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Abstract—Battery Electric Vehicles (BEVs) are 

advocated due to their environmental benign characteristic. 

However, the long charging time and the degradation 

caused by fast charging impedes their further 

popularization. Extensive research has been carried out to 

optimize the charging process, such as minimizing charging 

time and aging, of Lithium-ion Batteries (LIBs). Motivated 

by this, a comprehensive review of existing Charging 

Optimization (ChgOp) techniques is provided in this paper. 

Firstly, the operation and models for LIBs are explained. 

Then, unexpected side effects especially for the aging 

mechanism of LIB associated with unregulated fast 

charging are scrutinized. This provides a solid theoretical 

foundation and forms the optimization problem. Following 

this endeavor, the general framework with critical concerns 

for ChgOp system design is overviewed. Within this horizon, 

the state-of-the-art ChgOp techniques, clustered into open- 

and close-loop categories, are reviewed systematically with 

their respective merits and shortcomings discussed. Finally, 

the development of an emerging charging control protocol 

with both real-time affordability and degradation 

consciousness is further discussed as an open outlook. 

 

Index Terms— Electric vehicles, Li-ion batteries, charging 

optimization, battery models, aging mechanism 

I. INTRODUCTION 

lectric Vehicles (EVs), powered by electric motors, 

are green mobility tools that mitigate greenhouse gas 

emissions [1-3]. According to the power source for 

engines, EVs can be divided into four categories, Battery 

Electric Vehicles (BEVs), hybrid electric vehicles, plug-in 

hybrid electric vehicles, and fuel cell electric vehicles. Amongst 

others, the BEVs have viewed prosperous development due to 

the high maturity of techniques in addition to the zero-emission 

capability. The rechargeable battery is one of the vital 
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components of BEVs. In particular, Lithium-ion batteries 

(LIBs) dominate with 49% market share, followed by lead-acid 

(43%), NiMH (4%), and NiCd (3%) [4]. LIBs are preferred due 

to their high specific energy, high specific power, low self-

discharge rate, and plunge in costs [5, 6]. However, LIBs also 

have some limitations which hamper the broad application of 

BEVs. One of them is the long charging time. 

Battery charging has been a vast field of investigation over 

years [7]. Nowadays, LIBs are generally charged with a 

Constant Current-Constant Voltage (CC-CV) or Constant 

Power-Constant Voltage (CP-CV) approach. In general, the 

recommended charging rate of LIBs is 0.5C - 1C [8]. For 

instance, battery manufacturers recommend a charging rate 

equal to or less than 0.8C to prolong battery lifespan [8, 9]. 

Consequently, it will take several hours for the battery to be 

fully charged [10, 11]. During these charging processes, more 

than 60% of the time is spent on the CV phase. For example, 

for the SE US18650FT Sony cell with a nominal capacity of 

1.1Ah, the recommended charging current is 1.05A, suggesting 

that fully charging the battery takes more than 2.5h [12]. The 

time can be longer when it comes to battery packs due to the 

equalization process [13]. The slow charging of LIBs is one of 

the major limitations for the vast acceptance of BEVs. With the 

‘range anxiety’, the increment of pack capacity is imperative. 

This means a further elongated charging time [14] which 

exacerbates the situation.  

To address the issue, fast-charging stations are established. 

The definition of a fast-charging station varies [15-17]. In this 

paper, charging stations capable of delivering more than 50 kW 

are treated as fast-charging stations. In general, the capacities 

of the battery packs in BEVs are between 30 kWh and 100 kWh 

[18]. With fast charging techniques, the time to fully charge the 

BEV battery packs can be reduced to less than two hours [15]. 

However, consumers expect BEVs to be charged with enough 

mileage in 10 to 20 minutes [14, 19], or ideally, the time it takes 

is comparable to refilling gasoline or diesel vehicles [20] which 
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is about three minutes [11]. This requirement stimulates the 

growth of Extreme Fast Charging (XFC) stations [1, 2, 14] and 

ultra-fast charging stations [21-23], where the charging current 

is as high as 6C or even above. A comparison of different types 

of charging stations is summarized in Table I. Slow charging is 

typically from onboard chargers which are connected to the AC 

source of the grid and takes 8h to 14h. For semi-fast charging, 

the socket CCS Combo 2 is used. The BEVs can gain 15 to 50 

km per hour charging. Fast charging power rate goes up to 

150kW where sockets like CCS Combo 2, Tesla Supercharger, 

and CHAdeMO**1.1 are used. XFC/ultra-fast charging is 

generally DC charging with a power rate higher than 350kW. 

Tesla and Bosch are leading the development in this area [24].  

However, fast charging leads to accelerated aging or even 

safety hazards. Hence, efforts are devoted to optimizing the 

charging process by balancing different objects, i.e., speeding 

up the charging, prohibiting the battery aging, and enforcing the 

physical constraints. Relevant techniques in this area have been 

reviewed recently. These can be clustered into three categories, 

namely battery material, charging infrastructure, charging 

process, and optimization. Authors in [2, 4, 11, 14, 15, 24, 25] 

discussed the limitations of electrode material and presents the 

challenges and opportunities for future research. Research 

regarding the charging infrastructures includes converter 

topology of the charging station [1, 16, 19, 26, 27], high C-rate 

charging connectors [28], scheduling model at charging sites 

[20, 21], economies for charging infrastructure operator [20], 

the impact of charging stations on the utility grid [3], wireless 

charging [29, 30]. Research in [24, 31, 32] focuses on the 

charging process and optimization and summarized some of the 

charging strategies, authors in [24] especially cover the material 

and thermal impact on battery charging. Distinguished from 

such works, this review focuses on the advanced control 

strategies oriented for LIB’s fast Charging Optimization 

(ChgOp), by including the most recent progress and illustrating 

the approaches with physical characteristics. 

TABLE I COMPARISON OF THE CHARGING STATION FOR BEVS 

Charging type  Power rate / kW Socket type Charging time Reference  

Slow <3.7 1 phase AC 8h to 14h (e.g. home charging) [15, 16] 

Semi-fast 3.7 - 50 1 or 3 phase AC, CCS Combo 2* 2h to 8h, 15 to 50 km/h of charging  [3, 16, 19] 

Fast 50 - 150 CCS Combo 2, Tesla Supercharger, CHAdeMO**1.1 < 30min, 280 to 300 km/h of charging [3, 16] 

Extreme/ultra-fast 350, 400, 450 Tesla Supercharger, CHAdeMO**1.2 3min to 10min [22, 24] 

* CCS Combo 2: Combined Charging System    ** CHAdeMO: CHArge de Move  

The remainder of the review is organized as follows. Section 

II illustrates the fundamentals, namely, structure and operation 

mechanism, models to simulate the battery operation, and 

Aging Mechanisms (AMs) associated with fast charging. In 

section III, the general structure of the ChgOp system is 

provided, and relevant techniques are clustered into open- and 

closed-loop techniques accordingly. Corresponding reviews of 

open-loop and closed-loop ChgOp techniques are presented in 

Section IV and V, respectively. Conclusions and challenges in 

fast ChgOp are summarized in Section VI. 

II. FUNDAMENTALS OF LIB FOR CHARGING OPTIMIZATION  

ChgOp systems are generally developed by following the 

operation mechanism of LIB to achieve fast charging and/or 

prohibiting certain AMs. Thus, this section lays the theoretical 

foundation for the ChgOp system by illustrating the operation 

mechanism, simulation models, and AMs. 

A. Structure and Operation Mechanism of LIB  

LIB was developed by Akira Yoshino in 1985  and 

commercialized by Sony in 1991 [33, 34]. LIB is an 

electrochemical energy storage system where electrical energy 

is stored to the bonds of chemicals by synthesizing during 

charging and the chemical energy is expended during 

discharging [35]. Fig. 1 shows the typical configuration of a 

LIB. It includes two current collectors, anode, cathode, and 

separator socked in lithium salt solution. The anode is expected 

to have high lithium storage capability and high cycling 

stability. So far, the most popular anode material is graphite [11, 

14, 35-39] which is invented by Rachid Yazami [40]. The 

cathode material is generally lithium transition-metal oxide 

which serves as a host of Li-ions so that Li-ions can 

intercalate/de-intercalate during discharging/charging [14, 35-

39]. Popular cathode materials include Lithium Iron Phosphate 

(LFP), Lithium Cobalt Oxide (LCO), Lithium Nickel Cobalt 

Aluminum Oxide (NCA), Lithium Nickel Manganese Cobalt 

Oxide (NMC) [14, 35-39]. The separator is a permeable 

membrane that allows Li-ions to transfer but is an electronic 

insulator [36, 41]. In this paper, the charging mechanism is 

exemplified with the LFP battery which owned the largest 

share, 36%, in the LIB market [42].  

As shown in Fig. 1, in an LFP battery, the negative electrode 

(anode) is graphite with a layered structure and the positive 

electrode (cathode) is LFP. LFP has the crystal structure of 

Olivine in which Li+ sites in the zigzag octahedral channels 

formed by FeO6 and PO4 [43-45]. Generally, the electrolyte is 

LiPF6 diluted in Ethylene Carbonate (EC) and Dimethyl 

Carbonate (DMC), and the separator is polyolefin [41]. The 

typical thickness of them is shown in Fig. 1 [46]. 

 
Fig. 1 Structure of a LiFePO4 battery (-) Cn | LiPF6 –EC+DMC | LiFePO4 (+). 

When the LFP battery is charging, Li-ions de-intercalates 

from LiFePO4 and moves from the positive electrode to the 
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negative electrode, where they intercalated in the layered 

structure of graphite, vice versa for discharging process. Due to 

the shuttle of Li-ions between the two electrodes, LIB is also 

called a rocking-chair battery. The reaction in electrodes can be 

described as (1).  

6

4 1 4

:

:

x

x

Anode xLi xe nC Li C

Cathode LiFePO Li FePO xLi xe

+ −

+ −

−

+ + →

→ + +
 (1) 

where normally 0≤x≤0.5 is maintained to be reversibly 

cyclable [47]. n is the Stoichiometric coefficient of C. 

Even though the main reaction stays the same throughout the 

charging process, the characteristics of LIB varies at different 

State of Charge (SoC) regime. In general, the charging process 

can be divided into three phases, Phase I, Phase II, and Phase 

III, as shown in Fig. 2. Phase I refers to the low SoC regime 

where the fully discharged battery was charged to 10% of the 

SoC. Phase II is the medium to high SoC regime until when the 

battery voltage reaches the predetermined maximum Vmax. 

Phase III is the high SoC regime before the predetermined cut-

off condition is reached. The charging process can only be 

optimized when the characteristics are fully perceived. Thus, 

the following texts give an exhaustive illustration of the 

characteristics of each phase. 

In Phase I, the battery impedance varies dramatically [48-

52]. In [51], the LCO battery is investigated. The results show 

that the battery resistance reduces from about 225mΩ to about 

100mΩ. The same characteristics are found in [52] for the NCA 

battery, where the resistance changes from about 21 mΩ to 17 

mΩ. Thus, a low charging rate is recommended [50, 51]. 

However, an antithetical phenomenon was observed for 

LiFePO4 batteries in [48], where the internal resistance 

increases, from 3.5mΩ to about 5mΩ, due to two-phase 

transition. Thus, a high C-rate is applied at the beginning of 

charging in [49]. In summary, the charging rate for Phase I 

should be adjusted according to the cell impedance. 

 
Fig. 2 LIB charging phase. 

In Phase II, the battery impedance is stable [48, 51]. A high 

C-rate charging current can be applied to accelerate the 

charging process. LIBs’ capability of high C-rate charging is 

influenced by the acceptability of the active materials, cell 

design, and charging strategy [53]. Authors in [14, 24] 

discussed the limitation of materials mass transport, battery 

design and thermal characteristics, and charge transfer 

perspectives during high C-rate charging. The impacts of 

porosity and/or tortuosity on concentration polarization are also 

included. The papers show that improving the electrolyte 

charge transfer property and reducing the electrode tortuosity 

helps the battery to achieve a higher charging C-rate. In terms 

of thermal characteristics, higher temperature accelerate charge 

transfer but also causes more side reactions and electrode 

degradations. While, low temperature induces severe lithium 

deposition. In addition, since the shuttle of Li-ions and lithium 

deposition also causes battery volume variation, the maximum 

permissible charging current Imax is evaluated by measuring the 

battery thickness change in [54]. The result shows that the 

relation between permissible charging current I and the charge 

quantity x follows the Arrhenius law as I = a/(x0.5), a is 4.3, a 

constant. 

In phase III, critical attention is required, because 

overcharging/overvoltage is liable to happen. In general, the 

charging current should be well constrained to alleviate the 

detrimental metallic lithium deposition [51, 52].  

B. Battery models 

Different models have been developed to simulate the battery 

behavior, which is critical for the charging strategy design and 

optimization. This section gives an overview of the 

predominant models employed in ChgOp research. 

1) Electrochemical Model 

Electrochemical Models (EcMs) provide insights on the 

electrochemical process in the battery by following physical 

principles like Fick’s law, Butler-Volmer equation, Nernst 

equations. Pseudo-two-Dimensional (P2D) model is the most 

attractive one to researchers. The P2D model is proposed by 

Prof. Newman’s group [55] based on the porous electrode 

theory. In this theory, the lithium intercalation and de-

intercalation process are expressed with several partial 

differential equations. This P2D model is effective and accurate 

which has been validated by many studies [56-58]. However, 

there are more than fifty parameters to be identified which is 

computationally intensive. In order to reduce the complexity, 

the Single-Particle Model (SPM) is proposed [59]. SPM treats 

each electrode as an active particle by assuming that the 

electrode is very thin and there is no concentration gradient of 

lithium ions. P2D and SPM are the two EcMs that are frequently 

adopted in fast ChgOp. For EcM based approaches, additional 

constraints can be set to restrain AMs. For instance, lithium 

deposition, a major degradation mechanism, is a cathodic 

reaction that happens when the over-potential φ is less than 0. 

Thus, to eliminate the lithium deposition, a constraint is added 

as shown in (2) [60, 61]. 

 0Electrode Electrolyte U =  −  −   (2) 

where ΦElectrode is the potential in the positive and negative 

electrodes. ΦElectrolyte is the potential of the electrolyte. U is the 

side reaction equilibrium potential and U=0. 

During fast charging, the other predominant AM is the side 

reaction. The side reaction rate can be expressed as (3) [62]. 

Aging can be deterred by restricting the reaction rate.  
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where, as,side is the specific reaction area of the side reaction. 

i0,side is the exchange current density of the side reaction. ac,side 

is the cathodic symmetric factor of side reaction. nside is the 

number of ions involved in the side reaction. F is Faraday 

constant. R is the universal gas constant. T is the cell 

temperature in Kelvin. It is worth noting that the lithium 

deposition and side reaction are two of the most important AMs 

that have been researched for ChgOp over years.  

2) Electrical Equivalent Circuit Model 

Electrical Equivalent Circuit Models (ECMs) are applied to 

emulate electrical performance due to their conciseness and 

accuracy. A systematical overview of the widely-used ECMs 

has been given in [63, 64]. Fig. 3 shows four commonly-used 

ECMs, (a) Rint model, (b) n-order RC model, (c) RC equivalent 

model, and (d) nonlinear double capacitor model. In the Rint 

model, Rint consists of the resistance of the electrolyte, the 

current conductor, and the contact resistance between the 

electrode and the conductor. There are also nonlinear 

characteristics during the charging transients which are 

characterized by RC pairs as shown in Fig. 3(b). The first-order 

RC model (with only one RC pair) is also known as the 

Thévenin model in which the RC pair reflects polarization 

characteristics. The second-order RC model (with two RC 

pairs) is the most prevalent as it provides a balance between 

accuracy and complexity. Apart from Fig. 3(a) and Fig. 3(b), 

the RC equivalent model (Fig. 3(c)) and the nonlinear double 

capacitor model (Fig. 3(d)) have also been used to assist 

ChgOp. The ECM has viewed the most widespread applications 

for LIB state estimation, like the SoC estimation [65-68] and 

state of power estimation [69]. However, the direct use of them 

for charging control is not sufficient, since the thermal and 

degradation behavior, which are critical concerns for charge 

control, have been overlooked. Table II presents the 

expressions for the commonly used ECMs. 

 
Fig. 3 Battery ECMs. (a) Rint model. (b) n-order RC model [70-72]. (c) RC 

equivalent model [73]. (d) Nonlinear double capacitor model [74]. VOC is the 

open-circuit voltage. V is the terminal voltage. I is the battery current. R0, the 

internal battery resistance, is the same as Rint. Req and Ceq are the equivalent 

resistance and capacitance of the battery. RS-CS corresponds to the equivalent 

resistance and capacitance electrode’s surface region; the Rb-Cb represents the 

equivalent resistance and capacitance of the electrode’s bulk inner part. 

 

TABLE II EXPRESSIONS FOR COMMONLY-USED ECMS 

Commonly-

used ECMs 
Expressions 

Rint model 
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dSOC I

dt C

V V SOC I R

= −

= − 

 

n-order RC 
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* maxC  denotes the nominal voltage of the battery. 

3) Electro-thermal model 

Electro-thermal Models (EtMs) are of paramount importance 

for battery internal temperature Ti estimation. In EtMs, the 

thermal behaviors are analogized and reproduced by electrical 

components. Two commonly used thermal models are depicted 

in Fig. 4. Fig. 4(a) is a second-order thermal model. Fig. 4(b) is 

the simplified second-order thermal model. With the thermal 

model, the battery internal temperature Ti can then be deduced 

with the power loss and ambient temperature. The accuracy of 

the Ti estimation mainly depends on the power loss. Table IV 

summarizes the expressions used for EtMs. 

Table III Thermal and electrical parameter analogy 

Thermal Electrical 

Temperature (K) Voltage (V) 

Heat flux (W) Current (A) 

Conductivity (W/K/m) Conductivity (A/V/m) 

Stored heat (J) Storage charge (C) 

Resistance (C/W) Resistance (V/A) 

Capacitance (J/C) Capacitance (C/V) 
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Fig. 4 EtMs. (a) Second-order thermal model [71]. (b) simplified second-order 

thermal model [72]. Ti is the battery internal temperature, Ts is the 

surface temperature, Ta is the ambient temperature. Ris and Rsa 

are the thermal resistance of the battery and the ambient, 

respectively. Ci and Cs are the thermal capacitance of the battery 

and the ambient, respectively.  

TABLE IV EXPRESSIONS FOR COMMONLY-USED ETMS 

Commonly-used EtMs Expressions 

Second-order thermal model [71] 
i i s

i loss

is

s i s s a

s

is sa

dT T T
C P

dt R

dT T T T T
C

dt R R

−
= −

− −
= −

 

Simplified second-order thermal model [76] 
i a loss is loss sa

T T P R P R= + +  

 

Battery thermal distribution can be described by partial 

differential equations and boundary conditions [77-79]. A 3-

dimensional thermal model is established in [79] to precisely 

emulate the thermal distribution of a pouch-type lithium-ion 

battery with partial differential equations. But the 

computational cost for solving the partial differential equation 

is too high for practical application. A mesoscale distributed 

electrothermal model is established in [80] to emulate the 3-

dimensional thermal distribution of a cylindrical battery using 

finite element analysis. It is composed of a huge number of 

mesoscale lumped-thermal models that are connected in 

parallel. The heat generation distribution and temperature 

distribution inside the battery can be accurately emulated by the 

mesoscale distributed thermal model. Under the assumption 

that the temperature distribution of a cylindrical battery is 

uniform in the axial direction and circumferential direction, a 

simplified 1-dimensional distributed thermal model is 

formulated in [81, 82] to emulate the temperature distribution 

along the radial direction. 

4) Aging model 

Calendar aging and cycle aging are the two aging modes of 

LIB that reflect the degradation caused by storage and 

operation, respectively. Both aging modes can be described 

with empirical or semi-empirical models based on Arrhenius’s 

law which depicts the dependence of the rate constant of a 

chemical reaction on major factors like temperature, activation 

energy [83, 84]. Some models have been summarized in [84, 

85].  

For calendar aging, the influential factors are temperature T, 

voltage V, and storage SoC [84, 86, 87]. Degradation during 

calendar aging accelerates at high voltage levels, high storage 

SoC, and high store temperature. The following models have 

been developed to describe calendar aging. 

Considering the temperature effect, the capacities are fitted 

with (4) [88]:  

( )
E

zRTQ Be t
−

=  (4) 

where B is the pre-exponential factor, t is the calendar aging 

time. z is constant. 

In [89], both temperature and voltage are considered in 

capacity estimation with (5): 

00

0 0 0 0

( , , )
1

( , , )

V VT T

zcal VT
T V a

L t T V
C C c t

L t T V

−−

= +  (5) 

where Lcal and L0 are the current and reference capacity 

degradation factor. t0, T0, V0 are the calendar aging time, 

temperature, and voltage at reference condition, respectively. 

CT, CV, ca are the aging coefficient for aging, temperature, and 

voltage. z is chosen as 0.5 with the assumption SEI formation is 

the dominant aging process.  

In [90], the impact of SoC is included. The capacity loss is 

estimated with (6) where the temperature dependence f(T) is 

represented as (7) with Arrhenius’s equation, and the SoC 

dependence is derived as (8) from reformulated Tafel equation 

since SEI formation is the dominant aging process.  

 ( ) ( )refQ k f T f SoC t=  (6) 

where kref is a constant determined at the reference condition 

SoCref = 50%, Tref = 298.15K. 

1 1
( )

( ) ref

E

R T T
f T e

−
−

=  (7) 

( )
( )

0( )

ref

ref

V V SoCF

R T
f SoC e k

 −

= +  

(8) 

where Vref, α, and k0 are constants determined at reference 

condition. 

Since many parameters, like charge throughput, SoC, cycling 

depth, temperature, and charging rate, may vary during cycling, 

cycle aging is more complicated. The following text shows the 

model development for cycle aging. 

As the charge throughput Ah is proportional to time under 

CC cycling conditions [84], t is replaced with Ah in cycle aging 

for capacity estimation [91]. The impact of charging C-rate is 

studied with (9) in [91]. B is an exponential function of the C-

rate as shown in (10) [92]. A similar model is expressed in [93]. 

 
31700 370.3 rateC

zRTQ Be Ah

− +

=  (9) 

 
0.2797

ln( ) 1.226 0.9263rateC
B e

−
= +  (10) 

Since SoC also influences the estimation, the pre-exponential 

factor is defined as a function of SoC (11) [94]: 

 
( )

( )
rateE C

zRTQ SoC e Ah



 
− +

= +  (11) 

where α, β, η are constants.  
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The authors in [95] go further by examining the average SoC 

(SoCavg)and deviation of SoC (SoCdev)in a cycle. The capacity 

degradation is estimated by:  

 

1 1
( ( ))

i ref

E
N

R T T z

i

Q Be Ah

−
−

=   (12) 

 2 , 4 ,

1 , 3
avg i avg ik SoC k SoC

dev iB k SoC e k e= +  (13) 

where k1, k2, k3, k4 are constants. i is the cycle number.  

In [96], degradation stress factors, temperature, discharge C-

rate, charge C-rate, end of charge voltage VEoC, and end of 

discharge voltage VEoD, are fit separately with Arrhenius and 

Inverse Power Law models and then combined to account for 

the coupling between factors. Similar research is carried out in 

[97] where authors argued that the temperature characteristic is 

not exponential and then proposed a polynomial function as 

shown in (14). In addition, rather than using SoCavg and SoCdev, 

depth of discharge is employed. The authors also consider the 

charge and discharge current (Ich and Id) separately rather than 

one C-rate for both.  

 
3 2

1 2 3 4( )N T k T k T k T k= + + +  (14) 

where k1, k2, k3, k4 are constants. 

In [98], the battery is cycled under the vehicle operation 

scenario defined by the United States Advanced Battery 

Consortium. Apart from charging rate, temperature, and 

minimum SoC (SoCmin), an additional stress factor, the ratio 

between charge-depleting and charge-sustaining, is considered 

for capacity loss as:  

 
( )

( )
E

zRTQ f e Ah
−

=   (15) 

 min 0( ) ( ) ( )b cf Ratio SoC SoC   = + + −  (16) 

where α, β, γ, b, and c are constants. 

To account for both calendar aging and cycle aging, the 

models are combined or directly applying one model to cover 

both aging modes. Authors in [70] adopt the model shown in 

(17), similar to (9), to account for both aging modes in ChgOp. 

A similar model is proposed in [76]. 

 ( )
E I

zRTQ Be Ah

− +

=  (17) 

where α is the aging coefficient caused by the current I. B is the 

pre-exponential factor. 

Despite the capacity loss, the aging rate has also been derived 

for estimation [99]. The aging rate is defined as [100]: 

 ( )
B

E

k Tr Be

−

=  
(18) 

It can be noted that more parameters are included with the 

booming research outcomes in LIB characteristics. This helps 

to cover different influential factors and enhances the 

simulation accuracy. However, it should be mentioned that 

there will be notable estimation errors when the operation 

condition deviates from the test conditions. This is challenging 

for field application.  

Charging, especially fast charging, as part of the cycling 

process has a profound influence on the batteries’ lifespan. In 

general, high charging rates, too high or too low temperature, 

large cycle depth, and high charge end voltage will lead to fast 

degradation. Since these parameters could have a converse 

influence in accelerating the charging process, for instance, 

high charging rates are essential for fast charging, this forms the 

dilemma of an ideal charging approach.  

5) Summary 

In conclusion, EcMs manifest the physical awareness, for 

instance, kinetics and charge transfer, of LIB during charging 

which helps to diagnose AMs like lithium deposition. 

Therefore, EcM-based approaches are also referred to as 

‘white-box’ approaches. However, the EcM is formulated with 

high-order partial differential equations, and thus it can be 

computational demanding for online applications. On the 

contrary, ECM is much more concise and aims to emulate the 

dominant electrical behavior of the battery. The drawback of 

ECM is that it does not provide any information regarding the 

battery's physical characteristics. EtM is analogous to ECM but 

incorporates the description of thermal properties. Attributed to 

the specific feature, the EtM- and ECM-based approaches are 

also referred to as ‘grey-box’ approaches. The aging model 

helps to estimate the State of Health (SoH) of LIB and is used 

to evaluate the charging approach [101]. In ChgOp techniques, 

multiple models might be combined to cover the designated 

aspects. These techniques are reviewed in Sections IV and V. 

C. Aging mechanisms 

During operation, Li-ions shuttles between 1) the solid 

electrodes, 2) Solid Electrolyte Interphase (SEI) and Cathode-

Electrolyte Interphase (CEI), and 3) the electrolyte. Many AMs 

might appear during this process as shown in Fig. 5 which have 

been summarized by [102-104]. 

 
Fig. 5 Major AMs in LIB summarized and reproduced from [102-104]. 

The major aging mechanisms are SEI formation & crack & 

reconstruction [47, 51, 105-107] and lithium deposition [51, 

108-113] on the anode side, and CEI layer formation & 

cracking [51, 102, 114, 115] on the cathode side. Apart from 

these, the shuttle of the Li-ion might also cause structure 

disordering and exfoliation [102, 116, 117], side reactions, like 

solvent co-intercalation, soluble species decomposition, and 

separator dissolution [110]. In addition, conducting salt (e.g. 

LiPF6) can react with water from the environment leading to 
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deteriorated cell performance [110, 118]. Furthermore, contact 

loss might occur between the current collector, binder, and the 

electrode due to the corrosion of the aluminum current 

collector, binder decomposition, or copper dissolution & 

dendrite formation [102, 117, 119, 120]. This section provides 

an exhaustive illustration of three AMs that are frequently 

considered in ChgOp techniques. 

1) SEI formation & crack & reconstruction 

During the very first few cycles, due to the transmission of 

Li-ions between half electrodes via the electrolyte, SEI is 

formed at the interface of the electrolyte/anode [34, 47, 105, 

114, 121]. SEI layer is built of decomposition products of 

electrolytes and Li-ions. The compositions of the SEI layer 

include LiF, Li2CO3, Li2O, ROCO2Li [106, 114, 121]. This 

process stops when all the active area of the electrode is covered 

and the film stabilizes. During this process, there is a fraction 

of irreversible capacity loss due to the reduction of cyclable Li 

and exfoliation of the graphite structure [47].  

During normal charge/discharge, the volumetric expansion 

and contraction of anode active particles cause cracks in the SEI 

layer [106]. Graphite at the crack will be exposed to electrolyte 

again and induces SEI reconstruction [102]. The reconstruction 

process is non-reversible and causes lithium inventory losses, 

which lead to battery capacity fade and power fade [51, 102]. 

Moreover, the SEI formation inevitably leads to electrolyte 

decomposition which causes battery impedance increment 

[102].  

2) Lithium deposition 

Due to the beneficial characteristics like the high specific 

capacity of 372 mAh g-1 [122] and stability [4, 123], and low 

cost, graphite-based material dominates the LIB anode material 

market. However, the equilibrium potential of graphite is very 

low and close to the voltage of lithium deposition/dissolution 

[51, 108, 109]. During charging, Li+ intercalates with graphite 

in a narrow potential range. As shown in Fig. 6, with the 

evolvement of the intercalation, the potential changes from 

0.35V versus Li+/Li in the LiC72 stage to ~ 0.05V in the LiC6 

stage [124, 125]. With the progress of the intercalation process, 

the potential versus Li+/Li decreases. When the potential drops 

to 0.065V, the intercalation process of the finite applied current 

saturates. Thus, when the potential is below 0.065V, there will 

be lithium deposition [126]. This is especially the case at high 

SoC which corresponds to low electrode potential [127]. 

Furthermore, the lithium deposition fosters lithium dendrite 

formation which eventually leads to internal short circuits and 

thermal runaway as shown in Fig. 5 [128].  

 

Fig. 6 The lithium-graphite intercalation compounds and corresponding 

potential [124, 125]. 

Lithium deposition is mainly associated with two processes, 

the charge transfer process and lithium diffusion process in the 

solid host material as shown in Fig. 6 [110]. Various limiting 

factors in both processes have been investigated to improve the 

charging C-rate while minimizing the lithium deposition [110, 

129-131]. The charge transfer includes the transportation of Li-

ions through the CEI layer, in the electrolyte, through the SEI 

layer, and to the border of the solid host material where an 

electron is accepted [129]. The resistance of this process is 

denoted as Rct as described in (19) [129, 132]. 

 
( )

0

1
E

RT

ct

A e
R

−

=  (19) 

where A0 is a constant, E is the activation energy, R is the gas 

constant and T is the absolute temperature. 

 
Fig. 7 Schematic illustration of Li deposition occurring at the surface of 

graphite particles. Reproduced from [110]. 

Take the LFP battery as an example, the limitation comes 

from the difference of the activation energy between the SEI 

and CEI layers. Since the SEI layer has a higher E compared 

with the CEI layer. Thus, in the full cell, transportation of Li-

ions in the SEI layer is the limiting factor. A similar conclusion 

has been reached in [130] where extreme high current is applied 

to half cells and symmetric cells to identify the limiting factors. 

Moreover, the transportation of Li-ions in the SEI layer is also 

hampered at a lower temperature [133]. The additives in the 

electrolyte can also influence the transportation process [134]. 

The charging pulse rate has been maximized in [110] by 

considering the above-mentioned characteristics of the charge 

transfer process in an Electrochemical Model (EcM).  

The performance of the lithium diffusion process can be 

represented by the diffusivity described in (20) [131]. 

 
( )

0
B

E

k TD D e

−

=  
(20) 

where D0 diffusion coefficient, kB is the Boltzmann constant. 

Operational parameters that influence the lithium deposition 

include temperature, high charging C-rate, and cut-off voltage 

[131]. It is apparent that temperature plays a role as shown in 

(20). High charging C-rate causes Li-ion concentration gradient 

in the electrolyte which influences the diffusivity [135]. A high 

cut-off voltage or SoC leads to a high diffusion energy barrier 

E which impedes the diffusion process. In conclusion, lower 

temperature, high charging C-rate, and high SoC can cause 

accumulation of Li at or near the border of the anode which will 

block the diffusion path and lead to lithium deposition.  
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3) CEI formation & cracking 

Similar to the SEI layer in the anode, there is a CEI layer 

formed at the interface of electrolyte/cathode [34, 47, 105, 114, 

121]. The compositions of the CEI layer also include LiF, 

Li2CO3, Li2O, ROCO2Li [106, 114, 121]. During the charging, 

the de-intercalation process in the cathode might introduce 

phase transition which leads to crystal structure disordering 

[102]. The thermo-instability of de-lithiated cathode material at 

high SoC is also problematic [102]. Depending on the cathode 

material, there is a different ratio of metal cations dissolved in 

the electrolyte [86, 103, 115]. Furthermore, CEI layer formation 

also induces electrolyte decomposition and gas evolution [102, 

115] which causes the battery impedance increment and 

consequently power fade. 

These three AMs are accelerated during fast charging. Thus, 

various optimization approaches are proposed to improve the 

charging speed, while minimizing the side effects. The 

following sections review the ChgOp approaches.  

III. CHARGING OPTIMIZATION SYSTEM 

The structure of the ChgOp system can be summarized as 

Fig. 8. The required data source is captured from the battery 

system and used in the optimization approaches. During the 

charging process, control variables are regulated to achieve the 

optimization objectives within the constraints. According to 

whether the algorithm dynamically adjusts the control variables 

or not, the ChgOp system is divided into open- and closed-loop 

ChgOp. In the open-loop ChgOp, the charging strategy is kept 

the same throughout the lifespan, while control variables are 

regulated to adapt to the operational variations in closed-loop 

ChgOp. The variations can be any electrical, thermal, or 

electrochemical changes of the battery, for instance, aging. In 

addition, optimization objectives in the open-loop system are 

succinct and not as critical as those in the closed-loop system.  

Since data sources, optimization objectives, constraints, and 

control variables are shared in both systems. They are 

illustrated in this section followed by a review of parameters 

adopted in the latest research. 

A. Data source 

Data sources include direct measurements captured from the 

battery as well as derived parameters. Both are used as inputs 

for the optimization approach. For LIB, the direct 

measurements include charging current IC [50, 70, 136], battery 

terminal voltage VBat [50], battery surface temperature Ts [56, 

137], Electrochemical Impedance Spectroscopy (EIS) [138, 

139], battery volume [140].  

The derivative parameters include internal battery 

temperature Ti [71, 72, 76], battery charge capacity Q [50, 60], 

SoC [50, 56, 60, 70, 72, 74, 141], open-circuit voltage VOCV 

[142, 143], incremental capacity dQ/dV [137]. In particular, the 

SoC is a critical intermediate variable that participated in the 

charge control, and a variety of techniques have been proposed 

in the literature for online SoC estimation [144-147]. Moreover, 

Ti is elevated due to heat generation, particularly at a high 

charge/discharge rate. Experiments have evidenced a 

temperature rise of 15℃ from the surface to the core of LIB 

[148]. These facts suggest that the in-situ measurement of Ti is 

critical for the charging control. Attributed to the recent 

research progresses, the in-situ measurement of Ti has been 

enabled by the use of embedded temperature sensors [149]. 

EtM-based estimation techniques can also be used to obtain an 

estimate of Ti [81, 150]. Unlike the SoC and Ti which are direct 

indicators for the charging control, the dQ/dV is an important 

variable of the incremental capacity analysis, which is typically 

used for LIB health diagnostic [151, 152]. However, it is also 

linked to the electrode material-level phase mitigation and over-

potential, giving deep insights into the dynamical conditions 

inside the LIB during high-rate charging. Hence, this variable 

is also valuable to provide an important hint for the charging 

rate control. 

Fig. 8 Schematic diagram of the ChgOp system. Imin and Imax are the minimum and maximum charging current, respectively. Depending on the battery chemistry, 

Imax can be 4C or more. Vmin and Vmax are the minimum and maximum terminal voltage. Tmin and Tmax are the minimum and maximum internal battery temperatures. 

Table V evaluates the data sources by the applicable 

scenario. The application scenario determines which 

application the charging approach is suitable for, real-time, in-

situ, or offline. For practical application, data sources should be 

able to be captured in either in-situ or real-time scenarios. It can 

be noted that battery volume is not suitable for practical 

applications. 
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Parameter 
Applicable scenario 

Reference 
Offline In-situ Real-time 

IC ✓ ✓ ✓ [50, 70, 136] 

VBat ✓ ✓ ✓ [50] 

Ts ✓ ✓ ✓ [56, 137] 

EIS ✓ ✓  [138, 139] 

Battery volume ✓   [140] 

Ti ✓ ✓ ✓ [71, 72, 76] 

Q ✓ ✓ ✓ [50, 60] 

SoC ✓ ✓ ✓ [50, 56, 60, 70, 72, 74, 141] 

VOCV ✓ ✓ ✓ [142, 143] 

dQ/dV  ✓ ✓ ✓ [137] 

B. Optimization Problem Formulation 

Optimization objectives are the critical parameters that 

influence the charging control strategy. Despite different 

selections in particular works, the prevalent optimization 

objectives can be generally summarized as charging time tchg 

minimization [108, 153], charge capacity Q maximization 

[153], charge efficiency ηC maximization [153], energy 

efficiency ηE maximization, cycle life maximization [108], and 

temperature rise regulation [71]. Charge efficiency ηC is the 

ratio between charge extract from the battery during discharge 

and that stored to the battery during charging. Energy efficiency 

ηE is the ratio between the energy extracted from the battery 

when it is completely discharged and the energy consumed to 

fully charge the battery. tchg can be measured with a timer. 

While evaluation of cycle life is more complicated, many 

parameters have been used as indicators [154, 155], for 

instance, remaining capacity [91, 156, 157], internal resistance 

[156, 158, 159], incremental capacity dQ/dV [160, 161], EIS 

[162], specified irreversible degradation modes [62]. These are 

vital parameters for the charging process. 

The prestigious benefit of optimized charging control is the 

simultaneous regulation of control variables to meet critical 

demands of quick refueling and less impact on battery safety 

and aging. In general, control variables can be the charging 

current [71] or charging voltage [143], depending on the 

specific charging mode. However, the actual parameters might 

take different forms depending on the charging strategy, for 

instance, it can be pulse frequency, duty ratio, etc.  

An efficient definition of the constraints is essential to ensure 

the safe and healthy operation of the battery while achieving the 

optimization objectives. The constraints are divided into two 

categories according to their function, i.e., input constraints and 

output constraints. Explicitly, input constraints are placed on 

input parameters, including the charging current IC [56, 57, 60, 

62, 70, 72, 74, 141, 163] and charge capacity Q [50, 60]. Output 

constrains are defined for battery terminal voltage VBat [56, 57, 

60, 62, 70, 72, 74, 141, 163], internal battery temperature Ti [57, 

70, 72], SoC [50, 56, 60, 70, 72, 74, 141], and State of Health 

(SoH) [70]. Such constraints can be either hard boundary or soft 

one with reasonable penalty once violated. With a well-

formulated optimization problem-oriented for battery charging, 

a considerable number of optimization approaches have been 

proposed in the literature to enhance the charging performance. 

They are summarized in Section IV and V as open-loop ChgOp 

and closed-loop ChgOp, respectively. Optimization approach 

associated constraints and control variables vary with the 

ChgOp techniques. Thus, they are illustrated individually in 

Sections IV and V.  

IV. OPEN-LOOP CHARGING OPTIMIZATION 

For LIB charging, open-loop optimization is mainly profile-

based approach where a superior charging profile is proposed 

and applied to the battery throughout the lifespan without 

considering any variation (e.g. aging) during the cycling.  

A. Boost Charging 

Authors in [9] first proposed boost charging as shown in Fig. 

9. During boost charging, the battery voltage is kept at VBst, 

while the current drops rapidly with the maximum current 

limited to Imax. Under extreme cases, when VBst is so high that 

the current hits Imax and remains Imax the whole phase, the 

charging profile turns to high C-rate CC.  

 
Fig. 9 Boost charging profiles. 

In [9], the battery charged with the boost charging-CC-CV 

profile is compared with that charged by traditional CV and 

CC-CV charging approaches. The results demonstrated that CV 

charging can cause server degradation especially when the 

voltage is set higher than 4.2V. However, the boost charging 

phase reduces the charging time without introducing any extra 

degradation effects. This observation is challenged by [127] 

where two CC phases and one CV phase is employed at 

different SoCs and compared with CC-CV. Results suggested 

that degradation appears at both very high and very low SoC. 

Proper SoC selection only lessens degradation caused by the 

boost charging phase. Some researchers believed that boost 

charging should be applied at low SoC [164, 165]. Because the 

concentration gradient between the electrolyte and the graphite 

anode is large at low SoC which enables the high current 

density [164, 165]. 

B. Multi-stage Constant Current charging 

Multi-stage Constant Current charging (MCC) charging 

generally consists of two or more CC stages and each stage is 

assigned a different current value. As shown in Fig. 10, there 

are n stages, and the current level assigned for the ith stage is Ichi 

(i=1, …, n). Initially, since VMCC1=VMCC2=…=VMCCn=Vmax, Ichi 

satisfies Ii ≥ Ij, if i<j, i, j =1, …, n, which means monotonically 

decreasing current level [75, 166]. Later, it generally refers to 

multiple CC charging phases without constraints regarding 

voltage/current level. The suggested number of charging stages 
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is no more than 5 because further increment in the charging 

stage only achieves a negligible effect in reducing the charging 

time [70]. 

MCC has been combined with CC and CV which results in 

CC-MCC [73, 75, 127, 166-168] and MCC-CV [49, 169-171]  

charging protocol. Authors in [172] applied MCC throughout 

Phase II and Phase III. Results show that MCC promotes fast 

charging because a significant amount of charge is obtained in 

the high current charging phase and the gradual decrement 

reduces the time to full charge. Other research also showed that 

MCC supports avoiding severe temperature rise and extends 

cycle life [31].  

 
Fig. 10 MCC charging profiles. 

A five-stage MCC approach is optimized in [73, 168]. The 

current level of MCC is determined with the assistance of the 

ECM shown in Fig. 3(c). The 1st current level I1 is the same as 

the CC phase. The 5th current level I5 is determined with (21), 

the 2nd, 3rd, and 4th current levels I2, I3, I4 are determined with 

(22). The influence of the cut-off voltage Vmax on the charging 

performance is also studied. The results show that the proposed 

CC-MCC charging approach can enhance the charging speed, 

charge efficiency, and charging energy by 11.9%, 0.54%, and 

1.8%, respectively. 

 5 max ,1

1 3600
( )s nom

eq eq eq

I V V Q
R C R

= − −  (21) 

 
2 1 3 3 2 4 1 5 4 3 5I I I I I I I I I I I= = = =  (22) 

where VS1 is the voltage for the first CC stage. Qnom is the 

nominal capacity.  

In [109], a three-stage MCC is investigated where the stages 

are determined by SoC. The three stages are SoC at 0-0.3, 0.3-

0.6, 0.6-0.8. In total, thirteen charging patterns with different C-

rates are investigated. Among them, the 2.2C-1.9C-0.9C 

charging profile has the best performance.  

The abovementioned works optimize the MCC profile by 

means of enumeration. This process is time-consuming and the 

solution might be trapped at a local optimum. To improve the 

efficiency, Taguchi orthogonal arrays are introduced to the 

MCC optimizations [75, 166, 173]. Taguchi approach aims to 

optimize the design of experiments with the least cost of 

experimental effort. It studies the impact of selected variables 

on the response and optimizes the procedure by a limited 

number of trial tests. Furthermore, it is a fractional factorial 

design that has considerably fewer trial numbers when 

compared with full factorial designs. In general, it contains five 

steps, namely factor selection, orthogonal array allocation, trial 

tests, analysis, and confirmation tests [75, 166, 173]. First, 

variables are selected and the corresponding level number is 

determined. Then, with these parameters, the suitable 

orthogonal array can be chosen. After that, trail tests are 

designed according to the orthogonal array. And the trial test 

results are analyzed to find the optimum conditions. For the 

analysis, there are mainly five approaches, namely, analysis of 

variance, the total sum of squares, the residual sum of squares, 

analysis of means, signal to noise ratio (S/N). S/N is the most 

prevalent approach and is defined as (23) and (24) [174]. 

Finally, confirmation tests are carried out to verify the analysis.  
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where, i, j refers to the output ith row jth column. Y is the selected 

variable.  

In [75, 166], Taguchi orthogonal array-based approach is 

applied to find the optimal five-stage MCC charging pattern. 

The results showed that the optimized MCC approach reduces 

charging time and prolongs cycle life by 11.2% and 57%, 

respectively. 

C. Pulse Wave charging 

Both Sinusoidal Wave (SW) and square wave charging 

processes have been referred to as pulse charging. Herein Pulse 

Wave (PW) charging particularly refers to the charging process 

in which a square wave is used as shown in Fig. 11. SW 

charging is summarized separately. 

 
Fig. 11 PW charging profiles. tp+ is the pulse length of Ip-h and tp- is the pulse 

length of Ip-l. The duty ratio of Ip-h ∆
+ is the ratio between tp+ and the total period 

of the pulse. The duty ratio of Ip-l ∆
- is the ratio between tp- and the total period 

of the pulse.  

PW charging is implemented by injecting the current pulse 

into the battery. Ip-h and Ip-l refer to the high and low current 

level of the pulse, Ip-h>Ip-l. The parameters that define the 

waveform are Ip-h, Ip-l, the duty ratio of Ip-h ∆+, the duty ratio of 

Ip-l ∆-, and frequency. In Fig. 11, the two major forms of the 

pulse are shown as insets which correspond to Ip-l ≥ 0 and Ip-l 

< 0, respectively.  

PW has been thoroughly investigated for lead-acid batteries 
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[175] and later introduced to LIBs due to its impact on the Li-

ion concentration. It is believed that the short break, or off 

period, contributes to the evener ion concentration and slower 

polarization [176]. In [176], PW-CV charging is investigated 

for capacity retention improvement based on the P2D model 

with thermal effect considered. The results demonstrate that, 

with the same average current, PW-CV causes lower 

temperature variation and prolongs lifetime by decreasing 

polarization and the SEI layer growth.  

There are also antithetical propositions regarding the impact 

of PW. As reported in [177], it is believed that PW only 

influences the superficial regions of the electrode, but does not 

influence the average concentration profile which is determined 

by the average current. There is also severe capacity decrement 

caused by PW as reported in [177]. In [178], it is reported that 

pulses shorter than milliseconds are buffered by the large 

double-layer capacitances at the electrode/electrolyte 

interfaces. The impact on concentration is not effective until the 

duration of PW is in the range of second. 

The influence of PW on charging speed is also debatable. 

Due to the short break, the time for PW charging would be 

longer compared with CC charging with the same average 

current. Furthermore, with the same average current, PW tends 

to have a higher root mean square value, this is especially the 

case for PW charging with a negative pulse, which causes extra 

energy losses and consequently aggravates thermal effects 

[165, 176]. When the magnitude of the applied current is high, 

the battery opts to reach the cut-off voltage prematurely [165]. 

Relevant works also indicated that the effect of PW varies with 

SoC. At high SoC, PW can lead to temperature rise, which is 

beneficial for ion diffusion but facilitates capacity loss.  

To optimize the performance of PW charging, research is 

carried out by tuning the PW parameters like the duty ratio of 

the positive pulse [179-181], the amplitude of positive pulse 

[180-183], the duty ratio of the negative pulse [165], amplitude 

of negative pulse [182, 183], frequency (500Hz, 1000Hz, 

2000Hz [179]). In [165, 179, 184], the performance of PW and 

CC are similar to each other. In [181], PW with CC amplitudes 

but monotone increasing resting time shows better performance 

due to reduced concentration over-potential. Extreme high 

amplitude (15C) of positive/negative pulse is applied in [182, 

183] which causes a drastic increase of SEI layer and hence the 

impedance. With higher frequency, the battery shows a lower 

temperature increment compared with CC with the same 

average current [165]. Researchers in [184] optimize the 

charging process by tuning the negative pulse width, which is 

determined according to SoC. The experiment shows that the 

negative pulse has a similar or a bit worse performance 

compared with the CC-CV approach. 

To simplify the optimization process, Taguchi orthogonal 

arrays have also been applied to PW approaches to tune 

waveform relevant parameters. In [174, 185], the impacts of 

duty ratio, frequency, and ambient temperature are investigated. 

The results show that, with optimized PW, charging time is 

reduced by 47.6%, and charge efficiency and energy efficiency 

are increased by 1.5% and 11.3%, respectively. 

D. Sinusoidal Wave charging 

SW charging uses a sinusoidal current with a DC bias [186]. 

The parameters that define the waveform are the amplitude of 

DC bias, the amplitude of the SW, and the frequency of the SW. 

SW charging, also known as sinusoidal ripple current charging, 

is introduced to charge LIB at the frequency where the battery 

impedance reaches a minimum. This means the energy loss is 

minimized during charging and the energy transfer efficiency is 

maximized [187, 188]. 

As reported in [187, 188], the charging performance of LIB 

was improved by using SW charging at the frequency of 998 

Hz which minimizes the AC impedance. Compared with CC-

CV charging, SW charging in these works show enhanced 

performance regarding the charging time, charging efficiency, 

temperature build-up, and lifespan extension. Experimental 

results show lifetime improvement by 17%, 1.9%, 45.8%, and 

16.1%, respectively. The importance of the DC component in 

the SW charging has been discussed in [138]. Results show that 

the SW-CV method has the fastest charging speed with the 

same average current. However, due to the existence of a 

sinusoidal component, the RMS current of the SW-CV is higher 

which causes an 18% increment of the maximum temperature. 

This is highly desired for low-temperature charging, but can be 

quite unfavorable for medium- or high-temperature charging 

since the additional temperature build-up can lead to the 

catastrophic thermal run-away problem. Other drawbacks of the 

SW-CV implementation include high cost, large size, 

protection complexity, and audible noise associated with the 

inclusion of AC excitation equipment [138]. The conclusions in 

[138, 187, 188] are also challenged by authors in [189], where 

the performance of SW, triangular wave, and PW charging are 

compared with the CC charging. The results show that the CC 

approach has the highest energy efficiency, shortest charging 

time, and lowest temperature increment. However, the average 

currents of these four charging approaches are not the same, 

which makes the conclusion skeptical.  

The detrimental impact of the SW approach has also been 

reported. In [190], the LFP battery was cycled with SW at 

120Hz for about 2000 cycles. The results show that the SW 

approach has higher capacity degradation and lower energy 

efficiency compared with the CC protocol. It is concluded that 

the SW is an alternative approach for battery charging when 

considering the better efficiency of the converter.  

Various approaches have been introduced to optimize SW 

charging. In [191], SW with negative pulses is proposed to 

remove the formed passivation layer and to revive the loss of 

lithium. In the first test, this approach is applied to batteries at 

different SoH levels. Results show that the capacities of the 

three batteries increase from 64.7%, 78.8%, and 84.9% to 

83.4%, 88.3%, and 89.1%, respectively, and remain at the high 

level which verifies the effectiveness of reviving aged cells. In 

the second test, the proposed approach and traditional CC-CV 

approach are applied to fresh cells. Results show that, after 600 

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 08:47:36 UTC from IEEE Xplore.  Restrictions apply. 



2332-7782 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TTE.2021.3135525, IEEE
Transactions on Transportation Electrification

12 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

cycles, the battery charged with the proposed approach has 

14.5% more capacity than that charged with the CC-CV 

approach.  

E. Customized charging approaches 

A Varying Current Decay (VCD) protocol is proposed in 

[192]. Rather than CC, the charging current varies according to 

predefined empirical equations. In this paper, the VCD is 

defined as a short current pulse followed by a current decay in 

the form of (35). This is to adapt to the characteristics of LIB in 

different SoC regimes as illustrated in Section II-A. 

 0.5 0.5

0 1 2 3( ) / (1 )I I k t k t k t= + + +  (26) 

where k1, k2, k3 are constants, I0 is the initial current, t is time.  

This charging protocol is compared with CC-CV and CV 

charging. Results show that the VCD protocol improves the 

charging speed and capacity utilization, but introduces faster 

degradation during cycling. With the EIS and Scanning 

Electron Microscope analysis, the capacity reduction is mainly 

due to the increased film formation on carbon electrodes caused 

by voltage peaks during the transition from current pulse to 

current decay.  

In [100], the traditional CC-CV charging is optimized by 

imposing constraints on the anode potential. The optimized 

charging strategy is determined in such a way that the lithium 

deposition is prohibited at low temperature (25°C) and high 

SoC. The results show that by adding this constraint, the 

lifespan of the LIB is doubled compared with its counterpart 

where anode potential is ignored. In [140], the relationship 

between the capacity loss/lithium deposition and the 

maximum/mean irreversible volume change is accessed with a 

bivariate correlation. The results show that lithium deposition 

will cause irreversible volume expansion. A look-up table is 

generated for irreversible volume expansion at various C-rates 

and SoC. On this premise, the MCC approach is optimized by 

limiting the maximum volume expansion, or equivalently, the 

lithium deposition. Following this endeavor, the maximum 

allowable C-rate can be determined for a given SoC. A 

comparative study among three cells shows that the proposed 

method achieves 11% charging time reduction and about 20% 

extension of lifespan. 

TABLE VI SUMMARY AND COMPARISON OF VARIOUS CHARGING PROFILES 

Ref. Phase I & II Phase III Battery type Charging time Temperature Charge efficiency Lifespan 

[9] Boost charging-CC CV US18500  +20% +7.5°C NA -4% 

[49] MCC CV LFP -71% NA NA NA 

[138] SW SW NA -9,7% +8.5%% NA NA 

[140] MCC CV LCO/NMC -11% NA NA +20% 

[174] PW PW LiPo 47.6% +1°C +1.5% +25% 

[75, 166] MCC MCC LMO -11.2% -(0-0.5)°C +1.02% +57% 

[167] MCC-PC MCC-PC NA -22% -(0-0.5)°C NA NA 

[73, 168] CC MCC ICR18650 -12% -1°C +0.54% NA 

[171] MCC MCC LiPB 22.5% -(1-1.5)°C NA NA 

[176] PW CV LFP 0% -2.66°C NA +0.2% 

[177, 193] PW PW LFP NA +(5-10)°C NA NA 

[188] SW SW UR18650W  17% -2°C 2% +16.1% 

[189] SW SW NMC +0.67% +0.02°C NA NA 

[190] SW CV LFP NA +0.2°C -1.5% -1.2% 

+: Increment in charging time/temperature/charging efficiency/lifespan.  

-: Decrement in charging time/temperature/charging efficiency/lifespan.  

NA: No information is provided or not applicable.

F. Summary 

Some representative open-loop ChgOp techniques are 

compared again in Table VI regarding the charging time, 

temperature rise, charge efficiency, and life impact. It is noted 

that MCC-CV proposed in [49] shows the best performance 

regarding charging time reduction, 71% reduction compared 

with CC-CV. Drastically lifespan increment is obtained in [75, 

166] with MCC-MCC charging. However, the impact of MCC-

based charging profiles on the temperature and charge 

efficiency improvement is trivial. The best temperature 

performance is captured in [176], where PW-CV helps to 

achieve 2.66°C temperature reduction. Moreover, 2% 

improvement is observed in [188] regarding charging 

efficiency.  

V. CLOSED-LOOP CHARGING OPTIMIZATION 

Unlike the open-loop system, the response or output is 

continuously fed back to the system so that the charging 

approach is regulated dynamically in the case of a closed-loop 

ChgOp system. In this way, the charging process is adapted to 

operational variations like temperature and aging. Referring to 

the state-of-the-art progress, the closed-loop optimization 

approaches can be further classified into model-based and data-

driven approaches. In this paper, model-based approaches refer 

to the collection of approaches where one or more battery 

models, such as electrochemical model, electrical equivalent 

circuit model, electro-thermal model and aging models, are 

employed to simulate the specified battery characteristics to 

assist the charging optimization. On the other hand, data-driven 

approaches don’t use any models but extract the interested 
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battery characteristics from the data acquired beforehand or 

during the operation. This section gives an overview of these 

studies followed by an explanation of the analysis approach.  

A. Model-based approaches 

Model-based approaches are grouped in three categories 

according to the models used, namely, 1) ECM and ECM+EtM 

based approaches, 2) EcM and EcM+EtM based approaches, 3) 

EtM based approach.  

1) ECM and ECM+EtM based approaches 

ECM and ECM+EtM models are frequently applied to the 

optimization of charging profiles in Section IV. For instance, 

ECM+EtM based approaches are proposed to optimize the 

MCC charging process by numerical methods like Particle 

Swarm Optimizer (PSO) [70] and the ensemble multi-Objective 

Biogeography-based Optimization (mOBGG) [72]. In [70], 

PSO is applied to balance the charging time and aging. The 

results show that the duration of balanced charging is reduced 

by 43.4% with the negligible battery SoH decrement. Results in 

[72] show that the capacity loss of MCC-CV charging reduces 

by 16.5% compared with CC-CV. 

Control strategies have also been adopted for charging 

optimization [70, 74, 194, 195]. Representative control 

strategies include explicit Model Predictive Control (MPC) [74] 

and Fuzzy control [194]. In [74], MPC enables online 

optimization with multi-segment linearization applied to the 

ECM in Fig. 3(d). However, the constrained optimization 

problem is solved offline and expressed as piecewise affine 

functions for online or real-time applications. In [194], the 

relationship between charge polarization voltage and current & 

SoC is analyzed and quantified based on the n-order RC model 

in Fig. 3(b). The quantified relationship is then used as a 

guideline to optimize the charging process at different SoCs. 

The proposed approach achieves a balance between the 

charging time and aging. The same problem is addressed in 

[195], where the optimization between charging time and aging 

is implemented via pulse amplitude/width modulation charging 

with the history of battery operation considered. 

Furthermore, there are also customized charging protocols 

developed based on ECM and ECM+EtM models [50, 71]. The 

Universal Voltage Control Protocol (UVP) is reported in [50] 

where the charging voltage is adjusted. In particular, an ECM 

model is built based on the data from pre-tests. The varying 

voltage profile is derived by accommodating the battery 

impedance with a Genetic algorithm. Since aging is also 

considered in the model, UVP has good performance 

throughout the lifespan of the battery. The results show that 

UVP enhances the lifespan by a 275% increment. The 

difference between VCD and UVP is that VCD uses the 

empirical equations to shorten the charging time while 

minimizing the impact on lifespan. UVP intends to provide a 

universal charging protocol that is independent on aging while 

maximizing efficiency in a designated charging time frame. In 

[71], a Constant Temperature-Constant Voltage (CT-CV) 

charging technique is proposed. The CT phase includes a CC 

phase and an exponential decay phase, in which the charging 

current is adjusted dynamically with a PID controller to keep 

the cell temperature below the predefined threshold while 

optimizing the charging current. The proposed CT-CV 

approach achieves an 18% charging time reduction.  

Due to the simplicity of the ECM model, some approaches 

have been developed into customized chargers. In [196], a 

voltage pulse charger is developed. The average charge current 

is derived with (27). It is believed that by maximizing the ioDn, 

both the charging speed and charge efficiency can be improved.  

 
2

, ,
2

b n o n n

T
i k i D


=     (27) 

where k is a constant, T is the period of the pulse. io,n is the 

exchange current density with duty Dn and τ is the transfer time 

constant. 

In the experiment, the charging process is divided into full-

charge detection mode, sense mode, and charge mode. The 

optimized duty ratio is determined during the sense mode and 

applied in charge mode. The results show that both charging 

speed and charge efficiency are improved compared with CC-

CV charging by about 14% and 3.4%, respectively. Similarly, 

optimization of the pulse frequency is studied in [197] where 

the pulse frequency is varied so that the battery is charged in the 

minimum impedance regime. It shows that the charging speed 

of the proposed method is improved by 24% compared with 

CC-CV charging. Both frequency and duty ratio are considered 

in [198] where a pulse-based fast Internet of Thing charger is 

designed for multiple distributed battery cells. Compared with 

CC-CV, the proposed charging method achieves an 18.6% 

charging time reduction with a 3°C temperature increment.  

Besides the pulse chargers, compact microchips have also 

been developed to improve the CC-CV charging speed. These 

chargers focus on the compensation of voltage drop VBiR across 

the Built-in Resistance (BiR) [199-201]. The BiR includes 

external resistance from contacts, fuses, trace wires in the 

printed circuit board, and the internal resistance of the battery. 

Due to the voltage drop VBiR, CC charging phase is shortened 

which extends the CV charging phase and consequently 

expands the overall charging time. By continuously detecting 

the BiR and compensating VBiR with the appropriate transition 

voltage from CC to CV, the charging time in [199], [200], and 

[201] reduces 45%, 17.1%, and 13.5%, respectively. Authors in 

[202] go one step further by studying the impact of different 

compensation rates (0% to 100%) on temperature. 100% means 

full compensation of VBiR and 0% means no compensation 

which also equals conventional CC-CV. It shows a higher 

compensation rate leads to faster charging but introduces high 

battery temperature which causes fast aging. Forced ventilation 

is required to balance the charging speed and temperature rise.  

In general, since ECM is concise and provides a good 

reflection of the electrical characteristics of the battery, it is 

favored for charging optimization in both research and practical 

application. The major challenge of this is the online 
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optimization for the nonlinear ECM model. Overall, as 

summarized in Table VII Comparison of ECM and ECM+EtM 

model-based approaches, the ECM model with GA 

optimization in [50] shows the best performance regarding 

lifespan extension, 275%. The fast charging time is achieved 

with BiR compensation in [202], however, the lifespan reduces 

about 77.8%.

TABLE VII Comparison of ECM and ECM+EtM model-based approaches 

Ref. Battery type Model Optimization approach tChg TBat ηC Lifespan 

[50] LCO+NMC ECM Genetic algorithm NA NA +1% +275% 

[70] NCA ECM+EtM PSO -43.4% +0.6°C NA -4.8% 

[71] NCA ECM+EtM PID -18.2% -1.9°C NA NA 

[72] LFP ECM+EtM mOBGG +1.7% NA NA +5.2% 

[200] NA ECM BiR compensation -17.1% NA NA NA 

[194] LiMn2O4 ECM Fuzzy control +33.3% +6°C NA +2% 

[196] NA ECM  NA -14% NA 3.4% NA 

[201] NA ECM NA -13.5% NA NA NA 

[202] LFP ECM BiR compensation -47.9% +11°C NA -77.8% 

NA: No information or not applicable.  

2) EcM and EcM+EtM based approaches 

The superiority of EcM based approaches is that it reveals 

the battery's physical properties. Hence, many works spring up 

to exploit the EcM regarding fast [56, 57, 60, 62, 203-207] and 

health-conscious charging [57, 60, 62, 203-207] of LIB. In [56], 

a P2D model-based approach is leveraged to minimize the 

charging time. Quadratic Dynamic Matrix Control (QDMC) is 

improved to solve the multi-input multi-output optimization 

problem. In this approach, hard constraints are placed for the 

input parameters and soft constraints are used for output 

parameters to maximize the performance. The results show that 

charging time reduces by 34.3%.  

Besides fast charging, the prevention of the major AMs – 

lithium deposition [57, 60, 62, 203-207] and side reaction [57] 

– have also been studied. In [60, 203], the 1-D EcM model is 

simulated in a closed-loop fashion to suppress the lithium 

disposition. Following the modeling, different optimization 

approaches are applied. Illustratively, Pontryagin's principle is 

used in [203], while nonlinear MPC is applied in [60]. The 

results show that the charging time is reduced by 11.9% and 

50%, respectively. However, the battery temperature increases 

by 15°C in [60]. It should be pointed out that only simulation is 

carried out in [56, 60, 203]. 

The EcM-based approaches have been verified with 

experimental tests in [57, 62, 204, 207]. In [57], the linear time-

varying MPC is applied to address the optimization considering 

thermal characteristics. The proposed charging approach could 

charge the battery in about 13min which is 22% less than CC-

CV with no extra temperature increment. In [207], a 

nondestructive charging algorithm is proposed based on a 

simplified P2D model. The fast charging algorithm measures 

the anode over-potential to determine the status of the lithium 

deposition and then the charging current is modified 

accordingly. In comparison with CC-CV, the charging capacity 

of the proposed method is 3% less, while the charging time 

reduces 26.4% with no lithium deposition. In [204], the aging 

characteristic is considered, and a dynamic programming 

method is used to address the dual-objective optimization 

problem regarding charging time and battery degradation. 

Comparisons with CC-CV, health-conscious fast charging 

reduces charging time significantly by 45.5% with negligible 

impact on lifespan. Except for suppressing lithium deposition, 

authors in [62] further facilitate lithium stripping which helps 

to recover the lost capacity. A Reduced-Order electrochemical 

Model (ROM) is proposed by considering both lithium 

deposition and lithium stripping. The results are used to guide 

the selection of negative pulses to stimulate lithium stripping. 

The proposed method is able to reduce the charging time by 

11.4%, with a drastic improvement in lifespan by 12.9%.  

Table VIII Comparison of EcM and EcM+EtM based approaches 

Ref. Battery type Model Optimization approach AM tChg TBat(°C) Lifespan 

[56] Simulation only P2D QDMC NA -34.3% NA NA 

[60] Simulation only 1D-EcM nonlinear MPC Lithium deposition -50% +15 NA 

[62] NA ROM NA Side reaction & Lithium deposition  -11.4% NA +12.9% 

[57] LFP SPM linear time-varying MPC Lithium deposition -22% 0 NA 

[203] LOC - simulation 1D EcM Pontryagin's principle  Lithium deposition -11.9% NA NA 

[204] LFP SPM Dynamic programming Lithium deposition -45.5% NA -1% 

[207] NMC Simplified P2D NA Lithium deposition  -26.4% NA NA 

    NA: No information or not applicable. 

Apart from the major AMs, some specific characteristics like 

stress [136] and cell design [153] have also been investigated. 

In [136], a nonlinear current charging approach is investigated 

where the current decays exponentially. An EcM is developed 

to optimize the charging profile and limit the charging stresses. 

The proposed charging protocol has superior performance 

compared with MCC.  

Table VIII compares the performance of these approaches. 

Due to the complexity of the EcM model, some proposed 

models are only tested in simulation. Among these simulation 

research, the best performance is obtained with 1D-EcM in [60] 

where the charging time plunges by 50%, the highest among all 

the studies. However, this also introduces 15°C temperature 

rise. The best experimental performance is captured with SPM 

in [204] where the charging time declines drastically by 45.5%. 

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 08:47:36 UTC from IEEE Xplore.  Restrictions apply. 



2332-7782 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TTE.2021.3135525, IEEE
Transactions on Transportation Electrification

15 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

The longest lifespan, 12.9% increment, is achieved with ROM 

in [59]. It should be pointed out that there are only limited data 

regarding temperature and lifespan.  

3) EtM based approach 

The EtM has also been used to optimize the charging of LIB. 

In [137], the charging process is divided into ten steps 

according to the SoC level. The charging current is optimized 

according to charging time and the temperature rise. The 

temperature rise is estimated by a proposed enhanced thermal 

model. The optimization process is implemented with a Genetic 

algorithm by considering: 

 
( , ) ( ) ( )

1

F t T f t f T 

 

 = + 


+ =
 (28) 

where t is the charging time, ∆T is the temperature rise, α and ꞵ 

are the weight coefficients.  

Moreover, various combinations of weighting coefficients 

are investigated. The optimized charging profile accelerates the 

charging speed by 7.6% with a similar temperature rise 

compared with CC-CV.  

B. Data-driven approaches 

Data-driven approaches, which treat the battery as a black-

box system, have been widely explored in recent years for both 

the production and management of LIBs. A powerful 

framework has been proposed to quantify the feature 

importance of interpretable machine learning, which well 

benefits battery smart manufacturing [208]. With respect to the 

charge control, typically, a database comprising different 

charging actions and the corresponding performance is 

measured and analyzed, and afterward, the optimized strategy 

can be extracted with suitable algorithms. In [209, 210], data-

driven approaches are proposed for the optimization of the 

MCC charging. In [209], the PSO-based Fuzzy control 

approach is derived. The results show that charging time, life 

cycle, and charge efficiency are ameliorated by 56.8%, 21%, 

and 0.4%. A machine learning approach is proposed in [210] to 

optimize the MCC approach aiming to reduce the experimental 

effort. In this work, an early prediction model is applied which 

could predict the end of life cycle number of a battery with only 

the first 100-life-cycle data and thus reduces the time of each 

experiment by 80%-90%. Along with the prediction model, a 

Bayesian optimization approach is proposed to estimate and 

explore among all the protocols and output only the potential 

superior ones, which has a longer lifespan. In this research, only 

107 protocols, out of 224, need to be accessed to recognize the 

best ones. While it should be noted pre-tests are required, in this 

case, there are datasets from 41 batteries cycled to failure. 

In [211], extensive tests are carried out with LIBs at different 

depths of discharge, currents, and temperatures. With a large 

amount of data, a battery aging model is formulated with the 

help of piecewise linear functions and a recursive Douglas 

Peucker line simplification algorithm. This data-driven aging 

model is then applied for ChgOp. The results show that there is 

a 6.39% improvement regarding battery degradation with the 

proposed approach and it brings financial benefit.  

Most recently, Reinforcement Learning (RL), which is an 

emerging technique targeted for solving high-dimensional and 

complex optimization problems, has been introduced for LIB 

fast charging control. A representative work is reported in 

[212], where an electro-thermal-aging coupled model is built to 

describe the multi-physics property of LIB during high C-rate 

charging. Leveraging the model, a Deep Reinforcement 

Learning (DRL) strategy is trained offline and subsequently 

applied for online ChgOp, with considerations of the charging 

speed, the thermal safety (temperature build-up), and aging 

protection. A general framework of the proposed DRL-based 

fast charging strategy is shown schematically in Fig. 11. The 

illustrated strategy has been validated by both short-term 

charging experiments and long-term aging tests. Experimental 

results suggest that the LIB can be fully charged within 926s 

without violating the physical constraints by using the DRL 

strategy. Compared to the 6C CCCV strategy, the DRL strategy 

extends the LIB lifetime by 14.8% with an equivalent charging 

speed.  

Within a similar RL-based framework, the EcM has been 

used for the fast charging of LIB in [213, 214]. The merit of 

such a deep RL-based strategy is rooted in the fact that the 

complicated optimization process is transmitted to the offline 

training stage, and the trained policy can be implemented in 

real-time attributed to the low computational demand. The use 

of RL for complex system optimization has also been explored 

in other relevant fields, like the energy management of hybrid 

electric vehicles [215, 216]. It is worth noting that such RL-

based techniques can work without battery modeling, provided 

that sufficient real-world charging data are available to support 

the exploration process of RL. Furthermore, such strategies will 

better show their merits within the digital twin or cloud-based 

architecture, where the charging policy can be updated within 

the cloud using the incoming charging information, while the 

generated policy is used to guide the charging of the battery. 

 
Fig. 12 DRL-enabled fast charging strategy. 

It can be noted that a large amount of data is required in data-

driven approaches. This consumes not only a large amount of 

computation power but also additional time to collect the data. 

However, since data-driven approaches treat the battery as a 

black-box system, it decreases the requirement of professional 

knowledge for instance battery chemistry. In addition, unlike 

model-based approaches, indicators in data-driven approaches 
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could reflect the battery characteristics but do not have any 

physical meaning. Even though the parameters in model-based 

approaches could closely link with the physical characteristics, 

the extrication of these parameters is difficult especially for the 

electrochemical model where a series of reactions happens 

simultaneously. Furthermore, since the battery is a nonlinear 

system, the parameters extracted are often restricted to certain 

operating conditions and have limited scalability. 

VI. OUTLOOK 

Although numerous efforts have been made on the fast-

charging control and optimization, further improvements are 

desired in the following issues. 

Multi-physics coupled model is preferred for 

comprehensively considering the internal mechanism during 

charging progress. With the help of a multi-physics coupled 

model, we could monitor the undesired safety-related reactions 

like lithium deposition [217-221]. Generally, the battery model 

will become more complicated while describing more physical 

phenomena. As a result, developing a simplified multi-physics 

coupled model which can improve the computation efficiency 

without sacrificing accuracy is a constant pursuit. Chu et al. 

propose a reduced-order electrochemical model to reduce the 

computational complexity [219]. A decomposed electrode 

model based on the equivalent circuit model is used to prevent 

lithium deposition during fast charging [220]. A real-time 

anode potential estimation is achieved by the novel model with 

low complexity. The transmission line model can be considered 

as a kind of physics-based equivalent circuit model that can 

describe the charge transfer and ion diffusion process [221].  

Multi-physics constrained charging control strategy can be 

developed prosperously under the improvement of the multi-

physics coupled model. For instance, coupled with an anode 

potential model, the lithium deposition reaction can be limited 

during fast charging [220]. In addition, online detection 

methods can provide another way to constrain crucial side 

reactions. A new method of lithium deposition onset detection 

during fast charging is proposed using operando 

electrochemical impedance spectroscopy [222]. The online 

analysis of the voltage relaxation profile also can be used to 

detect the onset of lithium deposition [223]. This detection 

method is used for the development of plating-free charging 

strategies at low temperatures. More online detection method is 

preferred to realize the multi-physics constrained control 

strategy. 

With the development of machine learning, data-driven 

machine learning is widely used in the field including 

modeling, state estimation, and optimization. Furthermore, 

machine learning can also be used for optimal charging. A 

closed-loop optimization of fast charging protocols is proposed 

using machine learning [210]. In this approach, high cycle life 

charging protocols are identified by predicting the final cycle 

life using data from the first few cycles. A DRL-based 

optimizer is proposed to provide a LIB fast charging solution 

[212]. In addition, modeling and state estimation based on 

machine learning can improve the optimal charging strategies. 

For instance, purely physics-based models and purely data-

driven models have advantages and limitations of their own and 

combining physics-based and machine learning models can 

leverage their respective strengths [224, 225]. Several possible 

integration architectures are outlined in [226] for physics-based 

and machine learning models. 

VII. CONCLUSION 

The long charging time hampers the broad acceptance of 

electric vehicles. The optimization of the charging process has 

been studied vastly over the last decade. This paper aims to 

promote the optimization approaches by a comprehensive 

review. At first, this paper explains the principles of lithium-ion 

battery charging including battery operation mechanism, 

simulation models, and aging mechanisms. This lays a solid 

foundation and also answers the question of why charging 

optimization is essential. Then, the structure of charging 

optimization approaches is formed which to the authors' 

knowledge is the first of its kind. According to this structure, 

researches is clustered as open- and closed-loop optimization 

approaches. Some major conclusions are summarized as 

follows. 

The open-loop charging optimization is characterized by 

profile-based approaches, like boost charging, multi-stage 

constant current charging, pulse/sinusoidal wave charging. The 

multi-stage constant current charging shows to be promising 

concerning the presented testing results. However, only part of 

the critical objectives like charging time reduction and battery 

temperature regulation are focused on in most of the works. 

Extra concerns such as charge efficiency, safety degradation, 

and aging should be taken into account in the future.  

The closed-loop optimizations are categorized as model-

based approaches and data-driven approaches. The model-

based closed-loop charging optimization approaches are 

promising considering the merits of environmental adaptive 

property. However, high-fidelity modeling is the prerequisite. 

Electrical equivalent circuit models coupled with electro-

thermal models can be a preferable solution even though they 

can only reflect very limited physical characteristics. 

Electrochemical model-based approaches remedy this 

deficiency, but are generally computation-intensive and not 

suitable for real-time applications. Closed-loop charging 

approaches with awareness of multiple mechanisms, especially 

for the aging, and feasible for real-time application is critical 

but still an open issue.  

Data-driven approaches are emerging due to the blooming of 

data science. In these approaches, the battery is treated as a 

black box, which leaves out the complexity caused by the 

models and could be applied online. The main controversial 

point is the application of pre-tests. Even though there is limited 

research about data-driven approaches so far, the data-driven 

approaches can appeal for future deployment concerning the 

unique advantages over model-based ones. 
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In conclusion, the principal knowledge of multi-physics in 

lithium-ion batteries is a prerequisite for model-based charging 

optimization approaches. To this point, the coupling of models 

describing multiple processes is preferable considering the 

intrinsic multi-constrained property of charging optimization 

problems. Besides, since aging characteristics also vary with 

operating conditions and the type of the battery, enhanced 

electrochemical models which could reflect aging 

characteristics are of paramount importance. Furthermore, as 

the electrochemical models are generally computational 

intensive, there is currently only limited research that considers 

the influence of aging for online/real-time applications. Data-

driven approaches could be applied for online/ real-time 

applications. However, indicators in data-driven approaches do 

not have physical meanings, thus it is challenging for 

interpretation. In the future, the exploration of control-oriented, 

multi-physics aware yet computationally affordable models are 

the key task.  

VIII. GLOSSARY 

Abbre

viation 
Explanation 

Abbre

viation 
Explanation 

AM Aging Mechanism LIB Lithium-ion Battery 

BEV 
Battery Electric 

Vehicle 
MCC 

Multi-stage Constant 

Current charging 

BiR Built-in Resistance 
mOBG

G 

multi-Objective 

Biogeography-based 

Optimization 

CC-

CV 

Constant Current-

Constant Voltage 
MPC Model Predictive Control 

CCS 
Combined Charging 

System 
NCA 

Lithium Nickel Cobalt 

Aluminum Oxide 

CEI 
Cathode-Electrolyte 

Interphase 
NMC 

Lithium Nickel Manganese 

Cobalt Oxide 

ChgOp 
Charging 

Optimization 
P2D Pseudo-two-Dimensional 

CP-

CV 

Constant Power-

Constant Voltage 
PSO Particle Swarm Optimizer 

CT-

CV 

Constant 

Temperature-

Constant Voltage 

PW Pulse Wave 

DMC Dimethyl Carbonate 
QDM

C 

Quadratic Dynamic Matrix 

Control 

DRL 
Deep Reinforcement 

Learning 
RL Reinforcement Learning 

EC Ethylene Carbonate ROM 
reduced-order 

electrochemical model 

EcM 
Electrochemical 

Model 
SEI Solid Electrolyte Interphase 

ECM 
Electrical Equivalent 

Circuit Model 
SoC State of Charge 

XFC 
Extreme Fast 

Charging 
SoH State of Health 

EtM 
Electro-thermal 

Model 
SPM Single-Particle Model 

EV Electric Vehicles SW Sinusoidal Wave 

LCO Lithium Cobalt Oxide UVP 
Universal Voltage Control 

Protocol 

LFP 
Lithium Iron 

Phosphate 
VCD Varying Current Decay 
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