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A B S T R A C T

Projection algorithms are successfully used for phase retrieval in the
high-dimensional setting of X-ray crystallography, but the reason of
this success is not well-understood. This complicates systematic devel-
opment of better reconstruction algorithms. This dissertation studies
variational structure of two prominent algorithms: it shows that the
Error-Reduction algorithm is a discretized gradient (or, more gener-
ally, subdifferential) flow, and that the Douglas-Rachford algorithm is
related to same flow through an appropriate selection of resolvents.
Analysis of this gradient flow and of the corresponding energy func-
tional yields new insights on said algorithms and can serve as a frame-
work for variational analysis of infinite-dimensional non-convex feasi-
bility problems.

Z U S A M M E N FA S S U N G

Die hochdimensionalen Phasenrobleme in der Röntgenstrahlenkris-
tallographie werden in der Regel mit Projektionsalgorithmen gelöst.
Viele Eigenschaften dieser Verfahren sind bisher nur heuristisch ver-
standen. Dies erschwert eine systematische Entwicklung besserer Re-
konstruktionsalgorithmen. Die vorliegende Arbeit untersucht varia-
tionelle Eigenschaften von zwei prominenten Algorithmen. Es wird
gezeigt, dass der Error-Reduction Algorithmus die Diskretisierung
eines Gradientenflusses (oder, im allgemeinen Fall, eines Subdiffertial-
flusses) ist. Der Douglas-Rachford Algorithmus kann von demselben
Gradientenfluss durch eine geschickte Wahl der Resolventen hergelei-
tet werden. Die variationelle Analyse des zu diesem Gradientenfluss
zugehörigen Energiefunktionals liefert neue Einsichten zu den ge-
nannten Algorithmen und kann auf weitere unendlichdimensionale
nicht-konvexe Schnittmengenprobleme verallgemeinert werden.
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1
I N T R O D U C T I O N

1.1 description of the studied problem

Phase retrieval is a generic term used to describe a wide class of prob-
lems. These problems — often connected to imaging — are unified by
the following setting: an object g must be reconstructed from a given
measurement |F[g]| using additional information A. The transforma-
tion F is usually linear and bijective; thus, to recover g, it is sufficient
to recover the phase of F[g] using A, giving phase retrieval its name.

The application that motivates the setting of this thesis is X-ray crys-
tallography. It is the most widely used method to determine molecular
structures to date: as of July 2020, ca. 89% of all structures found using
query “protein” in the Protein Data Bank [Ber+00] were solved using
X-ray crystallography.

In X-ray crystallography, one endeavors to reconstruct the electron
density g of a complex molecule (like a protein or a virus) — meaning,
one wishes to determine the positions of atoms relative to each other —
from the absolute value of its Fourier transform |ĝ|. The measurement
|ĝ| « ?

I is related to the square-root of the diffraction intensity I. This
diffraction pattern emerges from X-rays scattered by the crystallized
sample of the molecule in question, see Figure 1.1. Additional informa-
tion A comes from the fact that the electron density g is non-negative,
or from other constraints on the support or sparsity of g.

This problem is an example of Fourier phase retrieval, since the trans-
formation F is the Fourier transform of the object.

A solution of phase retrieval is an object g that — provided transfor-
mation F, measurement

?
I and additional information A — satisfies

|F[g]| = ?
I and complies with A within the desired degree of accu-

racy. In this thesis, we distinguish between phase problem — the task
of determining whether a solution exists, is unique, is stable under
perturbations of the provided data — and phase retrieval — the task of
finding any solution, assuming that at least one exists.

This thesis primarily discusses phase retrieval in the latter sense.
Specifically, it discusses Fourier phase retrieval on (possibly infinite-
dimensional) Hilbert spaces, assuming non-negativity of the object as
the main additional information.

More information on phase retrieval settings, applications and re-
sults can be found, for example, in surveys [JEH15; She+15; GKR20],
or in a less formal essay [Luk17].

The main goal of this thesis is to study Fourier phase retrieval by
examining connections between:

1
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incident X-rays

crystallized
sample

scattered X-rays

screen/detector

Figure 1.1: Sketch of a crystallographic measurement.
In X-ray crystallography, the unit cell electron density of a crystal
must be reconstructed from the corresponding diffraction pattern.
On the right: (linearly transformed) diffraction pattern of a crystal-
lized DNA molecule from the celebrated paper [WC53]. The authors
J.D. Watson and F.H.C. Crick received the Nobel Prize in 1962 for the
discovery of the double helix structure of the DNA. The correspond-
ing phase problem was solved by an explicit calculation of X-ray
diffraction patterns corresponding to helical structures in [CCV52].

— certain formulations of phase retrieval (set intersection formula-
tion, energy minimization formulation);

— certain evolution equations derived using variation of function-
als (Error-Reduction Flow, Douglas-Rachford Flow);

— certain algorithms used for phase retrieval (Error-Reduction /
Alternating Projections algorithm, Hybrid Input-Output / Douglas-
Rachford algorithm),

see Figure 1.2. The precise nature of the studied connections is outlied
in the following sections.

set intersection
formulation

energy minimization
formulation

projection
algorithms

evolution
equations

variation

discretization

Figure 1.2: Various formulations of phase retrieval.
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1.2 formulations of phase retrieval

1.2.1 Set intersection formulation and algorithms

A common way to formulate phase retrieval is to cast it as a set
intersection problem (feasibility problem). To do so, let M denote the
set of all objects that comply with the measurement, and let A denote
the set of all objects that comply with the additional information. Then,
phase retrieval states:

assuming MXA ‰ ∅, find any f PMXA.

This formulation is used for phase retrieval, because for many addi-
tional constraints A (such non-negativity, support, sparsity) one can
efficiently — in O(N log N) steps for images with N pixels — calculate
single-valued projecton selections (selections of set-valued distance-
minimizing projection operators) PM and PA onto the sets M and A,
respectively. These projecton selections are the basic constituents of
many phase retrieval algorithms. For example, the Error-Reduction
algorithm

gn+1 = PA ˝ PM[gn],

also known as the Gerchberg-Saxton algorithm [GS72], is the basic
algorithm used for phase retrieval, and the following variant of the
Hybrid-Input-Output algorithm

gn+1 = gn ´ PM ˝
[
2PA[gn]´ gn

]´ PA[gn], (1.1)

is a baseline state-of-the-art algorithm used for phase retrieval [ELB18].
These algorithms received wide attention after their systematic discus-
sion in the seminal paper by Fienup [Fie82].

Set intersection formulation is well-understood in convex optimiza-
tion, where it corresponds to the task of determining

XX Y for two convex sets X and Y.

In convex optimization, single-valued projecton selections PX and PY

onto the sets X and Y are unique and can be used to find points
in X X Y. Some of the algorithms used for this task correspond to
algorithms independently developed for phase retrieval; notably, the
Alternating Projections algorithm

gn+1 = PX ˝ PY[gn] (1.2)
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corresponds to the Error-Reduction algorithm, and the Douglas-Rachford
algorithm

gn+1 = gn ´ PY ˝
[
2PX[gn]´ gn

]´ PX[gn], (1.3)

corresponds to the Hybrid-Input-Output algorithm under certain as-
sumptions. These connections were established in [BCL02].

Unfortunately, general results from the convex setting do not carry
over to phase retrieval, as the set M is non-convex. Thus, in many
aspects, behavior of the Error-Reduction and Hybrid-Input-Output
algorithms remains open and highly relevant for applications.

This work focuses on these two particular algoritms; particularly,
on the Error-Reduction algorithm. It does so for the following reasons:
Error-Reduction is arguably the simplest algorithm for phase retrieval,
and it forms the basis for other projection algorithms; Hybrid-Input-
Output (or its Douglas-Rachford variant) is a state-of-the-art algorithm
used for benchmarking in crystallographic phase retrieval.

1.2.2 Energy minimization formulation

In general, it is very difficult to quantify whether an approximation g
is close to the intersection MXA. This difficulty is exacerbated by the
fact that MXA can contain multiple non-trivially distinct elements.

In practice, one must resort to estimating square distances

EM[g] :=
1
2
}g´ PM[g]}22 and EA[g] :=

1
2
}g´ PA[g]}2,

assuming phase retrieval on some Hilbert space H with norm } ¨ }2.
If smallness of EM[g] and EA[g] implies that }g´ f }2 is small for at
least one element f P MXA, the intersection of M and A is called
regular. In general, one can not expect the intersection of M and A

to be regular, but this regularity assumption is often required to treat
phase retrieval in its set intersection formulation.

An alternative approach is to formulate phase retrieval as an energy
minimization problem: for given data

?
I and constraint A, find any

g P arg min EM[g] + EA[g]. (1.4)

This formulation can be more practical than the set intersection for-
mulation, as, generally, existence of a solution can be guaranteed by
the direct method in the calculus of variations.

The choice of functionals in Equation (1.4) is only one of many
possibile variants. However, square distance functionals EM and EA

posess certain specific properties. Let us outline two such properties
and illustrate how they were used in [Fie82].
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First, for any proximal set X Ă H there exists — by definition of
proximality — a well-defined single-valued projecton selection PX

such that
}g´ PX[g]}2 ď }g´ PX[ f ]}2

for any g, f P H. This property is highly useful for calculations with
functionals containing terms like }g´ PX[g]}2.

In [Fie82], this property was used to show that that for all iterates
gn generated by the Error-Reduction algorithm holds

EM[gn+1] ď EM[gn], (1.5)

giving the algorithm its name, as it does not increase the error EM.
(And EA[gn] = 0 for all n by definition of Error-Reduction.)

Second, for PX as described above and for EX[g] := 1
2}g´ PX[g]}22,

the formal derivative of EX at g is given by g´ PX[g].
In [Fie82], this property was used to interpret Error-Reduction as

a projected gradient descent with respect to the energy EM in the
following sense. If for an iterate gn one takes a gradient descent step

gn+1/2 := gn ´∇EM[gn] = PM[gn]

and then explicitely takes the projection PA at gn+1/2, one recovers the
Error-Reduction algorithm.

In a more recent example, a similar property was used in [ELB18]
to interpret variants of Error-Reduction as minimization-majorization
algorithms for functionals of the form EM[g] + F[g], for certain convex
functionals F.

To our knowledge, the specific form EM[g] + EA[g] studied in this
thesis is not prevalent in phase retrieval literature, yet it does exhibit
certain remarkable properties described further below.

1.2.3 Evolution equations

In convex optimization, minimization problems of the form

f P arg min Fa[ f ] + Fb[ f ], where Fa and Fb are convex (1.6)

are often reduced to the multivalued equation

0 P A[ f ] + B[ f ], (1.7)

where A is the subdifferential of Fa, and B is the subdifferential of Fb.
Then, solutions of Equation (1.7) are minimizers of Equation (1.6).

Equation (1.7) can be analyzed independently of the minimization
problem (1.6), and for a larger class of operators A and B.

For example, the seminal paper [LM79] investigated Equation (1.7)
for the case when operators A and B are maximal monotone. They
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reformulated the Douglas-Rachford algorithm from [DR56] in terms
of resolvents:

gn+1 = gn + JλA ˝ (2JλB ´ Id)[gn]´ JλB[gn], (1.8)

where λ ą 0, JλA = (I + λA)´1 is the resolvent of λA, and JλB is the
resolvent of λB. They have shown that Douglas-Rachford converges
weakly to some fixed point g˚, and that f := JλB[g˚] is a solution of
Equation (1.7).

For convex feasibility problems one can show the equivalence of
Douglas-Rachford forms Equation (1.3) and Equation (1.8). Indeed, let
X,Y Ă H be weakly closed and convex. Then, projections PX, PY are
well-defined, and the minimization problem

arg min
1
2
} f ´ PX[ f ]}22looooooomooooooon

=:EX[g]

+
1
2
} f ´ PX[ f ]}22looooooomooooooon

=:EY[g]

(1.9)

leads to the equation

0 P ´( f ´ PX[ f ])´ ( f ´ PY[ f ]), (1.10)

since f ´ PX[ f ] belongs to the convex subdifferential BconvEX[ f ], and
likewise for Y. One can show that for A[ f ] := f ´PX[ f ] holds JλA[ f ] = PX[ f ]
for all λ ą 0; likewise, for B[ f ] := f ´ PY[ f ] holds JλB[ f ] = PY[ f ].

This argument relates the minimization problem (1.9) to the evolu-
tion equation (1.10) — which, in turn, is related to a specific variant
of the Douglas-Rachford algorithm for convex feasibility problems.

Connections like this one can be formulated for the Alternating Pro-
jections and Douglas-Rachford algorithms in the non-convex setting
of phase retrieval. These connections, analysis of resulting evolution
equations, algorithms, and insights for phase retrieval applications
shape main ideas developed in this thesis.

1.3 results of the thesis

We would like to highlight the following results of this thesis.
ER is a discretization of a formal gradient flow equation we call

ERF. We establish that the Error-Reduction algorithm corresponds
to two consecutive steps of gradient descent with energy EM + EA.
What distinguishes this result from related known results is the fact
that no explicit imposition of the constraint A (as in Fienup’s pro-
jected gradient descent), or no splitting techinque is required. The
correspondence is based on the following observation: for any g P H
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where EM[g] + EA[g] is Fréchet-differentiable, the discrete Euler gra-
dient descent update with step size ε = 1 is

gn+1 = gn ´ ε∇(EM[gn] + EA[gn]) (1.11)

= gn ´ (gn ´ PM[gn] + gn ´ PA[gn]) = PM[gn] + PA[gn]´ gn.

In particular, if gn P A, then gn+1 = PM[gn] PM, and

gn+2 = PA[gn+1] = PA ˝ PM[gn].

This observation connects Error-Reduction to the study of the equa-
tion we call Error-Reduction Flow:

Btg(t) = ´2g(t) + PM[g(t)] + PA[g(t)]. (1.12)

To make this equation well-defined, one must pick a single-valued
projecton selection PM. In general, such a choice is not unique.

On bounded domains, the modulus set is weakly closed, and
ERF is a rigorous subdifferential flow. In general, the functional
g ÞÑ (EM + EA)[g] is not Fréchet-differentiable, and Equation (1.12)
is only formally a gradient flow.

To establish the corresponding rigorous result, we use non-convex
subdifferential analysis ideas based on and inspired by the paper
[BL03], which calculates the Kruger-Mordukhovich [KM80; MS96]
subdifferential of EM on unbounded domains, where the set M is
not weakly closed.

Specifically, we use compactness results of [Peg85] to establish that
the set M is weakly closed on bounded domains (joint work with
Gero Friesecke). Further, we show that for weakly closed sets X, con-
sidered on separable Hilbert spaces, the generalized subdiffential of
the functional g ÞÑ EX[g] equals g ´ΠX[g], where ΠX is the multi-
valued projection operator. This implies that on bounded domains
and assuming that EA is weakly closed, the multivalued analogon of
Equation (1.12)

Btg(t) P ´2g(t) + ΠM[g(t)] + ΠA[g(t)] Ď BKM(EM + EA)[g]

is a selection of the subdifferential flow of the energy EM + EA, where
BKM on the right-hand side denotes the aforementioned non-convex
Kruger-Mordukhovich subdifferential.

DR can be derived from ERF using resolvent selection. It is es-
tablished that for operators A := g ´ PM[g(t)], B := g ´ PA[g(t)] —
provided minor additional assumptions — holds

g + PM[2PA[g]´ g]´ PA[g]

P Li
λÑ8

(
g + JλA ˝ (2JλB ´ Id)[g]´ JλB[g]

)
,
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where Li is the Kuratowski limit inferior. This result shows that one
can make (single-valued) selections of (multi-valued) resolvents JλA,
JλB, such that — after an appropriate limiting procedure — Douglas-
Rachford in its resolvent form (1.8) is reduced to the HIO/DR form
(1.1). This shows how the HIO/DR form (1.1) can be derived directly
from ERF (1.12).

Discretized version of ERF dissipates energy and has subsequences
strongly convergent to fixed points. It is shown that for the dis-
cretized Error-Reduction Flow (1.11) with ε P (0, 1] a generalized
version of Fienup’s Error-Reduction property (1.5) is true, namely
that

E[gn+1]´ E[gn]

ε
= ´(1´ ε) }´2gn + PM[gn] + PA[gn]}22 , (1.13)

where E = EM + EA. In fact, this result is true not only for M and
A, but for any weakly closed sets X,Y Ă H, and does not require
differentiability of EX or EY at gn.

It is shown that on bounded domains, for a sequence (gn)n gener-
ated by the discretized Error-Reduction Flow (1.11), fixed points exist,
and there exist subsequences that converge to these fixed points.

ERF has global weak solutions on bounded domains. One of the
central contributions of this dissertation, derived in collaboration with
Gero Friesecke, is the proof that ERF (1.12) has global weak solutions.
The result holds on bounded domains, under the assumption that A is
the set of non-negative functions. The main idea of the proof, inspired
by the approach described in [FD97], is as follows.

First, a solution candidate is constructed by means of the Aubin-
Lions lemma. Namely, approximate solutions g(ε) are constructed by
taking updates (1.11) and linearly interpolating between them in time.
A solution candidate is obtained from (gε)ε by extracting an appropri-
ate subsequence and passing to the limit ε Ñ 0.

Second, it is shown that the solution candidate formally solves equa-
tion (1.12); the key to this is the fact that g(ε) is constructed using
explicit discretization update (1.11).

Third, it is shown that the solution candidate rigorously solves equa-
tion (1.12). This last step relies on a generalized version of Rademacher’s
theorem to show that solution candidate is a. e. differentiable in time,
and prescribes a specific selection of PM that needs to be chosen in
(1.12).

There exists a correspondence between fixed points of ER and
ERF. This correspondence is established in the thesis and motivates a
closer study of ERF dynamics. Certain conditions for ERF fixed point
instability are developed. Obtained insights are illustrated using nu-
merical simulations (see below). Numerical simulations illustrate that
ERF exhibits certain patterns of chaotic behavior (change of direction).
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This provides a heuristic argument that may explain why acceleration
of ERF is not fruitful for certain cases.

Numerical simulations illustrate that ER dynamics can be domi-
nated by abundance of unstable fixed points. This provides a heuristic
argument that indicates the following.

i) Theoretical ER convergence radius — for known ER local con-
vergence results — shrinks extremely rapidly with finer object
discretization.

ii) Numerical ER convergence radius — for certain problems —
can be much larger than the theoretical one, due to prevalence
of unstable fixed points in the solution’s vicitity.

An important numerical technique that highlights these points is
the restriction of phase retrieval to even functions. Following reasons
grant significance to this case.

i) ER, DR, and ERF all preserve evenness of the argument g.

ii) Due to the fact that Fourier transforms of even real-valued func-
tions are real-valued, projection PM operates in a special regime.

iii) In general, solutions of phase retrieval are trivially not locally
unique: for any solution g, its translation is also a solution. How-
ever, translation of a generic even function is no longer even.
Thus, by considering phase retrieval for even functions, one can
ignore the aforementioned translation ambiguity.

There exists a variational connection between the Alternating
Projections, Dykstra and DR algorithms. It is shown that — just
as ERF is an equation that can be used to analyze the dynamics of ER
— there exists a system of equations that potentially may be used to
analyze the dynamics of DR.

Namely, it is shown that for the functional

F[s, d] = EM[s + d] + EA[s´ d]´ 1
2
}d}22,

(which is closely related to the functional used in [LP16] to prove local
convergence of DR), one can use the system of equations

Bt

(
s

d

)
= M ¨

(
δ
δs
δ

δd

)
F[s, d]
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to recover — using explicit Euler discretization —

Error-Reduction, if M =

(
´1 0

0 0

)
;

Dykstra’s algorithm, if M =

(
0 0

0 1

)
;

a variant of DR, if M =

(
´1 0

0 1

)
.

These formulations provide new heuristic interpretations of said algo-
rithms. Specifically for DR, the resulting equations have the form

Bts = ´s +
PA[s + d] + PM[s´ d]

2
;

Btd = ´ PA[s + d]´ PM[s´ d]
2

;
ô

Bt p = ´ p + q
2

+ PA[p];

Btq = ´ p + q
2

+ PM[q],

(1.14)

where s = p+q
2 , d = p´q

2 . If (s, d) is a fixed point, one can show that
s P AXM. The energy EM[s] + EA[s] — the same as appears in ERF —
can be used as termination criterion for the resulting discretized DR
variant. It is shown that — by the same argument as for ERF — the
system of equations (1.14) admits global weak solutions.

1.4 bibliographic context

Some of the commonly listed phase retrieval applications are as-
tronomy [DF87; Luk17], radar ambiguity [Jam99], speech recognition
[RJ93; MSS14], quantum mechanics [GKR20; Pau47], and diffraction
imaging [She+15; GKR20] — the latter being the most prominent ex-
ample.

In diffraction imaging (optical imaging), an object is placed in front
of a source of electromagnetic radiation. The incident electromagnetic
wave is diffracted by the object. At a sufficiently large distance, the out-
going electromagnetic field can be modeled by a Fourier transform of
some kind (e.g. by the Fresnel transform, or some modification of the
Fraunhofer transform); see [Goo04] for an introduction to diffraction
theory.

Depending on the application, phase retrieval allows a degree of
flexibility in the way measurements are acquired. Some examples (in
no particular order) include (from [Luk17]):

— ptychography, where multiple diffraction images are taken by
illuminating small overlapping regions of the object;

— single-shot X-ray imaging, where the object is illuminated by a
short-time electromagnetic pulse;
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— X-ray crystallography, where the object must be crystallized be-
fore measurement to produce a clear diffraction pattern.

Some other setups investigated in literature include measurements
where random masks are placed in front of the object [CSV11], or
measurements that probe non-crystalline symmetries of the object
using specially designed electromagnetic waves [FJJ16].

A variety of methods has been employed to adress these differ-
ent settings; see [GKR20; Luk17; She+15; JEH15] for some recent
overviews on phase retrieval.

Two phase retrieval methods mentioned above — Error-Reduction
and Douglas-Rachford/Hybrid-Input-Output — stand out among many
other methods, having been around for a long time and remaining
highly relevant to date. See, e. g., [Fie13] for a brief overview of various
applications where these algorithms are used.

Recent results have expanded understanding of these algorithms
(cf. [Luk17]). For example, [HL13; NR16; Pau+18] demonstrated local
convergence of Error-Reduction, and [Pha15; LP16] demonstrated lo-
cal convergence of Douglas-Rachford variants in finite-dimensional
spaces. Further references that discuss convergence of Hybrid-Input-
Output can be found in [Fie13]. For references on Douglas-Rachford
in a more generic setting, the interested reader is directed to the recent
survey [LS19].

This thesis attempts to contribute to the analysis of Error-Reduction
and — to lesser degree — Douglas-Rachford algorithms in an infinite-
dimensional setting by linking them to appropriate evolution equa-
tions. The aspiration is that — by disconnecting the algorithms from
discretization in time and space — one can reveal new features about
the dynamics of said algorithms.

1.5 reader’s guide

Chapter 2 formalizes the setting of phase retrieval used throughout
the work; it contains basic definitions of modulus and non-negativity
sets as well as some other constraints like support and sparsity.

Chapter 3 discusses projection operators and some of their relevant
properties, like the continuity properties Propositions 3.11 and 3.12

(known in literature, but adapted to the purposes of the thesis). Fur-
ther, Section 3.3 shows that on a bounded domain, the modulus set is
weakly closed. This result is of particular importance, as it is necessary
to rigorously derive the evolution equations analyzed in Chapters 7

and 9. Finally, Section 3.5 formalizes the notion of a local projection
that is heuristically well-known in literature. Local projections are a
useful tool to rigorously discuss various formulations of projection al-
gorithms in phase retrieval (cf. local vs. global algorithm formulations
in Chapter 5).
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Chapter 4 studies square distance functionals (energy functionals)
of the form g ÞÑ EX[g] := 1

2}g´ PX[g]}22, which are well-defined for any
proximal set X. Using the direct method in the calculus of variations,
phase retrieval is reformulated as an energy-minimization algorithm.
A sufficient condition for the Fréchet-differentiability of the modulus
energy EM is established. It is shown that for weakly closed sets X,
the Mordukhovich-Kruger subdifferential of EX is given by g´ΠX,
where ΠX is the (multi-valued) projection operator. It is also shown
that the Clarke subdifferential of EX is given by the convex closure of
g´ΠX.

Chapter 5 describes some common projection-based algorithms
used for phase retrieval, and common reformulations of said algo-
rithms. Important novel contributions in this chapter are Remark 5.17

that establishes gradient descent of Error-Reduction and motivates
Error-Reduction Flow (ERF), and Section 5.3.5 that connects Error-
Reduction Flow to the resolvent form of the Douglas-Rachford algo-
rithm.

Chapter 6 describes energy dissipation properties and existence of
fixed points for the explicit discretization of ERF. Whenever possible,
results are stated in a more general setting (i. e. for generic weakly
closed sets).

Chapter 7 demonstrates existence of global weak solutions of ERF.
This part of the dissertation is joint work with Gero Friesecke.

Chapter 8 establishes correspondence between fixed points of ER
and ERF. Further, the chapter investigates certain stability conditions
for these fixed points.

Chapter 9 presents how ER, Dykstra and DR can be derived from
F[s, d] described above. The resulting interpretation of dynamics is
illustrated using a simple example (searching for intersection of balls
in a 2D plane). It is shown that the system of equations arising from
the variation of F[s, d] admits global weak solutions for the DR phase
retrieval case.

Chapter 10 illustrates the content of Chapters 8 and 9 by providing
some numerical examples using a toy model.

To improve the readability of the text, an index of the used notations
is provided at the very end. A brief overview of the key algorithms
referenced throughout the thesis can be found in Remarks 5.1 and 5.2.



Part I

B A C K G R O U N D A N D P R O J E C T I O N
A L G O R I T H M S

This part establishes the necessary background and demon-
strates how the Error-Reduction Flow — an integro-differential
equation that is formally a gradient flow, and rigorously a
generalized (Kruger-Mordukhovich) subdifferential flow —
is connected to the Error-Reduction and Douglas-Rachford
algorithms.

Chapters 2 and 3 describe standard notions and some well-
known results used in phase retrieval and best approxima-
tion theory. They contain very minor original contibutions
of didactical and technical nature, with the following ex-
ception: Section 3.3 demonstrates thot the modulus set is
weakly closed on a bounded domain, which appears to be
a novel result.

Chapter 4 studies differentiability conditions of energy
functionals. Of note are the results on generalized differ-
entiation, established in Section 4.3.

Chapter 5 is an attempt to systematically describe some
projection algorithms used in Fourier phase retrieval, and
to highlight connections between these algorithms. It con-
tains two noteworthy original contributions. Remark 5.17

shows that the Error-Reduction algorithm is a discretiza-
tion of a gradient flow. Section 5.3.5 shows how the Douglas-
Rachford algorithm is connected to this flow through an
appropriate selection of multivalued resolvents.





2
S E T I N T E R S E C T I O N F O R M U L AT I O N

First section of this chapter formalizes mathematical setting and some
basic notions of phase retrieval used in this work. Second section
defines phase retrieval as a set intersection problem, and discusses
relevant examples of constraint sets.

The described setting is essentially the same as the setting in [BCL02]
(phase retrieval on generic Hilbert spaces), but with a more explicit
specification of the physical space. This restriction facilitates the dis-
cussion of smoothness or regularity of the objects in later chapters.
The setting is

— more rigorous than the finite-dimensional setting common for
applied phase retrieval (e. g. [She+15]);

— less rigorous than the frame theory setting common for general-
ized phase retrieval (e. g. [GKR20]).

As such, most of what is described in this chapter is known to the
readers familiar with phase retrieval. The main points of this chapter
are the definition of constraint difficulties in Definition 2.1 and their
discussion in Remark 2.5.

2.1 mathematical framework

2.1.1 Definition of the framework

Throughout this work and unless explicitely stated otherwise, the
object to be reconstructed is modeled as an element of the real-valued
Hilbert space H(Ω) = L2(Ω; R), where Ω P tRd, Td, Td

Nu, or where Ω
is a bounded Lebesgue-measurable subset of Rd, for d P N. Here, Td

denotes the d-dimensional torus, and Td
N denotes the discretized d-

dimensional torus with N = (N1, . . . , Nd) P Nd discretization points
along each dimension. In particular, H(Td

N) is a finite space with
Euclidean metric, and it is isomorph to RN1¨...¨Nd . Coordinates on Td

and Td
N are added and subtracted using the usual modular arithmetic.

For example, for f P H(Td
N) one has f (´k) = f (q), where q P Td

N
with qi = ´ki mod Ni for all i P t1, . . . , du. Integration over Rd and
Td is performed using the Lebesgue measure; integration over Td

N is
performed using the counting measure. The set Ω is called physical
space; the space H(Ω) is called object space.

We use the abbreviation H = H(Ω) for statements that are essen-
tially the same for all mentioned physical spaces, or where Ω is clear
from the context. The inner product on H is denoted by x¨, ¨y; the

15
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corresponding induced metric is denoted by } ¨ }2. The uniform norm
on H is denoted by } ¨ }8. The derivatives of operators and function-
als on H are always taken in Fréchet sense unless explicitely stated
otherwise.

The Fourier transformation maps H(Ω) to its Fourier dual pH(ΩF),
which is called Fourier space. For H(Rd), the Fourier space is given by

 
f P L2(ΩF; C)

ˇ̌
ΩF = Rd, f (´k) = f ˚(k) for a. a. k P Rd

(
, (2.1)

where z˚ denotes the complex conjugate of z P C. For Ω = Td the def-
inition remains the same, except that ΩF = Zd. Likewise, for Ω = Td

N
one must take ΩF = Td

N . If Ω is a measurable bounded subset of Rd,
then ΩF = Rd, but the Fourier dual of H(Ω) is a subset of L2(Rd; C)

that we can not write down explicitely.
In a minor abuse of notation, inner products and norms on Fourier

spaces are denoted exactly as inner products and norms on object
spaces. The Fourier transform is such that Plancherel’s theorem states
} f }22 = CF } f̂ }22, where the constant CF = 1/(2π)d if Ω P tRd, Tdu or a
measurable bounded subset of Rd, and CF = 1/|N|with |N| = N1 ¨ . . . ¨Nd
if Ω = Td

N . See Appendix A for more details on Fourier transform.

2.1.2 Discussion of the framework

As phase retrieval is an actively developed problem with many open
issues, there does not exist a canonical framework that connects basic
notions of phase retrieval to mathematical objects. The setting we use
is very close to the one employed in [BCL02], which considered phase
retrieval algorithms on generic Hilbert spaces.

The choice of our setting was influenced by following goals:

i) to appropriately model the studied phenomenon;

ii) to allow the use of specific mathematical tools;

iii) to be transferrable to applications;

iv) to remain as simple as possible for didactical purposes while
keeping key features of the problem intact.

The influence of these goals is briefly discussed below.

On the choice of object and Fourier space

In X-ray crystallography, the object of interest is an electron density of
a crystallized molecule. Common candidate spaces describing molec-
ular structures would include Lp-spaces, spaces of (possibly signed)
measures, space of tempered distributions. Of these spaces, L1 is the
most natural candidate to model electron density, as one would ex-
pect integrability of a density function. Additionally, for non-negative
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integrable functions f one has } f }L1 =
ş

f = | f̂ (0)|. This means that
integrability can showcase important properties of phase problem in
object and Fourier space. This latter point is accentuated by the fact
that | f̂ (0)| is not measured in X-ray crystallography, but its correct
determination is highly relevant for successful reconstruction.

Another example of a space used to model electron densities is
the space containing functions ρ P L1(R3) that satisfy

?
ρ P H1(R3);

this space can be embedded into L1(R3)X L3(R3) by the Sobolev’s
embedding theorem and guarantees that the kinetic energy of an
electron density is finite.

From the mathematical point of view, it is much more convenient to
consider phase problem on L2: it simplifies differentiation of energy
functionals and transformations between object and Fourier spaces
(admitting, for example, Plancherel’s theorem). Therefore, the space
L2 is the space of choice as it is a Hilbert space and admits Plancherel’s
theorem. Some exceptions to this choice appear: i) in Section 6.3.3,
where we use Lp spaces to demonstrate existence of fixed points of the
Error-Reduction algorithm; ii) in Chapter 7, where we use the Sobolev
space H1(Ω) with Ω = Td or Ω a bounded measurable subset of
Rd (as it embeds compactly into L2(Ω)) to demonstrate global weak
solutions of a PDE corresponding to the Error-Reduction algorithm.

On the choice of physical space and object codomain

The physical space dimension d belongs to t1, 2, 3u for most applica-
tions. There is a notable phenomenological difference between one-
dimensional and higher-dimensional physical space settings. This dif-
ference is well-understood for certain finite-dimensional phase prob-
lem variants and is connected to uniqueness of phase problem solu-
tions (e.g., see review [GKR20]). The analysis presented in this thesis
is valid for any d P N (unless explicitely specified otherwise), and
obtained theoretical results do not suggest any difference between
d = 1 and d ą 1. Nevertheless, the focus of computational examples
is placed on physical space dimension d = 2, since d = 3 is the case
for X-ray crystallography, and for d = 2 simulations seem to remain
phenomenologically close to d = 3 and are easier to visualize.

As for the choice of physical space itself, the taken approach remains
flexible: Ω Ď Rd is appropriate to model single molecules; Ω = Td is
appropriate to model crystalline structures; Ω = Td

N is appropriate to
investigate numerical properties. From the mathematical standpoint,
the domain Ω must be bounded for results of Chapter 7. The choice
Ω = Td

N is essential in Section 8.2 and Section 8.3 to investigate sta-
bility properties of phase problem, as second derivatives of essential
functionals do not exist otherwise.

The codomain of object space functions is commonly set to be real.
This choice is consistent with electron density modeling and is used
in applications, where measured data is often symmetrized so that
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it belongs to Fourier space (e. g., see CIF data files in [Ber+00]). An
argument can be made that complex codomain of the object space
functions is necessary for a more detailed analysis of noisy phase
retrieval. We conjecture that a majority of this thesis’ results can be
extended to this case; however, such generalization lies beyond the
scope of this work.

2.2 phase retrieval as a set intersection problem

At its most general, phase problem is a task of reconstructing an object
that satisfies two conditions.

• The object must be compatible with a measurement. The mea-
surement is given by the absolute value of a transformation
of the object; the transformation is usually usually complex-
valued, linear and bijective. This condition is called the modulus
constraint; the set of all objects satisfying modulus constraint is
called the modulus constraint set. Thus, the absolute value of this
bijective transformation is known, and the phase is not known,
leading to the name “phase retrieval”: if the phase is recovered,
one can uniquely reconstruct the object.

• The object must satisfy certain modeling requirements. For ex-
ample, it may be non-negative, sparse, or have a prescribed sup-
port. These conditions are called the additional constraints.

There are two types of common modulus constraints: 1) if the object
must be reconstructed from the absolute value of its Fourier transform,
one commonly speaks of Fourier phase problem; 2) if the object must
be reconstructed from the absolute value of some other measurement,
one commonly speaks of generalized phase problem.

There are many ways to provide additional constraints. Roughly,
additional constraints may be divided into three categories: 1) re-
quirements on the framework of the problem; 2) requirements on the
measurement; 3) requirements on the object itself. These requirements
may be described as follows.

1) Requirements on the framework address questions such as: is
the object real-valued, or is the object finite-dimensional.

2) Requirements on the measurement address questions such as:
what transformation describes the measurement (see, e. g., the
approach in [CSV11], where randomness in the measurement
is utilized to analyze generalized phase problem), or what is
the resolution of the measurement (e. g., it is long known that
with sufficient oversampling, phase problem can admit unique
solutions [Hay82]).
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3) Requirements on the object itself are properties such as non-
negativity, sparsity, or support. They are usually prescribed by
the specific application.

This last class of additional constraints is of primary importance for
X-ray crystallography and can be conveniently represented by sets
(of all objects satisfying these constraints). Phase problem is then for-
mulated as a set intersection problem (feasibility problem): find the
intersection of the modulus constraint set with additional constraint
sets. In generic mathematical contexts, a set intersection problem is
usually called feasible, if there exists a unique solution, i. e. an ele-
ment that belongs to the set intersection and is unique, possibly up to
some trivial ambiguities. We use the phrase “feasible phase problem”
without any precise mathematical meaning, but as applied description
of phase problem for which there exists at least one, not necessarily
unique, element that satisfies given constraints to a certain meaningful
degree.

Set intersection formulation is most useful if one can efficiently cal-
culate projections onto the constraint sets. This is the case for phase
retrieval (cf. Remark 3.28). The definitions below present some com-
mon crystallographic constraints and formalize Fourier phase retrieval
as a feasibility problem.

Definition 2.1 (constraint sets). Let Ω P tRd, Td, Td
Nu, or let Ω Ă Rd

bounded and Lebesgue-measurable. Let the measured intensity I P L1(ΩF)

with I ě 0, (so that
?

I belongs to Ł2(Ω f )). The following sets will be of
primary importance for this work:

M(
?

I) = t f P H | | f̂ | = ?
Iu; (modulus)

P = t f P H | f ě 0u. (positivity)

Further, let S be a measurable subset of Ω; let SF be a measurable subset of
ΩF. The following sets are example sets that can be used for crystallographic
phase retrieval:

M(i)(
?

I; SF) = t f P H | 1SF | f̂ | = 1SF

?
Iu; (incomplete modulus)

S(S) = t f P H | supp f = Su; (support)

Ta(α) = t f P P | f (x) ě α for a. a. x P supp f u; (amplitude thresholding)

Ts(ν) = t f P P | λ(supp f ) ď νu, (support size)

where α ě 0 is the thresholding level of an object, ν ą 0 is the support size of
an object, and λ is the Lebesgue measure for Ω P Rd, Td, and the counting
measure for Ω = Td

N .
We abbreviate M = M(

?
I), M(i) = M(i)(

?
I; SF) and S = S(S) where it

can not cause confusion. Whenever the sets M, M(i) and S are used without
arguments, we imply that there exist corresponding

?
I, SF and S such as

in this definition. We call Ta(α) the amplitude thresholding constraint and
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S P Ta(α) Ts(ν)

M M(i)
idealization application

Figure 2.1: Sketch of relative constraint difficulty discussed in Remark 2.5.

Ts(ν) the support size constraint; note that in our notation these constraints
automatically imply non-negativity.

Remark 2.2 (M on a bounded domain). Whenever Ω is a measurable bounded
subset of Rd, the modulus set is

M(
?

I) = t f P L2(Ω)
ˇ̌| f̂ | = ?

Iu,

where f̂ is the Fourier transform of the extension of f by zero to all of
Rd. In particular, M(

?
I) may be empty.

Definition 2.3 (Phase problem and phase retrieval). Let
?

I P pH
be non-negative. Define the following set intersection problems.

Phase problem: determine MXP.

Phase retrieval: assuming MXP ‰ ∅, find any element of MXP.

Remark 2.4 (discussing phase retrieval definition). In applications, it is com-
mon to combine various additional constraints. The positivity set is
used throughout this thesis as a generic representative of an additional
constraint. This choice is discussed below in Remark 2.5.

Note the difference between phase problem and phase retrieval. The
former is more general, implies questions of existence and uniqueness,
and lies beyond the scope of this thesis. The latter is more applied, dis-
penses with questions of existence and uniqueness, and is of primary
interest for this thesis.

The set intersection formulation is convenient but has the draw-
back of being sensitive to noise: it may happen that M(

?
I)X P ‰ ∅

for some measurement
?

I, but M(
?

I + δ
?

I)X P = ∅ for some noisy
measurement

?
I + δ

?
I, no matter how small δ

?
I. In practice, set inter-

section formulation must be appropriately relaxed to recover phase
from noisy measurements, or to analyze noise stability.

Remark 2.5 (discussing constraint sets). This remark discusses constraint
sets, cf. Figure 2.1.

In object space, support constraint set S is arguably the easiest to
analyze, as projection onto S is linear (see Example 3.14). However, it
is difficult to get an estimate on S that is sufficiently strict for feasible
phase retrieval in a crystallographic setting. (I. e., if the support is not
estimated tight enough, considering S as a sole additional constraint
can yield non-physical solutions. The problem of estimating the object
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support from the Fourier modulus data has been studied, for example,
in [CFT90].)

Positivity set is integral to crystallographic modeling and is widely
used, either alone or in conjunction with other constraints. It would
be more precise to call the set P “non-negativity set”, but we use the
name “positivity set” as more didactically intuitive. From mathemati-
cal point of view, the set P is a favorable additional constraint, since
it is convex and the corresponding error functional is differentiable
(see Example 4.6, Lemma 4.14). This set also has a certain aestheti-
cal appeal since positivity is nothing other than constant zero phase
in object space. While simulations indicate that P can be sufficiently
strict for feasible phase retrieval for certain objects (e. g., those that
decay sufficiently fast in object space), it is, in general, not sufficiently
strict for feasible phase retrieval in a crystallographic setting.

The amplitude thresholding set Ta(α) is a subset of P that selects
positive objects with moduli above some positive threshold α. This set
is not convex and the corresponding error functional is not Fréchet-
differentiable at many points of interest, see Remark 4.15. It also can vi-
olate modeling, since molecular electron densities a priori have values
in the interval (0, α). This set has the locality property (cf. Section 3.5,
Definition 3.29), which is convenient for reformulation of certain re-
construction algorithms (see Section 5.1). To our knowledge, this form
of the sparsity constraint has not been investigated in literature. This
constraint is (arguably) a more theoretically accessible version of the
support size constraint Ts(ν).

The support size constraint Ts(ν) is even more strict than Ta(α) in
the sense that it does not have the locality property. It does not require
the thresholding parameter and uses instead a support size parameter
ν, which is easier to estimate in an experimental setup. This constraint
is sometimes called the histogram constraint [Els03]. It is used in
[ELB18] as an additional constraint to analyze a set of benchmark
crystallographic phase problems.

Definition 2.1 shows only few of many possible additional con-
straints. Notably, the atomicity constraint is sometimes used in crys-
tallographic phase retrieval [Els03]. This constraint describes sparse
non-overlapping atoms with prescribed supports. Additionally, it can
fix minimal allowed distance between two atoms (such restriction is
used in [ELB18] to generate a set of benchmark problems). The atom-
icity constraint requires involved phenomenological assumptions and
lies beyond the scope of this work.

Another common way to model sparsity is by minimizing the L1-
norm of an approximation; see [Pau+18].

In Fourier space, the modulus set M is the key set for Fourier phase
retrieval. While additional constraints are shared by objects of inter-
est, the set M makes solutions distinct. It is natural to conjecture that
properties of this set have decisive impact on stability, existense, and
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uniqueness of phase problem. The fact that M is non-convex consi-
tutes one of the main difficulties characterising phase problem. Strik-
ing experimental success of heuristic algorithms such as HIO (see
Section 5.1) indicates that structure of M — which is isomorph to a
torus in Fourier space — has remarkable intrinsic properties.

The more realistic variant of the modulus set M(i) takes into ac-
count the fact that in an experimental setting one can not measure
intensity values at certain coordinates. For example, the value

?
I(0)

is not measured, since the corresponding detector location is shielded
by a backstop to protect the detector from incident unscattered X-ray
beam. This constraint is used in [ELB18] to analyze a set of benchmark
crystallographic phase problems.
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P R O J E C T I O N O P E R AT O R S

This chapter covers definitions of projections (set-valued distance-
minimizing operators, also known as projectors) and their single-
valued selections, as well as some standard results from best approx-
imation theory, and shows that the modulus set is weakly closed on
bounded domains.

Section 3.1 formally introduces projections (also known as best
approximation operators, or projectiors), the corresponding single-
valued selections, and recalls some of their known properties like the
continuity results Propositions 3.11 and 3.12.

Section 3.2 recalls the well-known explicit forms of projectors onto
additional constraint sets from the previous chapter.

Section 3.3 is the main novel contribution of this chapter: it demon-
strates that the modulus set is weakly closed on bounded domains
(joint work with Gero Friesecke). Inspired by variational analysis of
[BL03], the result is based on compactness theorems of [Peg85] and is
crucial for later results (such as subdifferential calculus in Section 4.3
or fixed point results in Chapter 6, which use continuity properties
from Section 3.1).

Section 3.4 presents the well-known explicit form of the modulus
projection operator.

Section 3.5 notes that under a certain locality condition that is met
for many phase retrieval sets, very similar arguments are used to
prove that an operator is a projection. The section describes a for-
malism that exploits this similarity. The main result of the section is
Proposition 3.33: it shows how the form of a projection on X Ă L2(Ω)

can be deduced from the form of an appropriate projection on the
much smaller set Xloc Ă ΩˆR, provided certain assumptions.

3.1 definition and relevant properties

This section starts with the standard material from best approximation
theory (see, e. g., [BC17], [Deu01]); also discussed in [BCL02] in context
of phase retrieval).

The continuity properties Proposition 3.11 and Proposition 3.12

are known in literature (e.g. [RW09, Example 1.20]), but are adapted
to purposes of this thesis and will later be used in Section 4.3 and
Proposition 6.17, respectively.

23
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Remark 3.1 (Multivalued projections). A single-valued selection of pro-
jecton onto X will be defined by the following distance-minimizing
property:

PX[g] P ΠX[g] := arg min
fPX

}g´ f }2.

The set ΠX[g], also known as the (set-valued) projection or projector,
consists of points f P X that are closest to g. For any g, the set ΠX[g]
can be empty, or it can contain one or more elements. The set X is
called proximal, if ΠX[g] is not empty for all g in H; X is called Cheby-
shev, if ΠX[g] contains exactly one element for all g in H. All nonempty
weakly closed subsets of H are proximal (see Proposition 3.4). In par-
ticular, all sets introduced in Definition 2.1 are proximal (see Exam-
ples 3.14, 3.15 and 3.24). The multivalued operator ΠX : H Ñ X is
called projection operator, projector, metric projection, nearest point
mapping, or best approximation operator. For purposes of this thesis,
it will be more convenient to work with single-valued selections of ΠX.
It is important to remember that, in general, single-valued selections
are not uniquely defined unless X is Chebyshev. Following [BCL03], if
X is Chebyshev, we call the unique single-valued projection selection
PX itself a projector.

Definition 3.2 (Projection selections and reflectors).
i) Let X Ă H, let D Ă H be the set of points g P H where arg min fPX }g´ f }2
is not empty. An operator PX : DÑ H is called a single-valued selection of
a projection onto X, if

PX[g] P arg min
fPX

}g´ f }2

for all g P D.
ii) Given a single-valued projection selection PX, the corresponding reflector
is defined as RX : DÑ H with RX[g] = 2PX[g]´ g.

Remark 3.3 (Name of the reflector). Observe that

PX[g] = g + β(PX[g]´ g) for β = 1, while

RX[g] = g + β(PX[g]´ g) for β = 2.

One can easily check that RX[g] is the reflection of g with respect to
the point PX[g], meaning that

g = PX[g]´ (PX[g]´ g) and

RX[g] = PX[g] + (PX[g]´ g).

The following proposition shows that weakly closed sets are proxi-
mal in Hilbert spaces and can be found, for examlpe, in [BC17, Thm.
3.14].
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Proposition 3.4. Let X be a nonempty weakly closed subset of H. Then, X
is proximal, i. e. arg min fPX }g´ f }2 is not empty for all g P H.

Proof. For all g P X, the set arg min fPX }g´ f }2 = tgu is not empty. Let
g P HzX, let ( fn)nPN be a sequence such that

lim
nÑ8 }g´ fn}2 = inf

fPX
}g´ f }2. (3.1)

Pick an arbitrary element a P X; then, inf fPX }g ´ f }2 ď }g ´ a}2.
If this inequality is an equality, then a P arg min fPX }g´ f }2 and the
proof is complete.

If inf fPX }g´ f }2 ă }g´ a}2, then }g´ fn}2 ă }g´ a}2 for infinitely
many n P N. In other words, there exists a subsequence ( fn)nPMĂN

such that lim nPM
nÑ8

}g´ fn}2 = inf fPX }g´ f }2 and fn P B}g´a}2(g) for

all n P M.
By the Banach-Alaoglu theorem, B}g´a}2(g) is weakly compact, which

means that there exists a subsubsequence ( fn)nPM̃ĂM that converges
weakly to some f˚ P H.

Then, f˚ P arg min fPX }g´ f }2. Indeed, on one hand,

inf
fPX
}g´ f }2 ď }g´ f˚}2;

on the other hand,

}g´ f˚}2
(˚)ď lim inf

nPM̃
nÑ8

}g´ fn}2 = lim
nPM̃
nÑ8

}g´ fn}2 = inf
fPX
}g´ f }2,

where in (˚) we used the fact that f ÞÑ }g ´ f }2 is weakly lower
semicontinuous (see [BC17, Lemma 2.42]). ˝

Remark 3.5 (Proximal and Chebyshev sets). Proximal and Chebyshev sets
are studied in best approximation theory (see, e. g., [Deu01].). An ex-
ample of a famous open problem in best approximation theory is the
Chebyshev set problem. It asks: is every Chebyshev set in a Hilbert
space convex? Some results on this problem, as well as other results
on proximality can be found, e. g., in [Bor07] or [FM14].

The following property holds trivially by definition of a projection.
Nontheless, the property is extremely useful and is written out for
ease of reference.

Corollary 3.6 (Distance minimizing property). Let D Ă H, let
PX : D Ñ H be single-valued selection of a projecton onto X Ă H. Then,
}g´ PX[g]}2 ď }g´ f }2 for any f P X.

Remark 3.7. Definition 3.2 and Corollary 3.6 can be formulated on a
generic metric space. One merely has to replace the norm }g´ f }2 by
the appropriate metric d(g, f ).
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The following is another well-known property of projections, see,
e.g., [Deu01].

Lemma 3.8 (Interpolation projecton property). Let PX : H Ñ H
be a single-valued projection selection onto a proximal set X. Then, for any
g P H, ε P [0, 1],

PX

[
(1´ ε)g + εPX[g]

]
= PX[g]. (3.2)

Proof. We use the definition of a projecton and the fact that H is a
Hilbert space to show that the left-hand side in Equation (3.2) can not
be equal to any other point but PX[g] (see Figure 3.1).

Let gε = (1´ ε)g + εPX[g], let R = dist(g,X) = inf fPX }g´ f }2. We
calculate PX[gε] in two steps: first, we show that PX[gε] is not inside of
the open ball B̊(1´ε)R(gε); then, we show that the only candidate for
PX[gε] is PX[g], since BB̊R(g) X BB̊(1´ε)R(gε) = tPX[g]u. (Throughout
this proof, B denotes the boundary of a set.) The claim then follows
from the definition of a projection.

First, let us show that PX[gε] R B̊(1´ε)R(gε). By definition of R,
B̊R(g)XX = ∅. Further, by triangle inequality, B̊(1´ε)R(gε) Ă B̊R(g),
since for any f P B̊(1´ε)R(gε) holds

}g´ f }2 = }g´ gε + gε ´ f }2 ď }g´ gε}2looomooon
=εR

+ }gε ´ f }2looomooon
ă(1´ε)R

ă R.

Hence, PX[gε] R B̊(1´ε)R(gε).
Second, let us show that BB̊R(g)X BB̊(1´ε)R(gε) = tPX[g]u. Assume

that f P BB̊R(g)X BB̊(1´ε)R(gε). The points g, gε and f satisfy triangle
equality

}g´ f }2 = }g´ gε}2 + }gε ´ f },
since

}g´ gε}2 = εR; }gε ´ f }2 = (1´ εR); }g´ f }2 = R.

The space H is a Hilbert space and therefore it is strictly convex, hence
all three points lie on the same line, and

f = g +
}g´ f }
}g´ gε} (g´ gε) = g + PX[g]´ g = PX[g].

˝

The following is a standard result from best approximation theory
(see, e.g., [BC17, Ch. 4, Ch. 20] or [Deu01]).

Proposition 3.9 (Projecton selections onto convex sets are unique).
Let X Ă H be a nonempty weakly closed convex set. Then, the single-valued
projection selection PX : HÑ H exists and is unique.
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g

BBR(g)
gε

BB(1´ε)R(gε)

PX[g]

X

Figure 3.1: Illustration to Lemma 3.8 (interpolation projecton property).
One has PX[gε] = PX[g], even if the set arg min fPX }g´ f }2 contains
more than one element.

Proof. By Proposition 3.4, X is proximal; therefore, at least one selec-
tion P1 onto X is well-defined.

Further, were P1 not unique, there would exist two distinct projec-
tion selections with values P1[g], P2[g] P X equidistant from some
g P H, meaning P1[g] and P2[g] would lie on the sphere BB}g´P1[g]}2

(g).
Then, any point on the line segment between P1[g] and P2[g] would
belong to X by convexity and be closer to g than P1[g]. This would
contradict to P1 being a projection selection.

Formally, this argument can be written down as follows. Assume
that P1 is not unique, i. e. assume there exist another projection se-
lection P2 and g P H such that p1 := P1[g] ‰ P2[g] =: p2. By the
parallelogram law,

2}g´ p1}22 + 2}g´ p2}22 = }2g´ p1 ´ p2}22 + }p1 ´ p2}22.

Since }g´ p1}2 = }g´ p2}2,

4
››››g´ p1 + p2

2

››››
2

2
= 4}g´ p1}22 ´ }p1 ´ p2}22.

Therefore, ››››g´ p1 + p2

2

››››
2
ă }g´ p1}2,

which contradicts Corollary 3.6, since p1+p2
2 P X by convexity of X. ˝

The following lemma is also a standard result (see, e.g., [BC17, Ch. 4,
Ch. 20] or [Deu01]).

Lemma 3.10 (Angle property for convex projectors). Let C Ă H
be convex, let PC be the corresponding projector. Then,

x f ´ PC[ f ], PC[g]´ PC[ f ]y ď 0

for all f , g P H.
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f

PC[ f ]

PC[g]C

Figure 3.2: Illustration to Lemma 3.10 (angle property for convex projectors).
For a convex set C, the angle between f ´ PC[ f ] and PC[g]´ PC[ f ] is
larger that π/2 for any g P H, i. e. x f ´ PC[ f ], PC[g]´ PC[ f ]y ď 0.

Proof. Idea of the proof: assume the contrary, show that PC is not
unique in contradiction to Corollary 3.6 (cf. Figure 3.2). The argument
can be formalized as follows.

If f P C, the claim is true since f ´ PC[ f ] = 0. If PC[ f ] = PC[g], the
claim is true since PC[g]´ PC[ f ] = 0.

Let f R C, let PC[g] ‰ PC[ f ]. Assume that x f ´PC[ f ], PC[g]´PC[ f ]y ą 0.
Define fε = (1´ ε)PC[ f ] + εPC[g] for ε P (0, 1). Note that fε P C by con-
vexity of C. Then,

} f ´ fε}22 = } f ´ PC[ f ]´ ε(PC[g]´ PC[ f ])}22
= } f ´ PC[ f ]}22´2εx f ´ PC[ f ], PC[g]´ PC[ f ]y+ ε2}PC[g]´ PC[ f ]}22looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

ă0

ă } f ´ PC[ f ]}22
as long as one picks

ε P
(

0, 2
x f ´ PC[ f ], PC[g]´ PC[ f ]y

}PC[g]´ PC[ f ]}22

)
,

where the upper bound is strictly larger than zero by assumption.
Therefore, there exist ε ą 0 such that } f ´ fε}2 ă } f ´ PC[ f ]}2, which
is in contradiction to Corollary 3.6 since fε P C. ˝

The following proposition is in essense the same as [RW09, Example
1.20]. For later use, we formulate it in a slightly different manner, and
prove it (since we use it in an infinite-dimensional space, in contrast
to the setting of [RW09]).

Proposition 3.11 (Continuity of projecton selections). Let X Ă H
be non-empty and weakly closed. Then, any projecton selection PX is contin-
uous at g P H if and only if ΠX is single-valued at g.

Proof. First, we show by contradiction that if ΠX is single-valued at
some g P H, then any PX is continuous at g. Assume that some selec-
tion PX is not continuous at g. Let us show that there exists q P ΠX[g]
with q ‰ ΠX[g]; this would be in contradiction to ΠX being single-
valued at g.
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Constructing q. Since PX is not continuous at g, there exists a se-
quence (gn)ninN in H that converges to some g P H as n Ñ8, but the
corresponding sequence (pn)nPN, defined by pn := PX[gn], does not
converge to p := PX[g].

Then, there exists an ε ě 0 and a subsequence of (gn)nPN, again
denoted by (gn)nPN, such that

}pn ´ p}2 ą ε (3.3)

for all pn := PX[gn], n P N.
It is straghtforward to show that the sequence (pn)nPN is bounded:

for any n P N,

}pn}2 ď }pn ´ gn}2 + }gn}2 ď }gn ´ p}2 + }gn}2 ď 2}gn}2 + }p}2,

which is bounded since X is non-empty and since gn Ñ g as n Ñ 8.
Therefore, there exists a subsequence of (gn)nPN, again denoted by
(gn)nPN, such that for pn := PX[gn] have pn á q as n Ñ 8 for some
q P X.

Our goal is to show that

q ‰ p and that (3.4)

q P ΠX[g]. (3.5)

To show that, we may assume w.l.o.g. that }g´ p}2 ą 0. Indeed, if
p were equal to g, then

ε ď lim inf
nÑ8 }g´ pn}2 ď lim inf

nÑ8
(}g´ gn}2 + }gn ´ pn}2looooomooooon

Ñ0asnÑ8

)

ď lim inf
nÑ8 }g´ pn}2

(˚)ď lim inf
nÑ8 }g´ p}2 = lim inf

nÑ8 }g´ g}2 = 0,

which would be a contradiction (we used the distance-minimizing
projection property Corollary 3.6 in (˚)).

Thus, we can assume that }g´ p}2 ą 0 and we want to show Equa-
tion (3.4) and Equation (3.5).

Establishing q ‰ p. By Mazur’s lemma, we know that

q P convněNtpnu,

where we can pick any N P N. For reasons that will be apparent later,
pick N P N such that

}g´ pn} ď (1 + α)s for all n ě N,

where s := }g ´ p}2 ą 0, and where α ą 0 is picked such that
2α+ α2 = ε

2s2 (i.e. α := 1´
b

1´ ε
2s2 , where we can w.l.o.g. assume that

ε
2s2 ă 1; otherwise, we can redefine ε to be smaller in the beginning
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of the proof). The choice of α and N will be justified in Equation (3.7)
below; the idea is to show that for such large N, convněNtpnu will
belong to a closed affine half-space of H that does not contain p.

By definition of α and N, pn belongs to the ball B(1+α)s[g] for all
n ě N; further, by construction of pn, pn is outside of Bε[p]. Overall,
for n ě N,

all pn are contained in the ball difference B(1+α)s[g]zBε[p]. (3.6)

Let us show the geometric fact that this ball difference can be sepa-
rated by a hyperplane from p.

Specifically, let us show that for an appropriately chosen c ă 1,
#
xy´ g, p´ gy ě c}p´ g}22
y P B(1+α)s[g]

Ñ y P Bε[p]; (3.7)

from this, it will be straigtforward to show that q ‰ p. To establish
(3.7), choose c := 1

2

(
(1 + α)2 + 1´ ε

s2

)
. Then, by definition of α,

c =
1
2
(
2 + 2α + α2 ´ ε

s2

)
(3.8)

=
1
2
(
2 +

ε

2s2 ´
ε

s2

)
(3.9)

= 1´ ε

4s2 ă 1. (3.10)

Further, w.l.o.g c ą 0, otherwise one can pick g a smaller ε in the be-
ginning of the proof. Then, for any y P B(1+α)s[g] with the hyperplane
condition xy´ g, p´ gy ě c}p´ g}22 have

}y´ p}22 = }y´ g}22 + }g´ p}22 + 2xy´ g, g´ py
ď (1 + α)2s2 + s2 ´ 2xy´ g, p´ gy
ď (1 + α)2s2 + s2 ´ 2c}p´ g}22
= (1 + α)2s2 + s2 ´ 2cs2

=
(
(1 + α)2 + 1´ 2 +

ε

2s2

)
s2

= (
ε

2s2 +
ε

2s2 )s
2 = ε;

thus, y P Bε[p] and (3.7) is proven.
From (3.7) follow: for all y P B(1+α)s[g]zBε[p] holds

xy´ g, p´ gy ď c}p´ g}22.

Together with Equation (3.6) this implies

xpn ´ g, p´ gy ď c}p´ g}22.
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Since the affine hyperplane

ty P H | xy´ g, p´ gy ď c}p´ g}22u

is closed and convex, have

convněNxpn ´ g, p´ gy ď c}p´ g}22,

which — since pn á q as n Ñ8 — implies

xq´ g, p´ gy ď c}p´ g}22,

If q were equal to p,
}p´ q}22 ď c}p´ g}22

would be a contradiction since c ă 1; thus, q ‰ p.
Demonstrating that q P ΠX[g]. Having constructed q as a weak limit

of pn = PX[gn], where gn Ñ g, and having shown that q ‰ p = PX[g],
we can finally estimate

}g´ q}22 = }g}22 ´ xg, qyloomoon
=lim infnÑ8xg,pny

+ }q}22loomoon
ď}pn}2

2

ď lim inf
nÑ8 }g}22 ´ 2xg, pny+ }pn}22

= lim inf
nÑ8 }g}22 ´ }gn}22 + }gn}22

´ 2xg´ gn + gn, pny+ }pn}22
= lim inf

nÑ8 }g}22 ´ }gn}22 ´ 2xg´ gn, pny+ }pn}22loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
=0 since gnÑg and since (pn) is bounded

= lim inf
nÑ8 }gn ´ pn}22

= lim inf
nÑ8 2EX[gn] = 2EX[g],

where we have used the continuity of EX (Lemma 4.5) in the last step.
Thus, q P ΠX[g] and q ‰ p, meaning that ΠX is not single-valued at g,
concluding one direction of the proposition claim.

Other direction — if ΠX is not single-valued at g, then PX is not
continuous at g — is straightforward: if p, q P ΠX[g] with p ‰ q, let

gn :=

$
&
%
(1´ 1

n )g + 1
n p for odd n P N;

(1´ 1
n )g + 1

n q for even n P N,

let PX be a projecton selection onto X. By the interpolation property
Lemma 3.8, PX[gn] = p for odd n, and PX[gn] = q for even n, meaning
that PX can not be continuous at g = limnÑ8 gn. ˝

The following property of weakly closed projections will be used
in Proposition 6.17 to establish sufficient conditions for accumulation
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points of a generalized alternating projections algorithm to be fixed
points.

Proposition 3.12 (“gn Ñ g ñ PX[gn]á PX[g]”). Let X Ă H be weakly
closed, let (gn)nPN be a sequence in H that converges to g P H.

Then, there exists a selection PX and a subsequence of (gn)n, again denoted
by (gn)n, such that

PX[gn]á PX[g] as n Ñ8.

Proof. Pick any projecton selection PX onto X.
The sequence (PX[gn])n is bounded. Indeed, (gn)nPN is bounded

(since it is convergent to g). Therefore, there exists C1 ă 8 such that
}gn}2 ď C1 for all n P N. Further, since X is not empty, there exists
C2 ă 8 such that BC2(0)XX is not empty and contains some element
g̃ P H. Therefore, for all n P N,

}PX[gn]}2 ď }PX[gn]´ gn}2 + }gn}2 ď }g̃´ gn}2 + }gn}2 ď C2 + 2C1.
(3.11)

Since (PX[gn])n is bounded and contained in the weakly closed set
X, there exists a weakly convergent subsequence, again denoted by
(PX[gn])n, with

PX[gn]á p P X.

Let us show that p P ΠX[g]. Indeed, since } ¨ }22 is w.l.s.c.,

}g´ p}22 ď }g}22 ´ lim
nÑ8 2xg, PX[gn]y+ lim inf

nÑ8 }PX[gn]}22
= lim inf

nÑ8 (}gn}22 ´ 2xgn, PX[gn]y+ }PX[gn]}22)
= lim inf

nÑ8 }gn ´ PX[gn]}22

— and by the distance-minimizing property of projections —

ď lim inf
nÑ8 }gn ´ PX[g]}22 = }g´ PX[g]}22,

since gn converges to g.
Thus, p P ΠX[g]. Pick a projecton selection that equals to p at g, and

to PX[ f ] at any f ‰ g, to follow the claim. ˝

3.2 projectons onto additional constraint sets

The section continues with a description of projection operators for
phase retrieval sets in Examples 3.14, 3.15 and 3.24; it shows the proofs
of explicit forms of projection operators. These examples are widely
known in phase retrieval literature. For purposes of mathematical
rigor, Examples 3.14, 3.15 and 3.24 present proofs that defined opera-
tors are, indeed, projections.
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g ÞÑ PP[g]

g

S

ÞÑ PS[g]

g
α

α/2 ÞÑ PTa(α)[g]

Figure 3.3: Illustration to Example 3.14 (positivity, support, amplitude thresh-
olding projectons).

The sketch illustrates positivity, support, and amplitude thresholding
projectons for a function g P H(R). In the sketch, the values of PS[g]
and PTa(α)[g] at discontinuities can be chosen freely, as such points
constitute a Lebesgue null set.

Notation 3.13. We use the following shorthand notation for indicator
functions on Ω:

1tconditionu(x) = 1txPΩ|condition is valid at xu(x)

for a. a. x P Ω. For example, 1tgě0u(x) = 1txPΩ|g(x)ě0u(x).

Example 3.14 (Positivity, support, amplitude thresholding projectons). For
sets from Definition 2.1, define the following operators with domain
D = H:

AP[g] = 1tgě0ug; (positivity)

AS[g] = 1Sg; (support)

ATa(α)[g] = 1tgěαug + 1tαągą α
2 uYS̃ α, (amplitude thresholding)

where S̃ is any measurable subset of tg = α
2u. For simplicity, we use

the choice S̃ = tg = α
2u unless mentioned otherwise.

These operators are projecton selections onto corresponding sets:
PP = AP, PS = AS, PTa(α) = ATa(α). Further, the positivity and support
selections are unique, and the amplitude thersholding ambiguous
only in the choice of S̃ Ă tg = α

2u.

Proof (that PP = AP, PTa(α) = ATa(α) and PS = AS). Let us prove by con-
tradiction that PTa(α) = ATa(α). Note that this case implies that PP = AP,
since PP = PTa(α) and AP = ATa(α) for α = 0.

Assume that ATa(α) is not a projection selection, meaning there exist
g P H and f P Ta(α) such that

}g´ f }2 ă }g´ ATa(α)[g]}2. (3.12)
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This leads to a contradiction, since one can observe reverse inequal-
ities pointwise a. e. in Ω as follows.

First, for almost all x P Ω with g(x) ě α one can assume that
f (x) = ATa(α)[g](x) = g(x). Otherwise, one can redefine f (x) to equal
g(x) at such points, as this will only decrease the value of the left-hand
side of Equation (3.12).

Second, for almost all x P Ω with g(x) P [ α
2 , α) holds

|g(x)´ α| ď α

2
ď |g(x)| = |g(x)´ f (x)|

if f (x) = 0, and

|g(x)´ α| = α´ g(x) ď f (x)´ g(x) = |g(x)´ f (x)|

if f (x) ě α.
Third, for all x P Ω with g(x) P (0, α

2 ] holds

|g(x)| = |g(x)´ 0| ď |g(x)´ f (x)|

if f (x) = 0, and

|g(x)| ď α

2
ď f (x)´ g(x) ď |g(x)´ f (x)|

if f (x) ě α.
Finally, for all x P Ω with g(x) P (´8, 0] holds

|g(x)| = |g(x)´ 0| ď |g(x)´ f (x)|

if f (x) = 0, and

|g(x)| = ´g(x) ď f (x)´ g(x) ď |g(x)´ f (x)|

if f (x) ě α.
Overall, obtain

}g´ ATa(α)[g]}2 = }1t α
2ăgăαuYS̃ (g´ α)}2 + }1tgď α

2 uzS̃ g}2 ď }g´ f }2
in contradiction to Equation (3.12). Therefore, PTa(α) = ATa(α); setting
α = 0 implies that PP = AP. In particular, this argument shows that
the operator PTa(α) is ambiguous only in the choice of S̃ Ă tg = α

2u.
Let us now prove that PS = AS. Assume that there exists f P S such

that

}g´ f }2 ď }g´ AS[g]}2. (3.13)

But

}g´ AS[g]}2 = }1ΩzSg}2 = }1ΩzS(g´ f )}2,
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g
1 2

ÞÑ
1 2

PTs(ν)[g]

Figure 3.4: Illustration to Example 3.15 (support size projecton selection).
The sketch illustrates PTs(ν) for ν = 3; i. e. the Lebesgue measure of
supp PTs(ν)[g] equals 3. In the sketch, the value of PTs(ν)[g] at discon-
tinuities can be chosen freely, as such points constitute a Lebesgue
null set.

since supp f P S; therefore,

}g´ AS[g]}2 = }1ΩzS(g´ f )}2 ď }g´ f }2
in contradiction to Equation (3.13). Therefore, PS = AS.

Projection selections PP and PS are unique by Proposition 3.9, since
the sets P and S are convex. ˝

Example 3.15 (Support size projecton). A projecton onto the support size
constraint Ts(ν) can be elegantly described for finite-dimensional phys-
ical space Ω = Td

N : to calculate PTs(ν) at g P H(Ω), set g to zero at
all but ν largest non-negative values. Note that the choice of ν largest
non-negative values may not be unique; in that case, it suffices to take
any combination of them. For example, if g ” 1, any element is a
largest element of g, and one has to resolve this freedom of choice
by picking a set of coordinates S̃ of size ν and setting g to zero at all
x R S̃.

To describe the case of the more general domains Ω P tRd, Tdu, one
may generalize as follows: estimate a thresholding parameter α̃ ě 0
for which the support of tg ě α̃u has an appropriate measure; then,
resolve any remaining freedom of choice by picking an appropriate S̃.
Formally, for ν ą 0, g P H(Ω) define

ATs(ν)[g] := 1SYS̃g.

Here,

S :=
ď

αąα̃

tg ě αu,

and α̃ is the smallest non-negative number for which λ(tg ě αu) is
not larger than ν, i. e.

α̃ := inftα ě 0 | λ(tg ě αu) ą νu

for the Lebesgue measure λ.
As for the set S̃, it denotes any measurable subset of tg = α̃u of

measure ν´ λ(S). The set S̃ is empty, if λ(S) = ν, i. e. if the choice of
largest elements is unique. Such case is depicted in Figure 3.4.
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Then, PTs(ν) = ATs(ν).

Proof (that PTs(ν) = ATs(ν)). Observe that by construction of ATs(ν) holds

ATs(ν)[g] P arg max
!››1Q1tgě0ug

››
2

ˇ̌
ˇQ Ă Ω measurable,

λ(Q) ď ν
)

.
(3.14)

Let us show the claim by contradiction: assume that there exists
f̃ P Ts(ν) such that

}g´ f̃ }2 ă }g´ ATs(ν)[g]}2. (3.15)

Let Q = supp f̃ , let f = 1Qg; then, trivially,

}g´ f }2 ď }g´ f̃ }2 ă }g´ ATs(ν)[g]}2. (3.16)

Further, from the assumption f̃ P Ts(ν) follows λ(Q) ď ν. From
Equation (3.14) we know that

}ATs(ν)[g]}2 = }1SYS̃g}2 ě }1Qg}2 = } f }2.

But then

}1Ωz(SYS̃)g}2 ď }1ΩzQg}2 ñ
}g´ 1SYS̃g}2 ď }g´ 1Qg}2 ñ
}g´ ATs(ν)[g]}2 ď }g´ f }2

in contradiction to Equation (3.16). Therefore, ATs(ν) is a projecton
selection onto Ts(ν), i. e. PTs(ν) = ATs(ν).

The definition of PTs(ν) implies that a hard sparsity projector selec-
tion is not unique. However, it nessesarily has the form PTs(ν)[g] = 1SYS̃.
Indeed, if f is a projecton selection of g onto Ts(ν), it must have the
form f = 1Qg for Q = supp f by the same argument as above; and by
construction of PTs(ν)[g], cf. Equation (3.14), f can differ from PTs(ν)[g]
only in the choice of S̃. ˝

3.3 conditions for the modulus constraint set to be

weakly closed

This section demonstrates that the modulus set is weakly closed on
bounded domains (joint work with Gero Friesecke). The weak closed-
ness of a set is a powerful property in best approximation theory. This
property underpins several important results of the thesis: it is used
in Section 4.3 for subdifferential calculus, and in Chapter 6 for fixed
point results. These, in turn, enable rigorous analysis of evolution
equations done in Chapters 7 and 9. The section proceeds as follows.
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Definition 3.16 and Lemma 3.18 recall relevant topological defini-
tions and properties. Remark 3.19 recalls the observation from [LBL02,
Property 4.1] that the modulus set is not weakly closed on L2(Rd).

The key component in the result of the section is the compactness
theorem by Pego [Peg85, Theorem 3], recalled in Lemma 3.20.

The main result of the section is Theorem 3.21, demonstrating weak
closedness of M Ă L2(Ω) on bounded domains Ω. The particular
case of M on a torus domain is very similar, it is demonstrated in
Theorem 3.22.

Definition 3.16 (Weak closedness and weak compactness). Let H
be a Hilbert space. A subset X Ď H is called

1. weakly closed if
it is closed in the weak topology;

2. weakly sequentially closed if
for every weakly convergent subsequence in X, its weak limit is also in
X;

3. weakly compact if
it is compact in the weak topology (every weakly open cover of X has a
finite subcover);

4. weakly sequentially compact if
every sequence in X has a subsequence that is weakly converging to
some element in X;

5. weakly relatively sequentially compact if
every sequence in X has a subsequence that is weakly converging to
some element in H;

6. relatively sequentially compact if
every sequence in X has a subsequence that is (strongly) converging
to some element in H.

In this section we demonstrate that the modulus set is weakly se-
quentially compact and thus weakly sequentially closed. As a sidenote,
recall that weak sequential closedness by itself does not imply weak
closedness:

Remark 3.17. Let H be a Hilbert space. Recall that

X Ă H weakly sequentially closed œ X Ă H weakly closed.

For proof, see, e.g., [BC17, Example 3.33].

However, in Hilbert spaces weak sequential compactness implies
weak closedness, which will be sufficient for our purposes:

Lemma 3.18 (see e.g. [BC17, Corollary 2.38]). Let X be a subset of a
Hilbert space H. Then the following are equivalent:
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1) X is weakly compact.

2) X is weakly sequentially compact.

3) X is weakly closed and bounded.

It is known that the set M is not weakly closed on Rd:

Remark 3.19 (M is not weakly closed on Rd). As demonstrated in [LBL02,
Property 4.1], the modulus set M(

?
I) Ă L2(Rd) is neither convex nor

weakly closed if
?

I is not identically equal to zero.
M is not convex. Indeed, if

?
I ı 0, then for any f P M(

?
I) one has

´ f P M(
?

I), but 0.5 f + 0.5(´ f ) = 0 R M(
?

I); thus, M(
?

I) is not
convex. In fact, this is true for any domain Ω P tRd, Td, Td

Nu as long
as

?
I ı 0.

M is not weakly closed. Further, if
?

I ı 0, then define the sequence
( fn)nPN, fn PM(

?
I), using f̂n(k) :=

?
I(k)eikn for all n P N and almost

all k P Rd. Then, for any g P L2(Rd) have

x f̂n, ĝy =
ż

Rd

?
I(k)ĝ(k)eikndk Ñ 0 as n Ñ8

by the Riemann-Lebesgue lemma, since
?

Iĝ P L1(Rd) (by Hölder’s
inequality and because

?
I and ĝ belong to L2(Rd)). Thus, fn is weakly

convergent to the zero function, which is not in M. Therefore, M is
not weakly sequentially compact, and by Lemma 3.18 M is not weakly
closed.

However — as will be shown below — the set M is weakly closed
if all its elements are defined on a bounded domain.

Indeed, in certain cases M is weakly sequentially compact and thus
weakly closed by Lemma 3.18. To show weak sequential compactness
of M, we use the following lemma by Pego which is not as well known
as it deserves to be.

Lemma 3.20 ([Peg85, Theorem 3]). A bounded subset X of L2(Rd) is rel-
atively sequentially compact if and only if

sup
fPX

ż

|x|ąR
| f (x)|2dx Ñ 0

and
sup
fPX

ż

|k|ąR
| f̂ (k)|2dk Ñ 0

as R Ñ8.

This lemma can be used to show weak closedness of M on bounded
domains in the following manner.

Theorem 3.21 (M(
?

I) is weakly closed on a bounded domain). Let
Ω Ă Rd bounded and Lebesgue-measurable, and let I P L1(Rd) with I ě 0
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(so that
?

I belongs to L2(Rd)). Then the modulus set M(
?

I) = t f P L2(Ω) | | f̂ | = ?
Iu

is weakly closed (where f̂ is the Fourier transform of the extension of f by
zero to all of Rd).

Proof. We may assume M(
?

I) is nonempty (otherwise there is noth-
ing to show). By assumption on Ω, there exists an R ą 0 such that
Ω Ă t|x| ď Ru. Therefore,

sup
fPM(

?
I)

ż

|x|ąR̃
| f (x)|2dx = 0

for all R̃ ą R. Moreover, by definition of M(
?

I),

sup
fPM(

?
I)

ż

|k|ąR
| f̂ (k)|2dk =

ż

|k|ąR
|?I(k)|2dk Ñ 0 as R Ñ8. (3.17)

Thus,M(
?

I) is relatively sequentially compact, by Pego’s lemma (Lemma 3.20).
Let us deduce that M(

?
I) is sequentially compact. Let ( fn)nPN be

a sequence in M(
?

I); by definition of relative sequential compact-
ness, there exists a subsequence ( fn`

)`PN that converges strongly to
some f P L2(Rd). By L2-continuity of the Fourier transform, ( f̂n`

)`PN

converges strongly to f̂ P L2(Rd). Therefore, there exists a further sub-
sequence, again denoted ( f̂n`

)`PN, that converges almost everywhere
to f̂ . Since the set tz P C | |z| = ?

I(k)u is closed, the limit of ( f̂n`
)`PN

has absolute value
?

I almost everywhere. Thus f̂ P M̂, establishing
the asserted sequential compactness.

Since fn`
Ñ f , one also has fn`

á f ; thus, M is also weakly sequen-
tially compact, and therefore weakly closed by Lemma 3.18. ˝

The above case is applicable to non-crystallographic applications.
For crystallographic applications, it is necessary to consider the case
of the torus Td = Rd/2πZd, which is easier. In this case, the Fourier
transform f̂ of f P L2(Td) (in the sense of abelian groups) is a function
on the dual group Zd, coinciding with the vector ( f̂ (k))kPZd of Fourier
coefficients of f .

Theorem 3.22 (M(
?

I) is weakly closed on a torus). Let I P `1(Zd)

with I ě 0 (so that
?

I belongs to `2(Zd)). Then the modulus set

M(
?

I) = t f P L2(Td) | | f̂ | = ?
Iu

is weakly closed. (Here, as explained above, ( f̂ (k))kPZd is the vector of Fourier
coefficients of f .)

Proof. By Lemma 3.23 (see below), the modulus set M(
?

I) is weakly
sequentially compact. It is thus weakly closed, by Lemma 3.18. ˝

Lemma 3.23. Let
?

I be as in Theorem 3.22. Then the modulus set M(
?

I) is
weakly sequentially compact.
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Proof. We first claim that M(
?

I) is weakly relatively sequentially com-
pact. Let ( fn)nPN be a sequence in M(

?
I). By Parseval’s equation,

} fn}2L2(Td) = (2π)d} f̂ }2`2(Zd) = (2π)d}I}`1(Zd).

Since the right hand side is finite by assumption, the sequence is
bounded in L2, and hence possesses a subsequence ( fn`

)`PN converg-
ing weakly in L2 to some f P L2(Td), establishing our claim.

We now show that M(
?

I) is in fact weakly sequentially compact.
Indeed, the above subsequence satisfies

ż

Td
fn`

(x)e´ik¨xdx = f̂n`
(k)Ñ f̂ (k) @k P Zd.

Consequently
b

I(k) = | f̂n`
(k)| Ñ | f̂ (k)| @k P Zd,

and so the limit f belongs to M(
?

I), establishing weak sequential
compactness. ˝

On a side note, M is in fact strongly compact on a torus (see Proposi-
tion D.2).

3.4 projectons onto the modulus constraint set

The form of a modulus projecton selection PM — described in the
example below — is well-known in literature. It is difficult to locate
the first rigorous proof demonstrating the form of PM. Such a proof
can be found, for example, in [LBL02, Thm.4.2]. For reader’s conve-
nience, a proof is presented below. It is only slightly different from the
proof of [LBL02, Thm.4.2], as our notation is tailored to single-valued
projection selections (instead of projections); also, eq. (4.8) of [LBL02,
Thm.4.2] that states

}g´ PM; ϕ[g]}2 =
a

CF
››|ĝ(k)| ´ ?

I(k)
››

2

is postponed to Example 4.6.

Example 3.24 (Modulus and incomplete modulus projectons). Let
?

I, SF be
as in Definition 2.1. Let ϕ : ΩF Ñ [0; 2π) be such that sin ϕ is odd. De-
fine the following operators with domain D = H:

AM; ϕ[g] = F´1
(?

I
ĝ
|ĝ|1tĝ‰0u +

?
Ieiϕ

1tĝ=0u
)

; (modulus)

AM(i); ϕ[g] = F´1
(?

I
ĝ
|ĝ|1tĝ‰0uXSF+

+
?

Ieiϕ
1tĝ=0uXSF + ĝ1ΩFzSF

)
.

(incomplete modulus)
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Then, PM; ϕ[g] = AM; ϕ[g] is a projecton selection onto M(
?

I), and
PM(i); ϕ[g] = AM(i); ϕ[g] is a projecton selection onto M(i)(

?
I; S f ). We

abbreviate PM = PM; ϕ and PM(i) = PM(i); ϕ whenever it can not cause
confusion.

It is convenient to introduce versions of these operators that act on
the Fourier space: let AF

M; ϕ, AF
M(i); ϕ

map pH(ΩF) to itself with

PF
M; ϕ[ĝ] =

?
I

ĝ
|ĝ|1tĝ‰0u +

?
Ieiϕ

1tĝ=0u;

PF
M(i); ϕ

[ĝ] =
?

I
ĝ
|ĝ|1tĝ‰0uXSF +

?
Ieiϕ

1tĝ=0uXSF + ĝ1ΩFzSF .

Then, PF
M; ϕ[g] := AM; ϕ[g] is a projecton selection onto M̂ := th P H | ȟ PM(

?
I)u,

and mutatis mutandis for PF
M(i); ϕ

= AF
M(i); ϕ

.
For these operators we also drop the subscript ϕ where it can not

cause confusion. Whenever the operators PM, PM(i) and PF
M are used

without the subscript ϕ, we imply that there exists a corresponding ϕ

such as in this definition.

Proof (that PM = AM and PM(i) = AM(i)). Choose ϕg such that
{AM[g] =

?
Ieiϕg . Assume there exists f PM satisfying

}g´ f }2 ă }g´ AM[g]}2. (3.18)

Choose ϕ f such that f̂ =
?

Ieiϕ f . By Plancherel’s theorem,

}g´ AM[g]}2 =
a

CF
››|ĝ|eiϕg ´?

Ieiϕg
››

2 =

=
a

CF
››|ĝ| ´ ?

I
››

2 ă
(˚)ă

a
CF

››|ĝ| ´ ?
Iei(ϕg´ϕ f )

››
2 =

=
a

CF
››|ĝ|eiϕg ´?

Ieiϕ f
››

2 = }g´ f }2. (3.19)

Strict inequality (˚) holds, since f ‰ AM[g], and since for any positive
numbers a, b and any phase ϕb P (0, 2π) one has

|a´ beiϕb | =
b
(a´ b cos ϕb)2 + (b sin ϕb)2 =

=
b

a2 ´ 2ab cos ϕb + b2 ą
ą

a
a2 ´ 2ab + b2 = |a´ b|.

Equation (3.19) contradicts Equation (3.18); therefore, AM is a projec-
tion selection, i. e. PM = AM.

The definition of AM implies that a modulus projection selection is,
in general, not unique. However, it nessesarily has the form PM; ϕ[g]
for an appropriate ϕ. Indeed, if one assumes “ď” in Equation (3.18),
from Equation (3.19) follows that phases of f̂ and {PM; ϕ[g] can differ
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ĝ

?
I

ÞÑ PF
M[ĝ]

Figure 3.5: Illustration to Example 3.24 (modulus projecton).
For illustrative purposes, choose g P H(R) even and real-valued, so
that ĝ (colored brown) is also even and real-valued. The map PF

M; ϕ

preserves the phase of ĝ, but sets the modulus of ĝ to
?

I (dashed
orange). At discontinuities — i. e. at the points k where

?
I(k) ‰ 0,

but ĝ(k) = 0 — the phase of PF
M; ϕ[ĝ](k) is prescribed by ϕ(k).

only at k P ΩF where
?

I(k) = 0. In particular, if
?

I is supported on
the whole of ΩF, then PM; ϕ[g] is unique and independent of ϕ.

The proofs for PM(i); ϕ is the same mutatis mutandis. ˝

Remark 3.25 (Sine of Fourier phase is odd). The assumption

“let ϕ : ΩF Ñ [0; 2π) be such that sin ϕ is odd”

is a convenient way to ensure that functions in range of PM and PM(i)

remain real-valued, cf. Equation (2.1) or Appendix A.

Remark 3.26 (Multi-valuedness of the modulus projection). The fact that

a modulus projecton selection is not unique

and is specified by a certain phase ϕ

is a crucial property connected to non-convexity of phase-retrieval.
(Indeed, recall that if a projection selection PX : HÑ H is unique, then
the set X is Chebyshev. In certain cases — for example, if H is finite-
dimensional, — this is equivalent to X being convex; see references in
Remark 3.5).

In computational phase retrieval, explicit calls to ϕ are extremely
rare, since f̂ (k) = 0 almost never occurs within computer precision
(for any approximation f and coordinate k). It is therefore common to
select

ϕ ” 0 (3.20)

which is arguably the simplest choice.
A rigorous way to treat PM is to consider it as a multi-valued oper-

ator (see, for example, [LBL02] or [BL03]). However, in this work, we
use single-valued selections: this allows us to formulate many results
in a more concise and readable form. For example, Chapter 7 demon-
strates existence of solutions for an integro-differential equation that
contains PM; ϕt , where the selection ϕt changes with time t. While we
conjecture that the corresponding results can be extended to a more
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general form (using multi-valued operators), such a generalization
lies beyond the scope of this work.

Such a generalization would require to consider the set

 
PM; ϕ for all measurable ϕ : ΩF Ñ [0; 2π) such that sin ϕ is odd

(
.

in places where we consider the single-valued operator

PM; ϕ for any measurable ϕ : ΩF Ñ [0; 2π) such that sin ϕ is odd,

The arising differences are of minor importance to this work, since
both single-valued and multi-valued formulations can be used to ana-
lyze the non-convexity of phase retrieval.

Remark 3.27 (Importance of multiplicity in applications). In this remark, we
call f a multiplicity point if f P H is such that f̂ (k) = 0 for at least
one (Lebesgue point) k P ΩF. At the multiplicity points, the modulus
projecton is not uniquely defined and must be selected to equal some
PM; ϕ.

Note that PM is not continuous at these multiplicity points. There-
fore, behavior of any phase retrieval algorithm becomes difficult to
analyze in the neighborhood of multiplicity points.

While orbits of many algorithms (e.g. any common variant of ER
and DR) rarely contain multiplicity points, they commonly pass through
the neighborhood of multiplicity points. (I.e., for a generated sequence
of approximations (gn)n, it is common to observe ĝn(k) ! ?

I(k) for at
least one n P N, for at least one k P Ω f .)

It is therefore important to analyze and improve the behaviour of
algorithms near the multiplicity points. Informally speaking, a “for-
tunate guess” of the phase ϕ (possibly dependent on f ) at a mul-
tiplicity f could render phase retrieval trivial, cf. Remark 5.20 and
Example 7.23.

Remark 3.28 (Computational efficiency of projectons). It is easy to check
that for Ω = Td

N , evaluation of positivity, support, and amplitude
thresholding projectons requires O(|N|) calculations. The support size
projecton requires O(|N|ν) calculations to get ν largest elements of
the argument, or O

(|N| log |N|) calculations if one wishes to sort all
values of the argument. Finally, the modulus and incomplete modu-
lus projectons require O

(|N| log |N|) for fast Fourier transform and
O(|N|) steps in Fourier space.

Thus, all defined projectons require at most O
(|N| log |N|) calcu-

lations. With desired resolutions of order 104 ´ 106 pixels (voxels),
projectons – or, in general, reconstruction algorithms – that require
O(|N|2) calculations per update step quickly become unfeasible for
crystallographic phase retrieval.

The O
(|N| log |N|) complexity of the fast Fourier transform is cru-

cial for phase retrieval algorithms. Before the discovery of the fast
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Fourier transform one had to devise phase retrieval algorithms op-
erating solely in Fourier space. For such algorithms, object space
constraints were reformulated analytically to be applied directly in
the Fourier space. An example is the Sayre’s equation, developed in
[Say52] and more recently discussed in [Els03]. In general, it is note-
worthy that X-ray crystallography was one of the applications driving
the developement of Fourier transformation algorithms that eventu-
ally led to the discovery of the fast Fourier transform [CLW67].

3.5 local projection operators

This section formalizes certain ideas that are implictly well-known
in phase retrieval literature, but — to the best of our knowledge —
have not been formulated rigorously. Namely, it introduces and estab-
lishes the properties — notably, Proposition 3.33 and Corollary 3.35,
— underlying the transformation between local and global versions of
phase retrieval algorithms in Section 5.1.

The examples in this chapter proving that projections have a certain
form are very similar. The purpose of this section is to demonstrate
how to prove the form of projection operators for tPP, PS, PTa(α)u and
M with a common proof, that relies on the following locality property.

An operator PX P tPP, PS, PTa(α)u is local in the sense that the value
PX[g](x) is determined solely by x and g(x) and does not depend on
values of g at other coordinates (pointwise evaluation g(x) is meant
for any representant g at almost all x P Ω). The same is true for
operators PF

M, PF
M(i) acting in Fourier space. For example, PF

M[ĝ](k) is
determined solely by k and ĝ(k) and does not depend on values of ĝ
at other Fourier coordinates.

Thus, instead of considering an operator PX acting on H(Ω), one can
consider an appropriate local version P(loc)

X that takes pairs (x, g(x))
as arguments and acts in a way such that PX[g](x) = P(loc)

X

(
x, g(x)

)

for almost all x P Ω; this is done in Definition 3.29. Proposition 3.33

demonstrates that if P(loc)
X is a projection selection, then PX is a projec-

tion selection. This argument is used in Corollary 3.35 to show that
PP, PS, PTa(α), PM, and PM(i) are projection selections.

For readability, the following definition is split in two very similar
cases: locality in object space and locality in Fourier space.

Definition 3.29 (Local operator and its local version).

1) Let D Ă H(Ω). An operator A : DÑ H(Ω) is called local in object
space if there exists a corresponding operator A(loc) from Ω ˆR to
itself such that

A(loc)(x, g(x)) =
(
x, A[g](x)

)

for almost all x P Ω.
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Local operators A(loc) are identified with their equivalence classes (anal-
ogous to identification of functions in Lp-spaces). Two operators A(loc)

1

and A(loc)
2 are called equivalent, if for all g P H, the equality

A(loc)
1 [g](x) = A(loc)

2 [g](x)

holds for almost all x P Ω. For a local operator A, the correspond-
ing operator A(loc) is unique up to the aforementioned equivalence
relationship.

2) Let pD Ă pH(ΩF). An operator A : pD Ñ H(ΩF) is called local in
Fourier space if there exists a corresponding operator A(loc) from ΩFˆC to itself
such that

A(loc)(k, ĝ(k)) =
(
k, A[ĝ](k)

)

for almost all k P ΩF. Similarly to case 1) above, A(loc) is identified
with the corresponding equivalence class.

The operator A(loc) is called the local version of A.

Example 3.30 (Local versions of PP, PS, PTa(α), and PM). By their respective
definitions, it is clear that for any (x, a) P ΩˆR

P(loc)
P (x, a) =

$
&
%
(x, a) if a ě 0,

(x, 0) else;

P(loc)
S(S) (x, a) =

$
&
%
(x, a) if x P S,

(x, 0) else;

P(loc)
Ta(α)

(x, a) =

$
’’’&
’’’%

(x, a) if a ě α,

(x, α) if a P [ α
2 , α),

(x, 0) else

define local versions of PP, PS, and PTa(α). Further, for any (k, a) P ΩFˆC

PF (loc)
M; ϕ (k, a) =

$
’&
’%

(
k,
?

I(k) a
|a|
)

if a ‰ 0,
(

k,
?

I(k)eiϕ(k)
)

else;

PF (loc)
M(i); ϕ

(k, a) =

$
’’’’&
’’’’%

(
k,
?

I(k) a
|a|
)

if k P SF and a ‰ 0,
(

k,
?

I(k)eiϕ(k)
)

if k P SF and a = 0,

(k, a) if k R SF.

define local versions of PF
M; ϕ and PF

M(i); ϕ
.
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Let us show that P(loc)
P , P(loc)

S , P(loc)
Ta(α)

are themselves projection selec-

tions onto appropriate subsets of ΩˆR, and that PF (loc)
M; ϕ , PF (loc)

M(i); ϕ
are

projection selections onto appropriate subsets of ΩF ˆC.

Lemma 3.31 (Projections: box; singleton; torus).
1) Endow ΩˆR with the metric

dΩˆR

(
(x, a), (x̃, ã)

)
= }x´ x̃}dsc. + |a´ ã|.

Here, }x´ x̃}dsc. denotes the disconnected norm

}x´ x̃}dsc. =

$
&
%

0 if x = x̃;

8 else.

Let Θ =
Ť

xPΩt(x, L(x))u, where L(x) is a closed interval in R. In
particular, L(x) can be unbounded or a singleton, but not empty. Then,
the projection onto Θ is given by

PΘ
(
(x, a)

)
=

$
’’’&
’’’%

(x, inf L(x)) if a ă inf L(x);

(x, sup L(x)) if a ą sup L(x);

(x, a) else.

(We write inf L(x) instead of min L(x) to allow the case when L(x)
is unbounded from below; analogously for sup.)

2) Endow ΩˆR with the metric from 1). Let α ą 0, let Θ = Ωˆ (t0uY [α,8)
)
.

Then, a projection onto Θ is given by

PΘ
(
(x, b)

)
=

$
’’’’’’&
’’’’’’%

(x, 0) if b ă α
2 ;

(x, α˚) if b = α
2 ;

(x, α) if b P ( α
2 , α);

(x, b) else

with ambiguity α˚ P t0, αu. For convenience of later usage, choose
α˚ = α (to remain consistent with the default choice of amplitude
thresholding projection in Example 3.14).

3) Endow ΩF ˆC with the metric

dΩˆR

(
(k, a), (k̃, ã)

)
= }k´ k̃}dsc. + |a´ ã|.

Let
?

I P pH be real-valued and non-negative, let SF be a measurable
subset of ΩF. Let

Θ =
ď

kPSF

tϕ̃ P [0, 2π) | (k,
?

I(k)eiϕ̃)u Y
ď

kPΩFzSF

t(k, C)u
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— at each point k, this set is constructed from circumferences of radius?
I(k) or whole complex planes. Then,

PΘ
(
(k, a)

)
=

$
’’’&
’’’%

(k,
?

I a
|a| ) if a ‰ 0 and k P SF;

(k,
?

Ieiϕ(k)) if a ‰ 0 and k R SF;

(k, a) else,

for any measurable ϕ˚ : ΩF Ñ [0, 2π). Here, ϕ˚ is the ambiguity in
the choice of projection selection.

Proof. 1) Note that PΘ
(
(x, a)

) P Θ, since L(x) is closed for all x P Ω.
Assume there exists (y, b) P Θ satisfying

dΩˆR

(
(x, a), (y, b)

)
ď dΩˆR

(
(x, a), Pθ

(
(x, a)

))
.

Let us show that from this follows (y, b) = (x, a). Indeed, if y ‰ x,

then dΩˆR

(
(x, a), (y, b)

)
is infinite, but dΩˆR

(
(x, a), Pθ

(
(x, a)

))
is fi-

nite for any a P R; hence, y = x. Further, b = a is staightforward since
b P L(x):

a) if a ă inf L(x), then b can not be closer to a than inf L(x);
b) if a ą sup L(x), then b can not be closer to a than sup L(x);
c) if a P L(x), then b can not be closer to a than a.

2) The proof is similar to case 1) with a minor difference that if b = α
2

for some (x, b), then (x, 0) and (x, α) both belong to Θ and are equidis-
tant from (x, b), resulting in the multivaluedness of PΘ; this multiplic-
ity can be resolved by the choice of any candidate. In our case, the
choice (x, α) is more convenient for the following Corollary 3.32.
3) Assume there exists (q, b) P Θ satisfying

dΩFˆC

(
(k, a), (q, b)

)
ď dΩFˆC

(
(k, a), Pθ

(
(k, a)

))
. (3.21)

One has q = k by the same argument as above. If k P ΩzSF, then
PΘ
(
(k, a)

)
= (k, a) is obviosly the closest element in Θ to (k, a).

Consider the case k P SF. Since (q, b) P Θ, there exists ϕb such that
b =

?
I(k)eiϕb . For a ‰ 0, choose ϕa such that eiϕa = a

|a| . Then,

|a´ b| = ˇ̌
a´?

Ieiϕb
ˇ̌
=

ˇ̌|a| ´ ?
Iei(ϕb´ϕa)

ˇ̌
=

=
b
|a|2 ´ 2|a|?I cos(ϕb ´ ϕa) +

?
I2 ď ˇ̌|a| ´ ?

I
ˇ̌
=

ˇ̌
ˇ̌a´?

I
a
|a|

ˇ̌
ˇ̌ .

In conjunction with Equation (3.21) — use definition of dΩFˆC and
k = q in the latter — follows that this inequality must be an equality.
The equality holds only if cos(ϕb ´ ϕa) = 1, meaning eiϕb = eiϕa .
Therefore, (q, b) = PΘ

(
(k, a)

)
.
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For a = 0, any b =
?

Ieiϕb has the same distance to a, and (q, b) =
PΘ
(
(k, a)

)
for an appropriate choice of ϕ, thus concluding the proof.˝

Corollary 3.32. From previous lemma immediately follows that P(loc)
P ,

P(loc)
S , P(loc)

Ta(α)
, PF (loc)

M; ϕ , PF (loc)
M(i); ϕ

are projection selections. Namely:

1) P(loc)
P = PΘ, where Θ =

Ť
xPΩt(x, Rě0)u = ΩˆRě0.

2) P(loc)
S = PΘ, where

Θ =
ď

xPS

(x, R)Y
ď

xPΩzS
t(x, 0)u.

3) P(loc)
Ta(α)

= PΘ, where Θ =
Ť

xPΩt(x, t0uYRěα)u = Ωˆ (t0uYRěα

)
,

with ambiguity resolution α˚ := α.

4) PF (loc)
M; ϕ = PΘ, where Θ =

Ť
kPΩF

t(k,
?

I(k))u, with ambiguity resolu-
tion ϕ˚ := ϕ.

5) PF (loc)
M(i); ϕ

= PΘ, where

Θ =
ď

kPSF

 (
k,
?

I(k)
)(Y

ď

kPΩFzSF

t(k, C)u,

with ambiguity resolution ϕ˚ := ϕ.

Equality A(loc) = PΘ is understood in the following sense: in the equivalence
class of A(loc) there exists an operator A(loc)

˚ such that A(loc)
˚ (x, a) = PΘ(x, a)

for all (x, a) P Θ.

Proposition 3.33 (Criterion for local projection selections).
Let D Ă H(Ω), let A : DÑ H(Ω) be a local operator with the local version
A(loc) : ΩˆR Ñ ΩˆR. Endow ΩˆR with the metric

dΩˆR

(
(x, a), (y, b)

)
= dΩ(x, y) + |a´ b|,

where dΩ is any metric on Ω. If A(loc) = PΘ is a projection selection onto
some set Θ Ă ΩˆR, then A = PX is a projection selection onto

X =
 

g P H(Ω) | (x, g(x)
) P Θ for a. a. x P Ω

(
.

Proof. The proof is straightforward: first, we show that A[g] P X for
all g P D; second, we show that A[g] is the closest point in X to g.

First: by definition of the local operator holds

(
x, A[g](x)

)
= PΘ

(
x, g(x)

)

almost everywhere in Ω; therefore,
(
x, A[g](x)

) P Θ for a. a. x P Ω;
therefore, A[g] P X by definition of X.
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Second: assume that A[g] is not the closest point in X to g, i. e.
assume that there exists f P X such that }g´ f }2 ă }g´ A[g]}2.

But this would contradict the inequality

}g´ A[g]}22 =

ż
(dΩ(x, x) + |g(x)´ A[g](x)|)2dx =

=

ż
dΩˆR

((
x, g(x)

)
,
(
x, A[g](x)

))2
dx =

=

ż
dΩˆR

((
x, g(x)

)
, PΘ

(
x, g(x)

))2
dx =

(˚)ď
ż

dΩˆR

((
x, g(x)

)
,
(
x, f (x)

))2
dx =

=

ż
|g(x)´ f (x)|2dx = }g´ f }22.

In step (˚) we used a variant of Corollary 3.6 applied on the metric
space (ΩˆR, dΩˆR), cf. Remark 3.7.

This contradiction completes the proof. ˝

Remark 3.34. Proposition 3.33 holds mutatis mutandis in Fourier space.
In that case, ΩF ˆC is endowed with the metric

dΩˆR

(
(k, a), (q, b)

)
= dΩF(k, q) + |a´ b|,

where dΩF is any metric on ΩF. The proof remains essentially the
same.

Corollary 3.35 (Alternative proof for projection selections). The
operators PP, PS, PTa(α), PM, and PM(i) — as explicitely defined in Exam-
ple 3.14 and Example 3.24 — are projection selections.

Proof. The operators PP, PS, PTa(α), PF
M, and PF

M(i) are projection selec-
tions by Proposition 3.33, since their local versions from Example 3.30

are themselves projection selections by Corollary 3.32. The operators
PM and PM(i) are projection selections by Plancherel’s theorem, since

}g´ PM[g]}2 =
a

CF }ĝ´ PF
M[ĝ]}2 ď

a
CF }ĝ´ f̂ }2 = }g´ f }2

for any f , g P H; likewise for PM(i) . ˝





4
S Q UA R E D I S TA N C E E N E R G Y F U N C T I O N A L S

This chapter is devoted to the study of the square distance energy
functionals, i.e. the functionals of the form

EX[g] =
1
2
}g´ PX[g]}22,

where PX is a single-valued projecton selection onto some proximal
set X Ă H.

Section 4.1 reformulates phase retrieval as an energy minimization
problem. While similar reformulations are common in phase retrieval
literature, we use a very specific choice of the corresponding func-
tional, namely

g ÞÑ EA[g] + EM[g].

This choice is symmetric in the modulus and additional constraints,
admits a specific choice of the generalized Kruger-Mordukhovich sub-
differential (g ´ΠA[g] + g ´ΠM[g]), and will play a crucial role in
Chapter 5, where we explore how this exact functional is connected to
the Error-Reduction and Douglas-Rachford phase retrieval algorithms.

Section 4.1 discusses some useful basic properties of energy func-
tionals like lower weaker semicontinuity for weakly closed X or Lipshitz-
continuity for proximal X. Using the direct method in calculus of vari-
ations, we show that the energy minimization formulation of phase
retrieval always admits solutions provided that A and M are weakly
closed.

Section 4.2 studies conditions under which A and M are Fréchet-
differentiable. While colloquially known in phase retrieval literature,
the corresponding rigorous proofs are more difficult to encounter. No-
tably, we show that EM is Fréchet-differentiable at g, if }?I(k)/|ĝ|} ă 8.

This condition is rather restrictive; one can not expect it to hold in
the applied setting.

To address this issue, Section 4.3 is devoted do the rigorous varia-
tional analysis of EX for weakly closed sets X. It demonstrates Clarke,
Dini, and generalized (in the sense of Kruger-Mordukhovich [KM80])
subdifferentials of EX for weakly closed sets X. This analysis is appli-
cable to EM, when M is considered on bounded domains (and thus
weakly closed as is demonstrated in Section 3.3). The analysis is in-
spired by the results of Burke and Luke [BL03], where the generalized
subdifferential of EM was established on unbounded domains (using
the Aumann theorem on integration of set-valued mappings [Aum65,
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Thms.3, 4]), and it was established to coincide with the (convex) Clarke
subdifferential:

BEM[g] = BKMEM[g] = weak closure of convex hull of (g´ΠM[g]),

where B denotes the Clarke and BKM denotes the generalized subdif-
ferentials.

In contrary, Section 4.3 requires a stronger assumption — weak
closedness of X, which holds for M on bounded domains — to show
that

BEX[g] = weak closure of convex hull of (g´ΠX[g]),

BKMEX[g] = g´ΠX[g].

The difference in results can be connected to the following dif-
ference in the setting. The modulus functional is weakly closed on
M Ă L2(Ω) for bounded Ω. For such Ω, L2(Ω) is homeomorphic to
`2(Zd) (through coordinate scaling and Fourier transform, cf. Corol-
lary D.3), and Zd (with the counting measure) is an atomic measure
space. This diverges from the setting of [BL03] which considers only
non-atomic domains.

For purposes of this thesis, the non-convex form g ´ΠX[g] (that
coincides with the formal Fréchet-derivative) — rather than its con-
vexification — is better suited to the purposes of Chapter 5, which
establishes the connection between the subgradient flow of EM + EA

and Error-Reduction and Douglas-Rachford algorithms.
In the very end of this chapter, we also briefly discuss the slope of

EM as yet another way to go beyond Fréchet-differentiation.

4.1 phase retrieval via energy minimization

This section formalizes phase retrieval as an energy minimization
problem, which is a common formulation of phase retrieval. Less
common is the particular choice of energy functionals: it is symmetric
with respect to the exchange of modulus and additional constraints.
Of note are Proposition 4.4 (weak l.s.c. of EX for weakly closed X) and
Remark 4.10 (direct method in calculus of variation is applicable) that
justify the energy minimization formulation of phase retrieval using
the direct method in calculus of variations.

By the very definition of a projection onto set X at g P H,

PX[g] P arg min
fPX

}g´ f }p
2
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for any p P (0,8) and any single-valued projection selection PX. There-
fore, properties of selections like PX are naturally connected to the
functional

g ÞÑ min
fPX

}g´ PX[g]}p
2 . (4.1)

The choice p = 1 is the easiest for geometric interpretation: the result-
ing functional measures the distance between point g and set X. The
choice p = 2 yields a more regular functional with better differentia-
bility properties. Such functionals — and their combinations — will
be of primary interest for this work.

Definition 4.1 (Projection energy functional). Let X Ă H be weakly
closed, let PX : HÑ H be a projection. The functional

E(p)
X : HÑ R, g ÞÑ 1

2

››g´ PX[g]
››p

2

is called the corresponding energy functional with exponent p. When p = 2,
we use the notation EX := E(2)

X . The functional EX is also known as the
squared distance functional.

Remark 4.2 (Moreau envelopes). In best approximation theory, the above
functionals are also known as a particular case of Moreau envelopes,
see, e.g., [RW09, Chapter 1.G]. The study of proximal mappings (that
generalize projections) and Moreau envelopes (that generalize square
distance functionals) lies beyond the scope of this work.

Remark 4.3 (Notation via projections). It is common to use the notation
like 1

2 d2
X for square distance functionals (see, e.g., [RW09, Chapter

1.G]).
The notation we use is less general (it is specifically tailored to

Hilbert spaces), but has the benefit of being explicitely defined using
projections. This form highlights the similarity between the square
distance functional

g ÞÑ 1
2
}g´ PX[g]}22

and its (formal) Fréchet-derivative (or rigorous Mordukhovich-Kruger
subdifferential selection)

g ÞÑ g´ PX[g].

This connection is important for the main idea of this thesis, which
is to study projection algorithms using evolution equations derived
from square distance functionals.

The following proposition is necessary to reformulate phase re-
trieval as energy minimization problem in Definition 4.9 and Re-
mark 4.10.
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Proposition 4.4 (Energy functionals are weakly sequentially lsc).
Let X Ă H be nonempty and weakly closed, let PX : H Ñ H be a single-
valued projecton selection. The corresponding energy functional is boundedly
weakly sequentially lower semicontinuous, i. e. for every bounded sequence
(gn)nPN in H that converges weakly to some g P H holds

EX[g] ď lim inf
nÑ8 EX[gn].

Proof (by contradiction). Let (gn)n be a bounded sequence in H that
converges weakly to g. Assume that EX[g] ą lim infnÑ8 EX[gn].

The sequence PX[gn] is bounded (see the argument immediately
before Equation (3.11)).

Since the sequence (PX[gn])nPN is bounded, by the Banach-Alaogly
theorem there exists a weakly convergent subsequence (PX[gnm ])mPN

such that gnm á g, such that EX[g] ą lim infmÑ8 EX[gnm ], and PX[gnm ]á f .
Also, f P X since X is weakly closed.

Finally, since the Hilbert space norm is sequentially weakly lsc (e.g.
[BC17, Lemma 2.42]), we have

1
2
}g´ f }22 ď lim inf

mÑ8
1
2
}gnm ´ PX[gnm ]}22
= lim inf

mÑ8 EX[gnm ] ă EX[g] =
1
2
}g´ PX[g]}22

by assumption. This inequality contradicts Corollary 3.6, since f P X.˝

Lemma 4.5. Let X Ă H be not empty and proximal. Then, EX is locally
Lipshitz-continuous with

|EX[ f ]´ EX[g]| ď
(

1
2
} f ´ g}2 +

b
2EX[g]

)
} f ´ g}2

for all f , g P H.

Proof. Let f , g P H. Without loss of generality, assume that EX[ f ] ě EX[g].
By a straightforward calculation, for any PX have

2(EX[ f ]´EX[g]) = } f ´PX[ f ]}22´}g´PX[g]}22
(˚1)ď } f ´PX[g]}22´}g´PX[g]}22

=

ż
( f + g´ 2PX[g])( f ´ g)

(˚2)ď } f + g´ 2PX[g]}2} f ´ g}2

ď (} f ´ g}2 + 2}g´PX[g]}2)} f ´ g}2 = (} f ´ g}2 + 2
b

2EX[g])} f ´ g}2,

where we use Corollary 3.6 in (˚1) and Hölder’s inequality in (˚2). ˝
Example 4.6 (Positivity and modulus energy functionals). Let g P H. By
definitions of positivity and modulus projections,

EP[g] =
1
2

ż

tgě0u
g(x)2dx,
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and

EM[g] =
1
2
}g´ PM; ϕ[g]}22 =

CF
2

ż (|ĝ(k)| ´ ?
I(k)

)2dk. (4.2)

This reformulation is well-known and established, e.g., in [LBL02,
Cor. 4.3]. The reformulation follows from the Plancherel theorem and
explicitely shows that EM[g] does not depend on ϕ. In general, by the
definition of the functional EX it is clear that it does not depend on
the possible multivaluedness of the projection ΠX.

The following example is not necessary for the main discussion of
this section. Rather, it demonstrates a calculation common for energy
functionals; it is very similar to the one used later in Proposition 6.4.

Example 4.7 (Convex energy functionals). Let C Ă H be weakly closed
and convex. Then, for any f , g P H and t P [0, 1] holds

EC[t f + (1´ t)g] ď tEC[ f ] + (1´ t)EC[g]

´ (1´ t)t}( f ´ PC[ f ])´ (g´ PC[g])}22.

In particular, EC is convex.

Proof. Let f , g P H, let t P [0, 1]. The key component of the proof is the
inequality

EC[t f + (1´ t)g] =
1
2
}t f + (1´ t)g´ PC[t f + (1´ t)g]}22 (4.3)

ď 1
2

››t f + (1´ t)g´ (tPC[ f ] + (1´ t)PC[g]
)››2

2,

which follows from Corollary 3.6 and the fact that tPC[ f ] + (1´ t)PC[g]
belongs to C by convexity of C. After that, the proof follows by a
typical calculation (e. g., such calculation can be used to show that
the functional f ÞÑ } f }22 is λ-convex). Use the binomial formula on
the right-hand side of Equation (4.3) to split the expression into terms
with (g´ PC[g]) and ( f ´ PC[ f ]) to obtain

t2 1
2

›› f ´ PC[ f ]}22 ´ t(1´ t)x f ´ PC[ f ], g´ PC[g]y+ (1´ t)2}g´ PC[g]
››2

2.

Use t2 = t´ t(1´ t) in the first term and (1´ t)2 = (1´ t)´ t(1´ t)
in the third term to get

t
1
2

›› f ´ PC[ f ]}22 ´ t(1´ t)
1
2

›› f ´ PC[ f ]}22
+ t(1´ t)x f ´ PC[ f ], g´ PC[g]y

+ (1´ t)}g´ PC[g]
››2

2 ´ t(1´ t)}g´ PC[g]
››2

2.

Apply the binomial formula to all terms containing the factor t(1´ t)
and obtain the desired inequality. ˝
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Remark 4.8 (Variants of energy functionals). One of the main roles of en-
ergy functionals is to determine whether an algorithm is near a solu-
tion. (This implicitely assumes that the underlying feasibility problem
is regular (see Definition 9.6), which is not necessarily the case.) De-
pending on application and algorithm, one may use other functionals
to this end.

For example, [CLS15] uses the modulus functional

g ÞÑ
ż (
|ĝ|2 ´?

I2
)2

.

This functional is more regular than EM[g], but lacks a direct connec-
tion to projection operators and resulting properties (like the energy
dissipation shown in Proposition 6.4).

Energy functionals can be used to reformulate phase retrieval as an
unconstrained minimization problem.

Definition 4.9 (Energy minimization phase retrieval). Let
?

I P pH
be as in Definition 2.1, let A Ă H be a proximal nonempty set representing
the additional constraint. Define energy minimization phase retrieval as
the task of finding any

g P arg min
fPH

EM[ f ] + EA[ f ]. (4.4)

Remark 4.10 (Existence of solutions on bounded domains). It is straightfor-
ward to check that g is a solution of phase problem in the set intersec-
tion sense (Definition 2.3) if and only if EM[g] + EA[g] = 0.

Thus, Definition 4.9 can be used as a generalization of Definition 2.3.
With the feasibility definition 2.3, phase retrieval is not well-defined
if MXX is empty, which makes it very susceptible to measurement
errors. Meanwhile, with the energy minimization definition, phase
retrieval always admits a solution by the direct method in calculus of
variations, if it considered on bounded domains (H = L2(Ω) where
Ω is bounded) on which M is weakly closed (Theorem 3.21).

Indeed, by definition EM + EA is bounded from below by zero. Fur-
ther, use Equation (4.2) to observe that

EM[g] =
CF
2
}ĝ}22 ´ CF

ż
|ĝ|?I +

CF
2
}?I}22

ď }g}
2
2

2
´ }g}2 } q?I}2 + } q?I}22

2

is coercive. Since A is assumed to be not empty, EA[g] ă 8 for all
g P H. Overall, EM + EA is coercive and less than infinity at any g P H.
Therefore, minimizing sequences exist, and any minimizing sequence
(gn)nPN is bounded. By the Banach-Alaoglu theorem, (gn)nPN has
a weakly convergent subsequence. By the lower semicontinuity of
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energy functionals (Proposition 4.4 applies since A and M are weakly
closed), the infimum is attained at any accumulation point of (gn)nPN.

In practice, one typically uses EM to track algorithms if approxima-
tion belongs to A, and vice versa (cf. Proposition 5.14 or Remark 5.54).
The functional EM + EA provides a unified error estimate for such
cases.

4.2 minimizers and fréchet derivatives

This section recalls energy minimization properties Lemma 4.11, Re-
mark 4.12 that are well-known in phase retrieval and variational anal-
ysis. These properties can be demonstrated in more generic settings
(e. g., see [Mor18, Ch. 1.3.6]).

The section is concluded with Lemma 4.14 which demonstrates
rigorous Fréchet-differentiability conditions for EM and EP. While the
formal calculation of these derivatives is common in phase retrieval,
the rigorous derivation of a sufficient condition under which EM is
Fréchet-differentiable (}?I/|ĝ|}L8 ă 8) can be seen as a minor novel
contribution of this thesis. A sufficient and necessary condition for
EM to be Fréchet-differentiable (on a Hilbert space with a bounded
domain) is developed later in Lemma 4.19.

Projection energy functionals of the form (4.1) share the following
important property: for any point g R X there exists a neighborhood
such that one can explicitely calculate the minimizer of EX in this
neighborhood.

Lemma 4.11 (Explicit local minimizer). Let D Ă H, let PX : DÑ H
be a single-valued projection selection onto X Ă H, let EX be the correspond-
ing energy functional. Let g P DzX; this implies }g ´ PX[g]}2 ą 0. Let
ε P (0, 1], let p P [1,8). Then,

´ε(g´ PX[g]) P arg min
}h}2ďε}g´PX[g]}2

E(p)
X [g + h]. (4.5)

Proof (by contradiciton). Let (hn)nPN be a minimizing sequence, i. e. let
}hn}2 ď ε}g´ PX[g]}2 be such that

E(p)
X [g + hn]Ñ inf

}h}2ďε}g´PX[g]}2

E(p)
X [g + h] as n Ñ8.

Assume Equation (4.5) is not true. Then, there exists n P N such that

E(p)
X [g + hn] ă E(p)

X [g´ ε(g´ PX[g])];

this is equivalent to

}g + hn ´ PX[g + hn]}2 ă
››g´ ε(g´ PX[g])´ PX

[
g´ ε(g´ PX[g])

]››
2.
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Since by Corollary 3.6
››g´ ε(g´ PX[g])´ PX

[
g´ ε(g´ PX[g])

]››
2 ď

ď ››g´ ε(g´ PX[g])´ PX[g] }2 = (1´ ε)}g´ PX[g]
››

2,

we get
}g + hn ´ PX[g + hn]}2 ă (1´ ε)}g´ PX[g]}2.

However, this leads to the following contradiction:

}g´ PX[g]}2
(˚)ď }g´ PX[g + hn]}2
ď }g + hn ´ PX[g + hn]}2 + }hn}2
ă (1´ ε)}g´ PX[g]}2 + ε}g´ PX[g]}2 = }g´ PX[g]}2,

where we used Corollary 3.6 in (˚). ˝

Lemma 4.11 indicates that the derivative of E(p)
X , if it exists, is paral-

lel to g´ PX[g]. This statement is well-known, but its precise formula-
tion varies depending on the mathematical context. In general, EX is
differentiable only in a suitably weak sense (see Remark 4.13 below).

The following remark demonstrates that if for proximal X the Fréchet
derivative of EX exists at a point g, then it must be equal to g´ PX[g].
If X is known to be not only proximal but also weakly closed, than a
stronger statement (Lemma 4.19) is possible.

Remark 4.12 (Fréchet derivatives of energy functionals).
Let X Ă H be proximal. Assume that EX is Fréchet-differentiable at

g P X. Then,
∇EX[g] = g´ PX[g].

Proof. Treat the cases g R X and g P X separately.

(i) Assume that g R X, i.e. }g´ PX[g]}2 ą 0. Let f = g´ PX[g]. Since
EX is assumed to be differentiable at g, there exists an ε ą 0 such
that by Lemma 4.11 holds:

EX

[
g´ ε f

}∇EX[g]}2
} f }2

]
ď EX

[
g´ ε∇EX[g]

]

By Taylor’s theorem,

EX[g]´ ε
}∇EX[g]}2
} f }2 x∇EX[g], f y+ o(ε) ď EX[g]´ ε}∇EX[g]}22 + o(ε).

Taking limit ε Ñ 0, obtain

x∇EX[g], f y ě } f }2}∇EX[g]}2.
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Since the converse inequality is also true (Cauchy’s inequality),
one has x∇EX[g], f y = } f }2}∇EX[g]}2. Therefore,

››››
}∇EX[g]}2
} f }2 f ´∇EX

››››
2

2

= }∇EX}22 ´ 2
}∇EX}2
} f }2 xEX[g], f y+ }∇EX}22

= 2}∇EX}22 ´ 2}∇EX}22 = 0,

meaning that

∇EX =
}∇EX[g]}2
} f }2 f . (4.6)

Let us now show that }∇EX}2 = } f }2. By definition of EX and f ,

EX[g´ ε f ] =
1
2
(1´ ε)2}g´ PX[g]}22 ô

EX[g]´ εx∇EX[g], f y+ o(ε) = EX[g]´ }g´ PX[g]}22 + o(ε)
εÑ0ùñ

x∇EX[g], f y = }g´ PX[g]}22 ñ
}∇EX[g]}2 = }g´ PX[g]}2.

In the last equivalence we have used Equation (4.6). Overall, one
has ∇EX[g] = g´ PX[g].

(ii) Assume that g P X; hence, EX[g] = 0. Assume that ∇EX[g] ‰ 0;
then, there exists an ε ą 0 such that

EX

[
g´ ε∇EX[g]

]
= EX[g]loomoon

=0

´ε}∇EX[g]}22 + o(ε) ă 0,

in contradiction to EX[ f ] ě 0 for all f P H. Therefore,
∇EX[g] = 0 = g´ PX[g]. ˝

Remark 4.13 (Existence of derivatives for phase retrieval). The following
Lemma 4.14 specifies under which conditions derivatives of EP and
EM exist, and gives explicit bounds on the error terms of functional
expansions.

If the Fréchet derivative does not exist, one may consider weaker no-
tions of differentiability. In Section 4.3, we calculate the Clarke subdif-
ferential (conv˚tg´ΠX[g]u), the generalized subdifferential (g´ΠX[g]),
and the slope (}g´ PX[g]}2) of EX at any g P H for weakly closed g.
These notions can be used for more rigorous variational analysis of
phase retrieval.

Lemma 4.14 (Fréchet derivatives of EM and EP).
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(i) (Modulus) Let
?

I P pH(Ω) be non-negative. If g P H(Ω) is such that
C?

I :=
››?I
/|ĝ|››8 ă 8, then EM is Fréchet-differentiable at g, and for

all ε ą 0, h P H holds
ˇ̌
ˇ̌EM[g + εh]´ EM[g]´ ε

ż
∇EM[g]h

ˇ̌
ˇ̌ ď ε2}h}22

2
(
22 + 28C?

I + 8C?
I
2).

In particular, if Ω = Td
N and |ĝ(k)| ‰ 0 for all k P supp

?
I, then

g ÞÑ EM[g] is differentiable at g.

(ii) (Positivity) The functional g ÞÑ EP[g] is differentiable for all g P H,
and for all ε ą 0, h P H holds

EP[g + εh]´ EP[g]´ ε

ż
∇EP[g]h = C[h],

where C : HÑ H satisfies 0 ď C[h] ď ε2

2 }h}22.

Proof. (i) The proof is straightforward but somewhat lengthy. The
Taylor-expansion of EM[g+ εh] in ε is performed in Fourier space
(cf. Equation (4.2)) using the following steps.

Step 1) Assume
?

I(k) ‰ 0 for a. a. k P ΩF. Obtain pointwise second-
order Taylor-expansion of the integrand (|ĝ + εĥ|+ ?

I)2.

1a) Calculate d
dε (integrand).

1b) Calculate d
dε

ˇ̌
ˇ
ε=0

(integrand).

1c) Observe that integral over terms from 1b) can be sim-
plified; this is used later in Step 2).

1d) Calculate d2

dε2 (integrand).

1e) State pointwise first order Taylor-expansion with La-
grange remainder; show that it remains valid at points
where

?
I(k) = 0.

Step 2) Estimate integrals over individual Taylor terms.

2a) Split the integration domain into two sets: the “good”
set SG where fractions appearing in integrals are well-
behaved, and the “bad” set SB where fractions appear-
ing in integrals blow up.

2b) Estimate integral of the Taylor exansion from 1e) over
the “good set”.

2c) Estimate integral over the “bad set” directly, without
using the Taylor expansion.

2d) Combine all the estimates.

Step 3) Generalize to the case where
?

I(k) = 0 on a set of positive
measure.
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For readability, we omit the argument k in all appearing func-
tions if k remains unchanged throughout the calculation.

Step 1). Assume
?

I(k) ‰ 0 for a. a.k P ΩF. Then, the pointwise
expansion of the integrand is well-defined at almost all k P ΩF.
Indeed, ĝ(k) ‰ 0 for a. a. k P ΩF, since C?

I ă 8. Further, since
|ĥ(k)| ă 8 for a. a. k P ΩF, the following pointwise identities
remain valid as long as ε is small enough.

Step 1a): First order pointwise derivative.

d
dε

1
2

(
|ĝ + εĥ| ´ ?

I
)2

=

(
1´

?
I

|ĝ + εĥ|

)(
Re(ĝ˚ĥ) + ε|ĥ|2

)
.

(4.7)

Step 1b): First order pointwise derivative at ε = 0.

d
dε

ˇ̌
ˇ̌
ε=0

1
2

(
|ĝ + εĥ| ´ ?

I
)2

= Re(ĝ˚ĥ)´?
I Re

(
ĝ˚

|ĝ| ĥ
)

.

Step 1c): Integral simplification for later use. Since g is real-valued,
ĝ(´k) = ĝ˚(k) for a. a. k P ΩF, and the same is true for h. There-
fore, for any symmetric measurable set S Ă ΩF holds

ż

S
Re(ĝ˚ĥ) =

ż

S

1
2

(
ĝ˚(k)ĥ(k) + ĝ(k)ĥ˚(k)

)
dk =

=

ż

S

1
2

(
ĝ˚(k)ĥ(k) + ĝ(´k)ĥ˚(´k)

)
dk =

=

ż

S
ĝ˚(k)ĥ(k) dk =

ż

S
ĝ˚ĥ. (4.8)

Analogously, since
?

I(k) =
?

I(´k) and |ĝ(k)| = |ĝ(´k)|,
ż

S

?
I Re

(
ĝ˚

|ĝ| ĥ
)
=

ż

S

?
I
ĝ˚

|ĝ| ĥ. (4.9)

Step 1e): Second order pointwise derivative. From Step 1a) follows

d2

dε2
1
2
(|ĝ + εĥ| ´ ?

I
)2

=

=
1
2

?
I

|ĝ + εĥ|3
(
Re(ĝ˚ĥ) + ε|ĥ|2loooooooomoooooooon
=Re((ĝ+εĥ)˚ ĥ)

)2
+

(
1´

?
I

|ĝ + εĥ|

)
|ĥ|2

= |ĥ|2 ´
?

I

2|ĝ + εĥ| |ĥ|
2 ´

?
I

2|ĝ + εĥ| Im

(
(ĝ + εĥ)˚

|ĝ + εĥ| ĥ

)2

.
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Step 1d): First order Taylor-expansion with Lagrange remainder. By
Taylor’s theorem, for a. a. k P ΩF there exists ε(k) such that

1
2

(
|ĝ + εĥ| ´ ?

I
)2

=
1
2
(|ĝ|´?I)2 + ε

(
Re(ĝ˚ĥ)´?

I Re
(

ĝ˚

|ĝ| ĥ
))

+
ε2

2


|ĥ|2 ´

?
I

2|ĝ + ε̃ĥ| |ĥ|
2 ´

?
I

2|ĝ + ε̃ĥ| Im

(
(ĝ + ε̃ĥ)˚

|ĝ + ε̃ĥ| ĥ

)2



loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon
:=Tε,k

,

where ε̃(k) P [0, ε(k)] for a. a. k P ΩF.

This expansion is well-defined at k as long as

|ĝ(k) + ε̃(k)ĥ(k)| ě a(k) ą 0

for all ε̃(k) P [0, ε(k)] for some lower bound a(k). Keeping in
mind Step 3) that comes below, it is appropriate to notice here
that if

?
I(k) is zero, this Taylor-expansion remains (trivially)

valid for any possible values of ε, ĝ and ĥ — one merely has
to drop all terms where

?
I appears.

Step 2). Keep using the assumption
?

I(k) ‰ 0 for a. a.k P ΩF.
Step 2a). In Step 1), ε(k) depended on k and was assumed to be
small enough for expansion to hold. Frow now on, we pick a
small positive number ε P Rą0 — that does not depend on k —
and use the expansion from Step 1d) only at those k where it is
well-defined. Split the integration domain:

ΩF =
!

ε|ĥ| ă |ĝ|
2

)
loooooomoooooon

=:SG

Y
!

ε|ĥ| ě |ĝ|
2

)
loooooomoooooon

=:SB

.

The “good” set SG is the set where

|ĝ + ε̃ĥ| ě |ĝ| ´ ε̃|ĥ| ě |ĝ| ´ ε|ĥ| ě |ĝ|
2

,

thus, the Taylor-expansion from Step 1d) is well-defined for a. a.
k P SG, and one can estimate the integral over Tε,k directly.

The “bad” set SB is the set where |ĝ + ε̃ĥ| can become small,
thus the denominator in Tε,k can grow large. However, in this
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case one can estimate integrals over all other terms in the Taylor-
expansion:

ż

SB

1
2

(
|ĝ + εĥ| ´ ?

I
)2

= O(ε2);
ż

SB

1
2
(|ĝ| ´ ?

I)2 = O(ε2);

ε

ż

SB

ˇ̌
ˇ̌ĝ˚ ´?

I
ĝ˚

|ĝ|
ˇ̌
ˇ̌ |ĥ| = O(ε2);

these estimates will be established in Step 2c) below. Note that
the Taylor-expansion itself is not necessarily valid at k P SB, but
— see Step 2d) below — we do not use it at such points k.

Step 2b). Exploit the definition of the “good” set to estimate the
last term in the Taylor expansion:

ż

SG

(
|ĥ|2 ´

?
I

2|ĝ + ε̃ĥ| |ĥ|
2 ´

?
I

2|ĝ + ε̃ĥ| Im

(
(ĝ + ε̃ĥ)˚

|ĝ + ε̃ĥ| ĥ

)2)

ď }ĥ}22 +
ż

SG

?
I

|ĝ + ε̃ĥ| |ĥ|
2

ď }ĥ}22 +
ż

SG

2
?

I

|ĝ| |ĥ|2 ď }ĥ}22(1 + 2C?
I). (4.10)

Step 2c). To estimate the integrals over the “bad set” SB, observe
that at any k P SB holds

|ĝ(k)| ă 2ε|ĥ(k)| and
?

I(k) ă C?
I|ĝ(k)| ă 2εC?

I|ĥ(k)|.

Therefore,

1
2

ż

SB

(
|ĝ + εĥ| ´ ?

I
)2 ď 1

2

››1SB |ĝ + εĥ| ´ 1SB

?
I
››2

2

ď 1
2

(››1SB |ĝ
››

2 + ε
››1SB ĥ|››2 + }1SB

?
I
››

2

)2

ď 1
2

(
2ε
››1SB |ĥ

››
2 + ε

››1SB ĥ|››2 + 2εC?
I}1SB ĥ

››
2

)2

ď ε2

2
}1SB ĥ}22(3 + 2C?

I)
2. (4.11)

Analogously,

1
2

ż

SB

(|ĝ| ´ ?
I)2 ď ε2

2
}1SB ĥ}22(2 + 2C?

I)
2. (4.12)

ε

ż

SB

ˇ̌
ˇ̌ĝ˚ ´?

I
ĝ˚

|ĝ|
ˇ̌
ˇ̌ |ĥ| ď ε2

2
}1SB ĥ}22(4 + 4C?

I). (4.13)
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Step 2d). Gathering all these estimates together, obtain

1
2

››|ĝ + εĥ| ´ ?
I
››2

2 =
1
2

ż

SG

(
|ĝ + εĥ| ´ ?

I
)2

+
1
2

ż

SB

(
|ĝ + εĥ| ´ ?

I
)2

=

ď 1
2

ż

SG

(|ĝ| ´ ?
I)2

+ ε

ż

SG

(
Re(ĝ˚ĥ)´?

I Re
(

ĝ˚

|ĝ| ĥ
))

+
ε2

2

ż

SG


|ĥ|2 ´

?
I

2|ĝ + ε̃ĥ| |ĥ|
2 ´

?
I

2|ĝ + ε̃ĥ| Im

(
(ĝ + ε̃ĥ)˚

|ĝ + ε̃ĥ| ĥ

)2



+
1
2

ż

SB

(
|ĝ + εĥ| ´ ?

I
)2

=

=
1
2

ż

ΩF

(|ĝ| ´ ?
I)2

looooooooomooooooooon
=(2π)dEM[g]

´ 1
2

ż

SB

(|ĝ| ´ ?
I)2

looooooooomooooooooon
Use (4.12)

+ ε

ż

ΩF

(
Re(ĝ˚ĥ)´?

I Re
(

ĝ˚

|ĝ| ĥ
))

looooooooooooooooooooomooooooooooooooooooooon
=(2π)d

ş∇EM[g]h; cf. (4.8), (4.9)

´ ε

ż

SB

(
Re(ĝ˚ĥ)´?

I Re
(

ĝ˚

|ĝ| ĥ
))

looooooooooooooooooooomooooooooooooooooooooon
Use (4.13)

+
ε2

2

ż

SG


}ĥ}2

2
´

?
I

2|ĝ + ε̃ĥ| Im

(
ĝ˚

|ĝ + ε̃ĥ| ĥ
)2



looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
Use (4.10)

+
1
2

ż

SB

(
|ĝ + εĥ| ´ ?

I
)2

looooooooooooomooooooooooooon
Use (4.11)

;

from which follows
ˇ̌
ˇ̌EM[g + εh]´ EM[g]´ ε

ż
∇EM[g]h

ˇ̌
ˇ̌

ď ε2}h}22
2

(
21 + 28C?

I + 8C?
I
2). (4.14)

Step 3). To lift the assumption supp
?

I = ΩF, split ΩF into
S1 = supp

?
I and S2 = ΩFzS1. Steps 1),2) apply to integration

over S1 with the same estimates. For k P S2, the second term in
the Taylor-expansion is reduced to ε2}h}2

2
2 ; adding this term to the

right-hand side of the estimation yields the desired result.

(ii) Positivity estimate holds, since at the points where the operator
g + εh´ PP[g + εh] is ill-behaved, i. e. at points where the sign of
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g + εh differs from the sign of g, |g + εh| can be bounded by εh.
Indeed, by a straightforward calculation,

EP[g + εh] =
1
2

ż
1tg+εhă0u(g + εh)2

=
1
2

ż
1tgă0u(g + εh)2 + 1tgě0uXtg+εhă0u(g + εh)2

´ 1tgă0uXtg+εhě0u(g + εh)2

=
1
2

ż
1tgă0ug2 + 2ε1tgă0ugh + 1tgă0uε2h2

+ 1tgě0uXtg+εhă0u(g + εh)2

´ 1tgă0uXtg+εhě0u(g + εh)2.

The claim then follows with

C[h] =
1
2

ż
1tgă0uε2h2 + 1tgě0uXtg+εhă0u (g + εh)2

loooomoooon
ăε2h2

´ 1tgă0uXtg+εhě0u (g + εh)2
loooomoooon
ďε2h2

.

Combine the first and the third summands to estimate C[h] from
below:

C[h] ě 1
2

ż
1tgă0uXtg+εhă0uε2h2 + 1tgě0uXtg+εhă0uε2h2

=
1
2

ż
1tg+εhă0uε2h2. ˝

Remark 4.15. While the differentiability condition on EM is somewhat
restrictive, it holds for certain points of interest (notably, certain points
corresponding to fixed points of Error-Reduction algorithm, see Corol-
lary 8.2.) On the fundamental level, the points at which EM is non-
differentiable play a crucial role for phase retrieval and can not be
dismissed, cf. Remark 5.20.

Since support projector PS is linear, one can easily show that ES is
differentiable on the whole H.

One can show that the amplitude thresholding energy ETa(α) will be
differentiable if infxPΩ |g(x)´ α

2 | ą 0. This condition is rather restric-
tive, especially if one is working on the space Ω = Rd and assumes rea-
sonable decay of

?
I. Indeed, decay of

?
I implies smoothness of PM[g]

for any g P H, and this in turn implies that infxPΩ |PM[g](x)´ α
2 | = 0

as long as PM[g](x) ě α
2 at at least one Lebesgue point x P Rd. (And

PM[g](x) ě α will be true for at least one such x in a vicinity of a
solution that is not identically equal to 0.)

The functional ETs(ν) exhibits similar differentiability issues.
To work with such functionals, one must regularize them, or explore

tools beyond Fréchet-differentiability.
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4.3 generalized differentiation for weakly closed sets

The goal of this section is to establish certain subdifferentials and
subgradients of square distance functionals. Main result is that for a
weakly closed set X, the generalized subgradient BKMEX[g] = g´ΠX[g]
for all g P H. Thus, for bounded Ω Ă Rd with M Ă L2(Ω) holds
BKMEM[g] Q g ´ PM; ϕ[g] for any measurable phase ϕ : Rd Ñ [0; 2π)

where sin ϕ is odd. This holds even if EM is not Fréchet-differentiable
at g.

Typically, results of generalized differentiation involve weak-star-
closure (e.g. of Fréchet normals), see [MS96]. On separable Hilbert
spaces, the weak closure ¨ ˚ is equivalent to the weak-star-closure
([BL03, Sec. 3]). Thus, it is sufficient to work with the weak closure for
our purposes.

Another benefit of the separable Hilbert space phase retrieval is
that many of the possible definitions for the subdifferential coincide
[MS96, Thm.9.2].

The results of this section are inspired by [BL03]. Specifically, [BL03,
Prop.3.19] establishes subdifferential regularity of the modulus pro-
jection on an unbounded domain (demonstrating that the Clarke
and generalized subdifferentials of EM coincide in that case). Further,
[BL03, Thm.3.1] demonstrates that

BKMEM[g] = conv˚ tg´ΠM[g]u ,

where M Ă L2(R2; R2) (which is not weakly closed), and convexifica-
tion comes from [BL03, Prop.3.19].

Our results are different from [BL03] in the following aspects:

• Our results apply only to weakly closed sets X such as M Ă L2(Ω)

but not M Ă L2(Rd). They do not rely on the specific form of
the modulus projection but apply to any weakly closed sets X.

• For bounded Ω, L2(Ω) is homeomorphic to `2(Zd) (through co-
ordinate scaling and Fourier transform, cf. Corollary D.3). Since
Zd (with the counting measure) is an atomic measure space,
which makes our setting different from the setting of [BL03]
which considers only non-atomic domains. This is one of the
underlying reasons in the difference of the obtained results (the
subdifferential of EM is not convex in our case).

• Our results are developed using a different approach. Namely,
[BL03] uses theory of integrals of multi-valued functions to estab-
lish conditions that allow the interchange of subdifferentiation
and integration [BL03, Lem.3.18, Lem.4.1]. We calculate the sub-
differential of EX from elementary definitions using properties
of the Hilbert norm } ¨ }2. This approach does not require any
use of integrals of multi-functions.
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A discussion of distance functional derivatives can also be found
in [Mor18, Ch. 1.3.6], where the derivative of g ÞÑ }g ´ PX[g]}2 is
calculated on the basis of sequential limits of Fréchet-ε-normals and
subdifferentials.

For our purposes, it is possible to describe relevant aspects of gener-
alized differentiation in a relatively brief self-contained manner, with-
out delving deep into the vast subject of generalized differentiation.
Specifically, it is possible to establish relevant subdifferentials from
elementary definitions, using the mild setting of separable Hilbert
spaces as well as properties of projection operators.

4.3.1 Definitions and main result

Recall the standard notions and results on the Clarke subdifferential
and generalized subdifferential for locally Lipschitz functions ([RW09;
MS96; BL03]).

Definition 4.16 (Regular subderivative and Clarke subdifferential).
Let H be a separable Hilbert space, let F : H Ñ RY t+8u be locally Lips-
chitz continuous at some g P H such that F[g] is finite.

i) The regular subderivative function pdF[g] : HÑ RYt+8u is defined
by

pdF[g][w] := lim sup
fÑg,εŒ0

F[ f + εw]´ F[ f ]
ε

.

ii) v P H is called a Clarke subgradient of F at g, if F is l.s.c. on a
neighborhood of g and v satisfies

xv, wy ď pdF[g][w] for all w P H.

iii) The set of Clarke subgradients of F at g is called the Clarke subdiffer-
ential and is denoted by BF[g].

Definition 4.17 (Subdifferential). Let H be a separable Hilbert space,
let F : HÑ RY t+8u be locally Lipschitz continuous at some g P H such
that F[g] is finite. Let v P H.

i) v is a Dini ε-subgradient of F at g, if

lim inf
tŒ0

F[g + tw]´ F[g]
t

´ xv, wy ě ´ε}w}2 for all w P H.

The set of Dini ε-subgradients v is called the Dini-ε-subdifferential of
F at g and is denoted by Bέ F[g].

ii) v is a subgradient of F at g if there are sequences εn Œ 0, gn Ñ g
and vn P Bέn

F[g] with F[gn] Ñ F[g] and vn á v. We call the set
of subgradients v the subdifferential of F at g and denote this set by
BKMF[g].
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Theorem 4.18 (Results on generalized differentiation). Let X Ă H
be weakly closed. Then:

BEX[g] = conv g´ΠX[g]
˚

(Clarke subdifferential), and (4.15)

BKMEX[g] = g´ΠX[g] (generalized subdifferential). (4.16)

These claims are proven in Theorem 4.22 and Theorem 4.24, respec-
tively.

The following lemma is particularly useful in conjunction with
Proposition 3.11 that states necessary and sufficient conditions for
PX to be locally continuous.

Lemma 4.19. Let X Ă H be non-empty, proximal (but not necessarily
weakly closed). Let PX be any single-valued projection onto X. Then, for
any g, h P H,

EX[g + h]´ EX[g] ě xg´ PX[g + h], hy+ 1
2
}h}22; (4.17)

EX[g + h]´ EX[g] ď xg´ PX[g] , hy+ 1
2
}h}22. (4.18)

In particular, if PX is continuous at g, then EX is Fréchet-differentiable at g
with

∇EX[g] = g´ PX[g].

Proof. “ě”. To establish (4.19), use the distance-minimizing projection
property (3.6) to estimate ´EX[g] from below:

1
2
}g + h´ PX[g + h]}22 ´

1
2
}g´ PX[ g ]}22

ě1
2
}g + h´ PX[g + h]}22 ´

1
2
}g´ PX[g + h]}22.

Open the squares and simplify the right-hand side:

1
2
}g + h}22 ´ xg + h, PX[g + h]y+ 1

2
}PX[g + h]}22

´ 1
2
}g}22 + xg, PX[g + h]y ´ 1

2
}PX[g + h]}22

=
1
2
}g + h}22 ´

1
2
}g}22 + x´PX[g + h], hy

= xg´ PX[g + h], hy+ 1
2
}h}22. (4.19)

“ď” Again, use the distance-minimizing projection property Corol-
lary 3.6, now to estimate EX[g + h] from above:

1
2
}g + h´ PX[g + h]}22 ´

1
2
}g´ PX[g]}22

ď1
2
}g + h´ PX[ g ]}22 ´

1
2
}g´ PX[g]}22.
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Similarly to (4.19), open the squares and simplify the right-hand side
to the form

xg´ PX[g], hy+ 1
2
}h}22,

Finally, if PX is continuous at g, then the Fréchet-differentiability of
EX at g follows by definition from (4.17) and (4.18). ˝

4.3.2 Clarke subdifferential of energy functionals

This section gives an explicit formula for the Clarke subdifferential of
EX for weakly closed X.

Proposition 4.20. Let X Ă H be non-empty and weakly closed. Then, for
all g˚, w P H,

pdEX[g˚][w] = sup
pPΠX[g˚]

xg˚ ´ p, wy.

Proof. By definition, for any w P H have

pdEX[g˚][w] = lim sup
gÑg˚,εŒ0

EX[g + εw]´ EX[g]
ε

. (4.20)

Let PX be a single-valued selection of the (in general, multi-valued)
operator ΠX.

“ě”. By Lemma 4.19,

1
2
}g + εw´ PX[g + εw]}22 ´

1
2
}g´ PX[g]}22

ě εxg´ PX[g + εw], wy+ ε2

2
}w}22. (4.21)

Inserting this into the definition of the subdifferential, have

pdEX[g˚][w] ě lim sup
gÑg˚,εŒ0

(
xg´ PX[g + εw], wy+ ε

2
}w}22

)
. (4.22)

To estimate the limes superior in (4.22) from below, consider the
particular sequence (gn)n defined by gn = g˚ ´ εnw with εn = 1

n for
all n P N:

pdEX[g˚][w] ě lim
nÑ8

(
x gnloomoon
Ñg˚ as nÑ8

´PX[gn + εnwloooomoooon
=g˚

], wy+ εn

2
}w}22loomoon

Ñ0 as nÑ8

)

= xg˚ ´ PX[g˚], wy.

This inequality holds for any and all selections PX of ΠX, i.e.

pdEX[g˚][w] ě xg˚ ´ p, wy
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for all p P ΠX[g], from which follows the desired

pdEX[g˚][w] ě sup
pPΠX[g]

xg˚ ´ p, wy.

“ď” Again, by Lemma 4.19,

1
2
}g + εw´ PX[g + εw]}22 ´

1
2
}g´ PX[g]}22

ď εxg´ PX[g], wy+ ε2

2
}w}22,

which implies

pdEX[g˚][w] ď lim sup
gÑg˚

xg´ PX[g], wy for all w P H (4.23)

(as the term ε2

2 }w}22 can be separated by subadditivity of lim sup) and
vanishes.

Thus, it remains to show that

lim sup
gÑg˚

xg´ PX[g], wy ď sup
pPΠX[g]

xg´ p, wy for all w P H.

Let (gn)nPN be the sequence that attains the supremum on the left-
hand side. Since X is weakly closed and since (PX[gn])nPN is bounded
(similarly to the argument before Equation (3.11)), the sequence (PX[gn])nPN

has a weakly convergent subsequence, again denoted by (PX[gn])nPN,
such that

PX[gn]á q P X as n Ñ8.

For this subsequence,

lim sup
gÑg˚

xg´PX[g], wy = lim
nÑ8xgn´PX[gn], wy = xg˚´ q, wy for all w P H.

Further, using the same subsequence,

}g˚ ´ PX[g˚]}2
(˚1)ď }g˚ ´ q}2

(˚2)ď lim inf
nÑ8 }gn ´ PX[gn]}2

(˚3)ď lim inf
nÑ8 }gn ´ PX[g˚]}2 = }g˚ ´ PX[g˚]}2,

where (˚1) and (˚3) hold by projection property (3.6), and (˚2) holds
since EX is weakly sequentially l.s.c. (Proposition 4.4). Thus, all in-
equalities are, in fact, equalities, implying that q P ΠX[g˚], meaning
that

lim sup
gÑg˚

xg´ PX[g], wy = xg˚´ q, wy ď sup
pPPX[g˚]

xg˚´ p, wy for all w P H.
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and for any selection PX P ΠX. Combining with (4.23), have the desired

pdEX[g˚][w] ď sup
pPPX[g˚]

xg˚ ´ p, wy for all w P H.
˝

To calculate the Clarke subdifferential of EX, we use the following
technical

Lemma 4.21. Let Y Ă H. Then,

sup
uPconvY

˚

xu, wy = sup
vPY

xv, wy for all w P H.

Proof. The direction ě is trivially true; let us show ď.
1) First, show that

sup
uPconvY

xu, wy ď sup
vPY

xv, wy for all w P H. (4.24)

Let (un)nPN be the sequence in convY that attains the supremum
on the left-hand side of (4.24). By definition of the convex hull, for
all n P N there exist (un,m)mPt1,...,Mu with un,m P Y[g], αn,m P [0, 1] for all
m P t1, . . . , Mu, and with

řM
m=1 αn,m = 1, such that un =

řM
m=1 αn,mun,m.

For all n P N, let ũn P arg max
 xun,m, wy | m P t1, . . . , Mu(. Then,

sup
uPconvY

xu, wy = lim
nÑ8xun, wy = lim

nÑ8x
Mÿ

m=1

αn,mun,m, wy

ď lim sup
nÑ8

Mÿ

m=1

αn,mxũn, wy ď sup
vPY
xv, wy,

demonstrating (4.24).
2) Second, show that

sup
uPconvY

˚

xu, wy ď sup
vPconvY

xv, wy for all w P H. (4.25)

Let w P H. Let (un)nPN with un P convY
˚

for all n P N be a sequence
that attains the supremum on the left-hand side of (4.25). Further,
since un P convY

˚
for all n P N, for any n P N there exists a sequence

(un,m)mPN such that un,m P convY with un,m á un as m Ñ8.
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Construct the sequence (zn)nPN by picking zn := un,m, where m is
the smallest integer such that xun,m̃´ un, wy ă 1

n for all integers m̃ ě m.
Then, zn P convY for all n P N, and

sup
uPconvY

˚

xu, wy = lim sup
nÑ8

xun, wy

ď lim sup
nÑ8

xzn, wy+ lim sup
nÑ8

xun ´ zn, wyloooooomoooooon
ă 1

n

= lim sup
nÑ8

xzn, wy ď sup
vPconvY

xv, wy

for all w P H, showing (4.25) and concluding the proof. ˝

Theorem 4.22. Let X Ă H be weakly closed. Then,

BEX[g] = B
(

1
2
}g´ΠX[g]}22

)
= conv g´ΠX[g]

˚
.

Proof. By definition, v P BEX[g] means

xv, wy ď d̂EX[g][w] for all w P H.

By Proposition 4.20 and Lemma 4.21,

pdEX[g][w] = sup
pPΠX[g]

xg´ p, wy = sup
vPconv g´ΠX[g]

˚

xv, wy,

meaning that v P conv g´ΠX[g]
˚

implies v P BEX[g]. To conclude the
proof, let us show that v R conv g´ΠX[g]

˚
implies v R BEX[g].

Let Y := conv g´ΠX[g]
˚
, assume that v R Y. Since Y is a weakly

closed convex set, the projection ΠY is well-defined and has the unique
projecton selection PY : HÑ H (e.g. Proposition 3.9). Further, since Y

is convex, by Lemma 3.10

xv´ PY[v], PY[u]´ PY[v]y ď 0 for all u P H. (4.26)

We want to show that xv, wy ą supuPconv˚Yxu, wy for an appropri-
ately chosen w P H. Pick w = v´ PY[v]; then, }w}2 ą 0 since v R Y.
Further, for all u P Y have

xv´ u, wy = xv´ PY[v], wy+ xPY[v]´ u, wy
= }w}22 + xPY[v]´ u, v´ PY[v]yloooooooooooomoooooooooooon

(˚)ě 0

ě }w}22,

where (˚) holds by (4.26) since u = PY[u]. Therefore,

xv, wy ě xu, wy+ }w}22 for all u P Y, thus

xv, wy ě sup
uPY
xu, wy+ }w}22 ą sup

uPY
xu, wy. ˝
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4.3.3 Generalized subdifferential of energy functionals

Proposition 4.23 (Dini-ε-subdifferential). Let X Ă H be weakly closed.
Then, for any g P H there exists an ε˚ ą 0 such that

Bέ EX[g] =

$
&
%
tv P H | }g´ PX[g]´ v}2 ď εu if ΠX is single-valued at g, and

∅ else

for all ε P [0, ε˚). Specifically, the single-valued case holds for any ε˚ P Rą0,
and the multi-valued case holds for any

ε˚ ă sup
p,qPΠX[g]

}p´ q}2/2. (4.27)

Proof. Let g P H. First, consider the case when ΠX is single-valued at
g, i.e. ΠX[g] = tPX[g]u for any single-valued selection PX.

“Ě”. Assume that

v P tṽ P H | }g´ PX[g]´ ṽ}2 ď εu.

Then,

lim inf
tŒ0

EX[g + tw]´ EX[g]
t

´ xv, wy
(˚1)ě lim inf

tŒ0
xg´ PX[g + tw], wy ´ xv, wy

(˚2)
= xg´ PX[g]´ v, wy (˚3)ě ´ε}w}2,

where we used Lemma 4.19 in (˚1), continuity of PX due to single-
valuedness of ΠX at g (Proposition 3.11) in (˚2), and definition of v
in (˚3). Thus, v P Bέ EX[g].

“Ď”. Let v P Bέ EX[g]. Assume that for y := g ´ PX[g] ´ v holds
}y}2 = α ą ε; let us show that this leads to a contradiction. Indeed, by
Lemma 4.19 have

lim inf
tŒ0

EX[g + tw]´ EX[g]
ε

´ xv, wy
ď xg´ PX[g], wy ´ xv, wy = xy, wy (4.28)

for all w P H. For w = ´y have

lim inf
εŒ0

EX[g + εw]´ EX[g]
ε

´ xv, wy
ď ´}y}22 = ´α}w}2 ă ´ε}w}2 (4.29)

in contradiction to v P Bέ EX[g], concluding the proof for the single-
valued case.
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Second, consider the case when ΠX is multi-valued at g, i.e. there
exist p, q P ΠX[g] such that p ‰ q. Let ε ă }p ´ q}/2. Assume that
v P Bέ EX[g]. Proceed analogously to case “Ď” above to show that
}g ´ p ´ v}2 ď ε and }g ´ q ´ v}2 ď ε. For example, if one assumes
that }g´ p´ v}2 ą ε, then for wp = ´(g´ p´ v) get — analogously
to Equation (4.28) and Equation (4.29) —

lim inf
tŒ0

EX[g + twp]´ EX[g]
ε

´ xv, wpy ă ´ε}wp}2

in contradiction to v P Bέ EX[g], showing }g´ p´ v}2 ď ε, and similarly
for q.

Thus,

}p´ q}2 = }g´ q´ v´ (g´ p´ v)}2
ď }g´ q´ v}2 + }g´ p´ v}2 ď 2ε ă }p´ q}2

by choice of ε, which is a contradiciton. Thus, there do not exist
v P Bέ EX[g], from which it is straight-forward to follow (4.27). ˝

Theorem 4.24 (Generalized subdifferential). Let X Ă H be weakly
closed. Then, BKMEX[g] = g´ΠX[g].

Proof. “Ě”. Let p P ΠX[g], let gn =
(
1´ 1

n g
)
+ 1

n p for n P N. By
Lemma 3.8 (interpolation projection property),PX[gn] = tpu, and gn´ p P B´1/nEX[gn]

by Proposition 4.23. Thus, gn Ñ g as n Ñ 8, and (gn ´ p) is a
sequence in B´1/nEX[gn] that converges to g ´ p as n Ñ 8. Thus,
g´ p P BKMEX[g].

“Ď”. Let (gn) be a sequence converging to g P H, (vn) P B´1/nEX[gn]

with vn á v P H and εn Ñ 0 as n Ñ 8. (W.l.o.g. we can assume
that the sequence (εn) is non-increasing with ε0 ď ε˚, where ε˚ is
determined in By Proposition 4.23 and depends on g.) By Proposi-
tion 4.23, vn P B´1/nEX[gn] implies that ΠX is single-valued at gn, and
that }vn ´ (gn ´ PX[gn])}2 ď εn for any single-valued selection PX. De-
fine q := g´ v, trivially meaning that v = g´ q. Then, using w.l.s.c. of
the norm, have

}g´ q}2 = }v}2 ď lim
nÑ8 }vn}2 ď lim

nÑ8(}gn ´ PX[gn]}2 + εn)

ď lim
nÑ8 }gn ´ PX[g]}2 = }g´ PX[g]}2

for any single-valued selection PX, meaning that q P ΠX[g], and that
v = g´ q P g´ΠX[g]. ˝

4.3.4 Slopes

Another possible way to generalize Fréchet-differentiability of EM is
to do with the notion of slopes. Slopes are commonly used in the
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theory of minimizing movements to describe generalized gradient
flows [AG13; AGS01].

Definition 4.25 (Slope). Let E : H Ñ RY t8u, let g P H be such that
E[g] ă 8.

The slope |∇E| : HÑ R is defined by

|∇E|[g] := max

#
lim sup

hÑ0
´E[g + h]´ E[g]

}h}2 , 0

+
.

Slopes are an important tool that can be used to generalize gra-
dient flows. Informally speaking, in the classical setting the flow
g : [0, T] Ñ H is a gradient flow, if it satisfies Btg(t) = ´∇E[g(t)]
for some energy E. In the generalized setting, the flow g : [0, T]Ñ H is
considered a gradient flow if }Btg(t)}2 is suitably related to´|∇E|[g(t)];
see [AG13] for details. For example, if the Fréchet-derivative ∇EX is
ill-defined, and if EX is non-convex (such that subgradients are ill-
defined as well), the slope may still exist. This is illustrated by the
following example.

Example 4.26 (Slope of the modulus energy at a single point). Let
?

Ik ą 0.
Consider the function E[x] = 1

2 (|x| ´
?

Ik)
2. This is a pointwise ana-

logue of the modulus constraint in the Fourier space. The function
E[x] is non-differentiable at the point x = 0, see Figure 4.1. The slope
of E can be calculated as follows.

Observe that for x ď 0 the energy E coincides with the differentiable
function Eď[x] = 1

2 (x +
?

Ik)
2, and for x ě 0 the energy E coincides

with the differentiable function Eě[x] = 1
2 (x´?

Ik)
2.

Thus,

lim sup
xÑ0

´E[x]´ E[0]
}x}2

is equal to largest of

lim sup
xÕ0

´E[x]´ E[0]
}x}2 and lim sup

xŒ0
´E[x]´ E[0]

}x}2 ;

for these subdomains, the energy E coincides, respectively, with dif-
ferentiable functions

lim sup
xÕ0

´Eď[x]´ Eď[0]
}x}2 and lim sup

xŒ0
´Eě[x]´ Eě[0]

}x}2
which, by differential calculus, are both equal to

?
Ik.

Therefore, |∇E|[0] = ?
Ik; cf. the affine function A(x) = ´?Ikx+ 1

2
?

I2
k

on Figure 4.1.
The energy E is locally concave at 0; therefore, one could also con-

sider the local supgradient of E at 0. However, the supgradient ap-
proach would not work for the infinitely-dimensional modulus en-
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´?Ik
?

Ik

A(x)

E[x]

x P R

Figure 4.1: Illustration to Example 4.26 (Slope of the modulus energy).
The function E[x] = 1

2 (|x| ´
?

Ik)
2 is non-differentiable at the point

x = 0. Its slope at 0 equals
?

Ik (cf. the tangent A(x) = ´?Ikx + 1
2
?

I2
k).

ergy EM in Fourier space: the energy EM is not locally concave, as the
values

?
I(k) can get arbitrarily small.

Proposition 4.27 (Slopes of energy functionals). Let D Ă H, let
PX : D Ñ H be a single-valued projection selection onto X Ă H, let EX

be the corresponding energy functional. Then, |∇EX|[g] = }g´ PX[g]}2 for
any g P D.

Proof. Distinguish between the cases g P X and g R X.
If g P X, then EX[g] = 0, and

´EX[g + h]´ EX[g]
}h}2 = ´EX[g + h]

}h}2 ă 0

for any h with g + h P D, hence |∇EX|[g] = 0 = }g´ PP[g]}2.
If g P DzX, then }g´ PP[g]}2 ą 0, and

lim sup
hÑ0

´ 1
}h}2 (EX[g + h]´ EX[g])

= lim
εÑ0

sup
g+hPD

}h}2=ε}g´PX[g]}2

1
}h}2 (EX[g]´ EX[g + h])

(a)
= lim

εÑ0

1
ε}g´ PX[g]}2

(
EX[g]´ EX

[
g´ ε(g´ PX[g])

]
)

= lim
εÑ0

1
2ε}g´ PX[g]}2 (}g´ PX[g]}22

´
›››(1´ ε)g + εPX[g]´ PX

[
(1´ εg) + εPX[g]

]›››
)

(b)
= lim

εÑ0

1
2ε}g´ PX[g]}2 (}g´ PX[g]}22 ´ (1´ ε)2}g´ PX[g]}22)

= }g´ PX[g]}2.

Lemma 4.11 (explicit local minimizer) was used in (a) and Lemma 3.8
(interpolation projection property) was used in (b). ˝



5
C O N N E C T I O N S B E T W E E N P R O J E C T I O N
A L G O R I T H M S

This chapter aims to systematically present some projection-based al-
gorithms used for crystallographic phase retrieval, and to connect the
Error-Reduction (ER) and Douglas-Rachford (DR) algorithms to the
equation we call Error-Reduction Flow. To this end, we proceed as fol-
lows. We start with a brief discussion on local and global formulations
between algorithms, and with naming conventions used throughout
the thesis. Namely,

i) Section 5.1 states some of Fienup variants and highlights some
connections between different formulations;

ii) Section 5.2 formalizes the setting of the AP (alternating pro-
jections) algorithm and its specific phase retrieval instance ER,
and shows that ER is a discretization of a formal gradient flow
with energy EM + EA, or a rigorous selection of the generalized
subdifferential flow with the same energy;

iii) Section 5.3 formalizes the setting of the DR-LM algorithm, presents
the well-known connection between DR-LM and DR-cf in con-
vex optimization, and demonstrates that this connection persists
between DR-LM and DR-HIO.

Two main original contributions of this chapter are i) Remark 5.17

that motivates introduction of equation ERF by establishing its connec-
tion to ER through time discretization, and ii) the argument outlined
in Section 5.3.5 and formalized in Proposition 5.52 that establishes
connection between DR-LM and DR-HIO.

This connection is conceptually different from the connection be-
tween DR and HIO that was established in [BCL02]. The argument
from [BCL02] is sketched on p. 85 in the transformations between
HIO, HPR, and DR.

Local and global forms of Fienup variants; naming conventions

This chapter describes certain projection-based algorithms used for
crystallographic phase retrieval. These algorithms are sometimes known
as Fienup variants, since many of them are variants of algorithms that
were systematically studied in Fienup’s celebrated paper [Fie82].

Fienup variants generate a sequence of approximations (gn)nPN; the
iterate gn+1 is explicitely dependent only on the previous approxima-
tion gn.

77
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There are two common ways of writing down Fienup variants. The
first, local way typically has the form

gn+1(x) =

$
&
%

expression that depends on x and gn(x) for certain x;

expression that depends on x and gn(x) for other x.

This form is favoured in the optics community and is considered
more physically intuitive [Luk05, pp. 40-41]. The second, global way
to formulate Fienup variants typically has the form

gn+1 = T[gn],

where the update operator T combines various projection operators in
a manner that capitalizes on the geometric structure of the underlying
sets.

For the most part, update operators are heuristically developed. For
example, they can be inspired by local analysis of the linearized prob-
lem near the solution [Els03] or have connections to other feasibility
problems — for example, to convex feasibility problems [BCL02]. The
behavior of projection algorithms in convex setting is better under-
stood (e. g., see monography [BC17]), but convex results generally do
not carry over to phase retrieval.

One of the main ideas of this work is to provide new insights to
Fienup variants by studying the corresponding evolution equations.
The study is focused on ER — the most basic algorithm used in phase
retrieval — and DR-HIO version of the HIO algorithm — one of
the state-of-the art algorithms for crystallographic phase retrieval (cf.
[ELB18]).

There are many names for Error-Reduction and Douglas-Rachford
variants that depend on the exact setting and formulation of these
algorithms.

For reader’s convenience, the following remarks summarize the
most important names of algorithms that we use throughout this the-
sis.

Remark 5.1 (Naming conventions). We use the name AP (Alternating
Projections), see Definition 5.11, to describe the generic feasibility prob-
lem algorithm with the update gn+1 = PY ˝ PX[gn] for two proximal
sets X,Y Ă H.

We use the name ER (Error-Reduction), see Definition 5.12, to de-
scribe AP for the phase retrieval case with Y = A and X = M.

We use the name DR-LM (Douglas-Rachford in Lions-Mercier for-
mulation), see Definition 5.41, to describe the algorithm for finding
zeros of maximal monotone operators A and B with the update

gn+1 = gn + JλA ˝ (2JλB ´ Id)[gn]´ JλB[gn],



connections between projection algorithms 79

where λ ą 0, JλA = (I + λA)´1 is the resolvent of λA, and JλB is a the
resolvent of λB.

We use the name DR (Douglas-Rachford), see Definition 5.53, to to
describe the generic feasibility problem algorithm with the update

gn+1 = gn + PY ˝ (2PX[gn]´ gn)´ PX[gn].

for two proximal sets X,Y Ă H. We use the name DR-cf (Douglas-
Rachford in convex formulation), see Definition 5.47, for the partic-
ular case of DR when X and Y are convex. We use the name DR-
HIO (Douglas-Rachford variant of Hybrid-Input-Output), see Defini-
tion 5.49, for the particular case of DR for phase retrieval, when X and
Y belong to tA,Mu.

We use the name HIO (Hybrid-Input-Output), described on p. 84,
for the phase retrieval algorithm that was introduced in [Fie82] by the
same name. HIO is related to DR through the HPR (Hybrid-Projection-
Reflection) algorithm as described on p. 85; this connection was first
established in [BCL02].

Remark 5.2 (Naming conventions for variants introduced in this thesis). We
use the name APF (AP Flow), introduced in Section 6.1, to describe
the formal evolution equation

Btg = ´(g´ PX[g])´ (g´ PY[g]),

and the name dAPF (discretized APF), see Definition 6.1, to describe
the connected algorithm with the update

g(ε)n+1 = g(ε)n + ε
(
´(g(ε)n ´ PX[g

(ε)
n ])´ (g(ε)n ´ PY[g

(ε)
n ])

)
,

for two weakly closed sets X,Y Ă H.
We use the name ERF (ER Flow), introduced in Remark 5.17, to

describe APF for the phase retrieval case Y = A and X = M. We
use the name dERF (discretized ERF), see Definition 6.19, to describe
dAPF for the phase retrieval case Y = A, X = M.

We use the name 2v-FPF (two-variable Feasibility Problem Flow),
see Chapter 9, to describe a system of equations

Bt

(
s

d

)
= M ¨

(
δ
δs
δ

δd

)(
1
2

EX[s + d] +
1
2

EY[s´ d]´ 1
2
}d}22

)
,

where M P R2ˆ2, and the name d2v-FPF (discretized 2v-FPF), see
Definition 9.8, to describe the corresponding explicitely discretized
algorithms.

For the particular case of 2v-FPF and d2v-FPF with M =

(
´1 0

0 1

)
,

we use the names DRF (DR Flow) and dDRF (discretized DRF) to
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highlight their connection to DR. We use the name DR/HIO-F for the
particular phase retrieval case of DRF when X and Y belong to tA,Mu.

All the algorithms named above will be rigorously introduced in
due course of the thesis.

5.1 fienup variants

This section presents some Fienup variants used in literature. First,
we write down the definition and establish some properties of a local
indicator projecton; these are used in transformations between local
and global forms of Fienup variants. Then, algorithms ER, BIO and
HIO are presented in their local forms (as in [Fie82]) and subsequently
reformulated to their global form (as in [BCL02]). Finally, for reader’s
convenience we write down Hybrid-Projection-Reflection, Douglas-
Rachford, Relaxed Averaged Alternating Reflections, and Alternating
Direction Method of Multipliers algoritms.

5.1.1 Properties of local projections

This subsection presents properties of local and indicator projections
(Corollary 5.5, Lemma 5.7) that are used later in the work.

In particular, the following definition and corollary are used to
establish equivalence of local and global algorithm formulations.

Definition 5.3 (Indicator projection). We call a projection selection
PX : HÑ H an indicator projection selection, if for every g P H there exists
a measurable indicator set S[g] Ă Ω such that

PX[g] = 1S[g]g.

Example 5.4 (Indicator projection). The operators PP, PS and PTs(ν) are
indicator projection selections, while PTa(α) and PM are not.

If PX is an indicator projection selection, the operator g ÞÑ g´ PX[g]
is also an indicator projection selection:

g´ PX[g] = g´ 1S[g]g = 1ΩzS[g]g.

Corollary 5.5. Let projection PX be an indicator projection with the indi-
cator set S[g] at g P H. Further, let PX be local with a local version PΘ for
an appropriate set Θ. Then,

tx P Ω | (x, g(x)) P Θuloooooooooooooomoooooooooooooon
=:S1

= tx P Ω | x P S[g]uloooooooooomoooooooooon
=:S2

,

where the equality holds for all g P H and up to a Lebesgue null-set, i. e.
λ(S1zS2) + λ(S2zS1) = 0.
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Proof. For almost all x P Ω and for all g P H the equality

PΘ

((
x, g(x)

)) (˚)
=
(

x, PX[g](x)
) (˚˚)

=
(
x,1S[g](x)g(x)

)
(5.1)

follows direct from definitions of local (˚) and indicator (˚˚) projec-
tions.
“Ď”. Let x P Ω be such that

(
x, g(x)

) P Θ. Then, by definition of
projection, PΘ

(
x, g(x)

)
=
(
x, g(x)

)
. From Equation (5.1) then follows

that x P S[g] for a. a. x P Ω that satisfy
(
x, g(x)

) P Θ.
“Ě”. Let x P Ω be such that

(
x, g(x)

) R Θ. Then, by definition of pro-
jection, PΘ

(
x, g(x)

) ‰ (x, g(x)
)
. From Equation (5.1) then follows that

g(x) = 0 and that x R S[g] for a. a. x P Ω that satisfy
(
x, g(x)

) R Θ. ˝

Example 5.6 (Positivity). The positivity projector PP[g] = 1gě0g is an
indicator projector with an indicator set S[g] = tg ě 0u = tx P Ω | g(x) ě 0u
at g. Further, it is a local projector with local version P(loc)

P = PΘ with
Θ = ΩˆRě0 by Example 3.30. Corollary 5.5 states that

(
x, g(x)

) P ΩˆRě0 ô x P tg ě 0u

for a. a. x P Ω and for all g P H.

The following property of local indicator projections is relevant for
characterization of ER fixed points in Section 8.1.

Lemma 5.7. Let projecton selection PX be an indicator projection selection
with the indicator set S[g] at g P H(Ω). Further, let PX be local with a local
version PΘ for an appropriate set Θ. Assume that PX[2g] = 2PX[g] for all
g P H.

Then,
PX

[
2g´ PX[g]

]
= PX[g]

for all g P H.

Proof. Let g P H. For almost all x P S[g] have

2g(x)´ PX[g](x) = g(x) + 1ΩzS[g](x)g(x) = g(x);

therefore,

(
x, PX

[
2g´ PX[g]

]
(x)
)
= PΘ

((
x, 2g(x)´ PX[g](x)

))

= PΘ

((
x, g(x)

))
=
(
x, PX[g](x)

)

for a. a. x P S[g].
Further, for almost all x P ΩzS[g] have

2g(x)´ PX[g](x) = 2g(x)´ 1S[g](x)g(x) = 2g(x);
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therefore,

(
x, PX

[
2g´ PX[g]

]
(x)
)

= PΘ

((
x, 2g(x)´ PX[g](x)

))
= PΘ

((
x, 2g(x)

))

=
(
x, PX[2g](x)

)
=
(
x, 2PX[g](x)

)

=
(

x, 21xPS[g]g(x)
)
=
(
x, 0
)

=
(
x,1xPS[g]g(x)

)
=
(
x, PX[g](x)

)

for a. a. x P ΩzS[g]. ˝

Example 5.8. It is straightforward to check that for PX P tPP, PS, PSXP
= PS ˝ PPu the requirements of Lemma 5.7 are satisfied. Therefore,
PX

[
2g´ PX[g]

]
= PX[g] for these X.

The projecton selection PTs(ν) is not local and therefore does not sat-
isfy the requirements of Lemma 5.7. It is easy to construct an example
for which PTs(ν)

[
2g´PTs(ν)[g]

]
= PTs(ν)[g]. Indeed, let Ω = T = [0, 2π),

let g(x) = 1 if x P [0, π), let g(x) = 2/3 if x P [π, 2π). Then, for ν = π

have PTs(ν)[g](x) = 1[0,π)(x)g(x), and
PTs(ν)

[
2g´ PTs(ν)[g]

]
(x) = 4/31[π,2π).

5.1.2 ER, BIO, HIO: local and global

This subsection contains standard algorithm reformulations that are
well-known in phase retrieval. Here, these reformulations are written
down using the properties of local projections. The presented transfor-
mations resemble very closely the standard ones known in literature
(see [BCL02]), but are presented in a more general form using the
properies from above.

Let us formally fix the notion of an approximation sequence gener-
ated by an algorithm.

Definition 5.9 (Approximation sequence). Let g0 P H, T : H Ñ H.
The sequence (gn)nPN0 is generated by T with initial value g0, if the update

gn+1 = T[gn] (5.2)

holds for all n P N0. The sequence (gn)nPN0 is called the approximation
sequence; the operator T is called the update operator. As is common in
literature, we use the update equation (5.2) to define the operator T implying
the setting of this definition.
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Error-Reduction algorithm

Local formulation. Let PA be local with the local version PΘ for an ap-
propriate Θ Ă ΩˆR. Then, the local ER update operator is defined
by the update

gn+1(x) =

$
&
%

PM[gn](x) if
(
x, PM[gn](x)

) P Θ;

0 else
(ER-local)

for almost all x P Ω.
Transformation to global formulation. Further, assume that PA is an in-
dicator projecton selection with the indicator set S

[
PM[g]

]
at PM[g].

Then,

gn+1(x) = 1txPΩ|(x,PM[gn](x))PΘu(x)PM[gn](x)

(˚)
= 1S[PM[g]]PM[gn](x) = PA ˝ PM[gn](x),

with Corollary 5.5 used in (˚).
For example, this transformation is valid for positivity and support

projections, but it is not valid for amplitude thresholding since any
projection selection PTa(α) is not indicator for α ą 0, and it is not valid
for support size projecton since any projection selection PTs(ν) is not
local and can not be written down in the form ER-local.

The resulting form of ER,

gn+1 = PA ˝ PM[gn], (ER)

is discussed in Section 5.2 in more detail.

Basic-Input-Output algorithm

Local formulation. Let PA be local with the local version PΘ for an ap-
propriate Θ Ă ΩˆR; let β ą 0. The Basic-Input-Output (BIO) update
operator is defined by the update

gn+1(x) =

$
&
%

gn(x) if
(
x, PM[gn](x)

) P Θ;

gn(x)´ βPM[gn](x) else.
(BIO-local)

Transformation to global formulation. Further, assume that PA is the sup-
port projector: PA = PS(S) for measurable subset S Ă Ω, with Θ as in
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Corollary 3.32. (In other words, PA is an indicator projecton selection
with the constant indicator set S[g] = S.) Then,

gn+1(x) = 1t(x,PM[gn](x))PΘu(x)gn(x)

+
(
1´ 1t(x,PM[gn](x))PΘu(x))(gn(x)´ βPM[gn](x))

(˚)
= 1S(x)gn(x)

+
(
1´ 1S(x))(gn(x)´ βPM[gn](x))

= gn ´ βPM[gn] + βPA ˝ PM[gn].

with Corollary 5.5 used in (˚).
The resulting form of BIO,

gn+1 = gn ´ βPM[gn] + βPA ˝ PM[gn], (BIO)

corresponds to a nonconvex version of the Dykstra algorithm, see
Definition 6.35. This correspondence was first established in [BCL02].
In convex analysis, Dykstra’s algorithm can be used to calculate pro-
jectors onto nonempty intersections of closed convex sets, see Theo-
rem 6.36. In phase retrieval setting, it shows similar stagnation issues
as ER [Fie82], thus it is, to our knowledge, not frequently studied in
that context.

Hybrid-Input-Output algorithm

Local formulation. Let PA be local with the local version PΘ for an ap-
propriate Θ Ă ΩˆR; let β P [´1, 1]. The Hybrid-Input-Output (HIO)
update operator is defined by the update

gn+1(x) =

$
&
%

PM[gn](x) if
(
x, PM[gn](x)

) P Θ;

gn(x)´ βPM[gn](x) else.
(HIO-local)

There is a minor variation of HIO-local that treats the case (x, 0) dif-
ferently, cf. [BCL02, Remark 4.1].
Transformation to global formulation. Further, assume that PA is the sup-
port projector: PA = PS(S) for measurable subset S Ă Ω, with Θ as in
Corollary 3.32. Similarly to the BIO-local case,

gn+1(x) = 1t(x,PM[gn](x))PΘu(x)PM[gn](x)

+
(
1´ 1t(x,PM[gn](x))PΘu(x))(gn(x)´ βPM[gn](x))

= 1S(x)PM[gn](x)

+
(
1´ 1S(x))(gn(x)´ βPM[gn](x))

= gn ´ PA[gn]´ βPM[gn] + (1 + β)PA ˝ PM[gn]. (HIO)
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5.1.3 Other Fienup variants (HPR, RAAR, DM, ADMM)

This subsection presents some further Fienup variants — only in their
global form — that are related to HIO; it does not contain any original
results.

The relationships presented below are well-known in phase retrieval
(see each particular algorithm below for bibliographic references).
Transformation to Hybrid-Projection-Reflection form. Using the linearity
of PA = PS, HIO can be rewritten in the following manner:

PA

(
(1 + β)PM[gn]´ gn

)
+ gn ´ βPM[gn]

=
1
2

(
2PA

(
(1 + β)PM[gn]´ gn

)
+ 2gn ´ 2βPM[gn]

)

=
1
2

(
2PA

(
(1 + β)PM[gn]´ gn

)´ (1 + β)PM[gn] + gn

+ (1 + β)PM[gn]´ gn + 2gn ´ 2βPM[gn]
)

=
1
2

(
RA

(
(1 + β)PM[gn]´ gn

)
+ (1 + β)PM[gn]´ gn + 2gn ´ 2βPM[gn]

)

=
1
2

(
RA

(
(1 + β)PM[gn]´ gn

)
+ gn + (1´ β)PM[gn]

)

=
1
2

(
RA

(
2PM[gn]´ gn ´ (1´ β)PM[gn]

)
+ gn + (1´ β)PM[gn]

)

=
1
2

(
RA

(
RM[gn]´ (1´ β)PM[gn]

)
+ gn + (1´ β)PM[gn]

)
.

(HPR)

The transformation is valid only if the operator PA is linear. For non-
linear operators PA this last form is known as HPR (Hybrid-Projection-
Reflection) algorithm, first discussed — along with the above transfor-
mation — in [BCL03] (see therein for the corresponding local formu-
lation of HPR).
Transformation to Douglas-Rachford form. Setting β = 1 in HPR, obtain
the Relaxed-Reflect-Reflect update

gn+1(x) =
1
2
(gn + RA ˝ RM[gn]). (DR)

This update is known the Douglas-Rachford algorithm in convex op-
timization. It is also known as Averaged-Alternating-Reflection in
[Luk05].

The word “relaxed” in the name “Relaxed-Reflect-Reflect” indicates
the averaging between gn and RA ˝RM[gn]; the update gn+1 = RA ˝RM[gn]

could be called “non-relaxed”, and the update

gn+1 = γgn + (1´ γ)RA ˝ RM[gn]

could be called “relaxed with parameter γ P (0, 1)”.
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This relaxation can be rewritten as follows:

gn+1 = γgn + (1´ γ)RA ˝ RM[gn]

= γgn + 2(1´ γ)PA ˝ RM[gn]´ (1´ γ)RM[gn])

= γgn + 2(1´ γ)PA ˝ RM[gn]´ 2(1´ γ)PM[gn] + (1´ γ)gn

= gn + β(PA ˝ RM[gn]´ PM[gn]), (β-DR)

where β = 2(1 ´ γ). In particular, [ELB18] uses this variant with
β = 0.5 — albeit with reversed roles of RM and RA — as a baseline
benchmark algorithm for phase retrieval. The parameter β looks like a
time step, but is usually not interpreted as such; see [ELB18, pp. 2440-
2441] for a more detailed discussion on β.

Relaxed Averaged Alternating Reflections (RAAR)

The following modification of DR is proposed and discussed in [Luk05]:

gn+1(x) =
β

2
(gn + RA ˝ RM[gn]) + (1´ β)PM[gn]. (RAAR)

In this algorithm, the relaxation parameter β P R interpolates between
the DR update and PM[gn]; for β = 1 this algorithm coincides with DR.
Convergence of this algorithm, also known as DRλ, has been recently
established for different settings in [LP16] and [LM20].

Difference Map algorithm

A broad class of relaxation strategies can be unified by the DM algo-
rithm, introduced and analyzed in [Els03].

Let βDM P R be distinct from zero, let γA, γM P R. Define

T[gn] = gn + βDM(PA ˝ FM[gn]´ PM ˝ FA[gn]), where

FM[gn] = (1 + γM)PM[gn]´ γMgn;

FA[gn] = (1 + γA)PA[gn]´ γAgn.

(DM)

If PA and PM were to intersect transversally, the choice γM = ´1/βDM,
γA = 1/βDM would be locally optimal (contracting to the solution) in
an appropriate sense (see [Els03]).

If PA is linear, then, for βDM = β, γA = ´1, γM = 1/β the DM update
is reduced to the global form of (HIO):

T[gn] = gn + β

(
PA

[(
1 +

1
β

)
PM[gn]´ 1

β
gn

]
´ PM[gn]

)

= gn ´ PA[gn] + (β + 1)PA ˝ PM[gn]´ PM[gn].
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Alternating Direction Method of Multipliers

Yet another method used in phase retrieval is the Alternating Direction
Method of Multipliers (ADMM) [LS19; Wen+12; Els17].

It considers phase problem as the constrained minimization prob-
lem:

find p and q in H such that p = q, with p P A and q PM,

and uses the method of Lagrangian multipliers. One way to define
the corresponding augmented Lagrangian is

L(p, q, λ) = xλ, p´ qy+ 1
2
}p´ q}22,

where λ P H is the Lagrangian multiplier associated with the con-
straint }p´ q}22. The constraints p P A and q PM are not present in the
Lagrangian as they are enforced directly by taking projections (some-
what similar to projected gradient descent methods, cf. Remark 5.16

below). The algorithm is formulated as follows.
Pick λ0 = 0 and q0 P M, β ą 0. Generate the sequences (p)nPNą0 ,

(q)nPNě0 , (λ)nPNě0 by splitting the minimization problem into three
consecutive steps:

pn+1 = arg min
pPA

L(p, qn, λn);

qn+1 = arg min
qPM

L(pn+1, q, λn);

λn+1 = λn + β(pn+1 ´ qn+1).

The minimizers of the first two steps can be calculated explicitely. For
the first step the expression

arg min
pPA

L(p, qn, λn) = arg min
pPA

}p´ (qn ´ λn)}22 ´
1
2
}λ}22

is minimized for p = PA[qn ´ λn] by definition of a projector. With a
similar equation for the second step, the overall algorithm states

pn+1 = PA[qn ´ λn];

qn+1 = PM[pn+1 + λn];

λn+1 = λn + β(pn+1 ´ qn+1).
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Choose β = 1 and gn+1 = pn+2 + λn+1 to recover the (DR) update:

gn+1 = pn+2 + λn+1

= PA[qn+1 ´ λn+1] + λn+1

= PA[ qn+1loomoon
=PM[gn]

´ (λn + pn+1)loooooomoooooon
=gn

+qn+1] + λn + pn+1loooomoooon
=gn

´qn+1

= PA[2PM[gn]´ gn] + gn ´ PM[gn].

Note that linearity of PA is not needed for this transformation, and
the relationship persists if the roles of PA and PM are exchanged.

We refer the reader to the recent survey [LS19] for more information
on the connection between ADMM and DR. The setup of ADMM
exhibits certain similarities to the DR description in Chapter 9, and to
the DR variant used in [LP16] to analyze local convergence of DR, see
Remark 9.23.

Remark 5.10. Given the non-convex nature of phase retrieval, the over-
all numerical success of certain Fienup variants is remarkable. The
variety of proposed heuristic variants with no clear favorite indicates
that there may be an underlying reason for this success. Since there is
no obvious way to pinpoint the exact reason, this work focuses on the
two arguably simplest algorithms used in phase retrieval: on the ER
algorithm and on DR formulation of HIO.

5.2 error-reduction as a subdifferential flow

This section discusses the alternating projections (AP) algorithm,
its phase retrieval variant (ER), and some of their properties from
[Fie82]. The section continues with Remark 5.17, showing that ER
corresponds to a selection of the (Mordukhovich-Kruger) generalized
subdifferential flow (which is also a formal gradient flow) we call ERF.
While closely related to results developed in [BL03], this appears to be
a novel observation, and it is essential to the discussion in Chapter 7.

The following points are essential to the explored connection be-
tween AP and APF:

• For weakly closed X,Y, APF is a selection of the generalized
subdifferential flow of EX + EY.

• For proximal X,Y, APF is a formal gradient flow (Fréchet-derivative
is not necessarily well-defined).

• As will be established later, APF dissipates energy very simi-
larly to any rigorously defined gradient flow (Proposition 6.4,
Corollary 7.21).



5.2 error-reduction as a subdifferential flow 89

Definition 5.11 (Alternating Projections). Let X,Y Ă H be proxi-
mal with projecton selections PX, PY, let let g0 P X. The sequence (gn)nPN0

is generated by the AP algorithm with initial value g0, if

gn+1 = PX ˝ PY[gn] (AP)

for all n P N0. In this case, we call (gn)nPN0 an AP sequence with initial
value g0.

Definition 5.12 (Error-Reduction algorithm). Let g0 P A for the
proximal additional constraint A Ă H. The sequence (gn)nPN0 is generated
by the ER algorithm, if

gn+1 = PA ˝ PM[gn] (ER)

for all n P N0. In this case, we call (gn)nPN0 an ER sequence with initial
value g0.

Alternating projections algorithm dates back to 1870’s: in [Sch70],
it was used to solve the Dirichlet problem for the Laplace equation
on a composite domain by alternating between solutions on simpler
subdomains. AP is used in a variety of applications, such as com-
puter tomography, Navier-Stokes equations, pattern reckognition, im-
age restoration, and others [ER11]. A generalized variant of AP —
where projections are replaced by proximal mappings — is called
PPA (proximal point algorithm). In diffraction imaging, alternating
projections is also known as Gerchberg-Saxton algorithm [GS72] and
as Error-Reduction algorithm [Fie82].

When both sets X,Y are convex, AP is well-undrestood; this case
was essentially settled in a paper by Bauschke and Borwein [BB93]
(see, e. g., [BB96] for a survey on the matter).

The general non-convex case still poses open questions. A local con-
vergence result was proven by Combettes and Trussel in [CT90]: it
demonstrates that if sequences (PX[gn])n and (PY[gn])n are bounded
and if PX[gn]´ PY[gn]Ñ 0, the set of accumulation points of (gn) con-
verges to a singleton or a nontrivial compact continuum. An example
from [BN13] demonstrated that the case of a nontrivial compact con-
tinuum can occur. Further papers — such as [LLM09] and [Bau+13]
among others — investigated, under which additional assumptions
on the sets X and Y one can establish local convergence.

Error-Reduction algorithm was shown to converge locally to a so-
lution in finite-dimensional case in [NR16] and [Pau+18]; the proofs
exploited the Łojasiewicz inequality.

The success of alternating projection in applied diffraction imaging
indicates that the convergence radius of phase retrieval, is, in practice,
much better than one could expect for a such high-dimensional prob-
lem. In X-ray applications, the difficulty of phase retrieval seems to
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be more tightly linked to properties of the solution rather than the
discretization dimension of the problem [ELB18].

It is therefore natural to ask, to which extent inherent properties of
the set M and object space information sets — such as P, S,Ts(ν) —
affect the performance of Error-Reduction in high-dimensional spaces.

While there exist remarkable results on stability of generalized
phase retrieval, primary in context of frame theory — see, e. g., [GKR20]
for a recent survey — to the extent of our knowledge, there are no re-
sults concerning local convergence of Error-Reduction in an an infinite-
dimensional space; nor an explicit example, akin to the one in [BN13],
demonstrating the compact continuum case.

One of the goals of this work is to provide a new perspective for
analysis of Error-Reduction algorithm, see Chapter 7. The following
discussion of ER will be relevant in that regard.

Remark 5.13. By definition, if the sequence (gn)nPN is generated by ER,
then gn P A for all n P N. In particular, one can use the functional
gn ÞÑ EM[gn] to track the progress of the algorithm, since EM[gn] = 0
implies gn PM and thus belongs to AXM.

Note that for any ε ą 0 the condition EM[gn] ă ε does not necessar-
ily imply that the distance from g to AXM is small. (For this to be
true, one must assume that the intersection AXM is regular; see, for
examlpe, how regularity is used in Definition 9.6 and Proposition 9.7.)
Nonetheless, in applications EM is used as a termination criterion
for ER, and the quality of the obtained solution could be additionaly
judged by other means.

The following result of [Fie82] gives name to the Error-Reduction
algorithm.

Proposition 5.14 (Fienup [Fie82]: ER does not increase error). Let
(gn)nPN0 be an ER sequence with initial value g0. Then, for all n P N0,

EM[gn+1] ď EM[gn].

Proof.

EM[gn+1] =
1
2
}gn+1 ´ PM[gn+1]}22 (˚)ď

1
2
}gn+1 ´ PM[gn]}22

=
1
2
}PA

[
PM[gn]

]´ PM[gn]}22
(˚˚)ď 1

2
}PA[gn]´ PM[gn]}22

=
1
2
}gn ´ PM[gn]}22 = EM[gn].

In (˚), use Corollary 3.6 with g = gn+1, f = gn, PX = PM. In (˚˚), use
Corollary 3.6 with g = PM[gn], f = gn, PX = PA. In the second to last
equality, use gn = PA[gn], which holds by definition of gn. ˝

Remark 5.15. This proposition holds for a generic AP sequence (gn)nPN0

and energy functional EY by the same argument.
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Remark 5.16 (ER is a projected gradient descent [Fie82]). Let (gn)nPN0 be
an ER sequence with initial value g0. Let f0 = g0, let ( fm)mPN0/2 be a
sequence generated by the following rule:

fn+1/2 = fn ´ ε∇EM[ fn] = fn ´ ε( fn ´ PM[ fn]) = PM[ fn];

fn+1 = PA[ fn+1/2]

for step size ε = 1 for all n P N0. (The gradient ∇EM is taken in the
formal sense.) Then, fn = gn for all n P N0.

This means that ER is a projected gradient descent algorithm, where
explicit gradient descent of the energy EM with step size ε = 1 is
followed by explicit projection onto the constraint set A. Note that
the fact that g0 P A is not essential for the equivalence of ER and this
projected gradient scheme.

The following argument appears to be new; it establishes that ER
can be viewed as a gradient flow algorithm with respect to the com-
bined energy EM[g] + EA[g].

Remark 5.17 (ER is a formal gradient descent). Recall that formal deriva-
tives of EM and EA are given by g´ PM[g] and g´ PA[g] respectively.
Let (gn)nPN0 be an ER sequence with initial value g0 P A. Let f0 = g0,
let ( fm)mPN0/2 be a sequence generated by the following rule:

fm+1/2 = fm ´ ε∇(EM[ fm] + EA[ fm])

for step size ε = 1 and for all m P N0/2. Then, fn = gn for all n P N0.
Indeed, since f0 P A,

f1/2 = f0 ´∇E[ f0] = f0 ´ ( f0 ´ PM[ f0])´ ( f0 ´ PA[ f0])loooooomoooooon
=0

= PM[ f0],

and since f1/2 PM,

f1 = f1/2´∇E[ f1/2] = f1/2´ ( f1/2 ´ PM[ f1/2])loooooooomoooooooon
=0

´( f1/2´PA[ f1/2]) = PA[ f1/2].

Overall, f1 = PA

[
PM[ f0]

]
= g1, and the argument can be repeated

inductively to show fn = gn for all n P N0.
This means that ER can be viewed as two consecutive updates of

a (formal) gradient flow. This observation motivates a closer study of
the equation

Btgt = ´∇(EM[gt] + EA[gt])

= ´(gt ´ PM[gt])´ (gt ´ PA[gt]), (ERF)

where the first line is formal since ∇(EM + EA)[g] is not necessar-
ily well-defined for all g P H, but the second line presents a rig-



92 connections between projection algorithms

orously well-defined integro-differential equation we call ER Flow,
investigated in more detail in Chapter 7.

Remark 5.18 (ER is a rigorous subdifferential descent selection). Let H = L2(Ω)

for some bounded measurable Ω Ă Rd, so that M is weakly closed
(Section 3.3). Assume that the additional constraint A is weakly closed.
Then, by Theorem 4.18 holds BKMEA[g] = g´ΠA[g] and BKMEM[g] = g´ΠM[g].
Further, by [MS96, Thm. 4.1],

BKM(EM + EA)[g] Ď BKMEM[g] + BKMEA[g]

(where EM, EA are normally compact since they are Lipschitz, see
Lemma 4.5 and the introductory text in Section 4 of [MS96]).

Thus, analogously to Remark 5.17, but rigorously,

´(gt ´ΠM[gt])´ (gt ´ PA[gt]) Ď ´BKM(EM + EA)[gt],

meaning that ERF is a selection of the subdifferential of EM + EA.
Similarly, the same argument can be applied to any weakly closed

sets X,Y Ă H on any separable Hilbert space H.

Remark 5.19 (Composition of projecton selections is not a derivative). The con-
nection between ER and a gradient of a functional is not obvious from
the update gn+1 = PA ˝ PM[gn]. To our knowledge, there does not exist
a functional F[g] with the derivative of the form g´ PA ˝ PM[g]. For
example, formal derivative of the functional F[g] := 1

2}g´ PA ˝ PM[g]}22
contains artifacts arising from the Fourier transform that is present in
PM.

Remark 5.20 (Non-differentiability of EM). The functional EM is non-differentiable
at points f where f̂ (k) = 0 for at least one (Lebesgue-point) k P supp

?
I

(Remark 4.15). These are precisely the points where the multiplicity
of the operator PM needs to be resolved explicitely (Remark 3.26) by
choice of the multiplicity resolution phase ϕ.

While it is common to pick ϕ ” 0 for most applications, it is not clear
whether a more efficient choice is possible. In an idealized scenario,
such choice could have a dramatic effect on the reduction of phase
retrieval complexity.

Indeed, let g be a non-negative solution to a phase problem with
|ĝ| = ?

I, with phase of ĝ being equal to ϕg. If one were to set the mul-
tiplicity resolution phase in PM; ϕ to ϕ = ϕg and choose the starting
value 0, then PM; ϕg [0] = g would be a solution of the phase problem.
In the energy minimization framework, the gradient flow starting at
0 with multiplicity resolution phase ϕg would (trivially) converge to
g, cf. Example 7.23.

Thus, in an extreme case, choosing the “correct” multiplicity reso-
lution phase ϕ is exactly the same as solving phase retrieval.

Resolving phase at non-differentiable points is highly relevant for
applications. This is not obvious: at a first glance, it is very unlikely
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that f̂n(k) equals exactly 0 at any pixel k due to computational artifacts.
However, while f̂n(k) = 0 is very unlikely, the case when f̂n(k) is small
(meaning that

CF | f̂n(k)|2 ! } fn ´ fn´1}22
for two consecutive iterates, keeping in mind that the correlation be-
tween phases f̂n+1(k) and f̂n(k) is non-local) is abundantly present in
applications.

This case — stemming from discontinuity of PM — is a phase re-
trieval issue that has not received much attention in literature.

However, if a subtle choice of ϕ is found, it can yield notable benefits
for applications. Such choice can be used in applications through an
appropriate regularization of EM at non-differentiable points.
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5.3 connection between dr algorithm and er flow

This section discusses the relationship between the Douglas-Rachford
algorithm in the setting of maximal monotone operators (DR-LM)
and its phase retrieval variant (DR-HIO). Notably, we show that the
relationship

evolution equation ú Douglas-Rachford algorithm

that is well-known for the convex case, persists for phase retrieval,
albeit with some modifications, cf. Figure 5.1.

The Douglas-Rachford algorithm was originally introduced in [DR56]
in connection with non-linear heat flow problems. A modern form of
the algorithm, established in [LM79] in the setting of maximal mono-
tone operators, looks quite different from the original. The connection
between these two forms lies beyond the scope of this work; the reader
is refered to [Mou16, Chapter 5.6] for a detailed discussion on the mat-
ter.

The research of DR-LM for the non-convex case has attracted con-
siderable interest in the recent years, see [LS19, Sec. 3] for a survey
of applications and results. Nevertheress, the questions connected to
remarkable success of DR and its variants for the phase retrieval case
remain, to the extent of our knowledge, open. Notably, such questions
include: i) computationally observed global convergence (for “generic”
cases); and ii) connection between the difficulty of a specific phase
retrieval instance and expected number of iterations until an approxi-
mate solution is found, cf. [ELB18].

The section starts with a more detailed outline of various DR-LM
aspects. It proceeds by recalling some standard results from convex
analysis. Thereafter, DR-LM is discussed in three following contexts.

i) The formulation DR-LM in the setting of maximal monotone
operators from [LM79] is presented in Section 5.3.3.

ii) In the setting of convex feasibility problems, DR-LM can be
simplified to the form DR-cf, presented in Section 5.3.4.

iii) In the phase retrieval setting, DR-LM can be simplified to the
form DR-HIO, presented in Section 5.3.5.

Figure 5.1 compares the setting of different Douglas-Rachford vari-
ants. For more information on DR-LM and DR-cf, see [BC17], [LS19].
The established connection between DR-LM and DR-HIO appears to
be new. Along with the previously established Remark 5.17, it moti-
vates a closer study of ERF.
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5.3.1 From functional minimization to DR

Before formally writing down the mathematical arguments, let us
outline: i), ii), iii) which problems can be addressed by DR-LM; iii) a
sufficient condition for the convergence of DR-LM; iv), v) how one
can simplify DR-LM for feasibility problems.

i) Consider the task of minimizing the sum FA + FB of two Fréchet-
differentiable functionals FA, FB. It is connected to the study of
the corresponding gradient flow Bgt = ´∇(FA[g] + FB[g]). DR-
LM can be used to search for the extremal points g at which
0 = ∇(FA[g] + FB[g]).

ii) Consider the task of minimizing the sum FA + FB of two con-
vex (but not necessarily differentiable) functionals FA, FB. It is
connected to the study of the multivalued evolution equation
Btg P ´Bc(FA + FB), where Bc(FA + FB) is the convex subdiffer-
ential of FA + FB. DR-LM can be used to search for the extremal
points g at which 0 P ´Bc(FA[g] + FB[g]).

iii) Generally, DR-LM is not necessarily connected to a minimiza-
tion problem, but can be used to find extremal points of any
evolution equation Btg P ´(A[g] + B[g]), where A, B are maxi-
mal monotone operators.

This equation does not imply case i) — gradients of Fréchet-
differentiable functionals are not necessarily monotone — but
it implies case ii): if two convex functionals FA, FB are proper
lower semicontinuous and map H to (´8,8], then their subd-
ifferentials A = BcFA, B = BcFB are maximal monotone.

In this maximal monotone case, DR-LM is formulated in terms
of resolvents of A, B. Note that an operator being maximal mono-
tone is equivalent to its resolvent being firmly nonexpansive.
This is a crucial assumption for the weak convergence of DR-LM,
the proof of which relies on a fixed point argument ([LM79]).

iv) If the problem in question is a convex feasibility problem —
i. e. if one searches for the intersection of two weakly closed
convex sets X,Y Ă H — the corresponding energy functionals
FA = EX, FB = EY are convex, and the subgradient evolution
equation has the form

Btg P ´NX[g]´ NY[g],

where NX is the normal cone to X at g, and likewise for Y. Fur-
ther, for convex X, the resolvent of the normal cone NX is given
by PX, and likewise for Y. Therefore, one can explicitely calculate
the resolvents and simplify generic form DR-LM to obtain the
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Energy
minimization

(Multivalued)
Equation

DR
update

1) — 0 P ´A[g] ´B[g] g + JλA ˝ (2JλB ´ Id)[g]´ JλB[g]
2a) EX[g] + EY[g] Btg = ´(g´ PX[g])´ (g´ PY[g]) g + PX ˝ (2PY ´ Id)[g]´ PX[g]
2b) e8X [g] + e8Y [g] 0 P ´NX[g] ´NY[g]
3) EM[g] + EP[g] Btg = ´(g´ PM[g])´ (g´ PP[g]) g + PM ˝ (2PP ´ Id)[g]´ PP[g]

Figure 5.1: From minimization problems to specific variants of DR
1) Generally, (DR-LM) does not necessarily correspond to a minimiza-
tion problem. It searches for zeros of sums of two maximal monotone
operators A, B, and converges under certain assumptions. See Sec-
tion 5.3.3.
2) For convex feasibility problems, one can consider quadratic energy
functional minimization — as in 2a) — or infinite well functional min-
imization — as in 2b). Take subdifferential to derive equations such
the ones presented in the table. The corresponding resolvents are
single-valued and lead to the presented update operator. Conver-
gence results for (DR-LM) apply. See Section 5.3.4.
3) Phase problem can be formulated as energy minimization problem.
The energy is not convex; instead of taking the subdifferential, one
can take the (Kruger-Mordukhovich) generalized subdifferential to
motivate the corresponding evolution equation. The subdifferential
exists if both sets are weakly closed, cf. Theorem 4.18, Remark 5.18.
The resulting equation admits global weak solutions, as shown in
Chapter 7. The corresponding resolvents are not necesserily single-
valued and lead, among others, to the presented update operator. See
Section 5.3.5.

convex form DR-cf; the update then essentially coincides with
the form DR.

Note that one has g ´ PX[g] P NX[g], and likewise for Y. This
means that one particular selection of the evolution equation
has the form we call APF (AP Flow)

Btg = ´(g´ PX[g])´ (g´ PY[g]).

(See [BC17], [LS19].)

v) The main point of this section is the following: if one considers
the evolution equation

Btg = ´(g´ PP[g])´ (g´ PM[g]),

— note that g´ PM[g] is not maximal monotone, so the setting of
iii) does not apply; and M is not convex, so the setting of iv) does
not apply; — it is still possible to explicitely calculate selections
of resolvents and simplify DR-LM to the form DR-HIO.
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5.3.2 Background from convex analysis

This subsection briefly recalls some well-known relevant notions and
results from convex analysis — notably, such notions as normal cones,
(firmly) nonexpansive and (maximally) monotone multivalued opera-
tors and their resolvents.

A much more thorough systematic discussion on these topics may
be found, e. g., in [BC17]; see, in particular, Chapters 4, 16, 20, 23, and
26.3 therein.

To the reader familiar with notions of convex analysis, of interest
could be Case 3) of Example 5.26 that highlights some monotone
operators that appear in phase retrieval.

Let D Ă H; a map A : D Ñ H, is called multivalued (set-valued), if
it maps an element of D to a subset of H. For f , g P D, define

A[ f ] + g := ta f + g | for all a f P A[ f ]u.

Additionally, for B : D Ñ H define

A[ f ] + B[g] := ta f + bg | for all a f P A[ f ], bg P B[g]u.

For a functional F : HÑ RY t+8u, its domain is defined as

domain F = tg P H | F[g] ă 8u.

The functional F is called proper, if domain F ‰ ∅. The subdifferential
of a proper functional F is a multivalued mapping

BcF : H Ñ H
g ÞÑ tv P H | F[g] + xv, f ´ gy ď F[ f ] for all f P Hu. (5.3)

It is common to consider subdifferentials of convex functionals, as for
convex functionals there exist results that ensure that BcF[g] is not
empty (see, e. g. [BC17, Prop. 16.17, Prop. 16.20]).

Proposition 5.21 (Subdifferentials of convex energy functionals).
Let C Ă H be nonempty, closed, convex, let EC be the corresponding

energy functional. Then, g´ PC[g] Ă BcEC[g] for all g P H.

Proof. It is necessary to show that for all f P H

EC[g] + xg´ PC[g], f ´ gy ď EC[ f ].

Multiply both sides by 2 and add } f ´ g}22 to obtain the equivalent
expression

}g´ PC[g]}22 + 2xg´ PC[g], f ´ gy+ } f ´ g}22looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
=} f´PC[g]}2

2

ď } f ´ PC[ f ]}22 + } f ´ g}22

(5.4)
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illustrated in Figure 5.2.
If g P C, Equation (5.4) is reduced to } f ´ g}22 ď } f ´PC[ f ]}22 + } f ´ g}22,

which is always satisfied.
If g R C but f P C, then by angle property (Lemma 3.10) holds

xg´ PC[g], PC[ f ]´ PC[g]y = xg´ PC[g], f ´ PC[g]y ď 0

which — adding ´}g´ PC[g]}22´} f ´ PC[g]}22 on both sides — is equiv-
alent to

}g´ f }22 ě }g´ PC[g]}22 + } f ´ PC[g]}22 ñ
} f ´ g}22 + } f ´ PC[ f ]}22loooooomoooooon

=0

ě }g´ PC[g]}22 + } f ´ PC[g]}22 ě } f ´ PC[g]}22,

so that Equation (5.4) is demonstrated.
If f = g, Equation (5.4) is reduced to }g´ PC[g]}22 ď }g´ PC[g]}22 + 0,

which is always satisfied.
Finally, let f , g R C with f ‰ g. The following proof is easy to

summarize (see Figure 5.2), but somewhat technical when written
down. Let p f := PC[ f ], pg := PC[g], let l denote the line containing the
segment between p f and pg. Define the altitude from point f onto line
l as

fK := pg + tK(pg ´ p f ), tK :=
x f ´ pg, pg ´ p f y
}pg ´ p f }22

.

It is easy to verify that f ´ fK is orthogonal to pg ´ p f :

x f ´ fK, pg ´ p f y = x f ´ pg ´ tK(pg ´ p f ), pg ´ p f y
= x f ´ pg, pg ´ p f y ´ x f ´ pg, pg ´ p f y = 0,

and that fK belongs to line l. Let us show that

} f ´ pg}22 = } f ´ fK}22loooomoooon
(˚)ď } f´pg}2

2

+ }pg ´ fK}22looooomooooon
(˚˚)ď }g´ f }2

2

.

The equality is true by Pythagoras’ theorem. Also by Pythagoras, the
point fK is closer to f than any other point on l (since f ´ fK is an
altitude to l); hence, the inequality (˚) is true. Finally, the inequality
(˚˚) follows from the Lemma 5.22 below that states that for two di-
verging rays — here, the ray PC[ f ] + t( f ´ PC[ f ]), t P [0,8) and the ray
PC[g] + t(g´ PC[g]), t P [0,8); these rays are diverging by the angle
property for convex sets (Lemma 3.10) — two closest points on the
rays are the origins of the rays. ˝
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g
f

PC[g]

PC[ f ]
f K

l
X pg p f

g
f

rg r f
Hg H f

Figure 5.2: Illustration to Proposition 5.21 and Lemma 5.22 (subdifferentials
of convex energy functionals).

On the left: to show that

} f ´ PC[g]}22 ď } f ´ PC[ f ]}22 + } f ´ g}22 ,

construct an altitude fK from the point f to the line l that goes
through PC[g] and PC[ f ], and use

} f ´ fK}2 ď } f ´ PC[ f ]}2 and

}PC[g]´ fK}2 ď } f ´ g}2 . (5.5)

Then, by Pythagoras’ theorem,

} f ´ PC[g]}22 = } f ´ fK}2 + }PC[g]´ fK}2 ď } f ´ PC[ f ]}22 + } f ´ g}22 .

On the right: Equation (5.5) is shown in Lemma 5.22. If two rays r f
and rg are diverging — meaning that angles = f p f pg and =gpg p f
are obtuse — the distance between any two points on the rays is
not smaller than the distance between half-planes H f and Hg, which
equals }p f ´ pg}2.



100 connections between projection algorithms

Lemma 5.22. Distance between two diverging rays in a Hilbert space is
smallest at the origins of the rays. I. e., let points f , g, p f , pg P H; let

r f = tp f + t( f ´ p f ) | t ě 0u;
rg = tpg + t(g´ pg) | t ě 0u

denote two rays with origins in p f and pg. Assume that the rays are diverg-
ing, meaning that angles = f p f pg and =gpg p f are obtuse:

x f ´ p f , pg ´ p f y ď 0; xg´ pg, p f ´ pgy ď 0.

Then,

inf
f̃Pr f
g̃Prg

} f̃ ´ g̃}22 = }p f ´ pg}22.

Proof. Define the affine half-planes

H f = p f + tv | v P H, xp f ´ pg, vy ě 0u,
Hg = pg + tv | v P H, xpg ´ p f , vy ě 0u,

cf. Figure 5.2. It is easy to verify that the distance between the half-
planes equals }p f ´ pg}22:

inf
f̃PH f
g̃PHg

} f̃ ´ g̃}22 = inf
SHH

}p f + v f ´ pg ´ vg}22

= inf
SHH

}p f ´ pg}22 + 2xp f ´ pg, v f ´ vgy+ }v f ´ vg}22
= inf

SHH
}p f ´ pg}22 + 2 xp f ´ pg, v f yloooooomoooooon

ě0

+2 xpg ´ p f , v f yloooooomoooooon
ě0

+}v f ´ vg}22

ě }p f ´ pg}22,

where SHH is the set of all pairs (v f , vg) P HˆH such that such that
xp f ´ pg, v f y ě 0, and xpg ´ p f , vgy ě 0.

The ray r f is contained in H f , since for any point on the ray p f + t( f ´ p f )

holds

xp f ´ pg, t( f ´ p f )y = ´tx f ´ p f , pg ´ p f y ě 0.

Similarly, rg is contained in Hg.
Therefore, the distance between the rays is not less than }p f ´ pg}2,

and the claim follows since p f P r f and pg P rg. ˝

The following definition denotes a multivalued operator with the
letter T — instead of A, as before — for the following didactical
reason. In this section, we discuss multivalued operators that can be
split into two groups: operators that appear in evolution equations
(A, B, I ´ PC, N for normal cones, typically monotone), and operators
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that appear in the Douglas-Rachford algorithm (T, PC, J for resolvents,
typically non-expansive). The choice of different letters aims to ease
the distinction between the groups.

Definition 5.23 (Firmly nonexpansive and nonexpansive operators).
Let D Ď H. 1) A (multivalued) operator T : D Ñ H is called firmly nonex-
pansive, if for all f , g P D, for all t f P T[ f ], tg P T[g]

}( f ´ t f )´ (g´ tg)}22 + }t f ´ tg}22 ď } f ´ g}22, (5.6)

which is equivalent to

}t f ´ tg}22 ď xt f ´ tg, f ´ gy. (5.7)

2) A (multivalued) operator T : D Ñ H is called nonexpansive, if for all
f , g P D, for all t f P T[ f ], tg P T[g]

}t f ´ tg}2 ď } f ´ g}2.

From the definition immediately follows that every firmly nonexpansive op-
erator is nonexpansive.

Proof (equivalence of (5.6) and (5.7)). Let f , g P D, let t f P T[ f ], tg P T[g].

}( f ´ t f )´ (g´ tg)}22 + }t f ´ tg}22 ď } f ´ g}22 ô
} f ´ g}22 + 2x f ´ g, tg ´ t f y+ 2}t f ´ tg}22 ď } f ´ g}22 ô

}t f ´ tg}22 ď x f ´ g, t f ´ tgy. ˝

Example 5.24 (Convex projections are firmly nonexpansive). Let X Ă H be
convex, let PX be the corresponding projection. Then, PX is firmly non-
expansive.

Proof. By Lemma 3.10,

xg´ PX[g], PX[ f ]´ PX[g]y ď 0,

x f ´ PX[ f ], PX[g]´ PX[ f ]y ď 0.

Adding the inequalities together yields

xg´ PX[g]´ f + PX[ f ], PX[ f ]´ PX[g]y ď 0,

which is equivalent to

}PX[ f ]´ PX[g]}22 ď xg´ f , PX[g]´ PX[ f ]y. ˝

Definition 5.25 (Monotone operators). Let D Ă H. A multivalued
map A : D Ñ H is called monotone, if for all f , g P D and for all a f P A[ f ]
and ag P A[g] one has

xa f ´ ag, f ´ gy ě 0.
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If A : H Ñ H is single-valued and f = g + h for some non-zero
h P H, this equation can be rewritten to a (perhaps more intuitive)
condition

B
A[g + h]´ A[g]

}h}2 , h
F
ě 0

for all f , g P H. For example, for c P R, the linear function A[g] := cg
is monotone if and only if c ě 0.

Example 5.26 (Monotone operators).

1) Let E : H Ñ RY t+8u be convex; then, its subdifferential is a
monotone operator, since for all f , g P domain BcE

xBcE[g], f ´ gy ď E[ f ]´ E[g] and xBcE[ f ], g´ f y ď E[g]´ E[ f ];

adding both inequalities yields xBcE[g]´BcE[ f ], f ´ gy ď 0, equiv-
alent to monotonicity of BcE.

2) Monotone operators also arise in non-convex contexts. Let X be a
weakly closed, not necessarily convex, subset of H. A projection
operator PX is monotone, since by Corollary 3.6

}g´ PX[g]}22 ď }g´ PX[ f ]}22 and } f ´ PX[ f ]}22 ď } f ´ PX[g]}22.

Expand the squares and add both inequalities to obtain

´2xg, PX[g]y ´ 2x f , PX[ f ]y ď ´2x g , PX[ f ]y ´ 2x f , PX[g]y ô
0 ď 2x f ´ g, PX[ f ]y+ 2xg´ f , PX[g]y ô
0 ď 2x f ´ g, PX[ f ]´ PX[g]y.

3a) Let X be a convex subset of H. Then, the operator g ÞÑ g´ PX[g]
is monotone, since for all f , g P H

xg´ PX[g]´ ( f ´ PX[ f ]), g´ f y
= }g´ f }22 ´ xPX[g]´ PX[ f ] , g´ f y
ě }g´ f }22 ´ }PX[g]´ PX[ f ]}2}g´ f }2 ě 0,

since }PX[g]´ PX[ f ]}2 ď }g´ f }2 for convex X by Example 5.24.

3b) Let X Ă H be such that a corresponding projection PX is an
indicator projection. Then, the operator g ÞÑ g ´ PX[g] is also
an indicator projection by Example 5.4, and thus monotone by
Example 5.26 2).
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g + h

g

g̃

NX[g]

X

g + h

g

g̃

NX[g]

X

Figure 5.3: Illustration to Definition 5.30: normal cones to convex sets.
Two examples of convex cones NX to convex set X at g P X. For any
h P NX, the angle between g̃´ g and (g + h)´ g is greater or equal
than π/2 for all g̃ P X, i. e. xg̃´ g, hy ď 0.
On the left, NX[g] given by a ray; on the right, NX[g] has non-empty
interior.

3c) The operator g ÞÑ g´ PM[g] is not monotone: pick g P H with
|ĝ| = ?

I/2, let f = ´g. Then, PM[ f ] = ´PM[g], and

xg´ PM[g]´ ( f ´ PM[ f ]), g´ f y
= xg´ PM[g] + (g´ PM[g]), g + gy = 4xg´ PM[g], gy

= 4CF

ż
(|ĝ| ´ ?

I)|ĝ| = ´CF }?I}22 ă 0.

The focus on operators of the form g ÞÑ g´ PX[g] in these examples
will become apparent in light of Equation (5.21) in Section 5.3.5.

Definition 5.27 (Maximal monotone operators). Let A : H Ñ H
be monotone. The operator A is called maximal monotone, if it can not be
extended to a different monotone operator, i. e., if for any g, a˚ P H the
monotonicity condition

(@ f P H, a f P A[ f ]) xa f ´ a˚, f ´ gy ě 0

implies a˚ P A[g].

Recall the following well-known results on maximal monotone op-
erators (presented here without proofs).

Theorem 5.28 (Monotone extension [BC17, Thm. 20.21]). Let A : H Ñ H
be monotone. Then there exists a maximally monotone extension of A.

Theorem 5.29 (Moreau [BC17, Thm. 20.25]). Let F be a proper lower
semicontinuous functional from H to (´8,8]. Then, its subdifferential
BcF is a maximal monotone operator.

An important example of maximal monotone operators are normal
cones.



104 connections between projection algorithms

Definition 5.30 (Normal cones). Let X P H be nonempty and convex,
let g P H. The normal cone to X at g is defined as

NX[g] =

$
&
%
th P H | supg̃PXxh, g̃´ gy ď 0u if g P X;

∅ otherwise,

see Figure 5.3.

Example 5.31 (Normal cones and convex set wells). Let C Ă H be closed,
convex, non-epmty. Define the infinite well functional

e8C : H ÞÑ (´8,8], g ÞÑ
$
&
%
8 if g R C
0 else.

Then, Bce8C [g] = NC[g] for all g P H.

Proof. Follows directly from the definition of the normal cone (Defini-
tion 5.30) and the definition of the subdifferential (Equation (5.3)).
“Ď” Let g P C. If v P Bce8C [g], then

e8C [g]loomoon
=0

+xv, f ´ gy ď e8C [ f ]

for all f P H. In particular, for all f P C, right-hand side equals zero
and xv, f ´ gy ď 0; thus, v P NC[g]. Let g R C; pick f P C (which is
non-empty by assumption). Then, for any v P H

e8C [g]loomoon
=8

+xv, f ´ gy ą e8C [ f ]loomoon
=0

;

thus, Bce8C [g] = ∅. “Ě” follows in a similar straightforward fashion.˝

Lemma 5.32 (Normal cones in terms of projections). Let C P H be
nonempty and convex, let g P H. The normal cone can be expressed in terms
of the projection onto C as follows:

NC[g] =
ď
tα( f ´ PC[ f ]) | α ě 0u, (5.8)

where the union is taken over all f P H such that PC[ f ] = g. A following
variation on this equivalence is also true:

NC[g] = t f ´ PC[ f ] | f P H, PC[ f ] = gu. (5.9)

Proof. If g R C, both NC[g] and the union on the right-hand side of
Equation (5.8) are empty. Therefore, let g P C for the rest of the proof.
Ď. Let h P NC[g]. Choose α = 1; let us show that for f := g + h

holds PC[ f ] = g. Indeed, by Lemma 3.10

x f ´ PC[ f ], PC[g]´ PC[ f ]y ď 0,
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and by definition of NC

xh, PC[ f ]´ gy ď 0.

Since PC[g] = g and h = f ´ g, adding both inequalities yields

x f ´ PC[ f ], g´ PC[ f ]y+ x f ´ g, PC[ f ]´ g y ď 0 ñ
x f ´ PC[ f ] ´ f + g, g ´ PC[ f ]y ď 0 ñ

}g´ PC[ f ]}22 ď 0,

so PC[ f ] = g. From this follows h = f ´ g = f ´ PC[ f ], meaning that h
belongs to the right-hand side of Equation (5.8).
Ě. Let f P H be such that PC[ f ] = g, let h := α( f ´ PC[ f ]) for α ě 0.

Then,

sup
g̃PC
xh,g̃´ gy = sup

g̃PC
αx f ´ PC[ f ], g̃´ gy

= sup
g̃PC

αx f ´ PC[ f ], PC[g̃]´ PC[ f ]y ď 0

by Lemma 3.10, so h P NC[g].
Expression Equation (5.9) is shown using exactly the same argu-

mentation. ˝

Proposition 5.33 (Normal cones are maximal monotone). Let C Ă H
be nonempty, closed, convex. Then, NC is maximal monotone.

Proof. Let g, a P H, assume that @ f P H, a f P NC[ f ] holds the mono-
tonicity condition xa f ´ a˚, f ´ gy ě 0. We need to show that a˚ P NC[g].

From the monotonicity condition follows

sup
fPC
xa˚, f ´ gy ď sup

fPC
a f PNC[ f ]

xa f , f ´ gy (˚1)ď 0, (*2)

where (˚1) is true since a f P NC[ f ]. From (˚2) follows a˚ P NC[g]. ˝

Definition 5.34 (Inverse of a multivalued map). Let D Ă H. The
inverse of a multivalued map B : D Ñ H at f P D is defined as

B´1 : range(B) Ñ D

f ÞÑ B´1[ f ] = tg P H | B[g] Q f u,

i. e. g P B´1[ f ]ô f P B[g].

Definition 5.35 (Resolvent). Let D Ă H, let A : D Ñ H. The resol-
vent of A is defined as

JA : range(I + A) Ñ D

g ÞÑ JA[g] = (I + A)´1[g],
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where (I + A)[g] = g + A[g] = tg + ag | ag P A[g]u.

Corollary 5.36 (Resolvents of monotone operators are single-valued).
Let D Ă H, let A : D Ñ H be monontone. Then, JA : range(I + A) Ñ D

is single-valued.

Proof. Let q P range(I + A). Let us show that if f , g P JA[q], then f = g.
Indeed, since f P JA[q] = (I + A)´1(q), there exists a f P A[ f ] such that
f + a f = q. Analogously, there exists ag P A[g] such that g + ag = q.
Therefore,

f + a f = g + ag ñ
a f ´ ag = ´( f ´ g) | x¨, f ´ gy ñ

0
(˚)ď xa f ´ ag, f ´ gy = ´} f ´ g}22 ď 0,

where (˚) follows from monotonicity of A. Therefore, f = g and JA is
single-valued. ˝

Example 5.37 (Resolvents of normal cones). Let C Ă H be nonempty, closed,
convex. Then, JNC

[g] = PC[g] for all g P H.

Proof. By Lemma 5.32, for g P H

NC[g] = t f ´ PC[ f ] | f P H, PC[ f ] = gu ñ
g + NC[g] = t f | f P H, PC[ f ] = gu = P´1

C [g].

Therefore, for f P H

g P (I + NC)
´1[ f ]ô f P g + NC[g]ô f P P´1

C [g]ô g P PC[ f ],

where the last expression means g = PC[ f ] (in a minor abuse of no-
tation, single-valued sets in this proof are identified with their ele-
ments). ˝

Theorem 5.38 (Monotonicity and firm nonexpansiveness). Let D

be a nonempty subset of H, let A : D Ñ H. Then, A is monotone if and only
if JA is firmly nonexpansive.

Proof. The essence of the proof is calculation (5.10), but for ease of
domain and range bookkeeping the proof is split in two parts.

“ð”. Let JA be firmly nonexpansive. We need to show that

0 ď xj f ´ jg, aj f ´ ajgy.

for all j f , jg P D, for all aj f P A[j f ], ajg P A[jg].
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Let f := j f + aj f , let g := jg + ajg . Then, f , g P range(I + A) = domain JA,
and by Equation (5.7)

}j f ´ jg}22 ď xj f ´ jg, f ´ gy ô
}j f ´ jg}22 ď xj f ´ jg, j f + aj f ´ jg ´ ajgy ô
}j f ´ jg}22 ď }j f ´ jg}22 + xj f ´ jg, aj f ´ ajgy ô

0 ď xj f ´ jg, aj f ´ ajgy (5.10)

for all j f , jg P D, for all aj f P A[j f ], ajg P A[jg].
“ñ”. Let A be monotone. We need to show that

}j f ´ jg}22 ď xj f ´ jg, f ´ gy

for all f , g P range(I + A), for all j f P JA[ f ], jg P JA[g]. By definition
of the resolvent, j f P JA[ f ] imlies f P j f + A[j f ], which means that
there exists aj f P A[j f ] such that f = j f + aj f ; likewise, there exists
ajg P A[jg] such that g = jg + ajg . Then, calculation (5.10) applies for
all f , g P range(I + A), for all j f P JA[ f ], jg P JA[g], meaning that JA is
nonexpansive. ˝

In applications where one can use maximal monotone operators
instead of monotone operators, the choices of domains and ranges
can be sidestepped. This is shown by the following theorem, stated
here without proof.

Theorem 5.39 (Minty [BC17, Thm. 21.1]). Let A : H Ñ H be monotone.
Then, A is maximally monotone if and only if range(I + A) = H.

Corollary 5.40 (Maximal monotonicity and firm nonexpansiveness).
An operator A : H Ñ H is maximal monotone if and only if JA is firmly
nonexpansive, and domain JA = H.

Proof. By Theorem 5.38 and Theorem 5.39, A is maximal monotone if
and only if H = range(I + A) = domain JA. ˝

5.3.3 DR for maximal monotone operators

This subsection recalls well-known results on the Lions-Mercier for-
mulation of the Douglas-Rachford from [LM79]. For a survey of more
recent results on convergence of DR-LM, the reader is referred to
[LS19].

Consider the nonlinear multivalued evolution equation

Bt f P ´A[ f ]´ B[ f ], (5.11)

where A, B are maximal monotone (possibly multivalued) operators
on H.
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Definition 5.41 (DR for maximal monotone operators [LM79]). Let
g0 P H, let A, B be maximal monotone (possibly multivalued) operators on
H, let λ ą 0. The sequence (gn)nPN is generated by the DR-LM algorithm
(Douglas-Rachford in Lions-Mercier formulation), if

gn+1 =
1
2
(
Id+(2JλA ´ Id) ˝ (2JλB ´ Id)

)
[gn]

= gn + JλA ˝ (2JλB ´ Id)[gn]´ JλB[gn]. (DR-LM)

Remark 5.42. In previous definition, JλA, JλB are single-valued by Corol-
lary 5.36, and therefore update DR-LM is uniquely defined, even
though the evolution equation (5.11) is multivalued.

In applications, the algorithm may prove itself successful even if A
or B are not monotone. In this case, the iterate gn+1 is chosen from
any value in the set on the right-hand side of DR-LM.

The following proposition shows the one-to one correspondence
between fixed points of the evolution equation (5.11) and fixed points
of DR-LM.

Proposition 5.43 (Fixed points correspondence [LM79]). Let g0 P H,
let A, B be maximal monotone (possibly multivalued) operators on H, let
λ ą 0.

i) If g P H is such that

g = g + JλA ˝ (2JλB ´ Id)[g]´ JλB[g],

then for f = JλB[g] holds 0 P ´A[ f ]´ B[ f ].

ii) If f P H is such that 0 P ´A[ f ]´B[ f ], then there exists g P (I + B)[ f ]
such that

g P g + JλA ˝ (2JλB ´ Id)[g]´ JλB[g].

Proof. i) Since g is a fixed point, one has

0 = JλA ˝ (2JλB ´ Id)[g]´ JλB[g]loomoon
= f

ñ

f = JλA ˝ (2JλB ´ Id)[g] ñ
(I + λA)[ f ] Q (2JλB ´ Id)[g] ñ

f + λA[ f ] Q 2 f ´ g ñ
f ´ g P λA[ f ].

Further, by definition of f one has

f = JλB[g]ñ g P (I + λB)[ f ]ñ g´ f P λB[ f ].

Combine both inclusions to obtain 0 P A[ f ] + B[ f ], since λ ‰ 0.
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ii) Since f is a fixed point, there exist a f P A[ f ] and b f P B[ f ] such
that 0 = a f + b f . Choose g := f + b f ; then,

0 = ´ f + a f + f + b f = ´ f + a f + g ñ f ´ g = a f . (5.12)

To prove that g is a fixed point of DR-LM, it is sufficient to show
that

JA ˝ (2JB ´ I)[g]´ JB[g] = 0 ô JA[2 f ´ g]´ f = 0, (5.13)

where the equivalence holds since by definition of g have JB[g] = f .
Adding f to both sides of Equation (5.12) and applying Ja,

JA[2 f ´ g] = JA[ f + a f ]
(˚)
= f ,

where (˚) is true by definition of JA. Therefore, Equation (5.13)
holds and g is a fixed point of DR-LM. ˝

While we conjecture that similar correspondence persists for mul-
tivalued resolvents, the resulting rigor lies beyond the applications
of this work. In practice, it is easier to verify such correspondence
explicitely for the feasibility problem formulation Definition 5.53, see
Remark 5.54.

The following result from [BP67] (stated here without proof) is the
key component for the proof of DR-LM convergence.

Theorem 5.44 (Browder [BP67]). Let D be a closed convex subset of H.
If T : H Ñ H is nonexpansive, and if T has at least one fixed point f P D,
then for all g P D holds:

i) Tn+1[g]´ Tn[g]Ñ 0 strongly as n Ñ8;

ii) Tn[g]á g˚ P D weakly,

where g˚ = T[g˚] is a fixed point of T.

Lemma 5.45 (DR-LM update is firmly nonexpansive [LM79]). Let D
be a closed convex subset of H, let T1, T2 : D Ñ D be firmly nonexpansive;
then, T = T1[2T2 ´ I] + I ´ T2 is firmly nonexpansive.

Theorem 5.46 (DR-LM convergence [LM79, Prop. 2]). Let g0 P H, let
A, B be maximal monotone (possibly multivalued) operators on H, let λ ą 0.
Assume that there exists a fixed point g P H of the DR-LM update. Let
(gn)nPN be generated by the DR-LM algorithm. Then, gn weakly converges
to a fixed point g˚ of the DR-LM update, and for f˚ = JλB[g˚] holds
0 P ´A[ f˚]´ B[ f˚].

Proof. Use Lemma 5.45 to show that DR-LM update is nonexpan-
sive; use Theorem 5.44 to follow the weak convergence; use Proposi-
tion 5.43 to follow that f˚ is a fixed point of the evolution equation. ˝
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5.3.4 DR for convex feasibility problems

This presents a connection between energy minimization, and DR-
LM reformulation for convex feasibility problems. This connection
is well known in convex analysis; however, in the convex setting it
is more common to work directly with the simplified form DR-cf,
sidestepping the energy minimization discussion. The added value
of the discussion presented here lies in the comparisson between the
convex case and the phase retrieval case discussed in Section 5.3.5.

An important particular case of DR-LM is the case of convex feasi-
bility problems; see [LS19, Sec. 2.2] for numerous applications of the
convex case.

Let X,Y Ă H be nonempty closed convex sets. Consider the mini-
mization problem

arg min
fPH

EX[ f ] + EY[ f ]. (5.14)

For EX + EY to have a minimum at f , it is necessary — this is known
as Fermat’s rule, cf. [BC17, Thm. 16.3] — that

0 P Bc(EX + EY)[ f ] = BcEX[ f ] + BcEX[g], (5.15)

where we can use the additivity of the subdifferential (e. g. [BC17,
Rem. 16.46]) since EX, EY are proper lower semi-continuous convex
functions with domain EX = domain EY = H. From Proposition 5.21

we know that f ´ PX[ f ] P BcEX[ f ], and likewise for EY. Therefore,
the problem is equivalent to searching fixed points of the evolution
equation

Bt f = ´ ( f ´ PX[ f ])looooomooooon
=:A[ f ]

´ ( f ´ PY[ f ])looooomooooon
=:B[ f ]

. (5.16)

For any λ ą 0, the map f ÞÑ λ( f ´ PX[ f ]) is contained in NX[ f ],
and its resolvent can be calculated using the same argumentation as
in Example 5.37. Namely, JλA[ f ] = PX[ f ] for any λ ą 0. Likewise,
JλB[ f ] = PY[ f ] for any λ ą 0. Therefore, Definition 5.41 reads as
follows.

Definition 5.47 (DR for convex feasibility). Let g0 P H, let X,Y Ă H
be nonempty closed convex sets, let λ ą 0. The sequence (gn)nPN is gener-
ated by the DR-cf variant (Douglas-Rachford for convex feasibility), if

gn+1 =
1
2
(
Id+(2PX ´ Id) ˝ (2PY ´ Id)

)
[gn]

=
1
2
(

gn + RX ˝ RY[gn])

= gn + PX[RY[gn]]´ PY[gn]. (DR-cf)
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The resulting algorithm is invariant with respect to rescaling of the
time variable in Equation (5.16). Indeed, such rescaling would lead to
the different choice of the constant λ in DR-LM that does not alter the
resulting form DR-cf.

This invariance can be highlighted by the following minimization
problem that also leads to Equation (DR-cf): as before, let X,Y Ă H be
nonempty closed convex sets; consider the infinite well minimization
problem

arg min
fPH

e8X [ f ] + e8Y [ f ] (5.17)

with well functionals from Example 5.31. Again, by Fermat’s rule, f
is a minimum, only if

0 P Bc(e8X + e8Y )[ f ] = Bce8X [ f ] + Bce8Y [ f ]. (5.18)

Again, we can use the additivity of the subdifferential (e. g. [BC17,
Rem. 16.46]) since EX, EY are proper lower semi-continuous convex
functions with domain EX X domain EY ‰ ∅. Consider the restricted
equation

0 P Bce8X [ f ] + Bce8Y [ f ] = NX[ f ] + NY[ f ], (5.19)

where we used Example 5.31. Note that the right-hand side is not
empty if and only if f P XX Y, yet it leads to the same form DR-cf,
since JNX

[g] = PX[g], and likewise for Y, due to Example 5.37.
Thus, in convex case the algoritm DR-LM has the following notable

features:

i) Resulting form Equation (DR-cf) is invariant under time rescal-
ing of the evolution equation (5.15), i. e. does not depend on
parameter λ that appears in DR-LM;

ii) Energy functionals in (5.14) and much less regular infinite wells
in (5.17) lead to exactly the same formulation (DR-cf).

5.3.5 DR for phase retrieval

Similarly to the convex case, Douglas-Rachford for phase retrieval can
be connected to a minimization problem, but the precise nature of
the connection is different due to the fact that EM is non-convex. This
connection is explored in this subsection. To the best of our knowledge,
this connection previously has not observed for phase retrieval.

Consider the energy minimization phase retrieval with positivity

arg min
fPH

EM[ f ] + EA[ f ] (5.20)
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on a bounded domain, so that M is weakly closed, and assuming that
A is closed and convex. The reason for this strong assumption on A

will become apparent in Proposition 5.52. As discussed in Remark 5.18,
one possible selection of the corresponding subdifferential flow of
EM + EA results in the evolution equation

Bt f = ´γ(g´ PM[ f ])´ γ(g´ PA[ f ]) P ´γBKM(EM + EA)[ f ], (5.21)

where we have introduced a time scaling parameter γ; its role will
become apparent in the end of the section. For now, consider the case
γ = 1.

As demonstrated in Example 5.26 3c), the operator A[ f ] := f ´PM[ f ]
is not monotone, and therefore its resolvent is not necessarily single-
valued. This can be demonstrated explicitely by showing that the
operator I + A is not injective. For any data

?
I, let f be such that

$
&
%
| f̂ (k)| ă ?

I(k) and f̂ (k) ‰ 0 if
?

I(k) ‰ 0,

| f̂ (k)| = 0 otherwise.

Let

ĝ1(k) := +

?
I(k) + | f̂ (k)|

2
f̂ (k)
| f̂ (k)| ñ g1 = +

1
2
(PM[ f ] + f );

ĝ2(k) := ´
?

I(k)´ | f̂ (k)|
2

f̂ (k)
| f̂ (k)| ñ g2 = ´1

2
(PM[ f ]´ f ),

with the convention that ĝi(k) = 0 at k where f̂ (k) =
?

I(k) = 0 for
i P t1, 2u. Since | f̂ | ď ?

I, we have PM[g1] = PM[ f ], PM[g2] = ´PM[ f ],
and

2g1 ´ PM[g1] = f = 2g2 ´ PM[g2],

meaning that the resolvent of A[ f ] is not single-valued.
Therefore, one is free to choose any element of the resolvent JA in

DR-LM. One of the possible choices is demonstrated in the following
lemma.

Lemma 5.48. Let X be a nonempty proximal subset of H, let λ ą 0, let
A = Id´PX. Then, for any f P H,

1
1 + λ

(
Id+λPX

)
[ f ] P JλA[ f ]. (5.22)

Proof. Let f P H, let g = 1
1+λ

(
f + λPX[ f ]

)
. By the interpolation prop-

erty (Lemma 3.8), PX[g] = PX[ f ]. Therefore,

(Id+λA)[g] = g + λA[g] = g + λg´ λPX[g]

= f + λPX[ f ]´ λPX[ f ] = f ,
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from which follows g P JλA[ f ]. ˝

This motivates using 1
1+λ

(
Id+λPM

) P JλA and PA = JλB, where
A[ f ] = f ´ PM[ f ], B[ f ] = f ´ PA[ f ]. The pointwise limit of the opera-
tor 1

1+λ

(
Id+λPX

)
as λ Ñ8 is well-defined: for any f P H,

lim
λÑ8

1
1 + λ

(
Id+λPX

)
[g] = PX[g].

Therefore, one can take the limit λ Ñ 8 in Douglas-Rachford and
simplify it to the following form.

Definition 5.49 (Douglas-Rachford for phase retrieval). Let g0 P H,
let

?
I be as in Definition 2.1, let the additional constraint A be proximal. The

sequence (gn)nPN is generated by the DR-HIO algorithm in the PM ˝ RA

order, if

gn+1 =
1
2
(

gn + RM ˝ RA[gn]
)
= gn + PM ˝ RA[gn]´ PA[gn].

(DR-HIO)

Remark 5.50. If the roles of M and A are reversed in DR-HIO, we call
the resulting algorithm DR-HIO in the PA ˝ RM order. As demon-
strated in Section 5.1, the DR form of HIO is usually derived in this
order — the linearity of the object space operator is necessary for the
derivation from the local form. The order PA ˝RM is used, for example,
in [BCL02].

Following [ELB18], we use the formulation DR-HIO with PM ˝ RA

order unless mentioned otherwise.
See [Mou16] for a more detailed discussion on the order of operators

in DR.

Remark 5.51. It is important to point out that PM R JλA for A[g] := g´PM[g],
since

(I + λA)
[
PM[g]

]
=
(
(1 + λ)I ´ PM

)
[PM[g]

]
= (1 + λ)PM[g]´ PM[g] = λPM[g]

is, in general, not equal to g. Therefore, DR-HIO is not directly a
special case of DR-LM. Rather, DR-HIO coincides with the limit of
DR-LM as λ Ñ 8 — provided the appropriate (as in Lemma 5.48)
selection of the resolvent.

The DR limit λ Ñ 8 may be interpreted alternatively as the time
scale limit γ Ñ8 in Equation (5.20).

Indeed, if one keeps λ = 1 in the definition of DR-LM and uses the
operator Ã[g] = γ(g´ PM[g]) instead of A = g´ PM[g], the DR scale
constant λ is effectively replaced by γ throughout all calculations.:

λÃ[g] = 1Ã[g] = γA[g].

Therefore, DR-HIO may be interpreted as algorithm corresponding to
the flow (5.20) “infinitely accelerated in time”.
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While such interpretation is nonsensical from the dynamical point
of view, it can be considered in a geometrical context akin to the
normal cone equation (5.19) or the equation (5.16) in the convex case.
Specifically, — cf. explanation immediately after Equation (5.16) — in
the convex case, all values λ ą 0 for (5.19) lead to exactly the same
form DR-cf, and taking the limit λ Ñ 8 does not alter the resulting
DR algorithm.

Thus, if one would define DR-LM not for λ ą 0, but by an update
operator defined pointwise through the limit λ Ñ8, then both DR-cf
and DR-HIO would be special cases of DR-LM.

The argument preceeding Definition 5.49 can be generalized to
other non-convex problems in the following way.

Proposition 5.52 (DR for non-convex case). Let X, Y Ă H be prox-
imal, define A[g] := g´ PX[g], B[g] := g´ PY[g] for all g P H. Assume
that at least one of the following holds:

i) PX is continuous (or X is Chebyshev, see Proposition 3.11);

ii) Y is non-empty, closed and convex.

Then,

g + PX[2PY[g]´ g]´ PY[g]

P Li
λÑ8

(
g + JλA ˝ (2JλB ´ Id)[g]´ JλB[g]

)

where Li is the Kuratowski limit inferior.

Proof. i) Assume that PX is continuous. By Lemma 5.48, for any g P H
and any λ ą 0 have

1
1 + λ

(
Id+λPX

)
[g] P JλA[g], and

1
1 + λ

(
Id+λPY

)
[g] P JλB[g].

Therefore, for any g P H and any λ ą 0

g +
1

1 + λ

(
Id+λPX

)[ 2
1 + λ

(
Id+λPY

)
[g]´ g

]
´ 1

1 + λ

(
Id+λPY

)
[g]

P g + JλA ˝ (2JλB ´ Id)[g]´ JλB[g].

Using continuity of PX on the left-hand side, one can take the limit
λ Ñ8 to obtain the desired statement.

ii) If Y is non-empty, closed and convex, then JλB = PY for all λ ą 0
(see Example 5.37 and observe that B[g] P NY[g] for all g P H). There-
fore, the argument from part i) of the proof holds, with the minor
difference that continuity of PX is no longer required, as λ is no longer
present in the argument of JλA. ˝
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For ease of reference, we restate Douglas-Rachford for generic fea-
sibility problems.

Definition 5.53 (Douglas-Rachford for feasibility problems). Let
X, Y Ă H be proximal. The sequence (gn)nPN is generated by the DR algo-
rithm, if

gn+1 =
1
2
(

gn + RY ˝ RX[gn]
)
= gn + PY ˝ RX[gn]´ PX[gn]. (DR)

Proposition 5.52 establishes sufficient conditions for DR to be a
subcase of DR-LM.

Remark 5.54 (Error estimation for Douglas-Rachford). Let g P H be a fixed
point of DR for a generic feasibility problem. At this fixed point holds

PX ˝ RY[g] = PY[g],

so that PY[g] P X X Y is a solution. In particular, one can use the
quantities EY

[
PX ˝ RY[gn]

]
or EX

[
PY[gn]

]
to track convergence of the

Douglas-Rachford algorithm.
In [ELB18], EY

[
PX ˝ RY[gn]

]
with X = M(i) (incomplete modulus)

and Y = Ts(ν) (non-negativity + support size) is used to track progress
of DR for phase retrieval: the algorithm is terminated, when the en-
ergy drops below 0.05}gn}22.

Remark 5.55 (Alternating Reflection Flow). ER is an explicit discretiza-
tion of ERF, while the connection between DR and ERF is more intri-
cate.

Inspecting similarities ER between and DR updates — the first con-
tains alternating projections, the second contains relaxed alternating
reflections — one may ask whether it is possible to find an equation
that yields DR directly as an explicit discretization.

For example, it is natural to consider the flow

Btg =´ 2g + RX[g] + RY[g];

however, on further inspection one can see that it equals

´ 2g + 2PX[g]´ g + 2PY[g]´ g

=2(´2g + PX[g]´ PY[g]);

in other words, such flow is merely an accelerated version of APF.
Chapter 9 shows that DR can be written as the explicit discretization

of a system of equations, albeit in two variables.





Part II

A N A LY Z I N G T H E E R R O R - R E D U C T I O N F L O W

This part studies the Error-Reduction Flow and its explicit
discretization dERF (which can be seen as a generalization
of the Error-Reduction algorithm). It contains the follow-
ing main original contributions.

Chapter 6 establishes energy dissipation properties of dERF,
and demonstrates sufficient conditions under which dERF
has fixed points.

Chapter 7 demonstrates that the Error-Reduction Flow ad-
mits global weak solutions.

Chapter 8 establishes a correspondence between fixed points
of the Error-Reduction algorithm and the Error-Reduction
Flow. It analyses stability of these fixed points.





6
D I S C R E T I Z AT I O N S O F A P A N D E R F L O W S

This chapter discusses properties of explicit Euler discretizations of
ERF and its generic version APF. Section 6.1 demonstrates that dis-
cretized APF (dAPF) dissipates energy, which is a generalization of
Proposition 5.14 (Error-Reduction energy does not increase). Section 6.2
shows sufficient conditions under which accumulation points of dAPF
exist. Section 6.3 uses specific properties of projections P and M to
show that accumulation points of dERF exist and are fixed points.
It also discusses how fixed point results can be generalized to other
object space constraints A, namely, by by intersecting A with other
sets.

6.1 energy dissipation of the apf

The highlights of this section are Corollary 6.5 — demonstrating that
dAPF dissipates energy — and Corollary 6.9 — demonstrating that
the distance functional }PX[gn]´ PY[gn]}2 does not increase for dAPF
iterates gn.

The first of these results (Corollary 6.5) is a generalization of the
well-known Fienup’s Error-Reduction property (Proposition 5.14).

Let X,Y Ă H be proximal nonempty sets. It is easy to verify that the
argument presented in Remark 5.17 remains valid in the following
sense: minimization problem

arg min
gPH

EX[g] + EY[g]

leads to the formal gradient descent flow

Btg = ´(g´ PX[g])´ (g´ PY[g]), (APF)

which — discretized (using explicit Euler) with step size ε = 1 and
initialized at some g0 P X — leads to AP. If, additionally, X and Y are
weakly closed, then APF is a selection of the (Mordukhovich-Kruger)
subgradient of EX + EY (Remark 5.18).

The goal of this section is to show that the subdifferential selection
(APF) — discretized (using explicit Euler) with step size ε ą 0 and

initialized at any g0 P H — leads to a generalization of AP we call
dAPF.

This generalized algorithm exhibits energy dissipation properties
similar to a gradient flow. Namely, since APF is a formal gradient
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descent — and assuming that E := EX + EY is Fréchet-differentiable
at g that solves APF — one has

d
dt

E[g] = ´}∇E[g]}22 = }´2g + PX[g] + PY[g]}22 . (6.1)

For a sequence (g(ε)n )nPN0 generated by dAPF, we show that — even
if E is not differentiable at gn — one has

E[g(ε)n+1]´ E[g(ε)n ]

ε
= ´(1´ ε)

›››´2g(ε)n + PX[g
(ε)
n ] + PY[g

(ε)
n ]

›››
2

2
. (6.2)

for ε P (0, 1]. This energy dissipation is a generalization of Fienup’s
error-reduction property (Proposition 5.14). Remarkably, it does not
require weak closedness of X or Y.

Moreover, as will de shown further below, for ε P (0, 1
2 ], the func-

tional g ÞÑ }PX[g
(ε)
n ]´ PY[g

(ε)
n ]}2 is Lyapunov (i. e. }PX[g

(ε)
n ]´ PY[g

(ε)
n ]}2

is non-increasing with n).

Definition 6.1 (Discretized AP Flow). Let X,Y Ă H be proximal with
projecton selections PX, PY, let g0 P H, let ε ą 0. The sequence (g(ε)n )nPN is
generated by the dAPF algorithm, if g(ε)0 = g0 and

g(ε)n+1 = g(ε)n + ε(´2g(ε)n + PX[g
(ε)
n ] + PY[g

(ε)
n ]) (dAPF)

for all n P N. In this case, we call (g(ε)n )nPN0 a dAPF sequence with initial
value g0 P H and step size ε.

In certain cases it is more convenient to consider the multi-valued variant
of the dAPF, defined by

g(ε)n+1 P g(ε)n + ε(´2g(ε)n + ΠX[g
(ε)
n ] + ΠY[g

(ε)
n ])

for multi-valued projections ΠX, ΠY.

Remark 6.2 (Relationship to Halpern’s algorithm). In case when X and Y

are convex, dAPF is a particular instance of the Halpern algorithm, see
[BC17, Ch. 30]. Another particular instance of the Halpern algorithm is
used below to establish continuity of projections for regularized addi-
tional constraints, see Definition 6.33, Theorem 6.34, and Lemma 6.37.

Remark 6.3. Let X,Y Ă H be proximal, let ( f (ε)n )nPN0/2 be a dAPF se-
quence with initial value f0 P X and step size ε = 1. (The indexing of
the sequence is chosen to be consistent with Remarks 5.16 and 5.17.)
Let (gn)nPN0 be an AP sequence with initial value f0. By the same
argument as in Remark 5.17, gn = fn for all n P N.

Proposition 6.4 (Energy dissipation in dAPF update). Let X,Y Ă H
be proximal, let g P H, let ε P (0, 1]. Use the dAPF update to define

g(ε) := g + ε(´2g + PX[g] + PY[g]).
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Use the notation E := EX + EY. Then,

E[g(ε)]´ E[g] ď ´ε(1´ ε) }2g´ PX[g]´ PY[g]}22 . (6.3)

Proof. The proof is a straightforward calculation. Start with the defi-
nition of E[g(ε)], use distance minimizing property (Corollary 3.6) to
estimate

}g(ε) ´ PX[g(ε)]}22 ď }g(ε) ´ PX[g]}22
}g(ε) ´ PY[g(ε)]}22 ď }g(ε) ´ PY[g]}22.

Insert the definition of g(ε) into E, get

E[g(ε)] ď 1
2

››(1´ 2ε)g + εPX[g] + εPY[g]´ PX[g]loooooooooooooooooooooomoooooooooooooooooooooon
=: T1

››2
2

+
1
2

››(1´ 2ε)g + εPX[g] + εPY[g]´ PY[g]loooooooooooooooooooooomoooooooooooooooooooooon
=: T2

››2
2.

Use the rearrangements

T1 = (1´ ε)
(

g´ PX[g]
)´ ε

(
g´ PY[g]

)
,

T2 = ´ε
(

g´ PX[g]loooomoooon
=: dX

)
+ (1´ ε)

(
g´ PY[g]loooomoooon
=: dY

)

to expand the squares. The terms containing the factor 1
2}dX}22 will be

(
(1´ ε)2 + ε2) 1

2
}dX}22 =

1
2
}dX}22 ´ ε(1´ ε)}dX}22;

the terms containing the factor 1
2}dY}22 will be

(
(1´ ε)2 + ε2) 1

2
}dY}22 =

1
2
}dY}22 ´ ε(1´ ε)}dY}22;

the terms containing the factor
@

dX, dY
D

will be

´1
2

2ε(1´ ε)
@

dX, dY
D´ 1

2
2ε(1´ ε)

@
dX, dY

D
= ´2ε(1´ ε)

@
dX, dY

D
.

Combine together all terms with the factor ε(1´ ε) to obtain

E[g(ε)] ď 1
2

››dX
››2

2 +
1
2

››dY
››2

2 ´ ε(1´ ε)
(››dX

››2
2 +

››dY
››2

2 + 2
@

dX, dY
D)

= E[g] ´ ε(1´ ε)
››2g´ PX[g]´ PY[g]

››2
2. ˝

From the previous proposition immediately follows
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Corollary 6.5 (Energy dissipation in dAPF). Let X,Y Ă H be proxi-
mal, let (g(ε)n )nPN0 be a dAPF sequence with initial value g0 P H and step
size ε P (0, 1]. Use the notation E := EX + EY. Then,

E[g(ε)n+1]´ E[g(ε)n ] ď ´ε(1´ ε)
›››2g(ε)n ´ PX[g

(ε)
n ]´ PY[g

(ε)
n ]

›››
2

2
(6.4)

for all n P N0. In particular, if E is differentiable at g(ε)n , this is equivalent to

E[g(ε)n+1]´ E[g(ε)n ]

ε
ď ´(1´ ε)

››∇E[g(ε)n ]
››2

2. (6.5)

Remark 6.6 (Recovering Fienup’s dissipation theorem). The previous corol-
lary is a generalization of Fienup’s Error-Reduction property (Propo-
sition 5.14). Indeed, let (gn)nPN0 be an ER sequence with initial value
g0 P P; let ( f (ε)n )nPN0/2 be a dAPF sequence with initial value f0 P X,
with step size ε = 1, and with X = M and Y = P. By Remark 5.17,
gn = fn, fn P P and fn+1/2 P M for all n P N0. Use the notation
E := EM + EP. Then, by Corollary 6.5,

EM[gn+1]´ EM[gn] = EM[ fn+1]´ EM[ fn]

= EM[ fn+1] + EP[ fn+1]looomooon
=0

´EM[ fn]´ EP[ fn]loomoon
=0

= E[ fn+1]´ E[ fn+1/2] + E[ fn+1/2]´ E[ fn]

ď 0,

recovering Proposition 5.14.

Corollary 6.7 (Quadratic summability in dAPF). Let X,Y Ă H be
proximal, let (g(ε)n )nPN0 be a dAPF sequence with initial value g0 P H and
step size ε P (0, 1). Use the notation E := EX + EY. Then,

1
ε

8ÿ

n=0

}g(ε)n+1 ´ g(ε)n }22 ď
1

1´ ε
E[g0].

Proof. By a straightforward calculation (using Proposition 6.4 in (˚)),
8ÿ

n=0

}g(ε)n+1 ´ g(ε)n }22 =
8ÿ

n=0

ε2}2g(ε)n ´ PX[g
(ε)
n ]´ PY[g

(ε)
n ]}22

=
8ÿ

n=0

ε

1´ ε
ε(1´ ε)}2g(ε)n ´ PX[g

(ε)
n ]´ PY[g

(ε)
n ]}22

(˚)ď ε

1´ ε

8ÿ

n=0

(E[gn]´ E[gn+1])

ď ε

1´ ε
(E[g0]´ lim sup

nÑ8
E[gn]) ď ε

1´ ε
E[g0],

since E[gn] ě 0 for all n P N0. ˝
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g

x = PX[gε]PY[g]

PX[g]

p+/2

gε

Figure 6.1: Illustration to Proposition 6.8 (dAPF does not increase projection
difference).

Let the point g have projections PX[g] and PY[g]. Equations (6.7)
and (6.8) state that projection x = PX[g(ε)] is not closer to g than
}g ´ PX[g]}2, – meaning that x is outside the cirle bound by solid
green circumference, – and not farther from g(ε) than }g(ε) ´ PX[g]}2,
– meaning x is inside the circle bound by dashed green circumference.
Overall, this means that x is inside the green filled area. Analogous
relations for PY[g(ε)] are marked orange. The proposition shows that
PX[g(ε)] and PY[g(ε)] are within }PX[g] ´ PY[g]}2/2 distance to the
midpoint p+/2 = (PX[g]+ PY[g])/2, – meaning that areas filled green
and orange are inside the violet dashed circle.

Corollary 6.5 seems remarkable since it does not require any differ-
entiability from EX + EY, but instead uses distance-minimizing prop-
erties of a projection. A similar argument is exploited in the following
proposition. It shows that projection difference }PX[g

(ε)
n ]´ PY[g

(ε)
n ]}2 —

which, in general, exhibits very poor Fréchet-differentiability — is a
non-increasing quantity, albeit only for step sizes ε P (0, 1

2 ].

Proposition 6.8 (dAPF update does not increase projection difference).
Let X,Y Ă H be proximal, let g P H, let ε P (0, 1

2 ]. Use the dAPF update to
define

g(ε) := g + ε(´2g + PX[g] + PY[g]).

Use the notation E := EX + EY. Then,
››PX[g(ε)]´ PY[g(ε)]

››
2 ď

››PX[g]´ PY[g]
››

2

for all n P N.

Proof. Let us show that

PX[g(ε)] P B››› PX [g]´PY [g]
2

›››
2

(
PX[g] + PY[g]

2

)
, (6.6)

and so does PY[g(ε)]. From this, the desired result will immediatly
follow by triangle inequality.
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Observe that by distance minimizing property (Corollary 3.6) holds:

}g´ PX[g]}2 ď }g´ PX[g(ε)]}2. (6.7)

}g(ε) ´ PX[g(ε)]}2 ď }g(ε) ´ PX[g]}, (6.8)

see Figure 6.1. Our goal is to use these inequalities to show that
››››PX[g(ε)]´ PX[g] + PY[g]

2

››››
2
ď

››››
PX[g]´ PY[g]

2

›››› , or

}x´ p+/2}2 ď }pX ´ p+/2}, (6.9)

where we use the notation pX = PX[g], pY = PY[g], p+/2 = (pX+ pY)/2
and x = PX[g(ε)] for brevity. Start with Equation (6.8) in the form

0 ď }g(ε) ´ pX}22 ´ }g(ε) ´ x}22.

Insert definition of g(ε), rearrange the terms by 2ε and 1´ 2ε to get

0 ď }(1´ 2ε)g + εpX + εpY ´ pX}22 ´ }(1´ 2ε)g + εpX + εpY ´ x}22
ď }(1´ 2ε)(g´ pX) + ε(pY ´ pX)}22 ´ }(1´2ε)(g´ x)+ ε(pX+ pY´2x)}22
= }(1´ 2ε)(g´ pX) + 2ε(p+/2 ´ pX)}22 ´ }(1´ 2ε)(g´ x) + 2ε(p+/2 ´ x)}22.

Apply cosine triangle theorem to open the brackets, rearrange the
terms:

0 ď (1´ 2ε)2
(
}g´ pX}2 ´ }g´ x}2

)
+ (2ε)2

(
}p+/2 ´ pX}22 ´ }p+/2 ´ x}22

)

+ 2(1´ 2ε)2εxg´ pX, p+/2 ´ pXy ´ 2(1´ 2ε)2εxg´ x, p+/2 ´ xy.

By cosine theorem, for (1´ 2ε)2ε-terms holds

2xg´ pX, p+/2 ´ pXy
´2xg´ x, p+/2 ´ xy

=

=

}g´ pX}22 + }p+/2 ´ pX}22 ´ }g´ p+/2}22,

´}g´ x}22 ´ }p+/2 ´ x}22 + }g´ p+/2}22.

When inserted into estimation, the summands }g´ p+/2}22 cancel out,
and the remaining terms combine to

0 ď (1´ 2ε)2
(
}g´ pX}2 ´ }g´ x}2

)
+ (2ε)2

(
}p+/2 ´ pX}22 ´ }p+/2 ´ x}22

)

+ (1´ 2ε)2ε
(}g´ pX}22 + }p+/2 ´ pX}22

)´ (1´ 2ε)2ε
(}g´ x}22 + }p+/2 ´ x}22

)

= (1´ 2ε)
(}g´ pX}2 ´ }g´ x}2)+ 2ε

(}p+/2 ´ pX}2 ´ }p+/2 ´ x}22
)
,

where we use (1´2ε)2 +(1´2ε)ε = (1´2ε) and (2ε)2 +(1´2ε)ε = 2ε

in the last equality. Therefore,

}p+/2 ´ pX}22 ´ }p+/2 ´ x}22 ě
1´ 2ε

2ε

(´}g´ pX}22 + }g´ x}22
) ě 0,
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where the last inequality holds by Equation (6.7) for all 2ε P (0, 1].
Therefore, Equation (6.9) is true; therefore, inclusion (6.6) is true. Anal-

ogously, PY[g(ε)] P B} pX´pY
2 }2

(
pX+pY

2

)
. ˝

From the previous proposition immediately follows

Corollary 6.9 (dAPF does not increase projection difference).
Let X,Y Ă H be weakly closed, let (g(ε)n )nPN0 be a dAPF sequence with initial
value g0 P H and step size ε P (0, 1

2 ]. Then,

››PX[g
(ε)
n+1]´ PY[g

(ε)
n+1]

››
2 ď

››PX[g
(ε)
n ]´ PY[g

(ε)
n ]

››
2

for all n P N0.

6.2 accumulation points of dapf

This section contains minor technical results sufficient for bounded-
ness of dAPF. Namely, it introduces Definition 6.10 which is a suffi-
cient assumption for dAPF to be bounded (Proposition 6.13).

Definition 6.10 (AP-bounded operators). Let (B, } ¨ }B) be a Banach
space. We call the operator P : B Ñ B AP-bounded on B, if at least one of
the following conditions holds:

i) there exists C P [0;8) such that }P[ f ]}B ď C for all f P B;

ii) }P[ f ]}B ď } f }B for all f P B.

Remark 6.11 (Why on a Banach space). For the purposes of this section,
the choice (B, } ¨ }B) = (H, } ¨ }2) is sufficient. In Section 6.3, AP-
boundedness is used to establish properties of ER on more general
spaces — for example, on Sobolev spaces: (B, } ¨ }B) = (W1,p(Td), } ¨ }W1,p)

for p P [1,8).

Example 6.12.

i) Let
?

I P pH be non-negative. The projection PM(
?

I) is AP-bounded
on H, since for all f P H holds

}PM[ f ]}22 = CF }?I}22 ă 8

by Plancherel’s theorem.

ii) Let X be such that PX is an indicator projection (Definition 5.3).
Then, PX is AP-bounded on H, since for any f P H holds

}PX[ f ]}2 = }1S[ f ] f }2 ď } f }2.

In particular PP, PS and PTs(ν) are AP-bounded on H.
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iii) Let α ą 0, let Ω = R. The projection PTa(α) is not AP-bounded
on H, since for any R ą 0,

››››PTa(α)

[
3α

4
1[´R/2,R/2]

]››››
2
= }α1[´R/2,R/2]}2 = αR,

which is i) larger than any C ă 8 for large enough R; and ii)
larger than

3
4

αR =

››››
3α

4
1[´R/2,R/2]

››››
2

.

Proposition 6.13 (dAPF is bounded). Let X,Y Ă H be proximal. Let
(g(ε)n )nPN0 be a dAPF sequence with initial value g0 P H and step size
ε P (0, 1/2].

i) If PX and PY are AP-bounded on H, then (g(ε)n )nPN0 is uniformly
bounded in n, i. e. there exists C ă 8 such that }g(ε)n }2 ď C for all
n P N0.

ii) Let (B, } ¨ }B) is a Banach space with B Ă H. If PX and PY map B to B
and are AP-bounded on B, and if g0 P B, then (g(ε)n )nPN0 is uniformly
bounded in n on B, i. e. there exists C ă 8 such that }g(ε)n }B ď C for
all n P N0.

Proof. i) Assume that }PX[ f ]}2 ď CX for all f P H, assume that }PY[ f ]}2 ď } f }2
for all f P H. (The proof is similar for any other combination of AP-
boundedness conditions.)

We claim that for all n P N0

}g(ε)n }2 ď C := max t}g0}2, CXu .

The claim is proven by induction. It is obviously true for n = 0. As-
suming the claim is true for some n P N, have

}g(ε)n+1}2 ď (1´ 2ε)}g(ε)n }2 + ε}PX[g
(ε)
n ]}2 + ε}PY[g

(ε)
n ]}2

ď (1´ 2ε)}g(ε)n }2 + εCX + ε}PY[g
(ε)
n ]}2

ď max t}gn}2, CXu . (6.10)

Since the induction step Equation (6.10) uses only triangle inequal-
ity, the proof works analogously for case ii). ˝

Corollary 6.14 (Weak accumulation points of dAPF exist). Let
X, Y Ă H be proximal; assume that PX, PY are AP-bounded. Let (g(ε)n )nPN0

be a dAPF sequence with initial value g0 P H and step size ε P (0, 1/2].
Then, there exists a weak accumulation point g P H, such that g(ε)n á g

(convergences weakly to g) as n P M for an appropriate infinite M Ă N.

Proof. The claim follows from Proposition 6.13 and the Banach-Alaoglu
theorem (closed balls are weakly compact in Hilbert spaces). ˝
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Example 6.15. Let
?

I P pH be non-negative, let g0 P P, let ε P (0, 1
2 ]Yt1u.

Let X = M, Y = P. The resulting dAPF sequence (g(ε)n )nPN0 is bounded
by maxt}g0}2, } q?I}2u and has weak accumulation points.

Remark 6.16 (Fixed points of dAPF). If one assumes that PX, PY are weakly
sequentially continuous, then one can show that weak accumulation
points of dAPF are fixed points. The proof is essentially the same as
the one demonstrated for the strong topology in Proposition 6.32.

However, the assumption for PX, PY to be weakly sequentially con-
tinuous is unrealistic in praxis. For example, let Ω = T1, consider the
sequence (gn)nPN with gn(x) = sin(nx) for all n P N. Then, gn á 0,
but

xPP[gn],1T1y =
ż 2π

0
PP[sin(nx)] dx = n

ż π/n

0
sin(nx) dx =

= n ¨
(
´cos(nx)

n

)ˇ̌
ˇ̌
π/n

0
= 2 ‰ x0,1T1y,

meaning that the positivity functional is not weakly sequentially con-
tinuous.

The following proposition shows that if one has strong convergence
to an accumulation point, then it is a fixed point. This result will be
applicable for phase retrieval on bounded domains (demonstrated in
the next section) due to strong properties of PP and PM (in this setting
of a bounded domain).

Proposition 6.17 (Fixed points of dAPF). Let X,Y Ă H be proximal,
let ε P (0, 1], let the sequence (gn)nPN be generated by the multi-valued
dAPF algorithm (6.1).

If some g P H is a strong accumulation point of (gn), then it is a fixed
point, meaning that

0 P 2g´ΠX[g]´ΠY[g].

Proof. Consider a subsequence of (gn)n, again denoted by (gn)n, such
that gn Ñ g as n Ñ8. Then, by Proposition 3.12, there exist projecton
selections PX, PY, and a further subsequence, again denoted by (gn)n,
such that

PX[gn]á PX[g], and

PY[gn]á PY[g] as n Ñ8.

Assume that 2g ‰ PX[g] + PY[g], meaning that

}2g´ PX[g]´ PY[g]}22 = α ą 0

for some α. Since 2gn ´ PX[gn]´ PY[gn]á 2g´ PX[g]´ PY[g], by weak
l.s.c. of the squared norm } ¨ }2 have

α = }2g´ PX[g]´ PY[g]}22 = lim inf
nÑ8 }2gn ´ PX[gn]´ PY[gn]}22,
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meaning that the sum

8ÿ

n=0

›››2g(ε)n ´ PX[g
(ε)
n ]´ PY[g

(ε)
n ]

›››
2

2

is unbounded, in contradiction to Corollary 6.5. Thus, }2g´PX[g]´PY[g]}22 = 0,
and the claim follows. ˝

6.3 fixed points of derf

This section shows how obtained results for dAPF can be strengthened
for the particular case of phase retrieval.

Namely, Section 6.3.1 formalizes the setting required to analyse
dERF on W1,p(Ω) where Ω = Td or Ω Ă Rd is measurable and
bounded. Section 6.3.2 establishes technical properties of PP and PM

that ensure boundedness of dERF. Section 6.3.3 shows that accumu-
lation points of dERF are fixed points. In conclusion, Section 6.3.4
demonstrates an examlple on how the above results can be general-
ized to additional constraints other than PP.

6.3.1 Discretized ERF

This subsection formalizes the precise setting of dERF.

Definition 6.18 (Positivity and modulus functionals on Lp).

i) Let Ω P tRd, Tdu, let p P [1,8]. Then, PP, as defined in Example 3.14,
maps Lp(Ω) to Lp(Ω).

ii) Let Ω = Td or let Ω Ă Rd be measurable and bounded, let p P [1,8],
let

?
I P L1(ΩF), let ϕ : ΩF Ñ [0; 2π) be measurable and such that

sin ϕ is odd.

Then, PM; ϕ, as defined in Example 3.24, maps Lp(Ω) to Lp(Ω).

Proof. The statement i) follows from PP being an indicator projection.
Indeed, for any indicator projection PX[g] = 1S[g]g have }PX[g]}Lp ď }g}Lp .

For PM; ϕ, recall that Lp(Ω) Ď L1(Ω) for bounded Ω; thus, Fourier
transform is well-defined. Further, for any g P Lp(Td)

}PM; ϕ[g]}p
p ď (2π)d}PM; ϕ[g]}p

8 ď (2π)d
›››
ÿ

kPZd

|?I(k)|
›››

p

8
ă 8. ˝

Definition 6.19 (Discretized ER Flow on a bounded domain). Let
Ω = Td or let Ω be a bounded measurable subset of Rd, let

?
I P L1(Ω),

let g0 P Lp(Ω) for p P [1,8]. Let ε ą 0; let A represent an additional con-



6.3 fixed points of derf 129

straint such that PA is well-defined as an operator on Lp(Ω). The sequence
(g(ε)n )nPN is generated by the dERF algorithm, if g(ε)0 = g0 and

g(ε)n+1 = g(ε)n + ε(´2g(ε)n + PM[g(ε)n ] + PA[g
(ε)
n ]) (dERF)

for all n P N. In this case, we call (g(ε)n )nPN0 a dERF sequence with initial
value g0 P H and step size ε.

Unless explicitely mentioned otherwise, we use positivity as the additional
constraint: A = P.

For p = 2, dERF is a particular case of dAPF (for Ω = Td, X = M, and
Y = P).

Remark 6.20 (Why bounded domain). When ERF is considered on an un-
bounded domain such as Ω = Rd, lacking regularity of PM in Fourier
space (lacking decay of PM in object space) causes difficulties.

Indeed, if at some region in Fourier space | f̂ | ! ?
I — meaning that

| f̂ (k)| ! ?
I(k) for a. a. k P U, where U is a measurable subset of ΩF

with λ(U) ą 0 — then
?

I
f̂
| f̂ | can be much less regular than f̂ .

This difficulty can be tackled in several ways.
One can attempt to regularize PM in the appropriate region. The

challenge in this case is to keep the relevant geometric properties
(projection properties) intact.

Alternatively, one can modify the object space constraint in a way
that leads dERF to avoid regions where | f̂ | ! ?

I. For example, if the
positivity projection is restricted to an operator PP̃ which is pointwise
parallel to f̂ in Fourier space — i. e.,

Re
(xPP̃[ f ](k)˚ f̂ (k)

) ě 0, for all k P Zd

— then
|xPP̃[ f ](k) + xPM[ f ](k)|2 ě |xPP̃[ f ](k)|2 + |?I(k)|2,

avoiding the region where | f̂ | ! ?
I altogether. However, in this case

P̃ depends on f and changes with each iteration, but this does not
necessarily breaks properties such as energy dissipation.

If an appropriate regularization is established, we conjecture that
tools such as Pego’s compactness criteria [Peg85] can extend results
of this section and Chapter 7 to unbounded domains.

6.3.2 Positivity and modulus projection properties

This subsection contains technical results regarding properties of PP

and PM, and demonstrates the boundedness of dERF in the Sobolev
space W1,p(Ω) (Proposition 6.27).

The technical results on PP and PM are simple in nature and folk-
lorically known. For example, the statement of Lemma 6.24 is taken
from [Eva10].
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Lemma 6.21 (PP is sequentially continuous). Let Ω P tRd, Td, Td
Nu,

or let Ω Ă Rd be measurable and bounded. Let p P [1,8], let (gn)n be a se-
quence in Lp(Ω) that converges to some g P Lp(Ω). Then, limnÑ8 PP[gn] = PP[g].

Proof. Proof by a direct calculation: observe that 2PP[g](x) = g(x)+ |g|(x)
for a. a. x P Ω. Further, observe that for any a, b P R holds

|a| ´ |b| ď |a´ b| and |b| ´ |a| ď |a´ b| ñ ˇ̌|a| ´ |b|ˇ̌ ď |a´ b|

by triangle inequality. Therefore,

2}PP[gn]´ PP[g]}Lp ď ››gn ´ g
››

Lp +
››|gn| ´ |g|

››
Lp ď 2

››gn ´ g
››

Lp Ñ 0

as n Ñ8.
Alternatively, for p = 2 the claim follows from PP being firmly

nonexpansive as a projection onto a convex set (Example 5.24). ˝

For later use, observe the following property of the modulus func-
tional.

Lemma 6.22 (PM is Lipshitz continuous). Let Ω,
?

I be as in Defini-
tion 2.1; assume that C?

I/|ĝ| :=
›››
?

I
ĝ

›››8 ă 8. Let ϕ : ΩF Ñ [0; 2π) be such

that sin ϕ is odd. Then, }PM; ϕ[g] ´ PM; ϕ[ f ]}2 ď 2C?
I/|ĝ|}g ´ f }2 for all

f P L2(Ω).

Proof. Note that the statement, considered pointwise in Fourier space,
is trivial for k where

?
I(k) = 0. Further note that for k where

?
I(k) ‰ 0

one has ĝ(k) ‰ 0 due to the assumption C?
I/|ĝ| ă 8.

For a. a. k P ΩF where
?

I(k) ‰ 0 and f̂ (k) ‰ 0 have

ˇ̌
ˇ̌
ˇ
?

I(k)
ĝ(k)
|ĝ(k)| ´

?
I(k)

f̂ (k)
| f̂ (k)|

ˇ̌
ˇ̌
ˇ

ď
››››
?

I

|ĝ|
››››8

ˇ̌
ˇ̌
ˇĝ(k)´ |ĝ(k)|

f̂ (k)
| f̂ (k)|

ˇ̌
ˇ̌
ˇ ď 2

››››
?

I

|ĝ|
››››8

ˇ̌
ˇĝ(k)´ f̂ (k)

ˇ̌
ˇ ,

where in the last inequality we used
ˇ̌
ˇ̌a´ b

|b| |a|
ˇ̌
ˇ̌ ď 2|a´ b| for a, b P C, b ‰ 0,

which is proved in Lemma D.1.
For a. a. k P ΩF where

?
I(k) ‰ 0 and f̂ (k) = 0 have

ˇ̌
ˇ̌?I(k)

ĝ(k)
|ĝ(k)| ´

?
I(k)eiϕ(k)

ˇ̌
ˇ̌

ď
››››
?

I

|ĝ|
››››8

ˇ̌
ĝ(k)´ |ĝ(k)|eiϕ(k) ˇ̌
looooooooooomooooooooooon
ď2|ĝ(k)|=2|ĝ(k)´ f̂ (k)|

ď 2
››››
?

I

|ĝ|
››››8

ˇ̌
ˇĝ(k)´ f̂ (k)

ˇ̌
ˇ .
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Therefore, and by Plancherel’s theorem, have

}PM[g]´ PM[ f ]}2

= CF

›››››
?

I
ĝ
|ĝ|1supp

?
I ´?

I
f̂
| f̂ |1supp

?
IXt f̂‰0u ´

?
Ieiϕ

1supp
?

IXt f̂=0u

›››››
2

ď 2CF

››››
?

I

|ĝ|
››››8

›››ĝ´ f̂
›››

2
ď 2

››››
?

I

|ĝ|
››››8
}g´ f }2 ˝

Lemma 6.23 (PM is subsequentially continuous: Hilbert space case).
Let one of the following hold:

• Let Ω = Td, ΩF = Zd, let
?

I P `2(Zd)).

• Let Ω be a bounded measurable subset of Rd, let ΩF = Rd, let
?

I P L2(Rd).

Further, let ϕ : Ω Ñ [0; 2π) be measurable and such that sin ϕ is odd.
Let (gn)nPN converge to g in H = L2(Ω). Then, there exist:

i) a measurable ψ : Ω Ñ [0; 2π) such that sin ψ is odd, and

ii) an subsequence of (PM; ϕ[gn])nPN that converges to PM; ψ[g] in H.

Proof. For bounded Ω, the set M(
?

I) is (strongly) compact (Proposi-
tion D.2, Corollary D.3). Thus, there exists a subsequence of (gn)n,
again denoted by (gn)n, such that (PM; ϕ[gn])nPN that converges to
some f PM(

?
I).

Further, by Proposition 3.12, there exists a subsubsequence, again
denoted by (gn)n, that converges to some f̃ P ΠM[g], meaning that
f̃ = PM; ψ[g] for some measurable ψ : Ω Ñ [0; 2π) such that sin ψ is
odd.

Thus, (gn) converges strongly to f and weakly to f̃ , meaning that
f = f̃ . ˝

The following lemma is from [Eva10, Section 5.10, Problem 17].

Lemma 6.24 (Regularity of PP). Let p P [1,8), let g P W1,p(Ω), where
Ω = Td, or Ω is a bounded subset of Rd. Then, PP[g] P W1,p(Ω), and

∇PP[g] = 1gą0∇g.

In particular, }PP[g]}W1,p ď }g}W1,p for all g P W1,p, meaning that PP is
AP-bounded on W1,p.

Proof. For ε ą 0, define

Fε[g] :=

$
&
%

a
g2 + ε2 ´ ε if g ě 0;

0 else.
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Then, Fε[g] P W1,p(Ω). Indeed,

ż

Ω

(b
g2(x) + ε2 ´ ε

)p

dx =

ż

Ω
|g|p ď }g}p

Lp(Ω)
,

since
a

g2(x) + ε2´ ε ą 0 and since
a

g2(x) + ε2 ď g(x) + ε pointwise
a. e. by concavity of

?
. Further, at any x P Ω with g(x) ą 0 holds

Bxi F
ε[g](x) =

1
2
a

g2(x) + ε2
2g(x)Bxi g(x),

where Bxi g is the weak derivative of g for i P t1, . . . , du. Therefore,

ż

Ω
(Bxi F

ε[g](x))p =

ż

Ω

( g(x)a
g2(x) + ε2loooooomoooooon
ď1

Bxi g(x)
)p

dx ď }Bxi g}p
Lp ,

so that g P W1,p(Ω).
It is obvious that Fε[g] Ñ PP[g] pointwise a. e. as ε Ñ 0. Let us

show that Fε[g] Ñ PP[g] in Lp, and that Bxi F
ε[g] Ñ 1gą0Bxi g in Lp for

i P t1, . . . , du as ε Ñ 0.
Indeed, using

a
g2(x) + ε2´ g(x) ď ε and boundedness of Ω, obtain

ż

Ω

(b
g2(x) + ε2 ´ ε´ PP[g](x)

)p

dx

=

ż

tgą0u

(b
g2(x) + ε2 ´ ε´ g(x)

)p

dx

=

ż

tgą0u
(2ε)p dx ď (2π)d(2ε)p Ñ 0

as ε Ñ 0. Further,

ż

Ω

(Bxi F
ε[g](x)´ 1gą0Bxi g(x)

)p dx

=

ż

tgą0u

(
g(x)a

g2(x) + ε2
Bxi g(x)´ Bxi g

)p

dx Ñ 0

as ε Ñ 0 by the dominated convergence theorem with the majorant
2Bxi g(x), since g?

g2(x)+ε2
ď 1 for a. a. x P Ω. ˝

Remark 6.25 (Positivity functional does not belong to W1,8). Note that the
last step of the proof is not valid for p = 8, as the dominated con-
vergence theorem is not applicable, and there exist g P W1,p(Ω) such
that

lim sup
εÑ0

›››››
g(x)a

g2(x) + ε2
´ 1

›››››8
ě 1. (6.11)
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Indeed, observe that

lim
εÑ0

ε2
?

ε4 + ε2
´ 1 = lim

εÑ0

ε?
ε2 + 1

´ 1 = ´1,

which means that if ε2 is in range of g — which is possible for g which
range includes a neighborhood of zero — inequality (6.11) holds, and
}∇Fε[g]´ 1gą0∇g}8 Û 0 as ε Ñ 0.

Lemma 6.26 (Regularity of PM). Let Ω P tRd, Td, Td
Nu, or let Ω Ă Rd

be measurable and bounded. Use pH(ΩF) to denote the Fourier dual of H(Ω).
Let

?
I P pH(ΩF).

i) If
?

I satisfies

} q?I}2H1 = CF

ż

ΩF

(1 + |k|2)?I2(k) dk ă 8,

then PM[ f ] P H1(Ω) with }PM[ f ]}H1 = } q?I}H1 for any f P H(Ω).

ii) If
?

I satisfies
ż

ΩF

(1 + |k|)?I(k) dk ă 8,

then PM[ f ] P W1,8(Ω) for any f P H(Ω).

iii) If Ω is a bounded subset of Rd or if Ω = Td, and if
?

I satisfiesş
(1 + |k|)?I(k) dk ă 8, then PM[ f ] P W1,p(Ω) for any f P H(Ω)

and p P [1,8).

In particular, PM is AP-bounded on W1,p(Ω) for bounded Ω, for p P [1,8]

with the constant λ(Ω)1/p ş(1 + |k|)?I(k) dk.

Proof. All statements follow directly by Fourier calculus.
i) By Plancherel’s theorem have

ż
|PM[ f ](x)|2dx = CF

ż
|?I(k)|2dk ă 8, and

ż
|∇PM[ f ](x)|2dx = CF

ż
|k|2?I2(k) dk ă 8,

hence PM[ f ] P H1(Ω) with desired norm.
ii) By definition of Fourier transform,

}PM[ f ](x)}8 ď sup
xPΩ

ż

ΩF

|?I(k)| dk ă 8, and

}∇PM[ f ](x)}8 ď sup
xPΩ

ż

ΩF

|k?I(k)| dk ă 8,

hence PM[ f ] P W1,8(Ω).



134 discretizations of ap and er flows

iii) Since Ω is bounded, its Lebesgue measure λ(Ω) is less than
infinity, and

ż

Ω
|PM[ f ]|p ď λ(Ω)}PM[ f ]}p

8 ă 8, and
ż

Ω
|∇PM[ f ]|p ď λ(Ω)}∇PM[ f ]}p

8 ă 8

by part ii).
By ii) and iii), PM is AP-bounded on W1,p(Ω) for bounded Ω and

any p P [1,8]. ˝

Proposition 6.27 (dERF/ER is W1,p-bounded on bounded domains).
Let p P [1,8), let H = L2(Ω) where Ω = Td or Ω Ă Rd is measurable and
bounded. Let

?
I P pH be non-negative with

ş ?
I(k) dk +

ş |k|?I(k) dk ă 8.
Let (g(ε)n )nPN0 be a dERF sequence with initial value g0 P W1,p(Ω) and

step size ε ą 0.

i) If ε P (0, 1
2 ], then g(ε)n P W1,p(Ω) for all n P N0, and

}g(ε)n }W1,p ď max
"
}g0}W1,p , λ(Ω)1/d

ż
(1 + |k|)?I(k) dk

*
.

ii) If ε = 1 and g0 P PXW1,p(Ω) — in other words, if (g(ε)n ) is an ER
sequence — then, gn P W1,p(Ω) for all n P N0, and

}g(ε)n }W1,p ď max
"
}g0}W1,p , λ(Ω)1/d

ż
(1 + |k|)?I(k) dk

*
,

where λ is the Lebesgue measure on Td (if Ω = Td) or on Rd (if Ω Ď Td).

Proof. i) The claim follows from Proposition 6.13 with B = W1,p(Ω),
applicable by Lemmas 6.24 and 6.26. ii) The claim follows by induction
from Lemmas 6.24 and 6.26. ˝

Remark 6.28 (Two cases of Proposition 6.27). In the presented form, the
case i) of Proposition 6.27 can not be extended to ε ą 1

2 . For example,
for generic g P W1,p(Td) and ε = 1 have

}g + (´2g + PP[g] + PM[g])}W1,p = }PM[g] + PP[g]´ g}W1,p ,

which can, in general, exceed }g}W1,p and }PM[g]}W1,p . However, one
still has boundedness of ER in W1,p due to ER’s specific form.

6.3.3 Fixed points of dERF

The main contribution of this subsection is Proposition 6.32; it demon-
strates that since dERF dissipates energy, its accumulation points are
fixed points.
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Recall the following variant of the Rellich-Kondrachov compact-
ness theorem, see [Leo09, Theorem 11.21]. (Note that in [Leo09], the
theorem is stated for a bounded domain U Ď Rd with continuous
boundary BU. The results of the theorem are still valid on the torus
Td which is an open and bounded set with an empty boundary.)

Theorem 6.29 (Rellich-Kondrachov variant). Let p P [1,8), let Ω = Td

or let Ω Ă Rd be measurable and bounded with continuous boundary BΩ.
The space W1,p(Ω) is compactly embedded in Lp(Ω).

Corollary 6.30 (Accumulation points exist). Let Ω = Td or let Ω Ă Rd

be measurable and bounded with continuous boundary BΩ. Let p P [1,8),
let

?
I : ΩF Ñ C be non-negative with

ş ?
I(k) dk +

ş |k|?I(k) dk ă 8. Let
(g(ε)n )nPN0 be a dERF sequence with initial value g0 P W1,p(Ω) and step
size ε ą 0.

If either i) ε P (0; 1
2 ], or ii) ε = 1 and g0 P W1,p(Ω)XP, then, there exists

g P Lp(Ω) such that a subsequence of (g(ε)n )nPN converges to g in Lp(Ω).

Proof. By Proposition 6.27, (g(ε)n )n is bounded in W1,p(Ω) and thus
compact in Lp(Ω) by Theorem 6.29. ˝

Example 6.31. In particular, for any d P N and g0 P H1(Ω) with a
bounded Ω Ă Rd, there exists a fixed point g P L2(Ω) such that
g(ε)n Ñ g in L2 as n Ñ8, where n P M for an appropriate unbounded
M Ă N.

The following proposition follows from Proposition 6.17, the core
step of which was the energy dissipation inequality from Corollary 6.5.

Proposition 6.32 (Accumulation points are fixed points).
Let Ω = Td or let Ω Ă Rd be measurable and bounded with contin-

uous boundary BΩ. Let A represent an additional constraint such that
PA : L2(Td) Ñ L2(Td) is continuous. Let (g(ε)n )nPN0 be a dERF sequence
with initial value g0 P L2(Td), with additional constraint A, and with step
size ε ą 0. Let

?
I : ΩF Ñ C be non-negative with

ş ?
I(k) dk+

ş |k|?I(k) dk ă 8.
Then, if g is an accumulation point of (g(ε)n )nPN, there exists ψ : Zd Ñ [0, 2π)

with sin ψ odd such that g a fixed point of dERF, i. e.

2g´ PM; ψ[g]´ PA[g] = 0

Proof. By Proposition 6.27, (g(ε)n )n is bounded in H1(Ω) and thus com-
pact in L2(Ω) by Theorem 6.29. Thus, there exists a strong accumula-
tion point g of (g(ε)n )n. By Proposition 6.17, there exists an appropriate
ψ such that g is the desired fixed point. ˝

6.3.4 Regularization of additional constraints

This subsection demonstrates one of the possible ways to regularize
additional constraints, such that an extension of Corollary 6.30 be-
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comes possible. The highlight of this section is Proposition 6.43; it
presents an example on how (convex) additional constraints can be
regularized so that existence results that will be derived in Chapter 7

remain valid.
Results of the previous subsection rely on }PP[g]}W1,p ď }g}W1,p for

all g P W1,p, and on W1,p being compact in Lp. In general, it can
not be expected for other additional constraints. For example, when
positivity is combined with support constraint, the resulting projection
PPXS does not map W1,p(Td) to W1,p(Td).

6.3.4.1 Regularization via intersection of closed convex sets

In practice, it is most convenient to regularize convex additional con-
straints A using some convex regularization set X, since one can
use methods from convex optimization to calculate PAXX. Recall the
Halpern and the Dykstra algorithms, cited here from [BC17, Ch. 30]
and [BCL02]; these algorithms may be used to calculate PX1X...XXm for
closed convex sets X1, . . . ,Xm.

Definition 6.33 (A specific case of the Halpern algorithm). Let M P N,
let X1,X2, . . . ,XM Ă H be closed and convex, let Pi denote the projection
onto Xi for i P t1, . . . , Mu. Let g0 P H. Generate the sequence (gn)nPN

using the following update:

gn+1 =
1

n + 2
g0 +

n + 1
n + 2

(
1
M

Mÿ

i=1

Pi[gn]

)
. (Halpern)

In this case, call (gn)nPN0 the Halpern sequence with initial value g0.

Theorem 6.34 (Halpern’s convergence [BC17, Ex. 30.4]). Let M P N,
let X1,X2, . . . ,XM Ă H be closed and convex with C :=

ŞM
i=1 Xi ‰ ∅. let

Pi denote the projection onto Xi for i P t1, . . . , Mu. Let g0 P H, let (gn)nPN

be the corresponding Halpern sequence. Then, gn Ñ PXXY[g0].

The following variant of the Dykstra algorithm for two sets is taken
from [BCL02]. A formulation for intersection of M P N sets can be
found in [BC17, Ch. 30].

Definition 6.35 (Dykstra’s algorithm). Let X,Y Ă H be closed and
convex. Let g0 P H, let h´1 = h̃0 = 0. Generate the sequences (gn)nPN,
(g̃n)nPN, (hn)nPN, and (h̃n)nPN using the following update:

g̃n = PY[gn + hn´1]

hn = gn + hn´1 ´g̃n

gn+1 = PX[g̃n + h̃n ]

h̃n+1 = g̃n + h̃n ´gn+1

(Dykstra)

In this case, call (gn)nPN0 the Dykstra sequence with initial value g0.
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Theorem 6.36 (Dykstra’s convergence [BC17, Thm. 30.7]). Let X,Y Ă H
be closed and convex with non-empty XX Y ‰ ∅. Let g0 P H, let (gn)nPN

be the corresponding Dykstra sequence. Then, gn Ñ PXXY[g0].

The following lemma shows sufficient conditions for continuity of
regularized projections.

Lemma 6.37 (Continuity of regularized projections). Let X,Y Ă H
be closed and convex with non-empty intersection. If PX and PY are continu-
ous, then so is PXXY.

Proof. Let g(m) Ñ g an g Ñ 8. Let p0 P H, let (p(m)
n )nPN be the

Halpern sequence with initial value p0 that converges to PXXY[g(m)]

as n Ñ 8; let (pn)nPN be the Halpern sequence with initial value p0

that converges to PXXY[g] as n Ñ8.
Using continuity of PX and PY, have

}PXXY[g(m)]´ PXXY[g]}2 = lim
nÑ8 }p

(m)
n+1 ´ pn+1}2

= lim
nÑ8

›››››
1

n + 2
p0 +

n + 1
n + 2

(
PX[p

(m)
n ] + PY[p

(m)
n ]
)

´ 1
n + 2

p0 ´ n + 1
n + 2

(PX[pn] + PY[pn])

›››››
2

=
›››PX[g(m)] + PY[g

(m)
n ]´ PX[g]´ PY[g]

›››
2
Ñ 0

as m Ñ8. ˝

6.3.4.2 Hilbert cube regularization

One way to regularize a function in object space is to enforce its decay
in Fourier space. For example, one may bound all values of |ĝ| by
some upper bound ρ P L1(Zd) as follows.

Definition 6.38 (Hilbert cube). i) For ρ P l1(Zd; Rě0), define the
corresponding Hilbert cube (in Fourier space)

QF
ρ =

!
f P L1(Td) | | f̂ (k)| ď ρ(k) for all k P Zd

)
.

ii) For ρ P L2(Rd; Rě0), define the corresponding Hilbert cube (in Fourier
space)

QF
ρ =

!
f P L2(Rd) | | f̂ (k)| ď ρ(k) for a. a. k P Rd

)
.

Given an additional constraint A, we call AXQF
ρ the regularized version

of A.
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Example 6.39 (Some Hilbert cubes). Let C ą 0, let p P [1,8]. Let } ¨ }2; Rd

denote the Euclidean norm of a d-dimensional vector. The following
choices of ρ P l1(Zd; Rě0) will be used in this section.

i) Let r P (d;8]. The choice ρ(k) = C
1+}k}r

2; Rd
ensures that QF

ρ is

a compact subset of Lp(Td) (see Corollary D.7). We use the
shorthand notation QF

C;r := QF
C

1+}¨}r
2; Rd

.

ii) Let
?

I P l1(Zd; Rě0) represent the phase retrieval measurement.
The choice ρ = C

?
I is appropriate to use when regularity of the

additional constraint needs to be tied to the regularity of the
modulus constraint.

Remark 6.40. Let ρ be in l1(Zd; Rě0) or in L2(Rd; Rě0). From its defi-
nition immediately follows that QF

ρ is convex and closed, and therefore
weakly closed.

Proposition 6.41 (Projection onto QF
ρ). Let ρ be in l1(Zd; Rě0) or in

L2(Rd; Rě0). Since QF
ρ is weakly closed, a projection onto QF

ρ is well-defined
by Proposition 3.4. The projection onto QF

ρ — with respect to metric of L2(Td)

if ρ P l1, and with respect to metric of L2(Rd) if ρ P L2 — is given by

PQF
ρ
[g] = F´1

(
ρ

ĝ
|ĝ|1|ĝ|ąρ + ĝ1|ĝ|ďρ

)
.

Proof. The projection of QF
ρ is unique by Proposition 3.9. One can

check that PQF
ρ

has the presented form, either by a direct calculation
(similarly to Example 3.24), or using an appropriate local version and
Proposition 3.33. ˝

Remark 6.42 (Calculating PA X PQF
ρ
). For any convex, closed additional

constraint A with non-empty AXQF
ρ , regularized projection PAXQF

ρ
can

be calculated using Dykstra’s algorithm or Halpern’s algorithm.
An example can be found in Figure 6.2, where Dykstra’s algorithm

demonstrates PA for A = (PX S)XQF
C;r, for C P t0.5, 1, 2u and r = 2.

Proposition 6.43 (Regularized accumulation points exist).
Let Ω = Td, let p P [1,8], let C ą 0, let r ą d.

Further, let
?

I P pH(Zd) be non-negative with q?I P QF
C;r, let A Ă QF

C;r

be closed. Let (g(ε)n )nPN0 be a dERF sequence with additional constraint A,
with initial value g0 P QF

C;r, with step size ε P (0, 1
2 ].

Then, g(ε)n P QF
C;r for all n P N0.

In particular, for any p P [1,8] there exists g P Lp(Td) such that a
subsequence of (g(ε)n )nPN converges to g in Lp(Td).
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S
filler text (avoid clip)

PA[ f ] for A = (P X S) X QF
0.5;2

PA[ f ] for A = (P X S) X QF
1;2

PA[ f ] for A = (P X S) X QF
2;2

f

f
ρ̌

Figure 6.2: Illustration to Remark 6.42 (regularized PX S).
Regularized “support+positivity” projection PA[ f ] of a function f
for A = (PX S)X QF

C;r, for r = 2 and C P t0.5, 1, 2u. The support set
S is indicated by the grey hatched region. The regularization bound
ρ is of the form 1/(|k|2 + 1), rescaled so that ρ̌ — being of the form
exp(´|x|) — is comparable to f , see the small plot in the upper right
corner.
The set QF

C;2 is a compact subset of Lp(T1), and Corollary 6.30 applies.
The “support+positivity” projection can be calculated explicitely:
PPXS(S)[g] = 1SXtgě0ug.
For C = 4 (not plotted), differences between the regularized projec-
tion and PPXS are unvisible to the naked eye.
As described in Remark 6.42, PA can be calculated using Dyk-
stra’s algorithm. Differences between iterates become invisible
to the naked eye after the approximation p f « PA[ f ] satisfies
EPXS[p f ] + EQF

C;r
[p f ] ď 10´3 mint}ρ̌}2, } f }2u. For C = 2 (mild regu-

larization), this precision was achieved after 17 iterations. For C = 0.5
(very restrictive regularization), this presicion was achieved after 41

iterations. (The space was discretized using 511 grid points.)
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Proof. Since q?I P QF
C;r, one has PM[ f ] P QF

C;r for any f P Lp(Td). By

assumption, PA[ f ] P QF
C;r for any f P Lp(Td). If g(ε)n P QF

C;r, then at any
k P Zd

|ĝ(ε)n+1(k)| = |(1´ 2ε) ĝ(ε)n (k)loomoon
ď C
}k}r

2; Rd

+ε xPM[ f ](k)looomooon
ď C
}k}r

2; Rd

+ε {PPXQF
C;r
[ f ]|loooomoooon

ď C
}k}r

2; Rd

ď C
}k}r2; Rd

.

By induction, g(ε)n P QF
C;r for all n P N, and since QF

C;r is compact in
L8(Td) (see Corollary D.7), there exists an unbounded M Ă N and
g P L8(Td) such that

lim
nÑ8
nPM

}g(ε)n ´ g}Lp(Td) ď lim
nÑ8
nPM

(2π)d/p}g(ε)n ´ g}8 = 0,

and g P Lp(Td). ˝

Example 6.44. For any d P N, if r ą d and if assumptions of Proposi-
tion 6.43 are satisfied, accumulation points exist. In particular, for
A = (P X S) X QF

C;r, g0 P L2(Td) X QF
C;r there exists a fixed point

g P L2(Td)XQF
C;r such that g(ε)n Ñ g in H as n Ñ8, where n P M for

an appropriate unbounded M Ă N.

For future references — for example, for application of the Aubin-
Lions lemma — it is convenient not to use QF

C;r directly, but to intro-
duce a corresponding Banach space, a subspace of Lp(Td), where QF

C;r
corresponds to a closed ball of radius C.

Lemma 6.45 (Banach space where closed balls are Hilbert cubes).
Let ρ P l1(Zd; Rě0), let p P [1,8]. Define

} ¨ }B[QF
ρ ]

: Lp(Td)Ñ [0,8],

f ÞÑ inftC ą 0 | | f̂ (k)| ď Cρ(k) for all k P Zdu,

with convention inf∅ = 8. Let B[QF
ρ ] = t f P Lp(Td) | } f }B[QF

ρ ]
ă 8u.

Then, (B[QF
ρ ], } ¨ }B[QF

ρ ]
) is a Banach space. It is compactly embedded in

Lp(Td).

Proof. It is straightforward to verify that } ¨ }B[QF
ρ ]

is a norm, since for

all f , g P Lp(Td) have

i) } ¨ }B[QF
ρ ]

is non-negative and } f }B[QF
ρ ]
= 0 implies f̂ (k) = 0 for all

k P Zd;

ii) if | f̂ (k)| ď Cρ(k) for all k P Zd, then |a f̂ (k)| ď aCρ(k) for all
a ě 0;

iii) if | f̂ (k)| ď C f ρ(k) and |ĝ(k)| ď Cgρ(k), then | f̂ (k)+ ĝ(k)| ď (C f +Cg)ρ(k).
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The set B[QF
ρ ] is a vector space with addition and scalar multiplication

from Lp(Td).
It is straightforward to show that B[QF

ρ ] is complete. Let ( fn)nPN

be a Cauchy sequence in B[QF
ρ ]; then, ( fn)nPN is bounded by some

C P R. Therefore, fn P QF
Cρ for all n P N. Thes set QF

Cρ is compact in
Lp(Zd) by Proposition D.6, so ( fn)nPN has a convergent subsequence,
i. e. fm Ñ f P B[QF

ρ ] as m Ñ8, m P M for some unbounded M Ă N.
For any ε ą 0, there exists N1 P N such that } fl ´ fn}B[QF

ρ ]
ă ε/2 for

all l, n ě N1. Further, there exists N2 P N such that } fm´ f }B[QF
ρ ]
ă ε/2

for all m P M, m ě N2. Therefore, for all n P N, n ě maxtN1, N2u
holds

} fn ´ f }B[QF
ρ ]
ď } fm ´ f }B[QF

ρ ]
+ } fn ´ fm}B[QF

ρ ]
ă ε,

where m is any element of M that is larger than n (which exists since
M is unbounded). Therefore, fn Ñ f in B[QF

ρ ].
To show that B[QF

ρ ] is compact, consider any closed bounded set
X Ă B[QF

ρ ]. Let X be contained inside the ball with radius C ă 8.
Then, X Ă QF

Cρ, which is is compact in Lp(Zd) by Proposition D.6, and
therefore X is compact as a closed subset of QF

Cρ. ˝
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Remark 5.17 and Section 5.3.5 show that the flow

Btg = ´(g´ PM[g])´ (g´ PP[g])

can be derived from the minimization of the energy EM + EP and
is connected to ER and DR-HIO algorithms. The main result of this
chapter is to show existence of global weak solutions of this equation;
these results are obtained in joint work with Gero Friesecke. The
general approach is inspired by the existence proof demonstrated in
[FD97].

Sections 7.1 and 7.2 establish condtitions that are sufficient to guar-
antee the existence of a global weak solution, and Section 7.3 estab-
lishes certain properties of the solution.

Throughout the chapter we assume the following setting.

Definition 7.1 (Setting). Assume one of the following:

1) Let Ω = Td, let ΩF = Zd, let I : Zd Ñ R with I ě 0 such that
?

I

belongs to `1(Zd).

2) Let Ω be a bounded measurable subset of Rd with continuous boundary
BΩ, let ΩF = Rd, let I : Rd Ñ R be a measurable function with I ě 0
such that

?
I belongs to L1(Rd).

Further, assume that
ş

ΩF
(1 + |k|)?I(k) ă 8 (which can be considered as

a smoothness condition for q?I). Unless explicitely stated otherwise, we use
positivity P as the additional constraint A of the phase problem.

Definition 7.2 (Solutions of ERF). Let Ω, ΩF,
?

I be as in Definition 7.1.
Let p P [1,8], let g̃0 P L2(Ω), let T P (0,8). Let g P Lp([0, T], L2(Td))

with gt := g(t), let

ϕ : Rě0 Ñ
 

ϕ̃ : ΩF Ñ [0, 2π) | ϕ̃ measurable, sin ϕ̃ is odd
(

t ÞÑ ϕt := ϕ(t)

be measurable in t.
In that case, g is a weak solution of the Error-Reduction Flow with phase

ϕ and initial value g̃0, if

Btgt = ´2gt + PM; ϕt [gt] + PP[gt] (ERF)

holds in the weak sense, and limtÑ0 gt = g̃0.

143
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The goal of Sections 7.1 and 7.2 is to show that for any starting
value g̃0 there exists a phase ϕ required by Definition 7.2, such that
ERF has a global weak solution g, and that

g P Lp((0, T); L2(Ω)
)

for any T ą 0, for any p P [1,8), as well as

g P L8
(
(0,8); L2(Ω)

)X C
(
[0,8); L2(Ω)

)
.

Remark 7.3 (Measurable selection instead of multi-valuedness; regularity in time).
The presented equation (ERF) is only a particular measurable selection
of a generic subdifferential flow

Btgt P ´2gt + ΠM[gt] + PP[gt]. (7.1)

that was derived in Remark 5.18.
Working with a measurable selection rather than with a multi-

valued flow simplifies our analysis. While being simpler, it retains
noteworthy features of the underlying phase retrieval problem.

For example, existence of a solution is by definition connected to
regularity in time. This regularity in time is closely tied to the time-
dependent multiplicity resolution PM; ϕt .

The selection of the multiplicity resolution PM; ϕt , as introduced
in Definition 7.2, is not prescribed beforehand. In our approach, it
emerges from the construction of the solution gt through an explicit
limiting procedure.

This procedure will use the selection PM; 0 to construct the sequence
of approximate solutions (and then form an appropriate limit). The
selection PM; 0 is chosen as arguably the simplest selection (and the
one most commonly used in literature). The presented construction
applies to any other selection PM; ψ as long as ψ is not varied during
the construction of approximate solutions.

When passing from approximate solutions to the resulting limit,
the latter will satisfy (ERF) with selection PM; ϕt — and the selection
PM; ϕt will be varied in time.

This resulting limit will satisfy the multivalued subdifferential equa-
tion Equation (7.1) for almost all t ą 0, and it will be continuous in
time.

The general approach is similar to the one used in [FD97] and reads
as follows:

(i) Construct a sequence of approximating solutions using dERF
with ever smaller step sizes (Definition 7.5).

(ii) In Corollary 7.6, show that the sequence of approximating solu-
tions has necessary compactness properties for a known Aubin-
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type theorem (recalled on Page 147); the boundedness of Ω is
required here.

(iii) From this follows existence of a solution candidate (Corollary 7.10).

(iv) A short technical result (Lemma 7.13) allows us to show that the
solution candidate formally solves ERF (Remark 7.14).

(v) This formal calculation is made general in Theorem 7.18, where
we exploit the fact that the solution candidate is sufficiently
smooth (Corollary 7.16), which, in turn, follows from a known
version of Rademacher’s theorem (recalled on Page 151).

7.1 construct solution candidate

Notation 7.4 (Time discretization). Let ε ą 0. For t P R, use

ttuε := sup
nPN0

tnε | nε ă tu

to denote the latest discretization point in the time interval [0, t) and
Nε(t) := ttuε /ε to denote the number of discrete steps that fits in [0, t).

Definition 7.5 (Approximation sequences). Let Ω, ΩF,
?

I be as in
Definition 7.1, let g0 P L2(Ω). Let (g(ε)n )nPN0 be the dERF sequence with
initial value g0, additional constraint A = P, and step size ε ą 0 (see
Figure 7.1).

i) Define the piecewise constant interpolation

g(ε) : [0,+8) ÞÑ L2(Ω)

g(ε)(t) = g(ε)n for t P [nε, (n + 1)ε
)
, n P N0.

ii) Define the piecewise linear interpolation

g(ε) : [0,+8) ÞÑ L2(Ω)

g(ε)(t) =
(

1´ τ

ε

)
g(ε)n +

τ

ε
g(ε)n+1 for t P [nε, (n + 1)ε

)
, n P N0,

where τ = t´ ttuε.

Corollary 7.6 (Interpolations are well-defined and bounded).
Let Ω, ΩF,

?
I be as in Definition 7.1. Let g0 P H1(Ω), let ε P (0; 1

2 ], let
p P [1,8]. Let (g(ε)n )nPN0 , g(ε) and g(ε) be as in Definition 7.5.

(i) Let H P tH1(Ω), L2(Ω)u. For the discrete sequence (g(ε)n )nPN0 holds:

}g(ε)n }H ď maxt}g0}H, }?I}Hu.
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t

Lp(Ω)

0 ε 2ε 3ε

g

g(ε)

g(ε)g(ε)0

g(ε)1

g(ε)2

g(ε)3

Figure 7.1: Illustration to Chapter 7 (Global solution of ERF).
To show existence of the global solution g (Theorem 7.18), construct
a sequence of linear approximations (g(ε))εą0 (Definition 7.5). For
ε Ñ 0, this sequence has a subsequence that converges to some solu-
tion candidate g (Corollary 7.10).
Use g(ε) Ñ g (Lemma 7.13) and Btg(ε) = g(ε) to show that Btg, if
exists, must have a form close to the desired solution (Remark 7.14).
Use Rademacher’s theorem to establish that Btg exists (Corol-
lary 7.16), and follow that there exists a phase ϕ required in Defi-
nition 7.5 to solve ERF (Lemma 7.17).

(ii) The interpolations g(ε) and g(ε) belong to Lp(0, T; H1(Ω)) with the
following estimates:

sup
tP(0,T)

}g(ε)(t)}H1 ď maxt}g0}H1 , }?I}H1u, (7.2)

sup
tP(0,T)

}g(ε)(t)}H1 ď maxt}g0}H1 , }?I}H1u, (7.3)

sup
tP(0,T)

››››
d
dt

g(ε)(t)
››››

L2
ď 4 maxt}g0}L2 , }?I}L2u; (7.4)

ż T

0
}g(ε)(t)}p

H1 dt ď T maxt}g0}p
H1 , }?I}p

H1u, (7.5)
ż T

0
}g(ε)(t)}p

H1 dt ď T maxt}g0}p
H1 , }?I}p

H1u, (7.6)
ż T

0

››››
d
dt

g(ε)(t)
››››

p

L2
dt ď T(4 maxt}g0}L2 , }?I}L2u)p. (7.7)

Proof. (i) We show the statement for H = H1(Ω); the other case
follows analogously. The proof is extremely similar to Proposi-
tion 6.27, with improved estimates due to the Plancherel theorem
in L2. Namely,

}g(ε)n+1}H1 = }(1´ 2ε)g(ε)n + εPP[g
(ε)
n ] + εPM; 0[g

(ε)
n ]}H1

ď (1´ 2ε)}g(ε)n }H1 + ε}PP[g
(ε)
n ]}H1 + ε}PM; 0[g

(ε)
n ]}H1

by triangle inequality. By Lemma 6.26, }PM; 0[g
(ε)
n ]}H1 = }?I}H1 ,

and by Lemma 6.24 have }PP[g]}H1 ď }g}H1 . The claim follows
by induction in n.
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(ii) Equations (7.2) and (7.3) follow immediately from the definition
of g(ε), g(ε) and (i). Equation (7.4) also follows from the definition
and (i) with H = L2:

››››
d
dt

g(ε)(t)
››››

2
=

››››´
1
ε

g(ε)n +
1
ε

g(ε)n+1

››››
L2

=

=
›››´2g(ε)n + PP[g

(ε)
n ] + PM[g(ε)n ]

›››
L2
ď 4 maxt}g(ε)n }L2 , }?I}L2u.

Equations (7.5) to (7.7) follow from Equations (7.2) to (7.4), re-
spectively. ˝

Remark 7.7 (Other additional constaints). With the same argument, pre-
vious corollary can be extended to any other additional constraint PA

— provided that PA is AP-bounded on H1(Ω) (see Definition 6.10). For
example, positivity with restricted support A = PX S is not neces-
sarily bounded on H1(Ω) (since PS lacks regularity), but its regular-
ized variant A = PX SX QF

ρ is AP-bounded by }ρ̌}H1 . Then, Corol-

lary 7.6 holds with the estimate maxt}g(ε)n }H, }?I}H, }ρ̌}Hu instead of
maxt}g(ε)n }H, }?I}Hu for H P tL2, H1u.

Recall the well-known Aubin-type result which can be found, for
example, in [BF13, Thm. II.5.16].

Theorem 7.8 (Aubin-Lions-Simon Lemma). Let Xs, X and Xw be Ba-
nach spaces such that the following inclusions hold:

Xs ãÑ (compact)X ãÑ (continuous)Xw.

Let p, r be such that 1 ď p, r ď 8. For T ą 0, define

Wp,r =

"
v P Lp((0, T), Xs

)
,

dv
dt
P Lr((0, T), Xw

)*

(i) If p ă 8, the embedding of Wp,r in Lp((0, T), X
)

is compact.

(ii) If p = 8 and r ą 1, the embedding of Wp,r in C
(
[0, T], X

)
is compact.

Notation 7.9. For p P [1,8], T P (0,8], use shorthand

Lp
t,L2 X Ct,L2 = Lp((0; T); L2(Ω)

)X C
(
[0, T], L2(Ω)

)
.

A sequence (gn)nPN is said to converge strongly to g in Lp
t,L2 XCt,L2 , if

g P Lp
t,L2 X Ct,L2 , and if

ż
}gn(t)´ g(t)}p

L2(Ω)
dt Ñ 0 and

sup
tP(0,T)

}gn(t)´ g(t)}L2(Ω) Ñ 0 as n Ñ8. (7.8)
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The setting of the following corollary will be used throughout the
remaining chapter.

Corollary 7.10 (Stronly convergent subsequence exists).
Let the domains Ω, ΩF and the measurement

?
I be as in Definition 7.1. Let

the initial value g̃0 be in H1(Ω), let the time step ε P (0; 1
2 ], let p P [1,8],

let the time T P (0,8). Let the approximate solutions g(ε)n , g(ε) and g(ε)

be as in Definition 7.5 with initial value g̃0. Let J1 Ă (0, 1
2 ] be the set of

discretization step sizes with 0 P J1.
Then, there exists a set J2 Ă J1 with 0 P J2 such that g(ε) converges

strongly to some g P Lp
t,L2 X Ct,L2 as ε Ñ 0 for ε P J2.

Proof. Follows from Corollary 7.6 and Aubin-Lions-Simon lemma
with Xs = H1(Ω), X = L2(Ω), Xw = L2(Ω). ˝

Remark 7.11 (Difficulties with unbounded domains). The proposition above
relies on H1(Ω) being compactly embedded into L2(Ω). In order to
generalize this result to unbounded Ω̃ Ă Rd, the set tg(ε)n | n P Nu
must be relatively compact in L2(Ω̃). As discussed in Remark 6.20,
the modulus operator as-is lacks necessary decay in object space: con-
vergence of

ş
|x|ąR |PM[g(ε)n ](x)|2 dx Ñ 0 as R Ñ 8 is not necessarily

uniform in n.

While from Corollary 7.10 follows that g(t) is continuous on [0, T],
it must be shown that g(0) = g̃0.

Lemma 7.12 (Initial value of the limit). Under assumptions of Corol-
lary 7.10 holds limtÑ0 g(t) = g̃0, the limit being taken in } ¨ }L2 .

Proof. Throughout this proof, use } ¨ }2 = } ¨ }L2 . Observe that for any
ε P J2 and almost all t ą 0

}g(t)´ g̃0}2 ď }g(t)´ g(ε)(t)}2 + }g(ε)(t)´ g(ε)(0)}2,

hence

}g(t)´ g̃0}2 ď inf
εPJ2
}g(t)´ g(ε)(t)}2

looooooooooomooooooooooon
=0 due to (7.8)

+ inf
εPJ2
}g(ε)(t)´ g(ε)(0)}2.

Since

}g(ε)(t)´ g(ε)(0)}2 ď
Nε(t)ÿ

n=0

}g(ε)(ε(n + 1)
)´ g(ε)(εn)}2

ď
Nε(t)ÿ

n=0

ε}2g(ε)(εn)´ PP[g(ε)(εn)]´ PM; 0[g(ε)(εn)]}2

ď
Nε(t)ÿ

n=0

ε(3}g(ε)(εn)}2 + }?I}2) ď
Nε(t)ÿ

n=0

4ε maxt}g(ε)(εn)}2, }?I}2u

ď (Nε(t) + 1)4ε maxt}g̃0}2, }?I}2u ď 4(t + ε)maxt}g̃0}2, }?I}2u,
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one has

inf
εPJ2
}g(ε)(t)´ g(ε)(0)} ď inf

εPJ2
(t + ε)4 maxt}g̃0}2, }?I}2u

= 4t maxt}g̃0}2, }?I}2u.

Therefore,

lim
tÑ0

}g(ε)(t)´ g(ε)(0)}2 ď lim
tÑ0

inf
εPJ2
}g(ε)(t)´ g(ε)(0)}

ď lim
tÑ0

4t maxt}g̃0}2, }?I}2u = 0. ˝

7.2 solution candidate solves erf

Let us show that the solution candidate g provided by Corollary 7.10

solves ERF.
First, observe the following technical result.

Lemma 7.13 (Convergence of g(ε) implies convergence of g(ε)). Consider
the setting of Corollary 7.10, meaning that g(ε) Ñ g in Lp

t,L2 XCt,L2 as ε Ñ 0
for ε P J2.

Then, g(ε) Ñ g in Lp
t,L2 X Ct,L2 as ε Ñ 0 for ε P J2.

Proof. First, check the convergence in Lp
t,L2 for p P [1,8). To do so,

split the time integration into intervals of size ε: on these intervals,
the distance between g(ε) and g(ε) can be calculated explicitely. To
this end, recall that tTuε Ñ T as ε Ñ 0 (Notation 7.4), whence by
dominated convergence theorem — existence of the necessary upper
bound follows from Corollary 7.6 — have

ż T

0
lim
εÑ0
εPJ2

}g(ε)(t)´ g(ε)(t)}p
L2 dt = lim

εÑ0
εPJ2

ż tTuε

0
}g(ε)(t)´ g(ε)(t)}p

L2 dt

= lim
εÑ0
εPJ2

Nε´1ÿ

n=0

ż (n+1)ε

nε
}g(ε)(t)´ g(ε)(t)}p

L2 dt,

which, inserting the definition of g(ε) and g(ε), equals

lim
εÑ0
εPJ2

Nε´1ÿ

n=0

ż ε

0

›››
(

1´ τ

ε

)
g(ε)n

+
τ

ε

(
(1´ 2ε)g(ε)n + εPP[g

(ε)
n ] + εPM; 0[g

(ε)
n ]looooooooooooooooooomooooooooooooooooooon

do not cancel out

)
´ g(ε)n

›››
p

L2
dτ

= lim
εÑ0
εPJ2

Nε´1ÿ

n=0

ż ε

0
τp/2

›››´2g(ε)n + PP[g
(ε)
n ] + PM; 0[g

(ε)
n ]

›››
p

L2
=
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= lim
εÑ0
εPJ2

Nε´1ÿ

n=0

εp/2+1

p
2 + 1

›››´2g(ε)n + PP[g
(ε)
n ] + PM; 0[g

(ε)
n ]

›››
p

L2
=

= lim
εÑ0
εPJ2

εp/2loomoon
Ñ0

Nε(T)εloomoon
ÑT

1
p
2 + 1

(
3 maxt}g0}L2 , }?I}L2u+ }?I}L2

)p
= 0.

Second, check the convergence in L8t,L2 and Ct,L2 ; the calculation is
analogous to the previous case.

sup
tP(0,T)

lim
εÑ0
εPJ2

}g(ε)(t)´ g(ε)(t)}p
L2 dt =

ď sup
τP(0,ε]

nPt1,...,Nε(T)u

›››
(

1´ τ

ε

)
g(ε)n +

τ

ε

(
(1´2ε)g(ε)n + εPP[g

(ε)
n ]+ εPM; 0[g

(ε)
n ]
)
´ g(ε)n

›››
L2

ď sup
τP(0,ε]

nPt1,...,Nε(T)u

››´2τg(ε)n + τPP[g
(ε)
n ] + τPM; 0[g

(ε)
n ]

››
L2

ď ε(3 maxt}g0}L2 , }?I}L2u+ }?I}L2)Ñ 0

as ε Ñ 0.
Both cases imply the desired result, since for any norm } ¨ } holds

}g(ε) ´ g} ď }g(ε) ´ g(ε)}+ }g(ε) ´ g} Ñ 0 as ε Ñ 0. ˝

The following remark demonstrates that, formally, the weak deriva-
tive of the candidate g solves ERF.

Remark 7.14 (Formal derivative of the solution candidate). Consider the set-
ting of Corollary 7.10, meaning that g(ε) Ñ g in Lp

t,L2 X Ct,L2 as ε Ñ 0
for ε P J2.

Then, for a test function ζ P C80 ([0, T], L2(Ω)) have

ż T

0
xBtg(t), ζ(t)y dt = ´

ż T

0
xg(t), Btζ(t)y dt

=´
ż T

0

C
lim
εÑ0
εPJ2

g(ε)(t), Btζ(t)

G
dt

(˚)
= ´ lim

εÑ0
εPJ2

ż tTuε

0

A
g(ε)(t), Btζ(t)

E
dt,

using the dominated convergence theorem in (˚); the necessary up-
per bound exists due to Corollary 7.6 Equation (7.2). Inserting the
definition of g(ε) and using Notation 7.4, last expression equals

´ lim
εÑ0
εPJ2

Nε(T)´1ÿ

n=0

ż ε

0

Aτ

ε
(g(ε)n+1 ´ g(ε)n ), Btζ(nε + τ)

E
dt

= lim
εÑ0
εPJ2

Nε(T)´1ÿ

n=0

ż (n+1)ε

nε

B
1
ε
(g(ε)n+1 ´ g(ε)n ), ζ(t)

F
dt
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by partial integration (the boundary summand is a telescopic sum
and cancels itself out exept at the endpoints, where it vanishes due to
ζ being continuous and equal to zero at t = 0 and t = T). Inserting
definition of g(ε)n+1, continue with

lim
εÑ0
εPJ2

Nε(T)´1ÿ

n=0

ż (n+1)ε

nε

B
1
ε
(´2εg(ε)n + εPP[g

(ε)
n ] + εPM; 0[g

(ε)
n ]), ζ(t)

F
dt

= lim
εÑ0
εPJ2

ż tTuε

0

A
´2g(ε)(t) + PP[g(ε)(t)] + PM; 0[g(ε)(t)], ζ(t)

E
dt

where we used definition of g(ε) to combine all integration domains
of size ε. Finally, by the dominated convegence theorem, applicable
due to Corollary 7.6 Equation (7.4), the limit can be brought back into
the integral

=

ż T

0

C
´2 lim

εÑ0
εPJ2

g(ε)(t) + lim
εÑ0
εPJ2

PP[g(ε)(t)] + lim
εÑ0
εPJ2

PM; 0[g(ε)(t)], ζ(t)

G
dt.

(7.9)

From Lemma 7.13 and continuity of PP we know that

lim
εÑ0
εPJ2

g(ε)(t) = g(t) and lim
εÑ0
εPJ2

PP[g(ε)(t)] = PP[g(t)],

The presented calculation is formal in the following sense: at this
point we do not know whether limεÑ0

εPJ2

PM; 0[g(ε)(t)] exists; thus, we

do not know whether Btg is well-defined. Rather than establishing
existence of limεÑ0

εPJ2

PM; 0[g(ε)(t)] directly, we shall show that Btg exists

and belongs to L2(Ω) for Lebesgue–almost all t P (0, T). From this
will follow existence of limεÑ0

εPJ2

PM; 0[g(ε)(t)]; and Equation (7.9) will

become rigorous.

To establish existence of Btg, we show that t ÞÑ g(t) is Lipshitz
and therefore a. e. Fréchet-differentiable by the general case of the
Rademacher theorem from [AK00] (therein, see Thm. 3.5 and Fréchet
differentiability remark on p. 528).

Theorem 7.15 (Generalized Rademacher theorem [AK00]). Let H
be a Hilbert space, let f : R Ñ H be Lipschitz. Then, f is Fréchet differen-
tiable at Lebesgue–almost all t P R.

Corollary 7.16. Consider the setting of Corollary 7.10, meaning that g(ε) Ñ g
in Lp

t,L2 X Ct,L2 as ε Ñ 0 for ε P J2.
Then, there exists a function Btg : (0, T)Ñ L2(Ω) such that

lim
εÑ0

}g(t + ε)´ g(t)´ εBtg(t)}L2

ε
= 0
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for Lebesgue–almost all t P (0, T).

Proof. To show that g is Lipshitz, let t, s P (0, T) with t ă s. Then,

}g(s)´ g(t)}2 = lim
εÑ0
εPJ2

}g(ε)(s)´ g(ε)(t)}2

ď lim
εÑ0
εPJ2

Nε(s)+1ÿ

n=Nε(t)

ε} ´ 2g(ε)n + PP[g
(ε)
n ] + PM; 0[g

(ε)
n ]}

ď lim
εÑ0
εPJ2

(Nε(s) + 1´ Nε(t))εloooooooooooomoooooooooooon
=tsuε´ttuε+ε

(3 maxt}g0}2, }?I}2u+ }?I}2)

ď lim
εÑ0
εPJ2

(s´ t + 3ε)4 maxt}g0}2, }?I}2u

ď (s´ t)4 maxt}g0}2, }?I}2u.

The claim follows by the aforementioned Rademacher theorem. ˝

We are now ready to show existence of the limit limεÑ0
εPJ2

PM; 0[g(ε)(t)].

This limit is required by Remark 7.14 to turn derivation of Btg from
formal to rigorous.

Lemma 7.17 (Limit of PM[g(ε)] exists). Consider the setting of Corollary 7.10,
meaning that g(ε) Ñ g in Lp

t,L2 X Ct,L2 as ε Ñ 0 for ε P J2.
Then, there exists a (measurable) function

ϕ : (0, T)Ñ  
ϕ̃ : ΩF Ñ [0, 2π) | sin ϕ̃(t) odd for a. a. t P (0, T)

(

such that
lim
εÑ0
εPJ2

PM; 0[g(ε)(t)] = PM; ϕ(t)[g(t)]

in L2(Ω) for Lebesgue–almost all t P (0, T).

Proof. By Corollary 7.16, Btg exists and belongs to L2(Ω) for almost
all t P (0, T). Define

mt := Btg(t) + 2g(t)´ PP[g(t)].

By Equation (7.9) from Remark 7.14, for any test function ζ P C80 ([0, T], L2(Ω))

have

ż T

0
xmt, ζ(t)y dt =

ż T

0

C
lim
εÑ0
εPJ2

PM; 0[g(ε)(t)], ζ(t)

G
dt;

therefore, limεÑ0
εPJ2

PM; 0[g(ε)(t)] exists and equals mt in L2(Ω) for Lebesgue–

almost all t P (0, T).
Let us show that there exists ϕ(t) such that mt = PM; ϕ[g(t)] for a. a.

t P (0, T) in the following three steps:
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1) show that |m̂t| = ?
I;

2) show that m̂t(k) = yg(t)(k) at those k where yg(t)(k) is not equal
zero;

3) set ϕ(t, k) = arg pmt(k) at all other k.

1) One has |m̂t| = ?
I, since

››|?I| ´ |m̂t|
››

L2 = lim
εÑ0
εPJ2

››|?I| ´ |m̂t|
››

L2

= lim
εÑ0
εPJ2

›››
ˇ̌
ˇF
[

PM; 0[g(ε)(t)]
]ˇ̌
ˇ´|m̂t|

›››
L2
ď lim

εÑ0
εPJ2

}PM; 0[g(ε)(t)]´mt}L2 = 0,

because for any complex numbers a, b holds

ˇ̌|a| ´ |b|ˇ̌2 = |a|2 + |b|2 ´ 2|ab| ď |a|2 + |b|2 ´ 2xa, byC ď |a´ b|2.

2) Let k P ΩF be such that ĝ(t, k) ‰ 0. Observe that for any ϕ1, ϕ2 : ΩF Ñ [0, 2π)

holds

lim
εÑ0
εPJ2

F
[

PM; ϕ1 [g
(ε)(t)]

]
(k)´F

[
PM; ϕ2 [g(t)]

]
(k) = 0. (7.10)

Indeed, since ĝ(t, k) ‰ 0 and F [g(ε)(t)](k)Ñ ĝ(t, k), there exists ε̃ ą 0
such that for all ε ă ε̃, ε P J2, holds F [g(ε)(t)](k) ‰ 0. Therefore, one
can estimate the expression in the left-hand side of Equation (7.10) by

ˇ̌
ˇ̌
ˇ
?

I(k)
ĝ(t, k)
|ĝ(t, k)| ´

?
I(k)

F [g(ε)(t)](k)
|F [g(ε)(t)](k)|

ˇ̌
ˇ̌
ˇ

ď
?

I(k)
|ĝ(t, k)|

ˇ̌
ˇ̌
ˇĝ(t, k)´ |ĝ(t, k)| F [g(ε)(t)](k)

|F [g(ε)(t)](k)|

ˇ̌
ˇ̌
ˇ

ď 2
?

I(k)
|ĝ(t, k)|

ˇ̌
ˇĝ(t, k)´F [g(ε)(t)](k)

ˇ̌
ˇÑ 0 as ε Ñ 0, ε P J2.

In this calculation we used Lemma D.1, according to which for two
complex numbers a, b with b ‰ 0 holds

ˇ̌
a´ b

|b| |a|
ˇ̌ ď 2|a´ b|.

3) Let ϕ(t, k) = arg m̂t(k) if yg(t)(k) = 0 and ϕ(t, k) = 0 else. Then, by
construction, mt = PM; ϕ(t)[g(t)].

From this construction also follows that sin ϕ(t) is odd for a. a.
t P (0, T).

Overall,
lim
εÑ0
εPJ2

PM; 0[g(ε)(t)] = PM; ϕ(t)[g(t)]

in L2(Ω) for Lebesgue–almost all t P (0, T). ˝

Theorem 7.18 (Global solutions exist). Consider the setting of Corol-
lary 7.10, meaning that: the domain Ω is bounded and q?I is sufficiently
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smooth (as specified in Definition 7.1); the initial value g̃0 P L2(Ω); the time
exponent p P (1,8).

Then, there exist ϕ (specified in Definition 7.2) and

g P L8
(
(0,8); L2(Ω)

)X C
(
[0,8); L2(Ω)

)

such that g belongs to Lp((0, T); L2(Ω)
)

and is a weak solution of the equa-
tion

Btgt = ´2gt + PM; ϕt [gt] + PP[gt]

for any T P (0,8).

Proof. Let T ą 0. First, construct g on [0, T]; then, inductively extend
the domain of g to [0,8).

Let J1 Ă (0, 1
2 ] be the set of discretization step sizes with 0 P J1. Let

g(ε) be as in Definition 7.5, with initial value g̃0. By Corollary 7.10,
there exists a set J2 Ă J1 with 0 P J2 such that g(ε) converges strongly
to some g P Lp

t,L2 X Ct,L2 as ε Ñ 0 for ε P J2.
By Corollary 7.16, Btg exists. By Lemma 7.17, there exists a function

ϕ : (0, T)Ñ  
ϕ̃ : ΩF Ñ [0, 2π) | sin ϕ̃(t) odd for a. a. t P (0, T)

(

such that
lim
εÑ0
εPJ2

PM; 0[g(ε)(t)] = PM; ϕ(t)[g(t)]

in L2(Ω) for Lebesgue–almost all t P (0, T). Therefore, Equation (7.9)
from Remark 7.14 holds rigorously, and g solves ERF on (0, T).

By Lemma 7.12, g(0) = g̃0.
It remains to show that g can be extended to

g P L8
(
(0,8); L2(Ω)

)X C
(
[0,8); L2(Ω)

)
.

Apply the above argumentation using starting value g(T) to extend g
to (0, 2T). By Corollary 7.6,

}g(2T)}L2 ď maxt}g(T)}L2 ,
?

Iu ď maxt}g(0)}L2 ,
?

Iu.

Proceed inductively to show the desired claim. ˝

Remark 7.19 (Other convex constraints). One can generalize Theorem 7.18

to other additional constraints A, provided PA is AP-bounded as dis-
cussed in Remark 7.7, and continuous, which is necessary for Re-
mark 7.14.

For example, Theorem 7.18 holds for A = (PX S)X QF
C;r (regular-

ized “support + positivity”) presented in Section 6.3.4.2 and shown
in Figure 6.2. Indeed, such A will be AP-bounded on H1(Ω) by def-
inition of QF

C;r, and PA will be continuous by Lemma 6.37 applied to
(PX S) and QF

C;r.
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A higher regularity of solutions in space may be achieved, if one
uses Aubin-Lions-Simon with more regular Banach spaces than H1;
for example, Banach spaces presented in Lemma 6.45.

Remark 7.20 (Other non-convex constraints). The question whether one
can generalize Theorem 7.18 to additional constraints with non-continuous
projections remains open.

For example, for the regularized constraint A = Ts(ν)XQF
C;r (regu-

larized non-negativity + support size), one must first establish that
projection onto A can be efficiently calculated — for example, using
the Dykstra algorithm (to remain relevant for applications).

The regularized A will be AP-bounded on H1(Ω) by definition of
QF

C;r.
However, the resulting projection operator will be multivalued, and

any corresponding projecton selection will not be continuous. To
prove Theorem 7.18 as presented here, one will have to establish that

lim
εÑ0
εPJ2

(PA[g(ε)(t)] + PM; 0[g(ε)(t)]) = PA[g(ε)(t)] + PM; ϕ[g(ε)(t)]. (7.11)

While existence of the limit on the left-hand side follows from Rademacher’s
theorem as in Lemma 7.17, it is less obvious how to establish existence
of limεÑ0

εPJ2

PA[g(ε)(t)] or existence of limεÑ0
εPJ2

PM; ϕ[g(ε)(t)] separately.

7.3 solution properties

This section establishes some properties of an ERF solution. Notably,
Proposition 7.22 shows that any solution exponentially decreases
|EM[g(t)]´ EP[g(t)]| in time. Remark 7.25 discusses difficulties that
need to be overcome to prove convergence of g(t) to a fixed point.

The following corollary shows that the solution g of ERF dissipates
energy. It is noteworthy that the corollary does not require Fréchet-
differentiability of EM at any g(t).

Corollary 7.21 (Energy dissipation). Let
?

I, g̃0, g and ϕ be as in The-
orem 7.18. Then,

E[g(T)]´ E[g(0)] ď
ż T

0
}2g(t)´ PP[g(t)]´ PM; ϕ[g(t)]}22dt,

where E[g] = EP[g] + EM[g]. (Recall that EM does not depend on ϕ, see
Example 4.6.)

Proof. The idea of the proof is to show that one can rigorously take
the limit ε Ñ 0 in Proposition 6.4.
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Let J2 and g(ε) be as in proof of Theorem 7.18. By Proposition 4.4
and Proposition 6.4,

E[g(T)]´ E[g(0)] ď lim inf
εÑ0
εPJ2

E[g(ε)(T)]´ E[g(ε)(0)]

ď ´ lim sup
εÑ0
εPJ2

(Nε(T)´1ÿ

n=0

ε(1´ ε)}2g(ε)n ´ PP[g
(ε)
n ]´ PM; 0[g

(ε)
n ]}22

+ (T´ tTuε)(1´ T + tTuε)}2g(ε)Nε(T)
´ PP[g

(ε)
Nε(T)

]´ PM; 0[g
(ε)
Nε(T)

]}22
)

.

Split the first term in the limit by splitting ε(1´ ε) into ε and ´ε2,
and the second term in the limit by splitting (T ´ tTuε)(1´ T + tTuε)

into (T´ tTuε) and ´(T´ tTuε)
2. Observe that by definition of g(ε), for

terms with ε and (T´ tTuε) holds

Nε(T)ÿ

n=0

ε}2g(ε)n ´ PP[g
(ε)
n ]´ PM; 0[g

(ε)
n ]}22

+ (T´ tTuε)}2g(ε)Nε(T)
´ PP[g

(ε)
Nε(T)

]´ PM; 0[g
(ε)
Nε(T)

]}22
=

ż T

0
}2g(ε)(t)´ PP[g(ε)(t)]´ PM; 0[g(ε)(t)]}22dt

Ñ
ż T

0
}2g(t)´ PP[g(t)]´ PM; ϕ(t)[g(t)]}22dt

as ε Ñ 0 by Remark 7.14 and Lemma 7.17. As for the terms with ´ε2

and ´(T´ tTuε)
2,

ˇ̌
ˇ̌
ˇ

Nε(T)ÿ

n=0

´ε2
›››2g(ε)n ´ PP[g

(ε)
n ]´ PM; 0[g

(ε)
n ]

›››
2

2

´ (T´ tTuε)
2
›››2g(ε)Nε(T)

´ PP[g
(ε)
Nε(T)

]´ PM; 0[g
(ε)
Nε(T)

]
›››

2

2

ˇ̌
ˇ̌
ˇ

ď Nε(T)ε2 sup
nPt0,...,Nε(T)u

›››2g(ε)n ´ PP[g
(ε)
n ]´ PM; 0[g

(ε)
n ]

›››
2

2

+ ε2
›››2g(ε)Nε(T)+1 ´ PP[g

(ε)
Nε(T)+1]´ PM; 0[g

(ε)
Nε(T)+1]

›››
2

2
Ñ 0

as ε Ñ 0, since Nε(T)ε ď T by definition, and since }2g(ε)n ´PP[g
(ε)
n ]´PM; 0[g

(ε)
n ]}22

is uniformly bounded from above for all n P N0 by Corollary 7.6. ˝

The following proposition demonstrates that a solution tends to an
energy equilibrium manifold where EP[g(t)] = EM[g(t)].

Proposition 7.22 (Energy balance). Let
?

I, g̃0, g and ϕ be as in Theo-
rem 7.18. Let T ą 0.
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Define D(t) := EP[g(t)]´ EM[g(t)]. Then,

D(t) = D(0) exp(´2t) for all t P (0, T).

In particular, if D(0) = 0, then D(t) = 0 for almost all t P (0, T), and if
D(0) ą 0, then D(t) ą 0 for almost all t P (0, T).

Proof. By the chain rule,

d
dt

D(t) = xg´ PP[g],´Btgy ´ xg´ PM[g],´Btgy
= xg´ PM[g]´ (g´ PP[g]), 2g´ PM[g]´ PP[g]y
= }g´ PM[g]}22 ´ }g´ PP[g]}22 = ´2D(t),

where we used the shorthand notations g = g(t) and PM = PM; ϕ for
readability.

The claim follows from the differential equation for D(t). ˝

The following example shows that in a trivial case when the phase
ϕ of a solution f is known, one can construct an explicit solution for
the starting value 0.

Example 7.23 (An explicit solution). Let f P P, let
?

I = | f̂ |, let ϕ be the
phase of f̂ .

Let g(t) = (1´ e´t) f for t P [0,8). Then, g solves ERF with g(0) ” 0,
i. e.

Btg(t) = ´2g(t) + PP[g(t)] + PM; ϕ[g(t)]

for all t ą 0.
Indeed, since f P P, we have g(t) P P, meaning that PP[g(t)] = g(t).

Further, since the phase of yg(t) is equal to ϕ, and since PM; ϕ[0] = f
by the choice of ϕ, have PM; g(t) = f for all t ě 0. Overall,

Btg(t) = e´t f = ´ f + e´t f + f = ´g + PM; ϕ[g] = ´2g + PP[g] + PM; ϕ[g].

Lemma 7.24 (Evenness invariance). Let
?

I, g̃0, g and ϕ be as in Theo-
rem 7.18.

Assume that Ω is symmetric (meaning that Ω = ´Ω), and that g̃0 is
even. Then, g(t) is even for all T P (0,8).

Proof. Follows by construction of g(t). If g̃0 P L2(Ω) is even, then all
g(ε)n are even, and so are g(ε)(t) and g(t) for all t P (0,8). ˝

Remark 7.25 (Difficulties with convergence of an ERF solution). Let
?

I, g̃0, g
and ϕ be as in Theorem 7.18.

Just as from energy dissipation Corollary 6.5 follows existence of
fixed points of dERF (Proposition 6.32), from energy dissipation Corol-
lary 7.21 follows that any

f P Ls
tÑ8tg(t)u
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is a fixed point of ERF, i. e. 2 f = PP[ f ] + PM[ f ]. (Here, Ls is the Kura-
towski limit superior.)

The question whether g(t) converges to such f remains open.
Using 2 f = PP[ f ] + PM[ f ], one has

d
dt

1
2
}g(t)´ f }22 = ´xg(t)´ f , 2g(t)´ PM[g(t)]´ PP[g(t)]y
= ´xg(t)´ f , 2g(t)´ 2 f + 2 f ´ PM[g(t)]´ PP[g(t)]y
= ´2}g(t)´ f }22 + 2xg(t)´ f , (PM + PP)[g(t)]´ (PM + PP)[ f ]y.

Therefore, if

xg(t)´ f , (PM + PP)[g(t)]´ (PM + PP)[ f ]y ď }g(t)´ f }22 (7.12)

for all sufficiently large t, then g(t) converges to f .
Since PP is nonexpansive, }PP[g(t)]´ PP[ f ]}2 ď }g´ f }. In simula-

tions we observed

}(PM + PP)[g(t)]´ (PM + PP)[ f ]}2 ď }g(t)´ f }2
for large enough t, which implies Equation (7.12).

However, it is not obvious how to show this inequality, since for PM,
for any f P H one can find g˚ P H with

}PM[g˚]´ PM[ f ]}2 ę }g˚ ´ f }2.

In particular, in simulations we often observed

}PM[g(t)]´ PM[ f ]}2 ą }g(t)´ f }2
when g was converging to f .

A simpler subcase of this problem is a question of convergence for
even functions. Indeed, for any even f , g P H(Ω) with symmetric Ω,
their Fourier transforms are real-valued. Therefore, for k P ΩF, one
has

|{PM[g](k)´{PM[ f ](k)| =
$
&
%

0 if ĝ(k) and f̂ (k) have the same sign,

2
?

I(k) else.

To show convergence, one has to show that the contraction effect
dominates over the expansion effect. In even-restricted simulations,
we observed

}PM[g(t)]´ PM[ f ]}2 ď }g(t)´ f }2,

which correlates with rapid convergence to fixed points that one
can observe for the even-restricted dERF (cf. the bottom row of Fig-
ure 10.7).



8
F I X E D P O I N T S

The goal of this chapter is to analyze fixed points of ERF.
To this end, Section 8.1 establishes that there exists a correspon-

dence between fixed points of AP and APF. In case of ERF, this corre-
spondence essentially is conditional on }?I/ f̂ }8:

g = PP[ f ] is a fixed
point of ER

ô f = 0.5(PP[g] + PM[g]) is a fixed
point of ERF and }?I/ f̂ }8 ď 2,

where the exact formulation of latter condition is slightly more com-
plicated due to the phase multiplicity in PM; ϕ.

Section 8.2 presents criteria that are sufficient to establish stability
or instability of ERF fixed points for certain cases. Roughly speaking,
a fixed point f of ERF is unstable, if 2 ă }?I/ f̂ }8 ă 8, see Proposi-
tion 8.6. Further, a fixed point f is stable along all even directions, if
it is even and if }?I/ f̂ }8 ă 8, see Corollary 8.10. This result allows
one to numerically generate unstable fixed points.

At the end of the chapter, the formal Hessian at fixed points is
presented; in Chapter 10, it is used to discuss numerical stability of
fixed points.

8.1 fixed point correspondence of ap and apf

This section contains two results: Proposition 8.1 demonstrates cor-
respondence between fixed points of AP and APF, and Corollary 8.2
reformulates this correspondence for the particular case of phase re-
trieval. These results justify that to understand fixed points of ER, one
can study fixed points of ERF.

Proposition 8.1 (Fixed points of AP and APF). Let X,Y Ă H be weakly
closed. Consider the following equations.

g = PX ˝ PY[g]; (8.1)

0 = ´2 f + PX[ f ] + PY[ f ]; (8.2)
#

PX

[
2 f ´ PX[ f ]

]
= PX[ f ];

PY

[
2 f ´ PY[ f ]

]
= PY[ f ].

(8.3)

Then:

i) If g satisfies Equation (8.1), then f := PX[g]+PY[g]
2 satisfies Equations

(8.2) and (8.3).

ii) If f satisfies Equations (8.2) and (8.3), then g := PX[ f ] satisfies Equa-
tion (8.1),

159
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see Figure 8.1.

Proof. i) If g P H satisfies (8.1), then

PX[g] = PX

[
PX ˝ PY[g]

]
= PX ˝ PY[g] = g.

Therefore,

PX[ f ] = PX

[
PX[g] + PY[g]

2

]
= PX

[
g + PY[g]

2

]

= PX

[
PX ˝ PY[g] + PY[g]

2

]
= PX

[
PY[g]

]
= g = PX[g],

where we have used Lemma 3.8 with ε = 1/2 in the third to last
equality. Furthermore,

PY[ f ] = PY

[
PX[g] + PY[g]

2

]
= PY

[
g + PY[g]

2

]
= PY[g],

where we have used Lemma 3.8 with ε = 1/2 in the last equality.
Overall,

PX[ f ] + PY[ f ] = PX[g] + PY[g] = 2 f ,

meaning that (8.2) is satisfied. In particular,

PX

[
2 f ´ PX[ f ]

]
= PX

[
PY[ f ]

]
= PX

[
PY[g]

]
= g = PX[ f ],

and

PY

[
2 f ´ PY[ f ]

]
= PY

[
PX[ f ]

]
= PY[g] = PY[ f ].

ii) If f P H satisfies (8.2) and (8.3), then

PX ˝ PY[g] = PX ˝ PY

[
PX[ f ]

]
= PX ˝ PY

[
2 f ´ PY[ f ]

]

= PX ˝ PY[ f ] = PX

[
2 f ´ PX[ f ]

]
= PX[ f ] = g. ˝

Corollary 8.2 (Fixed points of ER). Let A Ă H(Ω) be weakly closed,
with Ω P tRd, Td, Td

Nu. Let PA be such that PA

[
2g ´ PA[g]

]
= PA[g]

(for example, PA P tPP, PS X PPu, see Lemma 5.7 and Example 5.8). Let?
I P pH(ΩF) be non-negative, let ϕ : ΩF Ñ [0, 2π) be measurable and such

that sin ϕ is odd. Then,
PA ˝ PM; ϕ[g] = g, (8.4)

if and only if

2 f = PA[ f ] + PM[ f ];
›››
?

I

| f̂ |1supp
?

I

›››8 ď 2,

and
?

I(k) = 2| f̂ (k)| for k P supp
?

I implies eiϕ(k) = f̂ (k)
| f̂ (k)| ,

(8.5)

where
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XY f

PX[ f ]2 f ´ PX[ f ]

g˚

Figure 8.1: Illustration to Proposition 8.1 (Fixed points of AP and APF).
The point g = PX[ f ] is a fixed point of AP if and only if: i)
f = PX[g]+PY[g]

2 is a fixed point of APF; ii) PX[2 f ´ PX[ f ]] = PX[ f ].
The condition ii) is can not be omitted. For example, if g˚ were to
belong to X, then one would have PX[2 f ´ PX[ f ]] = g˚. Then, f
would be a fixed point of APF, but PX[ f ] would not be a fixed point
of AP.

(i) f = 1
2

(
PA[g] + PM; ϕ[g]

)
, if (8.4) is known;

(ii) g = PA[g], if (8.5) is known.

Proof. Check the additional conditions (8.3) for the case PX = PA, PY = PM; ϕ.
Let f P H. For PA, the necessary condition holds by assumption. For
PM; ϕ, equation

PM; ϕ

[
2 f ´ PM; ϕ[ f ]

]
= PM; ϕ[ f ] (8.6)

holds if and only if

2 f̂ ´?
I

f̂
| f̂ |1t f̂‰0u ´

?
Ieiϕ

1t f̂=0u and
?

I
f̂
| f̂ |1t f̂‰0u +

?
Ieiϕ

1t f̂=0u

satisfy one of the following conditions at every point k P supp
?

I:

(i) if both sides are different from 0 at k, they have the same phase;

(ii) if only one of the sides is different from 0 at k, its phase equals
ϕ(k);

(iii) both sides are equal to 0 at k,

cf. Figure 8.2. Note that if k R supp
?

I, Fourier transform of Equa-
tion (8.6) at k is trivially true since both sides are equal to 0. Let us
check conditions (i)-(iii) for k P supp

?
I. Condition (i) means that

2| f̂ | ´ ?
I1t f̂‰0u and

?
I1t f̂‰0u (8.7)

have the same phase at k as long as
?

I(k) ‰ 2| f̂ (k)|. Condition (ii)
means that

´?
I1t f̂=0ue

iϕ =
?

I1t f̂=0ue
iϕ (8.8)
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?
I(k)

?
I(k)/2

C f̂ (k)

{PM[ f ](k)

2 f̂ (k)´{PM[ f ](k)

Figure 8.2: Illustration to Corollary 8.2 (ER fixed point correspondence).
Let f be a fixed point of ERF. If even for a single pixel k P Zd holds
f̂ (k) ă ?

I(k)/2 — meaning that f̂ (k) is inside the violet filled ball
— then F

(
PM
[
2 f ´ PM[ f ]

])
(k) ‰ {PM[ f ](k), and PA[ f ] is not a fixed

point of ER.
For PA[ f ] to be a fixed point of ER, f̂ (k) must be outside the violet
filled ball for all k, or belong to the boundary of the ball provided
that the corresponding condition from Corollary 8.2 is satisifed.

at k as long as f̂ (k) = 0, and that

eiϕ(k) =
f̂ (k)
| f̂ (k)|

as long as
?

I(k) = 2| f̂ (k)|.
Expressions in Equation (8.7) have the same phase if and only if

2| f̂ | ă ?
I1t f̂‰0u;

expressions in Equation (8.8) are equal if and only if f̂ = 0 implies?
I = 0. In other words, (8.3) holds for PM if and only if

›››››

?
I

| f̂ |1supp
?

I

›››››8
ď 2,

and
?

I(k) = 2| f̂ (k)| for k P supp
?

I implies eiϕ(k) = f̂ (k)
| f̂ (k)| .

With this result, the corollary follows from Proposition 8.1. ˝

8.2 fixed point stability of erf

This section presents certain results on stability of fixed points. No-
tably, Proposition 8.6 shows a criterion for instability of fixed points,
and Corollary 8.10 shows a criterion for stability along even directions.
These results are illustrated in Figure 8.3. Particularly Corollary 8.10

can be of practical significance, as it states that fixed points of ER on
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the subspace of even functions are likely to be stable. The study of
phase retrieval in the artificially restrictive setting of problems on the
even subspace of H(Ω) may yield new insights on the dynamic of
phase retrieval algorithms.

For any translation-invariant additional constraint A (such as P or
Ts(ν)) and any fixed ERF point f , the translation f (x0 + ¨) is also a
fixed point of ERF with exactly the same energy. It is therefore not
possible — unless A is strengthened, or the metric distance of L2 is
modified — for a fixed point f to be attractive. Rather, it makes sense
to study fixed points that are unstable or not unstable. To enhance
readability, we call “not unstable” fixed points “stable”; with this con-
vention, stable fixed points are not attractive.

Definition 8.3 (Stable and unstable fixed points). Let A Ă H be
weakly closed.

i) Let g P H be a fixed point of ER, i. e. let g satisfy g = PA ˝ PM[g].
The point g is called unstable, if for all ε˚ ą 0 there exists ε P (0, ε˚]
and direction h P H with }h}2 = 1, such that g + εh P A, and
EM[g + εh] ă EM[g].

ii) Let f P H be a fixed point of ERF, i. e. let f satisfy 2 f = PA[ f ]+PM[ f ].
The point f is called unstable, if for all ε˚ ą 0 there exists ε P (0, ε˚]
and direction h P H with }h}2 = 1, such that

EM[ f + εh] + EA[ f + εh] ă EM[ f ] + EA[ f ].

A fixed point is called stable, if it is not unstable.

One can now investigate stability properties of ER-GF fixed points
using the following property of the modulus projection.

Lemma 8.4 (Modulus energy expansion). Let Ω P tRd, Td, Td
Nu, let

A = P P H(Ω), let
?

I P pH(ΩF) be non-negative. Further, let f , h P H
such that

›››
?

I

| f̂ |
›››8 =: C?

I/| f̂ | ă 8 and
››› |ĥ|?I

›››8 =: C|ĥ|/?I ă 8. Then, for all

ε P (0, C?
I/| f̂ |/C|ĥ|/?I) there exists a function ε̃ : HÑ [0; ε] such that

EM[ f + εh]´ EM[ f ]´
ż
( f ´ PM[ f ])h =

=
ε2

2(2π)d

ż 
|ĥ|2 ´

?
I

2| f̂ + ε̃ĥ| |ĥ|
2 ´

?
I

2| f̂ + ε̃ĥ| Im

(
( f̂ + ε̃ĥ)˚

| f̂ + ε̃ĥ| ĥ

)2

 ,

(8.9)

and the integral on the right-hand side exists and is finite. (The arguments
of f̂ , ĥ, ε̃,

?
I in the integral are omitted for readability.)

Proof. For a. a. k P ΩF, have

| f̂ (k)+ ε̃(k)ĥ(k)| ě | f̂ (k)|´ ε|ĥ(k)| ě C?
I/| f̂ |

?
I(k)´ εC|ĥ|/?I

?
I(k) ě 0.



164 fixed points

Therefore, the Taylor expansion from the proof of Lemma 4.14, Step
1d) on p. 62, holds for almost all k P ΩF. The result of Lemma 4.14

justifies that integral over the Taylor expansion is well-defined, and —
using equations (4.8), (4.9) from the proof of Lemma 4.14 — integral
over the Taylor expansion can be transformed to the desired form. ˝

Remark 8.5. Condition
››› |ĥ|?I

›››8 is very restrictive when considered on

the domain ΩF P tRd, Zdu. It is less restrictive on the finite domain
ΩF = Td

N : if supp
?

I = Td
N and ĝ(k) ‰ 0 for all k P Td

N , then as-
sumptions of Lemma 8.4 are satisfied for all h, but the resulting upper
bound on ε can become extremely small.

Therefore, Lemma 8.4 is much more useful to establish unstability of
a fixed point rather than its stability: fore some fixed points, the lemma

allows to find a direction h that satisfies
››› |ĥ|?I

›››8 ă 8 and diminishes
energy.

The next proposition shows that — under relatively mild assump-
tions — fixed points of (ERF) that do not correspond to fixed points
of (ER) are unstable.

Proposition 8.6 (A condition for unstable fixed points).
Let Ω P tRd, Td, Td

Nu, let A = P P H(Ω), let
?

I P pH(ΩF) be non-negative.
Assume that f is a fixed point of ERF and that 2 ă

›››
?

I

| f̂ |1supp
?

I

›››8 ă 8.

Further, assume that
››› | f̂ |?I

1supp
?

I

›››8 ă 8.
Then, f is unstable.

Proof. Let us show that for all ε ą 0 one can construct h P H such that
E[ f ]´ E[ f + εh] ă 0.

The goal is to choose a function h such that

Im
(
( f̂ + εĥ)˚ĥ

)
= Im

(
f̂ ˚ĥ
)
= | f̂ | |ĥ|, (8.10)

(the first equality being trivially true for all h P H), such that

1supp ĥ

?
I

| f̂ + εĥ| ą 2,

and such that
››› |ĥ|?I

1supp
?

I

›››8 ă 8.
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Then, one can use Equation (8.9) to follow

E[ f + εh]´ E[ f ] ď ε2

2(2π)d

ż (
1´

?
I

| f̂ + ε̃ĥ|

)
|ĥ|2

loooooooooooooooooomoooooooooooooooooon
Exact equality from the

expansion of EM

+
ε2

2(2π)d }ĥ}22looooomooooon
Worst-case

estimation from the
expansion of EA

(˚)
=

ε2

2(2π)d

ż 
1´

?
Ib

| f̂ |2 + ε̃2|ĥ|2


 |ĥ|2 + ε2

2(2π)d }ĥ}22

ď ε2

2(2π)d

ż 
1´

?
Ib

| f̂ |2 + ε2|ĥ|2


 |ĥ|2 + ε2

2(2π)d }ĥ}22

=
ε2

2(2π)d

ż (
2´

?
I

| f̂ + εĥ|

)
|ĥ|2 ă 0,

and in (˚) we have used the construction requirement (8.10).
The desired h may be chosen as follows. Since

›››
?

I

| f̂ |1supp
?

I

›››8 ą 2,

there exists an α ą 0 such that the set

Są =

#
k P ΩF for which

?
I(k)
| f̂ (k)|1supp

?
I ą 2 + α

+

has Lebesgue measure larger than 0.
Note that 0 R Są since f̂ (0) ě ?

I(0) for fixed point f : indeed,

2 f = PP[ f ] + PM[ f ] ñ 2 f̂ (0) = zPP[ f ](0) + {PM[ f ](0) ñ f (0) ě {PM[ f ](0),

since zPP[ f ](0) ě f̂ (0) due to the definition of the positivity operator.
Let ξ : ΩF Ñ t0,˘iu be an odd measurable function that equals 0 only
at the point 0 P ΩF.

Define

h : H(Ω)Ñ R;

h = F´1
( ?

α?
2ε

f̂ ξ1Są

)
.

Note that h is indeed real-valued as the Fourier inverse of a function
with even modulus and odd phase. Further,

›››››
|ĥ|
?

I
1supp

?
I

›››››8
ď

›››››

?
α?
2ε

| f̂ |
?

I
1supp

?
I

›››››8
ď

?
α?
2ε

ă 8.

Also, by construction, Są is not empty and |1Sąξ| = |1Są |; therefore,
h is not identically equal zero. Obviously, f̂ and ĥ are pointwise per-
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pendicular due to the factor ξ, so that (8.10) is true. Further, for all
k P supp

?
I

1supp ĥ(k)
?

I(k)
| f̂ (k) + εĥ(k)| = 1supp ĥ(k)

?
I(k)b

| f̂ (k)|2 + ε2|ĥ(k)|2

= 1supp ĥ(k)
?

I(k)b
(1 + ε2 α

2ε2 )| f̂ (k)|2
= 1Są(k)

?
I(k)

(1 + α
2 )| f̂ (k)|

ą 2 + α

1 + α
2
= 2,

justifying the claim. ˝

Remark 8.7 (Generalization to other A). It is straightforward to verify that
Proposition 8.6 holds for all weakly closed additional constraints A,
as long as

ˇ̌
ˇ̌EA[g + εh]´ EA[g]´ ε

ż
∇EA[g]h

ˇ̌
ˇ̌ ď ε2

2
}h}22.

In particular, support constraint S(S) satisifies this condition, since
PS is linear and

ES[g + εh] =
1
2
}g + εh´ PS[g]´ εPS[h]}22 = ES[g]´ ε

ż
(g´ PS[g])h +

ε2

2
}PS[h]}22,

and }PS[h]}2 ď }h}2 for the indicator projection PS. Analogously, this
condition can be shown for PX S.

As is easy to check, this condition does not hold, for example, for
sparsity constraints Ta(α) and Ts(ν).

Remark 8.8 (Informal interpretation of PM expansion). Lemma 8.4 shows
the conditions under which Taylor-expansion of PM is applicable. In-
formally, behavior of F

(
PM[ f + εh]

)
(k) can be qualitatively catego-

rized as follows, see Figure 8.3.
Case I) Let εĥ(k) is parallel or antiparallel to f̂ (k), i. e.

Re(εĥ˚(k) f̂ (k)) « εĥ˚(k) f̂ (k).
Case Ia). If, additionally, f̂ (k) + εĥ(k) is parallel to f̂ (k), the phase is
not changed, meaning that

F
(

PM[ f + εh]
)
(k) « F

(
PM[ f ]

)
(k).

For such arguments f , h and points k P ΩF, the operator PM is correctly
described by Taylor-expansion and well-behaved (contractive to the
point PM[g] undependent on h).
Case Ib). If f̂ (k) + εĥ(k) is antiparallel to f̂ (k), the phase is flipped,
meaning that

F
(

PM[ f + εh]
)
(k) « ´F(PM[ f ]

)
(k).

For such arguments f , h and points k P ΩF, the operator PM is poorly
approximated by the Taylor expansion.
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Case II). If εĥ(k) is perpendicular to f̂ (k), i. e. Im(εĥ˚(k) f̂ (k)) « εĥ˚(k) f̂ (k),
the behavior of PM — the change in phase — can be efficiently cap-
tured by the Taylor expansion and relatively well-behaved (lineariza-
tion in h approximates PM[g + εh] fairly well).
Case III) If f̂ (k) + εĥ(k) « 0, F

(
PM[ f + εh]

)
(k) is highly susceptible to

noise, and the Taylor approximation is not well-defined.
Proposition 8.6 assumes that points of Case Ib) are not present;

exploits condition (8.10) to avoid points of Case II); and shows that for
remaining points of Case Ia), operator PM is sufficiently well-behaved
to achieve the desired estimate.

However, in general, points of Case Ib) also consitute an integral
part of phase retrieval problems. The points of Case II) are not present
for thef even-restricted ERF, which simplifies the analysis of PM to a
certain extent.

To the best of our knowledge, the task to find a description of PM

that allows a more detailed analysis of algorithm behavior on points
of Case Ib) remains an open challenge — a crucial one for description
of phase retrieval algorithms.

The following corollary applies Proposition 8.6 to the phase re-
trieval setting. It shows that the fixed points of ERF that do not corre-
spond to fixed points of ER are unstable.

Corollary 8.9. Let Ω P tRd, Td, Td
Nu, let A = P P H(Ω), let

?
I P pH(ΩF)

be non-negative. Assume that f is a fixed point of ERF (i. e. 2 f = PP[ f ]+PM[ f ])
with

››› |ĥ|?I
1supp

?
I

›››8 ă 8. Further, assume that for any measurable phase

ϕ : ΩF Ñ [0, 2π), PP ˝ PM; ϕ ˝ PP[ f ] ‰ PP[ f ] (i. e. PP[ f ] is not a fixed point
of ER).

Then, f is unstable.

Proof. Use Corollary 8.2 in the following manner. Since for any mea-
surable phase ϕ : ΩF Ñ [0, 2π), PP ˝ PM; ϕ ˝ PP[ f ] ‰ PP[ f ], condition

?
I(k) = 2| f̂ (k)| for k P supp

?
I implies eiϕ(k) = f̂ (k)

| f̂ (k)|

from Corollary 8.2 can not be satisfied, and
››› |ĥ|?I

1supp
?

I

›››8 ą 2.
Then, f is unstable by Proposition 8.6. ˝

Informally speaking, Lemma 8.4 indicates that an ERF fixed point f
is more likely to be stable in the direction h, if Im( f̂ + εĥ)˚ĥ = 0. This
is true in the particular case when f and h are even, since for such f , h
have Im( f̂ ) = Im( f̂ ) = 0.

Note that the modulus projection and many additional projections
(such as positivity and sparsity) preserve evenness. Thus,

the study ERF for even functions
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?
I(k)

C

f̂ (k)

Case Ia)

Case Ib)
Case II)

Case III)

Figure 8.3: Illustration to Remark 8.8 (Interpretation of yPM at k).
Dashed orange circle is of radius

?
I(k)/2.

Case Ia) If f̂ (k) + εĥ(k) is approximately parallel to f̂ (k), then
yPM[ f + εĥ](k) «yPM[ f̂ ](k); “phase is not changed”.

Case Ib) If f̂ (k) + εĥ(k) is approximately antiparallel to f̂ (k), then
yPM[ f + εĥ](k) « ´yPM[ f̂ ](k); “phase is flipped”.

Case II) If f̂ (k) + εĥ(k) is approximately perpendicular to f̂ (k), “phase
is continuously rotated”.

Case III) if f̂ (k) + εĥ(k) « 0, “phase is discontinuous”.

Proposition 8.6 assumes that regions of Case Ib) and Case III) are not
present for suitable directions h and small enough ε. It uses condi-
tion (8.10) to construct h that avoids Case II). It shows that if there
exist regions of Case Ia) with | f̂ (k)| ă ?

I(k)/2, second order term
in the expansion of PM makes the fixed point f unstable along an
appropriate direction h.
The regions of Case II) are not present for the even-restricted ERF.
Corollary 8.10 assumes that the regions of Case Ib) and Case III) are
not present for suitable directions h and small enough ε. It excludes
the regions of Case II) by restricting ERF to the even case. It shows
that if | f̂ (k)| ě ?

I(k)/2 for almost all k P ΩF, then f is a stable fixed
point.
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relates to

the study of ERF behavior in absence of Case II)
region from Remark 8.8.

The following proposition states that even fixed points are stable
along all even directions if phase flips — Case Ib) from Remark 8.8 —
are not allowed.

Corollary 8.10 (Fixed point stability of even-restricted ERF and ER).
Let Ω P tRd, Td, Td

Nu, let A = P P H(Ω), let
?

I P pH(ΩF) be even.

(i) If f is an even fixed point of ERF with C?
I/| f̂ | :=

›››
?

I

f̂

›››8 ă 2, then it is

stable along all even directions h P H if they satisfy C|ĥ|/| f̂ | :=
››› ĥ

f̂

›››8 ă 8.

More precisely, for such h holds

E[ f + εh]´ E[ f ] ě 0

for all ε P (0, 1
2C
|ĥ|/| f̂ |(2´C?

I/| f̂ |)

)X (0, C?
I/| f̂ |/C|ĥ|/?I).

ii) Assume g is an even fixed point of ER with C?
I/|ĝ| :=

›››
?

I
ĝ

›››8 ă 8.

Then, there exists an ε ą 0 such that

EM[g + h]´ EM[g] ě 0

for all directions h P H that satisfy the following assumptions:

a) h is even and }h} ă ε;

b) C|ĥ|/?I
:=

››› ĥ?
I

›››8 ă 8 or C|ĥ|/|ĝ| :=
››› ĥ

ĝ

›››8 ă 8 is true;

c) g + h P P.

Proof. i) By Lemma 4.14 ii),

EP[ f ]´ EP[h]´
ż
( f ´ PP[ f ])h ě 0 (8.11)

for all h in H. Further, by Lemma 8.4, — and since f and h are
even and real-valued, and so are f̂ and ĥ — have

EM[ f ]´ EM[h]´
ż
( f ´ PM[ f ])h =

ε2

2(2π)d

ż (
|ĥ|2 ´

?
I

2| f̂ + ε̃ĥ| |ĥ|
2

)

(8.12)

for all ε P (0, C?
I/| f̂ |/C|ĥ|/?I). By the definition of C?

I/| f̂ | and
C|ĥ|/| f̂ |, for a. a. k P ΩF have

?
I(k) ď C?

I/| f̂ || f̂ (k)|,
|ĥ(k)| ď C|ĥ|/| f̂ || f̂ (k)|.
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Therefore, for a. a. k P ΩF, for ε P
(

0,
2´C?

I, f̂
2Cĥ, f̂

)
holds

?
I

| f̂ + εĥ| ď
?

I

| f̂ | ´ ε|ĥ|
(˚)ď

?
I

| f̂ | ´ εCĥ, f̂ | f |

ď
?

I

| f̂ |(1´ εCĥ, f̂ )|
ď

C?
I, f̂

1´ εCĥ, f̂
ď 2, (8.13)

where k was omitted for readability, and inequality (˚) holds

since the assumption ε ă 2´C?
I, f̂

2Cĥ, f̂
implies 1´ εCĥ, f̂ ą 0. The result

follows by inserting inequality (8.13) into (8.12) and combining
it with (8.11).

ii) To show the statement, assume the contrary and construct a
contradiction to Case i). That is, assume there exists an even
fixed point of ER g P H with C?

I/|ĝ| ă 8, such that for any
arbitrarily small ε ą 0 there exists an even direction h P H with
}h}2 ă ε, with C|ĥ|/|ĝ| ă 8, with g + h P P, and with

E[g + h]´ E[g] ă 0.

Let g̃ := g + h, let f := 1
2 (g + PM[g]). We shall show that for

all ε f ą 0 there exists an even f̃ := 1
2 (g̃ + PM[g̃]) such that

} f̃ ´ f }2 ă ε f ,

E[ f̃ ]´ E[ f ] ă 0, (8.14)

which will be a contradiction to i). Let h f := f̃ ´ f .

Let us verify that all assumptions for i) are satisfied for f defined
above. By Corollary 8.2, f is a fixed point of (ERF). It satisfies

›››››

?
I

f̂

›››››8
=

››››
2
?

I

|ĝ|+ ?
I

››››8
ă 2,

since

sup
kPΩF

?
I(k)
|ĝ(k)| ă 8 ñ inf

kPΩF

|ĝ(k)|
?

I(k)
ą 0.

As for the final assumption of Case i), is true since

›››››
ĥ f

f̂

›››››8
=

›››››
ĝ + ĥ +F (PM[g + h])´ ĝ´{PM[g]

|ĝ|+ ?
I

›››››8

ď
›››››

ĥ
|ĝ|+ ?

I

›››››8
+

›››››
2
?

I
|ĝ|+ ?

I

›››››8
ď mintC|ĥ|/|ĝ|, C|ĥ|/?Iu+ 2 ă 8.
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All assumptions of i) are satisfied, and we need to show Equa-
tion (8.14) to establish a contradiction. By the definition of f and
f̃ and by Lemma 3.8,

PP[ f ] = PP[g], PM[ f ] = PM[g], PM[ f̃ ] = PM[g̃].

Note that PP[ f̃ ] = PP[g̃] is not necessarily true, since g̃ is not
necessarily a fixed point of ER, and f̃ is not necessarily a fixed
point of ERF. By a straightforward calculation, E[ f ] = 1

2 E[g].
Further,

E[ f̃ ] =
1
2
} f̃ ´ PP[ f̃ ]}22 +

1
2
} f̃ ´ PM[ f̃ ]}22

(˚)ď 1
2
} f̃ ´ g̃}22 +

1
2
} f̃ ´ PM[g]}22

=
1
8
}g̃´ PM[g̃]}22 +

1
8
}g̃´ PM[g̃]}22

=
1
2

EM[g̃] ă 1
2

EM[g] = E[ f ],

where we used g̃ P P and Corollary 3.6 in (˚). Therefore,

E[ f̃ ]´ E[ f ] ă 0.

Lastly, we need to show that chosen f̃ satisfies } f̃ ´ f } ă ε f .
Since PM is Lipshitz at g with constant 2C?

I/|ĝ| by Lemma 6.22,
one has

} f ´ f̃ }2 ď 1
2
}g´ g̃}2 + C?

I,ĝ}g´ g̃}2 ď
(

1
2
+ C?

I,ĝ

)
ε ă ε f ,

as long as ε ă ε f
1
2+C?I,ĝ

. This choice is possible, since ε can be

chosen arbitrarily (g̃ can be chosen arbitrarily close to g). Thus,
we have a contradiction to Case i), concluding the proof. ˝

Remark 8.11. On a finite space (i. e. for Ω = Td
N), Corollary 8.10 holds

for all even directions h at the point g provided that ĝ(k) ‰ 0 at all coor-
dinates k. Thus, the restriction to even case provides an experimental
tool for studying fixed points of E. In simulations we observed that
even-restricted ER typically takes about order of 50 steps to converge
to a numerically stable fixed point (stable up to machine precision
errors).

8.3 formal hessian of erf energy

This section writes down the formal Hessian of the energy E = EM+EP;
it is used in Chapter 10 to investigate stability of fixed points of ERF.

This section does not contain original results, as these types of
Hessians are often studied in phase retrieval literature (for example,
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prominent paper [CLS15] studies the Hessian of the similar functional
g ÞÑ ş (|ĝ|2 ´?

I2)2
, which is more regular but similar to EM).

As shown in Remark D.8, the Hessian of E at g is formally equal to

H(x, y) = 1gă0(x)δ(x´ y)+

1´F´1
( ?

I

2|ĝ|
)
(x´ y) +F´1

( ?
I

2|ĝ|
(ĝ˚)2

|ĝ|2
)
(x + y)

in object space, or to

HF(k, q) = p1gă0(k´ q)

+
1

(2π)d

(
1´

?
I(k)

2|ĝ(k)|
)

δ(k´ q) +
1

(2π)d

?
I(k)

2|ĝ(k)|
(ĝ(k)˚)2

|ĝ(k)|2 δ(k + q)

in Fourier space. It is not mathematically rigorous unless considered
on a finite space at points g satisfying g(x) ‰ 0 for all x P Td

N , and
|ĝ(k)| ‰ 0 for all k P supp

?
I. Fortunately, this condition seems to be

almost always satisfied for numerical simulations, justifying a more
detailed look on H(x, y).

Of interest are the smallest eigenvalues of H at a fixed point g: if
any of them are negative, the fixed point g is unstable.

One can reliably generate even fixed points of ER and ERF by re-
stricting them to even subspaces; this is motivated by Corollary 8.10.
In practice, such fixed points are usually unstable and can be found
both far from and close to solutions. Theoretical convergence radius
can not exceed the distance between solutions and closest fixed points
that are distinct from solutions. This is why existence of fixed points
near solutions — cf. bottom row of Figure 10.7 — indicates how small
the convergence radius can be for phase retrieval. For the unstable
fixed points generated using the evenness restriction, the algorithm
typically leaves the fixed point by accumulating odd disturbances
after the evenness restriction is lifted.

As for the non-even fixed points of ER, it is unclear how to generate
them in general. For certain problems, if one runs ER for long enough,
the algorithm arrives at a stable fixed point, see Figure 10.10. Existence
of such fixed points is a key for understanding convergence properties
of phase retrieval.



Part III

B E Y O N D T H E E R R O R - R E D U C T I O N F L O W

This part introduces a generalization of the Error-Reduction
Flow, and provides some numerical examples.

Namely, Chapter 9 introduces a system of equations that
generalizes the Error-Reduction Flow and can be used to
analyze the Douglas-Rachford algorithm. This system of
equations can be derived as a variation of a functional.
The functional reveals a connection between the Error-
Reduction, Dykstra, and Douglas-Rachford algorithms. The
connection appears to be new, and is valid for a general
setting of two-set feasibility problems. In phase retrieval
setting, this system of equations is shown to posess global
weak solutions.

Chapter 10 provides numerical examples that illustrate
behaviour of classical ER and DR algorithms, and of the
corresponding discretized flows introduced in this work.
The examples demonstrate that classical algorithms and
corresponding disretized flows have similar dynamics. Fur-
ther, the examples demonstrate that for certain problems,
large local convergence radius of ER may be heuristically
explained by the fact that many of its fixed points are un-
stable.

The thesis is concluded in Chapter 11, which contains an
outlook describing some open questions connected to this
work.





9
A P, D Y K S T R A A N D D R V I A T W O - VA R I A B L E S F L O W

This chapter introduces a system of equations that generalizes the
Error-Reduction Flow and is better suited to describe the Douglas-
Rachford algorithm. The main results of this chapter are presented in
Table 9.1 and illustrated in Figures 9.2 to 9.5.

Namely, as demonstrated in Chapter 5, the AP and DR algorithms
can be interpreted to be discretizations of the same APF

Btg = ´(g´ PX[g])´ (g´ PY[g]).

We used explicit discretization to obtain AP from APF, and DR-LM to
obtain DR from APF.

AP and DR can be connected to other equations through other
discretization procedures. Such connections can yield new insights, if
the corresponding equations posess interesting properties.

For example, a remarkable property of APF is that it is a (formal)
gradient flow, and the corresponding energy dissipation transfers to
AP (Chapter 6).

The goal of this chapter is to present a system of equations that is
connected to the AP, DR and Dykstra algorithms. (The latter is men-
tioned in Section 5.1.2 in connection to BIO and is formally introduced
in Section 6.3.4.1.) Namely, we demonstrate that AP, Dykstra and DR
correspond to the following system of equations:

Bt

(
s

d

)
= M ¨

(
δ
δs
δ

δd

)
F[s, d], (2v-FPF)

where s, d P L2(Rd) are two variables that describe the approximation
(their interpretation is discussed below in more detail). The functional

F[s, d] :=
1
2

EX[s + d] +
1
2

EY[s´ d]´ 1
2
}d}22

is the same for AP, Dykstra and DR. The matrix M P R2x2 must be
chosen dependent on the algorithm:

M =

(
´1 0

0 0

)
for AP, M =

(
0 0

0 1

)
for Dykstra,

and M =

(
´1 0

0 1

)
for DR.

175
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We call the equation (2v-FPF) the two-variables Feasibility Problem
Flow, or the two-variables flow (2v-FPF). It is noteworthy that 2v-FPF
has a gradient structure in the sense of [LM13].

The differentiation on the right-hand side of Equation (2v-FPF) is
a formal Fréchet-differentiation in variables s, d, or a selection of the
rigorous generalized (Mordukhovich-Kruger) subdifferential in s, d,
provided X and Y are weakly closed (similarly to Section 5.2). For
ease of readability, we use formal Fréchet-differentiation of function-
als throughout the chapter, but reformulation to selections of subdif-
ferentials is possible for all presented results, provided X and Y are
weakly closed.

This chapter proceeds as follows. First, we provide motivation for
2v-FPF and interpret its terms. Second, we establish its connection to
AP, Dykstra, and DR algorithms (summarized in Table 9.1). Third, we
describe the dynamics of 2v-FPF using examples where X and Y are
particularly simple (unions of two-dimensional balls). We conclude
the chapter by discussing certain open problems connected to the
2v-FPF DR algorithm.

9.1 motivation of 2v-fpf

This section argues why of many possible continuous formulations of
the Douglas-Rachford algorithm we favor 2v-FPF.

For two proximal sets X,Y Ă H, the feasibility problem — the
task of finding an element g P XX Y — can be adressed by various
algorithms, such as AP, Dykstra, and DR. Our search of equations —
that describe behaviours of these algorithms — was influenced by two
following principles: i) avoid composition of operators; ii) preserve
symmetry.

First, the reason to avoid composition of operators — say, PX ˝ PY

— is the following. Terms like PX ˝ PY rarely arise as derivatives of
functionals (cf. Remark 5.19). Therefore, it is unlikely that equations
containing such terms provide viable alternative descriptions of the
algorithms one strives to understand.

Second, the discussed feasibility problem is — at least, nominally
— symmetric with respect to exchange of X and Y. This symmetry is
broken by the algorithms: neither the AP update gn+1 = PX ˝ PY[gn]

nor the DR update gn+1 = 0.5(gn + RX ˝ RY[gn]) are symmetric under
the exchange of X and Y. This symmetry breaking can be analyzed
and exploited, see [Mou16], but it is not an intrinsic property of the
feasibility problem.

APF maintains this symmetry: Btg = ´2g+ PX[g] + PY[g] is symmet-
ric in X and Y. Note how g appears as an argument of both PX and PY.
While APF is connected to AP and DR (Section 5.3), its dynamics — at
least in phase retrieval — is closer to AP (stagnates, dissipates energy)
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and differs significantly from DR (globally convergent in simulations,
escapes local minima).

Our goal was to find equations whose behavior is comparable to the
behavior of DR, while avoiding operator compositions and maintain-
ing X–Y-symmetry. The connection to AP and Dykstra was obtained
as a by-product of this search.

An obvious way to generalize APF is to consider two independent
variables p, q P H instead of g; each variable corresponding to X or to
Y.

As shown below, AP, Dykstra and DR can all be written in a sim-
ilar fashion, using exclusively sums and differences of the following
terms: p, q, PX[p], and PY[q]. Note how p appears as an argument only
of PX, and q appears as an argument only of PY. The resulting equa-
tions, shown below, are symmetric, if X is exchanged with Y and p is
exchanged with q. The variables s = p+q

2 and d = p´q
2 — used in the

beginning of this chapter — correspond to center-of-mass coordinates
for variables p and q.

9.2 connection between 2v-fpf and ap , dykstra and dr

This section describes how AP, Dykstra and DR can be recovered from
2v-FPF using explicit discretization.

Canonical formulations of AP, Dykstra, and DR can be found in the
first row of Table 9.1. Their reformulations in terms of variables p, q
can be found in the second row of Table 9.1.

Proposition 9.1. Reformulations of AP, Dykstra, and DR (second row of
Table 9.1) are equivalent to canonical formulations of AP, Dykstra, and DR,
in the sense specified in the second row of Table 9.1.

Proof. All cases (AP, Dykstra, and DR) are shown by induction.
AP. Let g0 P X, let the sequences (gn), (pn), and (qn) be generated

as described in Table 9.1. We need to show that

qn = gn = PX[pn] and pn = PY[gn´1] = PY[qn´1]

for all n P N. By construction, q1 = g1 = PY[p1], p1 = PY[g0] = PY[q0].
Induction step: if the assumption is true for an n P N,

pn+1 = pn + 2
(
´ pn + qn

2
+

PX[pn ] + PY[qn]

2

)

= ´qn + PX[pn] + PY[qn] = PY[qn] = PY[gn],

since PX[pn] = PX ˝ PY[gn´1] = gn = qn. Further,

qn+1 = qn + 2
(
´ pn+1 + qn

2
+

PX[pn+1] + PY[qn]

2

)

= ´pn+1 + PX[pn+1] + PY[qn] = PX[pn+1] = PX ˝ PY[gn] = gn+1,
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since PY[qn] = pn+1, completing the proof.
Dykstra. Let g0 P X, let the sequences (gn), (hn), (g̃n), (h̃n), (pn),

and (qn) be generated as described in Table 9.1. We need to show that
pn = g̃n + h̃n, qn = gn + hn´1, and PX[pn] = gn+1 for all n P N0. Base
case: by construction,

g̃0 + h̃0 = PY[g0 + h´1] + 0 = PY[g0] = p0;

g0 + h´1 = g0 = q0;

g1 = PX[g̃0 + h̃0] = PX[p0].

Induction step: if claim holds for n P N0, then:

gn+1 + hn = PX[g̃n + h̃nloomoon
=pn

] + gn + hn´1loooomoooon
=qn

´ g̃nloomoon
=PY[qn]

= qn+1;

g̃n+1 + h̃n+1 = PY[gn+1 + hnloooomoooon
=qn+1

] + g̃n + h̃nloomoon
=pn

´ gn+1loomoon
=PX[pn]

= pn+1;

gn+1 = PX[g̃n + h̃n] = PX[pn],

completing the proof.
DR. Let g0 P X, let the sequences (gn), (pn), and (qn) be generated

as described in Table 9.1. We need to show that pn = 2PY[gn´1]´ gn´1

and qn = gn for all n P N. Base case: by construction,

p1 = g0 + 2
(
´g0 + g0

2
+ PY[g0]

)
= 2PY[g0]´ g0;

q1 = g0 ´
(

2PY[g0]´ g0 + g0

2
+ PX[p1]

)

= g0 + PX[2PY[g0]´ g0]´ PY[g0] = g1.

Induction step: if the claim holds for n P N, then:

pn+1 = pn + 2
(
´ pn + qn

2
+ PY[qn]

)
= 2PY[qn]´ qn = 2PY[gn]´ gn;

qn+1 = qn ´
(

2PY[qn]´ qn + qn

2
+ PX[pn+1]

)

= gn + PX[2PY[gn]´ gn]´ PY[gn] = gn+1. ˝

The reformulations of AP, Dykstra, and DR in terms of variables p, q
(second row of Table 9.1) motivate corresponding evolution equations
(row “2v-FPF” of Table 9.1). The structure of these evolution equa-
tions becomes more apparent, if one introduces the center–of–mass
coordinates s = p+q

2 and d = p´q
2 , see row “2vFPF in CM” in Ta-

ble 9.1. The resulting variational form (row “F[s, d] form” in Table 9.1)
is connected to the flow through the following lemma.
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Lemma 9.2. Let X, Y Ă H be weakly closed, let s, d P H, let EX be Fréchet-
differentiable at s + d, let EY be Fréchet-differentiable at s´ d. Let

F[s, d] :=
1
2

EX[s + d] +
1
2

EY[s´ d]´ 1
2
}d}22.

Then,

δ

δs
F[s, d] = s´ PX[s + d] + PY[s´ d]

2
;

δ

δd
F[s, d] = ´ PX[s + d]´ PY[s´ d]

2
.

Proof. By Remark 4.12,

δ

δs
1
2

EX[s + d] =
s + d

2
´ PX[s + d]

2
;

δ

δd
1
2

EY[s´ d] =
s´ d

2
´ PY[s´ d]

2
,

and by direct calculation, δ
δd

1
2}d}22 = d. Combine these equations to

obtain the desired result. ˝

Remark 9.3 (2v-FPF as Reflection-Reflection algorithm). Recall that the DR
update can be written using reflection operators:

gn+1 =
1
2
(g + RX ˝ RY[g]),

and this update is also known as Relaxed-Reflect-Reflect (cf. the refor-
mulation on p. 85).

The similarity between this update and rescaled 2v-FPF variant of
DR is striking. Namely, by the previous proposition, DR corresponds
to the algorithm with updates

$
’&
’%

pn+1 = pn + 2
(
´ pn+qn

2 + PY[qn]
)

,

qn+1 = qn ´ 1
(

pn+1+qn
2 + PX[pn+1]

)
.

Rescaled to be symmetric, the corresponding equations state:
$
&
%
Bt p = ´ p+q

2 + PY[q] = 1
2 (´p + RY[q]) ;

Btq = ´ p+q
2 + PX[p] = 1

2 (´q + RX[p]) .
(DRF)

Similarly to DR in Definition 5.53, this is a combination of two relaxed
reflections. We call the equations above DRF (Douglas-Rachford Flow).
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Remark 9.4. If (p, q) is a fixed point of DRF, then s = p+q
2 P XX Y.

Indeed, if

0 = Bt p = ´ p + q
2

+ PY[q], and

0 = Btq = ´ p + q
2

+ PX[p],

then
p + q

2
= PY[q] P Y, and

p + q
2

= PX[p] P X.

Therefore, one can use EX[s] + EY[s] as a criterion for DRF convergence.
This is the same energy functional as the one we used to show energy
dissipation for alternating projections (Proposition 6.4).
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Table 9.1: Gradient system reformulations of AP, Dykstra, and DR algorithms

AP (ER) Dykstra (BIO) DR (HIO)

A
lgorithm

Given g0 P X, set Given g0, set h´1 = h̃0 = 0, set Given g0, set

gn+1 = PX ˝ PY[gn].

g̃n = PY[gn + hn´1],

hn = gn + hn´1 ´g̃n,

gn+1 = PX[g̃n + h̃n ],

h̃n+1 = g̃n + h̃n ´gn+1.

gn+1 = gn + PX[2PY[gn]´ gn]´ PX[gn].

R
eform

ulation

Set q0 = g0, p1 = PY[g0], q1 = PX ˝ PY[g0], set Set p0 = PY[g0], q0 = g0, set Set p0 = g0, q0 = g0, set

pn+1 = pn + 2
(
´ pn + qn

2
+

PX[pn ] + PY[qn]

2

)
,

qn+1 = qn + 2
(
´ pn+1 + qn

2
+

PX[pn+1] + PY[qn]

2

)
.

qn+1 = qn + 2
(

PX[pn]´ PY[qn]

2

)
,

pn+1 = pn ´ 2
(

PX[pn]´ PY[qn+1]

2

)
.

pn+1 = pn + 2
(
´ pn + qn

2
+ PY[qn]

)
,

qn+1 = qn ´ 1
(

pn+1 + qn

2
+ PX[pn+1]

)
.

Then, qn = gn, pn = PY[gn´1] for all n P N.
Then, pn = g̃n + h̃n,

qn = gn + hn´1,
and PX[pn] = gn+1 for all n P N0.

Then, pn = 2PY[gn´1]´ gn´1,
qn = gn for all n P N.

Continued on next page
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Table 9.1 – Continued from previous page

AP (ER) Dykstra (BIO) DR (HIO)

2v-FPF

Pass to equations. For DR: accelerate time in the equation for q by the factor of 2. Get:

Bt p = ´ p + q
2

+
PX[p] + PY[q]

2
;

Btq = ´ p + q
2

+
PX[p] + PY[q]

2
.

Btq = +
PX[p]´ PY[q]

2
;

Bt p = ´PX[p]´ PY[q]
2

.

Bt p = ´ p + q
2

+ PY[q];

Btq = ´ p + q
2

+ PX[p].

2v-FPF
in

C
M

Let s := (p + q)/2, d := (p´ q)/2. Get:

Bts = ´s +
PX[s + d] + PY[s´ d]

2
;

Btd = 0.

Bts = 0;

Btd = ´PX[s + d]´ PY[s´ d]
2

.

Bts = ´s +
PX[s + d] + PY[s´ d]

2
;

Btd = ´ PX[s + d]´ PY[s´ d]
2

.

F
[s,d

]form

Let F[s, d] := 1
2 EX[s + d] + 1

2 EY[s´ d]´ 1
2}d}22. Then:

Bt

(
s

d

)
=

(
´1 0

0 0

)(
δ
δs
δ

δd

)
F[s, d] Bt

(
s

d

)
=

(
0 0

0 1

)(
δ
δs
δ

δd

)
F[s, d] Bt

(
s

d

)
=

(
´1 0

0 1

)(
δ
δs
δ

δd

)
F[s, d]
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9.3 dynamics of 2v-fpf : an example

The goal of this section is to demonstrate a heuristic explanation of
how DR can escape some stagnation points of AP. The following
arguments are proposed to justify the explanation.

1) Remark 9.5 juxtaposes AP and Dykstra, arguing the difference
in how they solve feasibility problems. Namely, in a (very loose)
sense, AP seems to “close the distance” to X and Y (minimize
F[s, d] in s), while Dykstra “goes to infinity” (maximize F[s, d] in
d).

2) Proposition 9.7 illustrates why “going to infinity” can be a good
tactic for solving a simple feasibility problem.

3) Example 9.10 illustrates the update rules of 2v-FPF.

4) Example 9.11 illustrates dynamics of 2v-FPF for three different
feasibility problems (convex feasible, convex non-feasible, and
non-convex feasible problems; see Figures 9.3, 9.4, 9.5, respec-
tively).

Remark 9.5 (AP vs Dykstra). Assume that (s, d) solves 2v-FPF for AP in
center-of-mass coordinates (Table 9.1) with initial values s(0) = s0 P H,
d(0) = 0. Then, d(t) ” 0, and s(t) solves ERF. In particular,

F[s, d] = F[s, 0] = EX[s] + EY[s]

is non-increasing (Proposition 6.4) and EX[s + d]´ EY[s´ d] is decreas-
ing or equals zero (Proposition 7.22). In this sense, p = q = s do not
increase their distance to X and Y.

Assume that (s̃, d̃) solves 2v-FPF for Dykstra (Table 9.1) with initial
values s(0) = 0, d(0) = d0 P H. Then, s(t) ” 0, and, formally,

d
dt

F[s(t), d(t)] = xd´ PX[d] + (´d´ PY[´d])(´1)´ 2d,´PX[d]´ PY[´d]
2

y

=
1
2
}PX[d]´ PY[´d]}22,

meaning that F[0, d] is non-decreasing.
Further, for many cases of interest F[0, d] may be unbounded as

}d}2 Ñ8. For example, assume that X and Y are bounded, such that
X and Y are contained in BR(0) for some R ą 0. Then,

}d´ PX[d]}2
}d}2 ě }d}2 ´ R

}d}2 Ñ 1

as d Ñ8, and likewise for Y; therefore,

F[0, d]
}d}2 ě

1
2}d}2 ´ 1

2 R + 1
2}d}2 ´ 1

2 R´ 1
2}d}2

}d}2 Ñ 1
2

,
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showing F[0, d]Ñ8 as d Ñ8.
This indicates that in pursuit of F[s, d] maximization in d, 2v-FPF

for Dykstra can lead to d Ñ8.
Exploration of such unbounded regions may seem counterintuitive

at first. One can put forth the following reasoning to why exploration
of such regions may be benefitial.

Main tools for exploration of H (in search of XX Y) are projections
PX and PY. At a point p = s + d P H, projection PX[p] conceptually
carries two pieces of information:

i) PX[p] is the closest point to p in X;

ii) no points of X lie in the interior of B}p´PX[p]}2
(p).

If the ball B}p´PX[p]}2
(p) is very large (as can be the case when p Ñ8),

a very large region can be excluded from the search, which may lead
to recovery of some solution f P XX Y. This is illustrated further in
Proposition 9.7 below.

Heuristically, one can argue that AP exploits information i), while
Dykstra exploits information ii).

In Proposition 9.7, we use the notion of regularity that is integral to
convex feasibility problems [BB96].

Definition 9.6 (Regularity). Let M P N, let X1, . . . ,XM Ă H be weakly
closed, assume that X := XM

i=1Xi ‰ ∅. The tuple (X1, . . . , XM) is called
regular, if @ε ą 0 Dδ ą 0 such that for all g P H with

max
iPt1,...,Mu

 }g´ PXi [g]}2
( ď δ

holds inf fPX }g´ f }2 ď ε.

To quote [BB96], “the geometric idea behind this definition is ex-
tremely simple: ’If you are close to all sets, then the intersection can
not be too far away’.”

The following proposition exemplifies how “escaping to infinity”
may be used to solve a feasibility problem when one of the sets is a
half-space. A similar setting was used in [AABT16] to demonstrate
global convergence of DR.

Proposition 9.7 (Half-space feasibility problem). Let e P H be such
that }e}2 = 1, let b ě 0, define the closed half-plane X = t f P H | x f , ey ě bu.
Let Y Ă H be weakly closed, assume that XX Y ‰ ∅.

Let gn = nbe for n P N.
Then, EX[PY[gn]] + EY[PY[gn]]Ñ 0 as n Ñ8.
In particular, if (X,Y) is regular, then the distance between PY[gn] and

XX Y goes to zero, i. e.

lim
nÑ8 inf

fPXXY
}PY[gn]´ f }2 = 0.
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g

gN

N0 b
e

Y

X

a)

g

PY[gN ]

0 b
e

Y

X

gN

b)

Figure 9.1: Illustration to Proposition 9.7 (half-space feasibility problem).
The proposition states: assume XX Y ‰ ∅, let gN = Ne; then, PY[gN ]
goes arbitrarily close to X as N Ñ8. The figures illustrate the claims
made in the proof of Proposition 9.7.

a) Claim 1 for ε = 0. If }g´ gN}2 ă }Ne´ be}2 = N ´ b, then PY[gN ]
must belong to X. Here, N = 5 and gN = 5e. The sequence PY[gN ]
arrives at a solution in finitely many steps.

b) Claim 2. For any solution g, the distance }g´ gN}2 becomes less
or equal than N ´ b + ε for any ε ą 0 as N Ñ 8. In conjuncture
with Claim 1 this means that PY[gN ] becomes arbitrarily close to X.
Here, N = 15 and gN = 15e. The sequence PY[gN ] converges to the
solution g.

Proof. The proof can be split into two separate claims. First claim
states that if the distance between gn and any solution g is not too
large, then PY[gn] is not too far from the half-space X. Second claim
states that for large enough n, distance between gn and g is not too
large. In mathematical terms:

Claim 1. Let ε ą 0, let g P XX Y. If }g´ gN}2 ď N ´ b + ε for some
N P N, then }PY[gn]´ PX ˝ PY[gn]}2 ď ε for all n ě N. In particular, if
ε = 0, then PY[gn] P X.

Claim 2. Let g P XX Y. Then, for all ε ą 0 there exists N P N such
that }g´ gN}2 ď N ´ b + ε.

See Figure 9.1 for an illustration of these claims.
Proof of Claim 1. Let ε ą 0, let g P XXY, assume that }g´ gN}2 ď N´ b+ ε

for some N P N. Since g P Y,

}gN ´ PY[gN ]}2 ď }gN ´ g}2 ď N ´ b + ε.

Therefore, by triangle inequality have

}PY[gN ]}2 ě }gN}2 ´ }gN ´ PY[gN ]}2 ě N ´ (N ´ b + ε) ě b´ ε.
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Further,

}gN ´ PY[gN ]}22 = }gN}2 ´ 2xgN , PY[gN ]y+ }PY[gN ]}22
ě N2 ´ 2NxPY[gN ], ey+ (b´ ε)2.

This inequality can be rewritten in the form

2NxPY[gN ], ey ě N2 + (b´ ε)2 ´ }gN ´ PY[gN ]}22
ě N2 + (b´ ε)2 ´ (N ´ b + ε)2

ě 2N(b´ ε);

hence, xPY[gN ], ey ě b´ ε. This implies that xPY[gN ] + εe, ey ě b, mean-
ing that PY[gN ] + εe P X and that

}PY[gN ]´ PX ˝ PY[gN ]}2 ď }PY[gN ]´ (PY[gN ] + εe)}2 ď ε.

To extend this inequality to n ě N, observe that if }gn´ g}2 ď n´ b+ ε

for some n ě N, then

}gn+1 ´ g}2 = }gn + e´ g}2 ď }gn ´ g}2 + 1 ď (n + 1)´ b + ε.

Thus, Claim 1 follows by induction in n.
Proof of Claim 2. Let g P XX Y. Define the following vectors:

g‖ = xg, eye; gK = g´ g‖.

Further, let
$
’’’&
’’’%

ε P (0, b) if b ą 0,

ε P (0, }g‖}2
2 ) if b = 0 and }g‖}2 ą 0,

ε ą 0 if b = 0 and }g‖}2 = 0.

With these definitions, it is straightforward to verify that

c := }g‖ ´ (b´ ε)e}2 ě ε. (9.1)

Indeed, since }g‖}2 ě b due to g P X, for b ą 0, ε P (0, b) have

}g‖ ´ (b´ ε)e}2 = }g‖}2 ´ b + ε ě ε;

for b = 0, }g‖}2 ą 0, ε P (0, }g‖}2
2 ) have

}g‖ ´ (b´ ε)e}2 = }g‖}2 ´ ε ě }g‖}2/2 ě ε;

for b = 0, }g‖}2 = 0, ε ą 0 have

}g‖ ´ (b´ ε)e}2 = ε.
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Let bε := b´ ε.
Let N P N be larger that bε. Since gN ´ bεe = (N´ bε)e, we have the

following cosine equality:

xgN ´ bεe, g´ bεey
}gN ´ bεe}2}g´ bεe}2 =

xe, g´ bεey
}g´ bεe}2 =

c
}g´ bεe}2 .

Therefore, by the cosine theorem have

}gN ´ g}22 = }g´ bεe}22 + }gN ´ bεe}22 ´ 2}g´ bεe}2}gN ´ bεe}2 c
}g´ bεe}2

= }g´ bεe}22 + }gN ´ bεe}22 ´ 2c}gN ´ bεe}2
= c2 + }gK}22 + (N ´ bε)

2 ´ 2c(N ´ bε).

The goal is to choose N large enough so that

}gN ´ g}22
!ď (N ´ b + ε)2 = (N ´ bε)

2 ô
c2 + }gK}22 + (N ´ bε)

2 ´ 2c(N ´ bε)
!ď (N ´ bε)

2 ô
c2 + }gK}22

!ď 2c(N ´ bε) ô
N ą b +

c
2
+

1
c
}gK}22.

This latter condition is satisfied by Equation (9.1), if we choose

N ą b +
ε

2
+

1
ε
}gK}22,

showing Claim 2.
Thus, Claim 2 shows that Claim 1 is applicable; thus, EX[PY[gn]]Ñ 0

as n Ñ8, and trivially EY[PY[gn]] = 0.
Final statement of the proposition follows directly from the defini-

tion of regularity and definitions of EX and EY. ˝

Let us illustrate the dynamics of 2v-FPF using numerically gener-
ated examples. To this end, consider the following discretizations of
2v-FPF. Note that we use the coordinates (p, q) rather than (s, d), as
discretized algorithms are more numerically stable in these coordi-
nates.

Definition 9.8 (Discretized 2v-FPF). Let X,Y Ă H be weakly closed
with projections PX, PY, let p0, q0 P H, let ε ą 0. The sequences (p(ε)n )nPN,
(q(ε)n )nPN are generated by the d2v-FPF (discretized 2v-FPF) variant of AP,
Dykstra, or DR, if p(ε)0 = p0, q(ε)0 = q0, and the following updates hold for
all n P N:

$
’&
’%

pn+1 = pn + ε
(
´ pn +qn

2 + PX[pn ]+PY[qn]
2

)

qn+1 = qn + ε
(
´ pn+1+qn

2 + PX[pn+1]+PY[qn]
2

)
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for AP;
$
’&
’%

qn+1 = qn + ε
(

PX[pn]´PY[qn]
2

)

pn+1 = pn ´ ε
(

PX[pn]´PY[qn+1]
2

)

for Dykstra;
$
’&
’%

pn+1 = pn + ε
(
´ pn+qn

2 + PY[qn]
)

qn+1 = qn ´ ε
(

pn+1+qn
2 + PX[pn+1]

) (dDRF)

for DR.

Remark 9.9 (Sequential and parallel updates). We call update rules from
Definition 9.8 sequential, meaning that variable instance that is updated
in the first equation appears in the second. Thus, iterates pn, qn, pn+1

and qn+1 appear on right-hand sides of sequential updates. These
updates are convenient for computational implementation: one always
uses the last instance of iterates p and q.

If we replace the indices n + 1 on the right-hand sides by n, we
call the resulting updates parallel, meaning that the same instances of
variables are used in the first and second equations. Only iterates pn

and qn appear on right-hand sides of parallel updates. These updates
are slightly less convenient for computational implementation: one
has to keep a copy of both pn and qn to calculate new values of p and
q. However, parallel updates exhibit more symmetry and are easier to
visualize.

Example 9.10 (Update rules). Figure 9.2 illustrates 2v-FPF evolution equa-
tions (Table 9.1). Right-hand sides of these equations correspond one
parallel (Remark 9.9) update for Definition 9.8 with ε = 1. The update
is shown for a case when X, Y are two-dimensional non-intersecting
balls. Since the parallel update is defined solely by pn, qn, PX[pn] and
PY[qn], the illustration remains valid for other global geometries of X
and Y as long as PX[pn] and PY[qn] are not changed.

Example 9.11 (A two-dimensional example). Figures 9.3, 9.4, 9.5 show ex-
amples of 2v-FPF flow q(t), p(t) with starting point p(0) = q(0) = s0

for three feasibility problems.
Figure 9.3 demonstrates a feasible convex problem. The algorithms

2v-FPF AP and 2v-FPF Dykstra converge to PXXY[s0] while 2v-FPF
DR converges to some other point in XX Y. This is consistent with
the known convex optimization results on Halpern and Dykstra algo-
rithms (cf. Section 6.3.4.1).

Figure 9.4 demonstrates a non-feasible convex problem.

• 2v-FPF AP converges to a minimum of EX[s] + EY[s].
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• 2v-FPF Dykstra’s p and q escape to infinity; PX[p] converges to
some point in X.

• 2v-FPF DR exhibits combined features: s converges to a mini-
mum of EX[s] + EY[s], and p and q escape to infinity.

Figure 9.5 demonstrates a feasible non-convex problem.

• 2v-FPF AP converges to a local minimum of EX[s] + EY[s] that
is not a solution.

• 2v-FPF Dykstra’s p and q escape to infinity. PX[p] converges to
some point in X that is not a solution. PY[q] (not shown on the
picture) converges to a solution; the jump to the solution may
be reckognized at the knick in q(t).

• 2v-FPF DR’s p and q converge to a solution. At first, the algo-
rithm exhibits behavior similar to the feasible convex case from
Figure 9.3; at a stagnation point, p and q move away from the
point as in the non-feasible convex case from Figure 9.4; when
p and q are far enough (from the 2v-FPF AP stagnation point),
the algorithm escapes the stagnation region and converges to a
solution.
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X Y

s1

PX[s1] PY[s1]

s0

(ER)

∂ts = −s+ PX[s]+PY[s]
2

d(t) ≡ 0, s(t) ≡ p(t) ≡ q(t).

s(t) = p(t)+q(t)
2

X Y

p1q1

PX[p1] PY[q1]

s0

(Dykstra)
∂tp = (PY[q]− PX[p])/2,
∂tq = (PX[p]− PY[q])/2,
s(t) ≡ s0.

p(t)

q(t)

PX[p(t)]

s0

X Y

p1q1

PX[p1] PY[q1]

s1

(DR)
∂tp = −s+ PY[q],
∂tq = −s+ PX[p].

p(t)

q(t)

s(t) = p(t)+q(t)
2

Figure 9.2: Updates of discretized 2v-FPF (Example 9.10)
Brown arrows illustate updates of algorithms at points q1 = q(1), p1 = p(1), s1 = (p1 + q1)/2. Faded dotted lines illustrate
the corresponding 2v-FPF q(t), p(t) with the starting point p(0) = q(0) = s0. See Example 9.11 for details on q(t), p(t).
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q
(ε)
n (2v-FPF AP)
gn (AP)

X Y

p
(ε)
n (2v-FPF Dykstra)

q
(ε)
n (2v-FPF Dykstra)
PX

[
p
(ε)
n

]
(2v-FPF Dykstra)

gn (Dykstra)

X Y

p
(ε)
n (2v-FPF DR)

q
(ε)
n (2v-FPF DR)
p
(ε)
n +q

(ε)
n

2 (2v-FPF DR)
gn (DR)

Figure 9.3: Dynamics of 2v-FPF AP, Dykstra and DR: feasible convex case
An example of 2v-FPF flow q(t), p(t) with starting point p(0) = q(0) = s0. The flow is generated using sequential 2v-FPF
updates from Definition 9.8 using ε = 1/20; crosses mark points in time t = (20ε)n = n for n P N. Classical AP, Dykstra,
DR iterates are shown using black circles. See Example 9.11 for details.



1
9

2
a

p,
d

y
k

s
t

r
a

a
n

d
d

r
v

i
a

t
w

o
-
v

a
r

i
a

b
l

e
s

f
l

o
w

X Y
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n (2v-FPF Dykstra)
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(ε)
n (2v-FPF Dykstra)
PX

[
p
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]
(2v-FPF Dykstra)
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q
(ε)
n (2v-FPF DR)
p
(ε)
n +q

(ε)
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2 (2v-FPF DR)
gn (DR)

Figure 9.4: Dynamics of 2v-FPF AP, Dykstra and DR: non-feasible convex case
An example of 2v-FPF flow q(t), p(t) with starting point p(0) = q(0) = s0. The flow is generated using sequential 2v-FPF
updates from Definition 9.8 using ε = 1/20; crosses mark points in time t = (20ε)n = n for n P N. Classical AP, Dykstra,
DR iterates are shown using black circles. See Example 9.11 for details.
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Figure 9.5: Dynamics of Dv-FPF AP, Dykstra and DR: feasible non-convex case
An example of 2v-FPF flow q(t), p(t) with starting point p(0) = q(0) = s0. The flow is generated using sequential 2v-FPF
updates from Definition 9.8 using ε = 1/20; crosses mark points in time t = (20ε)n = n for n P N. Classical AP, Dykstra,
DR iterates are shown using black circles. See Example 9.11 for details.
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9.4 dr/hio flow

Specifically, in context of phase retrieval, consider the following set of
equations we call the Douglas-Rachford/Hybrid-Input-Output Flow:

Bt p = ´ p + q
2

+ PP[q]

Btq = ´ p + q
2

+ PM[p].
(DR/HIO-F)

This section demonstrates that DR/HIO-F admits weak solutions
with

p, q P L8
(
(0, T); L2(Td)

)X C
(
[0, T]; L2(Td)

)

for some T ą 0, and discusses some properties of the solutions.
The proofs are very similar to the ones presented in Chapter 7. A no-

table difference — that does not significantly alter the proofs — comes
from the fact that we are not able to establish a bound on p, q that is
uniform in time on (0,8). The demonstrated bounds (Lemma 9.13)
allow linear growth of }p}L2 and }q}L2 in time.

9.4.1 Global weak solutions

The following is an analogon of Definition 7.5.

Definition 9.12 (Approximation sequence). Let
?

I P l1(Zd) be even
and non-negative, let p0, q0 P L2(Td). The sequence (p(ε)n , q(ε)n ) is called a d-
DR/HIO-F sequence, if it is generated by the following parallel (Remark 9.9)
dDRF updates:

p(ε)n+1 = p(ε)n + ε

(
´ p(ε)n + q(ε)n

2
+ PP[q

(ε)
n ]

)

q(ε)n+1 = q(ε)n + ε

(
´ p(ε)n + q(ε)n

2
+ PM[p(ε)n ]

)
.

(d-DR/HIO-F)

Define the piecewise constant interpolations

p(ε), q(ε) : [0,+8) ÞÑ L2(Td)

p(ε)(t) = p(ε)n for t P [nε, (n + 1)ε
)
, n P N0;

q(ε)(t) = q(ε)n for t P [nε, (n + 1)ε
)
, n P N0.
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Using τ = t´ ttuε (cf. Notation 7.4), define the piecewise linear interpola-
tions

p(ε), q(ε) : [0,+8) ÞÑ L2(Td)

p(ε)(t) =
(

1´ τ

h

)
p(ε)n +

τ

h
p(ε)n+1 for t P [nh, (n + 1)ε

)
, n P N0,

q(ε)(t) =
(

1´ τ

h

)
q(ε)n +

τ

h
q(ε)n+1 for t P [nh, (n + 1)ε

)
, n P N0.

The following is an analogon of Corollary 7.6.

Lemma 9.13 (Interpolations are bounded). Let (p(ε)n , q(ε)n )nPN0 be the
d-DR/HIO-F sequence with initial value (p0, q0) and step size ε P (0, 1]. Let
H P tH1(Td), L2(Td)u, let c0 = maxt}p0}H, }q0}Hu.

i) Then, }p(ε)N }H ď c0 + Nε} q?I}H, and the same holds for }q(ε)N }H.

ii) For r P [1,8], the interpolations p(ε), q(ε) and p(ε), q(ε) belong to
Lr(0, T; H1(Td)) with the following estimates:

sup
tP(0,T)

}p(ε)(t)}H1 ď c0 + T}?I}H1 , (9.2)

sup
tP(0,T)

}p(ε)(t)}H1 ď c0 + T}?I}H1 , (9.3)

(ż T

0
}p(ε)(t)}rH1 dt

)1/r

ď c0T1/r +
T2/r

2
}?I}H1 ; (9.4)

(ż T

0
}p(ε)(t)}rH1 dt

)1/r

ď c0T1/r +
T2/r

2
}?I}H1 ; (9.5)

and Equations (9.2) to (9.5) remain valid if p(ε) is replaced by q(ε), or
if p(ε) is replaced by q(ε). Further,

sup
tP(0,T)

››››
d
dt

p(ε)(t)
››››

L2
ď c0 + T}?I}H1 ; (9.6)

sup
tP(0,T)

››››
d
dt

q(ε)(t)
››››

L2
ď c0 + (T + 1)}?I}H1 ; (9.7)

(ż T

0

››››
d
dt

p(ε)(t)
››››

r

L2
dt

)1/r

ď T1/rc0 +
T2/r

2
}?I}H1 ; (9.8)

(ż T

0

››››
d
dt

q(ε)(t)
››››

r

L2
dt

)1/r

ď T1/rc0 +
(T + 1)2/r

2
}?I}H1 . (9.9)

Proof. i) We show the statement for H = H1(Td); the other case
follows analogously. The claim is shown by induction in N. The
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base case N = 0 follows by definition of c0. If the claim is true
for N P N, then

}p(ε)N+1}H1 =
(

1´ ε

2

) ›››p(ε)N

›››
H1

+
ε

2

›››´q(ε)N+1 + 2PP[q
(ε)
N+1]looooooooooomooooooooooon

=q(ε)N+1

›››
H1

ď max
!

q(ε)N , p(ε)N

)
ď c0 + Nε

›› q?I
››

H1 ď c0 + (N + 1)ε
›› q?I

››
H1 .

Similarly,
›››q(ε)N+1

›››
H1

=
(

1´ ε

2

) ›››q(ε)N

›››
H1

+
ε

2

›››p(ε)N+1

›››
H1

+ ε
›››PM[p(ε)N ]

›››
H1

ď c0 + Nε
›› q?I

››
H1 + ε

›› q?I
››

H1 = c0 + (N + 1)ε
›› q?I

››
H1 .

ii) Equations (9.2) to (9.5) follow immediately from the definition
of p(ε), p(ε) and i). For Equation (9.6) observe that for almost all
t P (0, T) there exists n P N such that n ď Nε(T) (with Nε as in
Notation 7.4), and such that

››› d
dt

p(ε)(t)
›››

L2
ď

›››››´
p(ε)n + q(ε)n

2
+ PP[q

(ε)
n ]

›››››
L2

ď 1
2

›››´p(ε)n + |q(ε)n |
›››

L2
ď 1

2

(›››p(ε)Nε(T)

›››
L2
+
›››q(ε)Nε(T)

›››
L2

)

ď c0 + Nε(T)ε} q?I}L2 = c0 + tTuε } q
?

I}L2 ď c0 + T} q?I}L2 ,

using the fact that ´q + 2PP[q] = |q| for all q P L2(Td). Similarly,

››› d
dt

q(ε)(t)
›››

L2
ď

›››››´
p(ε)n + q(ε)n

2
+ PM[p(ε)n ]

›››››
L2

ď 1
2

›››´p(ε)n + |q(ε)n |
›››

L2
+
›› q?I

››
L2 ď c0 + Nε(T)ε

›› q?I
››

L2 +
›› q?I

››
L2

= c0 + (tTuε + 1)} q?I}L2 ď c0 + (T + 1)} q?I}L2 .

Equations (9.8) and (9.9) follow from Equations (9.6) and (9.7). ˝

This result can be extended to the support constraint S instead of
positivity. For other constraints, the bounds must be established on a
case-by-case basis.

The following is an analogon of Corollary 7.10.

Corollary 9.14 (Stronly convergent subsequence exists).
Let p̃0, q̃0 P H1(Td), let r P [1,8], let T P (0,8). Let J1 Ă (0, 1] be the set

of discretization step sizes with 0 P J1. Let (p(ε), q(ε)) be as in Definition 9.12
with initial value ( p̃0, q̃0).

Then, there exists a set J2 Ă J1 with 0 P J2 such that p(ε) converges
strongly to some p P Lp

t,L2 X Ct,L2 and q(ε) converges strongly to some
q P Lp

t,L2 X Ct,L2 as ε Ñ 0 for ε P J2.



9.4 dr/hio flow 197

Proof. Follows from Lemma 9.13 and from the Aubin-Lions-Simon
lemma with

Xs = H1(Td)ˆH1(Td), X = L2(Td)ˆ L2(Td), Xw = L2(Td)ˆ L2(Td),

equipped with tensor product norms (inherited from Hilbert spaces
H1 and L2).

Alternatively, one can apply the Aubin-Lions-Simon lemma with
Xs = H1(Td), X = L2(Td), Xw = L2(Td) to construct a set J1.5 Ă J1

with 0 P J1.5 such that p(ε) converges strongly to some p; then ap-
ply the Aubin-Lions-Simon lemma with Xs = H1(Td), X = L2(Td),
Xw = L2(Td) to construct a set J2 Ă J1.5 with 0 P J2 such that q(ε)

converges strongly to some q. ˝

The following is an analogon of Lemma 7.12.

Lemma 9.15 (Initial value of the limit). Under assumptions of Corol-
lary 9.14 holds limtÑ0 p(t) = p̃0 and limtÑ0 q(t) = q̃0; the limits are taken
in } ¨ }L2 .

Proof. Throughout this proof, use } ¨ }2 = } ¨ }L2 . Let us show the claim
for limtÑ0 q(t) = q̃0.

As in the proof of Lemma 7.12, one has infεPJ2 }q(t)´ q(ε)(t)}2 = 0,
and

}q(t)´ q̃0}2 ď inf
εPJ2
}q(ε)(t)´ q(ε)(0)}2.

Again, as in the proof of Lemma 7.12

}q(ε)(t)´ q(ε)(0)}2 ď
Nε(t)ÿ

n=0

}q(ε)(ε(n + 1)
)´ q(ε)(εn)}2

ď
Nε(t)ÿ

n=0

ε

›››››´
p(ε)(εn) + q(ε)(εn)

2
+ PM[p(ε)(εn)]]

›››››
2

(˚)ď
Nε(t)ÿ

n=0

ε(c0 + t} q?I}2 + 1} q?I}2),

the last inequality being derived just as Equation (9.6) in Lemma 9.13.
Continue with

ď Nε(t)ε(c0 + (t + 1)} q?I}2)
ď t(c0 + (t + 1)} q?I}2)Ñ 0

as t Ñ 0, proving the claim. The case limtÑ0 p(t) = p̃0 is analogous,
with the bound c0 + t} q?I}2 instead of c0 + (t + 1)} q?I}2 in (˚). ˝

The following is an analogon of Lemma 7.13.
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Lemma 9.16 (Convergence of p(ε) implies convergence of p(ε)). Let
p0, q0 P H1(Td), let r P [1,8], let T P (0,8). Let (p(ε), q(ε)), (p(ε), q(ε))
be as in Definition 7.5. Let J2, p, q be as in Corollary 7.10, meaning that
p(ε) Ñ p and q(ε) Ñ q in Lp

t,L2 X Ct,L2 as ε Ñ 0 for ε P J2.
Then, p(ε) Ñ p and q(ε) Ñ q in Lp

t,L2 X Ct,L2 as ε Ñ 0 for ε P J2.

Proof. The proof is similar to the proof of Lemma 7.13. Let us show
that q(ε) Ñ q; the case p(ε) Ñ p follows analogously.

Let us check the convergence in Lp
t,L2 for p P [1,8). Proceeding as

in Lemma 7.13, have

ż T

0
lim
εÑ0
εPJ2

}q(ε)(t)´ q(ε)(t)}rL2 dt

= lim
εÑ0
εPJ2

Nε´1ÿ

n=0

ż ε

0

›››
(

1´ τ

ε

)
q(ε)n

+
τ

ε

(
q(ε)n ´ ε

p(ε)n + q(ε)n

2
+ εPM[p(ε)n ]

loooooooooooooomoooooooooooooon
do not cancel out

)
´ q(ε)n

›››
r

L2
dτ

= lim
εÑ0
εPJ2

Nε´1ÿ

n=0

ż ε

0
τr/2

›››››
p(ε)n + q(ε)n

2
+ PM[p(ε)n ]

›››››

r

L2

ď lim
εÑ0
εPJ2

εr/2loomoon
Ñ0

Nε(T)εloomoon
ÑT

(c0 + (Nε(T)ε + 1)} q?I}L2loooooooooooooomoooooooooooooon
ďc0+(T+1)}|?I}L2

)r = 0,

where in the last inequality we used Lemma 9.13 with c0 = maxtp0, q0u.
The convergence in L8t,L2 and Ct,L2 follows similarly, cf. proof of

Lemma 7.13. ˝

The following is an analogon of Remark 7.14.

Remark 9.17 (Formal derivative of the solution candidate). Let p0, q0 P H1(Td),
let r P [1,8], let T P (0,8). Let p(ε), p(ε) and q(ε), q(ε) be as in Defini-
tion 9.12. Let J2, p, q be as in Corollary 7.10, meaning that p(ε) Ñ p
and q(ε) Ñ q in Lp

t,L2 X Ct,L2 as ε Ñ 0 for ε P J2.
Then, for a test function ζ P C80 ([0, T], L2(Td)) have — by the same

argumentation as in Remark 7.14 —

ż T

0
xBtq(t), ζ(t)y dt =

= lim
εÑ0
εPJ2

ż tTuε

0

C
´ p(ε)(t) + q(ε)(t)

2
+ PM; 0[p(ε)(t)], ζ(t)

G
dt
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the limit can be brought into the integral by the dominated convegence
theorem, applicable due to Lemma 9.13

=

ż T

0

C
´1

2
lim
εÑ0
εPJ2

p(ε)(t)´ 1
2

lim
εÑ0
εPJ2

q(ε)(t) + lim
εÑ0
εPJ2

PM; 0[p(ε)(t)], ζ(t)

G
dt

=

ż T

0

C
´ p(t) + q(t)

2
+ lim

εÑ0
εPJ2

PM; 0[p(ε)(t)], ζ(t)

G
dt. (9.10)

Analogously,

ż T

0
xBtq(t), ζ(t)y dt =

ż T

0

B
´ p(t) + q(t)

2
+ PP[q(t)], ζ(t)

F
dt, (9.11)

where we used sequential continuity of PP (Lemma 6.21).
The derivation of Equation (9.11) is rigorous. To make Equation (9.10)

rigorous, we need to establish the existence of limεÑ0
εPJ2

PM; 0[p(ε)(t)]. To

this end, we show that t ÞÑ q(t) is Lipshitz and therefore a. e. Fréchet-
differentiable by the Rademacher theorem (Theorem 7.15).

The following is an analogon of Corollary 7.16.

Corollary 9.18. Let p0, q0 P H1(Td), let r P [1,8], let T P (0,8). Let
p(ε), p(ε) and q(ε), q(ε) be as in Definition 9.12. Let J2, g be as in Corol-
lary 9.14, meaning that p(ε) Ñ p in Lp

t,L2 XCt,L2 and q(ε) Ñ q in Lp
t,L2 XCt,L2

as ε Ñ 0 for ε P J2.
Then, there exists a function Btq : (0, T)Ñ L2(Td) such that

lim
εÑ0

}q(t + ε)´ q(t)´ εBtq(t)}L2

ε
= 0

for Lebesgue–almost all t P (0, T).

Proof. Proceed as in the proof of Corollary 7.16 show that q is Lipshitz.
Let s, t P (0, T); let t ă s.

Then,

}q(s)´ q(t)}2 = lim
εÑ0
εPJ2

}q(ε)(s)´ q(ε)(t)}2

ď lim
εÑ0
εPJ2

Nε(s)+1ÿ

n=Nε(t)

ε

›››››´
p(ε)n + q(ε)n

2
+ PM; 0[p

(ε)
n ]

›››››

ď lim
εÑ0
εPJ2

(Nε(s) + 1´ Nε(t))εloooooooooooomoooooooooooon
=tsuε´ttuε+ε

(c0 + (t + 1)}?I}2)

ď (s´ t)(c0 + (t + 1)}?I}2),

using Lemma 9.13 with c0 = maxt}p0}H, }q0}Hu. The claim follows by
the Rademacher theorem (Theorem 7.15). ˝

The following is an analogon of Lemma 7.17.
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Lemma 9.19 (Limit of PM[p(ε)] exists). Let p0, q0 P H1(Td), let r P [1,8],
let T P (0,8). Let p(ε), p(ε) and q(ε), q(ε) be as in Definition 9.12. Let J2, p, q
be as in Corollary 9.14, meaning that p(ε) Ñ p and q(ε) Ñ q in Lp

t,L2 XCt,L2

as ε Ñ 0 for ε P J2.
Then, there exists a function

ϕ : (0, T)Ñ  
ϕ̃ : Zd Ñ [0, 2π) | sin ϕ̃(t) odd for a. a. t P (0, T)

(

such that
lim
εÑ0
εPJ2

PM; 0[p(ε)(t)] = PM; ϕ(t)[p(t)]

in L2(Td) for Lebesgue–almost all t P (0, T).

Proof. By Corollary 9.18, Btq exists and belongs to L2(Td) for almost
all t P (0, T). Define

mt := Btq(t) +
p(t) + q(t)

2
.

One can use substantially the same argumentation as in Lemma 7.17

to show that limεÑ0
εPJ2

PM; 0[p(ε)(t)] exists and equals mt in L2(Td) for

Lebesgue–almost all t P (0, T), and to show that there exists the de-
sired ϕ such that

lim
εÑ0
εPJ2

PM; 0[p(ε)(t)] = PM; ϕ(t)[p(t)]

in L2(Td). ˝

The following is an analogon of Theorem 7.18.

Theorem 9.20 (Global solutions exist). Let
?

I P L2(Td) be non-negative,
let p̃0, q̃0 P L2(Td), let p P (1,8), let T ą 0.

Then, there exist

ϕ : (0, T)Ñ  
ϕ̃ : Zd Ñ [0, 2π) | sin ϕ̃(t) odd for a. a. t P (0, T)

(

and
p, q P L8

(
(0, T); L2(Td)

)X C
(
[0, T]; L2(Td)

)

such that p, q belong to Lp((0, T); L2(Td)
)

and are weak solutions of the
equation

Bt p = ´ p + q
2

+ PP[q]

Btq = ´ p + q
2

+ PM; ϕ[p].

Proof. The substantial difference of this theorem to Theorem 7.18 lies
in the fact that p and q do not belong to L8

(
(0,8); L2(Td)

)
, as they

may grow linearly by Lemma 9.13. Otherwise, the proof is essentially
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the same as the proof of Theorem 7.18. Existence of solution candi-
dates p, q is guaranteed by Corollary 9.14. By Corollary 9.18, Btq exists,
and by Lemma 9.19, there exists a function ϕ necessary to make the
argument Remark 9.17 rigorous.

By Lemma 9.15, p(0) = p̃0 and q(0) = q̃0, concluding the proof. ˝

9.4.2 Discussion of properties

This section does not contain any rigorous mathematical results, but
discusses certain aspects of boundedness and convergence of the
DR/HIO-F solutions.

Remark 9.21 (Boundedness). In phase retrieval simulations, we observed
discretized DR/HIO-F to remain bounded for ε P (0, 1], both for the
non-negativity and support size additional constraints.

These observations indicate that it is reasonable to search for an
improvement of the bound of Lemma 9.13.

Observe that for the update in q for all k P Zd, ε P (0, 1], one has

|q̂(k) + εBtq̂(k)| =
ˇ̌
ˇ
(

1´ ε

2

)
q̂(k) +

ε

2

ˇ̌
2
?

I(k)´ |p̂|(k)ˇ̌
ˇ̌
ˇ

ď
(

1´ ε

2

)
|q̂(k)|+ ε

2
max t2?I(k), |p̂|(k)u .

Unfortunately, this pointwise estimate can not be extended to } ¨ }2, as,
in general,

››2?I(k)´ |q̂|(k)››2 ę max
!››2?I

››
2,
››q̂
ˇ̌››

2.
)

(Note that for the finite-dimensional cases of a DR variant, certain
boundedness conditions have been established, for example, in [LP16],
cf. Remark 9.23 below.)

Remark 9.22 (Convergence of DR). Some recent results cover convergence
of DR in a variety of settings (see [LS20] for a survey). To the best of
our knowledge, first results on the local convergence in a nonconvex
feasible setting were demonstrated in [HL13]. A global convergence
result for a feasible intersection of semi-algebraic sets was demon-
strated in [LP16]. For the non-feasible case, local convergence has
recently been established under appropriate assuptions on the regu-
larity of the sets, see [LM20].

The convergence analysis of DR/HIO-F equations lies beyond the
scope of this work. One can observe the following formulation of
convergence for DR/HIO-F.
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As motivated in Remark 9.4, one can use EA[s]+EM[s] as a DR/HIO-
F convergence criterion. Let (s, d) be a solution of DR/HIO-F in the
center-of-mass coordinates. Then, formally,

d
dt
(
EM[s] + EA[s]

)

= xs´ PM[s],´ s +
PA[s + d] + PM[s´ d]

2
y

+xs´ PA[s],´ s +
PA[s + d] + PM[s´ d]

2
y

= ´1
2
xs´ PA[s] + PM[s]

2
, s´ PA[s + d] + PM[s´ d]

2
y.

Thus, the convergence condition

d
dt

EM[s] + EA[s] ă 0

can be interpreted geometrically: the angle between vectors PA[s]+PM[s]
2 ´ s

and PA[s+d]+PM[s´d]
2 ´ s must be acute.

One could ask the following: if s(t˚) solves phase retrieval at some
time t˚ P R, does s(t) remain a solution at later times t? Observe that
if s(t˚) P AXM for some t˚ P R, then

s(t˚)´ PA[s(t˚)] + PM[s(t˚)]
2

= 0;

therefore, d
dt EM[s(t˚)] + EA[s(t˚)] = 0. Unfortunately, this does not

necessarily guarantee that EM[s(t)] + EA[s(t)] = 0 for all t ą t˚.

Remark 9.23. The idea to provide an alternative formulation of the
Douglas-Rachford algorithm using an appropriate functional has been
explored in literature before. For example, results on boundedness of
Douglas-Rachford for the non-convex case were established in [LP16]
(and extended in other papers, see references in [LS20]) using a three-
variables merit function that in our notation would have the form

FLP[x, y, z] =
1
2

EX[y] +
1
2

EY[z]´ 1
2η
}y´ z}22 +

1
η
xx´ y, z´ yy,

where x, y, z P H, and η ą 0. This would correspond to the functional
F introduced in the beginning of this chapter, if one were to set η = 1
and omit the last term in FLP.

In [LP16], a relaxed version of the Douglas-Rachford algorithm is
obtained from the merit function FLP using a splitting technique.
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N U M E R I C A L E X A M P L E S

This chapter contains figures that illustrate the dynamics of ER, DR,
ERF, and DR/HIO-F. All figures are constructed using the same prob-
lem, corresponding to the sum of three Gaussians, see Figure E.1;
or to its symmetrized version (the sum of six Gaussians) for even-
restricted problems. This problem was chosen as a “generic” instance
of phase retrieval. It is kept deliberately simple, smooth and exponen-
tially decaying. It is very different from the realistic cases described,
for example, in [ELB18].

One reason for this simplicity stems from the fact that this thesis
uses non-negativity rather than support size as the additional con-
straint. (Non-negativity alone is insufficient to reconstruct meaningful
solutions of [ELB18] problems, as the algorithms quickly converge to
some non-negative, but not sparse function.)

Another reason for this simplicity is the fact that — even for this
toy problem — one can observe noteworthy dynamical features of ER
and DR.

Feature 1. For the presented problem, performances of ER and DR
do not seem to correlate with the underlying discretization dimen-
sion. This supports the conjecture that properties of feasibility sets —
properties that govern the dynamics of ER and DR — carry over to
the infinite-dimensional setting.

Feature 2. The numerical local convergence radius of ER — at least,
for some initial values — seems to be conciderably larger than one can
expect from theoretical results. This may be connected to the presence
of numerous saddle points in the landscape of the energy functional
EM + EP. These saddle points correspond to unstable fixed points of
ERF.

Feature 3. Global convergence of DR is not guaranteed, but is ob-
served for some inital values. The local convergence speed of DR is
comparative to the local convergence speed of ER.

Note that in these features we wrote “convergence” for readability,
while it is more accurate to write “energy decay”.

For readability, figures are presented in three sections.
The first section presents figures that illustrate the behavior of the

classical ER and DR algorithms for different initializations (global and
local) and different dimensions (from 31ˆ 31 to 255ˆ 255).

The second section presents figures that compare the dynamics of
the classical ER and DR algorithms to their discretized flow counter-
parts. It also shows that the angle between ERF iterates changes in a

203
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discontinuous way, which may explain why acceleration of ER may
not be very effective.

The third section presents figures that demonstrate Hessians of ER
fixed points:

— at an unstable even fixed point far from the solution;

— at a stable non-even fixed point far from the solution;

— at an unstable even fixed point near the (even) solution.

It also demonstrates correlations between support and phase of Hes-
sian eigenvectors corresponding to the smallest negative eigenvalues.

Unless explicitely specified otherwise, all figures use the non-negativity
constraint P and the modulus constraint M(

?
I) with

?
I := |F (g3G;N)|,

N P N, from Figure E.1. For certain explicitely specified figures —
those considering even-restricted versions of algorithms — we use the
modulus constraint M(

?
I) with

?
I := |F (g(even)

3G;N )|, N P N, where

g(even)
3G;N := F´1(Re(ĝ3G;N)

)

is the (real-valued) symmetrized version of g3G;N .
For the energy estimation, we use the functional

EM[gn] = EP[gn] + EM[gn]

for ER iterates gn (as in [Fie82]), and the functional

EP

[
PM ˝ RP[gn]

]
= EP

[
PM ˝ RP[gn]

]
+ EM

[
PM ˝ RP[gn]

]
(10.1)

for DR iterates gn (as in [ELB18], cf. Remark 5.54).
For the discretized ERF estimates, we use the functinal EP[gn]+EM[gn].

For the discretized DR/HIO-F estimates, we apply the functional from
(10.1) to the iterate sn in an attempt at maximal consistency. In our
simulations this estimate was closely correlated with the quantity
EP[sn] + EM[sn].

10.1 dynamics of classical er and dr

This section contains the following figures.

— Example 10.1: a sample ER and DR run, N = 63 (with g P RNˆN),
global initialization.

— Example 10.2: “average” ER and DR energy decay, N = 63, ran-
dom global initialization, 20 runs.

— Example 10.3: “average” ER and DR energy decay, N = 63, ran-
dom local initialization, 20 runs.
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— Example 10.4: “average” ER and DR energy decay, N P t31, 63,
127, 255u, random local initialization, 20 runs for every dimen-
sion.

— Example 10.5: ER and DR energy decay, N P t31 . . . 40, 63 . . . 72,
127 . . . 136, 255 . . . 264u, zero phase initialization.

— Example 10.6: ER and DR: example of a non-converging run for
g3G;31.

Example 10.1 (ER and DR: an example run, N = 63). Figure 10.1 demon-
strates an example of ER and DR dynamic. Initial value of the algo-
rithms is PM[g0], where g0 is uniformly sampled between 0 and 1 in
each pixel.

For the plotted initialization, one can see that ER stagnates while
DR finds the close vicinity of a solution.

Example 10.2 (ER and DR: global rand. init.; N = 63). Figure 10.2 demon-
strates the energy of ER and DR runs. The algorithms are instantiated
20 times each using PM[g0], where g0 is uniformly sampled between
0 and 1 in each pixel.

One can see that ER either stagnates or converges; DR consistently
finds the close vicinity of a solution, potential convergence is compa-
rable to the convergence of the succesful ER runs.

Example 10.3 (ER and DR: local phase flip init.; N = 63). Figure 10.3 demon-
strates the ER and DR behavior near the solution. The algorithms
are instantiated 20 times each using initial value g0, where g0 is ob-
tained from g3G;63 by flipping approximately 1 percent of all phases
of ĝ3G;63 by π. The precise prosedure is as follows. First, choose
g˚ P R63x63 by sampling every pixel uniformely between 0 and 1. Sec-
ond, let ϕ := arg ĝ˚, with the phase chosen such that ϕ(k) P [´π, π].
Third, change the phase of F (g3G;63) by π at all indices k where
|ϕ(k)| ą 0.99π.

All instances of ER and DR yield E[gn]Ñ 0. The energy decay speed
is comparable for ER and DR.

Graphs of sample solutions and distances to g3G;63 indicate that
— even for problems such as g3G;63 with an exponential decay — in-
stances of ER and DR can converge to points that are non-trivially
distinct from g3G;63.

Example 10.4 (ER and DR: global rand. init.; N P t31, 63, 127, 255u).
Figure 10.4 illustrates the behavior of ER and DR for different di-

mensions, for the g3G;N , N P t31, 63, 127, 255u. For each dimension, the
algorithms are instantiated 20 times each using PM[g0], where g0 is
uniformly sampled between 0 and 1 in each pixel.
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Exact solution Initial value

ER after 1000 steps DR after 1000 steps

´e´3 ´e´6 ´e´9 e´3 e´2 e´1 e0

10 102 103

10´1

10´2

10´3

10´4

10´5

10´6

Iteration number n

Error estimate, in units of 1
M

}|?I}2

ER
DR

Figure 10.1: ER and DR: example run for g3G;63 (Example 10.1).
ER and DR for g3G;63 with random phase initialization. The

energy is plotted in units of 1
/›› q?I

››
2.
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10 102 103 104

10´1

10´3

10´5

10´7

10´9

Iteration number n

ER and DR, 20 runs

Figure 10.2: ER and DR: global rand. init.; N = 63 (Example 10.2).
Energy for 20 runs of ER and DR for g3G;63 with random ini-
tialization, cf. Example 10.2. The energy is plotted in units of

1
/›› q?I

››
2.

The behavior of the algorithms stays comparable across all de-
picted dimensions. This suggests that phase retrieval on an infinite-
dimensional domain (such as Td) is a reasonable setting to investigate
features of ER and DR.

Example 10.5 (ER and DR: global zero phase init.; different N). Figure 10.5
illustrates that ER and DR are sensitive not only to the initial value,
but to change in dimension.

The behavior of ER and DR is shown for g3G;N , N P t31 . . . 40,
63 . . . 72, 127 . . . 136, 255 . . . 264u. The algorithms are instantiated in
every dimension using PM[g0], where g0 ” 1.

The behavior of the algorithms is highly sensitive to the change
in dimension. The non-converging outlier in dimension 31 ˆ 31 il-
lustrates that there exist combinations of discretizations and starting
values for which ER and DR yield poor results, see also Example 10.6.

We note that although the starting value is even, all instances —
with the exception of the non-convergent outlier with N = 31 — es-
cape the subspace of even functions through numeric perturbations.
(This is not shown in the figure.)

Example 10.6 (ER and DR: a non-converging run). Figure 10.6 demonstrates
an example of a non-converging run for ER and DR. The algorithms
are instantiated using PM[g0], where g0 ” 1.

For the plotted initialization, one can see that both algorithms can
not find a solution after 105 iterations. In certain sense, it is natural
that the algorithms do not converge, as both ER and DR preserve
evenness of the iterate, and PM[g0] is even. Thus, all iterates gn must
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g0 with c-map from Fig.9.1 g0 ´ g3G;63

ER, g1000 ´ g3G;63 DR, g1000 ´ g3G;63

´e´6 ´e´8 ´e´10 e´10 e´8 e´6 e´3

10 102 103 104

10´3

10´5

10´7

10´9

Iteration number n

ER and DR, 20 runs

ER energy
DR energy
ER distance to g3G;63

DR distance to g3G;63

Figure 10.3: ER and DR: local phase flip init.; N = 63 (Example 10.3).
ER and DR for g3G;63 with 20 local (1 percent phase flip) ini-
tializations, described in Example 10.3. An example of such
initialization is shown in the upper left corner; to ease the
comparison, it is shown using the colormap of Figure 10.1. Re-
sulting iterates can not be distinguished from the solution by
the naked eye. Hence, other plots show differences between
iterates and the solution; they use the colormap specified in
this figure.
The bottom graph shows the corresponding energy, and the
distances between the iterates and g3G;63. The energies and

distances are plotted in units of 1
/›› q?I

››
2.
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10´9

20 ER runs for different dimensions

31 ˆ 31
63 ˆ 63
127 ˆ 127
255 ˆ 255

10 102 103

10´1

10´3

10´5

Iteration number n

20 DR runs for different dimensions

31 ˆ 31
63 ˆ 63
127 ˆ 127
255 ˆ 255

Figure 10.4: ER and DR: global rand. init.; N P t31, 63, 127, 255u (Exam-
ple 10.4).

The energy of ER and DR for g3G;N , N P t31, 63, 127, 255u; 20
runs with random initialization. The algorithms are instanti-
ated 20 times each using PM[g0], where g0 is uniformly sampled
between 0 and 1 in each pixel. The energy is plotted in units of

1
/›› q?I

››
2.
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ER runs: different dimensions, same initialization

N ˆ N for N “ 31 . . . 40
N ˆ N for N “ 63 . . . 72
N ˆ N for N “ 123 . . . 132
N ˆ N for N “ 255 . . . 264
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Iteration number n

DR runs: different dimensions, same initialization

N ˆ N for N “ 31 . . . 40
N ˆ N for N “ 63 . . . 72
N ˆ N for N “ 123 . . . 132
N ˆ N for N “ 255 . . . 264

Figure 10.5: ER and DR: global zero phase init.; different N (Example 10.5).
The energy of ER and DR for g3G;N , N P t31 . . . 40, 63 . . . 72,
127 . . . 136, 255 . . . 264u. The algorithms are instantiated using

PM[g0], where g0 ” 1. The energy is plotted in units of 1
/›› q?I

››
2.

The outlier for ER and DR — the case with highest energy at
the end of the run — is the case N = 31. For this N, numerical
errors fail to perturb evenness of the algorithms, and they fail
to converge (cf. Example 10.6).
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be even, both for ER and DR, and thus can not converge to the non-
even solution g3G;31. It is noteworthy that of all dimensions considered
in Example 10.5, only N = 31, for g0 ” 1 exibits this behavior.

10.2 classical algorithms vs . the discretized flows

This section contains the following figures.

— Figure 10.7: energy decay of ER and discretized ERF, for N P t31, 127u,
for different step sizes ε.

— Figure 10.7: energy decay of DR and discretized DR/HIO-F, for
N P t31, 127u, for different step sizes ε.

— Figure 10.9: change of direction for the discretized ERF.

Example 10.7 (Similar dynamics of ER and ERF). Figure 10.7 illustrates
that the energy decay of ER and ERF is similar for different setups.
One can observe a minor difference for the discretized ERF instance
with ε = 1.25. This step size is too large for the energy dissipation to
hold, cf. Proposition 6.4. As for the decay, this accelerated version is
comparable to other discretizations with ε ď 1.

The first row illustrates two runs with the initial value g0 = g9G;N ,
N P t31, 127u, demonstrated in Figure E.2. It was picked as a non-
even starting value that can be consistently chosen across different
dimensions.

The second row illustrates two runs with the initial values g0 = g3G;N+ 10´4g9G;N ,
N P t31, 127u, where g3G;N is the solution we were trying to recon-
struct.

The third row illustrates two even-restricted runs, meaning that
symmetry of the approximations is enforced after every step by tak-
ing F´1(Re(ĝ(ε)n )

)
. The exact solution is given by the (real-valued)

symmetrized version of g3G;N :

g(even)
3G;N := F´1(Re(ĝ3G;N)

)
,

and
?

I := |F (g(even)
3G;N )|, N P N. The initial value is generated by flipping

phases at the pixels k with smallest values of
?

I(k). One can see that
the accelerated discretized variant (ε = 1) was able to escape the fixed
point in the case N = 31.

Overall, performances of ER and ERF remained comparable. This
indicates that ERF — and the functional EM + EP that generates ERF
— can be used as a theoretical tool to study ER.

Example 10.8 (Similar dynamics of ER and ERF). Figure 10.8 illustrates
that the energy decay of DR and DR/HIO-F is similar for different
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Exact solution Initial value

ER after 105 steps DR after 105 steps

´e´3 ´e´6 ´e´9 e´3 e´2 e´1 e0

10 102 103 104 105

10´1

10´2

Iteration number n

Error estimate

DR
ER

Figure 10.6: ER and DR: a non-converging run (Example 10.6).
ER and DR for g3G;31 with the zero phase initialization, cf. Ex-

ample 10.6. The energy is plotted in units of 1
/›› q?I

››
2.

The algorithms do not converge after 105 iterations.



10.2 classical algorithms vs . the discretized flows 213

10 102 103

10´1

10´3

10´5

10´7

time t, 1 unit of time p“1 ER step

en
er

gy
,i

n
1
{}|? I

} 2
31 ˆ 31, global initialization

ε “ 1.25
ε “ 1.0
ε “ 0.75
ε “ 0.5
ε “ 0.25
0.5¨Energy of ER

10 102 103

10´1

10´3

10´5

10´7

127 ˆ 127, global initialization

ε “ 1.25
ε “ 1.0
ε “ 0.75
ε “ 0.5
ε “ 0.25
0.5¨Energy of ER

10 102 103

10´9

10´11

10´13

10´15

31 ˆ 31, local initialization

ε “ 1.25
ε “ 1.0
ε “ 0.75
ε “ 0.5
ε “ 0.25
0.5¨Energy of ER

10 102 103

10´9

10´11

10´13

10´15

127 ˆ 127, local initialization

ε “ 1.25
ε “ 1.0
ε “ 0.75
ε “ 0.5
ε “ 0.25
0.5¨Energy of ER

10 102 103

10´9

10´11

10´13

31 ˆ 31, local initialization,
even restriction

ε “ 1.25
ε “ 1.0
ε “ 0.75
ε “ 0.5
ε “ 0.25
0.5¨Energy of ER

10 102 103

10´9

10´11

10´13

127 ˆ 127, global initialization,
even restriction

ε “ 1.25
ε “ 1.0
ε “ 0.75
ε “ 0.5
ε “ 0.25
0.5¨Energy of ER

Figure 10.7: Similar dynamics of ER and ERF (see Example 10.7).
Axis labels of the upper left graphs apply to all graphs of this
figure.
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setups. The initializations are the same as in Example 10.7 for com-
parisson of DR and DRF.

Overall, performances of DR and DR/HIO-F remained comparable.
This indicates that DR/HIO-F can be used as a theoretical tool to
study DR.

Example 10.9 (Direction change of ERF). Figure 10.9 illustrates that ERF
— or, to be more precise, discretized ERF with step size ε = 0.005, —
discontinuously changes direction. The plots depict the behavior of
finely discretized ERF on the time that corresponds to a single ER
step.

The figure plots the quantity 1´ cos αn, where

cos αn =
xg(ε)n+1 ´ g(ε)n , g(ε)n ´ g(ε)n´1y
}g(ε)n+1 ´ g(ε)n }2 }g(ε)n ´ g(ε)n´1}2

is the cosine of the angle between two consecutive updates.
This quantity is plotted thrice.
In the top row the algorithm is initialized as follows. First, we run

200 steps of dERF using ε = 0.5 and the initial value g0 = g9G;127 as
in Example 10.7. The resulting approximation is used as the initial
value for the dERF with ε = 0.005 that is plotted in Figure 10.9. (This
instantiation is performed so that the initial value is in a stagnation
region.)

In the middle row the algorithm is initialized in a similar way,
except for the very first initialization we use g0 = g3G;127 + 10´4g9G;127

instead of g0 = g9G;127 (again, as as in Example 10.7).
In the bottom row the algorithm is initialized in a similar way,

except we use the symmetrized problem with the solution g(even)
3G;N , the

very first initialization is symmetrized: g0 = g(even)
3G;127 + 10´4g(even)

9G;127, and
the symmetry is enforced after each dERF step.

For reference, corresponding energy is plotted in orange for all three
instances.

Overall, one can see that discontinuous jumps in the angle appear
for all three instances, even for the even-restricted instance where the
algorithm typically rapidly converges to a fixed point.

10.3 the hessian at the erf fixed points

This section discusses the Hessian of E = EP + EM. Numerical exam-
ples indicate that for phase retrieval with positivity, for solutions with
small support, unstable fixed points are prevalent.

Further, — and consistent with the construction made in the proof
of Proposition 8.6, — numerical examples indicate that for unstable
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Figure 10.8: Similar dynamics of DR and DRF (see Example 10.8).
Axis labels of the upper left graphs apply to all graphs of this
figure.
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Figure 10.9: Direction change of ERF (see Example 10.9).
The plots depict the quantity 1´ cos αn, where the cosine an-
gle is the angle between two consecutive updates, see Exam-
ple 10.9.
One can see that — also for the even-restricted case, where the
algorithm converges to a fixed point (implied by the energy de-
cay) — the algorithm changes the direction in a discontinuous
manner.
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fixed points, eigenvectors vi that correspond to the lowest negative
eigenvalues λi satisfy

Re(v̂i(k)˚ ĝ(k)) « 0;

supp vi « tk | ?I(k)/|ĝ(k)| ą 1u.

This section contains the following figures.

— Figure 10.10 illustrates the Hessian at an unstable even fixed
point far from the solution.

— Figure 10.11 illustrates the Hessian at a stable fixed point far
from the solution.

— Figure 10.12 illustrates the Hessian at an unstable fixed point
near the solution.

— Figure 10.13 illustrates correlations between the support and
Fourier phases of Hessian eigenvectors corresponding to the
smallest negative eigenvalues.

Example 10.10 (The Hessian: unstable FP far from solution). Figure 10.10

shows Hessian at the even ERF fixed point g = 0.5(PP[ f ] + PM[ f ]),
where f is the ER fixed point generated in Example 10.6. For this
example, one has

}Re(v̂1(k)˚ ĝ(k))}22 = 0, and}1t?I/|ĝ|.ą1uv1}22 « 0.97}v1}22.

(Here, exact equality is meant within machine precision.) Similar rela-
tionships hold for other eigenvalues, see Figure 10.13.

Example 10.11 (The Hessian: stable FP). Figure 10.11 shows the Hessian
at a stable non-even ERF fixed point generated by a long ERF run with
a random initialization. The support and Fourier phase eigenvalue
correlations that are present for unstable fixed points do not appear
in this case.

Example 10.12 (The Hessian: unstable FP near solution). Figure 10.12 shows
the Hessian at an unstable even fixed point near the exact solution.

The exact solution is given by the (real-valued) symmetrized version
of g3G;N :

g(even)
3G;N := F´1(Re(ĝ3G;N)

)
,

and
?

I := |F (g(even)
3G;N )|, N P N. The initial value is generated by flipping

the phases at the pixels k with smallest values of
?

I(k). The fixed point
is generated by running an even-restricted dERF with ε = 0.5.

Similarly to Example 10.10, one has

}Re(v̂1(k)˚ ĝ(k))}22 = 0, and }1t?I/|ĝ|ą1uv1}22 « 0.93}v1}22.
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Figure 10.10: The Hessian: unstable FP far from solution (see Example 10.10).
For g3G;31 (upper left) with zero phase initialization, Error-
Reduction converges to the even fixed point g (upper right),
cf. Example 10.6.
The numerical Hessian H at g, described in Section 8.3, shows
that this fixed point is unstable. Eigenvalues of H are shown
in the lower right corner. The lowest eigenvalue λ1 « ´0.66
is negative. For the corresponding eigenvector v1, values of
|v̂1| are plotted in the center left. The eigenvector v1 is odd,
meaning that Im v1(k)˚g(k) = 0 for all k. The support of |v̂1| is
primarily contained in the region

?
I/|ĝ| ą 1.0.

The bottom left graph shows energy along eigenvectors corre-
sponding to the five lowest eigenvalues.
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Figure 10.11: The Hessian: stable FP (see Example 10.11).
For g3G;31 (upper left) with random phase initialization, Error-
Reduction converges to the stable fixed point g (in the upper
right), the energy EP[g] + EM[g] is plotted in the bottom left.
The numerical Hessian H at g, described in Section 8.3, shows
that this fixed point is stable. Eigenvalues of H are shown in the
bottom right. The lowest eigenvalue λ1 « 2ˆ 10´3 is positive.
The correlations between λi, support of |v̂i|, and angle between
ĝ and v̂i that can be observed for negative eigenvalues λi are
not present here, see Figure 10.13.



220 numerical examples

(Here, exact equality is meant within machine precision.) Similar rela-
tionships hold for the other eigenvalues, see Figure 10.13.

Example 10.13. Figure 10.13 illustrates that at the unstable fixed points,
the Hessian eigenvectors vi that correspond to the lowest negative
eigenvalues λi satisfy

Re(v̂i(k)˚ ĝ(k)) « 0;

supp vi « tk | ?I(k)/|ĝ(k)| ą 1u.

This is consistent with the form of the Hessian.
This correlation is not present for the stable fixed points.
We are not able to verify these correlations for unstable non-even

fixed points, as it is not clear how such points can be generated.
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|

Ð that plot’s colorbar

2 ˆ 10´5 4 ˆ 10´5

1.3

1.4

1.5

i
“
1

i “
2 i “ 3

i
“
4

i
“
5

ε

en
er

gy
,i

n
10

´1
0
{}|? I

} 2

Energy of g ` εvi

i “ 1
i “ 2
i “ 3
i “ 4
i “ 5

1

2

0
315 795 961

λ1 « ´0.45

λ2 « ´0.44

λ3 « ´0.39

λ4 « ´0.37

λ5 « ´0.03

Hessian eigenvalues at g

Figure 10.12: The Hessian: unstable FP near solution (see Example 10.12).

For g(even)
3G;31 (upper left) with local phase phase flip initialization,

even-restricted ERF converges to the even fixed point g (upper
right), undistinguishable from the solution by the naked eye.
The numerical Hessian H at g, described in Section 8.3, shows
that this fixed point is unstable. Eigenvalues of H are shown
in the lower right corner. The lowest eigenvalue λ1 « ´0.45 is
negative. For the corresponding eigenvector v1, values of |v̂1|
are plotted in the center left. The support of |v̂1| is primarily
contained in the region

?
I/|ĝ| ą 1.0.

The bottom left graph shows energy along eigenvectors corre-
sponding to five lowest eigenvalues.
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Anti-example: less to none correlation for a
stable fixed point
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1
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Correlation for the unstable fixed point close to the solution

eigenvalues λi

}Repĝ˚v̂iq}22
}ĝ˚v̂i}22

}1t?
I{|ĝ|ą1uvi}22
}vi}22

Figure 10.13: Eigenvector correlations for unstable fixed points (Exam-
ple 10.13).
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O U T L O O K

In conclusion, we briefly discuss some open questions connected to
the results presented in this work.

11.1 weak closedness of the modulus set and subdiffer-
ential selection

We have demonstrated that on bounded domains Ω, the set M is
weakly closed (Section 3.3), and that for weakly closed sets X

BEX[g] = conv g´ΠX[g]
˚

(Clarke subdifferential), and

BKMEX[g] = g´ΠX[g] (generalized subdifferential)

(Section 4.3).
While we use a selection of the generalized subdifferential to es-

tablish connection to existing algorithms, one could use selections of
the Clarke subdifferential to explore variants of ER and DR where
the projection PM is replaced by another operator, for example, the
operator

ĝ ÞÑ
$
&
%

?
I(k) ĝ(k)

|ĝ(k)| if ĝ(k) ‰ 0,

0 else.

In applications, such an operator could be translated to an appropriate
regularized version of PM, potentially opening new ways to analyze
phase retrieval.

11.2 existence and convergence of erf

We have demonstrated that Error-Reduction Flow

Btg = ´(g´ PM[g])´ (g´ PA[g])

with non-negative additional constraint A = P has global weak solu-
tions that belong to

L8
(
(0,8); L2(Ω)

)X C
(
[0,8); L2(Ω)

)
,

where Ω is bounded and has a continuous boundary. The following
open questions are connected to this result.

Convergence of ERF. As discussed in Section 5.2, it is known that
for non-convex sets, the Alternating Projections algorithm may fail to
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converge: the set of its fixed points may be a compact continuum. To
the extent of our knowledge, this behaviour has not been observed for
phase retrieval.

In context of this work, the corresponding questions are:

i) Does every solution of ERF converge to a fixed point (cf. Re-
mark 7.25)?

ii) If Case i) is not true, can one establish convergence under stronger
assumptions — for example, for regularized additional constraints,
or for even solutions?

iii) If convergence can not be established, can one construct an ex-
ample — akin to the one shown in [BN13] — for which the
solution does not converge?

Existence of ERF for nonconvex additional constraints. As dis-
cussed in Remark 7.20, one can attempt to demonstrate existence re-
sults for other additional constraints, for example, for the support size
constraint A = Ts(ν).

The underlying difficulty is that projections on non-convex con-
straint sets are not necessarily continuous. Therefore one must sub-
stantially modify the arguments of Section 7.2 (or find new arguments)
to establish that the solution candidate — constructed by Aubin-Lions
— is indeed a solution of ERF.

Existence of ERF on unbounded domains. As briefly elaborated
in Remark 6.20, if }?I/ {PP[gn]}8 is not bounded from below for dERF
iterates gn, one can not expect PM[gn] to be sufficiently smooth in
Fourier space, or to decay sufficiently fast in object space. Here, “suf-
ficiently smooth” and “sufficiently fast” mean smoothness and decay
that would guarantee relative compactness of t(gn)nPNu (for example,
using criteria of [Peg85]).

One can therefore ask whether it is possible to extend existence
results to unbounded domains — possibly, by regularizing the con-
straints or altering them in an appropriate manner.

This question is particularly relevant for non-crystallographic appli-
cations, where the object is not embedded in a periodic structure and
thus can not be adequately modeled on bounded domains.

11.3 stability and difficulty

We have demonstrated that fixed points f of ERF correspond — under
necessary and sufficient conditions on }?I/ f̂ }8 — to fixed points of
ER. Further, we have demonstrated that fixed points of ERF that do not
correspond to ER are unstable (under mild additional assumptions),
and that fixed points of even-restricted ER and ERF are likely to be
stable (in a finite-dimensional setting, or along appropriate directions
in an infinite-dimensional setting). Also, numerical evidence points
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towards the conjecture that — at least, for certain problems — unstable
fixed points are prevalent in ER dynamics.

The following open questions are connected to these results.
Other stability criteria. Further developement of fixed point stabil-

ity and instability criteria may be of significant importance for phase
retrieval.

For example, one can attempt to extend existing criteria to other
additional constraints such as sparsity. This case poses considerable
challenges due to lack of regularity in the sparsity projection.

As for the modulus constraint, it may be benefitial to change coordi-
nate systems or to develop appropriate restrictions of tangent spaces.

A very ambitious question one could ask is the following: provided
a solution g, how great is the distance between

g or associated solution (like a translate of g)

and
the closest (non-trivially distinct from g) stable

fixed point of EA + EM

for given
?

I and A? The answer to this question could explain why
— for some phase retrieval problems — numerically observed conver-
gence radius of ER greatly exceeds the theoretically accessible one.

Adaptive reconstruction algorithms. Ideas of adaptively restricting
additional constraints are known in literature. For example, in [YAY14]
random restriction of the support in object space is used to reconstruct
sparse signals.

In context of our work, convergence of ERF in an energy landscape
with many saddle points can justify analysis of adaptive algorithm
variants.

For example, let
?

Iα := PTa(α)[
?

I] denote the data subjected to ampli-
tude thresholding. Assume that the maximum of

?
I is attained only at

the origin (which is reasonable for
?

I corresponding to non-negative
problems). Then,

?
I}?I}8(k) = δ0(k)

?
I(k) and

?
I0(k) =

?
I(k). Thus,

one can run ER (or ERF) with data
?

Iα, starting with α = }?I}8 and
adaptively decreasing α to 0. Effectively, the algorithm first finds posi-
tions of waves that contribute to data the most, and then adaptively
refines the features.

In simulations, we observed such algorithms to converge to a fixed
saddle point. This approach has shown itself superior to classical
ER, but inferiour to DR, and not directly compatible with sparsity
constraints.

The setting of ERF could provide theoretical framework to investi-
gate adaptive algorithms more closely. More refined results on fixed
point stability can yield insight on a suitable design of adaptive algo-
rithms.

Difficulty criteria for phase retrieval. While not directly addressed
in this work, the question of gauging the difficulty of a phase retrieval
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instance is very intriguing. The question is: given data
?

I, how difficult
is it to construct a solution?

The paper [ELB18] uses sparsity }?I}4/}?I}2 — the smaller this
quantity is, the harder is phase retrieval — in conjunction with addi-
tional criteria (number of atoms in the molecule) to quantify difficulty
of phase retrieval instances (assuming support size and atomicity con-
straints, the latter imposing a restriction on minimal distance between
atoms).

One can ask whether these criteria can be reformulated to a more
theoretically accessible form. It is obvious that sparsity of the data
alone is not sufficient, and that additional criteria must play an im-
portant role. Indeed, considering finite spaces for simplicity, one can
see that }?I}4/}?I}2 is smallest for

?
I ” const. However, this data

corresponds to a delta peak object and is easily reconstructed by the
Douglas-Rachford algoritm.

In context of our work, one can ask the following: is there a correla-
tion between the difficulty of a phase retrieval instance and the energy
functional EP + EM?

11.4 douglas-rachford flow

As established in Chapter 9, Alternating Projections, Dykstra, and
Douglas-Rachford algorithms can be connected through variation of
the functional

F[s, d] :=
1
2

EX[s + d] +
1
2

EY[s´ d]´ 1
2
}d}22,

and for the resulting Douglas-Rachford variant, one can use the energy
EX[s] + EY[s] as a termination criterion.

Variation of F[s, d] leads to different equations, such as the Douglas-
Rachford Flow

Bts = ´s +
PA[s + d] + PM[s´ d]

2

Btd = ´PA[s + d] + PM[s´ d]
2

ô
Bt p = ´ p + q

2
+ PA[p]

Btq = ´ p + q
2

+ PM[q],

where s = p+q
2 , d = p´q

2 . This system of equations admits global weak
solutions, albeit the solutions are allowed to grow in time (which is
not observed in practice).

A natural question is whether one can establish boundedness for
solutions of the Douglas-Rachford flow. More involved questions are,
for example, i) whether one can show local convergence of the solu-
tions, or ii) whether one can establish existence of periodic orbits of
the flow.



A P P E N D I X

227





A
F O U R I E R A N A LY S I S

This chapter briefly recalls some relevant results from Fourier analysis,
which can be found in almost every book on the topic (e. g., [Fri07],
[Str03] or [RS75]).

a.1 fourier transform on infinite-dimensional domains

Throughout this section, Ω P tRd, Tdu, and ΩF = Rd if Ω = Rd, and
ΩF = Zd if Ω = Td. We use on equal footing the notation F [¨] = ˆ̈ to
denote the Fourier transform, and the notation F´1[¨] = ˇ̈ to denote
the inverse Fourier transform.

Definition A.1 (Fourier transform on L1). For f P L1(Ω; C), its Fourier
transform f̂ : ΩF Ñ C is defined as

f̂ (k) =
ż

Ω
f (x)e´ik¨xdx,

The following lemma uses the convolution of two functions, defined
as

˚ : L1(Ω; C)ˆ L1(Ω; C)Ñ L1(Ω; C)

f ˚ g(y) =
ż

f (x)g(y´ x) dx for a. a. y P Ω,

where f ˚ g P L1(Ω; C) by Fubini’s theorem. We also use the notation
f´(x) := f (´x).

Lemma A.2 (Basic properties). Let f , g P L1(Ω; C). Then,

i) F [ f g] = (2π)´dF [ f ] ˚F [g], and F [ f ˚ g] = (2π)´dF [ f ]F [g];

ii) xf ˚́ = ( f̂ )˚.

iii) If f is continuously differentiable and Bxj f (x) P L1(Ω; C), then yBxj f (k) = ik j f̂ (k)
for a. a.k P ΩF.

iv) For any a P Ω, {f (¨+ a)(k) = eik¨a f̂ (k) for a. a. k P ΩF.

Theorem A.3 (Fourier transform on L2, Plancherel). There exists
a unique continuous map F : L2(Ω; C) Ñ L2(ΩF; C) that agrees with the
Fourier transform on L1(Ω; C)X L2(Ω; C).

Moreover, the rescaled version (2π)´d/2F is an isometric isomorphism,
i. e. for all f , g P L2(Ω; C) holds

x2π´d/2F [ f ], 2π´d/2F [g]yL2(ΩF) = x f , gyL2(Ω).
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In particular, the Plancherel identity holds: for all f P L2(Ω; C),

} f }2L2(Ω) =
1

(2π)d } f̂ }2L2(ΩF)
.

The inverse operator F´1 : L2(ΩF; C) Ñ L2(Ω; C) is called the inverse
Fourier transform on L2(ΩF; C) and satisfies

F´1[ f ](x) =
1

(2π)d

ż

ΩF

eik¨x f̂ (k) dk.

It is easy to verify that properties ii)–iv) of Lemma A.2 transfer to
f , g P L2(Ω; C).

Corollary A.4. A function f P L2(Ω; C) is real-valued if and only if
f̂ (´k) = f̂ ˚(k) for a. a.k P ΩF.

Proof. “ñ” If f is real-valued,

f̂ (´k) =
ż

Ω
f (x)eik¨xdx =

(ż

Ω
f (x)e´ik¨xdx

)˚
= f̂ ˚(k)

for a. a. k P ΩF.
“ñ” If f̂ (´k) = f̂ ˚(k) for a. a.k P ΩF,

f (x)´ f ˚(x) =
1

(2π)d

ż
f̂ (k)eik¨x ´ 1

(2π)d

ż
f̂ ˚(k)e´ik¨x

=
1

(2π)d

ż
f̂ (k)eik¨x ´ 1

(2π)d

ż
f̂ (´k)e´ik¨x

0

using the substitution k̃ = ´k in the second integral and exploiting
the symmetry of the integration domain. ˝

In particular, if f is real-valued and f̂ =
?

Ieiϕ for some non-negative
function

?
I P L2(ΩF; Rě0) and phase ϕ : ΩF Ñ [0, 2π), then

?
I is even,

and eiϕ(´k) = e´iϕ(k) for a. a.k P ΩF. I. e., cos ϕ is even and sin ϕ is odd.
Also, if f is real-valued and even, then f̂ is real-valued and even.

a.2 finite-dimensional fourier transform

For Ω = Td
N and ΩF = Td

N , N = (N1, . . . , Nd), the spaces L2(Ω, C)

and L2(ΩF, C) are isomorph to CN1ˆ...ˆNd .
In this setting, it is common to define the Fourier transform as

follows.

Definition A.5 (Finite-dimensional Fourier transform). For f P CN1ˆ¨¨¨ˆNd ,
its Fourier transform f̂ P CN1ˆ¨¨¨ˆNd is defined as

f̂ (k1, . . . kd) =
N1ÿ

x1=1

¨ ¨ ¨
Ndÿ

xd=1

f (x1, . . . , xd)
dź

j=1

e´2πi(k j´1)(xj´1)/Nj ,
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where xj and k j belong to t1, . . . Nju for j P t1, . . . , du.
In this setting, properties of Lemma A.2 remain valid with necessary

modifications, and Plancherel’s theorem reads

N1ÿ

x1=1

¨ ¨ ¨
Ndÿ

xd=1

| f (x1, . . . , xd)|2 =
1
|N|

N1ÿ

k1=1

¨ ¨ ¨
Ndÿ

kd=1

| f̂ (k1, . . . , kd)|2,

where |N| = N1 ¨ . . . ¨ Nd.





B
A N O N - U N I Q U E N E S S E X A M P L E

Phase retrieval is notoriously ill-posed, especially in the infinite-dimensional
setting; see [GKR20] for a recent review on the topic.

This chapter shows a well-known example from [BS79], further stud-
ied in [Hay82], of non-trivial ambiguities in phase retrieval. The exam-
ple is based on the fact that for two non-negative functions f , g P H,
the convolutions f ˚ g´ and f ˚ g are non-negative and have the same
Fourier transform modulus | f̂ ĝ|.
Remark B.1 (Trivial ambiguities). It is straightforward to check that for
any g P H, its translation g(¨ + x0) for x0 P Ω, and its reflection
g´(x) := g(´x) for a. a. x P Ω have the same Fourier modulus as g.

These ambiguities are commonly called trivial ambiguities of phase
retrieval.

Remark B.2 (Local non-uniqueness). In certain settings phase retrieval
may exhibit local non-uniqueness. For example, let Ω = T, let ϕ P [0, 2π),
let α P (0, 1), define

?
I : Zd Ñ R using

?
I(k) = δ0(k) +

α

2

(
δ1(k)eiϕ + δ´1(k)e´iϕ

)
,

δ being the Kronecker delta. Then,

q?I(x) =
1

2π
(1 + α cos(x + ϕ)) ,

which is non-negative for any phase ϕ P [0, 2π).
In general, if g is a solution of some phase problem with non-

negativity, with g ě ε, then the phase of any Fourier pixel with?
I ă ε/2 is ambiguous.
One way to address this ambiguity is to restrict the support of the

solution. For finite-dimensional phase problem, this corresponds to
oversampling in Fourier space. A more detailed discussion on this
matter can be found, e. g., in [Bar+20] and references therein.

Example B.3 (Non-local non-uniqueness). Let f , g P L2(Ω) be non-negative.
Then, convolutions f ˚ g and f ˚ g´ are non-negative and have the
same Fourier modulus. Indeed, by Fourier calculus (see Appendix A)
have

|F [ f ˚ g]| = | f̂ ĝ| = | f̂ ĝ˚| = |F [ f ˚ g´]|.
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234 a non-uniqueness example

Using this observation, it is possible to construct distinct solutions
to the same phase retrieval problem. Let ζ P C8c (R), let

f (x) = g(x) = (2δ0 + δ1) ˚ ζ(x) = 2ζ(x)´ ζ(x´ 1),

where δ is the Dirac delta distribution. Then,

f ˚ g(x) = F´1
(
(2eik0 + eik1)(2eik0 + eik1)|ζ̂|2

)

= F´1
(
(4eik0 + 4eik1 + eik2)|ζ̂|2

)

= (4δ0 + 4δ1 + 1δ2)F´1 (|ζ̂|2) .

Analogously,

f ˚ g´(x) = F´1
(
(2eik0 + eik1)(eik0 + 2eik1)|ζ̂|2

)

= F´1
(
(2eik0 + 5eik1 + 2eik2)|ζ̂|2

)

= (2δ0 + 5δ1 + 2δ2)F´1 (|ζ̂|2) ‰ f ˚ g(x).

Figure B.1 illustrates a variant of this example on a two-dimensional
torus.

The presented non-uniqueness can be adapted to other domains,
function spaces and constraints. For example, to illustrate non-uniqueness
for the support size constraint, one can choose F´1 (|ζ̂|2) = 1Br(0) for
r ă 1

2 . Then both f ˚ g and f ˚ g´ satisfy the support size constraint
with support size 9λ(Br(0)).

Remark B.4. The previos non-local non-uniqueness example appears
in many phase retrieval formulations. In the finite setting, it can
be eliminated with sufficient oversampling [Hay82]. In the infinite-
dimensional setting, it can be eliminated using generalized, rather
than Fourier, measurements [Ala+19].

As argued in [Luk17], for feasibility formulations of phase retrieval
— find an element in MXA for some A P H — the question of unique-
ness is far less relevant than the question whether MXA is empty or
not. This reasoning may be applied to the minimization of the energy
EM + EA as well.

In the energy minimization formulation, one could investigate not
whether a global minimizer is unique, but whether it is possible to
estimate the attraction region near global minimizers.
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Figure B.1: Non-uniqueness of solutions (Example B.3)
Consider the domain T2

[´1,1];127, let a = 1/2 (amplitude factor),
b = 16/63 (shift), A = 125 (gaussian width), let

f1(x) = g1(x) = a(2δ0(x) + δb(x)) ˚ exp(´A|x|2);
f (x, y) = g(x, y) = f1(x) f1(y).

Top left: δ(´b,´b) ˚ f ˚ g. Top right: δ(´b,´b) ˚ f ˚ g´. Center left:

|zf ˚ g|. Center right: |{f ˚ g´|. Bottom left: arg(zf ˚ g). Bottom
right: arg({f ˚ g´). Graphs of phases are modulated by eix0¨,
where the shift x0 is approximately equals to the barycenter of
the corresponding function (to minimize visual cluttering due
to phase oscillations).
The function δ(´b,´b) ˚ f ˚ g´ is even; thus, its Fourier trans-

form is real-valued. In the bottom row, at the edges |zf ˚ g| and
|{f ˚ g´| become comparable with machine precision and their
phases become random.





C
S O M E S TA N D A R D R E S U LT S O N G E N E R A L I Z E D
D I F F E R E N T I AT I O N

This chapter recalls the following standard results on Clarke and gen-
eralized subdifferentials that are used in the thesis:

• If a functional is Fréchet-differentiable, then Clarke and gener-
alized subdifferentials contain only the corresponding Fréchet-
derivative.

• For a sum of two functionals one of which is Fréchet-differentiable,
subdifferentials of the sum equal to the sum of subdifferentials.

Corollary C.1 (Clark subdiff. of cts. Fréchet-diff.). Let E : HÑ R

be continuously Fréchet-differentiable at g˚ P H with Fréchet-derivative
∇E[g˚]. Then, pdE[g˚][w] = x∇E[g˚], wy for all w P H, and BE[g˚] = t∇E[g˚]u.

Proof. By definition,

pdE[g˚][w] = lim sup
gÑg˚,εŒ0

E[g + εw]´ E[g]
ε

= lim sup
gÑg˚,εŒ0

εx∇E[g], wy+ o(ε)
ε

= lim sup
gÑg˚

x∇E[g], wy = x∇E[g˚], wy,

where we used that ∇E is continuous in the last step.
Therefore, for v = ∇E[g] have

xv, wy = x∇E[g], wy = pE[g][w],

and ∇E[g] P BE[g].
Let v ‰ ∇E[g]. Then, for w = v´∇E[g] have

xv´∇E[g], wy = }v´∇E[g]}22 ą 0,

implying
xv, wy ę x∇E[g], wy for all w P H,

so that ∇E[g] is the only element contained in E[g]. ˝

Lemma C.2 (Additivity if one summand is cts. Fréchet-diff.). Let E, F : HÑ R.
Let E be Lipschitz continuous at g˚, let F be continuously Fréchet-differentiable
at g˚ for some g˚ P H. Then,

B(E + F)[g˚] = BE[g˚] + BF[g˚] (C.1)
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238 some standard results on generalized differentiation

Proof. First, observe that for all w P H
pd(E + F)[g˚][w] = pdE[g˚][w] + pdF[g˚][w]. (C.2)

Indeed, since

lim
gnÑg,εnŒ0

F[gn + εnw]´ F[gn]

εn
= x∇F, wy for all w P H

and for all sequences (gn)n, (εn)n with gn Ñ g˚, εn Œ 0 as n Ñ8, it is
also true for the sequence pair (gn), (εn) that attains the supremum
in pdE[g˚][w]. Therefore, for such (gn), (εn) have:

pd(E + F)[g˚][w] ě lim
nÑ8

E[gn + εw]´ E[gn] + F[gn + εw]´ F[gn]

ε

= lim sup
gÑg˚,εŒ0

E[g + εw]´ E[g]
ε

+ x∇F[g˚], wy

= pdE[g˚][w] + pdF[g˚][w]. (C.3)

Further, subadditivity of lim sup immediatly implies

pd(E + F)[g˚][w] ď pdE[g˚][w] + pdF[g˚][w],

establishing (C.2).
Second, let us show the desired result (C.1). For “Ď”, if

xv, wy ď pd(E + F)[g˚][w] = pdE[g˚][w] + x∇F[g˚], wy (C.4)

for all w P H, then for vE = v´∇F[g˚] and vF = ∇F[g˚] have

xvE, wy ď pdE[g˚][w] and xvF, wy ď F[g˚][w] (C.5)

For “Ě”, the proof is similar and straightforward by (C.2). ˝



D
S U P P L E M E N TA L C A L C U L AT I O N S

The following property of complex numbers was used in the thesis.

Lemma D.1. Let a, b P C, let b ‰ 0. Then,
ˇ̌
ˇ̌a´ b

|b| |a|
ˇ̌
ˇ̌ ď 2|a´ b|.

Proof. Distinguish between two cases. First, assume that |a´ b| ă |a|.
If |b| = |a|,

ˇ̌
ˇa´ b

|b| |a|
ˇ̌
ˇ = |a ´ b| ď 2|a ´ b|. If |b| ą |a|, the angle

formed by the points a, b
|b| |a|, b is obtuse, and

ˇ̌
ˇb´ b

|b| |a|
ˇ̌
ˇ ď |a´ b| by the

cosine theorem. Therefore
ˇ̌
ˇa´ b

|b| |a|
ˇ̌
ˇ ď |a´ b|+

ˇ̌
ˇb´ b

|b| |a|
ˇ̌
ˇ ď 2|a´ b|.

If |b| ă |a|,
ˇ̌
ˇ̌a´ b

|b| |a|
ˇ̌
ˇ̌ ď |a´ b|+

ˇ̌
ˇ̌b´ b

|b| |a|
ˇ̌
ˇ̌ = |a´ b|+

ˇ̌
ˇ̌ b
|b| |a|

ˇ̌
ˇ̌

loomoon
=|a|

´|b|

ď |a´ b|+ |a| ´ |b| ď |a´ b|+ |a´ b| = 2|a´ b|.

Second, assume that |a´ b| ě |a|. Then,
ˇ̌
ˇa´ b

|b| |a|
ˇ̌
ˇ ď 2|a| ď 2|a´ b|. ˝

d.1 compactness of the modulus constraint

The modulus constraint set is compact on the torus. This can be
demonstrated using a standard diagonalization argument.

Proposition D.2. Let I P `1(Zd) with I ě 0 (so that
?

I belongs to
`2(Zd)). Then the modulus set

M(
?

I) = t f P L2(Td) | | f̂ | = ?
Iu

is strongly sequentially compact (and thus strongly compact).

Proof. Let ( fn)nPN be a sequence in M(
?

I).
For readability, we split the proof into the following steps:

1) For any sequence (km̃)m̃PN that counts all elements of Zd; use
Zm to denote the set that contains first md elements of the se-
quence. (The choice of md first elements makes it easier to pick
a sequence (km) for which Zm contains growing d-dimensional
cubes centered at the origin.)

239
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2a) Use induction to extract subsequences ( f̂n)nPMm , m P N, from
( f̂n)nPN that converge pointwise on Zm. Specifically, for any
m P N, extract subsequences such that

N = M0 Ą M1 Ą M2 Ą . . . Ą Mm Ą . . . ,

such that ( f̂n)nPMm converges to some f̂ (m) pointwise on Zm, and
such that f (m) PM(

?
I).

2b) Show that ( f (m))mPN is Cauchy in L2(Td); follow that it con-
verges to some f P L2(Td).

3) Show that f PM(
?

I).

4) Use a diagonal argument to construct a subsequence of ( fn)n

that converges to f , concluding the proof.

Let us demonstrate these steps. 1) Let (km)mPN be a sequence that
counts all k P Zd (i.e. for any k P Zd there exists exactly one m P N

with km = k) such that

Z1 :=
1dď

m̃=1

tkm̃u =
dą

i=1

t0u

Z3 :=
3dď

m̃=1

tkm̃u =
dą

i=1

t´1, 0, 1u

Z5 :=
5dď

m̃=1

tkm̃u =
dą

i=1

t´2,´1, 0, 1, 2u

. . . . . . . . .

Zm :=
mdď

m̃=1

tkm̃u =
dą

i=1

"
´m´ 1

2
, . . . ,

m´ 1
2

*

for all odd m P N; informally, such a sequence consequently counts
all the elements in each cube around the origin before proceeding to
the next “layer”. With this construction, B N´1

2
(0) Ă ZNd for any odd

N P N.
2a) Construct a sequence of functions ( f (m))mPN such that subse-

quences of ( fn)nPN converge pointwise to f (m) P M(
?

I) on certain
domains Zm Ă Zd that grow with m.

Induction statement: for all m P N, there exists an unbounded set
Mm Ă N and a function f (m) P M(

?
I) such that f̂n(k) converges to

f̂ (m)(k) for all k P Zm as n Ñ 8 in Mm, and | f̂ (m)(k)| = ?
I(k) for

k P ZdzZm.
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Base case: let m = 1, let M0 = N. Since ta P C | |a| = ?
I(k1)u is

compact, the sequence
(

f̂n(k1)
)

nPM0
has a subsequence that converges

to some b P C with |b| = ?
I(k1). Define

f̂ (1) : Zd Ñ C; k ÞÑ
$
&
%

b if k = k1;
?

I(k) else.

By construction, f (1) PM(
?

I) is the desired function. In other words,
there exists an unbounded set M1 Ă M0 and a function f (1) P M(

?
I)

such that f̂n(k) converges to f (1)(k) for all k P Z1 = tk1u as n P M1

goes to infinity, while f̂ (1)(k) =
?

I(k) for k P ZdzZ1.
Induction step: assume the statement holds for m, Mm and f̂ (m).

Since ta P C | |a| = ?
I(km+1)u is compact, the sequence

(
f̂n(km+1)

)
nPMm

has a convergent subsequence, i.e. such that f̂n(km+1)Ñ b P C — with
|b| = ?

I(km+1) — as n Ñ 8 for n P Mm+1 for some unbounded
Mm+1 Ă Mm. Define

f̂ (m+1) : Zd Ñ C; k ÞÑ

$
’’’&
’’’%

f̂ (m)(k) if k P Zm;

b if k = km+1;
?

I(k) else.

Thus, for m + 1, there there exists an unbounded sequence Mm+1 Ă N

and a function f (m+1) PM such that f̂n(k) converges to f̂ (m+1)(k) for
all k P Zm+1, and f̂ (m+1)(k) =

?
I(k) for k P ZdzZm+1.

2b) The sequence ( f̂ (m))mPN is Cauchy in l2(Zd). Indeed, for an odd
Nd P N and any n1, n2 ě Nd have

} f̂ (n1) ´ f̂ (n2)}2l2(Zd) ď 2
ÿ

kPZdzZNd

?
I(k)2 ď 2

ÿ

kPZdzB N´1
2

(0)

?
I(k)2 Ñ 0

as N Ñ 8, since
ř

kPZd
?

I(k)2 ă 8 by assumption. Therefore, and
because l2(Zd) is complete, f̂ (m) Ñ f̂ for some f̂ P l2(Zd) as m Ñ8.

3) ( f P M.) Further, | f̂ (k)| = ?
I(k) for all k P Zd. Indeed, if we

assume that
ˇ̌| f̂ (k)| ´ ?

I(k)
ˇ̌
= ε ą 0 for some k P Zd, then

inf
mPN

ˇ̌| f̂ (k)| ´ | f̂ (m)(k)|ˇ̌ ě ε

and f (m) could not converge to f in L2(Td), leading to a contradiction.
4) (Diagonal argument.)
Let M Ă N be the set constructed using m-th element of Mm for

m P N. Then, M is unbounded, and ( fn)nPM converges pointwise to f̂ .
By dominated convergence theorem with majorant

?
I2, f̂n converges

to f̂ in l2 as n Ñ8 for n P M.
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Therefore,

} fn ´ f }2L2(Td) ď (2π)d} fn ´ f }28 ď (2π)2d} f̂n ´ f̂ }l2(Zd)2 Ñ 0

as n Ñ8 for n P M, so M is sequentially compact. ˝

Corollary D.3. Let Ω Ă Rd bounded and Lebesgue-measurable, and let
I P L1(Rd) with I ě 0 (so that

?
I belongs to L2(Rd)).

Then the modulus set M(
?

I) = t f P L2(Ω) | | f̂ | = ?
Iu is strongly

compact (where f̂ is the Fourier transform of the extension of f by zero to all
of Rd).

Proof. W.l.o.g. (see remark at the very end of the proof), assume that
Ω Ă Td. Let

XTd = t f P L2(Td) | supp f Ď Ωu, (D.1)

XRd = t f P L2(Rd) | supp f Ď Ωu. (D.2)

It is straightforward to verify that the embedding, which is defined as

ι : XTd Ñ XRd , (D.3)

f (x) ÞÑ
$
&
%

f (x) if x P Ω,

0 else
(D.4)

for almost all x P Rd, is a homeomorphism between
(
XTd , } ¨ }L2(Td)

)

and
(
XRd , } ¨ }L2(Rd)

)
.

Thus, if a set Y Ď XRd is not compact, then ι(Y) Ď XTd is not com-
pact.

Assume that M(
?

I) Ď XRd is not compact. Then, ι( f M(
?

I)) = M( r?I) Ď XTd

is not compact, where — by a straightforward calculation — r?I P `2(Zd)

with r?I(k) = | f̂ |(k) for any f P M(
?

I), and the Fourier transform of
f is taken in L2(Rd). However, M( r?I) being not compact contradicts
Proposition D.2, meaning that M(

?
I) Ď XRd is compact.

In the beginning of the proof, we assume that Ω Ď Td w.l.o.g. In-
deed, since Ω is bounded by assumption, have c := supxPΩ }x}Rd ă 8,
such that the coordinate scaling

L2(Rd)Ñ L2(Rd)

f (x) ÞÑ f (x/c)

for all x P Rd is a homeomorphism that maps any subset of L2(Ω) onto
a subset of L2(rΩ) such that rΩ Ď Td, and the topological properties of
both subsets coincide. ˝
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d.2 compactness of the hilbert cube

Similarly to Proposition D.2, one can demonstrate (strong) compact-
ness of the Hilbert cube.

First, recall the following standard results on integral and series
convergence.

Lemma D.4. Let d P N, let } ¨ }2; Rd denote the Euclidean norm of a d-
dimensional vector. For r ą d, for R ą 0 have

ż

|x|ąR

C
1 + }x}r2; Rd

dx ď Cr

Rr´d

for Cr := 2dCλ(Bd´1
1 (0)) ă 8.

Also, } C
1+}¨}r

2; Rd
}2 ă 8.

Proof. By a straightforward calculation,
ż

|x|ąR

C
1 + }x}r2; Rd

dx ď
ż

|x|ąR

C
}x}r2; Rd

dx

= 2dC
ż 8

z=R

1
zr λ(Bd´1

z (0)) dz2dλ(Bd´1
1 (0))

ż 8

z=R

zd´1

zr dz

= 2dCλ(Bd´1
1 (0))

1
r´ d

1
zr´d

ˇ̌
ˇ̌
8

z=R
ď Cr

Rr´d

for Cr = 2dCλ(Bd´1
1 (0)).

Further,
ż

Rd

C2

(1 + }x}r2; Rd)2 dx ď
ż

Bd
1(0)

C2dx +

ż

|x|ą1

C2

(1 + }x}r2; Rd)2 dx ď

C2λ(Bd
1(0)) + CCR ă 8,

since (1 + }x}r2; Rd)
2 ě (1 + }x}r2; Rd) for all x P Rd. ˝

Lemma D.5. Let d P N, let } ¨ }2; Rd denote the Euclidean norm of a d-
dimensional vector. For r ą d,

ÿ

kPZd

1
1 + }k}r2; Rd

ă 8.

Proof. The sum can be bound by an integral, which can be evaluated
explicitely.

Define the function

f : Rd Ñ Rd

q = (q1, . . . , qd) ÞÑ f (q) with f (q)j =

Z
qj +

1
2

^
, j P t1, . . . , du,
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using the floor function t¨u. Then, for any k = (k1, . . . , kd) P Zd holds
ż

[k1´ 1
2 ; k1+

1
2 )ˆ...ˆ[kd´ 1

2 ; kd+
1
2 )

1
} f (q)}r2; Rd

dq1 ¨ ¨ ¨ dqd

=

ż

[k1´ 1
2 ; k1+

1
2 )ˆ...ˆ[kd´ 1

2 ; kd+
1
2 )

1
}k}r2; Rd

dq1 ¨ ¨ ¨ dqd =
1

}k}r2; Rd

.

Therefore,

ÿ

kPZdz[´1;1]d

1
}k}r2; Rd

=

ż

((´8;´ 3
2 ]Y[ 3

2 ;8))
d

1
} f (q)}r2; Rd

dq. (D.5)

Since for any a P R holds
ˇ̌
ta + 1

2 u
ˇ̌ ě |a| ´ 1

2 , we have

} f (q)}2; Rd =




dÿ

j=1

Z
qj +

1
2

^2



r
2

ě



dÿ

j=1

(
|qj| ´ 1

2

)2



r
2

,

which, inserted into Equation (D.5), yields
ż

((´8;´ 3
2 ]Y[ 3

2 ;8))
d

1
/
} f (q)}r2; Rd dq

ď
ż

((´8;´ 3
2 ]Y[ 3

2 ;8))
d

1
/(řd

j=1
(|qj| ´ 1

2

)2
) r

2 dq

= 2d
ż

[ 3
2 ;8)d

1
/(řd

j=1
(
qj ´ 1

2

)2
) r

2 dq

= 2d
ż

[1;8)d
1
/(řd

j=1 q2
j

) r
2 dq

= 2d
ż

[1;8)d
1
/
}q}r2; Rd dq.

Further, for the ball B1(0) holds (1;8)d Ď RdzB1(0), since for any
q P B1(0) holds qj ď 1 for all j P t1, . . . , du. Therefore,

2d
ż

[1;8)d

1
}q}r2; Rd

dq ď 2d
ż

RdzB1(0)

1
}q}r2; Rd

dq

= 2d
ż 8

z=1

1
zr λ(Bd´1

z (0)) dz = 2dλ(Bd´1
1 (0))

ż 8

z=1

1
zr zd´1 dz

= 2dλ(Bd´1
1 (0))

1
(r´ d)

ă 8

for r´ d ą 0.
Thus,

ÿ

kPZdz[´1;1]d

1
}k}r2; Rd

ă 8
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for r ą d, so that

ÿ

kPZd

1
1 + }k}r2; Rd

ď
ÿ

kPZdX[´1;1]d
1 +

ÿ

kPZdz[´1;1]d

1
}k}r2; Rd

ď 3d +
ÿ

kPZdz[´1;1]d

1
}k}r2; Rd

ă 8. ˝

Recall the definition of a Hilbert cube from Example 6.39: for ρ P l1(Zd; Rě0),

QF
ρ =

!
f P L1(Td) | | f̂ (k)| ď ρ for all k P Zd

)
.

Proposition D.6 (Hilbert cube is compact). Let ρ P l1(Zd; Rě0). Then,
QF

ρ is compact in Lp(Td) for all p P [1,8].

Proof. The proof is extremely similar to the proof of Proposition D.2.
One minor difference is that instead of using the compactness of

the circumference tz P C | |z| = au for a ě 0, it is necessary to use the
compactness of the circle tz P C | |z| ď au for a ě 0.

Another minor difference is that when the dominated convergence
theorem is used, instead of picking

?
I2 P `1 as the majorant, one picks

the majorant ρ P `1 to follow the convergence. ˝

Corollary D.7 (A compact Hilbert cube). Let C ą 0, r ą d. Then,
QF

C;r is compact in Lp(Td) for all p P [1,8].

Proof. Follows from Proposition D.6 for ρ(k) = C/(1+ }k}r2; Rd), which
belongs to l1(Zd; Rě0) by Lemma D.5. ˝

d.3 formal second derivatives of energies

Remark D.8 (Formal derivatives of EP and EM). Let Ω P tRd, Td, Td
Nu, ,

for g, h, χ P L2(Ω). Observe the following formal calculation.

d
dεh

ˇ̌
ˇ̌
εh=0

d
dεχ

ˇ̌
ˇ̌
εχ=0

EP[g + εhh + εχχ]

=
d

dεh

ˇ̌
ˇ̌
εh=0

ż
(g(x) + εhh(x)´ PP[g + εhh](x))χ(x) dx

=
1
2

d
dεh

ˇ̌
ˇ̌
εh=0

ż
(g(x) + εhh(x)´ |g(x) + εhh(x)|)χ(x) dx

=
1
2

d
dεh

ˇ̌
ˇ̌
εh=0

ż
(g(x) + εhh(x)´ |g|(x)´ εhg(x)h(x)

|g(x)| + O(εh
2))χ(x) dx

=

ż ż
1gă0(x)δ(x´ y)χ(x)h(y) dx dy
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in object space, and

=

ż ż
χ̂˚(k)p1gă0(k´ q)ĥ(q) dq dk

in Fourier space. Analogously,

d
dεh

ˇ̌
ˇ̌
εh=0

d
dεχ

ˇ̌
ˇ̌
εχ=0

EM[g + εhh + εχχ]

=
d

dεh

ˇ̌
ˇ̌
εh=0

CF

ż (
ĝ + εhĥ´?

I
ĝ + εhĥ
|ĝ + εhĥ|

)˚
χ̂

= CF

ż (
ĥ´?

I
ĥ
|ĝ| +

?
I

ĝ
|ĝ|2

ĝ˚ĥ + ĝĥ
˚

2|ĝ|

)˚
χ̂

= CF

ż (
1´

?
I

2|ĝ|
)

ĥ
˚
χ̂ + CF

ż ?
I

2|ĝ|
(ĝ˚)2

|ĝ|2 ĥχ̂

— so far the integration variable has been omitted for readability; now
it is introduced in order to simplify the expression. Recall that, for
real-valued functions h, ĥ(k) = ĥ

˚
(´k), and continue with —

= CF

ż (
1´

?
I(k)

2|ĝ(k)|
)

loooooooomoooooooon
=:AF(k)

ĥ(k)˚χ̂(k) dk + CF

ż ?
I(k)

2|ĝ(k)|
(ĝ(k)˚)2

|ĝ(k)|2looooooooomooooooooon
=:BF(k)

ĥ(´k)˚χ̂(k) dk

= CF

ż ż (
AF(k)δ(k´ q) + BF(k)δ(k + q)

)
ĥ(q)˚χ̂(k) dk dq

in Fourier space, and can be rewritten as

=

ż
χ(x)h(x) dx´

ż
χ(x)

(
F´1

( ?
I

2|ĝ|
)

loooooomoooooon
=:A(x)

˚h

)
(x) dx

+

ż
χ(x)

(
F´1

( ?
I

2|ĝ|
(ĝ˚)2

|ĝ|2
)

loooooooooomoooooooooon
=:B(x)

˚h

)
(´x) dx

=

ż
χ(x)h(x) dx´

ż
χ(x)

ż
A(x´ y)h(y) dy dx

+

ż
χ(x)

ż
B(x´ y)h(´y) dy dx

=

ż ż (
1´ A(x´ y) + B(x + y)

)
χ(x)h(y) dx dy

in object space. The inverse Fourier transforms in A, B are formal. For
example, they are well-defined as inverse Fourier transforms if the
underlying space is finite and k ÞÑ

?
I(k)
|ĝ(k)| is bounded.
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This chapter contains more details on the setting used in Chapter 10

to generate numerical examples. It describes the exact form of the
solution g3G;N , and contains figures that show g3G;N for N P t31, 127u,
the corresponding Fourier moduli and Fourier phases.

It also describes the exact form of the function g9G;N that was used
as initalization in Example 10.7 and Example 10.8.

For reference, this chapter contains figures illustrating some other
example solutions. For these solutions, the observed behavior of re-
construction algorithms was comparable to the results presented in
Chapter 10.

The densities were generated using the space discretization

T2
[´1,1];N :=

$
’’&
’’%
(x, y) P [´1, 1]2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

x = ´1 +
2ix

N ´ 1
for ix P [N ´ 1]0

y = ´1 +
2iy

N ´ 1
for iy P [N ´ 1]0

,
//.
//-

,

where [N ´ 1]0 = t0, 1, . . . , N ´ 1u.
The used problem was generated as a Gaussian sum of the follow-

ing form.

Definition E.1 (Gaussian sum). Let N P N denote the number of dis-
cretization points along each dimension, let NG P N denote the number of
Gaussians. Let a P RNG with ai ě 0 for i P [NG] describe maximal ampli-
tudes (of Gaussians). Let m P (R2)NG describe means (of Gaussians), let
A P (R2ˆ2)NG describe scaled inverse covariance matrices (of Gaussians).

Define the Gaussian sum corresponding to a, m, A as

ga,m,A(x) =
NGÿ

i=1

ai exp
(
(x´mi)

ᵀAi(x´mi)
)
.

In a mild deviation from standard definition of a multivariate normal
distribution, the factor 1

2 is not present in the exponent.

The values of a, m, and A used in g3G;N are collected in Table E.1;
values of a, m, and A used in g3G;N are collected in Table E.2. these

tables, the values of A are written row-wise, i. e. A =

(
a11 a12

a21 a22

)
is

writtend down as [a11a12; a21a22].

247
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i P [3] a m A
1 1.28 [ 0.02 -0.23] [104.83 -24.10 -24.10 171.17]

2 1.40 [ -0.29 0.38] [169.98 -15.83 -15.83 90.02]

3 0.90 [ -0.38 0.14] [150.70 43.15 43.15 79.30]

Table E.1: 3 Gaussians.
The entries of a are sampled from a uniform distribution on [0.75, 1.5]. The
entries of m are sampled from a uniform distribution on the ball B0.5(0).
The matrices Ai are generated as follows: i) construct a diagonal matrix
Di P R2ˆ2 from samples of a uniform distribution on [5, 205]; ii) rotate it by
an angle sampled from a uniform distribution on [0, 2π).
For a, m, A as in this table, we write g3G := ga,m,A. Further, we write
g3G;N := g3G

ˇ̌
T2
[´1,1];N

when g3G is restricted to the discretized torus T2
[´1,1];N .

Table E.2: 9 Gaussians

i P [9] a m A

1 1.48 [ -0.41 -0.14] [198.75 11.78; 11.78 139.25]

2 1.05 [ 0.42 -0.27] [140.30 -32.92;-32.92 49.70]

3 1.29 [ 0.13 -0.30] [173.25 17.73; 17.73 150.75]

4 0.85 [ -0.08 -0.03] [151.50 24.43; 24.43 128.50]

5 1.44 [ 0.02 0.41] [ 78.94 23.12; 23.12 163.06]

6 0.79 [ -0.22 0.45] [ 72.46 -13.49;-13.49 121.54]

7 1.02 [ 0.31 0.20] [183.13 -0.99; -0.99 190.87]

8 1.11 [ 0.05 0.12] [121.49 23.95; 23.95 124.51]

9 1.07 [ 0.28 0.07] [139.09 -1.50; -1.50 162.91]

The entries of a are sampled from a uniform distribution on [0.75, 1.5]. The
entries of m are sampled from a uniform distribution on the ball B0.5(0).
The matrices Ai are generated as follows: i) construct a diagonal matrix
Di P R2ˆ2 from samples of a uniform distribution on [5, 205]; ii) rotate it by
an angle sampled from a uniform distribution on [0, 2π).
For a, m, A as in this table, we write g9G := ga,m,A. Further, we write
g9G;N := g9G

ˇ̌
T2
[´1,1];N

when g9G is restricted to the discretized torus T2
[´1,1];N .
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Figure E.1: Sum of 3 Gaussians from Table E.1
Top left: g3G;31. Top right: g3G;127. Center left: |ĝ3G;31|. Cen-
ter right: |ĝ3G;127|. Bottom left: arg(ĝ3G;31). Bottom right:
arg(ĝ3G;127). Graphs of phases are modulated by eix0¨, where
the shift x0 is approximately equals to the barycenter of the
corresponding function (to minimize visual cluttering due to
phase oscillations).
The low-frequency content of g3G;31 and g3G;127 is similar; thus,
center of |ĝ3G;127| looks very similar to |ĝ3G;31|.
On the bottom right, at the edges values of |ĝ3G;127| are compa-
rable with machine precision and arg(ĝ3G;127) looks like white
noise.
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Figure E.2: Sum of 9 Gaussians from Table E.2
Top left: g9G;31. Top right: g9G;127. Center left: |ĝ9G;31|. Cen-
ter right: |ĝ9G;127|. Bottom left: arg(ĝ9G;31). Bottom right:
arg(ĝ9G;127). Graphs of phases are modulated by eix0¨, where
the shift x0 is approximately equals to the barycenter of the
corresponding function (to minimize visual cluttering due to
phase oscillations).
The low-frequency content of g9G;31 and g9G;127 is similar; thus,
center of |ĝ9G;127| looks very similar to |ĝ9G;31|.
On the bottom right, at the edges values of |ĝ9G;127| are compa-
rable with machine precision and arg(ĝ9G;127) looks like white
noise.
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Figure E.3: Sum of 27 Gaussians
Top left: g27G;31. Top right: g27G;127. Center left: |ĝ27G;31|. Cen-
ter right: |ĝ27G;127|. Bottom left: arg(ĝ27G;31). Bottom right:
arg(ĝ27G;127). Graphs of phases are modulated by eix0¨, where
the shift x0 is approximately equals to the barycenter of the
corresponding function (to minimize visual cluttering due to
phase oscillations).
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Figure E.4: Sum of 84 Gaussians
Top left: g84G;31. Top right: g84G;127. Center left: |ĝ84G;31|. Cen-
ter right: |ĝ84G;127|. Bottom left: arg(ĝ84G;31). Bottom right:
arg(ĝ84G;127). Graphs of phases are modulated by eix0¨, where
the shift x0 is approximately equals to the barycenter of the
corresponding function (to minimize visual cluttering due to
phase oscillations).
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Figure E.5: Sum of 84 Gaussians, large support radius
Top left: g84G;31. Top right: g84G;127. Center left: |ĝ84G;31|. Cen-
ter right: |ĝ84G;127|. Bottom left: arg(ĝ84G;31). Bottom right:
arg(ĝ84G;127). Graphs of phases are modulated by eix0¨, where
the shift x0 is approximately equals to the barycenter of the
corresponding function (to minimize visual cluttering due to
phase oscillations).
In comparisson to concentrated Gaussians (Figure E.4), solu-
tion phase (in the bottom row) is notably less regular.
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L I S T O F F I G U R E S

Figure 1.1 Sketch of a crystallographic measurement. 2

Figure 1.2 Various formulations of phase retrieval. 2

Figure 2.1 Sketch of relative constraint difficulty discussed
in Remark 2.5. 20
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M AT H E M AT I C A L N O TAT I O N

x, y P Ω variables in the object space domain
k, q P ΩF variables in the Fourier space domain
t, τ, T P R time variables
ε P Rě0 step size in discretized algorithms
(¨)˚ complex conjugation
CF normalization constant in Plancherel’s theorem 16, 229

B depending on the context, this symbol denotes the boundary of a
set, the subgradient of a convex functional Bc, the generalized
(Kruger-Mordukhovich) subdifferential BKM, or — used as Bt

— the partial derivative of a function in time
B Clarke subdifferential
BR( f ), B̊R( f ) closed and open balls around f (radius R; metric } ¨ }H)

f , g, h, p, q, s, d P H functions in the object space
gn, pn, qn P H algorithm iterates 128, 194

g(ε), p(ε), q(ε) : [0, T) Ñ H linear interpolations in time between algo-
rithm iterates 145, 194

g(ε), p(ε), q(ε) : [0, T)Ñ H pcw. constant interpolations in time between
algorithm iterates 145, 194

ϕ, ψ : ΩF Ñ C phase of complex-valued functions 40, 42?
I measurement data (square root of measured intensity) 19

1tconditionu(x) means 1txPΩ|condition at xu(x) 33

A, B, T (possibly multivalued) operators acting on H 100

A(loc) local version of the operator A 44, 48, 80

JλA = (I + A)´1 (possibly multivalued) resolvent of A 105

Ω physical space (domain of the object space); Rd, Td, or Td
N 15

ΩF domain of the Fourier space; isomorph to Rd, Zd, or Td
N 16

H(Ω) object space; typically, L2(Ω) 15

pH(ΩF) Fourier space; typically, L2(ΩF) 16

D Ă H, pD Ă pH domains of operators and functionals
X, Y Ă H generic sets, typically proximal, non-empty 78

C Ă H generic convex set, typically proximal, non-empty 97

M(
?

I), M(i)(
?

I; SF) Ă H modulus constraint set and incomplete mod-
ulus constraint set 19

A Ă H additional constraint, typically proximal, non-empty 56

P non-negativity constraint 19

S(S) support constraint (of functions supported S Ă Ω) 19

Ta(α)(α) amplitude thresholding constraint 19

Ts(ν)(ν) support size constraint 19

ΠX (set-valued) projection operator onto a proximal set X 24,
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PX a single-valued selection of the projection onto a proximal set X 24

PM single-valued modulus projection selection (onto M). When-
ever PM is used, it is implicitely understood that there exists
a phase ϕ with PM = PM; ϕ. 40, 130

PP positivity projection (onto P) 33, 130, 131

RX reflection by a proximal set X 24, 115, 179

EX projection energy functional onto a proximal set X 53, 120

EM modulus energy functional 54, 58

EP positivity energy functional 54, 58

H formal Hessian of EM + EP 171, 245
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2v-FPF Two-Variable Feasibility Problem Flow; see also DRF 79

d2v-FPF discretized 2v-FPF; see also dDRF 79, 187

AP Alternating Projections Alogrithm 89

APF AP Flow 79

dAPF discretized APF 79, 120

energy dissipation 120,
approximation sequence Sequence of algorithm iterates 82

BIO Basic Input-Output Algorithm 83

ER Error-Reduction Algorithm, phase retrieval variant of of AP 88, 89

ERF ER Flow, phase retrieval variant of APF 91, 143

dERF discretized ERF, phase retrieval variant of dAPF 79, 129

DM Difference Map Alogrithm 86

DR Douglas-Rachford Algorithm for feasibility problems 79, 88, 115

DR-LM Douglas-Rachford in Lions-Mercier formulation, a gener-
alized form of DR, uses resolvents of monotone operators 78,
108

DR-c DR for convex feasibility problems 79, 110

DR/HIO Douglas-Rachford / Hybrid-Input-Output Algorithm,
DR for phase retrieval 79, 113

DRF DR Flow, a variant of 2v-FPF that corresponds to DR 79

dDRF discretized DRF 79

DR/HIO-F DR/HIO Flow, a variant of DRF for phase retrieval
194

d-DR/HIO-F discretized DR/HIO Flow 194

Dykstra Dykstra’s Algorithm 136

Fourier Space pH(ΩF), Fourier dual of the object space 16

Halpern Halpern’s Algorithm 136

HIO Hybrid Input-Output Algorithm 22, 79, 84

monotone operator 101

maximally monotone operator 103

nonexpansive operator 101

object space H(Ω), real-valued Hilbert space containing objects of
interest (molecular densities) 15

physical space Ω, domain of the functions that model objects of inter-
est (molecular densities) 15

resolvent 105

update operator T; an algorithm is defined by its update operator 82
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