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Abstract
Key Message  The accuracy of genomic prediction of phenotypes can be increased by including the top-ranked pair-
wise SNP interactions into the prediction model.
Abstract  We compared the predictive ability of various prediction models for a maize dataset derived from 910 doubled 
haploid lines from two European landraces (Kemater Landmais Gelb and Petkuser Ferdinand Rot), which were tested at six 
locations in Germany and Spain. The compared models were Genomic Best Linear Unbiased Prediction (GBLUP) as an 
additive model, Epistatic Random Regression BLUP (ERRBLUP) accounting for all pairwise SNP interactions, and selec-
tive Epistatic Random Regression BLUP (sERRBLUP) accounting for a selected subset of pairwise SNP interactions. These 
models have been compared in both univariate and bivariate statistical settings for predictions within and across environ-
ments. Our results indicate that modeling all pairwise SNP interactions into the univariate/bivariate model (ERRBLUP) is 
not superior in predictive ability to the respective additive model (GBLUP). However, incorporating only a selected subset of 
interactions with the highest effect variances in univariate/bivariate sERRBLUP can increase predictive ability significantly 
compared to the univariate/bivariate GBLUP. Overall, bivariate models consistently outperform univariate models in predic-
tive ability. Across all studied traits, locations and landraces, the increase in prediction accuracy from univariate GBLUP to 
univariate sERRBLUP ranged from 5.9 to 112.4 percent, with an average increase of 47 percent. For bivariate models, the 
change ranged from −0.3 to + 27.9 percent comparing the bivariate sERRBLUP to the bivariate GBLUP, with an average 
increase of 11 percent. This considerable increase in predictive ability achieved by sERRBLUP may be of interest for “sparse 
testing” approaches in which only a subset of the lines/hybrids of interest is observed at each location.

Introduction

Genomic prediction of phenotypes has been widely explored 
for crops (Crossa et al. 2010), livestock(Daetwyler et al. 
2013), and clinical research (de los Campos et al. 2013). 

Broad availability and cost-effective generation of genomic 
data had a considerable impact on plant (Bernardo and Yu 
2007; de los Campos et al. 2009; Crossa et al. 2010, 2011; 
de Los Campos et al. 2010; Pérez et al. 2010) and animal 
breeding programs (de los Campos et al. 2009; Hayes and 
Goddard 2010; Daetwyler et al. 2013). Genomic predic-
tion relates a set of genome-wide markers to the variability 
in the observed phenotypes and enables the prediction of 
phenotypes or genetic values of genotyped but unobserved 
material (Meuwissen et al. 2001; Jones 2012; Windhausen 
et al. 2012). This approach has been positively evaluated 
in most major crop and livestock species (Albrecht et al. 
2011; Daetwyler et al. 2013; Desta and Ortiz 2014) and is 
becoming a routine tool in commercial and public breed-
ing programs (Stich and Ingheland 2018). In plant breeding, 
phenotyping is one of the major current bottlenecks and the 
optimization or minimization of phenotyping costs within 
breeding programs is needed (Akdemir and Isidro-Sánchez 
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2019). Therefore, the maximization of genomic prediction 
accuracy can be directly translated into reduced phenotyp-
ing costs (Akdemir and Isidro-Sánchez 2019; Jarquin et al. 
2020).

Genomic selection and the corresponding prediction of 
breeding values are based on a covariance matrix describing 
the (additive) relationship between the considered individu-
als (Wolc et al. 2011; Burgueño et al. 2012). This matrix 
can be constructed from pedigree information, from marker 
information (VanRaden 2007), or from a combination of 
pedigree and available genotypic information in a single step 
approach (Aguilar et al. 2010; Legarra et al. 2014). It has 
been broadly demonstrated that marker-based relationship 
matrices enhance the reliability of breeding value estima-
tion on average across traits and compared to pedigree-based 
approaches (Meuwissen et al. 2001; VanRaden 2007; Hayes 
and Goddard 2008; Crossa et al. 2010). Since breeding val-
ues are additive by definition (Falconer and Mackay 1996), 
the early development of prediction models exclusively 
accounted for the additive effects (Filho et al. 2016).

Concerning additive models, genomic best linear unbi-
ased prediction (GBLUP, Meuwissen et al. 2001; VanRaden 
2007) is a widely used linear mixed model (Da et al. 2014; 
Rönnegård and Shen 2016; Covarrubias-Pazaran et  al. 
2018). Although various new approaches such as methods 
from the Bayesian alphabet (Gianola et al. 2009) have been 
proposed, GBLUP remains the gold standard as new meth-
ods typically only perform marginally better, are less robust, 
require substantially more computing time, and are more 
difficult to implement (Wang et al. 2018). Daetwyler et al. 
(2010) showed that BayesB can yield higher accuracy than 
GBLUP for traits controlled by a small number of quantita-
tive trait nucleotides, emphasizing that the genetic architec-
ture of the trait has an important impact on which method 
may predict better (Wimmer et al. 2013; Momen et al. 2018). 
Moreover, the training set size was shown to play a role. For 
instance, human height prediction using BayesB and BayesC 
methods in a small reference population (< 6000 individuals) 
had no advantage over GBLUP. Only when increasing the 
size of the reference population (> 6000 individuals), these 
methods outperformed GBLUP (Karaman et al. 2016).

Understanding how genetic variation causes phenotypic 
variation in quantitative traits is still a major challenge of 
contemporary biology. It has been proved that epistasis as 
a statistical interaction between two or more loci (Falconer 
and Mackay 1996) contributes substantially to the genetic 
variation in quantitative traits (Wright 1931; Carlborg and 
Haley 2004; Hill et al. 2008; Huang et al. 2012; Mackay 
2014). On the one hand, models which incorporate epista-
sis have the potential to increase predictive ability (de Los 
Campos et  al. 2010; Hu et  al. 2011; Wang et  al. 2012; 
Mackay 2014). On the other hand, accounting for epista-
sis by modeling interactions explicitly was considered to be 

computationally challenging (Mackay 2014). In this con-
text, the extended genomic best linear unbiased prediction 
(EG-BLUP), as an epistasis marker effect model (Jiang and 
Reif 2015; Martini et al. 2016), and reproducing kernel Hil-
bert space regression (RKHS), as a semi-parametric model 
(Gianola et al. 2006; Gianola and van Kaam 2008; de Los 
Campos et al. 2010) based on Gaussian kernel (Jiang and 
Reif 2015), were proposed to reduce the computational load 
by constructing marker-based epistatic relationship matrices 
(Jiang and Reif 2015; Martini et al. 2016). RKHS has shown 
to be as good as (Jiang and Reif 2015) or better than EG-
BLUP (Martini et al. 2017). While EG-BLUP is potentially 
beneficial for genomic prediction, its performance depends 
on the marker coding (Martini et al. 2017, 2019). Moreover, 
it has been shown that the superiority of epistasis models 
over the additive GBLUP in terms of predictive ability may 
vanish when the number of markers increases (Schrauf et al. 
2020). Also, the Hadamard products of the additive genomic 
relationship matrices provide only an approximation for the 
interaction effect model based on interactions between dif-
ferent loci (Martini et al. 2020), and more correcting factors 
are required for interactions of higher degree (Jiang and Reif 
2020).

Another downside of epistasis models is that, due to the 
high number of interactions, a large number of unimpor-
tant variables can be introduced into the model (Rönnegård 
and Shen 2016). This ‘noise’ might prevent a gain in pre-
dictive ability. In this regard, Martini et al. (2016) showed 
that selecting just a subset of the largest epistatic interac-
tion effects has the potential to improve predictive ability. 
Therefore, reducing the full epistasis model to a model based 
on a subnetwork of ‘most relevant’ pairwise SNP interac-
tions may be beneficial for prediction performance (Martini 
et al. 2016).

In addition to the extension from additive effect models to 
models including epistatic interactions, genomic prediction 
models can be extended from univariate models to multivari-
ate models. Univariate models consider each trait separately, 
while multivariate models treat several traits simultaneously 
with the objective to exploit the genetic correlation between 
them to increase predictive ability. Multivariate models 
which have been first proposed for the prediction of genetic 
values by Henderson and Quaas (1976) were shown to be 
potentially beneficial for prediction accuracy when the cor-
relation between traits is strong (He et al. 2016; Covarru-
bias-Pazaran et al. 2018; Schulthess et al. 2018; Velazco 
et al. 2019). A situation of dealing with multiple environ-
ments can also be considered in the framework of a multi-
variate model by simply considering a trait-in-environment 
combination as another correlated trait. This is considered 
as the multi-environment model which is usually employed 
to assess G × E interaction (Montesinos-López et al. 2016; 
Ben et al. 2018) and captures the differences in genotypes’ 
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performances from one environment to the other as one of 
the breeders’ major challenges in plant breeding (Kang and 
Gorman 1989). Prediction accuracy could be potentially 
enhanced through borrowing information across environ-
ments by utilizing multi-environment models (Burgueño 
et al. 2012). In addition to multi-environment models, Mar-
tini et al. (2016) showed that the predictive ability of EG-
BLUP as a univariate model can be increased in one environ-
ment by variable selection in the other environment under 
the assumption of a relevant correlation of phenotypes in dif-
ferent environments. This, however, was only demonstrated 
with a data set of limited size, and especially a limited set 
of markers, and, thus, marker interactions.

In the present study, we use a data set of doubled haploid 
lines derived from two European landraces, to investigate 
how beneficial the use of subnetworks of interactions in the 
proposed sERRBLUP framework can be. This was compared 
in the context of univariate and bivariate models. We assess 
the optimum proportion of SNP interactions to be kept in 
the model in the variable selection step. The development of 
efficient selection strategies which could mitigate costly and 
time consuming phenotyping of a large number of selection 
candidates in multiple environments has been a particular 
focus of research in plant breeding (Jarquin et al. 2020). A 
successful application of our models may reduce the cost of 
phenotyping by reducing the number of test locations per 
line.

Materials and methods

Data used for analysis

We used a set of 501/409 doubled haploid lines of the Euro-
pean maize landraces Kemater Landmais Gelb/Petkuser 
Ferdinand Rot genotyped with 501,124 markers using the 
Affymetrix ® Axiom Maize Genotyping Array (Unterseer 
et al. 2014), out of which 471 and 402 lines were pheno-
typed for Kemater (KE) and Petkuser (PE), respectively. The 
performance of the lines has been evaluated by ten separate 
10 × 10 lattice designs in four German locations and five 
separate 10 × 10 lattice designs in two Spanish locations with 
two replicates. For more details, see Hölker et al. (2019).

The lines were phenotyped in 2017 for a series of traits in 
six different environments which were Bernburg (BBG, Ger-
many), Einbeck (EIN, Germany), Oberer Lindenhof (OLI, 
Germany), Roggenstein (ROG, Germany), Golada (GOL, 
Spain), and Tomeza (TOM, Spain).

The descriptions of the phenotypic traits, comprising 
early vigor and mean plant height of three plants of the plot 
at three growth stages (EV_V3, EV_V4, EV_V6, PH_V4, 
PH_V6, PH_final), days from sowing until female flowering 
(FF), and root lodging (RL), are given in the supplemen-
tary (Table S1), together with the number of phenotyped 
lines per location, phenotypic means, standard deviations, 
and maximum and minimum values. To correct for spatial 
structure and population effects, Best Linear Unbiased Esti-
mations (BLUEs) were used as input for all considered pre-
diction models. The interested reader is referred to Hölker 
et al. (2019) for details on the correction procedure and the 
detailed description of the considered traits, e.g., the trait 
“growth stage V4” indicates the growth stage at which four 
leaf collars are fully developed (Abendroth et al. 2011). In 
our study, we chose PH_V4 as the main trait for evaluating 
and illustrating our methods, since it is a relevant metric 
quantitative trait for early plant development which is suit-
able for testing our methods. The phenotypic correlations 
of PH_V4 across all environments are provided in Table 1.

Among the phenotypic traits, root lodging (RL) and 
female flowering (FF) were not phenotyped in all the envi-
ronments: RL was only scored in BBG, ROG, OLI, and EIN, 
and FF was phenotyped in all environments except GOL.

Quality control, coding, and imputing

As we would not expect any heterozygous calls in DH mate-
rial, all heterozygous calls were set to missing. Genotype 
calls were coded according to the allele counts of the B73 
AGPv4 reference sequence (Jiao et al. 2017) (0 = homozy-
gous for the reference allele, 2 = homozygous for the alter-
native allele). Imputation of missing values was performed 
separately for each landrace, using BEAGLE version 4.0 
with parameters buildwindow = 50, nsamples = 50 (Brown-
ing and Browning 2007; Pook et al. 2020). For the remain-
ing heterozygous calls, the DS (dosage) information of the 

Table 1   Phenotypic correlation 
across all environments for 
the trait PH_V4 in KE (italic 
numbers above diagonal) 
and PE (bold numbers below 
diagonal) which are highly 
significant (p_values < 0.001)

Location BBG EIN OLI ROG GOL TOM

BBG – 0.82 0.66 0.67 0.69 0.58
EIN 0.78 – 0.71 0.77 0.75 0.66
OLI 0.60 0.66 – 0.71 0.65 0.50
ROG 0.62 0.69 0.65 – 0.70 0.58
GOL 0.55 0.59 0.46 0.51 – 0.69
TOM 0.57 0.68 0.57 0.58 0.54 –
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BEAGLE output was used and genotyped with DS < 1 being 
set to 0 and DS >  = 1–2.

Linkage disequilibrium pruning

Linkage disequilibrium-based SNP pruning with PLINK 
v1.07 was used to generate a subset of SNPs which are 
in approximate linkage equilibrium with each other. The 
parameters: indep 50 5 2 were used, in which 50 is the 
window size in SNPs, 5 is the number of SNPs to shift the 
window at each step, and 2 is the variance inflation fac-
tor VIF = 1∕

(
1 − r2

)
 , where r2 is the squared correlation 

between single SNPs and linear combinations of all SNPs 
in the window. All variants in the 50 SNP window which 
had a VIF > 2 were removed. Then, the window was shifted 
5 SNPs forward, and the procedure was repeated (Purcell 
et al. 2007; Chang et al. 2015).

In our study, LD pruning was carried out separately for 
each landrace, resulting in data panels containing 25′437 
SNPs for KE and 30′212 SNPs for PE.

Univariate statistical models for phenotype 
prediction

We used three different statistical models to predict pheno-
types, which are all based on a linear mixed model (Hender-
son 1975). We assume that we have in total n lines which 
are genotyped, and phenotypes are available for a subset 
of n1 lines. These n1 lines are used to train the model, and 
missing phenotypes for the remaining n2 = n − n1 lines are 
predicted by using the genotypes of these lines. The basic 
univariate model is

where y is an n1 × 1 vector of phenotypes, 1 is an n1 × 1 vec-
tor with all entries equal to 1, � is a scalar fixed effect, I is 
an identity matrix of dimension n1 × n1 , and O is a matrix of 
dimension n1 × n2 of zeros. The design matrix 

(
I O

)
 is the 

n1 × (n1 + n2) matrix resulting from the concatenation of I 
and O . Moreover, gN →

(
0,Γ�2

g

)
 is an n × 1 vector of ran-

dom genetic effects, and ∈→
(
0, I�2

∈

)
 is a random error vec-

tor, where Γ and I are the respective dispersion matrices and 
�2
g
 and �2

�
 are the corresponding variance components.

With this model, the population mean and the genetic 
effects g for all lines, including those without phenotypes, 
are estimated using

y = 1� +
(
I O

)
g+ ∈

(1)
⎡⎢⎢⎣

𝜇̂

ĝ1
ĝ2

⎤⎥⎥⎦
=

⎡⎢⎢⎣

n1 1� 0

1 I + 𝜆Γ11 𝜆Γ12

0 𝜆Γ21 𝜆Γ22
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−1⎡⎢⎢⎣
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y
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where � = �2
�
∕�2

g
 , Γ−1 =

[
Γ11 Γ12

Γ21 Γ22

]
 and g =

[
g1
g2

]
 and the 

indices pertain to the subset of individuals with (index 1) or 
without (index 2) phenotypes, respectively.

With these estimates, the phenotypes for the set of unphe-
notyped individuals can be predicted as ŷ2 = 12𝜇̂ + ĝ2 , 
where ŷ2 is the n2 × 1 vector of predicted phenotypes and 12 
is an n2 × 1 vector of ones.

For n = n1 and n2 = 0 , the solution of Eq. (1) provides 
estimates of genetic effects when all lines are phenotyped 
and genotyped.

Bivariate statistical models for phenotype 
prediction

Besides univariate models, we also used bivariate models, 
where the two variables represent the same trait measured 
in two different environments.

The basic bivariate model is

or, in more detail,

where 
[
y1
y2

]
 is the phenotype vector of length m = m1 + m2 

for environment 1 ( m1 ) and 2 ( m2 ), 11 and 12 are, respectively, 

m1 × 1 and m2 × 1 vectors with all entries equal to 1, 
[
�1

�2

]
 is 

the vector of population means for environments 1 and 2, I1 
and I2 are identity matrices of dimension m1 × m1 and 
m2 × m2 , respectively, assigning genomic values to pheno-

types. Moreover, 
[
g1
g2

]
 is the vector of random genomic val-

ues which is assumed to have a multivariate normal distribu-
tion with mean zero and variance G = H ⊗ Γ , where 

H =

[
�2
g1

�g12
�g12 �2

g2

]
 , Γ is the dispersion matrix of genetic 

effects, and ⊗ is the Kronecker product. 
[
e1

e2

]
 is the vector of 

random errors which is assumed to have a multivariate nor-
mal distribution with mean zero and variance R = R0 ⊗ I, 

where R0 =

[
�2
e1

�e12
�e12 �2

e2

]
 . �2

gi
 and �2

ei
 represent the genetic and 

residual variance of environment i = 1, 2 , and �g12 and �e12 
are the genetic and residual covariance between the environ-
ments 1 and 2 (Guo et al. 2014). In this model, the pheno-
types have to be ordered in the same way in both environ-
ments. In case the number of observations in environment 1 
and environment 2 is not identical (i.e., in general terms 

y = X� + Zg + e

(2)
[
y1
y2

]
=

[
11 0

0 12

][
�1

�2

]
+

[
I1 0

0 I2

][
g1
g2

]
+

[
e1
e2

]



2917Theoretical and Applied Genetics (2021) 134:2913–2930	

1 3

m1 ≠ m2 ) or different lines are considered in the model, the 
incidence matrices have to be adapted accordingly.

With this model, the vector of environment specific popu-
lation means and the vector of genetic effects for all lines are 
estimated using the standard mixed model equations

In analogy to the procedure described in the univariate 
setting, we consider a setting in which the last l phenotypes 
for environment 2 are masked and predicted from all obser-
vations in environment 1 and the first k = m2 − l non-masked 
observations in environment 2.

From the solutions obtained with this model, the pheno-
types for the set of unphenotyped individuals in environment 
2 can be predicted as ŷl = 1l𝜇̂2 + ĝ2l , where ŷl is the l × 1 
vector of predicted phenotypes and 1

l
 is an l × 1 vector of 

ones.
The three models compared in this study only differ in 

the choice of the dispersion matrix Γ of the genetic effects.

Model 1: genomic best linear unbiased prediction (GBLUP)

In this additive model, we use as Γ the genomic relationship 
matrix which is calculated according to VanRaden (2008) as

where M is the n × m marker matrix which gives m marker 
values for n lines under the assumption of having n geno-
typed lines in total. P is a matrix of equal dimension as M 
with 2⋅ in the ith column, and pi is the allele frequency of 
the minor allele of SNPi.

Model 2: Epistatic Random Regression BLUP (ERRBLUP)

This model accounts for all possible SNP interactions in the 
prediction model. With m markers and fully inbred lines, 
we have two possible genotypes at a single locus, i.e., 0 or 2 
when coded as the counts of the minor allele. For each pair 
of loci, we have four different possible genotype combina-
tions: {00, 02, 20, 22}. The total number of pairs of loci is 
m×(m+1)

2
 if we allow for interaction of a locus with itself. Since 

for each of these pairs we have four possible genotype com-
binations, the total number of combinations to be considered 
as dummy variables is:

m∗ = 4 ×
m×(m+1)

2
= 2m × (m + 1).

[
𝜇̂

ĝ

]
=
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⎤
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ΓVR =
(M − P)(M − P)

�

2 ⋅
∑m

i=1

�
pi
�
1 − pi

��

We define a i marker combination matrix M∗ of dimen-
sion n × m∗ whose element i , is 1 if genotype combination 
j is present in individual i and is 0 otherwise. We further 
define for column of this matrix the average value p∗

i
 , giving 

the frequency of the respective genotype combination in the 
population, and a matrix P∗ being of equal dimension as M∗ 
with p∗

i
 in the ith column.

Then, the relationship matrix based on all SNP interac-
tions was calculated according to VanRaden (2008) as

and this matrix was used in ERRBLUP as dispersion 
matrix for the genetic effects, which now are based on epi-
static interaction effects. It should be noted that including 
the interaction of each locus with itself replaces the additive 
effect, so that it is not necessary to use a model that sepa-
rately accounts for additive and epistatic effects. This model 
had been introduced earlier as “categorical epistasis model” 
(Martini et al. 2017).

Model 3: Selective Epistatic Random Regression BLUP 
(sERRBLUP)

sERRBLUP is based on the same approach as ERRBLUP, 
but here the Γ -matrix is constructed from a selected subset 
of genotype interactions. We decided to use those interac-
tions with the highest estimated marker effects variances. 
Selection based on highest absolute effects (as used by Mar-
tini et al. (2016) in the framework of the EGBLUP epistasis 
model) was also considered, but leads to similar to slightly 
worse results. For this, it was necessary to backsolve inter-
action effects t̂ and effects variances 𝜎̂2from the ERRBLUP 
model using (Mrode 2014).

with ◦ denoting the Hadamard product.
After estimating SNP interaction effects in t̂ and effects 

variances in 𝜎̂2 , we selected those interactions whose abso-
lute estimated effects or effect variances were in the top 
� = 0.05, 0.01, 0.001, 0.0001, 0.00001 or0.000001 propor-
tion of all interactions, respectively. These proportions were 
chosen since it was observed in preliminary analyses that 
they cover the most relevant range. For each of these sub-
sets, we generated reduced matrices M∗

�
 and P∗

�
 of dimension 

n × �m∗ , containing only those columns of M∗ and P∗ per-
taining to the selected subset of genotype interactions, and 

ΓERR =
(M∗ − P∗)(M∗ − P∗)

�

∑m∗

i=1

�
p∗
i

�
1 − p∗

i

��

t̂ =
𝜎̂∗
g

2

∑m∗

i=1

�
p∗
i

�
1 − p∗

i

�� (M∗ − P∗)
�
�
𝜎̂∗
g

2 ΓERR + 𝜎̂∗
∈
2
I
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(y − 1𝜇̂)
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t̂◦t̂
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2P∗(1 − P∗)
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then set up the dispersion matrix in analogy to VanRaden 
(2008) as

where p∗
�i

 are the mean frequencies of the selected genotype 
combinations.

Note here that even for the univariate model, information 
from another environment is used for the prediction, namely 
for variable selection and the definition of ΓsERR . However, 
having used the information from another environment to 
define the subset of interactions and to derive the relation-
ship matrix ΓsERR , the actual prediction is within the consid-
ered environment from the training to the test set.

We used the miraculix package (Schlather 2020) to effi-
ciently calculate ΓERR , t̂ and ΓsERR.

Assessment of predictive ability via fivefold random 
cross‑validation with 5 replicates

In a fivefold cross-validation, the original sample is ran-
domly partitioned into five subsamples of equal size. Out 
of the five subsamples, each subsample is subsequently 
considered as the test set for validating the model, and the 
remaining four subsamples are considered as training data. 
The training set is used to predict the test set. By this, all 
observations are used for both training and testing and each 
observation is only used once for testing (Utz et al. 2000). 
We repeated the cross-validation procedure 5 times, using 
random partitions of the original sample. The results of the 
25 repetitions were then averaged (Erbe et al. 2010). We 
used the Pearson correlation between the predicted genetic 
value and the observed phenotype in the test set as the meas-
ure for predictive ability. In our study, predictive ability was 
assessed for PE and KE for all phenotypic traits separately. 
In addition, the trait’s prediction accuracy was calculated by 
dividing the obtained predictive ability by the square root of 
the respective trait’s heritability (Dekkers 2007). The num-
bers of KE and PE lines which are available for all combina-
tions of environments are summarized in Table 2. For some 
traits, these numbers can be smaller or even zero for some 
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environment combinations. We evaluated our univariate and 
bivariate models as follows:

Assessment of GBLUP, ERRBLUP, and sERRBLUP 
predictive abilities

The univariate GBLUP and ERRBLUP within environments 
were evaluated by training the model in the same environ-
ment as the test set was sampled from.

The basic strategy for univariate and bivariate sERRB-
LUP across environments is illustrated in Fig. 1: first, all 
pairwise SNP interaction effects and their variances are esti-
mated from all data in environment 1 and effects are ordered 
either by absolute effect size or by effect variance (A). Next, 
an epistatic relationship matrix for all lines is constructed 
from the top ranked subset of interaction effects (B). Then, 
this matrix is used in environment 2 (C) to predict pheno-
types of the test set (green) from the respective training set 
(red) (D). This approach henceforth is termed ‘sERRBLUP 
across environments.’ In the case of bivariate sERRBLUP, 
both the full data panel from environment 1 and the training 
set from environment 2 are used in a bivariate prediction 
model.

The basic strategy for bivariate GBLUP and ERRBLUP is 
illustrated in Fig. 1 when the model is trained jointly on the 
complete dataset of environment 1 (E) and the training set 
of environment 2 (D). The test set of environment 2 is then 
predicted, using as dispersion matrix for the genetic effects 
either ΓVR or ΓERR.

Use of multiple environments jointly

In addition to considering each environment separately, 
we used the average of all environments, except the cur-
rent target environment, as an additional environment. This 
was considered for univariate sEERBLUP and all bivariate 
models.

Estimation of variance and covariance components

Since we aimed at estimating variance components in each 
replicate of the cross-validation from the training data, vari-
ance component estimation with ASREML has a certain risk 

Table 2   Number of KE (italic 
numbers above diagonal) 
and PE (bold numbers below 
diagonal) phenotyped lines in 
each pair of environments for 
trait PH_V4

Location BBG EIN OLI ROG GOL TOM

BBG 393/461 461 441 461 200 200
EIN 393 393/462 441 461 201 201
OLI 390 390 390/441 441 182 181
ROG 390 390 389 390/461 200 200
GOL 195 195 195 195 204/211 209
TOM 195 195 195 195 204 204/210
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of non-convergence, in particular in models with a high num-
ber of parameters such as the models proposed here. There-
fore, we needed to specify a strategy to deal with such cases 
in an automated manner. In univariate analyses, variance 
components were estimated using EMMREML (Akdemir 
and Godfrey 2015) in each run of a fivefold cross-validation 
based on the training set. In bivariate analyses, the variance 
components were estimated using ASReml-R (Butler et al. 
2018). In the bivariate ERRBLUP and sERRBLUP models, 
the genetic and residual variance and covariance were esti-
mated first from the full data set in a bivariate ASReml-R 
model for each combination of environments in each trait. 
If the estimation of variance components didn’t converge 
after 100 iterations, then the computation was stopped and 
the genetic and residual variance and covariance estimates 
at the last iteration (100) were extracted. These estimates 
were defined as the initial starting values of the bivariate 
ASReml-R model in each run of a fivefold cross-validation, 
followed by a re-estimation of the variance and covariance 
components based on the training set in the cross-validation. 
If the estimation of variance components did not converge 
at 50 iterations in each fold, the pre-estimated variance and 
covariance components based on the full dataset, which was 
defined as the initial start values of the model, were used 
as fixed values, so that the breeding values were estimated 
based on these pre-estimated parameters. It was verified 
from converged estimates that variance and covariance com-
ponents estimated from the training set deviated only little 
from the variances and covariances from the full set (see Fig. 
S1). Also, the mean result obtained from just the converged 

replicates and the mean results of all replicates including the 
ones where variance and covariance components were fixed 
were rather similar (Fig. S2); only when the majority (> 20) 
of replicates failed to converge, substantial random fluctua-
tion was observed. Thus, we argue that this strategy appears 
justifiable, but still the number of cases where estimates did 
not converge in fivefold cross-validation with 5 replicates 
and the combinations whose pre-estimation of variance com-
ponents also did not converge in 100 iterations are detailed 
in the supplementary (Table S2–S9).

Results

Predictive abilities of univariate sERRBLUP across envi-
ronments compared to univariate ERRBLUP and univari-
ate GBLUP within environments for the trait PH_V4 are 
shown in Fig. 2 for KE and PE. Univariate GBLUP within 
the environment is used as a reference and is compared to 
results obtained with univariate ERRBLUP within environ-
ments and univariate sERRBLUP when the top 5, 1, 0.1, 
0.01, 0.001, and 0.0001 percent of pairwise SNP interactions 
are maintained in the model. Figure 2 shows that the predic-
tive abilities of univariate GBLUP and univariate ERRB-
LUP within the environment are almost identical (the high-
est deviation observed was 0.004). A considerable increase 
in predictive ability was observed when the top 1 or 0.1 
percent of SNP interactions, selected based on their effect 
variances, were kept in the univariate sERRBLUP model. 
A more stringent selection, i.e., by considering only the top 

Fig. 1   Basic scheme of uni- and 
bivariate sERRBLUP across 
environments. All pairwise 
SNP interaction effects and 
their variances are estimated 
from all data in environment 1, 
and effects are ordered either 
by absolute effect size or effect 
variance (A). Then, an epistatic 
relationship matrix for all lines 
is constructed from the top 
ranked subset of interaction 
effects (B) which in the univari-
ate model is used in environ-
ment 2 (C) to predict pheno-
types of the test set (green) from 
the respective training set (red, 
D). In the bivariate model, this 
information is combined with 
the complete data from environ-
ment 1 (blue, E) to predict the 
test set
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Fig. 2   Predictive ability for univariate GBLUP within environment 
(dashed horizontal line), univariate ERRBLUP within environment 
(black filled circle), and univariate sERRBLUP across environments 
(solid colored lines) when SNP interaction selections are based on 

estimated effects variances in KE (left side) and PE (right side) for 
trait PH_V4. In each panel, the solid lines’ color indicates the envi-
ronment in which the relationship matrices were determined by vari-
able selection
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0.01, 0.001, and 0.0001 percent of SNP interactions in the 
model, often led to a reduction in predictive ability, such 
that for the most stringent selection of 0.001 and 0.0001 
percent, the predictive ability was sometimes even below the 
univariate GBLUP reference. This pattern is observed across 
all environments and is more pronounced in KE than PE. 
Results for the other traits are given in the Supplementary 
(Fig. S3a–S9a). In this study, estimated effect variances were 
identified as the best selection criteria in sERRBLUP, since 
sERRBLUP predictive abilities were observed to be more 
robust when the selection of pairwise SNP interaction was 
based on the effect variances compared to absolute effect 
sizes, especially when the top 0.001 and 0.0001 percent of 
interactions are maintained in the model (Fig. S10 and S11). 
In addition, the maximum predictive ability obtained from 
univariate sERRBLUP is almost identical when selecting 
SNP interactions based on absolute effect sizes or effect vari-
ances for both KE and PE (Fig. S12).

In the context of univariate models, we also investigated 
the predictive ability of univariate sERRBLUP when the 
variable selection was based on the training set from the 
same environment as the test set. This was exemplarily done 
within Bernburg for the trait PH_V4 (Fig. S13), illustrating 
that the predictive ability obtained from univariate sERRB-
LUP is marginally higher than univariate GBLUP only when 
the top 0.01 percent of interactions are kept in the model. 
When the selection of effects is too strict, with only 0.001 
percent of interactions used, the predictive ability of uni-
variate sERRBLUP within Bernburg is smaller than the one 
obtained with GBLUP, especially if the selection is based 
on effect sizes.

The predictive abilities of bivariate GBLUP, ERRBLUP, 
and sERRBLUP when SNP interactions were selected based 
on estimated effect variances are compared for trait PH_V4 
in KE and PE in Fig. 3. Figure 3 shows that the bivariate 
ERRBLUP increases the predictive ability slightly compared 
to bivariate GBLUP with the maximum absolute increase 
of 0.03 in KE and 0.02 in PE across all environments’ com-
binations. A considerable increase in predictive ability is 
obtained in bivariate sERRBLUP mostly when the top 5 or 
1 percent of interactions are maintained in the model. How-
ever, the bivariate sERRBLUP predictive abilities decrease 
dramatically for too stringent selection of pairwise SNP 
interactions such as 0.01, 0.001, or 0.0001 percent. Moreo-
ver, the reduction in predictive ability with too stringent 
factor selection is more severe for KE than for PE. This pat-
tern is observed for the majority of environments for both 
landraces, and the results for other traits are shown in the 
supplementary (Fig. S3b–S9b).

The relative increase in prediction accuracy of the best 
univariate sERRBLUP across environments compared to 
univariate GBLUP within environments for all traits and 
all locations is shown in form of a heat map in Fig. 4 for 

both landraces. The maximum relative increase in predic-
tion accuracy among all traits and all environments in KE 
is 85.6 percent (PH_V6 in OLI), and in PE it is 112.4 per-
cent (EV_V3 in EIN). Those highest increases in accuracy 
were found in traits and environment combinations where 
the univariate GBLUP prediction accuracy was particularly 
low. An increase is observed in each studied trait by location 
combination, with the smallest increase in both landraces 
for PH_final in BBG (20.1 percent in KE) or in GOL (5.9 
percent in PE). In general, both plots in Fig. 4 demonstrate 
that for the majority of traits and environments, there is more 
than a 30 percent increase in prediction accuracy from uni-
variate GBLUP within environments to the best univariate 
sERRBLUP across environments. The average increase 
across all combinations in KE is 47.1 percent and in PE is 
46.7 percent. Note that this increase is somewhat inflated as 
a single GBLUP accuracy is compared against the best pre-
diction from a set of various models (environment/selection 
proportions). However, even when using a set environment 
and a fixed proportion of interactions, there are still substan-
tial gain. Exemplary, EIN with a proportion of 0.1 still leads 
to an increase of 43.1 percent in KE and 36.9 percent in PE 
(Fig. S14). The choice of EIN was made as it had the highest 
number of phenotyped lines (Table S1), while 0.1 in general 
led to stable models. Results using any other location or 
reasonable choice of the share of included interactions were 
very similar. The absolute increase in prediction accuracy 
is also shown as a heat map in Supplementary Fig. S15a, 
which indicates the average absolute increase of 0.204 in 
KE and 0.181 in PE.

Figure 5 also shows the relative increase in prediction 
accuracy from the best bivariate GBLUP to the best bivariate 
sERRBLUP for all traits and all locations. The maximum 
increase in prediction accuracy among all traits and all envi-
ronments is 21.1 percent (EV_V6 in ROG) in KE and 27.9 
percent (EV_V3 in BBG) in PE. There is an increase across 
all studied traits in all environments except for the trait PH_
final in PE which shows a relative decrease of 0.3 percent. 
The minimum increase in prediction accuracy in KE was 
also observed for PH_final (1.7 percent). In general, Fig. 5 
shows that the relative increase in prediction accuracy from 
the best bivariate GBLUP to the best bivariate sERRBLUP 
is more than 7 percent for the majority of trait by location 
combinations in both landraces with an average increase of 
10.9 percent in KE and 10.5 in PE across all combinations. 
The absolute increase in prediction accuracy of bivariate 
models is also shown as a heat map in supplementary (Fig. 
S15b) indicating an average absolute increase of 0.1 across 
all traits, environment combinations, and landraces.

In addition to assessing the predictive ability of univari-
ate sERRBLUP based on a single environment, Fig. 6 dis-
plays the comparison between the predictive ability obtained 
from univariate GBLUP and univariate ERRBLUP within 
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Fig. 3   Predictive ability for bivariate GBLUP (open squares), bivari-
ate ERRBLUP (open circles), and bivariate sERRBLUP (filled circles 
and solid lines) when SNP interaction selections are based on esti-

mated effects variances in KE (left side) and PE (right side) for trait 
PH_V4. In each panel, the solid lines’ color indicates the additional 
environment used to predict the target environment
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environments, and univariate sERRBLUP across multiple 
environments jointly for trait PH_V4 in KE and PE. It is 
demonstrated that univariate sERRBLUP has a higher pre-
dictive ability than univariate GBLUP when interactions are 
selected based on all the other five environments jointly. 
The preliminary analysis also reveals the robustness of the 
selection strategy based on the effects variance compared 

to selection strategy based on the absolute effects sizes in 
univariate sERRBLUP across multiple environments jointly 
for KE (Fig. S16), while for PE it does not show a significant 
difference for the interaction selection strategy (Fig. S17). 
Figure 6 demonstrates that the predictive ability of univari-
ate sERRBLUP across multiple environments jointly is as 
good as or better than using a single environment with few 

Fig. 4   Percentage of increase 
in prediction accuracy from 
univariate GBLUP within 
environments to the maxi-
mum prediction accuracy of 
univariate sERRBLUP across 
environments when the SNP 
interaction selections are based 
on estimated effects variances in 
KE (left side) and in PE (right 
side). The average percentage of 
increase in prediction accuracy 
for each trait and environments 
are displayed in rows and col-
umns, respectively

Fig. 5   Percentage of increase 
in prediction accuracy from the 
maximum bivariate GBLUP to 
the maximum prediction accu-
racy of bivariate sERRBLUP 
when the SNP interaction selec-
tions are based on estimated 
effects variances in KE (left 
side) and in PE (right side). The 
average percentage of increase 
in prediction accuracy for each 
trait and environments are 
displayed in rows and columns, 
respectively
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Fig. 6   Predictive ability for univariate GBLUP within environment 
(dashed horizontal line), univariate ERRBLUP within environment 
(gray open circle), univariate sERRBLUP using a single environment 
for selecting the SNP interactions (gray open circles), and univariate 

sERRBLUP using all 5 environments jointly (filled black circles and 
solid line) for the SNP interaction selection based on estimated effects 
variances for trait PH_V4 in KE (left side) and PE (right side)
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exceptions when the selection of effects is not too strict. 
With less than 0.1 percent of interactions used, predictive 
abilities deteriorate (especially so in KE) and selection from 
combined environments turns out to be worse than selection 
from single environments.

Figure 7 illustrates the comparison between the predic-
tive ability of bivariate GBLUP, ERRBLUP, and sERRB-
LUP across multiple environments jointly and the maximum 
predictive ability of bivariate GBLUP and ERRBLUP and 
all the predictive abilities of sERRBLUP when a single 
environment is considered as an additional environment for 
the trait PH_V4 in both KE and PE. The results indicate 
that bivariate sERRBLUP across multiple environments 
jointly increases the predictive ability compared to bivari-
ate GBLUP and ERRBLUP across multiple environments 
jointly. In most cases, bivariate GBLUP, ERRBLUP, and 
sERRBLUP across multiple environments jointly perform 
as good as or better than when using a single environment.

Discussion

The accuracy of genomic prediction when incorporating 
epistasis interactions in the model compared to prediction 
models with only main effects has been widely discussed 
over the last years. In particular, it was found that account-
ing for epistasis can increase predictive ability (Carlborg and 
Haley 2004; Hu et al. 2011; Huang et al. 2012; Wang et al. 
2012; Mackay 2014; Jiang and Reif 2015; Ober et al. 2015; 
Rönnegård and Shen 2016).

A major concern in utilizing epistasis models has been 
the high computational load (Mackay 2014) which has been 
reduced for the full model including all interactions by uti-
lizing marker based epistasis relationship matrices derived 
from Hadamard products of additive genomic relationship 
matrices (Jiang and Reif 2015; Ober et al. 2015; Martini 
et al. 2016). The key advantage of this approach is that the 
number of random effects in the model is reduced from the 
number of SNP interactions to the number of genotypes. 
While the approaches of Jiang and Reif (2015) and Martini 
et al. (2016) only capture the interactions whose products 
differ from zero (i.e., {22} genotype combinations for 0, 2 
coded markers), our approach captures all possible geno-
type combinations ({00}, {02}, {20}, and {22}). Further, 
these epistasis relationship matrices and interaction effects 
were computed by bit-wise computations via the R-pack-
age miraculix (Schlather 2020), which carries out matrix 
multiplications about 15 times faster than regular matrix 
multiplications on genotype data in EpiGP R-package (Voj-
gani et al. 2021). In the analyzed datasets containing up to 
30′212 SNPs (and thus 456′397′578 interactions), the com-
puting time required to set up the sERRBLUP relationship 
matrix was about 810 min out of which around 330 min was 

required to estimate all pairwise SNP interaction effects and 
480 min was required to set up the sERRBLUP relationship 
matrix for selected proportion of interactions by utilizing the 
R-package miraculix with 15 cores on a server cluster with 
Intel E5-2650 (2X12 core 2.2 GHz) processors. Computing 
times for sERRBLUP scale approximately quadratic in the 
number of markers were considered. The released EpiGP 
R-package (Vojgani et al. 2021), which is available at https://​
github.​com/​evojg​ani/​EpiGP, has been utilized for ERRB-
LUP and sERRBLUP genomic prediction of phenotypes.

Our proposed epistasis model eventually can generate 
a considerable prohibitive computational load if the num-
ber of SNPs grows to hundreds of thousands (Vojgani et al. 
2019). The computing time for sERRBLUP exhibits quad-
ratic growth with increasing number of SNPs. A potential 
strategy to overcome these limitations is to achieve a feature 
reduction by SNP pruning, as was implemented in our maize 
dataset (Purcell et al. 2007; Chang et al. 2015). Another 
option to obtain an even stronger variable reduction than 
pruning might be the use of haplotype blocks (Pook et al. 
2019). Although sERRBLUP model can be computation-
ally challenging by increasing the number of SNPs, its pre-
dictive ability is constantly higher than the models such as 
RKHS, which reduces the computational time considerably 
(Table S10).

In this study, we showed that the predictive ability 
obtained by use of GBLUP and a full epistasis model with 
all pairwise SNP interactions included (ERRBLUP) was 
almost identical. In contrast, it was shown that the use of 
sERRBLUP increases predictive ability when only the most 
relevant SNP interactions are taken into account, regardless 
of the choice of the training environment, which is likely 
a result of enriching for true causal variant combinations 
among the list of all variant combinations used to construct 
the genetic covariance matrix. In our study, the maximum 
predictive ability with sERRBLUP was obtained by incor-
porating the top 5, 1, or 0.1 percent of pairwise SNP interac-
tions, while a too strict selection of SNP interactions such 
as the top 0.01, 0.001, and 0.0001 percent often reduced the 
predictive ability. A similar loss in predictive ability with 
a too strict selection of interactions to be included in the 
model was also observed by Ober et al. (2015). The differ-
ence in interaction selection can be explained by the fact 
that the absolute number of interaction effects in the model 
is more important than the percentage of interaction effects. 
To illustrate this, the absolute numbers of interactions main-
tained in the model for the top 0.001 and 0.0001 percent of 
interactions in KE are, respectively, 3′235 and 323, which 
is less than the number of additive effects in KE (25′437) 
where the obtained sERRBLUP predictive ability is lower 
than GBLUP predictive ability. In addition, the possible dif-
ferences in linkage can also lead to different redundancy 
patterns of interactions. Here we also saw the only major 

https://github.com/evojgani/EpiGP
https://github.com/evojgani/EpiGP
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Fig. 7   Predictive ability for bivariate GBLUP (black dashed horizon-
tal line), bivariate ERRBLUP, and bivariate sERRBLUP (filled black 
circles) for the SNP interaction selection based on estimated effects 
variances using all 5 environments jointly for trait PH-V4 in KE (left 
side) and PE (right side). In each panel, gray horizontal line and first 

gray open circles refer to maximum bivariate GBLUP and maximum 
bivariate ERRBLUP, and the gray open circles at the top 5, 1, 0.1, 
0.01, 0.001, 0.0001 quantiles refer to bivariate sERRBLUP using a 
single environment as an additional environment
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systematic difference between the two selection criteria: 
when SNP interactions were selected based on the magni-
tude of their estimated (absolute) effects, the loss in predic-
tive ability when selecting too few interactions was much 
more severe than when SNP interactions were selected based 
on the variance associated with them. This phenomenon has 
been more prevalent in KE than in PE (Fig. S10–S11) and 
is valid in both scenarios, using information either from a 
single environment or from the average of all other environ-
ments (Fig. S16–S17). A potential reason for this is that the 
few interactions that remain in the model are highly linked, 
and thus, no proper representation of the overall population 
structure is possible anymore. This effect was even more 
pronounced when selecting based on effect sizes. Thus, we 
recommend the use of effect variances as a selection crite-
rion in sERRBLUP applications since this should be con-
ceptually more robust.

The bivariate models exhibited a considerably higher pre-
dictive ability than univariate models. In consequence, the 
bivariate GBLUP performed slightly better than the best uni-
variate sERRBLUP in most cases (Fig. S18). Across all stud-
ied traits, the increase in prediction accuracy from GBLUP 
to sERRBLUP displays a similar pattern in both univariate 
and bivariate models. It has to be noted that this increase in 
predictive ability is exclusively caused by the modeling of 
epistasis in a bivariate statistical setting, while it is caused by 
both modeling of epistasis and borrowing information across 
environments through variable selection in the univariate 
statistical setting.

In general, it is expected that the predictive ability for 
phenotypes should be higher with higher heritability. In this 
study, the correlation between the heritability of all traits, 
which have been calculated on an entry-mean basis within 
each landraces (Hallauer et al. 2010) over all environments, 
was 0.296 with univariate GBLUP within environments and 
0.543 with maximum univariate sERRBLUP across environ-
ments (Fig. S19a). Corresponding correlations were higher 
in the bivariate statistical setting of the respective models, 
with an increase in the respective correlation from maximum 
bivariate GBLUP (0.537) to maximum bivariate sERRBLUP 
(0.647) (Fig. S19b).

When comparing sERRBLUP to a traditional G × E 
model (Kang and Gorman 1989), the modeling approach 
is quite different. In sERRBLUP, the selection of marker-
by-marker interactions is done based on a second envi-
ronment. However, for the final estimation of the actual 
effect size, the data from the same environment are used. 
Thus, effect sizes can substantially differ between envi-
ronments. In contrast with this, traditional G × E model 
will assign effects to specific marker-by-environment 
combinations. As included interactions between different 
environments in sERRBLUP are different, it is not pos-
sible to put concrete G × E effects on specific markers 

or marker-by-environment interactions, which would be 
the essence of traditional G × E models. As prediction 
performances are increasing quite substantially by the use 
of sERRBLUP, this still can be seen as an indication that 
effect regions are similar between environments (although 
effect sizes might differ).

Our results indicate that a higher number of phenotyped 
lines (in particular overlapping between environments) and 
including information from a more similar second environ-
ments were beneficial for prediction, e.g., when the two 
Spanish locations GOL or TOM were used as the second 
environment to predict a German environment, prediction 
accuracies were lower as these environments have substan-
tially different climate and for some traits lower overlap 
between phenotyped lines. On the other hand, the best pre-
diction results for GOL were obtained when using TOM 
as second environment and vice versa.

In both univariate and bivariate models, it was shown 
that the obtained predictive ability across multiple envi-
ronments jointly was mostly equivalent or higher than 
the maximum predictive ability obtained based on a sin-
gle environment. Thus, using an average across all other 
environments should be a robust alternative which in most 
cases will yield a result that is as good as or even better 
than the best single environment.

Overall, our results demonstrate that bivariate models can 
outperform univariate models and epistatic interactions can 
substantially increase the predictive ability. In the context 
of univariate models, it was shown that selecting a suitable 
subset of interactions based on other environments where 
phenotypic data of the full set of lines are available can sub-
stantially increase the predictive ability. As the ideal share � 
of interactions to be included in sERRBLUP is not known in 
practice, one could consider to run a testing scheme with an 
additional validation set for the identification of a suitable � . 
As results were quite robust as long as a reasonable fraction 
(between 5 and 0.1 percent) of interactions were included 
in the model and this introduces further computational load, 
this should, however, usually not be required.

The presented approach can substantially improve the 
phenotype prediction accuracy in another environment by 
‘borrowing’ information on effect regions from another 
variable. In our case, other variable was phenotypes of the 
same trait grown in different environments. However, one 
could also imagine using data from another growing sea-
son or even from a highly correlated second trait. This can 
be useful in sparse testing designs, e.g., where not all lines 
are grown in all environments. The suggested approach 
can be used to ‘impute’ missing phenotypes with a much 
increased accuracy compared to conventional approaches.
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