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Abstract

Beer is one of the oldest beverages of our civilization. The history of brewing science
has produced numerous avant-garde developments and discoveries. The economic,
cultural and social relevance of beer and brewing science has endured to this day. As
a beverage that has accompanied mankind for thousands of years, its safety, quality
and (molecular) characteristics have continuously been of considerable interest.
Especially with the ever-increasing scale and technical ramifications of food supply
networks, the food production process is becoming more complex to guide and more
vulnerable to fraud. Considering the quality control and inspection of foodstuff,
approaches that integrate and evaluate numerous analytical data (‘big data’) are of
increasing importance. One of the major fields of the analytical spectrum that
addresses this challenge, and under whose aegis this work stands, is the
comprehensive analysis and molecular characterization of the metabolome – known
as metabolomics.

 The basis of this work is the combination of complementary analytical
approaches, with a focus on (ultra)high-resolution mass spectrometric techniques. It
opens the possibility to make visible and decompose the molecular diversity of what
characterizes a beer. Mass spectrometric methods, statistical and molecular network
data analysis strategies were developed to utilize the unrivaled mass resolution and
accuracy associated with high-field Fourier transform ion cyclotron mass
spectrometry (FT-ICR-MS). The view into a comprehensive and holistic overall picture
of beer’s molecular composition and complexity has been integrated into the field of
brewing science as a novelty. It was made possible to unravel numerous deep
molecular profiles of different brewing raw materials and process parameters. By
complementary liquid chromatography-coupled time of flight mass spectrometry
(UPLC-ToF-MS), the FT-ICR-MS-based compositional information and networks
were confirmed. The dimension of isomer separation and compound identification
could be addressed. The potential of this methodology for basic research of the
complex brewing process, process guidance and quality control is highlighted in this
thesis.

The intrinsic metabolite signatures associated with the brewing styles of
different beers were uncovered and visualized in van Krevelen diagrams and mass
difference networks. Statistical data analysis (HCA, PCA, PLS) revealed the molecular
similarities between beers of the same type of brewing, including molecular
fingerprints of individual breweries. The diverse selection of the up-and-coming ‘craft
beers’ finds its common ground in the cold hopping process and the previously
hidden large number of the associated highly oxygenated hop compounds. Wheat
beers derive their particular compositional characteristics from the eponymous raw
material. A network of potential phytoanticipine secondary metabolites of wheat,
namely benoxazinone derivatives, showed a molecular imprint specific for the wheat
grain. Several compounds of this group, including hitherto unknowns, were identified
in the beer matrix.



Based on the ability of FT-ICR-MS to comprehensively detect composition
signatures, the complex Maillard reaction was tackled. Thousands of unambiguous
molecular formulae were assigned to respective mass signals. The compositional
space of Maillard reaction-derived compounds could be identified as one of the
driving forces of beer’s molecular diversity, leading to key compositional changes.
The molecular signature of the reaction of amino compounds and carbonyls pervades
over 2,800 (40%) of all resolved small molecules. Their shared systematic nature was
made visible. Validated by an experimental Maillard reaction model system, the major
typical compositional changes were investigated by mass difference network
analysis. Molecular networking resulted in general reaction sequences that were
assigned to successive Maillard intermediate phase reactions by shortest path
analysis. These findings contribute to a better understanding of the complex
molecular processes involved in the Maillard reaction and might be a starting point
for potential process development and quality control in both the malting and brewing
industry.

Against the background of the historical German Purity Law, the influence of
corn and rice starch sources on the metabolic signature of the final beer product was
investigated. Utilizing the holistic analytical approach, both polar and non-polar
metabolites were traced back to the respective starch sources and set into relation
by molecular networking. The few corn-specific compounds in beer described in the
1990s could be confirmed. Those secondary metabolites were embedded in
molecular networks that offer a whole compositional signature of related molecules
for the grain adjunct. Further potential analytical markers of the lipid compound class
were described. Such a compositional pattern that indicates plant secondary
metabolites was found accordingly also for rice as a starch source. Ultimately, the
aspartic acid conjugate of N-β-D-glucopyronosyl-indol-3-acetic acid represents an
identified potential marker for the hitherto unknown molecular signature of rice in
beer. The majority of decisive compounds, screened in foodstuff, were already found
in the corresponding raw materials and survive the entire brewing process.

These investigations built a deep base of knowledge about the beer’s
metabolome. The characteristic chemical profiles made it possible to describe and
trace the nature of a 130-year-old historical beer. The beer, dated to the German
Empire era, was recently found in northern Germany. Its chemical composition
represents a unique source of brewing culture at the end of the 19th century when
pioneer innovations laid the foundations for modern industrial brewing.
Complementary analytical approaches, including comprehensive metabolite profiling
by means of DI-FT-ICR-MS, LC-ToF-MS, and NMR, revealed its compositional profile
and unprecedented good storage condition. By chemometric comparison with 400
modern brews, metabolite profiles and markers allowed to conclude a typical lager
beer which was brewed according to the Bavarian Purity Law applicable at that time.
It was subject to bottom-fermentation even though industrial production with
accordant yeasts was still under early development. Further critical production steps
of the brewing process could be recreated. Technological aspects of the brewing
culture in the late 19th century like grain and wort processing left molecular imprints
visible in the beer’s metabolome. Both the efficient germ removal and optimization of



wort’s pH by lactic acidification were not yet established. An exhaustive filtration
process enabled long-term storage without microbial spoilage. Lacking disrupting
biochemical influences, the beer represents a unique source of decades of persistent
chemical alterations in such a sealed mixture of organic complexity. Ravages of time
lead to oxidative polyphenol sedimentation, an unknown diversity of oxidized hop
bitter acid derivatives and concentrations of Maillard reaction markers like HMF and
furfural far exceeding what previous brewing literature described.



Zusammenfassung

Bier ist eines der ältesten Getränke unserer Zivilisation. Die Geschichte seiner
Erforschung hat zahlreiche avantgardistische Entdeckungen und Entwicklungen
hervorgebracht. Der wirtschaftliche, soziale und kulturelle Wert des Bieres und der
Brauforschung hat bis heute Bestand. Die Menschheit über tausende Jahre hinweg
begleitend, sind seine Qualität und  (molekulare) Charakteristik von entscheidender
Bedeutung. Gerade mit dem stetig steigenden Maßstab der Lebensmittelproduktion
und der Verflechtung von Versorgungsnetzwerken wird das Steuern der
Lebensmittelproduktion immer komplexer und anfälliger für Betrugsversuche. Im
Hinblick auf die Qualitätskontrolle von Lebensmitteln gewinnen Ansätze, die
zahlreiche analytische Daten integrieren und auswerten (‘big data‘), zunehmend an
Bedeutung. Eines der großen Felder des analytischen Spektrums, das diese
Herausforderung angeht und unter dessen Stern diese Arbeit steht, ist die molekulare
Charakterisierung und umfassende, holistische Analyse des Metaboloms – bekannt
als Metabolomik.

 Die Grundlage dieser Arbeit bildet die Kombination von komplementären
analytischen Methoden, mit dem Fokus auf (ultra)hochauflösende
massenspektrometrische Techniken. Sie ermöglicht es, die molekulare Vielfalt
dessen, was das Bier ausmacht, sichtbar zu machen und zu beschreiben. Dabei
wurden massenspektrometrische und statistische Methoden sowie Strategien zur
Analyse molekularer Netzwerke entwickelt, um die Massenauflösung
und -genauigkeit der Hochfeld-Fourier-Transformations-Ionenzyklotron-
Massenspektrometrie (FT-ICR-MS) nutzbar zu machen. Der Blick auf ein
erschöpfendes und holistisches Gesamtbild der molekularen Zusammensetzung und
Komplexität wurde in dem Feld der Brauforschung etabliert. So war es möglich
zahlreiche metabolische Profile verschiedener Braurohstoffe und -parameter
aufzuklären und damit ihren Einfluss auf das Endprodukt. Durch komplementäre
Flugzeit-Massenspektrometrie, gekoppelt mit Flüssigkeitschromatographie,
(UPLC-ToF-MS) konnten die gefundenen FT-ICR-MS-basierten molekularen
Netzwerke bestätigt werden, die Dimension der Isomerentrennung und der
Strukturidentifizierung ergänzt werden. Das Potenzial dieser Methodik für die
Grundlagenforschung des komplexen Brauprozesses, seiner Steuerung und
Qualitätskontrolle konnte aufgezeigt werden.

Die intrinsische molekulare Signatur, die mit den Brauweisen verschiedener
Biersorten einhergehen, konnte aufgedeckt und durch Visualisierung der
Metabolomdaten in van Krevelen Diagrammen und Massendifferenznetzwerken
sichtbar gemacht werden. Durch statistische Datenanalyse (HCA, PCA, OPLS)
konnten die Gemeinsamkeiten der Biere gleicher Brauart herausgearbeitet werden,
bis hin zu molekularen Fingerabdrücken einzelner Brauereien. Die Vielfalt der
aufstrebenden ‘Craftbiere‘ findet im Kalthopfungsprozess und der bislang
unentdeckten Vielzahl der damit einhergehenden hochoxigenierten
Hopfenbestandteile ihre Gemeinsamkeit. Weizenbiere beziehen ihre besondere



molekulare Charakteristik von ihrem namensgebenden Rohstoff. Ein Netzwerk aus
potentiellen Sekundärmetaboliten des Weizens (Phytoanticipine), namentlich
Benzoxazinon-Derivate, zeigte sich als charakteristisch. Einige dieser Verbindungen,
einschließlich bislang unbekannten, konnten in der Biermatrix identifiziert werden.

Basierend auf der Eigenschaft der FT-ICR-MS, Signaturen von molekularen
Zusammensetzungen umfassend zu detektieren, wurde die komplexe Maillard-
Reaktion untersucht. Tausenden Massensignalen konnten eindeutige
Summenformeln zugeordnet werden. Die Maillard-Reaktion, die zu bedeutenden
Veränderungen der molekularen Zusammensetzung des Bieres führt, konnten als
treibende Kraft für die molekulare Diversität des Bieres herausgestellt werden. Die
systematische Natur dieser Reaktionsprodukte, deren spezifische Signatur über
2.800 (40%) aller kleinen Moleküle des Bieres einschließen, wurde sichtbar gemacht.
Durch ein experimentelles Maillard-Reaktions-Model validiert, wurden die
wesentlichen Änderungen in der molekularen Zusammensetzung analysiert.
Molekulare Netzwerke zeigten allgemeine Reaktionssequenzen auf, die durch die
Bestimmung der kürzesten Pfade in aufeinanderfolgende Reaktionen der
Maillard-Zwischenphase zugeordnet wurden. Diese Erkenntnisse tragen zu einem
besseren Verständnis der komplexen molekularen Prozesse bei, die an der Maillard-
Reaktion beteiligt sind. Sie sind ein potenzieller Ausgangspunkt für eine
Weiterentwicklung von Prozessschritten und Qualitätskontrolle in der Mälz- und
Brauindustrie.

Vor dem Hintergrund des historischen Deutschen Reinheitsgebots wurden
der Einfluss von Mais und Reis als Stärkequelle auf die Signatur des Biermetaboloms
untersucht. Den holistischen analytischen Ansatz nutzend konnten sowohl polare als
auch unpolare Metabolite auf die entsprechenden Stärkequellen zurückgeführt und
ihre strukturelle Ähnlichkeit über molekulare Netzwerke beschrieben werden. Die
wenigen bekannten Mais-spezifische Verbindungen im Bier, die in den 1990er Jahren
beschrieben wurden, konnten bestätigt werden. Diese Sekundärmetabolite wurden in
molekularen Netzwerken eingebunden und bildeten damit einen Teil einer
umfassenden molekularen Signatur von verwandten Verbindungen des Getreides. Als
Lipide klassifizierte Bestandteile wurden als weitere potenzielle analytische Marker
beschrieben. Ein solcher molekularer Fingerabdruck, der
Pflanzensekundärmetabolite umfasst, wurde ebenso für Reis als Stärkequelle
gefunden. Letztlich wurde das Asparaginsäure-Konjugat der
N-β-D-Glucopyronosyl-indol-3-Essigsäure als potenzielle Markerverbindung für die
bislang unbekannte molekulare Signatur von Reis in Bier gefunden. Der Großteil aller
beschriebenen Verbindungen wurde bei der Analyse von weiteren Lebensmitteln
bereits in den entsprechenden Rohstoffen gefunden.

Diese Untersuchungen bildeten eine fundierte Wissensgrundlage über das
Metabolom des Bieres. Die grundlegenden charakteristischen chemischen Profile
ermöglichten es, die Natur eines historischen über 130 Jahre alten Bieres zu
beschreiben und zurückzuverfolgen. Dieses Bier, das aus der Deutschen Kaiserzeit
stammt, wurde in Lübbecke im Norden Deutschlands gefunden. Seine chemische
Zusammensetzung stellt eine einzigartige Quelle der Braukultur im späten 19.



Jahrhundert dar, als Erfindungen von Pionieren die Grundlage des industriellen
Brauens legten. Komplementäre analytische Methoden wie DI-FT-ICR-MS, LC-ToF-
MS und NMR enthüllten seine molekulare Zusammensetzung und beispiellos guten
Lagerzustand. Der chemometrische Vergleich mit 400 modernen Bieren zeigte die
Signatur eines typischen Lagerbieres auf, das nach dem damals gültigen
Reinheitsgebot gebraut wurde. Das Bier wurde durch untergärige Fermentation
hergestellt, zu einer Zeit, in der das industrielle Brauen mit entsprechenden Hefen in
seinen Anfängen stand. Weitere Produktionsschritte des Brauprozesses konnten
nachverfolgt werden. Technologische Aspekte des 19. Jahrhunderts wie die
Getreideverarbeitung und Würzebereitung hinterließen molekulare Abdrücke im
Biermetabolom. Sowohl die effiziente Entfernung des Keimlings, als auch die
Optimierung des pH-Wertes der Würze durch laktische Ansäuerung waren noch nicht
etabliert. Ein umfassender Filtrationsprozess ermöglichte die lange Lagerzeit ohne
mikrobiellen Befall. Ohne diese biochemischen Einflüsse stellt das historische Bier
eine einzigartige Quelle hinsichtlich Jahrzehnte lang ablaufender chemischer
Veränderungen in einem solchen versiegelten Gemisch molekularer Komplexität dar.
Der Zahn der Zeit resultierte in der oxidativen Ablagerung von Polyphenolen, einer
bislang unbekannten Vielfalt an oxidierten Hopfenbittersäurederivaten und
Konzentrationen von Maillard-Reaktionsprodukten wie HMF und Furfural, die weit
über das hinausgehen, was in der bisherigen Brauliteratur beschrieben wurde.
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Chapter 1 |
General Introduction and Analytical Approach

1.1 Metabolomics

1.1.1 Origin and conceptuality

Origin. The origin of the comprehensive analysis of metabolites lies in the
Metabolic Control Analysis (MCA) founded independently by Kacser and Burns [1] and
Heinrich and Rapoport [2] in the 1970s. The control aspect referred to the enzymatic
and catalytic regulation of metabolic fluxes and concentrations in biological systems.
Enzyme activities were modulated by incremental small changes and the effect on
either the metabolite fluxes or concentrations was determined. The specific Control
Coefficients expressed the importance of one enzyme towards the regulation of a
metabolic variable in vivo. Two decades ago, Oliver, et al. [3] then coined the term of
the comprehensive analysis of the metabolome in a biological system. The focus of
their work was on the relative concentration of metabolites as a function of the
presence and expression of known genes. This reference to genetics already
represented the first bridge to the nowadays numerous existing -omics
techniques (e.g. genomics, transcriptomics, proteomics, lipidomics, fluxomics or
foodomics). The evolving term of metabolomics described the identification and
quantification of all metabolites in a given sample comprehensively [4]. The not to be
mistaken field of metabonomics was founded as the analysis of metabolic reactions
of living systems (rats) to pathophysiological stimuli (drugs) [5]. It focuses on the
history of time-related metabolic changes in coordinated substrate channels and is
traditionally connected to NMR-analytics.

Conceptuality. The analytical methods soon reached their limits when the
strict definition of true metabolomics by Fiehn [4] was tried to be met: „The resolving
power of the analytical method chosen must be high enough to maintain sensitivity,
selectivity, matrix independence, and universal applicability”. Even the sample
preparation already harbors the risk of an intrinsic bias concerning physicochemical
properties of the subset of metabolites accessible for analysis. A comprehensive
implementation is difficult to guarantee. For this reason, further terms for the analysis
of metabolites were subsequently developed, which are summarized in Table 1.1.
When the analytical approach focuses on specific small molecules, all the others are
incidental and extensive sample clean-ups are used to avoid interferences from
accompanying compounds, the term targeted analysis was suggested. When aimed
to measure a pre-defined group of biochemically characterized and interpreted
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metabolites (as a subset of the metabolome) with great sensitivity, targeted
metabolomics was established later [6]. Metabolite profiling deals with the analysis of
defined compound classes as proxies for metabolic pathways. A high-throughput
analytical approach that aims at classifying samples according to their origin or
biological relevance is called metabolic fingerprinting. Identification or quantification
of measured features is not required, even the resolution of all signals is not
mandatory as well. Both the metabolic profiling and fingerprinting later are
summarized as untargeted or non-targeted metabolomics [7,8]. Kell, et al. [9] introduced
the term metabolic footprinting for the investigation of what a cell or system excretes
under controlled conditions (exometabolome). The spectrum of accessible
metabolites is therefore crucial for the definition of the analytical approach but as well
is the level of characterization of the compounds. Regarding compound identification,
the suggestions by the Metabolomics Standards Initiative around Sumner, et al. [10]

prevailed in the metabolomics society. The authors differentiate between the
levels (1) identified by two independent and orthogonal data sets relative to an
authentic standard or a combination of MS (accurate mass, fragmentation pattern)
and NMR (1H, 13C, 2D) data at minimum (2) putative annotations with regard to the
spectral similarity in databases and libraries (3) putative characterized compound
class upon characteristic physicochemical properties or specific signals (4) unknown.
Whether all measured metabolites should be identified or only those that are of
particular interest and crucial (e.g. biomarkers) is not fully described in the true
metabolomics definition. However, a concept for identifying metabolites is mandatory
for the analytical approach chosen. The term quantification could also be weighed
up. Usually, it is connected to the specification of concentrations in SI-units but might
include semi-quantitative data with regard to detector signal units in a stable
analytical system as well.
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Table 1.1 | Terms and definitions in the field of metabolome analysis [4,8,9].

(True) Metabolomics Targeted Metabolomics

Identification and quantification of
all metabolites in a biological
sample comprehensively

· avoid exclusion of any
metabolite

· well-conceived sample
preparation

· high-resolving, sensitive
and universally applicable
analytical method

Analysis of specific, selected,
chemically characterized and
biochemically annotated metabolites

· extensive sample clean-up
possible

· (preferably) great sensitivity
· identification and

quantification

non-targeted Metabolomics

Metabolite profiling

Selected number of pre-defined
metabolites as proxies for whole
or intersecting pathways in a
biological sample

· sample clean-up specific
to a chemical group (e.g.
lipids, terpenes) possible

· identification and
quantification

Metabolic fingerprinting / footprinting

Classification of samples according to
their origin or biological relevance
with focus on the intra-systemic
(fingerprinting) or exometabolome
(footprinting)

· comprehensive feature
detection

· no identification or
quantification

· for diagnostic use in industry
or clinical routines
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Classification of DI-FT-ICR-MS. As elaborately discussed by Moritz, et al.
[11], direct-infusion Fourier transform ion cyclotron resonance mass
spectrometry (DI-FT-ICR-MS) surely enables to map the metabolome
comprehensively by unrivaled mass resolution which comes with corresponding
mass accuracy. Yet, it only provides semi-quantitative data and is somewhat
susceptible to matrix effects. It would have to be coupled to separation
techniques (which comes with a drastic decrease in performance [12]) to fulfill the
definition of metabolic profiling. DI-FT-ICR-MS on its own consequently is located
between metabolic profiling and fingerprinting. Precisely because the original concept
of metabolomics presupposes a quantification and identification (concept of
identification) of all analyzed small molecules, we avoided using it in the published
research articles. Although the term metabolomics got softened over time and the
strict definition is not consistently adhered to, we decided to use the more neutral
terms of comprehensive metabolite profiling or characterization for the analytical
approaches applied in this thesis’ research. As of 2021, the Metabolomics Society
generalizing refers to metabolomics as the “comprehensive characterization of the
small molecule metabolites in biological systems” [13].

1.1.2 The metabolome: A holistic perspective on systems’ function

Proteome research (1970s [14], term “proteomics” in 1994 [15]) and genome
research (1970s [16], term “genomics” in 1986 [17]) developed much earlier than the
rather young field of comprehensive metabolome analysis. In the early 1990s, the first
chromosome sequence was completed [18] (S. cerevisiae) and DNA sequencing was
able to define all the genes. It became evident that future research will move from
gene to function rather than from function to gene. The -omics field most closely
linked to genomics is transcriptomics [19]. It refers to the analysis of the complement
of (m)RNA molecules in a biological system and forms the transition step from gene
to protein. For the relation between genes and transcriptomes, a simple one-to-one
equivalency is a justified assumption (not considering splicing phenomena). Such a
straightforward link is not valid for the subsequent proteome due to post-translational
processing and modifications. In the case of the metabolome, the context is even
more complex. The synthesis and turnover of a single metabolite are determined by
many genes. In the early stages of the -omics concept, the way from genotype to
phenotype (Figure 1.1), where “DNA makes RNA makes protein”, suddenly stopped
at that level of macromolecules [20]. Yet, it is the metabolite profile that represents the
direct and immediate link to systems function. The direct connection to phenotypes
is the most important and most searched for property of the metabolome. Its potential
to contribute to the understanding of the molecular complexity of living systems soon
got recognized and embraced around the biological research community [4,21,22].
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With a metabolite typically being characterized as a molecule with less than
1,500 Da of mass [23], the field of metabolomics is not targeted at higher molecular
mass biopolymers like polysaccharides, polypeptides/proteins, polynucleotides or
lignins. The building blocks that form such functional and stability-giving
macromolecules and the biosynthetic cycle of those are more so in the focus of the
metabolomics approach. Apart from their importance to the primary metabolism,
small molecules fulfill critical roles that are necessary for maintaining a living system.
The regulation of a biological system is closely related to small signaling molecules
and secondary metabolites. Metabolomics aims at resolving and setting in relation
the extensive network of biochemical interactions the metabolome encompasses.
Still, the ability to map and visualize all small molecules of just one given organism
remains a vision for the future. Not considering side-streams and side products, the
comparatively simple core carbohydrate metabolism comprises over 50 chemical
compounds (mediated by over 100 enzymes) [24]. The mechanisms and interactions of
all metabolites and their flow in the cycle become vastly complex when the
connection points of the numerous compounds with other metabolic cycles and the
secondary metabolism (with all its possible derivatives) are considered. In total, the
diversity of the human and plant metabolome is expected to far exceed 100,000 and
200,000 metabolites respectively [25,26] (first thoughts stipulated around 600 for
yeast [20]).

In a living biological environment, all the organisms involved exchange
metabolites and interact, e.g. concerning food intake [27] and human microbiome [28].
The result is an enormously complex picture, which in its entirety leads to the
accumulation and change of biomass. To envision the full complexity of the metabolic
flux and dynamic balance gets almost intractably challenging when the interaction
and cooperation of the observed organism with its surrounding biosystem and
environment are included. As a part of the -omics techniques aiming to describe
systems biology, metabolomics approaches lead to better understanding and
characterization of biological systems from a holistic perspective. Because technical

Figure 1.1 | From the
genome to phenotypes.
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limitations still exist and systems are extremely difficult to be described in all possible
dynamics, metabolomics largely is applied to the description of individual metabolic
reactions and the role of different pathways to certain stimuli and criteria (e.g. drugs,
stress, environment, food, phenotypes and diseases). All those essential puzzle
pieces eventually form the big picture.

1.1.3 Fields of application

Following the ‘from gene to function’-concept, the first metabolome researches
focused on the idea that the role of genes of unknown function should be elucidated
by comparing the metabolomes of deletion mutants. This concept was established
as the “guilt by association”-principle [29]. Such studies were carried out
predominantly concerning yeast mutants analysis (FANCY, Functional analysis by co-
responses in yeast [30,31]) before moving to the metabolites excreted to the growth
media [32] (metabolic footprinting) by NMR analysis and bacterial cell [33] or foodstuff [34]

specification utilizing DI-MS data (metabolic fingerprinting). The main important
outcome of these studies was the proof of principle, opening the field of
metabolomics to e.g. plant biologists [4,21,22] and medical research [35,36]. In their review
articles, Kell and Oliver [20] and Alseekh and Fernie [25] describe the extensive
developments that followed: Improving technologies and strategies like 13C-labeling
for flux-analysis [37], integrating community approaches [38], quality standards and
comparison [10,39,40], uniform structural descriptors (SMILES [41], InChI [42]) , single-cell
analysis [43], further automation [44], improvements in instrumental resolution [12], and in
artificial intelligence (AI) implementation [45]. The concept of metabolomics paved its
way into all fields of life sciences. Regardless of the field of application, metabolomic
research shares one characteristic that reflects the holistic approach and may lead to
the discovery of unexpected relations: It is focused on questions, not hypotheses.

Plant sciences. Probably the oldest field of the comprehensive analysis of
small molecules is plant metabolomic studies. The world of the plant metabolome
offers what presumably is the largest and most complex surface when a single
organism is targeted. A comprehensive summary of strategies and achievements can
be found elsewhere [46], yet a few targets of the numerous studies should be
mentioned. The influence of the metabolome on plant or rather fruit/crop yield [47],
quality [48] or shelf life [49] was examined. Questions were asked about new biochemical
pathways [50] or the development and ripening process of fruits and crops [51].
Genotypes can be selected with regard to their nutritional composition [52,53] and
stress tolerance [54,55] on basis of molecular descriptors. It opens many possibilities
against the background of changing climates and therefore changing abiotic and
biotic stresses. In addition to the climatic impact, the geographical sphere also has a
significant influence on the metabolic composition of the plant [56,57]. This leads to
another field of application, the environmental studies.
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Environmental sciences. Environmental metabolomics deals with the
comprehensive description of metabolites involved in the interactions of organisms
within their environment or of the environmental system as a whole [58]. It ranges from
understanding organismal responses to biotic or abiotic pressures to the holistic
chemical description of an environmental system itself. Metabolic characteristics and
regulatory reactions concerning special environmental conditions were well described
for various organisms (within species) for low-temperature ecotypes [59], heat stress
hardening [60], draught metabolic adaption [61], increasing salinization [62], food
availability [63], toxicological concerns [64] or differing photoperiods [65]. Evolutionary
developments led to special metabolic strategies, signatures and pathways [66] for
extreme environmental conditions like acidity/alkalinity (pH 0-12.5) [67], salinity [68]

(0-50 %) / water activity [69] (aw ≈ 0.4), temperatures [70] (-25°C-130°C),
pressures [71] (> 125 MPa) or radiation [72] (11 kGy). In addition to describing the
metabolome of individual adapted organisms (extremophiles), such special
environments were also holistically characterized as a whole in their complex
chemical composition, utilizing ultra-high-resolution techniques
(Biogeochemistry) [73,74]. Biotic-biotic interactions in terms of competition [75] or
herbivory activity [76] and necrotrophic [77] or biotrophic [78] pathogens are also
assigned to environmental influences. Synergistic biotic systems as well influence the
metabolome of the organisms involved between plants [79], insects [80], fungi [81] or
bacteria [82]. Ultimately, environmental health, i.e. the monitoring of environmental
influences on health or the development of diseases, is a topic of interest [83,84].

Health and medicine. In the field of health and medical research,
metabolomics can evaluate the progress of diseases, select potential biomarkers,
provide insights into underlying pathophysiology, offer (early) diagnostic platforms,
and drive the search for new drugs and novel bioactive compounds [85].
Comprehensive metabolic approaches have the potential to identify metabolic
pathways or individual biomarkers related to the disease under investigation. The
global metabolite profile and homeostasis often mirror the physiological or
pathological state of an organism. Utilizing a holistic approach, one can benefit from
the data-driven and not hypothesis-driven findings [86]. Using metabolite profiling, the
mitochondrial glycine biosynthetic pathway was assigned a key role in cancer cell
proliferation, leading directly to implications for cancer therapy [87]. Metabolome
analysis furthermore can contribute to the identification of cancer subtypes and
grades based on tumor biology [88]. The actual etiology of Crohn’s disease, an
inflammatory bowel disease affecting the gastrointestinal tract, currently is unknown.
Both host genetics and environmental factors play a role. In a twin study, the
contribution of the gut microbiome to the patient’s metabolic profile revealed several
metabolites originating from different pathways as potential targets for disease
monitoring, therapy and prevention [89]. Furthermore, drug discovery pipelines and
high-throughput screenings benefit to a large extent from molecular level descriptors
and similarity measures introduced by the metabolomics community [90]. Today,
potential drug leads are characterized and compared by molecular modeling,
molecular dynamics, their bioactivity, carrier binding or binding to active sites utilizing
structure-activity relations and multiple cheminformatics tools [91]. Metabolomics
nourishes the needed extensive chemical libraries and databases by the molecular
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characterization of combinatorial chemistry mixtures [92] or natural sources of
metabolic diversity. Whole ecosystems are screened as yet uninvestigated rich
sources for natural products as bioactive compounds and potential novel drugs [93].

Food and nutrition. One aspect highly influencing human health and
well-being is food intake and nutrition. The term foodomics was coined in 2009 by
Alejandro Cifuentes [95] and describes the “application and integration of -omics
technologies to improve consumer’s well-being, health, and knowledge” (Figure 1.2).

Being one essential part of foodomics, metabolomics contributes to food
quality (safety, utility, nutritional, sensory and ecological quality) and integrity. The
demand for advanced analytical techniques in the field of food analysis has grown in
parallel to highly industrialized food production and the consumers’ concern about
food integrity. Traditionally, a major goal of food analysis is to guarantee the safety of
food in compliance with legislation. With the emerging resistance to pesticides and
fungicides [96], agrochemical industries are in a predicament to develop novel and
improved crop protection agents to avoid rot-related crop failures and health risks.
Metabolomic studies investigating the mode-of-action of those bioactive
compounds [97], the interaction of pathogens with crops [98] or unintended effects in
genetically modified crops [99] can contribute to solving the global food issue. Targeted
metabolite analysis, which can include several hundred components, ensures that the
residues of protective agents do not exceed levels of health risk [100]. The ‘knowledge’
or ‘confidence’ aspect defining foodomic aims has gained in importance with the
development of high-resolution analytical techniques and global food production.
Metabolomics describes and explains the changes in food chemical composition that
come with industrial food processing and that define consumers’ gustatory
experience [101,102]. Globalization certainly is a driving force for food traceability and
integrity considerations including (1) fraudulent or deceptive practices, (2) the
adulteration of food and (3) any other practices which may mislead the
consumer [103,104]. Metabolomic studies can identify and quantify marker metabolites,
find molecular differences in populations (discriminative) and create statistical models

Figure 1.2 | Graphical
representation of the
foodomics integrative
framework, adopted
from Alvarez-Rivera, et
al. [94].



Chapter 1 | Metabolomics

9

to predict class memberships (predictive). 1H-NMR profiling [105,106] is a comprehensive
and rapid example, when compared to more traditional melissopalynology, to assess
the quality, adulteration, the botanical and geographical origin of honey.

Foods that are highly affected by fraud attempts are edible oils. The
adulteration of olive oil with rapeseed oil (denatured with aniline) caused hundreds of
deaths and illnesses due to allergic syndromes [107]. Driven by such little farsighted
criminal endeavors, there are numerous metabolomic approaches to assure oil
authenticity, quality and safety today [108]. The melamine scandal of 2008 [109], where
milk was thinned down with water and melamine was added to mimic the appropriate
protein content, killed thousands of infants and raised awareness of the importance
of food quality monitoring [110]. Among many others, wine [57,111], beer [112,113], tea [114,115],
coffee [116,117], and meat [118] adulterations, quality, origin, and authenticity were
characterized by GC-MS, DART-MS, LC-MS, DI-ToF-MS or DI-FT-ICR-MS. Closely
linked to those food quality considerations are metabolomic studies concerning the
influence of food intake and nutrition on health and well-being. Containing bioactive
substances, our food has a significant effect on crucial metabolic pathways [119] and
the global role and function of the gut microbiome [120]. The microbial communities in
our gut exert a multitude of functions highly impacting human health and
disease (risks). The imprint that food intake generates on the metabolite composition
available to and generated by the gut microbiome was investigated by a variety of
metabolomic studies [121] and combined -omic techniques [28]. Nutrimetabolomics [122]

is an emerging field, yet a field in its infancy, aiming at the comprehensive
characterization of dietary intake [123]. Decoding biomarkers for metabolic changes or
personalized human food and lifestyle interventions for populations and patients are
of interest. Overall, the exceedingly complex composition originating from biological
organisms and (biological or chemical/technical) processing thereof, its economic,
social and cultural relevance, its crucial impact on human health and influence on
innumerable interfaces of a biological system (systems biology [124]) makes food and
beverages a perfectly suitable matrix of interest for metabolomic studies.
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1.1.4 Challenges and perspectives

Instrumentation and analytical approaches. What decisively distinguishes
the metabolome from other targets of the -omics technologies is a lack of linear
uniformity in the molecular structures to be examined. Genetic and transcriptome
information consists of nucleotides. Proteins are made up of (modified) amino acid
sequences. In contrast, metabolites cover a huge range of chemical structures. The
analysis of the metabolome is particularly demanding due to the tremendous
chemical diversity and physicochemical properties of metabolites. Celebrating its
adulthood (18th birthday) and despite remarkable progress in this relatively short
period, the comprehensive perception and subsequent identification of the molecular
complexity that nature offers us remains a major task for the future. This goal is not
ideological but enables a fundamental idea behind metabolomics: curiosity-driven
hypothesis generation (instead of hypothesis testing) to find novel answers in
unexpected places (Figure 1.3) [9]. In the case of mass spectrometry, molecule
ionization, sensitivity, and resolution might be the key factors to make the chemical
complexity of a system comprehensively visible. Considering the complementarity of
the ESI, MALDI, APCI and APPI ionization techniques in both positive and negative
ionization mode, the chemical space of metabolites is already well covered [126]; even
if it should be mentioned that simultaneous use is still difficult to implement and
specific molecules that are difficult to ionize (e.g. black carbon) can only be reached
using special methods. Given the mass resolving power of high-field mass
spectrometry, especially newest 21 Tesla FT-ICR-MS instruments, the mass
resolution already seems to scratch the limit of what potentially is necessary to
differentiate compositions [127]. Resolving molecular complexity in one mass
dimension, however, lacks information about molecular identities. It will be interesting
to observe whether classical separation techniques like liquid chromatography might
be overtaken by advanced and cheminformatics-based mass fragmentation
techniques like two-dimensional FT-ICR-MS [128]. It might be a combination of both
that will make structural information by tandem-MS accessible (comparable to Data
Independent-mass spectrometry [129]). The probably greatest instrumental challenge,
therefore, is the sensitivity (with a corresponding dynamical range) that according to

Figure 1.3 | Curiosity-driven research.
This figure is adapted with permission
from ©The Nobel Foundation 2005,
Nobel Lecture of laureate
Theodor W. Hänsch, Stockholm,
Dec. 8, 2005 [125].
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current developments is undergoing exponential growth [130]. Single-molecule analysis
and imaging already is possible in specialized applications [131,132]. Awaiting these
technical developments, systems’ whole dynamics could be targeted in real-time
instead of frozen-frames. Apparently opposite developments that look for the big
picture in the small, such as single-cell analysis, are challenges for metabolite analysis
of the future as well [133].

Challenges to tackle inside the metabolomics community. Regardless of
technical developments, there are some challenges to tackle inside the metabolomics
community. The standardization for experimental design, evaluation, validation and
reporting is essential to be taken care of to make studies comparable and support
the quality of metabolomics research. In 2005, with the backing of the Metabolomics
Society, leading experts in the field gathered to form the Metabolomics Standards
Initiative (MSI) [134]. Data repositories like MetaboLights [135] or Metabolomics
Workbench [136] were created to make metabolomics data available to the community.
The condition, or better, the assumption was that the MSI reporting
standards (summarized by Goodacre [137]) are complied with. The disclosure of the
analytical data enables studies to be retraced, proves their reproducibility and reveals
comparative spectra for further studies or alternative advancing data treatment
concepts. Yet, minimal reporting standards are often not met [138]. The metadata are
of great importance against the background of advanced data treatment techniques
and AI-guided data evaluation that aim at compound associations and identifications.
Community-based open-access platforms like Global Natural Product Social
Molecular Networking GNPS [139] have taken up the importance of making
experimental data available (beyond the fragmentation spectrum of individual
substances) and creating an infrastructure for sharing exploratory non-targeted
analytics (2,034 metabolomic data sets and over 200,000 monthly accesses as of
October 2021). The need to make metabolomics data publically available cannot be
stressed too highly. The authors found that most studies annotate less than 10 % of
all features even in the widely researched field of the human metabolome (2 % for all
studies). Exemplifying the approach and by molecular networking of the community‘s
shared data, the formation of novel bile acids was found to be initiated by changes of
the microbiome in mice [140,141]. Spectral similarities of shared foodomics analytical
data enhanced the understanding of human metabolomes as affected by nutrition [142].
In addition to efficient data structures and algorithms for searching databases, the
use of artificial intelligence (AI) concepts can help to identify compounds. The
retention time (and thus physicochemical properties) of compounds can be
estimated [143] or molecules can be assigned to a sub-class, substructure or ultimately
a molecular structure via specific fragmentation patterns (still being in its early phase
of implementation) [144].

Artificial intelligence and future fields of application. “Progress in science
depends on new techniques, new discoveries and new ideas, probably in that order”
– Sydney Brenner, Nature, June 5, 1980 [145].
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With the power of analytical instrumentation enhancing exponentially [130], a
successful proof of concept and numerous applications of metabolomics all around
in scientific literature, the field of new and far-reaching ideas is ready to be tackled.
Depicting the whole metabolome comprehensively in big representative or clinical
studies inherently comes with big datasets. The era of ‘big data’ has already found its
way into many areas of life, yet the extensive data harvesting in analytical chemistry
has not benefited sufficiently from existing chemometric tools. The group around
A. Cifuentes [146] recognizes the “high level of experience and technical skills […] for
software management and statistical data analysis” as one of the major challenges to
tackle in metabolomics and foodomics research. Artificial intelligence (intelligent
behavior of machines to create decision-making structures), machine
learning (algorithms improving through experience) and deep learning (representation
learning neural networks) are expected to highly increase the chemical (and
metabolic) information we can obtain from chemical data [147]. It may bring us to not
only see the analytical data as metabolite concentrations in a current state of the
biological system but vision it as an information source for biological signaling that
(cor-)respond to pathway dynamics. The power of AI in pattern recognition not only
should be applied to analytical data of a steady-state, but also dynamic real-time and
online analyses. Metabolic pathway dynamics prediction, however, is heavily reliant
on the integration of other -omic tools (especially genomics, transcriptomics,
proteomics) to metabolomics data against the background of enzyme-mediated
processes. The integration of AI in analytical data sets on a global level is a crucial
task and certainly will create future technologies and concepts. Following the thought
of online analytics, health data (and thus meta-information about metabolite
homeostasis) are already registered by so-called smartwatches. In the actual medical
field, there are already wearable technologies to monitor diabetes patients’ status [148].
Further development and integration of metabolite-analyzing sensory systems as a
sort of early warning system in the daily routine of the human being is a future vision,
but certainly not undisputed leaving questions about data handling and security open.
Such medical systems, existing and future ones, in combination with AI data analysis
have the potential to open up the field of personalized medicine, where therapies are
tailored to the biological state of an individual [118].

In its today’s shape, metabolomics has a key role as an approach to discover
biomarkers within large diverse populations and translate them to cheaper and
quicker methods (precision medicine) [149]. For highly targeted, yet not fully understood
diseases like Parkinson's disease, research might need to get away from the idea of
a healing marker molecule. Where whole systems of metabolic regulations are
affected, whole pathways and dynamics need to be considered to make coherence
analytically visible [150]. Personalized screenings could in the nearer future be part of a
regular health check-up and finally contribute to or be the method for the early
detection of diseases (when legitimate ethical, legal and social questions can be
resolved and specific, sensitive and reproducible standards are established [85]). The
influence of changing environmental, lifestyle or dietary influences on the human
organism is summarized in the term of human exposome [151]. AI performed on
large-scale studies and data integration of several comprehensive analytical
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approaches (including metabolomics) can help to make such effects on the
metabolome and microbiome visible.

Regarding the foodstuff itself, safety and authenticity profiling should be
accompanied by the ‘knowledge’ part of foodomic aims. Food as an exceedingly
complex mixture of chemical diversity still is not sufficiently characterized. The
so-called “dark metabolome”, small molecules of unknown structure, permeates a
major part of the detectable signals in mass spectrometry. Barabasi, et al. [152] report
the FooDB [153], a database representing the most comprehensive effort to integrate
food composition, to record the presence of 26,625 distinct biochemicals in food. In
contrast, Roullier-Gall, et al. [57] reported over 7,000 distinct mass signals (isomers not
included) in wine alone. The overlap within FooDB was as few as 5 %. Process
optimization can largely benefit from characterizing (and ideally identifying) such yet
unknown metabolic profiles. Process control guided by AI might be an application. It
is worth mentioning that such guiding signatures often do not consist of the volatile
aromatic substances of the final end product but are determined to a particular extent
by non-volatile chemical precursors. Integrating AI is still insufficiently pursued in both
food research and industry and might strongly influence industrial food and beverage
production in combination with online monitoring. Coming with the ever-increasing
scale and complexity of food supply networks, the food production process is
becoming more vulnerable to fraud and contamination. The analytical techniques to
collect and analyze biological and chemical data within the extensive food chain are
required to be rapid, robust, user-friendly, generally applicable and portable. The
trend towards non-targeted analytical approaches already is visible. An integrated
system of non-targeted analytics is far more difficult to circumvent especially when
considering sophisticated fraud attempts with knowledge of testing programs [154,155].
Either spectroscopy, sensor chips or direct-infusion mass spectrometry seem the
most suitable ones with the latter being far more comprehensive but still expensive
and less mobile. A future perspective would combine predictive computing and the
Internet of Things [156] to form whole system-based approaches that significantly
reduce vulnerability to food fraud. A problem of systems requires system-level
solutions [157].
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1.2 Metabolomics in brewing research

The science of beer has a long history. As beer is one of the oldest beverages of our
civilization the questions on quality control and product composition influencing its
conservation and taste is integrating empirical knowledge over centuries. In the
context of metabolomics, beer can be described as an exceedingly complex organic
mixture in aqueous solution. The impact of the raw materials, the brewing process and
aging on the molecular composition of beer has direct effects on its organoleptic
perception and has been investigated using numerous analytical methods, which are
resumed in this chapter. We also give an outlook on the use of a novel and powerful
analytical approach in brewing research utilizing ultrahigh mass resolution,
i.e, direct-infusion Fourier transform ion cyclotron mass
spectrometry (DI-FT-ICR-MS), in the metabolome analysis of beer.

This review chapter has been published as Pieczonka, S. A., Rychlik, M. &
Schmitt-Kopplin, P. Metabolomics in brewing research, in Comprehensive
Foodomics Vol. 2 (ed A. Cifuentes) Chapter 2.08, 116-128, Copyright
Elsevier ( 2021). It is reproduced with explicit permission. The last
paragraph (Depicting the Molecular Complexity of Beer by Direct-Infusion Fourier
Transform Ion Cyclotron Mass Spectrometry (DI-FT-ICR-MS) was left out due to
overlap with Chapter 2. It can be found in the Supplementary section (Review
Chapter A in Supplementary Chapter 1). The term FIA-FT-ICR-MS was exchanged
due to uniform naming of the approach, with explicit permission. This contribution is
integrated into the work as a dissertation-relevant publication.

Candidate’s contributions: S.A.P. wrote, revised and approved the final book chapter.
S.A.P. performed the literature research and article structuration.
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1.2.1 Introduction

History of Beer and Significance of Brewing Research. Presumably, beer belongs
to the oldest fermented beverage in the world [158,159]. Its distinction to the wine is not
as obvious as the sensory impression might suggest. Such as wines, beers are
fermented but not distilled drinks. Its carbohydrate source, on the contrary, is not fruit
sugar (grapes), but starch. The historical importance of beer primarily can be
attributed to its durability and bacteriostatic property. An analogy is, “what salt is to
the meat, is alcohol and low pH-value to beer”. Thousands of years ago mankind
commenced to purposefully produce durable beverages from domesticated cereals.
During the emergence of brewing, the release of sugar from the long-chain
carbohydrates was versatile. Initially, the amylase activity of human saliva (after
chewing and spitting out of the grain) provided the mono-/disaccharides required for
fermentation. In order to saccharify larger quantities, specialized species of barley
and wheat were malted; cooked rice was superficially inoculated with mold or already
fermented grain products such as bread were used. As starter culture yeast was
added in form of ripe fruits, fruit juices or honey [160]. Nevertheless, the history of beer
and beer analysis is by no means just a story of antiquity and tradition. It is a history
of the progress of jurisprudence, technology and science. The Bavarian Purity Law
of 1516, which stipulates only the ingredients barley, hops and water for beer, is
regarded as a significative food legislation of the early modern period. It was written
based on empirical knowledge to ensure the quality of the beer, the retention of
valuable wheat and rye for the bakers and the preservation through antioxidant and
antibacterial hops. The addition of spices and psychoactive ingredients such as
opium poppy and belladonna were prohibited [161]. Although the concept and
cultivation of yeast (Saccharomyces cerevisiae) were already known, it took more than
300 years before fermentation could be assigned to the metabolism of
microorganisms instead of a purely chemical process. Furthermore, during his beer
studies, Louis Pasteur discovered the first metabolic regulation by distinguishing
aerobic and anaerobic conditions during fermentation [162]. We also owe the first
isolated yeast cells and thus cultured yeasts to the brewing research [163]. This
development paved the way for brewing using bottom-fermented yeasts, which are
less susceptible to undesirable microorganisms such as Lactobacillus or
Pediococcus due to low fermentation temperatures. The renunciation of the top-
fermented brewing style was supported by another invention, which is indispensable
today. Around that time, Carl von Linde developed the first commercial refrigeration
unit to enable the fermenting cellars to be cooled [164]. The complexity of beer
production and the exploration of fermentative, biochemical and purely
chemistry-derived reactions still are significant research topics. The diversity of
ingredients and the variability of processes continue to present key challenges to
scientific research.

The Molecular Complexity of Brewing. Beer can be considered as a
complex aqueous mixture in a continuum of volatile to semi-volatile and non-volatile
molecules, to which its ingredients contribute as considerably as the brewing process
itself. Even the ostensibly simplest, yet quantitatively most important ingredient - the
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brewing water - has a significant impact on the metabolome of beer. Many breweries
were built in the proximity of known springs. In addition to the numerous dissolved
organic compounds [165], it is inorganic ions that guide the brewing process and thus
the chemical composition of the beer. The water hardness, especially the
Ca2+ concentration, is reported to protect α-amylase from early inactivation during
mashing and to increase the hydrolysis reactions by lowering the pH-value closer to
the optimum of β-amylase activity [166]. Thus, it has developed historically that the hard
Munich water resources, which lead to intensive enzyme activity and thus high original
wort content, resulted in a darker “Munich-type beer” with a more pronounced malt
character and metabolome. Pale “Pilsner-type beers” with a greater focus on hop
sensometabolites developed in regions with soft water. The selection of the hop
variety, but also whether it is added as umbels, pellets or extract as well as the time
of hopping is crucial for the molecular composition of beer, especially regarding its
organoleptic properties. Isomerization reactions of hop α-acids during the boiling
process lead to a focus on bitter sensometabolites, whereas adding hops at the end
of the brewing process emphasizes the extraction of aroma compounds [167].
Generally, barley (Hordeum vulgare) and/or wheat (Triticum aestivum) are, besides
water, the second most important ingredients in terms of quantity. The processes of
grain malting (steeping, germination, kilning/roasting) lead to complex and diverse
chemical reactions that are reflected in the beer’s metabolome. The roasting of the
carbohydrate source is a unique processing step, which notably lifts the molecular
complexity of beer from that of wine. Recent studies showed that thousands of
compounds are formed simply by heating one sugar and one amino acid, it can be
anticipated that the complexity of the Maillard reaction in the malting and brewing
process has not yet been fully explored [168]. Less common adjuncts like raw grains,
triticale, spelt, emmer, rye, corn, sorghum or rice can also contribute to beer’s
composition with their abundance of phytometabolites. The fourth ingredient, the
yeast, extends the diversity of the beer through varieties with unique or differently
pronounced metabolic pathways during fermentation. Apart from its exometabolites,
which lead to characteristic aromas, the yeast contributes to the molecular diversity
when the beer is stored. Partially, unfiltered beers are refined by bottle-fermentation.
Ultimately, yeast cells might undergo autolysis and release their metabolome, which
leads to unwanted off-flavors [169]. Deterioration during beer storage can also take
place through bacterial infection, oxidation or Maillard reactions. The entirety of all
these raw materials and processes leads to a complex aqueous mixture of volatile
and non-volatile compounds. Holistically oriented brewing research is aimed at
decomposing this intricacy of brewing, which is only touched on here (Figure 1.4).
Integrated approaches are needed, since food safety and quality control, the
olfaction, taste and visual appearance, the optimization of brewing and malting
parameters as well as the fundamental research into chemical and biochemical
processes share one greater characteristic: they are by no means unidimensional, but
multivariate in nature. For the most parts, the consideration of a single factor is not
enough to account for complex behaviors. The overall perception of beer is affected
by a variety of sensory impressions as the flavor (taste and olfaction), haze, color,
foam and the astringent or sparkling mouth feeling contribute in a holistic way. In the
1970s chemometric data analysis found its way into malting science and beer
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characterization through factor analysis of malt’s trace elements, protein modification
and degradation, the fermentation temperatures and volatile compounds [170,171]. The
awareness of the multivariate connectivity of the multi-faceted brewing process
formed the foundation from which the analysis and characterization of
‘as-many-small-metabolites-as-possible’ known as metabolomics developed.

Figure 1.4 | The molecular complexity and chemical diversity of beer originate from
its raw materials and processing. Image sections (barrel, kettle) were obtained from
‘Bayerischer Brauerbund e.V., München’ under their explicit corresponding
permission.
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1.2.2 Metabolomics research in the field of brewing

Raw Material. Early publications on multivariate data analysis of beer date back to
the late 1970s. The combined analysis of small molecules and other factors of
brewing chemistry has been used to investigate the volatile composition of beer,
applying gas chromatography and flame ionization [171]. It has been found that both
the batch size of the brewing process as well as the yeast strain influence the
composition of the measured fatty acids, esters and alcohols. In contrast, the location
of the brewery site, which is related to less critical factors such as the technological
parameters used and the brewing water, had only minor effects. The temperature
during the fermentation process was found to be decisive for the composition of the
aroma-active esters. The distribution of fatty acids - a factor that owes its variability,
not just to the brewing process, but also to the yeast strains themselves - has been
brought into focus with the same analytical methodology [172]. In general, diverse yeast
strains can be differentiated by the analysis of their fatty acid profiles. Today being a
part of lipidomics, this approach can be carried out comprehensively on modern
instruments. Besides biological and microscopic test methods, instrumental analysis
combined with multivariate data evaluation, therefore, enriches the methodological
spectrum for quality analysis of the brewing raw materials. Timmins, et al. [173]

contributed by receiving fingerprints of the whole brewing yeast organism with a
pyrolysis mass spectrometry (py-MS) approach. This non-targeted approach allowed
to depict the fundamental metabolic differences between lager and ale yeast strains
that have already been predicted by genome studies. The used direct-infusion
method, which offers a prompt analysis for quality control because it does not require
a previous chromatographic separation, is used in the examination of the
exometabolome of yeast. The varying footprint of the extracellular metabolites can be
used to differentiate yeast strains. The direct-infusion of the yeast exometabolome
into a ToF-mass spectrometer, though lacking highest resolution, in combination with
a GC-MS analysis has proven to be a powerful approach for the non-targeted
phenotyping of yeast strains [174]. Thus, yeast strains cannot be characterized solely
on basis of their genome, but on basis of their specific metabolism. Hops, being the
most characteristic beer raw material, has been subjected to metabolomic studies,
as well. The characterization of hops regarding its aroma and authenticity plays an
important role in the hop industry and thus brewing research. Comprehensive
metabolomics approaches have been successfully used to characterize hop cone
cultivars and hop extracts [175,176]. The combination of LC-ToF-MS, magnetic
resonance spectrometry (1H-NMR) and fast profiling through ultra-high-resolution
mass spectrometry (FT-ICR-MS) reveals a comprehensive picture of hop metabolites.
Primarily, known analytes such as hop bitter acids and fatty acids drove the
differentiation between hop varieties and their extracts. Yet, the holistic approach
additionally indicates the complexity of the previously unknown. Especially
high-resolution mass spectrometry, whose power is tapped in the hop research
mentioned before, can accomplish that. Furthermore, the compound class of
proanthocyanidins, which is mainly composed of (epi-)catechin and
(epi-)gallocatechin in di-, tri- and tetramers, have been shown to depict differences in
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terms of the hop cultivation location and its variety by an LC-MS approach [177]. The
signature of the territorial effects outweighs the influence of the vintage. The listed
methods show the existence and importance of a multitude of small non-volatile
molecules but have their limitation in more volatile compounds. The distinct
complexity and high diversity of the metabolites that determine the hop aroma could
be revealed utilizing gas chromatography. In a GC-MS approach, Stenroos and
Siebert [178] could distinguish 117 peaks, of which monoterpenes have been identified
in addition to volatile fatty acids. However, the characteristic variations in metabolic
signature between different hop varieties originated from the unidentified features.
Among those, the volatile profile of hops is consisting of alcohols, caryophyllenes,
sesquiterpenes, carbonyls, ethers, esters and epoxides. This diversity can be used to
characterize not only hop varieties but also different phenotypes. It was shown that
the ratio of the aroma compounds is just as crucial as their absolute intensity, proving
the necessity of multivariate data analysis. The aroma evaluation of 14 varieties with
over 100 different genotypes showed that out of the 187 compounds detected and
87 identified by GC-FID, only very few were characteristic of hop varieties from non-
European origin [179]. By showing that hops from America or China are richer in methyl
decanoate, neryl acetate and α-copaene, the factor analysis of complex volatile
signatures displays the possibility of an origin check. Compounds that negatively
influence the overall aroma profile (off-flavors) such as curcumene, selinene, cymene
or methyl octanoate also contributed to the specific character of the hop varieties
regardless of their origin. A targeted metabolomics approach adds that European hop
varieties feature more dominant sesquiterpenes such as humulene and farnesene,
whereas the North American hops generally has a more pronounced profile of
monoterpenes [180]. In the latter GC-MS-based study experimental hybrids were also
analyzed in addition to commercial cultivars and thereby hop cultivation was
addressed as an application for metabolomics. Besides the hop plant itself, further
processing into pellets or CO2-extracts with various essential oil fractions is crucial
for the later aroma profile of the beer. While monoterpenes are dominant in the hop
essential oil, sesquiterpenes are more frequently found in pellets and
CO2-extracts [181]. In comparison to hops, the aroma profile of the barley is
substantially impacted by one undesirable compound: dimethyl sulfide (DMS). It is
generated from the precursors S-methyl methionine and dimethyl sulfoxide during the
thermal process of kilning and adversely affects the organoleptic properties of
beer [182].

Organoleptic Perception. Besides aroma active molecules and compound
classes mentioned above, the perception of the whole beer flavor clearly depends on
multiple beer constituents producing multiple stimuli among our taste and olfactory
receptors. This diversity is mirrored in a comprehensive analytical approach, including
LC- and GC-MS, which revealed metabolite data for 5042 compounds in malt and
4568 compounds in beer respectively [183]. The analytical and sensory data were
integrated by PCA and O2PLS models and revealed associations between flavor
profiles in malts and beers. The fruity or corn chip flavor was correlated to the beer’s
purines, volatile ketones, amines and phenolics with malt lipids and saccharides also
contributing. Still, it remains unclear whether the correlation of non-volatiles with
sensory traits is due to their nature as aroma precursors or their influence on aroma
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stability. In any case, it was shown that the diversity among different malts is reflected
both in the chemical composition of the raw material itself and the characteristic
sensory descriptions of the finished beer, which confirms the role of malt metabolites
for the flavor and flavor stability of beer. Applying neuronal network data analysis on
volatile patterns of Brazil lager beers enabled raw material specifications to be
revealed in finished beer [184]. Antioxidative additives, preservatives and inadequate
storage are characteristics reflected in the volatile profile of the dedicated beers and
could be spotted through the data analysis approach based on artificial intelligence.
The organoleptic description of those hop substances, which are important and
characteristic components of beer flavor, was done using GC x GC-MS [185]. In the
first step, it was shown by means of HCA that the genetic hierarchical cluster of hop
varieties corresponds to the organoleptic tests carried out on the corresponding
beers. Thereupon, a principal component analysis of the sensory impressions
alongside the analytical data showed a correlation of over 300 volatiles with ester-like,
herbal, spicy, citrusy, sylvan and floral aroma. Subsequently, it was possible to
determine the 67 most significant components directly contributing to the aroma by
means of GC-olfactometry and aroma extract dilution analysis. They range from
terpenes to caryophyllenes and damascenones to ketones and epoxide structures.
As a mixture in a certain composition, these compounds are able to reproduce the
characteristic organoleptic impression of the hop varieties in beer. Nevertheless, all
the remaining detected compounds may influence aroma or flavor in beer by
synergistic or antagonistic effects with other coexisting compounds in beer or
function as flavor precursors. Therefore, non-targeted analysis of hop volatiles has a
twofold use. It gives brewers useful information on hop characteristics for designing
and improving beer products. And, it provides hop culturists with ideas for desired
varieties that should be developed.

Targeted metabolomic approaches, in contrast, focus on the bitter
sensometabolites introduced by hops by means of LC-MS [186]. Monitoring of hop
bitter acids across a large-scale brewing process showed the structure-specific
reaction routes for their formation by hierarchical clustering. While prenylated
flavonoids and β-acids (lupulones) are already poorly extracted from the hop umbel,
it is the α-acids (humulones) which are merged with the wort. After the wort boiling,
only 10 % of these compounds remain unchanged, whereby oxidation and
isomerization products such as tricyclohumoles, humulinones and iso-α-acids are
formed. By this approach, the extraction, oxidative degradation and reaction routes
of bitter sensometabolites can be tracked throughout the induced process. Thus,
metabolomics could offer the scientific basis for knowledge-based optimization of the
beer’s bitter taste by technological means. A similar approach was used to track the
transformation of individual bitter compounds during beer storage by means of
LC-MS/MS [187]. The onset of an undesirable harsh bitter aftertaste could be attributed
to the evolution of lingering tasting tri- and tetracyclic derivatives. Based on their
findings, as these compounds are generated by proton-catalyzed cyclization
reactions, Intelmann, et al. [187] proposed the control of the initial pH-value to extend
the shelf life of the desirable beer bitter taste. Due to the limited sensitivity for trace
compounds, nuclear magnetic resonance spectroscopic studies focused on the
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abundance of the major bitter humulones, but also associated changes of the purine
metabolism of the yeast during the fermentation step depending on the hopping
process [188]. The variety of all perceivable compounds, be it based on the diversity of
hops, malt, yeast or originated from the brewing process, results in a complex sensory
impression that we perceive as typical for beer beverages. With the abundance of
beers commercially available, metabolomics-based design and control of a brewing
process have been proven to be a successful way to meet new aroma and flavor
requests of consumers [189]. By correlating sensory impressions and evaluations with
the analysis of aroma active compounds, a beer was developed in order to specifically
serve a market niche. Already in the 1990s, it could be shown that an non-targeted
metabolomics and multi-variant approach enabled complex organoleptic processes
to be mapped in analytical parameters and thus control the brewing process and the
aroma of finished beer.

Molecular Characterization of Beer Types. The molecular signature of a
beer is reflected in the less volatile metabolites, as well. Molecules of any volatility
were analyzed using extracting ESI-MS, in which an N2-gas flow is passed through
the beer sample and the emerging aerosol is ionized with solvent [190]. By that, it was
possible to describe metabolites, which are characteristic for different brewing styles
and beer types like lager, Pilsner and wheat. In a more classic LC-ToF-MS approach,
phenolic compounds, which originate from both hops and cereals, are identified to
differ between the various chemical profiles of German Pilsner and Belgian Ale [191]. In
this regard, pale beers show a different pattern in the composition of procyanidins
and phenolic acids than beers brewed with darker malt, which is exposed to thermal
influences to a greater extent [192]. Using direct-infusion mass spectrometry, the
fingerprint of the sugar composition was used for quality control with regard to varying
degrees of color and fermentation [193]. Metabolic differentiation of beer types
uncovered by NMR spectroscopy is primarily based on the differences in the area of
aromatic chemical shifts [194]. Next to phenolic and polyphenolic compositions, it is
aromatic amino acids and nucleotides that constitute the chemical profile of lager
compared to ale beers. A flow-injection 1H-NMR approach accordingly attributes the
differences in the metabolome signature between beers brewed with barley or wheat
to their aromatic chemical space [195]. Additionally, beers exposed to deteriorations
through bacterial contamination could be identified proving chemometric methods to
be a rapid tool for quality control. The aliphatic composition of beer got into focus
with regard to NMR-based differentiation of molecular profiles specific for brewing
sites and elucidation of varying compositions of different batches within one
brewery [196,197]. Metabolites deriving from the yeasts’ tyrosine pathway and Ehrlich
degradation like tyrosine, tyrosol and phenyl ethanol, which significantly drive the
differentiation, indicate an influence of the fermentation parameters. The varying
temperature sequences used by brewing sites during the mashing process are
reflected in different enzyme activities and thus the composition of linear and
branched carbohydrates. Furthermore, non-alcoholic beers were characterized by the
presence of fermentable sugars such as glucose and maltose [198]. Mass
spectrometric methods revealed specific sugar profiles [199] for alcohol-reduced
beers (draft beers) and volatile patterns [200]. Fermentation-derived compounds as
esters, alcohols and fatty acids were present in high quantities in alcohol-containing
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beers. In contrast, volatiles that originate from the malting and roasting
process - including pyrazines, pyrroles and furans -  were found to be characteristic
of low and alcohol-free beers. A very historic and traditional way of brewing is that of
the Trappist beers. Originating in French monastery brew houses, it has spread in
central Europe and is nowadays brewed especially in Belgium under strict criteria and
requirements: The beer has to be brewed in a Trappist monastery under the monks’
supervision, it should witness to business practices proper to a monastic way of life
and is not a profit-making venture as all profit is donated (International Trappist
Association, 2021). These specifications are reflected in a traditional and time-
consuming brewing style. The European funding program TRACES reported on the
challenge to describe this unique beer production method through instrumental
analysis and enable authenticity control [201]. By means of GC-MS and DART-MS [113],
the volatile pattern of over 120 of these traditional beers was analyzed. Chemometric
analysis (PLS, LDA and ANN-MLP) was applied to the volatile patterns of a total of
265 beers. By dividing the batch into a training and test set, it was possible to predict
a certain group of Trappist beers (100 %) and all Trappist certified beers against
non-certified beers (93.3 %). The electron ionization provided access to highly volatile
compounds like acetate esters, alcohols, aldehydes, free fatty acids and Maillard
reaction products (furylethanone, furylmethanol), whereas the direct analysis in
real-time ionization added organic acids, nucleotides, humulinones and sugars to the
compositional space. A non-targeted LC-MS approach by Mattarucchi, et al. [112]

focused on the successful O2PLS-recognition of the Trappist certified Rochefort
beers, basing the analysis on a fingerprint level and leaving open the details about the
different chemical compositions.

Beer Aging and Intake. The diversity and change of beers’ complex
molecular composition do not end with the finalized brewing process. Its staling
process, the gradual change of beer over time, can be imitated through so-called
‘forced aging’. The change of the volatile profile of beer when stored at 45 °C for
18 days can be tracked using principal component analysis of GC-MS data [202]. This
approach enabled a rapid identification of the degree of deterioration affecting beer
and the identification of specific compounds of relevance. With increasing storage
time, well-established marker substances for the thermal impact on beer like
HMF (5-hydroxymethylfurfural), furfural, diethyl succinate and the
Strecker-degradation product phenylacetaldehyde were found. From the variety of
metabolites analyzed, further components such as
DDMP (2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one) and hitherto
unidentified compositions were proven to be aging-related. In addition to HMF
formation, nuclear magnetic resonance spectroscopy showed an influence on the
branching of dextrin’s and on a plurality of organic acids [197]. Further studies that used
a non-targeted LC-MS approach and different forced aging protocols showed the
influence on the non-volatile fraction of beer staling. It influences the organoleptic
perception not only through the release of aroma components from precursors but
also through the changes in flavor-active compounds and their oxidation stability. A
short-term storage trial including PCA of several aging steps shows that not only beer
volatiles are affected, but also flavonoids, peptides and purines [203].
5-MTA (5-methylthioadenosine), a sulfur-containing nucleoside deriving from the
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yeast metabolome, was identified as a non-volatile oxidation and staling marker by
the non-targeted approach and confirmed by further studies [204,205]. The type of
hopping, including different plant content, particle size and dry hopping, could also
be correlated to the flavor stability and thus decreasing 5-MTA concentration during
aging [206]. The addition of antioxidant crowns or chelation agents (Fe2+) against
pro-oxidants could not be found to have an impact on the aging correlated
metabolome. Metabolites from purine metabolism (deoxyguaniosine,
deoxyadenosine and hypoxanthine) could be identified as the most characteristic
non-volatile compounds for fresh beer. Besides the obvious influence of ethanol on
the human organism, the molecular diversity of beer after its consumption can be
tracked. Guerdeniz, et al. [207] developed an LC-MS approach on human urine and
plasma to classify metabolites that are increased following beer intake into
compounds originating from hops, wort, fermentation and human metabolism. A
unique metabolic pattern reflecting the beer metabolome could be selected to
establish a compliance biomarker model for the detection of beer intake. This includes
metabolites originating from raw material (i.e., N-methyl tyramine sulfate and
tricyclohumols) as well as compounds deriving from the brewing process (i.e., 2-ethyl
malate and pyro-glutamyl proline). While utilizing a higher resolution mass
spectrometric approach (LC-Orbitrap) a second study focused on differences of
metabolite changes in urine, following the intake of alcoholic and non-alcoholic
beer [208]. Humulinone, an oxidation product of humulone deriving from hops, and
2,3-dihydroxy-3-methylvaleric acid, a fatty acyl formed during fermentation, showed
to be biomarkers for beer consumption overall. Against that, concentrations of
metabolites related to the alcohol detoxification process such as ethyl sulfate,
2-phenylethanol and ethyl glucuronide only rose after consumption of
alcohol-containing beer.

The overview of metabolomics research in the field of brewing science is finished
by a summarizing table of literature references (Table A.1 in Supplementary Chapter
1).
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1.3 Analytical approach

At the beginning of this introductory chapter, the origin of metabolomics and the
conceptual classification of analytical approaches in the field of metabolome analysis
were presented. The rationale for why the analysis of small molecules and their
changes are of crucial interest has been highlighted with reference to numerous
interdisciplinary fields of applications. In the following, the analytical approach applied
in this thesis to comprehensively characterize the beer and brewing metabolome is
presented. In addition to a deep understanding of the sophisticated analytical
techniques used, the (statistic) evaluation and interpretation of data structures is an
essential part.

1.3.1 Chemometrics

Studies in the field of comprehensive metabolome analysis usually generate an
extensive set of data. The requirement that the analytical method should make as
large a number of small molecules available as possible inevitably comes with the fact
of large data matrices. Numerous measured features consequently have no intrinsic
relevance concerning the actual question of interest. A key challenge, therefore, is to
filter out the hidden information that the big picture of the analyzed metabolome
offers. For this reason, the development of comprehensive metabolome analysis is
closely linked to the improvement and expansion of chemometric tools [209].
Chemometrics is the application of statistical and mathematical analysis to the field
of (analytical) chemistry [210]. It searches for molecular regularities and patterns to
characterize, track and/or predict sample properties and make those interpretable. In
general, two strategies can be distinguished when analyzing data matrices including
thousands of variables from biological systems. The explanatory data analysis can
reveal similarities of samples based on the multivariate spectral data without any pre-
defined structure (unsupervised). The principal component analysis (PCA) processes
and reduces the dimensionality of data sets via covariance and eigenvector analysis.
It preserves the original relationships and thus can describe characteristic features
for resulting clusters. Another possibility to display the natural (not pre-tagged)
groupings of the samples is a dendrogram of the Hierarchical Cluster Analysis (HCA),
based on the similarity of samples and sample clusters data.

In supervised classification modeling, a criterion of interest is pre-defined for
each sample (sample class). When the number of variables (metabolite features)
significantly exceeds the number of samples, as for most metabolomics researches,
statistical models tend to lead to good classification by chance. This effect is known
as overfitting [211]. Hence, careful statistical validation is necessary. The partial least
squares regression or better, after Wold, et al. [212], projection to latent structures (PLS)
finds the multidimensional direction in the space of metabolite data that explains the
maximum variance for the given sample class distinction. Once a model is established
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and validated, e.g. by the goodness of the fit (R2) [213], the goodness of the
prediction (Q2) [214], further internal cross-validation like response permutation test [215]

and CV-ANOVA [216] or external validation sets [217,218], unknown samples can be
classified by prediction. However, standards of comparison and critical values for
significance cannot be defined for these parameters in the context of metabolomics;
they must always be viewed and questioned in their entirety (especially R2 and Q2).
The probably most basic, yet crucial form of validation is to set in context the
metabolic information on which the models are based. When analytical signals are
characterized and not only regarded as unknown features, it allows to fathom the
molecular nature of the statistical differentiation and relate it to findings of existing
literature.

The orthogonal PLS analysis (OPLS) [219], as a modified form, is subject to the
same restrictions. As a difference to PLS analysis, it divides the space of the explained
variance into predictive and orthogonal model compartments. Identifying different
sources of variability (predictive and uncorrelated) often leads to better interpretability
of the statistical models [220,221]. The question of which of the two variants has the
greater potential concerning metabolomics data is a topic of discussion. Mahadevan,
et al. [222] assume that in the case of metabolomic data sets, where there is a significant
divergence in the within-class variation, the OPLS might perform better. Tapp and
Kemsley [223] one year later argue that because of intrinsic mathematical and
conceptual reasons, “OPLS will never outperform PLS”. In the case of the data sets
investigated in this thesis [224-228], both PLS and OPLS models share very similar
statistical and validation parameters and carry the same metabolome information. The
OPLS was preferred ultimately because the actual score plots are more stringently
interpretable when visualized.

1.3.2 Direct-infusion Fourier transform ion cyclotron mass
spectrometry (DI-FT-ICR-MS)

Schematic structure and components. The ultrahigh-resolution mass spectra were
acquired on a Bruker solariX Ion Cyclotron Resonance Fourier Transform Mass
Spectrometer (Bruker Daltonics GmbH, Bremen, Germany) equipped with a 12 Tesla
superconducting magnet (Magnex Scientific Inc., Yarton, GB) and a APLOLO II ESI
source (Bruker Daltonics GmbH, Bremen, Germany). The mass spectrometric
technique is referred to as either Fourier transform ion cyclotron mass
spectrometry (FT-ICR-MS) or magnetic resonance mass spectrometry (MRMS).

Like other mass spectrometers, the FT-ICR-MS can be coupled to numerous
separation and ionization techniques. The most common is the flow-injection or
direct-infusion analysis into a (nano-)electrospray ionization unit (Figure 1.5, 1).
Utilizing high voltages between the metal capillary that carries the analyte solution
and a counter electrode, charged aerosolic droplets are created. A heated carrier gas
flow (N2) induces the evaporation of the solvent and undissolved free molecular ions
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are released through Coulomb-Explosion. Guided by the potential difference between
sprayer capillary and the orifice, the ions are conducted into the MS-unit via a glass
capillary (2). The ions are focused by the ion funnel (3) consisting of a series of stacked
ring electrodes and guided into a quadrupole (4). In the quadrupole, ions of a specific
mass range (m/z 100 to 1000) are brought onto stable trajectories by the applied
electric field and are thus filtered. The collision cell (5) allows the collision-induced
dissociation of specific ions into charged mass fragments. This option is oftentimes
neglected in DI-FT-ICR-MS (except from 2D-FT-ICR-MS). The ion beam is then
bundled in the ion transfer optic (6) and focused through lenses (7) to enter the area
of highest vacuum. Once arrived in the ICR-cell (8), the ions get trapped by the
potential of the trapping plates. Utilizing the high magnetic field of a superconducting
magnet, the mass of the ions is analyzed by the induced cyclotron motion after
excitation.

Figure 1.5 | Schematic structure of an ESI-DI-FT-ICR mass spectrometry system.
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From moving charged particles in a magnetic field to mass values and
chemical compositions. The physical phenomena that occur in the ICR cell and lead
to the simultaneous recording of thousands of m/z-values are specified
comprehensively by Easterling and Agar [229]. The main basic principles are described
in the following. When applied to the homogenous high magnetic
field (superconducting magnet) and triggered by the excitation plates, the charged
particles of non-zero velocity experience a constant, inward force in the plane
perpendicular to that magnetic field. This force is referred to as electromagnetic force
or Lorentz force [230] (Eq. 1), where  is the Lorentz force,  the charge state of the ion,

 the velocity and  the magnetic field.

=     (Eq. 1)

The equilibrium of this inward force with the centrifugal force of the excited velocity
motion results in a circular trajectory. The fundamental angular frequency for this type
of motion ( ) is expressed in the following equation (Eq. 2). It is referred to as the
cyclotron equation in reference to the cyclotron experiments by Lawrence in the early
1930s [231].

=      (Eq. 2)

This cyclotron motion is the most characteristic and analytically useful, as it
is directly related only to the mass ( ) and charge ( ) of an ion (under the condition
of a constant, homogeneous magnetic field). Unlike in other mass analyzers like
time-of-flight instruments, there is no need to compensate for the initial kinetic energy
of the ions [232]. However, the ions in the ICR cell do not describe an optimal circular
path. To increase the residence time inside the cell, a DC-electrical field that limits
ions’ travel along the magnetic axis is required. Once the ions, due to their velocity in
the magnetic axis, reach the trapping plates’ potential of similar polarity, they get
decelerated and finally reflected. This causes an alteration of the path on which the
ions move towards the middle of the cell (trapping motion or trapping oscillation). As
a by-product of the trapping potential, there is a radial electric field in the plane normal
to the magnetic field axis. The radial electric field and the magnetic field result in the
final characteristic ion motion, the magnetron motion [233]. It causes the origin of the
cyclotron motion to move along the radial electric field in the same direction of the
cyclotron motion. All forces together result in the modified cyclotron
motion (Figure 1.6). As the equation of the magnetron motion (Eq. 3) lacks both the
mass and the charge variable, it provides no m/z-information and rarely is measured.
It depends on the geometric parameter of the cell , the maximum trapping
potential , the magnetic field strength  and the distance between opposing
excitation and detection plates .

=     (Eq. 3)
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However, detailed characterization is necessary to determine the position of an ion
package in the plane perpendicular to the magnetic field. Furthermore, the collision
of ions with background neutrals causes the magnetron motion to destabilize and the
ions to move towards the electrodes where they are neutralized. Hence, to avoid the
loss of ions, a ultra-high vacuum is an important requirement (approx. 10-10 mbar).
Besides that, the strength of the magnetic field linearly contributes to the cyclotron
frequency and ultimately the resolution power of an FT-ICR-instrument, as given in
Eq. 2, while also improving several other performance parameters [234].

Describing the (modified) cyclotron motion, the ions induce an altering current
between the two detector plates. The induced current frequency is (with
compensatory consideration of the magnetron motion) equivalent to the cyclotron
frequency and its intensity proportional to the number of ions. Given that thousands
of different m/z-packages simultaneously induce current frequencies, a complex
frequency vs. time spectrum is observed, the free induction decay FID. By the Fourier
transform, a mathematical operation to deconvolute signals into the different
underlying frequencies, the (intensity vs.) frequency domain is received. The accurate
masses can finally be obtained via the natural inverse relationship between the
cyclotron frequency and the m/z-values (Eq. 2).

Mass values on their own, however, do not carry chemical information. The
biggest advantage of FT-ICR-Mass spectrometry besides the unrivaled mass
resolution is the mass accuracy coming with it. Accurate mass values with an error
below 200 ppb (a fraction of the mass of an electron) allow to directly proceed to the
compositional space of the measured sample. The combinatory of all plausible atoms
making up an ion often results in one molecular formula candidate when the seven
golden rules [235], small margins of mass error, and given compositional restrictions [126]

are applied; the formula calculation approach. At higher masses and in biological
systems that are enzyme-mediated, the molecular formulae that occur are not always
unambiguous or within the range of the self-imposed restrictions (e.g.
N-atom count > 4) that successfully are established for applications such as natural

Figure 1.6 | Modified
cyclotron motion as
resulting from the
unperturbed cyclotron
motion, magnetron
motion and trapping
motion.
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organic matter (NOM) [126] or extraterrestrial materials [236]. For such unsuitable
applications and according to network strategies developed by Tziotis, et al. [237], a
further approach was established. The network calculation approach is based on
accurate masses of known composition that are validated by isotopologue pattern
and function as starting points (Table A.2 in Supplementary Chapter 1, for beer
analysis). Further, links to other m/z-signal are created by defined exact mass
differences that reflect compositional changes coming with (bio-)chemical
reactions (Table A.3 in Supplementary Chapter 1, for beer analysis). A whole network
is set up that eventually assigns a molecular formula to each composition.

From unrivaled mass resolution to pictures of molecular complexity. As
already stated, DI-FT-ICR-MS on its own does not meet the definitions of
metabolomics introduced by Fiehn [4], as it lacks a strategy of compound
identification. In the field of profiling and characterization of metabolomic information,
it performs what is probably the most important requirement to be fulfilled: “The
comprehensiveness in their scope”. DI-FT-ICR-MS enables to comprehensively
resolve the entire small molecular complexity a sample contains with no major
dependency on the physicochemical properties (polarities) of metabolites involved.
Neither a selective sample preparation nor extraction or a discriminatory
chromatographic separation is necessary. The differentiation of all accurate mass
signals requires great mass resolving power. As well, corresponding mass accuracy
of at least 0.1 mDa is needed to assign the elemental compositions within a sample,
including isotopic fine structure (0.1 mDa for CHNOS chemical space with m/z up
to ∼500 Da [238]). According to today’s status, these conditions have only been met in
a wide range of applications by Fourier transform mass analyzers such as
FT-ICR-MS (Resolving power ∼400,000 at m/z 400 for the used 12 Tesla instrument;
defined as shown in Figure 1.7). Orbitrap instruments, also based on the Fourier
transform of periodic motions (oscillation), are usually linked to liquid chromatography
in the routine [239,240]. Individual research applications ventured to evaluate their
applicability to fields typically occupied by FT-ICR-MS where highest mass resolution

Figure 1.7 | The resolving
power defined as ∆m at
FWHM divided by m.
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is necessary [241]. An advantageous property of the orbitrap mass analyzer is that the
mass resolving power only decreases to the square root as a function of
m/z-values [242], as opposed to a linear negative proportional in FT-ICR-MS. Hence,
the more distinctive field of application of orbitrap instruments [243,244] used to be the
analysis of higher mass molecules like in proteomic approaches.

The early application field of FT-ICR was petroleomics [245-247], where the big
picture of chemical complexity carries information about the interactions and
reactivity of petroleum or crude oil constituents. Nowadays, FT-ICR-MS has long
found its way into describing complex systems in life sciences as well. Schmitt-
Kopplin, et al. [26] quote a colleague’s view on chemical complexity as it occurs on a
natural level as “complex is synergistic interactions of organic molecules and microbial
transformations in natural systems”. As vivid as this definition is concerning the
analytics of higher organisms or whole ecosystems, it is also true about the
production process and analytics of fermented beverages; where the rich chemical
composition of organics extracted from raw materials interact during the production
process and are subject to microbial fermentation. This applies to ancient, largely
uninfluenced fermentation of bread or cereals as well as the highly industrialized and
controlled brewing process towards optimized conditions. Maintaining a high-
throughput scale, the unique feature of DI-FT-ICR-MS is to resolve this complexity,
to provide visualization capabilities, to reveal metabolic patterns and, via accurate
mass differences, to describe (bio-)chemical processes (as detailed in Chapters 2-5).

Challenges – adduct formation. In ESI, adducts are referred to as
non-covalent complexes of cations (positive ionization) or anions (negative ionization)
attached to neutral molecules, forming an ion that contains all involved constituents.
The detected mass of this complex corresponds to the sum of all constituents.
Therefore a different mass value is observed when compared to simple
[M+H]+ / [M-H]— ions of targeted molecules. In the case of direct-infusion, where all
available molecules and inorganic ions are subjected to ESI without prior separation,
adduct formation is abundant. Steric effects and intra-molecular geometry of electron
clouds define the affinity of certain ions towards adduct formation. In a typical
negative FT-ICR mass spectrum of a beer, at least three signals of numerous sugar
species occur: The [M-H]-, [M+Cl]- and [M+H2PO4]- -ions. The adduct ions in particular
are very dominant in terms of signal intensity. The glycation pattern of
oligosaccharides from C6 to C36 sugars can be traced within a spectrum even on the
large-scale view (Figure 1.8). Where little is known about the adduct formation with
dihydrogen phosphate, the affinity of sugars with chloride ions is well described in
several studies [248-250]. Boutegrabet, et al. [249] even suggest HCl as a hydrophilic
dopant for the efficient detection of sugars or glycosylated metabolites to overcome
high gas-phase deprotonation energies necessary to form [M-H]- -ions. In the studies
summarized in this thesis, adducts were annotated and phosphate-containing ions
were retained as such since it is not possible to differentiate between covalent and
non-covalent species solely based on their mass. Assuming that only a few covalently
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chlorinated compounds are to be expected in beer, chlorine-containing compositions
were converted into their equivalent [M-H]--ion in silico, resulting in the overall
CHNOSP-chemical space.

Adduct formation provides the opportunity for sensitivity increase and
potential structural information about functional groups that correlate with the affinity
to form adducts. In contrast, there is a very decisive disadvantage in the intensive
formation of sugar (pseudo-)ions: Ion suppression and ICR cell overload. As the
solvent evaporates in ESI, limited charges in a solvent cluster are available to ionize
molecule species [251]. Due to their great abundance and high affinity for adduct
formation, numerous charges are claimed by sugar ions and clusters. In addition, the
efficiency of droplet formation and evaporation is influenced by salts, which in turn
affects the ionization rates and ultimately the sensitivity of the remaining molecular
diversity [252]. Polar analytes, which are intended to be reached through the
direct-infusion approach, in particular, are more susceptible to suppression [253]. For
this reason, and because an extensive sample preparation would lead to a loss of the
claim to comprehensiveness, a suitable dilution had to be found to achieve the
optimal state of lowest ion suppression at highest sensitivity. A representative beer
sample aliquot was measured in different dilution ratios (in MeOH, triplicates). The
quality parameters mass resolution, mass error, annotated monoisotopic formulae
and sum of ion intensities (ICR cell load) showed that a 1:500 dilution is the best
compromise between reproducible high spectral quality and sensitivity (Figure 1.9).
Additionally, the ion accumulation time was lowered to 0.25 seconds to avoid
overload of the ICR cell. Thereby, a phenomenon called the space-charge-
effect (SCE) could be minimized.

Figure 1.8 | The large-scale view of an FT-ICR mass spectrum featuring [M-H]-,
[M+Cl]- and [M+H2PO4]- ions of saccharides.
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Challenges – space charge effects. The accumulation of many ions of high
intensity in the ICR cell has an adverse effect on the mass accuracy and resolution,
the so-called space-charge-effect (compare Figure 1.9). The phenomenon often
occurs when a mass or frequency range of the spectrum is dominated by large
signals. It can be the case if samples are generally relatively poor in
diversity (e.g. found for alcohol-free beers) and especially when at the same time a
small number of ions (mostly adducts) are very dominant. In beer, these adducts are
common for sugars, as shown in Figure 1.8. The space-charges are spatially
distributed electric charges in a non-conductive medium caused by an excess of
negative or positive charge carriers. Such space charges occur only in dielectric
media (e.g. vacuum). Space charges are accompanied by unwanted electrical fields
causing space-charge-effects.

In the case of FT-ICR-MS, they arise from the influence of the electronic field
of ions in the trapped analyzer ICR cell upon each other [254]. It results in a significant
change in the observed cyclotron frequency. The actual observed frequency of
motion of an ion in the homogeneous magnetic field was approximatively described
as in Eq. 4 by Jefries, et al. [255] and Francl, et al. [256]. The first term  is the

unperturbed cyclotron frequency. The second term  is equal to the magnetron

frequency of the ions. The third term now describes the influence of the
space-charge-effects. Besides a constant related to the geometry of the ion cloud ( )
and the permittivity of free space ( ), it mostly depends on the ion density ( ). The
influence of the charge state ( ) is under debate [254]. The SCE is shown to usually
happen in MALDI due to inconsistent ion yield [257]. In ESI, big ion densities occur when
either the sample is too concentrated or ion clusters or adduct formation drastically
increase the number of charged particles. The described SCE is referred to as the
‘global’ SCE. It is worth noting that the strength of the magnetic field (B) is inversely
proportional to the ‘global’ SCE.

Figure 1.9 | Average mass resolutions and errors (A) and average number of
annotations and the sum of ion intensities (B) found for triplicates of FT-ICR mass
spectra of beers in different dilutions.

BA
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= − −     (Eq. 4)

It is not only the overall sum of ions in the cell that defines the effect of space-charge.
The phenomenon also occurs as ‘local’ SCE as described in approximation by
Masselon, et al. [258] with Eq. (5).

( / ) = + +     (Eq. 5)

The three coefficients ,  and  are explained in-depth by the later authors and
account for important factors in FT-ICR mass measurements, including the ‘global’
space-charge-effect. The third term describes the ‘local’ SCE and indicates that it is
dependent on the signal intensities . A signal of high intensity will influence the
cyclotron motion by a more intense specific electric field. The effect of big ion clouds
of molecules (and their electric field) is of greater importance to ions of similar
frequencies (masses) as their interaction prolongs continuously during the entire
measurement. The relative concentration of the ion species, especially of those with
similar frequencies and parallel circular motion, determines the ‘local’ SCE. Thus,
deviations from the theoretical cyclotron motion can be seen for certain frequencies
and ultimately m/z-areas in the FT-ICR mass spectrum even in case the overall ion
density is balanced by sample concentration and ionization/ion transfer parameters.

One approach to counter the SCE phenomenon is a dynamic calibration. This
type of calibration is not dependent on linear or quadratic calibration functions. The
method developed is described in Smirnov, et al. [259] and can be summarized as
follows. The method is based on the estimation of the density of data points on mass
difference maps (MDiM) using Gaussian kernels followed by a curve fitting with an
adapted version of the particle swarm optimization (PSO) algorithm. The MDiM is
defined by the m/z-differences of respective experimental data points to an extensive
calibration list in the ppm scale. For the kernel density estimation, Gaussian kernels
are used to evaluate the closeness of the data points. The calibration curve is created
by an adapted particle swarm optimization algorithm going through the maximum
density path. The PSO is a gradient-free form of an algorithm, meaning that it is
applicable for optimization problems where derivative functions are difficult or not
possible to calculate. Thus, it is flexible; it does not depend on linear or quadratic
relations and can be used for optimization problems of discrete, discontinuous or
noisy data.

The practical integration was realized in an in-house developed calibration
tool based on error densities. By that, it is possible to cut the spectra into different
sections and recalibrate them based on error distributions without a limitation to linear
or quadratic functions (Figure 1.10 A, B). The best results were achieved when
different error profiles in the samples were cut and viewed individually. To find a
systematic, distinct error distribution, a comprehensive calibration list is necessary.
In the presents studies, about 2,400 mass values of chemical compositions occurring
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in the majority (at least 33 %) of 200 measured samples were used. A trustworthy
exhaustive calibration list is mandatory and was achieved by the annotation of a
matrix including all measurements with different annotation techniques (formula and
network calculation) and error margins (0.3 ppm to 0.1 ppm). Only consistent
annotations were kept and the list was validated by the respective 13C-isotopologues.

Figure 1.10 | Density of
mass errors found in
FT-ICR mass spectra of
beer before (A) and
after (B) density-based
spectral calibration.
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1.3.3 Liquid-chromatography-coupled mass spectrometry (LC-
ToF-MS)

Schematic structure and components. The high-resolution mass spectra were
acquired on a time of flight maXis mass spectrometer (Bruker Daltonics, Bremen,
Germany), coupled to a UHPLC system (Acquity, Waters, Eschborn, Germany)
(Chapter 2) and a Shimadzu LCMS-9030 Q-ToF-System (Shimadzu Deutschland
GmbH, Duisburg, Germany) (Chapter 3-5). Featuring the same main components, the
schematic structure of the latter mass analyzer is described below (Figure 1.11).

As described for FT-ICR-MS, an electrospray ion source is used. Additionally to the
analyte eluent spray, a second ESI-source is integrated into the ion chamber. It is
connected to the calibrant delivery system (CDS) (1) that enables the addition of
known calibrant ions to the ion stream. By this, it is possible to recalibrate either every
sample run or even every measurement scan to obtain high mass accuracy (~ 0.5-2
ppm). In the quadrupole (2), ions of a specific mass range (m/z 50-1500) or a specific
mass value (1 Da window) are filtered for MS1 or MS/MS data acquisition
respectively. Inside the collision cell (3), all selected MS1 ions can be fragmented
through collision with neutral gas molecules to obtain molecular structure information.
In the ion accumulation unit (4), the ions are accumulated through a damming electric
field. Once the ions get released, they reach the pulser (5), where the ion package is
pushed orthogonally into the ToF (time of flight) tube. Inside the ToF tube (6), a
focusing non-linear potential is located at the reflecting point to compensate for
several phenomena causing different kinetic energies and starting points for masses

Figure 1.11 | Schematic structure of an ESI-Q-ToF mass spectrometry system.
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of different m/z-values. After the ions reach the detector (7), the mass values can be
calculated through their time of flight (from pulse trigger to detection). The ToF for the
charged molecules is quadratically proportional to their m/z-value leading to higher
mass resolution for higher masses.

Additional analytical dimensions. The mass resolution of ToF-instruments, although
it is constantly being improved, does not reach the level of magnetic resonance mass
spectrometry by (at least) one order of magnitude. This comes with the disadvantage
of required pre-separation of the analyzed mixture as m/z-signals would overlap
otherwise. The mass accuracy (molecular formula) and isotopologue pattern of
separated compounds might often be ambiguous. However, the crucial benefit of
ToF-mass analyzers is that they can be operated at a high scan frequency (~ 25 Hz)
when compared to the DI-FT-ICR-MS approach described (~ 2 Hz). The high scan
rate enables the detection of mass signals with numerous data points per
chromatographic peak at sufficient sensitivity when coupled to liquid
chromatography. Furthermore, ion fragmentation in the collision cell can be
performed.

Liquid chromatography does not only separate the highly complex analyte
mixture in different segments on a time scale. It also carries information about the
physicochemical properties of respective compounds as expressed in retention times
at certain conditions. Accurate m/z-values on their own, as in DI-FT-ICR-MS, only
provide information about the compositional nature of a molecule. Combined with
specific retention behavior, isomeric molecules can be separated and defined as
different compound signals. In the range of metabolite analysis, large public
databases show values between 1 and 1000 for the multiplicity of exact
masses (number of isomers for that specific formula). Theoretical calculations of
potential yet-unkowns demonstrate that the chemical richness might exceed these
values in many orders of magnitude [26]. Hence, the separation of potential isomeric
compounds adds a significant dimension to the characterization of complex
biochemical systems. Mass features can be detected as separated molecular
compounds. A disadvantage is that a large number of more polar metabolites
unavoidably will be lost due to insufficient retention behavior (when one-dimensional
non-tandem LC is used).

The comparatively high scan speed enables to interrupt the measurement of
all ions by specific ion fragmentation experiments. In the data-dependent
analysis (DDA) one full-range MS1 event (50-1500 m/z) serves as survey scan. Based
on that, subsequent MS/MS-fragmentation events are executed with precursor ions
initially detected in the corresponding MS1-data point. Depending on the scan rate of
the instrument and the necessary mass resolution and sensitivity, the two to ten ions
with the highest intensity are fragmented before the cycle starts again with a full scan.

The Metabolomic Standards Initiative categorizes metabolite identification as
complete identification of the structure, including molecular connections and
stereochemical assignments [10,134]. As far as mass spectrometric analytics is
concerned on its own, this goal can only be achieved by narrowing down possible
structures and synthesizing reference standards for confirmation. A second route, no
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less time-consuming and uneconomical, would be to laboriously isolate unidentified
compounds by chromatographic techniques and subject the pure substances to
NMR-analysis. The gold standard cannot realistically be achieved for all hundreds to
thousands of compounds in a complex mixture. Nevertheless, certain fragment ions
and neutral losses are significant indications of the molecular identity of analyzed
compounds, as best shown for lipidomic approaches differentiating lipid classes [260].
MS/MS-fragmentation patterns are still not able to offer a comprehensive
identification, but it is possible to narrow down molecular identities to certain
substructures. Together with physicochemical information from chromatographic
behavior, marker compounds can be classified (level 3 identification [10]). A way to
further improve identifications is literature and library research as already discussed
in chapter 1.1.4. Despite the undoubtedly limited availability of standard spectra, the
compound libraries are a rich source of numerous chemical structures that can be
used as a proxy for computed fragmentation spectra. In-silico prediction tools like
MetFrag [261,262] compute likely fragments of database known compounds by bond
dissociation approaches and neutral loss rules to score a potential match with
experimental data. MS-Finder [263], also bond dissociation driven, adds the dimension
of mass accuracy and isotope ratios. Competitive fragmentation modeling [264] is an
alternative approach utilizing a machine learning-based probabilistic generative
model for MS/MS fragmentation processes. Blazenovic, et al. [265] showed during the
2016s CASMI-contest (critical assessment of small molecule identification) that the
combination of different approaches leads to the best coverage and accuracy for
identifying natural products. For de-novo identification strategies, fragmentation trees
and mass spectral trees can be utilized [266].

Based on experimental data and potential decisive compounds for
differentiating sample characteristics, MS/MS similarity networks as computed by
Cytoscape [267] mirror molecular similarities. Compounds that share similar
fragmentation patterns correlate with strong chemical similarities. In-silico
fragmentation comparison, as described above, can then offer tentative structural
information by the assignment of structures and alignment of known compounds to
still-unkowns. Matching retention behavior and fragment signals indicate similar
compound classes, create links between chromatographic features, and enable level
2 to level 3 identifications for compounds of interest (the necessity of experimental
fragmentation data for comparison for level 2 identification is under debate and
depending on the case). In case a specific compound is of highest interest and a
level 1 identification is necessary, the information provided by LC-ToF-MS can pave
the way for deeper investigations (compare Chapter 4).
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1.3.4 Positioning in the field of metabolome analysis

To fit the original definition of metabolomics [4], an analytical approach targeting
metabolites needs to be (1) comprehensive and avoid the exclusion of metabolites,
(2) high-resolving and sensitive, (3) universally applicable to different matrices,
(4) include a concept for metabolite identification and (5) quantification. The
combined approach that is applied in this thesis arguably meets most or even all of
these requirements.

By minimal sample preparation (dilution in methanol), it is possible to address
the vast majority of the metabolic diversity, including compounds of very different
polarities. Coupling to soft electrospray ionization enables the detection of molecules
of a wide range of physicochemical properties. Nuclear magnetic resonance
spectroscopy, complementing the analytical approach in Chapter 5, does not show
any discrimination (with limitations regarding sensitivity). The unrivaled mass
resolution of DI-FT-ICR, chromatographic resolution of LC-ToF-MS and the superior
sensitivity of mass spectrometry when compared to other analytical techniques surely
fulfill the second requirement. Even if the approach should be adapted for each matrix
to achieve best sensitivities, it can be used universally. Less concentrated solutions
(NOM/DOM) should be extracted and concentrated beforehand [126]. For very volatile
mixtures, SICRIT (soft ionization by chemical reaction in transfer) [268] is a suitable
alternative ionization method (data not part of the thesis). The concept of identification
is realized in ion fragmentation experiments and library or literature search leading to
identification levels of 1-3. The quantification requirement of the compounds alone is
not fully met solely by the mass spectrometric approaches. Under the common
premise that quantification refers to concentration determination in SI units and not a
semi-quantitative evaluation of the concentration in detector units, this aspect of true
metabolomics might not be accomplished to its fullest without the use of qNMR
(Chapter 5). Therefore, it remains to be discussed whether the
DI-FT-ICR-MS/LC-ToF-MS analytical approach should be called true metabolomics.
The more colloquial definition of metabolomics as given by the Metabolomics
Society [13] certainly fits. It represents an analytical method well-suitable to elucidate
the molecular diversity and chemical complexity of beer and the brewing process.
In-depth compositional and molecular knowledge, extracted from a comprehensive
metabolite picture, can be revealed.
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Chapter 2 |
Decomposing the Molecular Complexity of

Brewing

The compositional space of a set of 120 diverse beer samples was profiled by rapid
direct-infusion (DI) Fourier transform ion cyclotron mass spectrometry (FT-ICR-MS).
By the unrivaled mass resolution, it was possible to uncover and assign compositional
information to thousands of yet unknown metabolites in the beer matrix. The
application of several statistical models enabled the assignment of different molecular
patterns to certain beer attributes such as the beer type, the way of adding hops and
the grain used. The dedicated van Krevelen diagrams and mass difference networks
displayed the structural connectivity of the annotated molecular formulae. Thereby it
was possible to provide a base of knowledge of the beer metabolome far above
database-dependent annotations. Typical metabolic signatures for beer types, which
reflect differences in ingredients and ways of brewing, could be extracted. Besides,
the complexity of isomeric compounds, initially profiled as single mass values in fast
DI-FT-ICR-MS, was resolved by selective UHPLC-ToF-MS/MS analysis. Thereby
structural hypotheses based on FT-ICR’s molecular formulae could be confirmed.
Benzoxazinoid hexosides deriving from the wheat’s secondary metabolism were
uncovered as suitable marker substances for the use of whole wheat grains, in
contrast to merely wheat starch or barley. Furthermore, it was possible to describe
Hydroxymethoxybenzoxazinone(HMBOA)-hexosesulfate as a hitherto unknown
phytoanticipin derivative in wheat containing beers. These findings raise the potential
of ultra-high-resolution mass spectrometry for rapid quality control and inspection
purposes as well as deep metabolic profiling, profound search for distinct hidden
metabolites and classification of archeological beer samples.

This chapter has been published as Pieczonka, S. A., Lucio, M., Rychlik, M. &
Schmitt-Kopplin, P. Decomposing the molecular complexity of brewing. Nature
Partner Journal Science of Food 4 (11), 1-10, (2020). It is reproduced with permission
from Springer Nature under the Creative Commons Attribution 4.0 International
License. The term FIA-FT-ICR-MS was exchanged due to uniform naming of the
approach, with explicit permission.

Candidate’s contributions: S.A.P. designed the experiments, analyzed and
interpreted the data. S.A.P wrote, revised and approved the final paper. S.A.P.
performed the instrumental experiments. S.A.P. performed the statistical treatment,
data mining, interpretation and visualization.
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2.1 Introduction

The yearly worldwide consumption of beer adds up to 1.96 billion hectoliters (as of
2016). Thus, beer is, besides wine, the most consumed fermented alcoholic beverage.
Brewing handicraft evolved in more than 5000 years from ancient brewers over the
German purity law from 1516 to high scaled, modern industrial brewing [269]. The most
recent developments, namely the ‘craft beer revolution’, refuse the trend of
‘macrobreweries’ and emerge a multitude of smaller, more diverse brewhouses.
Hops (Humulus lupulus L.), which are the main focus of experimentation, are one of
the defining ingredients of beer. Besides that, (barley) malt, water and yeast
contribute to the complex aqueous mixture of volatile and non-volatile molecules
known as beer. The small molecules (<1000 Da) are referred to as the beer
metabolome and play an important role in beer characteristics such as taste, aroma,
yeast fermentation, foam stability, or beer aging. The measurement of a group of
chemically characterized and biochemically annotated metabolites is known as
targeted metabolomics. Using different analytical methods such as GC- and
LC-(ToF)-MS/MS allowed to characterize the phenols and polyphenols [270], hop bitter
acids [271], the carbohydrates and their degradation during storage [272], or their
reactions with amino acids and proteins analyzing Maillard reaction markers [273].
Profiling specific volatile compounds in beer enable to show a difference between top
and bottom-fermenting yeasts [274]. In contrast, non-targeted metabolomics means a
comprehensive analysis of all measurable analytes, including chemical unknowns [7]

achieving an optimal metabolome coverage [275]. It provides extensive datasets, which
are used to explore novel features or characterize differences between samples using
biostatistics, biochemistry, and informatics for data mining and interpretation [6,276]. By
non-targeted metabolic profiling it is possible to differentiate beer types [112,277], age
groups [204], origins [113], different storing conditions [203], color characteristics [193], or
hop varieties [175,176] using high-resolution analytical methods. Profiling of volatile
fingerprints of hops and barley [181], yeast strains [174], or different beer types [278] was
carried out by means of either headspace or bubbling burst (GC)-MS analysis.
Besides mass spectrometry, nuclear magnetic resonance (NMR) spectroscopy was
applied to beer analysis to differentiate beer types [197], brewing sites [196], raw
materials, or influences on yeast fermentation [188]. The range of analyzed molecules,
which characterize the differences of the samples, reaches from carbohydrates,
amino acids, small organic acids over bitter acids, (poly-)phenols and purines to more
volatile terpenes, esters, alcohols, aldehydes, and ketones. One major drawback of
non-targeted metabolomics is the dependence on and limitation to database
annotations. The outnumbering unknown signals often referred to as “molecule
features” are not characterized.

Non-targeted metabolic profiling can exceedingly benefit from a promising
mass spectrometric method in beer analysis, the Fourier transform ion cyclotron
resonance (FT-ICR) mass spectrometry. Gougeon et al. [111,279] already described the
chemical space of wine by a direct-infusion ESI-method coupled to the FT-ICR
instrument. It was shown that this approach has the power of resolving not hundreds,
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but thousands of molecules in a short time. Indeed, Fourier transform mass
spectrometry techniques are the most advanced mass analyzers concerning mass
accuracy and resolving power. The unrivaled mass resolution enables a
direct-infusion approach, which gives access to compounds of a wide polarity range.
Due to ultra-high-resolution (~500,000 res. power at m/z 400) and accurate mass
measurement (~0.1 ppm), FT-ICR-MS can separate and assign a molecular formula
to each signal, providing information about the (bio-)chemical class of these often yet
unknown analytes. As thousands of features can be characterized it provides
universal information about the analyzed samples that remain hidden otherwise.
Furthermore, by connecting marker substances by mass difference networks [237] and
displaying patterns of chemical compositions in van Krevelen diagrams [126], it is
possible to infer the markers’ compositional nature. These visualization methods
allow us to make well-sustained assumptions of molecule groups, which differentiate
diverse samples. As a result, the disclosed metabolic signature of unknown samples
can be recognized and assigned. Specific compositions, which are essential for
characterizing certain metabolic profiles, can be perceived by statistical evaluation of
rapid and holistic FT-ICR measurements. However, DI-FT-ICR-MS lacks information
about isomers and concrete molecular structures, which requires a second analytical
technique. Tandem UHPLC-ToF-MS is able to resolve isomeric compounds and
provide deeper structural information. Based on the exact m/z-values found in
FT-ICR, the fragmentation of dedicated compounds and isomers enables
identification of the most significant molecules on a structural level. The presented
approach closes a gap between the availability of a huge multitude of analyzed
features, their compositional annotation and deep structural information. It opens the
application for the recognition of the metabolic signatures and the profound search
for distinct hidden metabolites.

2.2 Results

2.2.1 Visualization of the molecular complexity

A diverse set of 85 bottled beers from different countries and of different types was
profiled as the first batch. To explore the compositional diversity and molecular
complexity of each individual beer the samples were analyzed by direct-infusion
ESI (−) FT-ICR-MS. The chemical space of beer is as diverse as the variety of different
raw materials and their treatment during the brewing process including malting,
roasting, boiling, fermentation, and filtration. As an example, Figure 2.1 shows the
spectrum of a Pilsner beer. The macroscopic general view (Figure 2.1A) shows the
abundance of (oligo-)saccharide patterns. However, the detailed view of a single
nominal mass (Figure 2.1B) revealed up to 27 m/z-values within the mass of 391,
which could be assigned to molecular formulae with a mean error
of <0.1 ppm (<1/10 of an electron mass, respectively). The molecular variety of the



Results | Chapter 2

42

beer samples, which ranges from peptides [C19H28N4O5], carbohydrates [C13H24O11],
fatty acids [C21H40O4] through their sulfates [C18H31O7S] to isotopologues of potential
Maillard reaction products like desoxyfructosyl(iso-)leucine [13C1C11H23NO7], could be
displayed in one single nominal mass by highly resolved FT-ICR measurements. In
total, an average of 2800 compositions could be found in each beer spectra. Bearing
in mind that distinct isomers exist for a given formula, the 27 molecular formulae in
the spectrum excerpt represent 68 hits reaching from 0 to 11 isomers in common
databases. Therefore, the DI-FT-ICR-MS spectrum of a single beer can be considered
as an instantaneous overview of several thousands of compounds present in various
concentrations.

All m/z-values assigned to a molecular formula and present in at least 5 % of
all beer samples are depicted in a two-dimensional van Krevelen diagram (Figure 2.2).
Thereby the masses can be associated to chemical families like carbohydrates,
peptides, organic acids, phenolics, lipids, nucleotides or even hop bitter acids and
their corresponding derivatives [26]. Plotting in the van Krevelen diagram the
350 formulae, which were present in over 95 % of the beers spectra, we can
recognize that the beer matrix seems, in general, to be defined by carbohydrates and
derivatives, peptides, but also the hop bitter acids. In contrast to this, lipids and
phenolic compounds were more specific for the single beers or group of
beers (Figure B.1 in Supplementary Chapter 2).
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Figure 2.1 | FT-ICR-MS spectra of a Pilsner beer. The full-scale view (A) shows hexose
condensation patterns and an excerpt of the nominal mass m/z 391 (B) illustrates the
resolved chemodiversity of the beer inside one single nominal mass. Annotated
molecular formulae and mass errors are given above the mass peaks. Color code of
the molecular formulae: CHO blue; CHNO orange; CHOS green; CHNOS red. Adduct
formation is expressed by +H2PO4 for dihydrogen phosphate and +Cl for chloride
respectively.
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Figure 2.2 | Van Krevelen diagram (H/C vs. O/C) of the annotated molecular formulae
appearing in more than 5 % of all beer samples. Areas specific for certain compound
classes are marked with dotted lines. Color code: CHNO blue; CHNO orange; CHOS
green; CHNOS red; P violet; Cl light violet. The bubble size indicates the mean relative
intensities.
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By displaying assigned elemental formulae in a mass difference network [237]

one can exploit the exact mass information provided by FT-ICR-MS and set the CHO,
CHNO, CHNOS, CHOS, and P chemical spaces into relation. Figure 2.3A shows that
the sulfur-containing spaces were separated from a highly connected CHO/CHNO
sphere. The same holds true for phosphate-containing molecules, which were mostly
connected to the other spaces by glycerolphosphate, phosphoethanolamine,
hexosephosphate, and phosphorylation itself. Mass differences indicating mainly
reactions with amino acids were the most dominant inside the CHNO chemical space
and between CHO and CHNO spaces (~50 %). Condensation of hexose and pentose
species are the most abundant sugar-related reactions connecting
(oligo-)saccharides with their dedicated aglyca. Reactions regarding more specific
metabolic pathways like prenylation (terpenoids) could be found besides the

Figure 2.3 | Mass
difference network of
the beer samples (A)
and frequencies of
(bio-)chemical reactions
therein (B). Chloride
adducts were converted
into their dedicated
[M-H]-ions in silico.
Color code compare
Figure 2.2. The area of
hops bitter acid
derivatives inside the
mass difference
network is marked. An
excerpt of
(bio-)chemical reactions
with their dedicated
mass and molecular
formula differences and
the frequencies they
occur in the network is
given below.

A

B
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condensation of nucleic bases and glycerol. Overall, raw chemical-related
reactions (roasting / malting / boiling) were represented on a par with biochemically
driven reactions (raw material/fermentation). An extract of the frequencies of
individual modifications can be found in Figure 2.3B.

2.2.2 Multivariate analysis

The hierarchical clustering analysis (HCA) showed a general overview of the
similarities across the different samples revealed a cluster of typical lager beers
samples (Figure 2.4). The quality control samples, namely aliquots of one same lager
beer, were correctly located in exactly this group and built their own sub-cluster,
which showed that the fingerprint of this beer is conserved through the different
batches. Beers with special grains like roasted malt, oat, or gluten-free grain were
grouped as well as wheat beers and alcohol-free beers. Besides these clusters, there
was a group mainly but not exclusively consisting of craft beers and special Belgian
beers. Some more conventional beers were also allocated inside this group, probably
due to the overlap of specific molecular patterns. A detailed inspection of the
dendrogram plot revealed two pairs of beer from one brewery (denominated
“brewery A” in the following)—namely the brewery A’s lager and wheat beer with their
corresponding alcohol-free versions. These pairings reflect the fact that the
dealcoholization process in this brewery consists mainly of downdraft evaporation of
the original alcohol-containing beer. The brewing process itself stays the same, which
makes these beers very similar.

Figure 2.4 | Hierarchical clustering of the beer samples’ FT-ICR mass spectra. Color
code of the observed clusters: lager beer blue; beer brewed with special grain red;
wheat beer green; alcohol-free beer yellow. The cluster of QC lager beer samples is
framed. The enlarged excerpt shows the cluster of one brewing site’s
alcohol-containing and alcohol-free beers. The samples’ order is stated below.
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2.2.3 OPLS-DA model 1: beer type

The first OPLS-DA model distinguishes between the different beer types (Figure 2.5).
Wheat beers were separated from the other beer types in the first component (x-axis).
In the orthogonal second component (y-axis) it was possible to differentiate between
classical lager beers and craft beers. The fourth class, the traditional Belgian abbey
beers, were located in the middle of the score plot, whereas the spontaneous
inoculated geuze beers were excluded from the model as outliers. The detailed
statistical (Table B.1 in Supplementary Chapter 2), loading plots (Figure B.2 in
Supplementary Chapter 2), and score plot coordinates (Table B.2 in Supplementary
Chapter 2) for each model are given in Supplementary Chapter 2.

Figure 2.5 | OPLS-DA model’s score plot for the beer type observation. The score plot
is surrounded by the different observations’ van Krevelen diagrams (lager beers (I);
craft beers (II); hops-rich beer types (III); wheat beers (IV). Color code and bubble size
compare Figure 2.1. Samples included in the model calculation are depicted as
circles, whereas predicted samples are represented as triangles. Craft and lager beers
are summarized as hops-rich beer types to reflect the separation of metabolites in the
first component.
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The first component revealed the most significant molecular pattern
separating wheat beers from the lager and craft beers. Both the latter beer types
feature a great amount of hops compared with wheat beers and thus can be
denominated “hops-rich beer types”. The masses with the most negative loadings
reflected this characteristic of a strong hop profile. The Van Krevelen diagram of their
formulae showed a specific cluster of CHO-molecules in the region of 0.2 < O/C < 0.4
and 1.2 < H/C < 1.6, respectively (Figure 2.5-I). As mentioned before, this area of the
diagram is typical for terpenoids and more accurately hop bitter acids (terpeno-
phenolics) in the beer matrix. This pattern was also observed in the mass difference
network, showing an area (Figure 2.3A). The annotation of the given masses in
databases offered exactly those hop bitter acids. Therefore, it is possible to uncover
the area of the mass difference network, where the chemistry of the hop bitter acids
is located. A number of 58 marker substances for rich hopped beers could be
determined as derivatives by their molecular formula, whereas only 20 of them (35 %)
were found to have equivalent structures in the databases and pertinent
literature (Table B.3 in Supplementary Chapter 2). As FT-ICR-MS is not capable of
distinguishing isomers, the [C21H30O5] marker can represent humulone, adhumulone
or iso-humulone, but most likely a mixture. Further already known precursor
molecules like prenylphlorisobutyrophenone [C15H20O4] and prenylphlor-
isovalerophenone [C16H22O4], as well as bitter acid derivatives like
cohumulone [C20H28O5], deoxycohumulone [C20H28O4], dihydrohumulone [C21H32O5],
or humulinone [C19H26O5], are surrounded by molecular formulae without suitable
hits (Figure 2.6A). A demethylation reaction of the potential cohumulinone [C20H28O6]
leads to the molecule [C19H26O6], whereas a decarboxylation of [C20H30O7] leads to
humulone [C21H30O5]. Overall, finding literature equivalents of oxygenated structures
like [C19H26O6], which might indicate hydroxyl-, epoxy-, carboxy-, or
peroxyderivatives, turned out considerably difficult. Furthermore, reduction/hydration
and addition/elimination of water seem to be important reactions inside this excerpt
network of marker substances. Pairs of marker molecules within the same nominal
mass (e.g., C20H28O6/C21H32O5; C19H26O6/C20H30O5; C20H26O6/ C21H30O5) underlined the
necessity of high resolving analytical acid species, as well as phenolic and
polyphenolic compounds and their dedicated glycosides, seem to be characteristic
for craft beers due to the typical dry-hopping process (Figure 2.5-II).

It was possible to confirm the calculated profiles of the beer types by the
vicinity of the different types between the model and prediction sample
sets (Figure 2.5). Only the position of two samples in the score plot defies the cluster.
Sample numbers 100 and 119, both brewed in a certified abbey and, therefore,
characterized as abbey beer, were located inside the craft beer region. Besides this
origin, the actual brewing technique of these beers is described as amber ale and
triple ale, both in agreement with craft beer styles including dry hopping. Therefore,
not the brewing location itself, but the molecular signature of the brewing process
stands in the foreground. A second group of beers, that could not be assigned
precisely, were craft beers brewed with wheat and Belgian wit beers made with raw
wheat. These beers share the signature of craft beers (ale yeast; preferably strongly
hopped) and the signature of wheat beers (wheat grain as an ingredient), for which
reason they were located between those beer types. The organic wheat
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beer (sample 109) differed slightly as well. These findings suggested that the
compounds with the most positive loadings define the molecular pattern of wheat.
For the investigation of specifically the wheat signature, a second model was created.

Figure 2.6 | Detailed excerpts for selected hops-rich beer type markers (A) and wheat
grain markers (B). The nodes represent the annotated ions with given molecular
formulae or molecule names and are connected by edges representing the molecular
formula differences or the biochemical reaction respectively. All nodes depicted are
considered marker substances. Wheat grain markers are additionally characterized by
UPLC-MS/MS of sample 41 with literature matching retention time order and
MS/MS-spectra showing respective fragmentation and mass difference
pattern (C) [280,281].

BA

C
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2.2.4 OPLS-DA model 2: grain

The second OPLS-model was created to extract the influence of the ingredient wheat
on the beer’s metabolome (Figure B.3 in Supplementary Chapter 2). All beers brewed
with some amount of wheat were defined as wheat-containing beers, regardless of
their beer type and other brewing parameters. These stood against beers brewed
exclusively with barley. Notwithstanding, that the model sample set consisted of
beers with a plurality of various characteristics, it was possible to perform the
separation based on the grain used without any ambiguous assignments. In addition
to the intended separation, it could be remarked that the wheat-containing craft
beers (samples 53, 54, 73), which were brewed with ale yeasts and dry-hopped, were
separated by the orthogonal information by the second component (y-axis). In the
loading plot, several highly significant wheat grain markers, such as [C14H17NO8],
[C14H17NO9], and [C15H19NO9], are separated by simple biochemical
reactions (e.g., hydroxylation; methylation) and most likely belong to the family of
benzoxazinoid hexosides. The intensity distribution of the mentioned markers is given
in Supplementary Chapter 2 (Figure B.4 in Supplementary Chapter 2). These
compounds are described to be specific phytoanticipines for wheat [282] compared
with barley and partially described in wheat beer [283]. Again, an excerpt of the mass
difference network of the wheat marker substances revealed six masses
corresponding to benzoxazines, which were already characterized by de Bruijn, et al.
[281], and a plurality of potential derivatives (Figure 2.6C). Against this background, the
sulfation reaction of the HMBOA-hexoside to the respective sulfate appeared
especially promising. These secondary metabolites and their dedicated derivatives
seemed to be a crucial part of the metabolic signature of wheat-containing beers.

The prediction model (Figure B.3 in Supplementary Chapter 2) showed that
the typical German wheat beers containing malted wheat were as well recognized as
the Belgian wit beers, which contain unmalted wheat. In contrast, the metabolic
pattern of the wheat grain in wheat-containing craft beers (sample
numbers 100, 114, 118) was recognized less strongly. The comparatively low amount
of wheat was opposed by the contrary heavy hop signature. For beers brewed with
merely wheat starch, no wheat signature could be observed. These findings
confirmed the applicability of the calculated pattern and advice to identify certain
specific marker substances to detect even low amounts of wheat metabolites.

2.2.5 UHPLC-ToF-MS: marker identification

To support the interpretation of the FT-ICR-MS data and verify the predicted
structures, we performed UHPLC-ToF-MS/MS measurements on selected samples.
The marker substances for a rich hop profile and the wheat metabolome were
investigated in depth. The marker substances of beers with a rich hop profile in the
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van Krevelen region of 0.2 < O/C < 0.4 and 1.2 < H/C < 1.6,
respectively (Figure 2.5-I), were proposed as hop bitter acid derivatives. The
UHPLC-MS measurements of a hops-rich beer revealed mass traces fitting to 46 of
the 58 molecular formulae (80 %) of the mentioned markers (Figure B.5 in
Supplementary Chapter 2). This is a notably high rate because only 35 % of the
markers were found to have structural equivalents in mentioned databases or cited
pertinent literature (Table B.3 in Supplementary Chapter 2). Moreover, the
LC-dimension gave a better idea of how complex the structures behind these masses
are, as up to 21 peaks could be found for one single formula, all being eluted in the
chromatogram region, where hop bitter acid derivatives were found (3.5-7.0 min). The
22 detected isomeric compounds for humulinone [C21H30O6] stood in contrast to other
formulae like [C19H26O4] (cohulupone), which were represented by only one
chromatographic peak (Figure B.5 in Supplementary Chapter 2). By tandem mass
spectrometry we were able to identify twelve hop bitter acid derivatives like
cohumulinic acid [C14H20O4], hulupinic acid [C15H20O4], cohulupone [C19H26O4],
(ad-)humulone [C21H30O5], tricyclocohumol [C20H30O6], or tetracyclohumol [C20H30O6]
on level two [10] by comparison of fragmentation patterns and intensities with literature
data (Table B.4 in Supplementary Chapter 2). Opposing a wheat beer, which does not
feature a rich hop profile, shows, that the corresponding mass traces are decisively
higher in hops-richer craft and lager beers verifying their discriminating
character (Figure B.5 in Supplementary Chapter 2). It is worth noting that more than
100 MS/MS spectra did not lead to hits in databases or literature, and therefore are
considered level 3 identifications (Table B.5 in Supplementary Chapter 2).

Benzoxazinoidic phytoanticipines of the wheat plant were proposed as
specific wheat grain markers in the beer matrix (Figure 2.6C). Again, the marker
formulae of the FT-ICR-MS models were transferred into a preference list to
selectively acquire tandem mass spectrometric spectra. By comparison with literature
known MS/MS-fragmentation, eight HBOA-derivatives could be identified in wheat
beer (level 2) (Table B.6 in Supplementary Chapter 2). The retention time sequence of
the HBOA-, DHBOA-, DIBOA-, and HMBOA-hexoside coincides with the one
described by de Bruijn, et al. [281], whereas the predicted HMBOA-hexosesulfate was
eluted earlier than the corresponding hexoside due to the polar sulfate group. The
MS/MS-spectra of the monohexosides are compared in Figure 2.6C. The cleavage of
the hexose group from the HBOA-hexoside (1) [M–H]--ion [C14H16NO8] results in an
m/z-value of 164.0348 [C8H6NO3]. The additional hydroxyl group of the
DIBOA-hexoside (2) leads to the 180.0299 m/z ion [C8H6NO4]. Replacing the hydroxyl
group by a methoxy group, the m/z-value of 194.0455 [C9H8NO4] can be found for the
HMBOA-hexoside (3). The same pattern holds true for the 136.0399 [C7H6NO2],
118.0283 [C7H4NO], and 108.0438 [C6H6NO] fragment ions of the HBOA-hexoside. It
was not possible to extract complex fragmentation pattern of the
HMBOA-hexosesulfate (4) as it was a minor component with a peak intensity about
30 times lower than the respective hexoside. However, the loss of the sulfate group
from the quasi-molecular ion 436.0554 [C15H18NO12S] to the dedicated
HMBOA-hexoside (3) [M–H]−-ion 356.0993 [C15H18NO9] could be observed. Hereupon
both compounds share the loss of the hexose sugar. The dihexoside DHBOA-,
DIBOA-, and HMBOA-equivalents showed several closely eluting isomeric peaks and



Discussion | Chapter 2

52

were detected with lower retention times as they are more polar. All the substantiated
compounds were only observed in wheat beer and none of them is present in beer
exclusively brewed with barley, which confirms the assumption that benzoxazinoidic
phytoanticipines are suitable specific compounds for the use of wheat grain. To our
knowledge, the existence of a HMBOA-hexosesulfate has not been described before.
However, for definite identification, the synthesis of a corresponding standard would
be needed.

2.3 Discussion

Many studies have been published in the literature about beer metabolome analysis
employing LC- and GC-MS either with time-of-flight or orbitrap instruments. The use
of high-field Fourier transform ion cyclotron mass spectrometry is shown here for the
non-targeted metabolic profiling of a diverse set of beer samples and enables a
direct-infusion analysis due to the ultra-high-resolution provided. We were able to
demonstrate the benefits of superior mass accuracy paired with the annotation in
compositional networks. Constructing compositional mass difference networks
exploits the exact mass information provided by FT-ICR-MS and enabled coverage
of complex formulae and the whole compositional space. Thereby it was possible to
assign molecular formulae like [C29H35N5O10S] to an exact mass likely corresponding
to an Asp-Asp-Phe-Phe-Cys peptide or [C10H14N5O8P] to guanosine-
monophosphate (GMP). Even at low masses (m/z 362.05072 for GMP) over
10 formulae are valid inside a 3 ppm window (Figure B.6 in Supplementary
Chapter 2). By the provided mass error window of 0.1 ppm (0.002 ppm for GMP) and
the possibility to resolve isotopic fine structure, we could ensure correct annotations
with our DI-FT-ICR-MS approach. It allows us to directly proceed from m/z-values to
the compositional space, depict thousands of yet unknown structures and assign
their structural family concerning their position in the van Krevelen diagram and
connectivity inside the mass difference network. Respective patterns were found for
hop bitter acids and biochemical connectivity of blepharine derivatives.

By supervised OPLS-DA modeling, we were able to extract the profound
metabolic signature underlying different beer types within the brewing process. The
classification power of the models was highly significant. The p-values (calculated
after the CV-ANOVA) were lower than 2E−19; such values bring us to exclude possible
overfitting. Both models exceed Q2-values of 0.6, for the quality of prevision, and
R2Y-values of 0.95, for the goodness of the fit, proving their statistical relevance [215].
The molecular signatures for both lager and craft beers were dominated by the
quantity of hops used. However, lager beer is predominantly brewed with hop
varieties, which are rich in bitter acid compounds. Confirmatory, humulone and
cohumulone isomers and derivatives appeared as marker masses for these types of
beers. By the analysis of the mass differences of masses dedicated to precursors and
intermediates, even the whole biosynthesis of these typical hop metabolites could be
traced inside the beer matrix. The position of discriminating compositions in the Van
Krevelen diagram showed, that more oxygenates bitter acid species, as well as
phenols, polyphenols, and dedicated glycosides, are characteristic for craft beers.
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Dry-hopping of aroma hops after the boiling or fermentation process, which is typical
for this type of beer, adds a multitude of mentioned compounds to their dedicated
metabolic profile due to ethanolic extraction of the hops [284]. Moreover, adding hop
umbels to the wort or young beer represents a heavy input of oxygen, which advances
oxidation processes. Hydrolysis, (de-)hydration, epoxidation, peroxidation, and
cyclization mechanisms of hop compounds, which also lead to an altered bitterness
perception, are known and described in literature as well as the presence of phenolic
acids, coumarins, flavonoid polyphenols, and their glycosides [167]. However, the
immense compositional complexity, which evolves from these reactions and is
addressed in this work, still needs to be discovered. Duarte, et al. [198] already
suggested using 1H-NMR that the main difference between lager and craft beers in
terms of the metabolome can be traced back to aromatic compounds. The prevision
of a sub-sample set confirmed the universal applicability of our model and strengthen
the fact that we were able to differentiate the type and parameters of brewing. Both
beer types are commonly brewed without wheat. Therefore, the wheat metabolome
was assumed to be an important discriminating and defining factor for wheat beers.
1H-NMR analyses [195,197] again held aromatic compounds responsible for the
differentiation of grains. A statistical model opposing the grains used was established
to tackle the challenge of a comprehensive description of the wheat metabolome and
eventually gain access to structural information. The fact that some beers share the
molecular signature of hops and wheat (see prevision of the first OPLS-DA model)
and the circumstance that wheat beers are to different extents brewed with barley
malt as well, made this step of a second model essential.

The occurrence of blepharine derivatives as secondary metabolites derived
by the wheat grain as marker substances in beer emphasizes the holistic and deep
nature of our profiling approach. Hydroxybenzoxazinone (HBOA) and its derivatives
are known to be phytoanticipines with antifungal, antimicrobial and insecticide
properties in the wheat plant [282]. Blepharines are stored in the vacuole and activated
following cell damage through β-glucosidase activity [282]. It may be anticipated that
the described sulfate plays a role in either storage or transportation of the
phytoanticipines. It was previously shown that the phytoanticipines are modified
during food processing and fermentation [280,285]. Thus, chemical reactions during
malting and boiling may also contribute to the multitude of possible derivatives yet
unknown in the wheat and beer matrix. Compositional networks provided access to
new metabolites even in the beer matrix, which makes an especially promising. Worth
mentioning is the fact that no signature of wheat metabolites could be found in
FT-ICR- and LC-ToF-MS measurements with regard to beers merely brewed with
wheat starch. These beers lack the secondary metabolome of the wheat grain. The
combination of analytical and statistical techniques presented here raises the
potential of substantial advances in yet open questions regarding both brewing
science and industry. In total, the metabolic profile of beer type and grains provided
by DI-FT-ICR-MS could be verified by the identification of 18 (level 2) and 118 (level 3)
compounds, respectively, for the signature of rich hopping and the use of wheat. As
an outlook, the potential of ultra-high-resolution for food inspection or quality control
applications is shown by the differentiation between beers brewed with wheat and
merely wheat starch. Ongoing work focuses on expanding the approach toward other



Materials and methods | Chapter 2

54

descriptive parameters and archeochemical application of the presented metabolic
signatures. Archeochemical investigations on wines and beers are generally executed
by GC-MS-[286] and IR-based [159] measurements or are restricted to targeted
approaches [287]. The presented metabolic profiles in future will be beneficial in deep
profiling of ancient beer-like beverages and beers of the earlier modern era.

2.4 Materials and methods

2.4.1 Beer samples

A total of 85 samples of bottled beers produced in different countries were analyzed.
They range from common lager or wheat over craft and abbey to lacto-fermented
geuze beers. Light and dark, top and bottom-fermented, filtrated and non-filtrated,
organic and gluten-free samples with alcohol contents of 0-12 % are covering the
whole variety of purchasable beers in close to any possible combination. Thereby the
most comprehensive mapping of beers’ metabolome and prevention of covarying
metadata was achieved. The samples were purchased at local grocery stores in
December 2017 and stored at −20 °C prior to preparation for analyses. A second
independent sample batch, which includes 35 beers, was purchased in 2019 and
used as a prediction and validation set. The beer specifications are summarized in
Supplementary Chapter 2 (Table B.2 in Supplementary Chapter 2).

2.4.2 DI-FT-ICR-MS measurements

High-resolution mass spectra were acquired on a Bruker solariX Ion Cyclotron
Resonance Fourier Transform Mass Spectrometer (Bruker Daltonics GmbH, Bremen,
Germany) equipped with a 12 Tesla superconducting magnet (Magnex Scientific Inc.,
Yarton, GB) and a APOLO II ESI source (Bruker Daltonics GmbH, Bremen, Germany)
operated in negative ionization mode. The negative ion mode was preferred based on
greater variety in the composition, abundance of compounds and a smaller number
of suppressing adducts with respect to heavy potassium adduct formation in the
positive ionization mode. The beer samples were injected once into the
micro-electrospray source diluted 1:500 in methanol and the total analysis time of a
sample was 10 min. The used reagents, sample preparation, and instrumental
parameters are given in Table B.7 in Supplementary Chapter 2. Possible space
charge effects were recalibrated by mass difference mapping [259]. The samples were
measured over a period of 18 months in randomized order using a representative
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lager beer as quality control. Mass accuracies reached values lower than 0.1 ppm
between and within measurement days. Furthermore, the conservation of the ion
intensities and the molecular fingerprint could be observed by this approach (see
data-mining HCA).

2.4.3 FT-ICR-MS data processing and visualization

The FT-ICR spectra were exported to peak lists with a cut-off of signal-to-noise
ratio (S/N) of 6 using the DataAnalysis 4.2 software. Only singly charged ions were
included. Processing and filtration of the peak lists (FT-side loops and isotopologue
filtering) were performed by an in-house R-based software tool on basis of single
spectra. Peak alignment was performed within a threshold of 1 ppm. Thereby an
overall matrix of 13,800 masses was created. To obtain molecular formulae, the exact
masses were subjected to mass difference network (MDN) analysis using the NetCalc
software tool [237]. The network calculation was repeated ten times and coinciding
formula assignments were kept, which led to approximately 10,500 unambiguous
molecular formulae in the C, H, N, S, O, P, Cl space. The developed mass difference
network, in which nodes represent molecular formulae and edges represent chemical
reactions, was visualized by the open accessible Gephie Viz Platform [288] using the
open order algorithm. The masses with a frequency below 5 % through all the
samples were not considered during further data mining. Small mass transitions like
oxidation, methylation, hydrogenation, or amination were withheld for visualization
due to computing power. Van Krevelen diagrams were chosen to associate annotated
m/z-values to chemical families based on the procedure illustrated by Schmitt-
Kopplin, et al. [26]. Library searches were executed using an R script based on the
MassTRIX approach [289] including the Human Metabolome Database (HMDB) [290], the
Chemical Entities of Biological Interest (ChEBi) [291], Metacyc [292], Lipid maps [293], the
Yeast Metabolome Database (YMDB) [294], and an in-house peptide database
consisting of all in silico peptides.

2.4.4 UHPLC-ToF-MS measurements and structural identification

The beer sample 52 (hops-rich craft beer) and sample 41 (wheat beer) were analyzed
in a fivefold concentration on a time-of-flight mass spectrometer (maXis, Bruker
Daltonics, Bremen, Germany), coupled to a UHPLC system (Acquity, Waters,
Eschborn, Germany). The preference list for fragmentation was compiled based on
the substances’ masses, which occurred as a marker for the hops-rich beer
types (sample 52) and wheat grain (sample 41) observations (Table B.4-B.7 in
Supplementary Chapter 2). Further instrumental parameters are given in Table B.7 in
Supplementary Chapter 2. The search for comparable tandem mass spectrometric
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data was executed using the MassBank of North America [295] and in silico
fragmentation by MetFrag [262] based on the KEGG [24], HMDB [290], and YMDB [294]

databases. Spectra were checked in mentioned literature source. The level of
identification was assigned based on the criteria given by Sumner, et al. [10].

2.4.5 Statistical analyses

The dataset, divided into a first batch defining the model and a second batch used
for prevision and validation, was analyzed with different multivariate techniques. First,
we used an unsupervised technique to cluster the different beer samples. The
intensities were normalized (z-scores) and the clustering was calculated by using the
average group linkage and the Pearson correlation coefficient for the distance
measure (Hierarchical Clustering Explorer tool; HCE, 3.0). Afterward, the dataset was
analyzed by different classification models applying supervised orthogonal partial
least-square discriminant analysis (OPLS-DA). The Hotelling’s T2 test (95 %) was
applied to prohibit the influence of strong outliers on the models. For both the beer
type and grain model it was possible to extrapolate the most discriminant
features (m/z-values). The lists of the most important masses were defined choosing
the highest loadings values. The top characteristic masses were selected within the
95th percentile (264 masses for each class). The goodness of the fit and of the
prediction were evaluated with the R2- and Q2-values. To exclude overfitting, we
provide the p-value of the cross-validation analysis of variance (CV-ANOVA). In
addition, based on the robustness of the classification models we could use them to
make a prevision of a second sample set. The recognition of molecular patterns for
the independent samples and thus the localization of those in the score plot could
verify the universal applicability of the models. Those elaborations were done in
SIMCA 13.0.3.0 (Umetrics, Umeå, Sweden). The marker formulae were depicted in
van Krevelen diagrams for each class. By plotting H/C- versus O/C-atomic ratios it is
possible to depict common compositional patterns within observations’
markers [111,126].
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Chapter 3 |
Hidden in its Color: A Molecular-level Analysis of

the Beer’s Maillard Reaction Network

We here report a comprehensive non-targeted analytical approach to describe the
Maillard reaction in beer. By Fourier transform ion cyclotron mass
spectrometry (FT-ICR-MS), we were able to assign thousands of unambiguous
molecular formulae to the mass signals and thus directly proceed to the compositional
space of 250 analyzed beer samples. Statistical data analyses of the annotated
compositions showed that the Maillard reaction is one of the driving forces of beer’s
molecular diversity leading to key compositional changes in the beer metabolome.
Different visualization methods allowed us to map the systematic nature of Maillard
reaction-derived compounds. The typical molecular pattern, validated by an
experimental Maillard reaction model system, pervades over 2,800 (40 %) of the
resolved small molecules. The major compositional changes were investigated by
mass difference network analysis. We were able to reveal general reaction sequences
that could be assigned to successive Maillard intermediate phase reactions by
shortest path analysis.

This chapter has been published as Pieczonka, S. A., Hemmler, D., Moritz, F.,
Lucio, M., Zarnkow, M., Jacob, F., Rychlik, M. & Schmitt-Kopplin, P. Hidden in its
color: A molecular-level analysis of the beer’s Maillard reaction network. Food
Chemistry 361(130112), 1-9, Copyright Elsevier (2021). It is reproduced with explicit
permission.

Candidate’s contributions: S.A.P. designed the experiments, analyzed and
interpreted the data. S.A.P wrote, revised and approved the final paper. S.A.P.
performed the instrumental experiments. S.A.P. performed the statistical treatment,
data mining, interpretation and visualization.
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3.1 Introduction

Beer belongs to the oldest fermented beverage in the world [159]. Thousands of years
ago, humankind already commenced to purposefully produce durable and nutrient-
rich beverages timely concordant with the domestication of cereals [296]. While the
shelf life of beer is notably due to hop constituents, the alcohol content and the stable
pH-value, the raw material’s durability is maintained by reducing the water content.
The underlying process of malting was widespread in ancient Egypt, where the good
taste of heat-treated cereals already was valued [160]. It still represents one of the
manifold-guided processes that make up modern beer brewing, the complexity of
which is mirrored in the diverse molecular composition of beer. Beer can be
considered as an exceedingly complex organic mixture in an aqueous solution, to
which the brewing process contributes as considerably as the ingredients
themselves. The heat treatment of the carbohydrate source is a unique step that
notably lifts the molecular complexity of beer from that of other beverages. Malting
the grain (steeping, germination, kilning/roasting) leads to a series of chemical
reactions that are reflected in the “beer’s metabolome”.

Brewing science and beer analysis has been integrating empirical knowledge
about its chemical composition over centuries [227]. Using numerous analytical
approaches including UHPLC-MS, GC-MS and NMR spectroscopy, both targeted
and non-targeted strategies described the beer composition with regard to metabolic
profiles characteristic for beer types [198], brewing sites [196], beer quality [195], aging [297]

or the evolution of hops-derived compounds [186]. Recently, our group was able to
demonstrate the power of the ultra-high-resolution mass spectrometric approach of
direct-infusion Fourier transform ion cyclotron mass spectrometry (DI-FT-ICR-MS)
providing a comprehensive picture of the beer’s metabolome [225]. Out of the resolved
molecular diversity, molecular networks of plant secondary metabolites that
differentiate beer types and raw materials used could be made visible and
characterized. Research on the driving force of chemical changes during the roasting
process, the Maillard reaction (MR), is more so dominated by targeted approaches.
Brewing research focused on understanding the series of complex reactions by
studying reaction mechanisms of certain marker molecules and aroma compounds.
For example, 5-hydroxymethyl-2-furfuralaldehyde (HMF) is generated by multiple
pathways including caramelization and the MR starting from numerous possible
precursors [298]. By comparison, the formation of maltol, characteristic for eponymous
dark malt and beer, only occurs in disaccharide systems favored by stereochemistry
and hindered dehydration of respective monosaccharide precursors [299]. Many
studies followed this approach and studied new non-volatile or aroma-active
compounds including their formation pathways [273,300,301]. However, a comprehensive
and holistic approach remains inadequately pursued. Comprehensive and
molecular-level detection of Maillard-derived compounds in beer forms the basis to
describe general reaction sequences, driving forces and key intermediates. It carries
the potential to guide the MR-related brewing processes towards desired attributes
of the beer, as Maillard reaction products (MRPs) play a major role in its organoleptic,



Chapter 3 | Materials and methods

59

physical and chemical properties. Melanoidins as MR end products determine the
color of beer [302], they contribute to the stabilization of aroma compounds [303], have
foam stabilizing properties [304] and show antioxidative properties [305]. The shelf life of
beer is further increased due to the inhibition of bacterial growth [306]. Overall, beer
quality could benefit from optimizing the MR not only towards the formation of a few
targeted molecules but addressing and eventually controlling the entire compositional
space, including the many still unknowns.

We have recently developed an analytical pipeline based on high-resolution
mass spectrometry and data visualization that allows the comprehensive study of the
early Maillard reaction network on a molecular level in sugar-amino acid model
systems [168,307]. Studying exact mass differences as a proxy for the reactome was
shown to be a valuable tool to monitor the formation of MRPs and to better
understand their chemical interplay. In this study, we apply this analytical strategy to
better understand non-enzymatic browning reactions in beer. We aim to capture the
huge diversity of the beer metabolome, assess the contribution of MR products and
extract related accurate masses. Visualization and integration of molecular
compositions into molecular networks will enable us to capture a comprehensive
picture of the Maillard reaction as it may occur in the (bio-)chemically complex beer
system.

3.2 Materials and methods

3.2.1 Beer samples and Maillard model system

A total of 250 samples of bottled beers from over 40 different countries were
analyzed. They represent the variety of different beer styles, fermentation
types (lager, wheat, craft, geuze, abbey) and raw materials available. The samples
were purchased at local grocery stores between 2018 and 2020 and stored at –20 °C
prior to preparation for analyses. For the model system, the concentration of 19 amino
acids, accessible for derivatization with o-phthaldialdehyde, and 5 saccharides were
analyzed in a biological triplicate and technical duplicate of green malt as described
in Table C.1 in Supplementary Chapter 3. The concentrations of the amino acids and
sugars, as described in Table C.2 in Supplementary Chapter 3, were recreated in
Milli-Q purified water (Merck Millipore, Darmstadt, Germany) immediately prior to
thermal treatment. The concentration of all amino acids added up to 0.12 M and the
sum of saccharides’ concentration was 0.26 M. The sample was heated in a closed
glass vial until the increase in mass features flattened out and the final phase of the
MR was reached (20 h at 100 °C). The model system was created and measured in
triplicates.
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3.2.2 UV–Vis measurements

The beer samples and Maillard model system were diluted 1:40 in Milli-Q purified
water and centrifuged (14.000 rpm, 4 min.). An aliquot of 100 µL of the supernatant
was used for UV/Vis analysis in Nunc UV-transparent 96-well microtiter
plates (Thermo Fisher Scientific, Waltham, MA). The absorption values at 294 nm and
420 nm were measured on a Multiskan Sky UV-Vis reader (Thermo Fisher Scientific)
with temperature control (23 °C).

3.2.3 DI-FT-ICR-MS measurements

High-resolution mass spectra were acquired on a Bruker solariX ion cyclotron
resonance Fourier transform mass spectrometer (Bruker Daltonik GmbH, Bremen,
Germany) equipped with a 12 T superconducting magnet (Magnex Scientific Inc.,
Yarnton, UK) and an APOLLO II ESI source (Bruker Daltonik GmbH) operated in
negative ionization mode. To minimize ion suppression while allowing detection of a
maximum number of monoisotopic signals, we carefully optimized sample dilution.
The best compromise could be achieved when beer samples and model systems
were diluted 1:500 in methanol prior to injection into the micro electrospray source.
The samples were measured over a period of 24 months in randomized order using a
representative lager beer as quality control. 80 % of all detected monoisotopic signals
could be assigned to a molecular formula within an error range of ± 0.2 ppm and the
mass resolution was stable at 400,000 at m/z 400 between and within measurement
days. The used reagents, sample preparation and instrumental parameters are given
in Table C.3 in Supplementary Chapter 3.

3.2.4 FT-ICR-MS data processing

The FT-ICR spectra were exported to peak lists with a cut-off signal-to-noise ratio
(S/N) of 6 using Data Analysis 4.2 software. Only singly charged ions were included.
Spectra were first externally calibrated by ion clusters of arginine prior to internal
calibration by a calibration list of 2000 compositions commonly found in beer.
Possible space charge effects were recalibrated by mass difference mapping [259].
Processing and filtration of the peak lists (FT-side loops and isotopologue filtering)
were performed by an in-house R-based software tool on the basis of single spectra.
Peak alignment was performed within a threshold of 0.5 ppm as described Lucio, et
al. [308]. Thereby an overall matrix of 11,500 masses was created. To obtain molecular
formulae, the accurate masses were subjected to mass difference network (MDiN)
analysis using the in-house NetCalc software tool [237]. The network calculation was
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repeated five times and coinciding formula assignments were kept, which led to
approximately 9,500 unambiguous molecular formulae in the CHNOSPCl space.
[M+Cl]- adducts were converted into the respective [M-H]--ion. Of those, all
annotations that are featured in at least three beers were kept for statistical
analysis (6,750). A full mass difference statistic was computed on the theoretical
neutral masses of each sample. The set of unique mass differences existing within all
full mass difference graphs was computed and the relative abundances of each mass
difference were obtained. Mass differences that occurred at least 100 times in a single
beer sample (15,500) were used for further statistical analysis (PCA, OPLS) on the
relative abundances of each mass difference within the different samples.

3.2.5 Statistical analyses

Firstly, we used an unsupervised principal component analysis to separate the beer
samples based on the molecular signatures that determine the biggest variance. In
the second step, an OPLS-DA was performed to extract the molecular pattern which
correlates with the absorption at 294 nm. The Hotelling’s T2 test (95 %) was applied
to prohibit the influence of strong outliers on the models. The lists of the highest
loadings values. The top characteristic masses were selected within the
90th percentile (674 masses for each dark and pale beer) and referred to as dark and
pale markers in the following, respectively. The goodness of the fit and of the
prediction were evaluated with the R2Y and Q2-values. To exclude overfitting, we
computed the p-value of the cross-validation analysis of variance (CV-ANOVA). The
same approach was carried out with the relative abundances of mass differences
occurring in the beer samples. Additionally, based on the robustness of the models,
we performed a prevision on the Maillard model system. The recognition of
compositional patterns could verify the MR origin of the found patterns and set both
models in relation. Those elaborations were done in
SIMCA 13.0.3.0 (Umetrics, Umeå, Sweden). The statistical parameters of the beer
samples and Maillard model system (Table C.4 in Supplementary Chapter 3) and PCA
and OPLS models (Table C.5 in Supplementary Chapter 3) can be found in
Supplementary Chapter 3.
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3.2.6 Mass difference network analysis

Besides the mass difference network that was used for the annotation of the
FT-ICR-MS data (FT-ICR-MS data processing), a second MDiN was created, which
includes all compositions found in both the beer samples and the model system.
These nodes were connected by edges representing transformations from the
Hodge’s scheme [309] and expanded by reactions including MR fission
products (Table C.6 in Supplementary Chapter 3). They are referred to as small
Maillard intermediate phase reactions and mass differences in the following. In
total, ~ 65,000 connections were received. Based on this second network, the nine
most significant compositional changes elucidated by OPLS statistical treatment of
the first full MDiN were broken down into smaller individual reaction sequences. More
precisely, we computed the shortest paths connecting any source-target pair of the
statistically significant, composite mass differences using the unweighted Dijkstra
algorithm in the Python 3.7 programming environment on a compatible network
library [310]. For each statistically significant mass difference, a dominant combination
of small reactions of the modified Hodge’s scheme was determined. The
chronological orders of the individual reactions were compared, giving us a dominant
reaction sequence. By this approach, we received a chronological reaction sequence
that built up the ten statistically most significant compositional changes during the
MR.

3.2.7 Data visualization

The marker formulae were depicted in van Krevelen. By
plotting H/C-versus O/C-atomic ratios it is possible to depict common compositional
patterns within observations’ markers [126]. The degree of unsaturation of the
compositions was calculated as double-bond equivalents (DBE, sum of rings and
double bonds in a molecule) and plotted against the number of carbons. A modified
Kendrick mass defect analysis [311] was applied to visualize the role of dehydration
reaction cascades in both marker subsets. The DBEs, modified KMDs and length of
homologous series were calculated as described recently [168,312]. The assignment of
corresponding chemical spaces to markers’ compositions, their number of nitrogen
and their number of oxygen atoms were plotted according to the respective
frequency. The developed mass difference network was visualized by the
open-access Gephi Viz Platform [288] using the Force Atlas algorithm.
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3.3 Results

3.3.1 Contribution of the MR to the beer’s molecular complexity

In our study, we investigated the chemical diversity of a total of 250 bottled beer
samples that cover the many facets of beer brewing by DI-FT-ICR-MS. As shown in
a previous study [225] our non-targeted analytical approach can resolve the entire
molecular complexity of beer in a single measurement. Covered compounds include
carbohydrates, peptides, lipids, polyphenols, hop bitter acids, sulfates and
phosphates as well as mostly yet inadequately characterized Maillard reaction
products (MRP). The richness and diversity of the selected beer samples capture the
great chemical space of the beer metabolome and provide a well-suitable basis to
study the contribution of the MR. We were able to assign 7,000 unambiguous
molecular compositions to the accurate monoisotopic masses (Figure 3.1A) within
the sample set reaching from very dark (Figure 3.1) to very pale (Figure 3.1C)
beers (EBC color values reaching from 5 to 150, Table C.1 in Supplementary
Chapter 3). The m/z-values reached from 100 to 1000. The molecular formulae were
annotated in the CHNOSP chemical space and subjected to further statistical
analyses.

We used principal component analysis (PCA) to assess the impact of MRPs
on the molecular beer composition (Figure 3.2A). The unsupervised statistical
treatment reveals the greatest molecular differences between the beer samples as
well as their underlying brewing principles and techniques. The PCA score plot was
colored according to each beer’s absorption at 294 nm, measured by UV-Vis
spectroscopy and reported characteristics to follow the evolution of MR [313]. The plot
reflects the samples’ degree of browning with the tendency to lower left positions.
Therefore, non-enzymatic browning can be considered to be of major importance for
the chemodiversity in beer. It leads to key compositional changes already visible in
unsupervised statistics.

Figure 3.1 | Van Krevelen diagram of molecular formula annotations found in 250 beer
samples (A), the darkest (B) and palest (C) beer sample. Color code: CHO blue;
CHNO orange; CHOS green; CHNOS red; P purple. Neutral molecular formulae are
plotted. The bubble size indicates the mean relative intensities of corresponding
peaks in the spectra.
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We applied a second statistical analysis, a supervised OPLS-DA, to generate
in-depth knowledge of compositions driving the differentiation of dark
beers (Figure 3.1B) and pale beers (Figure 3.1C). Compared to PCA, OPLS-DA
allowed the extraction of accurate masses without an influence of orthogonal
metabolic information, which does not contribute to the compositional changes
affected by the MR. The received R2Y-, Q2- and ANOVA p-value indicate a highly
significant multivariate model [214-216] (Table C.5 in Supplementary Chapter 3). The
gradient of absorption values, already visible in the PCA and established as driving
the Y-variable, is reflected in the first component of the OPLS score plot (Figure 3.2B).
The comparison of both statistical models’ loading plots shows that the OPLS can
extract the same features that drive the MR-related separation of the beer samples in
the PCA (Figure 3.2C). We further analyzed an experimental Maillard reaction model
system and integrated the results into the OPLS-DA. According to the amino acid and
carbohydrate profiles and concentrations of analyzed green malt (Table C.2 in
Supplementary Chapter 3), we designed the MR model system, which we heated
to  100 °C in order to simulate the processes during malting and brewing. To a certain
extent, this model represents Maillard reactions between multiple sugars and amino
acids in beer. The experimental model system allowed us to validate the assumption
that monitoring the absorption at 294 nm can be used to study the MR in beer. The

Figure 3.2 | Score plot of the PCA (A) and OPLS (B) analysis of the compositional
space of 250 beer samples and the corresponding loading
plots (C-I, PCA) (C-II, OPLS). Score plot of the PCA (D) and OPLS (E) analysis of the
computed mass differences in 250 beer samples and the corresponding loading
plots (F-I, PCA) (F-II, OPLS). The position of the beer samples is marked by dots
colored according to their absorption at 294 nm. The prediction of the Maillard model
system in the OPLS models (B and E) is highlighted as a red star. Masses in the
PCA-loading plot (C-I and F-I) that match the most significant masses for dark beers
in the OPLS-loading plot (C-II and F-II) are colored brown.
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prediction of the model system’s position in the OPLS score plot locates it to the far
right validating that our OPLS model is capable to recognize the intrinsic nature of
Maillard-derived complex systems (Figure 3.2B). The MR molecular pattern in beers,
which is extracted by the statistical treatment and classified with regard to the
compounds’ significance, matches the chemical space of the MR model
system (Figure C.1 in Supplementary Chapter 3). We could reproduce 80 % of the
most significant compositions found in beer (90th percentile of most positive loadings)
in the saccharide and amino acid experimental model system (Figure C.2 in
Supplementary Chapter 3). The overlap between the masses found in beer and those
of the model system decreased with decreasing loading values of the respective
masses. In comparison, compositions characteristic for pale beers (90th percentile of
most negative loadings) showed an overlap of less than ten percent.

3.3.2 The compositional nature of the MR in beer

The OPLS loadings plot allowed the extraction of compositions related to the MR
from the rich diversity of beer metabolites and rank them according to their
significance. To study the molecular pattern of MRPs, we focused on the top ten
percent (90th percentile) of the most significant marker compositions for both the dark
and pale beer characteristics. Yet, the typical compositional pattern of the Maillard
reaction, reported by Hemmler, et al. [168] and reflected in the MR model system,
pervades at least 40 % (2.800) of all annotations (Figure C.1 in Supplementary
Chapter 3).

Several plots and visualizing tools can be used to depict and describe the
compositional nature of complex (bio)chemical systems [126,307,311]. The annotations of
the dark beer markers are almost exclusively limited to the CHO (52%) and
CHNO (48%) space (Figure 3.3A-I). The number of molecular formulae that contain
nitrogen atoms decreased linearly with the number of nitrogen atoms, which implies
a compositional space built up by chemical kinetics (Figure 3.3B-I). The frequency of
molecular formulae is Gaussian-like distributed against the number of oxygen atoms
contained but lacks compositions with less than four oxygen atoms (Figure 3.3C-I).
Compounds with very low oxygen numbers that can be detected by FT-ICR-MS in
negative electrospray mode are most commonly annotated as fatty acids or
lipids [26,225]. Such compositions can be found in the marker masses of pale
beers (Figure 3.3C-II). Overall, in contrast to the dark beer markers, the plots of beer
metabolites that are characteristic for pale beers and do not come from the MR do
not share a distinct compositional space, as comparatively described in other
fermented beverages missing heat load [57,111] (Figure 3.3A-C-II).
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Furthermore, the comparison of marker masses of pale and dark beer
markers in the van Krevelen diagram shows substantial differences (Figure 3.3D). The
Maillard reaction leads to a highly organized compositional pattern of compounds
which is mainly formed through consecutive dehydration, carbonyl cleavage and
redox reactions [312]. Interestingly, the extracted molecular formulae of the dark beer
marker masses indicate the same compositional pattern. Compositions
corresponding to well-known MRPs like 5-hydroxymethylfurfural (HMF, C6H6O3),

Figure 3.3 | Comparison of dark (I) and pale (II) beer marker molecular formulae by
different visualizing plots (A-F). Number of annotations in the chemical spaces (A),
number of nitrogen atoms (B), number of oxygen atoms (C), Van Krevelen
diagram (D), Double bond equivalents against Number of Carbon atoms (E) and
Kendrick mass defect plot with H2O homologous series (F). Color code: CHO blue;
CHNO orange; CHOS green; CHNOS red; P purple. Neutral molecular formulae are
plotted. The bubble size indicates the mean relative intensities of corresponding
peaks in the spectra (D, E). Rising DBE with higher masses for dark markers is
indicated in (E-I). Homologous series of H2O-reactions are marked exemplary in the
KMD plot (F-I). The intrinsic systematic pattern of dark beer markers is opposed to
non-systematic annotations of the pale marker masses.
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pronyl-lysine (C15H24N2O6) or maltosine (C12H18N2O4) as well as early intermediates like
desoxyosones (e.g., C6H10O5) and Amadori rearrangement
products (deoxyhexosylglycine, C8H15NO7) can be found in both the model system
and the dark beer markers. This systematics is contrasted with the van Krevelen
diagram of pale beer compounds (Figure 3.3D-II). The generally more saturated
molecular formulae do not cluster in a discrete area. Merely, the areas in the van
Krevelen diagram indicate thermolabile lipids and peptides [225] which may function as
MR precursors. The degree of unsaturation of MR-derived compounds, expressed as
double-bond equivalents (DBE), follows a highly systematic structure compared to
markers for pale beers (Figure 3.3E). Only a group of early MR intermediates of
higher-chain saccharides (e.g., C24H40O20, C24H38O19, C24H36O18 at C > 20 and
DBE < 8) resist the clear, almost linear trend of higher DBEs for higher
masses (Figure 3.3E-I). The biggest differences between the highly structured MR
compositions, which are based on defined chemical reaction cascades, and other
beer metabolites are shown in the modified Kendrick mass defect (KMD)
plot (Figure 3.3F). Elimination reactions can be observed in both the CHO and CHNO
chemical space homologous series of water. The maximum length of water
elimination cascades equals seven with an average of 3.9. This is in agreement with
values for MR models reported in the literature (7 and 3.9) [168] and values computed
for our model system (8 and 4.0). In contrast, the pale beer markers do not exceed a
homologous series of more than three consecutive dehydration events.

By these visualization methods, we could confirm the MR origin of hundreds
to thousands of compositions in beer attributed significantly for darker beers in the
statistical data evaluation and describe their intrinsic compositional structure. The
modified KMD plot furthermore implies that the reaction cascade of the MR is
captured in the marker compositions.

3.3.3 The Maillard reaction molecular network in beer

To get deeper insights into the Maillard reaction cascade that leads to the deciphered
molecular complexity, we applied a mass difference network (MDiN) analysis. Based
on the relative abundances of mass differences that connect the elementary
compositions of each sample and represent chemical reactions or reaction
sequences, both PCA (Figure 3.2D) and OPLS (Figure 3.2E) statistical analyses were
used. Similar to the statistics on the compositions above, the PCA plot shows a
gradient of darkening colors with the tendency to lower positions of the beers in the
score plot (negative PC2-values). Using the absorption values of beers at 294 nm as
Y-variable in an OPLS-DA, we were able to extract the most significant mass
transformations for dark beer samples. This is in agreement with the mass
differences (MDs) driving the separation in the PCA (Figure 3.2F). Again, the MDs
match the dominant ones of the Maillard model system (Figure 3.2E).
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These exact mass differences can be equated with changes in the molecular
formulae and therefore compositional changes. They describe the compositional
change a source compound undergoes to build a target composition. The ten most
significant compositional changes are almost exclusively limited to the CHO chemical
space and reach from 68 Da to 154 Da. Based on the shifts in the respective
molecular formula, there are no single reaction equivalents that describe these
changes. Consequently, they rather represent (reaction) sequences of individual
smaller compositional changes and are referred to as composite mass differences in
the following.

The van Krevelen diagram of the reaction pairs shows that higher weight
reactants appear in the area of early MR products (Figure 3.4A). The associated
compounds with lower m/z-values can be assigned to the area of unsaturated
advanced MRPs (Figure 3.4B). Accordingly, source compounds of the composite
reactions have higher masses than the target compounds. The most significant

reactions could be defined as degradation processes.

To decipher the individual reactions, a MDiN analysis was applied on all
annotated compositions (N = 7000). The nodes in the network shown in Figure 3.4C
represent compositions annotated in both beer samples and the model system. The
compositions are connected by edges representing the mass differences typical for
the MR intermediate phase. This includes transformations, such as dehydration,
decarboxylation, and carbonyl cleavage reactions (for a full list of 11 transformations
see Table C.6 in Supplementary Chapter 3). Due to the lack of a universally applicable
nitrogen-containing mass transition, the tenth MD was omitted. We were able to

Figure 3.4 | Van Krevelen diagrams of compositions connected by the ten most
significant mass differences for dark beers (A  and B) and their breakdown into small
reaction series by a mass difference network (C). Higher mass values (A) and lower
mass values (B) of the mass pairs. The entirety of compositions is depicted in the
background in gray. The lower left position of low m/z values indicates degradation
reaction sequences. Nodes in the mass difference network (C) represent all annotated
compositions connected by edges representing small Maillard intermediate phase
reactions (Table C.6 in Appendix Chapter 3). Sources and targets of the statistically
most significant big composite mass differences are colored.

CBA
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connect the majority (>95 %) of source-target pairs of the statistically significant
composite mass differences by individual small reactions and define the shortest
paths by the unweighted Dijkstra algorithm. For each big compositional change, a
certain combination of intermediate phase reactions was dominant (Table 3.1). The
chronological order of the respective individual Maillard intermediate phase reactions
was compared (Figure C.3 in Supplementary Chapter 3). The order can be assumed
to represent the evolution of the composite MR compositional changes. With up to
175 different chronological orders, for each composite mass difference one reaction
sequence was very dominant. An overview of the ten most significant compositional
changes and their breakdown into chronological reaction sequences is given in
Figure 3.5. They share a similar structure: all feature a dehydration cascade, whereas
most of them end with a decarboxylation reaction. Fission products of early MR
intermediates such as glyoxal, methylglyoxal and diacetyl mark the beginning of the
reaction sequence in many cases.

Table 3.1 | The ten most significant compositional changes during the MR in beer and
their break down into small reactions.

Loading Δ m/z Formula Fre-
quency

Decomposition into
individual MDs

% of
shortest

paths0.01581 -128.053 C1H-12O-8 543 Dehydration (8), Glyoxal,
Decarboxylation

64

0.01576 -140.053 H-12O-8 714 Dehydration (8), Hydrogenation (2) 65
0.01576 -142.069 H-14O-8 576 Dehydration (8), Hydrogenation 82
0.01571 -98.0427 C2H-10O-7 685 Dehydration (7), Methylglyoxal 75
0.01566 -110.043 C1H-10O-7 879 Dehydration (7), Acetaldehyde,

Decarboxylation
65

0.01565 -112.058 C1H-12O-7 722 Dehydration (7), Glyoxal,
Decarboxylation

66

0.01551 -82.0477 C2H-10O-6 890 Dehydration (6), Methylglyoxal,
Dehydrogenation, Decarboxylation

83

0.01549 -68.0321 C3H-8O-6 830 Dehydration (6), Diacetyl,
Dehydrogenation, Decarboxylation

94

0.01549 -154.069 C-1H-14O-8 746 Dehydration (6), Dehydrogenation,
Decarboxylation

90

0.01543 -93.0637 C1H-11N1O-5 861 - -
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3.4 Discussion

The progress of the early MR was followed by the absorption at 294 nm. The UV
absorbance at 294 nm is commonly used to indicate Maillard reaction products of the
intermediate phase [313]. Absorption values of the beer samples measured at
294 nm (MR intermediates) and 420 nm (advanced MR products) showed a very
strong correlation (Pearson correlation coefficient: 0.98). Consequently, our identified
marker candidates include MRPs from the entire reaction network (initial, intermediate
and final MRPs). The MR-correlating compositions lead to a differentiation of the
beers already in the first principal components of the unsupervised statistical analysis.
It shows that the reaction of sugars and amines defines a large part of the beer
metabolites. Besides the OPLS statistical parameters (R2 > 0.92, Q2 > 0.79 and
ANOVA p-value ≪ 0.05), the decreasing coverage of the marker’s chemical space by
the MR model system with decreasing loading values confirm the power of our
approach. The typical Maillard reaction signature [168] is dominant and shows up to at
least 40 % of the whole chemical diversity resolved by FT-ICR-MS.

Figure 3.5 | Reaction sequences of the ten most significant compositional changes
during the MR in beer. All reaction sequences feature a dehydration cascade. In many
cases, MR fission products start the reaction sequence, which ends with a
decarboxylation reaction.
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Different plots and visualization techniques confirm that the markers we found
represent a highly systematic and distinct chemical space within the big variety of
beer metabolites. Consistent with literature findings, the CHNOS chemical space did
not significantly contribute to the universal signature of the MR in beer. This agrees
with low cysteine and cystine concentrations reported in malt, wort and beer [314]. As
confirmation, an inhibiting effect on the progression of the MR and the formation of
final MRPs is described for sulfur-containing amino acids [315]. The difference in the
chemical signature of compositions specific to dark and pale beers could be
attributed to their different origins. MRPs arise from chemical reactions, which follow
kinetic and thermodynamic laws, and are not influenced by enzymatic catalysis. As
already described in model systems [312], Maillard-derived CHNO compositions can
carry multiple nitrogen atoms based on multiple condensation reactions of amino
compounds to a sugar backbone. These reactions depend on the reactivity of amino
acids involved and the MR intermediate’s tendency towards carbonyl cleavage,
resulting in new reducing ends of the sugar backbone. The formation of such
nitrogen-rich compositions is described to accumulate with the progress of the
MR [168]. In the complex beer system, involving numerous and interacting amino
compounds, we detected compositions with up to four nitrogen
atoms (CHN1O to CHN4O). Interestingly, we could observe a linear decrease in the
composition frequencies with increasing nitrogen number. This agrees with the
formation of nitrogen-rich compositions in the later stage of the MR and might confirm
the kinetic nature of the dark beer markers. The number of oxygen atoms, not in the
focus of previous studies, was also found to be highly systematic. With oxygen
numbers exceeding 20 oxygen atoms and mass values over m/z 650, both oligo-
saccharide precursors and condensation reactions can be regarded as important
factors in the formation of MRPs in beer. These high-mass compounds also could be
classified in the MR scheme. The evolution of the MR is characterized by dehydration
reactions, which are reflected in the van Krevelen diagram where early
MRP (1.5 < H/C < 2; 0.75 < O/ C < 1) evolve to highly unsaturated and aromatic
compositions (H/C <1.5; O/C < 0.5). The dehydration reactions inevitably come with
introducing a DBE to the respective target formula. Both the increasing number of
DBEs with higher mass and dehydration cascades for com-positions with Kendrick
nominal mass > 400 reinforce the meaning of higher mass, non-volatile MRPs in the
complex food system.

Studying exact mass differences, which represent certain compositional
changes, we were able to reveal general and conceptual reaction sequences that can
describe a part of the Maillard reaction in beer. Condensation reactions lead to
compounds with higher mass and lead to a change in the composition, which always
depends on both the carbonyl and amino compounds. Although the condensation of
glycine (C2H5NO2) and isoleucine (C6H13NO2) with a carbonyl moiety are very similar in
their underlying reaction mechanism, they lead to different compositional
changes (C2H3NO and C6H10NO, respectively). The same is true for the condensation
and interaction of MR intermediates. Other reactions like simple dehydration or
glycation are characteristic of the MR but not specific as a multitude of biochemical
transformations includes a loss of water or glycation as well. Accordingly,
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compositional changes that neither depend on amino acids nor correspond to the
condensation of complex intermediates or very simple reactions were to be expected.

Therefore, the ten most significant compositional changes are changes
including CHO-transformations coming with a loss of mass. Consequently, at this
point, our data cannot provide conclusions about the role of single amino compounds
but describe the complex system holistically. What was found to be statistically
significant can refer to very general chemical changes that early MRPs or
intermediates of diverse origins undergo to build a Maillard reaction end product. By
our network and shortest path approach, we furthermore were able to decipher the
combination and chronological order of Maillard intermediate phase reactions that
match these compositional changes. All intermediates were found in either beer or
the Maillard model system and despite hundreds of possible combinations, the
chronological order was consistent within the source and target pairs. This leads us
to regard the results of the network approach as reaction sequences.

These sequences share a common inherent structure: Starting with the
condensation of a small MR fission product, a dehydration cascade and finally a
decarboxylation reaction occurs. These fission products like glyoxal, methylglyoxal or
diacetyl arise from retro–aldolization of sugar molecules or cleavage of respective
dicarbonyls [316]. Dehydration cascades are well described to play a major role in the
formation of MRPs. In several ribose–amino acid model systems we were able to
highlight the role of early diketosamine formation and its subsequent degradation in
the MR [312]. Molecular formulae equivalent to six consecutive dehydration products
could be described. Our presented results indicate that such a degradation process
might also be caused by the condensation of a fission product when describing a
complex system in general. In the context of the MR, loss of CO2 likely occurs due to
an α-dicarbonyl-assisted oxidative decarboxylation (e.g., Strecker degradation) [317].
In this case, the resulting imine is hydrolyzed to give the so-called Strecker aldehyde.
The hydrolysis reaction leads to the loss of the specific amino acid residue at the
initial dicarbonyl unit. These reactions would be no longer tangible for our general
approach. Purely thermally induced decarboxylation reactions, on the other hand,
could occur during the roasting process. They require very high
temperatures (>200 °C) [318] and thus naturally happen at the end of the heating
process and reaction sequences. It is worth noting that the presented pathways and
their interpretation are restricted to compositional information obtained by accurate
mass measurements. They describe very general and conceptual patterns within a
complex food system. Mechanistic studies including various model systems, resolved
in time, should be performed to fully understand the reaction sequences we proposed
to describe the MR in beer.

In industrial practice, the extensive chemical changes that are associated with
the heat load are usually monitored by the unspecific reaction of 2-thiobarbituric
acid (TBA) [319]. It is based on the photometric tracking of the reaction of TBA with
dicarbonyl functions. However, the origin of the dicarbonyls (e.g., MR or lipid
oxidation) and their follow-up reactions cannot be differentiated. By comparison, we
recorded over 2,500 compositions that describe the MR in beer comprehensively
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alongside the reaction network leading to such a multitude of MRPs. Our analytical
approach may offer a unique method to guide MR-related brewing processes, such
as malting and boiling, towards desired attributes of the final beer end product.
Having the opportunity to resolve the Maillard reaction cascades and resulting
molecular complexity, effects of changed kilning or roasting parameters can be
monitored as well as the progress of the MR throughout the whole brewing process.

3.5 Conclusion

Overall, this study reports a comprehensive analytical approach addressing the great
variety of MR-derived products in a complex food system, the description of their
compositional nature and the general reaction cascades that lead to the diversity
observed. It contributes to a better understanding of the complex molecular
processes involved in the MR and might be a starting point for potential process
development and quality control in both the malting and brewing industries.
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Chapter 4 |
On the Trail of the German Purity Law:

Distinguishing the Metabolic Signature of Wheat,
Corn and Rice in Beer

Here, we report a non-targeted analytical approach to investigate the influence of
different starch sources on the metabolic signature in the final beer product. An
extensive sample set of commercial beers brewed with barley, wheat, corn and/or rice
were analyzed by both direct-infusion Fourier transform ion cyclotron mass
spectrometry (DI-FT-ICR-MS, 400 samples) and UPLC-ToF-MS (100 samples). By its
unrivaled mass resolution and accuracy, DI-FT-ICR-MS was able to uncover the
compositional space of both polar and non-polar metabolites that can be traced back
to the use of different starch sources. Reversed-phase UPLC-ToF-MS was used to
access information about molecular structures (MS2-fragmentation spectra) and
isomeric separation, with a focus on less polar compounds. Both analytical
approaches were able to achieve a clear statistical differentiation (OPLS-DA) of beer
samples and reveal metabolic profiles according to the starch source. A mass
difference network analysis, applied to the exact marker masses resolved by FT-ICR,
showed a network of potential secondary metabolites specific to wheat, corn and rice.
By MS2-similarity networks, database and literature search, we were able to identify
metabolites and compound classes significant for the use of the different starch
sources. Those were also found in the corresponding brewing raw materials,
confirming the potential of our approach for quality control and monitoring. Our results
also include the identification of the aspartic acid-conjugate of
N-β-D-glucopyranosyl-indole-3-acetic acid as a potential marker for the use of rice in
the brewing industry regarding quality control and food inspection purposes.

This chapter has been published as Pieczonka, S. A., Paravicini, S., Rychlik, M. &
Schmitt-Kopplin, P. On the trail of the German Purity Law: distinguishing the
metabolic signatures of wheat, corn and rice in beer. Frontiers in Chemistry: Analytical
Chemistry, 9 (715372), 1-12 (2021). It is reproduced with permission from Frontiers
Media under the Creative Commons Attribution 4.0 International License.

Candidate’s contributions: S.A.P. designed the experiments, analyzed and
interpreted the data. S.A.P wrote, revised and approved the final paper. S.A.P.
performed the instrumental experiments. S.A.P. performed the statistical treatment,
data mining, interpretation and visualization.
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4.1 Introduction

Beer is defined as a fermented, but not distilled, beverage that is made from starch
sources. Seen as one of the first food laws, the Bavarian Purity Law [161] stipulates only
the ingredients barley, hops and water to ensure the quality standard of beers, its
shelf-life, preservation and safety. Nowadays, beverages that are sold as beer are
open to a large number of brewing types and raw materials [320]. As an example, the
German feudal purity law of 1516 does not allow wheat as an ingredient of beer,
because valuable wheat and rye grain should be exclusively used for baking. This
contrasts with today’s Bavarian wheat beer, which according to current law (German
Beer Purity Law, Vorläufiges Biergesetz) must be brewed from at least 50 % of wheat
malt and top-fermented. With Belgian wit beers as a second classic wheat-based
beer and especially the rising market of alcohol-free beers, the role of wheat and
wheat malt significantly changed during the last centuries [321].

Other malted grains that are not mentioned in the purity law of 1516 and
traditionally used for beer brewing on the international landscape are corn and rice.
Rice beers, locally referred to as zutho, are found in the Indian cultural area [322]. In the
production of gluten-free beer, rice plays a special role as a naturally safe source of
starch. Ceccaroni, et al. [323] optimized the malting process of rice for a top-fermented
gluten-free beer available to individuals affected by celiac disease. By adding
caramelized specialty rice malt, a malted and rich aroma profile and amber color of
the rice-only beer were achieved, as the authors report [324]. Mayer, et al. [325] claimed
to overcome the problems when beer is brewed with rice malt only and reported a
bottom-fermenting brewing process based on rice-endogenous enzyme activities.
Bailly, et al. [326] report brewing with malted corn on a laboratory scale, significantly
rising the enzyme activity compared to unmalted corn [327].

Brewing with corn and rice is therefore diverse but comes with well-described
disadvantages compared to barley malt [328-332]. It also has a significant impact on the
beer’s sensory profile [333]. For these reasons, brewing with a certain proportion of raw
grain adjuncts of rice and corn is much more common. In the contemporary brewing
industry, barley malt is often partially replaced with adjuncts like corn, rice, starch or
sugar. Especially the competitive price [334], but also shortened mashing times and
lower mashing temperatures make them valuable in modern industrial brewing. The
associated changes in enzyme activities, free amino nitrogen and protein content can
be balanced out with exogenous enzymes and extracts [335,336]. The use of raw grain
and other adjuncts as an inexpensive alternative to barley or wheat malt is forbidden
in Germany.

As early as the 1960s, the analytical determination of the use of raw grain
adjuncts was in the focus of brewing research in Germany [337]. Where at that time the
original wort difference, mineral content, total and coagulable nitrogen turned out to
be characteristics, the carbon isotope determination of the C4-plant corn was
subsequently added [338]. Analysis methods based on immunological concepts often
showed weak points due to the big expense necessary, cross-reactions or major
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changes in the beer ingredients during the brewing process [339,340]. Iimure and Sato
[341] investigated the proteome of beers brewed with barley, rice and corn by 2-D gel
electrophoresis combined with MS. Following the proteomics approach, two proteins
were determined as corn-specific but not relevant for the beer quality and thus not
further characterized. Fenz [342] reported the detection of corn adjuncts in beer by
HPLC-UV analysis of the corn-specific oxindole derivative
7-hydroxy-2-oxindole-3-acetic acid and glycerol esters of polyphenols [343] after
previous extraction and adsorption chromatography. The method described has been
further simplified [344] and can be used on corn, but not on rice.

The technical advances in separation methods, detector units and mass
analyzers, as well as the further development of data collection and analysis, are
showing new perspectives for modern beer analysis [227]. The entire molecular diversity
of beer can be shown and the influence of different raw materials such as hops and
wheat on its metabolome can be captured [225]. Complex reaction networks during the
brewing process can be described [226]. In our study, we report a comprehensive
non-targeted analytical approach involving direct-infusion Fourier transform ion
cyclotron mass spectrometry (DI-FT-ICR-MS) and UPLC-ToF-MS combined with
statistical and network analyses to investigate simultaneously the influences of wheat,
corn and rice on the beer’s metabolic signature. The findings could be of great interest
with regard to quality control in the brewing industry and foodstuff inspection in the
context of the Purity Law.

4.2 Materials and Methods

4.2.1 DI-FT-ICR-MS measurements and data processing

A total of 400 samples of commercially available beers from over 40 different
countries were analyzed. The sample set is a cross-section representing all possible
combinations of beer styles, fermentation types, raw materials, color impressions and
alcohol contents available. Thus, metadata co-varying with the characteristic in focus
could be excluded. The samples were purchased at local grocery stores between
2018 and 2020 and stored at -20 °C prior to preparation for analyses. High-resolution
mass spectra were acquired on a Bruker solariX Ion Cyclotron Resonance Fourier
Transform Mass Spectrometer (Bruker Daltonics GmbH, Bremen, Germany)
equipped with a 12 Tesla superconducting magnet (Magnex Scientific Inc., Yarton,
GB) and a APOLO II ESI source (BrukerDaltonics GmbH, Bremen, Germany) operated
in negative ionization mode. The sample preparation, measurement and data
processing parameters were chosen as reported recently [225,226]. An average mass
error of < ±0.15 ppm was reached within and between measurement batches. The
resulting 7,700 unambiguous molecular formulae in the CHNOSPCl chemical space
that occur in at least five samples were kept for further statistical analysis. An
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overview of the sample set is given in the Supplementary (Table D.1 in Supplementary
Chapter 4).

4.2.2 UPLC-ToF measurements and data processing

Solid-phase extraction (SPE) was applied to a sub-sample set including 100 beers.
The SPE parameters are given in Table D.2 in Supplementary Chapter 4. The eluate
was evaporated to dryness (25 °C, 1 mbar, 3 h, Christ Martin™ RVC 2-25 CD vacuum
concentrator) dissolved in the starting conditions of the UPLC-gradient, vortexed and
centrifuged (4 min at 14000 rmp). The supernatant, five times concentrated compared
to the initial beer sample, was used for UPLC-ToF-MS ESI-negative analysis on a
Shimadzu LCMS-9030 Q-ToF-System (Shimadzu Deutschland GmbH, Duisburg,
Germany) in randomized order. The parameters of the chromatography and
ToF-measurements are given in Table D.3 in Supplementary Chapter 4. A pooled QC
consisting of all measured samples was used for system conditioning and measured
after every 10th injection. On this basis, the batch was normalized (compensation for
intensity fluctuations) by the LOWESS algorithm. A class QC, including all samples
with the same carbohydrate source, was used for each of the barley, wheat, rice and
corn classes. Features that occur in at least 33 % of all samples belonging to the
respective class were kept as potential maker features for statistical analysis. The
data processing and extraction of chromatographic features was carried out with the
open-source MS-DIAL software [345] after the export of the raw data to the centroided
mzML-format within the LabSolutions™ 5.99 SP2 software (Shimadzu Corp., Kyoto,
Japan). The data treatment parameters were optimized and are given in Table D.4 in
Supplementary Chapter 4.

To validate the origin of the statistically most significant features, 10 g of
respective foodstuff (corn grits, corn flour, corn starch, corn oil, wheat grits,
wheat flour, whole-wheat flour, wheat starch, rice grits, rice flour, rice starch),
including typical grain adjuncts in the brewing industry was extracted with
40 mL MeOH for 1 h on the shaker (250 min-1). The suspensions were
centrifuged (5 min, 14.000 rmp) and the supernatant was evaporated to
dryness (25 °C, 1 mbar, 8 h). The residue was resolved in 2 mL starting conditions by
vortexing and supersonification and syringe filtrated (0.2 µm) before UPLC-ToF-MS
analysis. Furthermore, potential marker substances were measured in positive ESI
mode to obtain another complementary fragmentation spectrum.

The aspartic acid conjugate of (6,6-d2) N-β-D-glucopyranosyl-
indole-3-acetic acid was synthesized as described by Kai, et al. [346] and kindly
provided by the latter authors. The standard was resolved in methanol (6 µg.mL-1) and
added to a worked-up beer sample (sample 325) in equal volumes for co-
chromatography.
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4.2.3 Data treatment and visualization

We performed a supervised OPLS-DA analysis on both the FT-ICR and UPLC-ToF
dataset matrices consisting of metabolite features and intensities. Data pretreatment
included zero-filling, data normalization, scaling and transformation (Table D.4 in
Supplementary Chapter 4). The Hotelling’s T2 test (95 %) was applied to prohibit the
influence of strong outliers on the models. The lists of the most important masses
were defined choosing the highest loadings values. The top characteristic masses
were selected within the 95th percentile (385 masses for each carbohydrate source
for FT-ICR and 89 for UPLC-ToF respectively). Potential markers for the use of barley
were neglected due to co-varying metadata (Figure D.1 in Supplementary Chapter 4).
The goodness of the fit and of the prediction were evaluated with the R2 and Q2

values. To exclude overfitting, we provide the p-value of the Cross-Validation Analysis
of Variance (CV-ANOVA). With high values for the quality of prediction (Q2) that do not
exceed those of the goodness of the fit (R2Y) and CV-ANOVA p-values far lower than
0.05 for the comparison of between-class against within-class variance, the
significance of the models could be confirmed and overfitting excluded [214,215]. Those
elaborations were done in SIMCA 13.0.3.0 (Umetrics, Umeå, Sweden). The statistical
parameters of the beer samples  (Table D.1 in Supplementary Chapter 4) and OPLS
models (Table D.5 in Supplementary Chapter 4) can be found in the Supplementary
section. Eight samples with inadequate measurement quality were not integrated into
the FT-ICR-MS statistical model. Three samples were excluded from the models
because of information on the ingredient list contrary to their positions in the score
plots (FT-ICR and UPLC-MS). Predicted score values were calculated.

The FT-ICR-MS marker formulae were depicted in van Krevelen diagrams for
each starch source. By plotting H/C- versus O/C-atomic ratios it is possible to depict
common compositional patterns within observations’ markers [26,111,126]. A mass
difference network (MDiN) was applied utilizing the NetCalc approach [237]. The nodes,
representing the annotated molecular formulae, were connected by edges that
represent compositional changes corresponding to 250 different (bio)chemical
reactions.

The UPLC-ToF marker features were subjected to the open-source
Cytoscape software environment [267] to visualize an MS2-similarity-network based on
similar fragments and neutral losses. The similarity cutoff was set to 0.65. Database
search for matching fragmentation spectra was performed using the MS-FINDER [347]

and MetFrag [262] software tools. The entries in the HMDB, FooDB, ChEBI, LipidBlast,
LipidMaps, KNApSAcK and PubChem databases were used to carry out a
comparison of respective in silico fragmentation with our experimental data. The best
five hits were examined for their plausibility. When possible, the hits were confirmed
through experimental spectra of primary literature. The levels of identification were
assigned as suggested by the Metabolomics Standards Initiative [10].
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The FT-ICR-MS and UPLC-ToF-MS data were compared with a mass
tolerance of ±5 ppm. Isomeric compounds were merged with the same error tolerance
for the UPLC-ToF-MS features. The overlaps were illustrated using pie charts.
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4.3 Results

4.3.1 Direct-infusion Fourier transform ion cyclotron mass
spectrometry

In the first analytical step, we investigated the metabolome profile of a total of
400 bottled beer samples by direct-infusion Fourier transform ion cyclotron mass
spectrometry (DI-FT-ICR-MS) using electrospray (-) ionization. The commercial beer
samples covered the numerous facets of beer brewing and included beers
manufactured in over 40 countries around the world. By that, we could exclude most
co-variating metadata. Despite the abundance of different and combined brewing
styles, the craft beer style including the step of dry hopping was found to co-variate
with beers brewed with barley only (Figure D.1 in Supplementary Chapter 4).

The non-targeted and holistic approach, renouncing discriminatory sample
processing and chromatography, is capable to resolve the entire molecular
complexity of beer within a quick (10 minutes) measurement. About
7.700 unambiguous molecular compositions could be assigned to exact
monoisotopic masses spanning the mass range of m/z 100 to 1000 (Figure 4.1A)
within the sample batch. They reach from polar sugars, phosphates and sulfates over
diverse secondary metabolites and peptides to non-polar lipids, hop bitter acids and
highly unsaturated polyphenols and Maillard reaction end products [225,226]. We were
able to resolve up to 40 monoisotopic mass features within one single nominal mass
including several significant compositions regarding carbohydrate sources, as will be
seen later (Table D.6 in Supplementary Chapter 4). The molecular formulae were
annotated in the CHNOSP chemical space and subjected to further statistical
analysis.
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We applied supervised orthogonal partial least-squares discriminant
analysis (OPLS-DA) to the metabolite data resolved by DI-FT-ICR-MS, using the
carbohydrate source as Y-variable. The classification power of the model was highly
significant (Table D.5 in Supplementary Chapter 4). The Q2 value for the quality of
prevision (>0.6) and the R2Y value for the goodness of the fit (>0.85) prove the
statistical relevance whereas overfitting was excluded by the p-value calculated after
the CV-ANOVA (<<0.05) [214,215]. The associated score plot (Figure 4.2A) showed a
clear differentiation of barley, wheat, corn and rice beers. In the first principal
component, beers brewed with barley only are separated from beers with an
additional carbohydrate source. The second component separates beers brewed with
wheat from those brewed with corn or rice (Figure 4.2A-I). Ultimately, the third
component differentiates rice and corn beers (Figure 4.2A-II). Accordingly, a statistical
model was achieved that uncovered the influence of all considered carbohydrate
sources on the metabolic signature of beer. Metabolite features that drive the
separation were extracted from the respective loadings plot (Figure D.2 in
Supplementary Chapter 4). Compositions causing the agglomeration of corn and rice

Figure 4.1 | Van Krevelen diagram of molecular formula annotations found in 400 beer
samples (A) and significant for wheat (B), corn (C) and rice (D) by DI-FT-ICR-MS as
extracted after OPLS-DA modeling presented in Figure 4.2. Regions specific to
certain compound classes are highlighted. Color code: CHO blue; CHNO orange;
CHOS green; CHNOS red; P purple. Neutral molecular formulae are plotted. The
bubble size indicates the mean relative intensities of corresponding peaks in the
spectra.
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beers in the first and second component are referred to as “corn and rice” features in
the following.

The marker metabolites for corn described by Fenz [342] could be confirmed
with significant mass values equal to p-coumaroyl glycerol [C12H14O5],
caffeoyl glycerol [C12H14O6] and hydroxyoxindoleacetic acid [C10H9NO4]. In addition to
individual masses, the van Krevelen diagram of the respective compositions revealed
characteristic patterns for the carbohydrates sources. Beers brewed with wheat
featured a multitude of very polar phosphates (Figure 4.1B) and beers brewed with
corn showed a specific pattern of lipids (Figure 4.1C). Many compositions
characteristic for rice beers are located in the area where peptides are expected

(Figure 4.1D).

Additionally, compositional mass difference networks (MDiN) have proven to
be powerful tools to set significant compositions in relation. It can utilize the exact
mass information FT-ICR-MS provides, where compositions are represented as
nodes that are connected by edges representing distinct mass differences that

Figure 4.2 | Score plots of the OPLS-DA of the DI-FT-ICR-MS (A) and
UPLC-ToF-MS (B) data differentiating the carbohydrate sources used. The position
of the beer samples is marked by dots colored according to their carbohydrate
source. The first and second components are shown in (A-I) and (B-I). The third
against the second and the first against the third component are shown in (A-II)
and (B-II) respectively.
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describe (bio)chemical relations. Such a MDiN sets in relation the lipid pattern found
specific to corn by (de)hydrogenation, hydroxylation, water or glycerol addition and
chain elongation reactions (Figure D.3 in Supplementary Chapter 4). Several
derivatives of the lipid with the mass m/z 335.22278  [C20H32O4] could be explained
by e.g. hydrogenation [C20H34O4] and hydroxylation [C20H32O5] reactions. Accordingly,
the characteristic composition [C21H34O4] is connected to [C21H36O4] and [C21H34O5] by
hydrogenation and hydroxylation respectively.

A second MDiN excerpt that sets wheat, corn and rice markers in biochemical
relation was investigated in more detail (Figure 4.3). As reported before [225], the
metabolome wheat adds to the beer’s complexity specifically is characterized by
compositions corresponding to benzoxazinone derivatives. The mass corresponding
to possible blepharin [C14H17NO8], a plant phytoanticipine, is connected to the related
HMBOA-glucoside [C15H19NO9] by methoxylation. A subsequent sulfation
gives [C15H21NO12S]. An equivalent pattern links the hydroxylated
DHBOA-glc [C14H17NO9], the DIMBOA-glc [C15H19NO10] and the respective
sulfate [C15H21NO13S]. Besides methoxylation, hydroxylation, sulfation and water
addition, several glycation reactions of described molecular formulae lead to a
complex network of known and unknown compounds specific for wheat. Those reach
from rather unsaturated compositions [e.g. C10H9NO3 and C11H11NO3] to very polar
glucosides of the potential aglyca [e.g. C23H31NO13, C26H39NO20 and C26H37NO19]. A
similar, but smaller, network is being built up for corn-based on compounds likely
arising from the indoleacetic acid (IAA) biosynthetic pathway. Chloride adduct
formation of the respective aglycon hydroxyoxindoleacetic acid [C10H9NO4] reinforces
the presence of a carboxylic acid group of these compounds on the molecular
structure level. Based on this annotation, known to be specific for the use of corn
(Fenz, 1991), two glycation reactions lead to the respective derivatives [C16H19NO9]
and [C22H29NO14]. Again, several compositional changes equivalent to hydroxylation,
hydrogenation, methoxylation or water addition form a network of masses specific to
corn. In parallel, there is a similarly structured network starting from [C10H9NO5] for
rice. The composition could potentially be annotated to hydroxydioxindoleacetic acid,
found in rice bran by [348]. The described biochemical relations again lead to
compositions specific for rice [e.g. C16H21NO11, C22H31NO16, C16H23NO11, C22H33NO16],
but also includes compositions characteristic for corn and rice [e.g. C10H13NO7 and
C16H19NO10]. Overall, secondary metabolites deriving from tryptophan-dependent
pathways drive the differentiation of the carbohydrate sources wheat, corn and rice
for brewing. The metabolites cover a wide range of polarity, all accessible from
direct-infusion with FT-ICR-mass spectrometry. However, metabolites could only be
annotated by exact masses and their biochemical relations (expressed as mass
differences) in combination with database and literature data. For definite structural
confirmation, a chromatography-coupled mass spectrometric approach including ion
fragmentation is necessary (UPLC-ToF-MS).
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Figure 4.3 | Mass difference network excerpt of compositions characteristic for
wheat, corn and rice. The nodes representing annotations are connected by edges
representing potential biochemical reactions. Some connections are neglected for
reasons of clarity. The annotations likely correspond to secondary metabolites
deriving from the indoleacetic acid and benzoxazinone biosynthetic pathways
respectively.
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4.3.2 UPLC-Time of flight mass spectrometry

A representative sub-sample set (100 samples) was treated by solid-phase
extraction (SPE) and subjected to reversed-phase UPLC-ToF-MS. An average of
680 chromatographic features per sample was obtained after applying filter criteria.
The peaks shared by at least one-third of all beer samples within a carbohydrate
source class (1750 peaks) were used for statistical analysis (OPLS-DA). The
classification power of the model was highly significant (Table D.5 in Supplementary
Chapter 4). The Q2 value for the quality of prevision (>0.6) and the R2Y value for the
goodness of the fit (>0.85) prove the statistical relevance whereas overfitting was
excluded by CV-ANOVA (p-value <<0.05) [214,215]. As for the FT-ICR-MS data, the
associated score plot (Figure 4.2B) showed a clear differentiation of barley, wheat,
corn and rice beers. In the first two principal components, beers brewed with barley
only are separated from wheat beers. Again, beers brewed with corn or rice are
agglomerated against the two others (Figure 4.2B-I).

The third component enables the differentiation of corn and rice beers (Figure
4.2B-II). Ultimately, a statistical model distinguishing all carbohydrate sources could
also be achieved by the isomeric resolved UPLC-ToF-MS data of the pretreated sub-
sample set. The metabolite features that drive the separation were extracted from the
respective loadings plot accordingly (Figure D.2 in Supplementary Chapter 4).

The available MS2-spectra of the potential marker compounds were utilized
in a mass spectral similarity network (Figure 4.4). The fragmentation spectra of
compounds that were examined in more detail can be found in the Supplementary
(Table D.7 in Supplementary Chapter 4). Two clusters with similar fragmentation
patterns could be observed for the wheat-specific compounds. The first
cluster  (Figure 4.4I) could be identified as an agglomeration of benzoxazinone
derivatives, known to be phytoanticipines in the wheat plant and validating the
findings with DI-FT-ICR-MS data. By database and literature research [225,281,349] four
compounds could be identified as MOBA, HBOA-glucoside, DIBOA-glucoside and
HMBOA-glucoside (identification level 2 [10]). For the second cluster (Figure 4.4II), only
in silico fragmentation spectra of database entries were available. All matching
spectra found for the five peaks indicate the potential compound class of
N-acyl-glutamines (identification level 3). Their almost identical retention
behavior (4.32 to 4.62 min) and proposed molecular formulae ([C23H38N2O5],
[C23H40N2O5], [C25H40N2O4], [C23H38N2O6] and [C23H40N2O6]) support their close
chemical relation.
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For corn markers, two clusters of compounds with related fragmentation
spectra and thus similar structure and origin could be observed. The cluster with the
greater significance (Figure 4.4III) was studied in more detail. The nine compounds
examined were found to be isomeric pairs of m/z-values matching the molecular
formulae [C20H34O4], [C20H32O5], [C21H36O4] and [C21H34O5]. The close retention time
window between 6.0 and 7.1 minutes supports their close chemical relation. Together

with the similar molecular composition and fragmentation spectra, it brings us to
suggest a shared compound class of a non-polar character. The best hits with regard
to in silico fragmentation spectra all agree on lipid-type structures for the mentioned
compounds. Besides, the fragmentation pattern of [C20H34O4] and [C20H32O5]
compounds show a great similarity to DiHEtrE and TriHETE fragmentations spectra
respectively, when compared to literature data [350,351]. However, based on our data,
the exact molecular structure and in particular the position of possible hydroxylation
cannot be determined. Accordingly, the identification level of this group of
corn-specific compounds was indicated to level 3, as suggested by Sumner, et al. [10].
In addition to this not yet described cluster of lipid-type molecules, we were able to
confirm the hydroxyoxindoleacetic acid as a marker substance for the use of corn by
comparison of both in silico and literature fragmentation data [342] (identification
level 2).

Figure 4.4 | Mass spectral
similarity network of the
fragmentation spectra of
compounds detected by
UPLC-ToF-MS. The
nodes representing the
respective compounds
are connected by edges
representing their spectral
similarity. Compounds
found to be specific for a
carbohydrate source are
colored accordingly. Two
clusters of potential
markers are highlighted
for wheat (I & II) and
corn (III & IV).
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The rice-specific compounds, few of which were found highly significant in
the loadings plot already, did not cluster with regard to their fragmentation pattern.
Two of those could be characterized by their molecular formula [C24H40N6O8] and
[C22H35N5O11] as being in accordance with mass values found to be specific in
FT-ICR-MS. A second pair of highly significant peaks could be described as potential
Glu-Trp-Leu/Ile-Pro [C27H37N5O7] and a cyclic Asp-Ser-Val-Leu-Trp
peptide [C29H40N6O8], respectively, by comparison of in silico fragmentation
data (identification level 3). The fifth potential marker of highest interest could be
assigned based on both matching fragmentation patterns and
co-chromatography (identification level 1). Kai, et al. [346] reported an
aspartic acid-conjugate of N-β-D-glucopyranosyl-indole-3-acetic acid to be found in
rice with a matching fragmentation pattern. The respective d2-standard, synthesized
and provided by the mentioned authors, was used for co-chromatography. The rice
secondary metabolite was identified by matching retention time and fragmentation
pattern (Figure 4.5). We were able to detect the corresponding peak in the vast
majority of rice beers and two beers brewed with corn. To confirm our findings and
the origin of the potential marker compounds, we analyzed methanol extracts of food
made from the appropriate grain raw materials. Grits, starch and flour of wheat, corn
and rice and corn oil were screened for the presence of the specific respective
compounds (Table D.8 in Supplementary Chapter 4). Wheat benzoxazinones and
potential acyl-glutamines were present in the wheat products. The exception is pure
wheat starch, in which none of the compounds were found, as in beers brewed with
merely wheat starch [225]. We were able to confirm the hydroxyoxindoleacetic acid in
all corn products except for the oil. The isomeric pairs of lipid class
compounds [C20H34O4] and [C21H36O4] were found in the corn oil, whereas the other
specific oxygenated lipids might be formed during the brewing process. The same is
suspected for the [C29H40N6O8] cyclic peptide in rice. The other rice metabolites,

Figure 4.5 | Co-chromatography of the (6,6-d2)-N-β-D-glucopyranosyl-indole-3-
acetic standard and its isotopologue naturally occurring in beer (A) with matching
MS2-fragmentation spectra in ESI-negative (B). Extracted ion chromatograms of the
corresponding m/z-values of Asp-IAA-N-Glc-d2 (yellow) and of
Asp-IAA-N-Glc (black) (A). Mass fragmentation spectra of Asp-IAA-N-Glc-d2 (yellow)
and of Asp-IAA-N-Glc (black) with corresponding suggested fragments of the
mono-isotopologue (B).
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including the aspartic acid-conjugate of N-β-D-glucopyranosyl-indole-3-acetic acid,
were confirmed by the analysis of rice products. An overlap of the potential markers
between the carbohydrate groups was not observed. Interestingly, the coumaryl and
caffeoyl glycerols described by Fenz, et al. [343] and confirmed by FT-ICR-MS were
found and identified in the methanol extract of corn grits but not the beers. We
assume that they were lost through the SPE sample processing of the beers.

4.3.3 Comparison and conclusion

The investigation of the influence of different carbohydrate sources on the
metabolome of the beer end product was carried out using two different,
complementary mass spectrometric methods. Even with different sample
numbers (400 for DI-FT-ICR-MS and 100 for UPLC-ToF-MS), fundamental
differences and commonalities between the analytical approaches could be
observed. Based on the direct-infusion approach without extensive prior sample
preparation, compounds of all polarities (ionizable by ESI) are accessible with
FT-ICR-MS. This is reflected in the MDiN of the secondary metabolites, which maps
numerous glycosylation steps up to highly oxygenated compositions. This wide
polarity range was not tangible by RP-HPLC-ToF-MS. The corn marker
hydroxyoxindoleacetic acid was found with an early retention time (3.02 min),
whereas glycosylated derivatives of the aglycone were lost by sample preparation
and chromatography. The phosphate-structures found in FT-ICR-MS could not be
found either and thus not be further characterized by fragmentation spectra. The
average mass values also differ between FT-ICR-MS (m/z 409) compared to
ToF-features (m/z 341.553), which could be attributed to different accessible mass
ranges (100-1,000 Da for FT-ICR-MS, 50-1,500 Da for ToF-MS). The mass features
showed a moderate overlap within a ±5 ppm range, in accordance with the different
and complementary chemical spaces analyzed (Figure D.4 in Supplementary
Chapter 4). About 35 % of the chromatographic features showed had a
corresponding m/z-value in FT-ICR-MS, whereas less than 10 % of
FT-ICR-MS-masses were found with an equivalent peak in LC-MS. Here, the different
numbers of samples should be emphasized again. The majority of the
chromatographic peaks showed at least one isomeric compound (up to 16), which
confirms the complementarity of the information obtained by coupling
chromatography to mass spectrometry. We observed a similarly low m/z-overlap with
regard to the potential marker features. In particular, it is the statistically most
significant compounds, which were detected in large parts in both DI-FT-ICR-MS and
UPLC-ToF-MS. This enabled a deeper characterization through exact mass values
and fragmentation mass spectra. Only the group of potential acyl-glutamines and
some rice peptide-like structures are not present in the FT-ICR-MS-data.

Overall, with two complementary mass spectrometric approaches, we have
uncovered deep metabolic signatures that the use of wheat, corn and rice in brewing
entails. The majority of the decisive compounds can already be found in the
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corresponding raw materials and survive the entire brewing process. We were able to
set the compositions in relation by mass difference network analysis and uncovered
a whole network of secondary metabolites specific to the respective grains. By mass
fragmentation, the compounds could be characterized in detail and known reported
marker substances could be confirmed. Finally, we want to highlight that in the
aspartic acid conjugate of N-β-D-glucopyranosyl-indol-3-acetic acid we report a
potential marker for the use of rice in beer.

4.4 Discussion

Both DI-FT-ICR-MS and UPLC-ToF-MS showed the power of mass spectrometric
analysis with regard to food and beverage authenticity. As already shown for wine
[352], the two approaches describe two different and complementary chemical spaces.
However, we were able to differentiate simultaneously beers brewed with wheat, corn
and rice against those with barley only in both DI-FT-ICR-MS and UPLC-ToF-MS. The
metabolic signatures of the carbohydrate sources commonly used in brewing could
be characterized by networks of secondary metabolites, resolved with regard to
isomeric distribution and identified by MS2-fragmentation information on different
levels. Such comprehensive analysis of grain-specific metabolites was not carried out
with regard to barley as all measured beers contained it to various extents and co-
varying metadata was observed (Figure D.1 in Supplementary Chapter 4). In addition,
beer samples that were brewed with merely wheat starch could not be identified as
they lack the grain’s metabolite signature. In the other grain-based foodstuffs,
including typical grain adjuncts used in the brewing industry, we were able to detect
the potential marker substances to various extents. All compounds could be found at
least once, except for two annotated  (cyclic) peptides and corn lipids, which
indicates formation or alteration during the brewing process or insufficiently optimized
extraction. Two barley beers of the same non-German brewery were neglected
because they showed a clear signature of corn metabolites in spite of the
contradicting information in the ingredient list. Although this is an exception, it brings
us to the conclusion that, particularly with regard to the use of corn and rice, the
metadata of commercial beers must be questioned. Authenticity control of the beer
should be considered.

The statistical analysis shows that in both analytical approaches the
metabolite profiles of beers brewed with corn and rice are very similar. Only in the
third principal component, we could tell the respective clusters apart. A possible
reason for this could be the closely related genetic evolution [353] and botanical
relationship [354] of the plants and thus the similarity of their metabolic signatures even
when analyzed in beer. Bearing in mind that barley, wheat, corn and rice all belong to
the family of Poaceae and show collinearity [355], the reason for the observed similarity
may also be found in the similar way of brewing when corn or rice adjuncts are used.
Moreover, benzoxazinones found to be specific for wheat beers are not exclusively
produced by Triticum aestivum, but analogous genetic information is also present in
corn [356]. This indicates that both the concentrations and the distribution of the
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secondary metabolites in the plant and thus the parts of the plant that are used for
brewing play a decisive role [357]. The more pronounced diversity of benzoxazinone
secondary metabolites induced by germination [357,358] could also be of importance
and a starting point for further authenticity determinations with regard to the use of
wheat raw grain adjunct. With this in mind, we hesitate to refer to the grain-specific
compounds identified as biomarker molecules. Rather, the aim should be to quantify
the metabolites with most sensitive instrumental analytics (e.g. triple quadrupole
instruments) in numerous commercial and experimental beers in order to confirm the
biomarker nature or define a concentration limit of confidence. Nevertheless, the
metabolic signatures found in our study are unambiguous as a whole.

Such compounds that show strong evidence for the use of wheat [225,283] and
corn [342,343] in brewing have been adequately described and have been confirmed in
our study. In addition, numerous derivatives of these compounds could be
characterized. Of particular note are the sulfate derivatives, some of which we already
reported [225]. Little is known about the biological function of these compounds, but
their function as polar regulation or storage conjugates can be assumed. Tang, et al.
[359] also described these sulfates in human urine samples after wheat intake.

We were able to describe another conjugate of a secondary metabolite as a
potential marker substance for the use of rice. To the best of our knowledge, literature
has not yet reported a rice-specific compound for authenticity control. The aspartic
acid conjugate of N-glucosyl-indoleacetic acid was described by Kai, et al. [346] in rice
extracts for the first time, as the authors report. In general, IAA is known to regulate
many aspects of growth and development in plants. For instance, it is reported to
specifically induce a big grain1 gene, which expresses an auxin transport protein and
ultimately results in a bigger rice grain size [360]. In that regard, the concentration of
free IAA concentrations is well-balanced by biosynthesis, catabolism and transport
mechanisms [361]. The conjugation of the auxin to glucose or amino acids is one part
of the so-called IAA homeostasis. The aspartic acid and glutamic acid (to a lesser
extend) conjugates are found to be the major storage or transport forms of the
respective N-glucosyl-indoleacetic acid in rice [346]. Given that the N-glucoside likely
is biosynthesized from the amide conjugates, this relationship could also apply to the
reverse. However, the rice characteristic metabolite we found in beer appears to be
an inactivated form of the auxin. Kai, et al. [346] described that the free
N-glycosyl-indol-3-acetic acid is as well found in corn seedlings and alkaline
hydrolysis releases additional amounts (0.45 nmol g-1 total amount). However, the
conjugated form was not specified and corn grains were not investigated.
Accordingly, incorrect information about the ingredients on the beer label of the two
potential “corn and barley only” beers cannot be ruled out as all beers were
purchased as presented to the consumer. As little is known about the distribution of
the auxin derivatives in the plant tissues and thus about the tendency to be extracted
during the brewing process, the biomarker character of Asp-IAA-N-Glc needs to be
further investigated. With the huge majority of rice beers showing an Asp-IAA-N-Glc
signal, a more specific extraction method or more sensitive mass spectrometric
approach (e.g. MRM in triple quadrupole) could verify its presence in all beers brewed
with rice. We also found the derivative in two corn beers, which might indicate the
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rare presence of Asp-IAA-N-Glc in corn beers as well. Further investigations must
clarify these findings and exclude potential incorrect information on the ingredient list.
In any case, the presented potential rice-characteristic compound is, to our
knowledge, not found nor reported in either barley or wheat beers or the respective
plants.
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Chapter 5 |
Archeochemistry Reveals the First Steps into

Modern Industrial Brewing

A historical beer, dated to the German Empire era, was recently found in northern
Germany. Its chemical composition represents a unique source of brewing culture at
the end of the 19th century when pioneer innovations laid the foundations for industrial
brewing. Complementary analytics including metabolomics, microbiological, sensory,
and beer attribute analysis revealed its molecular profile and certify the unprecedented
good storage condition even after 130 years in the bottle. Comparing its chemical
signature to that of four hundred modern brews allowed to describe molecular
fingerprints teaching us about technological aspects of historical beer brewing.
Several critical production steps such as malting and germ treatment, wort
preparation and fermentation, filtration and storage, and compliance with the Bavarian
Purity Law left detectable molecular imprints. In addition, the aging process of the
drinkable brew could be analyzed on a chemical level and result in an unseen diversity
of hops- and Maillard-derived compounds. Using this archeochemical forensic
approach, the historical production process of a culturally significant beverage could
be traced and the ravages of time made visible.

This chapter has been published as Pieczonka, S. A., Zarnkow, M., Diederich, P.,
Hutzler, M., Weber, N., Jacob, F., Rychlik, M. & Schmitt-Kopplin, P. Archeochemistry
reveals the first steps into modern industrial brewing. Nature Scientific Reports,
12 (9251), 1-15 (2022). It is reproduced under the Creative Commons Attribution 4.0
International License

Candidate’s contributions: S.A.P. designed the experiments, analyzed and
interpreted the data. S.A.P wrote, revised and approved the final paper. S.A.P.
performed the mass spectrometric instrumental experiments. S.A.P. performed the
statistical treatment, data mining, interpretation and visualization.
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5.1 Introduction

The birth and social evolution of humans and civilizations are closely related to the
cultural heritage of beer production [158,362]. The reason for settling down may have
been feasting, as suggested in the 11,000 thousand-year-old excavation site of
Göbekli Tepe [296]. The latest excavations from Abydos, which reveal the oldest known
mass-production brewery (over 20,000 liters a batch) dated at around 3,000 BC, again
highlighted the importance of beer as food and ritual addition in early civilizations [363].
Domesticated grain cultivation was not only aimed at baking bread but goes hand in
hand with brewing. In addition to the history of its ancient origins, the durable
fermented beverage hides many other questions. Such as the development of its
historical method of production, whose nowadays characteristic was shaped by one
of the most famous historical food legislations, the Bavarian Purity Law of 1516 [161].
The fascination of fermentation processes, which was puzzling until the early modern
era, fostered and was a driving force for innovation and science. The discovery of
aerobic and anaerobic metabolic pathways [364] and the principle of pasteurization [162],
thus the concept of modern food hygiene are closely linked to beer and yeast
research. The isolation of individual yeast cells and cultured yeasts [163], as well as the
first “refrigeration apparatus” by Linde [164] for brewing bottom-fermented beer, are
significant achievements for today’s advancing civilization.

Rising from such pioneer works, the field of analytical chemistry nowadays is
implemented to characterize the organic and inorganic residues of ancient and
historical finds. In the recent past, archeochemistry evolved from the analysis of single
marker compounds like tartaric acid (indication of winemaking) [365 ,366], oxalic acid
(indication of brewing) [159] or acetic acid / lactic acid (indication of spoilage after
fermentation) [367] to a more holistic approach integrating multiple analytical fields and
metabolomics. Walther, et al. [368] sequenced the genome of the oldest pure culture
yeast strain Saccharomyces carlsbergensis (1883), thereby specified their ploidy and
genetic evolution, and detected it in beer samples presumably from the 1880s to
1900s [369]. Beer bottles found in a shipwreck in the Baltic Sea dated to the 1840s [287]

were analyzed by means of reversed-phase and ion exchange LC and GC targeted
approaches revealing insights in their hops and aroma compounds, despite
contamination. Comprehensive non-targeted approaches utilizing the mass
resolution and accuracy of high-field Fourier transform ion cyclotron mass
spectrometry (FT-ICR MS) and Nuclear Magnetic resonance spectroscopy (NMR)
were carried out investigating a bottle of champagne dated to the 1840s [370] and an
unidentified wine sample from the late 18th to 19th century [371]. Based on the resolved
molecular composition, the story of historical winemaking and champagne
production could be traced step by step [370] in comparing modern and historical
references. In addition to beer attributes, sensory and microbiological investigations,
we adapted here such a comprehensive concept for the FT-ICR-MS and NMR-based
characterization of a historical beer sample estimated from 1885. The resolved
metabolic profile, including thousands of yet-unknown structures (“dark
metabolome”), provides a chemical insight into the beer composition and conclusions
with regard to the industrial brewing revolution at that time.
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5.2 Results and Discussion

5.2.1 Discovery, beer attributes and sensory characterization

A newspaper article from June 19th, 1978 refers to an extraordinary find: Corked,
wired and sealed, a bottle was found during the clearing up of a commercial building,
the content of which is presumed to be beer from the German Empire era.
Reconstructions of the label refer to the traditional Barre brewery in Lübbecke in
northern Germany, which supplied New York and the whole world with beer in 1885.
In a contractually agreed collaboration with the Lloyd shipping company, every year
over 300,000 beers sealed with wax left Germany, but the found one did not.

The green bottle (Figure 1B-III) has a volume of about 0.75 liters and was
sealed with a cork, fuse wire and wax. The bottle was still a good four-fifths full. The
beer had very little sediment. The supernatant was clear and had an amber color. The
tasting among four certified tasters resulted in a coherent and well-balanced beer.
The smell and taste had sherry and port notes [372]. Likewise, it smelled of prunes. The
beer had a slightly weaker palate fullness and somewhat low sparkling. But it was
very harmonious in the overall impression and the bitterness.

The classic beer attributes are listed in Table E.1 in Supplementary Chapter 5,
compared to other known bottom-fermented beers analyzed in that period and a
current Barre beer from 2019 (B2019). The Vienna, Bohemian and Bavarian
bottom-fermented beer types popular in the late 19th century showed an analytical
range of original gravity, alcohol content, real extract and attenuation limit in which
the historical beer fit well [373]. The comprehensible and coinciding attributes do not
suggest that alcohol has escaped from the bottle in relevant quantities.

With all the characteristics that point to the great preservation of the beer,
there were also references to the aging process that the beer has undergone. The
color is expected to have been lighter originally. Alteration of hop components over
the 130 years led to altered bitter units. However, at over 18 EBC, it still turned out
surprisingly high. Yet, not enough to be allowed to call it Pilsner from today's legal
point of view. Despite the light-protected surroundings of the finding and the bottling
of the beer in a sealed brown glass, oxidation-sensitive vitamin B9 folates [374] were
almost entirely degraded when compared to fresh beer samples [375] (Table E.1 in
Supplementary Chapter 5). The nearly optimal conditions, apart from oxygen left in
the headspace and the temperature fluctuations, were therefore not sufficient to
protect these compounds from aging over many years.
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5.2.2 Microscopy, microbiological cultivation, DNA-Screening for
wort and beer-related microbes

No yeast and bacteria could be detected via microscopic analysis of the 1885 beer,
neither could be cultivated via applied cultivation methods nor could any DNA of
specific target DNA-sequences be amplified. Hence, living beer-associated microbes
and non-fragmented target DNA could not be detected in the analyzed sample
volume. Microscopic analysis revealed no yeast cells-like, rod-like and cocci-like
structures and other microbe-like structures. Therefore, we suppose that the 1885
beer was filtered. In unfiltered old beer samples, microbe-like structures like yeast
cells are reported to still be visible [287,376,377]. We also suppose that no post-filtration /
bottling-derived / cork-derived contamination with beer spoiling microbes took place
because no traces for wild yeast, super-attenuating yeast, lactic acid bacteria, acetic
acid bacteria, and brewing background bacteria could be detected using the applied
methods. Despite analyses of various genomic markers for bottom-fermenting lager
yeast S. pastorianus and top-fermenting Ale yeast S. cerevisiae and a very low
detection limit of those qPCR-based systems, there was no evidence for brewing
yeast in quantities above the detection limit. We suppose a rather efficient
sedimentation and filtration process, a few years after the first filtration apparatus was
invented by Enzinger [378]. After filtration, during storage, a complete DNA-
fragmentation of residual yeast cells took place. Single amorphous cloudy particle
structures could be observed via phase-contrast microscopy (magnification 1000-
fold) with a size between approx. 5 and 180 µm (Figure E.1 in Supplementary
Chapter 5). The structure of the amorphous particles is typical for polyphenol-protein
complexes that cause opalescence to turbidity when their concentration increases
during beer aging. The amorphous particles were partially dissolvable in 10% KOH
and completely dissolvable in concentrated sulphuric acid which indicates the protein
fraction of the particles and their organic nature.

5.2.3 Persistent metabolome and ravages of time revealed by
1H-NMR

The 1D 1H-NMR spectra of the 19th century beer (Figure 1B-I) and its modern
equivalent (Figure 1A-I) are shown in Figure 1. The overall signature indicates two
beer samples that are characterized by a large similarity of metabolite signals,
compiled in Table E.2 in Supplementary Chapter 5. The aliphatic region of the spectra
(0 3 ppm) showed signals originating from alcohols (ethanol, iso butanol, iso
pentanol), amino acids (alanine, proline, γ aminobutyric acid, valine), small organic
acids (acetate, lactate, succinate, pyruvate, maleic acid, citric acid) and fatty acids.
The midfield region (3 6 ppm) was mostly characterized by carbohydrate signals such
as fermentable sugars (glucose, maltose), sugar derivatives (kojibiose) and differently
branched dextrins. The aromatic region (6 9 ppm) showed signals of aromatic amino
acids (phenylalanine, tryptophan, tyrosine), heterocyclic aromatic compounds
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(nucleosides, niacin) and polyphenolic compounds that caused the underlying
background from which the defined signals rise (6.8 7.5 ppm) [194]. One of the more
conspicuous regions was that of aldehydes (>9 ppm) featuring signals of Maillard-
and caramelization-derived 5-hydroxymethyl-2-furaldehyde (HMF) and 4-Hydroxy-
2,5-dimethyl-3(2H)-furanone (furaneol). Overall, the qualitative metabolome signature
resolved by 1H-NMR showed a plurality of matching signals between both samples,
underlining their great similarity even after more than 130 years. Differences
associated with years of storage and the historical brewing method were, with the
exception of few specific signals, primarily determined by the quantitative variance in
the signal intensities (Table 1).



Results and Discussion | Chapter 5

98

Figure 5.1 | 800 MHz 1D 1H–NMR spectra of the modern lager beer (A-I, light brown)
and the historical beer (B-I, dark brown). A-II highlights and compares the regions
from 1.3-2.5 ppm containing the signals of small organic acids. B-II highlights and
compares the aldehyde region of both beers (modern light brown, top; historical dark
brown, bottom). B-III shows the waxed beer bottle from 1885 as it was found. Peak
assignments: see table 1. Peak intensities are normalized to TSP.
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Table 5.1 | Quantitative determination and change (B1885/B2019) of compounds
identified in B1885 and B2019 with 1H-Shifts of respective characteristic signals. a s
singlet, d doublet, t triplet, q quartet, dd doublet of doublets, m multiplet. b +++ strong
increase in B1885, ++ increase, + moderate increase, 0 no change, − moderate
decrease, −− decrease, −−− strong decrease. c Carbohydrate. d n.d. not detected,
trace found above the limit of detection, but below the limit of quantification, empty
cells could not be quantified due to overlapping signals. e Identified through spiking
of respective standard.

Compound (No.) 1H-Shift (ppm)a Changeb Concentration
[mM]d

Quanti-
fication

Ref.

B1885 B2019

Acetic acid (7) 1.92 (s) +++ 3.38 1.38 integral TSP [194,197,297]

Furfural (31) 9.50 (s) +++ 0.09 n.d. integral TSP Std.e

HMF (30) 9.46 (s) +++ 0.10 trace integral TSP [297]

Niacin (29) 8.9 (dd) 8.6 (dd) +++ 0.05 n.d. integral TSP Std.e

Unknown N-Heterocycle 8.23 (s) +++ [379]

Unknown N-Heterocycle 8.21 (s) +++ [379]

Unknown N-Heterocycle 7.94 (s) +++ [379]

Acetaldehyde (32) 9.68 (q) ++ 0.08 trace integral TSP [194,197,297]

Formic acid (28) 8.45 (s) ++ 0.47 0.21 integral TSP [194,197,297]

Kojibiose (15) 5.11 (d) ++ [379]

α-(1-4)-branched CHc (20) 5.35-5.45 (m) + [379]

CHc reducing end (18) 5.23-5.27 (m) + [379]

Glucose (17) 5.19 (d) + [379]

Uridine (21) 5.92 (d) + 0.38 0.30 line fitting [194,197,297]

Valine (4) 0.99 (d) + [197,297]

2-Methyl-1-propanol (1) 0.88 (d) 0 [194,197,297]

3-Methyl-1-butanol (2) 0.89 (d) 0 [194,197,297]

α(1-6)-branched CHc (14) 4.95-5.00 (m) 0 [379]

Alanine (6) 1.48 (d) 0 [194,197,297]

β-branched CHc (13) 4.40-4.85 (m) 0
Citrate (12) 2.53 (d), 2.66 (d) 0 [194,197,297]

GABA (9) 2.30 (t) 0 0.55 0.59 integral TSP [194,197,297]

Histidine (26) 7.15 (s) 0 0.10 0.13 integral TSP Std.e

Malto-oligo-CHc (19) 5.25-5.38 (m) 0 [379]

Phenylalanine (25) 7.34 (m) 7.43 (m) 0 [197,297]

Proline (8) 1.95-2.1 (m) 0 [194,197,297]

Propanol (3) 0.89 (t) 0 [194,197,297]

Pyruvate (10) 2.37 (s) 0 0.90 0.75 line fitting [194,197,297]

Succinic acid (11) 2.40 (s) 0 0.50 0.50 line fitting [194,197,297]

Tyrosol (23) 6.87 (m) 7.19 (m) 0 [197,297]

Tyrosine (24) 6.91 (m) 7.20 (m) 0 [194,197,297]

Xylose (16) 5.21 (d) 0
Adenosin/ Inosine (22) 6.07 (d) - - trace 0.16 line fitting [194,197,297]

Lactic acid (5) 1.33 (d) - - 0.65 2.09 line fitting [194,197,297]

Polyphenols 6.80-7.45 (m) - - [194]

Cytidine (27) 6.07 (d) 7.85 (d) - - - trace 0.23 integral TSP [194,197,297]
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With a slightly higher valine content in the historical beer, similar profiles of
free amino acids were found. The role of nucleosides in beer aging has been
described as conspicuous in several studies [203,204,206], pointing at 5
methylthioadenosine as a potential compound for oxidative staling. The occurrence
of this metabolite from the methionine salvage pathway [380] could not be reproduced
by Yao, et al. [205] in a forced-aging study and was not detected by 1H-NMR in this
work. A higher uridine concentration was found in historical beer with a lower level of
adenosine/inosine. Furthermore, three unidentified signals corresponding to N
heterocycles showed high intensities (7.94 (s), 8.21 (s) and 8.23 (s)).

Another compound featuring an N-heterocycle, niacin, was found in high
concentration in the historical beer. Norris [381] reported the niacin content to be
decreasing over the advancing industrialization of the brewing process. While the
found content of 6.2 mg/L niacin in the historical beer is plausible for a lager beer of
the time (compare 10.3 mg/L in a strong beer of 1872 [382]), no niacin signal above the
detection limit could be found in the modern equivalent (Figure 1B-II). Niacin is stable
throughout the brewing process and storage [383], directly correlates with the gravity
of the beer and is not produced during fermentation in considerable amounts [381,384].
Its low content in nowadays beers [385] cannot be attributed to higher concentrations
in historical barley cultivars with levels being consistent between 80 and 120
µg/g[381,382,386,387]. The accumulation of niacin in the germ layers of the barley grain [388]

indicates that the germ was not or insufficiently removed in the historical brewing
process.

With a similar overall carbohydrate profile, more α-(1-4)-branchings of
dextrins were found, which could be attributed to the differences in the brewing barley
or enzyme activities in the historical beer. An increased ratio of reducing α-ends can
be attributed to long-term storage, comparable with the finding of oligosaccharide
breakdown by Walther, et al. [369]. The higher amount of monomeric glucose, as also
found for other historical beers [287,369], could be explained by the same reason or
incomplete fermentation with the specific yeast used at the time. The caramelization
or Maillard reaction derivatives of such reactive sugars, like kojibiose, consequently
showed higher signal intensities after long-term storage.

The observation of decreasing signatures of polyphenols during non-optimal
storage of beers has already been described in several studies [194,389] and was
attributed to the reaction of polyphenols with free radicals, reactive oxygen species
and acid-catalyzed polymerization [390]. Resulting polymers interact with proteins and
form insoluble complexes and hazes, following the non-biotic sediment and
microscoped particles settled in the beer bottle. One compound found to promote
this process is acetaldehyde. Formed by yeast fermentation or ethanol oxidation,
acetaldehyde induces ethyl bridges between the flavanols [391]. Forced aging studies
did not show great alterations in the acetaldehyde concentration with a tendency to
decrease due to its reactivity [392]. The higher content of this compound in the historical
beer, therefore, should be attributed to the control of the fermentation process and
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the yeast used at the time. Formic acid as another fermentation by-product, as well,
is significantly accumulated.

A large increase was found for the acetic acid signal (Figure 1A-II). At around
155 mg/L, the acetic acid content is slightly above the range that can be expected in
today's beer samples [393] and significantly increased compared to the modern lager
with 63 mg/L. Again, the control of the fermentation and the type of yeast used define
the acetic acid concentration. Hereby, the amount of yeast, higher fermentation
temperature and aeration are beneficial to the acetate content. With a lack of studies
on beer, resorting to wine studies [394], it is reported that the acetic acid concentration
remains unchanged during forced aging. The significantly lower lactic acid
concentration in the historical beer declines microbial spoilage and thus the origin of
acetic acid due to Acetobacter.

In nowadays brewing practice, the mash or wort is intendedly acidified by so-
called sour wort containing lactic acid to reach pH values around 5.5 (mash) and 5.2
(wort), respectively. Thereby, optimal enzyme activities, higher degrees of
fermentation, protein breakdown, microbiological stability and a lighter color
development can be achieved. The low lactic acid concentration indicates that such
optimized acidification of the beer has not yet been carried out during historical
brewing at the end of the 19th century.

The clearest indication of the decades of storage could be found in the area
of aldehyde signals (Figure 1B-II). HMF, generated by multiple pathways during the
Maillard reaction and caramelization [298], was detected in trace amounts in the
modern lager beer. The amount of 12.6 mg/L quantified in historical beer exceeds the
range of 2 mg/L (pale beer) to 8 mg/L (dark beer) expected for fresh beer of any kind
[395]. Numerous forced-aging studies showed that the amount of HMF is independent
of the oxygen load and increases significantly with the length of storage[272,390,396].
Another noticeable aldehyde signal could be assigned to furfural. As for HMF, the
behavior of the furfural concentration during beer storage was described as
increasing at an approximately linear rate with the storage time and exponentially with
increasing temperature [396]. Malfliet, et al. [397] reported furfural concentrations
between 15 and 35 µg/L in fresh beer. Although force-aged beers, with a maximum
observed concentration value around 500 µg/L, never met the taste threshold of
furfural (150 mg/L [398]), a clear correlation was found with a staling flavor [399]. The
amount of furfural as an indicator compound for beer staling could be quantified to
8.35 mg/L in the historical beer with concentrations below the limit of detection in the
modern equivalent. Londesborough, et al. [287] found a level of 664 µg/L furfural in the
shipwreck beer from the 1840s that, underwater, was exposed to significantly lower
temperatures. The furfural concentration found in the historical beer far exceeds what
is described for beer in literature.
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5.2.4 Chemical space of the historical brew resolved by FT-ICR-MS

The differences in the chemical space and metabolic range between the historical
beer and its modern equivalent were investigated by long-time (2000 scans, 1 hour)
DI-FT-ICR-MS analysis. The analytical approach offers the unique comprehensive
compositional dimension when chemically characterizing beer samples. After data
filtering and annotation through mass difference networks (MDiN), 5,200
compositions could be observed for the historical beer (B1885) and 4,250 for the
modern equivalent (B2019), respectively. More than 40 molecular formulae could be
detected in one nominal mass with great matches between the historical and modern
sample (Figure E.2 in Supplementary Chapter 5). The molecular compositions were
plotted in van Krevelen diagrams, which have proven to reveal compositional patterns
within the metabolite profile of both wine [57,111,400] and beer samples [225,226,228].

Comparing the van Krevelen diagrams of both beer samples, it becomes
apparent that the compositional space of the 1885s beer (Figure 2A) shows great
overlap with the molecular formulae found in modern beers (Figure 2B). The dominant
carbohydrate cluster (H/C ≈ 2, O/C ≈ 1) is accompanied by respective sugar-
phosphates and small organic acids. The degradation of the sugar compounds,
usually associated with the loss of H2O, was more pronounced in the historical beer.
These degradation processes, usually, are driven by the Maillard reaction and take
place during malting and roasting of the grain itself and are intensified during the
brewing process. Taking into account that the beer analyzed has been exposed to
moderate temperature fluctuations for around 130 years, the additional breakdown
presumably originates in the chemical changes during the storage. At natural room
temperature, following unusual reaction conditions for the Maillard reaction in foods
and beverages, disproportionately many of the sugar degradation products belonged
to the CHO chemical space. In previous studies [226], analyzing 250 beer samples,
one-third of the compositions resulting from the Maillard reaction could be assigned
to the CHO- and two-thirds to CHNO-chemical space. In contrast, the chemical
spaces are evenly distributed for the sugar degradation compositions only found in
the 1885s beer.

Scientific brewing paved its way in those years with the work of Pasteur and
Hansen. Without any clear indications for beer pasteurization, Walther, et al. [369]

describe great stability to enzymatic and microbial degradation for beers at that time.
The claim for chemical stability is contradicted by the non-enzymatic changes,
namely the Maillard compositions described, at least to some extent. This indication
of a change in the chemical signature of the beer due to exceedingly long-term
storage is mirrored in further compound classes as well. The region of lipids was
characterized by more oxygenated species due to oxidation processes (Figure 2C).
Concerning the oxidative alteration of lipids, the formation of (E)-2-nonenal, which is
linked to a cardboard-like off-flavor [401], from linoleic acid is a decisive criterion for the
effect of lower oxidation stability in brewing practice [390]. Brewing research largely
agrees that the so-called “(E)-2-nonenal potential” [402] is already generated during the
wort production by enzymatic (lipases and lipoxygenases) and non-enzymatic
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(autoxidation) processes [403]. Further oxidation of the lipids after bottling is considered
negligible under normal storage conditions [404,405]. Saturated and comparatively more
oxygenated molecular formulae like C12H22O5, C12H24O5 or C16H30O8 as characteristic
products in the 1885s beer gave insights into processes that occur during extreme
storage times, apart from specific known marker compounds. By hydroxylation (O),
chain prolongation (CH2), (de)hydrogenation (H2) and epoxidation (-H2/+O)
(bio-)chemical reactions and their combinations, the 150 compositions involved in the
oxidation system could be set into relation, leading to a comprehensive mass
difference network (Figure E.3 in Supplementary Chapter 5).
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Figure 5.2 | Van Krevelen spectra of compositions found in B1885 (A), B2019 (B), the
overlap of the samples (C), respective Venn-diagram (D-I) and chemical spaces for
B1885 (D-II) and B2019 (D-III). Mass difference network of annotated compositions
colored by the chemical space (E), by presence in sample B1885 and B2019 (F) and
clusters of compositions specific to B1885 (F-I) and B2019 (F-II) with their respective
position in the van Krevelen diagram (G-I and G-II, respectively).Color code: CHO
(blue), CHNO (orange), CHOS (green), CHNOS (red), CH(N)O(S)P (violet). Neutral
compositions are depicted. Approximate regions of compound classes are marked
(A, B, C, G) and specific areas are highlighted in (F).
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The compositions in the area of peptides, more specific to the modern beer,
are in agreement with their role in the Maillard reaction. The biggest difference
between the samples’ metabolic profiles lay in the region of hop bitter acids. These
terpeno phenolics, which most significantly contribute to the bitterness of beer,
showed great presence in both beers, but markedly differed in the degree of
oxygenation. The modern and fresh beer spectra, as expected, contained
composition signals for the well-known main bitter acids in hops like humulone
[C21H30O5], cohumulone [C20H28O5], lupulone [C26H38O4] and colupulone [C25H36O4]. In
contrast, there were hundreds of oxygenated derivatives in the historical beer, shifted
to the right in the van Krevelen diagram (Figure 2C). Such an oxidation process could
already be indicated [225] but showed an extraordinary extent in this very special
sample. Although the bottle was corked and waxed, which led to a largely maintained
ethanol content, the oxygen present in the head-space of the bottle has been
sufficient to almost completely oxidize the known hop constituents. Consequently,
the signal intensity of humulone (1.4 %, compared to fresh beer) and
cohumulone (1.6 %) are drastically decreased. Over 400 new derivative compositions
unique for the historical beer were observed. Bearing in mind that several isomers are
to be expected (e.g. 24 for humulone itself), the richness of the hop metabolite profile
likely even goes far beyond hundreds of compounds. The MDiN between the modern
beer hop bitter acids and the derivatives only found in the 1885s beer featured mostly
compositional changes equivalent to oxidation reaction (O3, O2, O4, are the three most
common differences), substantiating the assumption of derivative formation through
oxidation. As early as the 1980s, brewing research investigated the degradation of
hops on a molecular level to describe the formation of volatile carbonyls, alcohols and
esters [406-408] as ultimate breakdown products. Later, Intelmann, et al. [409] elucidated
the molecular structures of several more complex cohumulone derivatives in storage
model systems. A quantification method including up to 117 bitter acid derivatives
(carboxylic acids, epoxides, cyclic, hydroxylated, and peroxided derivatives) was
developed to describe oxidation intermediates and products in hops [410], throughout
the brewing process [186] and during storage experiments [187]. The beers found in a
shipwreck in the Baltic Sea and originating from a similar period were examined using
these methods [287]. Comparable to the low signals found in the 1885s beer, negligible
amounts of intact α- and β-acids were found. Isomerized humulones were present in
minimal amounts. In line with their model experiments, cyclic oxidation products
could be identified as a sign of long-term storage. The strong bacterial influence, the
impact of low pH and the diffusion of seawater in the Baltic beers surely resulted in
special reaction conditions. Nevertheless, it is noticeable that, despite the already
comprehensive targeted analytical approach, the compounds found in the Baltic beer
represent less than 5 % of the compositions described in our work. The resolved
complexity and richness of hop-derived compounds in the well-preserved historical
beer of 1885 remains a unique description of the “dark metabolome” of hop oxidation.
Overall, compared to the oxidation of wine [400,411] where sulfur compositions play a
major role as antioxidants, the differences between the modern and the 130 years
aged historical beer are mostly limited to the CHO-chemical space (Figure 2D). With
more than 60 % of the around 5,200 compositions overlapping between the found
beverage and the modern beer, there should be no doubt that the bottle contains a
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beer whose age is reflected in oxidation processes. The allocation of the aging
products with regard to their chemical origin could also be traced in the MDiN (Figure
2E-G). It showed distinct areas for the chemical spaces with slight overlapping of the
CHO/CHNO and CHOS/CHNOS spheres respectively (Figure 2E). The compositions
characteristic of the historical or modern beer (Figure 2F) formed specific clusters in
the linked network that corresponded to the described compositional spaces of
oxidized lipids, oxidized bitter acids and peptides (Figure 2G). These findings
underline the remarkably good preservation of the beer over 130 years and indicate
that, apart from extensive oxidation primarily of the hop components, its metabolic
signature is very comparable to modern, industrially brewed beers.

5.2.5 Chemometric interpretation of the metabolic signature

The beer attributes, the sensory characterization, microbiological analyses, NMR-
profile and FT-ICR compositions of the historical beer overlap in many parts with
today's beer. Given these clear similarities, the metabolic fingerprint of the historical
beer was statistically compared with that of hundreds of other modern beers
conclude about its original nature. For this purpose, OPLS-DA models were
developed that put the molecular profiles of up to 400 beers in relation to their beer
type, the type of fermentation, compliance with the Purity Law, the grain used and the
Maillard signature (Figure 3). All models showed a clear classification power of the
samples with regard to the examined criterion. Their statistical relevance concerning
the goodness of the fit, quality of prevision and the exclusion of overfitting could be
proven with RY2 values between 0.87 and 0.97, Q2 between 0.57 and 0.81 and
ANOVA p-values << 0.05 respectively [214,215] (Table E.3 in Supplementary Chapter 5).
Based on these models, the most significant compositions could be extracted in the
associated loadings plots (Figure E.4 in Supplementary Chapter 5) and visualized in
van Krevelen diagrams (Figure E.5 in Supplementary Chapter 5). In the respective
score plots, the historical beer and its modern equivalent as a reference could be
located in a prediction. The great similarity already shown between the well-preserved
bottle and industrially manufactured beer was reflected in the fact that the historical
sample did not appear as an outlier in any of the models even after 130 years of
storage (Hoteling's T2). It enabled us to use the molecular fingerprint of the beer to
conclude about the brewing method in the 19th century when compared to validated
metabolic profiles of hundreds of modern beers.
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A typical lager beer. The use of specific yeasts, malts, adjuncts and/or the type of
hopping defines the type of beer resulting from the brewing process. These
characteristics influence the metabolic signature of the respective way of brewing. As
reported earlier [225,228], wheat beers showed a network of compositions that can be
traced back to secondary metabolites (phytoanticipines) of the wheat plant. The major
difference between the molecular fingerprint of lager and craft beers is due to the
different way of hopping. Dry-hopped craft beers featured a variety of oxidized bitter
acid derivatives, whereas the lager and wheat beers showed no defined signature of
hop components (Figure E.5A in Supplementary Chapter 5). Despite the numerous
characteristic oxidation products found in both the craft beers and the historical beer,
the latter clearly could be assigned to the lager beer type (Figure 3A). Discrepancy is

Figure 5.3 | Score plots of the OPLS-DA differentiating beer types (A), fermentation
types (B), compliance with the German Purity Law (C), grains used (D) and Maillard
signatures (E). The spot for each beer is colored according to its respective class. The
position of beers B1885 (dark brown star) and B2019 (light brown star) is based on a
prevision based on the statistical model and is indicated by a star.
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to be found in the different oxidation mechanisms coming with dry-hopping
compared to long-term storage and the associated extraction of hop polyphenols.

Another fundamental difference between the beer types is the type of yeast.
Craft beers are fermented with ale yeasts whereas lager beers are brewed with
bottom-fermenting yeasts, which were causative for a metabolite pattern of CHNO
compositions in the shared region of lipids and amino acids/peptides in the van
Krevelen diagram (Figure E.5A-I in Supplementary Chapter 5). Only 19 of the
respective 112 m/z-values showed a database entry (HMDB, YMDB, ChEBi, Metacyc,
Lipid maps) with suggested carnitine, ethanolamine and amino acid acyl-conjugates
of fatty acids. Despite the yet unknown identity of these compounds, the same signals
could be found in both the historical (80%) and modern (87%) beer. The beer of 1885
could be identified as a typical lager beer by the fingerprint of its “dark metabolome”.

Bottom-fermenting yeast. Although no viable yeast cells could be isolated,
it was possible to determine the type of yeast used at the time by its influence on the
beer metabolome. In general, when it comes to brewing, a distinction is made
between top- and bottom-fermenting yeast species (Saccharomyces cerevisiae).
They differ in their sprouting and thus the behavior during fermentation [393]. Top-
fermenting yeasts in ale or wheat beers form sprouts that rise to the top at the time
of the most intensive fermentation. Bottom-fermenting yeasts linger as single cells or
cell pairs at the bottom of the fermentation vessel. The biggest differences of brewing-
relevance concerning the metabolism are the enzyme expression (e.g. hydrolysis and
decarboxylation of ferulic acid to 4-vinylguaiacol [C9H10O2] for wheat beer yeasts [412])
and their optimum temperature. Top-fermented brewing takes place at around 18°C,
whereas the bottom-fermented method prefers cooling to 9°C. Due to the necessity
of elaborate cooling with ice in winter and no such possibility in summer, the bottom-
fermented lager spent a little pronounced existence until the second half of the 19th

century [413]. It was only with the work of Linde leading to the refrigeration apparatus
in the 1870s [164] that bottom-fermenting yeast was made practicable all year round. It
remains unclear whether this groundbreaking invention has already come into use for
the historical beer. Yet, the tradition that the associated brewery already had a Linde
refrigeration apparatus in 1881 is substantiated by these findings [414]. The metabolic
profile, however, could clearly be assigned to that of a bottom-fermented
beer (Figure 3B). The availability of controlled cooling opened up the world of
standardized fermentation. The historic brew may be among the first lagers that spread
consistent brewing quality and a recognizable taste around the world. It, as well, is
questionable whether the yeast used was a pure cultured yeast, as the first isolation
of single cells was achieved only a few years before by Hansen [163] during his beer
research. [368] report the genome sequence of the first pure cultured Saccharomyces
carlsbergensis and report the oldest yet-known beer brewed with this yeast [369].
However, by analyzing similar reference beers (from 1880s to 1990s), the latter
authors were able to point out that beer spoilage by wild yeasts was still common in
that period.

Simply Barley. The grain used for brewing serves primarily as a starch and
enzyme source and thus as a supply of fermentable carbohydrates. Yet, in addition
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to these products of primary metabolism, secondary metabolites that are extracted
during the brewing process contribute to the molecular diversity of the final beverage.
Utilizing the FT-ICR-MS analytical approach, the molecular profiles of barley, wheat,
corn and rice could be characterized and potential marker substances identified using
UPLC-ToF-MS (55). We used these statistical models to examine the metabolic profile
of the beers with regard to the use of the various starch sources that still are very
common today. The prediction of the modern beer showed a clear allocation to the
beers made from pure barley in the score plots of both the 1st against 2nd (Figure
3C-I) and the 2nd against 3rd (Figure 3C-II) principal components. In contrast, the
historical beer was unambiguously identified as beer without wheat, corn or rice
added only in the second score plot. For this reason, subsequent UPLC-ToF-MS
measurements were carried out. Neither the characteristic benzoxazinones of wheat
(e.g. MBOA, HBOA-Glucoside, DIBOA-glucoside, HMBOA-glucoside), the
hydroxyoxindoleacetic acid or the lipid profile of corn nor the rice-specific aspartic
acid conjugate of N-glucosyl-indoleacetic acid were found in both beer samples
(Figure E.6 in Supplementary Chapter 5). Consequently, using complementary and
comprehensive mass spectrometric approaches, it could be demonstrated that the
historical beer did not show any metabolites or metabolic signatures that would
suggest the use of wheat, corn or rice.

Brewed according to the Bavarian Purity Law. Besides the advances in
science (Pasteur [364], Hansen [163]) and technology (Enzinger [378], (Linde [164]), the
tradition of beer and brewing goes hand in hand with fundamental changes in human
culture and jurisprudence. As one of the oldest fermented beverages of ancient origin
[159], the historical meaning of brewing lies in the cultural transition towards producing
durable beverages from domesticated cereals. To ensure the quality and
bacteriostatic property of beer, the Bavarian Purity Law (1516) was established as
one of the most significant food legislations of the early modern period. At this time,
brewing with wheat was banned in order to have it reserved for bakers. The
production of wheat beer was an exclusive right of the duke (from 1602) and was not
allowed to be widely practiced until the beginning of the 19th century. To this day, the
use of raw grain, additives and adjuncts, starch and sugar or spices is prohibited in
Germany and a few other countries. The chemometric classification of the 400 beers
analyzed was based on current law. The beers declared as not compliant with the
Purity Law were (1) brewed with corn, rice, soy, raw barley / wheat / rye / oat, malt
extracts and syrups, sugar, sugar syrups or starch (2) sweetened with one of the
above, caramel or sugar substitutes (3) preserved with antioxidants, stabilizers and
acidity regulators (4) made by adding green tea, lotus blossoms, hemp, seaweed,
whiskey or brandy (5) refined by yuzu, honey, plumb, cherry, orange peel, chestnut or
coffee or (6) flavored with coriander, anise or herbs. The chemical profiles of all these
attributes were compared to those beers brewed according to the Purity Law have in
common (Figure 3D). As the metabolome-based prediction of the historical beer in
the score plot shows, it was brewed according to the standards of the Purity Law that
is currently in force. Accordingly, in view of the fact that no wheat signature could be
identified, it also complied with the regulations of the German imperial era.
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Moderate roasting signature. The last OPLS-DA model was created based
on a non-binary y-variable. The metadata used was obtained from UV/Vis-
measurements like described in an earlier study [226]. The Maillard roasting signature
of the historical find was slightly more pronounced, but similar to that of modern pale
beers (Figure 3E). The metabolic signature described a typical pale lager beer, whose
Maillard chemical imprint originates not in the roasting process, but long-term storage
under moderate conditions.

5.3 Conclusion

Every raw material involved in the beer-making, the brewing method itself and all
production steps towards the type of storage influence the chemical composition of
the beer and preserve a specific metabolite footprint. Through comprehensive
archeochemical investigations, we showed that the molecular profile of beer can be
revealed and interpreted even after more than a hundred years of natural occurring
alterations (Figure 4). The historical brewing process and the changes caused by
aging could be described on a molecular level in more detail. We described a hitherto
unknown diversity (>400 specific compositions) of oxidized hop bitter acid derivatives
and lipid oxidation (FT-ICR-MS), the role of niacin as an indicator compound of
insufficient germ removal and undescribed high concentrations of Maillard-reaction
marker molecules (NMR). The clear indicators of the ravages of time, however, have
not been able to obscure the detailed molecular information left in the brewing of the
late 19th century. Despite the over 130 years of storage of the beer under atmospheric
pressure and in a standing position, the beer’s original nature was unchanged in many
parts. (Ultra)high-resolution mass spectrometry enabled the description of the largely
unidentified “dark metabolome” of the historical beer and to compare it to modern
brewing. In this way, the beer sample could be identified as a typical lager beer, which
was subjected to bottom-fermentation even at a time when industrial production with
accordant yeasts was still under early development. Following the Bavarian brewing
tradition, the Purity Law applicable at the time was complied with, and specific
metabolite profiles of adjuncts like wheat, maize or rice could not be detected. Critical
points during the historical brewing process could be unraveled by forensic
archeochemistry utilizing whole systems’ fingerprints and specific molecular
indicators.
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Figure 5.4 | Representation of critical production steps during the putative brewing
process of the historical beer of 1885.
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5.4 Materials and Methods

5.4.1 Brewing parameters, folate analysis and sensory
characterization

Alcohol content and specific gravity were analyzed according to MEBAK WBBM
2.9.6.3 with an Alcolyzer Plus with a DMA 5000 density meter and Xsample 122
sample changer (Anton-Paar GmbH, Ostfildern, Germany) and the pH value according
to MEBAK WBBM 2.13. Final attenuation was determined according to MEBAK
WBBM 2.8.1. Foam stability was determined according to MEBAK WBBM 2.18.4.
Sensory Analysis was performed according to MEBAK II 2.34.3. Samples of the same
beer were subjected to forced aging by shaking them overhead for 24 hours and
storing them at 40°C for 4 days. The beers were tasted and judged among four
certified tasters according to MEBAK II 2.34.3. Folate analysis was performed as
described in Pferdmenges, et al. [375] on a Shimadzu Nexera X2 UHPLC system
(Shimadzu, Kyoto, Japan), utilizing stable-isotope dilution (Table E.4 in
Supplementary Chapter 5).

5.4.2 Microscopy, microbiological analyses, PCR-based methods

25 mL homogenized sample of the 1885 beer were transferred aseptically to a sterile
50 ml cell culture centrifuge tube. 1 mL of the beer each were transferred to
broth-based (liquid) and agar-plate (solid) based cultivation methods. A broad range
of culture media for cultivation of beer, wort and beverage related microbes were
selected for this approach: Wort-Agar, Wort, YM broth, YM-Agar, YGC-Agar, NBB-
Agar, NBB broth, MRS broth, MRS-Agar, Micro Inoculum Broth (MIB), DEV-Nutrient-
Agar, DEV-Nutrient broth, PCA, TSA, WLN-Agar, WLD-Agar, YPM broth, OSA, VRBD-
Agar, Lactose-Peptone broth. Culture techniques, incubation conditions and
incubation periods were applied according to MEBAK III 10.3-10.6, 10.1 and
according to Back [415,416]. Additionally, the beer sample was analyzed microscopically
according to the method MEBAK III 10.11.3 (using a Microscope Nikon Eclipse E200
with 1000-fold magnification as phase-contrast and dark-field microscopic
application). After DNA-extraction of the beer sample-specific Real-Time PCR
systems for beer-related yeast and bacteria species (e.g. Saccharomyces cerevisiae,
Saccharomyces pastorianus, other Saccharomyces species, non-Saccharomyces
beer associated yeast species, lactic acid bacteria) and PCR of 16S rDNA (bacteria)
and D1/D2 26S rDNA and ITS1-5.8S-ITS2 rDNA (yeast/ fungi) with subsequent
Sanger-sequencing were carried out according to Brandl [417], Hutzler [418,419], Koob et
al. [420], Riedl et al. [421,422], Sampaio et al. [423], Schneiderbanger et al. [424].
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5.4.3 NMR-analysis

The samples of both analyzed beers were diluted 3:1 with D2O containing sodium 3-
(trimethylsilyl)propionate-d4 (1.8 mM) as a chemical shift reagent and Di-sodium
hydrogen phosphate (1.5 M, pH7) to buffer the sample at pH 7.
Experiments were carried out on an 800MHz Bruker AVANCE lll spectrometer
equipped with a 5 mm QCI-probehead at 300K. 1D 1H spectra were recorded using
a 1D version of the nuclear Overhauser effect (NOE) experiment with a shaped pulse
for off-resonance presaturation of the ethanol and water signal during the relaxation
delay and mixing time. 2D-Experiments consisted of a phase-sensitive TOCSY with
shaped off-resonance presaturation and a dipsi mixing scheme [425-427]. HSQC spectra
were recorded with a phase-sensitive version using Echo/Antiecho-TPPI gradient
selection, decoupling during acquisition and off-resonance presaturation with a
shaped pulse during the relaxation delay [428-430]. The assignment of the observed
signals was carried out based on of 2D NMR experiments considering published
information [194,197,297] and spiking of standards, compiled in Table E.2 in
Supplementary Chapter 5. Quantification was done by integration of the peaks in the
case of isolated peaks and via peak fitting (assuming a Lorentzian peak shape) in the
case of overlapping peaks. The obtained areas were used to calculate the
corresponding concentration by comparison with the TSP area. Detailed experiment
parameters are given in Table E.5 in Supplementary Chapter 5.

5.4.4 Sample set and FT-ICR-measurements

A total of 400 samples of commercially available beers from over 50 different
countries were analyzed as a basis for statistical modeling. The sample set represents
a cross-section of all possible combinations of beer styles, fermentation types, raw
materials, color impressions and alcohol contents available to exclude co-varying
metadata. The samples were stored, prepared and measured on a Bruker solariX ion
cyclotron resonance Fourier transform mass spectrometer (Bruker Daltonics GmbH,
Bremen, Germany) as reported recently [225,226,228] and summarized in Table E.4 in
Supplementary Chapter 5. The obtained raw data was processed as reported [228]

resulting in 7,700 unambiguous molecular formulae with a mass error of < ±0.15 ppm
(at a resolving power of 400,000 at m/z 400) as a basis for statistical modeling. An
overview of the sample set is given in the Supplementary (Table E.6 in Supplementary
Chapter 5
The sample set was accompanied by a historical beer from 1885 (B1885) and its
equivalent from 2019 (B2019) to investigate their molecular signature based on
single-spectra comparison and statistical prevision of their metabolite profile. The
modern beer was kindly provided by the same brewery to which the old beer is
assigned and analyzed immediately upon receipt. The beer from 1885 was sampled
through a previously disinfected (MeOH, heat) metal syringe. The sampling was
carried out through the cork. Care was taken not to transfer any parts of the wax



Materials and Methods | Chapter 5

114

coating. Both these individual samples were measured as referenced above (for
statistics) and with an increased number of 2000 scans for single spectra comparison.

5.4.5 FT-ICR data visualization and statistical treatment

For each metadata criterion, the beer type, type of fermentation, compliance with the
German Purity Law, grains used and wavelength at 294 nm (Maillard signature), we
performed a supervised OPLS-DA analysis on the FT-ICR dataset. Based on these
models, the position of beers B1885 and B2019 in the score plots were determined
by a prevision to investigate the correspondence of their metabolic profile. The
statistical parameters of the beer samples (Table E.7 in Supplementary Chapter 5)
and OPLS models (Table E.3 in Supplementary Chapter 5) can be found in the
Supplementary section. The characteristic composition profile for each observation
and the compositions found in the 2000 scan spectra of B1885 and B2019 were
plotted in van Krevelen diagrams. By plotting H/C- versus O/C-atomic ratios it is
possible to depict common compositional patterns within observations’ markers
[26,111,126]. By plotting H/C- against O/C-ratios of the annotated molecular formulae, it
enables tentative classification of the metabolite signals resolved [26]. Compositions
characteristic for certain beer attributes were subjected to database search including
HMDB[290], YMDB [294], ChEBi [291], Metacyc [292], and Lipid maps [293]. A mass difference
network (MDiN) was applied utilizing the NetCalc approach [237]. The nodes,
representing the annotated molecular formulae, were connected by edges that
represent compositional changes corresponding to 250 different (bio)chemical
reactions.

5.4.6 UHPLC measurements and marker compound comparison

As described earlier [228], the statistical analysis of a sub-sample set (102 beers)
revealed compounds characteristic for the use of wheat, corn and rice with
identification levels reaching from 1 to 3 [10]. Utilizing the same sample preparation
and Shimadzu LCMS-9030 Q ToF (Shimadzu Deutschland GmbH, Duisburg,
Germany) analytical system, beers B1885 and B2019 were screened for those marker
molecules to verify the carbohydrate source used. For comparison, class-QC
samples were analyzed containing all wheat, corn or rice samples respectively. The
measurement parameters are summarized in Table E.4 in Supplementary Chapter 5.
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Chapter 6 |
Concluding Discussion and Outlook

The thesis reports on the non-targeted analysis of the beer metabolome. Brewing has
been of great importance as a source of durable rich beverages for millennia. It
evolved over thousands of years leading to scientific investigations and industrial
scaling eventually. Yet, the metabolite richness extracted from the raw materials and
their alteration during the malting and brewing process remains an unsolved puzzle.
This work aims at and contributes to resolving the blurred picture draft. It aims to
comprehensively map and structure the small molecules that in their entirety form the
exceedingly complex aqueous mixture of organics we know as beer. Many chemical
and biological processes result in the molecular diversity of the fermented beverage.
When it comes to addressing these processes and their impact, it first is necessary
to depict and visualize the richness from which certain signatures can be read. The
thesis reports the application of an analytical approach that allows both describing
the big picture and searching for marker compounds and molecular networks. As a
first step, the requirement of comprehensiveness, which is demanded of
metabolomics investigations, was pursued. Where pertinent brewing literature
attributes up to two thousand compounds to beer, it was possible to describe already
over 8,000 metabolite mass signals based on the mass resolution of the
DI-FT-ICR-MS technique. The assignment of unambiguous molecular compositions
turned unknown features into interpretable signals. The mass dimension was
supplemented by isomeric separation (UPLC-ToF-MS). Hence, the structural space
that could be observed expanded considerably, when compared to single
instrumentation approaches. With over 20 isomers found for certain exact masses,
the metabolic complexity of what defines a beer on the molecular level could be
reported to dramatically exceed previously estimated numbers. The holistic approach
includes those compositions that are of yet-unknown structure and considered as the
“dark metabolome”.

The aim of depicting an overall picture, yet one allowing deep insights, shows
in the minimalistic sample preparation. The metabolic signatures remain unharmed.
The variety of beer samples represents another key point. In total, close to 500 beer
samples from over 50 different countries across the globe were analyzed. They
feature all facets of beer brewing and form an exhaustive basis of metabolite
information. The presented studies have proven that such an extensive sample set
not only comprehensively depicts the metabolome of brewing but enables robust
statistical modeling. The decisive advantage is to enable mining for causal metabolic
signatures instead of co-varying, correlating information. These fingerprints can be
used for sample differentiation, basic research or process guidance. In a further step,
they provide a framework to delve deeper into metabolic signatures and networks.
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This includes the possibility of structure elucidation (UPLC-ToF-MS / NMR) and
quantification (qNMR) of analytical targets. The analytical approach offers a
comprehensive and holistic overview of beer metabolites, specific molecular
networks and fingerprints, and information about molecular structures of target
marker metabolites.

One of the most emerging techniques in modern brewing over the last years
is the dry hopping process, where hops is added after wort boiling. This procedure is
intended to extract the flavor and aroma compounds of the hops. Alterations due to
the influence of heat are avoided. At this appoint it must be said that the analytical
approach is not suitable for analyzing very volatile compounds (a different sample
transfer and ionization technique would be advantageous to reach that goal) and is
more so limited to non-volatile precursor metabolites or flavor compounds. In any
case, the signature of dry-hopping could be resolved. It represents the most
important specific commonality for all so-called craft beers at the molecular level. The
hops was found to imprint a specific compositional pattern dependent on the way it
is added to the beer. The probably most characteristic compounds of the plant, the
terpeno-phenolics or hop bitter acids, were connected in their biochemical context
by mass difference networks. Corresponding chemical changes could be visualized.
Where wheat beers have a poor hop signature and that of lager beers is characterized
in particular by the classic hop bitter acids (humulones, cohumulones), craft beers
showed a variety of highly oxidized derivatives of these compounds. This can be
attributed to the large input of oxygen associated with dry-hopping. In addition, the
ethanolic extraction medium causes a more pronounced extraction of phenolics,
polyphenolics and respective glycosides when compared to hops addition before
fermentation. The hitherto undiscovered complexity and richness of these specific
compounds could provide a base of knowledge for quality control purposes or
process guidance towards flavor and antioxidant properties. Adapting the approach,
the closely related field of hop breeding and the characterization of hop varieties and
locations could also benefit greatly in future projects. Phenotyping of plants resistant
to pests or pathogens and sensomics approaches could profit when hop secondary
metabolites are resolved to their fullest, in the plant or final beer product respectively.

A chemical profile that influences the metabolome of beer and beer raw
materials to a decisive extent was found to be that of the Maillard reaction (MR). The
reaction of amines with carbonyl moieties runs through the entire brewing process.
From malting over boiling to storage, it significantly contributes to the diversity of beer
molecules and shapes the beer’s chemical space of small molecules to a great extent.
By unsupervised statistics, over 40 % of all resolved mass signals were found to
originate in the reaction of amino compounds and sugars. The characteristic
molecular pattern could be described by various visualization techniques
emphatically exceeding the fingerprinting level. In beer, the chemical space of the MR
was predominantly characterized by CHO and CHNO compounds. A minor (or even
inhibiting) role of sulfur-containing amines like cysteine was observed. The
MR-derived chemical pattern was shown to be subject to kinetic laws whose
regularity is mirrored in the structured chemical compositions. It contrasts the
plant (raw materials) or yeast (fermentation) metabolome which is formed by
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enzymatic biocatalysis. The systematic distribution of nitrogen and oxygen in Maillard
compounds illustrates their origin of chemosynthesis. A specific chemical space in
the van Krevelen diagram was characterized. MR products develop from countless
possible precursors within the beer matrix. Still, they converge towards shared
compositional characteristics by systematic reaction patterns. The degree of
saturation of these compounds (the double-bond equivalents) increases with
increasing mass. Accordingly, there are a large number of higher-mass molecules
that reach a corresponding degree of unsaturation by dehydration cascades. In
studies that rely only on model systems and lose sight of the complexity of the actual
food, these are oftentimes neglected. Several hundred different beers were analyzed
to work out the generally applicable regularities. A representative system of amino
acids and sugars, modeled on their composition in beer brewing, showed an overlap
in all properties. The investigations were not restricted to the description of about
2,200 compounds carrying the Maillard signature. They also highlighted their
chemical relation with regard to possible reaction sequences. Using the color of
hundreds of independent beers as a proxy for the progress of the Maillard reaction
led to robust, well-interpretable results that are consistent with model systems.
Expressed as accurate mass differences, the reaction pattern or rather pattern of
compositional change could be extracted. Since hundreds of amino acids and
peptides can serve as precursors of the MR, compositional changes that are
independent of N-containing steps stood out as the major common denominator. In
the mass range of the metabolome, not considering >1000 Da melanoidin polymers,
they are characterized as degradation reactions. The reaction sequences could be
described in more detail by mass difference networks and evaluation of the pathways
from precursor to product. Finally, they were decomposed into individual reactions of
the Hodge’s scheme. It was shown that the intermediate addition of fission products
might lead to a subsequent water elimination cascade and to products of smaller
mass eventually.

Follow-up investigations are expected to further increase the knowledge
about the MR as occurring in beer brewing. These might include experimental brews
to follow the Maillard reaction and resulting products throughout the course of the
brewing process. Already the first step of malting, the germination parameters of the
green malt, decisively impacts the following MR. By regulation of the enzyme activity,
the sugar and amino acid composition available to MR-alterations are defined. We
can assume that different malting processes, in particular the parameters of time and
temperature, lead to different reaction kinetics and cascades of interest. Plant
components that are released by mashing are added to the diverse mixture available
for the MR during boiling. The influence of malt’s browning degree on the following
yeast fermentation is described to some extent but not yet investigated regarding
whole Maillard reaction compositional patterns. For long-term storage, as shown with
the historical beer, low-temperature reactions favor the building of another subset of
Maillard compounds. The final picture of the Maillard reaction network in the finished
beer product, therefore, consists of many individual steps. They address different MR
environments and kinetics leading to various compositional signatures.
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The analytical, data mining and visualization approach described here provide
an excellent basis to further explore the Maillard diversity in beer. Alternative
ionization methods could enhance the range of the chemical space accessible with
the capability of both APPI and APCI to ionize less oxygenated compounds and highly
unsaturated MR end products, respectively [126]. A further future approach would be
to adapt model systems. The questions of whether certain amino acids, sugars, or
other additives make a decisive contribution to the molecular diversity could be
tackled. Experimental raw materials or experimental beers rich in certain precursors
could subsequently pave the way into practical use. Reaction cascades could be
studied in time-resolved representative model sequences [168]. A time-resolved
approach of reaction kinetics and sequencing would hark back to the beginnings of
metabolomics, to flux analysis on a non-enzymatic and compositional level. The
complex interplay of amino acids and sugars could be followed by carbon module
labeling (CAMOLA [431]), where isotope-labeled precursors are added to the reaction
pool. Traditionally, such an approach is carried out using NMR or LC-MS analytical
techniques. Due to the mass resolving power and accuracy of FT-ICR, including
isotopologue resolution, a direct-infusion approach could add a holistic picture of
carbon label distribution. Building blocks could be identified in the evolving MR
through accurate mass annotation and mass difference networking. Structure
elucidating approaches such as tandem HILIC- and RP-LC-MS [432] could
complementarily be of use to ensure the best possible coverage of compounds.
These considerations regarding further areas of application should contribute to a
better understanding of the overall picture of MR in beer. It plays an important role
not only in terms of basic research but also with regard to quality control and process
guidance in the malting and brewing industry. These complex streams of chemical
reactions are influenced by a variety of parameters. Metabolomics aims to move away
from linear downstream reactions or single compounds (such as desoxyosones or
HMF). Those proxies ambiguously mirror the complexity of the reaction pool.
Metabolomics aims towards whole unambiguous chemical signatures. By
understanding general driving forces and addressing the whole compositional space,
malting and brewing processes could be optimized towards desired attributes like
organoleptic, physical and chemical properties resulting in an overall quality and
shelf-life increase. However, the analytical instrumentation of most current food
inspections and industry often is reliant on a few-molecule characterization. It leaves
the comprehensive approach to (1) generate deeper knowledge in basic research with
the aim of process optimization eventually and (2) extract those compounds out of
the holistic metabolic picture that might be suitable for targeted analytical
approaches. Such a transfer might be of use for on-site control or inspection
purposes.

When considering beer quality and possible alterations, grain adjuncts are of
great interest, especially with regard to the German Purity Law. Widely spread across
the global landscape, rice and corn grits are used as starch sources due to the
competitive price. They alter the brewing and sensory properties of the beer and leave
a molecular signature specific to the respective grain. Those fingerprints, both as
extensive compositional patterns and single-molecule markers, could be described
herein. The metabolic profile of corn as a brewing adjunct consisted on the one hand
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of lipids derived from the seedling. On the other hand, it is complemented by a
network of secondary metabolites built around the already known marker compound
7-hydroxy-2-oxindole-3-acetic acid. These potential growth-regulating molecules are
not well described in literature. Likewise, a network of related compositions was found
to be specific for the use of rice. Meeting the requirements for practical food
inspection, the aspartic acid conjugate of N-β-D-glucopyronosyl-indole-3-acetic acid
was described as a marker for potential monitoring of rice adjuncts in beer. In the
commonality that these growth-related secondary metabolites leave a specific deep
signature in the beer - including numerous database and literature unknowns – one
could see an intrinsic call to transfer the analytical method to plant research.

The use of wheat grain is, according to the German Purity Law, restricted to
the eponymous brewing style. Malting of the grain is obligatory. The use of wheat malt
in lager beers, although prohibited in Germany, is appealing due to the associated
foam stability. It could be shown that the use of wheat does result in the final beer
featuring a wide biochemical network of secondary metabolites annotated and
identified as phytoanticipines. It allows proving the use of merely pure wheat starch.
A differentiation of raw against malted wheat was not investigated in this thesis.
Wheat raw grain is widely used for Belgian wit beers and is appealing due to its low
price. The main difference between the secondary metabolite imprint of raw and
malted wheat, except from Maillard-alterations, might potentially be the germination
process. Following on from this work, studies on the alteration of the metabolite
pattern of those plant defense compounds during the germination process could
provide deeper insights into the authentic use of the wheat raw materials.

Consumers' increasing awareness of the integrity of food is not only reflected
in the demand for authentic use of raw materials. The focus is also shifting to a
sustainable method of production, which consumer commonly associate with a high
quality of the product. The need for more sustainable production has led to increasing
demand for organically grown food and food products [433,434]. This trend shows in a
selection of organic brews on the beer market. The steadily increasing but relatively
low availability of such products indicates a restriction of the analytical approach
applied in this work. Undeniably, the extraction of molecular patterns from the
abundance of the comprehensively characterized metabolome is a decisive strength
of metabolomics. From this, analytical signatures and markers can be further
identified. However, a prerequisite either is (1) a comprehensive selection of samples
that represent all potentially co-varying factors in the studied populations of
equivalent sample size, or (2) a highly controlled and defined selection of samples
differing in only one criterion. Concerning the sample set compiled in this work, the
first condition was met for all the metadata-based differentiations presented. It was
not true for the selection of organic beers [data not part of this thesis]. Although
almost fifty commercial organic beers were analyzed, these were limited to a few
specialized breweries from Central Europe. A representative sample set is not
available at this point in time. The statistical analysis could show a difference between
organic and conventional brewing but not at the significance level of the other
attributes and not at a predictive level (R2Y = 0.859, Q2 = 0.360). The smaller the
effect of the criterion under investigation on the entire metabolome is, the more
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difficult it is to answer the question of an appropriate data set. Numerous studies
agree that the systematic differences between conventional and organic farming
concerning the expression of metabolic pathways of plant raw materials often is not
very pronounced [435-440]. Rather, influencing factors such as the year of production [435-

437] or the cultivars [437,438] predominate. An approach according to scheme (2) would
require the use of experimentally brewed beers including multiple biological
replicates. Such an approach would start with a field study of appropriate plant
cultivation (barley, hops) and yeast breeding and is beyond the scope of this work.
Although the findings would not be transferable to the beer market as a whole in a
representative manner, they could provide valid starting points for metabolic
pathways that should be particularly focused on.

Tracking such possible chemical signatures of raw materials throughout the
brewing process is another question of interest. Although the influence of individual
factors on the metabolome of the final product has been answered in a revealing
manner, it remains to be seen how metabolic patterns evolve as the brewing process
progressed. Investigating the starch sources has already shown that analytical
markers can be derivatized over the curse of brewing process (corn lipids). The
studies about the Maillard reaction show that the chemical signature of the finished
beer surely is more diverse than the parts of its raw materials. Breaking down the
chemical, but also biochemical-enzymatic interplay of small molecules to the various
process steps of brewing is a goal for the future. It will provide a deeper understanding
about the changes of a metabolome within a complex industrial process that leads to
a product of consumer's preference. Especially in direct-infusion approaches, the
comparability of matrices from the grain over the wort to the final beer is a critical
point to be ensured. With regard to metabolic changes during fermentation, the
integration of genomic or proteomic data from yeast represents an opportunity for a
multi-omics approach. Correlations of beer attributes like sensorics or storage
stability not only with chemical profile of the final product but with signatures within
the brewing process might open the door for online monitoring techniques. It might
bring together the aims of knowledge about our food and the practical implementation
concerning food quality. Both of which are somewhat lacking focus in the foodomics
focus as defined by A. Cifuentes.

Regardless of its production process, beer and brewing tradition accompany
human civilization for millennials shaping its culture and traditions. Under the term
archeochemistry, scientists describe the chemical inorganic and organic composition
of historical finds to conclude about their nature at that time. In food and fermented
beverage analytics, search for specific, yet ambiguous, molecular markers dominate
the field. Expanding this field of research through a holistic approach of metabolome
analysis proved beneficial in the analysis of a 130-year-old beer. The molecular
composition of the beer bottle from the German Empire era represented a unique and
rich source about the brewing culture at the end of the 19th century. Comprehensive
analytics could certify the unprecedented good condition of the sample on a
molecular level. The base of knowledge created throughout the investigations
reported in this thesis allowed to decipher molecular fingerprints and markers for
technological aspects of historical beer brewing from the raw materials to the storage.
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Several critical production steps such as malting and germ treatment, wort
preparation and fermentation, filtration and storage, and compliance with the
Bavarian Purity Law left detectable molecular imprints.

 Authentic aging mechanisms led to an unseen diversity of hop-derived
compounds. Long-term chemistry in the sealed bottle resulted in furfural and HMF
concentrations previously unknown for beer-like beverages. Analyzing the historical
beer, it became evident that the Maillard reaction is one of the main contributors to
compositional change in beer staling. Yet, the beer of the German Empire era remains
a unique source of information. It represents the ultimate stage of beer aging.
Experimentally aged beers could give more reproducible insights into the chemistry
of short- to mid-term alteration of the beer metabolome. Such forced aging studies
are investigating the stability of the beer during storage and associated changes in
beer quality. Utilizing the holistic analytical approach, molecular signatures and
analytical targets could be addressed that influence the quality and shelf-life of the
brews. Oxidation processes, as shown for lipids and hop bitter acids in case of
historical bottling, are aimed to be prevented by modern filling methods. Having a
comprehensive picture of metabolites available, the effects of headspace-oxygen
could be correlated with changes in the beer metabolome and sensory investigations.

The key challenges in the metabolomics community in mind, the LC-MS data
generated during this work was shared at the GNPS [141] open-access metabolomics
platform inside the MassIVE environment incorporating the MSI reporting standards
as summarized by Goodacre [137].

In Summary, the multi-layered analytical approach allowed to decisively
expand our knowledge about beer as a traditional but no less diverse beverage. It
points out how complex our everyday foods are at the molecular level and how
challenging it is to resolve their whole chemical profiles even with sophisticated
instrumentation. Every raw material and every brewing method adds further aspects
to the multifaceted metabolome of beer and brewing. Such molecular signatures
could be made visible by the developed statistical and data treatment strategies. In
addition to a wide variety of raw materials such as grains or hops, this work dealt with
the effects of their processing. In the color of the beer, the hidden Maillard reaction
network could be discovered. Molecular networking allowed to describe an ordered
scope on the rather chaotic chemical interplay and to find structured reaction
pathways. It furthermore provided molecular relations of analytical markers that could
be identified eventually. The investigations of the historical beer showed that beyond
food quality and adulteration control, process guidance and search for hidden
molecular markers, the holistic non-targeted approach allows the comprehensive
molecular characterization of unknown samples that hide cultural information of the
past.
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A   Supplementary Chapter 1

Review Chapter Supplementary A

Depicting the Molecular Complexity of Beer by Direct-Infusion
Fourier Transform Ion Cyclotron Mass Spectrometry (DI-FT-ICR-
MS)

As already outlined in previous chapters, beer brewing is determined by several
factors, all of which are mirrored in the complex metabolome of beer. Metabolomics
aims to use a holistic approach to decipher this diversity, plurality and complexity.
Following this top-down concept, a wide variety of analytical techniques were used
independently and in complementary applications. The goal is to understand the
product beer based on its metabolome and to generate in-depth knowledge of its
composition. The direct-infusion or flow injection analysis of a beer in mass
spectrometry offers the opportunity to analyze the beer as unchanged as possible
and to make the entire molecular diversity tangible. Such an approach, however,
needs to involve highest possible mass resolution to differentiate all possible
elementary compositions based on the CHNOSP chemical space and the isotopic
fine structures. A singularity of beer, compared to wine [111] and whiskey [441], is the
complexity of carbohydrate structures. While the sugar compounds in whiskey are
largely separated by distillation and play a minor role in wine, the carbohydrate
metabolome of beer builds up in a versatile way. This diversity of quantitatively
dominant compounds creates an analytical problem that [193] already noted in the
direct-infusion of beer into a lower resolution ToF mass spectrometer. In addition to
suppression effects during electrospray ionization, there are strong overlaps of
signals with lower-resolution mass spectrometry that make the beer challenging for
direct-infusion. On the other hand, extraction methods and chromatographic
pretreatment limit what can be made analytically visible in terms of polarity and
physiochemical properties.

A DI-FT-ICR-MS technique, novel to the field of beer research, can provide
simultaneous detection of the numerous diverse molecules of a wide polarity range.
Non-targeted metabolic profiling of beer can exceedingly benefit from the unrivaled
mass resolution FT-ICR-MS can offer [225]. Resolving thousands of masses
simultaneously enables a direct-infusion analysis without overlapping mass peaks.
Thus, the measurement of a beer sample is possible without greatly influencing its
visible composition by extraction workups or chromatography. Due to its unmatched
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mass accuracy, which amounts to 0.1 ppm or rather the mass of a fraction of an
electron throughout the whole mass range of metabolomics, it is possible to assign a
molecular formula and thus a concrete elemental composition to each signal. It was
shown that the holistic approach can provide universal information, that otherwise
would remain hidden [442]. This means that well over 40 signals can be detected in a
nominal mass; the masses of which differ only in their decimal place, the mass defect.
They can be assigned to compound classes like carbo-hydrates (e.g., C10H18O9), hop
bitter acids (e.g., C19H26O4), Maillard reaction products (e.g., C16H18N2O5),
peptides (e.g., C14H27N3O5), polyphenols (e.g., C17H18O6), sulfates (e.g., C9H18O10S),
lipids (e.g. C18H34O2) and Phosphates (e.g., C8H15O11P) and thus to the entire diversity
of the beer metabolome, even inside one single nominal mass (Figure A.1).
Furthermore, the isotopic fine structure of compounds can be

resolved (e.g., C16H27
18O1O5 and 13C2C14H27O6).

To utilize the compositional information a molecular formula can provide, the
van Krevelen diagram is used [126]. By plotting the ratio of hydrogen to carbon atoms
of a molecular formula against the O/C-ratio the van Krevelen diagram offers certain
regions, which reflect the compositional nature of respective molecules and
associated biochemical origins [26]. Here, the tentative classification of structural
formulas of beer into substance classes lies in their biosynthetic pathway. In
gluconeogenesis, the addition of water to the basic building block pyruvate gives the
carbohydrates very saturated and oxygen-rich compositions, which, therefore, are

Figure A.1 | The molecular complexity of beer can be resolved in one nominal
mass (m/z 317) with 46 annotated formulas by DI-FT-ICR-MS.
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located in the upper right region (Figure A.2). In contrast, the basic building block of
fatty acid synthesis, acetyl-CoA, is obtained via an oxidative decarboxylation of the
pyruvate. Another decarboxylation step catalyzed by the ketoacyl synthase during
chain expansion has the consequence that lipid species are correspondingly less
oxygenated and can therefore be found at the top left [292]. The polyphenols, on the
other hand, are significantly more unsaturated and have lower H/C-ratios. The
chemical space of the phosphates in beer can be broken down into the corresponding
sugar-phosphate, nucleotide and phospholipid spheres. Due to the divergent
biosynthetic pathways of the amino acids and the associated different residues on
the amino group, a peptide region is difficult to narrow down. The situation is similar
with sulfur-containing formulas, which include both sulfates, thiols and heterocyclic
sulfur compounds. Small organic acids usually have a very high O/C-ratio that can
exceed the value of one. Hence, it is possible to visualize the entire, holistic variety
and complexity of the beer in a diagram. When analyzing beer, Pieczonka, et al. [225]

characterized the region specific for hop bitter acids. Due to their special
biosynthesis, the quite hops-specific compounds have not only the phenolic base
structure. They also feature the compositional characteristics of terpenes, which are
based on prenyl side chains. Accordingly, these ‘terpeno-phenolics’ show a very
characteristic positioning in van Krevelen.
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Figure A.2 | The molecular diversity of beer can be classified by the van Krevelen
diagram (A). The regions specific for certain compositional classes are marked with
dashed lines in the color of the corresponding chemical space. The complexity is
broken down in (B).

A

B
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Moreover, the differences between molecular formulae, i.e. the exact mass
differences between molecules, are a tool with which complex DI-FT-ICR-MS data
can be interpreted and visualized [237]. Based on known alpha- (humulones) and
beta-acids (lupulones), a network can be built that contains well over a hundred
molecular formulas. The defined mass differences represent a chemical or
biochemical relationship between species. By that, it is for instance possible to trace
the metabolic pathway of hop bitter acids [292] in the beer matrix. The mass of
phlorisovalerophenone, which is derived from isovalerate and malonate, can be found
with a formula of C11H14O4 (Figure A.3). It is subjected to two prenylation steps. With
the mass difference of C5H8 the 4-prenylphlorisovalerophenone (C16H22O4) is visible;
the second prenylation leads to the deoxyhumulone (C21H30O4). Latter can be oxidized
to the humulon (C21H30O5, α-acid). Though, if a further prenyl group is transferred, the
signal of lupulone (C26H38O4, β-acid) can also be detected. This way, chemical and
biochemical processes of hop phytochemicals can be understood, and large
networks interpreted on the compositional space projection .

Having access to thousands of diverse chemical compositions and utilizing
these tools, which are offered by FT-ICR-MS, it is possible to differentiate beer types
based on their deep molecular signatures. With the help of hierarchical clustering, it
was possible to distinguish the metabolic profiles of lager, craft, wheat beers and
non-alcoholic beers. Using OPLS-DA, characteristic molecular patterns could be
extracted, visualized and characterized using the van Krevelen diagram. The van
Krevelen diagram of lager beers showed a specific cluster of CHO-molecules in the
region specific for hop terpeno-phenolics, the hop bitter acids. Several marker
compositions for the rich hopping featured in export and Pilsner type lager beers
could be extracted, whereas a majority was described as not having an equivalent
molecular structure published. Bearing in mind that these compositions also might
feature a multitude of isomeric compounds, it can be assumed that there still is a lot
to explore about hop components and their reactions in the brewing process. In

Figure A.3 | The
biochemical relation
of hop components
can be followed by
their distinct mass
differences on the
compositional space
projection.
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addition, it was possible to chemically and biochemically relate known and unknown
characteristic molecules using discrete mass differences. In the craft beers, the focus
was also on hops, whereby two special features have been shown. The dry hopping
and thus the entry of the whole hop cones and oxygen in the beer favor oxidation
processes. The resulting oxidation products of hops were found further to the right in
the VK diagram due to the oxygenated (larger O/C-ratio) and were linked to known
compounds via corresponding mass differences. The potential of the DI-FT-ICR-MS
for deep metabolic profiling and the search for hidden metabolites was shown in
terms of the wheat characteristic compounds. The mass difference network of
corresponding compositions made it possible to recognize a pattern of related
markers. The pattern featured a variety of so-called blepharin derivatives. These
phytoanticipins are common and ubiquitous defense molecules of the wheat plant
that have antimicrobial, fungicidal and insecticidal properties [282]. These molecules
are wheat specific since they are not synthesized by the barley plant. This
interpretation of the metabolomic data based on elementary compositions and mass
differences was then verified by targeted LC-MS measurements. Hereby the
advantages of the complementary use of different mass spectrometric methods was
illustrated. The secondary metabolites of the wheat plant were described as marker
substances for the use of wheat in the brewing industry, including previously unknown
ones.

The attention that multivariate evaluation of big data and the importance that
artificial intelligence is getting in this context rises steadily. With regard to interpreting
thousands of features, the complementary combination of instrumental approaches
follows this development. The holistic and comprehensive concept can address all
questions, which are related to the beer’s metabolome. Yet, such advanced mass
spectrometric techniques are not ready for everyday use in routine quality control or
process tuning, due to the high costs related to the technology. Metabolomic studies
still are research tools for exploratory investigations and are presently used in the
academic field. Inevitably the question arises, how brewers can benefit from the
detailed description and understanding of the product beer metabolomics can offer.
The medium-term goal in this regard should be that the novel technologies are used
to discover new markers and new chemistry. In a second step, these can be followed
with cheaper tools, which are available to the brewing industry, accordingly. Yet, the
potential in integrating the absolute mass data profiles obtained possibly from
thousands of samples across space and time gives a strong motivation to bring this
technology into routine.
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Tables A

Table A.1 |. Overview of metabolomics research in the field of brewing.

Subject Objective Metabolites Instrumen-
tation

(non-)
targeted

Data
analysis

Reference

Beer Influence of temperature,
yeast strain, brewing site

Acetate esters, alcohols, fatty acids and
derivatives

GC-FID targeted Factor
analysis

Jacobsen, et
al. [171]

Hops Hop varieties Fatty acids, monoterpenes GC-MS non-targeted NNS, HCA,
PCA,

Stenroos and
Siebert [178]

Beer Develop a new beer Aroma compounds GC-MS targeted PCA Kimura, et al.
[189]

Hops Genotype and production
year

Alcohols, carophyllenes, epoxides,
monoterpenes, sesquiterpenes

GC-FID targeted Factor
analysis

Kralj, et al. [179]

Yeast Yeast strains Fatty acids GC-FID targeted PCA da Silva, et al.
[172]

Yeast Ale vs. lager yeasts Non-targeted profiling pyMS non-targeted HCA, LDA Timmins, et
al. [173]

Beer Dark vs. pale, ale vs.
lager

Polyphenoles, phenolic acids LC-MS targeted PCA Whittle, et al.
[192]

Beer Lager vs.Pilsener vs.
wheat

Amino acids, acetate esters, small
organic acids

Bubbling-burst
ESI-MS

non-targeted PCA Zhu, et al. [190]

Beer Ale vs. lager Aromatic Amino acids, nucleotides,
(poly)phenols

1H-NMR non-targeted PCA Duarte, et al.
[194]

Beer Alcohol free vs. ale vs.
lager

Aromatics, sugars 1H-NMR non-targeted PCA Duarte, et al.
[198]

Beer Dark vs. pale vs. malt
beer

Sugars, humulones FI-MS non-targeted PCA Araujo, et al.
[193]

Beer Barley vs. wheat, brewing
sites, deteriorations

Aromatics, amino acids, fatty acids,
small organic acids

FI-1H-NMR non-targeted PCA Lachenmeier,
et al. [195]

Beer Brewing sites Amino acids, small organic acids,
nucleotides

1H-NMR non-targeted PCA Almeida, et al.
[196]

Yeast Ale vs. lager Non-targeted profiling FI-MS, GC-MS non-targeted HCA, PCA Pope, et al.
[174]
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Table A.1 (continued) |. Overview of metabolomics research in the field of brewing.
Subject Objective Metabolites Instrumen-

tation
(non-)
targeted

Data
analysis

Reference

Beer volatile pattern of lager
beers

Additives, higher alcohols, acetate esters GC-FID non-targeted Neur.
networks

da Silva, et al.
[184]

Beer Distinguish Rochefort
beers

Acetate esters, alcohols, aldehydes, fatty
acids

GC-MS targeted LDA, PLS,
ANN-MLP

Cajka, et al.
[278]

Beer Distinguish Rochefort
beers

Non-targeted profiling LC-MS non-targeted PCA, OPLS Mattarucchi,
et al. [112]

Beer Bitter metabolites Humulones, prenylated flavonoids LC-MS targeted HCA Haseleu, et al.
[186]

Beer Beer aging Small organic acids, higher alcohols,
dextrins

1H-NMR non-targeted PCA, PLS Rodrigues, et
al. [297]

Beer Beer aging MRPs, fatty acids, non-targeted profiling GC-MS non-targeted PCA Rodrigues, et
al. [202]

Beer Brewing sites, barley vs.
wheat

Amino acids, small organic acids, small
alcohols, aromatics

1H-NMR non-targeted PCA Rodrigues
and Gil [197]

Beer Bitter metabolites Humulones & derivatives LC-MS targeted HCA, PCA Intelmann, et
al. [187]

Beer Distinguish Rochefort
beers

Small organic acids, nucleotides, sugars DART-MS non-targeted PCA, PLS Cajka, et al.
[113]

Hops Varieties and extracts Non-targeted profiling LC-MS,
1H-NMR,
ICR-MS

non-targeted PCA Farag, et al.
[175]

Beer Beer aging Nucleotides, peptides, chalcones LC-MS non-targeted PCA Heuberger, et
al. [203]

Hops Hop varieties Proanthocyanidins LC-MS targeted HCA, PCA Olšovská, et
al. [177]

Beer Aroma components Acetate esters, Caryophyllenes,
Epoxides, Ketones

GCxGC-MS non-targeted PCA Inui, et al. [185]

Raw
materials

Metabolic volatile pattern
of raw materials

Aldehydes, fatty acids, furans, ketones,
monoterpenes, thiols

GC-MS targeted PCA Goncalves, et
al. [181]

Beer Alcohol free vs. alcohol
reduced vs. normal lager

Alcohols, esters, fatty acids,
monoterpenes, pyrazines, furans

GC-MS targeted PCA Riu-Aumatell,
et al. [200]
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Table A.1 (continued) |. Overview of metabolomics research in the field of brewing.
Subject Objective Metabolites Instrumen-

tation
(non-)
targeted

Data
analysis

Reference

Beer Alcohol free vs. alcohol
reduced vs. normal lager

Sugars, humulones, non-targeted
profiling

LC-MS non-targeted PCA Andres-
Iglesias, et al.
[199]

Beer Ale vs. Pilsner Non-targeted profiling LC-MS non-targeted PCA Gallart-Ayala,
et al. [191]

Beer Influence of hop varieties
and year of production

Non-targeted profiling LC-MS non-targeted HCA, PCA Hughey, et al.
[204]

Urine,
Plasma

Metabolites following
beer intake

Amino acids, humulones, non-targeted
profiling

LC-MS non-targeted PLS, ASCA Guerdeniz, et
al. [207]

Beer Beer hopping techniques Amino acids, nucleotides, sugars, fatty
acids, small organic acids

1H-NMR non-targeted PCA Spevacek, et
al. [188]

Beer Beer aging Purine metabolites, non-targeted
profiling

LC-MS non-targeted PCA Heuberger, et
al. [206]

Urine Metabolites following
beer and non-alcoholic
beer intake

Non-targeted profiling LC-MS non-targeted PLS Quifer-Rada,
et al. [208]

Beer Beer aging Non-targeted profiling LC-MS non-targeted PCA, PLS Yao, et al. [205]

Beer,
Malt

Malt influence on flavor
compounds

Amino acids, fatty acids, small organic
acids, sugars, sugar alcohols, purines,
phenolics, monoterpenes, non-targeted
profiling

LC-MS, GC-
MS, ICP-MS

non-targeted PCA, OPLS Bettenhausen,
et al. [183]

Hops Hop varieties Esters, monoterpenes, sesquiterpenes,
ketones

GC-MS targeted HCA, PCA Yan, et al. [180]

Beer Molecular
characterization of beer

Non-targeted profiling, phytochemical
composition

FT-MS
LC-MS

non-targeted HCA, OPLS Pieczonka, et
al. [225]



132

S
upplem

entary C
hapter 1

Table A.2 | m/z-values of starting compositions [M-H]- for mass difference network creation in the beer
matrix verified by isotopologue patterns.

m/z Composition m/z Composition m/z Composition

128.0353 C5H7NO3 255.2330 C16H32O2 341.0878 C15H18O9

133.0142 C4H6O5 258.0384 C6H14NO8P 343.1704 C24H24O2

151.0261 C5H4N4O2 259.0224 C6H13O9P 343.2126 C18H32O6

157.0367 C4H6N4O3 259.1299 C11H20N2O5 346.0558 C10H14N5O7P
161.0455 C6H10O5 266.0881 C9H17NO8 347.1864 C20H28O5

171.0064 C3H9O6P 277.1940 C15H30O2
 a 349.2151 C18H34O4

 a

177.0405 C6H10O6 279.2330 C18H32O2 353.0878 C16H18O9

179.0561 C6H12O6 281.0878 C10H18O9 353.1394 C21H22O5

202.0721 C8H13NO5 289.0696 C9H18O8
 a 361.2020 C21H30O5

214.0486 C5H14NO6P 289.0718 C15H14O6 362.0507 C10H14N5O8P
215.0328 C6H12O6

a 290.0881 C11H17NO8 383.1195 C14H24O12

216.0514 C8H11NO6 292.1402 C12H23NO7 385.0929 C20H18O8

217.0484 C6H14O6
 a 302.0662 C10H13N5O4

 a 427.2102 C18H37O9P
220.0827 C8H15NO6 308.0987 C11H19NO9 447.0933 C21H20O11

221.0667 C8H14O7 318.0611 C10H13N5O5
 a 453.2259 C20H39O9P

223.0612 C11H12O5 319.2409 C18H36O2
 a 463.0882 C21H20O12

229.0484 C7H14O6
 a 321.0493 C10H15N2O8P 465.3044 C27H46O4S

243.0623 C9H12N2O6 322.0446 C9H14N3O8P 470.1515 C17H29NO14

243.0641 C8H16O6
 a 325.0484 C15H14O6

 a 503.1618 C18H32O16

245.1143 C10H18N2O5 331.1915 C20H28O4

250.0721 C12H13NO5 333.0592 C9H19O11P
a [M+Cl]-
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Table A.3 | Mass difference values (MD), compositional changes and (bio-)chemical reaction equivalents of mass differences connecting
the compositions in MDiNs.

MD Comp.
Change Reaction MD Composit.

Change Reaction

0.9840 H-1N-1O1 Amination 130.0089 C5H6O2S1 2-Oxo-4-methylthiobutanoic acid
1.0316 H3N1O-1 Deamination 130.0419 C9H6O1 Cinnamic acid
1.9793 C-1H-2O1 Acetic acid 130.0742 C5H10N2O2 Glutamine
2.0157 H2 (De-)hydrogenation 130.1106 C6H14N2O1 Lysine
4.0313 H4 (De-)hydrogenation 131.0405 C5H9N1O1S1 Methionine
6.0470 H6 (De-)hydrogenation 131.0582 C5H9N1O3 Glutamic acid
8.0626 H8 (De-)hydrogenation 131.0946 C6H13N1O2 (Iso)leucine
12.0000 C1 Glyoxylic acid 132.0423 C5H8O4 Pentose
13.0316 C1H3N1O-1 Glycine 133.0388 C5H3N5 Guanine
13.9793 H-2O1 Epoxidation 133.0561 C5H11N1O1S1 Methionine
14.0157 C1H2 Methylation 134.0229 C5H2N4O1 Xanthin
14.0269 H2N2O-1 Di-Ammonia 136.0160 C7H4O3 Siacylic Acid
14.9997 C1H1N-1O1 Cytosin to Tymin 136.0273 C6H4N2O2 Imidazole pyruvic acid
15.0109 H1N1 Amination 136.0524 C8H8O2 4-Hydroxyphenylpyruvic acid
15.0235 C1H3 N-Methylation 136.1252 C10H16 Di-prenylation
15.9772 O-1S1 Exchange of O with S 137.0589 C6H7N3O1 Histidine
15.9949 O1 (De-)hydroxylation 138.0065 C5H2N2O3 Orotidin
17.0265 H3N1 Amonia 138.1772 C11H22O-1 Dodecanoic acid
18.0106 H2O1 Hydrolysis/condensation 139.0746 C6H9N3O1 Histidine
25.9793 C1H-2O1 C=O insertion 140.1201 C9H16O1 Sebacic acid
26.0157 C2H2 Pyruvic acid 140.1565 C10H20 Alcohol
26.0520 C3H6O-1 Butanoic acid 141.0578 C10H7N1 Indole pyruvic acid
27.0109 C1H1N1 Formimino transfer 142.0630 C7H10O3 Pimelate
27.0473 C2H5N1O-1 Alanine 142.0895 C10H10N2O-1 Tryptophan
27.9949 C1O1 Formyl transfer 143.0582 C6H9N1O3 Aminoadipate
28.0313 C2H4 C2-unit 146.0368 C9H6O2 Phenylpyruvic acid
28.9902 H-1N1O1 Nitrosylation 146.0579 C6H10O4 Rhamnose
29.9564 H-2S1 Thio-heteroatom 146.1055 C6H14N2O2 Lysine
30.0106 C1H2O1 Hydroxymethyl 147.0684 C9H9N1O1 Phenylalanine
31.9721 S1 Thiolation 148.0736 C6H12O4 Glycerol
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Table A.3 (continued) | Mass difference values (MD), compositional changes and (bio-)chemical reaction equivalents of mass
differences connecting the compositions in MDiNs.

MD Comp.
Change Reaction MD Composit.

Change Reaction

31.9898 O2 Hydro-peroxidation 149.0477 C8H7N1O2 Pyridoxal
33.9877 H2S1 Hydrogen sulfide 149.0688 C5H11N1O4 Pentose schiff base
35.9767 Cl1 Chloride 149.0841 C9H11N1O1 Phenylalanine
36.0000 C3 DNA-R2 150.0528 C5H10O5 Pentose
36.0211 H4O2 Water 150.0793 C8H10N2O1 Pyridoxamine
40.0061 C1N2 Guanin to Cytosin 151.0633 C8H9N1O2 Pyridoxine
40.0313 C3H4 Acetone 152.0110 C7H4O4 Gallic Acid
42.0106 C2H2O1 Hydroxypyruvic acid 154.0031 C3H7O5P1 Glycerol-3-phosphate
42.0218 C1H2N2 Guanidyl group transfer 154.0046 C5H2N4Cl1 Hypoxanthin
42.0470 C3H6 CH2-Chain 154.1358 C10H18O1 Decanoic acid
43.0058 C1H1N1O1 Carbamoyl transfer 154.1722 C11H22 Alcohol
43.0422 C2H5N1 Serine 155.0695 C6H9N3O2 2-Oxoarginine
43.9898 C1O2 (De-)carboxylation 156.0423 C7H8O4 Shikimic acid
44.0262 C2H4O1 Pyruvic acid 156.0786 C8H12O3 Suberate
44.9851 H-1N1O2 Nitration 156.1011 C6H12N4O1 Arginine
45.0215 C1H3N1O1 Strecker degradation 158.0215 C6H6O5 Ascorbic acid
46.0055 C1H2O2 Hydroxy and Methoxy 158.1168 C6H14N4O1 Arginine
47.9847 O3 Oxygenation 159.0684 C10H9N1O1 Indole pyruvic acid
53.0629 C4H7N1O-1 Proline 159.9327 H2O6P2 Pyrophosphate
54.0106 C3H2O1 DNA-R1 162.0317 C9H6O3 Caffeic acid
54.0470 C4H6 2-Ketoisovaleric acid 162.0528 C6H10O5 Glucose
54.0833 C5H10O-1 Hexanoic acid 163.0633 C9H9N1O2 Tyrosine
55.0786 C4H9N1O-1 Valine 164.0685 C6H12O5 Sugaralcohol
55.9898 C2O2 Glyoxylic acid 165.0790 C9H11N1O2 Tyrosine
56.0262 C3H4O1 3-Hydroxy-2-oxobutanoic acid 166.0633 C5H13N1O3P1 Phosphorylcholine
56.0626 C4H8 CH2-Chain 166.1358 C11H18O1 11:1 Fatty acid
56.9799 C2H1S1 2-Sulfanylethanone 166.2085 C13H26O-1 Tetradecanoic acid
57.0215 C2H3N1O1 Glycine 166.9984 C3H6N1O5P1 Phosphatidylserine
57.0578 C3H7N1 Threonine 168.0059 C7H4O5 Gallic acid
57.9877 C2H2S1 3-Mercaptopyruvate 168.1514 C11H20O1 11:0 Fatty acid
58.0419 C3H6O1 Propionic acid 168.1878 C12H24 Alcohol
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Table A.3 (continued) | Mass difference values (MD), compositional changes and (bio-)chemical reaction equivalents of mass
differences connecting the compositions in MDiNs.

MD Comp.
Change Reaction MD Composit.

Change Reaction

59.0194 C2H5N1O-1S1 Cysteine 170.0943 C9H14O3 Azelaic acid
59.0371 C2H5N1O1 Glycine 174.0528 C7H10O5 Quinate
60.0211 C2H4O2 Dimethoxylation 176.0321 C6H8O6 Glucuronidation
63.9797 O4 Oxygenation 176.0473 C10H8O3 Ferulic acid
68.0262 C4H4O1 Diacetyl 177.9432 H4O7P2 Pyrophosphate cleavage
68.0626 C5H8 Prenylation 179.0794 C6H13N1O5 Hexose schiff base
69.0215 C3H3N1O1 2-Oxosuccinamic acid 180.0634 C6H12O6 Hexose
69.0578 C4H7N1 5-Amino-2-oxopentanoic acid 182.0123 C4H8N1O5S1 Threoninephosphate
69.0942 C5H11N1O-1 Leucine/Isoleucine 182.1671 C12H22O1 Dodecanoic acid
70.0055 C3H2O2 2-Ketosuccinate 182.2035 C13H26 Alcohol
70.0419 C4H6O1 Butanoic acid 184.1099 C10H16O3 Sebacic acid
70.0531 C3H6N2 Asparagine 185.0477 C11H7N1O2 Indole pyruvic acid
70.0783 C5H10 CH2-Chain 186.0793 C11H10N2O1 Tryptophan
70.0895 C4H10N2O-1 Ornithine 187.0489 C8H13N1S2 Lipoamide
71.0371 C3H5N1O1 Alanine 188.0330 C8H12O1S2 Lipoic acid
71.9847 C2O3 Oxalate 188.0950 C11H12N2O1 Tryptophan
72.0211 C3H4O2 R1_MDA_formation 192.0270 C6H8O7 Glucaric acid
72.0575 C4H8O1 2-Ketoisovaleric acid 194.2398 C15H30O-1 Hexadecanoic acid
73.0164 C2H3N1O2 Indole, Pyruvate, Ammonia 196.0385 C10H4N4O1 Isoalloxazine
73.0528 C3H7N1O1 Alanine 196.1827 C13H24O1 13:0 Fatty acid
74.0368 C3H6O2 Glycerol 196.2191 C14H28 Alcohol
75.0320 C2H5N1O2 Glycine 201.1001 C9H15N1O4 Panthothenic acid
75.9983 C2H4O1S1 3-Mercaptopyruvate 204.1878 C15H24 Tri-prenylation
77.0299 C2H7N1S1 Cysteamin 208.1827 C14H24O1 14:1 Fatty acid
79.9568 O3S1 Sulfonation 210.1984 C14H26O1 Tetradecanoic acid
79.9663 H1O3P1 (De-)phosphorylation 210.2348 C15H30 Alcohol
79.9746 O5 Oxygenation 211.0246 C5H10N1O6P1 Phosphoribosylamin
82.1146 C7H14O-1 Octanoic acid 212.0086 C5H9O7P1 Ribose-5-phosphate
83.0371 C4H5N1O1 2-Keto-glutaramic acid 224.2140 C15H28O1 15:0 Fatty acid
83.0735 C5H9N1 6-Amino-2-oxohecanoic acid 224.2504 C16H32 Alcohol
84.0211 C4H4O2 2-Ketoglutarate 225.0750 C9H11N3O4 Cytidine
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Table A.3 (continued) | Mass difference values (MD), compositional changes and (bio-)chemical reaction equivalents of mass
differences connecting the compositions in MDiNs.

MD Comp.
Change Reaction MD Composit.

Change Reaction

84.0575 C5H8O1 Adipate 226.0590 C9H10N2O5 Uridine
84.0687 C4H8N2 Glutamine 226.0776 C10H14N2O2S1 Biotin
84.0939 C6H12 Alcohol 228.0399 C6H13O7P1 Phosphoglycerol-Glycerol
84.1051 C5H12N2O-1 Lysine 236.2140 C16H28O1 16:1 Fatty acid
85.0514 C2H5N4 Adenin(Transaminated) 238.2297 C16H30O1 Hexadecanoic acid
85.0528 C4H7N1O1 Glutamic acid 238.2661 C17H34 Alcohol
86.0004 C3H2O3 Hydroxypyruvic acid 239.0923 C8H18N1O5P1 Phosphatidylcholine
86.0190 C4H6S1 2-Oxo-4-methylthiobutanoic acid 242.0192 C6H11O8P1 Glucosephosphate
86.0732 C5H10O1 2-Ketohexanoic acid 244.0280 C9H10N1O5S1 Tyrosinephosphate
87.0320 C3H5N1O2 Serine 244.0348 C6H13O8P1 Glycerolphosphatinnositol
87.0507 C4H9N1O-1S1 Methionine 248.0532 C9H12O8 Malonylglucosid
87.0684 C4H9N1O1 5-Amino-2-oxopentanoic acid 249.0849 C9H15N1O7 Neuraminic Acid
88.0160 C3H4O3 2-Ketosuccinate 249.0862 C10H11N5O3 Adenosinen
88.0313 C7H4 Benzylaldehyde 252.2453 C17H32O1 17:0 Fatty acid
89.0477 C3H7N1O2 Serine 252.2817 C18H36 Alcohol
90.0317 C3H6O3 Triose 254.0579 C15H10O4 Naringenin
90.0470 C7H6 Benzyl alcohol 258.1984 C18H26O1 18:4 Fatty acid
92.0374 C5H4N2 Imidazole pyruvic acid 259.0457 C6H14N1O8P1 Phosphoserin-glycerol
93.0327 C4H3N3 Cytosine 260.2140 C18H28O1 18:3 Fatty acid
93.0691 C5H7N3O-1 Histidine 262.2297 C18H30O1 18:2 Fatty acid
94.0167 C4H2N2O1 Uracil 264.0845 C10H16O8 Disaccharide (5|5)
95.9695 O6 Oxygenation 264.2453 C18H32O1 18:1 Fatty acid
97.0528 C5H7N1O1 Proline 265.0811 C10H11N5O4 Guanosine
97.9769 H3O4P1 Phosphate Adduct 266.2610 C18H34O1 18:0 Fatty acid
98.0368 C5H6O2 2-Ketoisovaleric acid 266.2974 C19H38 Alcohol
98.0732 C6H10O1 Hexanoic acid 268.0372 C15H8O5 Kaemperol
98.1096 C7H14 Alcohol 268.0460 C7H13N2O7P1 Glycinamidribonucleotid
99.0684 C5H9N1O1 Proline 268.2191 C20H28 Retinol
100.0160 C4H4O3 3-Hydroxy-2-oxobutanoic acid 272.2504 C20H32 Tetra-prenylation
101.0477 C4H7N1O2 Threonine 280.2766 C19H36O1 19:0 Fatty acid
101.0841 C5H11N1O1 Valine 280.3130 C20H40 Alcohol
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Table A.3 (continued) | Mass difference values (MD), compositional changes and (bio-)chemical reaction equivalents of mass
differences connecting the compositions in MDiNs.

MD Comp.
Change Reaction MD Composit.

Change Reaction

101.9776 C3H2O2S1 3-Mercaptopyruvate 284.0321 C15H8O6 Quercitin
102.0317 C4H6O3 2-Ketoglutarate 284.2140 C20H28O1 20:5 Fatty acid
102.0470 C8H6 Phenylpyruvic acid 286.2297 C20H30O1 20:4 Fatty acid
103.0092 C3H5N1O1S1 Cysteine 289.0732 C10H15N3O5S1 Glutathione
103.0633 C4H9N1O2 Threonine 291.0954 C11H17N1O8 Sialic Acid
103.0786 C8H9N1O-1 Phenylalanine 292.2766 C20H36O1 20:1 Fatty acid
104.0262 C7H4O1 Salicyl aldehyde 294.0951 C11H18O9 Disaccharide(5|6)
104.0296 C4H8O1S1 2-Oxo-4-methylthiobutanoic acid 294.2923 C20H38O1 20:0 Fatty acid
104.0374 C6H4N2 Niacinamide 300.0270 C15H8O7 Myricetin
105.0215 C6H3N1O1 Niacine 304.0460 C10H13N2O7P1 TMP
105.0248 C3H7N1O1S1 Cysteine 305.0413 C9H12N3O7P1 CMP
106.0419 C7H6O1 Salicyl alcohol 305.0682 C10H15N3O6S1 Glutathione Disulfid
107.0041 C2H5N1O2S1 Taurine 306.0253 C9H11N2O8P1 UMP
108.0324 C5H4N2O1 Thymine 308.1107 C12H20O9 Rutinosid
109.0198 C2H7N1O2S1 Taurine 308.3079 C21H40O1 21:0 Fatty acid
110.0480 C5H6N2O1 Imidazole pyruvic acid 310.2297 C22H30O1 22:6 Fatty acid
110.1459 C9H18O-1 Decanoic acid 312.2453 C22H32O1 22:5 Fatty acid
111.0796 C5H9N3 2-Oxoarginine 314.2610 C22H34O1 22:4 Fatty acid
112.0524 C6H8O2 2-Ketohexanoic acid 316.0460 C11H13N2O7P1 Nicotineamide nucleotide
112.0888 C7H12O1 Suberate 316.0559 C9H17O10P1 Glycerolphosphatglucose
112.1113 C5H12N4O-1 Arginine 318.2923 C22H38O1 22:2 Fatty acid
112.1252 C8H16 Alcohol 319.1644 C15H21N5O3 Tyrosyl-arginin
113.0113 C4H3N1O3 2-Oxosuccinamic acid 320.3079 C22H40O1 22:1 Fatty acid
113.0477 C5H7N1O2 5-Amino-2-oxopentanoic acid 322.3236 C22H42O1 22:0 Fatty acid
113.0841 C6H11N1O1 Leucine/Isoleucine 324.1057 C12H20O10 Disaccharide(6|6)
113.9953 C4H2O4 2-Ketosuccinate 329.0525 C10H12N5O6P1 AMP
114.0317 C5H6O3 Glutarate 336.3392 C23H44O1 23:0 Fatty acid
114.0429 C4H6N2O2 Asparagine 338.0849 C12H18O11 Maltose acid
114.0793 C5H10N2O1 Ornithine 338.2610 C24H34O1 24:6 Fatty acid
115.0269 C4H5N1O3 Aspartic acid 345.0474 C10H12N5O7P1 GMP
115.0633 C5H9N1O2 Proline 348.3392 C24H44O1 24:1 Fatty acid
115.0997 C6H13N1O1 Leucine/Isoleucine 350.3549 C24H46O1 24:0 Fatty acid
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Table A.3 (continued) | Mass difference values (MD), compositional changes and (bio-)chemical reaction equivalents of mass
differences connecting the compositions in MDiNs.

MD Comp.
Change Reaction MD Composit.

Change Reaction

116.0473 C5H8O3 Deoxy-pentose 358.1277 C17H18N4O5 Riboflavin
116.0586 C4H8N2O2 Asparagine 364.3705 C25H48O1 25:0 Fatty acid
116.0950 C5H12N2O1 Ornithine 366.3287 C27H42 Cholecalciferol
117.0426 C4H7N1O3 Aspartic acid 378.3287 C28H42 Ergocalciferol
117.0439 C5H3N5O-1 Adenine 378.3862 C26H50O1 26:0 Fatty acid
118.0279 C5H2N4 Hypoxanthin 384.0124 C10H14N2O10P2 TDP
118.0419 C8H6O1 4-Hydroxyphenylpyruvic acid 385.0076 C9H13N3O10P2 CDP
119.0735 C8H9N1 Tyrosine 385.9916 C9H12N2O11P2 UDP
120.0211 C7H4O2 Salicylic acid 406.3236 C29H42O1 Tocotrienol
120.0423 C4H8O4 Erythrose 409.0189 C10H13N5O9P2 ADP
120.0575 C8H8O1 Phenylpyruvic acid 412.3705 C29H48O1 Tocoferol
121.0198 C3H7N1O2S1 Cysteine 423.1291 C19H17N7O5 Folic acid
121.0658 C5H11N1Cl1 Choline (chlorid) 425.0138 C10H13N5O10P2 GDP
123.0085 C2H6N1O3P1 Phosphoethanolamine 427.1604 C19H21N7O5 Tetrahydrofolic acid
126.1045 C8H14O1 Octanoic acid 432.3392 C31H44O1 Phylloquinone
126.1409 C9H18 Alcohol 434.3549 C31H46O1 Phylloquinol
127.0269 C5H5N1O3 2-Keto-glutaramic acid 455.1553 C20H21N7O6 Folinic acid
127.0633 C6H9N1O2 6-Amino-2-oxohexanoic acid 463.9787 C10H15N2O13P3 TTP
128.0110 C5H4O4 2-Ketoglutarate 464.9740 C9H14N3O13P3 CTP
128.0473 C6H8O3 Adipate 465.9580 C9H13N2O14P3 UTP
128.0586 C5H8N2O2 Glutamine 488.9852 C10H14N5O12P3 ATP
128.0950 C6H12N2O1 Lysine 504.9801 C10H14N5O13P3 GTP
129.0426 C5H7N1O3 Glutamic acid
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B   Supplementary Chapter 2

Tables B

Table B.1 | Overview of the OPLS-DA models (exclusions, predictions) and statistical parameters (R2Y, Q2, CV-ANOVA).

Model Samples Exclusion Prediction R2Y Q2 ANOVA (p-value)

Beertype 78 Geuze Triticum dicoccum, Triticum
aestivium spelta used for wheat
beers;
wit beer (raw wheat); sample 85
(typical wheat beer

0.96 0.63 1.13 E-23

Grain 81 - Triticum dicoccum, Triticum
aestivium

0.98 0.73 2.55 E-19
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Table B.2 | Overview (beer type, grain used, scores and set type) of the measured samples’ characteristics.

Sample
no.

Beer
type

Grain Model 1 Model 2 Sample
set

Country
score (x) score (y) score (x) score (y)

01 Wheat Wheat 17.93 1.33 -16.17 2.24 model GER
02 Lager Barley -10.95 13.23 7.94 16.76 model GER
03 Lager Barley -10.82 13.55 9.17 13.05 model GER
04 Abbey Barley -1.00 1.21 9.48 -13.03 model BEL
05 Wheat Wheat 20.29 -2.80 -17.59 -22.83 model GER
06 Wheat Wheat 22.54 -0.60 -16.98 -17.74 model GER
07 Wheat Wheat 19.49 -0.07 -17.30 -3.92 model GER
08 Lager Barley -10.09 13.34 11.10 -8.80 model GER
09 Lager Barley -10.62 12.38 9.49 11.52 model GER
10 Lager Barley -10.15 8.21 7.57 20.13 model GER
11 Wheat Wheat 17.59 4.94 -12.08 16.53 model GER
12 Wheat Wheat 19.04 -2.03 -14.82 -1.58 model GER
13 Lager Barley -10.11 8.49 7.31 13.35 model GER
14 Lager Barley -7.39 10.04 6.67 6.94 model CZE
15 Lager Barley -9.69 13.77 10.08 9.40 model GER
16 Lager Barley -9.54 11.57 10.25 10.47 model GER
17 Abbey Barley -1.82 1.36 10.83 -6.38 model BEL
18 Wheat Wheat 20.99 -0.55 -17.32 -10.85 model USA
19 Wheat Wheat 19.47 -0.66 -14.74 4.4 model GER
20 Wheat Wheat 14.76 0.15 -12.2 6.57 model GER
21 Lager Barley -8.25 6.99 9.61 -3.43 model GER
22 Lager Barley -8.36 10.13 10.1 -0.20 model GER
23 Lager Barley -9.36 6.32 10.34 -3.63 model GER
24 Wheat Wheat 16.68 -0.82 -14.7 0.10 model IRL
25 Lager Barley -12.5 11.96 10.24 -19.22 model GER
26 Lager Barley -7.42 12.61 9.65 9.30 model GER
27 Wheat Wheat 20.85 0.39 -16.41 -14.00 model GER
28 Lager Barley -9.42 14.09 10.43 6.71 model GER
29 Wheat Wheat 18.52 2.04 -16.74 -6.81 model GER
30 Wheat Wheat 20.01 -0.63 -15.85 -17.76 model GER
31 Wheat Wheat 20.90 -0.99 -17.21 -7.81 model GER
32 Lager Barley -9.32 11.58 8.04 7.88 model BEL
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Table B.2 (continued) | Overview (beer type, grain used, scores and set type) of the measured samples’ characteristics.
Sample

no.
Beer
type

Grain Model 1 Model 2 Sample
set

Country
score (x) score (y) score (x) score (y)

33 Lager Barley -7.76 11.80 8.70 4.00 model GER
34 Lager Barley -14.35 11.45 11.43 -18.68 model GER
35 Wheat Wheat 20.17 1.93 -17.17 -7.20 model GER
36 Lager Barley -7.23 13.64 9.46 -1.9 model GER
37 Abbey Barley -0.01 0.54 8.33 -19.71 model GER
38 Lager Barley -9.38 12.08 11.13 0.91 model GER
39 Abbey Barley -0.16 1.90 8.18 -1.21 model GER
40 Lager Barley -8.36 13.84 10.46 10.75 model BEL
41 Wheat Wheat 21.64 1.50 -17.67 -4.25 model GER
42 Lager Barley -10.08 12.75 11.87 7.49 model GER
43 Lager Barley -10.81 7.98 9.22 11.81 model BEL
44 Lager Barley -12.85 8.46 10.08 -28.41 model GER
45 Craft Barley -9.02 -23.15 8.98 30.98 model GER
46 Lager Barley -10.2 8.54 10.04 0.94 model GER
47 Wheat Wheat 20.14 -3.26 -16.69 -5.28 model GER
48 Craft Barley -7.91 -21.61 10.10 12.25 model GER
49 Wheat Wheat 20.19 1.04 -17.10 -12.99 model GER
50 Craft Barley -7.59 -19.19 9.03 3.44 model GER
51 Wheat Wheat 21.67 1.40 -16.46 -1.82 model GER
52 Craft Barley -8.70 -21.01 9.32 21.08 model GER
53 Craft Wheat -7.84 -19.04 -12.98 30.57 model BEL
54 Craft Wheat -7.44 -23.61 -16.42 30.32 model LTU
55 Wheat Wheat 18.79 1.47 -15.61 -12.02 model GER
56 Craft Barley -8.16 -18.04 7.47 8.13 model GER
57 Abbey Barley -1.06 3.02 10.65 -9.46 model GER
58 Abbey Barley -0.33 2.45 11.78 -24.42 model BEL
59 Geuze Barley excl. excl. 11.46 -27.46 model GER
60 Lager Barley -9.2 15.31 10.71 -0.06 model GER
61 Lager Barley -6.95 12.88 10.69 -10.24 model GER
62 Lager Barley -7.6 10.96 10.08 -9.79 model GER
63 Lager Barley -8.52 12.71 9.04 1.1 model GER
64 Wheat Wheat 19.22 1.90 -15.32 8.66 model BEL
65 Wheat Wheat 20.31 -1.80 -17.33 -8.44 model BEL
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Table B.2 (continued) | Overview (beer type, grain used, scores and set type) of the measured samples’ characteristics.
Sample

no.
Beer
type

Grain Model 1 Model 2 Sample
set

Country
score (x) score (y) score (x) score (y)

66 Wheat Wheat 19.68 0.64 -16.27 1.12 model GER
67 Craft Barley -9.87 -27.03 8.27 5.71 model GER
68 Lager Barley -10.88 7.69 7.80 7.33 model BEL
69 Lager Barley -8.49 8.63 10.41 -4.48 model NAM
70 Craft Barley -10.03 -27.71 7.93 20.05 model DNK
71 Craft Barley -12.03 -21.12 9.26 -6.71 model GER
72 Craft Barley -10.87 -20.19 10.70 -22.94 model GER
73 Craft Wheat -9.76 -24.97 -11.46 26.61 model GER
74 Craft Barley -10.52 -23.65 9.12 22.49 model GER
75 Craft Barley -8.66 -22.2 7.76 -20.98 model GER
76 Craft Wheat -5.50 -19.07 -11.84 15.57 model GER
77 Abbey Wheat(starch)a -0.92 3.65 9.27 -11.75 model GER
78 Craft Emmerb -10.69 -16.62 5.94 -20.77 model GER
79 Geuze Barley excl. excl. 14.10 -32.85 model GER
80 Craft Wheat -4.29 -17.34 -15.46 8.86 model GER
81 excl. excl. excl. excl. excl. excl. model GER
82 Wheat Wheat 5.70 -6.08 -14.58 7.15 model GER
83 Wheat Wheat 17.07 -0.68 -16.65 -7.00 model GER
84 Wit Wheat(raw)c 9.18 0.53 -12.73 3.59 model GER
85 Wheat Speltd 15.27 0.38 -13.49 -3.76 model GER
86 Lager Barley -2.79 1.07 5.21 -6.72 prediction CUB
87 Lager Barley -2.57 5.82 5.22 -4.98 prediction CUB
88 Lager Barley -6.64 -1.86 6.06 -4.64 prediction MEX
89 Lager Barley -1.71 3.88 2.83 0.84 prediction MEX
90 Lager Barley -3.67 -0.10 4.03 3.09 prediction CHN
91 Lager Barley -6.54 3.26 8.49 -4.32 prediction PER
92 Lager Barley -2.05 0.57 5.53 -6.20 prediction ARG
93 Lager Barley -3.68 -3.77 3.3 -19.06 prediction PER
94 Lager Barley -2.77 0.01 2.91 2.52 prediction ESP
95 Lager Barley -2.70 -1.89 9.35 -14.11 prediction BRA
96 Craft Barley -5.28 -8.41 6.01 5.74 prediction JPN
97 Wheat Wheat 5.77 -2.03 -5.43 6.64 prediction NLD
98 Lager Barley -4.91 4.01 7.29 -1.71 prediction KOR
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Table B.2 (continued) | Overview (beer type, grain used, scores and set type) of the measured samples’ characteristics.
Sample

no.
Beer
type

Grain Model 1 Model 2 Sample
set

Country
score (x) score (y) score (x) score (y)

99 Abbey Wheat(raw)c 6.79 -0.41 -0.71 -5.15 prediction BEL
100 Abbey Wheat -3.63 -9.37 2.98 -12.19 prediction NLD
101 Abbey Wheat(starch) a -1.32 -0.54 5.79 -2.10 prediction BEL
102 Abbey Wheat(raw)c 10.39 -1.13 -6.06 -1.19 prediction BEL
103 Craft Barley -5.56 -12.21 1.98 -6.02 prediction BEL
104 Lager Barley -8.36 -4.28 7.7 9.01 prediction NLD
105 Lager Barley -7.94 0.27 6.96 7.05 prediction NLD
106 Craft Barley -8.00 -15.59 5.26 15.03 prediction NLD
107 Lager Barley -6.36 -6.18 3.45 5.15 prediction GER
108 Lager Barley -4.74 7.55 7.14 -2.31 prediction SGP
109 Wheat Wheat 9.61 -6.5 -7.35 -2.52 prediction NDL
110 Abbey Wheat(starch) a 0.87 0.13 5.83 -10.34 prediction BEL
111 Craft Barley 3.05 1.98 3.19 -7.33 prediction BEL
112 Craft Barley -8.09 -14.45 6.13 -8.40 prediction NDL
113 Abbey Barley -2.15 1.93 5.62 -1.56 prediction NDL
114 Craft Wheat 3.10 -6.70 0.35 -18.18 prediction GER
115 Abbey Barley 0.35 2.77 6.91 -8.92 prediction BEL
116 Craft Barley -3.87 -12.17 5.19 -15.78 prediction BEL
117 Lager Barley -8.86 -5.33 5.58 -5.06 prediction GER
118 Craft Wheat -1.41 -6.82 2.02 -13.26 prediction GER
119 Abbey Barley -6.81 -12.55 6.47 2.71 prediction BEL
120 Craft Wheat(raw)c 3.57 -5.55 -1.41 3.94 prediction BEL

a Triticum aestivium starch only

b Triticum dicoccum

c Triticum aestivium not malted (typical for wit beers)

d Triticum aestivium subsp. spelta
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Table B.3 | Tentative annotations of markers for rich hopped beers on basis of exact masses.

m/zmeasured m/ztheor.
Error
[ppm]

Molecular
formula Annotation Reference

263.12890 263.12888 0.05 C15H20O4 Phenylphlorisobutyro-phenone, hulupinic
acid

[292,410]

265.14453 265.14453 0.01 C15H22O4 humulinic acid, adhumulinic acid [410]

277.14455 277.14453 0.06 C16H22O4 phenylphlorisoalerophenone [292]

281.13946 281.13945 0.02 C15H22O5 oxyhumulinic acid [443]

317.17582 317.17583 0.05 C19H26O4 cohulupone [410]

331.19146 331.19148 0.08 C20H28O4 deoxycohumulone, hulupone, adhulupone [410]

345.20711 345.20713 0.06 C21H30O4 deoxyhumulone, deoxyadhumulone [410]

347.18649 347.18640 0.25 C20H28O5 (allo)cohumulone, (allo)iso-cohumulone,
(iso)-tricyclocohumene

[410]

349.20203 349.20205 0.05 C20H30O5 dihydrocohumulone [443]

361.20214 361.20204 0.27 C21H30O5 humulone, (allo)(iso)-(ad)humulone, (iso)-
(ad)tricyclohumene

[410]

363.18134 363.18131 0.08 C20H28O6 (iso)cohumulinone, hydroxyl-
alloisocohumulone, scorpiocohumol

[410]

363.21771 363.21770 0.03 C21H32O5 dihydrohumulone [443]

365.19700 365.19696 0.10 C20H30O6 cohumol, tricyclocohumol,
(epi)tetracyclocohumol,
hydroxyl(iso)cohumulon

[410,444,445]

377.19701 377.19696 0.14 C21H30O6 (iso)humulinone, adhumulinone, hydroxyl-
alloiso(ad)humulone, scorpiohumol

[410]

379.21264 379.21261 0.08 C21H32O6 humol, tricyclohumol, tetracyclohumol [410]

381.19187  381.19188 0.01 C20H30O7 hydroxyl-alloisocohumulonhydroxid [444]

393.19196 393.19188 0.22 C21H30O7 allosiohumulonhydroperxid [444]

431.24395 431.24391 0.08 C25H36O6 colupdox, hydroxyperoxytricycloco-lupon [446,447]

433.25958 433.25956 0.05 C25H38O6 hydroperoxitricyclolupone [410]

445.25960 445.25956 0.09 C26H38O6 lupdox [447]
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Table B.4 | Structural identification of hops-rich beer type marker masses by means of UHPLC-ToF-MS/MS. Level of identification 2.

m/zmeasured m/ztheor. Error
[ppm]

Molecular
formula

Rta

[min]
Compound MS/MS fragments

[m/z (rel. intensity)]
Reference

251.1289 251.12888 -0.08 C14H20O4 4.8 Cohumulinic acid 71(23), 113(34), 141(100), 165(72), 233(40) [445]

263.1290 263.12880 -0.76 C15H20O4 4.6 Hulupinic acid 126(21), 151(96), 165(19), 179(37),
193(100)

[446]

317.1760 317.17583 0.54 C19H26O4 5.3 Cohulupone 180(28), 184(23), 205(100), 220(35),
233(69), 248(25)

[186]

347.1863 347.18640 0.29 C20H28O5 6.0 Iso-cohumulone 181(100), 207(11), 209(35), 233(35),
235(10), 251(62), 278(8), 329(4)

[271]

347.1858 347.18640 1.73 C20H28O5 6.5 Cohumulone 207(35), 235(100), 278(84) [271]

349.2024 349.20205 1.00 C20H30O5 6.6 Dihydrocohumulo
ne

207(11), 209(7), 235(30), 237(24), 278(21),
280(100)

[271] b

361.2032 361.20204 3.21 C21H30O5 6.1 Iso-(ad)humulone 195(100), 221(20), 223(54), 247(59),
265(23), 343(6)

[271]

361.2033 361.20204 3.49 C21H30O5 6.6 (Ad)humulone 221(36), 249(90), 292(100) [271]

365.1977 365.19696 2.03 C20H30O6 3.8 Tricyclocohumol 165(89), 183(100), 245(8), 277(7), 289(6),
303(9), 347(86)

[409]

365.1976 365.19696 -1.75 C20H30O6 4.2 Hydroxyl(iso)cohu
mulon

181(38), 193(64), 251(100), 269(71),
296(21)

[444]

365.1972 365.19696 0.66 C20H30O6 4.8 Tetracyclohumol 165(55), 193(100), 289(21), 307(82), 347(3) [409]

379.2131 379.21261 1.29 C21H32O6 4.2 Tricyclohumol 179(73), 197(100), 277(6), 303(8), 317(6),
361(80)

[409]

a retention time
b The literature data refers to the dedicated non-hydrated compound. Level of identification 3.
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Table B.5 | UHPLC-ToF-MS/MS-data of ambiguous markers for rich hopped beer. Level of identification 3. The five highest fragments
are shown.

m/zmeasured m/ztheor. Error
[ppm]

Molecular
formula

Retention
time [min]

MS/MS fragments
[m/z (rel. intensity)]

251.1286 251.12888 1.11 C14H20O4 4.4 69(100), 81(6), 98(11), 189(6), 251(6)
251.1289 251.12888 -0.08 C14H20O4 4.8 71(23), 113(34), 141(100), 165(72), 233(40)
251.1289 251.12888 -0.08 C14H20O4 5.8 65(85), 111(28). 152(100), 180(11), 184(62)
263.1288 263.12880 0.00 C15H20O4 5.8 97(40), 163(33), 177(35), 192(100), 205(90)
263.1291 263.12880 -1.14 C15H20O4 6.0 82(14), 124(18), 166(100), 179(22), 198(46)
265.1444 265.14453 0.49 C15H22O4 5.1 69(13), 127(9), 155(100), 179(18), 247(9)
265.1448 265.14453 0.33 C15H22O4 5.7 79(11), 97(100), 177(2), 205(3), 265(20),
277.1451 277.14453 -2.06 C16H22O4 4.4 137(13), 165(100), 175(27), 190(20), 208(29)
279.1239 279.12380 -0.36 C15H20O5 3.5 139(9), 167(100), 181(13), 195(9), 210(18)
279.1237 279.12380 0.36 C15H20O5 3.8 165(100), 167(18), 181(13),.183(9), 210(9)
279.1237 279.12380 0.36 C15H20O5 5.1 139(13), 165(9), 167(100), 210(18), 249(9)
279.1238 279.12380 0.00 C15H20O5 5.3 65(18), 133(9), 151(9), 207(13), 235(100)
279.1236 279.12380 0.72 C15H20O5 5.9 65(18), 151(13), 235(100), 261(9), 279(9)
281.1382 281.13945 4.45 C15H22O5 3.9 73(9), 139(9), 155(18), 165(9), 195(100)
281.1397 281.13945 -0.89 C15H22O5 4.0 66(9), 101(9), 155(9), 177(9), 195(100)
293.1393 293.13945 0.51 C16H22O5 4.1 153(18), 179(100), 195(9), 197(13), 224(9)
295.1552 295.15510 -0.34 C16H24O5 3.6 153(71), 167(33), 181(25), 226(100), 277(30)
305.1395 305.13945 -0.16 C17H22O5 4.3 165(12), 193(14), 231(11), 243(27), 305(100)
305.1394 305.13945 0.16 C17H22O5 5.2 149(14), 193(100), 248(11), 288(7), 303(14)
317.1395 317.13945 -0.16 C18H22O5 4.2 147(90), 161(89), 179(57), 192(71), 233(100)
317.1395 317.13945 -0.16 C18H22O5 4.3 180(100), 192(97), 220(71), 261(43), 289(66)
317.1395 317.13945 -0.16 C18H22O5 5.4 205(43), 262(58), 274(30),302(30), 317(100)
319.1551 319.15510 0.00 C18H24O5 4.6 193(10), 217(8), 235(8), 257(12), 319(100)
319.1551 319.15510 0.00 C18H24O5 4.8 165(9), 193(13), 245(6), 257(14), 319(100)
319.1551 319.15510 0.00 C18H24O5 5.6 165(17), 179(50), 195(17), 207(100), 250(55)
329.1758 329.17583 0.09 C20H26O4 5.2 167(100), 195(41), 201(23), 219(43), 242(29)
331.1917 331.19148 -0.66 C20H28O4 5.5 166(92), 191(44), 194(49), 219(100), 247(68)
331.1915 331.19148 -0.06 C20H28O4 5.6 166(78), 205(100), 219(77), 234(40), 247(76)
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Table B.5 (continued) | UHPLC-ToF-MS/MS-data of ambiguous markers for rich hopped beer. Level of
identification 3.The five highest fragments are shown.

m/zmeasured m/ztheor. Error
[ppm]

Molecular
formula

Retention
time [min]

MS/MS fragments
[m/z (rel. intensity)]

333.1710 333.17075 -0.75 C19H26O5 3.8 205(25), 221(100), 236(27), 247(42), 249(90)
333.1710 333.17075 -0.75 C19H26O5 3.9 152(58), 181(80), 205(69), 233(70), 247(100)
333.1712 333.17075 -1.35 C19H26O5 4.9 169(22), 181(10), 221(11), 237(100), 335(9)
333.1708 333.17075 -0.15 C19H26O5 5.1 151(8), 167(100), 193(13), 195(35), 219(34)
333.1709 333.17075 -0.45 C19H26O5 5.2 163(19), 167(100), 193(9), 195(39), 219(34)
333.1710 333.17075 -0.75 C19H26O5 6.0 179(23), 193(59), 209(24), 221(100), 264(81)
335.1497 335.15001 0.92 C18H24O6 3.3 165(10), 245(7), 251(6), 317(6), 335(100)
335.1499 335.15001 0.33 C18H24O6 3.5 209(4), 245(5), 251(4), 273(7), 335(100)
335.1496 335.15001 1.22 C18H24O6 4.0 181(62), 205(79), 233(80), 247(100), 291(67)
335.1496 335.15001 1.22 C18H24O6 4.5 196(28), 221(32), 247(100), 265(26), 335(29)
335.1496 335.15001 1.22 C18H24O6 6.8 182(17), 195(100), 238(22), 247(29), 263(23)
335.1858 335.18640 1.79 C19H28O5 4.8 59(34), 85(46), 203(87), 219(39), 263(100)
335.1863 335.18640 0.30 C19H28O5 5.0 169(22), 204(21), 237(100), 247(14), 335(67)
335.1864 335.18640 0.00 C19H28O5 5.1 181(100), 231(47), 249(59), 259(51), 265(84)
335.1862 335.18640 0.60 C19H28O5 5.2 85(44), 203(69), 235(34), 263(100), 273(41)
335.1863 335.18640 0.30 C19H28O5 5.3 115(44), 153(23), 167(100), 195(39), 219(35)
335.1858 335.18640 1.79 C19H28O5 5.4 166(44), 187(43), 191(54), 231(100), 235(31)
335.1862 335.18640 0.60 C19H28O5 5.6 166(83), 191(47), 194(47), 219(100), 247(76)
343.1914 343.19148 0.23 C21H28O4 5.0 190(71), 205(65), 231(100), 259(73), 343(50)
343.1915 343.19148 -0.06 C21H28O4 5.5 181(100), 187(56), 191(99), 235(64), 242(52)
343.1918 343.19148 -0.93 C21H28O4 6.0 163(100), 180(99), 247(34), 249(73), 259(36)
345.2073 345.20713 -0.49 C21H30O4 5.6 167(73), 179(65), 191(80), 235(100), 249(40)
347.1495 347.15001 1.47 C19H24O6 4.9 164(81), 191(53), 207(100), 234(48), 305(44)
347.1863 347.18640 0.29 C20H28O5 4.1 219(29), 221(25), 235(26), 261(37), 263(100)
347.1861 347.18640 0.86 C20H28O5 5.3 165(40), 167(49), 181(38), 223(39), 251(100)
349.1657 349.16566 -0.11 C19H26O6 4.0 167(20), 201(32), 235(51), 263(100), 347(24)
349.2020 349.20205 0.14 C20H30O5 4.8 164(34), 207(77), 221(100), 253(92), 305(75)
351.1813 351.18131 0.03 C19H28O6 4.6 166(17), 193(100), 239(11), 263(32), 351(14)
351.1810 351.18131 0.88 C19H28O6 4.9 181(7), 195(9), 209(26), 223(58), 292(100)
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Table B.5 (continued) | UHPLC-ToF-MS/MS-data of ambiguous markers for rich hopped beer. Level of
identification 3.The five highest fragments are shown.

m/zmeasured m/ztheor. Error
[ppm]

Molecular
formula

Retention
time [min]

MS/MS fragments
[m/z (rel. intensity)]

351.1813 351.18131 0.03 C19H28O6 5.0 177(63), 191(100), 207(76), 303(65), 349(79)
359.1868 359.18640 -1.11 C21H28O5 5.3 194(20), 222(17), 233(9), 292(11), 359(100)
359.1866 359.18640 -0.56 C21H28O5 5.5 205(94), 221(32), 249(49), 263(100), 359(28)
359.1866 359.18640 -0.56 C21H28O5 5.6 183(71), 189(75), 195(61), 295(60), 359(100)
359.1867 359.18640 -0.84 C21H28O5 5.8 167(63), 179(42), 191(81), 195(75), 235(100)
359.1867 359.18640 -0.84 C21H28O5 5.9 179(30), 191(28), 195(35), 235(38), 263(100)
359.1867 359.18640 -0.84 C21H28O5 6.1 99(23), 195(100), 223(49), 247(52), 265(23)
359.1865 359.18640 -0.28 C21H28O5 6.2 195(100), 223(35), 247(35), 263(25), 265(15)
363.1815 363.18131 -0.52 C20H28O6 3.8 231(5), 251(3), 345(4), 363(100)
363.1815 363.18131 -0.52 C20H28O6 3.9 165(5), 183(6), 301(3), 347(6), 363(100)
363.1817 363.18131 -1.07 C20H28O6 4.3 164(39), 181(100), 195(39), 233(34), 235(25)
363.1818 363.18131 -1.35 C20H28O6 4.4 167(7), 206(7), 209(15), 225(7), 249(100)
363.1814 363.18131 -0.25 C20H28O6 4.5 181(100), 195(48), 233(34), 249(44), 253(32)
363.1816 363.18131 -0.80 C20H28O6 4.7 85(27), 139(18), 167(41), 209(88), 249(100)
365.1981 365.19696 -3.12 C20H30O6 5.2 195(6), 209(9), 223(28), 237(55). 296(100)
375.1815 375.18131 -1.70 C21H28O6 4.3 64(65), 80(100), 191(86), 277(22), 295(21)
377.1976 377.19696 -1.70 C21H30O6 4.0 245(4), 251(3), 293(2), 359(4), 377(100)
377.1977 377.19696 -1.96 C21H30O6 4.1 245(2). 251(3), 293(3), 315(2), 377(100)
377.1974 377.19696 -1.17 C21H30O6 4.2 80(2), 245(2), 251(2), 315(2), 377(100)
377.1974 377.19696 -1.17 C21H30O6 4.5 152(18), 195(100), 207(24), 265(21), 283(17)
377.1976 377.19696 -1.7 C21H30O6 4.7 195(8), 220(8), 223(14), 239(8), 263(100)
379.2132 379.21261 -1.56 C21H32O6 4.1 179(2), 245(3), 293(4), 315(3), 377(100)
379.2147 379.21261 -5.51 C21H32O6 5.5 223(7), 237(25), 251(52), 254(11), 310(100)
381.1913 381.19188 1.52 C20H30O7 2.9 245(3), 273(3), 275(3), 337(100), 381(63)
381.1921 381.19188 -0.58 C20H30O7 3.1 181(100), 193(24), 361(28), 363(20), 379(18)
381.1920 381.19188 -0.31 C20H30O7 3.3 181(100), 193(18), 233(9), 363(13), 281(70)
381.1913 381.19188 1.52 C20H30O7 3.5 181(85), 193(100), 249(73), 305(6)), 379(84)
381.1922 381.19188 -0.84 C20H30O7 3.7 181(84), 193(40), 265(30), 305(59), 379(100)
383.2072 383.20753 0.86 C20H32O7 3.7 165(60), 183(34), 267(30), 325(100), 281(49)
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Table B.5 (continued) | UHPLC-ToF-MS/MS-data of ambiguous markers for rich hopped beer. Level of
identification 3.The five highest fragments are shown.

m/zmeasured m/ztheor. Error
[ppm]

Molecular
formula

Retention
time [min]

MS/MS fragments
[m/z (rel. intensity)]

389.1964 389.19696 1.44 C22H30O6 5.8 250(50), 261(44), 263(39), 306(100), 389(41)
389.1969 389.19696 0.15 C22H30O6 5.6 249(19), 263(26), 265(11), 277(60), 320(100)
389.1968 389.19696 0.41 C22H30O6 6.1 235(17), 278(100), 285(13), 301(42), 329(72)
389.1968 389.19696 0.41 C22H30O6 6.6 247(56), 263(100), 277(24), 290(28), 302(40)
391.2130 391.21261 -1.00 C22H32O6 4.9 153(73), 205(82), 225(100), 253(48), 263(40)
391.2123 391.21261 0.79 C22H32O6 5.1 209(47), 224(34), 238(100), 277(64), 324(86)
391.2126 391.21261 0.03 C22H32O6 5.3 165(21), 237(52), 248(27), 277(100), 317(31)
391.2119 391.21261 1.81 C22H32O6 6.7 179(15), 195(18),  237(36), 253(13), 277(100)
393.2278 393.22826 1.17 C22H34O6 6.2 181(22), 223(15), 233(11), 237(39), 324(100)
401.2339 401.23335 -1.37 C24H34O5 5.7 221(16), 259(87), 271(42), 289(100), 329(12)
403.2120 403.21261 1.51 C23H32O6 5.2 64(100), 80(66), 167(18), 219(11), 237(21)
403.2158 403.21261 -2.95 C23H32O6 5.9 222(18), 235(11). 247(100), 250(928), 275(9)
405.1923 405.19188 -1.04 C22H30O7 8.3 62(12), 147(3), 157(2), 263(3), 337(100)
407.2074 407.20753 0.32 C22H32O7 4.1 179(12), 183(13), 251(100), 263(26), 273(16)
407.2074 407.20753 0.32 C22H32O7 4.2 183(18), 263(100), 263(24), 277(33), 409(24)
407.2074 407.20753 0.32 C22H32O7 4.3 163(20), 181(54), 221(100), 251(21), 263(22)
419.2072 419.20753 0.79 C23H32O7 5.4 191(7), 247(20), 278(7), 291(6), 291(100), 350(12)
419.2076 419.20753 -0.17 C23H32O7 5.5 192(22), 219(29), 235(18), 247(71), 306(100)
431.2431 431.24391 1.88 C25H36O6 5.1 259(18), 317(23), 329(20), 387(100), 431(26)
431.2437 431.24391 0.49 C25H36O6 5.2 287(98), 303(65), 314(33), 331(100), 431(34)
431.2439 431.24391 0.02 C25H36O6 6.6 265(61), 278(75), 292(100), 329(62), 343(85)
433.2593 433.25956 0.6 C25H38O6 5.3 277(80), 301(100), 321(47), 389(35), 431(32)
433.2598 433.25956 -0.55 C25H38O6 5.6 207(17), 280(22), 289(18), 305(100), 433(66)
445.2595 445.25956 0.13 C26H38O6 5.5 271(36), 301(38), 310(36), 317(100), 445(60)
445.2595 445.25956 0.13 C26H38O6 6.8 265(22), 292(92), 299819), 315(64), 343(100)
447.2392 447.23883 -0.83 C25H36O7 4.1 267(5), 329(6), 361(9), 377(11), 447(100)
447.2392 447.23883 -0.83 C25H36O7 4.9 209(23), 239(12), 265(5), 429(7), 447(100)
447.2386 447.23883 0.51 C25H36O7 5.3 235(31), 247(83), 265(26), 343(32), 351(100)
457.2237 457.22318 -1.14 C26H34O7 5.3 233(100), 249(48), 251(46), 278(80), 329(92)



150

S
upplem

entary
C

hapter 2

Table B.6 | Structural identification of wheat grain analytical marker masses by means of UPLC-ToF-MS/MS. Level of identification 2.

m/zmeasured m/ztheor. Error
[ppm]

Molecular
formula

Rta

[min]
Compound MS/MS fragments

[m/z (rel. intensity)]
Collision Reference

326.0880 326.0881 0.4 C14H17NO8 2.6 HBOA-Hexoside 108(12), 118(4), 136(10), 164(100),
326(1)

30 eV [283,448]

342.0835 342.0830 1.3 C14H17NO9 1.7 DHBOA/DIBOA-
Hex.b

124(17), 134(7), 152(49), 162(15),
180(100), 208(22), 342(1)

35 eV [281]

342.0835 342.0835 0.0 C14H17NO9 2.6 DHBOA/DIBOA-
Hex.b

134(9), 162(31), 175 (20), 180(30),
342(100)

10 eV [283]

356.0988 356.0987 0.2 C15H19NO9 2.8 HMBOA-
Hexose

138(9), 148(7), 166(34), 179(9),
194(100), 356(1)

30 eV [281,448]

436.0558 436.0554 0.6 C15H19NO12

S
2.5 HMBOA-

Hexosesulfate
194(65), 356(96), 436(100) 20 eV [281,448], c

504.1357 504.1359 0.4 C20H27NO14 1.9 DHBOA/DIBOA-
Dihexosidec

162(19), 180(100), 342(15), 504(1) 35 eV [281]

504.1352 504.1359 1.4 C20H27NO14 2.6 DHBOA/DIBOA-
Dihexosidec

134(7), 162(9), 175(100), 504(1) 35 eV [281]

518.1514 518.1515 0.3 C21H29NO14 2.7 HMBOA-
Dihexoside

166(11), 194(100) 35 eV [281]

a retention time
b differentiation between DHBOA and DIBOA can’t be accomplished with (LC)-MS/MS-data only.
c The literature data refers to the dedicated de-sulfated compound. Level of identification 3.
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Table B.7 | Instrumental parameters and reagents used for FT-ICR- and UHPLC-ToF-MS measurements.

Reagent Source

Methanol (MeOH) FLUKA, Sigma-Aldrich (LC-MS grade, CHROMASOLV, St Louis, MO, USA)
Acetonitrile (ACN) FLUKA, Sigma-Aldrich (LC-MS grade, CHROMASOLV, St Louis, MO, USA)
Acetic acid Biosolve (Valkenswaard, NL)
Ultrapure water Milli-Q Integral Water Purification System (Millipore, Billerica, MA, USA)
L-arginine Sigma-Aldrich (reagent grade >98%, St Louis, MO, USA)
ESI-L Low Concentration Tuning Mix Agilent ( Santa Clara, CA, United States of America)

FT-ICR-MS Value

Sample preparation Degassing by ultrasonification (10 °C, 5min.); dilution 1:500 in methanol (v:v);
separation of precipitated proteins by centrifugation (10,000 rmp, 3min.)

Direct-infusion flowrate 120 µL.h-1.
ESI capillary voltage 3600 V
Time domain 4 mega words
Accumulation time 0.25 ms
Mass range m/z 120 to 1000
Accumulated scans 400
Measurement time 10 min.
External calibration Clusters of arginine (5 mg.L-1 in methanol)
Internal calibration in-house calibration list containing 2000 molecular formulae, which are highly

abundant in beers
UHPLC-ToF-MS Value

Sample preparation Degassing by ultrasonification (10 °C, 5min.); dilution 1:4 in methanol (v:v);
separation of precipitated proteins by centrifugation (10,000 rmp, 3min.);
evaporation of the supernatant and dissolving in acetonitrile:water (20:80; v:v)

Column RP (C18: 1.7 µm, 2.1 x 100 mm, AcquityTM UPLC BEHTM)
Flow rate 400 µL min-1

Column temperature 40 °C
Injection volume 5 µL (partial loop)
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Table B.7 (continued) | Instrumental parameters and reagents used for FT-ICR- and UHPLC-ToF-MS measurements.

UHPLC-ToF-MS Value

Gradient profile 95 % A (0.1 % formic acid in water) and 5 % B (0.1 % formic acid in
Measurement mode Data dependent analysis with pre-built preference list (based on FT-ICR data)
Measurement time 10 min.
Internal calibration ESI-L Low Concentration Tuning Mix
External calibration ESI-L Low Concentration Tuning Mix (1:4 diluted in 75% acetonitrile) in the

first 0.3 min of each LC-MS run; introduced by a switching valve.
ESI ionization mode Negative
Nitrogen flowrate 10 L min-1

Dry heater 200°C
Nebulizer pressure 2.0 bar
Capillary voltage 4500 V
Endplate offset 500 V
MS/MS fragmentation parameters Data dependent analysis; collision energy 10 eV to 35 eV
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Figures B

Figure B.1 | Van Krevelen diagram (H/C vs O/C) of the annotated molecular formulae
appearing in more than 95 % of all beer samples (B). Areas specific for certain
compound classes are marked with dotted lines. Color code of the van Krevelen
diagrams: CHO blue; CHNO orange; CHOS green; CHNOS red; P violet;
Cl light violet. The bubble size indicates the mean relative intensities of corresponding
peaks in the spectra.
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A B

Figure B.2 | OPLS-DA loading plots for the beer type (A) and grain (B) observations.
The 95th percentile of the different classes’ marker substances is marked by colored
areas.

BA
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Figure B.3 | OPLS-DA model’s score plot for the wheat-containing (green) and beers
brewed with barley exclusively (blue) observation. The model sample set is depicted
as circles, the prediction set is depicted as triangles. Different grain types are
indicated by different colors. The score plots are surrounded by the observations’ van
Krevelen diagrams. Color code and bubble size of the van Krevelen diagrams see
Figure B.2. Samples included in the model calculation are depicted as circles,
whereas predicted samples are represented as triangles.
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.

Figure B.4 | Intensity distribution for the wheat grain markers. C14H17NO8 (HBOA-hex.),
C14H17NO9 (DHBOA/DIBOA-hex.), C15H19NO9 (HMBOA-hex.), C15H19NO12S (HMBOA-
hex.sulfate), C20H27NO14 (DHBOA/DIBOA-dihex.), C21H29NO14 (HMBOA-dihex.) are
depicted. The maximum intensity for every peak is set to 100%. Beers brewed with
wheat grain are marked. Trace amounts of the markers’ corresponding masses in
exclusively barley-containing beers might occur due to isomeric compounds.
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Figure B.5 | UHPLC-ToF-MS chromatogram of samples 52 and 41. Extracted ion chromatograms of markers for rich
hopped beers found by FT-ICR-MS (blue) found in sample 52 (A). Extracted ion chromatograms of
cohulupone (dark blue; confirmed by MS/MS data, compare Table S4) and humulinone isomeric
compounds (light blue) (B). Mass traces of identified hops rich beer type markers (compare Table S4) of sample 52
(hops rich craft beer, blue) and sample 41 (wheat beer, green) in comparison (C). Isomeric compounds are shaded
blue (for sample 52). UHPLC-ToF-MS extracted ion chromatograms (sample 41) of wheat grain marker masses and
corresponding structures substantiated by MS/MS-data (compare Table S6)(D).

A
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Figure B.5 | continued.

B
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Figure B.5 | continued.

C
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Figure B.5 | UHPLC-ToF-MS chromatogram of samples 52 and 41. Extracted ion chromatograms of hops rich beer type markers found
by FT-ICR-MS (blue) found in sample 52 (A). Extracted ion chromatograms of cohulupone (dark blue; confirmed by MS2 data, compare
Table S4) and humulinone isomeric compounds (light blue) (B). Mass traces of identified hops rich beer type markers (compare Table
S4) of sample 52 (hops rich craft beer, blue) and sample 41 (wheat beer, green) in comparison (C). Isomeric compounds are shaded blue
(for sample 52). UHPLC-ToF-MS extracted ion chromatograms (sample 41) of wheat grain marker masses and corresponding structures
substantiated by MS2 data (compare Table B6)(D).

D
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Figure B.6 | Eleven valid compositions for m/z 362.05072 in the error window of
3 ppm in a C1-50 H1-100, O0-50 N0-10, S0-3, P0-1, Cl0-1 chemical space (A). Calculations are
based on the FormCalc algorithm [449] and restrictions are given by the ‘seven golden
rules’ [235]. The single correct formula inside a 0.1 ppm window is
marked. [C10H13N5O8P]- is additionally validated by the isotopic fine structure of the
15N, 13C and 18O isotopologue (beer measurement in red, prediction in blue) (B).

A BA B
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C   Supplementary Chapter 3

Tables C

Table C.1 | Germination parameters, green malt extraction method, EBC-value quantification and analytical approach of the quantification
of amino acids and saccharides.

Step Parameters

Raw material Barley (Hordeum vulgare) variety Accordine

Germination 5h at 14°C (1st wetstep), 19h at 14°C (1st drystep), 4h at 14°C (2nd wetstep), 20h at 14°C (2nd drystep), 72h at 14°C
with continuous flow-through of conditioned air (germination)

Green malt extraction 100g of green malt + 400 ml H2O, 1h at 20°C, stirring
Amino acid quantification RP-HPLC-Fluorescence after precolumn-derivatisation with o-phthaldialdehyde [450]

Saccharide quantification RP-HPLC-ELSD [450,451]

EBC-value-range Samples with the lowest and highest absorption at 294 nm were analyzed as described in Jacob [451] (WBBM 2.12.1).
Low value of 4.10 and high value of 146.00.
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Table C.2 | Quantification of amino acids and sugars. Biological triplicates, technical duplicates arithmetic mean and standard deviation
and standard’s vendor. The amino acid proline was not quantified as it is not accessible for o-phthaldialdehyde derivatization.

Analyte
Biological Replicate 1 BR 2 BR 3

Mean Stdev Purity Vendor
Technical Replicate 1.1 TR 1.2 TR 2.1 TR 2.2 TR 3.1 TR 3.2

Asp a) [mg/100 mL] 13.9 12.9 12.9 11.8 9.2 9.7 11.7 1.9 >98 % Sigma Aldrich c)

Glu [mg/100 mL] 4.7 5.6 5.2 3.6 6.0 3.2 4.7 1.1 >99 % Sigma Aldrich
Asn [mg/100 mL] 13.8 13.1 21.5 19.4 13.8 11.6 15.5 4.0 >99 % Sigma Aldrich
Ser [mg/100 mL] 7.2 6.1 7.2 8.3 7.0 7.7 7.3 0.7 >99 % Sigma Aldrich
Gln [mg/100 mL] 42.5 41.8 43.5 45.9 53.1 47.6 45.7 4.2 >98 % Sigma Aldrich
His [mg/100 mL] 4.0 3.7 4.9 5.4 2.9 3.3 4.0 1.0 >98 % Sigma Aldrich
Gly [mg/100 mL] 1.9 1.5 1.7 2.3 2.2 1.9 1.9 0.3 >99 % Sigma Aldrich
Thr [mg/100 mL] 5.9 5.5 5.9 6.8 6.6 7.2 6.3 0.7 >98 % Sigma Aldrich
Ala [mg/100 mL] 6.3 5.5 7.0 8.0 7.1 6.9 6.8 0.9 >99 % Sigma Aldrich
Arg [mg/100 mL] 0.5 1.0 1.0 0.5 1.0 0.5 0.8 0.3 >98 % Sigma Aldrich
GABA [mg/100 mL] 9.8 7.3 8.4 12.4 8.7 10.5 9.5 1.8 >99 % Sigma Aldrich
Tyr [mg/100 mL] 6.0 5.8 6.2 7.5 4.6 4.9 5.8 1.0 >99 % Sigma Aldrich
Val [mg/100 mL] 12.4 10.6 12.1 13.3 8.6 8.4 10.9 2.1 >98 % Sigma Aldrich
Met [mg/100 mL] 2.4 2.4 2.6 3.1 1.2 1.6 2.2 0.7 >98 % Sigma Aldrich
Ile [mg/100 mL] 7.4 6.8 7.6 8.5 4.4 4.6 6.5 1.7 >98 % Sigma Aldrich
Trp [mg/100 mL] 3.5 3.5 2.6 3.2 2.4 2.4 2.9 0.5 >99 % Sigma Aldrich
Phe [mg/100 mL] 10.1 9.2 10.0 11.7 9.6 10.0 10.1 0.9 >99 % Sigma Aldrich
Leu [mg/100 mL] 11.4 9.4 10.9 12.7 12.3 12.4 11.5 1.3 >99 % Sigma Aldrich
Lys [mg/100 mL] 5.0 4.3 4.5 5.3 4.8 5.7 4.9 0.5 >98 % Sigma Aldrich
Fru [g/L] 1.0 1.2 1.0 1.1 0.8 1.0 1.0 0.1 >99 % FLUKA d)

Glc [g/L] 3.1 2.8 2.0 2.1 2.2 3.4 2.6 0.6 >99 % Sigma Aldrich
Sac [g/L] 1.7 1.8 1.0 0.9 1.0 1.8 1.4 0.4 >99 % Sigma Aldrich
Mal [g/L] 2.1 2.0 1.8 1.9 1.2 2.2 1.9 0.4 >99 % Sigma Aldrich
Maltotriose [g/L] bdl. b) bdl. bdl. bdl. bdl. bdl. - - >98 % Alfa Aesar e)

a) Aspartic acid was not included in the model system as it forms disrupting and suppressing clusters in DI-FT-ICR-MS.
b) Detection limit of the method equals 50 mg/L. Therefore, maltotriose was not included in the model system.
c) Sigma Aldrich (St Louis, MO, USA) d) FLUKA from Sigma Aldrich (St Louis, MO, USA) e) Alfa Aesar from Thermo Fisher Scientific

(Waltham, MO, USA)
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Table C.3 | Instrumental parameters and reagents used for FT-ICR-MS measurements.

Reagent Parameters

Methanol (MeOH) FLUKA, Sigma-Aldrich (LC-MS grade, CHROMASOLV, St Louis, MO, USA)
Acetonitrile (ACN) FLUKA, Sigma-Aldrich (LC-MS grade, CHROMASOLV, St Louis, MO, USA)
Ultrapure water Milli-Q Integral Water Purification System (Millipore, Billerica, MA, USA)
L-arginine Sigma-Aldrich (reagent grade >98%, St Louis, MO, USA)

FT-ICR-MS Value

Sample preparation Degassing by ultrasonification (10 °C, 5min.); dilution 1:500 in methanol (v:v); separation of precipitated proteins
by centrifugation (10,000 rmp, 3min.)

Direct-infusion flowrate 120 µL.h-1.
ESI capillary voltage 3600 V
Time domain 4 mega words
Accumulation time 0.25 ms
Mass range m/z 120 to 1000
Accumulated scans 400
Measurement time 10 min.
External calibration Clusters of arginine (5 mg.L-1 in methanol)
Internal calibration in-house calibration list containing 2000 molecular formulae, which are highly abundant in beers (found in 33% of

about 500 beers measured over the past years; data not shown)
QC sample Heineken® lager beer from 2017 as an industrialized beer consistent sample, stored at -20°C
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Table C.4 | UV-Vis absorption and positions of the beers samples and model system in the multivariate statistical models.

Sample
Absorption

(294nm)

Scores
PCA (compositions) OPLS (compositions) PCA (mass differences) OPLS (mass differences)

x y x y x y x y

1 0.048 34.0 -8.2 -24.1 -26.6 -111.8 4.6 -64.5 -74.8

2 0.083 5.0 18.9 -21.8 8.9 23.6 12.7 -45.8 54.1
3 0.105 4.5 18.8 -18.5 7.9 11.4 13.6 -46.9 36.3
4 0.069 19.0 6.4 -16.4 -10.1 -39.5 28.2 -46.6 18.6
5 0.081 6.8 5.8 -16.9 1.7 27.8 6.2 -23.8 27.1
6 0.070 13.5 8.1 -16.9 -4.8 -4.8 20.1 -46.5 20.5
7 0.077 1.7 18.1 -11.5 8.3 33.5 18.4 -27.7 55.5
8 0.162 -1.7 25.7 -14.4 15.8 42.8 21.3 -56.6 81.9
9 0.140 13.2 11.9 -18.3 -1.3 -6.6 6.7 -50.2 33.1
10 0.168 38.3 -5.2 -12.0 -33.3 -170.5 9.1 -31.0 -128.6
11 0.170 -4.4 17.8 -7.5 13.4 69.1 5.8 -34.8 80.6
12 0.143 15.3 0.4 -10.3 -11.1 -13.2 -8.5 -49.3 5.5
13 0.067 30.5 1.1 -13.1 -24.3 -122.0 9.9 -25.2 -82.7
14 0.053 17.2 9.2 -13.2 -10.1 -42.3 9.1 -38.8 -15.3
15 0.135 32.9 -2.0 -7.2 -29.4 -166.3 14.5 -10.3 -126.7
16 0.173 25.7 -7.0 1.2 -26.6 -90.9 8.5 -4.5 -77.7
17 0.136 14.2 5.2 -16.0 -7.5 -10.0 7.1 -29.6 0.2
18 0.149 39.0 -7.0 -9.3 -35.6 -167.5 5.3 -42.2 -136.4
19 0.144 45.2 -10.6 -9.1 -43.0 -274.5 2.5 -31.0 -227.0
20 0.138 42.2 -7.4 -7.8 -39.3 -270.6 13.3 -23.4 -203.0
21 0.298 33.7 -0.3 0.1 -30.9 -155.9 29.0 -48.2 -86.3
22 0.267 38.0 -11.8 6.3 -41.2 -186.4 -34.2 41.4 -215.4
23 0.200 33.4 -13.2 -3.2 -34.0 -133.5 -17.5 -10.5 -142.4
24 0.356 6.4 -6.1 18.0 -13.5 19.5 -19.1 41.2 -31.6
25 0.142 35.7 -0.9 -12.2 -29.1 -175.9 6.7 -44.5 -128.1
26 0.243 47.2 -14.4 -4.5 -48.0 -286.2 -9.6 -11.8 -264.2
27 0.224 38.1 -11.8 -1.7 -39.8 -191.9 -23.4 -23.6 -207.8
28 0.138 41.1 -5.7 -7.3 -38.1 -256.9 7.9 -25.0 -203.4
29 0.127 13.5 -4.2 -0.6 -14.5 -39.0 1.8 -12.3 -32.5
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Table C.4 (continued) | UV-Vis absorption and positions of the beers samples and model system in the multivariate statistical models.

Sample Absorption
(294nm)

Scores
PCA (compositions) OPLS (compositions) PCA (mass differences) OPLS (mass differences)
x y x y x y x y

30 0.264 -4.1 0.3 1.6 2.2 49.0 3.0 32.7 24.5
31 0.074 25.2 -6.6 -16.6 -21.9 -81.3 4.1 -28.6 -65.3
32 0.136 -3.1 18.1 -15.4 12.0 28.4 20.7 -39.8 58.2
33 0.126 25.6 0.3 -12.6 -20.9 -102.7 12.5 -37.8 -66.3
34 0.420 -31.0 -11.8 29.2 14.9 116.3 -17.6 64.3 46.9
35 0.124 23.3 -5.3 -6.4 -22.3 -45.5 -6.5 -3.2 -63.3
36 0.145 26.5 1.0 -8.3 -22.2 -113.1 19.1 -34.5 -70.6
37 0.268 27.2 -9.1 8.2 -30.8 -89.8 -16.1 -0.4 -110.3
38 0.139 25.1 -8.4 -8.6 -25.1 -101.7 -20.0 -24.5 -107.3
39 0.151 53.6 -17.5 -10.3 -52.3 -343.5 -27.3 -21.0 -319.8
40 0.129 24.9 0.4 -9.7 -21.1 -92.5 15.8 -37.2 -52.1
41 0.122 34.9 -2.7 -12.8 -29.5 -140.4 2.7 -33.6 -110.1
42 0.130 24.2 -1.6 -12.0 -20.6 -54.7 1.7 -19.2 -53.2
43 0.099 52.0 -17.9 -13.0 -50.2 -360.6 -39.8 -14.8 -343.9
44 0.113 53.9 -20.9 -12.5 -53.3 -331.5 -73.6 -10.4 -386.6
45 0.399 26.7 -18.9 16.4 -36.3 -92.7 -48.7 47.5 -185.3
46 0.203 39.0 -5.6 -5.7 -36.7 -157.5 -29.3 -7.5 -165.3
47 0.121 25.2 5.1 -14.9 -15.4 -72.4 5.5 -56.1 -28.2
48 0.197 19.7 4.2 -9.5 -13.1 -39.0 19.9 -43.7 -8.3
49 0.149 20.4 1.0 -8.9 -16.8 -56.6 10.1 -32.9 -40.4
50 0.187 46.7 -18.1 -4.2 -50.1 -292.1 -59.4 -40.2 -313.2
51 0.169 6.1 3.3 -14.3 -1.0 24.7 7.4 -22.5 24.7
52 0.421 -13.4 3.5 23.7 4.7 76.3 -14.9 25.2 37.4
53 0.156 25.2 -0.8 -13.8 -20.4 -86.6 13.4 -26.3 -62.4
54 0.282 -10.2 14.1 7.7 9.4 69.0 -3.9 -10.0 57.0
55 0.191 35.5 -16.3 -5.1 -37.1 -127.1 -56.5 16.1 -179.4
56 0.174 12.5 4.8 -6.6 -9.5 -10.3 3.1 -26.1 0.5
57 0.296 10.4 2.6 7.3 -11.9 -13.5 14.3 3.2 1.7
58 0.330 30.8 -17.0 14.9 -39.5 -140.1 -20.3 29.3 -155.8
59 0.167 16.3 0.9 -8.9 -13.1 -8.4 -5.2 -23.8 -22.7
60 0.218 21.2 -17.2 13.4 -29.8 -54.5 -39.3 55.7 -140.6
61 0.095 15.2 3.8 -10.9 -11.1 -35.6 10.3 -25.1 -15.9
62 0.048 23.8 5.9 -15.8 -16.2 -74.6 15.9 -25.5 -42.1
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Table C.4 (continued) | UV-Vis absorption and positions of the beers samples and model system in the multivariate statistical models.

Sample Absorption
(294nm)

Scores
PCA (compositions) OPLS (compositions) PCA (mass differences) OPLS (mass differences)
x y x y x y x y

63 0.108 40.4 -6.9 -17.1 -34.7 -196.8 8.3 -39.6 -146.4
64 0.279 23.2 -6.1 -0.7 -24.1 -58.7 0.6 -34.7 -56.9
65 0.275 15.5 -1.4 6.5 -18.1 -7.2 -24.5 -1.4 -38.5
66 0.178 22.7 1.9 -5.6 -19.9 -46.2 -7.3 -20.1 -45.5
67 0.112 39.7 -4.2 -10.8 -34.3 -192.7 -0.1 -30.4 -153.2
68 0.222 32.9 -6.8 0.2 -33.8 -121.5 -44.8 10.8 -156.7
69 0.243 22.8 -5.4 1.7 -23.6 -33.2 -25.0 1.4 -69.6
70 0.477 23.1 -13.4 22.0 -31.7 -69.3 -37.6 37.8 -136.6
71 0.238 31.0 0.9 -4.6 -28.1 -119.8 -11.7 -42.7 -105.9
72 0.904 24.3 -19.1 33.6 -38.8 -93.1 -53.2 104.8 -192.9
73 0.297 36.1 -12.4 7.5 -39.5 -170.6 -8.4 -9.2 -157.2
74 0.136 17.9 -9.2 -9.9 -11.6 -50.5 -32.0 -22.2 -70.6
75 0.099 -66.4 46.4 -13.0 88.2 161.5 24.8 -14.8 174.0
76 0.063 -59.0 45.3 -13.0 81.0 160.3 23.7 -16.1 176.3
77 0.232 -107.0 22.6 3.8 108.9 214.1 4.1 27.4 184.1
78 0.134 -76.0 51.3 -12.9 95.4 164.1 20.1 -24.0 175.3
79 0.086 -42.2 34.7 -20.5 62.8 137.5 26.4 -41.1 171.1
80 0.160 -74.5 58.2 -2.6 93.5 159.5 17.5 -3.9 154.0
81 0.100 -43.2 33.3 -11.5 58.6 129.1 19.2 -17.4 140.9
82 0.137 -95.1 55.2 -21.3 111.8 193.7 12.7 9.0 183.0
83 0.189 -85.1 30.3 -16.6 90.9 183.6 1.6 -1.1 164.5
84 0.116 -20.7 22.3 -25.5 33.9 86.1 13.0 -28.3 98.6
85 0.104 -20.7 35.1 -20.3 40.6 71.0 24.7 -14.7 103.5
86 0.121 -4.9 10.8 -16.8 13.5 36.0 7.7 -17.8 45.6
87 0.360 -51.0 -22.3 28.1 30.5 142.6 -26.5 59.7 68.7
88 0.192 -23.2 20.5 -4.2 29.9 96.8 8.7 -21.8 99.7
89 0.107 -12.0 13.2 -21.6 22.1 65.3 20.8 -35.4 100.3
90 0.368 -32.9 -25.5 33.7 8.2 109.2 -34.1 67.0 36.0
91 0.204 -36.0 22.0 -5.9 40.1 133.1 -1.4 -3.6 112.8
92 0.134 -38.9 35.5 -17.6 54.8 110.9 26.1 -29.4 135.8
93 0.219 -21.8 20.1 -2.8 25.9 108.9 -4.5 -8.0 89.0
94 0.167 -31.9 17.9 -4.6 34.7 114.2 1.1 -9.2 97.4
95 0.127 7.5 11.2 -15.8 2.0 -26.0 31.8 -32.4 26.2
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Table C.4 (continued) | UV-Vis absorption and positions of the beers samples and model system in the multivariate statistical models.

Sample Absorption
(294nm)

Scores
PCA (compositions) OPLS (compositions) PCA (mass differences) OPLS (mass differences)
x y x y x y x y

96 0.136 -1.9 1.1 -13.8 4.7 29.9 5.7 -34.1 37.6
97 0.238 -0.7 5.3 1.5 1.6 29.9 7.2 -5.6 33.9
98 0.167 -9.7 13.3 -6.5 13.3 50.3 9.8 -1.5 46.3
99 0.709 -43.3 -33.1 62.4 7.0 131.5 -44.3 99.2 30.8
100 0.170 5.5 9.4 -6.8 -1.2 -9.5 15.5 -14.3 7.5
101 0.132 -1.1 7.7 -9.4 4.7 30.6 1.1 -15.4 37.3
102 0.418 -33.2 -33.7 43.2 2.7 96.9 -42.9 124.9 -8.6
103 0.276 -4.1 7.8 6.3 4.5 48.0 18.8 -13.0 72.9
104 0.334 -62.6 -6.0 21.4 49.1 195.8 -10.2 50.0 149.8
105 0.657 -108.7 -52.5 58.3 61.9 225.8 -13.9 104.0 150.8
106 0.197 16.8 -15.3 -5.9 -16.8 -12.8 -27.8 -14.2 -27.4
107 0.353 -6.2 -24.6 25.1 -12.4 33.5 -48.0 78.2 -36.8
108 0.144 9.9 -0.4 -9.9 -7.2 -2.5 -6.5 -34.3 11.8
109 0.183 -0.6 -4.3 0.8 -3.2 14.3 -8.3 -4.2 6.8
110 0.187 -1.6 4.9 -7.9 2.8 25.7 1.1 -22.7 28.2
111 0.187 -14.9 9.7 4.4 16.7 66.2 20.1 -2.1 81.2
112 0.095 4.6 13.3 -16.3 11.4 14.8 19.1 -51.6 57.9
113 0.076 10.5 4.6 -24.1 2.3 -3.0 6.0 -46.6 33.8
114 0.128 -38.0 21.6 -12.7 50.3 120.4 24.7 -25.7 138.5
115 0.288 -32.1 6.4 13.3 30.2 109.9 -5.0 40.5 69.9
116 0.409 -60.9 -10.3 28.8 47.5 172.1 -9.4 56.4 111.6
117 0.177 -2.6 -2.3 8.3 0.4 56.3 0.4 41.1 26.6
118 0.137 4.6 21.2 -9.8 9.2 -56.5 22.9 -32.2 -15.5
119 0.086 25.0 4.7 -13.7 -16.9 -91.7 21.9 -28.0 -42.9
120 0.102 20.0 3.3 -9.3 -13.9 -77.8 33.9 -25.7 -19.2
121 0.095 17.4 11.6 -16.9 -6.5 -52.1 21.1 -29.1 -4.7
122 0.326 -23.8 -3.2 18.9 15.2 109.3 -11.1 47.2 56.5
123 0.153 2.6 11.8 -9.8 4.6 16.0 14.3 -29.4 39.1
124 0.190 22.5 -5.5 -1.4 -23.6 -97.9 1.5 -23.1 -75.8
125 0.189 21.2 -6.2 -0.2 -21.9 -87.9 16.1 -30.0 -46.5
126 0.118 12.0 -6.4 -8.0 -13.5 -21.3 -1.6 -18.5 -30.7
127 0.147 5.0 4.3 -10.2 1.4 13.8 15.2 -40.3 49.5
128 0.146 18.1 6.7 -9.4 -10.2 -69.8 26.2 -35.8 -21.2
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Table C.4 (continued) | UV-Vis absorption and positions of the beers samples and model system in the multivariate statistical models.

Sample Absorption
(294nm)

Scores
PCA (compositions) OPLS (compositions) PCA (mass differences) OPLS (mass differences)
x y x y x y x y

129 0.349 -13.1 2.7 7.4 10.1 59.1 6.9 3.9 45.7
130 0.287 14.5 -11.7 10.8 -21.3 -44.3 -6.4 25.5 -55.0
131 0.184 7.0 9.3 -9.3 0.2 0.8 26.9 -22.2 38.7
132 0.123 -51.3 42.3 -20.2 70.2 146.7 23.8 -36.5 167.8
133 0.118 -29.7 18.0 -9.7 37.3 125.8 16.5 -26.4 139.6
134 0.120 -28.3 35.0 -8.9 44.4 96.7 31.3 -15.8 122.0
135 0.112 18.3 9.0 -16.6 -4.9 -40.5 29.8 -48.0 30.4
136 0.115 23.2 0.6 -13.1 -14.9 -76.9 18.7 -44.4 -7.9
137 0.137 -13.5 24.7 -14.5 28.6 95.6 21.1 -41.4 126.5
138 0.126 4.3 13.1 -15.2 8.7 10.7 40.3 -51.7 82.4
139 0.124 15.9 6.3 -15.0 -3.7 -29.1 33.0 -56.3 53.9
140 0.114 15.4 7.9 -12.1 -6.1 -37.8 20.7 -36.3 19.9
141 0.132 21.4 5.7 -16.2 -10.3 -61.5 34.1 -56.1 21.2
142 0.088 29.2 2.5 -14.9 -21.3 -135.7 41.2 -29.9 -49.1
143 0.088 11.2 15.0 -16.5 0.4 -41.9 46.2 -19.6 23.8
144 0.089 30.8 -2.1 -12.7 -24.5 -151.0 24.7 -17.6 -83.0
145 0.084 16.9 7.1 -17.6 -7.0 -63.1 38.2 -34.6 9.0
146 0.153 -24.1 16.2 -1.8 25.5 118.0 -2.4 -8.0 96.0
147 0.103 28.4 1.7 -10.6 -23.0 -115.6 29.8 -32.4 -50.5
148 0.172 27.0 -7.0 -1.7 -27.5 -82.3 -24.1 20.6 -107.7
149 0.331 -30.0 -9.3 23.6 13.8 127.3 -28.1 53.2 59.4
150 0.108 29.4 0.2 -17.0 -21.9 -113.7 14.6 -45.3 -59.6
151 0.123 31.0 -4.2 -8.0 -28.1 -149.2 27.3 1.3 -93.8
152 0.188 15.9 -5.7 -3.2 -16.0 -49.1 20.7 -58.4 -0.6
153 0.177 29.4 -1.2 -10.9 -24.6 -122.9 28.5 -37.9 -53.1
154 0.183 -67.8 14.3 -15.1 69.1 176.7 -16.8 13.4 130.3
155 0.096 -14.8 21.2 -15.7 27.1 69.8 27.3 -27.7 99.9
156 0.110 -16.7 21.1 -13.4 28.0 71.3 21.4 -30.7 103.0
157 0.536 -115.9 -49.1 41.0 87.9 220.7 -13.1 74.3 154.9
158 0.193 -49.4 21.2 -11.3 51.8 142.1 -13.3 3.1 108.8
159 0.207 -42.6 17.4 0.1 42.6 147.5 -10.0 2.0 118.1
160 0.129 3.1 10.4 -9.2 4.4 2.8 18.7 -14.6 30.6
161 0.184 -0.2 7.7 -6.6 4.1 38.7 12.5 -19.7 55.5
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Table C.4 (continued) | UV-Vis absorption and positions of the beers samples and model system in the multivariate statistical models.

Sample Absorption
(294nm)

Scores
PCA (compositions) OPLS (compositions) PCA (mass differences) OPLS (mass differences)
x y x y x y x y

162 0.135 -15.4 25.9 -12.0 29.2 71.7 31.7 -36.0 114.6
163 0.121 -90.6 -33.4 -15.7 76.7 202.1 -12.0 60.4 138.1
164 0.525 -112.6 -59.5 39.1 70.5 231.8 -24.4 107.4 135.0
165 0.196 -3.6 6.4 -8.5 6.6 63.2 -12.5 7.4 45.8
166 0.262 -21.6 7.3 6.5 20.7 99.2 8.9 8.9 90.7
167 0.152 5.4 -0.4 -18.1 -0.3 21.2 7.6 -12.9 26.1
168 0.098 -3.6 25.6 -16.9 19.1 43.9 35.9 -36.5 98.4
169 0.155 -6.3 8.9 -11.7 9.3 51.1 -9.0 -7.1 41.7
170 0.168 -23.6 23.8 -6.4 32.8 85.1 16.8 -12.8 99.5
171 0.108 8.5 10.1 -12.9 0.7 0.4 26.1 -23.7 49.0
172 0.127 7.5 14.1 -13.2 3.6 19.4 36.9 -46.1 85.0
173 0.966 -71.3 -68.9 105.3 9.9 175.8 -46.5 161.1 51.8
174 0.781 -86.9 -131.5 70.6 6.8 168.2 -50.6 175.2 39.1
175 0.163 12.1 7.0 -8.0 -6.6 -30.4 8.2 9.3 -16.1
176 0.193 -17.0 7.5 -3.0 17.6 103.2 -1.4 -15.1 100.2
177 0.890 -60.5 -112.1 91.2 -15.8 144.2 -50.2 187.6 7.0
178 0.155 -12.8 20.4 -9.9 22.3 85.0 17.5 -38.2 115.4
179 0.145 -3.2 18.0 -6.8 15.7 44.3 29.3 -24.0 92.7
180 0.168 5.4 7.9 -5.2 -0.5 19.0 11.3 -29.0 35.9
181 0.185 -38.9 24.7 -1.1 44.1 134.8 16.3 -16.6 142.1
182 0.157 -34.1 23.5 -6.1 40.6 120.2 6.0 1.4 107.1
183 0.249 -12.8 0.0 3.9 11.5 90.9 -10.6 20.2 48.0
184 0.134 -2.4 9.7 -10.3 6.9 71.9 -6.2 -31.7 72.8
185 0.270 -2.5 9.6 -9.5 6.7 71.7 -6.3 -31.5 72.5
186 0.208 -23.5 20.6 2.1 26.6 104.1 3.5 5.3 87.7
187 0.132 -19.1 10.9 -11.8 22.0 114.7 -11.6 -2.7 82.3
188 0.114 -9.1 15.2 -8.1 17.8 60.9 19.3 -25.5 94.5
189 0.569 -39.4 -8.4 48.5 21.3 131.4 -11.2 88.8 70.8
190 0.211 -13.7 17.1 1.7 20.0 78.0 16.3 -6.0 86.6
191 0.225 38.9 -19.9 -1.1 -39.5 -195.2 -39.0 4.8 -203.5
192 0.238 -25.3 12.1 9.0 24.3 103.8 -2.8 29.1 73.6
193 0.207 -15.0 -4.6 0.6 11.4 81.9 -5.4 38.9 47.4
194 0.140 7.3 10.6 -9.1 1.0 1.7 27.8 -42.2 49.4
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Table C.4 (continued) | UV-Vis absorption and positions of the beers samples and model system in the multivariate statistical models.

Sample Absorption
(294nm)

Scores
PCA (compositions) OPLS (compositions) PCA (mass differences) OPLS (mass differences)
x y x y x y x y

195 0.158 19.5 1.6 -9.7 -13.1 -73.4 14.4 -33.0 -27.6
196 0.143 16.3 7.6 -9.2 -9.0 -43.6 27.5 -24.3 8.3
197 0.096 23.9 3.3 -11.0 -10.6 -76.0 25.3 -39.9 6.6
198 0.193 0.6 15.2 -0.7 5.9 16.7 19.3 -5.2 39.6
199 0.387 2.3 1.0 15.0 -5.5 24.7 0.5 44.7 0.8
200 0.330 -69.1 -12.0 13.7 58.5 181.7 -5.4 39.5 141.3
201 0.167 34.8 -19.2 -2.7 -36.2 -140.8 -50.4 27.1 -191.9
202 0.166 16.9 10.3 -14.3 -7.4 -51.9 22.3 -34.7 -3.9
203 0.133 3.6 21.6 -11.4 11.6 21.1 22.5 -35.0 75.0
204 0.145 -0.7 18.6 -14.1 9.9 19.6 27.0 -26.7 55.1
205 0.115 29.5 3.1 -18.3 -19.9 -119.9 14.5 -26.1 -68.9
206 0.129 12.5 12.2 -15.4 -2.1 -34.6 31.1 -33.5 22.8
207 0.186 22.6 1.0 -9.5 -17.7 -90.6 23.0 -14.5 -44.4
208 0.111 38.2 -4.8 -13.2 -32.9 -203.0 5.4 -22.2 -141.7
209 0.172 15.8 5.0 -10.4 -9.2 -21.8 22.2 -42.9 30.8
210 0.158 19.3 -3.8 -11.4 -16.1 -45.2 4.7 -34.7 -26.1
211 0.180 6.6 0.7 -5.3 -4.7 18.1 10.8 6.2 22.5
212 0.129 21.7 6.9 -16.5 -11.3 -58.9 27.9 -49.4 9.0
213 0.137 12.7 -1.1 -14.7 -9.2 17.9 12.3 -43.3 40.7
214 0.122 29.4 -6.5 -6.4 -27.9 -84.3 -2.4 -12.8 -60.4
215 0.159 24.9 -9.2 -8.5 -24.6 -68.4 8.6 -46.7 -44.5
216 0.137 30.7 -6.5 -15.2 -26.2 -118.3 25.2 -49.7 -52.8
217 0.156 28.6 -4.1 -13.6 -22.0 -95.3 24.3 -35.0 -35.9
218 0.185 20.7 -6.9 -9.7 -19.4 -37.5 8.3 -20.9 -24.3
219 0.235 16.0 -17.1 5.5 -23.5 -19.8 -16.6 7.2 -62.6
220 0.177 25.9 -1.3 -8.6 -21.9 -73.7 -4.6 -4.6 -65.1
221 0.167 16.3 1.4 -5.4 -13.5 -34.6 8.7 -23.7 -9.1
222 0.358 3.8 -3.3 10.9 -5.4 13.7 -7.8 13.8 -7.0
223 0.139 16.5 8.4 -14.2 -5.6 -16.0 34.5 -32.4 56.9
224 0.386 -24.2 -28.4 32.4 -0.4 110.7 -35.2 96.4 29.6
225 0.222 20.2 -14.1 7.0 -27.5 -49.8 -25.9 33.1 -70.2
226 0.160 8.3 3.4 -4.0 -4.6 0.8 21.2 -22.8 33.7
227 0.169 9.1 -7.9 2.5 -12.3 4.2 -6.5 0.4 -1.0
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Table C.4 (continued) | UV-Vis absorption and positions of the beers samples and model system in the multivariate statistical models.

Sample Absorption
(294nm)

Scores
PCA (compositions) OPLS (compositions) PCA (mass differences) OPLS (mass differences)
x y x y x y x y

228 0.130 7.1 7.9 -13.6 0.6 13.7 18.4 -22.3 51.7
229 0.270 -22.3 -1.5 14.0 16.6 106.3 0.6 29.1 83.0
230 0.252 -33.2 -22.1 26.3 14.5 129.9 -21.3 75.1 61.6
231 0.627 6.1 -30.0 46.8 -31.5 31.0 -49.6 113.9 -66.2
232 0.709 -26.8 -22.8 59.3 -2.1 111.4 -37.6 109.1 25.7
233 0.460 1.1 -14.4 30.9 -16.2 46.6 -57.3 79.0 -65.2
234 0.391 28.2 -17.5 17.7 -38.6 -78.9 -52.0 91.3 -153.2
235 0.247 -4.5 -3.6 13.4 -3.7 71.9 -19.2 36.6 16.4
236 0.685 -2.9 -28.0 47.9 -22.8 50.0 -53.2 118.6 -50.0
237 0.456 -17.4 -34.0 46.8 -12.2 90.7 -47.7 124.5 -12.5
238 0.457 12.4 -20.9 31.7 -28.9 -16.1 -49.6 106.5 -105.7
239 0.367 -35.1 -11.3 31.7 14.6 145.4 -20.2 78.1 72.6
240 0.435 17.3 -20.3 25.0 -31.8 -52.2 -53.8 71.9 -138.4
241 0.613 -33.9 -10.8 52.3 11.3 129.1 -25.0 107.4 43.5
242 0.537 -23.2 -5.8 38.1 7.8 126.3 -19.6 43.4 75.6
243 0.687 -42.9 -53.3 70.0 -4.3 147.6 -46.2 123.7 31.8
244 0.432 -44.5 -42.4 33.0 13.0 151.3 -33.1 93.8 79.0
245 0.804 3.1 -23.2 50.2 -26.5 37.7 -40.6 125.7 -65.3
246 0.196 27.4 -7.2 3.7 -30.3 -66.6 -19.9 7.4 -95.8
247 0.180 12.3 6.9 -6.4 -6.3 -4.8 12.8 -3.1 14.3
248 0.393 32.0 -25.1 22.4 -46.8 -128.7 -82.2 118.3 -241.1
249 0.466 12.9 -18.1 30.5 -28.3 18.4 -33.2 109.3 -62.9
250 0.679 -54.9 -42.7 66.5 11.2 161.6 -32.3 129.3 60.5
MR 0.395 - - 216.1 32.2 - - 474.4 -139.0
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Table C.5 | Statistical parameters of the multivariate data analysis.

Statistical model R2Y R2X Q2 ANOVA

PCA (compositions) 0.619 - 0.239 -
OPLS (compositions) 0.928 0.261 0.794 << 0.05
PCA (mass differences) 0.974 - 0.959 -
OPLS (mass differences) 0.974 0.293 0.811 << 0.05
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Table C.6 | Typical MR intermediate phase reactions and their respective mass differences and molecular formulae.

Reaction Mass difference Molecular formula

(De)amination (Strecker) (-)1.03163 H-3O1N-1

(De)hydrogenation (-)2.01565 -H2/H2

Ammonia elimination -17.02655 -NH3

(De)hydration (-)18.01065 -H2O/H2O
Oxidation 31.98983 O2

Decarboxylation -43.98983 -CO2

Acetaldehyde (-)44.02622 -C2H4O/C2H4O
Glyoxal (-)58.00548 -C2H2O2/C2H2O2

Methylglyoxal (-)72.02113 -C3H4O2/C3H4O2

Diacetyl (-)86.03678 -C4H6O2/C4H6O2

Hexose (-)162.05283 -C6H10O5/C6H10O5
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Figures C

Figure C.1 | Van Krevelen diagram of molecular formula annotations found in the model system (A) and marker formula
found in beer (B). Model annotations are divided in the CHO (A-I) and CHNO (A-II) chemical space. The van Krevelen
diagram of marker formula annotations (B) is divided into steps of 10-percentiles (I-IV). Color code: CHO blue; CHNO
orange; CHOS green; CHNOS red; P purple. Neutral molecular formulae are plotted. The bubble size indicates the mean
relative intensities of corresponding peaks in the spectra. The characteristic pattern of compounds derived from the MR
is marked in red and can be recognized to the 60th percentile. The line that houses compositions that differ by H2O is
indicated.

B-

B-III

B-A-II

B-IA-I
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Figure C.2 | Overlap of the annotations found in beer
samples and the annotations of the MR model system.
Sorted by loadings of the OPLS model and itemized in
10 % sections.
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Figure C.3 | Frequency distribution of the different reaction sequences building up the statistically significant mass differences. For each
of the mass differences, a dominant reaction sequence could be observed.
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D   Supplementary Chapter 4

Tables D

Table D.1 | Carbohydrate source and positions of the beer samples in the multivariate statistical models.

Sam-
ple

Starch
source a

OPLS scores Sam-
ple

Starch
source

OPLS scores

DI-FT-ICR-MS components UHPLC-ToF components DI-FT-ICR-MS components UHPLC-ToF components

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

1 W -10.17 -15.51 -2.89 - - - 231 C -18.73 14.39 -16.69 - -
2 B 12.52 3.04 -3.47 - - - 232 R -11.69 11.14 12.47 -13.66 -0.16
3 B 12.51 2.05 -3.08 - - - 233 B 15.53 4.47 -5.73 7.38 29.16
4 B 6.82 3.37 -2.66 - - - 234 W -4.74 -10.08 0.88 27.13 -15.15
5 W -9.66 -21.02 1.51 - - - 235 C -20.27 10.05 -13.60 - -
6 W -12.96 -19.25 1.08 27.39 -12.75 0.05 236 C -24.31 12.45 -17.40 -12.69 -5.66
7 W -13.62 -15.55 -1.76 - - - 237 C -22.00 13.69 -19.97 -15.62 -4.96
8 B 12.91 4.77 -4.67 - - - 238 B 10.52 2.65 -4.97 - -
9 B 13.78 4.32 -4.56 - - - 239 R -12.59 14.95 2.21 -6.62 -5.41
10 B 13.24 0.79 1.53 - - - 241 R -14.15 15.10 5.54 -13.13 -1.42
11 W -11.85 -15.11 -3.19 - - - 242 B 10.23 4.35 -3.22 - -
12 W -6.94 -12.22 0.18 - - - 243 B 12.32 1.20 -3.64 - -
13 B 10.69 2.44 -1.17 - - - 244 B 9.94 -0.01 -4.07 - -
14 B 4.84 -1.02 -4.54 - - - 245 B 6.98 2.75 -1.56 - -
15 B 9.63 0.54 -2.98 - - - 246 B 11.09 2.66 -1.81 - -
16 B 13.28 -0.06 -1.19 - - - 247 B 4.44 2.31 -2.85 - -
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Table D.1 (continued) | Carbohydrate source and positions of the beer samples in the multivariate statistical models.

Sam-
ple

Starch
source a

OPLS scores Sam-
ple

Starch
source

OPLS scores
DI-FT-ICR-MS components UHPLC-ToF components DI-FT-ICR-MS components UHPLC-ToF components
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

17 C - - - -8.71 1.66 -14.58 248 B 7.12 1.09 0.79 - -
18 B 9.44 4.01 -1.21 - - - 249 B 8.45 2.16 -2.83 - -
19 W -8.94 -20.70 -1.25 - - - 250 W -10.91 -15.63 -1.58 - -
20 W -8.29 -13.93 -0.91 - - - 251 W -4.11 -14.67 0.77 - -
21 W -5.72 -11.01 -0.84 - - - 252 B 11.06 2.68 0.88 -0.25 16.35
22 B 5.59 2.60 -1.54 - - - 253 W -7.29 -21.55 3.42 - -
23 B 10.77 2.02 -1.73 - - - 254 B 1.65 3.04 1.81 - -
24 B 6.21 0.44 -0.81 - - - 255 W -8.84 -14.53 0.45 - -
25 W -8.52 -9.14 -0.51 - - - 256 W -9.50 -11.05 -0.38 23.39 -6.41
26 B 11.81 2.94 0.07 - - - 257 W -7.11 -18.75 1.59 26.72 -12.49
27 B 11.68 1.50 -0.93 - - - 258 W -6.13 -16.23 3.18 23.75 -5.50
28 W -3.74 -10.63 -0.47 - - - 259 W -5.89 -15.65 1.40 - -
29 W -6.59 -16.52 2.29 - - - 260 B 6.65 -0.04 2.13 - -
30 B 7.55 0.96 -0.91 - - - 261 B 8.70 1.69 -0.05 - -
31 W -5.18 -12.49 -0.94 - - - 262 B 8.90 3.73 -0.92 - -
32 B 1.61 2.12 -2.80 - - - 263 W -14.09 -19.62 -0.87 - -
33 W -8.42 -18.95 1.37 29.37 -8.02 0.55 264 C -18.04 16.07 -13.07 -12.75 -7.06
34 W -8.56 -15.34 0.73 - - - 265 C -18.25 15.63 -7.33 - -
35 B 11.10 1.40 -1.66 - - - 266 C -19.50 10.38 -7.71 -7.04 -1.53
36 B 11.28 -0.62 0.93 3.78 18.89 4.94 267 C -22.09 13.46 -8.36 - -
37 B 11.82 0.07 -3.80 - - - 268 R -3.17 10.93 9.68 -13.01 2.67
38 W -4.43 -14.77 0.92 - - - 269 C -15.07 7.01 -7.50 -2.73 -2.25
39 B 8.18 0.82 -2.30 0.72 22.17 -1.55 270 C -18.38 11.25 -11.27 -10.04 -6.96
40 B 15.51 5.52 -2.47 - - - 271 C -13.62 8.49 -9.38 -7.67 -1.82
41 W -8.66 -15.30 -1.60 - - - 272 R -13.05 15.52 6.69 - -
43 B 1.12 0.01 -1.47 - - - 273 B 9.04 1.41 -0.96 - -
44 B 10.74 -0.49 -0.77 - - - 274 R -14.59 19.35 13.50 -6.33 -3.95
45 W -5.70 -16.65 0.41 - - - 275 C -19.59 17.30 -4.08 -10.47 2.57
46 B 4.31 -2.46 -1.22 - - - 276 C -17.75 15.12 -15.38 -8.17 -3.43
47 W -1.26 -9.82 -1.79 - - - 277 C -13.69 13.55 -9.19 - -
48 B 5.37 -0.88 0.19 - - - 278 B 4.31 2.80 2.08 - -
49 B 6.75 -0.21 0.41 - - - 279 B 2.03 5.58 -1.27 - -
50 B 11.93 4.27 -0.35 - - - 280 C -16.13 12.93 -8.09 - -
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Table D.1 (continued) | Carbohydrate source and positions of the beer samples in the multivariate statistical models.

Sam-
ple

Starch
source a

OPLS scores Sam-
ple

Starch
source

OPLS scores
DI-FT-ICR-MS components UHPLC-ToF components DI-FT-ICR-MS components UHPLC-ToF components
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

51 W -11.96 -15.43 -0.48 32.21 -3.54 -0.86 281 B 8.57 1.49 0.65 - -
52 W -10.10 -17.32 1.61 23.18 -16.85 1.09 282 B 11.96 3.77 -1.13 - -
53 B 10.06 2.68 -4.19 - - - 283 C -8.18 11.86 -6.99 - -
54 B 1.92 -2.42 -0.51 - - - 284 B 6.75 2.50 -0.07 - -
55 W -0.89 -12.12 0.45 - - - 285 C -13.94 12.29 -10.30 -12.19 -1.67
56 W -7.74 -17.72 -2.61 - - - 286 B 8.14 2.27 2.19 - -
57 B 8.26 0.26 0.81 - - - 287 B 6.20 0.83 0.18 - -
58 W -6.63 -16.50 0.35 - - - 288 B 2.87 0.95 -0.59 7.48 21.97
59 B 3.16 0.01 -1.76 - - - 289 W -13.96 -8.64 -2.65 - -
60 B 11.52 1.58 -1.34 - - - 290 W -7.47 -12.76 4.01 - -
61 W -3.40 -13.26 -2.84 - - - 291 B 4.15 1.00 1.80 - -
62 W -9.37 -18.90 -2.35 - - - 292 B 10.22 2.35 1.84 - -
63 W -8.04 -21.04 3.15 - - - 293 B 6.47 3.31 -1.90 2.28 19.01
64 B 11.89 -1.60 1.09 - - - 294 B 6.19 2.17 1.11 8.50 20.45
65 B 9.29 -0.12 0.73 - - - 295 B 4.80 1.29 0.87 - -
66 B 9.30 2.13 -0.63 - - - 296 C -16.08 9.57 -6.27 -11.31 -6.81
67 W -6.47 -15.98 3.09 - - - 297 R - - - -11.43 -1.23
68 B 5.74 0.03 -0.18 - - - 298 B 2.58 1.79 3.13 - -
69 W -3.11 -11.65 0.29 12.73 -2.80 -1.55 299 W -3.28 -9.13 1.20 - -
70 B 13.47 -0.21 0.69 - - - 300 B 9.72 2.18 -0.03 - -
71 B 7.36 3.29 1.51 5.70 26.70 1.50 301 B 13.75 2.65 3.39 - -
72 B 7.49 3.97 -1.99 - - - 302 B 2.10 5.39 -0.98 - -
73 B 6.77 -0.09 0.13 - - - 303 W -7.36 -17.79 2.39 - -
76 W -6.77 -17.28 0.80 - - - 304 B 15.52 3.11 -0.48 - -
78 B 8.18 1.00 3.24 - - - 305 W -10.36 -18.80 2.24 - -
80 R -6.24 10.88 6.59 - - - 306 B 9.92 4.81 3.83 - -
81 B 3.03 -1.42 0.85 - - - 307 R -6.02 14.42 7.21 -7.62 -3.97
83 B 7.43 0.08 0.52 - - - 308 W -16.52 -19.82 7.12 - -
85 W -2.96 -8.99 -0.42 - - - 309 R -16.87 7.67 18.03 -12.54 -5.16
86 B 11.70 -0.15 0.00 11.72 27.44 -0.79 310 B 8.56 1.59 2.23 - -
90 B 11.99 0.92 -5.30 - - - 311 R -3.01 9.01 2.04 -9.40 -1.09
91 B 11.55 2.63 -5.10 - - - 312 R -1.14 8.32 3.64 -7.04 0.99
92 B 10.77 1.89 -0.03 - - - 313 R -5.85 13.48 2.55 -14.13 -0.69
93 B 6.00 3.35 -2.48 - - - 314 W -11.41 -22.25 -0.10 - -
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Table D.1 (continued) | Carbohydrate source and positions of the beer samples in the multivariate statistical models.

Sam-
ple

Starch
source a

OPLS scores Sam-
ple

Starch
source

OPLS scores
DI-FT-ICR-MS components UHPLC-ToF components DI-FT-ICR-MS components UHPLC-ToF components
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

94 B 3.62 0.19 -1.35 - - - 315 B 11.94 1.34 -2.65 - -
95 ?b 14.62 11.13 -2.73 -8.45 -5.69 -12.26 317 R -14.49 15.44 5.75 -12.39 -5.66
96 B 9.06 0.08 -2.87 - - - 318 R -14.19 19.57 19.00 - -
97 C -24.39 13.00 -14.70 -9.50 -1.96 0.40 319 C -24.18 17.38 -18.15 -13.85 -4.52
98 B 6.07 1.04 -2.13 - - - 320 C -22.83 15.17 -9.88 -11.34 -10.16
99 B 13.66 8.35 -0.52 - - - 321 R -7.26 13.50 6.68 -4.63 1.92
101 R -18.30 18.25 26.14 - - - 322 R -12.18 18.63 15.72 -9.45 -3.64
102 W -13.43 -19.55 1.58 - - - 323 C -19.29 13.68 -15.29 - -
103 B 10.37 -1.35 -2.45 - - - 324 R -19.93 21.34 13.25 -12.77 -1.50
104 B 11.51 2.16 -6.88 - - - 325 R -4.86 10.68 19.95 -9.04 -1.23
105 W -7.88 -17.88 -0.44 - - - 326 B 4.65 1.47 -3.18 - -
106 W -7.41 -16.59 -1.48 - - - 327 R -16.93 19.47 9.50 - -
107 B 8.99 1.26 -2.46 - - - 328 C -24.98 13.26 -10.93 - -
108 W -9.76 -18.63 1.97 - - - 329 C -20.38 14.34 -12.91 -14.79 -6.03
109 B 7.39 2.91 -2.80 - - - 330 C -25.39 16.05 -14.58 - -
110 B 9.67 -2.63 0.83 - - - 331 R -10.67 16.73 17.68 -13.69 -7.56
111 B 12.12 -0.35 -4.84 - - - 333 B 2.03 7.34 -1.75 - -
112 B 6.44 0.04 3.26 - - - 334 R -14.52 18.71 21.59 -5.18 -2.40
113 B 9.44 -2.37 1.11 6.51 30.10 1.62 335 R -19.21 19.18 24.29 - -
114 B 3.20 3.05 -1.83 - - - 336 R -12.99 14.46 19.36 -3.84 -5.22
115 W -10.76 -11.56 -0.27 13.73 -12.35 -1.54 337 R -15.92 19.22 23.25 -14.85 -8.10
116 B 8.62 -0.29 -1.57 - - - 345 C -11.27 15.93 -9.72 -10.17 -3.06
117 W -9.03 -18.22 1.82 - - - 351 W -4.01 -11.76 -1.26 18.45 -10.12
118 W -8.42 -15.82 1.77 22.76 -6.06 5.83 352 W -4.89 -19.97 2.63 24.34 -7.36
119 B 5.09 -0.66 -0.43 - - - 354 W 1.01 -1.06 -5.06 20.63 -11.14
121 W -7.53 -11.73 -1.18 - - - 357 W -13.40 -19.18 3.30 - -
123 W -3.10 -8.23 -0.23 - - - 358 B 8.75 3.20 -0.77 0.37 20.15
124 W -7.25 -13.71 -0.73 - - - 360 C - - - -7.91 -9.04
125 B 13.47 1.49 2.76 - - - 364 W -9.00 -8.69 6.60 - -
126 W -7.98 -16.55 -0.03 - - - 365 B 10.60 1.37 0.56 - -
127 B 11.73 2.54 -2.62 - - - 366 R -13.41 20.07 11.36 -15.25 -5.07
128 B 11.24 -2.33 0.81 - - - 367 W -11.53 -17.33 5.13 17.05 -10.23
129 B 9.33 -3.86 -1.26 - - - 368 B 9.30 6.87 -6.00 - -
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Table D.1 (continued) | Carbohydrate source and positions of the beer samples in the multivariate statistical models.

Sam-
ple

Starch
source a

OPLS scores Sam-
ple

Starch
source

OPLS scores
DI-FT-ICR-MS components UHPLC-ToF components DI-FT-ICR-MS components UHPLC-ToF components
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

130 B 9.75 1.07 -0.19 - - - 369 B 9.96 3.89 -0.58 - -
131 B 4.16 -1.38 2.16 - - - 370 B 13.14 -0.16 0.87 - -
132 B 10.36 0.48 1.06 - - - 371 W -7.97 -18.90 3.10 28.88 -14.24
133 W -1.99 -15.74 4.15 - - - 372 W -14.11 -19.18 4.57 - -
134 B 12.90 4.48 -4.32 - - - 375 B 12.13 4.14 -1.52 - -
136 B 5.58 2.42 -5.36 - - - 376 B 8.95 0.28 -7.38 - -
137 W -5.15 -17.09 -3.08 - - - 379 C -24.06 15.98 -21.73 -3.64 0.86
138 W -4.78 -16.36 3.84 - - - 380 B 14.42 4.03 -0.11 - -
139 B 13.74 -3.22 -0.44 - - - 381 R -11.35 14.83 13.09 - -
140 B 14.51 1.68 -2.39 - - - 382 R -9.97 13.37 15.02 -3.77 -8.10
141 B 11.58 0.72 -5.31 - - - 383 C -21.36 16.40 -10.11 - -
142 B 10.11 2.96 1.34 - - - 385 B 17.54 -2.41 -7.06 - -
143 B 15.90 0.31 -1.23 - - - 387 B 13.67 2.95 -2.59 - -
144 B 10.23 3.85 -0.46 - - - 389 B 10.63 3.91 0.88 - -
145 B 4.53 2.71 1.64 - - - 390 B 9.44 4.00 1.33 - -
146 B 6.76 1.44 -0.38 10.08 26.56 -6.01 391 R -15.60 16.05 13.59 - -
147 B 10.92 0.71 -2.59 - - - 392 B 12.10 3.02 3.06 - -
148 B 9.12 0.00 -1.85 8.01 26.50 2.20 393 B 6.72 0.34 0.63 - -
149 -b 10.16 -1.77 -14.73 5.07 7.07 -14.59 394 B - - - 6.79 19.17
151 C -13.99 7.89 -11.48 - -4.83 -11.33 395 W -12.37 -17.87 -0.90 - -
152 W -7.77 -18.24 4.39 16.65 -9.37 0.81 396 B 9.02 3.26 2.59 - -
153 B 4.09 2.67 -2.73 - - - 397 W -7.40 -16.13 2.27 - -
154 B 7.68 5.30 -2.03 - - - 398 B 9.61 1.26 0.30 - -
155 W -13.21 -21.20 3.11 28.79 -13.35 3.49 399 B 10.69 -2.68 2.02 - -
156 C -13.20 6.74 -11.84 - - - 400 W -9.85 -20.28 5.49 - -
157 B 9.92 3.12 -1.17 - - - 401 B 7.38 -2.79 2.23 - -
159 B 16.03 0.63 -5.86 - - - 402 W -9.82 -15.69 2.45 - -
160 C -22.79 12.01 -18.87 - - - 404 W -1.33 -7.90 0.53 - -
162 B 12.62 0.13 2.43 - - - 405 W -9.34 -13.19 3.55 - -
163 B 10.66 1.75 -0.25 - - - 406 B 8.65 -1.72 2.57 - -
164 C -23.51 11.99 -13.87 -6.80 -7.15 -5.68 407 R -13.66 14.27 13.77 - -
165 B 5.99 5.31 0.68 - - - 408 C - - - -12.23 -1.76
166 -b -9.18 15.07 2.27 - -1.74 1.23 409 W -13.37 -23.69 -0.99 - -
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Table D.1 (continued) | Carbohydrate source and positions of the beer samples in the multivariate statistical models.

Sam-
ple

Starch
source a

OPLS scores Sam-
ple

Starch
source

OPLS scores
DI-FT-ICR-MS components UHPLC-ToF components DI-FT-ICR-MS components UHPLC-ToF components
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

167 C -16.64 13.28 -4.16 -8.34 3.76 1.24 410 R -13.06 17.89 20.86 -11.96 -4.11
168 R -10.77 12.65 13.34 - - - 411 C -25.87 13.57 -18.47 -8.17 -5.90
169 C -13.20 12.15 -8.45 - - - 412 W -12.11 -16.23 4.34 - -
170 R -3.89 11.07 6.34 - - - 413 R -12.62 16.33 17.63 - -
171 R -7.03 14.15 7.27 - - - 414 B 11.63 2.17 -1.84 - -
172 C -14.62 13.55 -8.73 - - - 416 B 9.41 -1.47 -0.23 - -
173 R -11.25 13.81 5.86 -9.02 -0.90 8.04 417 B 7.80 1.33 1.51 - -
174 B 9.87 0.80 3.86 10.40 26.11 2.35 418 B 12.42 4.72 0.82 - -
175 B 4.61 1.46 0.81 9.14 17.90 9.28 419 B 8.57 4.09 1.11 - -
177 B 10.19 -1.01 2.80 - - - 420 B 10.35 2.25 -2.12 - -
178 B 7.37 4.22 -0.11 - - - 421 B 7.86 -0.69 -2.28 - -
179 B 3.79 3.96 0.57 - - - 422 B 6.91 1.13 1.47 - -
180 B 6.84 0.26 -4.08 - - - 424 B 6.87 1.49 4.28 - -
182 B 9.41 3.02 4.40 - - - 425 B 6.28 1.54 1.85 - -
191 C -13.70 11.39 -12.70 - -1.73 -8.99 426 B 19.33 -0.64 -3.71 - -
192 B 13.19 2.03 3.89 - - - 427 B 9.24 3.69 0.75 11.34 19.01
193 B 10.37 -0.50 -3.57 - - - 428 B 8.73 0.75 1.76 - -
194 W -10.53 -15.45 -4.21 - - - 429 B 5.78 5.34 -0.68 - -
197 B 4.59 0.53 -0.75 - - - 430 B 9.81 1.43 0.33 - -
198 W -6.23 -8.59 -0.74 14.31 -8.58 -5.95 431 B 4.95 1.52 -0.15 - -
199 B 12.61 1.55 2.35 - - - 432 B 9.38 1.65 -0.95 - -
200 W -15.96 -18.50 0.21 24.60 -17.21 0.77 433 B 16.87 6.85 -5.87 - -
201 B 8.63 5.08 -1.72 - - - 434 B 14.37 3.77 3.53 - -
202 W -12.53 -20.72 4.45 19.55 -7.58 -0.22 435 B 10.42 -1.48 1.29 8.84 22.96
203 B 10.40 3.99 1.49 - - - 436 B 10.74 -0.94 1.62 - -
204 C -18.32 6.75 -9.53 - -0.04 -1.84 437 R -12.37 17.13 18.95 - -
205 B 4.91 5.83 2.46 - - - 438 B 12.49 4.63 -3.96 - -
206 B 5.92 0.71 -2.09 - - - 439 W -1.64 -11.50 0.67 - -
207 W -6.77 -17.18 4.71 - - - 440 B 7.11 2.96 -4.13 - -
208 B 10.39 4.06 0.52 - - - 441 W -14.15 -21.57 2.26 - -
209 B 5.74 2.54 2.11 - - - 442 W -11.55 -14.12 -0.68 - -
210 B 13.12 7.44 -1.10 - - - 443 B 8.27 2.67 -2.84 - -
211 B 13.72 3.06 1.74 - - - 444 B 5.46 -1.93 -1.57 - -
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Table D.1 (continued) | Carbohydrate source and positions of the beer samples in the multivariate statistical models.

Sam-
ple

Starch
source a

OPLS scores Sam-
ple

Starch
source

OPLS scores
DI-FT-ICR-MS components UHPLC-ToF components DI-FT-ICR-MS components UHPLC-ToF components
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

212 B 4.96 -2.26 1.92 - - - 445 B 13.72 4.17 -5.14 4.37 21.39
213 R -12.88 19.82 17.69 - -4.99 11.49 446 W -9.56 -13.93 -1.58 - -
214 B 6.87 2.54 -3.27 - - - 447 B 9.14 1.58 1.14 - -
215 B 12.25 1.89 0.52 - - - 448 B 7.70 0.46 -0.44 - -
216 B 9.76 2.12 -2.14 - - - 449 W -6.07 -13.26 3.26 10.42 -8.71
217 W -12.08 -19.90 2.43 27.19 -12.02 1.09 450 W -8.42 -15.81 3.65 16.48 -0.98
218 B 11.81 1.46 -0.90 - - - 451 B 7.74 5.49 -3.52 12.86 25.64
219 B 11.69 1.35 -0.79 - - - 452 R -8.67 9.82 13.53 - -
220 B 11.00 -0.35 -3.86 - - - 453 W -6.69 -16.87 5.69 - -
221 W -7.45 -13.45 -1.66 - - - 454 B 6.08 3.42 2.69 - -
222 R -5.91 15.26 11.57 - -7.45 10.75 455 B 10.54 7.25 2.85 - -
223 B 10.33 3.44 -4.12 - - - 456 B 5.42 2.35 0.10 - -
224 B 10.64 3.28 1.18 - - - 457 B 13.21 1.41 2.34 - -
226 B 8.56 1.12 -4.46 - - - 458 B 7.66 0.81 2.74 - -
227 W -13.81 -20.03 1.48 - - - 459 B 9.85 6.32 2.27 - -
228 C -19.75 12.60 -15.16 - -6.11 -12.60 464 R -8.90 14.38 14.69 - -
229 C -18.34 11.72 -12.58 - -1.58 -13.79 465 R -5.39 13.22 9.88 - -
230 C -8.36 9.60 -9.01 - -8.35 -9.21 467 R -5.40 14.15 13.61 - -

a Barley (B), Wheat (W), Corn (C) and Rice (R)

b The sample was excluded from the models because of contradicting information on the beer bottle and unambiguous positions in the score
plots (FT-ICR and UPLC-MS). Only predicted score values are available for the sample.
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Table D.2 | SPE work-up of the beer samples for UHPLC-ToF-MS analysis.

Cartridge Bond Elut PPL, 1 mL and 100 mg (Agilent Santa Clara, CA, USA)

Conditioning 1000 µL MeOH
2x 1000 µL Milli-Q Water + 2 % FA

Sample 1000 µL acidified sample (2 % FA)
Washing 500 µL Milli-Q Water + 2 % FA
Dry vacuum
Elution 2x 500 µL MeOH
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Table D.3 | Parameters for UHPLC-separation and ToF-measurements.

Parameter Value

Sample preparation Table D.2 in Supplementary Chapter 4
Column RP (C18: 1.7 µm, 2.1 x 100 mm, AcquityTM UPLC BEHTM)
Flow rate 400 µL min-1

Column temperature 40 °C
Injection volume 5 µL (partial loop)
Gradient profile 95 % A (0.1 % formic acid in water) and 5 % B (0.1 % formic acid in
Measurement time 10 min.
Internal calibration ESI-L Low Concentration Tuning Mix
External calibration Sodium iodide solution clusters
ESI ionization mode negative
Nitrogen flowrate 10 L min-1

Interface temperature 300°C
Nebulizer gas flow 1 L min-1

Interface voltage -4 kV
DL temperature 250 °C
Heat block temperature 400 °C
Drying gas flow 10 L min-1

Detector voltage 2 kV
MS1 parameters 5 Hz event cycle time

Ion accumulation on
MS2 fragmentation parameters DDA (3 dependent events)

CE spread 20 eV ± 15 eV
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Table D.4 | Parameters of the UHPLC-ToF-MS and FT-ICR-MS data treatment using the MS-Dial and SIMCA software.

Parameter (LC-MS-data treatment) Value

Minimum peak height 1800 ampl.
Minimum peak width 10 scans
RT tolerance 3 sec.
m/z tolerance 0.005 Da
Sample Intensity / blank Intensity >10 fold change
Filter >33 % of the samples within the given class
Normalization (compensation for intensity fluctuations) LOWESS, based on 22 QCs
MS/MS network similarity 65% cutoff

Zero filling Random value between average minimum peak
intensity for each sample ± σ, (LC-MS and FT-MS)

Normalization Z-scores (LC-MS and FT-MS)
Scaling Unit-Variance (UV) scaling (LC-MS and FT-MS)
Transformation Logarithmize (only applied to FT-MS)
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Table D.5 | Statistical parameters of the multivariate data analysis.

Statistical model n Features
Components

(predictive + orthogonal)
R2Y R2X Q2 ANOVA

OPLS (FT-ICR-MS) 392 7697 3+9 0.881 0.378 0.601 << 0.05
OPLS (UHPLC-ToF-MS) 98 1776 3+5 0.862 0.528 0.641 << 0.05
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Table D.6 | Mass features resolved by FT-ICR-MS within the nominal mass m/z 385 throughout the whole sample set.

m/z Neutral
Formula

Mean
intensity

Loadings Marker
3rd component 2nd component

385.02360 C15H14O10S 5.8E+06 -0.054 0.020 Corn
385.03811 C11H18N2O9S2 3.9E+06 -0.025 0.006 Corn
385.04461 C12H18O12S 6.9E+06 -0.005 0.001
385.04604 C13H14N4O8S 5.8E+06 0.003 0.000
385.04932 C10H18N4O8S2 4.8E+06 -0.021 0.002 Corn
385.05412 C12H19O12P 1.2E+07 -0.001 -0.010
385.07459 C12H22N2O8S2 1.1E+07 -0.006 -0.002
385.07764 C16H18O11 8.3E+06 0.015 -0.017 Wheat
385.08091 C13H22O11S 4.6E+06 -0.020 0.001 Corn
385.08888 C15H18N2O10 8.3E+06 0.007 0.020 Corn&Rice
385.09291 C20H18O8 6.8E+06 0.013 0.001
385.09876 C13H22O13 8.2E+06 -0.001 -0.005
385.10023 C14H18N4O9 7.9E+06 0.002 0.000
385.10179 C12H23N2O10P 1.0E+07 -0.007 -0.007
385.11404 C17H22O10 6.6E+07 0.001 -0.018 Wheat
385.11547 C18H18N4O6 2.2E+07 0.048 0.009 Rice
385.11733 C14H26O10S 6.9E+06 -0.007 0.006
385.12525 C16H22N2O9 6.9E+06 -0.002 -0.010
385.13259 C18H26O7S 1.6E+07 0.004 0.021 Corn&Rice
385.13496 C14H26O12 1.3E+07 0.000 0.003
385.13649 C15H22N4O8 4.1E+07 -0.001 -0.008
385.13816 C13H27N2O9P 6.2E+07 0.027 0.015 Rice
385.14634 C13H26N2O11 9.3E+06 0.008 -0.018 Wheat
385.14941 C12H27N4O8P 6.8E+06 0.003 -0.016 Wheat
385.15042 C18H26O9 6.4E+06 -0.003 -0.006
385.16161 C17H26N2O8 8.7E+06 -0.001 -0.010
385.16563 C22H26O6 6.6E+06 0.013 0.009
385.17140 C15H30O11 1.3E+07 -0.009 -0.022 Wheat
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Table D.6 (continued) | Mass features resolved by FT-ICR MS within the nominal mass m/z 385 throughout the whole sample
set.

m/z Neutral
Formula

Mean
intensity

Loadings
Marker3rd component 2nd component

385.17288 C16H26N4O7 2.3E+07 0.008 0.024 Corn&Rice
385.17867 C20H30O5Cl 6.6E+06 -0.005 0.008
385.18676 C19H30O8 6.8E+06 0.006 -0.001
385.19801 C18H30N2O7 5.1E+06 0.029 0.003 Rice
385.20201 C23H30O5 4.3E+06 0.001 0.001
385.20923 C17H30N4O6 9.1E+06 0.005 0.032 Corn&Rice
385.22314 C20H34O7 2.3E+07 -0.007 0.005
385.23840 C24H34O4 9.2E+06 0.005 -0.010
385.24560 C18H34N4O5 4.8E+06 -0.011 0.009 Corn
385.25953 C21H38O6 7.5E+06 0.021 0.009 Rice
385.29592 C22H42O5 8.0E+06 0.015 0.001
385.33232 C23H46O4 6.4E+06 0.009 0.006
385.02360 C15H14O10S 5.8E+06 -0.054 0.020 Corn
385.03811 C11H18N2O9S2 3.9E+06 -0.025 0.006 Corn
385.04461 C12H18O12S 6.9E+06 -0.005 0.001
385.04604 C13H14N4O8S 5.8E+06 0.003 0.000
385.04932 C10H18N4O8S2 4.8E+06 -0.021 0.002 Corn
385.05412 C12H19O12P 1.2E+07 -0.001 -0.010
385.07459 C12H22N2O8S2 1.1E+07 -0.006 -0.002
385.07764 C16H18O11 8.3E+06 0.015 -0.017 Wheat
385.08091 C13H22O11S 4.6E+06 -0.020 0.001 Corn
385.08888 C15H18N2O10 8.3E+06 0.007 0.020 Corn&Rice
385.09291 C20H18O8 6.8E+06 0.013 0.001
385.09876 C13H22O13 8.2E+06 -0.001 -0.005
385.10023 C14H18N4O9 7.9E+06 0.002 0.000
385.10179 C12H23N2O10P 1.0E+07 -0.007 -0.007
385.11404 C17H22O10 6.6E+07 0.001 -0.018 Wheat
385.11547 C18H18N4O6 2.2E+07 0.048 0.009 Rice
385.11733 C14H26O10S 6.9E+06 -0.007 0.006
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Table D.6 (continued) | Mass features resolved by FT-ICR MS within the nominal mass m/z 385 throughout the whole sample
set.
m/z Neutral

Formula
Mean
intensity

Loadings Marker
3rd component 2nd component

385.12525 C16H22N2O9 6.9E+06 -0.002 -0.010
385.13259 C18H26O7S 1.6E+07 0.004 0.021 Corn&Rice
385.13496 C14H26O12 1.3E+07 0.000 0.003
385.13649 C15H22N4O8 4.1E+07 -0.001 -0.008
385.13816 C13H27N2O9P 6.2E+07 0.027 0.015 Rice
385.14634 C13H26N2O11 9.3E+06 0.008 -0.018 Wheat
385.14941 C12H27N4O8P 6.8E+06 0.003 -0.016 Wheat
385.15042 C18H26O9 6.4E+06 -0.003 -0.006
385.16161 C17H26N2O8 8.7E+06 -0.001 -0.010
385.16563 C22H26O6 6.6E+06 0.013 0.009
385.17140 C15H30O11 1.3E+07 -0.009 -0.022 Wheat
385.17288 C16H26N4O7 2.3E+07 0.008 0.024 Corn&Rice
385.17867 C20H30O5Cl 6.6E+06 -0.005 0.008
385.18676 C19H30O8 6.8E+06 0.006 -0.001
385.19801 C18H30N2O7 5.1E+06 0.029 0.003 Rice
385.20201 C23H30O5 4.3E+06 0.001 0.001
385.20923 C17H30N4O6 9.1E+06 0.005 0.032 Corn&Rice
385.22314 C20H34O7 2.3E+07 -0.007 0.005
385.23840 C24H34O4 9.2E+06 0.005 -0.010
385.24560 C18H34N4O5 4.8E+06 -0.011 0.009 Corn
385.25953 C21H38O6 7.5E+06 0.021 0.009 Rice
385.29592 C22H42O5 8.0E+06 0.015 0.001
385.33232 C23H46O4 6.4E+06 0.009 0.006
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Table D.7 | Identification of compounds characteristic for wheat, corn and rice-based on UPLC-ToF-MS fragmentation spectra.

m/z
[M-H]-

Ret.
time

Starch
source

Identification MS2-fragm. (neg.) [x/y]a MS2-fragm. (pos.) [x/y]a Literature

potential structure
[molecular formula]

Level [10]

164.0348 3.79 wheat MBOA [C8H7NO3] 2 121(18), 149(100), 164(25)
[2/2]

67(26), 95(40), 106(19),
107(26), 110(64), 122(17),

[349]

326.0886 3.00 wheat HBOA-Glc [C14H17NO8] 2 108(47), 149(17), 164(100),
236(61) [3/3]

- [225,281,349]

342.0831 3.03 wheat DIBOA-Glc [C14H17NO9] 2 134(100), 162(11), 180(9),
342(22) [3/3]

- [225,281]

356.0991 3.14 wheat HMBOA-Glc
[C15H19NO9]

2 123(10), 138(26), 166(9),
194(100), 356(32) [4/4]

- [225,281]

421.2710 4.40 wheat N-Acylglutamine
[C23H38N2O5]

3 243(10), 357(100), 375(8) [3/3] - in silico
[262,347]

423.2867 4.62 wheat N-Acylglutamine
[C23H40N2O5]

3 157(5), 209(27), 221(9), 245(4),
359(100), 377(15), 423(14)

- in silico

431.2916 4.49 wheat N-Acylglutamine
[C25H40N2O4]

3 209(17), 221(16), 245(36),
359(56), 431(100) [4/4]

- in silico

437.2653 4.32 wheat N-Acylglutamine
[C23H38N2O6]

3 243(20), 373(100), 391(42),
437(9) [NA]

120(29), 121(100), 133(79),
439(62) [NA]

in silico

439.2820 4.50 wheat N-Acylglutamine
[C23H40N2O6]

3 164(4), 173(10), 225(11),
237(4), 245(8), 375(100),

- in silico

206.0458 3.02 corn Hydroxyoxindol-acetic
acid [C10H9NO4]

2 147(11), 162(100), 188(17),
206(36) [3/3]

85(21), 89(20), 116(52),
144(51), 162(100), 208(25)
[5/5]

in silico,
[342]

337.2382 6.04 corn Lipid (DiHEtrE)
[C20H34O4]

3 169(3), 183(4), 197(4), 211(7),
225(7), 239(16), 276(4),

79(22), 81(65), 93(31), 95(100),
105(34), 107(23), 109(54),

in silico,
[350,351]

337.2381 6.09 corn Lipid (DiHEtrE)
[C20H34O4]

3 169(3), 183(3), 197(3), 211(8),
225(7), 239(18), 276(3),

in silico
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Table D.7 (continued) | Identification of compounds characteristic for wheat, corn and rice based on UPLC ToF MS fragmentation spectra.

m/z
[M-H]-

Ret.
time

Starch
source

Identification MS2-fragm. (neg.) [x/y]a MS2-fragm. (pos.) [x/y]a Literature
potential structure
[molecular formula]

Level [10]

351.2182 6.57 corn Lipid (TriHETE)
[C20H32O5]

3 181(3), 209(6), 211(5), 235(10),
239(13), 253(12), 264(3),

91(25), 95(26), 113(546),
163(43), 181(54), 241(66),

in silico
[350,351]

351.2182 6.62 corn Lipid (TriHETE)
[C20H32O5]

3 181(3), 209(6), 211(4), 235(9),
239(11), 253(11), 264(3),

in silico

351.2538 6.34 corn Lipid [C21H36O4] 3 183(4), 211(5), 225(3), 239(11),
253(9), 290(4), 333(17),

107(27), 279(35), 335(100),
353(31) [NA]

in silico

351.2544 6.26 corn Lipid [C21H36O4] 3 183(4), 211(6), 225(3), 235(2),
239(11), 253(9), 290(5),

in silico

365.2332 7.17 corn Lipid [C21H34O5] 3 183(2), 211(2), 223(3), 239(6),
249(4), 250(5), 253(6), 267(5),

127(37), 195(68), 255(72),
265(29), 269(30), 349(100),

in silico

365.2334 6.87 corn Lipid [C21H34O5] 3 195(2), 211(4), 223(6), 239(10),
249(11), 253(11), 267(12),

in silico

365.2337 6.80 corn Lipid [C21H34O5] 3 224(4), 240(5), 250(9), 251(5),
253(7), 267(3), 268(7), 322(6),

in silico

237.0768 3.39 corn
grits

Coumaroyl glycerol
[C12H14O5]

2 117(100), 119(38), 145(76),
163(11), 237(71) [4/4]

65 (13), 91(54), 119(37),
147(100), 239(13) [4/4]

in silico,
[343]

253.0718 3.15 corn
grits

Caffeoyl glycerol
[C12H14O6]

2 105(10), 133(87), 135(46),
161(82), 179(12), 253(100)

63(11), 77(8), 89(80), 107(4),
117(31), 135(23), 145(25),

in silico,
[343]

451.1380 2.95 rice N-Glc-IAA-Asp
[C20H24N2O10]

1 132(35), 173(43), 292(15),
335(18), 433(7), 451(100) [5/5]

130(100), 134(14), 147(18),
172(17), 291(63), 453(23) [5/5]

Co-Chrom.

539.2845 3.50 rice [C24H40N6O8] - 127(3), 167(7), 215(12),
255(10), 424(2), 539(100) [NA]

- -

542.2621 3.88 rice Peptide (Glu-Trp-
Leu/Ile-Pro)
[C27H37N5O7]

3 127(3), 171(3), 222(7), 240(13),
542(100) [4/4]

116(46), 120(93), 144(32),
159(28), 173(98), 284(34),
316(35), 320(48), 429(47),

in silico

544.2257 2.96 rice [C22H35N5O11] - 128(21), 185(6), 215(7), 241(6),
544(100) [NA]

- -
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Table D.7 (continued) | Identification of compounds characteristic for wheat, corn and rice based on UPLC ToF MS fragmentation spectra.

m/z
[M-H]-

Ret.
time

Starch
source

Identification MS2-fragm. (neg.) [x/y]a MS2-fragm. (pos.) [x/y]a Literature
potential structure
[molecular formula]

Level [10]

599.2831 3.77 rice Peptide (Asp-Ser-Val-
Leu-Trp, cyclic)
[C29H40N6O8]

3 240(6), 369(3), 387(28),
599(100) [3/3]

217(11), 227(11), 245(13),
339(15), 340(11), 486(34),
601(100) [6/6]

in silico

a x: fragment ions found for the compound; y: fragment ions described in the reference
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Table D.8 | Presence of the compounds characteristic for wheat, corn and rice in respective grain foodstuff.

m/z [M-H]- RT Compound CGa CS CF CO WG WS WF HWF RG RS RF

164.0348 3.79 MBOA [C8H7NO3] - - - - - - - pos. - - -
326.0886 3.00 HBOA-Glc [C14H17NO8] - - - - - - neg. neg. - - -
342.0831 3.03 DIBOA-Glc [C14H17NO9] - - - - neg. - - - - - -
356.0991 3.14 HMBOA-Glc [C15H19NO9] - - - - - - neg. neg. - - -
421.2710 4.40 N-Acylglutamine [C23H38N2O5] - - - - - - - - - - -
423.2867 4.62 N-Acylglutamine [C23H40N2O5] - - - - neg. - neg. neg. - - -
431.2916 4.49 N-Acylglutamine [C25H40N2O4] - - - - neg. - - - - - -
437.2653 4.32 N-Acylglutamine [C23H38N2O6] - - - - neg.

pos.
- pos. pos. - - -

439.2820 4.50 N-Acylglutamine [C23H40N2O6] - - - - neg. - - - - - -
206.0458 3.02 Hydroxyoxindol-acetic acid

[C10H9NO4]
neg.b

pos.
neg.
pos.

neg.
pos.

- - - - - - - -

337.2382 6.04 Lipid (DiHEtrE) [C20H34O4] - - - neg. - - - - - - -
337.2381 6.09 Lipid (DiHEtrE) [C20H34O4] - - - neg. - - - - - - -
351.2182 6.57 Lipid (TriHETE) [C20H32O5] - - - - - - - - - - -
351.2182 6.62 Lipid (TriHETE) [C20H32O5] - - - - - - - - - - -
351.2538 6.34 Lipid [C21H36O4] - - - neg.

pos.
- - - - - - -

351.2544 6.26 Lipid [C21H36O4] - - - neg.
pos.

- - - - - - -

365.2332 7.17 Lipid [C21H34O5] - - - - - - - - - - -
365.2334 6.87 Lipid [C21H34O5] - - - - - - - - - - -
365.2337 6.80 Lipid [C21H34O5] - - - - - - - - - - -
451.1380 2.95 N-Glc-IAA-Asp [C20H24N2O10] - - - - - - - - neg. neg.

pos.
neg.

539.2845 3.50 [C24H40N6O8] - - - - - - - - - - neg.
542.2621 3.88 Glu-Trp-Leu/Ile-Pro - - - - - - - - - neg. neg.
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Table D.8 (continued) | Presence of the compounds characteristic for wheat, corn and rice in respective grain foodstuff.

m/z [M-H]- RT Compound CGa CS CF CO WG WS WF HWF RG RS RF
544.2257 2.96 [C22H35N5O11] - - - - - - - - - neg. -
599.2831 3.77 Asp-Ser-Val-Leu-Trp (cyclic) - - - - - - - - - - -

a CG: corn grits, CS: corn starch, CF: corn flour, CO: corn oil, WG: wheat grits, WS: wheat starch, WF: wheat flour, HWF: whole wheat flour, RG: rice
grits, RS: rice starch, RF: rice flour

b the respective compound was found in negative (neg.) and/or positive (pos.) ionization mode.
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Figures D

Figure D.1 | Score plot of FT-ICR-MS data (1st and 2nd component) shows the
overlap of barley beers (carbohydrate source) with craft beers (beer type). All
measured samples are colored according to their carbohydrate source. The color
of the frame is defined by the beer type. Most of the craft beers are brewed with
barley as the only carbohydrate source.
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Figure D.2 | Loadings plots of the OPLS-DA of the DI-FT-ICR-MS (A) and
UPLC-ToF-MS (B) data differentiating the carbohydrate sources used. The position
of mass features (grey) indicates their separation significance regarding the beer
characteristics given in the score plot (Figure 4.2). The most significant marker
compositions are highlighted in the corresponding color. The first and second
components are shown in (A-I) and (B-I). The third against the second and the first
against the third component are shown in (A-II) and (B-II) respectively. Colored dots
in (B-II) could be identified (identification level 1-3).
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Figure D.3 | Mass difference network excerpt of lipids
characteristic for corn. The nodes representing
annotations are connected by edges representing
potential biochemical reactions. Some connections
are neglected for reasons of clarity.
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Figure D.4 | Overlap of mass features found in RP-UPLC-ToF-MS (LC-MS) and
DI-FT-ICR-MS (FT-ICR) within a mass tolerance of ±10 ppm with regard to overall
peaks (A) and peaks found as potential markers for carbohydrate sources (B). The
analytical approaches are differentiated by color in (A). The colors in (B) are based on
the different carbohydrate sources.

A B
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E   Supplementary Chapter 5

Tables E

Table E.1 | Regular beer attributes and folate contents of Barre Pilsener from 1885 and 2019 compared to Vienna, Bohemian and Bavarian
beer from 1888.

 Beer attribute  Unit Barre
Pilsner 1885

Vienna
Beer [373]

Bohemian
Beer [373]

Bavarian
Beer [373]

Barre
Pilsner 2019

Original gravity w/w% 10.36 10.39-13.26 12.45 14.71 11.195
Alcohol w/w% 3.12 2.9-3.7 3.43 3.94 3.94
Real extract w/w% 4.26 4.4-5.7 5.4 6.7 3.6
Attenuation limit, % 58.8 57 56.2 54.3 68
pH - 4.42 - - - 4.21
Bitter units EBC 18.4 - - - 28.7
Color EBC 12.5 - - - 7.7

Folate analysis
PteGlu [µg/100g] n.d. - - - n.d.
H4Holate [µg/100g] n.d. - - - n.d.
5-CH3-H4Folate [µg/100g] 0.58 - - - 1.10
5-CHO-H4Folate [µg/100g] n.d. - - - 2.06
10-CHO-PteGlu [µg/100g] n.d. - - - 3.91
Total Folates [µg/100g] 0.58 - - - 7.08
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Table E.2 | 1H and 13C chemical Shifts, Proton Multiplicities for identified metabolites in the beer samples.

Compound (No.) Assigned group σ 1H Multiplicity σ 13C

2-Methyl-1-propanol (1) 2xCH3

(CH3)2CHCH2OH
(CH3)2CHCH2OH

0.88
1.76
3.38

d
m

21.0
27.0

3-Methyl-1-butanol (2) 2xCH3

(CH3)2CH(CH2)2OH
(CH3)2CHCH2CH2OH
(CH3)2CHCH2CH2OH

0.89
1.44
1.66
3.64

d
m
m

24.8
43.0
27.2

Propanol (3) CH3CH2CH2OH
CH3CH2CH2OH
CH3CH2CH2OH

0.89
1.56
3.57

t
m
t

n.d.

Valine (4) 2xCH3

(CH3)2CH
1.05, 0.99 2.27 d, d

m
19.7

Lactic acid (5) CH3(CHOH)COOH
CH3(CHOH)COOH

1.33
4.11

d
q

19.33
71.6

Alanine (6) CH3

CH
1.48
3.79

d
q

19.4

Acetic acid (7) CH3 1.92 s 26.3
Proline (8) γ-CH2

β-CH2

β-CH2

σ-CH2

σ-CH2

α-CH

2.00
2.06
2.33
3.32
3.41
4.11

m
m
m
m
m
dd

26.6
31.7
31.7
48.9
48.9
64.1

GABA (9) CH2COO
(CH2)CH2(CH2

NH2CH2

2.30
1.90
3.02

t
m
t

37.3
26.7
42.3

Pyruvate (10) CH3 2.37 s 29.5



205

S
upplem

entary
C

hapter 5

Table E.2 (continued) | 1H and 13C chemical Shifts, Proton Multiplicities for identified metabolites in the beer samples.

Compound (No.) Assigned group σ 1H Multiplicity σ 13C
Succinic acid (11) (CH2)2 2.40 s 37.4
Citrate (12) CH´2

CH´´2
2.53
2.66

d
d

48.8
48.8

(13) – (20) Compound classes

Uridine (21) 2x C=CH 5.92, 7.88 d, d 90.7 , 144.8
Adenosin/ Inosine (22) N=CH´

N=CH´´
OCHN

8.27
8.36
6.07

s
s
d

155.7
143.5
91.3

Tyrosol (23) 2x C=CH´
2x C=CH´´

6.87
7.19

m
m

118.6
133.4

Tyrosine (24) 2x C=CH´
2x C=CH´´

6.91
7.20

m
m

119.0
133.7

Phenylalanine (25) CH´aromatic

CH´´aromatic

7.34
7.43

m
m

132.1
131.1

Histidine (26) N=CH
C=CH

8.00
7.06

s
s

140.7
119.5

Cytidine (27) C=CH´
C=CH´´

6.07
7.85

d
d

99.2
144.7

Formic acid (28) HCOOH 8.46 s 174.0
Niacin (29) 4x C=CH 8.95, 8.62 8.27, 7.54 m n.d.
HMF (30) CHO

2x C=CH
CH2OH

9.46
7.55
6.69

s
d
m

183.7
n.d
n.d.

Furfural (31) CHO
3x C=CH

9.50
7.94, 7.60, 6.78

s
m

n.d.
n.d.

Acetaldehyde (32) CHO
CH3

9.68
2.21

q
d

n.d.
n.d.
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Table E.3 | General statistical and model parameters of the multivariate data analysis.

Parameter

Outlier detection Hotelling’s T2 (95 %)
Goodness of fit R2
Goodness of prediction Q2
Overfitting CV-ANOVA

Significant features 95th percentile of features with most characteristic loadings (385 compositions)
Metadata As given on the beers’ label. The UV/Vis measurements were executed as described in [226]

Sample exclusion For the grain model, 23 samples were excluded due to ambiguous information of the grains used (“rice
and/or corn”, “cereals”)

Statistics software SIMCA 13.0.3.0 (Umetrics, Umeå, Sweden)

Statistical model (OPLS) n R2Y R2X Q2 ANOVA
Beer type 400 0.865 0.294 0.752 << 0.05
Fermentation 400 0.936 0.274 0.792 << 0.05
Purity Law 400 0.971 0.325 0.569 << 0.05
Grain 377 0.881 0.373 0.601 << 0.05
Maillard (Abs. 294 nm) 221 0.941 0.239 0.806 << 0.05
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Table E.4 | Instrumental parameters and reagents used for FT-ICR-MS, UPLC-ToF-MS and HPLC-Triple Quad (Folates) measurements.

Reagent Source

Methanol (MeOH) FLUKA, Sigma-Aldrich (LC-MS grade, CHROMASOLV, St Louis, MO, USA)
Acetonitrile (ACN) FLUKA, Sigma-Aldrich (LC-MS grade, CHROMASOLV, St Louis, MO, USA)
Ultrapure water Milli-Q Integral Water Purification System (Millipore, MA, Billerica, USA)
L-arginine Sigma-Aldrich (reagent grade >98%, St Louis, MO, USA)
Formic acid (FA) VWR HiPerSolv CHROMANORM® (LC-MS grade; ≥99%)

FT-ICR-MS Value
Sample preparation degassing by ultrasonification (10 °C, 5min.); dilution 1:500 in methanol (v:v); separation of precipitated

proteins by centrifugation (10,000 rpm, 3min.)

Direct injection flowrate 120 µL.h-1.
ESI capillary voltage 3600 V
Time domain 4 mega words
Accumulation time 0.25 ms
Mass range m/z 120 to 1000
Accumulated scans 400
Measurement time 10 min.
External calibration clusters of arginine (5 mg.L-1 in methanol)
Internal calibration in-house calibration list containing 2000 molecular formulae, which are highly abundant in beers

UPLC-ToF-MS Value
Sample preparation SPE: Bond Elut PPL, 1 mL and 100 mg (Agilent Santa Clara, CA, USA); conditioning: 100 µL MeOH,

2x1000µL Mili-Q-Water + 2% Formic acid (FA); 1000 µL acidified sample (2% FA); washing: 500 µL Mili-Q-
Water + 2%FA; dry vacuum; elution: 2x500µL MeOH)

Column RP (C18: 1.7 µm, 2.1 x 100 mm, AcquityTM UPLC BEHTM)
Flow rate 400 µL min-1

Column temperature 40 °C
Injection volume 5 µL (partial loop)
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Table E.4 (continued) | Instrumental parameters and reagents used for FT-ICR-MS, UPLC-ToF-MS and HPLC-Triple Quad (Folates)
measurements.
UPLC-ToF-MS Value
Gradient profile 95 % A (0.1 % formic acid in water) and 5 % B (0.1 % formic acid in acetonitrile) for 1 min; decreasing to

0.5 % A in 5 min; held for 4 min.
Measurement time 10 min.
Internal calibration ESI-L Low Concentration Tuning Mix
External calibration Sodium iodide solution clusters
ESI ionization mode negative
Nitrogen flowrate 10 L min-1

Interface temperature 300°C
Nebulizer gas flow 1  L min-1

Interface voltage -4 kV
DL temperature 250 °C
Heat block temperature 400 °C
Drying gas flow 10 L min-1

Detector voltage 2 kV
MS1 parameters 5 Hz event cycle time

Ion accumulation on
MS2 fragmentation parameters DDA (3 dependent events)

CE spread 20 eV ± 15 eV

UHPLC-Triple Quad-MS Value
Sample preparation The sample preparation of Striegel, et al. [452] was modified by adding the suitable 13C5 labelled

isotopologue standard of 10-CHO-PteGlu for quantification. As described in Pferdmenges, et al. [375]

Column RaptorTM ARC-18 (2.7 µm, 100 x 2.1 mm)
Precolumn RaptorTM EXP Guard Column (2.7 µm, 5 x 2.1 mm)
Flow rate 400 µL min-1

Column temperature 30 °C
Injection volume 10 µL
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Table E.4 (continued) | Instrumental parameters and reagents used for FT-ICR-MS, UPLC-ToF-MS and HPLC-Triple Quad (Folates)
measurements.
UHPLC-Triple Quad-MS Value
Gradient profile 97 % A ( 0.1 % formic acid in water) and 3 % B (0.1 % formic acid in acetonitrile) for 1 min; increasing to

10% B in 2 min; held for 2.5 min; increasing to 15 % B in 5 min; increasing to 50 % B in 1 min; held for 1
min; decrease to 3 % B in 1 min; equilibrate for 4 min.

Measurement time 17.5 min
ESI ionization mode Positive (MRM-multiple reaction monitoring)
Interface temperature 300 °C
Nebulizer gas flow 3 L min-1

Heating gas flow 10 L min-1

Interface voltage 4 kV
DL temperature 250 °C
Heat block temperature 400 °C
Drying gas flow 10 L min-1

CID gas 270 kPa
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Table E.5 | Instrumental parameters and reagents used for NMR measurements.

Reagent Source (Purity)

D2O Armar chemicals (99.8 atom%, Döttingen, CH)
Di-natriumhydrogenphosphate Merck Millipore (99 %, Billerica, MA, USA)
3-(trimethylsilyl)propionic- Sigma Aldrich (98 atom%, MO,  St Louis, USA)

Standard Source (Purity)

Furfural Sigma Aldrich (99 %, MO,  St Louis, USA)

Niacin Sigma Aldrich (≥ 98 %, MO,  St Louis, USA)
Histidine Merck Millipore (≥ 98 %, MA,  Billerica, USA)
Xylose Sigma Aldrich (≥ 99 %, MO,  St Louis, USA)

NMR Value

1D-NOE-experiment
Pulse sequence 90° pulse (12.4 µs), mixing time (100 ms), relaxation delay (16 s)
Cycle time 20 s (AQ = 4 s)
Data acquisition 32 transients, 102562 data points
Spectral width 12,820 Hz

2D-TOCSY
Pulse sequence 90° pulse (12.4 µs), mixing time (70 ms), relaxation delay (2.4 s)
Data acquisition 16 scans, 1024 increments, 48074 data points
Spectral width 12,000 Hz (both dimensions)

HSQC
Pulse sequence 90° pulse (12.4 µs), relaxation delay (1.25 s)
Data acquisition 128 transients, 300 increments
Spectral width 12,000 Hz (F2), 46,300 Hz (F1)
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Table E.6 | Metadata of the analyzed beer samples.

Sample Beer
style

Fermen-
tation

Purity
Law

Grain Abs.
294 nm

Origin Sample Beer
style

Fermen
-tation

Purity
Law

Grain Abs.
294nm

Origin

1 Wheat top yes Wheat 0.048 GER 238 Lager bottom yes Barley 0.330 GER
2 Lager bottom yes Barley 0.083 GER 239 Lager bottom no Rice - ESP
3 Lager bottom yes Barley 0.105 GER 241 Lager bottom no Rice - ESP
4 Craft top no Barley 0.069 BEL 242 Lager bottom yes Barley 0.166 GER
5 Wheat top yes Wheat 0.081 GER 243 Lager bottom yes Barley 0.133 GER
6 Wheat top yes Wheat 0.07 GER 244 Lager bottom yes Barley 0.145 GER
7 Wheat top yes Wheat - GER 245 Lager bottom yes Barley 0.115 GER
8 Lager bottom yes Barley 0.077 GER 246 Lager bottom yes Barley 0.129 GER
9 Lager bottom yes Barley 0.162 GER 247 Lager bottom yes Barley 0.186 GER
10 Lager bottom yes Barley 0.14 GER 248 Lager bottom yes Barley 0.111 GER
11 Wheat top yes Wheat - GER 249 Lager bottom yes Barley 0.172 GER
12 Wheat top yes Wheat 0.168 GER 250 Wheat top yes Wheat 0.158 GER
13 Lager top yes Barley 0.17 GER 251 Wheat top yes Wheat 0.18 GER
15 Lager bottom yes Barley 0.067 GER 252 Lager bottom yes Barley 0.129 GER
16 Lager bottom yes Barley 0.053 GER 253 Wheat top yes Wheat 0.137 GER
19 Wheat top yes Wheat 0.136 GER 254 Lager bottom no Barley 0.122 CZE
20 Wheat top yes Wheat 0.149 GER 255 Wheat top yes Wheat 0.159 GER
21 Wheat top yes Wheat 0.144 GER 256 Wheat top yes Wheat 0.137 GER
22 Lager bottom yes Barley 0.138 GER 257 Wheat top yes Wheat 0.156 GER
23 Lager bottom yes Barley 0.298 GER 258 Wheat top yes Wheat 0.185 GER
24 Lager bottom no Barley 0.267 IRL 259 Wheat top yes Wheat 0.235 GER
25 Wheat top yes Wheat 0.2 GER 260 Lager bottom yes Barley 0.177 GER
26 Lager bottom yes Barley 0.356 GER 261 Lager bottom yes Barley 0.167 GER
27 Lager bottom yes Barley 0.142 GER 262 Lager bottom yes Barley - GER
28 Wheat top yes Wheat 0.243 GER 263 Wheat top yes Wheat - GER
29 Wheat top yes Wheat 0.224 GER 264 Lager bottom no Corn - ESP
30 Lager bottom yes Barley 0.138 GER 265 Lager bottom no Corn - ESP
31 Wheat top yes Wheat - GER 266 Lager bottom no Corn - ESP
32 Craft top no Barley 0.127 BEL 267 Lager bottom no Corn - ESP
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Table E.6 (continued) | Metadata of the analyzed beer samples.

Sample Beer
style

Fermen-
tation

Purity
Law

Grain Abs.
294 nm

Origin Sample Beer
style

Fermen
-tation

Purity
Law

Grain Abs.
294nm

Origin

33 Wheat top yes Wheat 0.264 GER 268 Lager bottom no - - ESP
34 Wheat top yes Wheat 0.074 GER 269 Lager bottom no Corn - ESP
35 Lager top yes Barley 0.136 GER 270 Lager bottom no Corn - ESP
36 Lager bottom yes Barley 0.126 GER 271 Lager bottom no Corn - ESP
37 Lager bottom yes Barley 0.42 GER 272 Lager bottom no Rice 0.358 ESP
38 Wheat top yes Wheat 0.124 GER 273 Craft top yes Barley - ESP
39 Lager bottom yes Barley 0.145 GER 274 Lager bottom no Rice - ESP
41 Wheat top yes Wheat 0.139 GER 275 Lager bottom no Corn 0.139 ESP
43 Craft top yes Barley 0.129 BEL 276 Lager bottom no Corn - ESP
44 Lager bottom yes Barley 0.122 GER 277 Lager bottom no Corn - ESP
45 Wheat top yes Wheat 0.13 GER 278 Craft top yes Barley - ESP
46 Lager bottom yes Barley 0.099 GER 279 Lager bottom yes Barley - ESP
47 Lager bottom yes Wheat 0.113 GER 280 Lager bottom no Corn - ESP
48 Lager bottom yes Barley 0.399 GER 281 Craft top yes Barley - ESP
49 Craft top yes Barley 0.203 GER 282 Craft top yes Barley 0.386 ESP
50 Lager bottom yes Barley 0.121 GER 283 Lager bottom no Corn - ESP
51 Wheat top yes Wheat 0.197 GER 284 Craft top yes Barley 0.222 ESP
52 Wheat top yes Wheat 0.149 GER 285 Lager bottom no Corn 0.16 ESP
53 Lager bottom yes Barley - GER 286 Craft top yes Barley - ESP
54 Craft top no Barley - BEL 287 Craft top yes Barley - ESP
55 Craft top no Wheat 0.187 LTU 288 Craft top no Barley - BEL
56 Wheat top yes Wheat 0.169 GER 289 Craft top no Wheat - BEL
57 Craft top yes Barley 0.421 GER 290 Wheat top no Wheat 0.169 NLD
58 Wheat top yes Wheat 0.156 GER 291 Lager top no Barley - BEL
59 Craft top no Barley - BEL 292 Craft top no Barley 0.13 BEL
60 Craft top yes Barley 0.282 GER 293 Lager bottom yes Barley 0.27 HRV
61 Craft top yes Wheat 0.191 GER 294 Lager bottom yes Barley - SLO
62 Craft top yes Wheat - GER 295 Lager bottom yes Barley - HRV
63 Wheat top yes Wheat - GER 296 Lager bottom no Corn - HRV
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Table E.6 (continued) | Metadata of the analyzed beer samples.

Sample Beer
style

Fermen-
tation

Purity
Law

Grain Abs.
294 nm

Origin Sample Beer
style

Fermen
-tation

Purity
Law

Grain Abs.
294nm

Origin

64 Craft top yes Barley 0.174 GER 297 Lager bottom yes - - HRV
65 Craft top no Barley 0.296 BEL 298 Craft top yes Barley - HRV
66 Craft top no Barley 0.33 BEL 299 Craft top yes Wheat - HRV
67 Wheat top no Wheat 0.167 GER 300 Lager bottom yes Barley 0.252 HRV
68 Lager bottom yes Barley 0.218 GER 301 Craft top yes Barley - HRV
69 Wheat top no Wheat 0.095 BEL 302 Lager bottom no Barley - HRV
70 Lager bottom yes Barley 0.048 NAM 303 Wheat top yes Wheat - HRV
71 Lager bottom yes Barley - DNK 304 Lager bottom yes Barley - HRV
72 Lager bottom yes Barley - GER 305 Wheat top yes Wheat - HRV
73 Lager bottom yes Barley - GER 306 Lager bottom yes Barley - JPN
76 Wheat top yes Wheat 0.279 GER 307 Lager bottom no Rice - JPN
78 Craft top yes Barley 0.275 GER 308 Lager top yes Wheat - JPN
80 Lager bottom no Rice 0.112 GER 309 Lager bottom no Rice - JPN
81 Craft top yes Barley 0.222 GER 310 Craft top yes Barley - USA
83 Lager bottom yes Barley 0.243 GER 311 Lager bottom no Rice - JPN
85 Craft top yes Wheat - GER 312 Lager bottom no Rice - JPN
86 Craft top yes Barley 0.238 GER 313 Lager bottom no Rice - JPN
90 Craft top yes Barley 0.136 GER 314 Wheat top no Wheat - FRA
91 Lager bottom no Barley 0.099 CUB 315 Lager top no Barley - FRA
92 Lager bottom no Barley 0.063 CUB 317 Lager bottom no - - ESP
93 Lager bottom yes Barley 0.232 MEX 318 Lager bottom no Rice - ESP
94 Lager bottom yes Barley 0.134 MEX 319 Lager bottom no Corn - ESP
95 Lager bottom no Rice 0.086 CHN 320 Lager bottom no Corn - ESP
96 Lager bottom yes Barley 0.16 PER 321 Lager bottom no Rice - ESP
97 Lager bottom no Corn 0.1 ARG 322 Lager bottom no - - ESP
98 Lager bottom yes Barley - PER 323 Lager bottom no Corn - ESP
99 Lager bottom no Barley 0.137 ESP 324 Lager bottom no Rice - ESP
100 Craft top no - - BRA 325 Lager bottom no - - ESP
101 Craft top no Rice 0.189 JPN 326 Lager bottom yes Barley - ESP
102 Wheat top no Wheat 0.116 NDL 327 Lager bottom no Rice - ESP
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Table E.6 (continued) | Metadata of the analyzed beer samples.

Sample Beer
style

Fermen-
tation

Purity
Law

Grain Abs.
294 nm

Origin Sample Beer
style

Fermen
-tation

Purity
Law

Grain Abs.
294nm

Origin

103 Lager bottom no Barley 0.104 KOR 328 Lager bottom no Corn - ESP
104 Craft top yes Barley - GER 329 Lager bottom no Corn - ESP
105 Craft top no Wheat 0.121 BEL 330 Lager bottom no Corn - ESP
106 Craft top yes Wheat 0.36 BEL 331 Lager bottom no Rice - ESP
107 Craft top no Barley 0.192 BEL 333 Lager bottom yes Barley - ESP
108 Craft top no Wheat 0.107 BEL 334 Lager bottom no Rice - PHL
109 Craft top yes Barley 0.368 BEL 335 Lager bottom no Rice - THA
110 Craft top yes Barley 0.204 NDL 336 Lager bottom no Rice - TWN
111 Lager bottom yes Barley 0.134 NDL 337 Lager bottom no Rice - SGP
112 Craft top yes Barley 0.219 NDL 357 Craft top yes Wheat - GER
113 Lager bottom yes Barley 0.167 GER 358 Lager bottom yes Barley - GER
114 Lager bottom yes Barley 0.127 SGP 360 Craft top no - - MEX
116 Craft top no Barley 0.238 BEL 361 Lager bottom no - - MEX
117 Craft top yes Wheat 0.167 BEL 362 Lager bottom no - - MEX
118 Craft top yes Wheat - BEL 363 Lager bottom yes - - MEX
119 Craft top yes Barley 0.709 NDL 364 Craft top no Wheat - ZAF
121 Craft top yes Wheat - BEL 365 Craft top no Barley - USA
123 Craft top no Wheat 0.132 NDL 366 Lager bottom no - - EGY
124 Craft top yes Wheat 0.418 GER 367 Wheat top yes Wheat - NAM
125 Craft top no Barley 0.276 BEL 368 Craft top yes Barley - ZAF
126 Craft top yes Wheat - BEL 369 Lager bottom yes Barley - ZAF
127 Lager bottom yes Barley 0.334 GER 370 Craft top yes Barley - USA
128 Craft top yes Barley 0.657 GER 371 Wheat top yes Wheat - GER
129 Lager bottom yes Barley 0.197 NDL 372 Wheat top yes Wheat - ZAF
130 Craft top no Barley 0.353 BEL 373 Lager bottom no - - ARG
131 Craft top yes Barley 0.144 BEL 374 Lager bottom no - - ARG
132 Craft top no Barley 0.183 BEL 375 Lager bottom yes Barley - ZAF
133 Craft top no Wheat 0.187 BEL 376 Lager bottom yes Barley - BRA
134 Craft top no Barley - BEL 377 Lager bottom no - - BRA
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Table E.6 (continued) | Metadata of the analyzed beer samples.

Sample Beer
style

Fermen-
tation

Purity
Law

Grain Abs.
294 nm

Origin Sample Beer
style

Fermen
-tation

Purity
Law

Grain Abs.
294nm

Origin

136 Lager bottom yes Barley 0.095 FRA 378 Lager bottom no - - MEX
137 Wheat top yes Wheat - GER 379 Lager bottom no Corn - MEX
138 Craft top no Wheat 0.076 BEL 380 Craft top yes Barley - USA
139 Lager bottom no Barley 0.128 IND 381 Lager bottom no Rice - JPN
140 Lager bottom yes Barley 0.288 GER 382 Lager bottom no Rice - CHN
141 Lager bottom yes Barley 0.409 GER 383 Lager bottom no Corn - BRA
142 Lager bottom yes Barley 0.177 GER 385 Lager bottom yes Barley - CHE
143 Lager bottom yes Barley 0.137 GER 386 Craft top yes - - CHN
144 Lager bottom yes Barley 0.086 GER 387 Craft top yes Barley - USA
145 Lager bottom no Barley 0.102 MEX 388 Lager bottom no - - BRA
146 Lager bottom yes Barley 0.095 BEL 389 Craft top no Barley 0.627 ESP
147 Lager bottom yes Barley 0.326 GER 390 Craft top no Barley - ESP
148 Lager bottom yes Barley 0.153 GER 391 Lager bottom no Rice - MEX
149 Craft top no Barley 0.19 BEL 392 Lager bottom yes Barley - FRA
151 Craft top no Corn 0.189 FRA 393 Craft top yes Barley - ITA
152 Wheat top yes Wheat 0.118 GER 394 Craft top no Rice 0.709 ITA
153 Lager bottom yes Barley 0.147 GER 395 Craft top no Wheat - ITA
154 Lager bottom yes Barley 0.146 GER 396 Craft top yes Barley - ITA
155 Wheat top yes Wheat 0.349 GER 397 Craft top yes Wheat - ITA
156 Craft top no Corn 0.287 FRA 398 Craft top yes Barley 0.46 ESP
157 Lager bottom yes Barley 0.184 GER 399 Craft top yes Barley - CRO
159 Lager bottom yes Barley 0.123 GER 400 Craft top no Wheat - ESP
160 Lager bottom no Corn - CHN 401 Craft top yes Barley - GRE
161 Lager bottom no - 0.118 ITA 402 Craft top no Wheat - EST
162 Lager bottom no Barley 0.12 PHL 404 Craft top no Wheat - GRE
163 Lager bottom yes Barley 0.112 GER 405 Craft top no Wheat - CAT
164 Lager bottom no - 0.115 GBR 406 Craft top yes Barley - POR
165 Lager bottom yes Barley 0.137 GER 407 Lager bottom no Rice - CHN
166 Lager bottom no Rice 0.126 THA 408 Lager bottom no - - ITA
167 Lager bottom no Corn 0.124 ITA 409 Craft top no Wheat - FRA
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Table E.6 (continued) | Metadata of the analyzed beer samples.

Sample Beer
style

Fermen-
tation

Purity
Law

Grain Abs.
294 nm

Origin Sample Beer
style

Fermen
-tation

Purity
Law

Grain Abs.
294nm

Origin

168 Lager bottom no Rice 0.114 CHN 410 Lager bottom no Rice - VAT
169 Lager bottom no Corn 0.132 ITA 411 Lager bottom no Corn - CHN
170 Lager bottom no Rice 0.088 GTM 412 Lager bottom no Wheat - NLD
171 Lager bottom no Rice 0.088 GTM 413 Lager bottom no Rice - CHN
172 Lager bottom no Corn 0.089 CRI 414 Lager bottom yes Barley - GER
173 Lager bottom no Rice 0.084 NIC 416 Craft top yes Barley 0.247 GER
174 Craft top yes Barley 0.153 FIN 417 Craft top yes Barley 0.685 NDL
175 Lager bottom no Barley 0.103 FIN 418 Craft top yes Barley 0.456 GBR
177 Craft top yes Barley 0.331 FIN 419 Craft top yes Barley 0.457 GBR
178 Lager bottom yes Barley 0.108 LUX 420 Craft top no Barley 0.367 GER
179 Lager bottom yes Barley 0.123 FRA 421 Craft top no Barley 0.435 GBR
180 Lager bottom yes Barley 0.188 LUX 422 Craft top no Barley 0.613 GER
182 Craft top yes Barley 0.183 NZL 424 Craft top no Barley 0.687 BEL
191 Lager bottom no Corn 0.135 BEL 425 Craft top no Barley 0.432 GBR
192 Lager bottom yes Barley - GER 426 Craft top yes Barley - GER
193 Lager bottom yes Barley 0.121 GER 427 Craft top yes Barley 0.804 GER
194 Lager bottom yes Wheat 0.525 GER 428 Craft top yes Barley 0.196 GER
197 Craft top no Barley 0.262 GER 429 Lager bottom yes Barley 0.18 GER
198 Craft top no Wheat - POL 430 Craft top yes Barley 0.393 GBR
199 Craft top no Barley - POL 431 Craft top yes Barley 0.466 BEL
200 Wheat top yes Wheat 0.152 GER 432 Craft top yes Barley 0.679 GER
201 Lager bottom yes Barley 0.098 CHE 433 Lager bottom yes Barley - GER
202 Craft top no Wheat 0.155 POL 434 Lager bottom yes Barley - GER
203 Lager bottom yes Barley 0.168 ZAF 435 Lager bottom yes Barley - GER
205 Lager bottom yes Barley 0.127 CHE 436 Lager bottom yes Barley - GER
206 Lager bottom no Barley 0.966 POL 437 Craft top no Rice - BEL
207 Craft top no Wheat 0.781 POL 438 Craft top yes Barley - BEL
208 Lager bottom yes Barley 0.163 GER 439 Craft top no Wheat - BEL
209 Lager bottom yes Barley 0.193 POL 440 Craft top yes Barley - NLD
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Table E.6 (continued) | Metadata of the analyzed beer samples.

Sample Beer
style

Fermen-
tation

Purity
Law

Grain Abs.
294 nm

Origin Sample Beer
style

Fermen
-tation

Purity
Law

Grain Abs.
294nm

Origin

210 Craft top no Barley - POL 441 Craft top no Wheat - NLD
211 Craft top yes Barley 0.89 POL 442 Wheat top no Wheat - NLD
212 Craft top yes Barley 0.155 HUN 443 Lager bottom yes Barley - NLD
213 Lager bottom no Rice 0.145 ESP 444 Lager bottom yes Barley - BEL
214 Lager bottom yes Barley 0.168 GER 445 Craft top yes Barley - NLD
215 Craft top yes Barley 0.185 GER 446 Craft top no Wheat - BEL
216 Lager bottom yes Barley 0.157 GER 447 Craft top yes Barley - GER
217 Wheat top yes Wheat 0.249 GER 448 Craft top yes Barley - NLD
218 Craft top yes Barley 0.134 GER 449 Craft top no Wheat - BEL
219 Craft top yes Barley 0.27 GER 450 Lager bottom yes Wheat - GER
220 Craft top yes Barley 0.208 GER 451 Craft top no Barley - BEL
221 Craft top yes Wheat 0.132 GER 452 Craft top no Rice - BEL
222 Lager bottom no - 0.114 JPN 453 Wheat top yes Wheat - GER
223 Lager bottom yes Barley 0.569 GER 454 Craft top no Barley - BEL
224 Lager bottom yes Barley 0.211 GER 455 Lager bottom no Barley - IRL
226 Lager bottom yes Barley 0.238 GER 456 Craft top no Barley - BEL
227 Wheat top yes Wheat 0.207 GER 457 Lager bottom yes Barley - GER
228 Lager bottom no Corn 0.14 ESP 458 Lager bottom yes Barley - GER
229 Lager bottom no Corn 0.158 ESP 459 Lager bottom yes Barley - ISR
230 Lager bottom no Corn 0.143 ESP 460 Lager bottom yes - - ISR
231 Lager bottom no Corn 0.096 ESP 464 Lager bottom no Rice - THA
232 Lager bottom no - 0.193 ESP 465 Lager bottom no Rice - THA
235 Lager bottom no Corn - ESP 467 Lager bottom no Rice - THA
236 Lager bottom no Corn - ESP B1885 - - - - - GER
237 Lager bottom no Corn - ESP B2019 Lager bottom no Barley - GER
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Table E.7 | Score values of the samples.

Sample Beer style Fermentation Purity Law Grain Abs. 294nm

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2

1 -2.49 18.71 8.09 19.04 10.21 37.73 -10.17 -15.51 -2.89 -23.81 -27.70
2 -12.73 -3.39 -10.99 12.35 9.92 14.49 12.52 3.04 -3.47 -21.97 8.11
3 -12.17 -4.88 -10.78 10.09 8.98 12.79 12.51 2.05 -3.08 -18.21 7.10
4 7.31 -1.20 9.23 22.08 -11.14 22.15 6.82 3.37 -2.66 -15.56 -11.13
5 -4.45 38.37 15.09 20.97 9.73 17.99 -9.66 -21.02 1.51 -19.03 2.17
6 -0.45 37.37 16.56 27.06 8.07 20.35 -12.96 -19.25 1.08 -19.08 -4.65
7 0.23 33.60 12.43 16.11 6.86 6.03 -13.62 -15.55 -1.76 - -
8 -11.47 -0.62 -9.81 8.70 10.17 10.93 12.91 4.77 -4.67 -12.76 7.19
9 -11.93 -1.82 -7.94 12.82 8.74 8.83 13.78 4.32 -4.56 -14.46 15.44
10 -6.12 -5.86 -5.67 16.65 11.82 22.02 13.24 0.79 1.53 -16.11 -3.10
11 -4.87 16.82 7.72 24.42 6.92 56.56 -11.85 -15.11 -3.19 - -
12 -3.01 22.54 9.88 31.99 7.25 43.59 -6.94 -12.22 0.18 -12.31 -34.56
13 -3.71 -0.12 8.86 13.28 7.1 5.14 10.69 2.44 -1.17 -6.44 12.25
15 -11.67 -3.13 -11.46 14.76 10.72 35.14 9.63 0.54 -2.98 -14.69 -25.25
16 -8.58 -3.32 -8.04 13.01 10.81 23.79 13.28 -0.06 -1.19 -15.27 -11.26
19 -2.69 30.88 13.74 22.81 12.02 22.16 -8.94 -20.70 -1.25 -16.06 -9.15
20 -2.83 19.92 7.45 26.28 8.81 41.92 -8.29 -13.93 -0.91 -9.33 -37.09
21 -4.69 16.65 4.44 29.15 8.31 48.9 -5.72 -11.01 -0.84 -10.77 -44.02
22 -9.52 0.92 -9.08 21.46 6.83 46.27 5.59 2.60 -1.54 -8.76 -40.99
23 -8.54 0.15 -9.53 20.43 8.83 37.36 10.77 2.02 -1.73 5.03 -32.73
24 -2.70 0.61 -4.22 18.73 -12.6 10.23 6.21 0.44 -0.81 4.31 -41.97
25 1.37 14.36 8.32 17.12 8.91 36.83 -8.52 -9.14 -0.51 -2.84 -35.34
26 -7.95 2.08 -7.10 -5.85 9.56 14.23 11.81 2.94 0.07 15.86 -14.37
27 -10.64 -0.43 -10.67 17.31 10.49 40.15 11.68 1.50 -0.93 -13.04 -30.83
28 -0.74 15.59 7.07 29.31 8.29 49.96 -3.74 -10.63 -0.47 -5.76 -49.19
29 3.23 19.77 11.63 27.09 8.2 40.03 -6.59 -16.52 2.29 -2.76 -40.17



219

S
upplem

entary
C

hapter 5

Table E.7 (continued) | Score values of the samples.

Sample Beer style Fermentation Purity Law Grain Abs. 294nm
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2

30 -7.55 0.74 -6.40 23.19 7.84 44.88 7.55 0.96 -0.91 -8.95 -39.33
31 -3.77 19.29 5.48 22.72 7.86 42.17 -5.18 -12.49 -0.94 - -
32 7.89 -0.18 8.09 12.46 -10.38 15.85 1.61 2.12 -2.80 -1.88 -15.79
33 4.99 26.91 18.02 9.88 9 3.35 -8.42 -18.95 1.37 2.32 0.87
34 1.49 26.47 14.26 25.64 7.94 31.34 -8.56 -15.34 0.73 -15.55 -23.69
35 -1.97 -3.74 6.78 12.85 6.38 3.7 11.10 1.40 -1.66 -15.67 11.34
36 -7.11 -1.89 -6.28 15.89 7.49 30.83 11.28 -0.62 0.93 -13.08 -22.63
37 -9.70 -4.30 -9.55 -43.99 8.86 -22.05 11.82 0.07 -3.80 26.69 14.41
38 -4.10 21.09 8.05 16.41 9.85 28.66 -4.43 -14.77 0.92 -7.65 -23.43
39 -13.38 0.77 -11.25 13.37 9.72 32.69 8.18 0.82 -2.30 -9.73 -23.64
41 2.66 23.31 12.59 21.74 6.61 28.66 -8.66 -15.30 -1.60 -9.36 -26.09
43 5.53 2.23 8.31 22.83 8.67 -23.58 1.12 0.01 -1.47 -10.17 -22.29
44 -9.24 -0.42 -8.54 16.77 10.45 39.04 10.74 -0.49 -0.77 -13.01 -31.16
45 -2.76 25.17 10.93 23.33 9.5 29.8 -5.70 -16.65 0.41 -13.30 -21.83
46 -4.10 0.60 -7.18 19.67 8.26 54.12 4.31 -2.46 -1.22 -14.38 -51.72
47 0.27 1.67 -2.86 19.98 7.59 54.02 -1.26 -9.82 -1.79 -12.16 -54.36
48 -5.43 4.40 -5.55 1.98 8.28 30.96 5.37 -0.88 0.19 12.43 -36.68
49 12.35 -4.37 9.19 25.73 7.98 39.96 6.75 -0.21 0.41 -5.39 -37.84
50 -8.37 -0.53 -6.27 20.81 8.49 33.3 11.93 4.27 -0.35 -14.11 -17.22
51 -4.16 30.37 11.54 24.81 6.93 25.99 -11.96 -15.43 -0.48 -10.74 -13.69
52 -0.31 30.03 14.26 25.42 8.21 25.46 -10.10 -17.32 1.61 -9.98 -17.49
53 -12.59 -7.15 -9.17 5.91 9.9 -17.51 10.06 2.68 -4.19 - -
54 12.35 4.06 9.89 17.73 -6.77 37.4 1.92 -2.42 -0.51 - -
55 16.90 -3.53 12.23 28.42 -13.1 -12.56 1.71 -10.12 0.45 -4.31 -51.46
56 -3.20 29.92 12.31 16.32 11.21 15.23 -7.74 -17.72 -2.61 -11.90 -2.91
57 20.63 -8.00 17.04 -0.56 7.75 -8.37 8.26 0.26 0.81 24.15 2.90
58 -1.36 21.58 10.60 24.09 6.97 29.61 -6.63 -16.50 0.35 -12.79 -22.32
59 19.47 -4.47 11.01 6.11 -12.62 20.23 3.16 0.01 -1.76 - -
60 16.95 -10.89 13.97 5.44 10.84 -4.37 11.52 1.58 -1.34 7.90 7.91
61 12.47 -2.92 8.22 14.03 10.13 37.72 -3.40 -13.26 -2.84 -5.00 -37.91
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Table E.7 (continued) | Score values of the samples.

Sample Beer style Fermentation Purity Law Grain Abs. 294nm
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2

62 17.28 2.41 13.95 15.51 9.8 16.62 -9.37 -18.90 -2.35 - -
63 1.95 38.48 8.99 19.05 8.6 2 -8.04 -21.04 3.15 - -
64 10.88 -5.03 9.99 16.79 9.15 17.82 11.89 -1.60 1.09 -6.50 -11.08
65 22.76 -5.07 18.52 19.54 -13.98 10.38 9.29 -0.12 0.73 7.67 -13.49
66 21.18 -2.42 16.33 20.51 -9.03 31.95 9.30 2.13 -0.63 16.03 -41.61
67 2.54 18.29 11.88 17.72 -13.96 5.19 -6.47 -15.98 3.09 -11.22 -13.44
68 -7.48 4.30 -8.37 -2.92 7.84 26 5.74 0.03 -0.18 10.33 -30.25
69 6.32 12.31 13.12 21.92 -5.89 17.11 -3.11 -11.65 0.29 -11.67 -12.10
70 -8.38 -0.90 -6.92 17.51 10.2 29.75 13.47 -0.21 0.69 -16.96 -17.33
71 -9.69 0.03 -7.87 15.80 5.01 28.84 7.36 3.29 1.51 - -
72 -13.46 -0.58 -12.35 16.73 7.22 35.93 7.49 3.97 -1.99 - -
73 -11.69 -0.29 -11.41 12.10 9.22 35.9 6.77 -0.09 0.13 - -
76 2.47 23.28 13.95 20.77 6.94 27.51 -6.77 -17.28 0.80 -1.61 -25.14
78 15.57 -4.52 12.33 13.58 8.83 18.92 8.18 1.00 3.24 7.10 -19.26
80 -6.51 1.53 -8.55 22.47 -8.81 41.04 -6.24 9.88 5.59 -13.73 -34.93
81 18.50 -5.15 13.07 22.02 7.33 32.54 3.03 -1.42 0.85 0.29 -35.04
83 -0.91 -1.04 -5.08 7.10 9.22 25.71 7.43 0.08 0.52 0.66 -23.88
85 8.48 1.52 8.58 20.20 8.19 36.46 -2.96 -8.99 -0.42 - -
86 12.85 -6.87 9.67 24.77 10.41 33.05 11.70 -0.15 0.00 -4.88 -29.43
90 21.13 -8.34 15.99 5.82 7.87 22.74 11.99 0.92 -5.30 -7.23 -12.27
91 -9.52 -5.74 -9.07 -20.94 -11.07 -54.1 11.55 2.63 -5.10 -11.47 91.02
92 -12.89 -5.46 -11.22 -16.75 -12.74 -44.83 10.77 1.89 -0.03 -13.31 83.30
93 -17.47 -4.68 -13.26 -75.35 9.65 -87.94 6.00 3.35 -2.48 4.71 115.18
94 -13.40 -1.88 -10.28 -23.77 8.87 -53.57 3.62 0.19 -1.35 -10.99 98.66
95 -16.81 -4.29 -14.50 -13.73 -12.55 -29.81 -14.49 15.68 21.56 -18.96 62.05
96 -11.74 -8.64 -10.40 -19.03 9.06 -52.37 9.06 0.08 -2.87 -4.52 97.57
97 -9.67 -4.26 -11.80 -9.41 -12.01 -31.78 -24.39 13.00 -14.70 -13.51 59.39
98 -6.23 -4.21 -11.15 -32.93 9.65 -11.11 6.07 1.04 -2.13 - -
99 -21.19 -1.34 -20.06 -40.91 -10.62 -96.16 13.66 8.35 -0.52 -22.13 120.42
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Table E.7 (continued) | Score values of the samples.

Sample Beer style Fermentation Purity Law Grain Abs. 294nm
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2

100 21.90 -5.67 13.86 19.87 -11.28 36.31 - - - - -
101 23.45 -4.20 14.83 -26.95 -11.26 -81.44 -18.30 18.25 26.14 -11.44 95.13
102 5.70 23.88 14.56 13.88 -11.88 -17.9 -13.43 -19.55 1.58 -23.96 33.81
103 -7.59 -5.73 -12.96 11.03 -13.21 -11.83 10.37 -1.35 -2.45 -18.51 41.82
104 23.15 -8.47 16.18 8.85 6.03 27.6 11.51 2.16 -6.88 - -
105 20.77 5.00 16.62 20.73 -14.26 -2.84 -7.88 -17.88 -0.44 -15.50 12.74
106 21.41 -2.24 13.30 -46.70 11 -44.98 -7.41 -16.59 -1.48 23.71 30.93
107 14.14 -7.99 13.14 4.18 -12.5 -16.67 8.99 1.26 -2.46 -2.53 28.73
108 20.62 9.49 17.98 20.29 -11.49 -8.57 -9.76 -18.63 1.97 -19.78 22.44
109 20.27 -8.74 11.81 -38.07 9.24 -26.19 7.39 2.91 -2.80 30.66 8.53
110 14.91 -10.65 12.05 -6.72 8.2 -28.12 9.67 -2.63 0.83 -3.80 39.01
111 -10.62 -6.53 -10.85 -8.40 7.64 -26.6 12.12 -0.35 -4.84 -16.64 55.60
112 21.24 -11.42 14.68 4.49 9.23 -14.94 6.44 0.04 3.26 -1.97 24.84
113 -9.09 -6.27 -10.10 -19.08 9.2 -21.14 9.44 -2.37 1.11 -6.36 33.97
114 -9.41 -5.82 -9.82 10.38 6.59 20.65 3.20 3.05 -1.83 -13.86 -0.22
116 10.96 -4.08 11.34 9.72 -9.74 3.61 8.62 -0.29 -1.57 0.21 1.68
117 22.81 -2.24 14.00 12.41 8.68 17.16 -9.03 -18.22 1.82 -8.82 13.30
118 19.85 -2.24 11.02 22.26 10.26 25.39 -8.42 -15.82 1.77 - -
119 23.64 -7.28 15.28 -51.34 10.7 -39.59 5.09 -0.66 -0.43 65.38 6.25
121 22.04 -4.52 13.03 8.73 7.44 24.18 -7.53 -11.73 -1.18 - -
123 10.61 -6.65 8.18 8.02 -11.82 -0.15 -3.10 -7.00 -0.23 -10.17 3.90
124 13.98 4.70 12.53 -46.04 9.23 -29.77 -7.25 -13.71 -0.73 42.16 3.04
125 25.04 -6.73 19.27 15.39 -13.35 -1.87 13.47 1.49 2.76 7.81 2.60
126 25.91 -7.60 12.24 -2.90 10.37 10.18 -7.98 -16.55 -0.03 - -
127 -7.66 -7.68 -11.38 -59.61 8.6 -54.21 11.73 2.54 -2.62 18.61 51.27
128 18.38 -4.93 18.46 -120.22 8.6 -102.19 11.24 -2.33 0.81 59.31 63.90
129 -4.21 -1.11 -9.26 -3.63 11.74 23.02 9.33 -3.86 -1.26 -4.02 -17.39
130 25.35 -3.73 14.98 -8.19 -12.03 -5.14 9.75 1.07 -0.19 25.45 -13.53
131 11.93 -4.37 9.16 14.54 7.93 -31.16 4.16 -1.38 2.16 -8.50 -8.64
132 20.36 -8.44 13.77 5.28 -14.2 -0.56 10.36 0.48 1.06 0.54 -4.60
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Table E.7 (continued) | Score values of the samples.

Sample Beer style Fermentation Purity Law Grain Abs. 294nm
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2

133 22.58 0.29 18.52 16.60 -9.59 -1.13 -1.99 -16.74 4.15 -6.35 1.14
134 27.70 -10.25 13.69 -15.80 -13.88 -26.37 12.90 4.48 -4.32 - -
136 -10.51 -8.68 -12.67 11.12 9.86 13.22 5.58 2.42 -5.36 -11.34 10.41
137 10.40 28.94 15.78 -102.03 8.32 -124.5 -5.15 -17.09 -3.08 - -
138 12.32 5.29 11.82 25.05 -11.27 14.21 -4.78 -16.36 3.84 -19.21 1.70
139 -17.01 -7.52 -13.57 -24.49 -14.69 -28.51 13.74 -3.22 -0.44 -11.68 50.97
140 -8.56 -4.24 -10.70 -26.77 8.17 -16.66 14.51 1.68 -2.39 12.70 29.44
141 -18.12 -7.64 -17.34 -75.98 5.72 -50.19 11.58 0.72 -5.31 26.87 47.36
142 -9.20 -2.81 -8.28 -9.62 5.77 7.21 10.11 2.96 1.34 7.39 -0.99
143 -13.07 -5.51 -12.07 15.84 11.82 20.39 15.90 0.31 -1.23 -8.98 6.68
144 -15.29 -4.86 -14.69 13.60 7.36 32.13 10.23 3.85 -0.46 -14.60 -18.97
145 -11.92 -4.66 -13.46 11.93 -12.52 21.61 4.53 2.71 1.64 -11.46 -14.60
146 -6.93 -5.35 -9.40 17.72 7.62 -9.68 6.76 1.44 -0.38 -18.19 -7.67
147 -9.96 -1.97 -9.49 -29.86 8.67 -13.9 10.92 0.71 -2.59 17.54 14.65
148 -13.71 -3.42 -12.43 2.48 8.9 10.86 9.12 0.00 -1.85 -10.45 3.31
149 18.16 -6.68 14.70 20.24 -12.11 22.18 4.98 -1.50 -1.68 -0.74 -25.19
151 6.29 -4.09 5.59 13.36 -11.52 23.27 -13.99 7.89 -11.48 0.48 -23.95
152 8.04 24.93 15.37 18.04 7.7 15.43 -7.77 -18.24 4.39 -8.55 -14.59
153 -16.49 -5.03 -16.12 -3.16 7.49 24.17 4.09 2.67 -2.73 -10.22 -0.65
154 -10.98 -5.60 -10.69 12.71 5.3 26.19 7.68 5.30 -2.03 -9.67 -12.10
155 5.08 32.30 16.50 5.95 9.85 -7.06 -13.21 -21.20 3.11 8.94 9.10
156 12.42 -3.18 11.09 6.79 -10.05 16.82 -13.20 6.74 -11.84 11.27 -23.09
157 -11.53 -4.61 -10.16 6.35 5.4 14.5 9.92 3.12 -1.17 -8.77 -0.99
159 -14.18 -6.38 -13.05 -13.03 11.48 -36.2 16.03 0.63 -5.86 -18.25 70.40
160 -15.14 -2.41 -16.52 -29.24 -10.75 -56.76 -22.79 12.01 -18.87 - -
161 -12.10 -7.33 -11.91 -15.52 -12.49 -87.17 - - - -9.62 35.76
162 -14.64 -4.68 -12.65 -3.69 -13.02 -18.4 12.62 0.13 2.43 -10.64 43.18
163 -16.50 -4.40 -11.53 13.99 9.23 27.76 10.66 1.75 -0.25 -14.64 -5.94
164 -5.81 -0.45 -6.23 19.14 -12.63 26.88 - - - -11.53 -17.07
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Table E.7 (continued) | Score values of the samples.

Sample Beer style Fermentation Purity Law Grain Abs. 294nm
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2

165 -16.99 -7.57 -13.88 0.23 5.56 -2.25 5.99 5.31 0.68 -13.07 26.77
166 -17.99 -4.19 -15.74 7.34 -13.13 12.03 -12.87 17.61 11.63 -13.69 6.15
167 -14.19 -4.29 -13.19 13.32 -11.06 21.33 -16.64 13.28 -4.16 -12.80 -5.68
168 -10.33 -6.41 -11.73 12.89 -12.66 19.14 -10.77 12.65 13.34 -10.41 -8.20
169 -15.61 -2.63 -13.24 15.16 -7.59 28.01 -13.20 12.15 -8.45 -14.33 -12.67
170 -13.48 -1.59 -12.03 17.79 -7.97 32.5 -3.89 10.07 5.34 -15.40 -23.30
171 -15.24 -2.64 -11.95 12.71 -10.73 16.23 -7.03 13.15 6.27 -17.97 -0.79
172 -14.39 -2.50 -14.89 14.42 -9.05 33.67 -14.62 13.55 -8.73 -13.35 -26.43
173 -12.03 0.68 -10.88 13.62 -11.83 19.92 -11.25 12.81 4.86 -18.96 -8.87
174 12.41 -9.62 9.99 -4.51 9.71 -18.52 9.87 0.80 3.86 -4.74 25.71
175 -7.48 0.43 -8.08 19.96 -8.08 30.55 4.61 1.46 0.81 -13.02 -23.40
177 21.50 -9.50 17.15 -26.26 8.24 -25.61 10.19 -1.01 2.80 24.15 12.80
178 -10.72 -3.55 -11.03 14.24 4.77 33.66 7.37 4.22 -0.11 -17.43 -23.85
179 -8.99 0.09 -7.91 16.90 8.17 39.19 3.79 3.96 0.57 -8.93 -29.61
180 -4.50 -5.14 -8.14 2.28 9.42 22.05 6.84 0.26 -4.08 -3.74 -17.58
182 14.68 -7.56 10.78 -39.48 10.15 -62.65 9.41 3.02 4.40 -12.81 73.81
191 -10.47 -4.69 -8.56 5.02 -12.51 -6.63 -13.70 11.39 -12.70 -11.41 27.72
192 -8.46 -6.77 -9.44 7.60 8.78 10.76 13.19 2.03 3.89 - -
193 -17.01 -5.40 -12.84 -115.35 5.91 -79.49 10.37 -0.50 -3.57 -22.50 80.91
194 -19.78 -6.80 -12.17 -154.41 8.59 -105.39 -10.53 -15.45 -4.21 36.33 73.14
197 12.11 -0.75 12.36 -8.03 -9.95 -17.68 4.59 0.53 -0.75 6.64 18.76
198 12.83 -4.34 7.73 21.50 -10.96 30.61 -6.23 -8.59 -0.74 - -
199 18.29 -5.17 11.09 5.36 -10 2.13 12.61 1.55 2.35 - -
200 0.99 36.42 17.57 18.50 7.16 12.05 -15.86 -21.90 0.21 -16.19 -1.67
201 -11.68 -7.04 -11.96 9.82 5 5.37 8.63 5.08 -1.72 -17.52 17.00
202 22.36 -0.21 15.61 15.90 -11.77 -8.14 -12.53 -20.72 4.45 -11.37 8.31
203 -14.17 -8.17 -11.16 -7.52 9.89 -9.1 10.40 3.99 1.49 -6.57 30.79
205 -13.42 -4.14 -11.62 11.62 3.4 15.3 4.91 5.83 2.46 -13.32 1.99
206 -11.35 -5.19 -15.40 -121.66 -11.55 -74.66 5.92 0.71 -2.09 106.76 9.93
207 10.61 0.02 15.55 -165.02 -12.81 -92.85 -6.77 -17.18 4.71 73.99 8.55
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Table E.7 (continued) | Score values of the samples.

Sample Beer style Fermentation Purity Law Grain Abs. 294nm
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2

208 -9.40 -5.42 -9.79 8.42 6.77 19.53 10.39 4.06 0.52 -7.46 -8.92
209 -2.06 -3.79 -3.57 -8.04 8.68 -8.43 5.74 2.54 2.11 -1.73 15.53
210 19.24 -5.80 9.74 -28.22 -11.66 -16.41 13.12 7.44 -1.10 - -
211 18.50 -4.96 16.40 -127.68 10.4 -64.07 13.72 3.06 1.74 93.77 -14.44
212 13.53 -8.31 12.19 10.65 7.97 -5.84 4.96 -2.26 1.92 -8.56 21.95
213 -9.55 -5.38 -11.78 4.98 -12.22 3.27 -12.88 19.82 17.69 -4.58 13.00
214 -5.05 -5.38 -7.89 7.37 8.19 14.19 6.87 2.54 -3.27 -3.96 -1.85
215 14.02 -11.11 11.87 -5.64 8.89 -26.37 12.25 1.89 0.52 1.88 42.92
216 -11.17 -6.04 -9.75 -18.62 5.57 -22.89 9.76 2.12 -2.14 -6.89 40.03
217 8.06 33.98 18.20 0.19 8.26 -7.28 -12.08 -19.90 2.43 4.41 9.45
218 17.29 -9.08 14.00 11.63 9.26 3.57 11.81 1.46 -0.90 -6.56 5.20
219 17.34 -9.09 13.93 11.60 9 3.52 11.69 1.35 -0.79 -6.70 5.23
220 11.38 -8.10 11.22 -2.19 8.25 -16.85 11.00 -0.35 -3.86 1.61 25.86
221 18.53 5.13 16.41 0.52 9.58 -14.29 -7.45 -13.45 -1.66 -11.62 21.16
222 -8.77 -6.28 -11.56 1.28 -14.44 -3.22 - - - -8.93 16.63
223 -10.25 -0.68 -12.37 -44.28 8.75 -28.6 10.33 3.44 -4.12 47.42 20.14
224 -9.51 -5.99 -11.14 -4.24 9.14 -2.16 10.64 3.28 1.18 0.37 18.65
226 -14.63 -1.73 -13.42 -22.99 8.99 -15.11 8.56 1.12 -4.46 5.77 23.35
227 2.00 36.92 15.28 -0.85 9.63 -6.03 -13.81 -20.03 1.48 1.20 10.08
228 -13.47 -3.57 -14.38 5.79 -13.42 10.52 -19.75 12.60 -15.16 -10.23 -0.25
229 -10.95 -4.50 -13.37 9.35 -12.52 21.41 -18.34 11.72 -12.58 -8.59 -14.96
230 -12.65 -4.93 -13.69 11.41 -9.1 19.69 -8.36 9.60 -9.01 -9.09 -10.10
231 -15.00 -3.65 -11.91 19.59 -13.19 28.86 -18.73 14.39 -16.69 -7.99 -11.93
232 -12.62 -3.65 -13.90 2.92 -10.74 4.77 - - - -0.86 3.08
235 -6.74 0.26 -8.36 12.61 -14.36 25.02 -20.27 10.05 -13.60 - -
236 -11.93 -2.31 -12.83 12.06 -12.76 17.02 -24.31 12.45 -17.40 - -
237 -15.15 -3.01 -14.02 8.54 -12.47 13.27 -22.00 13.69 -19.97 - -
238 -18.11 -5.41 -13.60 -79.36 5.93 -56.08 10.52 2.65 -4.97 13.15 57.65
239 -11.47 -5.67 -13.34 15.87 -11.18 29.27 -12.59 14.95 2.21 - -
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Table E.7 (continued) | Score values of the samples.

Sample Beer style Fermentation Purity Law Grain Abs. 294nm
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2

241 -12.90 -2.49 -13.34 14.06 -11.12 29.43 -14.15 15.10 4.54 - -
242 -13.59 -3.96 -12.06 13.22 8.69 24.2 10.23 4.35 -3.22 -14.09 -9.01
243 -11.32 -10.21 -9.56 17.38 10.1 14.16 12.32 1.20 -3.64 -9.06 9.63
244 -6.87 -3.78 -6.41 8.29 7.18 4.12 9.94 -0.01 -4.07 -15.64 9.88
245 -15.11 -2.29 -14.95 14.95 8.21 35.53 6.98 2.75 -1.56 -19.12 -21.47
246 -15.19 -4.80 -15.18 10.65 8.95 19.72 11.09 2.66 -1.81 -16.01 -3.42
247 -12.30 -1.96 -12.88 11.21 6.94 27.77 4.44 2.31 -2.85 -9.22 -19.27
248 -9.03 -2.06 -10.52 19.71 7.73 42.13 7.12 1.09 0.79 -14.95 -34.29
249 -9.42 -1.93 -10.81 13.93 7.96 21.91 8.45 2.16 -2.83 -9.58 -10.74
250 -1.03 25.17 11.26 21.13 8.41 24.95 -10.91 -15.63 -1.58 -10.93 -17.70
251 1.49 21.83 13.35 14.88 6.83 13.02 -4.11 -14.67 0.77 -6.08 -5.75
252 -14.04 -3.08 -12.72 14.71 8.98 29.19 11.06 2.68 0.88 -16.04 -13.59
253 -1.00 32.68 13.70 20.57 11.1 18.88 -7.29 -21.55 3.42 -13.19 -11.25
254 -9.54 -0.13 -9.14 12.32 7.42 20.17 1.65 3.04 1.81 -7.38 -29.57
255 -1.52 23.26 9.30 20.15 8.05 29.25 -8.84 -14.53 0.45 -6.64 -26.61
256 -3.28 20.25 7.86 25.59 6.68 34.92 -9.50 -11.05 -0.38 -13.28 -28.41
257 -3.06 25.55 11.97 30.14 9.28 35.18 -7.11 -18.75 1.59 -12.54 -23.97
258 -1.45 26.89 12.73 19.68 9.47 26.56 -6.13 -16.23 3.18 -8.38 -21.51
259 3.68 23.03 13.68 8.17 8.4 20.06 -5.89 -15.65 1.40 6.03 -25.07
260 -7.18 -2.84 -8.07 12.29 8.7 30.56 6.65 -0.04 2.13 -8.45 -23.79
261 -14.05 0.01 -11.26 6.57 9.7 23.62 8.70 1.69 -0.05 -5.96 -15.42
262 -14.69 -5.75 -16.19 9.40 7.88 17.16 8.90 3.73 -0.92 - -
263 -5.29 35.14 11.22 18.46 8.87 16.83 -14.09 -19.62 -0.87 - -
264 -13.75 -6.84 -14.89 9.81 -13.25 5.93 -18.04 16.07 -13.07 - -
265 -11.13 -4.97 -13.57 11.38 -13.17 18.26 -18.25 15.63 -7.33 - -
266 -3.39 -1.34 -6.40 19.41 -11.69 36.69 -19.50 10.38 -7.71 - -
267 -11.83 -4.74 -14.08 6.64 -13.77 13.49 -22.09 13.46 -8.36 - -
268 -9.52 -5.15 -11.59 -0.56 -11.86 -3.05 - - - - -
269 -9.18 -0.42 -8.53 8.86 -11.76 12.22 -15.07 7.01 -7.50 - -
270 -7.47 -1.85 -10.36 19.55 -12.37 37.55 -18.38 11.25 -11.27 - -
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Table E.7 (continued) | Score values of the samples.

Sample Beer style Fermentation Purity Law Grain Abs. 294nm
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2

271 -4.89 1.33 -6.79 22.18 -8.27 55.42 -13.62 8.49 -9.38 - -
272 -3.59 -0.83 -8.10 -1.00 -10.84 6.85 -13.05 14.52 5.69 13.66 -7.59
273 23.21 -9.32 15.78 -71.77 10.01 -85.37 9.04 1.41 -0.96 - -
274 -4.67 -0.55 -11.04 -11.45 -12.37 -11.29 -14.59 19.35 13.50 - -
275 -16.02 -3.71 -15.97 10.63 -11.86 20.39 -19.59 17.30 -4.08 -12.94 -8.29
276 -13.83 -5.48 -12.55 5.39 -9.04 6.12 -17.75 15.12 -15.38 - -
277 -12.16 -3.39 -12.25 7.23 -10.14 14.28 -13.69 13.55 -9.19 - -
278 23.55 -7.65 17.09 -15.95 7.55 -27.51 4.31 2.80 2.08 - -
279 -4.32 -3.41 -5.99 19.52 6.42 28.42 2.03 5.58 -1.27 - -
280 -12.41 -2.65 -13.26 11.12 -10.13 22.87 -16.13 12.93 -8.09 - -
281 13.17 -5.33 11.90 7.85 6.43 8.59 8.57 1.49 0.65 - -
282 16.47 -3.74 10.60 -32.89 11.51 -22.61 11.96 3.77 -1.13 32.12 -0.53
283 -10.94 -5.74 -11.40 9.36 -9.59 16.51 -8.18 11.86 -6.99 - -
284 12.41 -4.99 9.90 11.44 5.7 22.79 6.75 2.50 -0.07 9.90 -30.05
285 -9.72 -2.55 -9.68 5.55 -10.11 12.75 -13.94 12.29 -10.30 -3.05 -7.19
286 7.87 -6.35 7.10 8.77 7.12 12.11 8.14 2.27 2.19 - -
287 12.31 -4.92 10.21 11.05 10.51 21.5 6.20 0.83 0.18 - -
288 13.58 -4.43 10.05 18.82 -12.13 24.67 2.87 0.95 -0.59 - -
289 7.61 6.38 8.79 24.42 -11.85 29.51 -13.96 -8.64 -2.65 - -
290 8.88 15.73 14.27 13.16 -7.79 11.59 -7.47 -12.76 4.01 1.76 -13.91
291 0.52 -2.36 6.39 14.31 -10.43 10.62 4.15 1.00 1.80 - -
292 7.76 -7.16 6.34 17.72 -10.94 10.9 10.22 2.35 1.84 -13.80 -0.77
293 -11.21 -1.60 -11.26 -23.09 6.57 -12.61 6.47 3.31 -1.90 12.45 15.12
294 -2.88 -8.51 -5.50 1.61 7.92 7.49 6.19 2.17 1.11 - -
295 -6.26 -2.70 -7.18 2.58 9.24 15.35 4.80 1.29 0.87 - -
296 -6.73 -0.03 -7.45 18.93 -13.31 31.44 -16.08 9.57 -6.27 - -
297 -8.54 -2.81 -10.12 14.14 8.06 40.19 - - - - -
298 19.51 -8.88 11.65 -16.89 9.75 -42.06 2.58 1.79 3.13 - -
299 16.77 -2.25 15.40 -10.21 7.84 -19.3 -3.28 -9.13 1.20 - -
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Table E.7 (continued) | Score values of the samples.

Sample Beer style Fermentation Purity Law Grain Abs. 294nm
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2

300 -8.53 -1.11 -11.69 -48.24 9.53 -24.51 9.72 2.18 -0.03 22.71 13.42
301 8.95 -3.78 9.74 0.06 10.04 6.84 13.75 2.65 3.39 - -
302 -7.99 -2.79 -8.92 -5.12 -9.53 -3.28 2.10 5.39 -0.98 - -
303 1.81 40.99 7.94 -20.29 9.62 -36.63 -7.36 -17.79 2.39 - -
304 -11.65 -7.12 -12.11 -18.87 8.48 -35.23 15.52 3.11 -0.48 - -
305 1.16 36.72 14.86 -8.65 7.98 -27.76 -10.36 -18.80 2.24 - -
306 -16.42 -9.54 -14.64 -8.95 7.87 -11.12 9.92 4.81 3.83 - -
307 -4.78 -7.49 -8.06 -6.94 -10.81 -14.48 -6.02 13.42 6.21 - -
308 -17.80 -9.48 24.75 48.75 12.91 9.42 -15.13 -24.82 7.12 - -
309 -13.94 -8.09 -1.55 28.73 -10.09 8.87 -16.87 7.67 18.03 - -
310 15.33 -11.03 15.06 -27.40 9.09 -50.14 8.56 1.59 2.23 - -
311 -7.69 -2.94 -8.18 14.34 -6.08 29.87 -3.01 9.01 2.04 - -
312 -10.34 -4.04 -9.76 9.24 -5.64 21.79 -1.14 8.32 3.64 - -
313 -10.85 -5.10 -11.50 7.15 -9.15 15.7 -5.85 13.48 2.55 - -
314 9.81 30.03 13.26 29.97 -11.28 30.59 -11.41 -22.25 -0.10 - -
315 -3.30 -3.59 9.43 6.67 -13.52 -15.46 11.94 1.34 -2.65 - -
317 -13.70 -6.46 -13.72 4.21 -11.53 5.4 - - - - -
318 -12.80 -7.88 -11.91 7.82 -10.91 5.45 -14.19 19.57 19.00 - -
319 -19.15 -8.17 -16.97 -7.83 -12.3 -8.66 -24.18 17.38 -18.15 - -
320 -9.77 -3.60 -13.27 10.47 -13.9 20.7 -22.83 15.17 -9.88 - -
321 -10.88 -5.28 -12.19 13.59 -8.63 26.02 -7.26 12.50 5.68 - -
322 -14.14 -4.68 -14.42 11.73 -13 21.3 - - - - -
323 -11.49 -8.16 -10.38 -1.76 -12.14 -14.7 -19.29 13.68 -15.29 - -
324 -14.01 -5.77 -14.48 9.52 -13.95 18.38 -19.93 21.34 13.25 - -
325 -8.27 -5.64 -12.41 -0.15 -11.77 15.1 - - - - -
326 -13.82 -0.69 -12.67 18.49 8.31 50.39 4.65 1.47 -3.18 - -
327 -11.07 -4.57 -11.69 7.57 -13.82 15.44 -16.93 19.47 9.50 - -
328 -5.54 -2.75 -9.35 14.94 -12.94 28.59 -24.98 13.26 -10.93 - -
329 -13.56 -4.55 -14.69 9.76 -12.79 11.77 -20.38 14.34 -12.91 - -
330 -14.28 -3.12 -14.13 10.57 -15.14 18.49 -25.39 16.05 -14.58 - -
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Table E.7 (continued) | Score values of the samples.

Sample Beer style Fermentation Purity Law Grain Abs. 294nm
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2

331 -12.64 -2.74 -13.71 5.99 -12.41 8.42 -10.67 16.73 17.68 - -
333 -15.99 -6.89 -14.35 -1.98 -13.19 19.86 2.03 7.34 -1.75 - -
334 -6.11 -2.71 -10.76 -2.05 -11.4 -18.75 -14.52 18.71 21.59 - -
335 -14.27 -3.37 -13.17 10.23 -10.96 -2.41 -19.21 19.18 24.29 - -
336 -7.59 0.97 -15.12 1.57 -13.91 -24.55 -12.99 14.46 19.36 - -
337 -12.46 -3.52 -13.48 4.00 -9.97 -17.13 -15.92 19.22 23.25 - -
357 19.40 13.52 14.04 13.18 7.42 2.19 -13.40 -19.18 3.30 - -
358 -10.38 -6.24 -12.47 -30.71 9.09 -41.97 8.75 3.20 -0.77 - -
360 17.57 -4.91 9.70 12.76 -13.45 8.46 - - - - -
361 -7.74 -3.55 -12.59 -9.17 -11.01 -26.53 - - - - -
362 -6.42 -2.43 -12.55 4.02 -9.98 -15.61 - - - - -
363 -7.60 0.84 -12.59 12.98 8.49 -19.42 - - - - -
364 18.93 7.41 5.20 -13.77 -7.79 -81.12 -9.00 -8.69 7.60 - -
365 17.17 -5.18 11.96 -40.16 -11.28 -80.56 10.60 1.37 0.56 - -
366 -8.37 -0.76 -13.17 5.40 -12.91 -26.23 - - - - -
367 7.34 35.10 15.51 19.24 8.75 -7.28 -11.53 -17.33 5.13 - -
368 20.00 -7.62 15.50 -22.80 9.27 -96.44 9.30 6.87 -6.00 - -
369 -13.58 -4.79 -13.62 -13.07 9.61 -42.94 9.96 3.89 -0.58 - -
370 16.05 -2.26 10.84 -61.43 10.15 -99.04 13.14 -0.16 0.87 - -
371 0.54 60.45 12.83 -3.56 4.88 -35.26 -7.97 -18.90 3.10 - -
372 1.76 42.19 12.57 3.61 9.71 -28.21 -14.11 -19.18 4.57 - -
373 -16.56 -2.54 -13.74 12.04 -9.83 -1.91 - - - - -
374 -11.72 -2.00 -12.74 14.10 -13.09 7.47 - - - - -
375 -12.69 -4.46 -13.71 0.93 11.13 -17.45 12.13 4.14 -1.52 - -
376 -9.23 -4.56 -12.34 -5.15 8.24 -38.97 8.95 0.28 -7.38 - -
377 -9.50 -3.59 -10.95 17.54 -12.52 20.48 - - - - -
378 -12.93 -2.97 -12.16 11.42 -11.79 5.47 - - - - -
379 -17.78 -7.18 -8.55 4.77 -12.63 -33.09 -24.06 15.98 -21.73 - -
380 19.59 -8.22 13.64 -30.64 7.71 -40.61 14.42 4.03 -0.11 - -
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Table E.7 (continued) | Score values of the samples.

Sample Beer style Fermentation Purity Law Grain Abs. 294nm
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2

381 -6.82 -4.16 -9.74 8.99 -10.39 22.03 -11.35 14.83 13.09 - -
382 -11.65 -0.65 -11.63 7.21 -9.33 11.53 -9.97 13.37 15.02 - -
383 -12.04 -3.71 -12.66 19.32 -12.57 28.68 -21.36 16.40 -10.11 - -
385 -3.77 -2.55 -15.32 -7.51 7.89 -46.39 17.54 -2.41 -7.86 - -
386 21.40 -8.33 13.68 -13.28 9.97 -15.6 - - - - -
387 19.84 -4.93 12.92 -77.69 10.55 -96.34 13.67 2.95 -2.59 - -
388 -11.05 -4.30 -13.62 16.24 -10.82 11.49 - - - - -
389 19.50 -6.16 14.38 -10.16 -7.55 5.01 10.63 3.91 0.88 49.60 -33.06
390 20.13 -5.27 15.77 -27.31 -11.57 -15.49 9.44 4.00 1.33 - -
391 -11.54 -4.68 -13.07 -12.06 -13.62 -22.36 -15.60 16.05 13.59 - -
392 -14.91 -3.05 -11.51 -14.52 9.35 -27.07 12.10 3.02 3.06 - -
393 11.38 -5.59 9.31 17.69 6.46 28.81 6.72 0.34 0.63 - -
394 23.90 -4.10 17.01 -27.68 -14.73 -27.58 -9.00 10.52 9.36 63.23 -4.26
395 20.14 -2.30 14.25 17.35 -13.11 -12.34 -12.37 -17.87 -0.90 - -
396 16.41 -6.87 13.23 -3.29 8.97 4.14 9.02 3.26 2.59 - -
397 14.68 -0.10 16.21 42.16 6.48 10.49 -7.40 -16.13 2.27 - -
398 19.33 -6.02 14.37 -6.18 9.31 4.65 9.61 1.26 0.30 31.98 -18.31
399 11.87 -2.07 12.39 16.91 9.16 16.11 10.69 -2.68 2.02 - -
400 24.26 3.84 11.05 16.86 -12.14 -9.56 -9.85 -20.28 5.49 - -
401 19.57 -9.41 13.32 -4.03 9.68 -14.44 7.38 -2.79 2.23 - -
402 23.68 -6.70 17.38 6.70 -12.83 -14.12 -9.82 -15.69 2.45 - -
404 21.82 -5.47 15.29 -0.87 -12.72 6.49 -1.33 -7.90 0.53 - -
405 21.51 -10.77 14.24 12.71 -11.03 -5.73 -9.34 -13.19 3.55 - -
406 20.08 -9.04 16.62 16.78 5.98 15.64 8.65 -1.72 2.57 - -
407 -8.81 4.35 -7.30 11.85 -13.21 15.81 -13.66 14.27 13.77 - -
408 -15.83 -4.66 -15.76 -20.48 -13.02 -29.84 - - - - -
409 20.53 -6.37 12.33 -88.67 -11.55 -95.92 -13.37 -23.69 -0.99 - -
410 -18.88 -6.53 -13.92 -15.58 -11.17 -27.15 -13.06 17.89 20.86 - -
411 -9.76 -7.07 -14.21 -18.77 -11.31 -34.72 -25.87 13.57 -18.47 - -
412 -10.82 0.81 -14.32 -19.88 -11.29 -52.56 -12.11 -16.23 4.34 - -
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Table E.7 (continued) | Score values of the samples.

Sample Beer style Fermentation Purity Law Grain Abs. 294nm
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2

413 -10.02 -7.67 -13.10 -0.28 -14.16 -8.08 -12.62 16.33 17.63 - -
414 -20.22 -5.81 -14.19 -14.99 7.85 -33.57 11.63 2.17 -1.84 - -
416 12.86 -0.48 13.39 -1.56 10.28 1.68 9.41 -1.47 -0.23 13.97 -5.52
417 21.73 -5.58 15.92 -14.67 6.45 -0.69 7.80 1.33 1.51 48.73 -24.17
418 18.50 -6.55 14.19 -33.78 8.27 -12.36 12.42 4.72 0.82 46.64 -13.90
419 11.19 -2.76 8.51 -2.18 6.6 16.61 8.57 4.09 1.11 31.06 -30.57
420 19.82 -6.39 14.13 -28.94 -11.67 -36.26 10.35 2.25 -2.12 29.20 16.49
421 16.57 -4.95 10.76 3.05 8.06 32.48 7.86 -0.69 -2.28 27.16 -33.86
422 14.01 0.17 13.02 -31.53 -11.41 -32.06 6.91 1.13 1.47 51.61 10.79
424 26.03 -7.54 15.71 -65.94 -11.14 -49.78 6.87 1.49 4.28 71.43 -4.75
425 19.30 -6.36 13.52 -57.59 -11.67 -41.25 6.28 1.54 1.85 32.73 12.70
426 21.94 -13.26 14.91 -146.17 7.3 -152.44 19.33 -0.64 -3.71 - -
427 12.57 -2.88 9.86 -10.87 7.4 6.92 9.24 3.69 0.75 50.94 -28.36
428 8.85 -3.31 8.44 16.64 7.41 30.09 8.73 0.75 1.76 4.23 -32.21
429 -9.42 -4.42 -9.70 8.20 3.85 18.16 5.78 5.34 -0.68 -6.53 -7.96
430 17.03 -4.63 13.13 12.82 5.27 32.86 9.81 1.43 0.33 23.26 -48.90
431 10.87 -0.64 9.87 0.92 -14.09 18.42 4.95 1.52 -0.15 29.76 -29.98
432 21.71 -8.60 15.29 -73.04 8.91 -56.37 9.38 1.65 -0.95 67.59 10.76
433 -12.92 -4.28 -14.09 -40.52 7.48 -56.75 16.87 6.85 -5.87 - -
434 -14.03 -11.99 -13.64 -3.34 7.67 -18.25 14.37 3.77 3.53 - -
435 -8.14 -10.48 -12.58 1.76 7.62 0.52 10.42 -1.48 1.29 - -
436 -7.07 -11.17 -9.78 0.77 8.04 -1.01 10.74 -0.94 1.62 - -
437 27.92 -8.77 18.48 17.04 -12.6 -19.78 -12.37 17.13 18.95 - -
438 23.77 -16.78 18.63 37.91 7.2 -14.95 12.49 4.63 -3.96 - -
439 15.22 1.62 14.23 23.87 -6.42 20.45 -1.64 -11.50 0.67 - -
440 15.03 -3.66 10.03 -43.85 9.72 -41.63 7.11 2.96 -4.13 - -
441 18.43 1.30 11.23 -11.80 -10.93 -29.95 -14.15 -21.57 2.26 - -
442 6.24 18.99 15.13 22.81 -8.68 16.82 -11.55 -14.12 -0.68 - -
443 -1.78 -5.44 -6.28 -30.63 6.94 -23.53 8.27 2.67 -2.84 - -
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Table E.7 (continued) | Score values of the samples.

Sample Beer style Fermentation Purity Law Grain Abs. 294nm
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2

444 -2.00 -3.43 -6.68 10.65 10.53 31.22 5.46 -1.93 -1.57 - -
445 29.00 -9.42 20.25 -27.16 9.27 -75.19 13.72 4.17 -5.14 - -
446 21.44 -4.15 9.89 -70.99 -10.2 -83.34 -9.56 -13.93 -1.58 - -
447 16.64 -7.29 12.08 2.11 8.15 -6.59 9.14 1.58 1.14 - -
448 18.60 -7.28 15.73 5.97 9.17 -100.2 7.70 0.46 -0.44 - -
449 11.27 6.46 12.54 31.45 -9.29 12.08 -6.07 -13.26 3.26 - -
450 -7.05 5.12 -8.90 3.44 7.73 -7.3 -8.42 -15.81 3.65 - -
451 27.53 -1.93 14.19 -9.90 -11.37 -6.76 7.74 5.49 -3.52 - -
452 9.55 -3.80 6.70 24.23 -12.16 19.01 -8.67 9.82 13.53 - -
453 3.63 24.35 14.72 17.80 9.9 20.92 -6.69 -16.87 5.69 - -
454 10.83 -2.05 8.81 13.28 -13.82 12.2 6.08 3.42 2.69 - -
455 -1.54 -5.20 -5.76 -4.39 -9.9 6.25 10.54 8.25 3.55 - -
456 18.37 -3.45 14.68 9.91 -12.35 9.89 5.42 2.35 0.10 - -
457 -13.03 -3.52 -11.92 -16.90 9.68 -19.33 13.21 1.41 2.34 - -
458 -11.68 -4.61 -12.98 -31.08 8.98 -27.63 7.66 0.81 2.74 - -
459 -14.86 -7.19 -13.27 -5.11 7.5 -5.26 9.85 6.32 2.27 - -
460 -13.73 -4.25 -11.45 15.76 7.38 25.43 - - - - -
464 -15.30 -2.52 -12.67 12.67 -10.15 22.77 -8.90 14.38 14.69 - -
465 -7.41 -2.32 -9.22 18.33 -12.76 37.03 -5.39 13.22 9.88 - -
467 -16.88 -6.17 -15.94 -1.55 -8.72 5.29 -5.40 14.15 13.61 - -
B1885 -9.28 2.74 -5.54 10.89 3.82 12.14 -14.17 -2.56 4.19 -16.69 20.60
B2019 -12.41 -1.52 -10.01 14.94  5.38 20.19 3.41
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Figures E

Figure E.1 | Phase contrast microscopy of amorphous organic particles of 1885
beer. Typical particles that occur during the aging of filtered beers due to
polyphenol-protein complexation.
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Figure E.2 | FT-ICR mass spectrum excerpt of beer B1885
(A) and B2019 (B) showing over 40 different compositions in
the nominal mass m/z 317. Chemical space color code:
CHO (blue), CHNO (orange), CHOS (green), CHNOS (red),
CH(N)O(S)P (violet).
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Figure E.3 | Mass difference network of lipid-type compositions specific for the historical beer.
The compositions are represented as nodes that are connected by edges, representing
changes in the molecular formula equivalent to (bio-)chemical redox processes.
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Figure E.4 | Loading plots including 7,700 compositions for the OPLS-DA differentiating beer types
(A), fermentation types (B), grains used (C), compliance with the German purity Law (D) and Maillard
signatures by the absorption at 294 nm (E). The features specific for an attribute are highlighted.
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Figure E.5 | Van Krevelen diagrams of the characteristic compositional profiles for beer types (A), fermentation types (B),
grains used (C), compliance with the German Purity Law (D) and Maillard signatures (E). Color code: CHO (blue), CHNO
(orange), CHOS (green), CHNOS (red), CH(N)O(S)P (violet). Neutral compositions are depicted. Specific areas are highlighted.
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Figure E.6 | Extracted Ion chromatograms of compound masses
found to be specific for wheat (A), corn (B) and rice (C) including a
respective grain-containing sample, sample B1885 and sample
B2019. No overlap of reported marker molecules [228] between the
grain-containing samples and samples B1885 and B2019 was
observed.
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