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Abstract
Key message  Model training on data from all selection cycles yielded the highest prediction accuracy by attenuating 
specific effects of individual cycles. Expected reliability was a robust predictor of accuracies obtained with different 
calibration sets.
Abstract  The transition from phenotypic to genome-based selection requires a profound understanding of factors that deter-
mine genomic prediction accuracy. We analysed experimental data from a commercial maize breeding programme to inves-
tigate if genomic measures can assist in identifying optimal calibration sets for model training. The data set consisted of six 
contiguous selection cycles comprising testcrosses of 5968 doubled haploid lines genotyped with a minimum of 12,000 SNP 
markers. We evaluated genomic prediction accuracies in two independent prediction sets in combination with calibration 
sets differing in sample size and genomic measures (effective sample size, average maximum kinship, expected reliability, 
number of common polymorphic SNPs and linkage phase similarity). Our results indicate that across selection cycles pre-
diction accuracies were as high as 0.57 for grain dry matter yield and 0.76 for grain dry matter content. Including data from 
all selection cycles in model training yielded the best results because interactions between calibration and prediction sets as 
well as the effects of different testers and specific years were attenuated. Among genomic measures, the expected reliability 
of genomic breeding values was the best predictor of empirical accuracies obtained with different calibration sets. For grain 
yield, a large difference between expected and empirical reliability was observed in one prediction set. We propose to use 
this difference as guidance for determining the weight phenotypic data of a given selection cycle should receive in model 
retraining and for selection when both genomic breeding values and phenotypes are available.

Introduction

The prediction of breeding values from molecular data 
has become a key component of many plant breeding pro-
grammes. In breeding hybrid crops such as maize, genomic 
prediction can be applied at different stages of the breeding 
scheme. When beginning a new selection cycle, genome-
based prediction can assist in the choice of crosses that war-
rant both high mean performance and high genetic variance 
for target traits (Lehermeier et al. 2017; Allier et al. 2019). 
The next step is to identify selection candidates with the 
highest combining ability in a large sample of testcrosses 
within the same heterotic group (Albrecht et al. 2011; Rie-
delsheimer et al. 2012; Jacobson et al. 2014) or to predict 
the performance of potential hybrid combinations directly 
(Massman et al. 2013; Technow et al. 2014; Seye et al. 
2020).
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For each of these prediction steps, a statistical model must 
be trained on experimental calibration data comprising high-
quality phenotypes and genotypes. Deterministic formulas 
forecasting prediction accuracy suggest a strong influence of 
the sample size, the heritability, the genetic architecture of 
the target trait and the genome structure of the species under 
study (Daetwyler et al. 2010; Schopp et al. 2017). Simula-
tion studies have shown that the mating design and family 
structure of the calibration set also have a strong influence 
on prediction accuracy (Hickey et al. 2014). Results from 
experimental studies corroborate these findings irrespec-
tive of whether the studied populations were designed for 
research purposes (Lehermeier et al. 2014) or originated 
from commercial breeding programmes (Albrecht et al. 
2014; Krchov et al. 2015; Auinger et al. 2016).

In addition to the specific properties of the calibration 
set, the relatedness between the calibration and prediction 
set plays an important role (Habier et al. 2007; Saatchi et al. 
2011; Clark et al. 2012; Lorenz and Nice 2017). In animal 
breeding, selection candidates are direct descendants of the 
previous selection cycle; thus, relatedness between calibra-
tion and prediction sets is given. In many plant breeding 
programmes, however, the situation is different. Depending 
on the generation interval of the crop, several years might 
elapse between the evaluation of parental lines and their 
progenies. Furthermore, plant breeders enrich the genetic 
diversity of advanced cycle breeding populations through 
crossings with unrelated or distantly related genetic mate-
rial. Depending on the mating design, this practice can alter 
haplotype structure and linkage disequilibrium of the selec-
tion candidates dramatically compared to the population on 
which the prediction model was trained. While selection on 
phenotypes is not impaired by these proceedings, the suc-
cess of genome-based selection might be jeopardised. In the 
worst case, the predictive power of the calibration set breaks 
down despite continuous retraining of the model over the 
years.

In breeding programmes where genome-based prediction 
is applied on a routine basis, a large body of data becomes 
available for model training. Several authors have found 
that prediction accuracy was impacted adversely when the 
calibration and the prediction sets were distantly related, 
and that removal of some genotypes from the calibration 
set improved prediction accuracy (Albrecht et al. 2014; 
Michel et al. 2016; Pembleton et al. 2018). Brandariz and 
Bernardo (2019) demonstrated that, for populations derived 
from biparental crosses of maize, utilising ad hoc training 
populations produced better results than did training the pre-
diction model on all available data, despite a substantially 
smaller sample size. Their experimental data set comprised 
a high number of large half-sib families, and prediction 
accuracies were highest when the calibration set comprised 
families having one parent in common with the family to be 

predicted. In these cases, relatedness was high, and changes 
in linkage phase across families were negligible, as shown 
theoretically and empirically by Lehermeier et al. (2014). 
If the calibration and prediction sets do not comprise large 
biparental families, the creation of ad hoc calibration sets 
is complicated, and drivers of prediction accuracy other 
than sample size and relatedness are largely unknown. We, 
therefore, investigated several genomic measures contribut-
ing to prediction accuracy. Building on a unique data set 
from an advanced cycle maize breeding programme com-
prising high-precision phenotypic and high-density geno-
typic data and representing six interconnected breeding 
cycles, our main objectives were to (1) assess the accuracy 
of genomic best linear unbiased prediction (GBLUP) of 
different calibration sets from up to five previous selection 
cycles in two prediction sets, (2) investigate the impact of the 
genetic diversity of the calibration set, (3) examine differ-
ences between sample size and effective sample size in the 
calibration set and (4) investigate how variation in marker 
polymorphism, linkage disequilibrium and the degree of 
relatedness between calibration and prediction sets affect 
prediction accuracy.

Materials and methods

Plant material

The experimental data presented in this study consist of 
genetic material from six contiguous selection cycles of 
a commercial maize breeding programme (Table 1). The 
six data sets (S1–S6) comprise 5968 doubled haploid (DH) 
lines from the Dent heterotic group crossed to one or several 
Flint testers. Data sets were disconnected with respect to 
selection candidates but connected through 11 commercial 
check hybrids. Data sets S1 to S6 varied in size from 551 to 
1545 DH lines. Individual sets were generated by crossing 
between 36 and 148 parents, which resulted in 130 to 607 
crosses with 1 to 455 progenies per parent (Table 1). In S1 
and S2, each line was crossed to one of two testers. In S3, 
four testers were used with 193 lines crossed to more than 
one tester. In S4, S5 and S6, one tester was used for each of 
the sets. S1 to S5 are connected by one single-cross tester, 
while the tester in S6 was a double cross with the common 
tester of S1 to S5 as a parent. Data sets S1 and S2 were 
part of the study of Albrecht et al. (2014). Plant materials 
described in this study are proprietary to KWS SAAT SE 
& Co. KGaA.

Genotypic and phenotypic data

The DH lines of sets S1 to S4 were genotyped with 56,110 
SNP markers using the Illumina® MaizeSNP50 BeadChip 
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(Ganal et al. 2011). DH lines of sets S5 and S6 were gen-
otyped with custom-made chips comprising subsets of 
12,062 and 22,359 SNPs of the Illumina® MaizeSNP50 
BeadChip, respectively. Genotypic data from sets S1 to 
S6 were merged, and only SNPs with a GTScore ≥ 0.7 or 
call frequency ≥ 0.9 were retained for further analyses. 
Monomorphic SNPs and SNPs with the alternative allele 
appearing only once were removed. If two SNPs were fully 
collinear, one was discarded at random. In the full dataset 
(Sall, N = 5968), 9742 informative SNPs remained. Miss-
ing genotypic information was imputed using the function 
‘codeGeno’ from the R-package ‘synbreed’ version 0.12–14 
with option ‘impute.type = “beagle”’ (Wimmer et al. 2012; 
Browning and Browning 2009) within the GNU-R environ-
ment (R Core Team 2020).

Data sets S1 to S6 were evaluated phenotypically in 
multi-location trials over 6 years (2010–2015). Within loca-
tions, testcrosses were allocated to a series of trials laid out 
as 10 × 10 lattices comprising additional DH lines from the 
same breeding programme as well as five to seven common 
commercial checks. The full set of genotypes was repli-
cated twice in S1 and S2, partially in S3 and not at all in S4, 
S5 and S6. Testcross performance was evaluated for grain 
dry matter yield (GDY, dt/ha) and grain dry matter content 
(GDC, %). Best linear unbiased estimates (BLUEs), variance 
components and heritabilities within data sets S1 to S6 were 
estimated as described by Albrecht et al. (2014).

Prediction of genomic breeding values

Data sets S1 to S5 served as calibration sets (CS) for model 
training individually and in all possible combinations 
resulting in 31 calibration sets ranging from N = 842 (S2) to 
N = 5417 (S1_2_3_4_5 = combined S1, S2, S3, S4 and S5). 
Data set S6 served as prediction set. Furthermore, for the 15 
calibration sets involving all possible combinations of S1 
to S4, data set S5 served as prediction set. In the respective 
calibration sets, BLUEs of DH lines averaged across loca-
tions were used as a response variable in the GBLUP model 
with the following form:

where � is a vector of the BLUEs of GDY or GDC, respec-
tively, µ is the population mean and u is a vector of ran-
dom genomic breeding values (GBV) with the distribu-
tion � ∼ N

(
0;��2

u

)
 . Z is the corresponding incidence matrix, 

� is a vector of residuals, which, for simplicity, is assumed to 
be normally distributed with a mean of zero and equal vari-
ance � ∼ N(0;��2). The genomic kinship matrix of the geno-
typed DH lines � was calculated according to VanRaden 
(2008) with allele frequencies estimated from Sall. Variance 
components �2

u
 and �2 are the testcross and residual vari-

ances pertaining to the GBLUP model, respectively.
Prediction accuracies (r) were calculated using Pearson’s 

correlation coefficients between GBVs predicted based on 
the model trained with the respective calibration set and 
BLUEs averaged across locations of the respective predic-
tion set, divided by the corresponding square root of the 
trait’s heritability. Empirical reliabilities were obtained from 
the squared accuracies (r2).

Genomic measures for characterising calibration 
and prediction sets

The molecular diversity of data sets S1 to S6 was assessed 
by calculating the proportion of polymorphic markers, 
nucleotide diversity (Nei and Li 1979) and haplotype het-
erozygosity (Nei and Tajima 1981). Haplotype heterozygo-
sity was calculated for sliding windows (Conrad et al. 2006) 
of 0.5 Mb, with steps of 1 SNP and a minimum number of 
5 SNPs per window. If causal variants contribute to trait 
variation in the prediction set but are not captured by SNPs 
in the calibration set or vice versa, prediction accuracy is 
likely to deteriorate. We, therefore, calculated the parameter 
nPoly, which reflects the number of common polymorphic 
SNPs, for all 46 combinations of calibration and prediction 
sets (15 with S5, 31 with S6).

A principal coordinate analysis (PCoA, Gower 1966) was 
conducted on data set Sall (S1–S6, N = 5968 and 9742 SNPs) 

� = �� + �� + �

Table 1   Description of 
data sets S1 to S6 tested 
in the years 2010 to 2015, 
respectively. Given are the 
sample size (N), the number of 
parents and crosses from which 
DH lines were derived, the 
median [minimum–maximum] 
number of DH lines per parent 
and cross, the number of 
locations and the number of 
testers used for evaluating each 
data set a If DH lines were not tested in all locations, numbers in parentheses indicate the average

Data set N No. of 
parents

No. of lines per 
crosses

No. of Locationsa Test-
ers

Parent Cross

S1 928 52 173 21 [1–203] 3 [1–63] 6 (4) 2
S2 842 73 287 12 [1–129] 2 [1–26] 6 (3.4) 2
S3 1085 148 246 6 [1–115] 1 [1–28] 7 (4.5) 4
S4 1017 58 130 13 [1–455] 4 [1–47] 6 1
S5 1545 145 607 5 [1–62] 2 [1–31] 5 1
S6 551 36 228 30 [2–82] 2 [1–6] 5 1
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based on the realised kinship matrix using the R-package 
’ape’ version 5.3 (Paradis and Schliep 2019). Variation 
within and between data sets was assessed by partitioning 
the molecular variance of Sall in an analysis of molecular 
variance (AMOVA) according to Excoffier et al. (1992).

For data sets S1 to S6, the linkage disequilibrium (LD) 
measure r2 (Hill and Robertson 1968) was calculated for 
pairs of SNPs located on the same chromosome, and the 
average LD decay distance for r2 < 0.1 was estimated using 
nonlinear regression (Hill and Weir 1988). We calculated 
linkage phase similarities (LPS) for all combinations of cali-
bration and prediction sets according to Schopp et al. (2017):

where k is the index for the p marker pairs. The sign of rk
CS 

was inferred from calculating D = pAB − pApB of marker 
pair k, where pAB denotes the frequency of haplotype AB, 
pA the frequency of allele A at one marker locus and pB the 
frequency of allele B at the other locus in the calibration set.

The influence of the sample size N on prediction accu-
racy was determined by sampling at random DH lines from 
the combined set S1_2_3_4_5 for N = 100 to N = 5400 in 
increments of 100. However, in advanced cycle breeding 
populations, relatedness between genotypes might be highly 
unbalanced. Therefore, we introduced the concept of effec-
tive sample size 1 ≤ Neff ≤ N given by the following formula:

Here N denotes the size of the calibration set under study 
and var(λ) the estimated variance of the eigenvalues of the 
corresponding genomic kinship matrix U. With N independ-
ent genotypes, the expected variance of the eigenvalues of � 
is zero, and Neff is equal to N. As the pattern of relatedness 
becomes increasingly unbalanced, one would expect var(λ) 
to increase, leading to a reduction of Neff compared to N.

To assess the degree of the relatedness between the 
calibration and prediction sets, we adopted the approach of 
Saatchi et al. (2011). For all possible combinations, we cal-
culated the average maximum realised kinship coefficient 
(umax) based on the genomic kinship matrix U. The maxi-
mum kinship of line i of the respective prediction set (umax,i) 
was derived as max(Uij) where Uij are the realised kinship 
coefficients between line i and the lines j of the respective 
calibration set. Averaging over DH lines in the prediction set 
produced the umax value for each combination.

For each combination of the calibration and prediction 
sets, the average expected reliability can be calculated from 
theory. Following Clark et al. (2012), we calculated the reli-
ability of line i in the prediction set from its prediction error 

LPS =

∑p

k
rCS
k
rPS
k�∑p

k

�
rCS
k

�2�∑p

k

�
rPS
k

�2

Neff =
N

1 +
N−1

N
var(�)

variance (PEV(i ∈ PS|CS)) derived from the GBLUP model 
employing a specific calibration set as follows:

where �2
u
 is the genomic variance pertaining to this model 

and Uii is the diagonal element of matrix � referring to line 
i. By averaging over all DH lines in the prediction set, we 
can obtain the expected reliability estimate for each trait 
and each combination of the calibration and prediction sets.

To analyse the relative importance and interdependen-
cies of sample size N and genomic measures Neff , nPoly, 
umax, LPS and trait-specific reliabilities ρ2 for differentiating 
the 46 combinations of the calibration and prediction sets, 
we conducted a principal component analysis (Jolliffe and 
Cadima 2016) on the centered and standardised estimates 
using the GNU-R environment (R Core Team 2020).

The significance of genomic measures for predicting 
accuracies was assessed with multiple linear regression 
using empirical prediction accuracies for GDY and GDC of 
the 46 combinations of the calibration and prediction sets 
as response variables, respectively. Model selection was 
performed using stepwise model selection in the GNU-R 
environment (R Core Team 2020), which involved adding 
and removing covariates in each step. In addition, the signifi-
cance of sample size N and of individual genomic measures 
Neff , nPoly, umax, LPS and ρ2 was tested in a linear model. 
To account for the effect of the prediction set, a categori-
cal covariate indicating whether prediction accuracies were 
estimated in S5 or S6 was included in all models.

Results

Phenotypic and molecular characterisation 
of individual data sets

Table 2 presents testcross means, variance components and 
heritabilities for traits GDY and GDC in data sets S1 to S6. 
Genotypic variance components were highly significant 
(p < 0.01) in all sets. Trait heritabilities (h2) on a progeny-
mean basis were high for both traits in most data sets with 
the exception of GDY in S4 and S6.

The principal coordinate analysis indicated substantial 
overlap of the six data sets with the first three coordinates 
explaining 14.9% of the molecular variance (Fig. 1). In the 
AMOVA (Suppl. Table S1), only approximately 5% of the 
total molecular variance was due to variation among data 
sets. Within data sets S1, S3 and S4, family substructures 
were visible in the heatmap of pairwise realised kinship 
coefficients between DH lines (Suppl. Figure S1). The meas-
ure of the proportion of polymorphic markers, nucleotide 

�2(i ∈ PS|CS) = 1 −

(
PEV(i ∈ PS|CS)

�ii�
2
u

)
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diversity and haplotype heterozygosity identified S4 and S6 
as the data sets with the lowest diversity (Suppl. Tables S1 
and S2). Data set S6 showed twice the range of LD noted in 
all other data sets.

Relatedness, reliability and linkage phase similarity 
of calibration and prediction sets

Table 3 and Suppl. Table S3 offer estimates of Neff , nPoly, 
umax, LPS and trait-specific reliabilities ρ2 calculated for all 
possible combinations of the calibration and prediction sets 
(15 for S5, 31 for S6). Data set S5 and all its combinations 
exhibited substantially higher Neff than all other calibra-
tion sets. The number of polymorphic SNPs shared by the 
calibration and prediction set was higher for combinations 
with S5 compared to those with S6 due to the low number 
of polymorphic markers in data set S6. Mean estimates for 
umax, LPS and ρ2 were similar for S5 and S6, but the range 
across calibration sets was larger for umax and LPS when 

predicting in S6. This larger range derived mainly from the 
low values of umax (0.26) and LPS (0.59) for the combination 
S1/S6 (Suppl. Table S3). Correlations between estimates of 
genomic measures ranged from 0.17 ( Neff , umax for predic-
tion in S6) to 0.93 (umax, ρ2 for prediction in S5; Table 4). 
Correlations of umax with N and Neff differed strongly for the 
two prediction sets because in combinations with S6, umax 
values formed two distinct groups depending on whether S3 
was included or not (Suppl. Figure S2). 

Prediction accuracies

Table 3 presents mean, minimum and maximum prediction 
accuracies in S5 and S6, and Fig. 2 and Suppl. Table S3 pre-
sent prediction accuracies obtained for individual combina-
tions of calibration and prediction sets. For GDY, the mean 
accuracy over all calibration sets was 0.50 for S5 and 0.31 
for S6. While prediction accuracy in S5 was rather stable, 
varying from 0.41 (S4) to 0.57 (S1_2_3), accuracies obtained 

Table 2   Mean, minimum and 
maximum of BLUEs, variance 
components and heritabilities 
for traits grain dry matter yield 
(GDY) and grain dry matter 
content (GDC) for data sets S1 
to S6

a Variance component �2

GxL
 represents the genotype × location and the residual variance

Trait Set Mean Minimum Maximum �2

G
�2a

GxL
h
2

S1 128 95 146 35.6 24.3 0.85
S2 144 111 163 43.4 41.1 0.78

GDY S3 142 113 163 16.9 47.6 0.75
S4 120 97 136 12.9 61.4 0.56
S5 144 110 168 52.8 87.2 0.74
S6 124 87 143 20.7 93.7 0.52
S1 69 65 74 1.20 0.20 0.96
S2 72 66 77 1.92 0.19 0.97

GDC S3 70 66 75 0.80 2.27 0.75
S4 69 66 73 1.04 0.53 0.92
S5 70 67 73 0.70 0.44 0.88
S6 69 66 72 0.88 0.61 0.88

Fig. 1   Principal coordinate 
analysis of pairwise realised 
kinship coefficients of 5968 DH 
lines. DH lines are coloured 
according to their grouping 
in data sets. Axis labels show 
the percentage of variance 
explained by the coordinate
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with S6 were lower and more variable (0.03 for S2 to 0.43 for 
S3_4_5). Compared to the accuracies for GDY, accuracies for 
GDC were much higher and similar for the two prediction sets. 
On average, prediction accuracy increased when we employed 
more data sets for calibration. When averaging accuracies for 
groups of two, three or four data sets, accuracy increased 
monotonically and was always highest for the combination 
including the largest possible number (Suppl. Table S3). Pre-
diction accuracy increased with N when sampling from the 
combined set S1_2_3_4_5 with strongly diminishing returns 
for N > 3000 (Fig. 3). For N > 500, none of the samples yielded 
negative accuracies. 

Prediction accuracy as a function of genomic 
measures

The relationship of prediction accuracy for GDY with sam-
ple size N and each of the genome-based measures is shown 
in Fig. 4 and Table 4 (for GDC in Suppl. Figures S3 and 
Table 4). In combination with both prediction sets, S1, S2 
and S4 exhibited the lowest values for most measures and 
returned the lowest prediction accuracy for GDY.

To test the effect of the various measures on prediction 
accuracy, we fitted a linear regression model with prediction 
set (PS) coded as a categorical covariate. For both traits, 
all measures were significantly associated with prediction 
accuracy (Table 5). The models explained up to 80% of the 
variance of prediction accuracy for GDY and 75% for GDC 
with ρ2 as the second covariate. In the stepwise regression, 
only PS, nPoly and ρ2(GDY), which explained 81% of the 
variance of prediction accuracy for GDY (Table 5), were 
retained in the model. With GDC as a response variable, 

covariates PS, umax, Neff , nPoly and ρ2(GDC) were retained 
in the model and explained 84% of the variance.

To obtain a clearer picture of the interdependencies of 
the seven measures describing the 46 possible combina-
tions of the calibration and prediction sets, we performed a 
principal component analysis on variables PS, sample size 
N  and the five genomic measures. Together, the first and 
second principal components explained 85% of the total 
variation (Suppl. Tables S4 and S5). Parameters N , ρ2 and 
umax dominated the first linear component while param-
eters PS, nPoly and LPS dominated the second component.

Table 3   Mean and range of prediction accuracy (r), effective sample 
size (Neff) of calibration sets, number of polymorphic SNPs shared by 
the calibration and prediction set (nPoly), average maximum kinship 
(umax), linkage phase similarity (LPS) and trait-specific reliability (ρ2) 
for prediction sets S5 and S6 in combination with all possible calibra-
tion sets (15 for S5, 31 for S6)

Prediction set S5 Prediction set S6

Mean Min Max Mean Min Max

r(GDY) 0.50 0.41 0.57 0.31 0.03 0.43

r(GDC) 0.67 0.56 0.73 0.70 0.56 0.76

Neff 53.7 32.3 67.5 66.6 32.3 84.6

nPoly 8476 6850 9183 7011 5897 7406

umax 0.40 0.32 0.46 0.43 0.26 0.50

LPS 0.79 0.71 0.83 0.75 0.59 0.80

(GDY) 0.33 0.25 0.38 0.36 0.25 0.40

(GDC) 0.40 0.34 0.43 0.41 0.34 0.44

Table 4   Pairwise correlations between sample size N, genomic meas-
ures effective sample size (Neff), number of polymorphic SNPs shared 
by the calibration and prediction set (nPoly), average maximum kin-
ship (umax), linkage phase similarity (LPS), expected trait-specific 
reliability (ρ2) and empirical trait-specific prediction accuracy (r). In 

the upper triangle, values are based on combinations of 15 calibra-
tion sets with S5 as the prediction set; in the lower triangle, values are 
based on combinations of 31 calibration sets with S6 as the prediction 
set

N Neff nPoly umax LPS (GDY) (GDC) r(GDY) r(GDC)
N 0.82 0.76 0.78 0.78 0.94 0.88 0.73 0.71

Neff 0.70 0.62 0.94 0.84 0.79 0.81 0.61 0.79

nPoly 0.79 0.55 0.68 0.46 0.80 0.66 0.80 0.27

umax 0.66 0.17 0.75 0.92 0.93 0.93 0.62 0.85

LPS 0.64 0.40 0.64 0.87 0.84 0.93 0.31 0.92

(GDY) 0.87 0.78 0.82 0.71 0.83 0.96 0.67

(GDC) 0.84 0.68 0.77 0.70 0.84 0.95 0.85

r(GDY) 0.67 0.60 0.49 0.58 0.72 0.81

r(GDC) 0.70 0.33 0.66 0.74 0.81 0.86
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Discussion

The sample size of the calibration set, the relatedness of 
individuals in the prediction and calibration sets and the 
LD between markers and causal variants are major fac-
tors contributing to prediction accuracy in random mating 

populations (de los Campos et al. 2013). In plant breeding 
populations, however, the relationship between prediction 
accuracy and these factors is not as straightforward. There-
fore, we investigated how merging data sets across sev-
eral years affects prediction accuracy and related genomic 
measures.

Fig. 2   Prediction accuracies for 
grain dry matter yield (GDY) 
and grain dry matter content 
(GDC) for prediction set S5 
(orange) and S6 (grey)
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The calibration set

We analysed experimental data from a medium-sized com-
mercial maize hybrid breeding programme. Experiments 
were designed for phenotypic selection. Consequently, data 
sets S1 to S6 were highly heterogeneous with respect to 
sample size, mating design, number of crosses, progenies 
per cross and relatedness of DH lines within and between 
data sets. The six data sets were connected genetically as 
they were derived from the same heterotic group and were 
adapted to the same maturity zone, but each set of DH lines 
experienced environmental conditions of a specific year. 
Because the direct progenies of crosses with selected DH 
lines were tested several years later (e.g. parents in S1, 
progenies in S4), it was important to analyse a minimum 
of four selection cycles. Theoretically, prediction accuracy 
increases with sample size, so merging as many data sets 
as possible for model training seems intuitively reasonable. 
On the other hand, it has been shown that increasing the 
size of the calibration set is not always beneficial (Albre-
cht et al. 2014; Pembleton et al. 2018; Brandariz and Ber-
nardo 2019). Inbreeding and strong familial relationships 
induce cosegregation of markers and quantitative trait loci 
(QTL), which differ for contiguous selection cycles. Unre-
lated genetic material may create population substructures. 
Resulting phase changes between markers and QTL can have 
detrimental effects on prediction when the level of related-
ness between the calibration and the prediction set is low (de 
los Campos et al. 2013).

In our study, merging data sets across years significantly 
increased prediction accuracy in both prediction sets and 
for both traits, but some calibration sets comprising only 
three (four) data sets yielded slightly higher accuracies 
than did the full set for GDY and GDC (Fig. 2, Suppl. 
Table S3). Thus, it might be possible to create optimised 

calibration sets from existing genotypic and phenotypic 
data. In the literature, different optimisation criteria have 
been suggested (Rincent et al. 2012; Isidro et al. 2015; 
Mangin et al. 2019; Lopez-Cruz and de los Campos 2021). 
However, creating bespoke calibration sets is not a sim-
ple task. A profound knowledge of the genetic makeup 
of the population under study is required to model sys-
temic effects, such as genetic groups, testers, trials, loca-
tions and years, correctly (Albrecht et al. 2014). Calibra-
tion sets thus need to be optimised for each trait under 
study. In addition, optimisation yields the highest gains 
in prediction accuracy when sample sizes are small, but 
it is expected to show diminishing returns as the size of 
the calibration set increases. Considering the decreasing 
variation in prediction accuracy among random samples 
when sample size N increased (Fig. 3), choosing DH lines 
from Sall based on a trait-specific optimisation criterion 
is unlikely to be rewarding. Prediction based on the so-
called general combining ability (GCA) model suggested 
by Brandariz and Bernardo (2019), where only crosses that 
share a common parent with the prediction set are used for 
model training, is feasible only if both the biparental fami-
lies to be predicted and the breeding programme are quite 
large. In medium-sized breeding populations such as ours, 
where the number of progenies per cross and the number 
of crosses per parent are much lower than in their study 
(Table 1), the GCA model is not applicable. We, therefore, 
investigated if genomic measures can assist in evaluating 
the predictive performance of entire data sets generated 
in different selection cycles and tested in different years.

The results revealed that the combination of the calibra-
tion and prediction sets impacted prediction accuracies. 
Including S2 in model training did not negatively affect pre-
diction accuracy in S5; when predicting GDY in S6, how-
ever, accuracies were close to zero (Fig. 2, Suppl. Table S3). 

Fig. 3   Prediction accuracy for 
grain dry matter yield (GDY) 
and grain dry matter content 
(GDC) as a function of sample 
size assessed by repeated sam-
pling from combined calibration 
set S_1_2_3_4_5
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Excluding S2 from model training increased prediction 
accuracy (e.g. prediction accuracy S1_3 > S1_2_3), despite 
a reduction in sample size of 842 DH lines in the calibration 
sets (Suppl. Figure S4). The effect of S2 was attenuated in 
the larger calibration sets and those including S5. Specific 

interactions between data sets are difficult to predict, and in 
fact, none of the genomic measures suggested that S2 and its 
combinations would exhibit such poor prediction accuracy. 
Thus, merging data from several selection cycles and evalu-
ation years for model training increased the robustness of 

Fig. 4   Relationship of predic-
tion accuracy for grain yield 
and sample size (N), effective 
sample size (Neff), average max-
imum kinship (umax), reliability 
ρ2, number of polymorphic 
SNPs shared by the calibration 
and prediction set (nPoly) and 
linkage phase similarity (LPS) 
for 15 calibration sets predicting 
genomic breeding values (GBV) 
in S5 (orange) and 31 calibra-
tion sets predicting GBVs in S6 
(grey)
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predicted GBVs in a given prediction set. When averaging 
accuracies over all combinations of three (four) calibration 
sets, predictions with the full set were always more accurate 
for both traits and both prediction sets (Suppl. Table S3). 
In addition, despite the small effective population size of 
this advanced cycle breeding population, prediction accu-
racy still increased for both traits even when sample sizes 
exceeded N = 4000.

The prediction set

In breeding schemes with a genome-based selection step, 
phenotypic data collected in a given year serve several pur-
poses. The data are used to validate GBVs of selection can-
didates from the previous cycle and to retrain the prediction 
model. Furthermore, the empirical reliabilities serve as the 
basis for evaluating the efficiency of genome-based selec-
tion compared to phenotypic selection and for optimising 
breeding schemes. A comparison of expected and empiri-
cal reliabilities in a given data set assists in evaluating the 
usefulness of the data.

Expected reliabilities (ρ2) were similar in magnitude and 
highly correlated for both prediction sets (r = 0.97). While 
empirical reliabilities for GDC were consistent with expecta-
tions, those for GDY were lower than expected, especially 
for the smaller calibration sets in combination with S6 
(Suppl. Figure S5). Several factors might have contributed 
to these low empirical reliabilities. Testers in S5 and S6 
were related (coefficient of coancestry = 0.5) but not identi-
cal. Empirical reliabilities are expected to decrease when a 
different tester is used (Schopp et al. 2015), but in a com-
mercial maize breeding programme, correlations between 
testers can easily exceed 0.6, especially if testers are related 
(Melchinger et al. 1998). Therefore, the change in test-
ers can partly but not fully explain the difference between 

expected and empirical reliability. Another factor decreasing 
prediction reliability might have been the specific weather 
conditions of the year in which data set S6 was evaluated. 
Two of the five locations in 2015 suffered suboptimal grow-
ing conditions, leading to low yields and location specific 
reliabilities close to zero (data not shown). When omitting 
these two locations from the analysis, the empirical reliabil-
ity averaged over all calibration sets increased from 0.10 to 
0.14 (Suppl. Table S6). Thus, environmental effects of the 
prediction year contributed to differences in expected and 
empirical reliabilities, but as with the change in testers, these 
environmental factors could not fully explain the differences.

A third factor specific to S6 was its low level of molecular 
and phenotypic variability. The genotypic variance compo-
nent for GDY in S6 was only half that in S5, explaining 
the difference in heritability between the two prediction sets 
(Table 2). Data set S6 also shared a low number of polymor-
phic markers with the calibration sets and exhibited a small 
effective sample size (Neff = 39.1). In addition, the range 
of LD blocks in S6 was approximately twice as large as in 
the other data sets (Suppl. Table S2). Both simulated and 
experimental data demonstrate that model training is inef-
fective when the length of haplotype blocks in the predic-
tion set is not well represented in the calibration set (Hickey 
et al. 2014; Brandariz and Bernardo 2019). This might have 
contributed to the lower reliabilities in S6. With its high 
diversity, small LD blocks and large effective sample size, 
data set S5 was effective for both validating GBVs derived 
from S1 to S4 and retraining the prediction model to predict 
S6 (Fig. 4).

Genomic measures

Estimates of diversity such as the proportion of polymorphic 
markers, nucleotide diversity or haplotype heterozygosity 

Table 5   Regression analysis of prediction accuracy for grain dry 
matter yield (GDY) and grain dry matter content (GDC) on genomic 
measures characterising the 46 possible combinations of calibra-
tion and prediction sets. Significance (p-value), Akaike information 
criterion (AIC) and explained variance (Radj

2) are given for models 
fitting sample size (N), effective sample size (Neff), number of poly-

morphic SNPs shared by the calibration and prediction set (nPoly), 
average maximum kinship (umax), linkage phase similarity (LPS) and 
trait-specific reliability (ρ2) in combination with the affiliation to the 
prediction set (PS) as covariates. The last row presents results from 
the best model selected by stepwise regression

GDY GDC

Model Radj
2 p-value AIC Model Radj

2 p-value AIC

PS 0.54 − 225 PS 0.06 − 271
PS + N 0.74 5.9E−07 − 250 PS + N 0.50 1.2E−07 − 299
PS + Neff 0.70 1.4E−05 − 242 PS + Neff 0.23 2.5E−03 − 307
PS + nPoly 0.63 1.2E−03 − 244 PS + nPoly 0.23 2.0E−03 − 279
PS + umax 0.69 3.1E−05 − 235 PS + umax 0.59 2.4E−09 − 279
PS + LPS 0.73 1.7E−06 − 248 PS + LPS 0.71 8.4E−13 − 324
PS + ρ2(GDY) 0.80 1.0E−07 − 263 PS + ρ2(GDC) 0.75 4.7E−14 − 330
PS + nPoly + ρ2(GDY) 0.81 − 264 PS + umax + Neff + nPoly + ρ2(GDC) 0.84 − 347
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varied little over calibration sets S1 to S5 and did not facili-
tate choosing between calibration sets. With array-based 
data in an advanced cycle breeding population, this might 
have resulted from an ascertainment bias of the chip towards 
medium allele frequencies. All other genomic measures 
were highly correlated with sample size N and showed high 
mutual correlations (Table 4). Interdependencies between 
measures were expected; for example, the level of related-
ness of a DH line with the calibration set affected umax, the 
reliability of its estimated breeding value and LPS. On the 
other hand, markers that were monomorphic in the predic-
tion set differentiated between calibration sets with respect 
to relatedness but did not affect values of nPoly and LPS. To 
interpret dependencies between parameters, we performed 
a principal component analysis. The loads of the measures 
on the first and second component suggested two groups 
(Group 1: N, Neff, umax and ρ2; Group 2: nPoly and LPS). 
Performing stepwise regression of all possible combinations 
of the calibration and prediction sets with prediction accu-
racy of GDY as the response variable confirmed this result. 
However, the results from the stepwise regression must be 
interpreted with caution because differences in Akaike infor-
mation criterion (AIC) were small across the best models 
(Suppl. Tables S7 and S8). Only the trait-specific expected 
reliability ρ2 entered into all of the 10 best models for both 
traits. Thus, we conclude that compared with sample size N 
or umax, the average expected reliability has a higher predic-
tive value to rank calibration sets with respect to their pre-
dictive performance in combination with a given prediction 
set (Table 5, Fig. 4).

The effective sample size (Neff) is a function of sample 
size N and the distribution of kinship coefficients between 
pairs of DH lines. Data set S5 had an extremely large effec-
tive sample size (Neff = 82.7), which suggests a more bal-
anced distribution of the relatedness of DH lines than in 
the other data sets. Because GBVs of the prediction set are 
weighted averages of phenotypes in the calibration set, a 
more uniform distribution of relatedness might result in 
higher prediction accuracy with an independent prediction 
set (de los Campos et al. 2013). The large Neff of S5 relative 
to the other data sets was confirmed when drawing 1000 
random samples of size N = 500 from each of the data sets 
(74.3 for S5 vs 31.2–43.5 for the others). The parameter 
separated S5 and all its combinations from other calibra-
tion sets (Fig. 4), but within the group containing S5, it was 
negatively associated with prediction accuracy for both traits 
(Suppl. Figure S6). Nevertheless, we conjecture that Neff may 
be useful for differentiating between data sets with respect to 
the distribution of kinship coefficients. Its relationship with 
prediction accuracy warrants further research as parameter 
estimates vary depending on the underlying kinship matrix 
(U calculated individually for each data set vs Sall).

We conclude that parameter ρ2 (expected reliability) is 
a robust predictor of the prediction accuracy obtained with 
different calibration sets. How much can be gained from this 
information in practice, though, remains to be seen. It is pos-
sible that our study has overstated the strength of association 
between prediction accuracies and genomic measures. Only 
data sets S1 to S6 are independent samples from the breed-
ing population; because the other calibration sets consist of 
overlapping data sets (e.g. S1_2 and S1_3 share the DH lines 
of S1), they are not independent. In addition, data sets S1 
and S2 had extreme values for most measures, which inflated 
the pairwise correlations. Nevertheless, we conjecture that 
strong differences between expected and empirical reliabili-
ties of predicted GBVs are informative. The magnitude of 
the difference may guide decisions regarding the weight that 
the phenotypes of a prediction set should receive in model 
training for future predictions and for constructing selection 
indices comprising genomic breeding values and phenotypic 
data (Lande and Thompson 1990).

Conclusions

Our results are relevant for integrating phenotypic and 
genome-based selection in hybrid breeding programmes. To 
obtain high prediction accuracies, the management of the 
population with respect to unrelated germplasm and mating 
design requires greater attention in genome-based than in 
phenotypic selection. Including data from additional cycles 
in model training attenuates the effects of different testers, 
individual years and genotype × year interactions, which 
represents an advantage of genome-based selection over 
phenotypic selection where for most crops highest selection 
intensities are applied to data from a single year. Because 
the results varied across traits and prediction sets, genomic 
parameters investigated in this study provided little guid-
ance in choosing specific calibration sets for prediction. For 
optimal integration of phenotypic and genomic information, 
we, therefore, recommend including a substantial overlap 
of common entries between selection cycles to disentangle 
confounded factors contributing to the difference between 
expected and empirical reliabilities.
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