyperparameter selection procedure proposed
in literature not being able to consistently provide reasonable parameter
values.
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Figure 3.14: Higher-dimensional RDRE tests on skew-normal-distributed datasets, es-
timating the relative inverse ratio (Q/P) for ω = 0.1. Evaluations are
computed here at the input data points instead of an equidistant evalu-
ation grid covering the whole domain. We observe that SGRDRE con-
sistently outperforms RuLSIF, on both higher level regular grids and on
adaptive grids. Runs on the largest datasets were skipped for RuLSIF due
to significantly larger times to solution.
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ever the best results were obtained on otherwise unfavorable density ratio distribu-
tions, where, irrespective of the boundedness-enforcing parameter ω > 0, our sparse
grid method can leverage the benefits of being able to properly cover the compu-
tational domain. In these cases the kernel method can only hope to estimate well
at the input data points, however our higher-dimensional tests showed that even in
this context the sparse grid method can obtain lower errors across the board.

Using non-optimal Python codes in terms of parallel performance for both RuLSIF
and SGRDRE makes for an unfair comparison of performance in terms of runtimes,
therefore we have refrained from presenting results in this regard. Running both
methods on single threads however showed that RuLSIF is up to 1.5 orders of mag-
nitude slower than SGRDRE in computing the solution, even when accounting for
the time spent selecting the correct parameters, and up to 3 orders of magnitude
slower in evaluating the estimators to compute the error metrics.

3.5 Density Derivative Estimation

Terminology and notations. In the case of density derivative estimation, the
term “derivative” is used loosely to denote any particular partial derivative of the
probability density that we want to approximate numerically. Such a derivative will
be denoted by

∂(j)p(x) =
∂|j|

∂xj11 ∂x
j2
2 . . . ∂x

jd
d

p(x), (3.27)

where j = (j1, j2, . . . , jd) is a vector encoding the (up to d-dimensional and
possibly mixed) partial derivative, and |j| =

∑d
k=1 jk is the order of this partial

derivative. So, for example, the fifth order mixed partial derivative ∂5

∂x31∂x
2
3

applied

to a 3-dimensional function will be encoded by the vector j = (3, 0, 2).

This way of defining partial derivatives, adopted from [72], has a quite obvious
drawback: it is implicitly symmetric. What we mean by this is that it assumes
the commutativity of all the mixed partial derivatives of lower or equal order as
the one we require. So, for example, even the second order mixed partial derivative
∂2

∂x2∂x1
has no such vector encoding. While the mathematical derivations that follow

are not strictly restricted to this encoding, as they work with any kind of partial
derivatives, and while also other ways of encoding all possible partial derivatives
of a certain order have been proposed (e.g., [42]), we argue that our notation is
indeed sufficient. This stems from the fact that, for our approach of deriving our
linear system, irrespective of whether the function we partially derive is continu-
ously differentiable of high enough order or not (for the partial derivatives to all
commute), the approximations we obtain from our numerical estimator are by de-
sign smooth enough: the basis functions used in both grid-based and kernel-based
approaches are either infinitely continuously differentiable (e.g., polynomial basis or
Gaussian functions), or can be chosen to be enough continuously differentiable ev-
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erywhere (e.g., B-splines). Therefore the commutativity of the higher order partial
derivatives is intrinsic to the mathematical treatment using sparse grids.

Problem statement. With the newly introduced notation in Eq. (3.27), the prob-
lem of density derivative estimation (DDerivE) can be formulated as:

Given a set of independent and identically distributed samples in Ω ⊆
Rd, Sp = {xpi }

Mp

i=1 with density p(x), estimate the value of

∂(j)p(x) = ∂|j|

∂x
j1
1 ∂x

j2
2 ... partialx

jd
d

p(x), j = (j1, j2, . . . , jd), |j| =
∑d

k=1 jk,

under the assumption that ∂(j)p(x) is well-defined.

Existing approaches. Two relatively similar approaches have been developed to
tackle this task using kernel-based methods. The first algorithm, which we will also
compare our own sparse grids results against, is the one of Sasaki et al., who intro-
duce the mean integrated squared error for derivatives (MISED) method [72]. Their
idea is to find an analytical formulation for computing the weights of a Gaussian
kernel model that minimizes a regularized least squares loss function between the
model and the actual partial derivative of interest. The second algorithm is a stan-
dard kernel density derivative estimation, on top of which Chacón and Duong pro-
pose different strategies to find the best bandwidths such that some mean squared
error between all partial derivatives of the kernel estimator and of the real den-
sity is minimized [42]. Recently another approach, using a shrinkage type kernel
estimator, was developed by Mahmoudi et al. [50].

3.5.1 Sparse Grid Density Derivative Estimation

Mathematical derivation. We will start our derivation of the linear system for
our sparse grid density derivative estimation (SGDDerivE) algorithm by looking for
a function in a suitable space rj(x) ∈ V that minimizes the same kind of regularized
least squares cost function as in [72]:

J(rj) =

∫
Ω

[
rj(x)− ∂(j)p(x)

]2
dx+ λ‖Λrj‖2

L2 . (3.28)

The corresponding variational equation is naturally given by

∫
Ω

s(x) rj(x) dx−
∫

Ω

s(x) ∂(j)p(x) dx+ λ

∫
Ω

Λs(x) Λrj(x) dx = 0, ∀s ∈ V.
(3.29)

This time, different from the previous variational formulations, we need to further
process this equation. The second term is not directly accessible. However, the
same as in [72], we can use repeated integration by parts to solve this issue, such
that the second term becomes
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∫
Ω

s(x) ∂(j)p(x) dx = (−1)|j|
∫

Ω

∂(j)s(x) p(x) dx, (3.30)

under the assumption (which we will call the boundary smoothness condition)
that products of the form ∂(j′)s(x) ∂(j′′)p(x) cancel out on the boundary ∂Ω for
any pair of derivative encoding vectors (j ′, j ′′) that satisfy j ′, j ′′ < j, j ′ + j ′′ = j.
Here, the operations on the encoding vectors are taken component-wise, with the
inequality being considered in the sense that it applies strictly in at least one
component.

This is, at first sight, a quite restrictive assumption, however, as we will discuss
shortly, we will see that this is not the case. Therefore, with this condition in place,
we can obtain the equivalent variational equation

∫
Ω

s(x) rj(x) dx−(−1)|j|
∫

Ω

∂(j)s(x) p(x) dx+λ

∫
Ω

Λs(x) Λrj(x) dx = 0, ∀s ∈ V.
(3.31)

Using the estimates from samples of Eq. (2.35) and moving the second term to
the right-hand side, we get

∫
Ω

s(x) rj(x) dx+ λ

∫
Ω

Λs(x) Λrj(x) dx =
(−1)|j|

Mp

Mp∑
i=1

∂(j)s(xpi ), ∀s ∈ V. (3.32)

Searching for the sparse grid solution rj(x) :=
∑N

k=1 α
(j)
k ϕk(x) in the space V =

VN with s(x) := ϕl(x) in the Ritz-Galerkin projection, we finally obtain

N∑
k=1

α
(j)
k

∫
Ω

ϕk(x)ϕl(x) dx+ λ
N∑
k=1

α
(j)
k

∫
Ω

Λϕk(x) Λϕl(x) dx

=
(−1)|j|

Mp

Mp∑
i=1

∂(j)ϕl(x
p
i ), l = 1, . . . , N,

(3.33)

or, in matrix-vector form,

(R+ λC)α(j) =
(−1)|j|

Mp

∂(j)Bpep =: (−1)|j|∂(j)bp. (3.34)

By ∂(j)Bp we denote the matrix of evaluations of the partial derivatives of basis
functions at sample points Sp, i.e., ∂(j)Bp

l,i = ∂(j)ϕl(x
p
i ).

While the method we just introduced can be applied for any j, for the purpose of
our thesis we only consider the particular case of first order derivative estimation,
i.e., |j| = 1, meaning we estimate elements of the gradient ∇p(x) by solving the
system
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(R+ λC)α(k) =
−1

Mp

∂kB
pep =: −∂kbp, (3.35)

for a given dimension (or direction) k ∈ {1, . . . , d}, where ∂kB
p
l,i = ∂kϕl(x

p
i ).

The boundary smoothness condition. As stated in the mathematical derivation,
an essential assumption is that products of the form ∂(j′)s(x) ∂(j′′)p(x) cancel
out on the boundary ∂Ω of our domain for any pair (j ′, j ′′) that satisfy j ′, j ′′ <
j, j ′ + j ′′ = j. In the derivation of Sasaki [72], for the kernel-based method, the
underlying assumption is that the domain Ω is the whole real space Rd, where
both the kernel functions, usually Gaussian in nature, as well as in general the
distribution of any well-behaved probability density and its partial derivatives fade
to zero at infinity. In our case however, where the domain is restricted to the
compact hypercube [0, 1]d, we cannot guarantee anymore that our basis functions
fade at the boundary, even on grids with no boundary points. (General basis
functions are more likely than not to be non-zero at the boundary, for example
every B-spline-based basis.) Instead we have to impose a restriction on the data
distribution p and its derivatives instead, i.e., ∂(j′′)p(x) = 0,∀x ∈ ∂Ω,∀j ′′ < j.
Of course, mathematically most well-known data distributions are defined in the
whole multi-dimensional real space Rd, however practically we can scale our input
dataset such that it lives strictly inside the sparse grid domain and its distribution
tail has negligible values, and thus influence, at the boundary.

Properties of the linear system. The linear system we obtain in density deriva-
tive estimation is extremely similar to the one in SGDE, with the only changes
appearing in the right-hand side term. Indeed, for the edge case j = 0, we would
recover the linear system of Eq. (2.39), under the understanding that a zeroth-order
derivative leaves a function unchanged. Therefore, the SGDDerivE algorithm im-
ports all the properties, and thus also the benefits, of the SGDE algorithm.

Accuracy considerations. Similarly to SGDE and SGDDE, under the same as-
sumptions of a solution r ∈ VN ⊂ H2

mix to the linear system Eq. (3.34) for a density
function p with ∂jp ∈ H2

mix, but also with the additional boundary smoothness con-
dition used in the mathematical derivation, we can show that the obtained sparse
grid method is consistent:

Pr

(
lim

Mp, N →∞

∥∥r − ∂(j)p
∥∥2

L2 = 0

)
= 1. (3.36)

This simply asserts that as we approach infinitely many samples from the input
distributions on a sparse grid with a number of grid points approaching infinity our
numerical solution approaches the exact density derivative.
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3.5 Density Derivative Estimation

The proof steps are quite similar to those for SGDDE. If r̃ ∈ VN is the sparse
grid interpolant of the target density derivative ∂(j)p, we can write the error as∥∥r − ∂(j)p

∥∥2

L2 =
〈
r − ∂(j)p, r − r̃

〉
L2 +

〈
r − ∂(j)p, r̃ − ∂(j)p

〉
L2 . (3.37)

For the first term of Eq. (3.37), as we look for the behavior at the limit Mp →∞,
we can assume no overfitting takes place, so λ = 0. Furthermore, as both r and r̃
are functions represented on sparse grids, we can denote s := r − r̃ ∈ VN and with
Eq. (3.32) we obtain:〈

r − ∂(j)p, r − r̃
〉
L2 =

〈
r − ∂(j)p, s

〉
L2

= 〈r, s〉L2 −
〈
∂(j)p, s

〉
L2

= 〈r, s〉L2 − (−1)|j|
〈
p, ∂(j)s

〉
L2

=
(−1)|j|

Mp

Mp∑
i=1

∂(j)s(xpi )− (−1)|j|Ep(∂(j)s(x)),

(3.38)

where the boundary smoothness condition in effect “switched” the derivative from
the density p to the sparse grid function s.

For the second term of Eq. (3.37) we have the upper bound∣∣〈r − ∂(j)p, r̃ − ∂(j)p
〉
L2

∣∣ ≤ ∥∥r − ∂(j)p
∥∥
L2 ·

∥∥r̃ − ∂(j)p
∥∥
L2

≤ 1

4

∥∥r − ∂(j)p
∥∥2

L2 +
∥∥r̃ − ∂(j)p

∥∥2

L2

≤ 1

4

∥∥r − ∂(j)p
∥∥2

L2 +O
(
2−(n+1)l · ld−1

)
,

(3.39)

where for the first two steps we have again used the Cauchy–Bunyakovsky-Schwarz
inequality and the modified Young’s inequality (Eq. (3.11)), respectively. For the
third step, as we will use B-splines as our basis functions to match the required
degree of smoothness for the derivatives, we use the more general sparse grid error
bound for spline basis as derived by Sickel and Ullrich [74], where n is the degree
of the splines. Note that this is also consistent with previously introduced error
bounds, as for degree n = 1 one recovers the piecewise-linear functions and thus
also their interpolation convergence behavior on sparse grids.

Putting the results of Eqs. (3.38) and (3.39) together into Eq. (3.37), we finally
obtain after a small restructuring:∥∥r − ∂(j)p

∥∥2

L2 ≤
4

3
O
(
2−(n+1)l · ld−1

)
+

4

3
(−1)|j|

(
1

Mp

Mp∑
i=1

∂(j)s(xpi )− Ep(∂(j)s(x))

)
.

(3.40)

For N →∞ the sparse grid interpolation error tends to zero, irrespective of the
spline degree n. The second term of Eq. (3.40) also goes to zero in a probabilistic
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sense, i.e., Pr
(

limMp→∞
1
Mp

∑Mp

i=1 ∂
(j)s(xpi ) = Ep(∂

(j)s(x))
)

= 1, as the samples,

even though distributed according to density p, will fill the whole domain of ∂(j)p
as well in the limit. This thus completes the proof of the consistency asserted by
Eq. (3.36).

Implementation details. With only a single input dataset, density derivative es-
timation is indeed the closest in terms of implementation to the original density
estimation. The main differences come in the handling of the computation of the
right-hand side. The more usual sparse grid bases, like the hat functions or the
polynomial basis, are not continuously differentiable, therefore their use could lead
to numerical issues at the points of discontinuity. B-splines however do not have
that issue, as a correctly chosen degree will ensure the required order of continu-
ous differentiability. Thankfully, the SG++ library already allows the handling of
B-spline variants, as well as their partial derivatives, with fast, analytical formulas
for their evaluation.

The batch processing concept also applies to SGDDerivE quite directly. Using
the same notation as for SGDDE, the update rule for the right-hand side after k
batches will be, in the generic case:

(−1)|j|∂(j)bp
(k)

=
M

(k−1)
p

M
(k)
p

(−1)|j|∂(j)bp
(k−1)

+
M̃

(k)
p

M
(k)
p

(−1)|j|∂(j)b̃p
(k)
. (3.41)

Similar to SGDDE, the treatment of concept drift for SGDDerivE was also not
implemented in our work, but its mathematical derivation can be found in Ap-
pendix A.2.

Performance considerations. The implementation of density derivative estima-
tion carries over all the performance benefits available for SGDE, therefore both
parallelization across batches and the ScaLAPACK variants of the system matrix
decompositions were easily integrated into the SGDDerivE implementation.

3.5.2 Numerical results

Goals. As with the previously introduced new estimators, for SGDDerivE we were
interested is assessing its numerical properties, including strong points as well as
possible caveats, i.e., aspects which are of practical interest and most of which might
not be directly evident just from the mathematical derivations. To this purpose we
have ran simulations of artificial datasets sampled from various single and mixed
distributions, which offered useful, controlled scenarios in which to test out various
parameters for our sparse grid-based method. Additionally, we have compared all
results to an implementation of the MISED kernel-based approach.
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Quality criteria. We have again considered useful to apply here as well the three
previously introduced metrics, i.e., MAE, RMSE, and MaxAE, which can provide
a varied overview on the accuracy of our estimator. While all three values are
important in each test case, we use RMSE as the deciding factor on the best results
for a set of problem and solution parameters.

The testing pipeline. For the problem of density derivative estimation only one
input dataset is required, therefore we have created a distinctive, yet very similar
in functionality, testing pipeline based on the one used for the problems of DDE
and (R)DRE.

This code was once more written in Python, with the same testing steps being
carried out as described for SGDDE: generating input datasets by sampling from
some well-known data distributions (see Appendix B), generating the corresponding
configuration files for the SG++ data mining pipeline, running the sparse grid code
and the corresponding kernel-based estimator, then finally compute errors, generate
plots (to aid in interpreting the results, where viable), and save everything to file
for any later post-processing.

Testing parameters. While for the two-dataset complex density estimators men-
tioned so far we were able to use existing Python implementations, for density
derivative estimation this was not possible. However, a closely related, in terms
of programming language, MATLAB implementation6 of the MISED algorithm as
described in [72] was available. We have therefore translated this code into Python
in order for proper integration into the rest of our testing pipeline.

The implementation of MISED also contains its own cross-validation process
for selecting hyperparameters. For our simulations we ran 5-fold cross-validation
on a parameter space of 10 kernel widths σK =

{
10−3, 10−2.(6), . . . , 10−0.(3), 100

}
and 5 regularization parameter values λK = {10−4, 10−3, . . . , 100}. These values
were chosen to reasonably cover all test cases in our unit hypercube computational
domain, with the density of the parameter search grid chosen to balance out the
need to obtain good estimations with the extra computational effort of the cross-
validation process.

For the sparse grid runs we will specify for each test scenario the parameters we
will use. What is valid for all simulations is the use of B-spline basis functions.
Specifically, we use the modified not-a-knot B-spline basis of, which, on the one
hand, satisfies the hierarchical splitting condition to allow exact approximations
on sparse grids (as described in Section 2.1.4) and, on the other hand, keeps the
grid size reasonable by excluding boundary points. For these splines we choose the
minimal degree that can deliver continuous first order derivatives, as required by
the DDerivE task, which is 3.

6MATLAB code written by Hiroaki Sasaki, available at https://sites.google.com/site/

hworksites/home/software/lsdrf
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Figure 3.15: 1D DderivE results on normal-distributed datasets of various sizes. We
observe in practice less robustness from the MISED cross-validation pro-
cess, with overfitting influencing the results. However, despite these issues,
MISED provided better accuracies than SGDDerivE in our tests.

1D results. The first tests we have performed were done on one-dimensional data,
meant to provide a first validation of the approach. We considered as input datasets
Sp ∈ N1 (µ = 0.65,Σ = 0.01) of sizes Mp = {200, 500, 750, 1000}, testing thus rel-
atively small datasets, where the kernel-based approach is expected to work well
and our sparse grid method is more challenged. We ran SGDDerivE with 4 reg-
ularization parameter values λ = {10−2, 10−3, 10−4, 10−5} and on 3 regular grid
sizes l = {3, 4, 5}, selecting as best the parameter combination that results in the
minimal RMSE.

The results for the one-dimensional tests are shown in Fig. 3.15. Multiple obser-
vations can be made. Firstly, we again reveal some issues with the simple cross-
validation process of the kernel-based method, MISED not always selecting the op-
timal choice of hyperparameters. This means that a better hyperparameter tuning
process might be needed to increase the robustness of the method. Secondly, despite
possible shortcomings, MISED significantly performed better in these tests. Lastly,
although for brevity not explicitly shown here, in practice we see that higher grid
levels already show a tendency of SGDDerivE to overfit, whose effects are mildly
kept in check by the fact that we use degree 3 B-splines.

2D results. Interesting test cases with respect to sparse grids begin with two di-
mensions, where we can begin to see the reduction in grid points brought by this
numerical method. Therefore we continued our testing of SGDDerivE with 2D sce-
narios on datasets sampled from single and mixed distributions, whose parameters
are listed in Table 3.5. Based on the 1D results, we extended the number of dataset
sizes we tested in these scenarios in order to see if, and how, the accuracies improve
for our sparse grid method with more data points. To this purpose we ran here
9 different dataset sizes from 200 to 10000, on 3 different-sized regular grids, with
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3.5 Density Derivative Estimation

Table 3.5: Parameters of the 2D DDerivE test scenarios.

test
name

distrib.
type(s)

distribution parameters

N2 N µ = [0.4, 0.5]T , Σ = [[0.02, 0.01]; [0.01, 0.04]]

SN 2 SN ξ = [0.5, 0.5]T , Ω = [[0.08, 0.02]; [0.02, 0.06]],

α = [5, −2]T

T2 T µ = [0.4, 0.5]T , Σ = [[0.02, 0.01]; [0.01, 0.04]],

ν = 10

ST 2 ST ξ = [0.5, 0.5]T , Ω = [[0.035, 0.0175]; [0.0175, 0.0525]],

α = [3, −2]T , ν = 5

mN2

0.4 · N
+ 0.3 · N
+ 0.3 · N


µ = [0.35, 0.5]T , Σ = [[0.01, 0.0075]; [0.0075, 0.02]]

µ = [0.5, 0.5]T , Σ = [[0.03, 0]; [0, 0.01]]

µ = [0.6, 0.4]T , Σ = [[0.01, 0.0075]; [0.0075, 0.02]]

mST 2
0.5 · ST

+ 0.5 · ST


ξ = [0.45, 0.55]T , Ω = [[0.025, 0]; [0, 0.01]]

α = [0, 3]T , ν = 3

ξ = [0.55, 0.45]T , Ω = [[0.01, 0]; [0, 0.025]]

α = [3, 0]T , ν = 3

l = {3, 4, 5} for datasets up to size 3500 and l = {4, 5, 6} for the larger datasets, to
make sure we don’t saturate too fast neither the number of grid points.

Results for minimal RMSE per test case are shown in Fig. 3.16, for both di-
mensions along which we compute the density derivative. Overall we see that our
approach was not as successful as the previously showed complex estimators, even
though we see that convergence rates are similar overall. We observe that in general
MISED is less affected by the choice of derivative dimension, with accuracies more
closely matched together than the sparse grid approach. In practice we have ob-
served also visually that SGDDerivE in its current formulation is prone to produce
numerical artifacts in the domain, in the direction perpendicular to the derivative
dimension chosen. This can be seen in Fig. 3.17 for a representative test scenario.
It is not directly clear how related this is to our choice of basis functions, or if it
is more related to the linear system itself and the cost function chosen, but one
point of further tests could be the use of boundary points, as well as other types of
B-spline-based bases.

Lastly, we have to note that for several test cases MISED could not produce rea-
sonable results, even after a couple reruns, due to the 5-fold cross-validation process
not being able to combat the inherent overfitting tendency of the method. This
happened mostly for the small datasets and more accentuated for mixed distribu-
tions. Where errors were at least an order of magnitude over the expected values
we opted in the graphs here to simply ignore those values, which would otherwise
make the plots not understandable.
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Figure 3.17: Visual inspection of the DDerivE results for the ST 2 test scenario. Both
derivative dimensions are shown. We compare the contour plot and
heatmap of both MISED and SGDDerivE for the best obtained param-
eters against the analytical solution of the target density derivative, for
the largest dataset size considered. We can observe clearly the inclination
of the sparse grid solution to align itself with the corresponding direction of
the derivative dimension, resulting in an also visibly poor approximation.
On the other side, although suffering from a subpar parameter selection
procedure, MISED produces useful and relatively accurate results.
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Table 3.6: Parameters of the higher-dimensional DDerivE test scenarios.

test
name

distribution parameters
derivative
dimensions

SN 3
ξ = [0.5, 0.5, 0.5]T , Ω = diag[0.01, 0.015, 0.015],

α = [0, 2, −2]T
1, 2

SN 5

ξ = [0.5, 0.5, 0.5, 0.5, 0.5]T ,

Ω = diag[0.01, 0.01, 0.015, 0.015, 0.015],

α = [0, 0, 2, −2, 2]T
1, 3

SN 7

ξ = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]T ,

Ω = diag[0.01, 0.01, 0.01, 0.015, 0.015, 0.015, 0.015],

α = [0, 0, 2, −2, 2, 2, −2]T
1, 4

Higher-dimensional results. While the two-dimensional tests were not satisfac-
tory for our approach, for completeness we did also run a few higher-dimensional
tests, firstly to see whether sparse grids can at least bring something suitable where
the kernel methods might struggle, and secondly to assess whether adaptivity can
provide some relief where regular grids cannot. In particular, for the sparse grid
method we ran simulations with the same array of choices of regularization param-
eter λ = {10−2, 10−3, 10−4, 10−5} on a regular grid of level 5 and on three adap-
tive grids, one for each refinement strategy (surplus, surplus-volume, and surplus-
absolute-value), starting on a level 3 grid and performing 5 refinement steps of
10/15/20 grid points for dataset dimensionality 3/5/7, respectively.

The input data distribution parameters for these test scenarios are given in Ta-
ble 3.6, and the corresponding results are shown in Fig. 3.18. We again see higher
errors obtained with SGDDerivE than with MISED. However, even the relatively
small amount of grid adaptivity seems to be able to provide some improvements,
especially visible in the lower-dimensional cases. Once more, as for DDE, of the
three refinement strategies, our results suggest that surplus-absolute-value works
best overall.

Discussion of results. Our density derivative estimator proved to have several
issues that might not have been straight-forward to detect from the mathematical
formulation. All our tests, both those presented here, as well as additional tests
we have ran which for brevity we have not included here, give us no indication
that our boundary smoothness condition would have any negative influence on the
numerical results or that it was a too strong assumption. In fact, visually, the
one-dimensional results performed well also on datasets with very wide support.
Therefore, further tests on grids with boundaries as well as other suitable basis
functions should be carried out in order to more definitively trace the root cause of
the relatively poor performance of the method.
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Our tests were not meant to give any comparison between the methods in terms
of runtime, due to the fact that our Python codes were not optimal with respect
to any parallel performance. While these numbers are not shown here explicitly, in
single thread runs we have observed that SGDDerivE does not manage to provide
better runtimes than MISED, most likely due to the extra costs of using the B-spline
basis of degree 3.

3.6 Density Derivative Ratio Estimation

Problem statement. Using the notation introduced in Eq. (3.27), the problem of
density derivative ratio estimation (DDerivRE) can be formulated as follows:

Given a set of independent and identically distributed samples in Ω ⊆
Rd, Sp = {xpi }

Mp

i=1 with density p(x), estimate the ratio ∂(j)p(x)
p(x)

, under

the assumption that ∂(j)p(x) is well-defined.

Existing approaches. Our literature review has shown that there has been ex-
tremely little interest not only in devising a direct method for estimating density
derivative ratios, but also in investigating the usefulness of such a quantity. The
main contribution, on which we also base our sparse grid algorithm, comes from
Sasaki et al., who have introduced an algorithm to fit a kernel-based model under
a regularized squared loss. They then show that this least squares density deriva-
tive ratios (LSDDR) method allows the implementation of mode seeking and ridge
detection iterative algorithms [71]. To the best of our knowledge, LSDDR looks
to be the only unified approach to handle derivative ratios of all orders developed
prior to our sparse grid-based algorithm.

3.6.1 Sparse Grid Density Derivative Ratio Estimation

Mathematical derivation. For our sparse grid density derivative ratio estimation
(SGDDerivRE) algorithm we use a similar cost function as the LSDDR method.
Therefore, the regularized squared loss we try to minimize for function rj(x) in a
suitable space V is given by

J(rj) =

∫
Ω

[
rj(x)− ∂(j)p(x)

p(x)

]2

p(x) dx+ λ‖Λrj‖2
L2 . (3.42)

The corresponding variational equation is then

∫
Ω

s(x) rj(x) p(x) dx−
∫

Ω

s(x) ∂(j)p(x) dx+ λ

∫
Ω

Λs(x) Λrj(x) dx = 0, ∀s ∈ V.
(3.43)
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3.6 Density Derivative Ratio Estimation

Using the same integration by parts Eq. (3.30) under the same boundary smooth-
ness condition as for density derivative estimation (that products of the form
∂(j′)s(x) ∂(j′′)p(x) cancel out on the boundary ∂Ω for any pair of derivative encod-
ing vectors (j ′, j ′′) that satisfy j ′, j ′′ < j, j ′ + j ′′ = j), the second term can be
rewritten as ∫

Ω

s(x) ∂(j)p(x) dx = (−1)|j|
∫

Ω

∂(j)s(x) p(x) dx (3.44)

resulting in the equivalent variational equation

∫
Ω

s(x) rj(x) p(x) dx− (−1)|j|
∫

Ω

∂(j)s(x) p(x) dx

+λ

∫
Ω

Λs(x) Λrj(x) dx = 0, ∀s ∈ V.
(3.45)

Introducing the empirical estimators (Eq. (3.3)) and moving the second term to
the right-hand side, we obtain

1

Mp

Mp∑
i=1

s(xpi ) rj(x
p
i ) + λ

∫
Ω

Λs(x) Λrj(x) dx =
(−1)|j|

Mp

Mp∑
i=1

s(xpi ), ∀s ∈ V. (3.46)

Applying the sparse grid Ritz-Galerkin projection rj(x) :=
∑N

k=1 αkϕk(x) and
s(x) := ϕl(x) for V = VN , we get

N∑
k=1

[
α

(j)
k

1

Mp

Mp∑
i=1

ϕk(x
p
i )ϕl(x

p
i )

]
+ λ

N∑
k=1

α
(j)
k

∫
Ω

Λϕk(x) Λϕl(x) dx

=
(−1)|j|

Mp

Mp∑
i=1

ϕl(x
p
i ), l = 1, . . . , N.

(3.47)

In matrix-vector form, the resulting linear system to solve for surpluses α(j) is
thus (

1

Mp

BpBpT + λC

)
α(j) =

(−1)|j|

Mp

∂(j)Bpep. (3.48)

As it was the case with density derivative estimation, for the purposes of the
current work we will focus solely on the first-order partial derivatives case |j| = 1,
i.e., we will estimate elements of ∇p(x)/p(x) by solving the system(

1

Mp

BpBpT + λC

)
α(k) =

−1

Mp

∂kB
pep, (3.49)

for any given dimension (or direction) k ∈ {1, . . . , d}.
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Properties of the linear system. Similarly to the density derivative case, the
linear system we obtain is consistent with previous results, in the sense that for
the edge case j = 0 one recovers the ω → 1 edge case of relative density ratio
estimation. Overall, the linear system is again in the style of the sparse grid re-
gression/classification algorithm, with both the system matrix and the right-hand
side depending now on the same sample set Sp.

Accuracy considerations. Like for SGDRE, for density derivative ratio estimation
we can expect to be able to prove some theoretical convergence rates for specific
types of basis functions [8], however in the general case we can only hope to have
up to similar accuracies in practice as those for sparse grid regression problems,
with the assumption that the more restrictive setting (in the sense that we impose
more restrictions on the distribution of data points and the behavior at the domain
boundary) does not have some pronounced numerical effect that is not existent for
the regular regression problem.

Implementation details. SGDDerivRE combines the implementation restrictions
of the two methods it resembles: the use of batches needs to be done with care,
as similarly to SGDRE we cannot recover the full dataset results from the indi-
vidual batch contributions, and, similarly to SGDDerivE, we have to restrict our
choice of bases to B-spline functions of correct degree in order to obtain a useful
approximation on the sparse grid.

Performance considerations. Unsurprisingly, the parallelization possibilities of
our density derivative ratio estimator are basically the same as the ones mentioned
for SGDRE. Thus, again, we would be restricted to a regression/classification-like
parallelization effort in order to obtain higher levels of performance from our code,
something which was not implemented.

3.6.2 Numerical results

Goals. The tests we performed were meant to assess in general the numerical
properties of our SGDDerivRE method, and in particular to determine possible
strong and weak points of our approach. For this purpose we ran multiple sce-
narios with various parameters and on various datasets sampled form known dis-
tributions, which provided a controlled setting for our analysis. Additionally, we
have compared in all scenarios our sparse grid-based approach to an equivalent
implementation of the kernel-based method LSDDR in order to determine to what
extend the kernel-based method could be replaced in practice by our sparse grid
approach.

Quality criteria. The same as with the rest of the complex estimators, the metrics
we will be using in our tests to evaluate the properties of our approach are MAE,
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3.6 Density Derivative Ratio Estimation

RMSE and MaxAE. For each test we ran we will compute these errors for each set
of parameters, then selecting as best the results that obtain the minimal RMSE.

The testing pipeline. For density derivative ratio estimation we use the same
testing pipeline written in Python that we have created for density derivative es-
timation, with a simple variable used to differentiate the two pipelines. The same
freedom of choosing all relevant hyperparameters exists as for other methods and
the testing pipeline work in the same way: we first create our input datasets by
sampling from known distributions (see Appendix B), we create the corresponding
input configuration files for SGDDerivRE, we run our method, as well as the corre-
sponding kernel-based LSDDR, then compute the three errors, create plots (where
needed, for visual inspection), and finally save all data to file for any further post-
processing.

Testing parameters. Similarly to the density derivative estimation case, here as
well we had to rely only on a MATLAB implementation of the LSDDR method7,
based on the algorithm described in [71], which we then translated into Python in
order to integrate it in our testing pipeline.

In our tests we have used for LSDDR 5-fold cross-validation, following the strat-
egy described in the literature, to choose the best hyperparameters from 10 possible
kernel widths σK =

{
10−3, 10−2.(6), . . . , 10−0.(3), 100

}
and 5 different regularization

parameter values λK = {10−4, 10−3, . . . , 100}. These values were chosen to give
a good trade-off between a proper coverage of tested input distributions and a
reasonably dense parameter search space.

For our SGDDerivRE implementation we rely on the modified not-a-knot degree 3
B-spline basis, for the same reasons as for density derivative estimation: reasonable
grid sizes by excluding boundary points, fulfillment of the hierarchical splitting
condition, and enough smoothness of the basis functions.

1D results. The first tests we have performed were on one-dimensional data,
where we can easily check whether our approach provides reasonable solutions. To
this end we have sampled datasets Sp ∈ N1 (µ = 0.65,Σ = 0.01) of sizes Mp =
{200, 500, 750, 1000}, searching for our sparse grid-based approach the best re-
sults for grid levels l ∈ {3, 4, 5} and regularization parameters λ = {10−1, 10−2,
10−3, 10−4}.

These results, comparing SGDDerivRE to LSDDR in terms of minimal RMSE,
are shown in Fig. 3.19. We observe quite a better performance from our approach
compared to the kernel-based one, which happens for the same reason as for (rela-
tive) density ratio estimation: error evaluations take place over the whole domain,
while the kernel-based method can only provide a good estimate where input data
points exist, while SGDDerivRE can approximate the target function in the whole

7MATLAB code written by Hiroaki Sasaki, available at https://sites.google.com/site/

hworksites/home/software/lsdrf
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Figure 3.19: 1D DDerivRE results on normal-distributed datasets. We obtain better
accuracies on sparse grids, as shown here, over the whole unit domain,
but also when restricted to the support of the input dataset. As such,
our approach can generalize better. To note that the nature of the density
derivative ratio here is such that a lot of regularization is required if higher
level grids are used.

computational domain. While for brevity not shown here, our tests showed how-
ever that the sparse grid method, at least for low grid levels, where for the chosen
regularization parameter values we could avoid overfitting, provides equally good
estimates also when limited to the support of the input dataset.

2D results. our next batch of tests were performed on two-dimensional datasets,
where we can actually begin to see the benefits of using a sparse grid-based ap-
proach in terms of a reduction in grid sizes. The scenarios we investigated here are
described in Table 3.7, with known single and mixed distributions being used to gen-
erate input datasets of 9 various sizes between 200 and 10000. For our sparse grid
method we test 3 different grid levels, correlated with the input dataset sizes, where
for Mp < 5000 we consider l ∈ {3, 4, 5}, while for Mp ≥ 5000 we test l ∈ {4, 5, 6},
a decision done in order to always provide enough grid points to SGDDerivRE.

Results are shown in Fig. 3.20. We observe again that we obtain lower errors with
SGDDerivRE than with LSDDR. Some additional aspects, which were observed
practically, need to be mentioned. Firstly, we did not observe in these tests the same
kind of numerical artifacts that affected SGDDerivE, which could be a consequence
of the fact that the linear system in this case includes data point evaluations on both
sides of the equation. Secondly, while the best accuracies were for the most part
obtained for the sparse grid approach on the lower level grids tested, a consequence
of our metrics being computed by evaluating in the whole domain, on level 5 grids we
still obtained errors which, although higher, were still below those for LSDDR, but
at a degradation of the local aspects of the numerical solution akin to overfitting.
This is shown for selected results in Fig. 3.21. Lastly, the hyperparameter selection
cross-validation process of LSDDR was proven to be less stable than expected. To
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Table 3.7: Parameters of the 2D DDerivRE test scenarios.

test
name

distrib.
type(s)

distribution parameters

N2 N µ = [0.4, 0.5]T , Σ = [[0.02, 0.01]; [0.01, 0.04]]

SN 2 SN ξ = [0.5, 0.5]T , Ω = [[0.08, 0.02]; [0.02, 0.06]],

α = [5, −2]T

T2 T µ = [0.4, 0.5]T , Σ = [[0.02, 0.01]; [0.01, 0.04]],

ν = 10

ST 2 ST ξ = [0.5, 0.5]T , Ω = [[0.035, 0.0175]; [0.0175, 0.0525]],

α = [3, −2]T , ν = 5

mN2

0.4 · N
+ 0.3 · N
+ 0.3 · N


µ = [0.35, 0.5]T , Σ = [[0.01, 0.0075]; [0.0075, 0.02]]

µ = [0.5, 0.5]T , Σ = [[0.03, 0]; [0, 0.01]]

µ = [0.6, 0.4]T , Σ = [[0.01, 0.0075]; [0.0075, 0.02]]

mST 2
0.5 · ST

+ 0.5 · ST


ξ = [0.45, 0.55]T , Ω = [[0.025, 0]; [0, 0.01]]

α = [0, 3]T , ν = 3

ξ = [0.55, 0.45]T , Ω = [[0.01, 0]; [0, 0.025]]

α = [3, 0]T , ν = 3

this end, the results shown here for Mp ≥ 3500, where most problems were observed,
are the best obtained over 4 different runs, and even with these extra steps taken
reasonable results were not always obtained. In the plots any missing values of the
kernel method correspond to obtained errors 5 times larger than on sparse grids,
which we avoided to show in order to make the plots readable.

Higher-dimensional results. Lastly, the final tests looked at the behavior for
higher dimensional datasets, where we can also more clearly assess the accuracies
we obtain when evaluating strictly at the data points. The parameters for these
test scenarios are presented in Table 3.8. We considered datasets of sizes Mp =
{10000, 20000} and for the sparse grid runs we used the same array of regularization
parameters λ and both a fixed level 5 grid and the usual three adaptive grids
obtained by starting with a regular level 3 grid and applying 5 adaptive steps with
10/15 refinement points per step for dimensionality 3/5, respectively, using the
surplus, surplus-volume, and surplus-absolute-value refinement criteria.

Results for minimal RMSE per test case are presented in Fig. 3.22. For the larger
dataset sizes we could not obtain results with LSDDR in a reasonable amount of
time, therefore those entries have been skipped. We can observe that overall we
obtain better results form our approach than from the kernel-based method for the
level 5 grids, as well as for most of the adaptive ones. In terms of best refinement
criterion, surplus-absolute-value provided again the more consistent improvements
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3.6 Density Derivative Ratio Estimation
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Figure 3.21: Visual inspection of the DDerivRE results for the SN 2 test scenario.
Both derivative dimensions are shown. We compare the contour plot and
heatmap of both LSDDR and SGDDerivRE for the best obtained parame-
ters against the analytical solution of the target density derivative, for the
largest dataset size considered. For the sparse grid method we show both
the best results obtained with a level 4 grid, as well as the approximation
on the corresponding level 6 grid. We can observe from the contour plots
that both numerical methods provide relatively similar results in the input
dataset support, but the sparse grid method generalizes better. On the
other hand, for larger sparse grids we again see similar direction-wise nu-
merical artifacts as in the DDerivE case, meaning that this issue was not
resolved completely here, just delayed by the inclusion of the data points
in the linear system’s matrix as well.
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Table 3.8: Parameters of the higher-dimensional DDerivRE test scenarios.

test
name

distribution parameters
derivative
dimensions

SN 3
ξ = [0.5, 0.5, 0.5]T , Ω = diag[0.01, 0.015, 0.015],

α = [0, 2, −2]T
1, 2

SN 5

ξ = [0.5, 0.5, 0.5, 0.5, 0.5]T ,

Ω = diag[0.01, 0.01, 0.015, 0.015, 0.015],

α = [0, 0, 2, −2, 2]T
1, 3
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Figure 3.22: Higher-dimensional DDerivRE results on skew-normal distributed
datasets. While here the evaluations are performed at the data points, thus
eliminating the issue of generalizing in the whole domain, SGDDerivRE
still shows smaller errors than LSDDR. In general, also the adaptive grids
show better accuracies than the kernel-based method, with the surplus-
absolute-value refinement criterion showing to be the most robust.
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in all scenarios, although in a couple of tests it got superseded by the surplus-volume
refinement.

Discussion of results. In terms of approximation quality, our sparse grid ap-
proach performed well, especially considering the poor performance of the density
derivative estimator, results showing SGDDerivRE to be both stable and more con-
sistently accurate than LSDDR. An open question remaining for future endeavors
is how well these results translate into applications of the density derivative ratio
estimator. Particularly, as our sparse grid approximation is in general less smooth
than a Gaussian kernel-based estimator and our , whether our sparse grid approach
can be used as a part of a hill-climbing process to efficiently find modes and ridges
in datasets, something where LSDDR was shown to perform very well [71].

As before, for this estimator we again did not provide explicitly any runtime
comparisons, due to the nature of the implementations and the limitations of the
Python code. However, we can make some observations from our experience on sin-
gle threaded runs. For datasets of all dimensions the sparse grid approach reaches a
solution in similar time as the kernel-based method, if we take into account the time
spent finding the best hyperparameters for both methods. Wehn adaptivity comes
into play, as well as in general when evaluating the resulting estimator however,
SGDDerivRE falls behind LSDDR due to the extra cost incurred by the B-spline
basis.

It also has to be noted that from a practical perspective higher order density
derivatives in general are expected to quickly start loosing numerical benefits when
approximated by sparse grids due to the corresponding increase in degree of the ba-
sis functions required, leading to an unsustainable increase in computational effort.
Therefore, and correspondingly valid for SGDDerivE as well, while the mathemat-
ical formulations for density derivative and density derivative ratio hold for all
possible choices of j, one should, unless explicitly proven otherwise, restrict itself
in practice to using at most second order derivatives (|j| ≤ 2) and correspondingly
only degree 3 (spline) basis.

3.7 Summary

In this chapter we have taken a look with an algorithmic focus at a certain type of
learning task, specifically the issue of estimating functions of densities, introduc-
ing to this end completely novel approaches of solving these problems by means of
sparse grids. For each method we have delved into the mathematical derivations
needed to obtain a solvable linear system, their algebraic properties, implementa-
tion and performance aspects, and lastly performed various tests to assess their
numerical capabilities compared to known similar kernel-based methods.

Our two-dataset methods proved to be the most successful, with the sparse grid
density difference estimator matching closely the previously known good perfor-
mance of the SGDE method of Peherstorfer, and the sparse grid density ratio
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estimator introducing a novel use of the regression/classification type of linear sys-
tem. For both methods our results showed that they are at least competitive, if not
better, than kernel-based counterparts and possessed nice properties of practical
relevance. With the kernel-based approaches having found various further applica-
tions, these good results will hopefully thus open the door for sparse grids to be
used as well in such applications, previously not considered (e.g., [78, 80, 81, 48]).

Our second set of methods, with single dataset inputs, struggled however to ob-
tain the same levels of performance in numerical tests, even though they came from
sound mathematical formulations. Our proposed solution to the density derivative
estimation problem was plagued by issues that were only revealed in visual and
numerical tests, and as such further tests would need to be carried out in order to
fully asses the method’s practical applicability. On the other hand, the sparse grid
density derivative ratio estimator was more robust and produced consistently bet-
ter results than its kernel-based counterpart, however more tests will be required to
assess whether usual applications of derivative ratios can be handled by our sparse
grid method (e.g., [71]).

Overall, these results make us hopeful that our new algorithms will find their
usefulness moving forward into expanding the already large array of applications of
sparse grids in learning tasks, as well as providing new algorithmic tools previously
not considered.
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4 Contributions with a
High-Performance Computing
Focus

High-performance computing (HPC) has become today a quite indispensable aspect
of numerical software solutions. With ever growing amounts of data that have to be
evaluated and processed fast and reliably, codes have to be able to cope with these
demands by utilizing not only the best algorithmic approaches existing, but also
by harnessing the underlying hardware capabilities available to their fullest. While
of course ideally one would always look for simply the fastest time to solution, in
practice many factors do come into play when discussing progress in HPC. One
aspect is related to the hardwares being released, which are becoming increasingly
complex, so significant time and resources have to be put into understanding them,
as treating each new processor simply as a plug-and-play device for one’s code
will most likely underutilize the available resources brought by the combination of
the normal generational leap in fabrication technology and the changes to existing
hardware architecture. This is not always an easy task, as one has to rely both
on their own analysis and experimentation, as well as the results of others, where
available. Another aspect that has to be taken into account is that pure algorith-
mic improvements can sometimes provide more increase in performance than code
optimizations or better hardware. However, while of course one should look to have
the best underlying algorithms, legacy codes, even when avoidable, can still offer
valuable insights, not least in the area of HPC.

In our view on high-performance development in learning problems we will focus
on the tasks of regression and classification. Until the introduction of the density
estimation-based approach of Peherstorfer [59], classification using sparse grids was
exclusively done with the method of Pflüger [64], which can also be used to perform
regression. As was discussed in Chapter 3, the data-independence of the system
matrix in the SGDE algorithm gives an advantage when it comes to the size of
the problems that can be tackled, with the computational bottleneck being trans-
fered to the right-hand side (as was pointed out also in [69]). That however is not
the case with the standard regression/classification algorithm of Pflüger. Therefore,
this approach has seen significant development especially in terms of optimizing the
evaluation of basis functions at data points, which is the core operation required
in order to solve the task’s resulting linear system. The biggest contribution in the
HPC direction was done by Heinecke [34], who has implemented a highly efficient
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parallel and scalable version of the standard sparse grid evaluation step. While
subsequently Pfander et al. [63] have shown superior performance by using a dif-
ferent, subspace-based, approach to perform these evaluations, our work has been
based on that of Heinecke as part of the Intel Parallel Computing Center project
at the Leibniz Supercomputing Center and the Technical University of Munich.
This code uses an intrinsics-based implementation with an intuitive and straight-
forward approach to parallelization on various architectures (including Intel CPUs),
all resulting in and from a better, in-depth understanding of the hardware.

Before delving further into this chapter, we need to make a small note on ter-
minology specifics. As mentioned, in the sparse grid approach to solve the tasks
of regression and classification, the resulting linear systems are virtually identical
and therefore we can treat these two scenarios, otherwise different from a machine
learning perspective, homogeneously. However, for the sake of coherence, we will
proceed to use specifically the term ‘classification’ in the code optimization study
Section 4.1, and the term ‘regression’ in the context of the time series prediction
scenario in the subsequent Section 4.2, with the clear understanding that practi-
cally the same resulting linear system in the sparse grid approach, and thus the
same code implementation, is being used to solve both of these machine learning
tasks.

This chapter is structured as follows: we will begin with an introduction into the
high-performance code for the regression/classification scenario using sparse grids
implemented by Heinecke. Next we will shortly present the specifications of the
hardware for which we have targeted our legacy code extensions, then explain in
more detail the steps we took to reach the numerical results which will be shown
afterwards and which focus on a classification scenario. These results are based
mainly on our previously published material [70]. This study of the performance
we can achieved with our code will be paired in the second part of the chapter
with a concrete application that would benefit from the low time to solution we
can provide. Specifically, we will show how such an optimized, fast code allows to
easily study the use of spatially adaptive sparse grids for regression-based time series
prediction on real financial data, where existing work was only done previously using
the combination technique.

4.1 Code optimization study

4.1.1 State of the legacy code

The code we used as a basis for our optimization effort is a legacy implementation
by Heinecke [34], based on a past version of the SG++ library. In the following we
will shortly present details of his approach and implementation which are relevant
to our subsequent optimization work, with further details to be found in the source
material.
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Algorithm implementation. As the linear system in Eq. (2.44) is being solved in
the SG++ library using the conjugate gradient (CG) method, one has to mainly
focus on optimizing the two matrix-vector multiplications with the matrices B and
BT , called multT and mult, respectively. In order to allow for an easy paral-
lelization, Heinecke opted for an iterative approach, where one computes all the
contributions of all basis functions at all data points, which are then cumulated at
the end of the traversal. While many of these contributions will be zero for any
given data point, as they lie in the support of only part of the basis functions, the
trade-off is worthwhile due to the fact that it allows a straight-forward distribution
of the workload by parallelizing across the loops. As stated in the original work
by Heinecke, such an approach results in compute-bound, embarrassingly-parallel
operations suitable for running on modern architectures.

For a better use of the single-instruction multiple-data (SIMD) vector operations
on CPU architectures, Heinecke opted for manual loop unrolling, where operations
are being split further across chunksizes reflective of the vector width of the hard-
ware. Taking into account the amount of available registers for SIMD operations,
one can compute the chunksize that maximizes the amount of data points that can
be operated upon at the same time. Additionally, to make sure this distribution
works, the input dataset is padded from its initial size M upwards to the nearest
multiple of the SIMD vector length, allowing for exact looping. The padding is
done by repeating the last data point - target pair as many times as necessary,
which has otherwise no impact on the actual classification results.

A feature of this code that made it attractive for the purpose of our optimization
study is its reliance on intrinsic functions (or intrinsics for short) that allow for a
real low-level control of the mathematical operations through manual vectorization.
Intrinsics are CPU-specific instructions that the compiler treats differently than
the regular language-specific ones. Therefore, one of the main tasks of porting
the computational kernels to a new CPU architecture lies in the updating of these
intrinsics for the new target hardware.

The implementation of these operations allowed both shared (using OpenMP)
and distributed (using MPI) memory parallelism. Each of the two operations,
mult and multT , consist normally of 3 main loops: over the dataset, over the grid
points, and over the dimension of the space. To remove loop carried dependencies
and provide enough computational intensity per loop iteration, the first operation
is parallelized across the dataset, while the second one is over the grid points, with
a static scheduling strategy chosen for the OpenMP implementation. Additionally,
explicit prefetching instructions allow the hiding of memory latencies in order to
remove idle times in the computational kernels.

Distributed memory parallelism. The distributed memory parallelization with
MPI, which allows scaling also beyond the node level, was obtained by implementing
several different communication schemes in order to synchronize the work performed
on different chunks of the data. The first scheme, called Alltoallv, distributes the
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chunks of data to each process and then performs a synchronization step at the
end of the operation (be it mult or multT ) to gather the individual contributions
with a call to the MPI Allgatherv() function. This approach clearly distinguishes
between the computation and communication parts of the matrix-vector operations,
however at the cost of poor scalability for a high number of processes.

The second scheme proposed in the original implementation, Async, performs a
better overlap of the computation and communication parts by performing point-to-
point asynchronous transfer of contributions between the working processes. This
was shown to outperform the previous scheme, however it still does not allow high
scaling at a cluster level parallelism due to the increased communication overhead
that comes in those scenarios. This scheme could lend itself to

Lastly, the third scheme is called Allreduce. As the name suggests, it proposes
the use of the MPI Allreduce() function to perform one single final accumulation
of the results at the end of a combined mult and multT operation. This approach
requires a change in the iterative traversal for the second matrix-vector operation,
as now multT also needs to be parallelized across the dataset. This however is a
small drawback, considering the fact that this scheme allows each process to store
only a small part of the data at any given moment, lending itself to be used on very
large datasets.

Handling the sparse grid basis functions. For each architecture, we not only
have two computational kernels, one for each of the two main matrix-vector opera-
tions, but we also have two variants of each, depending on whether we employ linear
or modlinear basis functions. Each of them comes with their own advantages and
caveats. For both bases, in order to have a higher level of efficiency in the traversal
of the grid points, the overall data structure of the grid had to be changed from an
array-of-structures (AoS) to a structure-of-arrays (SoA) one. The evaluation in the
case of the linear basis function is quite straight-forward, however the usual sparse
grid restrictions do come into play here as well: in order to correctly approximate
on the boundary of the domain one needs to invest substantially more grid points.
The modified linear basis provides relief to this problem while maintaining high
classification accuracy, as was demonstrated in the existing results [34], however at
the price of a more complex implementation. The performance hit is somewhat off-
set by a masking technique and the precomputation of certain intermediate values,
which alleviate an otherwise costly 4-way conditional.

4.1.2 The optimization process

Goals. With an otherwise unique take on the optimization process, by using man-
ual vectorization techniques and with a good understanding of both the algorithms
and the hardware on which they should run, this legacy code has shown already
its capacity to perform very well on various CPU and GPU architectures, part of a
larger project withing the Intel Parallel Computing Center (IPCC) at the Leibniz
Supercomputing Center (LRZ) in Garching, Germany. The purpose of our work,
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set under the same project umbrella, lied in studying the performance gains one
can expect to obtain from this implementation on newer architectures, under the
same approach to the optimization process. Our target processor, Intel’s second
generation Xeon Phi, code-named Knights Landing (KNL), was one of the first
chips to implement the wider AVX-512 instruction extension on x86 machines1 and
it came with various additional hardware novelties, all of which made it an attrac-
tive architecture to investigate with our application. Especially interesting from
an academic perspective is represented also by the scaling performance between
different generations of processors, as such comparisons with its direct precursor,
the AVX2-based Haswell architecture, were also performed.

The target architecture. The specific CPU for which we optimized our code is
the Xeon Phi 7210-F model installed in the CoolMUC32 segment of the Linux
Cluster3 system of the LRZ. This processor has 64 cores, with 2 vector processing
units (VPUs) per core capable of fused multiply-add (FMA) operations, and it
implements the AVX-512 SIMD extension. Each core allows 4-way hyperthreading
at a nominal frequency of 1.3GHz. In terms of storage, this chip contains a 96GB
DDR4 distant memory and, as a novelty at the time of its introduction, a 16GB
MCDRAM high-bandwidth closer memory.

The CoolMUC3 cluster contains 148 such KNL nodes in an Intel Omnipath-based
network, whose optimal operating temperature is maintained though a water cool-
ing system. At the time of our optimization runs, the cluster operated in a mode
that imposed the nodes to run with Intel Turbo Boost enabled, which makes the
operational frequency to follow a predefined set of bins depending on the arithmeti-
cal intensity of the instructions executed4 (an aspect that comes into play when
interpreting results in terms of fraction of peak performance). Overall, the clus-
ter has a theoretical peak of 394Tflop/s (2.662Tflop/s per node) and a LINPACK
performance of 255Tflop/s (1.723Tflop/s), both in double precision arithmetic.

The introduction of the high-bandwidth MCDRAM memory is not the only nov-
elty, as well source of both complexity and flexibility, of the KNL processor. The
cache architecture of the chip also suffered a redesign compared to previous chips.
While each core of a KNL chip still has its own level 1 cache and the level 2 cache
is shared between tiles (with two cores each), the level 3 cache has been completely

1The 512-bit SIMD units were first introduced by Intel on the Many Integrated Core (MIC)
PCIe card, named Knights Ferry. The first generation Xeon Phi, code-named Knights Corner
(KNC), also used 512-bit wide vectors, was produced as a coprocessor. This makes the KNL
the first stand-alone Intel processor to implement this SIMD extension.

2https://doku.lrz.de/display/PUBLIC/CoolMUC-3
3https://doku.lrz.de/display/PUBLIC/Linux+Cluster
4Information on the frequency bins could originally be found in Intel’s 2nd Gen

Xeon Phi product brief (https://www.intel.com/content/www/us/en/processors/xeon/
xeon-phi-processor-product-brief.html). This is however not the case anymore at the
time of this thesis being written. One has to rely instead on other, reliable and long-term avail-
able, online sources of information, for example: https://www.nersc.gov/assets/Uploads/
Using-KNL-Processors-Feb2019.pdf
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removed. Instead, a two-directional communication mesh is introduced in order to
maintain coherence between all level 2 caches. Additionally, the fast MCDRAM
can sometimes substitute partially the need for a level 3 cache (as will be described
shortly).

To allow users to better leverage these architectural changes in the KNL die, two
set of operational modes exist5. The clustering modes describe how we expect the
data to be distributed across compute cores in order to facilitate better locality at
the tile level (i.e., level 2 cache). Three options exist:

� The all-to-all mode is the simplest and, as such, also the less efficient. It
proposes a uniform distribution of the memory addresses across all tiles, and
therefore it is only suitable for debugging purposes.

� The quadrant mode splits the tiles into 4 logical sections (i.e., hidden to
the programmer), each with its own memory address controller. This allows
for overall lower latencies of level 2 cache misses, and therefore it is one of
the preferable modes of operation for most codes. Moreover codes requires
virtually no additional work in adapting them to run with this mode. On
some processors versions (different to the one we used in our tests) there is a
hemisphere variant of this mode, where the only difference is that the logical
split takes place in halves instead.

� There are codes that are non-uniform memory access (NUMA)-aware, where
one takes additional care to make sure each processor works on data located as
close by to it on chip as possible in order to maximize performance. For such
cases there exists the SNC (sub-NUMA clustering) mode. This is especially
helpful in the case of memory bound, NUMA-aware codes where one wants
to pin compute threads and their active memory to specific NUMA nodes.
The KNL chip used in our optimizations supports the SNC-4 option, where
the split is into 4 NUMA nodes, with other KNL models allowing also a
hemisphere split (SNC-2 ).

The memory modes describe a second, independent set of ways in which the
KNL node can operate. They control the manner in which the MCDRAM high-
bandwidth memory (HBM) is being treated by the processor. Again, three options
exist:

� In flat mode, all the memory addresses of the MCDRAM are mapped as
regular address space, the same as the large DDR4 main memory. This is
first, and for most codes, best memory mode to work with. For applications
that fit inside the 16GB limit, one has to only make sure at runtime to

5While many best practice guides on the KNL modes exist, we have found the following to be
most useful:
https://colfaxresearch.com/knl-numa/

https://colfaxresearch.com/knl-mcdram/
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allocate all memory to the fast MCDRAM by means of, e.g., the numactl
instruction. Even for larger applications this mode can be beneficial as long
as one allocates manually the bandwidth-critical data structures to the faster
memory.

� The cache mode is meant to somewhat bridge the gap left by the exclusion of
the level 3 cache from the KNL chip architecture. As the name suggests,
in this mode the MCDRAM takes effectively the role of a level 3 cache.
While sometimes beneficial, especially due to the fact that no explicit memory
mapping or code changes are needed to utilize it efficiently, for most scenarios
this mode simply adds extra latency and as such its use-case is limited.

� The most complex mode is the hybrid one. Drawing from the benefits and
the drawbacks of both previous two modes by splitting the HBM into a cache
and an addressable part, this option can be useful for very large applications
where only some parts of the code allow allocations to take place in the HBM.

Details of the code optimization process. Being a demonstrable compute bound
implementation, the first and main task of the optimization process was to update
the intrisincs from those targeting AVX2 instructions to the new AVX-512 wide
SIMD versions.6 For the most part the transition could be done easily, as direct
correspondent instructions could be found. In terms of new capabilities of the
new instruction set is the possibility for improved embedded broadcasting, which
theoretically provide a speed-up, although the effect is hard to quantify as our
code does not depend heavily on such operations. On the other hand, as the KNL
chip only implements the very basic AVX-512 SIMD instructions, some options
to optimize the code, such as the usage of more complex masking operations on
multiple integer valued registers (found in the AVX-512DQ extension) could not be
implemented (they are however available on the more recent Xeon architectures).

Regarding the OpenMP implementation, some additional interesting aspects
were discovered during the optimization process that are of note. First of all,
we found no reason to switch from a static (i.e., manual) partitioning to a dynamic
one, as the workload is quite evenly distributed between processes. We have found
however that this is not necessarily the case when using only part of a compute
node (i.e., using only part of the threads). For a low to medium number of cores
active dynamic scheduling managed to get a slight improvement over the static
partitioning, however this effect could not hold up for the entire 64 cores due to
the ever growing overhead of context switching.

A second interesting find relates to the loop chunk size used for unrolling the
dataset loop. The idea is to compute this value such that it relates to the number
of actual available SIMD registers of the processor in question and the amount of
dataset instances that can actually physically be processed at the same time. For
the previous Haswell architecture, 16 SIMD registers are available, out of which

6https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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Table 4.1: Parameters and accuracy for the sparse grid binary classification problem
on the 5D chessboard dataset. We use the same settings as in existing re-
sults [34].

basis
function

λ
grid
level

number of
refinements

refinement
points

CG
iterations

classification
accuracy

linear 10−6 3 6 100 250 93%

modlinear 10−7 5 8 100 250 92%

2 are needed to store current grid point information (level and index) and 2 are
needed to store intermediate results and act as buffers. This leaves 12 registers
for loading the dataset instances and to store the final results, 6 each respectively.
Heinecke proposed for this chunk size to be expanded from the thus computed value
of 24 for AVX2 nodes to 96 for newer AVX-512 architectures, with a factor of two
accounting for the doubling of the vector width and another factor of two from the
doubling of available SIMD registers. From a similar calculation as before however,
one would expect from this doubling 26, not 24, free registers to be split between
data points and result vectors. Surprisingly, this did not hold up in practice, where
a respectively higher chunk size of 104 produced less efficient code. Analyzing the
resulting assembly codes, we concluded that this effect is due to the compiler’s
optimization efforts, with the extra 2 SIMD registers we considered to be idle being
put to better use as intermediary buffers instead.

Lastly, regarding the three MPI communication schemes, as they are independent
of the underlying code optimizations performed, we were able to utilize them with
virtually no changes for the comparison tests with the OpenMP parallelizations at
the node and cluster levels.

4.1.3 Numerical results

The testing scenario. In order to assess the results of our optimization process,
we wanted to use a known scenario, one where good parameters for the sparse grid
algorithm are known and which allows us to easily scale the problem size. Our
choice was the binary classification of the chessboard artificial dataset in d = 5
dimensions, with 3 regions per dimension, whose targets are given by the formula:

yi :=
d∏

k=1

−1, if
1

3
< xi,k ≤

2

3
1, otherwise

, 1 ≤ i ≤M. (4.1)

Good sparse grid parameters for this dataset, as well as the classification accuracy
are known from existing results (Table 4.1). Additionally, the dataset possesses a
simple generating rule which allows us to easily set up datasets of various sizes.

For comparison purposes, we have run core and node tests also on a previous
architecture, specifically the Xeon E5-2697 v3 (Haswell) compute nodes of the
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CoolMUC-27 segment of the Linux-Cluster system of the LRZ. These nodes are
28-cores dual-socket CPUs, with two-way hyperthreading, a nominal frequency of
2.6GHz, and connected via an FDR14 Infiniband interconnect. The peak perfor-
mance of this 812-node system is 1400Tflop/s (1.724Tflop/s per node).

The code was compiled using Intel’s C++ compiler v17, which implements the
OpenMP 4.5 standard, with Intel MPI v2017 used for the distributed memory par-
allelization. Throughout our tests we have used the usual recommended compiler
flags for KNL as found in many performance optimization guides8.

Performance expectations. The nature of algorithms that one employs will de-
termine the amount of theoretical performance one should expect from running
code on modern architectures. In the case of our classification algorithm, the ker-
nels of the two matrix-vector operations contain only one FMA operation, with little
other instructions that can be performed in parallel. As such, the theoretical per-
formance peak of the linear basis version of the two kernels can only slightly exceed
50%. The modified linear basis implementation, with its more complex structure
and branching conditionals, can respectively only obtain about a third of the peak
performance the hardware can offer. While these ideal values can hardly ever be
reached by non-trivial compute kernels, we will show that our implementation does
come close to these predicted values.

Single thread and single core results. The tests we perform are meant to assess
both the strong and weak scaling capabilities of the optimized code. As such,
we run all tests on datasets of three sizes: 218, 219, 220. We chose these sizes as
they are similar to those used in the legacy results, while still providing enough
computational workload per thread when moving to the full chip. As a baseline
we have the single thread results, shown in Fig. 4.1, which already confirm the
previously known good weak scaling characteristics of the compute kernels. To
reduce the influence of spinning from threads, especially for low thread counts, we
report performance in terms of inverse runtime instead of number of floating-point
operations per second (Flop/s), with the same understanding that higher values
are better.

For the test runs on a full KNL core we are interested in the behavior under
hyperthreading, the results being shown in Fig. 4.2 and Fig. 4.3 for the modlinear
and linear basis functions cases, respectively. KNL is argued to be able to utilize
the full performance of a core with just a single thread, however that can happen
only under ideal situations, where there are latencies between operations. In our
computational kernels that is not the case, with KNL instructions usually having
slightly higher latencies than their Haswell counterparts, so using multiple threads
allows those latencies to be hidden. Using more than one thread brings forth also

7https://doku.lrz.de/display/PUBLIC/CoolMUC-2
8e.g., the PRACE (Partnership for Advanced Computing in Europe) guide for KNL, available

at: http://www.prace-ri.eu/best-practice-guide-knights-landing-january-2017/
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Figure 4.1: Comparison of single thread results. Higher values are better. The Haswell
runs are done with the legacy version of the code as a baseline for our
later comparisons. On KNL we run our optimized code using the operating
modes that are suitable for our code, i.e., the cache memory mode, the flat
memory mode with allocation in main DDR4 memory, and the flat memory
mode with allocation in HBM. All three settings use the quadrant clustering
mode. To be noted that for the largest datasets the KNL runtime for linear
basis functions exceeded the maximum allocation of 48 hours allowed on the
CoolMUC-3 cluster, and therefore those results are missing.

the discussion on thread pinning, which makes sure that threads do not migrate
during execution, which would be detrimental to any performance testing. For
all our runs we have used compact affinity, where threads prefer to fill in partially
populated cores first. As our kernels use a manual split into chunks in a consecutive
manner, allocating threads also consecutively in the KNL die should offer optimal
data locality, and thus provide the best outcome. In fact, similar conclusions have
been reported in literature for applications that utilize data access patterns such as
ours [39], although one should in general be otherwise cautious when generalizing
such assumptions.

The single core results show that, for both the linear and modlinear basis func-
tions, the kernels perform better with 2 and 4 threads per core, as expected. While
possible, choosing 3 threads per core is not in practice recommended, as the KNL
architecture splits some of its internal workloads into quarters to be distributed
among threads, and as such the best utilization of resources is to be expected for
an even number of threads.
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Figure 4.2: Single core results on KNL for the modlinear basis functions kernels. Higher
values are better. The usual 3 memory modes are investigated (cache, flat
with default DDR4 allocation, flat with explcit MCDRAM allocation), using
the quadrant clustering mode. Between the three hyperthreading options,
both 2 and 4 threads per core improve performance, with 2 proving to be
optimal.
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Figure 4.3: Single core results on KNL for the linear basis functions kernels. Higher val-
ues are better. Two memory modes are shown (cache, and flat with explicit
MCDRAM allocation), using the quadrant clustering mode. Between the
three hyperthreading options, both 2 and 4 threads per core improve perfor-
mance significantly. Single thread runs for the largest dataset are missing
due to runtime budget constraints on the CoolMUC-3 cluster.
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Full node results. To provide more insight in the performance of the KNL node,
we ran our three-sized classification problems for all possible core counts, with both
2 and 4 threads per core. We use the now usual quadrant clustering and the flat
memory mode. To make sure we take into account the possible differences be-
tween the explicit HBM memory allocation (using the numactl -p command) and
the default main memory usage, we ran all tests in both the flat DDR4 and flat
MCDRAM settings. For the so-called “pure” MPI runs we kept the hyperthreads
pinned to OpenMP threads and only applied the three different communication
schemes across the cores. With the modlinear basis functions providing superior
results in the existing study on older architectures, while also being the more chal-
lenging implementation, we also focused the remainder of the study only on this
case. The most important results of these tests are shown in Figs. 4.4 and 4.5.

The best node performance was obtained using the pure OpenMP implementa-
tion. While threads are being pinned by the explicit affinity settings of the runs, we
observe a worsening of the performance when using 4 threads per core which we can
attribute to the added overhead and context switching between the worker threads.
As expected, there is virtually no difference between the two flat memory modes
due to the fact that the whole application (input dataset included) fits into the
HBM. Using as a performance measure the unit of Gflop/s per core it is also easy
to notice the almost perfect strong scaling characteristics of the compute kernels.

For the pure MPI results, we see that the communication overhead does not
allow it to reach the performance level of the OpenMP runs. While more relevant
for cluster level runs, our results also show the expected differences between the
three communication schemes, with the Allreduce approach providing best. Again,
using 4 threads per core proves to give a less stable performance when increasing
the numbers of cores used. A slightly strange, yet repeatable, result is given by
the noticeable drop in performance when using between 37 and 51 cores, across all
three communication schemes, only when 2 threads per core are used. While this
does not impact in any way the overall node performance or the conclusions drawn
based on the data as presented thus far, it is still a peculiarity that might warrant
further study in the future in order to determine more precisely its source.

Of noticeable importance was the realization of the quite significant performance
hit incurred by the operating system (OS). While the first generation Xeon Phi took
the form of the KNC coprocessor, where one would simply offload the computations
to, and thus allowing for a full use of its computational resources, KNLs are full
processors and therefore require to run some form of OS which manages the chip’s
operations. While on older architectures, like Haswell, these influences are less
noticeable, our results on KNL show that here one has to dedicate up to a full core
to these tasks, such that the best performance of the node level runs were obtained
when using 63 cores of the node. From an operating point of view, this result is one
of the reasons why the quadrant clustering mode was chosen as our default setting,
as the SNC mode would have suffered even more from such an imbalance in the
workload distribution on 63 cores. From a performance point of view, any hybrid
OpenMP+MPI scheme would also suffer from this imbalance, as it would require
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Figure 4.4: Node level results on KNL using pure OpenMP. We compare the 2- and 4-
threaded runs, as well as confirming the equivalence of the two flat memory
modes for applications that fit in the HBM. Using 2 threads per core gives
better and more reliable performance across various numbers of cores. Using
Gflop/s per core as a unit of performance one can better observe the very
good strong scaling characteristics of the computational kernels. Runs were
performed for the modlinear basis implementation, using quadrant cluster-
ing mode on an input dataset of size 218. We emphasize the differences in
performance by showing a windowed scale between circa 7 and 10 Gflop/s.
On the scale from 0 to 10 Gflop/s the two 2-threaded results would be
indistinguishable.
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Figure 4.5: Node level results on KNL using pure MPI. We compare the 2- and 4-
threaded settings, as well as the three different communication schemes.
Results show a slightly worse performance compared to the pure OpenMP
versions. As in that scenario, 2 threads per core deliver the best results, with
the Allreduce approach coming ahead of the other two MPI schemes. Runs
were performed for the modlinear basis implementation, using quadrant
clustering mode and flat MCDRAM memory mode on an input dataset of
size 218. We keep the same scale window as for the OpenMP results for
a fair comparison. Again, on the full scale between 0 and 10 Gflop/s the
2-threaded results would be indistinguishable.
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Figure 4.6: Node level comparison between the OpenMP+MPI (Allreduce) hybrid
scheme and the optimal OpenMP version on KNL. All possible combina-
tions of MPI ranks and OpenMP pinned threads are shown, with 2 OpenMP
threads pinned per core. With the quite strong OS influences, the perfor-
mance of the hybrid schemes, which run on the full 64 cores, suffers in
comparison to the 63-core OpenMP run. All runs are for the modlinear ba-
sis functions implementation, using the quadrant clustering mode and the
flat MCDRAM memory mode, on an input dataset of size 218.

the use of the full KNL die, which results in worse results than either the pure MPI
or OpenMP versions (Fig. 4.6).

Node level performance discussion. In order to assess the performance gain
obtained from our optimizations by comparing to previous architectures, we ran
the same classification scenario with the best settings on both a Haswell node of
the CoolMUC-2 cluster and a KNL node of the CoolMUC-3 system. For Haswell our
runs recreated the existing results, with the linear basis functions implementation
reaching around 50% of the theoretical peak performance, while the modlinear
version brings that down to about 30%, both values being computed to take into
account the influence of the Turbo Boost feature. The results on KNL see a small
dip of these values proportionally to the chip’s theoretical peak performance. This
is however still in line with the existing results on other Intel CPU architectures, as
well as those on different GPUs, which, like the KNL, suffer in performance when
not enough FMA operations are available in the applications being run. In fact, on
GPUs, results as low as 30% of the peak performance for the linear basis functions
kernels has been observed [34]. Overall, we have obtained with our optimized code
a performance increase on KNL versus the Haswell node of circa 1.7× for the linear
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(b) KNL speedups versus Haswell for
the two versions of the optimized
sparse grid classification compu-
tational kernels. We obtained
a significantly high percentage of
the theoretical peak performance
speedup of 2.28× for the particu-
lar CPUs considered.

Figure 4.7: KNL node scaling results and speedups versus Haswell.

basis functions version and circa 1.63× for the modlinear case, out of a possible
theoretical peak speedup of 2.28× (computed at base chip frequencies). These
results are depicted in Fig. 4.7.

HBM limit results. Our last target for our KNL study was to investigate the
performance capabilities of this architecture at the size limit of the HBM, where
differences between the memory modes are expected to influence significantly the
results. For this purpose we ran the classification problem on training datasets
of 226, 227, and 228 instances. To be noted that when talking about applications
that fit or not in the MCDRAM we have to also consider the memory footprint
of the code, as well as, in our classification scenario, the testing datasets of sizes
222, 223, and 224, respectively. (The powers of two are easier to handle and allow
for a better interpretation of the results.) Therefore, our biggest dataset, at a
total footprint of circa 20GB, lies slightly outside the HBM limit of 16GB, the
second biggest scenario can fit comfortably in MCDRAM, and the smallest test
case is meant as a control case, at a total memory footprint of circa 5GB. In order
to obtain meaningful results (or any, due to the size of the datasets and runtime
restrictions), we performed cluster level runs on multiple nodes, using the best node
level settings (63× 2 OpenMP threads in compact affinity, with the nodes running
in quadrant clustering mode) and as many MPI ranks as nodes considered, using
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Figure 4.8: KNL results at the HBM size limit. In order to be able to fit in the
CoolMUC-3’s runtime limit we had to perform cluster level runs, i.e., using
multiple compute nodes. Runs done using the best node level settings, i.e.,
quadrant clustering mode, 63 × 2 OpenMP threads per node with hyper-
threading enabled, compact affinity thread pinning. For inter-node commu-
nication we use the Allreduce MPI scheme. Results show that as a general
good practice rule one should use the flat memory mode, with the MC-
DRAM allocation if the application fits into the HBM 16GB limit, and the
default DDR4 allocation for larger problems.

the Allreduce communication scheme. The results for the two largest scenarios are
depicted in Fig. 4.8.

Overall, with the correct memory allocation, both cache and flat modes deliver
similar performance with increasing number of nodes. For datasets that fit in the
HBM, all three settings tested perform on par for a low number of nodes, however
the effects of the slower DDR4 memory become pronounced as we reach 16 nodes.
On the other hand, the problem exceeding the HBM limit shows, as expected,
an opposite effect. While the cache mode and the flat DDR4 allocation deliver
equivalent results, the flat MCDRAM mode shows the worst performance, as this
mode cannot accommodate fully all the application’s memory footprint. Overall,
we conclude that, even at the cluster level, ideally our classification should run in
quadrant flat MCDRAM mode as long as the HBM limit is not reached, while for
larger problem sizes the quadrant flat DDR4 mode is recommended.

Lastly, while the runs on multiple nodes were prompted by the runtime con-
straints such large input datasets imposed, we can also make a few remarks on
the scaling behavior at the cluster level compared to existing results on older CPU
architectures. While numbers are slightly lower on the KNL than on Haswell, the
efficiency still drops very slowly with increasing node counts such that at 16 nodes
we still obtain an efficiency of over 90%, which means that even without additional

114



4.2 Application: Regression-based Time Series Prediction

optimizations based on KNL features the Allreduce communication scheme still
delivers great performance.

Discussion of results. Our work on porting the legacy code to the KNL proces-
sor resulted in further understanding of both this particular compute kernel, the
previously chosen implementation details, but also the target hardware. Our test
runs up to node level showed that this code ran optimal on two hyperthreads and
63 of the available 64 cores due to the nature of the hardware and the latencies in
the AVX-512 intrinsics. We have also re-argued the main implementation decisions
of Heinecke existing in the legacy code, now put also in the context of the more
complex set of settings of the KNL architecture. Overall, we obtained a significant
portion of the theoretical speedup compared to the Haswell architecture, with the
flat MCDRAM quadrant setting proving to be the best for our data access patterns
and kernel parallelization strategy.

Finally, larger tests, at the magnitude of the high-bandwidth memory, required
runs on multiple nodes. Even though no extra work was performed to optimize
the MPI communication schemes at the cluster level, as this exceeded our intended
purpose, our tests showed that, firstly, good scaling still occurs when multiple nodes
are involved with the existing schemes and, secondly, that, while naturally the
decision on the storage location to be used (MCDRAM or DDR4) should be made
based on the size of the problem to be solved, dataset sizes had little impact on
the rest of the KNL settings to be used for optimal performance, namely quadrant
and flat clustering and memory modes, respectively.

4.2 Application: Regression-based Time Series
Prediction

Having a fast, optimized sparse grid solution to the classification/regression problem
as described at the start of this chapter allows us now to explore also other related
learning tasks. Specifically, we will present a study on the applicability of spatially
adaptive sparse grids to the problem of time series prediction for large real-life
financial datasets, where existing work only used non-adaptive grids under the
Combination Technique approach. The motivation for our work was multi-fold.
First of all, we test to what extent we can replicate those existing results under
special circumstances. In our particular case, no access to the original dataset is
possible, however an alternative equivalent dataset can be constructed from open
sources. More details will be given when discussing the preprocessing step of the
algorithm. Secondly, by applying the same method on similar data, we can give
additional insights into new aspects of both the learning algorithm, as well as the
type of input data itself. Lastly, with existing work focusing only on the easily
parallelizable Combination Technique, we extend the applicability of this sparse
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grid-based algorithm to spatially adaptive grids by leveraging the short time-to-
solution of the optimized regression code presented in the previous section.

4.2.1 The approach

Time series represent a very particular type of datasets, and as such also the learning
tasks to be performed on them are not only specific, but also offer particularities
associated to this type of input [16]. Out of all these problems we focus on the task
of time series prediction, which can be defined as:

Given a sequence of ordered values in time, called a time series, predict
one or more functions of its future values (in time).

We have kept the definition quite vague and all-encompassing specifically because
many variations exist. For example, the time series can contain values equidistant in
time, at specific time intervals between them, or at random times. The prediction
as well can be limited to finding one or more values at specific future times, or
trying to predict as best as possible a continuous time interval in the future.

The study we recreate and extend is the time series prediction method using
sparse grids of Garcke et al., as described in [24] and summarized in [25]. While
similar to another approach using sparse grids [9], this method is designed to allow
the handling of multiple related (or coupled) time series at once. The basic idea
is to transform the input time series data into a feature space where a regression
problem can be solved. Then our initial prediction task transforms into a simple
evaluation of the learned regression function in the feature space.

Borrowing the notation in the original approach, one starts in this algorithm with
a clean dataset of the type

T := {tj, fr(tj)}, j = 1, . . . , J, r = 1, . . . , R, (4.2)

where fr are R related time series, tj are points in time, called ticks, with tj+1 =
tj + τ for some fixed time interval τ , and J represents the number of time steps
available in all time series. In this context the task of prediction can then be
redefined as using the values at ticks [tj − (K − 1)τ, tj] of all time series fr to

approximate values at a future time tj + k̂τ , where K and k̂ denote fixed numbers
of ticks. This approach of using a certain amount of past values of a time series
is the main idea of the delay embedding approach. We now have R ·K individual
values at our disposal that can help us predict what happens at one future time
for any of the time series. In practice, one can ether choose to use these time series
values directly or transform them into more suitable and application specific values.
While several options are proposed in the original work of Garcke et al., here we
only present the one used for the financial dataset, i.e., the normalized discrete first
derivative:

f̃ ′r,k(tj) =
fr(tj)− fr(tj − kτ)

kτfr(tj − kτ)
, r = 1, . . . , R, (4.3)
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where k is a number of ticks, called the back tick, with kτ thus representing the
discrete time step of this finite difference-based approximation. The value f̃ ′r,k(tj)
can be applied at K values, forming a set of 1D feature points we can use in our
regression problem.

The target of the prediction also depends on the actual data used and its appli-
cations. For our finance scenario we try to predict not an exact future time series
value, but the normalized difference of one of the time series, i.e.,

y(tj) =
f(tj + k̂τ)− f(tj)

f(tj)
. (4.4)

The normalized discrete first derivative and this normalized difference can then
be applied over the multiple input time series set T for various values of the back
tick k, obtaining the dataset in feature space

S =
{

(xm, ym) ∈ RD × R
}J−(K−1)−k̂
m=1

, (4.5)

where xm =
(
f̃ ′1,k1(tj + (K − 1)τ), . . . , f̃ ′r,k1(tj)

)
, ∀k are feature vectors and ym =

y(tj + (K− 1)τ) are the target values. The feature space dimensionality D is given
thus as the product between the number of coupled time series used as input and
the number of different back ticks k we employ for each time series.

Two more steps need to take place in order for this dataset to be a suitable input
for our optimized regression algorithm. First of all, as with any data mining input
data, one should try to minimize the number of outliers in the datasets. This is in
general a non-trivial task, as the property of being an outlier is usually specific to
the type of data one works with (currency exchange rates) and the properties of
the algorithm it gets fed into (sparse grid regression). The previous work of Garcke
et al. was not very specific in the procedure used, however we expect our approach,
which we will describe here shortly, results in virtually the same outcome. We
have noticed that the embedded data follows a pseudo-normal distribution aligned
heavily along the axis, thus our outlier removal method was to remove those values
lying in areas of low variance, so basically lying too far from the mean of the
data along each of the dimensions. While we did this in our case manually, as the
number of embedded datasets was small, this method can also use, e.g., a statistical
approach to achieve qualitatively the same result, by means of a suitably bin-sized
histogram in each dimension.

Lastly, once outliers are removed, the feature space needs to be transformed to the
correspondingly-dimensioned unit hypercube, which is the input space required by
our sparse grid algorithm. This is a quite simple procedure, done via a dimension-
wise linear transformation of the data points from [a1, b1]× · · · × [aD, bd] to [0, 1]D.

4.2.2 Processing the financial data

The work of Garcke et al. used as raw input data the foreign exchange rate between
different currencies over a period of circa 4 years, from 01.08.2001 to 28.07.2005.
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While in that study the data was acquired from a commercial data provider, where
such historical data is available in a more processed and cleaned state, we had to
rely only on open-source sources in order to obtain our data. In the following we
will present the steps we took to clean and process the raw data in order to be
suitable for the regression problem, pointing out along the way the differences and
additions made to ensure that our numerical results could be compared to the ones
in the work of Garcke et al. [24].

The data we had access to for the same period of time as in the existing work,
comes from an online free foreign exchange database used by traders to run algo-
rithms on9. The data is in the form of CSV files containing tick data on a precision
of up to a millisecond, with each file containing a month’s worth of data. Each line
in the file contains the exact time of recording, two real values representing the bid
and ask quotes, respectively, of the currency pair rate, and the trading volume. An
example of such data would be:

20050703 170052000,1.194500,1.194100,0
20050703 170216000,1.194600,1.194200,0
20050703 170233000,1.194700,1.194300,0.

As we are not given the average bid value, which is the actual target needed for our
purposes, we require to compute it. In order to efficiently process the large number
of data points and files, we have written Python scripts that automate all these
operations which we describe in this section. After computing the average, we need
to only retain the values at specific tick intervals. In line with the work of Garcke
et al., we are interested in intervals of τ = 3 minutes. To maintain consistency
across all currency pairs, which might have different initial tick data available, we
compute de ticks starting with midnight in the first day of every month. For all
such fixed ticks we take as our value the closest existing raw tick average bid,
marking with zero (which is an invalid currency rate) the ticks for which no raw
data exists. The reasons for such missing data are multiple: not all commercial and
free data vendors have the same standards and reliability in reporting consistency
of the values, during the weekends and public holidays there is no open market for
which to report data, the daily trading schedule is also unequal during a regular
work day due to differences in market volumes around the world. While missing
data in itself is not that problematic for the regression problem, when we perform
the transformation into the feature space we have to make sure values at all the
data points involved exist, i.e., for tick tj also the values at tj−kτ and tj + k̂τ need
to exist. Moreover, when considering as inputs more than one currency pair these
ticks need to exist for all time series involved in order to obtain a valid feature data
point. This process of obtaining the vectors xm and targets ym leads in any case to
a reduction in the total number of data points in set S as compared to the size of
T . For our tests we used the currency pair rates between EU euro and US dollar
(EUR/USD, denoted by ¿) and between British pound and US dollar (GBP/USD,

9The database can be found at: http://www.histdata.com/
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Table 4.2: Statistics of the cleaned and preprocessed currency pairs tick datasets, be-
fore delay embedding is applied. Comparing to the similar statistics of the
commercial datasets used by Garcke et al. [24], we can see that we have more
missing tick data due to more gaps, some quite large, although the aver-
age gap sizes are smaller, meaning the gap size distribution is more heavily
skewed. The existence of such gaps is to be expected and we also remain in
our case with a significant portion of the ticks in order to obtain meaningful
predictions from this data.

currency
pair

total number
of ticks

number of
missing ticks

number of
tick gaps

maximum
tick gap

average
tick gap

EUR/USD (¿) 701280 274663 14378 5182 19.1

GBP/USD (£) 701280 288900 21277 5181 13.6

denoted by £), with the first one acting also as our prediction target, i.e., ym := m.
Statistics for these two currency pairs tick datasets are presented in Table 4.2. We
also maintain the strategy of splitting all embedded datasets into 90% training and
10% testing subsets, divided along the time axis.

To get an understanding of the underlying distribution of points in the feature
space, Fig. 4.9 shows an example of how the foreign exchange rate data looks like
for a single feature delay embedding (i.e., the 1D case).

4.2.3 Numerical results

One of the main purposes of our study was to investigate the suitability of using
adaptive sparse grids in the context of regression-based time series prediction and
as such we have not taken the task of recreating all the possible tests performed in
the original study. Our results are restricted to show the main types of scenarios
one would address in this context up to the point where one can draw conclusions
on whether the sparse grid method produces beneficial outcomes or not, i.e., in
the context of financial prediction, if we expect to obtain a profit or not. So,
for example, we have excluded from our tests the more complex and very specific
tradeable strategy using opening and closing thresholds for the trading signal, as
it requires more significant changes to our otherwise generic sparse grid regression
code we adapted. Secondly, we have also limited the number of currency pairs
investigated due to the fact that existing results showed that an improvement, if it
exists, should already be noticeable by using these particular two currency pairs.
In general, we will specifically mention where and if we stray from the approach in
the work of Garcke et al., and we refer those interested in more specific details and
test scenarios to their study [24]. In particular, as we were not bound by the size
of the dataset due to the fact that we used our fast, optimized code, we could forgo
the need for any cross-validation step and perform all our tests directly on the full
target dataset.
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Figure 4.9: Example of a fully preprocessed test dataset for the 1D prediction task
for the currency pair EUR/USD. This test dataset went through the steps
of delay embedding, outliers removal, linear domain transformation to unit
interval, and time-wise split (with the earlier 90% of the preprocessed feature
space dataset being used as training data).

Quality measures. We employ the same prediction quality metrics as in existing
works. They are, for a feature dataset of size M , a generic target currency rate f ,
and a learned sparse grid regression function u:

� The cumulative profit (cp), given by

cp :=
M∑
m=1

sign(u(xm)) · (f(tm + k̂τ)− f(tm))

f(tm)
=

M∑
m=1

sign(u(xm)) · y(tm),

(4.6)
which denotes the net gain/loss predicted by our forecasting method.

� The maximum cumulative profit (mcp), given by

mcp :=
M∑
m=1

|f(tm + k̂τ)− f(tm)|
f(tm)

=
M∑
m=1

|y(tm)|, (4.7)

which is the actual overall gain one expects from a correct prediction.

� The realized potential (rp), computed as rp := cp
mcp

.
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� The prediction accuracy (pa), which is an otherwise general measure in fore-
casting tasks and which, in our context, is computed as:

pa :=
#{u(xm) · (f(tm + k̂τ)− f(tm))>0}Mm=1

#{u(xm) · (f(tm + k̂τ)− f(tm)) 6=0}Mm=1

=
#{u(xm) · y(tm)>0}Mm=1

#{u(xm) · y(tm) 6=0}Mm=1

.

(4.8)

The study of Garcke et al. states that favorable results, i.e., which would denote
practical usefulness, are those for which one obtains a realized potential of at least
20% and a prediction accuracy of circa 55% or more. Thus, we also adopted these
limit values as markers of successful predictions.

As the optimized sparse grid regression code we employ is a generic, non-ap-
plication specific one, these quality measures had to be implemented in their own
post-processing step. This was however quite a simple task due to the fact that, as
can be noted from the given formulations, the quality measures can be rewritten
in terms of evaluations of the resulting regression function at input points (i.e.,
u(xm)) and the target values of the regression problem (ym), for which efficient
vector operations were already present in our code.

Parameter search. The first step in our study is to determine suitable parameters
for the back tick k and the future tick k̂ for predicting the normalized difference of
our target EUR/USD (¿) currency pair. For this purpose we check different pa-
rameter combinations and asses the obtained realized potential on the test dataset

in the one-dimensional case of using only one feature, i.e., xm := xm = (¿̃
′
k)m, run-

ning the code using linear basis functions (with boundary points) for our highest
accuracy setting of level 4 grid and regularization parameter λ = 0.0001. Of course,
we apply the strategy of choosing the parameters based on the strongest signals,
i.e., the top 5% ticks with the highest absolute prediction value. The grid search
results are shown in Fig. 4.10 and they are in line with the results on the commer-
cial dataset [24]. While our data is quantitatively different, from the point of view
of the prediction task it is qualitatively similar enough, with the same parameter
pair (k, k̂) = (9, 15) giving the highest realized potential.

Non-adaptive single currency pair. With the prediction parameters set, we can
start investigating the performance of the regression strategy when using a single
currency pair. We ran tests on three different grid sizes and four λ values for
regular sparse grids. We have additionally investigated also the results on modified
basis functions, which, especially in higher dimensions, greatly reduce the amount
of grid points one would need to invest by removing the need of boundary points.
Results for the single feature scenario are compiled in Table 4.3. We obtain as best
results: cp = 0.22, rp = 0.87%, pa = 50%. When we add the second feature for
k = 4 (see [24] for further explanations on the reasons for this back tick choice),
we observe, as expected, a steep improvement in the realized potential, but also a
slightly improved prediction accuracy (Table 4.4).
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Figure 4.10: Realized potential (rp) obtained when predicting the currency pair
EUR/USD using the normalized first derivative (i.e., the 1D case), for
a level 4 grid and λ = 0.0001. While on all test ticks (left) values are
higher for lower future ticks k̂, we are interested in practical applicability,
therefore we chose the best parameters by computing the rp values on the
ticks that give the top 5% strongest predictions (right). This results in a
parameter pair (k, k̂) = (9, 15).

In order to obtain practically useful results, we also consider the cases where we
restrict our trading only on strong signals, which in this context represent predicted
trading signals which are larger than 10−4 in absolute value. As can be seen in
Table 4.5, this results in stark better values on our dataset, with the modified basis
functions outperforming the linear ones. With realized potentials of over 31% at
prediction accuracies of over 63%, this strategy of only trading on strong signals
proves to be a very profitable option, irrespective of whether we learn on one or
two features.

These numbers already provide some insight into our foreign exchange dataset.
Compared to the values obtained by Garcke et al. on the commercially available
tick data, in our case we observe a worse performance when considering all ticks,
but improved results when only taking into account the strong signals. This means
that in our case the concentration of valuable trading is far greater in the strong
signals, while less trades actually take place.

Non-adaptive coupled currency pairs. We next explore the possibility of im-
provements brought on by the use of more than one currency pair. In the existing
results we saw that this is a viable option, with different added currency pairs
having larger or smaller influences. In our tests we chose to add the GBP/USD
(£) data as it was shown previously to be one of the currency pairs that had a
measurable beneficial influence in the commercial dataset.
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Table 4.3: Results for the prediction of currency EUR/USD for k̂ = 15 using the feature

¿̃
′
9 (i.e., for back tick k = 9), on regular sparse grids of varying levels and

regularization parameter values, for both linear (top) and modlinear (bot-
tom) basis functions, when considering all ticks. Best level-λ combination is
marked in each set of values, in terms of maximum realized potential values.

¿
15
9

LBF
λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

level cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

2 0.13 0.49 50.13 0.16 0.61 50.12 0.13 0.50 50.13 -0.48 -1.86 49.85
3 0.12 0.46 50.21 0.11 0.42 50.18 0.06 0.25 50.19 -0.40 -1.55 49.92
4 0.21 0.81 49.99 0.21 0.84 49.99 0.18 0.70 49.96 0.09 0.35 50.13

¿
15
9

MBF
λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

level cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

2 0.19 0.73 50.07 0.20 0.78 50.08 0.09 0.35 50.13 -0.46 -1.80 49.86
3 0.12 0.46 50.20 0.10 0.39 50.19 0.07 0.27 50.19 -0.45 -1.74 49.87
4 0.21 0.80 49.99 0.22 0.87 50.00 0.20 0.78 49.98 0.04 0.15 50.14

Table 4.4: Results for the prediction of currency EUR/USD for k̂ = 15 using two features

of the same currency: ¿̃
′
4 and ¿̃

′
9 (i.e., for back ticks k = {4, 9}), on regular

sparse grids of varying levels and regularization parameter values, for both
linear (top) and modlinear (bottom) basis functions, when considering all
ticks. Best level-λ combination is marked in each set of values, in terms of
maximum realized potential values. We observe a significant improvement
in realized potential compared to using a single feature, with slightly better
prediction accuracies (pa).

¿
15
9,4

LBF
λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

level cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

2 0.21 0.82 50.35 0.03 0.13 50.11 -0.06 -0.22 50.12 -0.40 -1.60 49.96
3 0.33 1.33 50.76 0.31 1.23 50.63 0.25 0.98 50.46 -0.14 -0.55 50.16
4 0.54 2.14 51.57 0.58 2.31 51.50 0.50 2.01 51.12 0.07 0.29 50.82

¿
15
9,4

MBF
λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

level cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

2 -0.13 -0.53 49.57 -0.15 -0.59 49.77 -0.05 -0.19 50.13 -0.42 -1.67 49.95
3 0.26 1.05 50.53 0.28 1.11 50.53 0.22 0.89 50.39 -0.29 -1.16 50.03
4 0.58 2.33 51.56 0.57 2.27 51.45 0.51 2.02 51.14 -0.06 -0.26 50.42
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Table 4.5: Results for the prediction of currency EUR/USD for k̂ = 15 using one (top)
and two (bottom) features for the single currency pair case on regular sparse
grids of varying levels and regularization parameter values, for both linear
and modlinear basis, taking into account only the strong signals. Best results
in terms of maximum realized potential for each set of values is marked in
bold. We observe extremely favorable results in all 4 sets of values, well above
those considered to be practically significant (rp > 20% at pa > 55%).

¿
15
9

signal > 10−4
λ = 0.0001 λ = 0.001

basis level cp rp% pa% cp rp% pa%

linear 2 0.07 20.68 63.30 0.05 16.01 62.19
linear 3 0.13 26.47 62.36 0.13 27.57 64.11
linear 4 0.24 23.10 58.39 0.19 20.71 58.01

modlinear 2 0.05 12.08 57.51 0.05 11.48 57.68
modlinear 3 0.16 31.19 64.97 0.14 29.45 64.74
modlinear 4 0.23 22.67 58.47 0.21 22.98 59.38

¿
15
9,4

signal > 10−4
λ = 0.0001 λ = 0.001

basis level cp rp% pa% cp rp% pa%

linear 2 0.12 30.04 64.03 0.05 20.61 60.53
linear 3 0.20 36.66 64.42 0.15 36.43 63.27
linear 4 0.27 28.74 61.22 0.24 27.67 60.81

modlinear 2 0.08 29.93 64.88 0.05 26.22 62.30
modlinear 3 0.17 37.94 63.27 0.12 28.87 60.49
modlinear 4 0.26 27.84 60.90 0.21 25.42 59.64

The first test scenario involves using the original best back and future tick pair
(k, k̂) = (9, 15) for both datasets. For our free data source this did not result in
a significant reduction of available feature space data points, as a similar number
and distribution of gaps across the original tick data time span existed for both
currency pairs. Again, we learn on the training data of 90% of data points in
embedded space and test on the remainder of 10%. The results for this scenario
when all ticks are considered can be seen in Table 4.6. We observe a significant
improvement in the realized potential when we employ both basis functions, with
rp values shy of 2% at a similar prediction accuracy rate of circa 50%. Next, we
see whether this trend applies to using more than one back tick by again including
also k = 4 in our embedding. This results in a 4-dimensional regression problem.
The values in Table 4.7 show that indeed the realized potential improves in this
scenario as well for both basis functions, reaching values of 2.7%.

Of course, these rates are not of any practical relevance, so we apply again the
strategy of considering only the strong signals in our predictions (> 10−4). These
results are compiled in Table 4.8. We observe again that we obtain practically
significant values, with rp = 26.65% at pa = 58.72% in the best scenario. In
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Table 4.6: Results for the prediction of currency EUR/USD for k̂ = 15 using the features

¿̃
′
9 and £̃

′
9 (i.e., for back tick k = 9 for coupled currency pairs), on regular

sparse grids of varying levels and regularization parameter values, for both
linear (top) and modlinear (bottom) basis functions, when considering all
ticks. Best level-λ combination is marked in each set of values, in terms
of maximum realized potential values. We observe an improvement of the
rp rates at similar pa values compared to the corespondent single currency
scenario.

¿
15
9 ,£15

9

LBF
λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

level cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

2 0.21 0.91 49.64 0.18 0.75 49.61 0.16 0.68 49.55 0.02 0.08 49.85
3 0.30 1.26 49.88 0.28 1.18 49.79 0.24 1.00 49.74 0.11 0.44 49.79
4 0.42 1.79 50.05 0.46 1.95 49.98 0.44 1.87 49.87 0.35 1.46 49.90

¿
15
9 ,£15

9

MBF
λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

level cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

2 0.04 0.19 49.32 0.08 0.32 49.38 0.08 0.32 49.41 -0.18 -0.76 49.85
3 0.26 1.08 49.82 0.29 1.24 49.82 0.22 0.92 49.71 0.09 0.40 49.86
4 0.42 1.76 50.00 0.44 1.87 49.98 0.44 1.84 49.92 0.22 0.93 49.87

Table 4.7: Results for the prediction of currency EUR/USD for k̂ = 15 using two features

of each of the two coupled currency pairs (¿̃
′
4, ¿̃

′
9, £̃

′
4, £̃

′
9), on regular sparse

grids of varying levels and regularization parameter values, for both linear
(top) and modlinear (bottom) basis functions, when considering all ticks.
Best level-λ combination is marked in each set of values, in terms of maximum
realized potential values. We again observe an improvement of the rp rates
at similar pa values compared to the corespondent single currency scenario.

¿
15
9,4,£15

9,4

LBF
λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

level cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

2 0.27 1.18 50.23 0.19 0.85 50.04 0.08 0.37 49.82 -0.03 -0.15 49.93
3 0.44 1.92 50.65 0.45 1.96 50.60 0.40 1.75 50.45 0.36 1.56 50.13
4 0.56 2.47 51.14 0.50 2.19 51.09 0.63 2.74 50.93 0.45 1.96 50.47

¿
15
9,4,£15

9,4

MBF
λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

level cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

2 -0.02 -0.07 49.42 0.02 0.09 49.55 0.05 0.20 49.72 -0.30 -1.30 49.82
3 0.45 1.97 50.47 0.41 1.81 50.47 0.34 1.50 50.18 0.27 1.20 50.08
4 0.49 2.13 50.95 0.52 2.30 50.95 0.61 2.67 50.84 0.43 1.87 50.49
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Table 4.8: Results for the prediction of currency EUR/USD for k̂ = 15 using one (top)
and two (bottom) features for each of the two coupled currency pairs on
regular sparse grids of varying levels and regularization parameter values,
for both linear and modlinear basis, taking into account only the strong
signals. Best results in terms of maximum realized potential for each set of
values is marked in bold. While we still obtain practically significant results
(rp > 20% at pa > 55%), values are slightly lower than those for the single
currency scenarios.

¿
15
9 ,£15

9

signal > 10−4
λ = 0.0001 λ = 0.001 λ = 0.01

basis level cp rp% pa% cp rp% pa% cp rp% pa%

linear 2 0.12 15.78 56.71 0.09 13.56 57.14 0.02 5.87 54.49
linear 3 0.17 19.17 57.62 0.17 23.06 60.39 0.05 13.39 59.05
linear 4 0.25 21.86 57.90 0.26 23.24 58.63 0.13 16.62 56.62

modlinear 2 0.07 7.93 51.73 0.07 9.22 52.05 0.06 14.61 59.74
modlinear 3 0.11 17.69 57.80 0.17 26.48 62.41 0.11 22.87 63.57
modlinear 4 0.25 21.49 57.86 0.29 26.19 60.10 0.18 21.74 58.87

¿
15
9,4,£15

9,4

signal > 10−4
λ = 0.0001 λ = 0.001 λ = 0.01

basis level cp rp% pa% cp rp% pa% cp rp% pa%

linear 2 0.21 23.53 57.95 0.12 17.47 57.32 0.02 12.82 52.00
linear 3 0.25 24.07 57.45 0.22 24.50 58.36 0.13 24.59 58.89
linear 4 0.22 18.32 55.58 0.27 23.69 56.86 0.23 25.94 58.87

modlinear 2 0.07 9.96 53.42 0.07 11.61 54.34 0.01 10.35 45.10
modlinear 3 0.17 19.54 55.89 0.20 26.33 58.16 0.11 21.60 58.24
modlinear 4 0.24 20.42 55.52 0.29 26.65 58.72 0.18 22.83 58.68

general, we again see that the modified basis functions obtain improved results
over the linear one despite ignoring boundary points, which can be explained by
the distribution of features in embedded space which favor in general sparse grids
by being skewed alongside the dimension axes. However, compared to results for
a single currency pair, it seems that the usage of our freely available tick data
has finally shown its limitations, with our results showing a more than negligible
influence of this second currency pair in the strong signals, where most of our
profitable trading takes place. Of course, we cannot exclude as a reason for this
result also the complex nature of exchange rates and market behavior, as there is no
reason to expect always that an improvement in prediction on all ticks necessarily
translates into one in the strong signals.

Adaptive single and coupled currency pairs. The original study of Garcke et al.
did not touch on the aspect of grid adaptivity. By employing our optimized code we
could fill in this gap, at least for the case of spatially adaptive grids, by running all
our previous scenarios also in adaptive mode. To allow for a good comparison, our
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Table 4.9: Results for the prediction of currency EUR/USD for k̂ = 15 on adaptive
sparse grids for varying regularization parameter values, for both linear and
modlinear basis functions and all the single and coupled currency pairs sce-
narios, when considering all ticks. Runs use a level 2 starting grid and perform
3 refinement steps with 2D refinement points per step, with D the dimen-
sionality of the feature space. Best λ results are marked in each set of values,
in terms of maximum realized potential.

¿
15
9

ASG
λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

basis cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

linear 0.12 0.46 50.20 0.22 0.85 50.00 0.22 0.86 50.02 -0.44 -1.72 49.88
modlinear 0.12 0.46 50.20 0.22 0.85 50.00 0.27 1.07 50.18 -0.45 -1.76 49.87

¿
15
9,4

ASG
λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

basis cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

linear 0.55 2.17 51.39 0.59 2.34 51.07 0.48 1.92 51.26 -0.14 -0.54 50.73
modlinear 0.52 2.07 51.27 0.33 1.30 50.88 0.56 2.21 51.32 -0.10 -0.42 50.34

¿
15
9 ,£15

9

ASG
λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

basis cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

linear 0.11 0.47 49.74 0.20 0.84 49.66 0.26 1.10 49.76 0.12 0.49 49.60
modlinear 0.25 1.04 49.89 0.38 1.62 49.88 0.53 2.21 50.08 0.16 0.68 49.84

¿
15
9,4,£15

9,4

ASG
λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1

basis cp rp% pa% cp rp% pa% cp rp% pa% cp rp% pa%

linear 0.46 2.00 50.67 0.55 2.43 50.76 0.59 2.58 50.93 0.49 2.13 50.60
modlinear 0.52 2.29 50.86 0.44 1.91 50.90 0.59 2.61 50.88 0.52 2.30 50.59

strategy involves a starting grid level of 2 for all tests followed by 3 refinement steps
using the strategy of surplus refinement, where grid points with highest absolute
surpluses get priority, as this strategy has been seen to give good results in general.
The number of grid points refined at each step is dependent on the dimensionality
of the data and given by 2D. This was chosen such that the resulting grids after
the refinement would have as close as possible the number of grid points of a level
4 grid of that dimensionality. We ran our simulations for all values of λ as in
previous tests and the results are shown in Table 4.9. When considering all ticks
we see improvements on the single back tick results and similar values when 2 back
ticks are considered, as compared to the non-adapting grid results. When moving
to the actually practically relevant scenario of considering only the strong signals
(Table 4.10), we obtain in almost all cases rp and pa values of practical relevance,
with rp = 30.72% at pa = 64.58% and rp = 25.8% at pa = 59.88% being the best
results for single, respectively coupled currency pairs.
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Table 4.10: Results for the prediction of currency EUR/USD for k̂ = 15 on adaptive
sparse grids for varying regularization parameter values, for both linear
and modlinear basis functions and all the single and coupled currency pairs
scenarios, when considering only strong signals. Best λ results are marked
in each set of values, in terms of maximum realized potential. We again
obtain practically significant results (rp > 20% at pa > 55%).

¿
15
9

ASG, signal > 10−4
λ = 0.0001 λ = 0.001 λ = 0.01

basis cp rp% pa% cp rp% pa% cp rp% pa%

linear 0.15 29.41 63.17 0.04 10.90 58.68 0.07 13.17 56.86
modlinear 0.13 27.03 63.01 0.07 16.85 60.51 -0.05 -59.79 20.59

¿
15
9,4

ASG, signal > 10−4
λ = 0.0001 λ = 0.001 λ = 0.01

basis cp rp% pa% cp rp% pa% cp rp% pa%

linear 0.25 27.63 60.69 0.17 30.72 64.58 0.14 26.40 61.62
modlinear 0.23 27.32 61.55 0.14 26.30 59.51 0.13 24.44 59.63

¿
15
9 ,£15

9

ASG, signal > 10−4
λ = 0.0001 λ = 0.001 λ = 0.01

basis cp rp% pa% cp rp% pa% cp rp% pa%

linear 0.18 17.28 56.48 0.16 18.59 58.08 0.12 15.68 57.04
modlinear 0.21 19.43 57.62 0.29 25.80 59.88 0.20 22.35 58.70

¿
15
9,4,£15

9,4

ASG, signal > 10−4
λ = 0.0001 λ = 0.001 λ = 0.01

basis cp rp% pa% cp rp% pa% cp rp% pa%

linear 0.22 21.30 56.29 0.24 25.36 58.17 0.16 20.29 57.39
modlinear 0.27 23.33 56.89 0.25 22.98 55.66 0.21 24.17 58.50

Results summary and additional remarks. An overview of the best results across
non-adaptive and adaptive grids for all feature space scenarios is provided in Ta-
ble 4.11. Here we see more clearly that our smaller open-source tick data source still
captures the same qualitative characteristics of the larger commercially available
source dataset used in the study of Garcke et al. when employing non-adaptive
sparse grids. While not investigated before in this financial time series prediction
context, the modlinear basis functions prove that one can obtain just as good or
even better results while not needing to invest in extra grid points on the domain
boundary. This effect can be attributed mainly to the feature space data point
distribution which favors sparse grids, something which can also explain why the
adaptive grids could not bring any improvement on what regular grids could pro-
vide.

Now we want to address some of the aspects of the original study which were
omitted by us here. From the beginning we have set our goals to investigate our
scenarios up to the point where one can conclude or not that our additions to the
original study could provide practical applicability. From this point of view, we
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Table 4.11: Summary of the best results for the prediction of currency EUR/USD for
k̂ = 15 on regular and adaptive sparse grids for all the single and coupled
currency pairs scenarios. We distinguish between values when considering
all test tick data and only the strongest signals. The modlinear basis func-
tions clearly increase the performance of the prediction on our tick dataset,
while using grid adaptivity did not bring any benefit in our test scenarios.

best
non-adaptive

all ticks

currencies data points basis λ level trades cp rp% pa%

¿
15
9 348480 modlinear 0.001 4 38721 0.22 0.87 50.00

¿
15
9,4 338201 modlinear 0.0001 4 37578 0.58 2.33 51.56

¿
15
9 , £15

9 316185 linear 0.001 4 35132 0.46 1.95 49.98
¿

15
9,4, £15

9,4 299608 linear 0.01 4 33290 0.63 2.74 50.93

signal > 10−4

currencies data points basis λ level trades cp rp% pa%

¿
15
9 348480 modlinear 0.0001 3 380 0.16 31.19 64.97

¿
15
9,4 338201 modlinear 0.0001 3 353 0.17 37.94 63.27

¿
15
9 , £15

9 316185 modlinear 0.001 3 439 0.17 26.48 62.41
¿

15
9,4, £15

9,4 299608 modlinear 0.001 4 866 0.29 26.65 58.72

best
adaptive

all ticks

currencies
data

points
basis λ level

num. of
ref.

ref.
pts.

trades cp rp% pa%

¿
15
9 348480 modlinear 0.01 2 3 2 38721 0.27 1.07 50.18

¿
15
9,4 338201 linear 0.001 2 3 4 37578 0.59 2.34 51.07

¿
15
9 , £15

9 316185 modlinear 0.01 2 3 4 35132 0.53 2.21 50.08
¿

15
9,4, £15

9,4 299608 modlinear 0.01 2 3 16 33290 0.59 2.61 50.88

signal > 10−4

currencies
data

points
basis λ level

num. of
ref.

ref.
pts.

trades cp rp% pa%

¿
15
9 348480 linear 0.0001 2 3 2 380 0.15 29.41 63.17

¿
15
9,4 338201 linear 0.001 2 3 4 424 0.17 30.72 64.58

¿
15
9 , £15

9 316185 modlinear 0.001 2 3 4 870 0.29 25.80 59.88
¿

15
9,4, £15

9,4 299608 linear 0.001 2 3 16 746 0.24 25.36 58.17
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believe we have met this target. First of all, we have (re)validated the approach
as a whole on this new dataset which was shown to possess similar qualitative
properties as the commercially available data. Access to free good quality data is
usually a problem for learning algorithms, so managing to replicate results on such
datasets increases the confidence of future research and algorithms to be able to
rely on sources like the one we have used in our work. Secondly, our additions to the
approach of Garcke et al. have addressed two important questions left unanswered
previously and which are of interest for any algorithm employing sparse grids, and
with the ability of our optimized code to provide very fast time to solution, we
were able to pursue these avenues by testing many scenarios in a fraction of the
time it took in the original study. In terms of basis functions, when boundary
points are considered one has to consider the possibility that their contribution
could be insignificant. Our tests have shown that this is indeed the case, with
the modlinear basis outperforming the linear one in most cases where trades are
considered to be profitable, i.e., when strong signals are considered. The second
sparse grid-specific aspect we have investigated is the use of adaptivity. Our tests
showed that this does not seem to provide any benefit, and while the original study
explored also higher-dimensional feature spaces, where adaptivity could be of more
interest, the realized potential values obtained on the commercial tick data did
peak in 4 to 6 dimensional feature spaces, and therefore our results can be seen
as providing strong indications that adaptivity does not play a significant role.
Of course, one cannot eliminate the possibility that a better, possibly application
specific, refinement indicator could be of use in higher dimensions, however one has
to also consider the added computational costs that grid refinement would impose.

Lastly, the work of Garcke et al. proposed also a more complex trading strategy,
revolving around the value of cumulative profit per trade. While we have omitted
this algorithm, we have enough results to make the educated assumption that on
our dataset we can already obtain a significant profit margin even without this
scheme. This is due to the fact that we already require fewer strong signals from
our data, however at a cumulative profit per trade of between 3.3 × 10−4 and
4.8× 10−4, which is well above not only the desired margin of 8.5× 10−5 (expected
for the currency tick data we employ), but also previously reported values on the
commercial dataset. Therefore, these strong signal trades we employ should already
be enough to offset any trading costs without the need to further reduce the amount
of capital invested, which was one of the main reasons given for the development
of a more complex trading scheme.
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4.3 Summary

In this chapter we have taken a closer HPC-oriented look at the tasks of classifi-
cation and regression, which can be tackled in a unified way when using (spatially
adaptive) sparse grids. While in the previous chapter we have dealt with mainly
new algorithms, here we worked on existing codes and using established algorithms,
with the intention to provide both new insights into newer hardware architectures,
as well as leveraging optimized codes to fill in certain gaps in knowledge with respect
to specific sparse grid-based data mining methods.

In Section 4.1 we have presented a code optimization study based on an existing
legacy implementation on older CPU and GPU architectures. With multiple modes
of operation, as well as its own set of hardware-specific intrinsic instructions, the
target architecture of the KNL chip offered quite a large range of possibilities to
cover and investigate in order to attain the fastest time to solution possible for
our classification scenario. As such, we were able to obtain upward of 1.7× speed-
ups versus the previous Haswell CPU architecture at the node level. Moreover,
we were able to also assess the best settings in which the KNL die runs most
efficiently for datasets that cross beyond the high-bandwidth memory limit of 16GB,
corroborating results and guidelines found in literature for similar applications.

With such a fast code for solving not only classification tasks, but also regression
problems, we were able to provide in Section 4.2 a more in-depth analysis of the task
of financial data prediction, previously only tackled on non-adaptive sparse grids
using the Combination Technique. Going beyond the challenge of recreating the
experimental setup using open-source as opposed to commercially available data
and proving its viability, we have investigated two specific sparse grids aspects not
yet tackled in this context. Our work showed that modified linear basis functions
produce consistently superior results than the linear basis, and thus reducing the
size of the required grids significantly by ignoring boundary points. On the other
hand, adaptivity, in the form of surplus-based spatially-adaptive grids, was shown to
not bring any significant improvements. Overall, we have reconfirmed the viability
of the data mining method as a whole, added new insights in the possibilities offered
by sparse grids, and the optimized code we used could open the door towards
profitable financial trading strategies also in an online setting.

131
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Focus

The concern over the degree of usability of software is not something new, be it
in generic open source projects [54] or numerical software in particular [56] (open-
source or not). The development and usage of scientific software also takes a very
significant part of the time of people working in science and engineering, but a
lot of the knowledge acquired to do that actually falls mostly to self-study and
information from peers [32]. Investing in the usability aspects of a software can
thus also be seen not just as a way to improve current usage, but also improving
the chances of a software being easily further developed and used after its initial
developmental stages.

We have yet to actually properly define our terminology for this chapter. “Us-
ability” has a very specific understanding in the software engineering and testing
fields, where it acquired ISO standardization and where it is linked in practice al-
most exclusively to the user interface [87, 56]. While still rare, guidelines do exist
for writing code with usability aspects in mind [44], especially for scientific software,
which usually has its own special requirements [65]. Overall, what we will consider
in this thesis as treating a numerical application from a usability perspective is the
process of including non-functional, user-centered aspects in the design, develop-
ment, and implementation of a numerical solution in order to better the experience
of using, understanding, and further improving the code — in short, making life
easier for both users and developers of the software.

In the previous chapters we have presented contributions driven mainly by aspects
of algorithmic design and implementation and of high-performance computing, as
they relate to some specific supervised learning tasks, where quality assessments
of numerical results can be and usually are done exclusively by machine analysis,
and therefore specifically user-oriented design and implementation requirements are
seldom imposed or even considered. However, for unsupervised learning tasks, for
example clustering, it is not only preferable, but almost obligatory in real-world
applications for expert knowledge to be a part of the learning process, especially in
the setup and analysis of the results. To this end, we consider particularly important
for software solutions to unsupervised learning tasks to aid users in these critical
aspects through user-oriented decision-making.

In this chapter, we will address the integration into and coupling with the existing
SG++ data mining pipeline [69] of new sparse grid clustering approaches, with a
focus on the degree of usability of the resulting software. Firstly, we will detail the
integration of the original approach of Peherstorfer [61] for sparse grid density-based
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clustering, explaining how our design, development, and implementation choices
were informed by a user-centered approach. Afterwards, two extensions to this
standard method will be introduced, each with its distinct perspective on the issues
of marrying new and existing code: full integration, in the case of our sparse grid
hierarchical clustering algorithm, or development as add-on software, in the case of
our sparse grid uncertain clustering method. For both extensions we will present
various results on artificial and real datasets, showcasing the practicality of our
approaches.

5.1 Clustering integration into the SG++ data
mining pipeline

Our variant of the density-based clustering with sparse grids algorithm is intended
to extend the current range of applications of the SG++ data mining pipeline
of Röhner [69], taking full advantage of the existing functionalities, efficient al-
gorithmic implementations, and a high degree of usability this piece of software
possesses. In the following we will detail the main improvements and additions we
have brought to the standard sparse grid clustering algorithm of Peherstorfer as we
integrated this machine learning task into the SG++ data mining pipeline.

We note that the initial implementation of the following algorithms and inte-
gration into the pipeline was a result of a student collaboration [2], with several
iterations of subsequent additions and improvements since.

5.1.1 The nearest neighbors algorithm

As presented, the naive approach has certainly some benefits when it comes to
being parallelized. However, their quadratic complexity in terms of the number of
data points (O(M2)) still becomes prohibitively expensive as the datasets increase
in size. Space-partitioning methods can mitigate the data dependency aspect for
lower dimensions, giving up to quasilinear (O(M logM)) or even linear (O(M)) for
low to moderate dimensions, but start to break down as the dimensionality reaches
even moderate values like 10 [86]. Thankfully, there are alternatives. Hash- and
tree-based methods seem to be more suited not only to provide very good quasi-
linear or linear behaviors in nearest neighbor problems, they can also be efficiently
parallelized to scale well both in terms of dataset size and dimensionality [88].

Vantage-point trees. Our work on integrating clustering into the data mining
pipeline, while not intended to produce at this stage the most efficient and par-
allelized code possible, was still done such that further optimizations could be
subsequently integrated in future contributions, staying true to the high usability
principles that guided the original development of this code. Thus, we have opted
for a vantage-point tree (VP tree, for short) implementation.
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Figure 5.1: An example of 2D space partitioning based on a VP tree. Image from [20].

VP trees have been around for almost two decades already, since their introduc-
tion by Yianilos [90], and have become extremely used in various research areas
like computational biology [14], image processing [52], computer vision [47], and
algorithmic optimization [85], to name a few. The data structure falls in the cat-
egory of metric trees, i.e., a structure that partitions data lying in (usually high
dimensional) metric spaces. This allows them to be not only extremely efficient at
accessing the data points, but also very flexible, as there is no innate restriction
on the metrics we can use. In our case however we only require the use of the
Euclidean distance. An example of a VP tree-based space partitioning is given in
Fig. 5.1.

Building the tree. As most tree-based algorithms, the creation of the underlying
data structure is done via a recursive algorithm. What makes it easier is the fact
that a VP tree is a type of binary tree, thus we have always a fixed number (two)
of children, or subtrees, to descend into.

The algorithm works as follows: at each recursion level we select one of the data
points available there as a so-called “vantage-point”, storing it in the tree node
along with the median distance from it to all the data points processed in the
tree so far. Then the algorithm goes on to separate the remaining unprocessed
data points into two subsets: those inside, respectively outside, a hypersphere,
centered at the vantage-point, with a radius chosen such that these two subsets
have approximately equal size. Lastly, we descend recursively into the two subsets,
repeating this process until we have processed all points in the original dataset.

One aspects needs to be detailed further: the choice of vantage-point at each
recursive step can be done at random (which leads to the overall O(M logM)
complexity of the tree construction), or using some data-based heuristic, which can
lead sometimes to better performance. In our implementation we chose the random
selection strategy, leaving it open though to be extended with possible heuristics
as a future contribution if it will prove beneficial.
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Algorithm 1: VP tree recursive builder

Input:
dataMatrix – matrix storing all data points row-wise, with columns
representing coordinates; indexing goes from 0 to dataMatrix.size−1

Result:
root – root node of the newly created VP tree

Procedure VpTree(dataMatrix):
root← VpTreeBuildRecursive(0,dataMatrix.size) /* starting

the recursive algorithm */

Function VpTreeBuildRecursive(startIndex, endIndex):
if endIndex = startIndex then

return NULL /* recursion end condition */

startPoint← dataMatrix[startIndex]
node← CreateEmptyTreeNode() /* alocate new empty node for

this vantage-point */

node.index← startIndex /* save the reference to the

corresponding data point */

if endIndex− startIndex > 1 then
SortByDistance(startIndex,endIndex) /* maintain points in

sorted order by distance */

avgIndex← 1
2

(startIndex+ endIndex) /* get position where

split will happen */

endPoint← dataMatrix[avgIndex]
node.threshold← ‖endPoint− startPoint‖L2 /* store split

Euclidean distance */

node.left← VpTreeBuildRecursive(startIndex+ 1, avgIndex)
/* recursive call; left child contains points closer

than node.threshold */

node.left← VpTreeBuildRecursive(avgIndex, endIndex)
/* recursive call; left child contains points farther

than node.threshold */

return node

In terms of actual code implementation strategies in the data mining pipeline,
in order to maintain constant and unique references to data points throughout the
clustering process, the tree nodes store the vantage points as index references to the
corresponding data point coordinates stored in matrix format, therefore maintain-
ing a constant complexity with respect to the dataset dimensionality. Additionally,
the VP tree recursive builder function works not with the data directly, but with
index intervals in a maintained sorted order based on distances between vantage-
points and previously processed data points, such that we can easily define the
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subset splits described in the tree generating algorithm. All these steps are covered
in the minimum pseudocode implementation of Algorithm 1.

Searching in the tree. Having the VP tree created, we can now look at how we
can perform efficient searches of nearest neighbors. This is quite simple to perform
recursively, considering we have introduced the convention that for each tree node
its left subtree contains the near points. As the resulting structure is an almost
balanced binary tree, the running time for any single tree query is in O(logM), so
finding the n-nearest neighbors is in O(n logM).

The algorithm works again in a recursive manner. Starting with the root, we
descend in a specific way down the tree in order to avoid the exhaustive search,
ensuring the logarithmic complexity. This is done via a running maximum variable
τ against which we compare the distance from the target point to each node’s
vantage-point. If smaller than τ , we add the point to the nearest neighbor list
(from which we kick out the largest value in case we exceed by this the limit of n
neighbors). We then proceed to go down the VP tree hierarchy if that is something
possible or reasonable to do. Based on the relationships between the node’s stored
threshold, running maximum distance and the target-to-vantage-point distance, it
can be that we descend into both subtrees, only one of them, or none, and with a
preference to search either the left or right subtrees first. These aspects are made
more clear in the minimum pseudocode implementation of Algorithm 2.

In order to improve the algorithmic complexity of the nearest neighbors search
algorithm, a priority queue was used instead of a generic list, which ensures deletion
of elements in O(1) instead of O(M), while insertions happen in O(logM) with the
elements being kept in order. The queue stores objects that point to a single VP
tree node and allow comparison directly via the stored distance values computed
during the search.

5.1.2 The graph operations

While the VP tree is a data structure used to efficiently query nearest neighbors, we
still require to somehow store the resulting graph. Graphs are quite fundamental
data structures and efficient implementations exist that allow all the normal oper-
ations one would require. While for the VP tree, which is a very specific type of
graph, we required to have our own implementation, for the generic nearest neigh-
bor graph needed to store the spatial network of data points we have opted to use
the Boost Graph Library (BGL)1 [75], which not only provides various algorithms
that we need (e.g., finding connected components), but also allows customizations
of the node and vertex objects. There is also a distributed extension to allow par-
allelizations of many of the algorithms2, which could be considered for a future
extension to our implementation.

1https://www.boost.org/doc/libs/1_76_0/libs/graph/doc/index.html
2https://www.boost.org/doc/libs/1_76_0/libs/graph_parallel/doc/html/index.html
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Algorithm 2: VP tree recursive nearest neighbors search

Input:
targetPoint – point for which we want to find the n-nearest neighbors

n – number of nearest neighbors to search for in the VP tree
Output:

nnQueue – priority queue in which the nearest neighbors will be
stored; the queue elements store the index referencing a data point,
as well as its distance to targetPoint; it is updated in place

Data:
root – root node of the VP tree

Function VpTreeNearestNeighbors(targetPoint, n):
nnQueue← CreateEmptyPriorityQueue() /* initialize queue */

τ ←∞ /* initialize running maximum distance with infinity;

in practice: maximum representable float value */

VpTreeSearchRecursive(root, targetPoint, n, nnQueue, τ)
/* call recursive algorithm from the root node of the VP

tree with an initially empty nearest neighbor queue */

Procedure VpTreeSearchRecursive(node, targetPoint, n, nnQueue, τ):
if node = NULL then return /* recursion end condition */

dist← ‖dataMatrix[node.index]− targetPoint‖L2 /* get distance

from current vantage-point to target */

if 0 < dist < τ then
/* if vantage-point is close to target, but distinct */

if nnQueue.size = n then
/* if queue full, make room first by removing the

farthest neighbor */

nnQueue.pop()

nnQueue.push(CreateNewQueueElement(nonde.index, dist))
/* add new element to the queue */

if dist ≤ node.threshold then
/* if inside the vantage-point hypersphere, descend into

close subset (i.e., left child) first */

if dist− τ ≤ node.threshold then
VpTreeSearchRecursive(node.left,targetPoint,n,nnQueue,τ)

if dist+ τ ≥ node.threshold then
VpTreeSearchRecursive(node.right,targetPoint,n,nnQueue,τ)

else
/* if outside the vantage-point hypersphere, descend into

far subset (i.e., right child) first */

if dist+ τ ≥ node.threshold then
VpTreeSearchRecursive(node.right,targetPoint,n,nnQueue,τ)

if dist− τ ≤ node.threshold then
VpTreeSearchRecursive(node.left,targetPoint,n,nnQueue,τ)
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Integration into the data mining pipeline required mostly the creation of wrappers
for the classes and methods of the BGL in order to integrate into the design of the
data mining pipeline. The more important aspect though was to decide the correct
underlying containers that would store the data structures of the graph. For both
vertices and edges we could have picked between vectors, lists, and sets. The choice
made, of using a list to store vertices and a set to store edges, was based on the
needs of our implementation and for higher code efficiency:

� Regarding vertices, our clustering approach requires mostly deletions, as we
perform a graph pruning for each given density threshold. Lists offer the best
performance for these operations compared to vectors, with a complexity in
O(|V |+ |E|), where with V and E we denote the sets of vertices and edges in
the graph, respectively, and | · | is the set cardinality function. Also, compared
to both sets and vectors, iterators in list containers are not invalidated after
deletions.

� For edges, although we also perform mostly deletions, we were more concerned
with spatial requirements, therefore we have opted for a set container, which
better handles the case of undirected edges when constructing the nearest
neighbor graph by automatically handling repeated entries.

To strike a better balance between computational effort and memory consumption,
we have opted for additional mapping structures that would ease the burden of some
of the traversal algorithms needed for accessing related graph elements. This was
accomplished using two maps, a pointer-to-index and an index-to-pointer, which
allows random access of vertices from edges, and vice versa, when required.

5.1.3 Cluster quality metrics

A main issue to be solved when dealing with the task of clustering is to assess
the quality of the obtained clusters. The same way as there is little shortage of
algorithms to perform clustering, there is also no definitive answer as to what makes
a cluster quality metric a good one in the general sense. Of course, for very narrow
and well-defined scenarios one would have a more clear understanding of what
a “good” clustering should return, however such scenarios are rarely interesting
from an algorithmic perspective. Widening the field, by, e.g., generalizing the
type of input data one uses, and very quickly consensus on how to evaluate the
results fades away. Work on creating a well-defined theoretical framework has had
some limited success (e.g., through defining a system of axioms [7]), however this
direction of study did not seem to have been pursued further since. The behavior of
cluster metrics can also be influenced by the algorithms and the datasets themselves,
as consistency with respect to variables like data dimensionality or number and
structure of clusters is not really guaranteed [82].

Most researchers distinguish between two main types of clustering quality met-
rics [30]. Those based on external criteria require the comparison against a pre-
defined labeling considered to be definitive (e.g., created by an expert through
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manual labeling). There are of course obvious advantages to such a metric, as it
allows clear comparison of clustering algorithms on predefined datasets. However,
there is also no guarantee that a good behavior on some predefined, labeled dataset
translates into an overall good performance on new, even when similar, data. This
is also done under the assumption that the labeling we consider as definitive is nei-
ther prone to human error nor too specific to the data context to be unhelpful for
generalization. These metrics contrast thus to the ones using an internal validity
criterion. In this case we exclude the direct human contribution, with the quality
evaluation using only values intrinsic to the input dataset. Some downsides of such
methods are that they do not necessarily correlate with the amount of information
one could obtain from the data (the concept of information retrieval [51]) and that
they could be biased towards specific types of clustering algorithms.

A third type of clustering quality metric has been put forward. Using a relative
criterion [31], one compares the results of a clustering with those of other algorithms,
finding the one that satisfies best some predefined criterion.

With all these considerations in mind, the approach in our implementation was
two-fold: on the one hand, creating the framework to allow for the implementation
of any number of future metrics, and on the other hand, providing already a nice
array of options that a user could choose from such that a better analysis of the
clustering results could be performed. As we have basically one type of algorithm,
using relative metrics is not possible. We have thus implemented instead two inter-
nal and two external quality measures proposed in literature, which will be detailed
in the following.

V-Measure. [66] As stated in the paper introducing it, the V-Measure (VM) is
an external “entropy-based” metric [66]. What is meant by this is that, similarly
to the concept in physics and cosmology, it measures some form of disorder in
the system, or, in our case, in the clustering. This is accomplished by measuring
two aspects: homogeneity and completeness. The first gives the degree to which
each cluster has data points belonging to a single class label, while the second
measures to what extent all points of a certain class label get clustered in one
cluster. At the extremes, a trivially homogeneous clustering would assign each
data point to its own cluster, and a trivially complete clustering would return a
single cluster containing the entire dataset. The VM is an approach to mediate
these two opposing tendencies.

In order to define mathematically the metric, we require to introduce some no-
tations, which will be similar to the ones in its initial publication [66]. Let C be
our clustering (i.e., the set of obtained clusters in our algorithm), L the set of true
class labels, and M the size of the dataset. Then we can define by al,c the number
of data points with true label l ∈ L that are in cluster c ∈ C. Then:

� The maximum entropy reduction of the clustering is

H(L, C) = −
∑
l∈L

∑
c∈C

(al,c
M

log
al,c
M

)
. (5.1)
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� The homogeneity score is given by

HS(L, C) =


1, if H(L, C) = 0

1− H(L|C)
H(L, C) , otherwise

(5.2)

where

H(L|C) = −
∑
c∈C

∑
l∈L

(
al,c
M

log
al,c∑
l′∈L al′,c

)
. (5.3)

� The completeness score is given by

CS(L, C) =


1, if H(L, C) = 0

1− H(C|L)

H(L, C) , otherwise
(5.4)

where

H(C|L) = −
∑
l∈L

∑
c∈C

(
al,c
M

log
al,c∑
c′∈C al,c′

)
. (5.5)

� The V-Measure (VM) value is then computed as

VMβ(L, C) =
(1 + β) · HS(L, C) · CS(L, C)

(β · HS(L, C)) + CS(L, C) , (5.6)

with the trade-off between homogeneity and completeness being controlled
with the parameter β. For our purposes we have chosen a value of β = 1,
meaning an equal weighting for the two components, resulting in the harmonic
mean of HS and CS. The VM is a real number in the range [0, 1], with higher
values signaling a better clustering.

Fowlkes-Mallows Index. The Fowlkes-Mallows index (FMI) [19] can actually be
considered from a relative validity perspective, comparing two (hierarchical) clus-
terings, but we will use it as an external metric, comparing instead our algorithm’s
results with a pre-defined set of labels. Using the same notations as introduced for
the V-Measure, the FMI is computed as:

FMI(L, C) =
T(L, C)√

P(L, C) ·Q(L, C)
, (5.7)

where
T(L, C) =

∑
linL

∑
cinC

a2
l,c −M, (5.8)

P(L, C) =
∑
linL

(∑
cinC

al,c

)2

−M, (5.9)
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Q(L, C) =
∑
cinC

(∑
linL

al,c

)2

−M. (5.10)

The value of the metric is a real value in the range [0, 1], again with a higher
value indicating a better match to the reference clustering.

Davies-Bouldin Index. The first internal metric we have implemented is a centroid-
based approach. The Davies-Bouldin index (DBI) [13] uses cluster scattering to
determine how similar clusters are to one another, with an ideal clustering having
as dissimilar clusters as possible. In this context, the measure of scatter in a cluster
Ci, i = 1, . . . , |C| is computed as

Si =
1

|Ci|
∑
x∈Ci
‖x− zi‖, (5.11)

where zi is the centroid (i.e., geometric mean) of the data points x ∈ Ci. Denoting
by di,j = ‖zi − zj‖ the distance between the centroids zi and zj of two clusters Ci
and Cj, respectively, the DBI is given by

DBI =
1

|C|

|C|∑
i=1

max
j=1,...,|C|

j 6=i

Si + Sj
di,j

. (5.12)

This metric is a real value lying in the range [0,∞), where lower values denote a
better clustering.

Caliński-Harabasz Index. Known also as the variance ratio criterion, the Caliński-
Harabasz index (CHI) [12] is an internal metric that measures the ratio between
inter-cluster separation and and intra-cluster cohesion. Keeping with the notations
introduced so far, for a dataset xjj=1,...,M split into clusters Ci, i = 1, . . . , |C| by our
clustering C, the CHI is given by

CHI =

 1

|C|

|C|∑
i=1

|Ci|‖zi − z‖2

/ 1

M − |C|

|C|∑
i=1

|Ci|∑
j=1

‖xj − zi‖

 , (5.13)

where again by zi we denote the centroid of the cluster Ci, and by z we represent
the centroid of the whole input dataset. The numerator of CHI is the weighted
between group sum of squares, which is also the trace of the weighted covariance
matrix of cluster centroids as a measure of separation, while the denominator is the
weighted withing group sum of squares, or the trace of the weighted sum of each
cluster’s covariance matrix.

The CHI is a real value in the range of [0,∞), with higher values indicating
a better clustering. Note then that, as opposed to the previous measures, this
index does not provide an exact value that would constitute, in its view, an ideal
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clustering. Instead, the CHI is used in practice to compare different clusterings
against each other. In the context of our density-based sparse grid clustering, this
metric could therefore be a good option as a quality measure for the choice of the
density threshold that decides the cut into clusters.

5.1.4 Visualization options

Another addition coming from the integration of the clustering algorithm into the
data mining pipeline is the possibility to obtain a visualization of the results, part
of which was already existing, implemented in previous work [1]. With the actual
clustering happening subsequent to the density estimation, we have moved the
visualization calls to the post-processing class created to handle operations (like the
graph-based ones) that are not directly sparse grid-based. Additionally, we have
adapted the existing scatter plotting capabilities of the pipeline to handle data
represented in graphs, with color-coded connected components representing the
different clusters. The treatment of higher-dimensional data is done, as in the case
of scatter plots in density estimation, using first a t-distributed stochastic neighbor
embedding (t-SNE) [35] algorithm to reduce the dataset to a 2D representation
that can be easily visualized. Of course, some information is being lost with this
embedding, however we also store all the results in JavaScript Object Notation
(JSON) format3, allowing it to be easily imported and visualized with another
dedicated software when needed.

We have to make two remarks regarding our use of the t-SNE algorithm. First
of all, it is not the only option possible to allow a lower-dimensional embedding for
visualization purposes. The principal component analysis (PCA) algorithm is also
an extensively used approach to achieve similar results. However, as a variant of
t-SNE already existed in the pipeline [1], we have opted to reuse it for this purpose
as well. Secondly, the current implementation in the pipeline is far from ideal in
terms of performance. However, the fact that the pipeline allows for these kind
of algorithms to be treated as plug-ins, future contributions can be directed also
exclusively for speeding-up this part of the visualization process. For the cases
we will look at, with moderately high dimensions and not very large datasets, the
current implementation suffices.

5.2 Hierarchical Clustering

The first, and most important, contribution to the regular clustering algorithm was
motivated by the major parameter and algorithmic bottleneck of the density-based
approach, which is the choice of a suitable density threshold. Already from its
introduction, this parameter was shown to influence significantly the clusters we
obtain [61]. One option would be to automatically detect a threshold by means
of cross-validation using some predefined quality metric. We have opted instead

3https://www.json.org/json-en.html
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to give the user more freedom in choosing some good thresholds themselves. This
was done for two reasons. First of all, it is not clear for a dataset what would
constitute a good quality measure. Of course, implementing such an automatic
threshold choosing approach is not complicated once a metric is given (e.g., split-
ting the dataset close to a specific number of clusters, or optimizing for a certain
fixed quality metric from the ones presented already). The pipeline does allow
such a method to be implemented subsequently, as a future contribution, if one so
chooses. Secondly, we wanted to facilitate the user to visualize a higher number
of possible clusterings to choose from before making a more in-depth analysis for
certain thresholds, instead of focusing only on a specific option, allowing for an
overall more informed decision process. Once the user decides on a specific thresh-
old for example, a follow-up analysis with the usual clustering approach can always
be performed.

Again we note that the following shows the current state of the algorithms in the
data mining pipeline, with an initial implementation being the result of a student
collaboration [2].

5.2.1 Theory and implementation

The idea. Originally proposed in a separate implementation of the sparse grid
clustering algorithm [18], the idea is to expand the regular clustering algorithm to
use not just one density threshold, but multiple ones. For each we perform the
usual operations of removing vertices and edges from the nearest neighbor graph
with density values below the respective threshold and finding clusters as connected
components. However, the clusters obtained for each threshold can be linked in
parent-child relationships to those found with previous threshold values, forming a
tree of clusters.

Thus, our main contribution lies in the implementation of such a sparse grid
density-based hierarchical clustering method in the data mining pipeline, which
extends significantly the capabilities of the regular clustering approach. In the
following we will look at the various components of this algorithm.

The clustering tree. In the hierarchical clustering method each found cluster is
treated as a node in a tree structure, with the root node containing the whole
dataset as an initial cluster. The first (non-zero) density threshold gives by the
usual approach a certain number of clusters, which in our algorithm become child
nodes of the root. Each subsequent density threshold creates new clusters which
are then linked to their corresponding parents in the previous density level, which
can be done easily due to the fact that for density-based approaches clusters at
higher thresholds are subsets of those at lower thresholds, as can be seen from our
example in Fig. 5.2a.

For each node we store, first of all, the cluster information, formed by the indices
of the data points that are part of the cluster, along with the label assigned to it
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(a) A full hierarchy (b) A compact hierarchy

Figure 5.2: Examples of resulting (upward) tree structures from the use of 4 density
thresholds in our hierarchical clustering method. To ease understanding
we ignore the noise cluster. As can be seen easily from this 1D example,
clusters at higher threshold values become smaller based on density width,
(or diameter, in higher dimensions) and are subsets of clusters obtained
at lower threshold values. In our approach, the root cluster contains the
initial dataset. To produce a more robust hierarchy (b), our method by
default skips single-child clusters from the final result, obtaining a less deep
tree structure. The full hierarchy (a) can however still be recovered in our
implementation if needed.

and the density threshold at which it can be found. Additionally, we store tree-
related information, like the hierarchical level in the tree and pointers to the direct
parent cluster and to the children clusters (if any). These latter pointers are filled
in retrospectively as soon as new clusters are found and their hierarchical parents
are determined. In terms of storage, the overhead of this hierarchical structure is
in O(1) with respect to the size of the dataset, making it negligible.

The density thresholds. As mentioned, the whole idea of a hierarchical clustering
relies on the usage of more than one density threshold. These are provided by the
user indirectly by means of parameters. First of all, we require a minimum and a
maximum density to set the range of values we want to investigate. As we cannot
know a priori the range of amplitudes of densities obtained using SGDE, the values
are in [0, 1] as relative to the maximum density of the dataset. Additionally, we
require a number of steps to take between the minimum and maximum thresholds,
as well as a thresholding distribution. Fig. 5.3 shows how these distributions we
provided allow to better investigate different regions of the estimated density.

Handling the nearest neighbor graph. To strike a balance between storage and
performance, we maintain at all times two nearest neighbor graphs, one with the
state before the current processed density threshold, and one with the state after
the current pruning step. This is done to facilitate the identification of hierarchical
parents of the newly detected connected components. However we again work with
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(a) Linear (b) Exponential (c) Logarithmic (d) Sigmoid

Figure 5.3: Exemplification of the different thresholding distributions implemented for
hierarchical clustering. The linear thresholding is simplest, but it might be
insufficient for certain scenarios, and investigating closer together thresh-
olds would require an unnecessary increase in total number of steps, thus
time to solution. Especially in high dimensions, it was noted that SGDE
performs better for clustering purposes when we allow less regularization,
which means more peaks and valleys, therefore focusing on one of those
(peaks for mode finding, valleys for higher granularity and more clusters)
could be helpful, especially in cases where we strive to find clusters of differ-
ent homogeneity. The sigmoid thresholding tries to marry the exponential
and logarithmic cases, by focusing more thresholds in the extremes of the
thresholding interval.

indices referencing data points, therefore the added complexity is only in terms of
the number of data points, not also in terms of the dataset dimensionality.

The split threshold and a compact hierarchy. A second idea stemming from
the work in [18] is that of a splitting threshold that would decide whether we
want to keep a newly found cluster at a certain density threshold in the clustering
tree, or have it be replaced by its children instead. The motivation for such an
endeavor would be to provide better insight into the datasets, as such an approach
would help with narrowing down the positions of modes in the data, at the same
time reducing the complexity and depth of the resulting clustering tree, implicitly
reducing the number of total clusters identified. Based on a metric we compute from
the nearest neighbor graph (which we will introduce in the following), we assess
for each cluster from the previous step that has multiple children whether the split
condition is fulfilled or not with respect to any of its children. If yes for at least
one child cluster, then the split takes place and the parent cluster is replaced in the
hierarchy, meaning that its children now belong to its parent instead. For clusters
from the previous step that have only one child, we do nothing, such that the
resulting hierarchy is more compact and the retained clusters are more meaningful
(Fig. 5.2b).

Our version of the metric used to determine whether such a split happens or
not is given by a ratio between two connectivity coefficients, one relating how
connected a child cluster is to its parent, and the other how well-connected the
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parent cluster is with itself. While in [18] this metric is geometry-based, defining
a connectivity between populated spatial cells, as distances start loosing meaning
with increasing the dimensionality of the data, we opted for a graph-based approach
instead. Our version of the criterion, which is shown in the minimum pseudocode
implementation Algorithm 3, is relatively simple to understand and also behaves
in a manner suitable to the clustering task at hand, which is revealed by a closer
inspection of the formula we employ.

For a fixed size of the child cluster, our metric requires more connectivity as the
number of parent cluster vertices increases. After a while, the only way the split
happens is if the child-parent connectivity is extremely loose and the size of the
child cluster is also significant. This is actually what we would like: the split is
supposed to signal that the parent cluster has no significance by itself (e.g., as a
low density cluster), but is just the result of an overlap of child clusters, so it can
be safely removed from the hierarchy. Moreover, especially with the increase of
the dataset dimensionality, the actual connectivity in an n-nearest neighbor graph
would tend less and less to the maximum possible value with the growing size of a
cluster, which would lead naturally to a higher splitting metric and thus by itself a
lower chance of splits taking place. This is again a wanted effect, as it is known that
in higher dimensions distances and local densities become less discernible and thus
allowing splits to take place could lead to removing otherwise interesting, lower
density, clusters from the hierarchy. While there are results that show that we
can still recover a good clustering by means of purposeful overfitting by allowing
the regularization value lambda in the SGDE estimation to take lower values [62]
than we would normally for lower-dimensional data, we assess that it is less likely
that a good argument for removing such clusters from the hierarchy can be made,
therefore we would like to keep as much of the hierarchy as possible.

On the other hand, the fact that our metric allows a split to take place technically
for any size of clusters or dimensionality of data does represent a minor, yet possible,
issue. This is especially true for the case where we have a very small child cluster
that is extremely loosely connected to, up to completely disconnected from, its
parent cluster. While there are some other fixes that can be made, e.g., adjusting
the formula itself to account for such scenarios, we have opted for a higher-level
approach to address this problem. In general, for our sparse grid-based approach to
clustering, obtaining a very small cluster is more often than not an unwanted case,
as it can easily be due to some local artifact of the density estimation algorithm.
Therefore our fix is simply to add another parameter to the clustering process that
sets a minimum cluster size we want to detect with our algorithm, which we argue
that doesn’t even needs to be modified by the user for most scenarios from the
default value.

The visualization. Now that we have presented also the hierarchical variant of
the sparse grid-based clustering algorithm, we will delve in more details into the
visualizations we can provide with our implementation. As mentioned, the SGDE
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Algorithm 3: Cluster splitting algorithm

Input:
cluster – a certain cluster (i.e., node in the clustering tree) for which
we check the splitting condition

G = (V,E) – nearest neighbor graph, defined by the set of vertices
V and the set of edges E

splitThresh – splitting threshold

Output:
boolean value that tells whether we should split the given cluster

Function SplitCluster(cluster, G, splitThresh):
for childCluster ∈ cluster.children do

if SplitChild(cluster, childCluster, G, splitThresh) then
return True

return False
Function SplitChild(parentCluster, childCluster, G, splitThresh):

Vp ← parentCluster.nodes /* the set of vertices of parent

cluster */

Vc ← childCluster.nodes /* the set of vertices of child

cluster */

connp ← |{e = {i, j} ∈ E | i, j ∈ Vp, i 6= j}| /* parent cluster

connectivity */

connmaxp = 1
2
|Vp| (|Vp| − 1) /* maximum parent cluster

connectivity */

connCoefp = connp
connmaxp

/* parent cluster connectivity

coefficient */

connc−p ← |{e = i, j ∈ E | i ∈ Vc, j ∈ Vp}| /* child-parent cluster

connectivity */

connmaxc−p = |Vc| (|Vp| − |Vc|) /* maximum child-parent cluster

connectivity */

connCoefc−p = connp
connmaxp

/* child-parent cluster connectivity

coefficient */

return connCoefc−p
connCoefp

< splitThresh /* we split if the

connectivity coefficient ratio is below the threshold */

part of the clustering algorithm is separate from the subsequent graph-based op-
erations that actually detect the clusters, therefore the existing visualizations, like
heatmaps and linear cuts, are kept in their separate function call. The rest of the
visualization is called in the new post-processing submodule after all the hierarchy
is made available. Similarly to the existing visualization module, the visuals are
not actually integrated into the framework, which is written in C++, but instead
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we generate formatted output files that can then be directly visualized with the free
and open-source Plotly library4. (For more details, see the initial implementation
of the visualization module in the SG++ data mining pipeline in [1].)

We offer the user multiple options of what and how to visualize the data, with
flags set in the input JSON file that contains all the parameters for a complete
pipeline run. The first kind of outputs we provide are not per se for visualization
purposes, but they do help with understanding the clustering results. We can
output a file in the well-known CSV format containing all the density evaluations
at data points of either the original dataset or its t-SNE embedding (kept in input
order), helpful for further post-processing and external visualizations. A second
CSV formatted file will contain the corresponding labels of each data point as
found by our clustering algorithm. For the user to then be able to understanding
the relationships between these labels, the hierarchical information of the clustering
tree is stored in a JSON file.

In terms of actual visualization, we generate two JSON files that can be directly
used by the Plotly library to generate HTML files that can be visualized in any
web-browser. The first file contains the initial nearest neighbor graph of the embed-
ded dataset, with the vertices color-coded based on the value of their densities as
computed with the SGDE algorithm. The second file is the most important one, as
it contains the whole clustering hierarchy. The visualization is achieved by storing
in one animated plot the clusters at each level in the hierarchy tree, with a slider
allowing the transition from one level to the next. At each level we show the cur-
rent clusters as graphs (i.e., the connected components), with color-coded vertices
to distinguish between cluster labels. Additionally, we also show the remaining
vertices of all the direct parent clusters, with no edges (to avoid confusions), but
keeping their color-coding from the previous hierarchy level. For the first level,
these points form the noise cluster, considered also as having label −1. Moreover,
to aid the user, the legend contains not only the cluster labels, but also the density
threshold with which the clusters were found, as, due to the splitting algorithm,
clusters found at different density thresholds can end up on the same hierarchical
level in the clustering tree. Finally, we used the fact that Plotly is an interactive
visualization library to allow the user to get information like coordinates (in em-
bedded space), density values or cluster labels in a pop-up when hovering over a
data point in the resulting web-browser plots. Figs. 5.4 and 5.5 show the existing
and the newly introduced visualization options, respectively.

Performance aspects. The hierarchical clustering approach presented is currently
not implemented to account for the possible parallelization possibilities in order to
boost performance. However, we can present some of the options available that
can be implemented as a future contribution. The SGDE part has already been
covered, including the fact that the density estimation and the nearest neighbor

4https://plotly.com/python/
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Figure 5.4: Example of the existing data mining pipeline heatmap visualization option,
including the Plotly pop-up information available by mouse hover.

graph generation can be done independently in parallel, therefore we focus only on
the subsequent steps of the hierarchical clustering algorithm.

In its current form, the loop over the list of density thresholds cannot be directly
parallelized, as the modifications on the nearest neighbor graph happen sequen-
tially. One could however separate the graph pruning and connected components
processes, which can be done independently per density threshold as they require
only concurrent reading of the nearest neighbor graph, from the clustering tree hi-
erarchy building, which includes the process of tracking the parent clusters. This
would significantly reduce the amount of total computation required, however some
more logic, and possibly some changes to the data structures, would be required.

For a parallel version of the graph operations, one option would be to try a dis-
tributed implementation of the VP tree algorithms. Another option, as mentioned
also in [62], would be to use instead an alternative that allows easier parallelization,
like locality-sensitive hashing (LSH). In terms of the splitting algorithm, this can
also be parallelized across children clusters, the search ending either when the first
child returns a value of ‘True’ (as then we can just asynchronously interrupt all
other searches), or when all child calls return with ‘False’.

Regarding the visualization part, one level of parallelism has been accounted for,
with the current implementation allowing the linear cuts and the heatmaps to be
generated independently.
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5.2 Hierarchical Clustering

Figure 5.5: Example of the new data mining pipeline clustering visualization options,
including the Plotly pop-up information available by mouse hover. Two
types of visualization options exist: graph densities (top) and clustering
hierarchy.
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Table 5.1: Description of the hierarchical clustering test datasets.

Dataset
name

Dimensionality
Number of

samples
Number of

real clusters

3Gauss 2 1500 3

2Moons 2 180 2

Iris 4 150 3

HTRU2 8 17898 2

5.2.2 Numerical results

Goals. The purpose of the numerical tests carried out using our newly introduced
hierarchical clustering algorithm was to assess the diverse user-oriented function-
alities and algorithms introduced with our method and integrated into the data
mining pipeline. We have thus not focused in particular on the strict clustering
performance aspects (i.e., how well we recover the true clusters from datasets),
where existing literature already shows the capabilities of the density-based sparse
grid clustering approach [61, 62], but we rather centered our tests on demonstrat-
ing the benefits and extent to which our approach, from design to implementation,
and the accompanying functionalities added to the data mining pipeline, can be
beneficial to users performing clustering tasks.

The datasets. In order to reach the goals of our numerical tests we have opted
to work on 4 datasets of different size and dimensionality, which can showcase
varied aspects of the hierarchical clustering algorithm. We will next expand on our
choice of datasets, with a summary of their main characteristics being presented in
Table 5.1.

The 3Gauss dataset consist of 1500 data points sampled equally from three 2D
normal distributions N2(µi,Σ = diag[0.0035, 0.0035]), i = {1, 2, 3} centered at
µ1 = [0.3, 0.7], µ2 = [0.5, 0.5], and µ3 = [0.7, 0.3], respectively. These parameters
ensure that the dataset has a negligible amount of points closer than 0.1 to any
of the 4 domain boundaries, allowing the use of linear basis functions with no ill-
effects on the SGDE approximation, while also producing lightly-coupled clusters
which cannot be trivially discerned and thus are a challenging enough scenario for
any clustering algorithm.

The 2Moons artificial dataset is part of the datasets provided with the SG++
library and consists of a well-known pattern of two non-linearly-separable clusters
of points, distributed in the shape of half circles, in two dimensions. While for this
dataset the clustering problem is easily solvable by many algorithms, including the
standard sparse grid clustering method, we wanted to explore what other interesting
aspects could be revealed by our hierarchical approach.

The Iris dataset is a well-known test case in the clustering community, part of the
UCI Machine Learning Repository [15]. It consists of 150 real-life measurements
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Table 5.2: Sparse grid parameters for the clustering tests.

Dataset
name

Grid
level

Batch
size

λ
Number of
adaptivity

steps

Refined/
coarsened

points

Refinement/
coarsening
thresholds

Adaptivity
period

3Gauss 3 300 10−4 5 10 / 10 0.0001 / 0.9 300

2Moons 3 60 10−3 3 10 / 10 0.0001 / 0.9 60

Iris 3 50 10−4 2 10 / 10 0.0001 / 0.9 50

HTRU2 3 2000 10−5 5 10 / 10 0.0001 / 0.9 3000

Table 5.3: Hierarchical clustering (top) and visualization parameters of the data mining
pipeline for our clustering tests.

Nearest
neighbors
k value

Minimum
density

threshold

Maximum
density

threshold

Number of
threshold

steps

Thresholding
distribution

Minimum
cluster

size

5 0.0 0.75 10 linear 10

Embedding
algorithm

Perplexity
Theta

parameter
Random

seed
Maximum number

of iterations

t-SNE 30 0.5 150 1000

of 4 flower attributes (sepal and petal lengths and widths) for three types of Iris
flowers, resulting in three equally-sized classes of 4-dimensional data points. While
one of these clusters is linearly (and thus trivially) separable from the rest, the
other two clusters are not, resulting in a challenging clustering problem overall.

Lastly, we have the HTRU2 dataset [49], which is a larger and higher-dimensional
test case, sourced as well from the UCI Machine Learning Repository [15]. This 8-
dimensional dataset consists of samples of astronomical data describing attributes of
pulsars (which are a type of radio wave-emitting stars), consisting of two imbalanced
classes of 1639 positive examples (true pulsars) and 16259 negative examples (false
pulsars).

To allow the use of sparse grids with linear basis functions, the Iris and HTRU2
datasets were linearly transformed such that in each dimension data points lie in the
interval [0.1, 0.9]. The 3Gauss dataset did not require such a transformation due to
the carefully selected parameters of the sampled Gaussian distributions. However,
for all of these three mentioned datasets we have performed an order shuffling to
ensure random positions of each cluster data points. The 2Moons dataset, part of
the SG++ library, was already in a sparse grid-suitable state and required no such
preprocessing steps.

The test setup and parameters. The main data mining pipeline parameters
used in the JSON files when running our tests are shown in Tables 5.2 and 5.3.
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Table 5.4: Hierarchical clustering results for the 3Gauss dataset with split threshold 0.

Level
Number of

clusters
Number of

points in level
Density

thresholds

Average number
of points

per cluster

0 unclustered 1500 — —

1 3 1311 0.075 437

2 5 306 0.3, 0.375 61.2

3 2 41 0.45 20.5

In general, we use dataset batching and grid adaptivity using the surplus-value
refinement/coarsening strategy for our sparse grids to allow for good SGDE results,
which a prerequisite for any good sparse grid-based clustering.

Hierarchical clustering metrics tests. Our main set of tests were meant to show-
case the type of results one can expect from our hierarchical clustering algorithm,
as well as to analyze the quality of our proposed clustering metrics, as described
in Section 5.1. To this end, for each dataset we ran our pipeline to produce two
solutions: a compact hierarchical clustering, where we considered all the threshold
values as described by the parameters in Table 5.2 and applied a split threshold of 0
for creating the cluster hierarchy, and a flat clustering, where we performed in effect
the standard approach of Peherstorfer [61] by fixing the minimum and maximum
density thresholds to a same given value and setting the number of threshold steps
to 0.

Two remarks need to be made. Firstly, to reduce the variability of the results
and to ease the analysis of the clustering metrics we have opted for this batch
of tests to use a split threshold of 0, as mentioned, for creating the cluster hier-
archy. Non-zero split thresholds and their effect will be covered subsequently in
this section. Secondly, we have to mention that a third type of clustering can be
done with our current implementation in the data mining pipeline, namely a full
hierarchical clustering, where we intentionally retain all clusters at each considered
density threshold level, however such a clustering has limited practical value, as
it results in many unnecessary clusters and a deep hierarchy (cf. Fig. 5.2). We
recommend this option to be left mainly for debug purposes in future extensions of
the implementation.

We will begin the showcase of the simulation results with the 3Gauss dataset.
The hierarchical clustering resulted here in a total of 11 clusters, including the noise
cluster, distributed in a hierarchy of depth 3, as summarized in Table 5.4. Due to
the fact that at level 1 of the hierarchy we obtained already the desired number
of clusters, we ran the corresponding flat clustering with the respective density
threshold (in this case, 0.075). As mentioned previously, these density values are
not absolute, but relative to the maximum SGDE density value as evaluated at the
data points. Fig. 5.6 shows all the clusters obtained, as visualized with the new
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Table 5.5: Clustering scores for the compact hierarchical (top) and flat clusterings, re-
spectively, for the 3Gauss dataset.

Number of
noise points

Fowlkes-
Mallows (FMI)

V-measure
(VM)

Caliński-
Harabasz (CHI))

Davies-
Bouldin (DBI)

189 0.690975 0.619456 525.935 6.66517

Homogeneity Completeness

0.849882 0.487328

Number of
noise points

Fowlkes-
Mallows (FMI)

V-measure
(VM)

Caliński-
Harabasz (CHI)

Davies-
Bouldin (DBI)

189 0.856915 0.765207 1732.51 5.29374

Homogeneity Completeness

0.848792 0.696608

Table 5.6: Hierarchical clustering results for the 2Moons dataset with split threshold 0.

Level
Number of

clusters
Number of

points in level
Density

thresholds

Average number
of points

per cluster

0 unclustered 180 — —

1 2 179 0.0 89.5

2 4 149 0.15, 0.225 74.5

3 2 53 0.3 26.5

4 2 37 0.375 18.5

capabilities of the data mining pipeline. We observe that our hierarchical approach
can indeed capture the important aspects of the computed density estimation,
identifying all density thresholds that produce meaningful sub-clusters.

Table 5.5 summarizes the computed values of the 4 proposed metrics, including
the values for homogeneity and completeness used to compute the V-measure. The
FMI and VM values, which compare against the true labels, showcase that the flat
clustering results are indeed better, as expected, as it does not create additional
clusters at higher levels, only those we have obtained at level 1 in the hierarchy,
which produces a relatively accurate result. The CHI and DBI values also paint
the same picture, with the corresponding CHI value being higher and the DBI
value smaller than the corresponding ones obtained for the compact hierarchical
clustering.

Similar results were obtained for the 2Moons dataset, where we got also 11
clusters, however across one more level, as presented in Table 5.6. We observe that
in this case a density threshold of 0 was enough to identify two distinct classes,
which reflects how well-separated the two clusters are in the input dataset and how
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(a) Compact hierarchical clustering - level 1 (b) Compact hierarchical clustering - level 2

(c) Compact hierarchical clustering - level 3 (d) Flat clustering

Figure 5.6: Hierarchical and flat clustering results for the 3Gauss dataset, using our hi-
erarchical clustering pipeline. Level 1 of the hierarchy already produces the
same clusters as one would obtain with the standard sparse grid clustering
method.
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(a) Compact hierarchical clustering - level 1 (b) Compact hierarchical clustering - level 2

(c) Compact hierarchical clustering - level 3 (d) Compact hierarchical clustering - level 4

(e) Flat clustering

Figure 5.7: Hierarchical and flat clustering results for the 2Moons dataset, using our hi-
erarchical clustering pipeline. Level 1 of the hierarchy already produces the
same clusters as one would obtain with the standard sparse grid clustering
method.
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Table 5.7: Clustering scores for the compact hierarchical (top) and flat clusterings, re-
spectively, for the 2Moons dataset.

Number of
noise points

Fowlkes-
Mallows (FMI)

V-measure
(VM)

Caliński-
Harabasz (CHI)

Davies-
Bouldin (DBI)

1 0.503915 0.484046 69.1593 0.843039

Homogeneity Completeness

1 0.319301

Number of
noise points

Fowlkes-
Mallows (FMI)

V-measure
(VM)

Caliński-
Harabasz (CHI)

Davies-
Bouldin (DBI)

1 0.994306 0.978364 113.01 3.65059

Homogeneity Completeness

1 0.957644

Table 5.8: Hierarchical clustering results for the Iris dataset with split threshold 0.

Level
Number of

clusters
Number of

points in level
Density

thresholds

Average number
of points

per cluster

0 unclustered 150 — —

1 2 150 0.0 75

2 2 50 0.3, 0.225 25

easy it was for the sparse grid approach to identify this separation, even with a
low level grid. The corresponding flat clustering was obtained using this density
threshold of 0, resulting in the same clusters as those at level 1 of the hierarchy
(Fig. 5.7). The FMI and VM values in Table 5.7 confirm that this is an almost
perfect clustering result, with just one data point incorrectly assigned as noise. It
is to be expected that a small increase in grid points via a higher initial level or
additional refinement steps would produce a grid able to fix this, obtaining thus
a perfect clustering, however that is not our focus in these tests. What has to be
noted though here is that, although the CHI value is in line with expectation, the
DBI produces the opposite results. This can definitely happen when considering
internal metrics, like DBI, therefore using multiple such metrics gives a better
chance of correctly distinguishing a good clustering from a poor one and providing
the user relevant insight.

For the Iris dataset Table 5.8 shows that we obtain with our approach two levels
of 2 clusters each, with no points marked as noise. Fig. 5.8 allows the visual inspec-
tion of the resulting clusters, together with the those obtained by the corresponding
flat clustering using a threshold value of 0.225, with all data points embedded in 2D
space via the t-SNE algorithm of the data mining pipeline. We can observe clearly
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(a) Compact hierarchical clustering - level 1 (b) Compact hierarchical clustering - level 2

(c) Flat clustering

Figure 5.8: Hierarchical and flat clustering results for the Iris dataset, using our hier-
archical clustering pipeline. Here we can see that the hierarchical clustering
can produce if not the same then better clusters than the standard sparse
grid clustering method, with the linearly separable class being correctly and
fully identified (Cluster 1 in (a) and (b)).
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Table 5.9: Clustering scores for the compact hierarchical (top) and flat clusterings, re-
spectively, for the Iris dataset.

Number of
noise points

Fowlkes-
Mallows (FMI)

V-measure
(VM)

Caliński-
Harabasz (CHI)

Davies-
Bouldin (DBI)

0 0.722094 0.636946 141.317 1.68952

Homogeneity Completeness

0.68786 0.593049

Number of
noise points

Fowlkes-
Mallows (FMI)

V-measure
(VM)

Caliński-
Harabasz (CHI)

Davies-
Bouldin (DBI)

75 0.495529 0.382766 24.3257 0.989091

Homogeneity Completeness

0.39817 0.368509

Table 5.10: Hierarchical clustering results for the HTRU2 dataset with split threshold
0.

Level
Number of

clusters
Number of

points in level
Density

thresholds

Average number
of points

per cluster

0 unclustered 17898 — —

that in this scenario our hierarchical approach produces a net better labeling of the
data points into meaningful clusters by the fact that the linearly separable class
is correctly and fully identified as such, while the flat clustering fails to do so due
to its intrinsic simplicity in approach. This visual assessment is confirmed also by
the computed metrics presented in Table 5.9. One has to note however that here,
similarly to the 2Moons scenario, the DBI metric fails again to correctly assess the
better clustering result as such.

The HTRU2 dataset provided a different type of result. Here our hierarchical
clustering did not return any clusters (Table 5.10), which means that at no density
threshold more than one connected component could be identified from the sparse
grid-based estimated density. Thus, for the corresponding flat clustering we had no
practical information and therefore we chose the first density threshold capable of
creating a separation of clusters, i.e., 0.075. This results in a decent identification
of the real clusters, based on our metrics in Table 5.11. For completeness, Fig. 5.9
shows the 2D t-SNE embedding of these identified clusters, and Table 5.12 shows
the resulting confusion matrix, proving that, even though we did not tailor in any
way our method’s parameters to this more challenging dataset, the sparse grid
clustering is still capable of identifying a large portion of the minority class (i.e.,
the true pulsars).
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Figure 5.9: Flat clustering results for the HTRU2 dataset, using our hierarchical clus-
tering pipeline. The minority class (true pulsars) data points are identified
as noise.

Table 5.11: Clustering scores for the flat clusterings for the HTRU2 dataset. The hi-
erarchical clustering did not return any clusters, therefore the value of the
metrics int hat case have no practical meaning.

Number of
noise points

Fowlkes-
Mallows (FMI)

V-measure
(VM)

Caliński-
Harabasz (CHI)

Davies-
Bouldin (DBI)

1374 0.937327 0.384065 9706.77 0.889982

Homogeneity Completeness

0.361886 0.40914

Table 5.12: Confusion matrix for the flat clustering of the HTRU2 dataset. For the true
pulsars (positive examples) we obtain a precision of 0.73 and a recall value
of 0.61.

Labels
Clusters Noise

cluster
Cluster 0

negative examples
(false pulsars)

371 15888

positive examples
(true pulsars)

1003 636
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Split threshold tests. So far we have only considered the case when we use a split
threshold of 0, which results in the most complex compact hierarchy by retaining
all cluster parents with more than one children. In the following we will show
the consistency of the hierarchical cluster splitting metric, as well as its practical
applicability.

Firstly, Table 5.13 presents the split scores computed for each set of multiple
cluster children across all hierarchy levels for the 4 considered datasets, as resulting
from the compact hierarchical clusterings presented previously. As can be observed,
across all datasets where a cluster hierarchy could be established the magnitudes
of the split scores vary in relatively same manners, showing that our strategy for
computing this metric is stable and consistent across different parameters of the
datasets and clusters (i.e., number of data points, size of clusters, dimensionality
of data points).

To assess the other point of interest, i.e., the usefulness of our approach, we con-
sidered the particular case of the 2Moons scenario and ran additional simulations
with split thresholds 1.5 and 2.0. These values were chosen based on the tabu-
lated split metric values in Table 5.13, in order to allow various merges of clusters
at different hierarchical levels. In Table 5.14 we summarize the obtained cluster
hierarchies. An increase in the split threshold results in a flatter hierarchy by con-
densing clusters at previous diverse levels, which are to a higher or lesser degree
connected in a graph sense to one another, as can be seen in Fig. 5.10.

Summary of results. Through our tests we have demonstrated the new func-
tionality of the data mining pipeline through our hierarchical clustering algorithm,
which extends the capabilities of the standard approach, giving the user the possi-
bility to gain new insights into the characteristics of the input datasets by means
of additional sub-clusters (3Gauss, 2Moons), better quality clusters (Iris), or even
by means of negative clustering results (HTRU2 ). Besides improving the SGDE
approximation, our clustering approach now has parameters that can improve the
result of the clustering process which relate to the nearest neighbor graph portion
of the algorithm, like our split threshold, providing thus a more powerful clustering
library overall.

Table 5.13: Computed split metric values obtained for the considered datasets. The
values are grouped by the level at which they appear, each value representing
one of multiple child clusters.

Dataset Split metric values

3Gauss (2.40794, 2.17093, 1.37411), (3.34131, 2.48213), (2.1738, 1.6241)

2Moons (1.81808, 1.67035), (1.23619, 3.58565), (3.31704, 1.21181), (2.07478, 1.64157)

Iris (1.51934, 2.48045)

HTRU2 —
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(a) Compact hierarchical clustering - level 1;
split threshold 1.5

(b) Compact hierarchical clustering - level 2;
split threshold 1.5

(c) Compact hierarchical clustering - level 1;
split threshold 2.0

Figure 5.10: Hierarchical clustering results for the 2Moons dataset, using our hierar-
chical clustering pipeline, with split thresholds 1.5 (a and b) and 2.0 (c),
respectively.
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Table 5.14: Hierarchical clustering results for the 2Moons dataset for split thresholds
1.5 and 2.0, respectively.

Level
Number of

clusters
Number of

points in level
Density

thresholds

Average number
of points

per cluster

0 unclustered 180 — —

1 4 163 0, 0.225, 0.3 40.75

2 4 108 0.15, 0.375 27

Level
Number of

clusters
Number of

points in level
Density

thresholds

Average number
of points

per cluster

0 unclustered 1500 — —

1 6 136 0.15, 0.225, 0.3, 0.375 22.67

5.3 Uncertain Clustering

A second extension to the clustering task that was addressed in our work was in
the handling of uncertain datasets. This encompasses the situations where the
actual coordinates of our input data points are not known exactly. The simplest
option to model such a dataset is to consider that each data point is described by
its expectation (as a d-dimensional vector) and a variance under the assumption
that the uncertainty is of a known, simple distribution (e.g., Gaussian). A set
of samples from these distributions, one for each uncertain data point, forms a
so-called possible world or instance of the uncertain dataset. The same way as
the results of clustering a deterministic dataset can be measured by some metrics,
clustering an uncertain dataset adds an additional complexity layer, usually in the
form of some confidence measure, as what makes a ‘good’ clustering now depends
also on the parameters of the uncertainty model considered.

Keeping in the spirit of our high usability goal, we took a method-independent
approach for handling uncertainty in the context of clustering and applied it to our
sparse grid-based algorithm. Therefore, while the approach to model the uncertain-
ties and extract meaningful information from the resulting clusters is not new, our
usage of the sparse grid clustering algorithm in this context is, to our knowledge,
the first study of any kind of sparse grid-based uncertain clustering.

In the following, we will describe first of all the theoretical aspects of the uncer-
tainty model. Next we will delve into certain details regarding our implementation
and how the integration with our regular sparse grid-based clustering algorithm
takes place. Lastly, we will present some numerical results.

164



5.3 Uncertain Clustering

5.3.1 Theory and implementation

The approach. The idea of Züfle et al. [92] of representative clustering, which we
employ, is to find for a set of possible worlds sampled from our unknown dataset
a subset for which applying the deterministic clustering algorithm produces results
that are representative (i.e., close under some measure), with some degree of cer-
tainty, to what it would produce on the actual, unknown deterministic dataset.
This method gives mathematical guarantees regarding the degree of confidence in
the output and requires far less clusterings to be done on possible worlds than
would, for example, a naive Monte Carlo approach.

The steps of the uncertain clustering using representatives in the context of
our sparse grid-based implementation follows for the most part the ones described
in [92]:

Step 1: Construct the set X = {X0, . . . , X|X|−1} of possible worlds by sam-
pling from the uncertain input dataset.

Step 2: For each such world Xi ∈ X, i = 0, . . . , |X| − 1, apply the sparse
grid clustering (which we will denote in this context by C), resulting
in labelings (or clusterings) C(Xi). This results in a set of distinct
clusterings, called the possible clusterings set PC. For each entry,
the number of apparitions in the set {C(Xi)} gives its support.

Step 3: Using a distance measure dC that describes how similar two cluster-
ings are to each other, cluster by any given distance-based method
C ′ the elements of PC.

Step 4: For each such metacluster returned by C ′, select, in a specific man-
ner, one of its member elements to be its representative. The set
of these metacluster representatives is the output of the uncertain
clustering.

Sampling possible worlds. The way we construct the set X in step 1 of our al-
gorithm as already mentioned by taking a sample from each of the distributions
describing each data point of our uncertain input dataset. To reduce the com-
putational demand, we can reuse samples in different combinations as the field
of generated possible worlds from which to choose the number we require. For
example, one can generate just j = 10 samples per data point for an uncertain
dataset of size N and then randomly choose as possible worlds |X| = 100 of the
resulting jN = 10100 combinations. (In practice, of course, one does not even ef-
fectively generate jN items, with j ∗ N being enough for a simple, yet efficient,
implementation.) This approach reduces both the space and time requirements for
the sampling procedure.

While there is no upper bound to the number of possible worlds one would
use, previous results showed that moderate values are enough in order to obtain
meaningful results. The only restriction on |X| is a lower bound given by the central
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limit theorem (used in the calculation of the confidence degree we can obtain in the
representative clustering approach), leading to a generic rule of thumb of |X| > 30.

A more detailed explanation of the implementation of such a sampling can be
found in the source material [92].

Integration with the pipeline. The second step of the algorithm is where the
sparse grid clustering comes into play, as we need to cluster each possible world
in X. This step is also the most computationally demanding, however it can be
straight-forward parallelized, as the clusterings are independent of one another.
Integrating the representative clustering approach into the data mining pipeline
was however considered to be unnecessary because, on one hand, it would require
extensive changes to the whole pipeline to allow multiple clusterings to be done in
one overarching run (although it can be considered in future contributions) and,
on the other hand, the other steps of the uncertain clustering algorithm can more
easily be done independently of the sparse grid-related methods. As such, our
implementation encapsulates the calls to the C++-based pipeline clustering for each
world Xi into a larger Python-based code, with scripts written to automatize almost
the whole uncertain clustering algorithm, maintaining the overall high degree of
usability of our implementation. Thus, for example, we can automatically create
the proper JSON input file associated to each dataset Xi needed for the sparse grid
clustering call and, afterwards, we can automatically retrieve the labelings stored
in the output files of the data mining pipeline needed for the subsequent steps 3
and 4 of the representative clustering algorithm.

In order for the uncertain clustering to return meaningful results, an important
aspect is the setup of the parameters for C. Therefore, the template JSON file
used to run all clusterings for each uncertain dataset would ideally have to contain
parameters that would make sense for a similar deterministic input. While one can
think of more complex options, considering the type of uncertainty model we work
with, we have opted to choose the parameters in the template JSON file such that
they would return good results if used by the deterministic sparse grid clustering
using as input the set of expectation vectors for each uncertain data point.

The metaclustering. For the third step of the algorithm we need to cluster the
|X| clusterings in order to distinguish subsets of labelings that are closely related,
removing thus part of the variance introduced by the uncertainties in the original
input dataset. For our implementation we have kept in line with the approach of
the original paper and also used C ′ = PAM (partition around medoids), available
as a Python package [73], and using the reciprocal ARI (adjusted Rand index ) as a
metric between clusterings (i.e., dC = 1− ARI) due to its invariance to label value
shuffling.

Obtaining the representatives. Our implementation returns three results. The
first one is the sample medoid, which is simply the median of all clusterings in PC,
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weighted by their support. This is computed purely for comparison reasons, as it
represents a naive solution to the uncertain clustering problem.

The second and third results are given each as a list of τ -φ-representatives [92],
one per meta-cluster. Such a representative R, described by a computed value
φ = P̂ (R, τ, α), is guaranteed, under the assumptions of the central limit theorem
with respect to the number of possible worlds sampled, that it is, with a level of
confidence α provided by the user and with probability φ, at most at a distance
τ from the other clusterings in its respective meta-cluster. We have implemented
both options to return such representatives described in the work of Züfle et al.:
the complete representative approach, where both the values of τ and φ are com-
puted from the meta-clusters, and the τmax-clustering variant, where we restrict
the maximum value of τ and only the corresponding value of the probability φ is
to be correspondingly computed from the data.

5.3.2 Numerical results

Goals. As the method itself was already proven to produce good quality clusters in
the original work of Züfle et al. [92], our tests will instead simply focus on validating
the use of world representatives for sparse grid uncertain clustering. We will use
some of the same datasets previously used in the context of hierarchical clustering
and assess both visually and numerically the obtained representatives.

The test scenarios. As ground-truth clusterings for which we generated repre-
sentatives we used the flat clustering results for the datasets 3Gauss, 2Moons, and
HTRU2, as described in Section 5.2.2. We set the uncertain clustering parameters
from [92], i.e., we generated |X| = 100 representatives from j = 10 samples per data
point, sampled independently from standard Gaussian distributions with variance
σ = 0.01 with the strategy previously described. Unless otherwise specified, we set
the algorithm to return 4 representatives for each scenario, with a limit τmax = 0.1
for the τmax-clustering approach.

Representative clustering results. The first dataset investigated was 3Gauss,
for which we tried to get 4 useful representatives. In Fig. 5.11 we present the
median representative and the complete representatives returned by the uncertain
clustering approach. The median failed to capture the 3 clusters in the dataset,
while the four complete representatives, similarly to what was obtained in [92],
perfectly showcased the 4 possible cluster combinations of the three-mode dataset.
The difference in our case was that the closest representative to the ground-truth
was not returned with the largest probability, however it had the smallest associated
τ distance. The results improved considerably when we imposed a maximum τ
limit, as shown in Fig. 5.12: the closest representative to the ground-truth chosen
from the four selected by the algorithm was returned with the largest probability.
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(a) Median representative X1; dC = 0.938

(b) Complete representative
P̂ (X20, 0.154, 0.95) = 0.105; dC = 0.512

(c) Complete representative
P̂ (X30, 0.485, 0.95) = 0.402; dC = 0.942

(d) Complete representative
P̂ (X82, 0.130, 0.95) = 0.088; dC = 0.140

(e) Complete representative
P̂ (X63, 0.150, 0.95) = 0.088; dC = 0.509

Figure 5.11: Median and 4 complete representatives for the 3Gauss dataset. The re-
turned median clustering cannot hope to reflect nicely the three modes of
the dataset, but the complete representatives capture the 4 possible cluster
combinations one would expect.
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(a) τmax representative (τmax = 0.1)
P̂ (X23, 0.1, 0.95) = 0.002; dC = 0.520

(b) τmax representative (τmax = 0.1)
P̂ (X0, 0.1, 0.95) = 0; dC = 0.945

(c) τmax representative (τmax = 0.1)
P̂ (X25, 0.1, 0.95) = 0.034; dC = 0.159

(d) τmax representative (τmax = 0.1)
P̂ (X21, 0.1, 0.95) = 0.002; dC = 0.501

Figure 5.12: τmax representatives for the 3Gauss dataset. Not only do we still keep the
4 possible cluster combinations as for the complete representatives, but
now the probabilities have a more clear and useful interpretation.
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Our second dataset investigated is the 8-dimensional HTRU2. In this scenario
the median representative by chance returned a very good clustering, as revealed
by the small distance to the ground-truth. From the 4 complete representatives,
shown in Fig. 5.13 against the median result, none were as close to the ground-truth
clustering, although two of them were at statistically significant small distances to
the target clustering. Again, using the strategy of limiting the maximum τ value,
shown in Fig. 5.14, we retrieved with the second highest probability a represen-
tative that lies at the same distance to the ground-truth as the median result,
therefore equaling the uncommon to be obtained best possible solution from the
naive approach.

For our last test dataset, 2Moons, we began by searching for two representatives,
considering the simplicity of the scenario. These results are shown in Fig. 5.15.
While the naive median selection failed by returning a clustering with three classes,
the complete representative did identify a good clustering candidate, however, with
both representatives returned with corresponding τ distances close or equal to 1.0,
this was a statistically insignificant result. Results were improved by limiting τ
to at most 0.1, which returned a very good clustering candidate with an attached
probability of almost 40%.

Increasing the number of returned representatives to 4 improved slightly the
quality of these complete representatives, with some of the τ values now lower,
although still practically not useful. Once more, a τmax-clustering was needed to
return statistically significant results, with the selected representative with the
highest attached probability having also the smallest distance to the ground-truth
clustering. These results are shown in Figs. 5.16 and 5.17, respectively.

5.4 Summary

Our contributions in this chapter focused on increasing the usability of the standard
clustering approach using sparse grids. In a first direction, we have integrated the
clustering algorithm of Peherstorfer [61] into the SG++ data mining pipeline of [69],
then extended it to a hierarchical clustering approach that provides a more powerful
tool in solving the clustering task. Our numerical tests on datasets of various sizes
and dimensionality showed the power of such a method, with the user being aided
in making decisions by new metrics and new visualization options. Through a
combination of the adaptivity in the SGDE approach, the choices of range and
distributions of the density threshold, and the possibility of adjusting the cluster
hierarchies through our split threshold, a user with expert knowledge has now many
tools at its disposals to analyze a given input dataset and produce a high quality
result to the otherwise complex task of clustering.

The introduction of the first (to the best of our knowledge) sparse grid uncertain
clustering method, by marrying our standard clustering algorithm with an existing
approach based on world representatives, provided a different contribution in our
usability research direction. Our numerical tests showed that this approach allows

170



5.4 Summary

(a) Median representative X51; dC = 0.071

(b) Complete representative
P̂ (X78, 0.117, 0.95) = 0.314; dC = 0.125

(c) Complete representative
P̂ (X70, 0.105, 0.95) = 0.013; dC = 0.502

(d) Complete representative
P̂ (X23, 0.172, 0.95) = 0.382; dC = 0.095

(e) Complete representative
P̂ (X65, 0.107, 0.95) = 0.08; dC = 0.233

Figure 5.13: Median and 4 complete representatives for the HTRU2 dataset. By chance,
here the median representative is very close to the ground-truth, being
better than the complete representatives, which still come relatively close
to the target clustering.
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(a) τmax representative (τmax = 0.1)
P̂ (X5, 0.1, 0.95) = 0.256; dC = 0.184

(b) τmax representative (τmax = 0.1)
P̂ (X3, 0.1, 0.95) = 0.007; dC = 0.518

(c) τmax representative (τmax = 0.1)
P̂ (X51, 0.1, 0.95) = 0.139; dC = 0.071

(d) τmax representative (τmax = 0.1)
P̂ (X65, 0.1, 0.95) = 0.072; dC = 0.233

Figure 5.14: τmax representatives for the HTRU2 dataset. From the 4 clusterings one
of them matches the surprisingly good median result, improving thus on
the obtained complete representatives.
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(a) Median representative X30; dC = 0.246

(b) Complete representative
P̂ (X65, 0.986, 0.95) = 0.733; dC = 0.054

(c) Complete representative
P̂ (X1, 1, 0.95) = 1; dC = 1

(d) τmax representative (τmax = 0.1)
P̂ (X4, 0.1, 0.95) = 0.382; dC = 0.022

(e) τmax representative (τmax = 0.1)
P̂ (X1, 0.1, 0.95) = 0.007; dC = 1

Figure 5.15: Uncertain clustering results for the 2Moons dataset. Here, we looked for
two representatives.
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(a) Complete representative
P̂ (X1, 1, 0.95) = 1; dC = 1

(b) Complete representative
P̂ (X55, 0.723, 0.95) = 0.113; dC = 0.022

(c) Complete representative
P̂ (X50, 0.98, 0.95) = 0.699; dC = 1.000

(d) Complete representative
P̂ (X59, 0.413, 0.95) = 0.049; dC = 0.395

Figure 5.16: Four complete representatives for the 2Moons dataset. While results were
slightly better than those for only 2 representatives, these still have limited
practicality.
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(a) τmax representative (τmax = 0.1)
P̂ (X1, 0.1, 0.95) = 0.007; dC = 1

(b) τmax representative (τmax = 0.1)
P̂ (X22, 0.1, 0.95) = 0; dC = 0.022

(c) τmax representative (τmax = 0.1)
P̂ (X4, 0.1, 0.95) = 0.382; dC = 0.022

(d) τmax representative (τmax = 0.1)
P̂ (X3, 0.1, 0.95) = 0.027; dC = 0.640

Figure 5.17: Four τmax representatives for the 2Moons dataset. Limiting the maximum
distance allowed to the ground-truth clustering again proves to improve
substantially the statistical usefulness of the approach.
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a user to retrieve with various degrees of confidence good clustering candidates
from uncertain databases, with the τmax strategy consistently outperforming the
more direct complete representative selection and obtaining statistically significant
results which a user can use to make an informed, sound decision.

In all these contributions the focus was placed on the end user, with automated
processes, visualization options and ease of use being put at the forefront, while of
course not neglecting the algorithmic and performance aspects that make for good
scientific implementations.
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In this thesis, we have taken a multi-faceted approach to exploring and expanding
the use of sparse grids to solving various learning tasks, examining the relation-
ships between algorithmic development, performance aspects, and user-oriented
implementation. We began in Chapter 3 with the introduction of what we called
complex density estimators, i.e., sparse grid-based algorithms to approximate non-
trivial functions of one or two probability densities. Previously only the estimation
of a single density, via the approach of Peherstorfer [60], was possible. Our work
in this direction was inspired by the existence of successful kernel estimators for
solving these tasks.

Through our tests on a variety of datasets of various dimensionality, sampled
from simple and mixed distributions, we have found that our density difference,
ratio, and relative ratio estimators can equal and even outperform qualitatively
their kernel-based counterparts. Not only were we able to produce accurate ap-
proximations close to the input data points, a trademark of kernel-based methods,
but, due to the grid-based nature of our approach, our sparse grid algorithms were
able to capture the target function in the whole computational domain. Unfortu-
nately, our density derivative estimator obtained relatively modest results in our
tests. We as of now have not been able to pinpoint the causes of the poor visual
and numerical results of this approach, whether the stem from the requirement to
use higher degree bases, the specific not-a-knot B-splines used, or , therefore further
analysis will be required in order to fully assess our methods capabilities compared
to the similar existing kernel estimator. While also requiring the use of the more
computationally expensive not-a-knot B-spline basis, the density derivative ratio
estimator however proved to be quite robust, most likely due to its more expen-
sive, data-dependent resulting system matrix, obtaining overall qualitatively better
results than the corresponding kernel estimator we have compared it against.

Future improvements and extensions to our complex density estimators will be in
no small degree helped by the fact that they have been integrated into the SG++
data mining pipeline [69]. A concrete first step forward would be the implemen-
tation of cross-validation-based hyperparameter selection strategy, similar to the
existing ones for other learning tasks in the pipeline, which is not a trivial task for
the estimators requiring two input datasets. Also, implementation and study of te
applicability of concept drift strategies, as outlined in Appendix A, could be of in-
terest. As our delving in this density estimation research direction was inspired by
the large number of applications of kernel-based counterparts (e.g., [78, 80, 81, 48]),
we hope that our newly introduced density-based estimators will also find similar
use, expanding the overall reach of sparse grids.
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In Chapter 4 we took a more HPC-oriented look at the tasks of regression and
classification using sparse grids, and their applications. We first presented our op-
timization study of the legacy code of Heinecke [34] geared towards the recent KNL
architecture. While more academic in nature, through our optimization process we
obtained both competitive speed-ups of upwards of 1.7× compared to the previous
Haswell CPU architecture, as well as corroborating various results and guidelines
found in literature regarding best settings for the KNL processor when running
similar applications. In the second part of the chapter, this optimized code was
used in our separate study of sparse grid-based time series prediction, applied to
real-world currency exchange rates. Going beyond the replication of the results of
Garcke et al. [24, 25] on equivalent freely available raw data, instead of the original
commercial source, we expanded the existing work in this direction to encompass
also the use of modified basis functions, as well as (spatially) adaptive sparse grids.
With all reasonable steps taken to ensure our results can be compared to those
obtained by Garcke et al., our tests revealed that for this type of financial data
there is no need for boundary points in the utilized sparse grids, with modified ba-
sis functions obtaining even superior prediction results. On the other hand, spatial
adaptivity using the generic surplus-based strategy did not produce any significant
improvement, stemming in our opinion from the intrinsic distribution of data points
in embedded space. In the end, we obtained a better solution to the currency ex-
change rate prediction problem with the aid of the short simulation time provided
by the optimized regression code, something which can open the road towards the
use of sparse grids for profitable trading strategies in an online setting as well.

Our third direction of study was presented in Chapter 5, where we focused on
the usability aspects of sparse grid-based clustering methods. To this end, we have
started by integrating the previous approach of Peherstorfer [61] into the SG++
data mining pipeline, then provided two extensions in the form of an integrated hi-
erarchical clustering algorithm and an uncertain clustering Python-based add-on.
The numerical simulations carried out showed the ability of our hierarchical cluster-
ing to reveal useful new insights into datasets, with a good visualization strategy,
four implemented clustering metrics, and newly introduced pipeline parameters pro-
viding novel tools for a user to produce and analyze high quality clusters. In line
with our usability perspective to the task of clustering, we introduced in the sec-
ond part of the chapter the first (to our knowledge) uncertain clustering algorithm
using sparse grids, by combining a known world representatives approach with our
pipeline’s standard clustering method. The results from our tests confirmed that,
by using this algorithm, a user can be provided with statistically significant clus-
tering representatives when working with uncertain data, mirroring existing results
using other underlying clustering algorithms, like DBSCAN [92].

For our new clustering methods, some concrete future steps of improvement
can already be outlined. The hierarchical clustering implementation, while driven
mainly by the usability concerns, can benefit for more performance-oriented up-
grades, beyond what is currently provided “as is” by the data mining pipeline.
For example, a parallelized hash-based algorithm for the construction of the near-
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est neighbor graph could be implemented, as proposed in [62]. Additionally, the
runtime of the graph operations could be improved by using distributed implemen-
tations of the vantage-point tree algorithms. Lastly, the cluster splitting process can
also be distributed across the children, providing more performance from an other-
wise overall sequential cluster hierarchy construction algorithm. For the uncertain
clustering method, while limited additional (parallel) performance from what was
already presented could be obtained, more work can be done in understanding the
limits of world representatives approach when applied to the sparse grid-based clus-
tering, as well as testing out a possible uncertain hierarchical clustering extension
of the method.

With an array of brand new algorithms, various study cases based on existing
and new methods and implementations, as well as a multi-faceted approach to
numerical solutions, our work tried, and we believe it also succeeded, to provide
more insight into various learning algorithms using sparse grids, while also opening
new exciting avenues of research.
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A Concept Drift Formulations for
Complex Density Estimators

A.1 Density Difference Estimation

Similarly to the formulation for SGDE as described in [69], we can derive a modified
version of Eq. (3.13) for a given minimal learning rate β ∈ [0, 1] as:

bp(k) − bq(k) =

(
min

(
(1− β)M̃

(k)
p ,

M
(k−1)
p

M
(k)
p

)
bp
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(
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(k)
q ,

M
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q

M
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q

)
bq
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)

+
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q ,
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q
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q

)
b̃q

(k)

)
.

(A.1)

This formulation is independent of batch size (due to the exponents used), guaran-
teeing that each new data point has a weight factor of at least β in the right-hand
side.

A.2 Density Derivative Estimation

The batch update rule in Eq. (3.41) can also be modified to account for concept
drift. For a given minimal learning rate β ∈ [0, 1], the update rule becomes:

(−1)|j|∂(j)bp
(k)

= min

(
(1− β)M̃

(k)
p ,

M
(k−1)
p

M
(k)
p

)
(−1)|j|∂(j)bp
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+ max

(
1− (1− β)M̃

(k)
p ,

M̃
(k)
p

M
(k)
p

)
(−1)|j|∂(j)b̃p

(k)
.

(A.2)

Again, the idea is to guarantee a minimal contribution of factor β for each new
data point in the final right-hand side, with an exponential term to account for the
batch size.
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B Data Distributions for Testing the
Complex Density Estimators

In this appendix we give an overview of the mathematical formulations of the
different data distributions used in the testing of our complex density estimators
in Chapter 3. Here we will provide the general multivariate formulations of the
distributions, as the univariate formulations are just edge cases where the various
parameters degenerate from vectors/matrices to scalars.

Multivariate normal distribution. The probability density function (PDF) of the
d-dimensional multivariate normal distribution N (µ,Σ) at point x ∈ Rd is given
by:

(2π)−
d
2 det(Σ)−

1
2 e−

1
2

(x−µ)TΣ−1(x−µ), (B.1)

where µ ∈ Rd is the location vector, and Σ ∈ Rd×d is the positive-definite covariance
matrix.

To sample the data distribution and evaluate the density function we have used
the existing implementation available in the scipy.stats Python package. This
code was extended to allow also the evaluation of the gradient of the PDF, needed
for the complex estimators that involve derivatives.

Multivariate t-distribution. The probability density function of the d-dimensional
multivariate t-distribution T (µ,Σ, ν) at point x ∈ Rd is given by:

Γ
(
ν+d

2

)
Γ
(

1
2

)
(πν)

d
2 det(Σ)

1
2

(
1 +

(x− µ)TΣ−1(x− µ)

ν

)− ν+d
2

, (B.2)

where µ ∈ Rd is the location vector, and Σ ∈ Rd×d is the positive-definite scale
matrix, and ν ∈ N∗ is the degrees of freedom.

No implementation existed of this distribution in the scipy.stats Python pack-
age at the time, therefore we have created our own, using the same class structure
in order to maintain compatibility. The implementation of the PDF and its gra-
dient are straight-forward, following a similar numerical approach as the existing
multivariate normal distribution.

To implement the distribution sampler we have used a known stochastic repre-
sentation of a t-distributed random variable X ∼ T (µ,Σ, ν) (see, e.g., [36]):

X = µ+
√
WAZ, (B.3)
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B Data Distributions for Testing the Complex Density Estimators

where W = ν
χ2
ν

with χ2
ν denoting an independent random variable following a (uni-

variate) chi-squared distribution with ν degrees of freedom, A is the Cholesky factor
of the scale matrix Σ (i.e, A is the matrix that satisfies Σ = AAT ), and Z ∈ Rd is a
vector of d independent standard normal random variables (i.e., Z = (Z1, . . . , Zd)
with Zi ∼ N (0, 1), i ∈ 1, . . . , d).

Multivariate skew-normal distribution. Let φd(y; Σ) denote the PDF of the d-
dimensional multivariate normal distribution N (0,Σ) evaluated at point y ∈ Rd

for given covariance matrix Σ ∈ Rd×d and let Φ1{y} denote the cumulative dis-
tribution function (CDF) of the standard univariate normal distribution N (0, 1)
evaluated at point y ∈ Rd. Then the PDF of a multivariate skew-normal distribu-
tion SN (ξ,Ω,α) at point x ∈ Rd is given by:

2 φ(x− ξ; Ω) Φ1

{
αTω−1(x− ξ)

}
, (B.4)

where ξ ∈ Rd is the location vector, Ω ∈ Rd×d is the positive-definite scale (or

dispersion) matrix, α ∈ Rd is the shape (or skewness) vector, and ω = diag(Ω)
1
2 ∈

Rd is a vector whose elements are the square roots of the main diagonal values of
the scale matrix Ω. We opted here for the distribution formulation of Azzalini and
Dalla Valle [4].

No implementation existed of this multivariate distribution in the scipy.stats

Python package, therefore we have again created our own, maintain compatibil-
ity by using the same class structure as the other multivariate distributions. The
implementation of the PDF and its gradient are again straight-forward. To im-
plement the distribution sampler we have used the stochastic representation of a
skew-normal random variable X ∼ SN (ξ,Ω,α) using the so-called conditioning
method, as presented in [3].

Multivariate skew-t-distribution. Let td(y; ξ,Ω, ν) denote the PDF of the d-
dimensional multivariate t-distribution T (ξ,Ω, ν) evaluated at point y ∈ Rd and
let T1{y; τ{ denote the cumulative distribution function (CDF) of the standard
univariate t-distribution T (0, 1, τ) with τ > 0 degrees of freedom evaluated at point
y ∈ Rd. Then the PDF of a multivariate skew-t-distribution ST (ξ,Ω,α, ν) at point
x ∈ Rd is given by:

2 td(x; ξ,Ω, ν) T1

{
αTω−1(x− ξ)

(
ν + d

(x− ξ)TΣ−1(x− ξ) + ν

) 1
2

; ν + d

}
, (B.5)

where ξ ∈ Rd is the location vector, Ω ∈ Rd×d is the positive-definite scale (or
dispersion) matrix, α ∈ Rd is the shape (or skewness) vector, ν ∈ N∗ is the degrees

of freedom, and ω = diag(Ω)
1
2 ∈ Rd is a vector whose elements are the square

roots of the main diagonal values of the scale matrix Ω. We opted here for the
distribution formulation of Azzalini and Capitanio [3].
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No implementation existed of this multivariate distribution in the scipy.stats

Python package, therefore we have once more created our own, again using the
same class structure as the existing code in order to maintain compatibility. The
implementation of the PDF and its gradient are similarly straight-forward as in the
case of the skew-normal distribution.

To implement the sampler we have used the stochastic representation of a skew-
normal random variable X ∼ ST (ξ,Ω,α, ν) described in [3], i.e.,

X = ξ +
√
WZ, (B.6)

where W = ν
χ2
ν

with χ2
ν denoting an independent random variable following a

(univariate) chi-squared distribution with ν degrees of freedom, and Z ∈ Rd

is an independent multivariate skew-normal random variable with ξ = 0 (i.e.,
Z ∼ SN (0,Ω,α)).
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