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Abstract

In a rapidly evolving society, the prospect of short-term, large-scale deployment of a wide

variety of autonomous robots, and in particular humanoid robots, for use in everyday life

applications raises multiple questions and challenges, both from a societal and engineering

perspective. Obviously, such robots must be endowed with high levels of adaptability in order

to safely and effectively operate within human environments. Much research suggests that

advanced sensory capabilities are in this case essential to provide robots with adequate lev-

els of situational awareness, allowing them to work side-by-side with humans or to execute

advanced whole-body manipulation tasks. In this context, the implementation of an artificial

sense of touch that can potentially equip any robot appears to be a promising research direc-

tion. Nevertheless, the fact entirely covering a robot with an artificial skin remains problematic

in practice, for both hardware and algorithmic reasons. As a matter of fact, not only should

the skin data be processed in real-time by robots with limited computational capabilities, but

it should also be integrated within a more general control framework in order to generate suit-

able robot behaviors. Moreover, mounting an artificial skin on a robot is likely to significantly

alter its dynamic properties, which may eventually lead to degraded control performance or

even instability in the case of floating base mechanisms.

The work of this thesis is organized around the following research axes in order to provide

a coherent answer to the above mentioned challenges. First, the modalities of use of tac-

tile information in the context of human-robot interaction and distributed state estimation are

explored, respectively through the development of a whole-body tactile compliance control

strategy, and of a distributed sensor fusion framework. The ability to re-identify the robot’s

inertial parameters once it is covered with artificial skin is then explored via the development

of a physically consistent identification strategy. This strategy has the potential to operate

online by exploiting the skin’s tactile feedback. For each of these research directions, par-

ticular emphasis is placed on the use of artificial skin data as a simplification agent for the

considered problem.
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Kurzfassung

In einer sich rasch entwickelnden Gesellschaft wirft die Aussicht auf den kurzfristigen, groß

angelegten Einsatz zahlreicher autonomer Roboter, insbesondere humanoider Roboter, für

Anwendungen im täglichen Leben zahlreiche Fragen und Herausforderungen auf, sowohl aus

gesellschaftlicher als auch aus technischer Sicht. Es liegt auf der Hand, dass solche Roboter

in einem hohen Maß anpassungsfähig sein müssen, um in der menschlichen Umgebung

sicher und effektiv arbeiten zu können. Viele Forschungsarbeiten deuten darauf hin, dass

fortschrittliche sensorische Fähigkeiten in diesem Fall unerlässlich sind, um den Robotern

ein angemessenes Maß an Situationsbewusstsein zu verleihen, damit sie Seite an Seite mit

dem Menschen arbeiten oder fortgeschrittene Manipulationsaufgaben mit dem ganzen Kör-

per ausführen können. In diesem Zusammenhang scheint die Implementierung eines kün-

stlichen Tastsinns, mit dem potenziell jeder Roboter ausgestattet werden kann, eine vielver-

sprechende Forschungsrichtung zu sein. Dennoch bleibt die vollständige Bedeckung eines

Roboters mit einer künstlichen Haut in der Praxis problematisch, sowohl aus Hardware- als

auch aus algorithmischen Gründen. Die Daten der Haut sollten nicht nur in Echtzeit von

Robotern mit begrenzten Rechenkapazitäten verarbeitet werden, sondern auch mit vorhan-

denen Steuerungs- und Regelungs-Algorithmen integriert werden, um geeignete Verhaltens-

weisen des Roboters zu erzeugen. Darüber hinaus verändert die Anbringung einer kün-

stlichen Haut am Roboter dessen dynamische Eigenschaften erheblich. Dies beeinflusst das

Regelverhalten und kann zu einem instabilen Bewegungsablauf des Gehens führen.

Die Dissertation ist um die folgenden Forschungsachsen organisiert, um eine kohärente

Antwort auf die oben genannten Herausforderungen zu geben: Erstens werden die Modal-

itäten der Nutzung taktiler Informationen im Kontext der Mensch-Roboter-Interaktion und

der verteilten Zustandsschätzung erforscht, und zwar durch die Entwicklung einer taktilen

Steuerungs-und Regelungsstrategie des ganzen Körpers und eines verteilten Sensor-Fusions-

systems. Die Fähigkeit, die Trägheitsparameter des Roboters wiederzuerkennen, sobald er

mit künstlicher Haut bedeckt ist, wird dann durch die Entwicklung einer physikalisch konsis-

tenten Identifizierungsstrategie erforscht. Diese Strategie hat das Potenzial, online zu funk-

tionieren, indem sie das taktile Feedback der Haut ausnutzt. Bei jeder dieser Forschungsrich-

tungen wird besonderer Wert auf die Verwendung von Daten über die künstliche Haut gelegt,

um das betreffende Problem zu vereinfachen.
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“The mystery of life isn’t a problem to solve, but a reality to experience.”

— Frank Herbert, (Dune)

“Try not to become a man of success, but rather try to become a man of value.”

— Albert Einstein
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Chapter 1

Introduction

1.1. Motivation and Problem Description

Originally developed for purely industrial or scientific purposes, robots were not intended to

physically interact with humans and were therefore supposed to remain isolated for safety and

operability reasons. This situation is now rapidly evolving, as robots are currently about to be

introduced into multiple sectors of society, including home automation, medicine, education

and entertainment, where they will be required to share their workspace with humans on a

daily basis [1, 2, 3]. To be seamlessly integrated into such complex environments, it is es-

sential that robots possess human-like physical and sensory capabilities. In essence, robots

must not only operate autonomously and reliably, but they must also be safe, intuitive and ro-

bust enough to cooperate and even physically interact with the different components of their

environment and its actors [4]. One way to achieve this specific purpose is to endow robots

with a human-like sense of touch, for example by supplementing their proprioceptive sensors

with an artificial skin capable of perceiving physical interaction with the environment at any

point on their body and in a wide range of modalities. Just as humans use skin to interact

with the world, preliminary results [5, 6] suggests that robots would greatly benefit from such

a capability. Although initially limited by the prohibitive cost of sensors, the use of large num-

bers of highly redundant distributed multimodal sensing elements, covering the entire surface

of a robot – thereby acting like an artificial skin – is now receiving sustained attention due to

the large-scale democratization of low-cost sensors, referred to as micro-electro-mechanical

systems (MEMS) [7]. It appears that the use of distributed tactile feedback is relevant in

multiple areas of robotics because, unlike proprioceptive feedback, it is robust to nullspace

interactions and provides a direct, context-dependant assessment of the physical interaction

at the contact point level. Such features are of paramount importance for the generation of

robust compliant motions and more generally adaptive context-dependent control strategies.

Although the continuous increase in embedded computing power as well as the emergence of

new design paradigms and the development of high-performance control architectures have

enabled the advent of a new family of more agile and versatile walking robots, with improved

dynamic capabilities and sharp reflexes (e.g. Atlas-2, MIT Cheetah 3, MIT Mini-Cheetah,

Spot, etc.), the critical issues of human-robot physical interaction, of its intuitiveness and of

the robustness of control strategies remain unsolved in practice. It is worth emphasizing

that the first two issues are intrinsically correlated to the notion of whole-body compliance:

in practice, the different forces resulting from desired or accidental physical interactions be-

tween the robot and its environment must be detected by a set of dedicated sensors and,

if necessary, propagated in order to generate predictable – potentially safe – reactive robot

behaviors. Mobile and floating-base robots, in particular, can exploit their locomotion sys-
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Figure 1 The artificial skin used in this work.

tem to provide enhanced compliance capabilities, although it is worth mentioning that a vast

majority of robots currently exhibit very limited perception capabilities of their close-contact

environment and, as such, prove to be potentially dangerous for humans or objects they fail

to detect. Control robustness on the other hand is intrinsically linked to the ability of a robot to

autonomously assess the changes occurring on its own body in terms of dynamic properties

or coupling with the external environment. This may for instance arise during the manipula-

tion of an unknown payload. As dynamic parameter biases are identified, they must either

be counteracted or on the contrary exploited in order to increase tracking performance and

stability by taking suitable control actions.

1.2. Thesis Contributions

This work aims at providing a set of control and estimation algorithms leveraging multimodal

tactile feedback in the context of whole-body human-robot physical interaction, state estima-

tion, and dynamic parameter identification. As the details of how the tactile information is

generated and provided to the controller are out of the scope of this work, they will only be

addressed superficially. The artificial skin used in this thesis consists of identical, hexagonally

shaped circuits (or skin cells), connected to each other with flexible PCBs and assembled into

patches of different sizes (c.f Fig. 1). An extensive description of the skin can be found in

[6]. One of the most notable features of this artificial skin technology is its multimodality, each

skin cell being capable of simultaneously measuring four different tactile quantities, namely

pressure (through a set of three capacitive force sensors [8]), pre-touch (using an infrared

proximity sensor), temperature (with a dedicated temperature sensor), vibrations and accel-

erations (using a 3D accelerometer). The data generated by each skin patch is transmitted

via high-speed serial communication to a FPGA module – the Tactile Section Unit (TSU) –

before begin broadcasted to the host computer at a maximum frequency of 250Hz via Gigabit

Ethernet. In this manner, a temporal resolution of 4ms can be achieved, which is similar to the

5ms temporal resolution of Human skin. The main control and estimation problems related

to the use of multimodal information will be presented and discussed in detail. It is worth

emphasizing that the algorithms developed during this work are meant to be used by any
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robot equipped with standard sensors (e.g. IMU, force/torque, joint encoders) and any type

of artificial skin providing multimodal information and spatial calibration. The contributions of

this work can be summarized in three main blocks, namely the algorithms for tactile whole-

body compliance, algorithms for tactile-based distributed state estimation and eventually the

algorithms for tactile-based inertial parameter identification.

1.2.1. Contributions to Whole-Body Human-Robot Physical Interaction

We propose a new control method, providing mobile and floating-base robots with whole-body

compliance capabilities, in response to multi-contact physical interactions with their environ-

ment. The external forces applied to the robot, as well as their localization on its kinematic

tree, are measured using a multimodal, self-configuring and self-calibrating artificial skin. We

formulate a compliance control law in Cartesian space, as a set of quadratic optimization

problems, solved in parallel for each limb involved in the interaction process. This specific

formulation makes it possible to determine the torque commands required to generate the

desired reactive behaviors, while taking the robot kinematic and dynamic constraints into ac-

count. When a given limb fails to produce the desired compliant behavior, the generalized

force residual at the considered contact points is propagated to a parent limb in order to

be adequately compensated. Hence, the robot’s compliance range can be extended in a

manner that is both robust and easily adjustable. The experiments performed on a dual-arm

velocity-controlled mobile manipulator, show that the proposed methodology is robust to both

nullspace interactions and robot physical constraints.

1.2.2. Contributions to State Estimation

1.2.2.1 Estimation of High-Order Motion Derivatives Using the Distributed Inertial

Feedback from and Artificial Skin

A well-known issue related to dynamic control and online identification techniques is the need

for proper joint acceleration measurements. In this work, we propose a new estimation

method for first and second-order kinematics for floating-base robots, based on highly re-

dundant distributed inertial feedback. The linear acceleration of each robot link is measured

at multiple points using a multimodal, self-configuring and self-calibrating artificial skin. The

proposed algorithm is two-fold: i) the skin acceleration data is fused at the link level for state

dimensionality reduction; ii) the estimated values are then fused limb-wise with data from the

joint encoders and the main inertial measurement unit (IMU), using a Sigma-point Kalman

filter. In this manner, it is possible to estimate the joint velocities and accelerations while

avoiding the lag and noise amplification phenomena associated with conventional numeri-

cal derivation approaches. Experiments performed on the right arm and torso of a REEM-C

humanoid robot, demonstrate the consistency of the proposed estimation method.

1.2.2.2 Data Reduction through Optimal Sensor Selection

Multiple approaches to the estimation of high-order motion derivatives for innovative control

applications now rely on the data collected by redundant arrays of inertial sensors mounted
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on robots, with promising results. However, most of these works suffer from scalability issues

induced by the considerable amount of data generated by such large-scale distributed sensor

systems. In this work, we propose a new adaptive sensor-selection algorithm, for distributed

inertial measurements. Our approach consists in using the data of a subset of sensors,

selected among a larger collection of inertial sensing elements covering a rigid robot link.

The sensor selection process is formulated as an optimization problem, and solved using a

projected gradient heuristics. The proposed method can run online on a robot and be used to

recalculate the selected sensor arrangement on the fly when physical interaction or potential

sensor failure is detected. The tests performed on a simulated UR5 industrial manipulator

covered with a multimodal artificial skin, demonstrate the consistency and performance of

the proposed sensor-selection algorithm.

1.2.3. Contributions to Inertial Parameter Identification

1.2.3.1 Quantitative Performance Assessment of Identification Algorithms

Although covering an entire humanoid robot with an artificial skin has multiple advantages, it

unfortunately tends to modify the robot dynamic properties as the number of cells increases.

For instance, the total mass of the skin system mounted on our REEM-C humanoid robot

adds an extra 6.5 kg to the initial robot mass, and shifts its center of mass to the front by

several centimeters. To ensure suitable control performance and stabilization, the new set

of robot dynamic parameters must be identified. Inertial parameter identification is a widely

explored topic, with multiple contributions. We here review, analyze and compare a range

of state-of-the-art approaches to inertial parameter identification in the context of robotics.

We introduce “BIRDy (Benchmark for Identification of Robot Dynamics)”, an open-source

Matlab toolbox, allowing a systematic and formal performance assessment of the consid-

ered identification algorithms on either simulated or real serial robot manipulators. Seven-

teen of the most widely used approaches found in the scientific literature are implemented

and compared to each other, namely: the Inverse Dynamic Identification Model with Ordi-

nary, Weighted, Iteratively Reweighted and Total Least-Squares (IDIM-OLS, -WLS, -IRLS,

-TLS); the Instrumental Variables method (IDIM-IV), the Maximum Likelihood (ML) method;

the Direct and Inverse Dynamic Identification Model approach (DIDIM); the Closed-Loop Out-

put Error (CLOE) method; the Closed-Loop Input Error (CLIE) method; the Direct Dynamic

Identification Model with Nonlinear Kalman Filtering (DDIM-NKF), the Adaline Neural Net-

work (AdaNN), the Hopfield-Tank Recurrent Neural Network (HTRNN) and eventually a set

of Physically Consistent (PC-) methods allowing the enforcement of parameter physicality

using Semi-Definite Programming, namely the PC-IDIM-OLS, -WLS, -IRLS, PC-IDIM-IV, and

PC-DIDIM. BIRDy is robot-agnostic and features a complete inertial parameter identification

pipeline, from the generation of symbolic kinematic and dynamic models to the identification

process itself. This includes functionalities for excitation trajectory computation as well as

the collection and pre-processing of experimental data. In this work, the proposed methods

are first evaluated in simulation, following a Monte Carlo scheme on models of the 6-DoF

TX40 and RV2SQ industrial manipulators, before being tested on the real robot platforms.
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The robustness, precision, computational efficiency and context of application of the different

methods are investigated and discussed.

1.2.3.2 Online Physically-Consistent Inertial Parameter Identification with Geometric

Relaxation and Local Excitation

Online identification of a robot’s dynamic parameters is key to adaptability. In this chapter,

we propose an online physically consistent batch identification paradigm, enabling regular

update of the dynamic parameters of the robot potentially coupled to an external payload.

The physical consistency of the estimated parameters, usually expressed as a set of linear

matrix inequalities (LMI), thereby requiring the use of expensive Semi-Definite Programming

techniques (SDP), is here formulated recursively by adopting a new parameter representa-

tion. As a matter of fact, this allows reformulating the identification problem as a sequence

of constrained quadratic optimization problem (QP), which can then be solved in real-time on

the robot within a dedicated thread. To provide the robot controller with a continuous stream

of physically consistent parameters between two consecutive updates of the identification

thread, we propose a geometric interpolation method along geodesic path of the physicality

constraint, formulated as a Riemannian manifold. In the context of a manipulation task, we

demonstrate how the tactile feedback provided by the artificial skin can be leveraged in order

to refine the parameter estimates of the coupled system made by the robot and its payload.

The experiments performed in simulation on BIRDy demonstrate the validity of the proposed

approach. Preliminary experiments results performed on a humanoid robot covered with an

artificial skin demonstrate its ability to run online within a robot control framework.

1.3. Thesis Outline

This thesis is structured as follows.

• Chapter 2 covers briefly the fundamentals in terms of parameter identification and hierar-

chical control of floating base robots that will be used in this thesis.

• Chapter 3 addresses the issue of whole-body compliant motion generation using the force

and proximity feedback of an artificial skin.

• Chapter 4 explores the use of whole-body distributed inertial feedback for joint motion

derivative estimation.

• Chapter 5 formally compares the different existing inertial parameter identification methods

applied in robotics and discusses about potential ways to leverage tactile feedback in the

context of dynamic parameter identification.

• Chapter 6 discusses the different aspects of online physically-consistent inertial parameter

identification in the context of floating-base robots.

• Finally, Chapter 7 summarizes the main results of this thesis and provides a brief discus-

sion of future research directions.
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Chapter 2

Fundamentals of Inertial Parameters

Identification and Hierarchical Control

This chapter provides a brief overview on a set of key theoretical concepts that are relevant

to the derivations of this thesis. The main approaches to inertial parameter identification of

fixed and floating base mechanisms are presented and discussed, along with elements of

constrained hierarchical control of floating base robots. This chapter is structured as follows:

section 2.1 provides an overview of robot modeling and control in the context of identifica-

tion. Section 2.2 provides a theoretical overview over the most widely used inertial parameter

identification algorithms in the field of robotics, highlighting their differences, weak points and

discussing the potential implications in terms of expected accuracy, robustness and runtime

performance. Section 2.3 discusses the different approaches to enforcing physicality con-

ditions within a parameter identification process. Section 2.4 then covers the particularities

related to the identification of floating base mechanisms. Finally, section 2.5 provides an

overview of constrained hierarchical control techniques applied to floating-base robots.

2.1. Robot Modeling and Control in the Context of Inertial

Parameter Identification

This section introduces some of the most fundamental concepts of inertial parameter identi-

fication and discusses the issues of structural and data rank deficiency.

2.1.1. Inverse and Direct Dynamic Models

The inverse dynamic model (IDM) of a rigid serial robot manipulator with n-degrees-of-freedom

relates the joint-space motion quantities q, q̇, q̈ ∈ Rn, to the generalized forces τ idm ∈ Rn

applied to the system by the actuators and the external environment. The IDM can be de-

rived using the Euler-Lagrange formalism (c.f. [9] and Appendix A.2), resulting in the following

equation

M(χ, q)q̈ +C(χ, q, q̇)q̇ + g(χ, q) + ζ(χ, q̇) = τ idm, (1)

whereM(χ, q) ∈ Rn×n denotes the generalized inertia matrix, C(χ, q, q̇) ∈ Rn×n the Cori-

olis and centripetal effects matrix, g(χ, q) ∈ Rn the gravitational torque vector, and ζ(χ, q̇) ∈
Rn the friction vector. This equation is parameterized by the vector χ = [χ⊤

1 χ
⊤
2 · · ·χ⊤

n ]
⊤ ∈

Rp concatenating the standard dynamic parameters of each robot link j, expressed as

χj = [XXj , XYj , XZj , Y Yj , Y Zj , ZZj , MXj , · · ·
· · · MYj , MZj , Mj , Iaj , Fvj , F cj ]

⊤ , (2)
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where XXj , XYj , XZj , Y Yj , Y Zj , ZZj are the elements of the inertia tensor Lj of link j,

expressed at the link origin Lj , Iaj refers to inertia of the actuator and transmission system,

Mj is the link mass, Xj , Yj , Zj are the coordinates of the link Center-of-Mass in Lj and

MXj ,MYj ,MZj are the corresponding first moments [10]. Let h(χ, q, q̇) ∈ Rn be the

vector that regroups the Coriolis, gravitational and frictional effects, namely h(χ, q, q̇) =

C(χ, q, q̇)q̇ + g(χ, q) + ζ(χ, q̇). The direct dynamic model (DDM), allowing to calculate the

joint accelerations q̈ as a function of the joint positions q, joint velocities q̇, generalized forces

τ idm and of the vector χ of dynamic parameters, can then be written as

q̈ =M−1(χ, q) (τ idm − h(χ, q, q̇)) . (3)

From equation (3), it appears that the DDM has a nonlinear dependance in terms of the

robot’s state vector x, defined as x = [q̇⊤ q⊤]⊤ ∈ R2n, and of its inertial parameter vector

χ. By contrast, the IDM has the relevant property of being linear in the χ, and can thus be

reformulated as

τ idm = Yχ(q̈, q̇, q)χ , (4)

where Yχ(q̈, q̇, q) = ∂τ idm/∂χ ∈ Rn×p denotes the closed-form expression of the Jacobian

matrix of τ idm with respect to χ, often referred to as the model regressor. Note that the

detailed derivation of the full robot dynamic model and of the corresponding regressor matrix

is made available to the reader in Appendix A. It is worth noting that the equality in equation (4)

only holds provided that the friction term ζ(χ, q̇) is also linear with respect to the parameter

vector1χ and that the vectors q, q̇, q̈ and τ idm are noise-free. Under these assumptions,

dynamic parameters identification can be considered as an inverse problem. Sampling (4)

at multiple different time epochs along a given state trajectory results in an over-determined

observation system of linear equations in χ. Considering that such system is inherently rank

defficient, convergence to a statistically and physically consistent solution turns out to be

difficult in practice. This will be further discussed in the next section.

2.1.2. Resolution of Data and Structural Rank Deficiencies

As explained in [11], the rank of the sampled observation system is a function of two factors,

namely the kinematics of the considered robot and nature of the collected data samples. As

a matter of fact, the intrinsic geometrical properties of robot manipulators naturally imply

that some of the dynamic parameters within the χ vector simply cannot be identified, as they

have strictly no influence on the actual movements of the robot, regardless of the followed

trajectory [12]. In the same manner, some parameters can only be identified jointly because

of their combined influence on the system. From a formal point of view, these issues can be

characterized as a structural rank deficiency of the regression matrix Yχ. To solve this issue,

it is necessary to perform a set of column-rearrangements within Yχ, eventually leading to the

set of b ≤ p parameters referred to as the base parameters, and that are actually linear com-

binations of the standard parameters χ. The other aspect of the problem lies in the fact that

1 In case this is not verified (4) is only a first-order approximation of a potentially much more complex system.

8



data rank deficiency of the observation system is a direct consequence of noisy or improper

data samples that do not adequately excite the model parameters (i.e., that do not sufficiently

reveal the influence of these parameters on the system’s dynamics). This issue can most of

the time be solved by having the robot track a trajectory that is specifically designed to excite

the base parameters [13, 14, 15, 16, 17, 18, 19, 20, 21]. A possible approach to the design of

such a trajectory is to parametrize Fourier series or b-splines at the joint level. Data rank de-

ficiency can then be formulated as a nonlinear optimization problem, adjusting the trajectory

parameters based, most of the time, on the conditioning of the observation matrix.

Base inertial parameters are defined by [22] and [23] as the minimal set of dynamic parame-

ters which is sufficient to completely describe the – intrinsically constrained – dynamics of a

robot mechanism. As explained in [10], the base parameter vector β ∈ Rb can be obtained

by performing a set of rearrangements in the symbolic expressions of (4)2. In [24], an alterna-

tive computation method was proposed based on Fourier series decomposition of the robot

dynamic equations. Dedicated numerical methods based, for example, on QR decomposition

can also be used. Consider the observation matrix Wχ(q̈, q̇, q) ∈ R(n·N)×p constructed by

stacking the samples of Yχ obtained from a randomly generated set of N >> 1 distinct joint

values:

WχP = Q








R

0(r−b)×p








(5)

Where for r = nN , Q ∈ O(r), R ∈ Rb×p is an upper-triangular matrix of rank b ≤ p and

P ∈ O(p) is a permutation matrix chosen – by default – so that the diagonal values of R are

arranged in decreasing order. Denoting by P ∈ Rp×b and P ∈ Rp×(p−b) the first b and last

p− b columns of P leads to

[

WχP WχP

]

︸ ︷︷ ︸

WχP

=

[

Q Q

]

︸ ︷︷ ︸

Q








R R

0(r−b)×p








(6a)

=

[

Q R Q R

]

(6b)

= Q R

[

1b×b R
−1
R

]

(6c)

= WχP

[

1b×b R
−1
R

]

(6d)

where R ∈ Rb×b and R ∈ Rb×(p−b) respectively denote the first b and the last p− b columns

of R and where 1b×b is the b× b identity matrix.

2 Note that in this context, some of the performed symbolic simplifications are only made possible by the use of
proximal DH convention.
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Since P is orthogonal, one can write

Wχχ =

[

WχP WχP

]








χ

χ








(7)

with χ = P
⊤
χ and χ = P⊤χ, yielding

Wχχ = WχP

[

1b×b R
−1
R

]








χ

χ








(8a)

= WχP β (8b)

and hence the corresponding non-bijective mapping between the base parameter vector β

and the standard parameter vector χ

β =

[

P
⊤

R
−1
R P⊤

]

︸ ︷︷ ︸

℧

χ (9)

Note that – as explained in [25] – a bijective map m can still be defined between (β,χ) and

χ as







β

χ







= m(χ) =








1b×b R
−1
R

0(p−b)×b 1(p−b)×(p−b)







P⊤

︸ ︷︷ ︸

Ω

χ (10)

in which case the inverse mapping is

χ = m
−1(β,χ) = P








1b×b −R−1
R

0(p−b)×b 1(p−b)×(p−b)








︸ ︷︷ ︸

Ω−1








β

χ








(11)

The problem of robot identification can hence be formulated as estimating the value of β such

that the dynamic behavior of the model matches that of the actual robot while it is tracking

a persistent exciting trajectory. It is worth noting that as some of the base parameters may

only have a minor influence on the robot dynamics, they can be neglected in practice. The

corresponding reduced set of parameters, referred to as “essential” parameters in [26] can

be identified using singular value decomposition 3 but will not be considered in this work.

3 Non-essential parameter estimates can easily be identified in a Monte Carlo Simulation (MCS) as they typically
exhibit a high variance.
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2.1.3. Low-Level Control Strategy

Robots being double-integrator systems, they are naturally unstable in open-loop and must

therefore be operated and identified in closed-loop. Since most electrically actuated robots

use Direct-Current (DC) or Brushless Direct Current (BLDC) motors, the control structure at

the joint level usually consists in a cascade of PD or PID regulators, the position and velocity

loops providing a reference for the current-torque loop (c.f. [10]). As pointed out in [27, 28],

provided that the low-level current loop has a sufficient bandwidth,4 and considering the linear

mapping between the current and the torque within DC and BLDC motors, its transfer function

can be expressed as a static gain in the characteristic frequency range of the rigid robot

dynamics5. In the case of a PD controller, the resulting control torque applied to the robot

can be then typically be computed as:

τ ctrl =KτKp (qd − q) +KτKd (q̇d − q̇) + τ ff (12)

where Kτ , Kp and Kd ∈ Rn×n are the diagonal drive, position and velocity gain matrices

and τ ff is a feed-forward term. Note that the drive gain matrix Kτ contains the combined

influence of the static gainsKv of the current amplifiers, gear ratiosKr and electromagnetic

motor torque constants Km, and can thus be written as Kτ =KvKrKm (c.f. [27]).

2.2. Inertial Parameter Identification Algorithms

This section aims at presenting some of the most frequently used algorithms in the context of

inertial parameter identification of robotic systems. The particularities of each approach are

discussed from a theoretical point of view and compared to each other.

2.2.1. Ordinary, Weighted and Iteratively Re-weighted Least Squares

(IDIM-OLS, -WLS, -IRLS)

Let Yβ(q̈, q̇, q) be the regression matrix of a considered robot relative to its base inertial

parameters. Yβ(q̈, q̇, q) is obtained by column rearrangements of the robot regressor matrix

Yχ(q̈, q̇, q) following Yβ(q̈, q̇, q) = Yχ(q̈, q̇, q)P , with P the permutation matrix defined in

2.1.2. Then (1) can be rewritten in the following form:

τ idm = Yβ(q̈, q̇, q)β , (13)

In practice, because of the uncertainties caused by measurement noises and modeling errors,

the actual torque τ differs from τ idm by an error e ∈ Rn so that (13) becomes

τ = Yβ(q̈, q̇, q)β + e . (14)

4 Typically above 500Hz. This is usually verified on most Direct current (DC) or Brushless Direct-Current (BLDC)
actuators since the torque reference is adjusted at the PWM frequency, i.e 16-40kHz.

5 Typically less than 10Hz for industrial robots as explained in [27, 28].
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Figure 2 Block diagram of the IDIM-OLS, -WLS, -IRLS and -TLS identification methods.

Equation (14) represents the Inverse Dynamic Identification Model (IDIM) relation (c.f. [27]

and the references therein). The IDIM is sampled at a rate f while the robot is tracking

exciting trajectories during an experiment. For N collected samples, an over-determined

linear system of n ·N equations and b unknowns is obtained

yτ =W (q̈, q̇, q)β + ε , (15)

where yτ ∈ Rn·N is the sampled vector of τ ; W (q̈, q̇, q) ∈ R(n·N)×b is the sampled matrix

of Yβ(q̈, q̇, q)
6, referred to as observation matrix ; and ε ∈ Rn·N is the sampled vector of

e. Note that ε is here assumed to be serially uncorrelated, zero-mean and heteroskedastic,

with a diagonal covariance matrix Σ. This choice is justified in [29, 30] by the fact that robots

are nonlinear multi-input multi-output (MIMO) systems. The most popular approach to solv-

ing (15) consists in computing the weighted least-squares estimate β̂WLS and associated

covariance matrix ΣWLS

β̂WLS = (W⊤Σ−1W )−1W⊤Σ−1yτ ,

ΣWLS =
(

W⊤Σ−1W
)−1

,
(16)

The diagonal terms Σjj of Σ can be evaluated from the ordinary least-squares solution of

(15), following the guidelines of [11]7

∀j ∈ {1 · · ·n}, Σjj =

∥
∥εOLSj

∥
∥

N − b . (17)

where εOLSj
denotes the IDIM-OLS sampled error vector for joint j. This method is both

simple to implement and computationally efficient. In addition, it was successfully applied

to multiple existing systems such as cars [31], electrical motors [32] or compactors [33]. It

is worth noting that the vulnerability of OLS and WLS to outliers can be addressed using

a specific Huber estimator (c.f. [34, 35]). This is referred to as the Iteratively Re-weighted

Least-Squares (IRLS) in [36]. The resulting IDIM-IRLS method takes the form of an iterative

process, which consists in applying additional penalty to the outliers, in the form of a dedicated

weight vector υi ∈ Rn·N and a weight matrix Υi = [υi, · · · ,υi] ∈ R(n·N)×b for each iteration

6 For the sake of compactness, W (q̈, q̇, q) will be noted W in the rest of this work.
7 A correlation between the measured joint torque signals will result in non-negligible off-diagonal terms in Σ.

However these terms can still be estimated using for instance the method of [21].
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i, in order to eventually mitigate their contribution to the final result

W ∗i = Υi ◦W
y∗iτ = υi ◦ yτ

(18)

where ◦ refers to the element-wise multiplication operator. Accordingly the IDIM-IRLS esti-

mate β̂
i

IRLS at iteration i is given by

β̂
i

IRLS = (W ∗i⊤Σ−1W ∗i)−1W ∗i⊤Σ−1y∗iτ . (19)

The weight vector υi is updated following

υi = Min (υi−1, Λ(εiIRLS)) (20)

where Min(·) is the element wise min operator and Λ : Rn·N → [0, 1]n·N is a tailor made

weight function. The process is iterated until convergence of the weights. This method was

successfully tested on robotic systems in [37, 21]. It is critically important to note that the LS

estimates in general, will be unbiased if and only if the observation matrix W is uncorrelated

with the error term ε, or in other words, that the following equality holds

E(W⊤ε) = 0 . (21)

Unfortunately, the presence of uncorrelated random components within the observation ma-

trix does not allow this hypothesis to be validated in practice. Noise sensitivity is especially

problematic in the context of robotic systems as the joint accelerations, obtained by double

time differentiation of the noisy encoder data, often exhibit poor Signal-to-Noise Ratio (SNR)

with multiple outliers. A workaround to this issue is to filter the joint measurement signals

as suggested by [11] where a pragmatic and tailor-made data-filtering process is proposed.

Nevertheless, this requires the knowledge of the bandwidth of the position closed-loop and

special attention due to the bias induced by the filter, see [38, 27, 39] for more details. It is

worth noting that in the case of a periodic excitation trajectory with a known characteristic

frequency, it is possible to use Fourier analysis tools in order to perform frequency domain

filtering as suggested in [40, 17]. The other alternative is to use identification methods that

are robust against a violation of (21).

2.2.2. Total Least-Squares (IDIM-TLS)

The issue of noisy observation matrix can, in theory, be tackled using the Total Least-Squares

(IDIM-TLS) approach. As exposed in [41] and [42], the TLS estimate β̂TLS can be computed

using a singular value decomposition of the augmented matrix X = [W yτ ] ∈ R(n·N)×(b+1)

as

X = [UW Uy]

[
S 0

0 Smin

][
V WW V Wy

V yW Vyy

]⊤

, (22a)

β̂TLS = −V WyV
−1
yy (22b)
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where V Wy ∈ Rb and Vyy ∈ R⋆. Following [43, 44], the covariance ΣTLS of the TLS

estimate β̂TLS can be approximated as

ΣTLS≈
(

1 +
∥
∥
∥β̂TLS

∥
∥
∥

2

2

)
S2
min

n ·N
(

W⊤W − S2
minI

)−1
(23)

where Smin ∈ R is the minimum non-zero singular value of X. Only a few research papers

actually explore the potential use of total least-squares in the context of robot dynamic pa-

rameters identification. In [29], the authors observed that the IDIM-TLS estimate is biased if

the joint data is not suitably filtered. Moreover, they noted that although TLS convergence oc-

curs with adequate data filtering, it does not outperform ordinary and weighted least-squares.

Motivated by [45] and [46], in [47] part 4.2.6, the author raised some general comments on

the IDIM-TLS method and stressed that its disappointing performances can be explained by

the fact that it is based on the hypothesis that the noise terms have all the same variances

whereas this assumption is violated in the case of an improper data-filtering according to

[48]. It would in fact be more appropriate to use the Generalized Total Least-Squares (GTLS)

method popularized by Van Huffel and Vandewalle, [49, 43]. However, in order to properly

use the GTLS method, the covariance matrix of noises involved inW must be known. Unfor-

tunately, if such information is easily accessible for linear systems, it is not for robots. Indeed,

besides the noise amplification effect induced by the process of numerical time derivation of

the joint angles – used for joint velocity and acceleration computation – the IDM involves non-

linear functions such as the sine, cosine, square or sign operators, making the calculation

of this covariance matrix difficult, if not intractable. This comment explains the reason why

the TLS or GTLS methods are seldom employed in the context of robot identification (see

e.g. [41, 50]) whereas they are widely considered in signal processing, see e.g. [51] and the

references therein.

2.2.3. Inverse Dynamics Identification Model (IDIM) with Instrumental

Variables (IV)

First introduced by [52] in the context of econometrics, the Instrumental Variables (IV) ap-

proach to parameter identification consists in defining an instrument matrix Z ∈ R(n·N)×b

such that

E(Z⊤W ) is full column rank, (24a)

E(Z⊤ε) = 0, (24b)

which means that Z is both well correlated with the observation matrix W and uncorrelated

with the error term ε, see e.g. [53, 54, 29]. In this case, one obtains

Z⊤yτ = Z⊤W (q̈, q̇, q)β +Z⊤ε (25)

and the IV estimates given by

β̂ = (Z⊤W )−1Z⊤yτ (26)
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Figure 3 Block diagram of the IDIM-IV identification method.

are consistent. The use of IV for identification of robotic systems is reported in several ap-

proaches (see for instance [55, 56, 29, 57, 39, 58, 59] and the references therein). The critical

issue here lies in the construction of the instrument matrix Z fulfilling (24a) and (24b). In this

context, an ideal candidate for the Z instrument matrix appears to be the observation ma-

trix denoted W s filled with simulated data that are the outputs of an auxiliary model, [54].

As explained in [29], for robot identification, the auxiliary model is the direct dynamic model

(DDM) which is simulated assuming the same controller and reference trajectories that the

one applied to the actual robot (c.f. Fig. 3), and by using the IV estimate β̂
i−1
IV obtained at

the previous iteration. This defines an iterative algorithm. At iteration i and time epoch tk, the

vector of simulated joint accelerations q̈is(tk) is computed as

q̈is(tk) =M
−1(β̂

i−1
IV , qis(tk))

(

τ i
s(tk)− h(β̂

i−1
IV , qis(tk), q̇

i
s(tk))

)

. (27)

By successive numerical integration of eq. (27) one can obtain the vector of joint simulated

positions and velocities denoted (qis, q̇
i
s), respectively, from which it is then possible to build

the instrument matrix Zi ∈ R(n·N)×b by stacking the regression matrices Yβ(q
i
s, q̇

i
s, q̈

i
s) ob-

tained from the samples of qis, q̇
i
s, q̈

i
s at each tk as

Zi =W i
s =W

(
qis, q̇

i
s, q̈

i
s

)
. (28)

Assuming that there are no modeling errors, the simulated joint positions, velocities and ac-

celerations tend to the noise-free estimates denoted (qnf , q̇nf , q̈nf ), respectively, yielding

Zi =W i
nf =W

(
qinf , q̇

i
nf , q̈

i
nf

)
∀i . (29)

Note that Zi given by eq. (29) naturally complies with the conditions eq. (24a) and eq. (24b).

In [29, 57, 39, 58] the IDIM-IV estimates are formulated in a weighted recursive manner as:

β̂
i

IV = (W i⊤
s Σ−1W )−1W i⊤

s Σ−1yτ (30)

where W i
s is given by (28).
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Once the IDIM-IV method has converged, the covariance matrix of the IDIM-IV estimates is

given by

ΣIV =
(

W⊤
s Σ

−1W
)−1

. (31)

It should be emphasized that the consistency of the closed-loop simulation in IDIM-IV relies

on the assumption that the controller of the real robot and that of the simulated robot are the

same. A difference in the control strategy will result in a different command τ s being issued

for a given state, eventually resulting in a bias in the parameter estimate. The results of [29,

57, 47, 39, 58] suggest that the convergence of the IDIM-IV method is more robust against

noise than IDIM-OLS/-WLS/-TLS and also faster8 than Output-Error methods presented later

in this thesis. More generally since both the IDM and DDM are calculated from Newton’s laws,

it seems more natural to simulate the DDM in order to construct Z rather than computing

the covariance matrix of noise terms involved in W and y. In [57, 39] the authors proved

that IDIM-IV gives excellent results provided that the low-level controller is well-identified.

Nevertheless, the robustness against high noise levels has not yet been suitably investigated

and would deserve deeper treatment.

2.2.4. The Maximum Likelihood (ML) Identification Method

Investigated in [16, 60, 40, 61], the Maximum Likelihood (ML) parameter identification algo-

rithm aims at tackling the issue of noisy torque and joint angle measurements. These works

are the first ones actually addressing the issue of noisy observation matrices. In [60], the au-

thors present an improvement of the original ML approach presented in [16]. The ML criterion

they adopt can be formulated as

β̂ML = argmin
β

1

2

N∑

k=1

ε⊤(tk)
(

Gkσ
2
kG

⊤
k

)−2
ε(tk), (32)

where σ2
k ∈ R4n denotes the diagonal variance matrix of the kth sample9, ε(tk) is the error

at the kth torque sample defined in (15); andGk = ∂ε(tk)/∂sk ∈ Rn×4·n is the Jacobian ma-

trix of this error relative to the measurement vector sk =
[
q(tk)

⊤ q̇(tk)
⊤ q̈(tk)

⊤ τ (tk)
⊤
]⊤ ∈

R4·n. BecauseGk involves the IDM, this ML approach can be called IDIM-ML. In the IDIM-ML

approach, the authors suggest to construct the vector sk by averaging the original measure-

ments of q(tk), q̇(tk), q̈(tk) and τ (tk) over Nreal realizations. Then, sk is used to construct

the following observation matrix denoted by W . It must be noticed that, provided Nreal is

big enough and the variances of the original measurements are finite, the Lyapunov criterion

ensures that sk is close to a Gaussian distribution. Note also that it can be even further as-

sumed that sk tends to the noise-free original measurements as Nreal grows and the noise

level is reasonable which means that one has W → W nf . Interestingly, this ML approach

is somehow related with the IDIM-IV method developed in [29]. Indeed, the authors suggest

to build an instrumental matrix such that Z = W nf by using simulated data and the IDM

8 It is worth noting that convergence is slower than IDIM-OLS since simulation of the DDM is required.
9 This allows in particular to account for the effects of time differentiation in the joint signal in terms of noise

amplification.
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Figure 4 Block diagram of the CLOE identification method.

while in [60] the authors suggest to construct W with W →W nf . Furthermore, in [62], the

author establishes some interesting relationships between IV and ML approaches. It is thus

expected that IDIM-IV and ML approaches give similar results. However, in [16] a prewhiten-

ing process has been carried out in order to remove all the coloring and correlation of the

measurement noise. Without this prewhitening process which can be connected with the use

of the decimate filter, the statistical assumptions made on the noise may be violated making

the ML approach potentially unable to provide consistent estimates. Moreover, it should also

be stressed that the joint torques in these approaches are measured via current-shunt moni-

tors instead of being the outputs of low-level controllers as usually done in [26]. So, if the ML

method does not require the simulation of the DDM, it could prove more sensitive to noise

and is more time-consuming than IDIM-IV.

2.2.5. Closed-Loop Output Error (CLOE)

As indicated by its name, an Output Error method consists in finding the parameter vector β

that minimizes the value function J(β) defined as the squared L2-norm of the error between

the output y of a system to be identified and the output ys of its model (see [63, 64] and the

references therein)

J(β) = ‖y − ys‖22 , (33)

In the case of a robot we define y =
[
q(t1)

⊤ · · · q(tN )⊤
]
∈ Rn·N (resp. ys =

[
qs(t1)

⊤ · · ·
· · · qs(tN )⊤

]
∈ Rn·N ). Note that Cartesian space formulations of the error function are

also possible, see for instance [65]. The minimization of (33) is a nonlinear LS-optimization

problem solved by running iterative algorithms such as the gradient or Newton methods which

are based on a first- or a second-order Taylor’s expansion of the value function J(β). The

unknown parameters are therefore updated iteratively so that the simulated model output fits

the measured system output, with

β̂
i+1

= β̂
i
+∆β̂

i
, (34)

where ∆β̂
i ∈ Rb is the innovation vector at iteration i.

17



Output Error identification can be carried out in Open Loop or in Closed Loop. However,

robots being double-integrator systems, the Open-Loop Output Error (OLOE) turns out to be

seldom used in practice compared to the Closed Loop Output Error (CLOE) as it is highly

sensitive to initial conditions (c.f. [27] for a more detailed discussion on the topic). In CLOE,

the simulated data are obtained by integrating the DDM in (3) assuming the same control

law for both the actual and simulated robots – without gain adjustments – and using β̂i−1

the estimate of β calculated at iteration i − 1. The general principle of the CLOE method is

illustrated in Fig.4. Let the simulated joint positions qs be the model outputs. At time tk the

error to be minimized is given by

eCLOE(tk,β) = q(tk)− qs(tk,β) , (35)

Then, if a classical Gauss-Newton algorithm is chosen, after data sampling and data filtering,

the following over-determined system is obtained at iteration i:

∆y(q) = Φi
CLOE∆β

i
CLOE + εiCLOE , (36)

where ∆y(q) ∈ Rr is the vector built from the sampling of eCLOE(t,β); Φi
CLOE ∈ R(r×b)

is the matrix built from the sampling of Gqs
= ∂qs/∂β|β=β̂

i

CLOE

∈ R(n×b), the Jacobian

matrix of qs evaluated at β̂
i

CLOE ; and the term εiCLOE ∈ Rr is the vector built from the

sampling of the residuals of the Taylor series expansion. Then, ∆β̂
i
, the LS estimate of

∆βi
CLOE at iteration i is calculated with (36). Note that numerically computing the Jacobian

Gqs
with finite differences requires b+ 1 model simulations. Therefore, CLOE is expected to

be computationally expensive compared to IDIM-OLS or IDIM-IV. Once CLOE has converged,

the covariance matrix of the CLOE estimates is given by

ΣCLOE =
(

Φ⊤
CLOEΣ

−1
q ΦCLOE

)−1
, (37)

where Σq is the variance matrix of the joint position measurement noise. Although CLOE is

less sensitive to initial conditions, it turns out to be less responsive to changes in the param-

eters as explained in [66]. As a result, CLOE is expected to converge slowly and potentially

to local minima. Note that alternative optimization methods using the derivative-free Nelder-

Mead nonlinear simplex method, Genetic Algorithm (GA), Particle Swarm Optimization (PSO)

can potentially be applied to tackle this issue. In [66] for example, the authors used the fmin-

search Matlab function which makes use of the Nelder-Mead simplex algorithm. According

to the results presented in [66], although the simplex method appears to be more robust than

the classic Levenberg-Marquardt method, it requires an even higher computational effort.

2.2.6. Closed-Loop Input Error (CLIE)

The CLIE method can be seen as a variation of the CLOE method where the simulated

torque is being used instead of the simulated position in equation (33), resulting in y =
[
τ (t1)

⊤ · · · τ (tN )⊤
]
∈ Rn·N and ys =

[
τ s(t1)

⊤ · · · τ s(tN )⊤
]
∈ Rn·N . The general princi-

ple of the CLIE method is illustrated in Fig.5. In this case, the error function which must be
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Figure 5 Block diagram of the Closed Loop Input Error (CLIE) identification method.

minimized at time tk has the following expression

eCLIE(tk,β) = τ (tk)− τ s(tk,β) , (38)

and relation (36) thus becomes

∆y(τ ) = Φi
CLIE∆β

i
CLIE + εiCLIE , (39)

where ∆y(τ ) ∈ Rr is the vector built from the sampling of eCLIE(t,β); Φi
CLIE ∈ R(r×b) is

the matrix built from the sampling of Gτ s = ∂τ s/∂β|β=β̂
i

CLIE

∈ R(n×b), the Jacobian matrix

of τ s evaluated at β̂
i

CLIE (often referred to as input sensitivity ); and εiCLIE ∈ Rr is the vector

built from the sampling of the residuals of the Taylor series expansion. Then, ∆β̂
i
, the LS

estimate of ∆βi
CLIE at iteration i is calculated with (39). Once CLIE has converged, the

covariance matrix of the estimate is given by

ΣCLIE =
(

Φ⊤
CLIEΣ

−1ΦCLIE

)−1
. (40)

This method was successfully implemented in [28] and formally compared to CLOE, DIDIM

and IDIM-OLS. From this work, it appears that although CLIE outperforms both IDIM-OLS and

CLOE in terms of accuracy, it has a similar computational complexity as CLOE, as a direct

consequence of the finite difference Jacobian matrix computation. The authors demonstrated

that CLIE could in fact be thought of as a frequency weighting of the CLOE method by the con-

troller’s gains10. As a result, although the two estimators are asymptotically equivalent, CLIE

proves in practice to be more sensitive to the changes in parameters than CLOE, thereby

inducing better convergence properties.

2.2.7. Direct and Inverse Dynamic Identification Model (DIDIM)

In [27], a new algorithm termed Direct and Inverse Dynamic Identification Model (DIDIM)

was proposed. The DIDIM method can be seen as a variation of the CLIE algorithm where

10This property can be verified in practice by re-injecting (12) into the expression of the sensitivity matrix Gτs .
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some judicious approximations, made in the torque Jacobian matrix computation, yieldGτ s =

∂τ s/∂β|β=β̂
i

DIDIM

≈ Yβ (q̈s, q̇s, qs). The initial non-linear LS problem at iteration i hence

turns into a much simpler linear LS problem allowing the DIDIM estimates to be calculated as

β̂
i

DIDIM = (W i⊤
s Σ−1W i

s)
−1W i⊤

s Σ−1yτ , (41)

where W i
s = W (qis, q̇

i
s, q̈

i
s) is the observation matrix constructed with the joint simulated

position, joint velocities and joint acceleration obtained from the closed-loop simulation of the

DDM with β̂
i−1
DIDIM as explained in section 2.2.3. The general principle of DIDIM is illustrated

in Fig.6. Once DIDIM method has converged, the covariance matrix of the DIDIM estimates

is given by

ΣDIDIM =
(

W⊤
s Σ

−1W s

)−1
. (42)

According to the results gathered in [67, 27, 28], the DIDIM algorithm converges significantly

faster than the CLOE and CLIE methods as it only requires a single robot simulation per

iteration. In [28], the authors also demonstrate that DIDIM has a similar precision as CLIE.

It is interesting to note that the OE methods are generally less sensitive to noise than IDIM-

OLS methods since only simulated data is used to buildW i
s. Until now, no formal comparison

with IDIM-IV was carried out although [68] provides some elements of discussion, suggesting

that the two methods have similar performances. However, further investigations must be

conducted in order to refine the conclusions made in [68].

2.2.8. Direct Dynamics Identification Model (DDIM) and Nonlinear Kalman

Filtering (NKF)

Widely used for state estimation purpose, Kalman filtering techniques can also be exploited

in the context of parameter identification. As explained in [69], identification can be carried

out in two different manners, denoted respectively as dual method (c.f. [70, 71]) and joint

method (c.f. [38, 72, 73, 74, 75]). In the first approach, the system state and parameters are

identified separately, within two concurrent Kalman filter instances, while in the second one,

state and parameters are estimated simultaneously, within a single Kalman filter featuring an
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Figure 7 Block diagram of the DDIM-NKF identification methods.

augmented state representation. With the notable exception of [71], approaches to robot dy-

namic parameters identification found in the scientific literature are usually based on the joint

filtering paradigm. Since this approach allows accounting for the statistical coupling between

the state and the parameters, as suggested by [76], it is therefore expected to be significantly

more robust than the dual filtering method. In the joint filtering approach, at time tk, the state

vector xk =
[
q̇(tk)

⊤ q(tk)
⊤
]⊤ ∈ R2·n and the current estimate of base parameters β̂

k−1
KF are

stacked column-wise into a higher-dimensional state vector zk =
[

x⊤k β̂
k−1⊤
KF

]⊤

∈ R2·n+b

resulting into the following set of update equations:

zk+1 = Γ(zk) + vk , (43a)

yk = Szk +wk , (43b)

where vk =
[
n⊤
k r

⊤
k

]⊤ ∼ N (0(2·n+b)×1,Σvv) is the process noise; wk ∼ N (0n×1,Σww) is

the measurement noise; Σvv ∈ R(2·n+b)×(2·n+b), Σww ∈ Rn×n are respectively the process

noise and measurement noise covariance matrices; S = [0n×n 1n×n 0n×b] ∈ Rn×(2·n+b)

is a selection matrix; 1n×n denotes the (n × n) identity matrix, and 0n×b the (n × b) zero

matrix. Similarly to [38], the nonlinear state transition function Γ(zk) is given by the robot

direct dynamic model (DDM) as

DDM(zk) = M−1(β̂
k−1
KF , q(tk))(τ (tk)− h(β̂

k−1
KF , q(tk), q̇(tk))) (44a)

Γ(zk) =












q̇(tk)

q(tk)

β̂
k

KF












︸ ︷︷ ︸
zk

+












DDM(zk)

q̇(tk)

0b×1












︸ ︷︷ ︸

żk

· δt . (44b)

In [71], the authors used a different state representation, assuming that the noise level in the

joint encoders was negligible, and that the joint motion derivatives could therefore be com-

puted independently. In this context, the state update equation (44) can be simplified into11

Γ(zk) = β̂
k

KF , with zk = β̂
k−1
KF while the measurement prediction equation consist of the

IDM, computed using the Recursive Newton Euler (RNE) algorithm (c.f. [77]). In practice,

the DDM non-linearity in (43)-(44) can be addressed in several different manners. We here

11This is not the exact formulation of [71], as the authors use sigmoid barrier functions to enforce physical consis-
tency. This aspect is discussed in greater details in section 2.3.
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briefly present some of the most widely used approaches, namely the Extended Kalman Fil-

ter (EKF), the Sigma-Point Kalman Filter (SPKF) and the Particle Filter (PF). In the EKF, the

prior estimate is propagated through a first-order linearized version of the robot dynamics.

Although the resulting computational cost is low, it should be noted that the first order lin-

earization induces a bias in the posterior mean and covariance of the estimate. This bias

can be non-negligible when the considered system is highly nonlinear. In SPKF implemen-

tations such as the Unscented Kalman Filter (UKF) or the Central Difference Kalman Filter

(CDKF), a set of deterministic samples of the prior estimate (assumed to be normally dis-

tributed) are propagated through the true nonlinear dynamics of the system. In this manner,

the non-linearities can be taken into account up to the second order. Although this method

significantly reduces the bias on the estimates of the posterior mean and covariance, it must

be noted that it has a higher computational cost than the EKF. As a matter of fact, the compu-

tational cost of a SPKF is usually several times greater than that of EKF although it remains

on the same order of magnitude [76]. Finally in a Particle Filter (PF) no prior assumption is

made on the nature of the estimate distribution. The latter is in fact sampled using a Monte-

Carlo method, hence resulting in enhanced robustness, even to severe non-linearities and

non-Gaussian noises, but at the expense of computational cost, as the number of particles

has a direct influence on the precision of the estimate (c.f. [78, 79]). The full derivation of

the EKF and SPKF algorithms is provided in Appendix C. The reader is referred to [76] for a

more in-depth discussion and comparison between the different filters.

In the context of parameter identification, it is worth noting that τ (tk) in equation (44a) may

either denote the torque measured during the experiments – as it is for example in the case of

[38, 73] – or the control-torque applied to the simulated closed-loop system during the time-

update step of the Kalman filter. In this manner, parameter identification can still be achieved

when torque measurements are not available or only available at a low sampling rate, but

that the robot control-structure and control-parameters are known. Note however that in the

latter case the control loop is updated at a the robot control frequency fc. As a result, several

control iterations can potentially be executed between two updates of the Kalman filter. To the

best of our knowledge, this was so far never applied to the field of parameter identification.

2.2.9. Parameter identification using an Adaline Neural Network (AdaNN)

The Adaline (ADAptive LInear NEuron) uses stochastic gradient learning to converge to the

IDIM-OLS estimate. The estimator has the following dynamic equation

˙̂
θAdaNN = −η∇(e⊤e) (45)

where e is the error defined in equation (14).

The parameter estimate β̂
k

AdaNN at epoch tk can hence be expressed recursively as

β̂
k

AdaNN = β̂
k−1
AdaNN + ηY k⊤

(

τ (tk)− Y kβ̂
k−1
AdaNN

)

(46)
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Figure 8 Adaline and Hopfield Neural Networks used for Inertial Parameter Identification.

where Y k = Yβ(q̈(tk), q̇(tk), q(tk)) is the observation matrix of the real system at epoch tk,

τ (tk) is the corresponding torque, and η ∈ R is referred to as the learning rate. A single

“neuron” thus allows full model identification (c.f. Fig.8i). As several passes over the whole

data-set may be necessary to achieve proper convergence, the sequence of observations

Y k and τ (tk) has to be randomly reshuffled in order to avoid cycles [80]. Applications of the

Adaline method to robot identification was investigated in [81, 72]. The results suggest that

the main advantage of Adaline over IDIM-OLS could be its ability to run online.

2.2.10. Parameter Identification with Hopfield-Tank Recurrent Neural Networks

(HTRNN)

Hopfield-Tank recurrent neural networks are dynamic systems made of a set of N intercon-

nected units, or neurons. Each neuron i behaves as an integrator coupled with a specific

nonlinear activation function f as depicted in Fig.8ii. In its original formulation [82], the neu-

ron continuous state equation is expressed as

dui(t)

dt
=

N∑

j=1

ψijsj(t)−
ui(t)

RiCi
+ κi, (47)

where ui(t) is the internal state of neuron i, κi ∈ R is its input bias, ψij ∈ R is the connection

weight of neuron i with neuron j, sj(t) = f(uj(t)) ∈ [−1, 1], and where Ri, Ci ∈ R⋆
+ are

design parameters corresponding to a resistance and a capacitance respectively. Similarly

to [83, 81, 72] we consider in this work the discrete Abe’s formulation of Hopfield-Tank neural

networks (originally described in [84]) since, as explained in [85, 83], it is particularly suitable

for parametric optimization and parameter identification purpose. In Abe’s formulation, the
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activation function is a hyperbolic tangent:

sj = f(uj) = αj tanh

(
uj
ϑj

)

, ∀αj , ϑj ∈ R
⋆
+. (48)

This leads to the following discrete neuron state equation:

uk+1
i = uki + η

N∑

j=1

ψijαj tanh(
ukj
ϑj

) + κi, (49)

where η ∈ R⋆
+ is a tuning parameter often referred to as the learning rate of the network.

It can be demonstrated (c.f. [86, 83]) that such a dynamic system is asymptotically Lyapunov-

stable, and that its natural evolution converges toward the minimum of the following energy

function:

E = −1

2

N∑

i=1

N∑

j=1

ψijsisj +
N∑

i=1

κisj , (50a)

= −1

2
s⊤Ψs+ s⊤κ, (50b)

where Ψ = (Ψij)i,j=1···N ∈ RN×N , s = [s1 s2 · · · sN ]⊤ ∈ RN and κ = [κ1 κ2 · · · κN ]⊤ ∈
RN . Under these conditions, the process of parameter identification can be thought of as

matching the L2-norm of the parameter error ε of equation (15) with the energy function (50)

of the Hopfield network. This can be achieved by selecting:







Ψ = −W⊤W

κ = −W⊤yτ

s = β̂HTRNN

(51)

Hence the possibility of using Hopfield-Tank networks for optimization purposes and more

specifically for parameter identification (see for instance [87, 88, 89, 90, 91, 85, 92, 83, 81, 72]

and the references therein). The resulting neural network will have as many neurons as

base dynamic parameters to identify, and the corresponding parameter estimate β̂HTRNN

will converge to the ordinary least-squares (IDIM-OLS) estimate, provided that the appropri-

ate solution range is selected. This range should therefore be carefully adjusted. This is

made possible by properly tuning the parameter αj in (49) to be in the range of the expected

parameter values.
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2.3. Enforcing Physical Consistency in the Context of Inertial

Parameter Identification

This section reviews the main criteria for determining whether a set of identified parameters

has physical meaning or not and then discusses possible approaches to enforcing physicality

within an identification process.

2.3.1. Mathematical Formulation of the Physicality Conditions

The possibility of enforcing physical consistency as part of a parameter identification process

has been the subject of extensive research over the past two decades in robotics. Early

contributions, such as [93, 94, 25], formulated the parameter physicality of a given robot link

j, as a set of positivity constraints on its mass Mj , viscous-Coulomb friction parameters

Fvj , F cj and on its transmission-chain inertia Iaj , as well as a positivity-definition constraint

over its inertia tensor Ij , expressed at the CoM, namely

∀ link j :







Mj > 0, Fvj > 0, F cj > 0, Iaj > 0

Ij ≻ 0.
(52)

As highlighted in [25], parameter identification usually relies on frame-dependant linear re-

gression techniques, requiring the identified quantities to be expressed relative to the same

reference frame. As a result, the positivity-definition constraint acting on the inertia matrix Ij
of a robot link j has to be reformulated in terms of the inertia matrix Lj relative to the link’s

frame of reference Lj . This is made possibe using the Huygens-Steiner theorem12, yielding

Ij = Lj −M−1
j

[
mpj

]⊤

×

[
mpj

]

×
, (53)

where mpj = [MXj , MYj , MZj ]
⊤ ∈ R3 denotes the vector of link’s first moments, ex-

pressed relative to the link’s frame of reference Lj , and ∀u,v ∈ R3 [u]× v = u × v. The

physicality constraints in (52) can then be reformulated as

∀ link j :







Mj > 0, Fvj > 0, F cj > 0, Iaj > 0

Lj −M−1
j

[
mpj

]⊤

×

[
mpj

]

×
≻ 0.

(54)

It is worth noting that prior [25], approaches to physically consistent inertial parameter iden-

tification were usually leveraging the equivalence between the positivity-definition constraint

on the inertia matrix Ij a set of strict positivity constraints on its eigenvalues Ĭxxj , Ĭyyj and

Ĭzzj . These eigenvalues are in fact the moments of inertia along the so-called link’s principal

axes of inertia (c.f. Appendix. A.1), yielding

Ij = Rj ĬjR
⊤
j ≻ 0 ≡ Ĭxxj > 0, Ĭyyj > 0, Ĭzzj > 0, (55)

12Further details on the Huygens-Steiner theorem are made available to the reader in Appendix A.1.
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where Ĭj = diag(Ĭxxj , Ĭyyj , Ĭzzj) and Rj ∈ SO(3) is the rotation matrix relating the frame Ij
of the principal axes of inertia, to the link’s Center-of-Mass frame Cj . In this context, [94] pro-

posed a reformulation of IDIM-OLS as a nonlinearly-constrained optimization problem, solved

using Sequential Quadratic Programming (SQP), [95] proposed to project the unconstrained

parameter vector obtained through Bayesian estimation onto the set of physically consistent

parameters, while [71] suggested to directly identify the elements of Ĭj instead of Lj , using

sigmoid functions within an EKF identification loop to smoothly bound the parameter esti-

mates to physicality13. Conversely, [25] proposed reformulating IDIM-LS under physicality

constraints in a Semi-Definite Programming (SDP) perspective14, writing (54) in the form of

a Linear Matrix inequality (LMI). As a matter of fact, observing that (53) is in fact the Schur

complement of a matrix DLj(χ) ∈ S6×6 allows rewriting the physicality constraints (54) as15

Dj(χ) =








DLj(χ) 06×3

03×6 DAj(χ)







≻ 0, (56)

such that

DLj(χ)=

[
Lj [mpj]

⊤

×

[mpj]× Mj13×3

]

,DAj(χ)=

[
Fvj 0 0
0 Fcj 0
0 0 Iaj

]

(57)

where 03×3,13×3 respectively denote the 3 × 3 zero and identity matrices. In [97, 98, 99],

the authors went one step further by noticing that (54) and (56) could still potentially lead to

inconsistent link mass distributions. They consequently defined a density-realizability crite-

rion in the form of an additional triangle-inequality condition to be fulfilled alongside with (54),

namely 





Ĭxxj + Ĭyyj > Ĭzzj

Ĭyyj + Ĭzzj > Ĭxxj

Ĭzzj + Ĭxxj > Ĭyyj

≡ tr(Ĭj) > 0 ≡ tr(Ij) > 0 (58)

where tr (·) denotes the trace operator. A reformulation D′
Lj(χ) ∈ S4×4 of the term DLj(χ)

within the constraint matrixDj(χ) was eventually proposed to account for density realizability

constraints alongside with (54)

D′
Lj(χ) =











1

2
tr (Lj)13×3 −Lj

︸ ︷︷ ︸

L̃j

mpj

mp⊤j Mj











≻ 0. (59)

It is here worth noting that Lj can be reconstructed from L̃j (and hence D′
Lj(χ)) as

Lj = tr
(

L̃j

)

13×3 − L̃j (60)

13It is worth pointing out that such an approach could also possibly be applied to the HTRNN process by modifying
the hyperbolic tangent activation function, although, to the best of our knowledge, this was never done.

14The reader is invited to read [96] for a comprehensive introduction on SDP.
15Further details on the Schur complement are made available to the reader in Appendix B.2.
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2.3.2. Physically Consistent Identification of the Base Inertial Parameters

As discussed in section 2.1.2 of this thesis, inertial parameter identification of an articulated

mechanism inherently suffers from structural rank deficiencies, eventually resulting in an in-

finite number of solutions, some of which can be physically inconsistent. Identifying a vector

β of base inertial parameters, obtained from a set of appropriate linear combinations of the

vector χ of standard inertial parameters, allows to overcome the issue of structural rank defi-

ciencies but does not by any mean guarantee physical consistency. To do so, it is necessary

to adjust the mathematical formulation of the parameter physicality constraints. This is made

possible by means of a bijective transformation m proposed by Sousa et al. [25], defined

in (10)-(11), and mapping (β,χ) to χ, where the vector χ denotes the set of unidentifiable

standard parameters, eventually yielding

D
β
j (β,χ) ≻ 0 ≡Dj(m

−1(β,χ)) ≻ 0 (61)

where Dβ
j (β,χ) denotes the LMI formulation of the base parameter physicality constraints.

Sousa et al. moreover proposed a set of two alternative formulations supporting physically

consistent identification of the base inertial parameters. The first, formulation consists in find-

ing the base parameter vector β̂PC−WLS which is as close as possible, in the least square

sense, to the IDIM-LS solution while at the same time complying with the physicality con-

straints defined in (59)

β̂PC−WLS=argmin
β,χ

∥
∥
∥β̂WLS − β

∥
∥
∥

2

2

s.t.Dβ
j (β,χ) ≻ 0 ∀j = {1 · · ·n}

(62)

Although valid, this formulation has the notable drawback of converging to sub-optimal solu-

tions, due to the fact that the IDIM-LS and the physicality identification problems in (16) and

(62) are decoupled. As an alternative, Sousa et al. proposed to fuse (16) and (62) in the form

of a single SDP which is equivalent16 to

β̂PC−WLS=argmin
β,χ

(Wβ − yτ )⊤Σ−1 (Wβ − yτ )

s.t.Dβ
j (β,χ) ≻ 0 ∀j = {1 · · ·n}

(63)

A more general SDP reformulation of IDIM-OLS and -WLS, that will be referred to as Physically-

Consistent (PC-) in this thesis, makes the bijective mapping between base and standard

16The exact formulation of Sousa et al., in [25] is actually given in a cannonical SDP form that complies with most
dedicated solvers. The problem formulation adopted in this thesis is more “human friendly” but can only be
implemented “as is” in a limited set of solvers.
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parameters visible, in the form of an invertible matrix Ω, defined in (11)

β̂WLS=argmin
β,χ

(Wβ − yτ )⊤Σ−1 (Wβ − yτ )

s.t. χ = Ω−1
[

β⊤ χ⊤

]⊤

Dj(χ) ≻ 0 ∀j = {1 · · ·n}

(64)

This formulation will be useful in what follows, in particular to support the discussion on

marginal physicality. It is worth mentioning that the very structure of IDIM-IRLS (c.f. [21]),

IDIM-IV and DIDIM (c.f. [100]) also makes it possible to seamlessly integrate the LMI physi-

cality constraints by actually solving a SDP at each iteration of the corresponding algorithms.

For instance, the PC-DIDIM algorithm (proposed in [100]) can be implemented by solving at

each iteration i
β̂
i

DIDIM =argmin
βi,χ

(
W i

sβ
i − yτ

)⊤
Σ−1

(
W i

sβ
i − yτ

)

s.t. χ = Ω−1
[

β⊤ χ⊤

]⊤

Dj(χ) ≻ 0 ∀j = {1 · · ·n}

(65)

instead of (41). Similarly, the PC-IDIM-IV algorithm can be implemented by solving the fol-

lowing SDP at each iteration i

β̂
i

IV =argmin
βi,χ

(
Aiβi − bi

)⊤
Σ−1

(
Aiβi − bi

)

s.t. χ = Ω−1
[

β⊤ χ⊤

]⊤

Dj(χ) ≻ 0 ∀j = {1 · · ·n}

(66)

where 





Ai =W i
s(W

i⊤
s W

i
s)

−1W i⊤
s W

bi =W i
s(W

i⊤
s W

i
s)

−1W i⊤
s yτ

(67)

It is worth noting that [101, 102] proposed a linearization of both the positivity-definition and

density realizability constraints applied to Ij , in the form of a mass-positivity constraint applied

to a homogeneous distribution of Nρ,j independent point-masses located within each robot

link j (c.f. Fig.9ii), yielding

χj = Qjρj (68)

where ρj =
[
ρj,1, · · · , ρj,Nρ,j

]⊤ ∈ RNρ,j concatenates the masses of each point ρj,k, k ∈
[1, · · · , Nρ,j ] on link j and Qj =

[

χj,1, · · · ,χj,Nρ,j

]⊤

∈ R10×Nρ,j denotes the map between

the point-mass distribution and the link standard inertial parameter vector χj . Extended to

the whole robot, one eventually gets

χ = Qρ (69)

where Q =

[
Q1 0 0

0
. . . 0

0 0 Qn

]

∈ R10k×kρ and ρ = [ρ1, · · · ,ρn]⊤ ∈ RNρ . The physicality con-

straints of (59) can hence be approximated by a set of positivity constraints on the point
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(i) Polyhedral approximation of the physical
consistency cone.

(ii) Detail of a point mass distribution on the torso
of a REEM-C robot.

Figure 9 Detail of a point mass distribution on the torso link of our REEM-C robot.

masses of the vector ρ, namely

ρ > 0 (70)

Considering that the LMI (59) can be represented as a membership condition to an opened

convex cone – since ∀t > 0,A ∈ S
k×k
++ , tA ∈ S

k×k
++ , where S

k×k
++ denotes the set of symmetric

positive definite matrices of dimension k – the linear constraint (70) can be thought of as a

polytopic approximation of (59) (c.f. Fig.9i). Provided that the number of point-masses is

“high enough”, PC-IDIM-OLS and -WLS can thus be reformulated as Quadratic Programs

(QP) with a good precision, eventually yielding

ρ⋆=argmin
ρ

(WQρ− yτ )⊤Σ−1 (WQρ− yτ )

s.t. ρ > 0

(71)

The standard parameter vector can finally be computed as χ = Qρ⋆. It should be empha-

sized that although small to medium size QP are generally extremely fast to resolve, dimen-

tionality can here rapidly become problematic, as in particular shown in [103], since a good

approximation of a link mass distribution typically requires several hundreds of samples.

2.3.3. Preventing Marginal Physicality and Data Rank Deficiency

As highlighted in [104, 103], imposing parameter physicality using a set of rigid constraints

within an optimization process may eventually lead to situations where the parameter esti-

mates lie at the very border of the physical consistency spectrahedron. This phenomenon,

referred to as marginal physicality, typically occurs when the unconstrained estimate lies out-

side the physicality region17, as it might for instance, be the case when the observation matrix

W is ill-conditioned, due to a lack of excitation or to excessive noise in q, q̇, q̈. In [94, 105] for

instance, the authors proposed adding a relaxation term within the IDIM-OLS cost function,

minimizing the Euclidean distance between the current parameter estimate χ and the set of

17This can be seen as a consequence of the the convexity of the problem.
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initial standard parameters χ0 of the robot. In this case, (64) would be reformulated as

β̂OLS=argmin
β,χ

‖Wβ − yτ‖22 + λ ‖χ− χ0‖22
︸ ︷︷ ︸

Euclidean relaxation

s.t. χ = Ω−1
[

β⊤ χ⊤

]⊤

Dj(χ) ≻ 0 ∀j = {1 · · ·n},

(72)

where λ << 1 is a tuning quantity. Note that a similar concept was proposed in [106] using hi-

erarchical optimization. In practice, this term allows “shifting” the current parameter estimates

toward the CAD original estimates which, by essence, are physically consistent. Observing

that the set of physically consistent parameters, verifying (59) could be given a Riemannian

manifold structure, associated with a suitable metric, [104, 103] proposed to replace the Eu-

clidean distance used in the relaxation process by a non-Euclidean distance, thereby shifting

the problem along the physicality manifold, yielding

β̂OLS=argmin
β,χ

‖Wβ − yτ‖22 + λd (χ− χ0)
2

︸ ︷︷ ︸

Geometric relaxation

s.t. χ = Ω−1
[

β⊤ χ⊤

]⊤

Dj(χ) ≻ 0 ∀j = {1 · · ·n},

(73)

where the term d (·) refers to a distance function on the Riemannian manifold made by the

set of physically consistent parameters.

2.4. Parameter identification of Floating-Base Mechanisms

This section addresses the particularities related to the inertial parameter identification of

floating base mechanisms. The specific conditions of their excitation are also presented.

2.4.1. Specificities of Floating-Base Mechanisms in the Context of Inertial

Parameter Identification

Over the past decade, a set of notable contributions have investigated the issue of inertial

parameter identification in the context of floating-based systems, both for robotics [107, 108,

109] and medical [110, 111, 112] application. In essence, these works are inspired by the

pioneering research of Dubowsky et al. [113] on the parameter identification for space robotic

systems. The inverse dynamic model of a floating base robot can be derived from the dynamic

model of a fixed base mechanism (1) by taking into account the Cartesian dynamics of the

floating base formulated as a set of six additional DoF, yielding








M b(χ,x) M bq(χ,x, q)

M qb(χ,x, q) M q(χ, q)















ẍ

q̈







+








hb(χ,x, ẋ)

hq(χ, q, q̇)







=








06×1

τ







+

c∑

i=1








J⊤
bi

J⊤
qi







wi . (74)
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In this equation, the upper six rows describe the unactuated floating base dynamics in Carte-

sian space while the n lower rows describe the actuated joint-space dynamics. Accord-

ingly x ∈ R6 corresponds to the vector of general coordinates representing the position and

orientation of the floating base in Cartesian space, M b(χ,x) ∈ S6×6, M q(χ, q) ∈ Sn×n

and M bq(χ,x, q) = M⊤
qb(χ,x, q) ∈ R6×n are the inertia matrices describing the floating

base dynamics, robot body dynamics and the coupling between the floating base and the

robot body, respectively. Similarly, hb(χ,x, ẋ) and hq(χ, q, q̇) denote the bias force vec-

tor including the Coriolis, Centripetal, gravity and – possible – friction terms of the floating

base and of the robot mechanism. c ∈ N is the number of contact points between the

robot and its environment, τ ∈ Rn is the vector of control torques, applied by the different

robot joints, wi denotes the ith contact wrench between the robot and its environment and

J bi ∈ R6×6 Jqi ∈ R6×n are the Jacobian matrices, whose transposed allows to map the con-

tact wrenches to the floating base and to the different robot links, respectively. The key idea

of floating-base system identification is that, similar to the case of fixed-base robotic systems,

the IDM (74) can be expressed linearly with respect to the corresponding standard inertial

parameter vector χ:








06×1

τ







=








Ybχ(ẍ, ẋ, x, q̈, q̇, q)

Yqχ(ẍ, ẋ, x, q̈, q̇, q)








︸ ︷︷ ︸

Yχ

χ+
c∑

i=1








J⊤
bi

J⊤
qi







wi . (75)

As previously stated, it should be highlighted that both parts of the regression matrix tend

to be subject to structural rank deficiencies. Nevertheless the methods used for base pa-

rameter or essential parameter computation remain valid, eventually leading to the following

identification model:







06×1

τ







=








Ybβ(ẍ, ẋ, x, q̈, q̇, q)

Yqβ(ẍ, ẋ, x, q̈, q̇, q)








︸ ︷︷ ︸

Yβ

β +

c∑

i=1








J⊤
bi

J⊤
qi







wi . (76)

It follows that a direct identification of the robot parameters is possible using one of the algo-

rithms presented in 2.2 along with the combined measurements of joint motion derivatives,

contact forces [114] and joint torques [107, 108, 115, 116]. It should be emphasized that

such a direct approach turns out to be rather cumbersome in practice, as floating base mech-

anisms are by design more likely to be subject to joint backlash or complex nonlinear friction

phenomena, notwithstanding that joint torque measurements – often obtained through noisy

current observers – are generally unreliable, if not simply unavailable, especially in the con-

text of human body link identification. However these obstacles can be overcome by noticing

in (76) that the first six terms referring to the floating base unactuated dynamics have no

dependence in the joint torque vector τ . As highlighted by Venture et al. [110, 117, 109], it
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is therefore possible to identify the base parameter vector β using only the measurements of

the contact wrencheswi, i = {1 · · · c} between the robot and its environment, combined with

the joints and floating base motion derivatives

06×1 = Ybβ(ẍ, ẋ, x, q̈, q̇, q)β +
c∑

i=1

J⊤
bi
wi . (77)

This method is particularly appealing as it eliminates the need for accurate joint transmission

or friction models and also enables the identification of human body segments or floating base

system hanged to a fixed force torque sensor [118]. It is worth emphasizing that this method

has been shown mathematically to maintain structural identifiability [109] to the extent that

dim(col(Ybβ)) = dim(col(Yβ)). A number of studies have undertaken comparative analyses

between this approach and the classic method [107, 109, 116]. Their results suggest that

identification from the floating base regressor provides better predictions in terms of contact

wrenches between a robot and its environment, while taking into account the upper part of

the regressor seems to provide better predictions in terms of joint torques (sometimes at

the expense of contact wrench prediction). It is here important to clarify that the use of the

upper part of the regressor can only be done if appropriate joint torque data are available, for

example, from a dedicated set of joint torque sensors [107, 116]. More generally, this implies

that the way a robot is identified will ultimately depend on the goals of that identification

process.

2.4.2. Excitability of Floating-Base Mechanisms under Constraints

Unlike static industrial robot manipulators, performing excitation motions on hyper-redundant

floating base mechanisms for parameter identification purposes proves to be a rather difficult

task [119]. This mainly stems from the significantly larger problem dimension as well as

the multiple kinematic and dynamic constraints that must be accounted for throughout the

process, such as robot stability, contact transition, friction cones or self-collision avoidance.

It is also worth noting that in the context of human body identification, the inevitable issues

of tracking precision and repeatability should also be accounted for. As a result, most of

the standard exciting motion generation techniques used for the identification of fixed-base

robots, such as [13, 120, 16, 121, 122], do not allow the generation of appropriate exciting

behaviors in the case of more complex floating-base systems. The reference method in

the context of human body segment identification was proposed by Venture at al. [123]. It

consists in capturing excitation data from a set of motion sequences executed by a human

subject – or possibly a humanoid robot – during a dedicated experiment [123, 124], and

to build the problem regressor by only selecting the most relevant data samples. The full

system’s regressor matrix is divided into several column blocks, referred to as sub-regressors,

and accounting for the different parts of the considered mechanism. In practice, each of these

blocks can be excited separately, thereby considerably simplifying the data collection problem.

Extending this paradigm to the identification of floating base robots requires accounting for the

robot’s stability and physical constraints. Relying on the sub-regressor approach proposed by
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[123], Jovic et al. [20] were able to identify the dynamic parameters of a full humanoid robot

using a combination of different walking motions along with a set of tailor-made upper-body

motions, executed within a constrained robot control framework and filtered by a dedicated

stabilizer in order to maintain balance during the experiments. It should be highlighted that

such a method do not guaranty that the executed trajectories will excite the model in an

optimal manner, thereby potentially raising rank deficiency issues.

To provide excitation guarantees and, at the same time, reduce the required amount of ex-

periment data, several approaches, such as [125, 126, 127], investigated more systematic

ways of generating Optimal Exciting Motions (OEM) both for robots and humans. In practice,

formulating the trajectory generation process for floating base systems as an optimization

problem proves to be a challenging task due to the high system dimentionality as well as the

large number of constraints to be accounted for, thereby often yielding infeasibility or conver-

gence to local minima. In Bonnet et al. [126, 127], these issues were successfully tackled

by decoupling the trajectory and posture generation process. The authors made a distinction

between the so called robot’s static inertial parameters (i.e. link masses and CoM) whose

identification only requires data collection from a set of static poses, and the dynamic inertial

parameters (i.e. the terms of the links inertia matrices) which can only be identified from

robot motions executed at non-zero velocities and accelerations. The resulting constrained

optimization method generates a set of stable postures allowing to identify the static robot pa-

rameters as well as a set of posture transition motion sequences enabling identification of the

dynamic inertial parameters. It is worth noting that this process is carried out while explicitly

accounting for robot balance – by regularizing the ZMP excursion – and physical constraints.

The resulting motion sequences can then be executed by the robot to perform identification.

It should be highlighted that this process was validated both for humanoid robots and for real

human subjects.
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2.5. Hierarchical Control of Floating-Base Mechanisms under

Constraints

As the practical implementation of inertial parameter identification techniques requires the

prior development of a robust control environment allowing the simultaneous execution of

multiple tasks subject to a set of specific constraints, we here elaborate on some aspects of

the state of the art in this field.

2.5.1. Fundamentals of Redundancy Resolution and Hierarchical Task

Execution in Robotics

2.5.1.1 Redundancy Resolution

Differential kinematics allows defining a mapping between the robot’s n-dimensional joint

motion derivatives q̇ = [q̇1, q̇2, · · · , q̇n]T , q̈ = [q̈1, q̈2, · · · , q̈n]T ∈ Rn and the corresponding

quantities in the m-dimensional Cartesian space, denoted as ẋ, ẍ ∈ Rm:

ẋ = Jq̇ (78a)

ẍ = Jq̈ + J̇ q̇ (78b)

where J(q) = ∂ẋ/∂q̇ is referred to as the task Jacobian matrix [128]. Conversely, inverse

kinematics allows mapping the Cartesian space variables to Joint space variables. In case

the Jacobian is invertible, one gets:

q̇ = J−1ẋ (79a)

q̈ = J−1
(

ẍ− J̇ q̇
)

(79b)

Although resolving the inverse kinematics appears problematic at first glance18, suitable

solutions can be found using generalized inverses of the Jacobian matrix [129]. In its general

form, the generalized inverse J#Ξ of J can be expressed as

J#Ξ = Ξ−1J⊤
(

JΞ−1J⊤
)−1

, (80)

where Ξ ∈ Sn×n is a weighting matrix. In fact, using such an inverse in (79) amounts to

solving the following quadratic optimization (QP) problem with equality constraints:

min
q̈

q̈⊤Ξq̈ (81a)

s.t. Jq̈ = ẍ− J̇ q̇ (81b)

Although in the context of hyper-redundant robots this problem might have infinitely many

solutions, several different approaches have been suggested in scientific literature to chose

among them. The most common approach is to select the solution with minimal Euclidean

18This is in particular the case for hyper-redundant mechanisms such as humanoid robot, since the Jacobian
matrix J is usually not invertible (or even square).
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norm, thereby eliminating the most unsafe or physically unattainable solutions. As explained

in [130] finding such a solution can be achieved by settingΞ to identity in (80) resulting in the

“Moore-Penrose” pseudo-inverse of the Jacobian:

J# = J⊤
(

JJ⊤
)−1

(82)

Another alternative, proposed in [131], is to select the solution with minimal instantaneous

kinetic energy (in the case of first order inverse kinematics (79a)) by seeing Ξ to the ma-

nipulator’s generalized inertia matrix M(q), thereby resulting in the dynamically consistent

pseudo-inverse:

J#M =M−1J⊤
(

JM−1J⊤
)−1

(83)

Weighted generalized inverse approach is appealing as it provides a simple analytical frame-

work for redundancy resolution. However, it has some limitations as infeasible joint velocities

tends to be generated when the Jacobian matrix is ill-conditioned, which may, for example,

arise when the manipulator is getting close to a kinematic singularity. This issue was par-

tially addressed in [132] by using a damped inverse of the Jacobian matrix also known as

Singularity Robust Inverse (SRI) or Ridge regression:

J#ρ = J⊤
(

JJ⊤ + ρ1m×m

)−1
, ρ ∈ R

+ (84)

where 1m×m denotes the m ×m identity matrix. Using such an inverse amounts to solve a

so called damped least-squares problem instead of (81):

min
q̈
{
∥
∥
∥Jq̈ + J̇ q̇ − ẍ

∥
∥
∥

2

2
+ ρ ‖q̈‖22} (85)

Provided that the damping parameter ρ is large enough, this method ensures that feasible so-

lutions are obtained in the neighborhood of a singular configuration. Nevertheless, problems

may arise when the manipulator moves far from any singularity, as large values of ρ result in

a sharp reduction of its precision. Therefore, the use of SRI always requires a compromise

between task accuracy (improved by decreasing the value of ρ) and task feasibility (improved

by increasing the value of ρ). As explained in [133], the effects of such a compromise can be

mitigated by dynamically changing the value of ρ, as a function of the distance to a singularity

[132] or to its time derivative [134].

2.5.1.2 Hierarchical Task Execution

On redundant robots, as a given task does not necessarily require all the robot’s DoF, it is

usually possible and even desirable to execute several tasks simultaneously, according to a

specific hierarchy. This hierarchy can be soft, through the use of appropriate weights, or hard,

meaning that a low priority task should not interfere with the execution of higher priority tasks:
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ẋ1 = J1q̇

g
... g

ẋn = Jnq̇







q̇ =? (86)

ẍ1 = J1q̈ + J̇1q̇

g
... g

ẍn = Jnq̈ + J̇nq̇







q̈ =? (87)

According to [135], it is possible to express all the inverse kinematics solutions for a specific

hierarchy level in the following form:

q̈ = J#
(

ẍ− J̇ q̇
)

+Nq̈N (88)

where N = (I − J#J) ∈ Rn×n is a projector in the nullspace of the Jacobian matrix J

and q̈N ∈ Rn is an arbitrary vector with the dimension of the joint space. The meaning of

this expression is that irrespective of the vector q̈N , the influence of Nq̈N on the main task

ẍ, will be deleted. As a result, a strict hierarchy can be obtained between ẍ and the tasks

from which the vector φ originates. This concept can be generalized to the case of a n-level

hierarchy, by projecting low priority tasks into the nulls-pace of higher priority tasks [136, 137],

yielding the following recursion

N0 = 1n×n, q̈0 = 0n×1 (89a)

Ĵ i = J iN i−1 (89b)

N i = N i−1

(

1n×n − J#
i−1J i−1

)

=N i−1 − Ĵ
#
i−1Ĵ i−1 (89c)

q̈ = q̈1 +

N∑

i=2

(J iN i−1)
︸ ︷︷ ︸

Ĵi

#
(

ẍi − J̇ iq̇i − J iq̈i−1

)

︸ ︷︷ ︸

ˆ̈xi

(89d)

where ˆ̈xi denote the compensated tasks, where the influence of higher priority levels, from 1

to i− 1, is removed. Note that tasks hierarchies can also be defined at the torque level [137]:

N0 = 1n×n, τ 0 = 0n×1 (90a)

Ĵ i = J iN i−1 (90b)

N i = N i−1

(

1n×n − J⊤i−1J
#⊤
i−1

)

=N i−1 − Ĵ
⊤

i−1Ĵ
#⊤
i−1 (90c)

τ = τ 1 +

N∑

i=2

N iτ i (90d)

2.5.2. Hierarchical Task Execution Under Constraints

2.5.2.1 Hierarchical Task Execution as a Sequence of Quadratic Programs

The practical implementation of the recursive null-space projection approach ultimately proves

tedious because it is in this case rather difficult19 to enforce the robot’s kinematic, dynamic

and stability constraints – such as joint position, velocity, torque, self-collision avoidance, or

contact friction cones – which is yet particularly critical in the context of floating-base robot

control. It is also worth noting that the fusion of kinematic tasks with torque tasks also turns

19Although not impossible as proved in [138]
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out to be challenging. An alternative approach to hierarchical task execution consists in for-

mulating each task as a convex quadratic optimization problem subject to a convex set of

linear constraints (usually referred to as Quadratic Program or QP in the literature). In this

context, a lexicographic task hierarchy can be obtained by solving a sequence – or cascade

– of QPs, the QPs of higher priority being solved first and their minimizers being used as

constraints over lower priority QPs [139, 140, 141, 142, 143, 144].

As investigated in [144] the different tasks and constraints of a floating-base mechanism can

be formulated as a set of affine equations of the joint acceleration
[
ẍ⊤, q̈⊤

]⊤ ∈ Rn+6, joint

torque τ ∈ Rn and contact wrenches w1, · · · ,wc ∈ R6. Accordingly, defining the main opti-

mization variable of the problem as an augmented vector y =
[
ẍ⊤, q̈⊤, τ⊤,w⊤

1 , · · · ,w⊤
c

]⊤ ∈
R2n+6+6c concatenating the configuration accelerations, control torques and contact forces

[145], allows handling tasks or constraints defined at the kinematic, dynamic and force level,

within the same framework by solving a single QP of the form

y⋆ =argmin
y

‖By − b‖2+ρ ‖y‖2

s.t. Ay ≤ a
(91)

where, similar to (85), ρ ∈ R+ << 1 denotes a regularization term, ensuring that the Hessian

matrix of the problem remains positive definite, and where the matrices A ∈ Rα×(2n+6+6c)

and B ∈ Rβ×(2n+6+6c) along with the vectors a ∈ Rα and b ∈ Rβ define the inequality

constraints and cost function of the problem, respectively.

Following [140, 143, 144], the general formulation for a strict lexicographic task execution

framework based on QP makes use of a set of slack variables, typically one per hierarchy

level i, here denoted as ς i ∈ Rαi and ιi ∈ Rβi , for inequality and equality constraints,

respectively. In this context, the first hierarchy level of the cascade – with the highest priority

– can be formulated as (91)

(y⋆1, ς
⋆
1, ι

⋆
1) = argmin

y1,ς1,ι1

‖v1‖2 + ‖w1‖2 + ρ ‖y1‖2

s.t. V 1 (A1y1 − a1) ≤ς1
W 1 (B1y1 − b1) =ι1

(92)

where for a given hierarchy level i, the matrices Ai ∈ Rαi×γ and Bi ∈ Rβi×γ along with

the vectors ai ∈ Rαi and bi ∈ Rβi define the set of inequality and equality constraints of

the problem. These constraints can be weighted against each-other using a set of diagonal

matrices V i ∈ Rαi×αi and W i ∈ Rβi×βi of appropriate dimension, thereby defining a soft

hierarchy between the different tasks of a given level of the cascade.

In essence, the slack variables ς i and ιi describe the cost of violating a given constraint.

When set as optimization variables and minimized by the solver, they ensure a soft constraints

resolution thereby avoiding infeasibility issues. The cornerstone of the implementation of a
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lexicographic task hierarchy is the optimization of a different set of slack variables for each

level of the cascade, using the optimal slacks ς⋆1, · · · , ς⋆i−1 and ι⋆1, · · · , ι⋆i−1 of the previous

levels as hard constraints for the current level

(y⋆i , ς
⋆
i , ι

⋆
i ) = argmin

yi,ςi,ιi

‖ς i‖2 + ‖ιi‖2 + ρ ‖yi‖2

s.t. V i (Aiyi − ai) ≤ς i
W i (Biyi − bi) =ιi

V i−1 (Ai−1yi − ai−1) ≤ς⋆i−1

W i−1 (Bi−1yi − bi−1) =ι
⋆
i−1

...

V 1 (A1yi − a1) ≤ς⋆1
W 1 (B1yi − b1) =ι⋆1

(93)

2.5.2.2 Improving QP Cascade Efficiency by Iterative Reparameterization

As highlighted in [146, 144], the efficiency of the cascade resolution can be improved by re-

ducing the problem dimentionality from one hierarchy level to the other. This can be achieved

in practice by restricting the search space of the quadratic program for a given hierarchy level

i, to the kernel of the equality tasks of the previous levels, eventually resulting in the following

solution space

yi = y⋆i−1 +N i−1ui

s.t. V i−1 (Ai−1yi − ai−1) ≤ ς⋆i−1 (94)
...

V 1 (A1yi − a1) ≤ ς⋆1

where N i ∈ R(2n+6+6c)×nz is a (nz ∈ N)-dimensional null-space base of the previous

level’s equality constraints, concatenated into a single augmented matrix denoted as B̂i =
[

(W 1B1)
⊤ , · · · , (W i−1Bi−1)

⊤
]⊤

and where the slack variable ui ∈ Rnz parameterizes

this nullspace. In Herzog et al. [144], N i is obtained using a singular value decomposition of

the augmented matrix B̂i:

B̂i =
[

UR UN

]









σ1
. . .

σ2n+6c−nz

0nz×nz









[

V R

V N =N i

]

(95)

It is worth emphasizing that such computation can be made way more efficient using a full

QR decomposition or even a LU decomposition of B̂i. These aspects are being further

discussed in the mathematical toolbox in appendix B.B.1. This iterative nullspace mapping

effectively reduces the number of variables from one hierarchy level to the next. Finally as
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highlighted in [143], formulating the constraints as two-sided inequalities allows to further

increase the computational efficiency as the upper and lower bounds constraints cannot be

activated simultaneously within the solver, eventually yielding:

(y⋆i ,u
⋆
i , ς

⋆
i ) = argmin

ui,ςi

‖W i (Biyi − bi)‖2 + ‖ς i‖2 + ε ‖yi‖2

s.t. yi = y
⋆
i−1 +Zi−1ui

V iaimin
≤ V iAiyi − ς i ≤ V iaimax

V i−1ai−1min
≤ V i−1Ai−1yi − ς i−1⋆ ≤ V i−1ai−1max

...

V 1a1min
≤ V 1A1yi − ς⋆1 ≤ V 1a1max

(96)

2.5.3. Task Formulation

Formulating tasks at the Cartesian acceleration level has multiple advantages. Although

acceleration is a kinematic signal, it is tightly coupled with dynamics and thus allows bridging

the gap between kinematic and dynamic tasks, as we will demonstrate later in this thesis.

The different control tasks being defined as a set of desired Cartesian or joint-space position

and velocity objectives, denoted as xd ∈ Rm, the corresponding joint acceleration reference

will have the following form

ẍr = ẍd +Kd (ẋd − ẋ) +Kp (xd − x) (97)

where ẍr is the commanded acceleration, xd, x and their time derivatives denote the ref-

erence (resp. actual) position, velocity and accelerations, while the matrices Kp ∈ Sm×m

and Kd ∈ Sm×m contain the stiffness and damping coefficients associated to the task. As

explained in [147, 148], the gain matrices Kp and Kd are often selected so that the matrix
[
0m×m 1m×m

−Kp −Kd

]

has eigenvalues with a strictly negative real part (i.e. is a Hurwitz matrix). On

a single hierarchy level i, for the tasks denoted by the Jacobian matrices J1,J2 and Jk with

weights W i1,W i2 and W ik, the cost of the QP can be formulated20 as

W iBi =

















W i1J1 0m×3cg

W i2J2 0m×3cg

...
...

W ikJk 0m×3cg

















∈ R
km×(n+6+3cg), W ibi =
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(98)

where W i1 refer to diagonal blocks of the weight matrix W i. It is worth noting that torque

tasks can also be integrated into this framework by minimizing the L2 norm of the difference

20Note that the term J̇ iq̇ is often referred to as the normal acceleration. This is in particular the case in [149].
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between a reference torque τ r and the robot inverse dynamics:

argmin
q̈

∥
∥
∥
∥
∥
M qq̈ + hq +

kcg
∑

i=1

J⊤
qi
Γiλi − τ r

∥
∥
∥
∥
∥

2

. (99)

yielding

W iBi =
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∈ R
kn×(n+3cg), (100)

and

W ibi =


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
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W i1 (τ r1 − hq)
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



∈ R
kn (101)

For instance in the context of a compliance task, the reference torque τ r can be formulated

as:

τ r = J
⊤
q f (102)

where f is an external force applied in a point of the robot’s kinematic tree.

2.5.4. Constraint Formulation for Floating-Base Robots

2.5.4.1 Underactuation, wrench distribution, kinematic and dynamic constraints

The main set of constraints that must be guaranteed on any type of robot are the joint position,

velocity and torque constraints, possibly combined with acceleration constraints:

q̈min ≤ q̈ ≤ q̈max (103a)

q̇min ≤ q̇ ≤ q̇max (103b)

qmin ≤ q ≤ qmax (103c)

τmin ≤ τ ≤ τmax (103d)

Given the nature of the optimization variable y within the stack of task, these constraints

must be formulated either in terms of joint acceleration q̈ or in terms of torque τ . Kinematic

constraints at the joint velocity and joint position levels can easily be reformulated as accel-
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eration constrains [143, 150, 151, 147], knowing the control loop period δt, and can thus be

seamlessly integrated into (96)

q̇min − q̇
δt

≤ q̈ ≤ q̇max − q̇
δt

(104a)

2 (qmin − q − q̇δt)
δt2

≤ q̈ ≤ 2 (qmax − q − q̇δt)
δt2

(104b)

Although torque constraints can be expressed in a direct straight-forward manner [152], it

might also be tempting to further reduce the dimentionality of the QP, considering that the

inverse dynamics model, expressed as a constraint, allows removing the torque term from

the vector y, thereby increasing efficiency, as for example proposed in [151, 144, 147, 153]
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(105a)

where:








M b M bq

M qb M q








︸ ︷︷ ︸

M








ẍ
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i

wi . (105b)

It is worth noting that such formulation allows the contact wrench terms in the vector y to be

optimally distributed, provided of course that the robot dynamic model and parameters are

known with a sufficient precision.

2.5.4.2 Contact constraints

Floating base mechanisms are required to be capable of distributing their contact wrenches

with the external environment for stabilization purposes. The main requirements for stability

are here that the contact points used for robot stabilization purposes should not move, or in

other words, the robot should not slide. This has to be encoded both kinematically and at the

contact force level. From the kinematic level, each of the considered contact points should

verify the following condition:

xi = xcst ⇔ J iq̇ = ẋi = 06×1, ∀i = {1, · · · , c} (106)
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(i) Polyhedral convex friction cones. The blue arrows denote the base vectors of the linearized cone, such that a vector build
from any positive linear combination of these vectors lies in the cone.

(ii) Polyhedral convex friction cones with four generators
(friction pyramids) on the REEM-C humanoid robot.

Figure 10 Detail of a point mass distribution on the torso link of our REEM-C robot.

It should also be emphasized in this case that using one single six-dimensional Jacobian

per group of contact points is often more convenient and efficient than using the Jacobian

matrices of each of these points. This expression can also be formulated at the acceleration

level as

J iq̈ + J̇ iq̇ = 0 . (107)

Note that in practice, the previous formulation tends to be unstable and the following velocity

formulation is often preferred [149, 150]:

Si

(

J iq̈ + J̇ iq̇
)

= −Si
1

dt
ẋi (108)

where Si ∈ S6×6 is a selection matrix, allowing to relax some directions of the constraint for

contact admittance control purposes. Besides the kinematic constraints, it is also essential

that the contact wrenches distribution prevent the robot from slipping. Consequently, these

must comply with unilaterality constraints and be moreover restricted to a set of appropriate

friction cones. Friction cones constraints can be formulated at the wrench level or alterna-

tively at the force level [154, 143], by decomposing each contact surfaces into a set of k
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distinct contact points submitted to the linear forces f ∈ R3 (c.f. Fig. 10ii). Although the dis-

tributed contact approach is more computationally expensive than the single contact wrench

approach, it turns out to be more versatile in practice, as it is better fitted for partial foothold

and allows, by means of unilateralism of the contact force, to enforce the motions of the CoP

to lie inside the support polygon. To be expressed as constraints within the stack of task,

the friction cones are linearized, each cone being in fact described as a number g of vectors

γj ∈ R3 (c.f. Fig. 10i), serving as generators for the contact force. These generators are

stored column-wise in a matrix Γi ∈ R3×g, and parameterized by a set of vectors λi ∈ Rg in

order to reconstruct the constrained set of contact forces f i

f i =

g
∑

j=1

γjλij = Γiλi ∈ R
3 , (109)

eventually yielding the following reformulation of the constraint (105), for :
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the matrix Gi ∈ R3×n+6 denoting the linear part of the Jacobian matrix J i ∈ R6×n+6 associ-

ated with contact point i.

2.5.4.3 Self-collision avoidance

Despite its apparent simplicity, the problem of self-collision avoidance has been the subject of

much research over the last decade. Not only does this task requires to know, at each control

epoch, the minimum Cartesian distance between a set of rigid bodies in a given robot, but

more importantly, this distance must not fluctuate too abruptly when the robot links move or

change their relative orientation in order to avoid causing unstable behaviors at the controller

level. The typical approach to rapidly compute the minimal distance between two solids is to

simplify them as set of convex bounding boxes. This was for instance proposed in [155, 156],

while the distance continuity issue was investigated in [157, 156]. In practice, as presented

in Figure 11, the different robot links, taken from the CAD model, can be transformed au-
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(i) Original solid (ii) Point cloud fed to qconvex (iii) Convexified solid

(iv) Robot visual model (v) Robot convex collision model

Figure 11 Illustration of the convex collision model of the REEM-C robot

tomatically into simplified convex volumes using a dedicated software library such as qhull

[158]. These solids should then be regularized into Sphere-Torus-Patches Bounding Vol-

umes (STP-BV) following the approach of [156]. Using the method of Benallegue, Escande

et al. [159, 160] then allows performing fast queries of the minimum distance d between

different STP-BV collision solids while avoiding abrupt distance fluctuations as the robot is

moving. As a result, it becomes possible to execute stable collision monitoring between a set

of predefined different robot bodies in a real-time control loop.

Let us denote by xi ∈ R3 and xj ∈ R3 the pair of closest points between two convex solids

labeled as i and j. Then the distance dij between these two points will be expressed as

dij = ‖xj − xi‖ along the direction nij =
1
dij

(xj − xi). Accordingly the relative velocity ḋij
can be formulated as

ḋ = n⊤
ij (Gj −Gi) q̇ = n⊤

ijGij q̇ (111)

yielding by time derivation:

d̈ =
(

ṅ⊤
ijGij + n

⊤
ijĠij

)

q̇ + n⊤
ijGij q̈ (112)

In [161, 150, 147], the authors proposed to formulate collision avoidance problem in the form
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of an inequality constraint of the form

ḋ ≥ ζ d− δs
δi − δs

(113)

where following the notations of [150, 147] ζ ∈ R+ refers to the velocity damping coefficient,

δi ∈ R+ is the distance from which the constraint starts to act and δs ∈ R+ is the minimum

allowed distance between the considered bodies. Time derivation then yields the acceleration

level formulation of the constraint

d̈ ≥ 1

dt

(

−ζ d− δs
δi − δs

− ḋ
)

(114)

As a result, and following the approach of [149], for a number Ns of monitored collisions,

the collision avoidance constraint can be formulated as follows and included into the stack of

task:
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ḋNs + q̇⊤G⊤
Ns (nNs + ṅNsdt) + q̇⊤Ġ
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2.6. Summary

Inertial parameter identification is a vast and active research topic, with multiple contributions

ranging from robotics to control in general. This chapter provides an overview of some of

the most popular identification methods used in robotics, compiled after a systematic and

rigorous analysis of the scientific literature. The common points and differences between

these methods are highlighted and discussed from a theoretical perspective. Besides the

essential steps involved in every identification process, the main challenges related to fixed

and floating base robot identification, in terms of excitability, physicality, and rank deficiency

of the observation matrix, are introduced and discussed. By also providing an introduction

to the concepts of constrained hierarchical task execution on hyper-redundant floating-base

mechanisms, this chapter is intended to serve as a theoretical foundation for the rest of this

thesis.
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Chapter 3

Distributed Tactile Feedback for Compliant

Control Applications on Mobile and

Floating-Base Robots

This chapter presents the contributions of this thesis in the field of whole-body compliance for

human-robot physical interaction purposes. Exploiting the contact and precontact modalities

of an artificial skin covering a mobile and a floating-base robot, we formulate the compliance

control law at the contact point level, in the form of a set of acceleration tasks. This control

objective is then included into a resolved torque control framework in order to generate suit-

able reactive motion on the robot. The components of interaction force that cannot produce

suitable reactive motion can be identified and projected onto the mobile – or floating – base

of the robot in order to extend its compliance range. This chapter is structured as follows:

section 3.1 introduces the motivation and related works, while section 3.2 provides a formal

description of the whole-body contact point compliance problem. Section 3.3 then describes

the proposed approach for whole-body multiple-contact compliance with force propagation

using tactile feedback and quadratic programming. Section 3.4 discusses the propagation

strategy for the contact wrench residual. The experiments, as well as their results, are pre-

sented and discussed in Section 3.5. Finally, the section 3.6 provides a short conclusion on

the accomplished work.

3.1. Towards Whole-Body Compliance for Potentially Safe

Human-Robot Interaction

3.1.1. Motivation and Related Works

To be safely integrated within complex human environments, robots must be able to cope with

a wide variety of physical interactions, whether desired or accidental, in a manner that is both

safe and predictable to the external user [4]. Accordingly, these robots must be whole-body

compliant, which means that the interaction forces applied to any part of their body must be

propagated along their kinematic tree and consequently generate appropriate – potentially

safe – reactive motions. Robot compliance has been extensively studied over the past two

decades [162, 131, 163, 164, 165, 166, 167, 168, 169]. Commonly exploited in the industry

for mechanical assembly purposes [170, 171] or the realization of cooperative tasks [172],

it is now being increasingly used in the context of rehabilitation [173] and assistive robotics

[174]. However, its generalization to multi-contact interaction scenarios between humans and

robots remains difficult for two main reasons. First of all, in this context, compliance is no
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longer restricted to the end-effectors, as it is usually the case on most robots. Instead it must

be guaranteed for an arbitrary number of contact points distributed throughout the entire body

of the considered mechanism. As a result, such a robot must either have a soft mechanical

structure, associated with a tailor-made actuation strategy, e.g., variable stiffness [165, 175,

176], or must otherwise be equipped with specific sensor modalities allowing suitable reactive

behaviors to be emulated by its controller [177, 178, 179]. On the other hand, the generation

of compliant behaviors must be guaranteed despite the kinematic and dynamic limitations

of the considered robot, such as joint limits, torque limits, self-collision or singularities. In

practice, compliance may not be achieved in all directions of space, due to kinematic or

dynamic constraints. This is especially problematic for fixed-base robots, such as industrial

manipulators, since any physical interaction with the root of the kinematic chain or with a

singular axis of motion, systematically leads to the emergence of stiff configurations (c.f. Fig.

20).

In contrast, mobile and floating-base robots can exploit their locomotion system to continue

propagating these forces, thereby potentially increasing their compliance range. The is-

sue of coordination between the locomotor limbs and the rest of the robot must of course

be properly addressed to ensure that the generated behaviors are consistent and – pos-

sibly1 – safe for an external user. In the case of mobile robots, the typical approach is

to use an admittance-controlled lower body [180] in combination with a passive or active-

compliant upper body. The mobile base control interface is usually formulated in the oper-

ational space. This is, for example, the case in [181], where a force sensor placed at the

end-effector of a single-arm mobile manipulator, provides direct control over the movements

of its base. In [182, 183, 184, 178, 185, 186] the Cartesian position error between a com-

pliant frame, linked to the robot’s end-effector, and a fixed frame attached to its lower body

is used by the mobile base controller to generate suitable reactive motions. Additional sta-

bility and posture objectives are included in [184] with good performances. Although this

technique allows for greater flexibility – given that the mobile base motion generation is no

longer restricted to the end-effector – it may be vulnerable to singularities since it relies on

the compliant motion of the upper-body with respect to a fixed point in the base frame. In

[187, 188, 189, 190, 191, 192, 193, 194], whole-body compliance is achieved by placing a

force-torque sensor either at the mechanical coupling between the robot’s upper and lower

body or directly on its mobile base. Simple and naturally robust to singularities, this strategy

may nevertheless be sensitive to the effects of internal forces, resulting from upper-body’s

inertia. Generating motion on the mobile base with a compliant upper body can also be

achieved at the joint level. This is, for example, the case in [195, 196, 197] where some

specific joints of a compliant upper body are assigned with a particular degree of freedom

on the mobile base. This method works well provided that the arms do not get too far from

their nominal posture, in which case, base movements may become inconsistent. In [198], an

approach based on generalized inverse dynamics exploiting the feedback of dedicated joint

torque sensors, for whole-body compliance was implemented on a dual-arm wheeled mobile

1 Interaction safety is a topic of its own, involving a specific set of metrics to determine how dangerous physical
contact between humans and robots really is. This topic is considered beyond the scope of this research.
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manipulator. Although intrinsically compliant, robots using joint-torque feedback are in gen-

eral vulnerable to singularities, since a force applied to a singular posture will not generate

any detectable torque. In practice, realizing compliant behaviors on a stiff robot is often chal-

lenging since major structural modifications are necessary to provide the considered platform

with either adequate sensory modalities (e.g. force-torque sensors), or with specific actua-

tors (e.g. variable stiffness). In this context, the concept of whole-body tactile feedback is a

relevant alternative, since covering an entire robot with an artificial skin to get suitable force or

application point measurements only requires limited structural changes. Widely investigated

over the past two decades, several promising prototypes have since then been successfully

developed and tested, such as [199, 200, 201, 202, 203, 6, 179].

Although whole-body compliance was already widely investigated in the case of mobile ma-

nipulators [204, 5], it remains challenging in the case of floating-base legged robots, such as

humanoid robots, due to tilting and instabilities issues. On a floating base robot, compliant

reactive motion generation is usually achieved implicitly, at the stabilizer level. The incorrectly

propagated components of upper-body interaction forces are not directly measured. Instead,

their effect on the position of the robot’s center of pressure (CoP) is assessed using the ankle

force-torque sensors and utilized for step generation [205, 206]. As a result, the step execu-

tion has to be achieved at high velocities, since the robot is compensating for the effects of

unpropagated forces, not for the forces as such. In this context, the use of a distributed tactile

feedback appears to be relevant since, unlike proprioceptive feedback, it allows to directly

measure the propagated components of external interaction forces applied to the robot and

are likely to have the floating base move. These components can then be directly used in

order to trigger suitable reactive motion on the locomotor limbs, well before the equilibrium

of the robot is affected [207]. Therefore in this context, the use of artificial skin considerably

simplifies the implementation of complex behaviors. Another important point is the integration

of physical interaction forces within the robot control framework. Humanoid robots often have

to deal with a wide range of potentially conflicting control tasks such as posture objective,

stability and manipulation of a heavy object. Since these tasks cannot be entirely fulfilled at

the same time, they have to be integrated into a hierarchical execution framework depending

on their level of priority [208], the least important tasks being recursively projected into the

nullspace of the most important tasks in order to avoid disturbing their execution. Ideally, the

whole-body compliance task must also be integrated into such framework in order to prop-

erly distribute the reactive motions on the robot kinematic tree depending on the context of

interaction. Therefore, it must be associated with a proper set of Jacobian matrices. The use

of distributed tactile feedback is here relevant since it not only provides information about the

contact force, but also about the position of each contact in the robot kinematic tree.

3.1.2. Proposed Approach and Contribution

We propose to formulate the compliance control law in Cartesian space. The desired reac-

tive dynamics, defined at the contact point level is being tracked by the controller. Quadratic

Programming (QP) makes it possible to compute a set of proper control references, either
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at the torque or acceleration level, thereby allowing the robot to follow the desired reactive

behavior as accurately as possible, while intrinsically complying with a set of predefined phys-

ical constraints. Cartesian formulation makes it possible to conveniently capture the dynamic

residuals between the desired and the actual reactive motions of each robot limb. These

residuals are then propagated onto a parent kinematic chain – in our case the mobile or

floating base of the robot – to be adequately compensated.

3.2. Whole-Body Tactile Compliance Task Formulation

Controlling the mechanical impedance of a robot manipulator can be achieved at the joint

level [165], at the end-effector level [162] or at the contact point level [209, 210, 211]. Contact

point compliance control (also referred to as contact point impedance control) is of particular

relevance in the context of whole-body human-robot interaction since it allows to precisely ad-

just the robot reactive behaviors at any point of its kinematic chain [209]. The corresponding

control objective can be formulated as determining the control reference τ r or q̈r providing a

specific contact point j, with a desired dynamic behavior 0ẍdj , defined in Cartesian space by

the following mass-spring-damper equation of motion:

0wj = Λdj∆
0ẍj +Ddj∆

0ẋj +Kdj∆
0xj (116)

In this equation, 0wj ∈ Rm is the external wrench applied to the contact point j on the

robot’s kinematic structure and Λdj ,Ddj , Kdj ∈ S
m×m
+ are the corresponding desired in-

ertia, damping and stiffness matrices. These matrices define the contact dynamics. The

term ∆0xj =
(
0xdj − 0xrefj

)
∈ Rm and its time derivatives are respectively the position,

velocity, and acceleration errors between the desired mass-spring-damper contact dynam-

ics (0xdj ,
0ẋdj ,

0ẍdj ) – which must be tracked by the robot – and the reference dynamics

(0xrefj ,
0ẋrefj ,

0ẍrefj ), towards which the robot must converge when no force is applied to it.

When interaction is limited to a single contact point the resulting compliance control law can

be derived as:

τ d =Mq̈d + h (117a)

q̈d = J#
j

(
0ẍdj − J̇ j q̇

)

+N j q̈N (117b)

0ẍdj =
0ẍrefj +Λ−1

dj

[
0wj −Ddj∆

0ẋj −Kdj∆
0xj

]
(117c)

where J#
j ∈ Rn×m denotes the generalized inverse of J j , N j = 1n×n − J#

j J j ∈ Rn×n is

the corresponding nullspace projector, and q̈N ∈ Rn is an arbitrary joint acceleration vector

to be projected on the nullspace of J j . This control technique was successfully implemented

in [209], using the dynamic residual method [212, 213] for contact force estimation and ex-

ploiting visual feedback for contact point localization. Its generalization to scenarios involving

simultaneous interactions with ρ ∈ [1, n] different robot links within the same kinematic chain

can be achieved using an augmented Jacobian representation, eventually leading to the fol-
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lowing reformulation of eq. (117b):

q̈d = J#
aug

(
0ẍdaug − J̇augq̇

)

+Naugq̈N (118)

where Jaug =
[
J⊤

1 · · · J⊤
ρ

]⊤ ∈ Rρm×n concatenates the ρ Jacobian matrices of the ref-

erence interaction points, and 0ẍdaug =
[
0ẍd1

⊤ · · · 0ẍdρ
⊤
]⊤

∈ Rρm contains the corre-

sponding desired Cartesian accelerations. It is worth noting that in the case of more complex

mechanisms such as in particular, floating base robots, the different skin task objectives have

to be integrated into a stack-of-tasks architecture, similar to that presented in section 2.5.

In this context, it should be highlighted that the forces applied to the different contact points

between the robot and its environment can potentially be used by the robot for stabilization

purposes via the force distribution algorithm presented in section 2.5.3 of this thesis, in equa-

tion (105a). The main drawback in the context of complex multi-contact interaction stems

from the problem dimensionality as the optimization variable will have to stack the different

contact points. This is here considered as interesting potential future work.

3.3. Whole-Body Tactile Compliance Under Constraints

This section addresses the formulation of the whole-body tactile compliance problem. The

treatment process of tactile information is presented, as well as the proposed method for

generating control reference under constraints.

3.3.1. Assessing Tactile Interaction

When contacts with the external environment simultaneously occurs at multiple locations of

a given robot link, the combined action of the resulting interaction forces must be adequately

taken into account to generate suitable reactive motions according to eq. (118). In a contact-

point compliance scenario, this requires a precise knowledge of both the forces applied to the

robot and their localization on its kinematic chain. Since tactile feedback immediately pro-

vides information about the nature, location, and intensity of an arbitrary number of physical

interactions, it is perfectly fitted for this task. In this work, we merge the artificial skin data

into a single wrench vector, applied to the centroid of the considered link force distribution.

The concept of force centroid can be thought of as a three-dimensional version of the zero

moment point (ZMP) of a walking robot [214, 215], defined as the weighted average location

xzmp of the pressure efforts p(x),x ∈ Ω applied to its feet:

xzmp =

∫

Ω
xp(x)dx

∫

Ω
p(x)dx

(119)

In our case, the location 0xζi
of the force centroid related with the rigid link i, is defined as a

cell-wise discretized version of eq. (119). It is interesting to notice that the convex hull defined

51



(i) Two examples of multi-contact interactions. (ii) Resulting centroidal wrench corresponding to the
presented multi-contact interactions.

Figure 12 Illustration of the equivalence between a given normal force distribution – measured by the artificial skin – and a
single wrench applied to the force centroid of the considered rigid body.

by the surface of an artificial skin patch, and within which the force centroid is located, can

be considered as the three-dimensional analogue to the support polygon of a walking robot.

Let us consider the serial manipulator depicted in Fig. 12, whose rigid links i are covered by

a number αi of skin patches. Each patch j = [1, 2, · · ·αi] of artificial skin contains a set of βj
activated skin cells, sending a stream of relevant force 0fσjk

∈ R3 and position 0xσjk
∈ R3

data. Then the set of all the 0fσjk
applied to the corresponding contact points 0xσjk

can be

seen as equivalent to a unique wrench 0wζi
=

[
0f⊤

ζi
, 0µ⊤

ζi

]⊤

applied to the force centroid
0xζi

of the rigid body i where

0xζi
=

αi∑

j=1

βj∑

k=1

ωjk

∥
∥
∥
0fσjk

∥
∥
∥
0xσjk

αi∑

j=1

βj∑

k=1

ωjk

∥
∥
∥
0fσjk

∥
∥
∥

(120a)

0fζi
=

αi∑

j=1

βj∑

k=1

ωjk
0fσjk

(120b)

0µζi
=

αi∑

j=1

βj∑

k=1

(
0xσjk

− 0xζi

)
×
(

ωjk
0fσjk

)

(120c)

3.3.2. Tactile Multiple-Contact Compliance

An important point to be noted in the last equations is the cell-wise weighting factor ωjk ∈ R⋆
+,

which allows implementing spatial variations in cell sensitivity within the same skin patch.

This is a relevant feature of artificial skins and more generally of distributed sensor systems,
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which makes it possible to emulate the changes in sensory density observed on the bio-

logical skin. In this manner, the behavior of a robot can not only be adjusted limb-wise but

also according to the location of interaction2. It is also worth mentioning that the associated

computation cost overhead is in this case negligible. Furthermore, the possibility of adjusting

ωjk based on other sensory modalities of the robot skin, such as temperature or vibrations

(accelerations), paves the way for the implementation of even more sophisticated behaviors

and reflexes. Using this formulation, the centroidal interaction wrenches 0wζi
measured by

the skin can be directly re-injected into eq. (117c) to generate a set of desired acceleration

vectors 0ẍdζi
(one for each link involved in the interaction process). An adequate torque

command can then be issued using eq. (118) and eq. (117a). In this case the augmented

variables are obtained by concatenating the corresponding centroidal quantities, for example

Jaug =
[

J⊤
ζ1
· · · J⊤

ζρ

]⊤

∈ Rρm×n where Jζi
is the Jacobian matrix associated with the

centroid i and ρ ∈ [1, n] is the total number of centroids. It is worth noting that a special

attention must here be given to the computation of J̇aug as the evolution of Jζi
does not only

depends on the robot motions but also on the changes of centroid position in the considered

rigid body. This link-wise formulation of the robot compliance control law is relevant since the

computational complexity no longer depends on the number of activated skin cells as it was

the case, for instance, in [204]. Yet in its current form, it does not account for the physical

constraints of the considered robot.

3.3.3. Tactile Multi-Contact Compliance Under Constraints

Reformulating the issue of tactile multi-contact compliance as a quadratic optimization prob-

lem has many advantages. In particular, it allows to take into account the robot physical

constraints directly within the control law, provided that they can be formulated as a set of

affine inequalities. In practice, the compliance control law (117) can be thought of as find-

ing the optimal control torque τ ⋆ minimizing the acceleration residual 0ẍ⊤
rζi

, computed in eq.

(3.4.1). From there it is straightforward to formulate the corresponding objective function as

the regularized weighted squared L2-norm of the acceleration residual 0ẍ⊤
rζi

:

τ ⋆ =argmin
τ

n∑

i=1

0ẍ⊤
rζi

Ψi
0ẍrζi

+ ετ⊤τ (121)

In this equation, the variable ε ∈ R is a regularization term, allowing to avoid numerical

singularities. This value is automatically set by the optimizer [216]. The weighting matrix

Ψi = diag(ψij) ∈ Rm
+ plays an important role, by either enhancing or penalizing the influence

of linear (respectively angular) components of the residual 0ẍ⊤
rζi

within the global optimiza-

tion process3. This is essential since the minimization of the linear acceleration residual is

sometimes achieved at the expense of the angular acceleration residual. In this case, the

2 Such a position-dependent weighting factor cannot be obtained using joint force-torque sensors. In this work,
we set these weighting factors to 1.

3 This is equivalent to the use of a weighted pseudo-inverse in eq. (118).
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total wrench residual 0wr of eq. (127) has to be reformulated as:

0wr = K

n∑

i=1

[

Ψi
0f rζi

Ψi
0µrζi

+ 0xζi
(1 : 3)×Ψi

0f rζi

]

(122)

where (using Matlab notations) Ψi = Ψi(1 : 3, 1 : 3), Ψi = Ψi(4 : 6, 4 : 6), and K ∈ R+ is a

tuning parameter.

3.3.4. Accounting for Robot Physical Limitations

As every mechanical system, robots are submitted to a set of kinematic or dynamic con-

straints, in particular, due to their geometry or actuation configuration. When a robot reaches

one of its mechanical limits, the torque applied to the considered joints is automatically set

to zero by internal safety checks, resulting in a temporary loss of one or several degrees

of freedom. In practice, this is a risk to the external user since the controller is not aware

that the robot can no longer move in a given direction of space. Nevertheless, maintaining

compliance in this context is still possible, provided that the robot’s constraints are properly

taken into account in the main control loop. In this way, the forces applied in the vicinity of a

mechanical limit can be identified and directly projected onto a parent limb (e.g. the mobile

base), thereby generating suitable compliant reactive motions. Since most robots kinematic

and dynamic constraints can be formulated as a set of inequalities, they can, therefore, be

seamlessly taken into account in the previous QP formulation. As proposed in [217], we here

consider a set of joint space constraints, namely torque, joint, and velocity limits:

−τ u ≤ τ ≤ τ u (123a)

λ (qmin − q) ≤ τ ≤ λ (qmax − q) (123b)

µ (q̇min − q̇) ≤ τ ≤ µ (q̇max − q̇) (123c)

where λ, µ ∈ R are convergence rates and where qmin, qmax q̇min and q̇max ∈ Rn are lower

and upper joint position and velocity limits vectors for the robot’s upper kinematic chains.

Both convergence rates λ and µ were chosen heuristically. The QP for the constrained multi-

contact compliance problem can eventually be formulated as:

τ ⋆ =argmin
τ

n∑

i=1

0ẍ⊤
rζi

Ψi
0ẍrζi

+ ετ⊤τ

s.t. −τ u ≤τ ≤ τ u

λ (qmin − q) ≤τ ≤ λ (qmax − q)
µ (q̇min − q̇) ≤τ ≤ µ (q̇max − q̇)

(124)

When one of the robot limbs approaches a mechanical limit, the torque generated by the

external forces onto the considered joints is automatically bounded. The QP-solver then

iteratively searches for the control torque that best matches the objective function while com-

plying with these new constraints. In our approach, if the solver fails to find such a solution,
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the generalized forces applied to the considered limb will be directly propagated to a parent

kinematic chain by setting τ ⋆ = 0n×1 in eq. 3.4.1. It is important to notice that when inter-

action occurs between the robot and its environment, the rigid links that are involved in the

interaction process have strict priority over those which are not in contact with the environ-

ment. In practice, this is achieved by setting the acceleration residual 0ẍ⊤
rζi

of the considered

links to zero in eq. (121) and (124).

3.4. Contact Residual Computation and Propagation

The motion components that cannot be properly executed by the upper limbs of a robot –

referred to as contact residuals – can be identified and propagated onto its locomotor limbs,

thereby increasing the compliance range. This section addresses the issues of contact resid-

ual computation and propagation.

3.4.1. Computation of the Contact Residuals

When an external wrench 0wζi
applied to a given robot limb, cannot produce the Cartesian

acceleration 0ẍdζi
required to match the desired contact impedance at the corresponding

force centroid ζi, a local acceleration residual 0ẍrζi
is generated. This residual can be com-

puted as the difference between the desired acceleration 0ẍdζi
of the mass-spring-damper

system submitted to the centroid wrench 0wζi
, and the acceleration 0ẍaζi

the robot limb can

locally generate without violating its physical limitations:

0ẍrζi
= 0ẍdζi

− 0ẍaζi

= 0ẍdζi
− J̇ζi

q̇ − Jζi
M−1 [τ ⋆ − h] (125)

One of the main challenges is here to correctly propagate these components onto the parent

limbs in order to generate suitable reactive behaviors. One way to proceed would be to

consider the residuals as local measures of the acceleration of a rigid body. Following the

approach developed in [218], it would then be possible to express the total child limb residual

acceleration with respect to a parent frame, as an optimization problem. However under

these conditions, a proper solution could only be obtained provided that a set of – at least

– four distinct acceleration residuals is available. If this condition is not verified, the problem

may have an infinite number of solutions. To solve these issues, we decided to formulate the

residual propagation problem at the force level and thus to convert the different 0ẍrζi
into a

set of wrench residuals 0wrζi
using the desired dynamics Λdζi

of the considered link centroid

ζi:

0wrζi
=

[
0f rζi
0µrζi

]

= Λdζi

0ẍrζi
(126)

These residuals contain the components of the centroid wrenches that were not adequately

compensated on the considered limb. They have to be merged into a single limb wrench
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(i) Once the wrench 0wζi
has been extracted from the skin

data on a given link of the robot, it is applied to a virtual
mass-spring-damper system, thereby generating a desired
local acceleration 0ẍdζi

that must be tracked by the robot
as accurately as possible.

(ii) The errors 0ẍrζi
between the desired and the actual

centroid accelerations are a direct consequence of the robot
physical constraints or task priority arrangement. These
errors are locally transformed into a set of centroid wrench
residuals 0wrζi

.
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(iii) The wrench residuals are then summed up link-wise to obtain the limb residual wrench 0iwri . The resulting wrench
residual pwri of each arm can eventually be propagated on the parent kinematic chain (in our case the robot base), in the
same manner as an external wrench applied to “p”.

Figure 13 Illustration of tactile-based multi-contact compliance with generalized force propagation.

residual 0wr applied to the parent-child junction:

0wr =
n∑

i=1

[
0f rζi

0µrζi
+ 0xζi

(1 : 3)× 0f rζi

]

(127)

3.4.2. Propagation of the Limb Total Wrench Residual

The next step is to propagate 0wr onto the considered parent limb and therefore to express

it on the corresponding basis. This can be achieved using the adjoint transform AdiHj
=

[
iRj 03×3

[ixj(1:3)]
×

iRj
iRj

]

, where iRj ∈ SO(3) is the rotation matrix of frame j with respect to

frame i, and
[
ixj(1 : 3)

]

×
∈ R3×3 is the skew operator associated with the first three com-

ponents of the position vector ixj : ∀u ∈ R3 :
[
ixj(1 : 3)

]

×
u = ixj(1 : 3)×u. Since a given

parent limb may have several child limbs sharing the same root frame (e.g. arms mounted on
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a rigid torso), the expression of the residual wrench applied to this frame must therefore be

the sum of these limbs’ contributions:

pwr =
κ∑

c=1

AdpH0c

0cwrc (128)

where κ is the number of child limbs attached to the same parent link (c.f. Fig.13iii). There

may of course be several root links within a considered parent limb. The residual wrench pwr

will therefore have to be calculated for each of these links before being classically re-injected

into the parent limb controller as:

τ ⋆ = Mp(q)q̈d + hp(q, q̇) (129a)

q̈d = J#
aug

(
pẍdaug − J̇augq̇

)

+NaugJ
#
raug














Λ−1

d1

pwr1

...
Λ−1

dχ
pwrχ





︸ ︷︷ ︸

child limbs residual

− J̇raug q̇










(129b)

where as previously Jaug =

[

J⊤
ζ1
· · · J⊤

ζρ

]⊤

∈ Rρm×n concatenates the ρ ∈ [1, n] Jaco-

bian matrices of the reference interaction points (this time in the parent limb) and pẍdaug =
[

pẍd1
⊤ · · · pẍdρ

⊤

]⊤

∈ Rρm contains the corresponding desired accelerations of the par-

ent centroids. In this case, n denotes the dimension of the parent joint space. The residual

is propagated in the nullspace of the parent limb interaction task, using the corresponding pro-

jectorP aug = In×n−J#
augJaug ∈ Rn×n. The augmented Jacobian Jraug =

[

J⊤
r1
· · · J⊤

rχ

]⊤

∈

Rχm×n concatenates the χ Jacobian matrices of the residuals, χ being the number of links

– within the parent limb – that have at least one child limb with a non zero residual. In this

case, Λdi ∈ Rm×m denotes the desired inertia matrix of parent link i.

57



Figure 14 (a): Our experimental platforms, TOMM (Tactile Omnidirectional Mobile Manipulator ) on the left and REEM-C (H1),
on the right, are covered with multimodal artificial skin (Photo credit: A.Eckert/TUM.) (b): The artificial skin mounted on our
robot is a redundant network of identical measurement units or “cells” organized in patches. (c): Partial shape reconstruction
of the skin patches (here the torso and right arm) can be achieved after self-organization of the cells network, followed by a
self-calibration step [202]. In this manner, it is possible to get the position and orientation of every skin cell with respect to a
body-attached frame Li.

3.5. Experimental Validation

This section covers the details of the different experiments carried out to demonstrate the

performance of the proposed method.

3.5.1. Description of the Robot Hardware and Control Interfaces

3.5.1.1 Description of the Robot Hardware and Control Interface

The robot platforms used during these experiments are presented in Fig. 14.a. Our first

robot, named TOMM (Tactile Omni-directional Mobile Manipulator ) [219] is a dual arm mobile

manipulator, composed of two Universal Robots UR5 industrial manipulators with 6 degrees

of freedom each, covered with a multimodal artificial skin and mounted on a holonomic mo-

bile base. TOMM’s central unit is composed of two intel Core i7 computers with 16Gb of

RAM each. One of these CPU is fully dedicated to the control tasks. Our second robot is a

REEM-C humanoid, H1, with 30 position controllable degrees of freedom (DoF). Its embed-

ded computing unit also consists of two intel Core i7 computers with respectively 8Gb and

16Gb of RAM, one of which is entirely dedicated to the real-time control tasks. Unlike TOMM,

REEM-C is fully integrated to the ROS control [220] framework. On both TOMM and REEM-

C, the embedded computers operate under a real-time patched Linux operating system and

the complete control stack, including linear algebra and optimization libraries is coded in C++.

TOMM’s arms are velocity-controlled (similarly to most industrial robots) and provide a control

interface capable of running at a frequency of 125Hz. The REEM-C control interface runs at

58



Task
Fusion

Torque
Resolver

∫ ∫

Robot system

Control Robot
τ

τ ⋆
1 , · · · , τ ⋆

k

τd q̈d q̇d qd +

q, q̇

−

Figure 15 Block diagram of the torque resolver running on the robots, in a 500Hz real-time thread on TOMM and in a 1KHz
real-time thread on REEM-C.

a steady frequency of 200Hz. On both robots, the different tasks are fused together at the

torque level, using the recursive nullspace projection method presented in (90). As depicted

in figure 15, resolved torque control is here made possible by means of an internal torque

resolver loop, running on a dedicated thread at a frequency of 1kHz on REEM-C and 500Hz

on TOMM [177]. A specific admittance controller – similar to [178] – was also developed

for TOMM’s mobile base, in order to make it force/torque-controllable, thereby allowing force

propagation from the arms to the mobile base. The virtual dynamics of the mobile base is

described by the following three-dimensional equation of motion:

µbv̇b +Dbvb = Sb
pwr. (130)

where v̇b = Sbẍ ∈ R3 concatenates the first two linear components and the last angular

component of a Cartesian acceleration and Sb =
[
1 0 0
0 1 03×3 0
0 0 1

]

is the corresponding selec-

tion matrix. The parameters µb = diag(m,m, I) ∈ R3×3 and Db = diag(d1, d2, d3) ∈ R3×3

represent the virtual inertia and damping of the admittance controller, where m ∈ R+ is the

mobile base virtual mass, I ∈ R+ is its virtual moment of inertia and d1, d2, d3 ∈ R+ are

its viscous friction coefficients. During the experiments, the virtual damping values were set

to d1 = d2 = 40N.s.m−1 and d3 = 40N.m.s.rad−1. These values were chosen heuristi-

cally. When the wrench pwr is applied to the mobile base, it produces a reference Cartesian

acceleration v̇b ∈ R3. This acceleration is then integrated and sent as a bounded velocity

reference to the mobile-base velocity controller each 8ms4.

3.5.1.2 Assumptions

Similar to the “floating base” framework of humanoid robots, and disregarding the issues

of tilting and instability, we model TOMM’s omnidirectional mobile base coupled to its low

level velocity controller, as a 3-DoF robot made of two orthogonal prismatic joints moving

in the horizontal plane and one revolute joint, rotating along the vertical axis. We moreover

consider the mobile base and the upper limbs as separated systems. The arm-arm and

arm-base dynamic couplings are especially not taken into account. Although this assumption

is constraining, it nevertheless remains valid in our case since the torso is not articulated,

the mass of the mobile base is one order of magnitude higher than that of the arms, that

the omnidirectional wheels are not mounted on shock absorbers and that they also generate

significant friction on the ground. Moreover, since the arms of the robot are industrial grade

4 The internal velocity control loop of the mobile base operates at 1kHz on its own real-time thread.
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manipulators, we assume that the disturbances generated by the mobile base accelerations

are negligible. The fully coupled system is to be considered in future works.

3.5.1.3 Details of the QP formulation

We use the qpOASES C++ library [221] as QP solver since it provides useful regularization

options as well as suitable timing tools, allowing implementation in real-time control loops.

On a more formal point of view, qpOASES requires the problem to be formulated using box

constraints, which is very well suited to our implementation:

min
z

1

2
z⊤Hz + z⊤b (131a)

s.t. lb ≤ z ≤ ub (131b)

In this expression, the matrix H ∈ Rϑ×ϑ denotes the Hessian, and the vectors b, z, lb,ub ∈
Rϑ respectively denotes the gradient, the optimization variable, and its corresponding lower

and upper bounds. Here ϑ ∈ [0, 6] is the dimension of the problem. Note that in this case,

equality constraints can still be handled by simply putting the same expression on both sides

of the inequality in eq. (131b). In our case5 the QP (124) can be formulated as:

z = Sτ (132a)

H = S

[
n∑

i=1

(
Jζi
M−1

)⊤
ΨiJζi

M−1

]

S⊤ (132b)

g = −S
n∑

i=1

(
Jζi
M−1

)⊤
Ψi

[
0ẍdζi

− J̇ζi
q̇ + Jζi

M−1h
]

(132c)

ub = Smin(τmax, λ (qmax − q) , µ (q̇max − q̇)) (132d)

lb = Smax(−τmax, λ (qmin − q) , µ (q̇min − q̇)) (132e)

where the min and max operators are defined element-wise and whereS =
[
1ϑ×ϑ,0ϑ×(n−ϑ)

]
∈

Rϑ×n is a selection matrix allowing to discard the influence of unused joints within the QP,

where 1ϑ×ϑ is the ϑ × ϑ identity matrix. For a given kinematic chain, the dimension ϑ of the

QP corresponds to the index of the highest-order joint involved in the interaction process. For

instance, a single-contact interaction with the fourth rigid link of the robot (moving with the

third joint), will result in a three-dimensional problem.

3.5.2. Description of the Artificial Skin Setup

On TOMM, a set of 4 distinct Tactile Section Units (TSUs) is broadcasting the data from 14

skin patches, for a total of 644 skin cells covering the two arms. Depending on how “far” a skin

cell is from the TSU – i.e. how many skin cells have to be crossed before reaching the TSU

– it takes about 1ms to propagate the information to the main CPU. A new command is then

issued by the controller every 8ms using the last information provided by the skin (note that

the control frequency is here determined by the real-time interface used to communicate with

5 For the sake of compactness, the q, q̇ dependencies will be removed in the following equations.
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(i) Multi-contact interaction with a dual-arm mobile robot
covered with an artificial skin.

(ii) Visualization of the raw skin cell data: blue markers denote
contact while red makers indicate pre-contact modality.

(iii) Multi-contact interaction with a dual-arm mobile robot
covered with an artificial skin.

(iv) Link wrenches computed at the contact centroid for data
reduction purposes.

Figure 16 Skin raw contact forces and centroidal wrenches

each UR5 robot arm)6. The skin setup of the REEM-C robot is more complex and consists of

a total of 1260 cells, divided into 47 patches covering the whole robot body, and connected

to the main computer with a Gigabit Ethernet interface, through a set of TSUs. To be fully

integrated into a real-time control loop, it is essential that the skin data is processed efficiently,

to avoid excessive overhead. One method to achieve this is not to formulate the tactile control

problem at the point of contact (c.f. Fig. 16i and Fig. 16ii) but rather at the contact centroid.

This allows to keep the essential information related to the interaction while maintaining a low

computational effort (c.f. Fig. 16iii and Fig. 16iv).

6 It is here worth comparing this result to human tactile reflexes, such as the patellar reflex, which is issued in
about 29.6± 6.0ms [222].
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3.5.3. Description of the Experiments

3.5.3.1 Summary

A set of six different experiments was performed to demonstrate the main features of the pro-

posed approach. The first experiment aims at illustrating the ability of our control algorithm

to comply with a set of joint position constraints. The second experiment aims at highlight-

ing the possibility of generating compliant reactive behaviors with an adjustable dynamics, in

reaction to multi-contact physical interactions under torque constraints7. The third and fourth

experiments study the behavior of the proposed control algorithm in the specific cases of

fully propagated and nullspace interactions respectively. The fifth experiment compares the

computational efficiency of the proposed method with that of a previous approach [204] for-

mulating the compliance problem at the cell level rather than at the centroid level. Finally the

sixth experiment proves that our method can also run on floating base robots and provide en-

hanced compliance by generating suitable walking motions in reaction to whole-body tactile

physical interaction.

3.5.3.2 Experiment protocols

The experiments follow the same protocol: forces are applied to different locations of the

robots. To have an effect on the robot, it is essential that these forces are applied to a

surface which is covered by the artificial skin. In the current configuration, any force applied

on an uncovered surface of the robot will not be detected. These forces are then processed

according to eq. (120) in order to compute the position 0xζi
of the link force-centroid and

the associated interaction wrench 0wζi
. The next step is to generate a command τ ⋆ that

will satisfy as much as possible the desired reactive behaviors – defined by the mass-spring-

damping parameters assigned to each centroid – while at the same time complying with the

robot physical constraints. This is achieved by solving the QP of eq. (124). The Cartesian

acceleration residuals are then computed for each arm according to eq. (3.4.1).

Once transformed into wrench residuals by injecting them into eq. (126), they are propagated

onto the mobile base using eq. (127), (128) and eq. (130). It is important to note that single

and dual arm interactions are treated exactly in the same manner since each arm has its own

controller instance, running in a specific thread, as shown in Fig.13iii. In the case of dual

arm interaction, the wrench residuals computed on the base frame of each arm, are simply

summed up on the parent root frame (denoted as “p” on Fig.13iii) according to eq. (128). The

resulting wrench is then propagated to the mobile base.

7 It is important to note that although this experiment specifically considers the case of high stiffness reactive
dynamics, a wide variety of different dynamic responses can also be generated. Some of these behaviors can
be observed within the experiments 1 (zero stiffness) and 3-4 (medium stiffness) for which different values of the
contact mass-spring-damper constants were investigated as well as different mobile base dynamic parameters.
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3.5.4. Results and Discussion

3.5.4.1 Experiment 1. Robot joint limit avoidance

The objective of this first experiment is to demonstrate that the proposed QP formulation of the

compliance control law allows a convenient handling of the robot physical constraints and in

particular of joint limits. The experiment itself consists in interacting with the robot in different

contact points. Moving the right arm of TOMM to its home position (q = [0, π/2, 0, π/2, 0, 0]⊤),

we define the following constrains:

• Torque constraints: −τmax ≤ τ ≤ τmax where τ u = [5, 5, 5, 5, 5, 5]⊤ [N.m]

• Joint limits: λ (qmin − q) ≤ τ ⋆ ≤ λ (qmax − q) where the convergence rates are set

to λ = µ = 7 and where qmin =
[
−0.2, π2 − 0.2,−0.2, π2 − 0.2,−0.2,−0.2

]⊤
[rad] and

qmax =
[
0.2, π2 + 0.2, 0.2, π2 + 0.2, 0.2, 0.2

]⊤
[rad].

In this experiment, the desired centroid dynamic parameters are as follows: Λdζ3
= 2.5 ·

I6×6, Ddζ3
= 3 · I6×6 and Kdζ3

= 06×6. The mobile base virtual mass is set to m =

10kg and its virtual inertia to I = 1.0kg.m2. The results, shown in Fig. 17i depict that the

previously defined constraints are respected: the considered interaction wrench 0wζ3 located

in a centroid ζ3 (Fig. 17i.b) produces bounded position (Fig. 17i.a) response. As shown in

Figs. 17i.c-d the wrench components that would have led to a violation of these constraints

are propagated to the mobile base, thereby generating suitable reactive motions. In practice,

since the bounds are tight, most of the applied wrench is directly propagated to the mobile

base. In the following experiments, we set λ = µ = 100 as the robot is moving far from its

joint limits.

3.5.4.2 Experiment 2. Contact impedance control with torque limits

The following experiment is focusing on the generation of compliant reactive motions following

a desired dynamics, in response to physical interactions between the robot and an external

operator. A set of external forces is applied to the second link of TOMM’s left arm. This

results in an interaction wrench 0wζ2 located in a centroid ζ2 on the second link of the robot

(c.f. Fig. 17ii.c). The QP solver generates a set of control torques (c.f. Fig. 17ii.b) that aims to

provide the considered centroid with the desired reactive compliant behavior while respecting

a set of predefined robot constraints. The desired dynamic parameters of the centroid are the

following: Λdζ3
= 2.5 · I6×6, Ddζ3

= 3 · I6×6 and Kdζ3
= 50 · I6×6. The mobile base virtual

mass is set to m = 25kg and its virtual inertia to I = 1.0kg.m2. We notice in Fig. 17ii.a that

the joint velocities converge to zero, (e.g. for 10 ≤ t ≤ 12) while the force is still applied to

the robot arm (c.f. Fig. 17ii.c). This is the expected behavior from a mass-spring damper

system with a high stiffness value. Notice on Fig.17ii.b, the torque saturations occurring at

t1, t2, t3 and t4. These saturations are the result of the torque constraints defined in the QP.

In our case, the torque limits are set to ±20N.m for each joint. As the torque reaches its

limit, the considered robot limb cannot entirely propagate the external forces. The resulting

wrench residual (c.f. Fig. 18i.d) must therefore be propagated to the mobile base as shown

in Fig.18i.e.
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(i) Robot joint limit avoidance

t1 t2 t3 t4

t1 t2 t3 t4

t1 t2 t3 t4

t1 t2 t3 t4

t1 t2 t3 t4

(ii) Contact impedance control

Figure 17 Joint constraint experiment.

3.5.4.3 Experiment 3. Fully propagated interactions

In this experiment, a set of forces is applied by an external operator, to the robot end-effector,

thereby resulting in a wrench 0wζ6
located in the centroid ζ6 (c.f. Fig. 18i.c). The desired

centroid dynamic parameters are set to the following values: Λdζ3
= 2.5 · I6×6, Ddζ3

=

3 · I6×6 and Kdζ3
= 5 · I6×6. The mobile base virtual mass is now set to m = 20kg and its

virtual inertia to I = 1.0kg.m2 to make it easier to move.

The objective of this experiment is to demonstrate that a force which is properly compensated

by a given limb8, does not generate any significant residual onto its parent (in our case, on

the mobile base). The experimental results, depicted in Fig. 18i, show that this is indeed the

case: the residual wrench – resp. mobile base motions – are negligible on the considered

time frame, as shown in Fig.18i.d-e.

8 Hence the choice of the end-effector for this experiment.
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(i) Fully propagated interactions

t1 t2 

t1 t2 

t1 t2 

t1 t2 

t1 t2

(ii) Nullspace interactions

Figure 18 Fully propagated vs. nullspace interactions.

3.5.4.4 Experiment 4. Nullspace interactions

In this experiment, a force is applied close to the nullspace of the second link, as depicted in

Fig. 20. The desired dynamic parameters are the same as those of the previous experiment:

Λdζ3
= 2.5 ·I6×6,Ddζ3

= 3 ·I6×6 andKdζ3
= 5 ·I6×6. The mobile base virtual mass is here

also set to m = 20kg and its virtual inertia to I = 1.0kg.m2. On a theoretical point of view,

since the considered limb cannot generate any compliant reactive movement in the direction

of the applied force, this force should therefore be entirely propagated to the mobile base.

The experiment results show this behavior for t1 ≤ t ≤ t2. In this time interval, we observe

in Fig.18ii.c-e that the applied wrench is entirely transmitted to the mobile base, generat-

ing suitable reactive motion, while the arm velocities and torques remain close to zero9 (c.f.

Fig.18ii.a-b) since the arm cannot generate suitable accelerations in the direction of the ap-

plied force. Notice on Fig.18ii.e that for t ≥ t2, the mobile base velocity command is not

9 Joint velocities and torques are nonetheless not null, since the external forces are not applied “exactly” to the
nullspace of the robot.
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Figure 19 Example of a fully propagated interaction

Cell k

Link i, Patch j

Figure 20 Single-contact nullspace interaction with the second rigid link of a UR5 robot. Since the wrench 0wζi
lies in the

nullspace N (J⊤

ζi
) of the corresponding contact Jacobian transpose, it cannot produce any torque on the robot kinematic

chain, and must therefore be propagated to a parent limb.

immediately set to zero, even if the external wrench is no longer applied to the robot. This is

a consequence of the mobile base virtual dynamics.

3.5.4.5 Experiment 5. Computational Efficiency

During this experiment, we focus on the evolution of our controller’s computational complexity

as a function of the number of activated skin cells. For both practical and safety reasons,

the robot must remain motionless during the whole process. Therefore although the control

torque τ ⋆ is still computed for timing evaluation purpose, we rather control the real robot

with a simple gravity compensation controller τ = g(q), resulting in q̈ = 0n×1. We then

proceed by gradually covering the robot’s artificial skin with a set of opaque screens, in order

to activate as many proximity sensors as possible. Since the skin’s proximity feedback is

automatically mapped to a virtual force [177], it is therefore seamlessly integrated into our

controller.

The experiment results are shown in Fig. 21i and Fig. 21ii. We can observe that the global

execution time of the proposed algorithm – in Fig. 21i – fully comply with the real-time con-

straint of our control loop (δt = 8ms in dashed red). The results moreover suggest that the

influence of the number of activated cells on the computation time of the loop is negligible.

Unlike our previous work, where a QP had to be solved for every activated skin cell, the
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(i) Proposed method (ii) Previous framework [204]

Figure 21 Computational Efficiency. In green the time tqp required to solve the QP (on a semi-log scale). In blue on the same
scale, the time ttot necessary to solve the entire control problem (i.e. acquire skin data, and solve the QP). The real-time loop
constraint tloop = 8ms is showed in dashed red. Finally the number of activated cells, sending force and position data is
showed in Orange.

proposed control method now only requires a single QP to be solved for each limb and for

each time iteration of the control loop. In the worst case, for TOMM, it is therefore only two

QP that will have to be solved at each control iteration10. Finally, since each robot limb is

associated with a specific thread, these QP can be solved in parallel which further increases

the computational efficiency.

3.5.4.6 Experiment 6. Walk With Me: Force Propagation on a Floating-Base Robot

On a floating base robot, the interaction force applied to the robot upper limbs tends to change

the pressure distribution at the contact surface between the robot feet and the ground. The

ZMP will hence be shifted in the direction of the effort. Since most humanoid robot stabilizers

are tracking the ZMP motions to issue reactive ankle torque or CoM shifts, the robot will thus

exhibit some degree of compliance at the floating base level. Nevertheless, such setup rapidly

shows limitations due to the stability constraints of humanoids, and compliance will eventually

prove unachievable as the ZMP reaches the vicinity of the support polygon. In this context, a

relevant strategy to increase the compliance range is to make the robot walk in the direction

of the perturbation. The main problem is then not to determine in which direction to walk but

rather to know when to generate the walking motion. In general, the stronger the external

disturbance, the faster the robot will need to execute a reactive walking motion. This implies

not only having sufficiently powerful actuators, but also being able to absorb the resulting

impacts between the robot’s feet and the ground. We here propose to use the artificial skin

as an interface to generate suitable reactive steps on a floating base robot.

During this experiment, the upper body of the robot remains rigid. Both force and skin prox-

imity modalities are activated. The measured interactions are directly propagated to the legs

of the robot and sent to the gait controller as a set of new commands. The use of an artificial

10The mobile base does not requires the resolution of any QP as it does not have any parent limb.
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(i) The robot is being pushed. The applied force
is sensed by the artificial skin.

(ii) The force is propagated
onto the floating base.

(iii) The resulting walking motions extend the
compliance range.

Figure 22 The walk with me experiment. The blue arrow denotes the ground reaction force, the green arrow is the propagated
wrench and the red dots are the activated skin cells.

skin allows to decouple the full-body physical interactions occurring between a robot and its

environment from the disturbances arising from joint control errors as well as from ground

imperfections. The resulting behavior can be observed in Figure 22. A point that should be

Figure 23 Force propagation on a floating base robot. The blue area denote interactions along the x direction, the orange
areas interactions along the y direction and the green area the propagation latency (estimated from the raw data).

raised here is the latency induced by the step generation process. This latency, highlighted in

green on Figure 22, is estimated to be approximately one second, during which the floating

base compliance will only be the result of the stabilizer. It is also worth noting that the hip

oscillations induced by the static walking algorithm, and visible in Figure 23, may produce un-

expected behavior for the external user in case interaction takes place on the coronal place,

as the robot first moves toward the user who pushes it.
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3.6. Summary

In this work, we address the issue of tactile-based whole-body compliance with force prop-

agation for mobile and floating-base robots. Using the tactile feedback of an artificial skin,

we propose a new control paradigm, based on the reactive Cartesian acceleration error be-

tween each of the robot’s rigid links, and a corresponding set of virtual mass-spring-damper

systems, moving with predefined compliant dynamics. The use of Quadratic Programming

makes it possible to determine a set of proper control torques, allowing to track as closely

as possible the desired reactive behavior while intrinsically complying with the robot physi-

cal constraints. In addition to its intuitiveness, formulating the controller in Cartesian space,

allows us to conveniently capture the dynamic residuals between the desired and the ac-

tual reactive motions of each limb, and to propagate them onto a parent kinematic chain. In

this manner, the robot remains compliant under external tactile perturbations, even when the

arms activate kinematic or dynamic constraints. Our artificial skin here plays a major role as

it provides information on the magnitude, direction and localization of tactile interactions. To

the best of our knowledge, the integration of such distributed multimodal tactile feedback to a

compliant robot controller was never done before. The experiments performed on a dual arm

mobile manipulator and on a humanoid robot demonstrate the reliability and efficiency of our

method as well as its applicability to real-life human-robot interaction scenarios. We provide

a video11 to illustrate the robot behaviors described in this work.

11https://youtu.be/teKbiiSN2K8
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Chapter 4

Distributed Inertial Feedback for Online

Estimation of High-Order Motion Derivatives

This chapter presents the contributions of this thesis in the field of first and second order mo-

tion derivatives estimation in robotics, based on distributed inertial feedback. In order to coun-

teract the noise amplification and phase shift phenomena induced by numerical derivation and

digital filtering respectively, we here investigate the possibility of fusing the joint position mea-

surements acquired by the encoders of a floating base robot, with a set of appropriate inertial

data. In our case, these data consist of acceleration and angular velocity measurements

from the robot’s main inertial measurement unit, combined with redundant linear acceleration

measurements obtained from a multimodal artificial skin covering the robot. The issues of ro-

bustness and scalability associated with such large-scale distributed inertial measurements

are addressed and discussed, following a sensor selection scheme. This chapter is struc-

tured as follows: Section 4.1 introduces the issue of distributed inertial feedback, considering

the robustness and data reduction problematics. Section 4.2 provides a formal description of

the redundant distributed inertial measurement problem. Section 4.3 describes the proposed

approach for estimating derivative-free first and second order kinematics on floating-base

robots. Section 4.4 describes this thesis’ novel approach to robustness and data reduction

through online sensor selection on a robot covered with artificial skin. The experiments, as

well as their results, are presented and discussed in Section 4.5. Finally, Section 4.6 gives a

brief outlook over our contributions and results.

4.1. Derivative-Free Estimation of High-Order Motion

Derivatives using Distributed Inertial Feedback

As robots are about to be democratized in multiple sectors of society, the associated require-

ments in terms of performance and reactivity are pushing for the consideration of high-order

motion derivatives, whether for the development of more reactive control strategies or for iner-

tial parameter identification purposes [223, 224]. On a robot, second-order motion derivatives

are usually computed by double time-derivation of noisy encoder data. However, the resulting

signal often proves unsuitable for use in high-gain control loops. This is mainly due to the sig-

nificant noise-amplification effect induced by numerical differentiation, as well as the inevitable

signal lag caused by digital filtering [225]. A promising alternative is to estimate second-order

kinematics by rigidly attaching a set of inertial measurement units (IMU) to each link of a

robot. The idea of using distributed IMU sensors mounted in different points of a rigid body

to estimate its motion derivatives is not intrinsically new. This approach has already been the

subject of extensive research since the 1960s [226]. As a matter of fact, spatially separated
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IMUs naturally provide information on both the linear and angular motion components of a

body, without requiring numerical differentiation. Although initially limited by the prohibitive

cost of inertial sensors, this approach is now receiving sustained attention due to the large-

scale availability of very low-cost sensors, referred to as micro-electro-mechanical systems

(MEMS) [7].

4.1.1. Distributed Inertial Feedback: Concept and Existing Applications

Multiple promising applications based on distributed MEMS have recently been proposed

in the fields of navigation [227, 228, 229], biomechanics [230, 231, 232, 233], and robotics

[234, 235, 236], in particular for joint angle [237, 238, 239, 240, 241], joint velocity [242, 243,

218, 244, 245] and joint acceleration estimation purposes [246, 247, 248, 249]. The clas-

sic approach often referred to as accelerometer-only or gyroscope-free IMU (AO-IMU resp.

GF-IMU) is based solely on the measurement of multiple acceleration sensors, mounted on a

given rigid body. In [227], Schuler et al. demonstrated that a set of nine single-axis accelerom-

eters arranged in a precise manner, is theoretically sufficient to estimate both the linear and

the angular acceleration components of a rigid body. With such a configuration, the body’s

angular velocity is usually computed by time integration of the previously estimated angu-

lar acceleration signal, thereby resulting in a potentially unbounded bias. In [250], Schopp

et al. proposed to solve this issue by using nonlinear Kalman filtering techniques. Another

alternative proposed in particular in [251, 218, 228], makes use of kinematically redundant

sensor arrays, with at least twelve single-axis accelerometers spanning a 3D space. Such

a configuration allows to directly resolve the acceleration and squared angular velocity of a

rigid body, by using linear least-squares techniques. Although this approach suffers from a

sign ambiguity on the angular rate motion component, the sign can be estimated using either

numerical integration or more reliably with dedicated sensor fusion techniques, as proposed

in [252, 253, 251, 254, 255]. In most approaches, the results suggest that the performance of

such accelerometers arrays is highly dependent on the relative geometric arrangement of the

sensors as well as the nature of the measured motions: typically the larger the angular veloc-

ity and the volume of the sensor array, the better the precision [218]. It must be highlighted

that AO-IMUs has often been criticized for their poor performance in the low angular velocity

domain [218, 256, 257]. Consequently, while this technique can be successfully used in a

range of specific applications involving high angular velocities – such as high maneuverability

aircraft or artillery shells – its potential applications in robotics turn our to be rather limited.

In order to solve this issue, composite arrays made of accelerometers and gyroscopes can be

used as suggested in [258, 229, 231, 232]. In [231], Skog et al. used a highly redundant net-

work of 32 triple-axis accelerometers and 32 triple-axis gyroscopes. The proposed method

is formulated as a two-step optimization problem, extracting the Maximum Likelihood angular

velocity estimate out of the gyroscope readings before merging it with the data collected by

the accelerometer array. In [232], Wahlstrom et al. improved the concept by introducing a

motion model within the computations. These methods are appealing in several respects.

First of all they do no longer require complex 3D sensor geometries. Furthermore, they en-
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able good sensitivity at low angular velocities while at the same time providing robustness to

gyroscopes saturation at higher angular rates [231]. In practice, sensor redundancy is also

recognized as an essential feature, allowing to significantly reduce the measurement noise

[259], and providing enhanced robustness to possible sensor failures [260, 261]. This is es-

pecially relevant for applications based on low-cost consumer-grade MEMS, as such devices

generally exhibit significant noise levels and biases [262]. In robotics, most approaches us-

ing distributed inertial feedback focus on the issues of joint position and velocity estimation

[240, 238, 239, 241]. The main idea is to overcome the lack or low quality of joint encoders,

in particular on hydraulic manipulators. Only a few works actually deal with the estimation

of second-order motion derivatives [246, 247, 236, 248, 249]. In these approaches, the joint

acceleration estimation problem is formulated in a recursive manner, by exploiting the robot

kinematic structure. In [246], Vihonen et al. use a set of six MEMS accelerometers and one

triple-axis MEMS gyroscope, rigidly attached to every link of a 3-DoF planar robot arm, to

estimate joint velocities and accelerations. In [247], Vihonen et al. further use geometrical

considerations in order to further reduce the number of required sensors, with promising re-

sults on a heavy duty robot. In [236], Rotella et al. mounted a navigation-grade IMU on each

lower body link of a humanoid robot, and estimated the joint positions and velocities by fusing

the commanded joint accelerations with the measured link angular velocities and encoder

data. The joint acceleration estimation process was performed independently, using a similar

approach to [246]. Finally, in [248, 249], Mclean et al. proposed a cascaded sigma-point

Kalman filter architecture with a constant jerk model, to fuse inertial data from distributed

MEMS sensors, with encoder measurement on a 2 DoF pendulum. Multiple sensor configu-

rations were evaluated. The results suggest that accelerometers redundancy has a positive

effect on accuracy and that the use of a gyroscope considerably improves the estimate accu-

racy at low angular rates, which complies with the observations made in [231], although it is

worth mentioning that Mclean et al. only noted marginal improvement when using redundant

gyroscope configurations.

4.1.2. Robustness and Data Reduction through Sensor Selection

One of the main obstacles to the successful deployment of large-scale whole-body distributed

inertial feedback in robotics is the considerable amount of data that can potentially be gen-

erated by such a system. This is especially true in the context of inertial sensing, as the

required sampling rates tend to be high (typically 102-103 Hz). To produce the intended ef-

fect on the robot, data must be transmitted and processed in real-time, at the control loop

frequency. This is a complex problem, which rapidly becomes intractable when the gen-

erated amount of data exceeds the system’s bandwidth. Evolutionary processes in nature

converged towards a remarkably elegant and effective solution to this issue in the context of

tactile perception. By contextualizing the process of data generation, the sensory receptors

of the natural skin mainly transmit information that suggests a change of state (e.g., variations

in temperature or force) [263]. Accordingly, multiple neuromorphic event-driven approaches

to distributed sensing were recently developed with promising results [264, 265, 266], es-

pecially for applications involving massively redundant arrays of multimodal sensors, such
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as artificial robot skins [267, 268, 269, 6]. Although such approaches could potentially be

applied to raw inertial data, suitable implementation of the event generation engine usually

require a dedicated sensor hardware. In the more general case where distributed sensors

can only operate in continuous mode, the issue of data flow limitation can still be adequately

addressed, provided that it is treated as a sensor-selection problem, namely finding for each

robot link i equipped with a set of Ni inertial sensors, a subset of Mi sensing elements that

provide the best compromise in terms of the network load and of an application-relevant met-

ric. Once identified, the selected sensors are set to broadcast measurement at the maximum

frequency while other sensors are deactivated or run at a lower update rate. Sensor-selection

is a widely studied topic, with multiple contributions, ranging from energy optimization in re-

dundant WiFi networks [270] to distributed state estimation and tracking [271, 272]. Sensor

selection has many potential uses in robotics, especially for redundant inertial sensors. As

a matter of fact, most state-of-the-art distributed inertial measurement techniques are based

on the assumption that the sensors are rigidly coupled to the robot link to which they are

mounted. However this assumption is not always verified in practice, considering that the

sensors that come into direct contact with the external environment are likely to undergo local

deformations and impacts, which in turn induces inconsistencies into the inertial measure-

ments collected by the system (c.f. Fig. 24.c). In this context the ability to reorganize the

sensor network online, eliminating corrupted elements, i.e., sensors in error states or sen-

sors reporting notoriously erroneous data, would prove invaluable. However, for this to be

achievable, this re-organization step must be done as fast as possible. Sensor-selection is

often considered as a NP-hard combinatorial optimization problem [273]. As a result, the ap-

proaches to solving the sensor-selection problems are essentially application-specific [274].

If the accuracy of the result is of prime importance, global optimization techniques will be

considered, regardless of the required computational effort. This is for example the case in

[275] where a branch-and-bound method is presented. However if the considered application

is subject to strict constraints in terms of timing or computational power, as it is often the case

in robotics, local sub-optimal heuristic approaches will be preferred as for example proposed

in [276] based on convex optimization techniques or in [277, 278] using tailor-made greedy

algorithms.

4.1.3. Proposed Approach and Contributions

This section introduces the proposed approach to distributed inertial sensor fusion, as well

as the developed method for automatic selection of optimal sensor configurations.

4.1.3.1 Estimation of first and second order motion derivatives

We propose a new derivation-free estimation method for second-order kinematics on floating-

base robots, relying on highly-redundant distributed acceleration feedback. The main contri-

bution of this work is to provide estimates of the first- and second-order joint motion deriva-

tives, with sufficiently low noise and phase shift to be potentially applicable in high gain control

loops or online inertial parameter identification. We proceed by covering a humanoid robot
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Figure 24 (a-b): One of our experimental platforms is a UR5 industrial robot from Universal robotics, covered with 253 artificial
skin cells. (c): The skin is mounted over a layer of soft-elastic material to better fit the shape of the robot and dampen
high-frequency mechanical vibrations. During physical interaction with the external environment, this layer is likely to deform,
thereby slightly changing the orientation of the sensors attached to it.

with a multimodal artificial skin [202, 203, 6]. The skin is a network of interconnected sensing

units or “cells”, organized in patches of different sizes (see Fig .14). It is, in particular capable

of measuring three-dimensional accelerations, at the corresponding cells’ mounting points.

We propose to fuse the skin acceleration data, with that of the joint encoders and the central

inertial measurement unit (IMU), mounted on the floating-base of our robot. Our approach is

two-fold: the skin data is first processed locally, at the link level, using the approach of Skog

et al. [231], to provide estimates of the linear and angular accelerations of each robot link in

Cartesian space. We then fuse the obtained acceleration estimates with the data measured

by the joint encoders and the main IMU, using a Sigma-point Kalman filter with a third-order

motion process. We compensate for the lack of link-mounted gyroscopes – required in the

approach of [231] – by using the velocity state estimate provided by the Kalman filter. The

proposed approach is validated both in simulation and through experiments on a floating-base

robot covered with artificial skin.

4.1.3.2 Online sensor selection for enhanced robustness and efficiency

Our second main contribution consists in a new online sensor selection algorithm, that allows

to automatically determine suitable combinations of inertial sensors, for robot links accelera-

tion estimation purposes. For convenience reasons, we here consider the case of a UR5 in-

dustrial robot, covered with a multimodal artificial skin. Although multiple approaches already

tackled the problem of inertial sensor placement, in particular in the context of gyroscope-free

navigation (see for instance [279, 280, 281, 282, 283] and the references therein), the issue

of inertial sensor selection among larger redundant sets with fixed geometries is seldom ad-

dressed. Similarly to [276], our approach does not intend to find the globally optimal sensor

configuration, but rather focuses on providing a “sufficiently good” sub-optimal configuration,

fast enough to allow online implementation and adaptation on a robot. We formulate the sen-
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Figure 25 Illustration of the motions of a rigid robot with respect to an inertial frame W . For each link i of the robot, we define
a rigidly-attached body frame Li and for each sensor k mounted on this link, we define the frame Sk. The position of Li and
Sk relative to the inertial frame W are denoted by the three-dimensional vectors ri and rk, respectively.

sor selection problem as a greedy algorithm, guided by a locally projected gradient heuristics.

The adaptability of our approach stems from the fact that we can use the precontact informa-

tion provided by the proximity sensors of the artificial skin in order to automatically trigger a

re-computation of the sensor configuration, excluding the cells and neighbors that are likely to

get into contact with the external environment. We validate our approach, both in simulation

and through experiments on a UR5 industrial manipulator covered with a multimodal artificial

skin.

4.2. Fusion of Distributed Inertial Measurements

This section presents the two main approaches found in scientific literature, to combine the

different measurements from a set of inertial sensors mounted over a rigid body into a single

measurement vector containing the linear and angular accelerations of this body.

4.2.1. Fundamentals of Distributed Inertial Feedback

Let us consider the movements of two contiguous revolute rigid robot links i − 1 and i in

an inertial reference frame W , as depicted in Fig. 25. The links i − 1 and i are equipped

with Ni−1 and Ni triple-axis acceleration sensors, respectively. Each sensor k = {1 · · ·Ni}
of link i measures a linear acceleration Skak in a body-attached sensor frame Sk. This
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acceleration is the result of two main components, namely the acceleration of gravity g =

[0 0 − 9.81]⊤m.s−2 and the acceleration ak ∈ R3 of the sensor frame Sk, induced by the

relative movements of the robot joints:

Skak = RSk

W
(ak + g) +

Skbk +
Sknk ∈ R

3. (133)

In this expression, RSk

W
∈ SO(3) denotes the rotation matrix relating the sensor frame Sk

to the inertial frame W , Skbk ∈ R3 is the sensor bias vector and Sknk ∼ N (03×1,σa) is

the sensor noise vector. The acceleration ak of frame Sk can be related to the Cartesian

acceleration ẍi =
[
v̇⊤i , ω̇

⊤
i

]⊤ ∈ R6 of a local coordinate frame Li, rigidly attached to link i

(c.f. Fig. 25), using the following measurement equation:

ak
︸︷︷︸

Sensor frame
acceleration

= v̇i
︸︷︷︸

Link frame
acceleration

+ ωi ×
(

ωi × rki
)

︸ ︷︷ ︸

Centrifugal
acceleration

+ ω̇i × rki
︸ ︷︷ ︸

Euler
acceleration

, (134)

where rki = rk − ri ∈ R3 is the position vector of the sensor frame Sk relative to the joint

frame Li, expressed in the coordinate system of W , and ∀u,v ∈ R3,u× v denotes the

cross-product between vectors u and v. Note that eq. (134) does not contain any Coriolis

term as we assume that every sensor k is rigidly attached to the robot link i, and thus that the

distance between Li and Sk does not change.

4.2.2. Fusion of the Redundant Skin Acceleration Measurements

In order to avoid excessive computation load, the first step toward the estimation of second-

order kinematics is to merge the noisy redundant acceleration measurements of the artificial

skin cells into a set of linear and angular link acceleration signals. To this end, it is possible to

rewrite eq. (134) in the form of a linear system, as for example proposed in [251, 218, 228].

Introducing the augmented state vector ψi =
[

v̇⊤i ω̇⊤

i

[
ω2
x ω2

y ω2
z ωxωy ωyωz ωzωx

]⊤
]⊤

∈

R12 and the associated observation matrix Gk
i =

[

I3×3 −
[
rki

]

×

[
rki

]

•

]

∈ R3×12 where

∀u,v ∈ R3 [u]× v = u× v, [u]• =

[
0 −ux −ux uy 0 uz

−uy 0 −uy ux uz 0
−uz −uz 0 0 uy ux

]

, it is possible to write:

ak = Gk
iψi. (135)

Stacking the measurements of at least four acceleration sensors triads in an augmented

acceleration vector y =
[
a⊤1 · · ·a⊤Ni

]⊤ ∈ R3Ni and its corresponding augmented observation

matrix Gi = [G1⊤
i · · ·GNi⊤

i ]⊤ ∈ R3Ni×12, allows to inverse the previous expression, thereby

resulting in the following acceleration estimate:

ψi = G
#
i y, (136)
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whereG#
i = (G⊤

i Gi)
−1G⊤

i denotes the left pseudo-inverse ofGi. Although relatively simple

to implement, this method has several disadvantages, ranging from the sign ambiguity1 on

ωi, to poor performances at low angular velocities, which is, of course, problematic for robotic

applications. Moreover, the conditioning ofGi directly depends on the geometry of the sensor

array, and the latter must span a 3D space in order to avoid rank deficiency. A workaround

presented in [231], consists in reformulating eq. (134) as the sum of a linear and of a non-

linear term, given fixed values of v̇i,ωi, and ω̇i:

ak = v̇i +
(

[ωi]
2
× + [ω̇i]×

)

rki (137a)

=
[

I3×3 −
[
rki

]

×

]

︸ ︷︷ ︸

Hk
i

[

v̇i

ω̇i

]

︸ ︷︷ ︸

ẍi

+ [ωi]
2
× r

k
i

︸ ︷︷ ︸

πk
i (ωi)

. (137b)

Using this expression and provided that a reliable information of ωi is available through other

sources, such as body-attached gyroscopes, the linear and angular acceleration terms v̇i
and ω̇i of link i can be obtained using a weighted left pseudo-inverse:

ẍi =

[

v̇i

ω̇i

]

=
(

H⊤
i Σ

−1
a H i

)−1
H⊤

i Σ
−1
a (y − πi(ωi)) (138)

where y =
[
a⊤1 · · ·a⊤Ni

]⊤ ∈ R3Ni is the augmented acceleration measurement vector, the

terms H i =
[

H1⊤
i · · ·HNi⊤

i

]⊤

∈ R3Ni×6 and πi(ωi) =
[

π1
i (ωi)

⊤ · · ·πNi

i (ωi)
⊤
]⊤

∈ R3Ni

respectively refer to the augmented observation matrix and centrifugal acceleration vector,

and Σa ∈ R3Ni×3Ni is the accelerometers’ noise covariance matrix. This approach does

not induce any sign ambiguity and, more important, complies with 2D sensor geometries, as

pointed out in [231]. Nevertheless it is worth noting that its implementation is not straightfor-

ward in our case since no direct measurement of ωi is available.

4.3. Estimation of Second-order Robot Motion Derivatives

using Redundant Distributed Inertial Feedback

This section presents the details of our approach to fusing redundant inertial sensor data,

with encoders data, for joint velocity and acceleration estimation purposes.

4.3.1. Fusion of Inertial and Joint Sensor Data

In this section, we propose to fuse the n-dimensional joint position data q ∈ Rn together with

the Cartesian-space inertial measurements provided by the artificial skin and the floating-

base IMU. Our objective is to estimate the first- and second-order joint-space motion deriva-

tives q̇, q̈ ∈ Rn. The sensor fusion process is carried out using a Kalman filter. Relative

link motions on humanoid robots are described using a set of kinematic equations, usu-

1 The sign ambiguity on angular velocity arises from the fact that the components of ωi are in a quadratic form
within ψi. This is a direct consequence of the centrifugal acceleration term in eq. (134).
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ally expressed with respect to a floating-base non-Galilean frame of reference denoted L0
(c.f. Fig. 25). In this context, mapping the joint velocities and accelerations to the mea-

surements of a set of acceleration sensors placed on the robot body requires reliable es-

timates of the angular rate ω0 as well as the linear and angular accelerations v̇0 and ω̇0

of the floating-base with respect to an inertial frame2 W . We thus define the state vector

Θ = [L0 v̈⊤0
L0 v̇⊤0

L0ω̈⊤

0
L0ω̇⊤

0
L0ω⊤

0

...
q ⊤ q̈⊤ q̇⊤ q⊤ ]⊤ ∈ R4·n+15 as a concatenation of the

floating-base and joint-space motion derivatives, where L0 v̈0,
L0ω̈0 ∈ R3 and

...
q ∈ Rn re-

spectively denote the floating-base and joint-space jerk signals. Similar to [248, 249], we

make use of a third order motion model in order to account for abrupt changes in accel-

eration that may arise from contact between the robot and its environment. Note that the

floating base motion derivatives are still expressed relative to the inertial frameW but written

in the coordinate system L0 of the floating-base, namely L0 v̇i = R
L0

W
v̇i, L0ω̇i = R

L0

W
ω̇i, and

L0ωi = RL0

W
ωi, where RL0

W
∈ SO(3) is the rotation matrix relating L0 to the inertial frame

W . This is justified by the fact that unlikeRL0

W
, the homogeneous transforms between L0 and

any frame Li or Sk on the robot kinematic tree are available and accurate. Assuming that

the time evolution of the jerk signal can be represented as a Gaussian noise with standard

deviations σfb for the floating base and σjt for the kinematic tree, we define the following

time and measurement update equations:

Θ+
k = Θk

︸︷︷︸

Current state
vector estimate

+
























03×1

L0 v̈0∆t

03×1

L0ω̈0∆t

L0ω̇0∆t+
L0ω̈0

∆t2

2
0n×1
...
q∆t

q̈∆t+
...
q
∆t2

2

q̇∆t+ q̈
∆t2

2
+

...
q
∆t3

6
























k

+ rk (139)

L0∆ζk
︸ ︷︷ ︸

Innovation
vector

= L0 ζ̂k
︸︷︷︸

Measurement
vector

−
(
ϕ(Θ+

k ) +wk

)

︸ ︷︷ ︸

Observation
prediction

(140)

In this expression,ϕ(Θ) =
[
ϕ⊤

0 (Θ) · · ·ϕ⊤
n (Θ)

]⊤
denotes the nonlinear measurement model

and L0 ζ̂k the measurement vector. The noise terms rk ∼ N (0(4·n+15)×1,Σvv), and wk ∼
N (0m×1,Σww) correspond to the process and measurement noise vectors, and the square

matrices Σvv ∈ R(4·n+15)×(4·n+15) and Σww ∈ Rm×m are the associated process and mea-

surement noise covariance matrices, respectively. In practice, model non-linearities can be

addressed in several different manners [76]. In an Extended Kalman Filter (EKF), the prior

estimate is propagated through a first-order linearized version of the model. Although the

resulting computational cost is low, the first order linearization also induces a bias in the

2 This is usually the case on humanoid robots, most of which are equipped with an industrial-grade IMU mounted
on the floating base.
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posterior mean and covariance of the estimate. This bias can be non-negligible when the

studied system is highly nonlinear. In a Sigma-Point Kalman Filter (SPKF), a set of deter-

ministic samples of the prior estimate distribution are propagated through the true nonlinear

model, thereby preserving the posterior mean and covariance, but at the price of higher com-

putational cost. In this work, we use an Unscented Kalman filter (UKF), namely a variety

of sigma-point Kalman filter. The detailed UKF processing pipeline is given in Appendix C.

The reader is referred to [76] for a deeper discussion on Sigma-Point Kalman filters, their

performance and potential applications.

4.3.2. Detailed Description of the Measurement Update

4.3.2.1 Observation prediction

On a floating-base robot such as a humanoid, the linear and angular accelerations v̇i and ω̇i

of every link frame Li, expressed in the inertial frameW , can be related to the floating-base

linear and angular motion derivatives v̇0, ω̇0,ω0, and to the joint state derivatives q, q̇, q̈ ∈
Rn, by noting that:

ωi = ωi−1 + θ̇i (141a)

ω̇i = ω̇i−1 + θ̈i + ωi−1 × θ̇i (141b)

v̇i = v̇i−1 + ωi−1 ×
(
ωi−1 × rii−1

)
+ ω̇i−1 × rii−1 (141c)

where θ̇i = ωi
i−1 = q̇iz̃i and θ̈i = ω̇i

i−1 = q̈iz̃i are respectively the angular velocity and

acceleration resulting from the action of joint i, expressed in W , and where z̃i denotes the

motion axis of the ith joint, also expressed in W . Combining these expressions together

leads to the following recursion [284]:

ωi = ω0 +
i∑

p=1

θ̇p (142a)

ω̇i = ω̇0 +
i∑

p=1

θ̈p +
i∑

p=1







ω0 +

p−1
∑

q=1

θ̇q



× θ̇p



 (142b)

v̇i = v̇0 +

i−1∑

p=0

[
ωp ×

(
ωp × rp+1

p

)
+ ω̇p × rp+1

p

]
(142c)

The observation prediction of the measurement update step eq. (140) is obtained by mapping

eq. (142) into the floating base frame L0, namely:

ϕ(Θ+
k ) =

[
L0 v̇⊤0 (Θ+

k ),
L0ω̇⊤

0 (Θ+
k ),

L0ω⊤

0 (Θ+
k ),

L0 v̇⊤n (Θ+
k ),

L0ω̇⊤

n (Θ+
k ), q

⊤
]⊤

(143)

4.3.2.2 Measurement vector

The skin acceleration data is processed locally, in a link-wise manner, using the Maximum

Likelihood acceleration observer proposed by Skog et al. [231], to provide estimates L0 ˆ̇vi
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and L0 ˆ̇ωi of the linear and angular accelerations of each robot link in Cartesian space. As

mentioned earlier, this observer requires input information about the link’s angular velocity of
L0ωi. In [231], this information is provided by a set of gyroscope sensors. Here, we propose

to use the estimate of the Kalman filter to build our observation. The equation eq. (138) of

the observer then becomes:
[
L0 ˆ̇vi
L0 ˆ̇ωi

]

k

=
(

H⊤
i Σ

−1
a H i

)−1
H⊤

i Σ
−1
a

(
L0 ŷk − πi(Θk)

)
(144)

where L0 ŷ denotes the acceleration vectors measured by the skin and the floating-base IMU,

expressed in the floating base coordinate frame L0. Hence the expression of the measure-

ment vector L0 ζ̂k of eq. (140) can be written as:

L0 ζ̂k =
[
L0 ˆ̇v⊤0 ,

L0 ˆ̇ω⊤

0 ,
L0ω̂⊤

0 , · · · L0 ˆ̇v⊤n ,
L0 ˆ̇ω⊤

n , q̂
⊤
]⊤

k
(145)

where [̂·] denotes a measured quantity. Note that in this expression, L0ω̂⊤

0 is directly mea-

sured by the gyroscope sensor of the floating-base IMU.

4.4. Online Sensor Selection Algorithm for Data Reduction

and Enhanced Robustness

This section discusses the details of our approach to online inertial sensor selection.

4.4.1. Distributed Inertial Sensor Selection: Problem Formulation

4.4.1.1 Formulation as a Combinatorial Optimization Problem

The task of selecting Mi distinct sensing elements among a larger finite set of Ni sensors

can be formulated as a combinatorial optimization problem, of the form:

u⋆
i = argmin

ui

f(ui), s.t. 1⊤Ni
ui =Mi (146)

where the optimization variable ui ∈ {0, 1}Ni is a Boolean sensor selection vector and f(ui) :

{0, 1}Ni → R+ is an application-dependent value function. Since the fusion of spatially-

separated inertial measurements can be considered as an inverse problem, the result is,

therefore, intrinsically dependent on the conditioning of the corresponding observation matrix

(i.e. Gi in eq. (138) or H i in eq. (135)). The conditioning is a function of both the number

of sensors and the geometric arrangement of the sensor array. Therefore it can be used as

a value function and optimized by modifying the selection vector or the sensor placement

in space. Previous work in the context of gyro-free navigation [285] demonstrated that the

best results in terms of sensor placement were obtained when the acceleration sensors were

located on the vertices of a platonic solid, as in this case, the observation matrix turns out

to be isotropic, i.e., with a unitary condition number. Another relevant figure of merit in the
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context of our application, and more generally for consumer MEMS-based distributed inertial

sensor networks, is the measurement noise mitigation capability. This can be interpreted as

minimizing the volume of the confidence ellipsoid of the acceleration estimate [286, 287, 288],

which is actually proportional to the square-root of the determinant of the covariance matrix

Σi. This thesis elaborates on a compromise between these two metrics and defined the value

function f(ui) : {0, 1}Ni → R+ of the robot link i as a weighted sum of these two terms, plus

a penalty on the number of sensors namely:

f(ui) = k1 · cond(Σ−1
i (ui)) + k2 ·

√

det(Σi(ui)) + k3 · u⊤
i ui (147)

where k1, k2, k3 ∈ R+ are heuristically determined tuning coefficients. Although solving such

a problem is in theory feasible by brute-forcing every possible sensor combination, this proves

intractable in practice since this number grows with the binomial coefficient of Mi and Ni.

As a matter of fact, this problem can be solved using dedicated combinatorial or mixed-

integer solvers, and our first approach was to resolve this optimization problem directly, using

a genetic algorithm. Although this method converges, its practical implementation turns out to

be incompatible with the requirements of an online implementation in a real-time control loop,

the convergence being much too slow. The following sections proposes a set of simplification

allowing to eventually address this issue and propose an algorithm capable of running online,

on a robot.

4.4.1.2 Simplification for Online Implementation

It is worth noticing that eq. (147) can be reformulated as a function f(zi) : R3×Mi → R+

of a continuous Cartesian space variable zi ∈ R3×Mi in place of the binary sensor selection

vector ui provided that the number Mi of sensors is predefined:

f(zi) = k1 · cond(Σ−1
i (zi)) + k2 ·

√

det(Σi(zi)) (148)

This in turns allows reformulating eq. (146) as a smooth optimization problem, that can be

solved efficiently using standard line-search methods. In effect, the variable zi concatenates

the 3D positions of the set of Mi selected sensors relative to a body-attached reference

frame. Although in essence the geometric arrangement of the skin sensors is predefined and

fixed3, this formulation allows the sensitivities of the cost function to be determined in terms

of Cartesian variables, which in turn can be associated with cell switching events using a

dedicated heuristic.

4.4.2. Projected Gradient Heuristics

In this thesis, the proposed heuristic to minimize eq. (148) is formulated as a projected gra-

dient descent. The main idea is to limit the number of sensor combinations that have to be

explored by locally analyzing the sensitivities of the cost function in terms of 3-dimensional

Cartesian coordinates and projected onto the set of feasible solutions (i.e. the skin patch).

3 The geometry of the skin patch is not supposed undergo drastic changes during the experiment.
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Figure 26 One iteration of the proposed algorithm on two cells of the upper-arm patch. The idle cells are depicted in blue, while
the selected cells broadcasting information at the maximum frequency, and their neighbors are depicted in purple and green
respectively. The unconstrained gradient step is represented as a red segment and its projection along feasible directions of
the problem is depicted in magenta. (a): First the neighbors of each selected cells are extracted and a classic gradient step of
the unconstrained problem is computed. (b): The unconstrained gradient step is then projected along each feasible direction.
The highest norm projection is then selected. (c): If the norm of this gradient projection is greater than a heuristically defined
threshold ζ, then a cell-switch event is triggered with the corresponding neighbor cell along the selected direction.

From an initial random sensor distribution of Mi elements on the robot link i, we proceed

by first computing the gradient ∇zi
f(zi) of the value function f(zi) in terms of the selected

sensors’ Cartesian coordinate vectors zi ∈ R3·Mi , relative to the link frame Li. The follow-

ing gradient step is then derived for each selected sensor k, regardless of the geometrical

constraints of the patches (c.f. Fig. 26.a):

ẑki = zki − η∇zk
i
f(z) (149)

where η ∈ R+ is a tuning parameter. This unconstrained gradient step is then projected onto

the constrained Cartesian subspace Eki of the problem. We define the subspace Eki in a cell-

wise manner, as the set of unit-length segments directed along the cell-to-neighbor vectors

z
k,nk

i = z
nk

i − zki as depicted in Fig. 26.b. For each selected cell, the neighbor n⋆k of cell k

with the maximal projection value will be labeled as candidate, to be considered for the next

algorithm iteration:

n⋆k = argmax
nk

(ProjEk
i (nk)

(ẑki − zki )) (150)

The different candidates are then filtered such that:

1. only the candidates whose projected norm is greater than a predefined threshold ρ ∈
R+ are declared valid and used (c.f. Fig. 26.c),

2. the candidates whose index belong to the set of “unusable cells”, namely the sen-

sors that are identified as malfunctioning, undergoing physical interaction4, or that are

already selected in the current iteration are automatically discarded. The vector con-

taining these indexes is automatically updated at each control period.

At the end of these two filtering steps, the remaining cell candidates define the new selected

sensor set. The whole process is repeated until convergence, when the vector of filtered

4 This work identifies unusable cells by exploiting the multi-modality of the skin, making use of the proximity and
force sensors to determine precontact and contact conditions.
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candidates turns out to be empty.

4.5. Experimental Validation

This section covers the details of the simulations and experiments carried out to demonstrate

the performance of the different methods proposed in this chapter.

4.5.1. Description of the Motion Estimation Experiment Setup and Protocol

During this work, we executed a set of two distinct experiments to validate our estimation

approach, first in simulation and then on a real humanoid robot. The experimental setup is

presented in Fig. 28. Our robot is a 30-DoF REEM-C humanoid covered with 1260 cells

of multimodal artificial skin [6]. The main inertial measurement unit, located in the floating

base, is an industrial-grade IMU (MTi-30-AHRS). During these experiments, the skin cells are

supposed to be broadcasting acceleration measurement data at a steady frequency of 250

Hz. This of course raises multiple issues considering the significant amount of information

that has to be transmitted on the skin network and processed in real-time by the robot’s main

computer5. To overcome this issue, it was decided to use a subset of 312 skin cells, located

on the right arm, torso, and floating base of the robot, respectively, thereby accounting for a

serial kinematic chain of nine DoFs. In this work, the measured data is processed offline6 on

a desktop Intel i7 computer. This allows the estimated signal to be compared with reference

data, obtained using dedicated zero-phase-shift forward-backward filters. Accordingly, the

reference joint quantities, to which the estimated signals are being compared in this work,

were obtained by filtering of the raw joint position signal, using a third-order zero-phase shift

forward-backward Butterworth filter with a cutoff frequency of 15Hz, followed by one (resp.

two) central differentiation steps. The zero-delay filter was implemented using the “filtfilt”

function of MATLAB. The tuning parameters α = 1 · 10−2, β = 2 and κ = 0 of the UKF

were chosen heuristically, based on the guidelines defined in [76]. For the considered 9-DoF

kinematic chain, we have a total of Θ ∈ R51, resulting in 2 × 51 + 1 = 103 sigma points.

The process noise and measurement noise covariance matrices Σvv and Σww were chosen

following the procedure described in [249].

4.5.1.1 Experiment Setup and Protocol: Simulation

A simulation, on the model of the REEM-C humanoid robot right arm and torso evaluates the

feasibility of the proposed estimation approach. During this simulation, the right arm and the

torso joints of the robot are tracking a predefined trajectory, in the form of sinusoidal signal

with a time-dependent amplitude. The raw joint angle data from the simulator are corrupted

with a white measurement noise with a standard deviation σencoder = 1.75 ·10−2rad to repro-

duce the real system’s imperfections. Similarly, the cells acceleration data, emulated from the

5 Note that the neuromorphic event-driven approaches to artificial tactile sensing, such as [267, 268, 269] were
not exploited yet and are here considered as future work.

6 We believe that such a method could be adapted online and run directly on the robot. This is here considered
as future work.
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(i) Raw – simulated – acceleration data measured by a single skin cell on link 6 (expressed in the base coordinate frame).

(ii) Linear acceleration of link 6 estimated using (138) and the acceleration measurements of every skin cell attached to the link.

(iii) Angular acceleration of link 6 estimated using (138) and the acceleration measurements of every skin cell attached to the
link.

Figure 27 Simulation data

true system’s linear acceleration, evaluated at every different cells mounting points, is cor-

rupted by an additive white measurement noise with a standard deviation σcell = 0.34m.s−27

(c.f. Fig. 27i). For the sake of simplicity, it is here assumed that the skin cells covering the

robot are rigidly attached to it, perfectly calibrated and that the floating base of the robot is

not moving8. From this point on, the estimates of the each link’s linear and angular accelera-

tions can be computed using eq. (138) (c.f. Fig. 27ii and Fig. 27iii). These link acceleration

terms are then used within the measurement update equation (140) of the Kalman filter to

get suitable link velocity and acceleration estimates.

4.5.1.2 Experiment Setup and Protocol: Real Robot

In the experiment with the real robot, the robot is tracking a desired trajectory and contin-

uously broadcasts the data from its encoders, the main IMU, and from the 312 activated

skin cells. Data acquisition was performed at a frequency of 200Hz on the robot and 250Hz

(sub-sampled at 200Hz) on the skin. The skin accelerometers are set to a range of ±4g as a

compromise between accuracy and sensor saturation during the execution of dynamic behav-

7 This value was determined from actual sensor measurements.
8 Note that the last two assumptions will not hold during the experiment performed on the real system.
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(i) Simulation (ii) Real experiment

Figure 28 Trajectory followed by the real robot during the validation experiment.

iors by the robot. Under these conditions the sensor can measure acceleration increments of

7.81mg [289]. The desired joint trajectories correspond to a permanent excitation movement

such as those encountered in the context of dynamic parameter identification. This trajectory

was obtained by the parametrization of the Fourier series as presented in [16]. Note that the

robot stabilizer was deactivated during the experiments to produce noticeable movements on

the floating base.

4.5.2. Accelerometer Calibration

Calibration is a major issue in the context of inertial sensing with multiple contributions re-

ported in the scientific literature [290, 291, 292, 249]. As a matter of fact, the measurements

of MEMS accelerometers are usually affected by multiple sources of errors, which can be

regrouped into two main categories, namely the manufacturing errors (e.g. sensitive axis

misalignment, bias) and the application errors (e.g. sensor placement or orientation error).

Considering that a stationary accelerometer should only be measuring the gravity vector,

sampling the measurements acalib of a calibrated system on multiple different poses should

result into a spherical measurement distribution with a radius 9.81m.s−2 or 1g. Conversely, in

an uncalibrated system, such a measurement point cloud will exhibit the shape of a shifted-

rotated ellipsoid:

(araw − b)⊤ Afit
︸︷︷︸

ellipsoid

(araw − b) = 1 (151)

where b is a bias term. In other words, the accelerometer calibration problem can be con-

sidered as an ellipsoid fitting problem, or determining the transformation matrix M ∈ GL(3)
such that:

(araw − b)⊤M⊤

︸ ︷︷ ︸

a⊤

calib

I
︸︷︷︸

sphere

M (araw − b)
︸ ︷︷ ︸

acalib

= 1 (152)
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(i) Some of the static poses taken by the robot during the calibration process of the skin accelerometers.

(ii) Results of the orientation calibration phase executed on the right arm of the REEM-C robot: the uncalibrated cells, depicted
in light green, are superimposed with the calibrated cells, in blue.

Figure 29 Sensor calibration process and results.

The measurement ellipsoid of each sensor can be estimated by sampling methods, for in-

stance by performing a series of static gravity acceleration measurements in a set of different

positions. In our case, a total of 16 different poses were considered, sampling the accelera-

tion at 250 Hz for 10 seconds in each pose and for each sensor (c.f. Fig. 29i). Determining

M can then be carried out using a singular value decomposition:

M =
√
ΛQ⊤,Afit = UΣV ⊤ = QΛQ⊤ (153)

Finally the calibrated acceleration can be expressed as acalib =M (araw − b).

4.5.3. Motion Estimation: Results and Discussion

4.5.3.1 Simulation Experiments

Part of the results of the simulation experiments are shown in figure 30 for the sixth robot joint

(i.e. the elbow joint). On this figure, the raw noisy quantities are depicted as blue dots, the

Butterworth-filtered values are shown in magenta, the zero-shift Butterworth-filtered values

are shown in green, the true reference values from the simulator are shown in dashed blue

(on the last three graphs) and finally the estimated values from the proposed UKF method are

depicted in red. The results on Fig. 30 suggest that the proposed estimator reliably tracks the

robot motion as well as its first and second order time derivatives. It is in particular interesting

to note that this tracking is carried out with negligible phase shift, especially compared to the

classic Butterworth filter approach. This is in particular visible on Fig. 30ii, as the proposed

estimated signal nearly overlaps the reference and zero-shift Butterworth filtered signals. At
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(i) Comparison between the raw and estimated angle values of Joint 6.

(ii) Comparison between the raw, filtered, forward-backward filtered, and estimated velocities values of Joint 6.

(iii) Comparison between the raw, filtered, forward-backward filtered, and estimated acceleration values of Joint 6.

(iv) Comparison between the raw, filtered, forward-backward filtered, and estimated acceleration values of Joint 6 (zoomed).

Figure 30 Simulation results, joint 6 (elbow).

the acceleration level, the proposed approach appears to exhibit a better signal-to-noise ratio

than the Butterworth filtered signals (c.f. Fig. 30iii and 30iv), although some deviations from

the reference signal (in dashed blue) should be highlighted, such as for instance at t =

9.5s or t = 11.5s. In the current state of this research, we believe these distortions are a

consequence of an ill-tuned process noise covariance matrix.

4.5.3.2 Validation Experiments on the Real Robot

A subset of the experimental results obtained from the real robot data is presented in Fig. 31

for robot joint 5. As previously, the raw joint quantities are depicted in blue, the Butterworth-

filtered values are shown in magenta, the zero-shift Butterworth-filtered values in green and
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(i) Comparison between the raw and estimated angle values of Joint 5.

(ii) Comparison between the raw, filtered, forward-backward filtered, and estimated velocities values of Joint 6.

(iii) Comparison between the raw, filtered, forward-backward filtered, and estimated acceleration values of Joint 6.

(iv) Comparison between the raw, filtered, forward-backward filtered, and estimated acceleration values of Joint 6 (zoomed).

Figure 31 Experiment results, joint 6 (elbow).

finally the estimated values from the UKF state vector are depicted in red. From Fig. 31i, it is

possible to observe that the joint angle estimator reliably tracks the encoder signal, although

very little distortion can be noticed during sudden changes in the velocity as it is, for example,

the case at t = 5.5s and t = 12s. This is consistent with the very low standard deviation of

the joint encoder noise on most electrically actuated robots (σencoder = 1.7453 · 10−05rad on

REEM-C). One of the interesting features in Fig. 31ii is the joint velocity saturation occurring

from t = 4.0s to t = 5.5s and from t = 10.9s to t = 12.0s. This is characterized by spikes

in the acceleration signal (c.f. Fig. 31iv), the most noticeable of which are visible at t = 5.5s

and t = 12s, when the velocity signal changes abruptly. Although these peaks are clearly

visible on the UKF acceleration estimate, on the lower figure, one can notice that they are

89



(i) Experiment setup on the UR5 robot (ii) Selected cells are shown in cyan and excluded cells in red.

Figure 32 Experiment on the real UR5 robot covered with multimodal artificial skin

slightly delayed compared to the lag-free Butterworth estimate. This delay is estimated to

20ms, which corresponds to 10 control periods. One can also notice some oscillations in

the acceleration estimate, right after the spikes, although the Butterworth reference signal

does not exhibit such phenomenon. This eventually results in several signal overshoots, in

the UKF velocity estimate, on the middle plot, in particular at t = 5.5s and t = 12s. Several

hypotheses are currently being investigated to explain these observations. After ensuring

that this delay was not the result of a lag into the measurements, our current guess is that

this phenomenon is the result of an underestimated process noise covariance on the jerk

model. Notwithstanding this, it should be noted that the UKF velocity estimate tracks the

reference forward-backward filtered signal with equivalent noise levels and a phase shift about

five times smaller than the conventionally low-pass filtered (magenta) signal provided by the

manufacturer. Long term drift analysis of the estimate was not carried out in this thesis and

is here considered as future work.

4.5.4. Description of the Sensor Selection Validation Setup and Protocol

The validation setup for these experiment is presented in Fig. 24 and Fig. 32. We consider a

6-DoF UR5 industrial robot arm from Universal robotics, covered with two patches of artificial

skin, accounting for a total of 253 cells. Cell positions and orientations were determined using

calibration data, obtained from the actual skin system mounted on a real UR5. We used the

self-configuration procedure detailed in [293]. The proposed validation protocol consists of

three main steps. We first analyze the convergence properties of our method in simulation

and compare them to that of a greedy algorithm by executing a Monte Carlo Simulation (MCS)

on a set of randomly generated initial cell configurations ranging from 3 to 20 cells. Note that

since a set of at least three cells is required to get reliable acceleration estimates using eq.

(138), the greedy algorithm has to be initialized with a non-empty cell distribution, which, in
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this work, is either randomly generated or computed using the proposed projected gradient

algorithm from a random initial set. Here the randomly initialized greedy is referred to as

“standard” while the projected-gradient-initialized greedy is referred to as “hot-started”. The

second validation step aims at demonstrating – once again in simulation – the performance

gain, in term of measurement noise mitigation, along a predefined trajectory executed by a

simulated UR5 robot. The fact that this phase is executed in simulation is here justified by

the need of a noiseless link acceleration reference and of perfectly-calibrated acceleration

sensors, for suitable assessment of the estimation quality.

The simulated UR5 robot tracks a preset trajectory, defined as a weighted sum of sinusoids.

Two sets of simulated skin cells, rigidly coupled to the robot body, measure the 3D accelera-

tion along this trajectory. As for actual accelerometers, a normally distributed measurement

noise with standard deviation σ = 0.34 · I3×3
9 is added to the acceleration measurements

of each simulated skin cell. Estimates of the link linear and angular accelerations are then

computed using eq. (138) and the skin acceleration data acquired with different cell numbers

and configurations. In practice, these configurations are generated, on the one hand, using

our method and, on the other hand, using the standard and hot-started greedy algorithms.

We compare the estimated link accelerations to the reference accelerations computed using

the closed form expressions of the robot second order kinematics and use the variance of

the difference between these two signals as a noise-level metric. The final validation step

consists in implementing the sensor selection algorithm in C++ and testing it on the real UR5

robot (c.f. Fig. 32). In every case the cost function coefficients are set to k1 = 10−4 and

k2 = 1 to emphasize the noise attenuation characteristics while penalizing badly conditioned

configurations, verifying cond(Σ−1
i (zi)) >> 1.

4.5.5. Sensor Selection: Results and Discussion

The results of the convergence experiment are displayed in Figs. 33i, 33ii and Fig. 33iv.

From Fig. 33i, it is possible to see that convergence of the proposed algorithm is achieved in

less than ten iterations. Nevertheless Fig. 33i reveals a non-negligible spread in the final cost

values for a given number of cells, thereby suggesting a lack of robustness of the proposed

algorithm to local minima. Note that the effects of unusable cells does not noticeably appear

in this study and would deserve deeper treatment. This is here considered as future work.

Fig. 33ii suggest that the quality of the resulting optimizer exceeds that of the standard greedy

for cell numbers ranging from three to fifteen. This can be explained by the random nature of

the initial cell distribution used in this algorithm. It is interesting to note that the performances

of our algorithm are similar to those of the greedy algorithm when the latter is hot-started

with an optimized initial distribution. One of the main advantages of this thesis’ method lies

in its execution time. This is clearly visible in Fig. 33iv, where we can see that our algorithm

is up to two times faster than greedy algorithms for sets of three to thirteen cells, which

generally corresponds to the number of sensing elements used on the links of a robot, as

it offers a good compromise between network load and measurement accuracy. The mean

9 This value was determined from actual sensor measurements.
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(i) Convergence of our method over 104 randomly generated
initial cell configurations of 5 to 20 cells. The red-dashed line
corresponds to the value function when all the cells are
activated.

(ii) Comparison over 10 randomly generated initial cell
configurations of 3 to 20 cells, of the convergence of our
method with a standard greedy algorithm and a “hotstart”
greedy algorthm.

(iii) A set of initial (red) and final (green) cell configurations on
the simulated UR5 manipulator during a validation run. On the
left, a grouped initial configuration of seven cells. On the right,
a randomly distributed initial configuration of seven cells.

(iv) Mean execution time of our method, vs standard and
hot-started greedy over 103 randomly generated initial cell
configurations of 5 to 20 cells each.

(v) Noise variances obtained with multiple optimized cell
configurations over a 10-sample MCS.

Figure 33 Convergence results
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(i) Comparison between the raw, estimated and
forward-backward filtered angle values of Joint 5.

(ii) Comparison between the raw, estimated and
forward-backward filtered velocity values of Joint 5.

Figure 34 Linear accelerations of the second link of a simulated UR5 manipulator. The estimated values ˆ̇vx, ˆ̇vy , ˆ̇vz computed
using eq. (138) and the measurements of 7 skin cells in three different configurations, namely grouped (c.f. Fig .33iii),
optimized and full-set, are compared to the reference values v̇x, v̇y , v̇z .

convergence time is evaluated to 10.5ms on Matlab for 7-cells in a 144 cells patch, which is

compatible with online use, considering in particular that for loops run much faster in C++.

Execution of our sensor selection algorithm on an actual skin system, mounted on a real UR5

robot proved its reactivity and ability to run online, at the robot control interface frequency (i.e.

125Hz on the UR5). The results of the noise mitigation experiment are displayed in Fig. 34i

and Fig. 34ii in terms of the linear and angular accelerations measured on the second link

using eq. (138). The top graph shows in particular the consequences of an ill-selected cell

configuration, referred to as “grouped” and visible in Fig. 33iii. The noise variance in this case

is depicted as a magenta star marker on Fig. 33v. The benefits of the proposed cell selection

algorithm in terms of measurement noise attenuation are clearly visible in the middle plot of

Fig. 34i and in Fig .34ii. Again, it is worth noting the similarity of these results with those of

the greedy algorithms.
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4.6. Summary

In this chapter, we proposed a new derivation-free estimation method for second-order kine-

matics on floating-base robots along with a new method for online sensor selection. Rely-

ing on highly-redundant distributed acceleration measurement from an artificial sensory skin

covering our robot, our approach to motion derivative estimation is two-fold. The first step

consists in fusing the skin accelerations link-wise using a dedicated Maximum-Likelihood ob-

server. The second step then involves fusing these measurements with that of the encoders

and floating-base IMU. The results show that the motion derivative estimates have equivalent

noise levels to those of the reference signals while maintaining a lower lag. Future work will

consist, on the one hand, of extending the developed method to an entire humanoid robot,

thereby verifying whether it can be executed on-line and, on the other hand, of evaluating

the propensity of the estimated acceleration signal to be used in a high-gain control loop.

Relying on a projected gradient heuristics, the proposed sensor selection method is capable

of converging in less than ten iterations to new inertial sensor configurations that significantly

reduce noise levels in the obtained acceleration estimates.
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Chapter 5

Quantitative Analysis and Comparison of

Inertial Parameter Identification Algorithms

This chapter aims at reviewing, analyzing and comparing a range of state-of-the-art ap-

proaches to inertial parameter identification in the context of robotics. Although inertial pa-

rameter identification is a widely explored research topic, with multiple contributions, there is

currently no clear consensus as to the context of application of a given identification method

depending on the platform, available sensory modalities or more generally, to the end pur-

pose of the identification process. We introduce “BIRDy1” an open-source Matlab toolbox,

allowing a systematic and formal performance assessment of the considered identification

algorithms on either simulated or real serial robot manipulators.

Seventeen of the most widely used approaches found in the scientific literature are imple-

mented and compared to each other, namely: the Inverse Dynamic Identification Model

with Ordinary, Weighted, Iteratively Reweighted and Total Least-Squares (IDIM-OLS, -WLS,

-IRLS, -TLS); the Instrumental Variables method (IDIM-IV), the Maximum Likelihood (ML)

method; the Direct and Inverse Dynamic Identification Model approach (DIDIM); the Closed-

Loop Output Error (CLOE) method; the Closed-Loop Input Error (CLIE) method; the Direct

Dynamic Identification Model with Nonlinear Kalman Filtering (DDIM-NKF), the Adaline Neu-

ral Network (AdaNN), the Hopfield-Tank Recurrent Neural Network (HTRNN) and eventually a

set of Physically Consistent (PC-) methods allowing the enforcement of parameter physicality

using Semi-Definite Programming, namely the PC-IDIM-OLS, -WLS, -IRLS, PC-IDIM-IV, and

PC-DIDIM. BIRDy is robot-agnostic and features a complete inertial parameter identification

pipeline, from the generation of symbolic kinematic and dynamic models to the identification

process itself. This includes functionalities for excitation trajectory computation as well as the

collection and pre-processing of the experiment data. In this work, the proposed methods are

first evaluated in simulation, following a Monte Carlo scheme on models of the 6-DoF TX40

and RV2SQ industrial manipulators, before being tested on the corresponding real robot plat-

forms. The robustness, precision, computational efficiency and context of application of the

different methods are investigated and discussed. This chapter is organized as follows: Sec-

tion 5.1 introduces the issue of robot identification and discusses the state of the art. Section

5.2 then describes the proposed identification benchmark, emphasizing its structure and the

adopted conventions. The different experiments, and their results, are presented in Section

5.3 and discussed in Section 5.4. Finally, Section 5.5 provides a brief conclusion and opens

perspectives for further developments of BIRDy.

1 BIRDy stands for Benchmark for Identification of Robot Dynamics.
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5.1. Benchmarking Identification Algorithms

5.1.1. Motivation and Related Works

As adaptive, predictive and passivity-based control strategies, relying on explicit formulations

of system dynamics, become increasingly popular in robotics, substantial research efforts are

being made in the field of model identification to improve the performance, robustness and

adaptivity of these methods, see for example [294] and the references therein. In the context

of rigid robots, techniques for identifying inertial parameters are generally based on a rigorous

analysis of joint movements and torque signals over a predefined time horizon. A given robot

is tracking a trajectory that excites the different components of its dynamic model and the

residuals in term of motion and torque are used to refine the parameters estimates. The

most common approach to offline or batch dynamic parameter identification is the Inverse

Dynamic Identification Model with Ordinary Least-Squares estimation (referred to as IDIM-

OLS in [11, 295]). This method is based on the assumption that the mapping between joint

torques and the inertial parameters of a robot is linear2. Both efficient and easy to implement,

IDIM-OLS and its variants – including Weighted Least-Squares (IDIM-WLS) and Total Least

Squares (IDIM-TLS) methods described in [43] – however lack noise immunity and exhibit a

strong dependence on the conditioning of the robot’s trajectory, as depicted in [66, 29]. As

a matter of fact, whether due to measurement noise, incorrect data filtering or insufficient

excitation, IDIM-OLS parameter estimates may eventually prove to be highly biased, to the

point of losing all physical coherence, yielding, for example, negative link masses, friction

coefficients, or non-positive-definite rotational inertia.

Over the past two decades, much research effort has focused on solving these issues and

multiple promising methods were proposed. These approaches can generally be divided into

two distinct classes, whether the objective is to improve the statistical consistency of the es-

timates – physical consistency naturally stemming from statistical consistency3 – or to more

explicitly enforce physicality by means of dedicated constrained optimization techniques. In

both cases, performance evaluation is generally carried out through direct comparison with

unconstrained IDIM-OLS or IDIM-WLS. For instance, [38] compared the performance of the

IDIM-WLS method with that of an EKF estimator, on a 2 degree of freedom (DoF) SCARA

robot. The results indicate that unlike IDIM-WLS, the EKF estimator has convergence issues

and exhibits a strong dependence to both initial conditions and tuning parameters. In [296]

the authors presented an approach based on Set Membership Uncertainty (SMU). This ap-

proach was tested on a 2 DoF SCARA robot and compared to IDIM-OLS but did not show

significant improvement. In [16, 60, 40], the authors compared IDIM-WLS with a Maximum

Likelihood (ML) estimator on 2- and 3 DoF robots. The results suggest that ML techniques

may reduce the bias of the parameter estimates in case of noisy joint measurements, at the

price however, of a much greater computational effort. Interestingly, only a few studies have

2 This holds provided that the robot links are rigid, that friction non-linearity is negligible and that the joints are not
subject to backlash.

3 Although the opposite is not true.
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actually performed a formal comparison between more than two identification approaches at

the same time, and on robots with a large number of degrees of freedom, such as industrial

manipulators or humanoids. In [66, 28], the authors used a 6 DoF TX40 industrial robot ma-

nipulator to compare the Direct and Inverse Dynamic Identification Model (DIDIM) method,

the Closed Loop Output Error (CLOE) method, the Closed Loop Input Error (CLIE) method

and the IDIM-WLS. In [29] the same research team compared the Instrumental Variable ap-

proach (IDIM-IV) with IDIM-WLS, the Total Least Squares approach (IDIM-TLS) and CLOE.

The results suggest that DIDIM, IDIM-IV, CLOE and CLIE are significantly less sensitive to

noise than Least Squares approaches. The authors moreover enhanced the fact that DIDIM

and IDIM-IV require much lower computational effort compared to CLOE and CLIE due to the

reduced number of model evaluations. However, it is worth noting that DIDIM and IDIM-IV

were not directly compared to each other. In [81, 72], the authors compared five identification

methods, namely the IDIM-OLS, Adaline neural networks, Hopfield neural networks, EKF and

genetic algorithms, to a 5-DoF SCARA robot. Among these five methods, only the IDIM-OLS

and the Adaline neural network gave results that were accurate enough to be exploited. The

results also suggest that other methods may lack regularity, as they do not converge for all

the considered parameters. Recently, several works highlighted the possibility of explicitly en-

forcing physical consistency by means of constrained optimization techniques, rather than im-

plicitly, through statistical consistency. With some notable exceptions (e.g. [93, 94, 20, 297]),

the classic approach to physically consistent parameter identification consists in expressing

physicality constraints in the form of a Linear Matrix Inequality (LMI), thereby allowing to refor-

mulate the whole identification process as a constrained optimization problem, solvable using

Semi-Definite Programming (SDP) methods, as for example proposed in [25, 98, 99, 21], or

using optimization on manifolds as proposed in [97, 104, 103]. Note that although several

approaches such as [298, 299], use Deep Neural Networks (DNN) to learn the full robot dy-

namics, these contributions will not be considered in this work, as the mapping between DNN

hyper-parameters and robot dynamic parameters is not yet fully understood, thereby making

a comparison with conventional identification methods irrelevant.

5.1.2. Problem Formulation and Proposed Contributions

Although it seems possible from the previous studies to infer specific tendencies as to the per-

formance and context of application of the different identification algorithms [122], it is worth

noting that no study currently provides a general guideline, based on quantitative arguments,

such as encoder noise level, sampling frequency or knowledge of the control law. To be valid,

such a study should be carried out within the same framework, on a wide range of meth-

ods, under well-defined experimental conditions and using a Monte Carlo analysis scheme to

provide statistically significant results. Although benchmarking is a common practice in the

automatic control community – see e.g. [300, 301, 302] among others – it is less common

in robotics, with some notable exceptions [303, 304, 305]. This may be explained by the fact

that researchers in robotics are used to deal with real-world data. In practice, evaluating the

performance of an identification method on a real system proves to be a difficult task, since

the latter can never be perfectly modeled. This is a direct consequence of the wide variety
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of complex physical phenomena – such as backlash or non-linear friction – that have a sig-

nificant influence on the system behavior while being relatively challenging to model. On the

contrary, the identification of a simulated system allows a rigorous quantification of the per-

formance of an algorithm, since the characteristics and parameters of the simulated model

are well known and can therefore be used as a reference. Simulation also makes it possible

to highlight the influence of specific physical phenomena – e.g. joint friction or measure-

ment noise – on the quality of the estimates. Therefore, our first contribution is to propose

a dedicated framework, in the form of an open-source Matlab toolbox, that makes it possible

to formally evaluate the performance of multiple identification algorithms on the same robot

model and under the same conditions or assumptions. We use this benchmark to formally

evaluate the performance of a set of algorithms among the most widely used off-line computa-

tional approaches to robot dynamic parameter identification. These methods are the IDIM-LS

(including the WLS, IRLS and TLS variants), ML, IDIM-IV, Output-Error methods (CLOE,

CLIE, DIDIM), the Extended Kalman Filter (EKF) as well as several of its Sigma-Point and

Square-Root alternatives (SPKF), the Adaline Neural Network (AdaNN), the Hopfield-Tank

Recurrent Neural Network (HTRNN) and finally a set of Semi-Definite Programming (SDP)

approaches with Linear Matrix Inequalities to enforce physical consistency (PC-IDIM-OLS,

PC-IDIM-WLS, PC-IDIM-IRLS, PC-DIDIM). Though it is always interesting to formally com-

pare different methodologies with each other, the usefulness of such a comparison remains

questionable if no conceptual relationship can ultimately be established between these ap-

proaches. For instance, stating that IDIM-IV or DIDIM outperforms IDIM-OLS in the case of

improper data filtering and/or too noisy data is not really helpful nor constructive for practition-

ers since this gain of robustness against noises is expected from IDIM-IV and Output-Error

approaches. Instead it is more interesting to show how the data filtering helps IDIM-OLS

to provide results that match those provided by IDIM-IV and Output-Error approaches. Our

second contribution is therefore to establish some relationships between different methods in

order to emphasize their similarities and differences. Finally, establishing relationships allows

providing some guidelines to practitioners non-experts in robot identification in order to help

them to choose an identification method among all the available approaches: this is the third

and last contribution of this work.

5.2. Introducing the BIRDy Matlab Toolbox for Identification

and Quantitative Performance Assessment

In this work, we conduct a rigorous and systematic performance analysis of the most popular

identification algorithms described in chapter 2. This analysis is carried out within a single

framework and on the same robot models, following a Monte Carlo process to ensure the

statistical relevance of our results. Our main objective is ultimately to provide a set of general

guidelines as to the applicability of a given identification method to a particular experimental

context. To our knowledge, no comparison has been made to date on such a scale. In order

to ensure the repeatability of our results and their generalization to different robot models

or experimental conditions, we propose a new open-source identification framework in the
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form of a dedicated Matlab toolbox named BIRDy (i.e. Benchmark for Identification of Robot

Dynamics). BIRDy offers a wide range of functionalities, allowing the end-user to simulate,

debug and identify his own robots while focusing on the mathematical aspects of identification

rather than on the implementation of his own experimental framework. As observed by [306,

17], offline parameter identification methods often follow a similar workflow, whose main steps

usually involve:

1. selecting an appropriate model for the studied system,

2. designing a state trajectory which excites the different components of this model,

3. collecting a large amount of experimental data by having the – real or simulated –

system follow the generated excitation trajectory,

4. executing the selected identification process,

5. evaluating the quality of the results by comparing the predicted and actual torques

along a validation trajectory.

The very structure of BIRDy is directly inspired by this pipeline of operation (c.f. Fig. 35).

The various aspects of this configuration are presented and discussed in the following sub-

sections, along with their operation modalities.

5.2.1. Symbolic Model Generation

Model generation is the very first step toward identification: not only should the robot be

simulated in a realistic manner but its dynamics should also be expressed in the form of a

system of linear equations (c.f. eq. (13)) with a well conditioned identification regressor.

BIRDy features a symbolic model generation engine, capable of computing the complete

kinematics, dynamics and identification models of any fixed-base serial robot4. Similar to

the robotic-system-toolbox proposed by [307], the simulated robots are described using ded-

icated parameter files, containing a Denavit-Hartenberg5 table as well as the corresponding

reference dynamic, friction and control parameters of each link. The dynamic model is gener-

ated using the Euler-Lagrange equations of motion (c.f. [9]). It is worth noting that in case the

robot is gear-driven, the inertia of the actuators and gearboxes can be precisely taken into

account within eq. (1) following the approach of [308]. A simpler alternative – used in BIRDy

– consists in modeling the drive-chain inertia as an additional diagonal term Ia ∈ Rn×n within

the inertia tensor M(χ, q), following the approach of [30]. The symbolic expression of the

regressor matrix Yχ(q̈, q̇, q) is computed following the approach detailed in [309] and given

in the Appendix A.2.4 of this thesis. Finally the vector β of base dynamic parameters and the

corresponding identification regressor Yβ(q̈, q̇, q) are generated numerically, following the

QR decomposition method of [22] described in section 2.1.2 of this thesis.

4 The cases of parallel robots – such as stewart platforms – or floating-base robots – such as Humanoids – are
not yet implemented in this approach and are here considered as future works.

5 Both classic (distal) and modified (proximal) Denavit-Hartenberg conventions are supported.
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BIRDy: Benchmark for Identification of Robot Dynamics
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Figure 35 Block diagram of BIRDy, the Benchmark for Identification of Robot Dynamics. In this figure, q̈d, q̇d, qd refers to the
desired trajectory data, obtained from the trajectory interpolator, q̃, τ̃ , ĩ respectively denote the noisy joint positions, torques
and (in case of a real robot) drive-currents measurements. The actual data q̈m, q̇m, qm, τm used for identification, is
obtained after a short pre-processing step of the raw experiment data.

5.2.2. Trajectory Data Generation

In order to avoid data rank deficiency of the observation matrix W , the different compo-

nents of the dynamic model should be sufficiently excited during the experiments. This

can be achieved by means of specific joint trajectories, referred to as exciting. The design

of excitation trajectories has been widely investigated over the past two decades, see e.g.

[13, 120, 14, 15, 16, 121, 17, 122, 18, 19, 20, 310, 21]. From these works, it appears that the

conditioning of the observation matrix W is a relevant quality indicator for the generated tra-

jectory. In our case, joint trajectories are obtained by parametrization of finite Fourier series

as presented in [16, 121, 18, 21]. The following cost criterion Jt is minimized over the experi-

ment time horizon using a standard nonlinear programming solver (in our case the “fmincon”

and “ga” Matlab functions):

Jt = k1 · cond(W⊤W ) +
k2
σmin

, (154)

where [311] cond(·) refers to the condition number of a matrix; σmin is the smallest singular

value of W ; and k1, k2 ∈ R+ are tuning gains defined by the user. It should be emphasized

that although this method allows the generated trajectories to be constrained in order to com-

ply with the physical limitations of the considered robot – such as joint, velocity, torque or

operational space limits – it cannot be used “as is” for the generation of excitation trajecto-

ries on floating-base robots [19]. This specific topic being a research field of its own, it will

not be addressed in this implementation and is here considered as future works. Once the

trajectory is generated, it is stored in a dedicated data-container. We provide multiple inter-

polation routines, based on the “interp1” Matlab function, so that relevant trajectory data can
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Figure 36 Detail of the “Simulation Engine” of Fig 35.

be obtained at any epoch, from a limited number of points, either generated by the optimizer

or coming from a pre-existing file, created outside BIRDy. Note that any third-party trajectory

file containing a time series of joint values can be imported into the benchmark, provided its

data is first stored in one of its predefined data containers.

5.2.3. Experiment Data Generation and Pre-processing

Identifying the dynamic parameters of a robot manipulator requires the collection of appropri-

ate measurements in terms of joint angles q and torques τ 6 over a predefined time horizon.

Such data can be collected when a robot – real or simulated – tracks an exciting trajectory.

As depicted in Fig. 35, BIRDy provides a set of simulation routines, allowing the previously-

generated robot models to be used for this purpose. The data collection process in the case

of a simulated robot is depicted in Fig. 36. The direct dynamic model (DDM) of the robot,

computed according to equation (3), is subjected to a control torque τ . BIRDy contains im-

plementations of multiple friction models, in particular the Viscous-Coulomb, Stribeck and

LuGre models, allowing for more realistic data generation (c.f. [312] and Fig. 37). The re-

sulting joint acceleration signal q̈ is integrated twice, using a fixed-step Runge-Kutta method

(RK1, RK2 or RK4) before a zero-mean Gaussian noise nσq with a standard deviation σq is

added to it. The resulting signal q̃ is then derived and eventually fed back into the controller

without filtering. This allows to better account for the effects of the numerical differentiation

process occurring on real digital controllers, in terms of amplification of the measurement

noise. The control algorithm itself is described in equation (12). The robot tracks the refer-

ence trajectory (qd, q̇d) at an update frequency fc. The data sampling process occurs at a

frequency f ≤ fc, both for q̃ and for the torque measurement τ̃ (namely the torque signal

τ corrupted by a zero-mean Gaussian noise nστ with a standard deviation στ ). Note that

the reference trajectory files created by BIRDy can also be used to generate desired behav-

iors directly on a real robot manipulator. However in this case, the data collection process is

achieved independently using the robot communication interface. Unlike the BIRDy simula-

tion interface, which provides direct feedback in terms of joint position and torque, the real

6 Note that contact forces can also be used in the case of floating-base robots, as explained in section 2.4.1.
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Figure 37 The characteristics of the different friction models implemented in BIRDy.

robot interface often provides feedback only in terms of joint position q̃ and drive currents ĩ.

Nevertheless a reliable prior knowledge of the robot drive gains Kτ of (12) makes it possible

to reconstruct the torque signal τ̃ . In practice, the robot drive gains can be identified following

a dedicated Least-Squares method such as that proposed by [313, 314]. The “raw”7 signals

q̈m, q̇m, qm, τm used for identification purpose, are eventually built from q̃, τ̃ by sequential

time derivation followed by a parallel decimation step in order to eliminate torque ripple and

high-frequency noise components. The parallel decimation process in BIRDy is carried out

with a zero-shift low-pass Tchebyshef filter, implemented using the decimate Matlab function.

Similar to [11, 29] the cutoff frequency fdec is set to be approximately one order of magni-

tude higher than the joint bandwidths. The decimation ratio nd by which the input data is

being sub-sampled is defined as nd = ⌊0.8f/2fdec⌉ where f is the sampling frequency. As

additional band-pass filtering may be required by some algorithms (such as IDIM-OLS), the

pre-processing pipeline of BIRDy also features an implementation of zero-shift Butterworth

filter that can potentially be applied to the raw joint position signal q̃ before time derivation.

5.3. Benchmarking Parameter Identification Algorithms:

Monte Carlo Simulations and Validation using BIRDy

5.3.1. Hardware Description and Experiment Setup

This work takes the form of a case study, carried out on two different robots, both in simula-

tion and on the real systems. These robots are the 6-DoF RV2SQ industrial manipulator from

Mitsubishi, depicted in Fig. 38ii and the 6-DoF TX40 robot from Staubli, depicted in Fig. 38i

and described using the proximal DH convention. Widely used in both industry and research,

these systems are ideal test platforms for having a similar kinematic structure but rather dif-

ferent communication interfaces and control characteristics. Generally speaking, evaluating

the performance of multiple identification methods on different robot models within the same

framework is relevant as it allows observing the influence of system-specific factors, such as

the sampling rate or the knowledge of the control structure, on the overall algorithm perfor-

7 The term “raw” here refers to the fact that the signals used for identification are not necessarily filtered. This
makes it possible to test the robustness of the different identification algorithms to measurement or numerical
differentiation noise.
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(i) Staubli TX40 6-DoF robot. (ii) Mitsubishi RV2SQ 6-DoF robot. (iii) Drive-Gains identification.

Figure 38 (i, ii): End-effector trajectories – desired in green and actual in dark blue – executed during the experiments on the
real robots and visualized on Rviz using the Matlab-ROS⋆ interface. The excitation trajectory of the TX40 was manually
generated, with trapezoidal velocity profiles and was later imported within BIRDy, while that of the RV2SQ was directly
generated using the benchmark constrained Fourier trajectory generation tool. ROS (Robot Operating System) is a
middle-ware, i.e. a collection of libraries and communication protocols used for fast development and deployment of robot
programs. (iii): Experiment setup used for drive gains identification on the Mitsubishi RV2SQ. Note the external payload, with
known inertial parameters, attached to the end-effector of the robot.

mance. This in turns makes it possible to infer guidelines regarding the selection process

of an identification algorithm depending on the experimental context. In practice, while the

TX-40 has a high-speed communication interface allowing the joint position and torque to be

sampled at rates of up to f = 5kHz, the data acquisition process on the RV2SQ is achieved

at a much lower frequency, namely f = 140Hz. Moreover, although the low-level control

characteristics of the TX40 are known with a sufficient level of accuracy (see in particular

[29]), it must be emphasized that no prior knowledge of control structure, gains nor bandwidth

of the RV2SQ is available. In this work, the low-level control structures are assumed to be

of cascaded PD type – as described in section 2.1.3 – with a control bandwidth fc = 5kHz.

Note that during the simulation experiments the control structure and gains used for data gen-

eration and identification are the same. Although hardly verifiable in practice, this hypothesis

has critical implications as to the convergence properties of identification algorithms that are

based on successive closed-loop DDM simulation runs such as DIDIM, CLIE, CLOE or NKF.

We considered an integrated Viscous-Coulomb friction model for both data generation and

parameter identification processes8 (c.f. Fig. 39iii). In this model, the jth component ζj of the

friction force vector ζ is expressed in the form of a linear function of two parameters, namely

the Coulomb friction force Fcj ∈ R+ and of the viscous friction coefficient Fvj ∈ R+ as

ζj(χj , q̇j) = Fcj · sign(q̇j)
︸ ︷︷ ︸

Coulomb friction

+ Fvj · q̇j
︸ ︷︷ ︸

Viscous friction

(155)

As a result, the friction coefficients can be directly included within the link’s standard dynamic

parameter vector χj ∈ R13, as shown in eq. (2). A specificity of the TX40 is the coupling

8 This choice is deliberate and justified by the results exposed in [315, 29].
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(i) Joint positions of the simulated TX40 robot. (ii) Control torques of the simulated TX40 robot.

(iii) Friction characteristic of the simulated TX40 robot (without
coupling between the joints 5 and 6).

Figure 39 Experiment data obtained from of the simulation engine with a model of the TX40 industrial robot.

existing between the joints 5 and 6 of the robot. As explained in [67], this can be accounted for

using two additional friction parameters denoted Fvm6 and Fcm6. Although it was decided

to neglect this coupling during the simulation experiments, this was later taken into account

during the validation phase on the real robot. In the context of simulation experiments, the

model generation step resulted in a vector β ∈ R52 of the base dynamic parameters for

each robot. During the validation experiments on the TX40, this base parameter vector was

of dimension 54 due to Fvm6 and Fcm6. It is worth noting that in the more general case

where joint friction is nonlinear, provided that the friction model is not load dependent, the IDM

given by (1) can be identified using a separable approach as suggested by [315, 47]. The

detail of such method being out of the scope of this chapter, the reader is redirected to [316]

and the references therein for a more detailed review of friction modeling and identification.

The reference trajectories used for the experiments were generated using the optimization

method presented in section 5.2.2 with the gains k1 = 1 and k2 = 100, and over a time

horizon of 10s. Two trajectories are considered for each robot, for identification and validation

purposes respectively. The generation of experiment data is carried out using Runge-Kutta
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fixed-step integration (RK4) of the close-loop DDM (c.f. Figs.39i and 39ii). The computations

were realized using Matlab R2020a on a AMD-Threadripper 1920X workstation with 32GB

of RAM. When possible the parallel computing toolbox from Matlab was used, alongside

with the Matlab C/C++ Coder to enhance the execution speed of concatenated for-loops,

which are found in sigma-point Kalman filters. The number of parallel threads allocated to

each algorithm was limited to six, for repeatability reasons. It is worth mentioning that the

closed-loop model simulations required by some of identification algorithms – such as IDIM-

IV, DIDIM, CLIE, CLOE or NKF – were carried out at the same frequency fc as in the data

generation process. Nevertheless in this case, the DDM time integration was performed using

an Euler (RK1) algorithm for performance reasons9.

The obtained closed-loop simulation data was then sampled and decimated at the very same

frequencies as in the experiments, before being used in the corresponding algorithms. In

order to obtain statistically relevant data, the simulation experiments were executed following

a Monte Carlo scheme, consisting in a set of b independent runs, where b denotes the dimen-

sion of the base parameter vector β. For each method and each independent run, the identi-

fication process was repeated 25 times with different initial parameter vectors, in order to in-

vestigate the sensitivity to initial conditions, eventually resulting in a total ofM = 25 ·b = 1300

runs for each identification method and on each robot. The 25 initial parameter vectors were

obtained using the values of the reference parameters (i.e. used for the collection of sim-

ulation data) distorted by a relative error of 15%, which is representative of the tolerances

obtained with computer-aided design (CAD) software. The validation experiments were per-

formed on the real robots. In this case, the identification methods requiring an initial param-

eter estimate – namely IDIM-IV, DIDIM, CLOE, CLIE, ML, NKF, AdaNN and HTRNN – were

initialized using the filtered IDIM-OLS estimate.

5.3.2. Selected Figures of Merit for Performance Evaluation

Besides the element-wise errors between the reference parameter vector βref and the esti-

mated parameter vector β̂, we define the following figures of merit (FOM), in order to quantify

the performance of the evaluated parameter identification algorithms:

1. the average relative angle difference dq defined as

dq =
1

N

N∑

k=1

∥
∥
∥qβref

(tk)− qβ̂(tk)
∥
∥
∥
2
/
∥
∥
∥qβref

(tk)
∥
∥
∥
2

(156)

where qβref
and q

β̂
are obtained respectively by direct measurements on a – real or

simulated – robot and closed-loop noise-free simulation of the DDM using the estimated

parameter vector β̂,

9 Aside the significantly larger computation time, no significant difference was noticed in the identification results
when using more advanced integration algorithms, such as RK2 or RK4.
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2. the average relative torque difference dτ defined as

dτ =
1

N

N∑

k=1

∥
∥
∥τβref

(tk)− τ β̂
(tk)

∥
∥
∥
2
/
∥
∥
∥τβref

(tk)
∥
∥
∥
2

(157)

where τβref
(tk) is the measured torque and τ

β̂
(tk) = Yβ(q̈d(tk), q̇d(tk), qd(tk))β̂, ∀k =

{1, · · · , N},

3. the mean total time dt that is required to compute one parameter estimate,

4. the mean number dNit
of iterations until convergence,

5. the mean number dNsim
of model simulations (for methods which require it).

In the context of Monte Carlo experiments, we will discuss the mean values and standard

deviations of these different figures of merit across the M = 1300 runs.

5.3.3. Implementation details

5.3.3.1 IDIM-OLS, -WLS, -IRLS and -TLS implementations:

Besides IDIM-OLS, -WLS and -IRLS, BIRDy features an implementation of the Total Least-

Squares IDIM-TLS algorithm. For each of these methods, two distinct experimental scenarios

were considered. In the first scenario, the least-squares methods were executed directly on

the raw – unfiltered – data set q̈m, q̇m, qm, τm obtained by successive central differentiation

and parallel decimation of q̃, τ̃ . In the second scenario, identification was carried out using

the filtered signals. Data filtering was implemented in a similar fashion as in [11, 27], namely

through zero-lag Butterworth band-pass filtering of the raw joint positions10 signal q̃ in the

range [0, ωf ], followed by one (resp. two) zero-shift central differentiation steps, to obtain the

corresponding joint velocities and accelerations. We here used the “filtfilt” Matlab function

to implement the desired zero-lag forward-backward Butterworth filter with a bandwidth of

50Hz.

5.3.3.2 ML implementation:

Similarly to the IDIM-LS methods, two different variations of the ML identification algorithm

were evaluated, namely with and without data filtering. In the proposed implementation of

the ML identification method, the values of the diagonal variance matrix σ2
k are set based

on variance measurements of the error signal between the measured joint derivatives q̃, ˜̇q, ˜̈q

and the simulation reference q, q̇, q̈. Note that it is usually difficult to obtain the value of

σ2
k on a real system as the reference quantities q, q̇, q̈ are not available. The resolution of

the nonlinear optimization problem eq. (32) is carried out using the Levenberg-Marquardt

algorithm through the lsqnonlin function from the Matlab Optimization Toolbox. The Jacobian

matrices Gk are computed numerically, with finite differences and a tolerance of 10−7. The

10Note that in general, only the joint positions are filtered and the raw – potentially decimated – torque values τ̃
are used directly.
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algorithm stops once any of the following criteria is reached:

•
(∥
∥ρi+1

ML

∥
∥
2
−
∥
∥ρiML

∥
∥
2

)
/
∥
∥ρiML

∥
∥
2
< tol1 where ρiML denotes the error at iteration i, de-

fined following eq. (32) as ρiML =
1

2

N∑

k=1

ε⊤(tk)
(

Gkσ
2
kG

⊤
k

)−2
ε(tk);

• max
j

∣
∣
∣

(

β̂
i+1
ML(j)− β̂

i

ML(j)
)

/β̂
i

IV (j)
∣
∣
∣ < tol2, ∀β̂i

ML(j) 6= 0 with j the index and i the

iteration number.

• maximum number of iterations: imax = 10;

where the values of the function tolerance tol1 and step tolerance tol2 are set according to

the guidelines given in [40]. In our case, we have tol1 = 0.1% and tol2 = 2.5%.

5.3.3.3 IDIM-IV implementation:

The IDIM-IV method is only executed on the unfiltered data set. The instrument matrix Zi at

iteration i is filled with the noise-free simulated data, obtained by integration of the closed-loop

DDM using the current parameter estimate β̂
i−1
IV (c.f. equation (27)). The control structure and

gains are the same as those used during the experiment data generation process. Integration

is carried out using the Euler (RK1) at the rate fc = 5kHz of the data generation loop. The

data pre-processing step only involves sampling and decimation, in order to fit the sampled

data-set. To stop the sequence of linear LS problems solved by the IDIM-IV method, a set of

three stop criteria are implemented:

•
(∥
∥ρi+1

IV

∥
∥
2
−
∥
∥ρiIV

∥
∥
2

)
/
∥
∥ρiIV

∥
∥
2
< tol1 where ρiIV denotes the error at iteration i, defined

as ρiIV = yτ −W (i−1)β̂
i

IV ;

• max
j

∣
∣
∣

(

β̂
i+1
IV (j)− β̂i

IV (j)
)

/β̂
i

IV (j)
∣
∣
∣ < tol2, ∀β̂i

IV (j) 6= 0 with j the index and i the itera-

tion number;

• maximum number of iterations: imax = 10.

where the values of the function tolerance tol1 and step tolerance tol2 are set according to

the guidelines given in [29, 47]. In our case, we have tol1 = 2.5% and tol2 = 2.5%.

5.3.3.4 DIDIM implementation:

Similarly to the IDIM-IV, the simulation data are obtained by Euler (RK1) integration of the

closed-loop DDM at a rate of 5kHz. The following three stop criteria were implemented within

the DIDIM method:

•
(∥
∥ρi+1

DIDIM

∥
∥
2
−
∥
∥ρiDIDIM

∥
∥
2

)
/
∥
∥ρiDIDIM

∥
∥
2
< tol1 where ρiDIDIM denotes the torque

error at iteration i, defined as ρiDIDIM = yτ −W (i−1)
s β̂

i

DIDIM . Note that unlike IDIM-IV,

we here make use of the simulated joint positions to compute the observation matrix;
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• max
j

∣
∣
∣

(

β̂
i+1
DIDIM (j)− β̂i

DIDIM (j)
)

/β̂
i

DIDIM (j)
∣
∣
∣ < tol2, ∀β̂i

DIDIM (j) 6= 0 with j the pa-

rameter index and i the iteration number;

• maximum number of iterations: imax = 10.

where the values of the function tolerance tol1 and step tolerance tol2 are set according to

the guidelines given in [66], namely tol1 = 2.5% and tol2 = 2.5%.

5.3.3.5 Relevant details of the CLIE and CLOE implementations:

The proposed implementation of CLIE and CLOE makes use of the Levenberg-Marquardt

algorithm, and is implemented using the lsqnonlin function from the Matlab Optimization Tool-

box. The algorithm stops once any of the following criteria is reached:

•
(∥
∥ρi+1

∥
∥
2
−
∥
∥ρi

∥
∥
2

)
/
∥
∥ρi

∥
∥
2
< tol1 where ρi denotes the error at iteration i. In the case

of CLIE one has, ρi = εiCLIE as defined in (39) while in the case of CLOE, we have

ρi = ε
i
CLOE as defined in (36).

• max
j

∣
∣
∣(β̂

i+1
CLIE(j)− β̂

i

CLIE(j))/β̂
i

CLIE(j)
∣
∣
∣ < tol2, (resp. max

j

∣
∣
∣(β̂

i+1
CLOE(j)− · · ·

· · · β̂i

CLOE(j))/β̂
i

CLOE(j)
∣
∣
∣ < tol2), ∀β̂i

CLIE(j) 6= 0 (resp. β̂
i

CLOE(j) 6= 0) with j the

parameter index and i the iteration number;

• maximum number of iterations: imax = 10.

where the values of the function tolerance tol1 and step tolerance tol2 are set according to

the guidelines given in [47]. In our case, we have tol1 = 2.5% and tol2 = 2.5%. Note that

although only the Levenberg-Marquardt approach is investigated in this chapter, BIRDy actu-

ally contains multiple CLIE and CLOE implementations, based on genetic algorithm, particle

swarm optimization and the Nelder-Mead nonlinear simplex methods. These methods could

be easily implemented using respectively the ga, particleswarm and fminsearch function from

the Matlab Optimization Toolbox.

5.3.3.6 DDIM-NKF implementation:

Based on the guidelines of [76], it was decided to exploit the joint filtering approach to parame-

ter identification. BIRDy actually features multiple flavors of nonlinear Kalman filters, namely

the Extended Kalman Filter (EKF), the Unscented Kalman Filter (UKF), the Central Differ-

ence Kalman Filter (CDKF), the bootstrap Particle Filter (PF) as well as the improved numer-

ically stable implementations of these filters, known as Square Root Extended Kalman Filter

(SREKF), Square Root Unscented Kalman Filter (SRUKF), and Square Root Central Differ-

ence Kalman Filter (SRCDKF). Aside the particle filter – whose results were rather unsatisfac-

tory – each of these methods were considered in this work. We used the same set of tuning

parameters for each filter. The initial covariance matrix P 0 and the process noise covariance

matrix Q are respectively given by: P 0 = diag
([
p1 · 1n×n p2 · 1n×n 0.15 · diag(

∣
∣β0

∣
∣+ ǫ)

])

and Q = diag ([q1 · 1n×n q1 · nd/f · 1n×n q2 · 1p×p]), where β0 refers to the initial parame-

ter estimate, ǫ ∈ Rb
+ provides additional tolerance for small values of β̂0, f is the sampling
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frequency and nd is the decimation rate. The scalar values (p1, p2) and (q1, q2) were set

heuristically to (0.1, 0.1) and
(
10−4, 10−5

)
respectively. Following the ideas developed in

[76], q2 was annealed during identification. The initial measurement noise covariance matrix

R is given by R = σ2q · 1n×n (in rad2) according to the data generation procedure. The Ja-

cobian matrices of the EKF and SREKF are computed numerically, with finite differences and

a tolerance of 10−7. The tuning coefficients of the UKF and SRUKF, referred to as (α, β, κ)

in [76], were set to
(
10−2, 2, 0

)
respectively. Finally, the tuning coefficient h of the CDKF and

SRCDKF, is set to h =
√
3, following the recommendations of [76].

5.3.3.7 AdaNN implementation:

BIRDy features two different implementations of the Adaline neural network, namely with clas-

sic11 gradient descent and with stochastic gradient descent. In this work, we considered the

stochastic gradient descent implementation. In this implementations, the data is reshuffled

at each training epoch in order to avoid cycles. Similarly to IDIM-OLS methods, two execu-

tions of the AdaNN were considered, namely with and without joint position data band-pass

filtering. The maximum number of training epochs was set heuristically to 10 ·N .

5.3.3.8 HTRNN implementation:

Similarly to IDIM-OLS and AdaNN methods, two versions of the HTRNN were implemented,

namely with and without data filtering. The practical implementation of the HTRNN parameter

estimator simply consists in re-injecting eq. (51) into eq. (49). As explained in [92], special

attention must be given to the parameter bounds, defined by α. In our case, we selected α =

1.5 ·max
(

|β̂0|+ ǫ
)

, in order to account for the uncertainty in the initial parameter estimate

β̂0, where ǫ ∈ Rb
+ provides additional tolerance for small values of β̂0. The maximum number

of training epochs was set heuristically to 10 ·N . Finally the learning rate η ∈ R⋆
+ was set to

η = 10−6 for the experiments performed on the TX40 and to η = 10−7 for the experiments

performed on the RV2SQ robot.

5.3.3.9 Physically Consistent PC-OLS, -WLS, -IRLS, -IV and -DIDIM implementations:

In this work, we used the CVX optimization framework ([317]) alongside with MOSEK ([318])

in order to solve the SDP (64), (66) and (65) subject to physicality constraints. As previ-

ously, PC-IDIM-OLS, -WLS and -IRLS were tested with and without data filtering and the

tolerances in PC-DIDIM and PC-IDIM-IV were set to the same level as DIDIM and IDIM-IV.

When activated, the regularization factor λ was set to a value of λ = 10−2 and was otherwise

maintained to zero.

5.3.4. Case study on the simulated TX40 and RV2SQ

In this work, we executed a set of fifteen different Monte Carlo Simulations (MCS) experi-

ments, each containing 1300 runs. The same identification methods were executed on the

11By classic, we refer to the fact that the whole observation matrix is used in the gradient computation, unlike the
stochastic gradient, where only one sample of W is considered.
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MCS experimental conditions TX40 decim 1 TX40 decim 4 RV2SQ decim 1

σq = 10−4rad,στ = 5 · 10−2N.m MCS-TX40-1-1 MCS-TX40-4-1 MCS-RV2SQ-1-1

σq = 10−3rad,στ = 5 · 10−2N.m MCS-TX40-1-2 MCS-TX40-4-2 MCS-RV2SQ-1-2

σq = 10−2rad,στ = 5 · 10−2N.m MCS-TX40-1-3 MCS-TX40-4-3 MCS-RV2SQ-1-3

σq = 10−3rad,στ = 10−1N.m MCS-TX40-1-4 MCS-TX40-4-4 MCS-RV2SQ-1-4

σq = 10−2rad,στ = 10−1N.m MCS-TX40-1-5 MCS-TX40-4-5 MCS-RV2SQ-1-5

Table 1 Overview and naming convention of the different experiments performed during the the MCS. The first row of the table
refers to noise conditions that are close to what can be encountered on an industrial robot manipulator. The four other rows
explore the performance of identification in case of substantially higher joint position and torque noise levels.

TX40 and on the RV2SQ for data decimation frequencies of 500Hz and 100Hz – correspond-

ing to decimation ratios of 1 and 4 – and under five different joint-position and torque noise

levels. The detail of the different experiment conditions is given in Table 1. Note that the high

joint levels of position noise explored during these experiments result in substantial degra-

dation of tracking performance, visible in the results. Although interesting on a theoretical

perspective, this is however not representative of the reality of a commercial robot platform.

Given the substantial amount of generated data, only a subset of relevant results will be in-

cluded in this chapter. The reader is referred to the complementary reports for a more detailed

overview of the results of the MCS experiments.

5.3.5. Validation experiments on the real TX40 and RV2SQ

A set of validation experiments were conducted on the real Staubli TX-40 and Mitsubishi

RV2SQ robots. The aim of these experiments was to assess the performance of the differ-

ent identification algorithms presented in this chapter on real systems, with unknown sensor

characteristics, unknown control structure, and potentially non-negligible model errors stem-

ming from non-linearities in the joint friction. During these experiments, the coupling between

the fifth and sixth joint of the TX40 was considered for better precision resulting in a set of

54 base parameters as opposed to the 52 considered during the MCS experiments. In both

cases the robot drive gains were identified following the Least-Squares approach developed

by [313, 314], which consists of having the robot track a permanently exciting trajectory, both

with and without a well-known external payload, rigidly attached to the end-effector as de-

picted in Fig. 38iii in the case of the RV2SQ. Drive gain identification is made possible by

analyzing variations in the control current, sampled along the same excitation trajectories,

both with and without the external payload attached to the end-effector. A good prior knowl-

edge of the payload parameters is, of course, essential to the quality of the estimation. In

practice, this is made possible either by direct measurements or through the use of modern

CAD software, given the generally simple geometry of the payload. During the experiments,

the benchmark was executed a single time for each robot, along a dedicated validation tra-

jectory. The joint position and drive current data were sampled at a rate of 1kHz on the TX40

and at a rate of 140Hz on the RV2SQ. The detailed results of these experiments in terms of
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the values of the different figures of merit defined in section 5.3.2, are presented in tables 2,

and 3 for the real TX40 and the real RV2SQ. Finally the reconstructed torque signals for the

IDIM-IV and DIDIM methods12 are displayed on Fig. 41 for the TX40 and on Fig. 42 for the

RV2SQ.

5.4. Results, Discussion and Perspectives

This section presents the different experimental results obtained during the MCS with BIRDy

and proposes possible interpretations based on quantitative criteria.

5.4.1. Analysis and Discussion of the Results

For the sake of clarity, the present discussion is organized around a set of specific compari-

son points, namely the noise-immunity, the estimation accuracy, convergence properties and

finally the computational cost. These comparison points will be discussed within three dedi-

cated sub-sections. Note that due to the substantial amount of experimental results obtained

during the MCS, only the most relevant graphs and result tables are actually included as part

of this thesis. Other graphs and experimental results mentioned in the discussion are made

available to the reader in a dedicated online database (c.f. Appendix D.1).

5.4.1.1 Noise Immunity

The Monte Carlo simulation results in terms of the different figures of merit shown in the ta-

bles of the supplementary material for different levels of noise clearly indicate that the AdaNN,

HTRNN, ML, IDIM-OLS, -WLS, -IRLS and -TLS methods are not robust to the presence of

noise in the joint-position signal and its temporal derivatives, especially when the sampling

rate is “high”, as is for instance the case in MCS-TX40-1-1–MCS-TX40-4-5. On a theoretical

point of view, this stems from the noise-induced correlation between the observation matrix

W and the vector of sampled torque errors ε, yielding E(W⊤ε) 6= 0. The influence of data

filtering is clearly visible in Fig. 40, where a clear improvement can be observed between

IDIM-WLS without and with joint position zero-shift filtering. It should be emphasized that

since the torque noise is purely additive, it does not affect the statistical consistency of the

estimates, but rather their statistical efficiency. This can be demonstrated by noticing the sim-

ilarity between the results of MCS-TX40-1-4, MCS-TX40-4-4 and MCS-RV2SQ-1-4, (c.f. sup-

plementary material, section D.1), where the joint torque noise level is set to στ = 10−1 N·m,

with that of MCS-TX40-1-2, MCS-TX40-4-2 and MCS-RV2SQ-1-2 (c.f. supplementary ma-

terial, section D.1), where the torque noise is set to be twice as low. It should also be noted

in practice that a low torque signal-to-noise ratio (SNR) could also imply that the trajectories

are not exciting enough or that the hardware is not well designed. The most critical noise is,

actually, the one corrupting the joint angle readings as it significantly contributes to the bias

of the IDIM-LS methods. The influence of noise in the joint angle measurements is made

12Only the IDIM-IV and DIDIM reconstructed torques are displayed in the case of Fig. 41 and Fig. 42 for the sake
of clarity.
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visible within the experiments described in the first three rows of Table 1, namely in [MCS-

TX40-1-1, MCS-TX40-1-2, MCS-TX40-1-3], [MCS-TX40-4-1, MCS-TX40-4-2, MCS-TX40-4-

3], and [MCS-RV2SQ-1-1, MCS-RV2SQ-1-2, MCS-RV2SQ-1-3]. Within these experiments,

the robots are actually tracking the same excitation trajectories, with the same control laws

and initial parameter estimates, but with three different orders of magnitude in terms of joint

position noise, namely σq = 10−4 rad, σq = 10−3 rad and σq = 10−2 rad. Although the first

noise level within these experiments is consistent with observations made on actual robots,

it should be emphasized that the last two noise levels, are here only provided for indicative

purposes. In practice, re-injecting such signals into the low-level control loop of a robot would

in turn result in substantial noise in the control signals–as shown by the degraded values of

the dτ figure of merit obtained for σq = 10−3 rad and σq = 10−2 rad–eventually leading to

poor control performance.

The experimental results suggest that without data-filtering, the AdaNN, HTRNN, ML, IDIM-

OLS, -WLS, -IRLS and -TLS methods provide biased estimates that poorly – or at least

improperly – match the objective values, although the enhanced robustness of ML, IDIM-

WLS and IDIM-IRLS compared to AdaNN, HTRNN, IDIM-OLS and -TLS should be noted. In

any case, it appears that performing a tailor-made data-filtering based on a zero-shift forward-

backward Butterworth filter significantly improves the results. This can be explained by the

fact that filtering turns the noisy observation matrix W into a noise-free matrix denoted by

W nf . Loosely speaking, this breaks the correlation betweenW and the vector ε of sampled

errors. It is here worth pointing out that the use of simple forward low-pass filters generally

leads to strongly biased estimates. This is justified in [38] by the fact that the phase shift

induced by such filters is not accounted for in the IDM and is, therefore, considered to be a

modeling error yielding W 6=W nf .

The DIDIM, CLIE and CLOE methods appear to be robust in general to the measurement

noise in the joint position signal. This is usually expected since the DDM simulation step

occurring in DIDIM, IDIM-IV, CLOE and the IDM simulation occurring in CLIE are noiseless.

It should be noted that although IDIM-IV can also be considered to be robust to noise as

suggested in particular by the results of MCS-TX40-4-1 and MCS-TX40-4-2, it tends to fail

when the noise level is unreasonably high, as is for example the case in MCS-TX40-4-3 or

MCS-TX40-4-2. These observations are consistent with those published in [29]. It should

moreover be highlighted that when the sampling rate is high, typically above 500 Hz on a

robot, there might actually be a strong correlation between the measured samples, resulting

in poor conditioning of the observation matrix and consequently biased parameter estimates.

In practice, sub-sampling the signal helps breaking this correlation. Nevertheless, this should

be executed carefully as the high-frequency components of the signal tend to alias during

the process. Filtering the signal before sub-sampling, or in other words performing parallel

decimation, helps mitigating this effect. The reader is redirected toward [319] for a more de-

tailed discussion on the topic. The influence of parallel decimation is clearly visible on the

results of MCS-TX40-4-1–MCS-TX40-4-5, in the corresponding FOM tables, where one may
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observe a homogenization of the performance of the different methods with, however, the

notable exception of the Kalman filters (this specific point will be addressed in more details

within Section 5.4.1.2 of this chapter). Although the performance is already satisfactory for

IDIM-IV and even good for DIDIM in the case of standard joint position noise levels (typically

σq = 10−4 rad and σq = 10−3 rad), it should be noted that parallel decimation has a posi-

tive influence over the condition number of the Jacobian in OE algorithms as pointed in the

discussion of [28].

5.4.1.2 Estimation Accuracy

The results of the three Monte Carlo Simulation (MCS) experiments indicate that the DIDIM

and IDIM-IV methods generally tend to provide the most accurate parameter estimates,

and accordingly the best torque tracking performance in the context of standard joint posi-

tion noise levels (i.e., MCS-RV2SQ-1-1, MCS-RV2SQ-1-2, MCS-TX40-1-1, MCS-TX40-1-2,

MCS-TX40-4-1 and MCS-TX40-4-2 in the supplementary material). Note that by accuracy,

we here refer to the error βerr between the estimated parameter vector β̂ and the reference

βref used for experiment data generation. This is visible in the experiment reports, provided

alongside with this chapter (c.f. section D.1). One may of course argue that these perfor-

mances are noticeably similar to that of AdaNN, HTRNN, IDIM-OLS, -WLS, -IRLS, ML with

filtered or decimated data as well as CLIE and –to a lower extent– CLOE.

Interestingly, IDIM-IV and DIDIM does not perform as well on the real RV2SQ robot although

the resulting torque tracking performance remains satisfactory as shown in the attached ex-

periment reports. This can be explained by the rather constraining hypothesis made during

the simulation experiments, namely that the control law is well known and that these are not

model errors (e.g., friction or coupling). One may also notice that CLIE provides better results

than CLOE, which can be mainly explained by the lack of sensitivity of the simulated joint

positions and velocities against parameters’ variations due to the control. When developing

a controller, the following approximation q ≈ qd is expected which means that the controller

must be robust enough against parameters’ variations. This result agrees with those pub-

lished in [66]. Please note that when badly initialized or in the presence of modeling errors,

iterative methods such as IDIM-IV, DIDIM, CLIE, CLOE, NKF or AdaNN usually fail to con-

verge to the objective values as the internal DDM or IDM simulation process converge to

an inconsistent state. In practice, a reasonable initialization value for the parameters can

be obtained from a modern CAD software or from filtered IDIM-OLS. Although AdaNN and

IDIM-OLS are asymptotically equivalent, one may note that the results in chapters 2.1 and

22.1 of the attached experiment reports suggest that AdaNN is less efficient than IDIM-OLS

– statistically speaking – as the variance of the AdaNN estimate appears to be at least one

order of magnitude higher than that of the IDIM-OLS estimate. Finally, although the NKF iden-

tification methods provide good results in the case of the TX40 robot with undecimated data

(c.f. Table MCS-TX40-1-1), the performance of the estimator sharply deteriorates when fed

with decimated or sub-sampled data (c.f. Table MCS-TX40-4-1 and Table MCS-RV2SQ-1-1).

Nevertheless, Kalman filtering techniques generally tend –as with the CLOE method–to suf-

113



fer from the same lack of sensitivity with respect to parameters’ variations since the controller

of the simulated robot is robust against these variations as demonstrated in [38].

5.4.1.3 Convergence and Computational Complexity

The convergence of the DIDIM iterative process is fast, similar to IDIM-IV, with an average

computation time of 1 second, as a result of 4 (resp. 3) iterations on average and as many

model simulations. This is consistent with the results of [27] and [29]. Please note that this

is approximately five times higher than IDIM-OLS, which can be explained by the process of

DDM integration occurring during the simulation step within DIDIM and IDIM-IV. As expected,

physically consistent identification methods, based on semi-defined programming algorithms,

take about three times longer than their unconstrained counterparts, which is consistent with

the performance of current SDP solvers (in our case CVX with MOSEK) and aligned with the

results of [100]. It is worth noting that the number of iterations – and hence model recalcula-

tion – required by PC-IDIM-IV and PC-DIDIM are similar, in the case of proper convergence,

to that of the unconstrained IDIM-IV and DIDIM, respectively. The computation time of CLIE

and CLOE is generally about one order of magnitude higher than the unconstrained IDIM-IV

and DIDIM, which is not really surprising considering the large number E(dNsim
) of DDM

simulations required to evaluate the Jacobian at the current estimates (c.f. the different FOM

tables). Again, this is consistent with the computation time given in [66]. A careful reader will

probably notice that the computation time does not scale linearly with the number of samples,

in particular when making use of parallel decimation. This observation is a direct conse-

quence of the fact that model simulation, within IDIM-IV, DIDIM, CLIE, and CLOE is carried

out at the controller frequency, namely fc = 5 kHz. In the case of CLIE, CLOE, and ML, the

sensitivity function in the Levenberg–Marquardt optimization routine can be computed in par-

allel, thereby further increasing the execution speed. In our case, these computations were

distributed on 12 parallel threads, which was made possible thanks to the Matlab parallel

computing toolbox. Unlike the other methods, the time taken by the NKF to find a solution

scales linearly with the number of samples. In the case of sigma-point Kalman filters, the

whole distribution of prior estimates must be propagated through the nonlinear DDM. In our

case, considering the set of 52 base parameters and the 12-dimensional robot state vector,

a total of 129 sigma-points must be propagated through the DDM at each filter iteration. To

speed up the computations, we took the decision to distribute the burden on four different

threads. Finally, the sample propagation loop was compiled into a mex file to further acceler-

ate the execution speed. In this manner, the time ratio between an EKF execution and a UKF

execution could be reduced to 4.

5.4.2. General Discussion and Perspectives

5.4.2.1 On the choice of the identification algorithm

The present discussion is somehow related to the Epilogue of [54] where the author gives an

insightful presentation on what can be considered as ‘good ’, ‘bad ’ or ‘optimal ’. Even though

the underlying goal of benchmarking is to find the best identification method, a black and
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(i) Parameter errors IDIM-WLS unfiltered

(ii) Parameter errors IDIM-WLS filtered

(iii) Parameter errors PC-IDIM-WLS unfiltered

Figure 40 Illustration of the effects of filtering on IDIM-WLS in MCS-TX40-4-2.

white answer can seldom be obtained. Indeed, if the choice of a method often depends on

the circumstances of identification, namely how the dynamic parameters of a robot can be
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Figure 41 Reconstructed IDIM-IV and DIDIM torque signals during the validation experiment on the real TX40 robot.

Figure 42 Reconstructed IDIM-IV and DIDIM torque signals during the validation experiment on the real RV2SQ robot.

identified, it may sometimes depend on the final objectives of identification, or in other words

why these parameters are being identified. Based on the different Monte Carlo simulations

performed in this chapter, the IDIM-IV and DIDIM methods seem to be the most appealing

for offline identification of fixed-base robots, as they converge quickly, do not require cus-

tom data filtering, combine the inverse and direct dynamic models and are well-suited to the
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Figure 43 Decision process for parameter identification algorithm selection. Physical consistency of the estimates can be
enforced using SDP within the algorithms displayed in blue. Methods in bold caption are, or can potentially be formulated in a
recursive manner which makes them capable of running in a real-time control loop. Other methods have to be formulated in
batches to enable online implementation.

enforcement of physical constraints through semi-definite programming. Since the dynamic

models are validated simultaneously, a complete robot simulator can be obtained, making it

possible to design an accurate model-based control. Besides the fact that these algorithms

are difficult to implement in real-time control loops – thereby raising serious issues regarding

their implementation in adaptive control strategies – their main limitations directly stems from

the need for a precise knowledge of the robot’s low-level control characteristics. This de-

pendence is clearly observable when comparing the MCS results – where the control law is

assumed to be perfectly known – and that obtained with the real systems. In practice, the in-

complete knowledge regarding the true nature of the implemented low-level control loops has

tangible consequences on the behavior of the internal dynamic simulation routine of IDIM-IV

and DIDIM, and more generally of CLIE, CLOE and NKF. This in turn induces a bias in the

parameter estimates and may even in the worst case lead to a divergence in the identification

process, as the behavior of the simulation routine no longer matches that of the real sys-

tem. Note that this statement can be refined by distinguishing between the ideal case where

a good prior knowledge of the low-level control structure and gains is available, the case

where only the control structure is known, and the case where neither the control structure

nor the gains are known. In practice, knowing the structure of a controller makes it possible

to identify its gains, as exposed in [39]. The fact that IDIM-OLS, -WLS, -TLS, ML, AdaNN

and HTRNN do not require any prior knowledge of the low-level control characteristics, and

that their performance does not depend on any initial estimate or tuning coefficients, makes

them comparatively easy to implement and therefore attractive to the practitioner. It is also
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worth mentioning that NKF, IDIM-OLS and -WLS are, or can be formulated recursively and

are therefore suitable for implementation in real-time adaptive control loops. This last point

must of course be tempered by the fact that batch implementations of the remaining algo-

rithms – except CLIE, CLOE and ML which require nonlinear optimization techniques – may

also lead to real-time capable identification methods. In this context, the lack of excitability

can be addressed through suitable relaxation of the problem.

As already pointed out in [38], the main drawback of Kalman filtering techniques in the context

of parameter identification turns out to be their extreme sensitivity to the initial values of

a set of adjustment parameters, and in particular to the values of the initial process-noise

and measurement-noise covariance. In practice, the tuning process proves to be tedious

although the computed torque approach would deserve to be further investigated. Therefore,

in case the objective of identification is not the offline refinement of CAD parameters values

for reliable simulation purpose, but rather consists in developing robust controllers based on

an online rough estimation of the robot inertial parameters, the IDIM-OLS, -WLS and NKF

methods, appear to be suitable choices. It should be noted that a more detailed study of

the effects of different amplitudes or statistical distributions of noise, resulting for example

from higher quantization errors – i.e. lower sensor resolutions – would be relevant and is

here considered as future work. In terms of sampling rate, most current robot controllers

operate in the 1 kHz range, which is generally sufficient to obtain good approximations of joint

speeds and accelerations. Below 100 Hz, special care must be taken since the calculation

of joint velocities and accelerations is no longer reliable enough. In this context, interpolation

methods or the use of IDIM-IV or OE methods, based on DDM simulations – which can be

considered as a kind of data interpolation – should be preferred. The previous observations

can be summarized in the form of a flow diagram in Fig. 43.

5.4.2.2 Possible Improvements of the Proposed Benchmark

Multiple improvements of BIRDy are currently being investigated, with a focus on enhancing

the scalability of the benchmark. We indeed noticed that the current symbolic model gener-

ation engine, based on the MuPad symbolic kernel could take considerable time to generate

identification model of robots with more than 7-DOF (we so far tested the generation rou-

tine with up to 9 DOF). We moreover noticed a strong correlation of the performance of the

symbolic toolbox with the version of Matlab. A number of approaches are currently being

explored to tackle this issue, including the use of other symbolic kernels such as that of Wol-

fram Mathematica or the open-source SymPy, also used in the OpenSYMORO+ toolbox from

[320, 321]. Besides these issues, future developments of BIRDy will mainly consist in gen-

eralizing the process of identification-model computation using the Unified Robot Description

Format (URDF) rather than DH parameters, considering the use of modern highly-efficient

dynamic libraries such as the Rigid Body Dynamics Library (RBDL [322]) or the Kinematics

and Dynamics Library (KDL [323]) for model numerical simulation and eventually the inclusion

of additional sensor modalities in the process of robot identification, such as accelerometers,

gyroscopes or force sensors. On a longer time scale, the possibility of identifying parallel
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manipulators such as the stewart platforms or floating-base robots such as humanoid robots

(as for instance performed in [324, 106]) will also be explored.

5.4.2.3 What an Artificial Skin could Potentially Bring in the Context of Identification

It is worth noting that the presence of an artificial skin on a robot can potentially be used

for inertial parameter identification purposes. Indeed, although the presence of the skin it-

self modifies – sometimes considerably – the dynamic parameters of the robot to which it

is attached, it is still possible, knowing its mass properties as well as its spatial distribution,

to have a reasonable estimate of the new set of dynamic parameters of the robot, which in

turn allows to hot-start several algorithms such as CLOE. It should also be emphasized that

when a self-organizing multimodal artificial skin, such as [6], is mounted on a robot whose

CAD model is not available, the shape reconstruction functionality of the skin can potentially

be leveraged to enforce the physicality of the parameter identification process, following an

approach similar to [101, 102, 325]. In essence, the surface of the skin covering the robot

can be turned into a convex solid using a similar approach to that presented in section 2.5.4.3

in the context of self-collision avoidance. This solid can then be spatially sampled into a set

of point masses and hence be used as boundaries for the considered link CoM. More impor-

tantly, when the artificial skin is equipped with accelerometers, these can potentially be used

for online identification purposes, by allowing derivative-free computation of the estimates of

the first and second order motion derivatives used in the calculation of the regression matrix

(c.f. chapter 4). It is worth mentioning that although acceleration feedback was already lever-

aged for parameter identification purposes [326] in the context of a robot with elastic joints,

it was so far, to the best of our knowledge, never used in the case of rigid robotic systems.

Finally, the contact and pre-contact modalities of the skin could also potentially be used for

identification of a robot manipulating a payload, by providing information on the location, and

potentially the shape of the payload coupled to the robot.
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TX40, Real, decim 4 E(dq), σq E(dτ ), στ E(dt), σt E(dNit
), σNit

E(dNsim
), σNsim

IDIM-OLS 0.166% (0.07%) 19.33% (14.20%) 0.38s (13.95%) 1.00 (0.00%) N.A.

IDIM-OLS filt. 0.166% (0.07%) 19.27% (14.14%) 0.36s (4.17%) 1.00 (0.00%) N.A.

IDIM-WLS 0.165% (0.07%) 19.43% (14.33%) 0.37s (4.42%) 1.00 (0.00%) N.A.

IDIM-WLS filt. 0.165% (0.07%) 19.36% (14.24%) 0.36s (2.20%) 1.00 (0.00%) N.A.

IDIM-TLS 0.172% (0.06%) 21.51% (17.42%) 0.36s (3.07%) 1.00 (0.00%) N.A.

IDIM-TLS filt. 0.171% (0.07%) 20.84% (16.51%) 0.36s (2.81%) 1.00 (0.00%) N.A.

IRLS 0.166% (0.07%) 19.44% (14.15%) 0.52s (6.17%) 1.00 (0.00%) N.A.

IRLS filt. 0.166% (0.07%) 19.41% (14.12%) 0.39s (3.79%) 1.00 (0.00%) N.A.

ML 0.165% (0.07%) 19.29% (14.06%) 7.71s (68.72%) 1.00 (0.00%) N.A.

ML filt. 0.165% (0.07%) 19.22% (14.01%) 6.79s (38.38%) 1.00 (0.00%) N.A.

IDIM-IV 0.166% (0.07%) 19.59% (14.64%) 1.35s (2.05%) 3.00 (0.00%) 3.00 (0.00%)

DIDIM 0.162% (0.07%) 24.90% (20.83%) 1.53s (1.28%) 4.00 (0.00%) 4.00 (0.00%)

CLIE 0.171% (0.07%) 21.66% (15.78%) 48.31s (73.27%) 4.32 (83.39%) 275 (76%)

CLOE 0.172% (0.07%) 22.69% (16.32%) 29.11s (50.13%) 6.44 (55.10%) 400 (50%)

EKF 166% (58%) 26.41% (17.10%) 1.13s (2.70%) 1.00 (0.00%) N.A.

SREKF 199% (53%) 27.68% (17.28%) 1.72s (3.11%) 1.00 (0.00%) N.A.

UKF 0.167% (0.09%) 25.57% (16.78%) 4.46s (4.31%) 1.00 (0.00%) N.A.

SRUKF 0.165% (0.08%) 24.84% (16.30%) 2.25s (2.82%) 1.00 (0.00%) N.A.

CDKF 157% (70%) 23.12% (15.46%) 3.88s (4.97%) 1.00 (0.00%) N.A.

SRCDKF 0.167% (0.09%) 25.83% (16.97%) 2.82s (2.91%) 1.00 (0.00%) N.A.

ANN 0.166% (0.07%) 19.14% (13.35%) 0.56s (6.99%) 1.00 (0.00%) N.A.

ANN filt. 0.165% (0.07%) 19.14% (13.32%) 0.61s (11.60%) 1.00 (0.00%) N.A.

HTRNN 154% (53%) 448% (415%) 0.43s (3.94%) 1.00 (0.00%) N.A.

HTRNN filt. 166% (46%) 235% (214%) 0.44s (5.50%) 1.00 (0.00%) N.A.

PC-IDIM-OLS 0.166% (0.07%) 19.47% (14.35%) 0.84s (4.89%) 1.00 (0.00%) N.A.

PC-IDIM-OLS filt. 0.167% (0.07%) 19.42% (14.26%) 0.84s (5.26%) 1.00 (0.00%) N.A.

PC-IDIM-WLS 0.166% (0.07%) 19.56% (14.38%) 0.85s (4.82%) 1.00 (0.00%) N.A.

PC-IDIM-WLS filt. 0.166% (0.07%) 19.54% (14.34%) 0.85s (5.35%) 1.00 (0.00%) N.A.

PC-IDIM-IRLS 0.166% (0.07%) 19.58% (14.24%) 3.99s (7.78%) 1.00 (0.00%) N.A.

PC-IDIM-IRLS filt. 0.166% (0.07%) 19.61% (14.27%) 3.63s (7.58%) 1.00 (0.00%) N.A.

PC-IDIM-IV 0.167% (0.07%) 19.67% (14.63%) 1.88s (3.39%) 3.00 (0.00%) 3.00 (0.00%)

PC-DIDIM 0.163% (0.07%) 23.73% (18.88%) 2.84s (15.65%) 3.76 (11.59%) 3.76 (11.59%)

Table 2 Various FoM computed for the Staubli TX40 robot, with a control frequency of 5kHz, a sampling frequency of 1kHz

and a decimation frequency of 100Hz. These results are obtained using the average values E(d) and standard deviations σ

of the 1300 parameter estimates obtained during the experiments on the actual robot. Data is filtered using a Butterworth
forward-backward filter with a cutoff frequency of 50Hz.
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RV2SQ, Real, decim 1 E(dq), σq E(dτ ), στ E(dt), σt E(dNit
), σNit

E(dNsim
), σNsim

IDIM-OLS 0.261% (0.14%) 18.46% (14.80%) 0.20s (46.51%) 1.00 (0.00%) N.A.

IDIM-OLS filt. 0.261% (0.14%) 18.46% (14.80%) 0.04s (44.69%) 1.00 (0.00%) N.A.

IDIM-WLS 0.261% (0.14%) 18.43% (14.93%) 0.06s (31.14%) 1.00 (0.00%) N.A.

IDIM-WLS filt. 0.261% (0.14%) 18.43% (14.93%) 0.06s (35.19%) 1.00 (0.00%) N.A.

IDIM-TLS 0.261% (0.14%) 18.84% (15.37%) 0.03s (19.02%) 1.00 (0.00%) N.A.

IDIM-TLS filt. 0.261% (0.14%) 18.84% (15.37%) 0.04s (27.51%) 1.00 (0.00%) N.A.

IRLS 0.261% (0.14%) 18.43% (14.88%) 0.08s (10.88%) 1.00 (0.00%) N.A.

IRLS filt. 0.261% (0.14%) 18.43% (14.88%) 0.09s (11.17%) 1.00 (0.00%) N.A.

ML 0.261% (0.14%) 18.49% (14.88%) 14.57s (58.66%) 1.00 (0.00%) N.A.

ML filt. 0.261% (0.14%) 18.43% (14.76%) 11.57s (38.98%) 1.00 (0.00%) N.A.

IDIM-IV 305% (88%) 52% (37%) 3.79s (11.16%) 9.80 (10.20%) 9.80 (10.20%)

DIDIM 225% (88%) 109% (27%) 2.22s (46.69%) 6.12 (40.39%) 6.12 (40.39%)

CLIE 0.261% (0.14%) 23.62% (17.80%) 79.15s (37.45%) 5.92 (43.04%) 362 (39%)

CLOE 342% (111%) 24.24% (18.96%) 23.76s (1.11%) 1.08 (25.64%) 110 (0.00%)

EKF 0.261% (0.14%) 20.15% (16.73%) 1.82s (6.79%) 1.00 (0.00%) N.A.

SREKF 0.261% (0.14%) 20.10% (16.66%) 2.83s (5.63%) 1.00 (0.00%) N.A.

UKF 0.261% (0.14%) 21.04% (17.17%) 6.90s (3.55%) 1.00 (0.00%) N.A.

SRUKF 0.261% (0.14%) 20.77% (17.46%) 3.57s (6.42%) 1.00 (0.00%) N.A.

CDKF 271% (81%) 23.37% (18.15%) 5.71s (4.39%) 1.00 (0.00%) N.A.

SRCDKF 0.261% (0.14%) 20.65% (17.31%) 4.53s (5.74%) 1.00 (0.00%) N.A.

ANN 62% (90.03%) 18.80% (14.60%) 0.26s (8.19%) 1.00 (0.00%) N.A.

ANN filt. 0.261% (0.14%) 18.59% (14.54%) 0.27s (15.36%) 1.00 (0.00%) N.A.

HTRNN 0.261% (0.14%) 18.46% (14.80%) 0.12s (15.36%) 1.00 (0.00%) N.A.

HTRNN filt. 0.261% (0.14%) 18.46% (14.80%) 0.11s (19.52%) 1.00 (0.00%) N.A.

PC-IDIM-OLS 0.261% (0.14%) 19.49% (15.49%) 0.84s (7.13%) 1.00 (0.00%) N.A.

PC-IDIM-OLS filt. 0.261% (0.14%) 19.49% (15.49%) 0.61s (7.84%) 1.00 (0.00%) N.A.

PC-IDIM-WLS 0.261% (0.14%) 19.63% (15.87%) 0.62s (5.82%) 1.00 (0.00%) N.A.

PC-IDIM-WLS filt. 0.261% (0.14%) 19.63% (15.87%) 0.68s (15.05%) 1.00 (0.00%) N.A.

PC-IDIM-IRLS 0.261% (0.14%) 19.68% (15.97%) 3.02s (16.59%) 1.00 (0.00%) N.A.

PC-IDIM-IRLS filt. 0.261% (0.14%) 19.68% (15.97%) 3.18s (18.02%) 1.00 (0.00%) N.A.

PC-IDIM-IV 0.261% (0.14%) 19.71% (16.08%) 1.22s (3.77%) 3.00 (0.00%) 3.00 (0.00%)

PC-DIDIM 0.261% (0.14%) 19.60% (15.77%) 1.72s (18.86%) 3.24 (13.45%) 3.24 (13.45%)

Table 3 Various FoM computed for the Mitsubishi RV2SQ robot, with a control frequency of 5kHz, a sampling frequency of
140Hz and a decimation frequency of 100Hz. These results are obtained using the average values E(d) and standard
deviations σ of the 1300 parameter estimates obtained during the MCS over a set of 10s experiments, with στ = 5 ·10−2N.m

and σq = 2 · 10−6deg. Data is filtered using a Butterworth forward-backward filter with a cutoff frequency of 50Hz.
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MCS-TX40-1-1 E(dq), σq E(dτ ), στ E(dt), σt E(dNit
), σNit

E(dNsim
), σNsim

IDIM-OLS 0.010% (0.07%) 8.02% (5.82%) 0.24s (20.43%) 1.00 (0.00%) N.A.

IDIM-OLS filt. 0.001% (0.00%) 7.89% (5.78%) 0.25s (10.27%) 1.00 (0.00%) N.A.

IDIM-WLS 0.002% (0.01%) 7.94% (5.80%) 0.49s (6.39%) 1.00 (0.00%) N.A.

IDIM-WLS filt. 0.001% (0.00%) 7.90% (5.79%) 0.51s (10.55%) 1.00 (0.00%) N.A.

IDIM-TLS 0.018% (0.11%) 8.25% (6.00%) 0.19s (12.27%) 1.00 (0.00%) N.A.

IDIM-TLS filt. 0.005% (0.01%) 7.97% (5.85%) 0.20s (15.31%) 1.00 (0.00%) N.A.

IRLS 0.002% (0.01%) 7.93% (5.80%) 1.03s (12.05%) 1.00 (0.00%) N.A.

IRLS filt. 0.001% (0.00%) 7.90% (5.79%) 0.70s (9.61%) 1.00 (0.00%) N.A.

ML 0.010% (0.07%) 8.02% (5.82%) 33.82s (26.18%) 1.00 (0.00%) N.A.

ML filt. 0.001% (0.00%) 7.89% (5.78%) 30.46s (26.30%) 1.00 (0.00%) N.A.

IDIM-IV 0.001% (0.00%) 7.89% (5.79%) 1.47s (8.78%) 3.00 (0.00%) 3.00 (0.00%)

DIDIM 0.001% (0.00%) 7.90% (5.79%) 1.94s (20.72%) 3.50 (14.30%) 3.50 (14.30%)

CLIE 0.006% (0.01%) 8.17% (5.88%) 20.65s (63.73%) 3.15 (76.98%) 204 (67%)

CLOE 0.008% (0.02%) 8.29% (5.93%) 25.50s (68.32%) 4.60 (75.93%) 284 (68%)

EKF 0.002% (0.01%) 7.91% (5.79%) 14.69s (10.40%) 1.00 (0.00%) N.A.

SREKF 0.002% (0.01%) 7.91% (5.79%) 17.20s (8.35%) 1.00 (0.00%) N.A.

UKF 0.012% (0.10%) 8.10% (5.99%) 50.87s (11.94%) 1.00 (0.00%) N.A.

SRUKF 0.007% (0.05%) 8.02% (5.94%) 20.50s (4.36%) 1.00 (0.00%) N.A.

CDKF 0.004% (0.01%) 8.15% (6.12%) 24.90s (21.58%) 1.00 (0.00%) N.A.

SRCDKF 0.003% (0.01%) 7.99% (5.93%) 15.55s (2.05%) 1.00 (0.00%) N.A.

AdaNN 414% (1194%) 8.10% (5.85%) 0.28s (8.20%) 1.00 (0.00%) N.A.

AdaNN filt. 0.001% (0.00%) 7.90% (5.79%) 0.30s (7.84%) 1.00 (0.00%) N.A.

HTRNN 0.010% (0.07%) 8.02% (5.82%) 0.17s (9.16%) 1.00 (0.00%) N.A.

HTRNN filt. 0.001% (0.00%) 7.89% (5.79%) 0.19s (8.51%) 1.00 (0.00%) N.A.

PC-IDIM-OLS 0.004% (0.01%) 7.99% (5.78%) 2.33s (4.71%) 1.00 (0.00%) N.A.

PC-IDIM-OLS filt. 0.003% (0.01%) 8.02% (5.79%) 2.36s (3.54%) 1.00 (0.00%) N.A.

PC-IDIM-WLS 0.003% (0.01%) 8.01% (5.79%) 2.60s (3.66%) 1.00 (0.00%) N.A.

PC-IDIM-WLS filt. 0.003% (0.00%) 8.03% (5.80%) 2.59s (3.58%) 1.00 (0.00%) N.A.

PC-IDIM-IRLS 0.003% (0.01%) 8.01% (5.80%) 9.15s (32.58%) 1.00 (0.00%) N.A.

PC-IDIM-IRLS filt. 0.003% (0.00%) 8.03% (5.80%) 7.02s (38.34%) 1.00 (0.00%) N.A.

PC-IDIM-IV 0.003% (0.01%) 8.03% (5.80%) 1.97s (4.77%) 3.00 (0.00%) 3.00 (0.00%)

PC-DIDIM 0.003% (0.01%) 8.03% (5.80%) 5.42s (21.50%) 3.41 (14.43%) 3.41 (14.43%)

Table 4 Various FoM computed for the Staubli TX40 model, with a control frequency of 5kHz, a sampling frequency of 1kHz

and a decimation frequency of 500Hz. These results are obtained using the average values E(d) and standard deviations σ

of the 1300 parameter estimates obtained during the MCS over a set of 10s experiments, with στ = 5 · 10−2N.m and
σq = 2 · 10−6deg. Data is filtered using a Butterworth forward-backward filter with a cutoff frequency of 50Hz.
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MCS-TX40-4-1 E(dq), σq E(dτ ), στ E(dt), σt E(dNit
), σNit

E(dNsim
), σNsim

IDIM-OLS 0.001% (0.00%) 7.89% (5.79%) 0.60s (12.33%) 1.00 (0.00%) N.A.

IDIM-OLS filt. 0.001% (0.00%) 7.89% (5.79%) 0.59s (5.20%) 1.00 (0.00%) N.A.

IDIM-WLS 0.001% (0.00%) 7.89% (5.79%) 0.71s (5.96%) 1.00 (0.00%) N.A.

IDIM-WLS filt. 0.001% (0.00%) 7.90% (5.79%) 0.73s (7.48%) 1.00 (0.00%) N.A.

IDIM-TLS 0.001% (0.00%) 7.90% (5.80%) 0.62s (6.37%) 1.00 (0.00%) N.A.

IDIM-TLS filt. 0.002% (0.00%) 7.90% (5.80%) 0.60s (10.77%) 1.00 (0.00%) N.A.

IRLS 0.001% (0.00%) 7.89% (5.79%) 0.68s (12.45%) 1.00 (0.00%) N.A.

IRLS filt. 0.001% (0.00%) 7.90% (5.79%) 0.68s (11.85%) 1.00 (0.00%) N.A.

ML 0.003% (0.01%) 7.91% (5.76%) 7.72s (24.42%) 1.00 (0.00%) N.A.

ML filt. 0.003% (0.01%) 7.91% (5.76%) 7.88s (24.40%) 1.00 (0.00%) N.A.

IDIM-IV 0.001% (0.00%) 7.89% (5.79%) 1.99s (7.40%) 3.00 (0.00%) 3.00 (0.00%)

DIDIM 0.001% (0.00%) 7.90% (5.79%) 2.39s (7.57%) 4.00 (0.00%) 4.00 (0.00%)

CLIE 0.006% (0.01%) 8.13% (5.86%) 45.61s (60.06%) 3.97 (73.23%) 254 (63%)

CLOE 0.009% (0.02%) 8.29% (5.92%) 29.76s (62.35%) 5.73 (68.47%) 344 (62%)

EKF 0.011% (0.01%) 8.37% (5.73%) 3.78s (6.34%) 1.00 (0.00%) N.A.

SREKF 0.011% (0.02%) 8.34% (5.74%) 8.03s (5.00%) 1.00 (0.00%) N.A.

UKF 442% (1015%) 10.41% (6.25%) 20.04s (10.90%) 1.00 (0.00%) N.A.

SRUKF 0.005% (0.01%) 7.99% (5.75%) 7.38s (2.12%) 1.00 (0.00%) N.A.

CDKF 429% (984%) 9.10% (5.91%) 11.51s (1.83%) 1.00 (0.00%) N.A.

SRCDKF 0.006% (0.01%) 8.02% (5.75%) 9.13s (4.43%) 1.00 (0.00%) N.A.

AdaNN 0.001% (0.00%) 7.90% (5.79%) 0.87s (2.32%) 1.00 (0.00%) N.A.

ANN filtered 0.001% (0.00%) 7.89% (5.79%) 0.88s (1.75%) 1.00 (0.00%) N.A.

HTRNN 0.019% (0.06%) 9.07% (6.56%) 0.57s (8.49%) 1.00 (0.00%) N.A.

HTRNN filt. 0.020% (0.06%) 9.05% (6.54%) 0.53s (6.98%) 1.00 (0.00%) N.A.

PC-IDIM-OLS 0.003% (0.01%) 8.01% (5.79%) 1.29s (4.71%) 1.00 (0.00%) N.A.

PC-IDIM-OLS filt. 0.003% (0.01%) 8.02% (5.79%) 1.29s (4.67%) 1.00 (0.00%) N.A.

PC-IDIM-WLS 0.003% (0.01%) 8.03% (5.80%) 1.36s (4.94%) 1.00 (0.00%) N.A.

PC-IDIM-WLS filt. 0.003% (0.00%) 8.02% (5.79%) 1.35s (4.98%) 1.00 (0.00%) N.A.

PC-IDIM-IRLS 0.003% (0.01%) 8.04% (5.81%) 3.06s (36.66%) 1.00 (0.00%) N.A.

PC-IDIM-IRLS filt. 0.003% (0.00%) 8.03% (5.80%) 2.87s (33.21%) 1.00 (0.00%) N.A.

PC-IDIM-IV 0.003% (0.01%) 8.03% (5.80%) 3.29s (6.94%) 3.00 (0.00%) 3.00 (0.00%)

PC-DIDIM 0.003% (0.01%) 8.03% (5.80%) 4.12s (7.10%) 3.95 (5.35%) 3.95 (5.35%)

Table 5 Various FoM computed for the Staubli TX40 model, with a control frequency of 5kHz, a sampling frequency of 1kHz

and a decimation frequency of 100Hz. These results are obtained using the average values E(d) and standard deviations σ

of the 1300 parameter estimates obtained during the MCS over a set of 10s experiments, with στ = 5 · 10−2N.m and
σq = 2 · 10−6deg. Data is filtered using a Butterworth forward-backward filter with a cutoff frequency of 50Hz.
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MCS-RV2SQ-1-1 E(dq), σq E(dτ ), στ E(dt), σt E(dNit
), σNit

E(dNsim
), σNsim

IDIM-OLS 244% (133%) 13.66% (9.54%) 0.06s (27.91%) 1.00 (0.00%) N.A.

IDIM-OLS filt. 206% (160%) 13.67% (9.55%) 0.06s (22.57%) 1.00 (0.00%) N.A.

IDIM-WLS 0.004% (0.00%) 12.15% (9.41%) 0.09s (22.29%) 1.00 (0.00%) N.A.

IDIM-WLS filt. 0.004% (0.00%) 12.16% (9.41%) 0.09s (10.86%) 1.00 (0.00%) N.A.

IDIM-TLS 281% (97%) 17.47% (12.14%) 0.05s (9.30%) 1.00 (0.00%) N.A.

IDIM-TLS filt. 270% (91%) 17.47% (12.14%) 0.05s (9.38%) 1.00 (0.00%) N.A.

IRLS 0.004% (0.00%) 11.55% (9.07%) 0.19s (11.21%) 1.00 (0.00%) N.A.

IRLS filt. 0.004% (0.00%) 11.56% (9.07%) 0.19s (9.59%) 1.00 (0.00%) N.A.

ML 211% (160%) 13.63% (9.54%) 7.97s (29.11%) 1.00 (0.00%) N.A.

ML filt. 207% (160%) 13.64% (9.55%) 8.64s (27.34%) 1.00 (0.00%) N.A.

IDIM-IV 0.006% (0.01%) 13.65% (10.25%) 1.16s (8.86%) 3.96 (4.86%) 3.96 (4.86%)

DIDIM 0.003% (0.00%) 10.85% (8.90%) 2.17s (30.83%) 6.80 (26.66%) 6.80 (26.66%)

CLIE 0.004% (0.00%) 10.85% (8.86%) 31.43s (17.95%) 5.87 (18.91%) 364 (16.69%)

CLOE 0.003% (0.00%) 10.83% (8.86%) 45.01s (3.28%) 9.02 (1.46%) 530 (1.32%)

EKF 0.004% (0.00%) 12.21% (9.41%) 1.64s (7.36%) 1.00 (0.00%) N.A.

SREKF 0.004% (0.00%) 12.21% (9.41%) 3.29s (6.53%) 1.00 (0.00%) N.A.

UKF 0.004% (0.00%) 12.21% (9.43%) 8.47s (3.84%) 1.00 (0.00%) N.A.

SRUKF 0.004% (0.00%) 12.24% (9.42%) 4.04s (5.83%) 1.00 (0.00%) N.A.

CDKF 0.005% (0.00%) 12.40% (9.46%) 10.34s (26.43%) 1.00 (0.00%) N.A.

SRCDKF 291% (114%) 12.26% (9.37%) 7.32s (26.02%) 1.00 (0.00%) N.A.

AdaNN 0.005% (0.00%) 12.04% (8.85%) 0.81s (1.83%) 1.00 (0.00%) N.A.

AdaNN filt. 0.005% (0.00%) 12.23% (8.92%) 0.71s (31.05%) 1.00 (0.00%) N.A.

HTRNN 104% (73%) 13.48% (9.40%) 0.28s (15.99%) 1.00 (0.00%) N.A.

HTRNN filt. 211% (160%) 13.49% (9.40%) 0.24s (39.32%) 1.00 (0.00%) N.A.

PC-IDIM-OLS 0.007% (0.01%) 13.65% (9.42%) 1.60s (26.12%) 1.00 (0.00%) N.A.

PC-IDIM-OLS filt. 0.007% (0.01%) 13.66% (9.43%) 1.65s (23.05%) 1.00 (0.00%) N.A.

PC-IDIM-WLS 0.004% (0.00%) 12.06% (9.32%) 0.57s (8.07%) 1.00 (0.00%) N.A.

PC-IDIM-WLS filt. 0.004% (0.00%) 12.06% (9.32%) 0.58s (7.69%) 1.00 (0.00%) N.A.

PC-IDIM-IRLS 0.004% (0.00%) 11.50% (9.05%) 3.36s (2.14%) 1.00 (0.00%) N.A.

PC-IDIM-IRLS filt. 0.004% (0.00%) 11.50% (9.05%) 3.47s (2.94%) 1.00 (0.00%) N.A.

PC-IDIM-IV 0.005% (0.01%) 12.86% (9.57%) 5.23s (37.02%) 3.42 (14.44%) 3.42 (14.44%)

PC-DIDIM 0.003% (0.00%) 10.82% (8.86%) 5.00s (30.33%) 6.73 (26.08%) 6.73 (26.08%)

Table 6 Various FoM computed for the Mitsubishi RV2SQ model, with a control frequency of 5kHz, a sampling frequency of
140Hz and a decimation frequency of 100Hz. These results are obtained using the average values E(d) and standard
deviations σ of the 1300 parameter estimates obtained during the MCS over a set of 10s experiments, with στ = 5 ·10−2N.m

and σq = 2 · 10−6rad. Data is filtered using a Butterworth forward-backward filter with a cutoff frequency of 50Hz.
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5.5. Summary

In this chapter, a sample of the most popular approaches to inertial parameter identification

for fixed-based robotic systems is evaluated and benchmarked. These methods are IDIM-

OLS, IDIM-WLS, IDIM-IRLS, IDIM-TLS, ML, IDIM-IV, DIDIM, CLIE, CLOE, EKF, SREKF,

UKF, SRUKF, CDKF, SRCDKF, AdaNN, HTRNN, PC-IDIM-OLS, PC-IDIM-WLS, PC-IDIM-

IRLS, PC-DIDIM and PC-IDIM-IV. Each method is implemented and evaluated experimen-

tally within a dedicated framework, named BIRDy, which was specifically developed for this

purpose. BIRDy features a complete identification pipeline, allowing one to generate the kine-

matic and dynamic models of a given robot, to compute a trajectory that excites its dynamic

parameters, to simulate the system’s behavior along this trajectory, collect experimental data

under well-defined conditions, proceed to parameter identification using a pool of dedicated

algorithms and eventually to compare the identification performances using a set of suitable

metrics. In this work, we used BIRDy to perform Monte Carlo simulations on two models

of 6-DoF industrial robot manipulators, namely the Staubli TX40 and the Mitsubishi RV2SQ.

Experiments were also carried out on the real robots, thereby providing helpful insight on the

influence of multiple factors, including prior knowledge of the control architecture, sampling

frequency, or friction model. The results allow to provide a set of general guidelines based

on quantitative arguments regarding the applicability of a given identification method to a

particular experimental context.
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Chapter 6

Online Physically-Consistent Parameter

Identification: Leveraging Multimodal Tactile

Feedback

This chapter introduces a concept of online physically consistent identification routine, trig-

gered by a multimodal artificial skin. The proposed identification algorithm leverages an

alternative formulation of the robot base inertial parameters in order to provide physically

consistent estimates without explicitly formulating the constraints. As a result, the complete

physically consistent identification problem can be formulated as a sequence of Quadratic

Programs (SQP) and solved online on the robot. The Riemannian structure of the parameter

physicality set is leveraged for both relaxation and interpolation purposes. The artificial skin

covering the robot enables relevant simplifications of the identification problem in the context

of whole-body manipulation and can moreover be used for hot-starting the SQP identifica-

tion process. This chapter is structured as follows: Section 6.1 introduces the motivation

an related works. Section 6.2 provides a short introduction to some of the main concepts

of Riemannian geometry and on their applications to the field of physically consistent iner-

tial parameter identification. Section 6.3 then presents the proposed identification method

and discusses how a self-calibrating artificial robot skin can be leveraged for both offline and

online identification purposes. Convergence and performance of the proposed identification

algorithm are investigated in section 6.4 using the BIRDy identification framework. Finally

section 6.5 describes the experiments executed on a real humanoid robotic system.

6.1. Leveraging Distributed Tactile Feedback for Online

Identification and Adaptive Stabilization Purposes

6.1.1. Motivation and Related Works

To become part of human society, humanoid robots must be endowed with human-like levels

of adaptability, implying in particular the capability of adjusting their control or stabilization

strategy based on the context in which they operate. This inevitably raises multiple chal-

lenges, not only in terms of control design, but also in terms of perception and planning. The

fundamental principles underlying adaptive control of robot manipulators were formulated

in the late 1980s. Two main families of adaptive controllers have been proposed, namely

passivity-based adaptive controllers, pioneered by Slotine and Li [327, 328], and adaptive

computed torque controllers, proposed by Craig et al. [329]. In both cases, the core com-

ponent of the adaptive control strategy proves to be a reliable and fast-converging online
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inertial parameter identification loop. Significant research efforts have been deployed in the

fields of parameter identification and adaptive control of floating-base mechanisms, such as

humanoids. Important results have in particular been obtained by Venture, Ayusawa, Bonnet,

Jovic et al. [110, 109, 20, 118] in the field of identification, demonstrating in particular that

joint torque measurements were not mandatory to identify a floating-base mechanism as long

as the external wrenches applied to the system were measurable. Conversely adaptive con-

trol strategies essentially focused on robust torque control applications as for instance Pucci

et al. [330]. Position- and torque-controlled floating-base systems being naturally unstable

and prone to tilt, they require a robust stabilization loop and trajectory generator, both relying

on an accurate knowledge of the robot’s center of mass [331, 332] as well as its linear and

angular momenta [333, 334, 335]. Most stabilization strategies currently assume that the

robot model is known. This can of course be guaranteed through suitable offline identifica-

tion, as for instance, proposed by Jovic et al. [20] or Bonnet et al. [118]. Nevertheless it must

be emphasized that adaptive stabilization and trajectory generation prove to be especially

relevant in the context of a manipulation task, to the extent that a robot might experience sub-

stantial parameter changes that may eventually jeopardize its stability or result in unfeasible

trajectories. When a floating-base robot passively interacts with its environment, the forces

resulting from this interaction are usually considered as disturbances, and hence intended to

be absorbed by the stabilizer. On the contrary, when the robot behaves proactively with its en-

vironment, for instance during a manipulation task, it becomes relevant to identify the dynamic

coupling that may occur with its payload. This coupling can then potentially be exploited for

enhanced stabilization or control purposes. Online estimation of the CoM and momentum

has recently received special attention from multiple research teams around the world. Most

approaches take the form of a tailor-made observer, leveraging a simplified model of the robot

dynamics. For instance Rotella et al. [336] proposed an observer to capable of estimating

the CoM as well as the momenta based on a CoM dynamic model. Using the ZMP-CoM

dynamics, Piperakis et al. [337] formulated a CoM and contact force estimator while Masuya

et al. [338] proposed using a Kalman filter for CoM estimation purposes. Carpentier et al.

[339] proposed an approach to estimate the CoM of a walking mechanism using a comple-

mentary filter. Comparatively little research has considered the identification of the complete

robot dynamics for CoM and momentum estimation purposes. Although such approaches of-

fer the possibility of constraining the parameter estimates, which in turn proves relevant in the

context of control or manipulation, the development of a real-time capable formulation often

turns out to be problematic for computational complexity reasons. In this context, it should

however be noted that Mori et al. [340], proposed a recursive least squares approach for

online identification and CoM estimation of a humanoid robot coupled to an unknown load.

Although this approach has been shown to work in real time with good performance, the au-

thors have reported a number of issues related to the lack of excitation of some parameters.

In this context, a set of novel techniques such as geometric relaxation [294, 103] appear to be

promising research directions for the development of more robust estimators. It should also

be emphasized that the physicality of the identified parameters was not taken into account.
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6.1.2. Proposed Approach and Contributions

In this chapter, we propose a new algorithm to identify the inertial parameters of a floating-

base robot in an efficient and physically consistent manner. The use of an alternative for-

mulation of the base inertial parameters makes it possible to provide physically consistent

parameter estimates without having to explicitly state the physicality constraints in the form of

LMIs. As a result, it becomes possible to reformulate the whole physically consistent identifi-

cation problem as a sequence of quadratic programs (SQP), that can be solved – potentially

in real time – on an embedded robot computer. This new algorithm will be referred to as

PC-IDIM-SQP in the following sections. This identification routine is executed in adjustable

batches within a dedicated thread, spinning on the robot. In order to avoid abrupt changes

in the values of the identified inertial parameters transmitted to the controller, we propose

interpolating the estimates at each control epoch along a geodesic of the Riemannian man-

ifold of physicality. Combined with suitable geometric relaxation of the problem, this makes

it possible to alleviate the effects of data rank deficiency. In addition the use of an artificial

skin makes it possible, to hot-start the sequential identification process and to determine the

location of the coupling between the robot and its payload, thereby leading to relevant simpli-

fications of the identification problem. The proposed approach is validated both in simulation

– using the previously developed BIRDy identification benchmark – and on a real REEM-C

humanoid robot handling an unknown payload.

6.2. Fundamentals of Riemannian Geometry in the Context of

Inertial Parameter Identification

This section introduces a set of key concepts in the field of Riemannian geometry and dis-

cusses about their potential uses in the context of inertial parameter identification, in particular

for relaxation and interpolation purposes.

6.2.1. Fundamental Concepts of Riemannian Geometry

6.2.1.1 Riemannian Manifolds, Metrics and Tangent Spaces

As defined in Jaquier et al. [341], a n-dimensional manifold M is a Hausdorff topological

space1 that has the notable property of being locally Euclidean. As a matter of fact, any point

P located on such manifold has an open neighborhood NP which is homeomorphic to an

open subset of the Euclidean space Rn. In other words there exists a smooth bijective map

φP – referred to as a chart or coordinate system – between the neighborhood NP of point

P and an open subset of Rn. We call tangent space TPM in a point P of a manifold M
the space formed by the tangent vectors to all 1-dimensional curves onM passing through

P . An intuitive example of 2-dimensional manifold is that of the surface of a unit 3D sphere

embedded in R3 and defined as S(2) =
{
x ∈ R3 : x⊤x = 1

}
(c.f. Fig. 44i). In this context,

1 A Hausdorff space is a topological space such that there exists, for any two distinct points P i and P j , neigh-
borhoods NP i

and NP j
that are disjoint from each other.
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(i) Surface of a 3D sphere seen as a 2D manifold S(2) =
{

x ∈ R3 : x⊤x = 1
}

. ∀P ∈ S(2), TP S(2) is depicted as a
blue plane. The Euclidean and Riemannian geodesic curves
are depicted in dashed black and dashed blue respectively.

(ii) Illustration of the physical consistency Riemannian
manifold P(n). The Euclidean and Riemannian geodesic
curves between the points Di and Dj are depicted in
dashed black and dashed blue respectively.

Figure 44 Illustration of Riemannian manifolds

the tangent space TPS(2) in a point P is defined as a 2D plane intersecting the manifold in

P , as depicted in blue within Fig. 44i. A Riemannian manifold, denoted as (M, 〈·, ·〉P ) is

a structure consisting of a real, smooth – i.e. differentiable – manifold M equipped in any

point P with a smoothly-varying positive-definite inner product 〈·, ·〉P : TPM× TPM → R

(referred to as a Riemannian metric) defined on the tangent space TPM.

6.2.1.2 Geodesics on a Riemannian Manifold

The norm of a vector U defined on the tangent space TPM of a Riemannian manifold M
can be computed using the inner product ‖U‖2P = 〈U ,U〉P in P . By extension, the length of

a curve c(t) defined on (M, 〈·, ·〉c(t)) can be computed by accounting for the smooth variation

of the Riemannian metric along this curve, yielding

c(t) : R→M l(c(t)) =

∫ 1

0
‖ċ(t)‖c(t) dt (158)

Accordingly, the Riemannian distance between two points P i ≡ c(t = 0) and P j ≡ c(t = 1)

of a Riemannian manifold (M, 〈·, ·〉P ) can be defined as the minimal length, over all possible

smooth curves joining these two points on the manifold, namely

dM(P i,P j) = min
ci→j(t)

l(ci→j(t)) (159)

The curves γi→j(t) resulting in extremal elements of the length function l(ci→j(t)) are re-

ferred to as geodesics. Such curves are for instance visible as dashed blue or dashed orange

on the 2D sphere manifold S(2) depicted on Fig.44i, as opposed to the green and light blue

curves connecting the points P i and P k. For a given manifold M, one can define the so

called exponential map ExpP i
: TP i

M→M in P i as the operation transforming any point

U of the tangent space TP i
M into an element P j of the manifoldM such that P j is reached

at time t = 1 by the geodesic starting inP i in the directionU (c.f. Fig.44i). The corresponding

inverse map is referred to as the Logarithm map LogP i
:M→ TP i

M [341].
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6.2.1.3 The Manifold of Symmetric Positive-Definite Matrices

Let Sk×k =
{
A ∈ Rk×k : A = A⊤

}
be the space of real symmetric matrices of dimension

k×k and S
k×k
++ =

{
A ∈ Sk×k : ∀x 6= 0n x

⊤Ax > 0
}

be the space of real symmetric positive

definite matrices of dimension k × k. As a matter of fact, Sk×k
++ can be defined as the interior

of an opened convex cone of Rn (c.f. Chapter 2.3 and Fig. 44ii), yielding

• ∀A,B ∈ S
k×k
++ , 0 < t < 1, tA+ (1− t)B ∈ S

k×k
++ (convexity )

• ∀A ∈ S
k×k
++ , t > 0, tA ∈ S

k×k
++ (cone structure)

• The boundary of Sk×k
++ is the set of singular positive semi-definite matrices.

It can be shown [342, 343, 341] that Sk×k
++ is a smooth manifold of dimension2 k(k + 1)/2

whose tangent space TDS
k×k
++ = {D} × Sk×k in any point D ∈ S

k×k
++ is often identified

with Sk×k for simplicity. Endowing S
k×k
++ with an inner product 〈·, ·〉D on TDS

k×k
++ , smoothly

depending on the base point D such that

∀U ,V ∈ TDS
k×k
++ , 〈U ,V 〉D = tr(D− 1

2UD−1V D− 1

2 ) (160)

allows considering the structure (Sk×k
++ , 〈·, ·〉D) as a Riemannian manifold, denoted as P(k).

It should be highlighted that such metric is referred to as the affine-invariant metric in [342,

343, 344, 341]. The corresponding logarithm and exponential operators can be formulated

[341] as
ExpD : TDM→M

A→D
1

2 exp
(

D− 1

2AD− 1

2

)

D
1

2

(161)

LogD :M→ TDM

B →D
1

2 log
(

D− 1

2BD− 1

2

)

D
1

2

(162)

where ∀X ∈ Rk×k, exp (X) =

∞∑

i=0

Xi

i!
and log (X) = −

∞∑

i=1

(1k×k −X)i

i
denote the matrix

exponential and logarithm maps, respectively. In this context, the geodesic distance between

two points Di and Dj of P(k) can be computed as

dP(k)(Di,Dj) =

∥
∥
∥
∥
LogDi

(D
− 1

2

i DjD
− 1

2

i )

∥
∥
∥
∥
F

=

[
k∑

i=1

log2 λi(D
− 1

2

i DjD
− 1

2

i )

] 1

2

(163)

where λi(X) refers to the – positive – eigenvalues of the square matrix X. The reader is re-

ferred to [344] for a more detailed derivation. It is worth noting that the distance dP(k)(Di,Dj)

goes to infinity if any of the matricesDi orDj approaches the boundary of the P(k) cone (i.e.

if it is “close” to be singular positive semi-definite). Following the work of Lee et al. [103], the

minimal geodesic curve γi→j : [0, 1]→ P(k) connecting two arbitrary points Di,Dj ∈ P(k)

2 The manifold dimension refers to the number of entries needed to parameterize the system. A total of k(k+1)/2
entries are necessary to parameterize a k × k symmetric matrix.
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of the cone of physical consistency (c.f. Fig.44ii), can be defined as

γ(t) =D
1

2

i

(

D
− 1

2

i DjD
− 1

2

i

)t

D
1

2

i (164)

6.2.2. Leveraging the Riemannian Structure of the Inertial Parameters

Physicality Manifold

As discussed in chapter 2.3, the physicality conditions related to the inertial parameters of

a robot link j can be formulated as a positivity definition constraint on the corresponding

pseudo-inertia matrix D′
Lj(χ), yielding

D′
Lj(χ) =







1

2
tr (Lj)13×3 −Lj

︸ ︷︷ ︸

L̃j

mpj

mp⊤
j Mj






≻ 0. (165)

As originally noted by Lee et al. [294, 104, 103, 311], the space of physically consistent

inertial parameters of a given robot link, endowed with an affine-invariant metric can be con-

sidered as a Riemannian manifold of dimension 4, denoted as P(4). The possibility of spec-

ifying a Riemannian distance dP(k)(D
′
Lj(χ1),D

′
Lj(χ2)) between two points D′

Lj(χ1) and

D′
Lj(χ2) of this manifold – via eq. (163) – enables enhanced relaxation techniques within

inertial parameter identification algorithms, as specifically discussed in [104]. In this context,

it is worth noting that for an n-link robotic system, the distance metric dPn(4) can be obtained

by summation

dPn(4)(χ1,χ2)
2 =

n∑

i=1

dP(4)(D
′
Li(χ1),D

′
Li(χ2))

2. (166)

Proper relaxation of an identification problem turns out to be of crucial importance in practice,

since most inertial parameter identification problems tend to be ill-conditioned. This is es-

pecially true in the case of hyper-redundant floating base mechanisms – such as humanoid

robots – under low excitability conditions. The main drawback of this technique stems from

the non-linearity of the Riemannian metric, thereby making the use of computationally expen-

sive optimization-on-manifold techniques inevitable. Nevertheless, it is worth emphasizing

that a suitable linearization of the Riemannian distance enables implementation of geometric

relaxation within classical identification approaches such as IDIM-LS. Lee et al. [103, 311]

in particular proposed two approximation of the geodesic distance between two sets of phys-

ically consistent parameters in P(4), referred to as the entropic divergence and constant

pullback metric. The entropic divergence is a second order approximation of the Riemannian

metric, valid for two infinitesimally close points of a manifold. The constant pullback metric is

a constant Riemannian metric, which is evaluated at a given inertial parameter value χ0 as

d0(χ1,χ2) = d0(D
′
Lj(χ1),D

′
Lj(χ2)) =

1

2
tr
(

D′−1
Lj (χ0)D

′2
Lj(χ1 − χ2)

)

(167)

eventually yielding SDP formulations similar to (64) for physically consistent identification.
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6.3. Online Physically-Consistent Identification of Floating

Base Robots

Halfway between classical – offline – and recursive formulations of the identification problem,

we here propose a new physically consistent batch identification algorithm. The data sampled

in real time by the robot is used to fill a reduced-size, potentially adjustable, buffered obser-

vation system. The identification process is executed in a loop within a dedicated thread, as

soon as this buffer is full. As a result, the parameters are updated online, but at frequencies

one to two orders of magnitude lower than that of the controller. In this context, it is important

to underline that a use of the estimated parameters in the robot’s control loop, especially for

adaptive stabilization purposes, must take into account the potentially strong discontinuities

between the different parameter estimates, in order to prevent potentially hazardous behav-

iors. In practice, it is therefore essential to both regularize and filter the parameter estimates

passed to the controller, while guaranteeing their physicality. Hence the second contribution

of this chapter, where a new interpolation method between the different parameter estimates,

leveraging the underlying Riemannian structure of the physical consistency manifold is for-

mulated, based on the work of Lee et al. Combined with geometric relaxation, the proposed

method provides robots with a robust, physically consistent estimate of their inertial parame-

ters at each control epoch. The final contribution of this work consists in leveraging the tactile

feedback from an artificial skin covering a robot to hot-start the online identification process,

both in the context of classical identification and adaptive manipulation.

6.3.1. Physical Consistency through Sequential Quadratic Programming with

Geometric Relaxation

6.3.1.1 Alternative Parametrization for an Implicit Formulation of Physicality

In contrast to standard physically consistent identification methods such as optimization on

manifold or Semi-Definite Programming (SDP) with LMI constraints, Sutanto et al. [297]

proposed a set of alternative parametrizations, allowing to directly enforce physicality of the

reconstructed dynamic parameters without the need for advanced constrained optimization

techniques. Accordingly, it becomes possible to enforce the constraints in (59) by adopting a

parametrization ̺j , based a the Cholesky decomposition of D′
Lj(χ)

D′
Lj(χ) =





Cj11
0 0 0

Cj21
Cj22

0 0

Cj31
Cj32

Cj33
0

Cj41
Cj42

Cj43
Cj44





︸ ︷︷ ︸

Cj





Cj11
Cj21

Cj31
Cj41

0 Cj22
Cj32

Cj42

0 0 Cj33
Cj43

0 0 0 Cj44





︸ ︷︷ ︸

C⊤
j

+ ǫ14×4, (168)

̺j = [Cj11 Cj21 Cj22 Cj31 Cj32 Cj33 Cj41 Cj42 Cj43 Cj44 ]
⊤ ∈ R

10 (169)

where the diagonal terms Cjkk > 0, ∀k = {1, · · · , 4} of Cj should be positive to guarantee

the strict positivity of D′
Lj(χ). The dynamics of each robot link j being parametrized by

the vector χj = [Mj , MXj , MYj , MZj , XXj , XYj , XZj , Y Yj , Y Zj , ZZj ]
⊤ ∈ R10, the
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parameter physicality condition (165) can be expressed as

D′
Lj(χ) =







Y Yj+ZZj−XXj
2

−XYj −XZj MXj

−XYj
XXj−Y Yj+ZZj

2
−Y Zj MYj

−XZj −Y Zj
XXj+Y Yj−ZZj

2
MZj

MXj MYj MZj Mj






≻ 0. (170)

From (168)-(169), it then becomes possible to write

D′
Lj(̺) =






C2
j11

+ǫ Cj11
Cj21

Cj11
Cj31

Cj11
Cj41

Cj11
Cj21

C2
j21

+C2
j22

+ǫ Cj21
Cj31

+Cj22
Cj32

Cj21
Cj41

+Cj22
Cj42

Cj11
Cj31

Cj21
Cj31

+Cj22
Cj32

C2
j31

+C2
j32

+C2
j33

+ǫ Cj31
Cj41

+Cj32
Cj42

+Cj33
Cj43

Cj11
Cj41

Cj21
Cj41

+Cj22
Cj42

Cj31
Cj41

+Cj32
Cj42

+Cj33
Cj43

C2
j41

+C2
j42

+C2
j43

+C2
j44

+ǫ




 ≻ 0,

(171)

thereby yielding:

χj =













Mj

MXj

MYj

MZj

XXj

XYj

XZj

Y Yj

Y Zj

ZZj













=















C2
j41

+C2
j42

+C2
j43

+C2
j44

+ǫ

Cj11
Cj41

Cj21
Cj41

+Cj22
Cj42

Cj31
Cj41

+Cj32
Cj42

+Cj33
Cj43

C2
j21

+C2
j22

+C2
j31

+C2
j32

+C2
j33

+2ǫ

−Cj11
Cj21

−Cj11
Cj31

C2
j11

+C2
j31

+C2
j32

+C2
j33

+2ǫ

−Cj21
Cj31

−Cj22
Cj32

C2
j11

+C2
j21

+C2
j22

+2ǫ















. (172)

Since from (173) the standard inertial parameter vector χ can be expressed as a function of

the vector ̺ of square-root inertial robot parameters, defined as ̺ = [̺⊤1 ̺
⊤
2 · · ·̺⊤n ]⊤ ∈ Rp,

one eventually gets, by construction, a set of physically consistent standard inertial param-

eter estimates. Physicality is in this case formulated in an implicit manner, thereby allowing

physically consistent identification using classic unconstrained optimization methods such as

gradient descent. It is worth emphasizing that the positivity constraint on the diagonal terms

of Cj is here enforced by adding a tailor-made fraction ǫ << 1 of the identity matrix to (168).

This method was successfully applied in the context of machine learning, for Deep Neural

Network training purposes (see for instance [345, 346, 347] and the references therein) but

was – to the best of our knowledge – never applied to real floating-base robotic systems.

6.3.1.2 Sequential Quadratic Programming for Online Physically Consistent Inertial

Parameter Identification

In this work, we propose to make use of sequential batch quadratic programming in order to

formally account for the positivity constraint on the diagonal terms of the Cj matrix. Although

a direct identification of the components of the ̺ vector using standard algorithms, such as

PC-IDIM-LS, proves unfeasible in practice due to the non-linearity of the observation system

in the square-root inertial robot parameters ̺, the quadratic nature of this non-linearity can

be leveraged in order to simplify the identification problem. As a matter of fact, introducing

a matrix Aj(̺) ∈ R10×10 depending linearly on ̺, by solving (168) for the elements of the

standard parameter vectorχ, allows one reformulating the quadratic dependence of the IDIM-

LS observation system (15) in the square-root inertial parameters as Aj(̺)̺j = χj , or
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alternatively ℧A(̺)̺ = β where ℧ denotes the base parameter mapping introduced in (10):














0 0 0 0 0 0 Cj41
Cj42

Cj43
Cj44

0 0 0 0 0 0 Cj11
0 0 0

0 0 0 0 0 0 Cj21
Cj22

0 0

0 0 0 0 0 0 Cj31
Cj32

Cj33
0

0 Cj21
Cj22

Cj31
Cj32

Cj33
0 0 0 0

0 −Cj11
0 0 0 0 0 0 0 0

0 0 0 −Cj11
0 0 0 0 0 0

Cj11
0 0 Cj31

Cj32
Cj33

0 0 0 0

0 0 0 −Cj21
−Cj22

0 0 0 0 0

Cj11
Cj21

Cj22
0 0 0 0 0 0 0














︸ ︷︷ ︸

Aj(̺)














Cj11

Cj21

Cj22

Cj31

Cj32

Cj33

Cj41

Cj42

Cj43

Cj44














︸ ︷︷ ︸
̺j

=















C2
j41

+C2
j42

+C2
j43

+C2
j44

Cj11
Cj41

Cj21
Cj41

+Cj22
Cj42

Cj31
Cj41

+Cj32
Cj42

+Cj33
Cj43

C2
j21

+C2
j22

+C2
j31

+C2
j32

+C2
j33

−Cj11
Cj21

−Cj11
Cj31

C2
j11

+C2
j31

+C2
j32

+C2
j33

−Cj21
Cj31

−Cj22
Cj32

C2
j11

+C2
j21

+C2
j22















︸ ︷︷ ︸
χj

.

(173)

It should be emphasized that the matrix Aj(̺) is invertible provided that Cjkk 6= 0, ∀k =

{1, · · · , 4}, that its inverse can be formulated analytically as a function of ̺ and that it has a

well defined sparsity pattern. Building the matrix A(̺) ∈ Rp×p by diagonal block concatena-

tion of the different Aj(̺) matrices then yields

yτ =W (q̈, q̇, q)A(̺)̺+ ε . (174)

The key concept of the proposed approach consists in reformulating the identification problem

(174) as an iterative process by making the approximation that the changes between two

consecutive estimates ˆ̺i−1 and ˆ̺i obtained at iterations i − 1 and i, are small enough,

thereby yielding
A( ˆ̺i) ˆ̺i ≃ A( ˆ̺i−1) ˆ̺i . (175)

Under these conditions, the identification process can be formulated as a sequence of linear

least squares problems, while the physicality constraints can be reduced to a positivity con-

straint on the terms of ˆ̺i corresponding to the diagonal elements of the Cholesky factor Ĉ of

the associated pseudo-inertia matrix D̂
′

L(χ). As a result, the estimate ˆ̺i at iteration i can be

obtained by resolving the following QP:

ˆ̺i=argmin
̺

(
WA(̺i−1)̺− yτ

)⊤
Σ−1

(
WA(̺i−1)̺− yτ

)
+ λd

(
A(̺i−1)̺− χ0

)2

︸ ︷︷ ︸

Geometric relaxation

s.t. S̺ > 04n

BA(̺i−1)̺ ≤ b
̺i−1 −̟

∣
∣̺i−1

∣
∣ ≤ ̺ ≤ ̺i−1 +̟

∣
∣̺i−1

∣
∣

(176)

where χ0 refers to the initial value of the set of standard parameters, S ∈ R4n×p is a selec-

tion matrix for the diagonal terms of the Ĉj Cholesky factors, λ ∈ R+ is a relaxation gain

and ̟ ∈ R+ is a tuning factor. The matrix B ∈ RNC×p and the vector b ∈ RNC denote a

set of NC additional constraints acting on the parameter estimate. It was decided to make

use of the geometric relaxation method developed by Lee et al. [104, 103] to avoid data

rank deficiencies of the identification system, resulting from improper excitation. The function
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Figure 45 Block diagram of the PC-IDIM-SQP identification method.

d(·, ·) refers to the constant pullback3 approximation of the Riemannian affine-invariant dis-

tance between two points on the physical consistency manifold P(4)n. The elements of the

covariance matrix Σ can be estimated in the very same manner as in IDIM-WLS, following

(17). The resulting algorithm can be initialized using the elements of the Cholesky decom-

position of the matrices D′
Lj(χ0), computed for each robot link j using an initial estimate χ0

of the inertial parameters (obtained, for instance, from CAD data). It is worth noting that the

recursive nature of this algorithm makes it particularly suitable for an IRLS implementation. In

this case, similarly to (18) one has to define a weight vector υi ∈ Rn·N and the weight matrix

Υi = [υi, · · · ,υi] ∈ R(n·N)×b in order to penalize the problem outliers, such that at iteration

i
W ∗i = Υi ◦W
y∗iτ = υi ◦ yτ

(177)

where the operator ◦ refers to the Hadamard product. As a result, the recursive SQP identi-

fication problem (176) can be reformulated as

ˆ̺i=argmin
̺

(
W ∗i−1A(̺i−1)̺− y∗i−1

τ

)⊤
Σ−1

(
W ∗i−1A(̺i−1)̺− y∗i−1

τ

)
· · ·

· · ·+ λd
(
A(̺i−1)̺− χ0

)2

︸ ︷︷ ︸

Geometric relaxation

s.t. S̺ > 04n

BA(̺i−1)̺ ≤ b
̺i−1 −̟

∣
∣̺i−1

∣
∣ ≤ ̺ ≤ ̺i−1 +̟

∣
∣̺i−1

∣
∣

(178)

where ̟ ∈ R+ is a tuning factor and where similar to chapter 2.2.1 the weight vector υi is

updated as

υi = Min (υi−1, Λ(y∗i−1
τ −W ∗i−1A(̺i−1) ˆ̺i)) (179)

the Min(·) operator depicting the element wise min function and Λ : Rn·N → [0, 1]n·N being

a tailor made weight function (typically a window function). It is worth emphasizing that the

term ̟ can be annealed as the number of iterations increases. This turns out to be of utmost

importance since it allows enforcing convergence even under adversarial noise conditions.

3 Unlike the entropic divergence relaxation, the constant pullback relaxation can be formulated linearly in the
standard parameters and is therefore more convenient for implementation within a QP.
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(i) Original solid (ii) Convexified robot link mesh. (iii) Skin cells

(iv) CoM bound constraint formulation.

Figure 46 Illustration of the CoM bounding process. The dark blue segments on subfigure (ii) denote the normals of each
simplex while the cyan segments denote the borders of a selected subset of mesh simplexes.

This specific point will be further discussed within the MCS experiment section.

6.3.1.3 Constraining the Position of the Identified Link CoM

In this work, a set of convex bounding-box constraints are set to act on the CoM of each robot

link as a security feature to prevent unsuitable solutions. Such constraints can for instance

be implemented using sub-sampled convexified volumes of the different robot links, obtained

following a process similar to that described in Chapter 2.5.4.3. Accordingly, each robot link

j is associated with a convex triangular mesh containing N j
T surfaces. The QP formulation

of the proposed identification algorithm enables accounting for each planar surface of the

considered mesh as an actual position bound acting on the CoM through the matrix B within

eq. (176) and eq. (178), yielding

B =

[
B1 0 0

0
. . . 0

0 0 Bn

]

∈ R
NC×p| ∀j = {1 · · ·n} , Bj =






0 n⊤
j,1 01×6

...
...

...
0 n⊤

j,N
j
T

01×6






︸ ︷︷ ︸
χj

∈ R
N

j
T
×10

b =

[
b1
...
bn

]

∈ R
NC | ∀j = {1 · · ·n} , bj =Mj






n⊤
j,1tj,1

...
n⊤

j,N
j
T

t
j,N

j
T




 ∈ R

N
j
T (180)
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In this expression, the term nj,k ∈ R3 denotes the normal vector of constraint surface k on

robot link j (expressed in the link frame) depicted in dark blue within Fig. 46ii and Fig. 46.

The term tj,k ∈ R3 denotes an arbitrary point on the constraint surface k. The link parameter

vector is denoted as

χj = [Mj , MXj , MYj , MZj , XXj , XYj , XZj , Y Yj , Y Zj , ZZj ]
⊤ , (181)

hence the sparse structure of the matrix Bj , in (180), targeting the terms MXj , MYj and

MZj . Finally the term pcmj = [Xj Yj Zj ]
⊤ = 1

Mj
[MXj MYj MZj ]

⊤ denotes the position

of the link CoM expressed in the link frame as depicted in Fig. 46iv. This work leverages

the recursive nature of the proposed identification algorithm and set Mj at each iteration as

the link mass identified at the previous iteration. This holds provided that the steps are small

enough.

6.3.1.4 Inertial Parameter Smoothing using Geometric Interpolation

Although computationally efficient, online batch identification techniques often prove to be ill-

conditioned, due in particular to the limited number of data samples in the considered batch,

and to the fact that the executed behaviors do not necessarily excite every modality of the

robot dynamics over the considered time horizon. In this context, besides existing relaxation

techniques (described in chapter 2.3) allowing to steer the unexcited parameters towards a

known reference – often obtained from CAD data – it might be desirable to implement some

form of long term memory, allowing a robot to accumulate experience beyond the limited time

horizon of the batch without, however, the need to solve a problem of constraining dimen-

sions. In practice, this long term memory can take the form of a low-pass filter formulated

at the parameter level. It is worth emphasizing that such parameter filtering approach might

also prove relevant for other reasons, since the real-time control thread and the batch identi-

fication thread running on the robot are expected to spin at significantly different frequencies

(by at least an order of magnitude). Therefore, it can be desirable in a context of adaptive

stabilization, to filter the estimated parameter values sent to the controller in order to prevent

abrupt changes that may potentially lead to unstable behaviors or tilting4. It should be noted

that although the FIFO batch treatment of the identification problem – namely the fact of only

renewing part of the identification batch at each execution of the identification routine – can be

considered as a form of moving average low-pass filter, the fact that the batch used for identi-

fication is only renewed in a block-wise manner translates, in practice, into “jumps” within the

estimated values. Nonetheless, it remains possible to smooth out these discontinuities using

suitable interpolation techniques. Euclidean interpolation between two elements Di and Dj

of P(n) can be achieved as

DE(t) = tDi + (1− t)Dj , ∀t ∈ [0, 1] . (182)

This naturally yields the formulation of an exponential low-pass filter, where the filtered esti-

mate DEi
at iteration i is obtained from the filtered estimate DEi−1

at iteration i− 1 and the

4 Especially in the context of floating-base mechanisms stabilization.
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Figure 47 Difference between Euclidean and Riemannian ellipsoid interpolation. Notice the sharp volume changes occurring
during the Euclidean interpolation process. This illustrates the interest of geodesic interpolation for physically consistent
parameter identification purposes.

current unfiltered estimate Di at iteration i as

DEi
= αDEi−1

+ (1− α)Di, ∀α ∈ [0, 1] (183)

where the tuning factor α can be used to regulate how fast the set of identified inertial pa-

rameters is going to be updated (and therefore how fast the old parameter values will be

forgotten). It is worth emphasizing that the resulting set of filtered inertial parameters will

remain physically consistent. This is due to the convex nature of physicality cone. However,

it appears that such process may also lead to improper variations of the eigenvalues of the

interpolated pseudo-inertia matrices as highlighted in [341]. This is especially true in case

the parameter estimate undergoes strong variations. Nevertheless in this context, it is still

possible to leverage the Riemannian nature of the physicality manifold by executing interpo-

lation along a geodesic curve of P(n) rather than along a Euclidean straight line. As stated

in [348], Riemannian geodesic interpolation between two elements Di and Dj of P(n) can

be achieved following

DR(t) =Di

(
D−1

i Dj

)t
, ∀t ∈ R. (184)

Note that this equation is simply a reformulation of the geodesic curve equation (164). In

practice, Riemannian geodesic interpolation enables smoother variation of the eigenvalues

of the pseudo-inertia matrix for control applications. This is for instance illustrated in Fig.

47, where intermediate steps of Euclidean and Riemannian interpolation between two 3D-

ellipsoid configurations – depicting for instance the inertia tensor of a robot link – are shown.

In this figure, it is possible to see that unlike the Riemannian interpolation the Euclidean
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interpolation process actually leads to a substantial increase of the ellipsoid volume between

the initial and final configurations which might in turn have adversarial effects in the context

of stabilization and control. As previously, a Riemannian geodesic exponential low-pass filter

formulation can be derived from the interpolation equation (184) following

DRi
=DRi−1

(

D−1
Ri−1

Di

)1−α

, ∀α ∈ R (185)

6.3.2. Leveraging a Self-Calibrating Multimodal Artificial Robot Skin for

Identification Purposes

Manipulation tasks that are not limited to the end-effectors typically require the use of dis-

tributed sensors, covering part and even the entire body of a robot, thereby effectively form-

ing an artificial skin. Although covering an entire humanoid robot with an artificial skin has

multiple advantages, it unfortunately tends to significantly alter its dynamic properties as the

number of cells increases. Nevertheless, in case the skin spatial distribution is known, for

example through suitable self-calibration algorithm [6], the inertial properties of the coupled

system can be estimated and used as an improved prior estimate of the system dynamics.

6.3.2.1 Hot-starting an Identification Algorithm using a Simplified Skin Model

Provided that a robot covered with an artificial skin is aware of the spatial arrangement and

dynamic properties of this skin, it is possible to significantly refine its dynamic model before

proceeding with more conventional identification. It is worth emphasizing that this new model

can be used as an initial estimate or a new physically consistent relaxation value in the context

of an inertial parameter identification process. As a matter of fact, the dynamic properties of

each artificial skin cell can be fused with those of the robot link to which they are attached.

We here consider as a first approximation that the assembly consisting of each cell’s printed

circuit board, its various electronic components, the elastomer layers and the connectors

behaves locally as a homogeneous cylinder, whose position and orientation correspond to

those of the cell, and are hence available after suitable calibration. Each cylinder has a height

h, a radius r, a mass Mcell and an inertia Icell =

[
1

12
Mcell(3r

2+h2) 0 0

0 1

12
Mcell(3r

2+h2) 0

0 0 1

2
Mcellr

2

]

relative to its CoM5 (c.f. Fig. 48iv). The cell’s CoM is located in pcmcell = [Xcell, Ycell, Zcell]
⊤

relative to the cell’s local reference frame C. We here consider that the coordinate frame Cj
attached to each skin cell j is related to the corresponding link i reference frame, denoted

as Li, by a – known – homogeneous transform H
j
i =

[
R

j
i p

j
i

0 1

]

, determined after skin self-

exploration and self-calibration procedure (c.f. Fig.48). As a result, the link inertial properties

can be updated using a set of geometrical transformations. The mass Mi of a robot link i

covered with Ncelli ∈ N artificial skin cells can be trivially determined by summation Mi =

5 This formula is valid if the considered reference CoM frame is aligned to the main axes of inertia of the cylinder,
which in our case is verified, as the cell-attached reference frames C are aligned with the cylinder.
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(i) 1260 artificial skin cells mounted on a REEM-C
humanoid robot.

(ii) Self-calibration allows hotstarting identification. Links
and skin cell’s local coordinate frames are displayed.

(iii) The z axis of each cell-attached frame Cj is
visible in dark blue.

(iv) A simplified cylinder dynamic model was
selected for the computations.

Figure 48 Accounting for the skin dynamics to hotstart identification

Mi +
∑Ncelli

j=1 Mcellj . Similarly, the new location of the link CoM can be determined as

pcmi = [Xi Yi Zi]
⊤ =

Mip
cm
i +

∑Ncelli

j=1 Mcellj

[

p
j
i + (Rj

i )
⊤pcmcellj

]

Mi +
∑Ncelli

j=1 Mcellj

(186)

Update of the link inertia matrix actually requires a more careful treatment. Using the Huygens-

Steiner parallel axis theorem (c.f. Appendix A.1.3), it is possible to express the inertia Ijcell
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of every cell j into the corresponding cell’s reference frame Cj rather than in the cell’s CoM

frame, as

L
j
cell = I

j
cell +Mcell [p

cm
cell]

⊤
× [pcmcell]× (187)

L
j
cell can then be expressed relative to the corresponding link reference frame Li as

L
j
i = R

j
iI

j
cell

(

R
j
i

)⊤

+Mcell

[

p
j
i

]⊤

×

[

p
j
i

]

×
(188)

The total link inertia update is eventually obtained by adding the different cells inertia to the

link inertia, yielding

Li = Li +

Ncelli∑

j=1

L
j
i (189)

These updated parameters are physically consistent and can be used as a relaxation to a

classic identification problem or as a starting point for identification algorithms requiring an

initial guess of the inertial parameter values.

6.3.2.2 Inertial Parameter Identification in the Context of Full-Body Manipulation

One of the main obstacles to the real-world deployment of adaptive control strategies on

humanoid robots – especially for stabilization and whole-body manipulation purposes – is the

need for appropriate excitation data [340]. To identify the dynamics of its body segments, a

robot must execute a set of exploratory movements6 that reveal the contribution of each link

in terms of the net contact wrench measured using its ankle force-torque sensors. For floating

base mechanisms this usually proves to be a challenging and time-consuming process, which

turns our to be a research field in its own right. The reader is referred to chapter 2 of this

thesis for a more in-depth analysis of this topic.

Although the generation of permanent excitation is usually not a critical problem in the context

of offline parameter identification, it raises substantial implementation and operational relia-

bility concerns in the context of adaptive control, since in this case the identification must be

executed under strict time constraints. In essence, it is undesirable for a robot handling an

unknown payload to execute a full sequence of exploratory motions as soon as the dynamic

properties of that payload change. In this context, the use of tactile feedback as an additional

source of information, appears to be judicious insofar as it allows assessing the occurrence,

location and nature of the dynamic coupling between a robot and its payload. As a matter of

fact, the multi-modality of tactile data can be leveraged to distinguish, for instance, between

proximity and effective contact of a robot and its payload or to evaluate the stability of this con-

tact by detecting slippage thanks to the analysis of the vibratory modes of the accelerometer

data or by monitoring the evolution of the number of cells involved in the interaction process
7. In practice, a reliable knowledge of the coupling modalities between a robot and its payload

opens the door to substantial simplifications of the identification problem insofar as it provides

6 As pointed out by Venture et al, the nature of these movements depends on the type of parameters one wishes
to identify.

7 This specific aspect being out of the scope of this thesis, it is here considered as future works.
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(i) The REEM-C humanoid robot manipulating a 9kg
payload using its arms and chest.

(ii) The payload coupling can be assessed using the
artificial skin covering the robot.

Figure 49 Whole-body manipulation scenario with artificial skin feedback.

indications as to the links whose inertial parameters are likely to have been modified during

manipulation. It should be emphasized that in an adaptive stabilization context, considering a

payload properly coupled to a robot as being an integral part of that robot allows to exploit its

dynamic properties to improve performance. The first step is therefore to determine the links

of the robot whose parameters may have been modified by stable contact with the payload.

Selective excitation approaches such as that proposed by Venture et al. [123, 124] or Jovic et

al. [20] based on sub-regressor matrices, may then be exploited to re-identify the considered

bodies, although it should be noted that the control task executed by the robot can also prove,

in itself, to be expressive enough to allow suitable data collection. Online adjustment of the

filter tuning factor α in equation (185) can then be carried out based on the skin feedback in

order to rapidly learn the coupled link-payload parameters. Finally, it should be emphasized

that the precise knowledge of the coupling between the robot and its payload, and in particu-

lar the location of the different contact points, can be used to relax the CoM bound constraint

acting on the link supporting interaction as exposed in Fig. 49. In practice, a tailor-made

offset toffj,k can be added to the constraint, along the normal of the considered surface k as
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(i) Location of the relaxed constraints. (ii) Constraint relaxation.

Figure 50 Convex hull constraint relaxation triggered by the skin in the whole-body manipulation scenario depicted in Fig. 49

exposed in Fig. 50ii. This offset will be integrated within the constraint eq. (180) as

B =

[
B1 0 0

0
. . . 0

0 0 Bn

]
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It should be noted that in case a CAD model of the robot is not provided by its manufacturer,

the artificial skin can still be used to constrain the identification process, as the position and

orientation of each skin cell can be known in the considered link frame after a short calibration

step 8. In this context, the normal vector nj,k ∈ R3 of constraint surface can simply be the set

to match the normal vector of each skin cell, or possibly each group of skin cell for improved

efficiency.

6.3.3. Online Physically-Consistent Identification in Batch

Real-time inertial parameters identification has the potential to enable a certain degree of

adaptability in the stabilization strategy of a humanoid robot. This proves to be especially rele-

vant in a full-body manipulation scenario, where a robot is manipulating an unknown payload.

To enable online identification at a rate fid, the proposed algorithm is executed in batches.

Note that the identification rate may in practice be one to two orders of magnitude lower than

the control loop frequency, denoted as fc. At every control iteration, a set of updated joint an-

gles q, contact wrencheswl,wr and IMU measurements v̇,ω, are appended to form a set of

dedicated fixed-size buffers – also referred to as mini-batches – each containing Nmb inputs

8 The detail of this process being out of the scope of this thesis, the reader is referred to [6] and the references
therein for additional information.
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Figure 51 Details of the batch identification process.

(c.f. Fig. 51). The mini-batch containing the joint position values undergoes zero-shift band-

pass filtering using a dedicated third-order forward-backward Butterworth filter. The resulting

filtered values are then differentiated twice, yielding the joint velocity and joint acceleration

mini-batches. It should be emphasized that since the forward-backward filter makes use of

multiple filtering passes in order to cancel the phase shift induced by classic online digital

filters [349], it cannot be used on a continuous data stream but rather on a batch of data,

hence the proposed formulation. In this context, it is worth noting that the filtering artifacts

arising at the ends of the measurement buffer can be easily discarded by considering only

the central part of the buffer in the computations. The size of the buffers mentioned in this

thesis naturally takes into account this elimination process. Unlike BIRDy, data decimation

is here not considered. This is justified, by the rather low frequency of the position control

loop – typically fc =200Hz – compared to a torque control loop usually running at rates of

several kHz, and where decimation filtering can be used to alleviate the effects of undesired

ripples in the motor torque signal. After the filtering and numerical time derivation steps, the

mini-batch data is used to build an updated robot observation system as a function of the

base parameter vector. Each element of this system can be computed as




06×1

τ



 =




Ybβ

Yqβ





︸ ︷︷ ︸

Yβ

β +
c∑

i=1




J⊤

bi

J⊤
qi



wi . (191)

In this equation, c ∈ denotes the number of contact points between the robot and its envi-

ronment, τ ∈ Rn is the vector of control torques, applied by the different robot joints, wi is

the ith contact wrench between the robot and its environment and the matrices J bi ∈ R6×6

Jqi ∈ R6×n are the Jacobians mapping the contact wrenches to the floating base and to the

different robot links. Similar to Venture et al. [123] only the regressor rows related to the

floating base of the robot are considered as the reconstruction of joint torque signal is irrele-

vant in stabilization of a position controlled mechanism. The observation system (W ,yw) is
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therefore constructed with the blocks (Ybβ,J
⊤
bi
wi) of the previous equation (c.f. Fig. 51)

06×1 = Ybββ +

c∑

i=1

J⊤
bi
wi . (192)

The main identification batch contains a set ofN mini-batches and thereforeNbatch = N ·Nmb

distinct observation systems, corresponding to as many control epochs. It therefore entirely

renewed every (Nbatch + 2N ·Nborder)/fc seconds when executed on a robot with a control

loop frequency fc. The scalar term Nborder of the previous expression refers to the border el-

ements of each mini-batch, that have to be removed to discard possible filtering artifacts. The

identification algorithm is finally executed on the full data batch (W ,yw). Modern humanoid

robots having multiple embedded computers, it is possible – and even recommended – to

execute the identification process and the robot controller on separated processors, to avoid

inducing potentially harmful time jitters within the low-level real-time control and stabilization

loops. In practice, although the control and identification processes operate at different fre-

quencies, they are connected to each-other through suitable non-blocking data-queues. The

updated parameters are low-pass filtered using the process described in section 6.3.1.4 of

this chapter, before being sent to the control thread at the control frequency fc, such that

each new control iteration is executed with a set of smoothly updated parameters.

6.4. Validation of PC-IDIM-SQP in Simulation

This section investigates the convergence and noise robustness properties of the IDIM-SQP

identification algorithm through a set of Monte-Carlo Simulation experiments (MCS) executed

within the BIRDy identification benchmark presented in chapter 5.

6.4.1. Monte-Carlo Simulation (MCS) using the BIRDy Identification

Framework

During these MCS experiments, the performance and robustness properties of three variants

of the proposed algorithm were evaluated, namely the PC-IDIM-SQP-OLS, PC-IDIM-SQP-

WLS and PC-IDIM-SQP-IRLS, and compared to a selected set of methods already imple-

mented in BIRDy. Each algorithm was tested with and without data filtering on a TX40 indus-

trial robot model, under the very same experimental conditions as those presented in chapter

5. More specifically, the experiment data of MCS-TX40-4-1, MCS-TX40-4-2, MCS-TX40-4-3,

MCS-TX40-4-4, and MCS-TX40-4-5 were used (c.f. Table 1). It should be emphasized that

the geometric relaxation was left inactivated during these experiments to better highlight the

performance of each algorithm. This is also justified by the fact that the considered identifi-

cation methods are tested on permanently exciting trajectories. The main tuning factor of the

proposed algorithm is the gain ̟ in eq. (176) and eq. (178). The best results were obtained

by annealing ̟ as the algorithm proceeds, following an exponentially decreasing law of the

form

̟i = λe−µi, ∀λ, µ ∈ R+ (193)
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(i) Reconstructed torque signal TX40, joint 6. The parameters were identified without data filtering.

(ii) IDIM-SQP-WLS base parameter convergence. (iii) IDIM-SQP-WLS error function.

Figure 52 Convergence results of IDIM-SQP-WLS without data filtering.

where i refers to the iteration number of the algorithm. As for the results obtained in chap-

ter 5, the computations were realized using Matlab R2020a on a AMD-Threadripper 1920X

workstation with 32GB of RAM. The qpOASES solver [216] was used as it offers a mature

Matlab interface with support of double-sided constraints. The reader is referred to chapter 5

for additional details on the BIRDy identification framework and on the figures of merit (FoM)

selected to compare the performance of the different identification algorithms.

6.4.2. Monte Carlo Simulation Results and Discussion

After suitable tuning of the annealing factor ̟, convergence of the different variations of PC-

IDIM-SQP is observed for every sample of the different MCS sets. It takes PC-IDIM-SQP an

average of 15 iterations to achieve convergence under the standard joint noise conditions of

experiment MCS-TX40-4-2 (c.f. Fig. 52ii and Fig. 52iii). The obtained set of parameters allow
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Figure 53 Joint trajectories obtained on the TX40 robot model with the unfiltered PC-IDIM-WLS estimate.

accurate reconstruction of the joint torque signal, as exposed in Fig. 52i. As the computa-

tion time is highly dependent on the batch size, the latter will therefore have to be carefully

adjusted for online execution purposes. A quick physicality check using a Cholesky decom-

position of the pseudo inertia matrix generated with the identified parameter sets obtained

during the different MCS scenarios confirms that – in contrast to the case of unconstrained

methods such as IDIM-LS – the identified parameter sets are physically consistent for every

single experiment execution within the MCS. It is worth pointing that physical consistency

is also obtained without data filtering, and under high joint position and torque noise condi-

tions, such as those encountered in the MCS-TX40-4-5 experiments of chapter 5 (c.f. table

1). These results are valid for IDIM-SQP-OLS, -WLS and -IRLS and moreover comparable

to those obtained with methods based on SDP with LMI constraints. The results in table

7 also suggest that the different IDIM-SQP methods have excellent noise robustness prop-

erties, both at the joint position level and at the joint torque level. In particular, the results

obtained with the MCS-TX40-4-5 scenario – at the highest noise levels – clearly demonstrate

that IDIM-SQP estimates, even without filtering, allows an improvement of the control per-

formance compared to the initial parameter estimate (c.f. Fig. 54iii) while the unconstrained

least squares methods such as IDIM-OLS, -WLS or -IRLS result – if unfiltered – in a strong

trajectory divergence (c.f. Fig. 54). It is worth noting that the trajectory tracking properties

of IDIM-SQP also appear to be improved compared to SDP identification methods (c.f. Fig.

54ii).
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(i) Joint trajectories and errors obtained on the TX40 robot model with the unfiltered IDIM-SQP-WLS estimate.

(ii) Joint trajectories and errors obtained on the TX40 robot model with the unfiltered PC-IDIM-WLS estimate.

(iii) Joint trajectory errors obtained on the TX40 robot model with the unfiltered IDIM-SQP-WLS estimate.

Figure 54 Joint trajectories obtained on the TX40 robot model with the initial parameters, the unfiltered IDIM-WLS estimate,
PC-IDIM-WLS and IDIM-SQP-WLS.
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MCS-TX40-4-5 E(dq), σq E(dτ ), στ E(dt), σt E(dNit
), σNit

E(dNsim
), σNsim

IDIM-OLS 442% (969%) 99.82% (17.05%) 0.54s (5.30%) 1.00 (0.00%) N.A.

IDIM-OLS filt. 420% (955%) 99.98% (18.18%) 0.56s (5.09%) 1.00 (0.00%) N.A.

IDIM-WLS 241% (647%) 99.82% (16.99%) 0.58s (4.34%) 1.00 (0.00%) N.A.

IDIM-WLS filt. 0.033% (0.14%) 99.98% (18.18%) 0.58s (4.40%) 1.00 (0.00%) N.A.

IDIM-TLS 579% (1356%) NaN% (NaN%) 0.55s (5.19%) 1.00 (0.00%) N.A.

IDIM-TLS filt. 579% (1356%) NaN% (NaN%) 0.56s (6.15%) 1.00 (0.00%) N.A.

IRLS 229% (615%) 99.82% (16.99%) 0.95s (6.24%) 1.00 (0.00%) N.A.

IRLS filt. 0.033% (0.14%) 99.98% (18.18%) 0.97s (6.61%) 1.00 (0.00%) N.A.

ML 0.043% (0.17%) 100.10% (18.86%) 11.80s (46.24%) 1.00 (0.00%) N.A.

ML filt. 0.035% (0.16%) 100.09% (18.79%) 8.01s (38.59%) 1.00 (0.00%) N.A.

IDIM-IV 334% (918%) 100.05% (17.81%) 5.97s (17.02%) 9.53 (16.58%) 9.53 (16.58%)

DIDIM 0.161% (0.30%) 99.27% (9.37%) 1.76s (21.69%) 3.54 (16.82%) 3.54 (16.82%)

CLIE 0.038% (0.17%) 100% (18.73%) 35.26s (43.55%) 3.17 (57.12%) 214 (46.40%)

CLOE 0.037% (0.17%) 100% (18.62%) 21.92s (62.45%) 5.13 (69.78%) 309 (63.44%)

EKF 0.289% (0.90%) 103% (29.82%) 2.48s (6.01%) 1.00 (0.00%) N.A.

SREKF 0.289% (0.90%) 103% (29.82%) 4.92s (3.90%) 1.00 (0.00%) N.A.

UKF 0.290% (0.92%) 103% (30.02%) 12.24s (2.92%) 1.00 (0.00%) N.A.

SRUKF 0.294% (0.93%) 103% (30.33%) 5.75s (4.51%) 1.00 (0.00%) N.A.

CDKF 0.288% (0.91%) 103% (29.89%) 10.02s (4.52%) 1.00 (0.00%) N.A.

SRCDKF 0.290% (0.91%) 103% (30.01%) 6.63s (3.95%) 1.00 (0.00%) N.A.

ANN 448% (1158%) 99.83% (17.20%) 0.92s (4.97%) 1.00 (0.00%) N.A.

ANN filt. 459% (1084%) 100% (18.46%) 0.93s (5.21%) 1.00 (0.00%) N.A.

HTRNN 298% (661%) 133.44% (73.31%) 0.55s (3.50%) 1.00 (0.00%) N.A.

HTRNN filt. 424% (929%) 99.99% (18.23%) 0.55s (3.08%) 1.00 (0.00%) N.A.

PC-IDIM-OLS 0.064% (0.22%) 99.83% (17.20%) 2.05s (4.28%) 1.00 (0.00%) N.A.

PC-IDIM-OLS filt. 0.036% (0.14%) 100.00% (18.25%) 2.06s (3.71%) 1.00 (0.00%) N.A.

PC-IDIM-WLS 0.060% (0.22%) 99.82% (17.15%) 2.07s (4.35%) 1.00 (0.00%) N.A.

PC-IDIM-WLS filt. 0.033% (0.14%) 99.99% (18.22%) 2.15s (5.76%) 1.00 (0.00%) N.A.

PC-IDIM-IRLS 0.060% (0.22%) 99.83% (17.18%) 7.75s (10.48%) 1.00 (0.00%) N.A.

PC-IDIM-IRLS filt. 0.033% (0.14%) 99.99% (18.22%) 7.25s (12.75%) 1.00 (0.00%) N.A.

PC-IDIM-IV 0.064% (0.24%) 100% (19.09%) 2.34s (3.98%) 3.00 (0.00%) 3.00 (0.00%)

PC-DIDIM 0.033% (0.15%) 100% (18.44%) 3.71s (12.85%) 3.00 (0.00%) 3.00 (0.00%)

PC-SQP-OLS 0.045% (0.18%) 99.79% (17.01%) 1.00s (5.69%) 30.00 (0.00%) N.A.

PC-SQP-OLS filt. 0.032% (0.14%) 99.99% (18.24%) 1.03s (6.43%) 30.00 (0.00%) N.A.

PC-SQP-WLS 0.042% (0.18%) 99.87% (17.52%) 1.10s (4.38%) 30.00 (0.00%) N.A.

PC-SQP-WLS filt. 0.033% (0.15%) 100.01% (18.36%) 1.13s (4.84%) 30.00 (0.00%) N.A.

PC-SQP-IRLS 0.044% (0.18%) 99.84% (17.34%) 2.13s (2.89%) 30.00 (0.00%) N.A.

PC-SQP-IRLS filt. 0.032% (0.14%) 99.99% (18.24%) 3.23s (5.25%) 50.00 (0.00%) N.A.

Table 7 Various FoM computed for the TX40 robot model, with a control frequency of 5kHz, a sampling frequency of 1kHz

and a decimation frequency of 100Hz. These results are obtained using the average values E(d) and standard deviations σ

of the 1300 parameter estimates obtained during the MCS over a set of 10s experiments, with στ = 1 · 10−1N.m and
σq = 1 · 10−2rad. Data is filtered using a Butterworth forward-backward filter with a cutoff frequency of 50Hz.
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6.5. Identification Experiments on a Humanoid Robot

This section discusses the detail of the proposed implementation on a humanoid robot. The

IDIM-SQP algorithm is implemented on a real humanoid robot, first for offline identification

purposes, and then for online identification in the context of whole-body manipulation. The

tactile feedback from an artificial skin covering the robot is exploited to simplify the identifica-

tion problem.

6.5.1. Experimental Setup

The proposed experiment setup consists of a REEM-C humanoid robot, covered with 1260

cells of our multimodal artificial skin. The robot is equipped with two i7 Linux computers,

each running a real-time patched Ubuntu 16.04 Linux distribution. One of these computers,

referred to as the control computer is entirely dedicated to time-sensitive control tasks while

the other one, referred to as the media computer, can be used for advanced data processing

tasks9. The control and media computers are allocated respectively 8Gb and 16Gb of RAM.

It should be emphasized that hyper-threading is disabled on the control computer in order to

mitigate the inevitable control loop frequency jitter induced by the operating system.

The complete control and identification frameworks are coded in C++, making extensive use

of the Eigen 3.4 linear algebra library and of the ROS kinetic robot middle-ware environment.

The low-level control framework, including the robot stabilizer, and trajectory generator, are

running on the control computer at a steady frequency fc of 200Hz, providing joint position

control references to the robot’s hardware interface. The Identification loop is executed on

the media computer and performs regular updates of the control parameters through ded-

icated ROS data queues. Note that although the identification process is executed asyn-

chronously, the parameter interpolation routine described in section 6.3.1.4 is executed at

the controller’s frequency fc, thereby providing a parameter update at each new control iter-

ation. After benchmarking multiple QP solvers10, it was decided to make use of the qpMAD

C++ optimization library from Alexander Sherikov [350], based on the Goldfarb-Idnani dual

active set algorithm [354]. The robot regression matrix is generated following the approach of

[355, 356, 109], detailed in Appendix A.3. This approach was implemented as an add-on to

the RBDL C++ library [322] for efficient online numerical computation. The robot position and

velocity relative to the world frame are measured using an Intel Realsense T265 odometry

camera [357]. This device acts by fusing the data from two fisheye cameras with that of an

embedded IMU into an odometry vector containing the position and orientation of the camera

frame relative to its starting point, fixed in world frame, at a frequency of 200 Hz. In this

manner the IMU drift can be corrected. The Realsense T265 also provides estimates of the

linear and angular velocities in the current camera frame, at the same rate of 200 Hz.

9 In our case, the media computer is used for parameter identification as well as skin data processing.
10Benchmarking of the QP solvers was executed on qpOASES[221], qpMAD[350], Quadprog++, OSQP[351] and

QLD[352]. The results of this benchmark are consistent with [353].
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Figure 55 Sample of the different excitation postures executed by REEM-C for offline identification purposes.

6.5.2. Offline Identification of a Humanoid Robot using PC-IDIM-SQP

Besides validating the proposed identification approach on a floating base robot and compar-

ing it to the more conventional IDIM-WLS, the objective of this first experiment is to generate

a set of inertial parameter estimates that are sufficiently precise to be used as reference in

for an online identification experiment in a whole-body manipulation scenario. During this first

experiment, offline identification of the robot dynamics is carried out using a similar process

as Venture et al. [123, 124]. Suitable excitation data is collected, similar to Jovic et al. [20],

by letting the robot covered with artificial skin execute a set of walking and squatting motions,

along with a set of tailor-made upper-body motion. The data is collected at a rate of 200Hz

over a time horizon of 100s, eventually resulting in a unique data buffer containing 20000

epochs (batch border removal process included). It should be noted that the artificial skin

layer covering the robot feet can here be used to reduce the impacts occurring during contact

transition following the approach of Guadarrama et al. [358]. Such smooth contact transition

actually prevents from exciting un-modeled flexibility modes of the robot, eventually resulting

in higher quality estimates.

Structural rank deficiencies are addressed in a classical fashion, by generating and identify-

ing a set of base parameters. The robot model consists in a total of 31 robot links connected

to each-other through 1-DoF revolute joints. Each robot link j is allocated 10 inertial param-

eters, namely χj = [Mj , MXj , MYj , MZj , XXj , XYj , XZj , Y Yj , Y Zj , ZZj ]
⊤. The

absence of friction terms is here justified by the very nature of the floating base dynam-

ics identification process. As a matter of fact, these parameters are structurally removed

identification process. The robot therefore has a total of 310 standard inertial parameters,

eventually reduced to 220 base parameters, namely 7 base parameters per link and 10 for

the floating base. In IDIM-SQP-WLS, the physical consistency is enforced by construction

and the Cholesky decomposition of the resulting link pseudo-inertia matrix might only fail in

case its diagonal elements are too close to zero. This issue can be addressed by adding a
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small threshold 0 < ε < 1 within the positivity constraint in eq. (176), yielding

S̺ > 04n ⇒ S̺ > ε · 14n > 04n. (194)

During this work, the value ε was set to ε = 10−5 to prevent infeasibility in the case of

low-inertia or low-mass robot bodies. Riemannian geometric relaxation is finally used within

the identification system to address the inevitable data rank deficiency issues arising from

improper excitation. During this experiment, the relaxation gain λ of eq. (176) is set to 100

and the convergence gains λ and µ of eq. (193) are set to 0.25 and 10 respectively. The

cross-validation experiment was executed on a new dedicated set of squats and upper-body

robot motions. The IDIM-SQP-WLS algorithm was set to run for a maximum of 30 iterations.

6.5.3. Online Identification with Tactile Feedback

The objective of this second experiment is to demonstrate the capability of the proposed

algorithm to be executed online, with in mind, a set of potential applications in the context

of adaptive stabilization and control. During this experiment, the humanoid robot performs

a whole-body manipulation task with a time-varying payload. The experiment setup is pre-

sented in Fig. 49. The robot is initially operated without payload and therefore makes use

of the parameter set estimated during the offline identification experiment. The robot is then

tasked to grasp and manipulate a travel bag containing a 8 kg payload. The contact with the

payload occurs on the arms and torso: namely the robot holds the travel bag with the arm

and fix it against its torso. The skin is here used to estimate the location and modalities of the

robot-payload interaction. Consequently, a set of simplified excitation behaviors are locally

generated over a short time horizon in order to enable online identification of the manipulated

payload using the IDIM-SQP algorithm. During this experiment, the identification is triggered

as soon as the robot detects a significant inconsistency between the expected and the mea-

sured ground reaction wrench. Considering that the manipulated payload is rigidly coupled

to a specific robot link is of significant interest for both computational complexity and control

reasons. On the one hand, this enables significant simplification of the identification prob-

lem, by only requiring re-identification of a single robot link11 rather than the whole articulated

system. On the other hand, the updated parameters of the system consisting of the robot

link coupled to the payload can be seamlessly integrated within a model-predictive control

strategy, where the robot can actively use the manipulated payload – now seen as part of

its own body – for improved control performance. In practice, the way in which the payload

dynamics is distributed at its different contact points with the robot body can prove challeng-

ing to capture, especially considering the wide variety of possible gripping modes achievable

with a humanoid robot. As a matter of fact, not every robot-payload gripping mode allows

such a simplification, not to mention that the field of grasping taxonomy is a research topic

in its own right with multiple contributions over the last two decades [359]. For simplification

purposes, this thesis will therefore only focus on the simple case where the payload can be

11In this context other links’ inertial parameters can be forced to their initial values using a set of suitable equality
constraints within eq. (176).
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(i) Initial parameters estimate of the
system “robot + skin”.

(ii) Unconstrained IDIM-WLS
parameters estimate.

(iii) Constrained IDIM-SQP-WLS
parameters estimate.

Figure 56 Visualization of the offline-estimated set of inertial parameters of the REEM-C humanoid robot.

considered as being dynamically coupled with only one of the robot links, namely the root of

the kinematic sub-tree within which the gripping occurs. Transposed to hand manipulation,

this amounts to only considering fully constrained manipulations involving the palm. In the

case of the considered robot, the root of the kinematic sub-tree arms + torso is the torso.

Therefore, the manipulated payload will be considered as part of the robot torso within the

computations. The local excitation behavior is generated using the joints linking the interact-

ing robot body to the floating base. Therefore during the considered experiment, the two torso

joints underwent sinusoidal excitation over a short time horizon of 4s. Batch identification was

then executed online on the resulting measurement buffer. As previously, the relaxation gain

λ of eq. (176) was set to 100 and the number Nborder of samples discarded on the higher

and lower borders was set to 50. It should be emphasized that the relaxation process is now

executed towards the set of physically consistent inertial parameters estimated during the

previous offline identification experiment rather than towards CAD values.

6.5.4. Experiment Results and Discussion

The results of the offline identification experiments in terms of net contact wrench prediction

are presented in Fig.57. The initial set of inertial parameters used for IDIM-SQP-WLS can

be visualized in Fig.56i, while the sets of identified parameter for IDIM-WLS and IDIM-SQP-

WLS can be visualized in Fig.56ii and Fig.56iii respectively. Note that in these figures, the

parameters are represented as a set of ellipsoids, whose center is located in the estimated

links’ CoM and whose main axes are determined by the eigenvalues of the links’ inertia ma-

trix and mass. The cross-validation results in Fig.57 suggest that IDIM-SQP-WLS provides

more accurate net contact wrench predictions than IDIM-WLS. Note in particular the better

match at the x-torque and y-torque levels. As both IDIM-WLS and IDIM-SQP-WLS under-

went the very same geometric relaxation process, the observed difference in terms of wrench

prediction results can therefore not be correlated to improper excitation but rather to physical

consistency issues and estimated link CoM considerations. Note that physical consistency or
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Figure 57 Cross validation experiment of the external wrench for IDIM-WLS and IDIM-SQP-WLS. In yellow, the measured
values, in orange the IDIM-WLS values,and in blue the IDIM-SQP-WLS values.

inconsistency of a set of parameters can be verified in practice using a Cholesky decomposi-

tion of the pseudo-inertial matrix associated with every single robot link. This process can be

executed at every iteration of the identification algorithm and used as a fail-safe feature.

It should be emphasized that although the match on the training trajectory might sometimes

be better in the case of IDIM-WLS, the IDIM-SQP-WLS method eventually tends to provide

the most accurate predictions on validation trajectories as the estimates are – by construction

– set to be physically consistent. Moreover, as noticeable in Fig. 56, it should be emphasized

that unlike IDIM-WLS, the constrained IDIM-SQP-WLS estimates comply with the robot ge-

ometrical features. These good general performances should nevertheless be tempered in

practice by the occurrence of failure modes at the link CoM position constraint level, that may
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Figure 58 Online identification: note the parameter adaptation from t = 6s onwards.

sometimes lead to infeasibility. Such constraints failure modes were observed during strong

parameter variations between two consecutive iterations of the algorithm. Nevertheless this

issue could be mitigated by properly tuning the problem bound parameter ̟ within eq. (178).

The experiment results of the online identification experiment are presented in Fig.58. The

set of identified parameters can be visualized in Fig.59 along with the evolution of the wrench

error norm during the identification process. The results suggest that the IDIM-SQP-WLS

method is able to run online. Notice on Fig.58 the fast adaptation of the z component of net

contact wrench to the 8kg payload manipulated by the robot. Convergence towards the new

set of inertial parameters is achieved in 5s, thereby making the integration of IDIM-SQP-WLS

into closed-loop adaptive stabilization strategies possible. This specific task is here consid-

ered as future works. Note that the convergence speed can be adjusted in practice through
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(i) IDIM-SQP-WLS online identified parameters.
Based on the skin feedback, only the torso link,
coupled to the payload, was reidentified.
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Figure 59 Online inertial parameter identification.

the parameter α within eq. (183) and eq. (185). It is worth highlighting the benefits related

to the use of an artificial skin in terms in terms of generating appropriate equality constraints

applied to the inertial parameters of the robot bodies that are not involved in the payload

interaction process.

6.6. Summary

This chapter introduces a new physically consistent inertial parameter identification algo-

rithm and explores the possible applications of a multimodal artificial skin in the context of

inertial parameter identification of humanoid robots. Adopting a new parametrization of the

physically consistent identification problem allows convenient implementation in the form of

a sequence of QP, capable of running online on a robot’s embedded computer. Additionally,

the Riemannian nature of the physical consistency manifold is exploited for relaxation and

interpolation purposes, thereby addressing the issues of data rank deficiency and parameter

continuity. The artificial skin is being used to hot-start the identification process, set addi-

tional constraints to the identification process and finally provide real-time feedback on the

nature of the mechanical coupling between a robot and its payload, thereby allowing signifi-

cant simplifications of the whole the identification process. The performance of the proposed

approach is demonstrated both in simulation, using the BIRDy identification benchmark, and

through a set of experiments on a humanoid robot. The MCS results suggest that the pro-

posed IDIM-SQP approach has enhanced noise robustness compared to the other methods,

while guaranteeing physicality of the estimates. Preliminary experiment results performed on

a REEM-C humanoid robot show its ability to run online within a robot control framework.
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Chapter 7

General Conclusion

7.1. Summary and Conclusions

Adaptability is the key to the upcoming large-scale democratization of complex robotic sys-

tems in society. Its implementation essentially relies on the ability of a system to assess

the nature of its environment and to understand its properties. Only then can coherent con-

trol actions be generated. Multiple researches suggest that advanced multimodal sensory

capabilities are essential to enable robots to physically interact and even work alongside hu-

mans on a daily basis. More specifically, it appears that physical interaction between humans

and robots should be based on human-like sensory modalities, and in particular on a reli-

able sense of touch. In this context, the development of a large-scale multimodal artificial

skin, which can potentially equip any robot, seems to be a very promising research direc-

tion.However, its implementation remains problematic in practice. This is mainly due, on the

one hand, to the substantial amount of data that can potentially be generated by this class

of highly distributed systems and, on the other hand, to the fact that it modifies the dynamic

properties of the robot on which it is mounted. This thesis addresses some aspects of these

problematics from the perspective of control, estimation and identification.

7.1.1. Whole-Body Human-Robot Physical Interaction

This chapter addresses the issue of whole-body compliance with force propagation for wheeled

mobile manipulators using the multimodal tactile feedback of an artificial robot skin. A new

control paradigm is proposed, leveraging the contact and precontact modalities of the skin.

This control strategy is based on the reactive acceleration error between each of the robot’s

rigid links, and a corresponding set of virtual mass-spring-damper systems, moving with a

predefined compliant dynamics. The use of Quadratic programming allows determining a

set of suitable control torques references, to track as closely as possible the desired reac-

tive behavior while intrinsically complying with the robot physical constraints. In addition to

its intuitiveness, formulating the controller in Cartesian space, allows to conveniently capture

the dynamic residuals between the desired and the actual reactive motions of each limb,

and to propagate them onto a parent kinematic chain. In this manner, the robot remains

compliant under external tactile perturbations, even when the arms reach kinematic or dy-

namic constraints. The artificial skin here plays a major role since it provides information on

the magnitude, direction and localization of tactile interactions. The experiments performed

on a dual arm mobile manipulator demonstrate the reliability and efficiency of the proposed

approach as well as its applicability to human-robot interaction scenarios.
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7.1.2. Estimation of High-Order Motion Derivative Using Distributed Inertial

Feedback

This chapter describes a new derivation-free estimation method for second-order kinematics

on floating-base robots. Relying on highly-redundant distributed acceleration measurement

from an artificial sensory skin covering the robot, the proposed method is two-fold. The first

step consists in fusing the skin accelerations link-wise using a dedicated Maximum-Likelihood

observer. The second step then involves fusing these measurements with that of the en-

coders and floating-base IMU. The results suggest that the motion derivative estimates have

equivalent noise levels to those of the reference signals while maintaining a low lag. In addi-

tion, this chapter addresses the issues of measurement robustness and data flow mitigation

on redundant inertial sensor arrays by introducing a new online sensor selection algorithm. As

a matter of fact, direct physical interaction with an acceleration sensor result in strong parasitic

transients that can potentially jeopardize estimation performance. Sensor hyper-redundancy

can also lead to network jamming, yielding nondeterministic latency. In this chapter, both

issues are dealt with using a sensor selection approach, triggered by the precontact modality

of the artificial skin. Relying on a projected gradient heuristics, the proposed sensor selection

algorithm evaluates sensor configurations that provide the best measurement signal-to-noise

ratio (SNR) and is capable of converging in less than ten iterations, which makes it well suited

for online implementation on a robotic system.

7.1.3. Quantitative Performance Assessment of State-of-the-art Identification

Algorithms

In this work, a sample of the most popular approaches to inertial parameter identification

for fixed-based robotic systems is evaluated and benchmarked. These methods are IDIM-

OLS, IDIM-WLS, IDIM-IRLS, IDIM-TLS, ML, IDIM-IV, DIDIM, CLIE, CLOE, EKF, SREKF,

UKF, SRUKF, CDKF, SRCDKF, AdaNN, HTRNN, PC-IDIM-OLS, PC-IDIM-WLS, PC-IDIM-

IRLS, PC-DIDIM and PC-IDIM-IV. First presented and discussed in a theoretical manner,

each method is then implemented and evaluated experimentally within a dedicated frame-

work, named BIRDy, which was specifically developed for this purpose. BIRDy features a

complete identification pipeline, allowing one to generate the kinematic and dynamic models

of a given robot, to compute a trajectory that excites its dynamic parameters, to simulate the

system’s behavior along this trajectory, collect experimental data under well-defined condi-

tions, proceed to parameter identification using a pool of dedicated algorithms and eventually

to compare the identification performances using a set of suitable metrics. In this work, BIRDy

was used to perform Monte Carlo simulations on two models of 6-DoF industrial robot manip-

ulators, namely the Staubli TX40 and the Mitsubishi RV2SQ. Experiments were also carried

out on the real robots, thereby providing helpful insight on the influence of multiple factors

over the performance of identification, including prior knowledge of the control architecture,

sampling frequency, or friction model. The results make it possible to infer a set of general

guidelines based on quantitative arguments regarding the applicability of a given identification

method to a particular experimental context.
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7.1.4. Online Physically-Consistent Inertial Parameter Identification with

Geometric Relaxation and Local Excitation

This chapter introduces a new physically consistent batch identification algorithm capable of

running both offline and online on fixed and floating base robots. The issue of parameter phys-

ical consistency is here addressed using an alternative parametrization based on a Cholesky

decomposition of the pseudo-inertia matrix, generally used to assess physicality during an

identification process. As a matter of fact, the resulting problem structure allows reformulat-

ing the classical SDP identification approach, based on linear matrix inequalities (LMI) as a

sequence of quadratic programs (QP). Evaluation of this method on a model of Staubli TX40

robot using the BIRDy identification benchmark demonstrates excellent robustness to high

noise levels in the joint position signal as well as well as a preservation of the physical consis-

tency of the estimates. Preliminary results obtained with a REEM-C humanoid robot covered

with artificial skin indicate that this method is suitable for online batch implementation, with

potential applications to adaptive stabilization and whole-body manipulation. In this context,

it is worth emphasizing that the tactile feedback of an artificial skin can be leveraged in order

to provide relevant information regarding the nature of the coupling between the robot and its

payload, thereby simplifying the identification problem, in particular through the online gener-

ation of local excitation behaviors. To avoid abrupt parameter changes induced by the batch

nature of the identification algorithm, the identified values are interpolated along a geodesic

curve of the physicality Riemannian manifold, eventually resulting in a continuous stream of

parameter estimates, that can potentially be made available to a robot controller at each time

epoch for adaptive control purposes.

7.2. Outlook and Future Works

Considering the work developed in this thesis, future research should mainly focus on a

deeper integration of tactile feedback in a more general robot control framework, for com-

pliant control, identification and adaptive manipulation. It should be emphasized that in its

current version, the artificial skin is essentially a technological demonstrator. As such, it

has several well-known limitations that will be overcome in future design iterations. Besides

improving the hardware design of the skin, a software stack will have to be developed, to

allow the easy deployment of distributed robot sensors on much larger scales. Inertial sensor

calibration issues should moreover be dealt with in a more robust manner.

In essence, future works in the field of human-robot interaction will mainly consist in further

integrating the developed control paradigm within a stack-of-task architecture. It should also

be noted that the use of arbitrary contact surfaces for stabilization purposes is also considered

as a promising research direction, to the extent that the skin contacts can be integrated into

eq. (110) and hence be considered within a wrench distribution algorithm. Further exploitation

of the artificial skin multimodality, especially through acceleration and temperature signals,

will also have to be considered.
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Future work in the field of joint high-order motion derivative estimation will consist, on the

one hand, of extending the developed paradigm to an entire humanoid robot, and, on the

other hand, of evaluating the propensity of the estimated acceleration signal to be used in

a high-gain control loop. This will require a set of modifications at the skin firmware level,

allowing in particular the event mode and the clock mode of the skin, to coexist on the same

network and enabling seamless transition between them at run time and at the cell level. On

the hardware point of view, the mechanical coupling between the skin and the robot to which

it is attached should also be improved so that the accelerometer calibration remains valid

even after intensive use.

Future works in the field of parameter identification will first be to migrate the BIRDy frame-

work as a set of C++ ROS packages, made available to the community for online implemen-

tation and deployment on live robotic systems. It is worth emphasizing that this was already

partially done as part of chapter 6 of this thesis, where new functionalities, such as robot

description using the URDF file format, the consideration of floating base mechanisms and

the use of an efficient rigid body dynamics library for identification model computation was

proposed. In this context, it should moreover be emphasized that the use of an artificial

skin for shape recognition and adaptive manipulation may reasonably be considered. The

feedback from the artificial skin in terms of contact or even pre-contact could in this case be

combined with that from a lidar or RGBD camera mounted on the robot in order to match a

convex geometric shape, such as an ellipsoid, to the resulting point cloud of the manipulated

object. This would allow in particular to constrain some aspects of the parametric identifi-

cation process, such as the position of the center of mass of the manipulated object via the

use of approaches similar to Ayusawa et al. [101, 102] or Wensing et al. [325]. Finally, the

integration of the proposed identification approach within an adatptive stabilization loop or an

adaptive trajectory generator is to be considered.

162



Appendix A

Robot Dynamics

This appendix chapter reviews important details related to the mathematical formulation of

the dynamics of a robot.

A.1. Properties of the Inertia tensor

A.1.1. Definitions

Formulating the dynamic equations of a robot manipulator requires a precise knowledge of

the inertia tensors Ij of every link j (expressed in the link Center-of-Mass):

Ij =












Ixxj
Ixyj Ixzj

Iyxj
Iyyj Iyzj

Izxj
Izyj Izzj












, j ∈ {1 · · ·n} (195)

where for a robot link j, Ixxj
, Iyyj and Izzj depict the principal moments of inertia and where

Ixzj = Izxj
, Ixyj = Iyxj

and Iyzj = Izyj are the so called products of inertia. Usually

not provided by the robot manufacturers, these terms can nevertheless be calculated as [9]:

Ixxj
=

∫∫∫

ρj
(
y2j + z2j

)
dx dy dz

Iyyj =

∫∫∫

ρj
(
x2j + z2j

)
dx dy dz

Izzj =

∫∫∫

ρj
(
x2j + y2j

)
dx dy dz

Ixyi = −
∫∫∫

ρjxjyj dx dy dz

Ixzi = −
∫∫∫

ρjxjzj dx dy dz

Iyzi = −
∫∫∫

ρjyjzj dx dy dz

A.1.2. Main axes of inertia and elements of solid material symmetry

Because of its symmetrical nature it is always possible to choose an axis system such that

the matrix Ĭ representing Ij is diagonal (c.f. Fig.60iii). Such axes are called main axes of

inertia. The corresponding moments of inertia are called principal moments of inertia. In

practice, Ij can be written as:

Ij = Rj ĬjR
⊤
j (196)

where where Ĭj = diag(Ĭxxj , Ĭyyj , Ĭzzj) and Rj ∈ SO(3) is the rotation matrix relating the

frame Ij of the principal axes of inertia, to the link’s Center-of-Mass frame Cj .
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(i) Balanced rotating body (ii) Unbalanced rotating body (iii) Main axes of inertia

Figure 60 The unbalanced body has non-zero off-diagonal components, which represents “wobbliness” of rotation

A.1.3. The Huygens-Steiner Parallel Axis Theorem

Also known as the parallel axis theorem. Provided that the center-of-mass frame and the

origin frame of a robot link j have the same orientation, the inertia matrix Ij at the center-

of-mass frame can be related to the inertia matrix Lj at the link origin frame (i.e. DH frame)

using the following formula:

Lj = Ij +Mj

[

p
cmj

j

]⊤

×

[

p
cmj

j

]

×
(197)

where Mj is the mass of link j, p
cmj

j = [Xj , Yj , Zj ]
⊤ is the coordinate vector of the link

center-of-mass related to the link origin frame (i.e. DH frame) and expressed in the base

coordinate frame and ∀u,v ∈ R3 [u]× v = u × v. It is worth noting that (197) is in fact the

Schur complement (c.f. B.2) of a matrix Dj(χ) ∈ S6×6 defined as

Dj(χ) =






Ij +Mj

[

p
cmj

j

]⊤

×

[

p
cmj

j

]

×
Mj

[

p
cmj

j

]⊤

×

Mj

[

p
cmj

j

]

×
Mj13×3




 (198a)

=






Lj

[

mp
cmj

j

]⊤

×[

mp
cmj

j

]

×
Mj13×3




 (198b)

where 03×3,13×3 respectively denote the 3×3 zero and identity matrices and wheremp
cmj

j =

[MjXj ,MjYj ,MjZj ]
⊤. It is also worth noting that Lj can be constructed from the standard

parameter vector χj as:

∀u ∈ R
3, Lju =






XXj XYj , XZj

XYj Y Yj , Y Zj

XZj Y Zj , ZZj











ux

uy

uz




 =






ux uy uz 0 0 0

0 ux 0 uy uz 0

0 0 ux 0 uy uz






︸ ︷︷ ︸

[u]
•














XXj

XYj

XZj

Y Yj

Y Zj

ZZj














︸ ︷︷ ︸

lj

(199)

164



A.2. Closed-form Symbolic Formulation of Robot Dynamics

A.2.1. Robot Dynamic Equations

The dynamic model of a robot provides a mapping between the generalized forces τ acting

on its joints (e.g. gravity, contact wrenches, control torques...) and the resulting accelerations

they produce. It consists in a system of second order differential equations of the form:

Φ(q, q̇, q̈) = τ (200)

As exposed in [360], these equations can be established ether by using the Newton-Euler

approach (balance of forces/torques) or by using the Euler-Lagrange method (energy-based

approach). In Euler-Lagrange formalism, we define the Lagrange parameter L(q, q̇, t) as the

difference between the robot total kinetic energy KT (q̇, t) =
n∑

i=1
Ki(q̇, t) and its total potential

energy PT (q, t) =
n∑

i=1
Pi(q, t) (defined as the sum of every link contributions), yielding

L(q, q̇, t) = KT (q̇, t)− PT (q, t) (201)

According to the Hamilton’s principle of least action, any robot motion between two configu-

rations q(t1) and q(t2) have to be done minimizing the action parameter S defined as

S(q) =
∫ t2

t1

L(q, q̇, t)dt (202)

eventually resulting in the so called Lagrange’s equation, describing the Robot’s dynamics:

d

dt

(
∂L
∂q̇

)

− ∂L
∂q

= τ (203)

where for a n-DoF mechanism, q, q̇, τ ∈ Rn are n-dimensional vectors representing respec-

tively generalized positions, generalized velocities and generalized joint forces such as the

control torque τ ctrl ∈ Rn, the external loads τ ext ∈ Rn, and non-conservative generalized

forces such as friction. As the potential energy of a robot manipulator does not depends on

q̇, eq.(203) can thus be reformulated as:

d

dt

(
∂KT

∂q̇

)

− ∂KT

∂q
+
∂PT

∂q
= τ (204)

Computer implementation of such an equation has of course to be done using matrix formal-

ism, leading eventually to the following canonical expression, used in chapter 2

M(χ, q)q̈ +C(χ, q, q̇)q̇ + g(χ, q) + ζ(χ, q̇) = τ ctrl + τ ext (205)

The following subsection aims at clarifying the robot dynamic computations executed with the

BIRDy robot identification benchmark, namely the computation of the termsM(χ, q),C(χ, q,

q̇)q̇, g(χ, q) as well as the regression matrix used for identification purposes.
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(i) Unconstrained set or rigid bodies

......
...

...

...

(ii) Articulated (constrained) bodies

A.2.2. The Gauss-Newton Method

The Gauss principle of dynamics [361] states that:

• The acceleration ẍ
cmj

0 =
[

v̇
cmj⊤

0 , ω̇
cmj⊤

0

]⊤

of a set of solids subject to a set of con-

straints, deviates the least possible (in the L2 norm sense) from the acceleration ẍ
cmj

0 =
[

v̇
cmj⊤

0 , ω̇
cmj⊤

0

]⊤

that it would have had without these constraints.

• The deviation is measured using the total kinetic energy as a cost function:

D =

n∑

j=1

[
1

2

(
v̇
cmj

0 − v̇cmj

0

)⊤
Mj

(
v̇
cmj

0 − v̇cmj

0

)
+

1

2

(
ω̇

cmj

0 − ω̇cmj

0

)⊤
I
j
0

(
ω̇

cmj

0 − ω̇cmj

0

)
]

(206)

where Ij0 is the inertia matrix of link j at its center of mass relative to the base reference

frame. For the record, always remember that the inertia matrix Ij can be related to the

inertia matrix Lj of link j at the link DH frame using the parallel axis theorem.

• Unconstrained rigid body equation of motion:

w
cmj

0 =

[

f
cmj

0

µ
cmj

0

]

=




Mj v̇

cmj

0

I
j
0ω̇

cmj

0 −
[

I
j
0ω

cmj

0

]

×
ω

cmj

0



 (207)

• Constrained rigid body second-order kinematics:

ẍ
cmj

0 =

[

v̇
cmj

0

ω̇
cmj

0

]

=

[

J̇
cmj

v q̇ + J
cmj
v q̈

J̇
cmj

ω q̇ + J
cmj
ω q̈

]

(208)
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Figure 61 Illustration of the motions of a rigid robot with respect to a base reference frame L0. For each link j of the robot, we
define a rigidly-attached body reference frame Lj and as well as a Center-of-Mass frame Cj . Lj and Cj are chosen to have
the same orientation in space.

• Constrained rigid body equation of motion is obtained by expressing the first-order optimal-

ity conditions over (206) (i.e. by derivation w.r.t the joint space variable q̈ of the constrained

system)
∂D
∂q̈

:= 0n×1 (209)

The final step consists in identifying, in the obtained expression, the terms multiplied by q̈

(corresponding to M(χ, q)), the terms multiplied by q̇ (corresponding to C(χ, q, q̇)) and

the terms multiplied by nothing (corresponding to g(χ, q), yielding:

M(χ, q) =
n∑

j=1

[

MjJ
cmj⊤
v J

cmj
v + J

cmj⊤
ω R

j
0IjR

j⊤
0 J

cmj
ω

]

(210)

C(χ, q, q̇) =
n∑

j=1

[

MjJ
cmj⊤
v J̇

cmj

v + J
cmj⊤
ω R

j
0IjR

j⊤
0 J̇

cmj

ω · · ·

· · · + J
cmj⊤
ω

[
J

cmj
ω q̇

]

×
R

j
0IjR

j⊤
0 J

cmj
ω

]

(211)

A.2.3. The Newton-Euler Method

Let us consider an intermediate link j of a n-DoF robot (c.f. Fig.61). The resultant of force

and momentum applied to this link in its Center-of-Mass are denoted as f
cmj

0 and µ
cmj

0 .

Accordingly, the linear and angular momentum of the link can be expressed as:

ν
cmj
v = Mjv

cmj

0 =MjJ
cmj
v q̇ (212a)

ν
cmj
ω = I

j
0ω

cmj

0 = Rj
0IjR

j⊤
0 J

cmj
ω q̇ (212b)
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Taking the time derivative of the momentum equations yields:

ν̇
cmj
v =Mj v̇

cmj

0

=MjJ
cmj
v q̈ +MjJ̇

cmj

v q̇ (213a)

= f
cmj

0

ν̇
cmj
ω = Rj

0IjR
j⊤
0 ω̇

cmj

0 + Ṙ
j

0IjR
j⊤
0 ω

cmj

0 +Rj
0IjṘ

j⊤

0 ω
cmj

0

= Rj
0IjR

j⊤
0 J

cmj
ω q̈ +

[

R
j
0IjR

j⊤
0 J̇

cmj

ω +
[
J

cmj
ω q̇

]

×
R

j
0IjR

j⊤
0 J

cmj
ω

]

q̇ (213b)

= µ
cmj

0

Noticing that (213b) and (214) are homogeneous to a force and a torque, it is possible to

propagate these equations along the kinematic tree of the robot by simply premultiplying

by the Jacobian transpose of the link. Summing up these equations for every robot joint

eventually yields

n∑

j=1

[

MjJ
cmj⊤
v J

cmj
v + J

cmj⊤
ω R

j
0IjR

j⊤
0 J

cmj
ω

]

︸ ︷︷ ︸

M(χ,q)

q̈ + · · ·

n∑

j=1

[

MjJ
cmj⊤
v J̇

cmj

v + J
cmj⊤
ω R

j
0IjR

j⊤
0 J̇

cmj

ω + J
cmj⊤
ω

[
J

cmj
ω q̇

]

×
R

j
0IjR

j⊤
0 J

cmj
ω

]

︸ ︷︷ ︸

C(χ,q,q̇)

q̇ · · ·

(214)

=
n∑

j=1

[

J
cmj⊤
v f

cmj

0 + J
cmj⊤
ω µ

cmj

0

]

This basically amounts to re-injecting (210) and (211) in (1), considering the gravitational

effects as being part of f
cmj

0 while the friction and control efforts – in the case of revolute

joints – are part of µ
cmj

0 .

A.2.4. Symbolic Computation of the Regressor Matrix

Although elegant, the previous expressions usually cannot be used “as is” to compute a robot

regressor as pointed out in [309]. This is due to the fact that the Jacobian terms in these

expressions have a nonlinear dependence on the position p
cmj

j = [XjYjZj ]
⊤ of the Center-

of-Mass of every link j relative to the link origin frame (a parameter that will later have to be

estimated using dedicated identification techniques).

Let us consider the linear velocity vj0 of a body-attached reference frame Lj (such as a DH

frame or a URDF link frame) instead of that of the Center-of-Mass frame Cj . vj0 and v
cmj

0 can

be related to each other following

v
cmj

0 = vj0 +
[
ω

cmj

0

]

×
p
cmj

j =

(

J j
v −

[

p
cmj

j

]

×
J

cmj
ω

)

q̇. (215)
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Since v
cmj

0 = J
cmj
v q̇, we can relate the Jacobian matrix J

cmj
v mapping the joint velocity q̇ to

the linear velocity v
cmj

0 of Cj , to the Jacobian matrix J j
v mapping q̇ to the linear velocity vj0 of

Lj as

J
cmj
v = J j

v −
[

p
cmj

j

]

×
J

cmj
ω (216)

Note that we have J
cmj
ω = J j

ω as ω
cmj

0 = ω
j
0. Re-injecting (215) and (216) into (213) and

premultiplying by the full CoM Jacobian transpose J
cmj⊤

0 , we can get:

J
cmj⊤
v ν̇

cmj
v = MjJ

cmj⊤
v v̇

cmj

0 (217a)

= Mj

(

J j
v −

[

p
cmj

j

]

×
J

cmj
ω

)⊤ (

v̇
j
0 +

[
ω̇

cmj

0

]

×
p
cmj

j +
[
ω

cmj

0

]

×
ṗ
cmj

j

)

J
cmj⊤
ω ν̇

cmj
ω = J

cmj⊤
ω R

j
0IjR

j⊤
0 ω̇

cmj

0 + J
cmj⊤
ω Ṙ

j

0IjR
j⊤
0 ω

cmj

0 (217b)

= J
cmj⊤
ω R

j
0IjR

j⊤
0 ω̇

cmj

0 + J
cmj⊤
ω

[
ω̇

cmj

0

]

×
R

j
0IjR

j⊤
0 ω

cmj

0

The resultant force f
cmj

0 and torque µ
cmj

0 acting on the link center of mass are a combination

of the control efforts f c,µc generated by the robot actuators, the actuator and transmission-

chain inertia fa,µa, of the link own weight fg = MiR
W
0 [0, 0, g]⊤ ,µg = 03×1, of the friction

effects f ζ ,µζ and of the physical interactions between the robot and its environment, denoted

by f ext and µext, yielding







f
cmj

0 = f c + fa +MiR
W
0 [0, 0, g]⊤ + f ζ + f ext

µ
cmj

0 = µc + µa + µζ + µext

(218)

Therefore we can write:

n∑

j=1

MjJ
j⊤
v v̇

j
0 +

n∑

j=1

Mj

(

J j⊤
v

[
ω̇

cmj

0

]

×
+ J j⊤

v

[
ω

cmj

0

]

×

[
ω

cmj

0

]

×
− J cmj⊤

ω

[
v̇
cmj

0

]

×

)

p
cmj

j · · ·

· · ·+
n∑

j=1

J
cmj⊤
ω

[

R
j
0IjR

j⊤
0 ω̇

cmj

0 +
[
ω

cmj

0

]

×
R

j
0IjR

j⊤
0 ω

cmj

0

]

· · · (219)

· · ·+
n∑

j=1

Mj

(

J j
v −

[

p
cmj

j

]

×
J

cmj
ω

)⊤

RW
0 [0, 0, g]⊤ + ζ(χ, q̇) = τ ctrl + τ ext

Then using parallel axis theorem (197) and applying the inertia operator [·]• defined in (199)

on the previous equation yields:

n∑

j=1

MjJ
j⊤
v

(

v̇
j
0 +R

W
0 [0, 0, g]⊤

)

· · · (220)

· · ·+
n∑

j=1

Mj

(

J j⊤
v

[
ω̇

cmj

0

]

×
+ J j⊤

v

[
ω

cmj

0

]

×

[
ω

cmj

0

]

×
− J cmj⊤

ω

[

v̇
cmj

0 +RW
0 [0, 0, g]⊤

]

×

)

p
cmj

j · · ·

· · ·+
n∑

j=1

J
cmj⊤
ω

(

R
j
0

[

R
j⊤
0 ω̇

cmj

0

]

•
+
[
ω

cmj

0

]

×
R

j
0

[

R
j⊤
0 ω

cmj

0

]

•

)

lj + ζ(χ, q̇) = τ ctrl + τ ext

where lj = [XXj XYj XZj Y Yj Y Zj ZZj ]
⊤. If the jth component ζj of the friction force
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vector ζ is expressed in the form of a linear function of the standard parameters, as it is for

example the case in the Viscous-Coulomb friction model where ∀Fcj , Fvj ∈ R+

ζj(χj , q̇j) = Fcj · sign(q̇j)
︸ ︷︷ ︸

Coulomb friction

+ Fvj · q̇j
︸ ︷︷ ︸

Viscous friction

(221)

the friction coefficients can be readily included within the link’s standard dynamic parameter

vector χj ∈ R13. In this form, all the terms of the dynamic equation (220) are expressed

linearly in the standard inertial parameter vector χ. Ultimately, the regression equation can

therefore be constructed as:

τ ctrl + τ ext =

n∑

j=1

Yχj
(q̈, q̇, q)χj =

n∑

j=1

[

Y j1 Y j2 Y j3 Y j4

]














lj

mpj

Mj

Iaj

Fvj

Fcj














(222)

where:

Y j1 = J
cmj⊤
ω

(

R
j
0B(Rj⊤

0 ω̇
cmj

0 ) +
[
ω

cmj

0

]

×
R

j
0B(Rj⊤

0 ω
cmj

0 )
)

(223a)

Y j2 = J
j⊤
v

[
ω̇

cmj

0

]

×
+ J j⊤

v

[
ω

cmj

0

]

×

[
ω

cmj

0

]

×
− J cmj⊤

ω

[

v̇
cmj

0 +RW
0 [0, 0, g]⊤

]

×
(223b)

Y j3 = J
j⊤
v

(

v̇
j
0 +R

W
0 [0, 0, g]⊤

)

(223c)

Y j4 = [q̈ q̇ sign(q̈)] (223d)

and where the operators [·]× and [·]• are defined in section 4.2.2.

A.3. Online Numerical Computation of the Regressor Matrix

in Plücker coordinates

When executing an online identification algorithm, it is essential to be capable of efficiently

computing the regression matrix of the whole mechanism. Throughout the experiments per-

formed on the REEM-C humanoid robot, described in chapter 6, the robot dynamics is com-

puted numerically using the RBDL C++ library [322] based on the recursive Newton-Euler

algorithm. Since this library exploits the spatial vector algebra with Plücker coordinates de-

scribed in Featherstone et al. [77], the online computation of the regression matrix has to

be formulated according to the same set of conventions. Let us consider a given robot kine-

matic tree, as for instance shown in figure 62. Then for a given link i within this tree, the

term ν(i) refers to the link ids in the sub-tree starting at link i (depicted in green in Fig. 62).

Similarly, the term µ(i) denotes the children of link i (depicted in blue in Fig. 62). In this

context, let us define the binary term σ such that for two links i and j of a robot kinematic

tree, σ(i, j) = 1 if link j belongs to ν(i) and σ(i, j) = 0 otherwise. Following the work of
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Figure 62 Notations referring to open kinematic chains.

[362, 355, 109, 356], the regressor of a kinematic tree can be computed row-wise, each row

representing the contribution of a specific joint, yielding

Y =

[

Y ⊤
0 , · · · ,Y ⊤

NB

]⊤

(224)

where ∀j = {0, · · · , NB − 1}

Y j =
µ(j)S⊤

λ(j),µ(j)

[

σ(j,L(0))µ(j)X∗
L(0)A0, · · ·σ(j,NB − 1)µ(j)X∗

NB−1ANB−1

]

(225)

In this equation, the matrix Aj ∈ R6×10 is defined as

Aj =








03×1 − [aj + ωj × vj ]× [ω̇j ]• + ωj × [ωj ]•

aj + ωj × vj [ω̇j ]× + [ωj ]× [ωj ]× 03×6







∈ R

6×10 (226)

where vj ,aj ,ωj ∈ R3 and ω̇j ∈ R3 refer to the linear (resp. angular) velocity (resp. acceler-

ation) of body j, expressed in the body frame and where

∀u ∈ R
3, [u]• =






ux uy uz 0 0 0

0 ux 0 uy uz 0

0 0 ux 0 uy uz




 and [u]× =






0 −uz uy

uz 0 −ux
−uy ux 0




 (227)

The floating base regression matrix is usually formulated in the floating base coordinate

frame, yielding

Y b =

[

bX∗
L(0)A0, · · · , bX∗

NB−1ANB−1

]

(228)

Finally, the regression matrix of a floating base robot can be obtained by concatenating the

floating-base regressor with the mechanism regressor

Y =

[

Y ⊤
b Y

⊤
0 , · · · ,Y ⊤

NB

]⊤

(229)
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Appendix B

Mathematical Toolbox

B.1. Alternative nullspace base computations

Given a matrixA ∈ Rn×m of rank r, then the QR decomposition ofA⊤, can be written as

A⊤ =
[

Q̂ QN
!
= Zi

]
[

R̂

0

]

(230)

where the matrix R̂ is invertible. Then the last n − r columns of Q form a base for the

nullspace of A⊤ An alternative formulation consists in using the LU decomposition of the

matrix A, written as
PAQ = LU (231)

where P ∈ Rn×n is a permutation matrix, Q ∈ Rm×m, L ∈ Rn×n and U ∈ Rn×m are upper

and lower triangular matrices respectively. The Eigen C++ library exploits the fact that

N (A) = QN (U) (232)

A base of the nullspace of the matrix A can hence be obtained efficiently by computing the

nullspace of the upper-triangular matrix U and pre-multiply it by the orthogonal matrix Q.

B.2. Schur complement

For x ∈ Rn×n, consider the linear system

[

A11 A12

A21 A22

]

︸ ︷︷ ︸

A

[

x1

x2

]

︸ ︷︷ ︸
x

=

[

b1

b2

]

︸ ︷︷ ︸

b

(233)

Resolving the linear system Ax = b can be simplified by first eliminating a subset of the

variables before resolving a reduced-size linear system for the remaining variables. Assuming

that the sub-matrix A22 is invertible, one can write

x2 = A
−1
22 (b2 −A21x1) (234)

eventually yielding
(
A11 −A12A

−1
22 A21

)

︸ ︷︷ ︸

Schur Complement

x1 = b1 −A12A
−1
22 b2 (235)

The term A/A22 related to the last block A22 is referred to as the Schur complement :

A/A22 = A11 −A12A
−1
22 A21 (236)
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By virtue of proposition 16.1 of [363], ifA is a symmetric matrix – implyingA12 = A
⊤
21 – then

the following properties of the Schur complement are verified:

• A ≻ 0 iif A22 ≻ 0 and A11 −A12A
−1
22 A

⊤
12 ≻ 0

• if A22 ≻ 0, then A � 0 iif A11 −A12A
−1
22 A

⊤
12 � 0
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Appendix C

Nonlinear Kalman Filters

This appendix chapter presents some of the nonlinear Kalman filter implementations used

in this thesis, namely the Extended, Unscented and Central Difference Kalman Filters, as

formulated in [76]. The notations used in these different algorithms follow the Matlab conven-

tions, especially regarding the indexing. For a given time epoch k, the vector xk denotes the

state vector, the vector yk is the observation vector, the vector uk is the control input vector,

the matrix Σxkxk
is the covariance matrix associated with xk, the matrix Σvv is the process

noise covariance matrix and the matrix Σww is the measurement noise covariance matrix.

C.1. Extended Kalman Filter (EKF)

Algorithm C.1: Extended Kalman Filter (EKF)
Data: yk ∈ Rny , uk ∈ Rnx , x0 ∈ Rnx ,

Σx0x0
∈ Rnx×nx ,Σvv ∈ Rnv×nv ,Σww ∈ Rny×ny

for t = 1, · · · ,∞ do

Time Update Step:

//Predicted state:

x+
k ←− f(xk−1,uk)
//Jacobian matrices computation:

[F , G, H , D] = computeJacobianMatrices (xk−1,uk,x
+
k )

//Covariance of the prediction:

Σ̂xkxk
←− FΣxk−1xk−1

F⊤ +GΣvvG
⊤

Measurement Update Step:

//Predicted observation:

y+k ←− g(x+
k ,uk)

//Covariance of predicted observation:

Σ̂ykyk
←−HΣ̂xkxk

H⊤ +DΣwwD
⊤;

//Covariance of predicted observation and state:

Σ̂xkyk
←− Σ̂xkxk

H⊤;

Kalman Update Step:

//Kalman gain:

Kk ←− Σ̂xky
+

k

(

Σ̂ykyk

)−1

//State correction:

xk ←− x+
k +Kk

(
yk − y+k

)

//Covariance correction:

Σxkxk
←− Σ̂xkxk

−KkΣ̂ykyk
K⊤

k
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C.2. Sigma Point Kalman Filter (SPKF)

Sigma point Kalman filters have in common the so called sigma point transform, for determin-

istic sampling of the prior estimate, assumed to be normally distributed.

Algorithm C.2: UKF and CDKF sigma-points computation

Function computeSigmaPoints(γ,ẑ, Σzz):

Data: γ ∈ R,ẑ ∈ Rn, Σzz ∈ Rn×n

Result: Z ∈ Rn×(2n+1)

//The square root of the covariance matrix can be computed in two

different ways, according to the selection variable

"sqrtAlgorithm":

switch sqrtAlgorithm do

case cholesky decomposition do

√
Σzz ←− chol(Σzz)

⊤ ∈ Rn×n //In case the covariance matrix is

known to be positive-definite. Very fast.

case singular value decomposition do

[U ,σ,V ]←− svd(Σzz)
⊤ //General case where the covariance

matrix may not be positive-definite. Rather slow but

robust.

√
Σzz ←− U

√
σV ⊤ ∈ Rn×n

Z ←−
[
ẑ, ẑ + γ

√
Σzz, ẑ − γ

√
Σzz

]
//Build the sigma-points matrix.

C.2.1. Unscented Kalman Filter (UKF)

The Unscented Kalman Filter (UKF) has a set of three tuning scalar coefficients, labeled as

α, β and κ. Xki (resp. Y ki) denote the ith column of the sigma point matrix Xk (resp. Y k)

at epoch k.
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Algorithm C.3: Unscented Kalman Filter (UKF) Initialization Routine

Data: α ∈ R, β ∈ R, κ ∈ R

Result: n, λ, γ, wm, wi, wc

Function init(α, β, κ):

n←− nx + nv + ny //Dimension of the augmented system

λ←− α2 (n+ κ)− n //UKF Weight

γ ←−
√
n+ λ //UKF Weight

wm ←− λ
n+λ

//UKF Weight

wi ←− 1
2(n+λ) //UKF Weight

wc ←− (1− α2 + β) + wm //UKF Weight
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Algorithm C.4: Unscented Kalman Filter (UKF) Update Cycle

Data: yk ∈ Rny , uk ∈ Rnx , x0 ∈ Rnx ,
Σx0x0

∈ Rnx×nx ,Σvv ∈ Rnv×nv ,Σww ∈ Rny×ny , α ∈ R, β ∈ R, κ ∈ R

[λ, γ, wm, wi, wc] = init (α, β, κ)

for t = 1, · · · ,∞ do

Sigma-Points Computation:

//Augmented state

zk−1 ←−
[

x⊤
k−1,0

⊤
nv
,0⊤ny

]⊤

//Augmented covariance

Σzk−1zk−1
←− blockDiag(Σxk−1xk−1

,Σvv,Σww)
//Sigma-points

Zk−1 ←− computeSigmaPoints(γ, zk−1,Σzk−1zk−1
)

Time Update Step:

//Sigma-points propagation:

Xk ←− f(Zk−1,uk)
//Predicted state:

x+
k ←− wmXk0 +

2n∑

i=1

wiXki

//Covariance of the predicted state:

Σ̂xkxk
←−

wc

(
Xk0 − x+

k

) (
Xk0 − x+

k

)⊤
+

2n∑

i=1

wi

(
Xki − x+

k

) (
Xki − x+

k

)⊤
+Σvv

Measurement Update Step:

//Sigma-points propagation:

Y k ←− g(Xk,Zk−1)
//Predicted observation:

y+k ←− wmY k0 +

2n∑

i=1

wiY ki

//Covariance of the predicted observation:

Σ̂ykyk
←−

wc

(
Y k0 − y+k

) (
Y k0 − y+k

)⊤
+

2n∑

i=1

wi

(
Y ki − y+k

) (
Y ki − y+k

)⊤
+Σww

//Covariance of the predicted observation and state:

Σ̂xkyk
←− wc

(
Xk0 − x+

k

) (
Y k0 − y+k

)⊤
+

2n∑

i=1

wi

(
Xki − x+

k

) (
Y ki − y+k

)⊤

Kalman Update Step:

//Kalman gain:

Kk ←− Σ̂xky
+

k

(

Σ̂ykyk

)−1

//State correction:

xk ←− x+
k +Kk

(
yk − y+k

)

//Covariance correction:

Σxkxk
←− Σ̂xkxk

−KkΣ̂ykyk
K⊤
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C.2.2. Central Difference Kalman Filter (CDKF)

The Central Difference Kalman Filter (CDKF) has a single scalar tuning coefficient, referred to

as the central difference step size, here labeled as h. As previously, Xki (resp. Y ki) denote

the ith column of the sigma point matrix Xk (resp. Y k) at epoch k. Unlike the UKF, where

an augmented system of the state, process and measurement noise variables is considered,

the CDKF makes use of two distinct augmented state representations for time update and

measurement update, namely state with process noise for time update and predicted state

with measurement noise for the measurement update.

Algorithm C.5: Central Difference Kalman Filter (CDKF) Initialization Routine

Data: h ∈ R

Result: n, wv, wn, wi, wc1, wc2

Function init(h):

n←− nx + nv + ny //Dimension of the augmented system

wv ←− h2−nx−nv

h2 //CDKF Weight

wn ←− h2−nx−ny

h2 //CDKF Weight

wi ←− 1
2h2 //CDKF Weight

wc1 ←− 1
4h2 //CDKF Weight

wc2 ←− h2−1
4h4 //CDKF Weight
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Algorithm C.6: Central Difference Kalman Filter (CDKF) Update Cycle

Data: yk ∈ Rny , uk ∈ Rnx , x0 ∈ Rnx , Σx0x0
∈ Rnx×nx , Σvv ∈ Rnv×nv ,

Σww ∈ Rny×ny , h ∈ R

[wv, wn, wi, wc1, wc2] = init (h)

for t = 1, · · · ,∞ do

Sigma-Points Computation:

//Augmented state and covariance:

zk−1 ←−
[
x⊤
k−1,0

⊤
nv

]⊤
, Σzk−1zk−1

←− blockDiag(Σxk−1xk−1
,Σvv)

//Sigma-points:

Zk−1 ←− computeSigmaPoints(γ, zk−1,Σzk−1zk−1
)

Time Update Step:

//Sigma-points propagation:

Xk ←− f(Zk−1,uk) //Predicted state:

x+
k ←− wvXk0 +

nx+nv∑

i=1

wiXki

//Covariance of the predicted state:

Σ̂xkxk
←−

nx+nv∑

i=1

[

wc1

(
Xki −Xknx+nv+i

) (
Xki −Xknx+nv+i

)⊤
+ · · ·

· · ·+ wc2

(
Xki +Xknx+nv+i

− 2Xk0

) (
Xki +Xknx+nv+i

− 2Xk0

)⊤
]

Sigma-Points Computation:

//Augmented state and covariance:

sk−1 ←−
[

x+⊤
k ,0⊤ny

]⊤

, Σsk−1sk−1
←− blockDiag(Σ̂xkxk

,Σww)

//Sigma-points:

Sk−1 ←− computeSigmaPoints(γ, sk−1,Σsk−1sk−1
)

Measurement Update Step:

//Sigma-points propagation:

Y k ←− g(Sk−1,uk) //Predicted observation:

y+k ←− wnY k0 +

nx+ny∑

i=1

wiY ki

//Covariance of the predicted observation:

Σ̂ykyk
←−

2n∑

i=1

[

wc1

(

Y ki − Y knx+ny+i

)(

Y ki − Y knx+ny+i

)⊤

+ · · ·

· · ·+ wc2

(

Y ki + Y knx+ny+i
− 2Y k0

)(

Y ki + Y knx+ny+i
− 2Y k0

)⊤
]

//Covariance of predicted observation and state:

Σ̂xkyk
←−

√

wc1Σ̂xkxk
(Y ki − Y ki)

⊤

Kalman Update Step:

//Kalman gain:

Kk ←− Σ̂xky
+

k

(

Σ̂ykyk

)−1

//State correction:

xk ←− x+
k +Kk

(
yk − y+k

)

//Covariance correction:

Σxkxk
←− Σ̂xkxk

−KkΣ̂ykyk
K⊤

k
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Appendix D

Data availability

D.1. BIRDy Code, Experiment Data and Results

The complete benchmark code as well as the raw experiment data are made available to the

reader at the following addresses (accessed on the 06th of October 2021):

• BIRDy source code: https://github.com/TUM-ICS/BIRDy

• Experimental data: http://doi.org/10.5281/zenodo.4728085

• Experimental results: http://doi.org/10.5281/zenodo.4679467
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As stated in https://www.mdpi.com/authors/rights (accessed on the 06th of October
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”For all articles published in MDPI journals, copyright is retained by the authors. Articles are

licensed under an open access Creative Commons CC BY 4.0 license, meaning that anyone
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provided that the original published version is cited. These conditions allow for maximum use
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the editorial office of the journal at submission. Exceptions will be granted at the discretion of

the publisher.”
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