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Kurzfassung

In dieser Arbeit wird die Multi-Fidelity Non-Intrusive Polynomial Chaos
Methode (MF-NIPC) auf die numerische Simulation im Windingenieurwesen
angewendet. Die Windsimulationen enthalten Unsicherheiten und der En-
twurf muss diese Unsicherheiten berücksichtigen, um Strukturen im sicheren
Bereich zu entwerfen. Die Anwendung der Unsicherheitsquantifizierung auf die
numerische Simulation im Windingenieurwesen ist aufgrund der Rechenkosten
eine Herausforderung. Um die Gesamtberechnungskosten zu reduzieren, wird
in dieser Arbeit das Multi-Fidelity Framework auf die Non-Intrusive Polyno-
mial Chaos Methode angewendet. Das Multi-Fidelity Framework wurde auf
Computational Fluid Dynamics Simulationen zum Zweck der Optimierung
und nicht zur statistischen Bewertung von Entwurfskandidaten angewandt.
Im Windingenieurwesen wurden bisher vor allem High-Fidelity Modelle en-
twicklt, ohne den Multi-Fidelity Framework zu berücksichtigen. In dieser
Arbeit wird MF-NIPC zum ersten Mal auf Probleme des rechnergestützten
Windingenieurwisens angewandt.
Um die MF-NIPC zu demonstrieren, werden zwei bekannte Benchmark Prob-
leme untersucht, nämlich: das BARC-Problem (Benchmark on the Aerody-
namics of a Rectangular 5:1 Cylinder) und das Silsoe 6m Würfelproblem.
Die rechteckige Form des BARC Problems spielt eine wichtige Rolle für den
Entwurf im Bauwesen. Die Krümmung des rechteckigen Zylinders und der
Anströmwinkel werden als Eingangsunsicherheiten betrachtet. Durch den
Vergleich der Wahrscheinlichkeitsdichtefunktion, die aus den verschiedenen
Modellen gewonnen wurde, konnte festgestellt werden, dass das Multi-Fidelity
Modell die Genauigkeit der Unsicherheitsanalyse erhöht. Anschließend wurden
die Ergebnisse von MF-NIPC mit den experimentellen Ergebnissen verglichen.
Es zeigt sich, dass die Ergebnisse von MF-NIPC besser mit den experimentellen
Daten übereinstimmen als die deterministische Simulation, die mit dem Mit-
telwert der Eingangs-Zufallsvariablen ausgewertet wird.
Das Silsoe 6m Würfelproblem stellt einen Flachbau dar, der den Problemen
der natürlichen Windanströmung ausgesetzt ist. Die Referenzgeschwindigkeit
und die Windrichtungen werden als Eingangsunsicherheiten betrachtet. Das
Multi-Fidelity Modell zeigt eine Verbesserung der Genauigkeit im Vergleich
zum Single-Fidelity-Modell, und die Rechenkosten werden erheblich reduziert.
In Bezug auf die Lage des minimalen Sogs auf dem Dach zeigt die Multi-
Fidelity-Analyse im Vergleich mit der deterministischen Simulationen, besser
Übereinstimmung mit den Ergebnissen der Großversuche.





Abstract

In this thesis the Multi-Fidelity Non-Intrusive Polynomial Chaos method
(MF-NIPC) is applied to computational wind engineering problems. The
computational wind engineering simulations contain uncertainties and the
design must account for these uncertainties to design structures within the
safe range. It is challenging to apply the uncertainty quantification to compu-
tational wind engineering problems due to computational cost. In order to
reduce total computational cost, the multi-fidelity framework is coupled with
the Non-Intrusive Polynomial Chaos method in this thesis. The multi-fidelity
framework has been applied to Computational Fluid Dynamics simulations
for the purpose of optimization, rather than for the statistical assessment
of candidate design. In computational wind engineering it has been rather
focused on developing high-fidelity model and the multi-fidelity framework has
not yet been considered. In this thesis MF-NIPC is applied to computational
wind engineering problems for the first time.
In order to demonstrate MF-NIPC, two well-documented benchmark cases
are studied, namely: the Benchmark on the Aerodynamics of a Rectangular
5:1 Cylinder (BARC) problem and a flow around the Silsoe 6m cube prob-
lem. The rectangular shape used in BARC plays an important role for civil
engineering design. The curvature of the cylinder and the angle of attack
are considered as input uncertainties for the purpose of validation to the
experimental data. By comparing the probability density function obtained
from the multi-fidelity model and the single-fidelity model, we observed that
the multi-fidelity model increases the accuracy of the uncertainty analysis.
Then the results of MF-NIPC was compared with the experimental results. It
is shown that the results of MF-NIPC is more compatible to the experimental
data than the deterministic simulation evaluated at the mean value of the
input random variables.
The Silsoe 6m cube problem represents a low-rise building subjected to the
natural wind inflow problems. The architectural structures are located in the
atmospheric boundary layer and the inflow is affected by ground surface. The
reference velocity and the wind directions are considered as input uncertainties.
The multi-fidelity model shows the accuracy improvement compared to the
single-fidelity model and the total computational cost is significantly reduced.
In terms of the location of the minimum suction on the roof, the multi-fidelity
analysis shows more compatible results to the full-scale observation than the
deterministic simulations.
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Chapter 1

Introduction

Thanks to the improvement of computational power, Computational Wind
Engineering (CWE) has been rapidly developed recently. In addition to
development of deterministic simulations, Uncertainty Quantification (UQ)
has been increasingly receiving attention in finance and mechanical engineering
field. While the improvement of CWE, wind engineering design is still relying
heavily on wind tunnel tests. In this chapter first the role of Computational
Fluid Dynamics (CFD) simulations in design codes are explained to review
the role of CWE in wind engineering design. Afterwards, it is introduced
how UQ can help wind engineering designs from the aspect of Verification &
Validation (V&V) and the climate change adaptation design in section 1.2.
Finally, the objective of this thesis will be explained in section 1.3 and the
outline of the thesis will be introduced in section 1.4.

1.1 Roles of Computational Fluid Dynamics
simulations in Wind Engineering design

According to Blocken [15] CWE is defined as "the use of CFD for wind
engineering applications" and wind engineering is defined as "the rational
treatment of interactions between wind in the atmospheric boundary layer
and man and his works on the surface of Earth". CWE can be roughly divided
to two fields, namely: Environmental Wind Engineering and Structural Wind
Engineering. Problems included in the Environmental Wind Engineering are,
for example, pedestrian level urban flow for human comfort problems (Mochida
et al. [96]) and pollutant dispersion problems (Sabatino et al. [132]), while the
Structural Wind Engineering are dealing with wind lads on structures (Kareem
[74]) and wind-structure interaction problems (Tamura [152]). This thesis
focuses on the Structural Wind Engineering problems. The comprehensive
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explanation of the Environmental Wind Engineering problems may be found
in Blocken [15]. Recently CFD has been applied to both Environmental Wind
Engineering Problems and Structural Wind Engineering problems. In the
Environmental Wind Engineering the advantage of CFD is what is easier to
make graphic presentation of wind flow field compared to the wind tunnel tests
(Stathopoulos et al. [144]). Stathopoulos et al. [144] and Phillips et al. [114]
discussed the potential of CFD usage as an alternative to the wind tunnel
tests in the Environmental Wind Engineering. As examples of application of
CFD in the Environmental Wind Engineering problems Stathopoulos et al.
[144] compared CFD results of Reynolds Averaged Navier Stokes (RANS)
model and wind tunnel results. They found that CFD results and wind tunnel
results have significant discrepancy in a case of highly complex re-circulation
flow region. Phillips et al. [114] introduces several turbulence models for CFD
and listed three difficulties to apply CFD to the pedestrian problems, namely:
inlet boundary condition, maintaining the velocity and turbulence profiles
into the domain and the prediction of aerodynamic flow around bluff bodies.
Compared to Environmental Wind Engineering problems, there are fewer
research papers concerning validation of CFD simulations for the Structural
Wind Engineering problems. It may be because for the Structural Wind
Engineering problems the extreme pressure coefficient is also important and
it is more difficult to reduce variation both in wind tunnel tests and CFD
simulations, while in the Environmental Wind Engineering problems usually
only the mean value is in interest. This fact has made it more difficult to carry
out validation for the Structural Wind Engineering problems. As results of
this aspect, most of design codes still do not approve to determine wind load
depending on CFD results alone. According to most of existing design codes it
is required to carry out wind tunnel tests in order to determine wind loads. In
this section, design codes from the European Committee for Standardization,
the American Society of Civil Engineers and the Architectural Institute of
Japan are compared from the standpoint of CFD for structural design. In
addition, several best practice guidelines will also be introduced later in this
section. The best practice guidelines have been published, so that CFD
simulations give reliable results regardless of the experience and skill of
simulation engineers.

Design code: the European Committee for Standardization

In the European Code (EN 1991-1-4:2005) by European Committee for
standardization [46] it has been indicated that the design process may be
assisted by testing and measurements as:

1. In supplement to calculations wind tunnel tests and proven and/or
properly validated numerical methods may be used to obtain load and
response information, using appropriate models of the structure and of
the natural wind.

2. Load and response information and terrain parameters may be obtained
from appropriate full scale data.
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As the European code is followed by the national annex, it indicates that
"The National Annex may give guidance on design assisted by testing and
measurements". The German annex (Deutsches Institut für Normung e. V.
[36]) mentions usage of wind tunnel tests results for building design, however
there is no description about usage of CFD results. It is to say that CFD
results alone still cannot be used for the wind engineering design in the
German design code.

Design code: the American Society of Civil Engineers

In the American Society of Civil Engineers Standard American Society of
Civil Engineers [6] the allowed procedure for the wind load calculation should
be one of the following methods.

1. Method 1 - Simplified Procedure as specified in Section 6.4 for buildings
meeting the requirements specified therein

2. Method 2 - Analytical Procedure as specified in Section 6.5 for buildings
meeting the requirements specified therein

3. Method 3 - Wind Tunnel Procedure as specified in Section 6.6

Method 1 is applied to relatively simple structures, to which the along wind
effect can be ignored. Method 2 is applied to more complicated structures
than one in Method 1, and the along wind effect is considered. Method 3 is
applied to the most complicated structures, and wind tunnel tests should be
carried out. Thus CFD has not been defined yet as a method to determine
the wind load as is the case with the European code.

Design code: the Architectural Institute of Japan (AIJ)

In Japan the wind load should be decided based on the building standard
law. For buildings which exceed coverage of the building standard law, such as
high rise buildings and buildings with special shape, the AIJ Recommendation
for Loads on Buildings Architectural Institute of Japan [10] is applied to
determine the wind load. In 2007 the Guidebook of Recommendations for
Loads on Buildings 2 – Wind induced Response and Load Estimation/Practical
Guide of CFD for Wind Resistant Designs Architectural Institute of Japan
[11] is published, and since then for the exceptional buildings it is allowed to
determine wind load only by CFD. The procedure to determine the wind load
is illustrated in Figure 1.1. The wind load determined by CFD results should
pass the performance assessment by the ministry of Land, Infrastructure,
Transport and Tourism. In order to confirm reliability of CFD simulations
as a tool to determin wind loads in designing process, Tamura et al. [153]
carried out validations by comparing wind tunnel tests and CFD simulations
for two types of tall building and compared results. This research is the
base of the Guidebook of Recommendations for Loads on Buildings 2 – Wind
induced Response and Load Estimation/Practical Guide of CFD for Wind
Resistant Designs Architectural Institute of Japan [11]. In Tamura et al. [153],
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Figure 1.1: The procedure of determining wind load in Japan

in order to consider variation included in the wind tunnel tests and CFD
simulations, three wind tunnel tests and seven CFD simulations has been
carried out. It shows that the wind tunnel results and CFD results agreed
very well not only about time averaged pressure coefficient but also about
unsteady pressure coefficients, such as maximum- and minimum peak, and
it concluded that CFD simulations predict wind load as same level as wind
tunnel tests do. It should be noted that CFD simulations used in Tamura
et al. [153] are all relatively large in practical point of view, such as 30 to
200 million cells. Tamura et al. [153] also pointed out that it is critical to
investigate the minimum requirement of CFD simulations to obtain adequate
accuracy with practically affordable computational power. I would like to
acknowledge Prof. Tetsuro Tamura for providing information.

Best practice guidelines of CFD simulations

Since accuracy of CFD simulations heavily depends on skills of engineers,
several best practice guidelines have been published (Blocken et al. [16]). A
primary best practice guideline was published by European Research Com-
munity on Flow, Turbulence and Combustion (ERCOFTAC, Casey et al.
[25]). This best practice guideline covers only RANS, and focuses more on
mechanical engineering applications, as application examples are transonic
airfoil, engine valve and so on. For CWE problems European Cooperation
in Science and Technology (COST) published two best practice guidelines
namely: “Recommendations on the use of CFD in wind engineering”(Franke
et al. [51]) and “The COST 732 Best Practice Guideline for CFD simulation
of flows in the urban environment: a summary”(Franke et al. [52]). Franke
et al. [51] is published as a contribution of the European COST Action C14.
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This best practice guide focuses on application of CFD to CWE problems,
and mentions about flow in Atmospheric Boundary Layer (ABL). As is the
case with Casey et al. [25], Franke et al. [51] focuses on RANS as a turbulence
model. The other best practice guideline from COST, Franke et al. [52],
is published as an extension of Franke et al. [51], and it is published as a
contribution of the European COST Action 732. Franke et al. [52] focuses on
RANS as well and it is based on previous best practice guidelines. Outside of
Europe the Architectural Institute of Japan (AIJ) published a best practice
guideline (Tominaga et al. [158]). Tominaga et al. [158] focuses on RANS
as well, however the best practice guideline is based on result of their own
benchmark cases, while the guidelines from COST is based on literature re-
view. Tominaga et al. [158] investigated six benchmark cases, namely: single
high-rise building with two different cross section, simple city block model, a
high-rise building in the city model and building complexes in two different
actual urban areas. Some results used for development of the guideline has
been introduced in Yoshie et al. [171]. The CFD results have been compared
with wind tunnel results and field measurement data. The AIJ guideline
focuses on pedestrian level urban flow problems which are classified to the
Environmental Wind Engineering.

1.2 Roles of Uncertainty Quantification in
Computational Wind Engineering

In previous section, it has been introduced how CWE have been used in the
Wind Engineering design. The aim of this research is to apply UQ to CWE
problems. In this section two example cases are introduced, in which UQ for
CWE may help design procedure.

1.2.1 Validation

Before introducing application of UQ to the validation let us look at basic
terminology of Verification and Validation (V&V), since often "verification"
and "validation" are used ambiguously. The terminology of V&V has been
often discussed in several committees. Here the history of the terminology is
briefly introduced. Along with improvement of numerical analysis methodolo-
gies and computational power, it has been sought how to assure accuracy of
CFD simulations. For this purpose V&V plays a key role. The concept of
V&V is illustrated by Schlesinger [136] as in Figure 1.2.

Now let us look at definitions of term Verification and Validation. In 1987
the American Nuclear Society defined V&V as (Roache et al. [129]):

• Verification: The process of evaluating the products of a software
development phase to provide assurance that they meet the requirements
defined for them by the previous phase

• Validation: The process of testing a computer program and evaluating
the results to ensure compliance with specific requirements.
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Figure 1.2: Illustration of Verification and Validation process
Schlesinger [136]

This definition had been criticized due to its low utility (Oberkampf [104]).
Bradley [17] introduced the following definition determined by an ad hoc
committee formed by the National Aeronautics and Space Administration
(NASA). It is noted that definition of the verification was not given in Bradley
[17].

• Validation: Detailed surface-and-flow-field comparisons with experimen-
tal data to verify the code’s ability to accurately model the critical
physics of the flow. Validation can occur only when the accuracy and
limitations of the experimental data are known and thoroughly under-
stood and when the accuracy and limitations of the code’s numerical
algorithms, grid-density effects, and physical basis are equally known
and understood over a range of specified parameters.

• Calibration: The comparison of CFD code results with experimental
data for realistic geometries that are similar to the ones of design
interest, made in order to provide a measure of the code’s capability
to predict specific parameters that are of importance to the design
objectives without necessarily verifying that all the features of the flow
are correctly modeled.

After these definitions were published Roache [128] and Oberkampf [104]
reviewed the terminologies and made their own definitions. Oberkampf [104]
defined verification and calibration as:

• Code Verification Activities: Activities, either experimental, analytical,
or numerical, that build confidence in a code’s ability to predict well-
known physics or a specified mathematical model of physics.

• Code Calibration Activities: Activities, either experimental, analytical,
or numerical, that build confidence in a code’s ability to predict flow
variables when the physics is incompletely or poorly known.
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Oberkampf [104] did not make definition of validation, while validation is
higher requirement for the code which may be done between the code ver-
ification and the code calibration. Roache [128] made simple definition for
V&V as:

• Verification: solving the equations right

• Validation: solving the right equations.

In 1998 the American Institute of Aeronautics and Astronautics (AIAA) make
a following definition focusing on CFD simulations (Guide for the Verification
and Validation of Computational Fluid Dynamics Simulations [64]).

• Verification: The process of determining that a model implementation
accurately represents the developer’s conceptual description of the model
and the solution to the model.

• Validation: The process of determining the degree to which a model is
an accurate representation of the real world from the perspective of the
intended uses of the model.

The detailed explanation of V&V may be found in Oberkampf et al. [106].
Now let us apply the introduced V&V procedure to CWE problems. In Fig.
1.3 the V&V process is illustrated for CWE problems. In CWE, the concep-
tual model is Navier-Stokes equations, additional turbulence modelings and
simplification of structure geometry and surrounding buildings. If structures
are flexible, such as bridge decks and high-rise buildings, Fluid Structure
Interaction (FSI) models may be used for the conceptual models. The com-
putational models are software such as KratosMultiphysics (Ferrándiz et al.
[48]) and OpenFOAM (Weller et al. [160]), that are implemented to solve
equations defined in the conceptual models. The verification is to confirm
whether the software is solving the Navier-Stokes equations and additional
turbulence equations right and implemented correctly, including eliminating
bugs. The verification of CFD simulations in KratosMultiphysics is carried
out in Abodonya [2].
UQ may be used in the validation process. Considering comparisons between
reality and the computational model, it is not possible to avoid all uncertain-
ties in reality or wind tunnel tests, such as manufacturing error and inflow
velocities. The classification of the uncertainties will be introduced in detail
in the following chapter. UQ is used for taking these uncertainties account
during the validation process. In this thesis UQ will be applied for validation
of two benchmark problems in CWE, and the detail will be explained in
greater detail in the following chapter.

1.2.2 Climate Change Adaptation Design

It has been known that changing climate will cause significant damage to
infrastructures in future. Considering that infrastructures and buildings have
long in-service period, it becomes necessary to take into account the future
climate change impact for design. The climate change adaptation design has
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Figure 1.3: Illustration of Verification and Validation process in CWE.
Pictures are taken from muenchen.de Das offizielle Stadt-
portal [98], Richards et al. [124] and Richards et al. [120]

been receiving increasing attention, as a methodology to take the climate
change in account to the civil engineering design. According to “Climate
change 2007: The physical science basis” [28], the climate change adaptation is
defined as: initiatives and measures to reduce the vulnerability of natural and
human systems against actual or expected climate change effects. Connor et al.
[30] introduces a whole climate change adaptation process. Here we focus
on roles of CWE in the climate change adaptation design. As mentioned in
previous section 1.1, the role of CFD in the design code is to determine wind
loads according to input extreme wind speed. The difference between climate
change adaptation design and the conventional design is that in the climate
change adaptation design the design wind speed is changed depending on the
climate change scenarios. While in the conventional design the extreme wind
speed has been decided only by historical value, in the climate adaptation
design the extreme wind speed is decided depending on the climate change
scenarios. Since changing climate includes a lot of uncertainties, there are
many different scenarios, for example “Climate change 2007: The physical
science basis” [28] introduces 40 different climate change scenarios. Usually
one climate change scenario is chosen and from the greenhouse gas suggested
by the climate change scenario the extreme wind speed is calculated using
projection methods (Jeong et al. [72]). Jeong et al. [72] calculated the
extreme wind using a projection method Canadian Regional Climate Model
(CRCM5, Côté et al. [32]) using two different climate change scenarios, and
pointed out that the projected extreme wind is quite dependant on the climate
scenarios.
For architectural designs the climate change adaptation has been considered
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especially for the Environmental Wind Engineering problems, in order to
investigate thermal comfort and energy usage caused by temperature change
(Stagrum et al. [143]). Hooff et al. [66] compares effect of six passive
climate change adaptation measures with respect to overheating hours and
the temperature increase. Kleerekoper et al. [77] compares different cooling
measures. These studies are neither using specific climate change scenarios
nor the probabilistic theories. In the Structural Wind Engineering, Stewart
et al. [146] investigates cost of climate adaptation measure, however in
this research CFD simulations are not used for calculating the vulnerability
of infrastructures and only statistical models are used to determine the
relationship between vulnerability of the structure and the peak gust wind
speed.
Thus, CFD simulations with UQ have not yet been applied to the climate
change adaptation design in the structural wind engineering, though many
works in the literature are aware of the uncertainties included in the climate
change scenarios(e.g. Jeong et al. [72]). In order to take the uncertainties
account into the climate change adaptation design, the probability density
function (PDF) of the extreme wind should be given for each climate change
scenario. There are two challenges to get the PDF of the extreme wind,
namely:

1. The climate change scenario should indicate the uncertainty quantita-
tively.

2. The projection should quantify the uncertainty of the climate change
scenario.

After having PDF of the extreme wind, stochastic wind load to buildings
caused by the wind can be simulated using UQ methodologies, which will
be introduced in this thesis, and it may help developing the design code
considering climate change.

1.3 Objectives

The main topic of this thesis is to investigate the applicability of UQ to CWE
problems with practically affordable computational costs. As mentioned
in section 1.1, the CFD simulations have taken increasingly bigger role in
architectural design, and in future UQ will take more important role when
the uncertainties of the climate change should be necessarily considered.
In addition, UQ is a very useful tool in validation. UQ has not yet been
applied to CWE problems, Because UQ requires several runs of deterministic
simulations and a deterministic simulation of CWE is already computationally
very expensive. In order to reduce total computational cost, in this thesis the
multi-fidelity framework is applied to UQ for the first time for CWE problems.
For CWE problems it has been more focused on improving high-fidelity
simulations, while the multi-fidelity framework has not been considered. To
carry out deterministic CFD simulations, Finite Element Method (FEM)
based software is used. In order to carry out UQ taking geometry as an input
random variables, it is necessary to express detailed shape of the structure.
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Since the FEM uses tetrahedron/triangle meshes which can express geometry
in detail, the FEM based method has great advantage in terms of carrying out
UQ. The FEM based CFD is getting popular especially for Fluid-Structure
Interaction simulations, however there are not yet many research in CWE.
In this thesis MF-NIPC with FEM based CFD simulations is applied to
two well-known benchmark cases in CWE, namely: the Benchmark on the
Aerodynamics of a Rectangular 5:1 Cylinder (BARC) and the Silsoe 6m cube
problems. For developing the multi-fidelity framework Large Eddy Simulation
(LES) is used as a high-fidelity model and the Unsteady Reynolds Averaged
Navier-Stokes (URANS) simulations is used as a low-fidelity model. The
accuracy of the multi-fidelity model is investigated by comparing PDF of
different models and the results of MF-NIPC is validated with experimental
data.

1.4 Outline of this document

The remaining chapters are organized as follows.
In Chapter 2 the literature related to the multi-fidelity Non-Intrusive Polyno-
mial Chaos methods for CWE problems are reviewed. First uncertainties in
CWE problems are classified, and then literature about UQ for wind engi-
neering problems and CFD problems are reviewed. Here the CFD problems
include not only the wind engineering problems, but also mechanical engi-
neering problems. Then the multi-fidelity framework used for CFD problems
are reviewed and appropriate multi-fidelity framework for CWE problems is
discussed.
In Chapter 3, first the theory of CFD simulations are explained then the
Non-Intrusive Polynomial Chaos methods are introduced. Afterwards the
Non-Intrusive Polynomial Chaos is expanded to the multi-fidelity framework.
In Chapter 4 the introduced MF-NIPC is applied to a homogeneous inflow
CWE problem. As a target problem, flow around a rectangular problem is
chosen which is well studied in CWE field both using CFD simulations and
wind tunnel tests.
In Chapter 5 the introduced MF-NIPC is applied to a natural wind inflow
problem. As a target problem, Silsoe cube problem is chosen, for which
full-scale observation data is available.
Finally in Chapter 6 we summarize the work.



Chapter 2

Multi-fidelity Uncertainty
Quantification for Computational
Wind Engineering problems
(Literature review)

In this chapter literature related to multi-fidelity UQ for CWE problems
are reviewed. First section is a literature review about UQ without the
multi-fidelity framework. The literature that carried out UQ for CWE and
CFD problems are reviewed. Then, literature that applied multi-fidelity
framework are reviewed. In this section, not only application of the multi-
fidelity framework to UQ but also application to other problems such as
optimisations are reviewed, in order to overview widely the multi-fidelity
framework in CFD problems. Finally existing CFD models, which have
different fidelity, are reviewed and suitable multi-fidelity framework for CWE
problems are discussed.

2.1 Uncertainty Quantification in Computational
Wind Engineering

2.1.1 Classification of uncertainties in Computational Wind
Engineering

Generally uncertainties can be classified as either aleatory uncertainty or
epistemic uncertainty. According to Oberkampf et al. [107], these uncertainties
are defined as:
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• Aleatory uncertainty: the inherent variation associated with the physical

system or environment being considered

• Epistemic uncertainty: a cause of non-deterministic behavior derives
from some level of ignorance or lack of knowledge about the system or
environment

Recently it has been also said that uncertainties cannot always be classified
to these two types of uncertainties and the classification is not always nec-
essary, however this classification has been often used for UQ and it helps
readers to understand the characteristics of uncertainties. In Fig. 2.1, pos-
sible uncertainties in CWE are listed up and classified to the aleatory- and
epistemic uncertainty. The inflow wind is the significant aleatory uncertainty
in the CWE, and the parameters induced from CFD solver settings and
modelings are epistemic uncertainties. Geometry can be both aleatoric- and
epistemic uncertainties. For example, variation of geometry might happen
during manufacturing process, and in this case it is an aleatoric uncertainty.
On the other hand, we basically cannot model whole detailed geometry of
structures, such as balcony and plants, and in this case the uncertainty can
be classified as epistemic uncertainty. In this thesis we focus only on the
aleatory uncertainties. This is because, to apply the multi-fidelity framework
the input uncertainties should be consistent in low- and high fidelity models.
The epistemic uncertainties are often model dependent and therefore difficult
to be considered in the multi-fidelity framework. In this thesis only literature
review is carried out for the epistemic uncertainties.

2.1.2 Uncertainty Quantification for wind engineering
problems

In this section literature, which deal with uncertainties for wind engineering
problems, are reviewed. It should be noted that not all literature are using
CFD simulations, and the deterministic models may be introduced below.
Literature for UQ specially in CFD problems, which are not dealing with
wind problems but mechanical and other fluid problems, will be introduced
in the following section 2.1.3. The literature for UQ in wind engineering can
be roughly categorized to:

• Meteorological problems

• Human comfort problems

• Structural problems.

Meteorological problems In the meteorological field, Sochala et al. [141]
investigated the uncertainty of peak water level evaluation, considering storm
characteristic and empirical constitutive laws as input uncertainties. As a
deterministic simulation the storm surge model is used and as a UQ method-
ology the polynomial chaos method is used. Ak et al. [5] investigate the
short term wind speed time series, considering hourly and dairy wind speed as
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Figure 2.1: Uncertainties in CWE

input uncertainties. As a deterministic model, a neural network is used and
as UQ methodology an interval analysis is performed. Many researches in the
meteorological field are motivated by estimating wind energy production, for
example, Du et al. [39] investigate uncertainties of the available transmission
capabilities of existing-and future wind firm, considering wind time series
data as input uncertainties. The available transfer capability assessment is
used as a deterministic model and the Monte Carlo (MC) methods are used
as a UQ methodology. Jin et al. [73] investigate the short term wind speed
at hub height at a wind farm. Jin et al. [73] uses combination of the Weather
Research Forecasting (WRF) model and CFD model as a deterministic model,
and consider the inlet wind distribution and turbulence model parameter in
the CFD model as input uncertainties. The polynomial chaos methods are
used as UQ methodologies. For the meteorological problems, not only CFD
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simulations but also various physical models have been used as deterministic
simulations.

Human comfort problems For the human comfort problems, Garcıéa-
Sánchez et al. [54] carried out UQ for wind field simulations using RANS as
a deterministic model, and stochastic results are compared with measured
data. Wind speed and wind direction at a reference height and aerodynamic
roughness in the logarithmic velocity inlet profile are considered as input
random variables. Quantity of Interest (QoI)s are velocity magnitude and
direction at field measurement stations, and Non-Intrusive Polynomial Chaos
methods (NIPC) was used as an UQ methodology. Gorlé et al. [62] considers
both aleatoric- and epistemic uncertainties. RANS was used for deterministic
simulations and mean wind velocity and wind directions are considered as QoIs.
Inflow velocity parameters are considered as aleatoric uncertainties, and NIPC
is used to propagate these uncertainties. The epistemic uncertainties are con-
sidered by introducing perturbation in the Reynolds stress. To propagate the
epistemic uncertainties, the interval method was used. Garcıéa-Sánchez et al.
[55] carried out UQ for pollutant dispersion problems in urban environment
using RANS as a deterministic simulations. Velocity magnitude and direction
and a terrain roughness length are considered as input random variables and
these Probability Density Function (PDF)s were derived from measurement
data. QoIs are wind magnitude and direction and non-dimensional concentra-
tion, and these are compared with measured data. NIPC method is used as
an UQ methodology. Garcıéa-Sánchez et al. [53] investigated uncertainties,
which occur when a meso-scale model and micro-scale model are coupled.
Here the meso-scale model is numerical weather prediction models and the
micro-scale model is CFD simulations. UQ was carried out for the micro-scale
model considering roughness length, wind direction and magnitude as input
random variables. PDF of roughness length is determined from empirical
data and PDF of wind direction and magnitude are determined from the
meso-scale simulation. Gorlé et al. [61] investigates the epistemic uncertainty
in RANS by introducing perturbation in the Reynolds stress. This method-
ology is applied to the separated flow problems such as flow over periodic
wavy wall problems and a three dimensional hill problem. Margheri et al.
[90] carried out UQ for high-fidelity simulations using the anchored-ANOVA
and POD/Kriging methods. The anchored-ANOVA method is a sensitivity
analysis and it is used to reduce the UQ dimension space. The combination
of these methods makes it possible to reduce the number of required deter-
ministic simulations and UQ was carried out for large simulations, such as
pedestrian wind comfort study in a full scale urban area, using LES as a
deterministic simulation. Sun et al. [150] carried out UQ for building energy
assessment problems. Building energy simulations are used as a determinis-
tic simulations. Before carrying out the building energy simulations, lower
fidelity models were used to determine input random variables. Sun et al.
[149] carried out UQ for single-sided ventilation rate problems for a building.
RANS are used for a deterministic simulation, and wind speed, incident angle
and ground roughness are considered as input random variables. QoI is the
ventilation rate and generalized Polynomial Chaos (gPC) method is used as a
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UQ methodology. For the human comfort problems most of literature uses
CFD simulations as deterministic simulations. Though not LES but RANS
simulations are used, the spectral method, such as polynomial chaos methods,
are used as UQ methodologies. It follows that if we want to apply UQ for LES
simulations, which has rather high computational cost compared to RANS, it
is necessary to consider auxiliary framework to reduce total computational
cost for practically affordable application.

Structural problems For structural problems, several literature carried
out UQ to bridge deck simulations. Bruno et al. [20] carried out UQ for a
bare bridge deck with trapezoidal cross section. The section lower edge degree
of sharpness and oncoming turbulence integral length scale are considered
as input random variables and the aerodynamics coefficient is QoI. Time
dependent RANS is used as a deterministic model and an adaptive form of
the Multi-Element generalized Polynomial Chaos (aME-gPC) is used as a
UQ methodology. Bruno et al. [19] carried out UQ for a flat plate by solving
incompressible, unsteady and two dimensional arbitrary Lagrangian-Eulerian
version of Navier-Stokes equation. Incoming mean flow velocity is considered
as an input random variable, and steady force, friction coefficient and velocity
in the wake and flutter are considered as QoIs. Multi-Element gPC is used
as an UQ methodology. Canuto et al. [23] carried out UQ for the Sunshine
Skyway Bridge deck using two dimensional RANS as a deterministic model.
Curvature radius is considered as an input random variable. PDF of the
curvature radius is expressed by Weibul distribution and the truncation of
the Weibul distribution was changed to find proper PDF. QoIs are time
averaged lift coefficient and the Strouhal number. NIPC is used as an UQ
methodology. As a benchmark problem for bridge decks and other civil
engineering structures, a Benchmark on the Aerodynamics of a Rectangular
5:1 Cylinder (BARC) has been widely investigated (Bruno et al. [22]). There
are several literature about UQ for the BARC problem, for example, Siconolfi
et al. [139] carried out UQ for the BARC. The more detailed review of BARC
and UQ applied for BARC will be found in the following chapter.
Until now researches for part of civil engineering structures are introduced
and now let us look at researches for entire buildings. Lamberti et al. [79]
carried out UQ for a high-rise building model using RANS as a deterministic
model. Reference velocity, roughness length and angle of misalignment are
considered as input random variables and QoI is wind pressure coefficient of a
high-rise building. The NIPC method is used as a UQ methodology and also
model uncertainties have been considered by introducing perturbation in the
Reynolds stress. Some researches focus more on dynamic structural response
for high rise buildings, for example, UQ for structural problems are often
carried out for the purpose of Performance-Based Wind Engineering (PBWE)
design. PBWE consider the whole range of performances of buildings in a
probabilistic context and throughout the whole life-cycle of the structure.
Decision makers will decide location and design of the structure depending on
the structural risk which is calculated considering uncertainties in every phase.
The detailed explanation of the PBWE may be found in Ciampoli et al. [27].
Chuang et al. [26] applied NIPC to the multi degree of freedom structure
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excitation problem. Structural variables, such as mass and damping, are
considered as input random variables. Li et al. [81] introduced a framework,
where PBWE is embedded into Risk Design Optimization (RDO), in order
to make complex decision making relatively easy multi-attribute decision
making process. As an example, CAARC benchmark case Thordal et al.
[157] was considered. Intensity measure of wind, structural parameter and
resistance are consdiered as input random variables and the micro multi-
objective particele swarm optimization (Micro-MOPSO) was used as UQ
methodology. Cui et al. [34] carried out deterministic simulations using GPU
and applied Monte Carlo methods. In summary most of literature except Cui
et al. [34] uses the spectral methods as is the same with the human comfort
problems. Though for the structural problems for architectural design LES
simulation has been more often used than for the human comfort problems,
most of literature uses RANS simulations as deterministic simulations. From
this fact it can be easily imagine that it is practically very difficult to carry
out UQ for LES simulations. In addition to architectural problems, there has
been also increasing number of literature which carried out UQ for the wind
turbine problems. For example, Murcia et al. [99] carried out UQ for DTU
10 MW reference wind turbine. Compared to architectural wind engineering
problems, there are various deterministic simulations are used for wind turbine
simulations.

2.1.3 Uncertainty Quantification for CFD problems

UQ has been increasingly popular for CFD problems in last decades. Walters et
al. [159] introduces probabilistic methods, such as Monte Carlo (MC) method,
moment method and Polynomial Chaos (PC) method and non-probabilistic
methods, such as interval analysis. A summary of probabilistic and non-
probabilistic method for UQ may be found in Walters et al. [159]. Though it
is not focused on in this thesis, in CFD simulations, it has been known that
the epistemic uncertainties also play an important role. Oberkampf et al. [105]
summarizes nature of the epistemic uncertainties in CFD simulations and
applied a evidence theory to a simple system given by an algebraic equation.
In the evidence theory the input random variables are not given by PDF but
by intervals and plausibility and belief are given as outputs. As an example,
Ling et al. [83] investigated the epistemic uncertainty of RANS simulation
using machine leaning algorithm. The data base for machine learning is
trained by results of direct numerical simulations or LES results, and region
with high model uncertainties are specified. In addition aforementioned Gorlé
et al. [61] and Gorlé et al. [62] investigated also the epistemic uncertainties
of RANS simulations by introducing perturbation to the Reynolds stress.
The interested readers about the epistemic uncertainties are referred to those
literature, and from now on we are focusing on propagating the aleatory
uncertainties.
As it is observed in previous section about UQ for CWE problems, for
CFD problems the spectral analysis have been widely used to reduce total
computational time. In addition, most of used spectral analysis is non-intrusive
to use CFD code as black box. The non-intrusive spectral methods will be
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used in this thesis as well, the detail will follow. Here we would like to
review literature which apply spectral methods to CFD simulations other
than CWE applications. The major disadvantage of the spectral methods is
the so-called curse of dimensionality, meaning that the number of required
deterministic simulations increases exponentially with dimension of the input
random variables. To overcome the curse of dimensionality, a two-step
approach is often carried out in case there are large dimension of possible
input random variables. The two-step approach is introduced by Loeven et al.
[84] for the chaos collocation method. It should be noted that by using the
polynomial chaos expansion, sensitivity analysis can be carried out without any
additional effort (Sudret [147]). In the two-step approach, first the sensitivity
analysis is carried out with large number of input random variables with lower
order polynomial chaos. Then important input random variables are selected
from the initial variables, and then as a second step the chaos collocation
method is carried out with higher order polynomial chaos. Loeven et al. [84]
applied the two-step approach to a linear piston problem with an unsteady
boundary condition, and compare different spectral methods, namely: the
polynomial chaos method, the stochastic collocation method and the chaos
collocation methods. The polynomial chaos method uses Askey scheme to
determine orthogonal polynomials, and the stochastic collocation project
the input random variables to so-called α domain. The chaos collocation
method uses Lagrange interpolation to construct polynomials. In the examples
of Loeven et al. [84] the chaos collocation gave the most accurate results.
Loeven et al. [85] applied the two-step approach with the chaos collocation
method to the NACA0012 airfoil problem. From eight input random variables
the most important three variables, namely: freestream velocity, angle of
attack and the camber of the airfoil, were selected by the first step. CFD
simulations are solved with RANS modeling. There are several methods
in the spectral method, for example, Hosder et al. [67] applied the point
collocation non-intrusive polynomial chaos method to CFD simulations. The
point collocation non-intrusive polynomial chaos methods uses the regression
method to determine coefficient of the polynomials, which are often determined
by the Gauss quadrature. Carnevale et al. [24] applied the probabilistic
collocation method to heat transfer in internal channels. The detail of each
method will be given in greater detail later. Since the spectral methods is a
surrogate model, Walters et al. [159] compares the results with one estimated
by the MC method with 10,000 samples to confirm its accuracy. In order to
investigate effect of accuracy of deterministic simulations, Carnevale et al.
[24] uses two different deterministic simulations, namely: Numerical Large
Eddy Simulation(NLES) and steady RANS. By comparing stochastic results
from two different deterministic simulations, it is found that the propagated
uncertainties are turbulence model dependent and it is recommended to use
high-fidelity model to get rid of the model uncertainty. Montomoli et al. [97]
applied the probabilistic collocation method to transient three dimensional
thermomechanical analysis. Then, in order to investigate the effect of shape of
input PDF, Montomoli et al. [97] uses two different PDFs for an input random
variable and compared the results. One is the Gaussian distribution and the
other is the t-distribution which is a fat-tailed distribution which can express
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rare event. Usually the used polynomial order for CFD simulations is 4,
Shimoyama et al. [138] further investigated appropriate polynomial order and
number of sampling points for the non-intrusive polynomial chaos methods and
they observed that if the order of polynomial chaos is increased, it is possible
that unphysical oscillation occurred. To further reduce total computational
costs the spectral methods have been combined to Kriging models. Sakai et al.
[133] uses the co-Kriging method, which is an extension of the Kriging method,
for estimation of deterministic results at several collocation points instead of
carrying out high-fidelity deterministic simulations at every collocation point.
As introduced above the non-intrusive spectral methods have been widely
used for CFD problems, however, there are some researches which applied
intrusive methods or the Monte Carlo (MC) methods to CFD problems.
Kawai et al. [76] used the Kriging method and estimate non-smooth response
output by MC methods. Kawai et al. [76] carried out 7 CFD simulations and
by using Kriging model estimated 10,000 samples for the MC method. Kawai
et al. [76] found that for non-smooth function, the Kriging-model-based gives
better accuracy and robustness than the polynomial chaos methods. Huyse
et al. [70] applied the MC methods to a one-dimensional Burger equation
model and studied propagation of uncertainty of the viscosity and boundary
conditions. The input uncertainties are considered in different approaches,
one is random variables and the other is random fields. Pisaroni et al. [115]
carried out the Continuation Multi-Level Monte Carlo (C-MLMC) methods
to the 2D RAE-2822 transonic airfoil and the 3D NASA rotor 37 using RANS
simulations. It should be noted that, since spatial discretization plays an
important role for CFD simulations, distances from first grid node to the
wall were kept same in every mesh level. Geneva et al. [57] carried out UQ
with the MC method using data-driven RANS simulations as a deterministic
model. In the data-driven RANS simulations the Reynolds stress is predicted
by Bayesian deep learning neural network. Model form uncertainties and
epistemic uncertainties induced by limited training data are considered as
input random variables and it is applied to the backwards step and wall
mounted cube problem. So far all introduced literature uses CFD solver as
black box, however, Xiu et al. [168] applied the intrusive polynomial chaos
method to the Navier-Stokes equation. In Xiu et al. [170] the introduced
method is expanded to Fluid Structure Interaction (FSI) problems. Since
most of open-source or industrial CFD codes are complicated and it takes
massive effort to rewrite and carry out V&V, the non-intrusive methods
becomes getting more attention compared to intrusive methods. Overall in
the CFD simulations other than CWE problems, it has been investigated to
apply UQ using LES as deterministic simulations. It has been reported that
the model uncertainties has non-negligible effect to the stochastic results (e.g.
Carnevale et al. [24]), in case only low-fidelity models as RANS are used as a
deterministic simulation.
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2.2 Overview of the multi-fidelity framework in CFD

In previous section, UQ application to the CWE problems and other CFD
problems have been introduced. As described, the challenge of application of
UQ to CFD problems is its high computational cost, since UQ requires to
run a deterministic simulation several times. Especially CWE problems often
has significantly high Reynolds number comparing to mechanical engineering
problems introduced above. In addition computational domain is also larger in
CWE compared to the mechanical engineering problems and it leads to large
mesh, for example, models introduced in later chapters such as Silsoe cube
problems have 3,000,000 cells and BARC problem has 50,000 cells. The higher
Reynolds number requires finer mesh resolution, finer time resolution and
longer simulation time to get statistical values. Having summarized previous
section, in order to reduce required number of deterministic simulations, the
spectral methods has been widely used for CFD problems. In practical point
of view it is still difficult to apply the spectral methods even using RANS
simulations, however, it has been also reported that the low-fidelity model
can produce model uncertainties, as Carnevale et al. [24] recommended to use
high-fidelity model to get rid of the model uncertainties. To further reduce
the total computational cost and reduce model uncertainties of low-fidelity
model, the multi-fidelity frame work is applied in this thesis. The multi-
fidelity framework has been used not only for UQ but also for other objectives
such as optimizations. Peherstorfer et al. [112] identifies three strategies
through which high-fidelity simulations may be leveraged by larger data sets of
low-fidelity model evaluations, namely: fusion, filtering and adaptation. The
fusion method combines available information from all outputs, an example
being the method presented in Pepper et al. [113], in which experimental
data is used in order to adjust the polynomial chaos expansion coefficients
by maximizing the entropy subjected to the experimental data. The filtering
method runs the high-fidelity simulations based on the low-fidelity filter while
the adaptation method creates a multi-fidelity model by training a meta-model
with the discrepancies between the high- and low- fidelity models. There
are three literature which apply multi-fidelity or multi-level hierarchy to the
stochastic collocation method. The adaptation method is applied in Eldred
et al. [45] to the multi-fidelity framework. Narayan et al. [102] uses filtering
method, such that first evaluate the low-fidelity model and choose where the
high-fidelity models are evaluated depending on the results of low-fidelity
model. Teckentrup et al. [155] carried out Multi-Level Stochastic Collocation
method (MLSC) with hierarchical FEM models and found that the MLSC
is more accurate and efficient than Multi-Level Monte Carlo (MLMC) up to
number of random variables 20. The methodology used in Teckentrup et al.
[155] is categorized to fusion.
Now let us look at different fidelity models used in literature. There has
been many different fidelity CFD models available, and Giselle Fernández-
Godino et al. [58] summarized literature which use multi-fidelity models for
development of surrogate models. According to Giselle Fernández-Godino
et al. [58], Polynomial Chaos Expansion (PCE) is a surrogate model classified
as one of the response surface methods. Giselle Fernández-Godino et al. [58]
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introduced following types of models which are used as high- and low-fidelity
models, namely: analytical model, empirical model, linear model, potential
flow, Euler flow and RANS. Since there are many possibilities to choose
high- and low- fidelity models, we might be interested in criteria to choose
proper high- and low- fidelity in terms of high accuracy of the combined
results. However, Giselle Fernández-Godino et al. [58] does not indicate
that there is any specific tendency to get better results depending on models
used in the multi-fidelity framework. Several validation techniques of the
multi-fidelity framework exist, for example, Park et al. [111] compares several
multi-fidelity framework quantitatively by comparing Root Mean Square Error
(RMSE) from high-fidelity results. Park et al. [111] compared two types of
multi-fidelity system, one is a simple framework and the other is a Bayesian
framework. Park et al. [111] concluded that the Bayesian framework has
better accuracy than the simple framework, however, the improvement is
small compared to large effort to implement the Bayesian framework. To the
best of authors knowledge, there has been no specific and systematic way
to choose high- and low- fidelity model and so far it should be chosen by
experience.

2.3 Possible multi-fidelity models for CWE problems

In previous section, the multi-fidelity framework used in a wide range of areas
of CFD is introduced. In this section, we are focusing on finding suitable
multi-fidelity frameworks for CWE problems. First possible models which
have different fidelity are reviewed. Then, based on the literature review a
multi-fidelity model will be chosen for this thesis. Recently CFD simulations
have been increasingly used for CWE problems. CFD simulations for CWE
problems can be categorized as:

(a) Buildings (structural stability and human comfort inside and outside of
the buildings)

(b) Bridges

(c) Wind turbines

(d) Airfoils

In cases of (a), (b) and (c), the flow is normally the atmospheric boundary
layer (ABL) flow and no variation of the fluid properties are considered
and these problems are called as Computational Wind Engineering (CWE)
problems (Franke et al. [50]). In ABL, the Reynolds number is calculated
as Re = 67, 000UL, where U is the reference wind velocity [m/s] and L is
the reference length [m] (Simiu et al. [140]). It is to say that the Reynolds
number in CWE can easily exceed Re = 1.0× 106, which is known to be very
high Reynolds number for CFD simulations. The other specific problem for
CWE problems is that except c) wind turbines civil engineering structures
have bluff body shape such as buildings and bridges. Characteristic of the
flow around the bluff body shape is that edges of the structure causes flow
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separation and the separation leads to vortex shedding. Many multi-fidelity
models have been developed in field of wind turbines, since simulations of
wind turbines often require fluid-structure interaction simulations and its
computational cost becomes very high (Sprague et al. [142] and Padron et al.
[109]). For buildings and bridges, the multi-fidelity framework has still not
yet been commonly used. One reason is that according to Giselle Fernández-
Godino et al. [58], more than half of reviewed journal papers use multi-fidelity
framework for optimization purpose, and in the field of buildings and bridges,
the optimization is not commonly used. There are few literature in recent
years to apply multi-fidelity framework to the optimization for bridges and
buildings. For example, Bernardini et al. [14] applied optimization to design
of high rise buildings and Ding et al. [37] carried out a multi-fidelity shape
optimization to design a cross section of a building. Ding et al. [37] used
LES as a high-fidelity model and URANS as a low-fidelity model, and then
developed a surrogate model using Co-kriging method. As mentioned in
previous section, according to Giselle Fernández-Godino et al. [58], following
models have been used in CFD simulations:

1. Analytical expressions

2. Empirical relations

3. Numerical linear approximations

4. Potential flow

5. Numerical non-linear non-viscous approximation (Euler equation)

6. RANS

To give an example of each method, the selective averaging method (Sankar
et al. [134]) is one of the analytical expressions and it has been used for the
micro-structural composites problems (Goldsmith et al. [59]). The Tadpole
program (Cousin et al. [33]) is one of the empirical relations which estimate
drag coefficient empirically. The low-order panel methods (Maskew [94]) is
one of the numerical linear approximations. Forrester et al. [49] carried
out multi-fidelity optimization, in which the Tadpole program is used as a
low-fidelity model and the low-order panel methods is used as a high-fidelity
model. Forrester et al. [49] investigate a generic transonic civil aircraft wing
using aforementioned multi-fidelity optimization method. Another example of
numerical linear approximation is a blade element/vortex lattice aerodynamic
model implemented as CACTUS (Murray et al. [100]). Padron et al. [109]
carried out the multi-fidelity uncertainty quantification using the CACTUS
as the low-fidelity model and the Euler equation as the high-fidelity model.
In Padron et al. [109] vertical axis wind turbines are investigated. As an
example of the potential flow and Euler equation, Nelson et al. [103] carried
out the multi-fidelity optimization to the PARSEC airfoil, using the non-linear
potential solver TRAN2D as low-fidelity model and the Euler equation as the
high-fidelity model. Thus, most of the low-fidelity models have been applied
to wind turbines or airfoils. On the other hand, having considered that the
flow around the bluff body has non-linear and unsteady characteristics, it
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has been known that for CFD simulations of the bluff body shape structures
it is required to invoke Navier-Stokes equations (Dowell et al. [38]). Wu
et al. [167] developed a low-dimensional model based on the Volterra series,
however it is recommended to use the higher order approximation for the flow
around the bluff body at high Reynolds number. Having considered that the
objective of this thesis is to carry out the multi-fidelity UQ for architectural
wind engineering problem, we now conclude that the RANS/URANS models
are used as low-fidelity model and the LES model is used as the high-fidelity
model.



Chapter 3

Methodology

In this chapter, the theory of deterministic CFD simulations and Multi-fidelity
Non-Intrusive Polynomial Chaos method (MF-NIPC) are introduced. First
we introduce the theory of two different fidelity CFD simulations, namely:
Unsteady Reynolds Averaged Navier Stokes (URANS) as a low-fidelity model
and the Large Eddy Simulations (LES) as a high-fidelity model. Then,
the Non-intrusive Polynomial Chaos (NIPC) methods and its multi-fidelity
extension will be introduced. Finally the software management to carry out
MF-NIPC will be explained.

3.1 CFD simulations

All CFD simulations in this thesis are carried out by open source code
KratosMultiphysics (Ferrándiz et al. [48]). In KratosMultiphysics, the CFD
simulations are implemented based on Finite Element Methods (FEM). Many
well-known software for CFD simulations have been developed based on
Finite Volume Method (FVM), such as OpenFOAM(Weller et al. [160]). An
advantage of the FEM based CFD is that FEM based methods can express
more accurate geometry of complicated structures by using unstructured
tetrahedra or triangle elements. Because of this advantage, the FEM based
CFD simulation has been often used for multi-physics simulations because of
its capability to express the deformed configuration (Helgedagsrud et al. [65]).
In addition, this feature is a great advantage for UQ as well, for example, in a
case that geometry of structures are considered as input random variables and
it is required to change the geometry accurately. In order to carry out CFD
simulations in practical engineering problems, it is necessary to use models to
the Navier-Stokes equations. As discussed in previous chapter, in this thesis
two models for CFD simulations are used for the multi-fidelity framework,
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one is LES and the other is URANS.
The incompressible Navier-Stokes equations in the computational domain Ω
are given by

ρ∂tu + ρ(u · ∇)u−∇ · σ = f , (3.1)

∇ · u = 0, (3.2)

where u is the fluid velocity, ρ is the fluid density, σ is the stress tensor and f
is the external force acting on the domain. The incompressible Navier-Stokes
equation Eq. (3.1) and Eq. (3.2) are numerically solved with initial condition
and boundary conditions. The initial condition and the boundary conditions
are written as:

u = u0 in Ω, t = 0, (3.3)

u = uD in ΓD, (3.4)

∂nu = constant in ΓN . (3.5)

Eq. (3.3) is the initial condition where u0 is the initial velocity given to whole
domain Ω. The boundary of computational domain ∂Ω is divided to two
types of boundaries, one is the Dirichlet boundary ΓD and the other is the
Neumann boundary ΓN . Eq. (3.4) is the Dirichlet boundary condition, where
uD is inlet velocity imposed to inlet boundary. Eq. (3.5) is the Neumann
boundary condition. The Neumann boundary condition is imposed to the
gradient normal to the boundary.
For the Newtonian fluid the stress tensor is expressed as:

σ = −pI + 2µ(∇su− 1

3
(∇ · u)I), (3.6)

where I is the second order identify tensor, µ is the fluid viscosity and ∇su is
the symmetric gradient velocity defined as:

∇su =
1

2
(∇u + (∇u)T ). (3.7)

The Galerkin weak form of the incompressible Navier-Stokes equations are
written as: ∫

Ω

w(ρ∂tu + ρu · ∇u−∇ · σ)dΩ =

∫
Ω

w · fdΩ, (3.8)

∫
Ω

wq∇ · udΩ = 0, (3.9)

where w is the velocity test function and wq is the pressure test function.
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3.1.1 Large Eddy Simulations

The problem variables in Eq. (3.1) and Eq. (3.2) can be separated to small
scale variables uS , pS and large scale variables uH , pH as:

u = uH + uS , (3.10)

p = pH + pS . (3.11)
The small scales are all variables that are smaller than elements of spatial
discretization, and the large scales are ones that are larger than the elements.
The small scale variables are modeled as:

ρ∂tuS +
1

τu
≈ Rm(uH , pH)− ξH and

1

τp
pS ≈ Rc(uH)− δH , (3.12)

where Rm and Rc are the strong form residual of the Navier-Stokes equations
and τu and τp are stabilization parameters. ξH and δH values are determined
depending on stabilization methods, namely: the algebraic sub-grid scales
(AGSG) or orthogonal sub-grid scales (OSS) (Codina et al. [29]). To consider
time evolution of the velocity small scale, time discretization is written as:

ρ
un+1
S − unS
δt

+
1

τu
un+1
S = Rm(uH , pH)|n+1. (3.13)

Eq. (3.13) is rewritten as:

(
ρ

δt
+

1

τu
)un+1
S = Rm(uH , pH)|n+1 +

ρ

δt
unS . (3.14)

Due to large amount of required memory to store the old small scale data,
unS in Eq. (3.14) is neglected in KratosMultiphysics implementation. In
addition, ρ

δt
is multiplied by a stabilization parameter dynamic tau, to avoid

instability. Using the modeled uS and pS , the large scale variables are solved
by FEM. As a time discretization method for the large scale variables, the
Bossak time integration method(Wood et al. [164]), which is one of the
generalized α Newmark method and has second-order accuracy, is used. The
detailed explanation about the implementation of KratosMultiphysics may
be found in Dalmau [35]. It should be noted that in this implementation
the LES turbulence model, such as dynamic Smagorinsky model, is not used.
As a matter of fact the aforementioned stabilization method is called as the
Variational Multiscale (VMS) mthod, which is often used in FEM for fluid
problems (Hughes [69]). Provided the mesh sizes are small enough, the scale
separation of VMS can be thought of as analogous to the scale separation by
filtering in LES (Codina et al. [29]). Therefore in this thesis this method is
referred to as LES simulations.

3.1.2 Unsteady Reynolds Averaged Navier Stokes
simulations

In URANS it is assumed that the velocity can be separated to the time-
averaged component U and the fluctuating component u′. By taking time
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average of Eq. (3.1), it gives:

ρ∇tU + ρU + ρU · ∇U−∇σ = f + ρ∇(−u′u′). (3.15)

The first term of Eq. (3.15) is neglected in case of RANS but it will remain for
URANS. Iaccarino et al. [71] pointed out that URANS gives more accurate
results than RANS, in cases where the flow is not statistically stationary. In
this thesis, flow around bluff body structures will be investigated that are not
statistically stationary. Therefore, URANS is used in this thesis instead of
RANS. The last term of Eq. (3.15) is called as the Reynolds stress and is
written as:

−u′u′ = 2
µT
ρ

S, (3.16)

where
Sij =

1

2
(
∂Ui
∂xj

+
∂Uj
∂xi

), (3.17)

and µT is the eddy viscosity. There are several models used for µT . The
models are often classified by number of transport equations, such as zero-
equation model, one equation model, two equation models and so on. The
more equations that are used, the more accurate the results, however the
computational cost becomes higher. In this paper the Shear Stress Transport
(SST) k − ω model, which is one of two equations model, is used. The SST
k − ω model is introduced by Menter [95]. There are three well-known two
equation model for the eddy viscosity. One is k − ε model, another is the
k − ω model and the other is the SST k − ω model. In the SST k − ω model,
the k − ω model is used at the near wall region, otherwise the k − ε model is
used, because it has been known that k−ω model is more robust in near wall
region. The eddy viscosity µT is calculated by k (Turbulence Kinetic Energy)
and ε (Turbulent dissipation rate) as:

µT = ρCµ
k2

ε
, (3.18)

where Cµ is a constant value determined empirically. µT can be also ex-
pressed using k (Turbulence Kinetic Energy) and ω (Turbulent specific energy
dissipation rate) as:

µT = ρ
k

ω
. (3.19)

In the SST k−ω model, the kinematic Eddy viscosity νT = µT /ρ is calculated
as:

νT =
a1k

max(a1ω;SF2)
, (3.20)

where a1 is a constant, S = ∂u
y

and F2 is a constant which has value of one in
boundary layer flow and zero in free shear layer. k and ω are calculated by:

∂k

∂t
+ Uj

∂k

∂xj
= Pk − β∗kω +

∂

∂xj
[(ν + σkνT )

∂k

∂xj
] (3.21)
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Figure 3.1: The law of the wall (Durbin et al. [41])

∂ω

∂t
+Uj

∂ω

∂xj
= αS2 − βω2 +

∂

∂xj
[(ν + σωνT )

∂ω

∂xj
] + 2(1−F1)σω2

1

ω

∂k

∂xj

∂ω

∂xi
,

(3.22)
where β∗, σk, α, β, σω and σω2 are constants, and F1 is a constant which has
value of one near wall region and zero away from the surface. Eq. (3.21) and
Eq. (3.22) are called as the turbulence transport equations and solved by
FEM. For the stabilization of the turbulence transport equation, a hybrid
method based on the Discrete Maximum Principle (DMP), the Algebraic Flux
Correction (AFC) method and the Cross Wind Diffusion method (Kuzmin
et al. [78]) is used. The Bossak time integration method is used as the time
integration scheme.

3.1.3 Wall treatment

The boundary conditions of wall boundaries for both LES and URANS are
usually determined based on the dimensionless wall distance y+, which is
defined as:

y+ =
yuτ
ν
, (3.23)

where y is a distance from the wall, uτ is the friction velocity and ν is the
kinematic viscosity. uτ is calculated by:

uτ =

√
τw
ρ
, (3.24)

where τw is the shear stress at the wall and ρ is density of the flow. The
dimensionless velocity u+ is calculated as:

u+ =
‖u‖
uτ

. (3.25)
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The relationship between u+ and y+ in near wall region is depicted in Fig.
3.1. In outer region, u+ and y+ follows the log law as:

u+ =
1

κ
ln y+ + β, (3.26)

where κ is the von Karman constant κ ≈ 0.41 and β is a constant β ≈ 5.1.
β is determined according to wall roughness, and these constants have been
determined empirically. The inner region is called viscous sublayer and u+

and y+ follows:
u+ = y+. (3.27)

It has been known that the two formulas intersect at y+ ≈ 11 (Durbin et al.
[41]) and the region between viscous sublayer and the log law region is called
as the buffer layer. If the first node from the wall is located outside of the
viscous sublayer, wall functions may be used as wall boundary conditions with
slip conditions instead of no-slip conditions, especially if linear shape function
elements are used for FEM discretization. This is because the linear elements
cannot express the non-linearity of the viscous sublayer. For VMS simulations
it has been sought to impose the no slip condition weakly (Bazilevs et al. [13])
or to use higher order shape functions (Ravensbergen et al. [116]), to improve
accuracy of flow close to wall. To determine the wall treatment and the first
grid, y+ may be estimated before running simulations. y+ can be estimated
before running simulations by estimating the wall shear stress τw from the skin
friction coefficient Cf which is estimated by the Reynolds number (Schlichting
[137]). However, this estimation is based on an assumption for flow over a
flat plate and not applicable to all problems. In case estimation of y+ is
not possible, for example for structures that are not flat plates or have more
complicated shapes, y+ should be calculated in postprocess using resulted
reaction. The wall shear stress τ is calculated as:

τ =
R− (R · n) n

A
, (3.28)

where R is the reaction, n is the outward pointing unit normal and A is the
surface area of the condition.

In KratosMultiphysics two types of wall functions are implemented. One is
the Werner Wengle Wall model (Werner et al. [161]) and the other is the simple
log-law model. Though there are some possible wall functions, Temmerman
et al. [156] pointed out that results are more sensitive to its implementation
than type of the wall functions. In this chapter the implementation of the
log-law wall function is introduced. The interested reader for the Werner
Wengle wall model may refer to Andre [9]. A flowchart of implementation of
the Neumann boundary condition using the wall function is illustrated in Fig.
3.2. First, y+

limit, which is the boundary of the linear region (u+ = y+) and
the log law region (u+ = 1

κ
ln y+ + β), is calculated by solving the following

equation by the Newton-Raphson method.

y+
limit =

1

κ
ln(y+

limit) + β (3.29)
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Assuming that the first node is in the linear region, uτ is calculated by solving:

u+ = y+ ⇔ |u|
uτ

=
uτy

ν
. (3.30)

Once uτ is calculated, y+ is calculated by Eq. (3.23). Then y+ is compared
with y+

limit, and if y+ > y+
limit, uτ is recalculated by solving following equation

by the Newton-Raphson method.

|u|
uτ

=
1

κ
ln(y+

limit) + β (3.31)

Finally the Neumann boundary condition is applied by:∫
ΓN

NatidΓN = −
∫

ΓN

Naρu2
τ
ui
|u|dΓN , (3.32)

where ΓN is the Neumann boundary and Na is a shape function and ti is the
traction on the Neumann boundary.

In the SST k − ω model, the Neumann boundary condition due to the
wall stress should be considered to the turbulence transport equations. The
traction at the Neumann boundary gN is calculated as:

gN =
u3
τ

κC0
µ.5(y+ν)2

. (3.33)

KratosMultiphysics has two types of solvers. One is the monolithic solver
and the other is the fractional step solver. In the monolithic solver the pressure
and velocity are solverd at the same time, and in the fractional step solver
the pressure and velocity are uncoupled. Interested readers are referred to
Dalmau [35] for monolithic solver implementation and Andre [9] for fractional
step solver implementation. Codina et al. [29] pointed out that the fractional
step solver is more stable compared to the monolithic solver, and it has been
observed that the monolithic solver has convergence issues. The solver type
should be carefully selected depending on the requirement for models. For
example, fractional step solver requires high effort to implement the periodic
boundary conditions which is often used for CFD simulations.

3.2 Multi-Fidelity Non Intrusive Polynomial Chaos
methods

In this section the theory of the MF-NIPC is introduced. As mentioned in
the previous chapter, NIPC is getting attention in CFD field thanks to its
comparably low computational cost. In this section, first the basic theory of
the NIPC is introduced and then it is expanded to multi-fidelity framework.
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Figure 3.2: Implementation of the Neumann boundary condition using
the wall function
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3.2.1 Non-Intrusive Polynomial Chaos methods

Let us consider a stochastic CFD problem. The unknown Quantity of Interest
(QoI), Y , is calculated as a function of d uncertain inputs:

Y = g(X), (3.34)

where X = [X1, X2, ..., Xd] are the input random variables and g refers to the
results of a CFD simulation for these inputs. A single evaluation of g may be
computationally expensive, for this reason we wish to construct a meta-model
for g based on a limited training set of model evaluations. Assuming that Y is
second-order (E[Y 2] <∞), Y can be expressed with orthogonal polynomials
as:

Y =
∑
k∈Nd

akΨk(X), (3.35)

where Ψk(X) is a multivariate orthogonal polynomial, which itself is a product
of univariate orthogonal polynomials. The contribution of these polynomials
to the summation is weighted by the Polynomial Chaos Expansion (PCE)
coefficients, ak. The polynomial basis may be user selected; for certain
families of probability distribution an optimal choice of polynomial basis exists,
referred to as the Wiener-Askey scheme (Xiu et al. [169]). Alternatively,
the polynomials may be calculated directly from the available data for the
inputs. This method, referred to as arbitrary Polynomial Chaos (aPC), is
used in this thesis and will be discussed in greater detail below. For practical
implementations, the summation in Eq. (3.35) is truncated, with the pth
order Polynomial Chaos approximation of Y expressed as:

Y ≈
P∑
k=1

akΨk(X). (3.36)

The total number of terms, P , in the expansion is calculated as:

P =
(p+ d)!

p!d!
. (3.37)

The PCE coefficients, a = {a1, . . . , aP }>, must be determined numerically.
There are several methods to calculate the PCE coefficients ak in Eq. (3.36)
such as: the pseudo-spectral projection method, the point collocation method
and the stochastic collocation method (see, e.g. Le Maître et al. [80]). Each
method will be explained below.
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3.2.1.1 The pseudo-spectral projection method

The pseudo-spectral projection method calculate the PCE coefficients a =
{a1, . . . , aP }> by numerical integration as:

ak =
1

||Ψk||

∫
X∈Ω

Y (X)ΨkdΓ(X)

≈ 1

||Ψk||

q1∑
j1=0

· · ·
qd∑
jd

Y (Xj1 , . . . , Xjd)Ψk(Xj1 , . . . , Xjd)(wj1 . . . wjd),

(3.38)

where NU is the dimension of input random variables, qi is the number
of Gauss quadrature points in each dimension and ||Ψk|| is the norm of
the orthogonal polynomials. The quadrature points (Xj1 , . . . , Xjd) and the
quadrature weights (wj1 , . . . , wjd) are calculated following Golub and Welsch
(Golub et al. [60]). To exactly integrate the p th order polynomial, the
Gauss integration requires 2q − 1 > p quadrature points. Considering that
Eq. (3.38) integrates 2p th order polynomials, the number of quadrature
points should be 2q−1 > 2p. The total number of collocation points increases
exponentially with dimension of the input random variables, it is called the
curse of dimensionality. To overcome the curse of dimensionality, sparse
quadrature methods have often been used. The Smolyak quadrature rule Qd,k
for level k is calculated as:

Qd,k =

k−1∑
k−d

(−1)(k−1−i)
(

d− 1
k − 1− i

) ∑
q∈Ndi

Qq1 ⊗ . . . Qqd , (3.39)

where Qqj is the Gauss quadrature for a variable Xj . The further explanation
of the Smolak quadrature is included in Appendix B.

3.2.1.2 Point collocation method

The point collocation method is based on linear regression. Assuming that
there are N deterministic results of the CFD simulation g(·) available a set
of linear equations can be constructed:

Ψ1(X1) . . . ΨP (X1)
Ψ1(X2) . . . ΨP (X2)

...
. . .

...
Ψ1(XN ) . . . ΨP (XN )




a1

a2

...
aP

 =


g(X1)
g(X2)

...
g(XN )

 , (3.40)

where g(Xi) refers to a model evaluation at the ith sample point in the
uncertain input space. The PCE coefficients a are estimated by solving the
least-squares optimisation problem:

a = argmin
a∈RP

n∑
i=1

{g(Xi)− aTΨ(Xi)}2. (3.41)
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From these equations it is clear that a tradeoff exists between the accuracy
of the PCE and the size of the training dataset: increasing the order of the
PCE will increase the number of terms in the expansion and hence improve
its accuracy, however, this will require more PCE coefficients to be found
numerically. This tradeoff in part motivates our use of multi-fidelity PCE
in this thesis. In point collocation methods, the choice collocation points
(Xj1 , . . . , Xjd) is made by the user, however usually the Gaussian quadrature
points are chosen as the collocation points, which is also the case in this
thesis.

3.2.1.3 Stochastic Collocation method

The stochastic collocation method is based on the Lagrange polynomial
interpolation. The stochastic collocation method does not estimate the PCE
coefficient in Eq. (3.36), but estimate response surface of Y by Lagrange
interpolation as:

Y ≈
N∑
i=1

g(X(i))L(i)(X), (3.42)

where N is the number of collocation points and L is the Lagrange polynomials.
The multi-variate Lagrange polynomials are calculated as:

L(i)(X) = l(i)(X1)⊗ l(i)(Xd), (3.43)

where l(i)(Xj), j = 1, . . . , d is the one dimensional Lagrange polynomials:

l(i)(Xj) =

N∏
k=1,k 6=j

Xj −X(k)
j

X
(i)
j −X

(k)
j

. (3.44)

It is known that Lagrange polynomial is not stable for some set of interpolation
points (Gasca et al. [56]) and not all Gaussian quadrature points are stable
with respect to Lagrange interpolation. The collocation points should be
carefully chosen, so that the Lagrange interpolations are stable.

3.2.1.4 Postprocess

The goal of UQ is to estimate the statistical moments and PDF of QoI Y .
Mean and variance of Y can be calculated from the PCE coefficient a as:

E[Yp] = a1, (3.45)

E[Y 2
p ] =

P∑
k=1

a2
k, (3.46)

where Yp is the QoI estimated by p th order polynomials. In order to calculate
the PDF of Yp, the Bootstrap methods (Efron [42]) may be used. According
to the Bootstrap methods, the PDF of Y can be estimated from the bootstrap
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samples X∗, which is reproduced by an estimated PDF of samples of X. The
bootstrap distribution of Y is approximated as:

Y ≈ g(X∗)

=

P∑
k=1

akΨk(X∗)
(3.47)

The calculation of Eq. (3.47) is usually done by the Monte Carlo approxima-
tion.

3.2.2 Arbitrary Polynomial Chaos method

As has been discussed, the choice of orthogonal polynomial in the PCE is
made by the user, while in the case of arbitrary Polynomial Chaos (aPC) the
orthogonal polynomials are derived from the matrices of sample moments.
This is advantageous as aPC can calculate the orthogonal polynomials and
the collocation points for any type of input distributions, while the Wiener-
Askey scheme is restricted to several families of probability distribution,
for example the Legendre polynomials for the uniform distribution and the
Hermite polynomials for the normal distribution. aPC can therefore handle
scarce data efficiently. SAMBA, the particular implementation of aPC used
in this thesis, computes the orthogonal polynomials and collocation points
from moment matrices of each input random variable using the theory of
Golub et al. [60].

Let us consider finding p th order orthogonal polynomials and corresponding
collocation points for a input random variable whose probability distribution
is described by N samples ξ1, ..., ξN . The kth raw moment mk of the random
variable is calculated as:

mk =
1

N

N∑
i=1

ξki . (3.48)

The Hankel matrix M is defined as:

M =


m0 m1 . . . mp

m1 m2 . . . mp+1

...
...

. . .
...

mp mp+1 . . . m2p

 . (3.49)

Its Cholesky decomposition M = RTR is calculated as:

R =


r11 r12 . . . r1,p+1

r22 . . . r2,p+1

. . .
...

rp+1,p+1

 . (3.50)

According to the Mysovskih theorem, an orthogonal system of polynomials
can be determined by the inverse matrix of R. Instead of the inversion of the
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matrix, Rutishauser [131] states that the polynomials ψj(ξ) for j = 1, . . . , p
can be determined of the three-term recurrence as:

ξψj−1(ξ) = bj−1ψj−2(ξ) + ajψj−1(ξ) + bjψj(ξ), (3.51)

where
aj =

rj,j+1

rj,j
− rj−1,j

rj−1,j−1
, bj =

rj+1,j+1

rj,j
, (3.52)

and r0,0 = 1 and r0,1 = 0. The optimal collocation points can be found by
finding the eigenvalues of a symmetric tri-diagonal Jacobi matrix J :

J =



a1 b1
b1 a2 b2 0

b2 a3 b3
. . .

. . .
. . .

0 bp−2 ap−1 bp−1

bp−1 ap

 . (3.53)

In addition, SAMBA adapts Smolyak’s formula, in order to overcome the
so-called curse of dimensionality. Smolyak’s formula generates a sparse grid
on which to sample from a set of d one-dimensional Gaussian quadrature
rules. A parameter referred to as the level, l, controls the number of points
in the sample grid. Typically we choose l = p+ 1; again the accuracy of the
Polynomial Chaos is conditioned by the polynomial order. For more details
on the mathematical background of SAMBA, see Ahlfeld et al. [4].

3.2.3 Multi-fidelity Non-Intrusive Polynomial Chaos
methods

While approaches such as Smolyak’s algorithm can mitigate the computational
cost of increasing the accuracy or dimensionality of a PCE, it is possible that
the computational cost of Polynomial Chaos approaches may still be too high.
This has motivated the development of multi-fidelity approaches such as that
introduced by Eldred et al. [44] for multi-fidelity, non-intrusive Polynomial
Chaos (MF-NIPC). The term ‘non-intrusive’ refers to the fact that g(·) is not
altered in the formulation and may be evaluated as a black box. In the MF-
NIPC framework, a limited set of expensive model evaluations is leveraged by
a larger set of evaluations of a cheaper, although less accurate, model. These
models are referred to as high-fidelity and low-fidelity models respectively. By
evaluating the low-fidelity model at the collocation points corresponding to a
high-order PCE, which will include the collocation points of lower-order PCEs
at which the high-fidelity model is evaluated, the discrepancy between the
models at the shared collocation points can be used to estimate a set of PCE
coefficients for a high-order PCE. This PCE will have more terms than could
be calculated if the high-fidelity model evaluations were used in isolation.

Mathematically, a stochastic expansion of the high-fidelity model, gh(X),
is found in terms of a PCE for the low-fidelity model, gl(X), with PCE
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parameters al and a PCE that represents the discrepancy, δ, between the two
models, with associated PCE parameters aδ:

g̃h(X) =
∑
k∈Jq

al,kΨk(X) +
∑

k∈Jq−r

aδ,kΨk(X) (3.54)

where q is the sparse grid level, which corresponds to the order of polynomial,
r < q is the sparse grid level off set and Jq is the number of the orthogonal
polynomials for the sparse grid level q. aPC is used to determine the optimal
orthogonal polynomials, Ψk. δ is the discrepancy between the high- and
low-fidelity models and is expressed as:

δ(X) = gh(X)− gl(X). (3.55)

It is possible to determine PCE coefficients either the pseudo-spectral
projection methods or the point collocation methods. Here the point collo-
cation methods are introduced. In order to determine the two sets of PCE
coefficients the two terms on the RHS of Eq. (3.54) are written in matrix
form as:

Ψ1(X1) . . . ΨJq (X1)
Ψ1(X2) . . . ΨJq (X2)

...
. . .

...
Ψ1(XN ) . . . ΨJq (XN )




al,1
al,2
...

al,Jq

 =


gl(X1)
gl(X2)

...
gl(XN )

 , (3.56)

and


Ψ1(X1) . . . ΨJq−r (X1)
Ψ1(X2) . . . ΨJq−r (X2)

...
. . .

...
Ψ1(XN′) . . . ΨJq−r (XN′)




aδ,1
aδ,2
...

aδ,Jq−r

 =


δ(X1)
δ(X2)

...
δ(XN′)

 , (3.57)

where Jq is the number of the orthogonal polynomials for the sparse grid
level q andN is the number of collocation points at this level. N ′ is the number
of collocation points for sparse grid level q − r. Note that the collocation
points are determined based on the sparse grid level, hence N ′ is smaller than
N . The two sets of coefficients al and aδ are estimated by the least-squares
method as:

al = argmin
al∈RJq

N∑
i=1

{gl(Xi)− aTl Ψ(Xi)}2, (3.58)

and

aδ = argmin
aδ∈R

Jq−r

N′∑
i=1

{δ(Xi)− aTδ Ψ(Xi)}2. (3.59)

As the low-fidelity simulations are carried out for both sparse grid level q and
q− r, care was taken to ensure that the collocation points are nested between
each level, reducing the computational expense of the method.
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Figure 3.3: Flowchart and software usage for NIPC

3.3 Software management

A flowchart of the MF-NIPC is shown in Fig. 3.3. First the PDF of the input
random variables are determined by expert’s knowledge, literature review
and/or experimental data. The PDF can be expressed either by functions or
histograms. Based on the decided PDF, the collocation points and the optimal
orthogonal polynomials are calculated using aPC by SAMBA. Then, CFD
models are set up for running CFD simulations at the collocation points in
KratosMultiphysics. It should be noted that there is still no interface programs
between SAMBA and KratosMultiphysics. After the CFD simulations are
finished, the preprocess is carried out by open source python code Chaospy
(Feinberg et al. [47]). In this way, UQ methods and CFD simulations are
carried out completely separately. This can take advantage of existing CFD
code.

3.4 Example: Low Reynolds number flow around a
rectangular cylinder

In this section, the introduced multi-fidelity NIPC is demonstrated for
low Reynolds number flow around a rectangular cylinder problem with the
Reynolds number is set to 400. The Reynolds number 400 is very low as a
CWE problem, however it is much faster to converge and appropriate as a
demonstration case and the objective of this section is to demonstrate the
introduced MF-NIPC. CFD simulations are solved by the software Kratos-
Multiphysics, as a turbulence modelling LES is used. LES usually should be
calculated in three dimensions for high Reynolds number flow, however in
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(a) (b)

Figure 3.4: Details of the fine and coarse meshes used

this section two dimensional simulation is used because of its low Reynolds
number. For performing MF-NIPC, a coarse mesh as low-fidelity model and a
fine mesh as high-fidelity model are created. It is noted that the multi-fidelity
framework with different meshes are also called as multi-level framework.
The meshes are shown in Fig. 3.4. The coarse mesh has 7956 and the fine
mesh has 22,313 cells. Time steps are determined by performing convergence
study, dt = 3.0[s] for the coarse mesh and dt = 1.5[s] for the fine mesh are
used respectively. The simulations are carried out until 30, 000[s] and time
statistics are calculated by results after 15, 000[s]. About boundary conditions,
the inflow velocity is applied to left wall, no-slip condition at the cylinder
surface and slip condition at far-field are imposed.

The resulted time statistics of aerodynamic coefficient Cd, Cl and the
Strouhal number St are compared with ones in Hourigan et al. [68]. In
Hourigan et al. [68], the flow at Re = 400 is solved by the finite element
method. Cd, Cl are calculated as:

Cd =
2Fd

ρUinlet
2D

Cl =
2Fl

ρUinlet
2B

,

where Fd, Fl are the drag and lift force subjected to the structure, ρ =
1.225kg/m3 is the density of the air, Uinlet is the applied inlet velocity, B
is the chord length and D is the thickness of the structure. The Strouhal
number is calculated as St = fB/Uinlet, where f is the frequency of the lift
force coefficient. In Table 3.1 the time averaged Cd (: t− avr(Cd)) and time
standard deviation of Cl (: t − std(Cl)) are compared. It can be seen that
the fine mesh gets very close values as Hourigan et al. [68]. The coarse mesh
also got very close value of Cd with the one from the literature and the fine
mesh, on the other hand there is more difference in Cl and St value between
results of the fine- and coarse mesh. It is assumed that the angle of attack
has a normal distribution with mean 0.0° and standard deviation 3.0°, and
the curvature has a half normal distribution with the location parameter 0.0
and the scale parameter 0.05. Fig. 3.6 shows collocation points for sparse
grid level 1 to 3 calculated by SAMBA.
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Figure 3.5: Definition of the curvature

Figure 3.6: The collocation points for the sparse grid level 1 to 3
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CFD model t− avr(Cd) t− std(Cl) St
Hourigan et al., 2001 1.12 0.216 0.55

Coarse mesh 1.03 0.0724 0.75
Fine mesh 1.00 0.206 0.56

Table 3.1: Comparison of time statistics of the aerodynamics coefficient
and Strouhal number

Fig.3.7 shows PDF outlines of t− avr(Cd) and t− std(Cl) computed by
single fidelity model of the coarse mesh with the level 3 and the fine mesh
with the level 3, and the multi-fidelity model of the coarse mesh with the
level 3 and the additive correction with the level 1 and level 2 using Eq.(3.54).
Note that the single fidelity model of the fine mesh with the level 3 is the
most accurate model. Comparing results of the single fidelity models, as can
be seen in Fig.3.7(a) the shape of the PDF of t− avr(Cd) computed by the
coarse mesh model is different from the one of the fine mesh model. Even with
the additive correction, the shape of PDF is not exactly same as the one of
the fine mesh model but by using additive correction, the shape of PDF gets
closer to the one computed by the fine mesh model only. In Fig.3.7(b) the
locations of the PDFs of t−std(Cl) are different between the ones of the coarse
mesh with level 3 and the fine mesh with level 3. By applying the additive
correction, location and shape of PDF gets similar as the PDF evaluated by
the fine mesh only. In the case of both t− avr(Cd) and t− std(Cl), it can be
confirmed that by increasing the level of the additive correction, the shape of
PDF tends to converge to the shape of the PDF computed by the fine mesh
model only.

Figure 3.8 and 3.9 show the statistic moments, which are mean, standard
deviation, skewness and kurtosis, computed by the single fidelity model of
the coarse mesh with the level 1 to level 3 and the fine mesh with the level 1
to level 3 respectively, and the multifidelity model of the coarse mesh with
level 3 and the additive correction level 1 and level 2. The horizontal axis
is the total calculation time and the unit t0 is the calculation time of a
coarse mesh deterministic simulation. The ratio of calculation time of the fine
mesh deterministic simulation to the one of the coarse mesh deterministic
simulation is 2, which is determined by averaging actual calculation time of
deterministic simulations. It can be seen that except skewness and kurtosis
of t− std(Cl), the statistic moments computed by the fine mesh model and
the multifidelity model converge to almost same value, while the ones of the
coarse mesh converges to different value. Comparing total calculation time
of the single fidelity model of the fine mesh and the multifidelity model, the
convergence speed is faster by the single fidelity model of the fine mesh than
by the multifidelity model. It happens because in this case the computational
time ratio of the fine mesh to the coarse mesh is not very high. In order to
further reduce the computational time of low-fidelity, it might help to use
different turbulence model such as URANS, which will be further investigated
in this thesis.
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Figure 3.7: The PDF outlines of (a) t− avr(Cd) and (b) t− std(Cl)
computed by the single fidelity model (the coarse mesh
level 3, the fine mesh level3) and the Multi-fidelity model
(the coarse mesh level, the fine mesh level) = (3,1),(3,2))
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Figure 3.8: The moment convergence of t−mean(Cd)
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Figure 3.9: The moment convergence of t− std(Cl)
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t− avr(Cd) t− std(Cl)
Correlation 0.984 0.988

Mean Absolute Relative Error 0.0207 0.360

Table 3.2: The correlation and the mean absolute relative error be-
tween the coarse- and the fine mesh models

mean mean ± standard deviation Deterministic result
t− avr(Cd) 0.986 (0.940, 1.032) 1.03
t− std(Cl) 0.123 (0.101, 0.145) 0.206

Table 3.3: The comparison between the stochastic result and the de-
terministic result

For comparing deterministic results of the coarse mesh and the fine mesh,
Table 3.2 shows the correlation and the mean absolute relative error, which
are calculated from 35 deterministic results used for NIPC of the level 1 to 3.
The correlation and the mean absolute relative error are calculated as Palar
et al. [110]:

Correlation =

 ∑N
i=1(ghi − gh)(gli − gl)√∑N

i=1(ghi − gh)2

√∑N
i=1(gli − gl)2

2

(3.60)

MeanAbsoluteRelativeError =
1

N

N∑
i=1

∣∣∣∣gli − ghighi

∣∣∣∣ (3.61)

where N is the number of deterministic simulations and gl and gh is the
mean of the N observation data sets. From Table 3.2 it can be seen that
t− avr(Cd) is predicted well by the coarse mesh, while t− std(Cl) has 36.6%
error. The correlation values are similar in t− avr(Cd) and t− std(Cl). Even
though the coarse mesh cannot predict t−std(Cl) well, the multifidelity NIPC
is able to get a similar PDF to the one computed by fine mesh only. Finally,
let us think about the results of the multi-fidelity model of the coarse mesh
with level 3 and the discrepancy model with level 1. Table 3.3 compares the
stochastic result of the multifidelity model and the deterministic result of the
fine mesh with angle of attack 0.0° and the curvature 0.0. For t−avr(Cd), the
result of deterministic simulation is close to the mean value of the stochastic
results. On the other hand, t−std(Cl) has different feature. The deterministic
result and the stochastic result are very different. In addition the standard
deviation of the t− std(Cl) is 17.7% of the mean value, that is t− std(Cl) has
unignorable variation due to input uncertain parameters, the angle of attack
and the curvature. t − std(Cl) is caused by flow separation at the leading-
and trailing edges and it is physically understandable that the geometry of
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the edges influences results of t− std(Cl). The stochastic results confirmed
that uncertainty of the curvature causes large variation of t− std(Cl) and it is
important to take into account the geometric variations in the design procedure.
A problem of consideration of the curvature is that, the flow phenomenon has
large difference between without curvature and with a curvature even as small
as 0.01 which is the smallest curvature in the calculated collocation points.
This results in that t − std(Cl) calculated by the deterministic simulation
with the curvature 0.0 is not included in the stochastic result of t− std(Cl).

Conclusion
From this demonstration case we can conclude that, by an additive correction,
the shape of PDF of t −mean(Cd) and the shape and position of PDF of
t− std(Cl) are improved. By applying the additive correction, the statistic
moments of QoIs converge to the similar value as the ones calculated by the
single fidelity model of the fine mesh, while the statistic moments calculated
by the single fidelity model with the coarse mesh does not converge. Finally we
observed that the uncertainty of the angle of attack and the curvature causes
variation to the time statistics of the lift- and drag coefficients, especially
t− std(Cl).
In next chapters we will apply the successfully demonstrated MF-NIPC to flow
with high Reynolds number which is more realistic case in civil engineering.





Chapter 4

Application of MF-NIPC to
homogeneous inflow problems

In this chapter an application of the MF-NIPC to a homogeneous inflow
problem is introduced. As a homogeneous inflow problem the Benchmark
on Aerodynamics of a Rectangular 5:1 Cylinder (BARC) problem is consid-
ered. BARC problem is a well-documented benchmark case studied by both
CFD simulation and wind tunnel tests. In this chapter, first literature about
BARC are reviewed in the introduction. Then the input random variables are
determined from literature and the collocation points for NIPC are calculated.
Afterwards, the settings of two different fidelity models, namely: LES simula-
tions and URANS simulations are introduced, and deterministic results from
both models are compared for validation. Finally the MF-NIPC is applied
to the BARC problem. The accuracy of the MF-NIPC is investigated by
comparing Probability Density Function (PDF) estimated by different models,
and then the stochastic results calculated by MF-NIPC are compared with
wind tunnel experiment results.

4.1 Introduction: Benchmark on Aerodynamics of a
Rectangular 5:1 Cylinder

Rectangular shape plays an important role in architectural design. Many
civil and industrial structures are characterized by rectangular shapes. While
the geometry of the cylinder is simple, the wind-structure interaction of a
rectangular cylinder can exhibit behaviour such as boundary layer separation
and reattachment. For these reasons the BARC problem has been widely
investigated both by CFD simulations and wind tunnel tests. The BARC
problem represents the flow around two-dimensional rectangular cylinder prob-
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lems. It has been known that the ratio of the along-wind dimension (Breadth,
B) to the crosswind dimension (Depth, D), B/D governs the characteristic of
the flow around rectangular cylinders (Nakaguchi et al. [101]). In case of B/D
> 3.5 it is expected that reattachment is permanent and the vortex shedding
occurs from both the leading and trailing edges, though for the smaller B/D
the reattachment is intermittent. The BARC problem is promoted with the
aim of investigating assessing the consistency of the CFD simulations and
the wind tunnel experiments for a case with B/D = 5.0. a Benchmark on
the Aerodynamics of a Rectangular 5:1 Cylinder [1] recommends following
conditions in addition to B/D = 5.0.

• Reynolds number: 2× 104 ≤ Re = UD/ν ≤ 8× 104

• Angle of incidence: α = 0°

• Turbulence intensity: Iu ≤ 0.01

• Radius of curvature of the model edges: r/D ≤ 0.025

• Sampling frequency. fsamD/U ≥ 8StD

All the recommended setting for the BARC problem may be found in a
Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder [1]. Bruno
et al. [22] summarize CFD simulations and wind tunnel tests carried out
following the BARC problem recommendations and statistically analyzed
results such as drag- and lift coefficient, Strouhal number and pressure co-
efficient distributions. A number of works have focused on the problem of
validating CFD simulations on the BARC test case through a comparison
with experimental wind tunnel tests. Bruno et al. [21] carried out LES
simulation based on Finite Volume method based software. It investigated
three dimensional feature of vortex shedding around the rectangular cylinder.
Mannini et al. [89] carried out URANS simulations using different turbulence
modelling and compared the results with results of wind tunnel tests. Mannini
et al. [88] carried out Detached-Eddy simulations (DES) which is the hybrid
RANS and LES methods. RANS methods are used at the near wall region,
where usually very fine mesh refinement is required and LES methods are
used otherwise. It compared the results of DES with URANS results shown
in Mannini et al. [89]. About the wind tunnel tests for BARC problem,
Schewe [135] carried out wind tunnel test for low Reynolds number 2× 104

and high Reynolds number 2 × 106, with angle of incidence 0° and 4°, in
order to see the effect of Reynolds number and angle of intensity to bulk
parameters. Bronkhorst et al. [18] carried out the wind tunnel tests with
Reynolds number 5.0× 104 and changing the angle of incoming flow. It also
investigated effect of corner treatment by changing the material at the corner
of the rectangular cylinder. Wind tunnel tests are subject to uncertainty and
Bronkhorst et al. [18] pointed out possible sources of the uncertainties, such
as: a disturbance in the oncoming flow, a misalignment of the model, an
asymmetry in the flow, corner insert elements, pressure taps, and quality of
the rectangular shape of the model. A number of recent works have employed
Uncertainty Quantification (UQ) techniques in order to account for the ir-
reducible uncertainties present in wind tunnel tests on the BARC geometry
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in CFD simulations. For example, Mariotti et al. [92] used URANS as a
turbulence model and considered the uncertainties associated with the angle
of incidence, the longitudinal turbulence intensity, and the turbulence length
scale. Mariotti et al. [93] used LES for their CFD simulations and instead
considered the effect of uncertainties arising from the parameters of the CFD
simulations, namely: the grid resolution and the weight associated with the
turbulence model filter. Witteveen et al. [163] conducted an uncertainty
study on the angle of attack, the longitudinal turbulence intensity and the
turbulence length scale with two-dimensional URANS simulations. Finally,
Rocchio et al. [130] considered the effect of uncertainties associated with the
curvature radius of the rectangular cylinder corners using LES simulations. A
significant challenge for conducting an uncertainty analysis on the flow around
a rectangular cylinder is the required computational cost. The flow around
the rectangular cylinder geometry with high Reynolds number requirs CFD
simulations with fine mesh as well as fine time discretization. Consequently,
there is significant computational cost associated with each individual CFD
simulation. In this chapter, the MF-NIPC methods have been applied to
the BARC problem and it is sought to validate the numerical simulation
results with experimental data, by quantifying the aleatory uncertainty ex-
isting in the wind tunnel tests. As high-fidelity model LES are used and as
low-fidelity model URANS are used. First each deterministic model’s set up
and its validation will be introduced. Afterwards the multi-fidelity results
will be compared with the high-fidelity only results and the accuracy of the
multi-fidelity framework will be investigated. Finally the MF-NIPC results
are compared with wind tunnel experiments results and the effect of the input
uncertainties are investigated.

4.2 BARC test case

The objective of this study is to quantify the effects of uncertainties in the
incoming flow conditions and variations in the geometry of the structure on
the time statistics of bulk parameters and pressure coefficients of the flow
around a rectangular cylinder. A training data set comprising of evaluations of
two CFD models is used to construct a multi-fidelity, non-intrusive Polynomial
Chaos Expansion (PCE) for each of these bulk parameters and the pressure
coefficients. This PCE is then validated against a scarce set of data from
wind tunnel tests. In this section, we discuss the setup of the test case
and give details of the two sets of CFD simulations. LES and URANS are
tested without introducing curvature at edges of the rectangular cylinder and
accuracy will be checked by comparing the results with ones in literature. The
interested reader is referred to two studies that also validate CFD models of
the BARC test case, namely: Mariotti et al. [91] and Rocchio et al. [130]. We
intend to expand upon this work by incorporating a multi-fidelity approach to
this problem in which the computational cost of the simulations is significantly
reduced by leveraging a small set of LES simulations with a larger set of
computationally cheaper, but less accurate, URANS simulations.

The Quantity of Interests (QoIs), that are mostly reported in the literature,
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Figure 4.1: Assumption of the curvature radius at the edge of the
rectangular cylinder

are the bulk parameters Cl, Cd and the pressure coefficient Cp. The lift
coefficient Cl and the drag coefficient Cd are calculated as:

Cd =
FD

1
2
ρADU2

∞
Cl =

FL
1
2
ρALU2

∞
, (4.1)

where ρ is density of fluid, U∞ is the freestream velocity of the fluid, AD, AL
is the reference area and FD, FL are drag- and lift force respectively. The
pressure coefficient Cp is calculated as:

Cp =
p− p∞
1
2
ρU2
∞
, (4.2)

where p∞ is the pressure at a reference point, ρ is the fluid density and U∞
is the freestream velocity of the fluid. In the literature the side averaged Cp
is usually reported, and in this thesis the side averaged Cp will be also used.

4.2.1 Calculation of the collocation points

In this study, the angle of attack and the curvature radius of the cylinder
corners are considered to be input random variables. According to Mariotti
et al. [91], the range of variation for the angle of attack is [−1◦, 1◦], which
represents small flow misalignments that are possible in wind tunnel tests.
We choose to represent the angle of attack as a normal distribution with a
mean of 0.0◦ and standard deviation 0.51◦. These parameters are chosen so
that the angle of attack lies in [−1◦, 1◦] with 95% confidence. Variations in
the curvature radius of the cylinder corners are introduced by manufacturing
errors. Assumption of the curvature radius is illustrated in Fig. 4.1. According
to Rocchio et al. [130] the curvature radius r/D varies in the range (0, 0.054).
Here we represent the possible values of the curvature radius with a uniform
distribution in (0, 0.054). Collocation points are calculated by SAMBA for
sparse grid levels 2 and 3. The resulting collocation points are shown in
Fig. 4.2. There are 13 collocation points for the sparse grid level 2 and 30
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Figure 4.2: Collocation points calculated by Smolayak’s algorithm at
levels 2 and 3. The high-fidelity model is evaluated at the
level 2 sample points, the low-fidelity model at the sample
points in level 2 and level 3.

collocation points for the level 3. 11 collocation points are nested, they appear
in both the level 2 and level 3 sample grids. High-fidelity LES simulations
were run for each of the points in the level 2 grid, while low-fidelity URANS
simulations were run for the points in the level 2 and level 3 grid. In order
to change the input random variables, the curvature radius and the angle
of attack, computational models should be developed carefully. At the top
and bottom of the computational domain, periodic conditions are assigned
instead of slip conditions. Meshes for each curvature of radius are generated
using the mesh motion method based on a mesh without curvature radius.
Interested readers about the mesh motion are referred to Winterstein [162].

4.2.2 High-fidelity model: Large Eddy Simulation

The computational domain and the boundary conditions of the LES simula-
tions are shown in Fig. 4.3. The cross section of the rectangular cylinder had
the along wind dimension B = 0.5m and cross wind dimension D = 0.1m.
The size of the computational domain was (Dx, Dy, Dz) = (11B, 8B, 1B) and
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Figure 4.3: The computational domain for the LES. The axes and the
boundary conditions are indicated.

the distance from the inlet boundary to the rectangular cylinder was Λx = 4B.
Computational domain is determined according to Bruno et al. [22]. The
inlet velocity was 7.5m/s corresponding to ReD = UD/ν = 50, 675. This
inlet condition was chosen so as to be consistent with the wind tunnel tests
of Bronkhorst et al. [18]. The outlet boundary pressure was set to zero. The
side boundaries were given periodic boundary conditions, in order to simulate
an infinitely long cylinder in the z direction. The top and bottom of the
domain were also given periodic boundaries, so that the angle of attack could
be adjusted without changing the geometry. A no-slip boundary condition
was enforced at the surface of the rectangular cylinder and no wall functions
are used, the detail of wall treatment may be given later. The computational
domain was spatially discretized by unstructured tetrahedral elements. The
mesh for LES is shown for a case without curvature in Fig. 4.4, adjustments
in the curvature of the cylinder corners required remeshing. The height
of the first cell closest to the body surface ∆ was ∆/B = 8.66e − 3. The
surface meshes are refined at the edges, in order to express the curvature
radius. This mesh has 2, 399, 943 cells. The mesh study is given later in
this section. The non-dimensional time-step size was t∗ = 0.15 where non-
dimensional time t∗ was calculated as t∗ = tU∞/D. The run time of the for
750 non-dimensional time and the statistical values are calculated for 650
non-dimensional time. In order to determine time window, the convergence of
time averaged Cd and the time standard deviation of Cd and Cl are checked
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(a)

(b)

Figure 4.4: Meshing for LES (a) whole domain and (b) near-body

by sampling window as T1 = 50, Tn = Tn−1 + 50. The residual is calculated as
φres = |(φn − φn−1)/φn|. Fig. 4.5 shows time histories and the residual φres
for each quantity of interests. It can be confirmed that if the time window is
bigger than 550 non-dimensional time the standard deviation converges with
the residual smaller than 2.5%. The mean value converges even with smaller
time window, such as 100 non-dimensional time.

4.2.2.1 Boundary conditions for the structure

Here the cases with- and without the wall function are compared, in order to
determine the appropriate boundary condition to the surface of the rectan-
gular cylinder. Two simulations with different boundary surface condition,
namely:slip condition + the wall function and the no-slip condition, are carried
out with the mesh shown in Fig. 4.4. Except for the wall boundary conditions,
the boundary conditions are same as illustrated in Fig. 4.3. Fig. 4.6 shows the
side-averaged, span-wise averaged and time averaged pressure coefficient dis-
tribution calculated by LES with wall function and no-slip condition. The box
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(a)

(b)

Figure 4.5: Time histories and the residual of statistics for (a) drag
coefficient Cd and (b) lift coefficient Cl
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Figure 4.6: The side-averaged, span-wise averaged and time averaged
pressure coefficient distribution: box plot of six wind tun-
nel tests, LES with wall function for the wall boundary
condition and LES with no slip for the wall boundary
condition

plot is the statistics of six wind tunnel tests (Bruno et al. [22]). y+ calculated
from the resulted reaction is y+ ≈ 44 for the no-slip case and y+ ≈ 25 for the
wall function case. Though the range of y+ is larger than the height of the
viscous sublayer, which is known as y+ ≈ 11(Durbin et al. [41]), the pressure
coefficient distributions are very similar in both cases. It has been known that
VMS, which is used as a stabilization method in KratosMultiphysics, is able
to simulate the flow with coarse mesh due to numerical dissipation generated
by VMS (Wornom et al. [165] and Ouvrard et al. [108]). By using the wall
function degree of freedom increases and it takes more computational effort
than with no-slip condition. Since computational costs play an important
role for UQ, no slip conditions are used for the wall boundary conditions.

4.2.2.2 Mesh study

To create mesh the computational domain is divided to two regions as shown
in Fig. 4.7. The mesh is further refined in the box which has size (7B, 2B, 1B).
Mesh study is carried out for with- and without curvature cases.

without curvature For the mesh study without curvature, three meshes
are tested. In the fine mesh the cell size of the outer box is ∆/B = 0.1 and the
inner box ∆/B = 0.05. In the middle mesh cell size of the outer box is kept
same as the fine mesh and the cell size of the inner box is set as ∆/B = 0.1.
In the coarse mesh the cell size of the outer box is ∆/B = 0.2 and the inner
box ∆/B = 0.1. The fine mesh has 3, 082, 547 cells, the medium mesh has
2, 099, 458 cells and the coarse mesh has 1, 376, 288 cells. Fig. 4.8 compares



56
CHAPTER 4. APPLICATION OF MF-NIPC TO HOMOGENEOUS

INFLOW PROBLEMS

Figure 4.7: 3D computational domain for LES simulations. The refined
box and its size is indicated.

Figure 4.8: The side-averaged, span-wise averaged and time averaged
pressure coefficient distribution: box plot of six wind tunnel
tests, LES calculated with the fine mesh, the medium mesh
and the coarse mesh
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(a) (b)

Figure 4.9: Meshing for LES mesh study with curvature (a) fine (b)
coarse

the pressure coefficient calculated by each mesh and from this result it is
confirmed that all meshes converge to the same result. For the UQ study, the
medium mesh is used.

with curvature For mesh study with curvature, two meshes are tested for
a reference curvature. As the reference curvature, r/D = 0.027 is used. The
reference curvature is the mean value of the input random variable. In the
fine mesh the edges are refined, so that the curvature is discretized with 5
cells, and in the coarse mesh it is discretized with 2 cells. Each meshing is
shown in Fig. 4.9. The fine mesh has 2, 399, 943 cells and the coarse cells
has 691, 517 cells. The pressure coefficients are compared in Fig. 4.10. The
pressure coefficients are slightly different at both edges, however the results
are almost converged in two types of meshes otherwise. Since curvature varies
from r/D = 0.0061 to r/D = 0.048, the fine mesh is used, in order to express
the minimum curvature.

4.2.3 Low-fidelity model: Unsteady Reynolds Averaged
Navier-Stokes simulation

URANS simulations with a k-ω SST turbulence model were carried out in
two dimensions and were used as a low-fidelity model in the multi-fidelity
framework. The size of the computational domain was (Dx, Dy) = (19.5B, 8B)
and the distance from inlet boundary to the rectangular cylinder, Λx = 4B.
The computational domain was made longer in along wind dimension than
the one for LES, since URANS variables such as turbulent kinetic energy need
relatively long domain to dissipate before reaching the outlet boundary for
numerical stability. At the inlet boundary the turbulence intensity 0.01 and the
turbulent mixing length 10.0m are given. The directions of inlet velocity are
changed depending on the value of the collocation points. The computational
domain was spatially discretized by unstructured triangle elements. The mesh
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Figure 4.10: The side-averaged, span-wise averaged and time averaged
pressure coefficient distribution: box plot of six wind
tunnel tests, LES with the reference curvature R/D =
0.027 calculated with the fine mesh and the coarse mesh

for URANS is shown in Fig. 4.11. The height of the first cell closest to
the body surface is ∆/B = 8.66e− 3. The mesh size is determined so that
it is possible to express the difference of the curvature radius. The surface
of the rectangular cylinder is considered as no-slip. This mesh has 69, 594
cells. The non-dimensional time-step size is t∗ = 0.075. The time-step size is
smaller in URANS than LES, because the size of cells around the rectangular
cylinder is smaller in URANS. The statistical convergence was checked for
the time-averaged drag coefficient as in LES, and 225 non-dimensional time is
used as the time window. As seen in Fig. 4.12, results of URANS is periodic
and statistical values converge much faster than LES.

4.2.3.1 Boundary condition for the structure

The dimensionless wall distance y+ is calculated from the resulted reaction,
and y+ ≈ 7 around the structure. Since the first node locates in the viscous
sublayer, the no-slip condition is used around the structure. In order to apply
the no-slip condition to the SST k−ω model, the velocity and the turbulence
kinetic energy k is set to zero. The turbulent specific energy dissipation rate
ω is set to value which is calculated by Menter [95] as:

ω =
6ν

β1(∆y)2
, (4.3)

where ν is the kinematic viscosity, β1 is a constant β1 = 0.0750 and ∆y is the
distance to the first node from the no-slip boundary.
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(a)

(b)

Figure 4.11: Meshing for URANS (a) whole domain and (b) near-body

4.2.3.2 Mesh study

To create mesh the computational domain is divided to two regions as shown
in Fig. 4.13. The mesh is further refined in the box which has size (7B, 2B).
Mesh study is carried out for with- and without curvature cases as for the
LES simulations.

without curvature For the mesh study without curvature, two meshes are
tested. In the fine mesh the cell size in the outer box is ∆/B = 0.3 and the
inner box is ∆/B = 0.03. In the coarse mesh the cell size in the outer box
is kept same and the cell size of the inner box is set to ∆/B = 0.06. The
fine mesh has 69, 594 cells and the coarse mesh has 40, 592 cells. Fig 4.14
compares the pressure coefficient calculated by each mesh. From this results
it is confirmed that the results are converged for both meshes. However, as
mentioned above the mesh should be fine enough to express curvature changes
and in this study the fine mesh is chosen.

with curvature For mesh study with curvature, two meshes are tested for
the reference curvature r/D = 0.027. In the fine mesh the meshes around the
structures are discretized, so that the curvature is discretized with 7 cells,
and in the coarse mesh it is discretized with 4 cells. Each mesh is shown in
Fig. 4.15. The fine mesh has 70, 366 cells and the coarse mesh has 57, 517
cells. The pressure coefficients are compared in Fig. 4.16. The results from
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(a)

(b)

Figure 4.12: Time histories and the residual of statistics for (a) drag
coefficient Cd and (b) lift coefficient Cl calculated by
URANS
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Figure 4.13: 2D computational domain for URANS simulations. The
refined box and its size is indicated.

Figure 4.14: The side-averaged, span-wise averaged and time averaged
pressure coefficient distribution: box plot of six wind
tunnel tests, URANS calculated with the fine mesh and
the coarse mesh
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(a) (b)

Figure 4.15: Meshing for URANS mesh study with the reference cur-
vature of (a) fine mesh (b) coarse mesh

Figure 4.16: The side-averaged, span-wise averaged and time averaged
pressure coefficient distribution: box plot of six wind
tunnel tests, URANS with the reference curvature R/D =
0.027 calculated with the coarse mesh and the fine mesh

both meshes are converged, and the fine mesh is used for the UQ study, in
order to express the minimum curvature.

4.2.4 Validation of deterministic results

Before carrying out UQ, LES and URANS results with curvature radius
r/D = 0.0 and the angle of attack = 0.0° were validated with results from
Bruno et al. [22], in which results of both CFD and wind tunnel tests are
summarized. Firstly, we compare the bulk parameters: the lift coefficient
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Figure 4.17: Comparison between results of LES, URANS, computa-
tional results from Bruno et al. [22] which consist of 〈Cd〉
over 36 realization, 〈Cl〉 over 36 realizations, σCl over 30
realizations and St over 25 realizations and wind tunnel
experiment results from Schewe [135]

〈Cd〉 〈Cl〉 σCl StD
LES 1.13 0.0535 0.190 0.102
URANS 1.17 0.0112 0.271 0.106

Table 4.1: Bulk parameters

Cl, the drag coefficient Cd, and the Strouhal number StD. Table 4.1 shows
the bulk parameters calculated by LES and URANS, where 〈〉 refers to time-
averaged values and σ the standard deviation during a time window. In Fig.
4.17, the calculated bulk parameters are compared with values in Bruno et al.
[22] and Schewe [135]. The histogram is drawn by several computational
results whose detail may be found in Bruno et al. [22]. The wind tunnel
experiments were carried out by Schewe [135] for 6 × 103 < Re < 4 × 105.
The results obtained from LES and URANS fall within the range of literature
results.

For the second validation test, distributions for the time-averaged pressure
coefficients 〈Cp〉 and standard deviation of the pressure coefficient std(Cp) are
compared. Fig. 4.18 shows the side-averaged, spanwise averaged distribution
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of (a)〈Cp〉 and (b)std(Cp). The abscissa s denotes the distance from a leading
edge of the structure. The box plots show the statistics of the 6 wind tunnel
tests in Bruno et al. [22]. The objective here is to check the discrepancy
between deterministic CFD results and wind tunnel tests, and the correlation
between the high-fidelity results and the low-fidelity results.
First let us analyse the 〈Cp〉 distribution. Comparing with wind tunnel results,
while both simulations capture the boundary layer separation and reattach-
ment, both simulations underestimate recovery 〈Cp〉 in the downstream half
of the top edge of the cylinder. This indicates that the CFD results have
longer recirculation zones than the wind tunnel tests and consequently, the
pressure increases at a slower rate along the stream wise direction in the
CFD simulations compared to the wind tunnel tests. Bruno et al. [22] noted
that URANS can overestimate the pressure increase and this was seen in the
result of Mariotti et al. [91]. However, in our case URANS results match
very well with LES results and the overestimation has not been observed.
In our case URANS and LES results match very well, maybe because we
use a relatively fine mesh compared to the meshes usually used for URANS
simulations. In this study the mesh refinement is determined, so that it can
express the change of curvature radius at each collocation point.
Now we consider the std(Cp) distribution in Fig. 4.18(b). The results are
almost in the range of wind tunnel tests results in the upstream side of the
cylinder (s/D < 2.5), however in the downstream side both URANS and LES
overestimate std(Cp). It should be noted that compared to 〈Cp〉, std(Cp)
results are more variant within CFD simulations and wind tunnel tests (See
for example Bruno et al. [22] and Mariotti et al. [91]). Both LES and URANS
results show that std(Cp) has maximum value at s/D ≈ 3.6 ∼ 3.8. In the
wind tunnel tests, the maximum value occurs slightly more in the leading
edge side. std(Cp) of URANS shows minimum value at s/D ≈ 2.0, which
is not observed in LES results. URANS simulations which are carried out
in Bruno et al. [22], Mariotti et al. [91] and Mannini et al. [89] observed
the minimum value at the similar location as well, however the reason why
URANS tends to show minimum value at s/D ≈ 2.0 is still not clear. As
it has been discussed, LES and URANS simulations give as same trend as
wind tunnel tests both for 〈Cp〉 and std(Cp), though both URANS and LES
are not in the range of wind tunnel tests results in the downstream of the
structure. Overall LES results and URANS results matched well both for 〈Cp〉
and std(Cp). The time-averaged and spanwise averaged velocity contours are
compared in Fig. 4.19. As was observed in the 〈Cp〉 distributions, the flow
topology from LES and URANS was very similar and matched the streamlines
shown in Bruno et al. [22]. While both the LES and URANS are generally
consistent with Bruno et al. [22], as expected LES is the more accurate of the
two simulations. From the plots of the velocity contours in Fig. 4.19, it can
be seen that the flow reattaches faster in LES than in URANS which partly
explains the discrepancy in accuracy.
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(a)

(b)

Figure 4.18: The side-averaged, span-wise averaged and time averaged
pressure coefficient distribution: box plot of six wind
tunnel tests, LES and URANS (a)〈Cp〉 (b)the standard
deviation of the pressure coefficient distribution std(Cp)
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Figure 4.19: Velocity contours from the two deterministic CFD simu-
lations.

4.3 Results: Multi-fidelity Non-Intrusive Polynomial
Chaos

Having validated the setup of the two CFD methods, we now consider the multi-
fidelity aspect of the study. LES simulations were run at the points in the level
2 sample grid in Fig. 4.2, while URANS simulations were run at the points
in the level 2 and level 3 grid. A MF-NIPC representation of the uncertainty
in the inflow conditions was derived from this data, following the method
described in previous chapter. As with the deterministic simulations, the
multi-fidelity framework was validated through a comparison of its predictions
of the bulk parameters and then the pressure coefficient and velocity field.
In the case of the bulk parameters, we compare the various computational
approaches against one another, before comparing the probability distribution
for the pressure coefficient estimated using MF-NIPC against experimental
data from wind tunnel tests.

4.3.1 Bulk parameters

Fig. 4.20 shows a comparison between the Probability Density Functions
(PDF) of the time-averaged drag and lift coefficients. PDFs were calculated
using a low-fidelity PCE (URANS at level 3), a high-fidelity PCE (LES at level
2) and the multi-fidelity framework (MF-NIPC) and were compared against
PDFs for the bulk parameters that were calculated from a high-fidelity PCE
with coefficients estimated using LES data at level 3. Table 4.2 compares the
mean and the standard deviation of the time-averaged drag and lift coefficients.
Table 4.2 shows that in both instances the multi-fidelity framework is more
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(a)

(b)

Figure 4.20: Probability Density Function of (a) 〈Cd〉 and (b) 〈Cl〉,
calculated by the high-fidelity model L2(HF_L2, green),
the high-fidelity model level 3 (HF_L3, blue), the low-
fidelity model (LF, orange) and the multi-fidelity model
(MF, pink).
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HF(L3) absolute error from HF(L3)
HF(L2) LF(L3) MF

〈Cd〉 mean 0.9918 0.0008 0.0474 0.0003
std 0.0540 0.0028 0.0229 0.0016

〈Cl〉 mean 0.0025 0.0036 0.0072 0.0017
std 0.0769 0.0001 0.0013 0.0035

Table 4.2: Comparison of bulk parameters with different models and
polynomial orders. The bulk parameters of the high-fidelity
model with level 3 (HF(L3)) is presented and based on HF
(L3) results the absolute error of the high-fidelity model
with level 2 (HF(L2)), the low-fidelity model with level
3(LF(L3) and the multi-fidelity model (MF) is calculated.
The lowest absolute error for each value are shown in bold.

accurate than both the low-fidelity and the level 2 high-fidelity PCEs taken
in isolation, except the standard deviation of 〈Cl〉.

Fig. 4.21 shows the response surface calculated by the multi-fidelity NIPC
and compares this surface to the location of the level 3 high- and low-fidelity
collocation points. Note that there is significant discrepancy between the two
sets of collocation points for the time averaged drag coefficient. It is noticeable
from Fig. 4.21(a) the extent to which the response surface can be altered
with MF-NIPC. However, the response surface of 〈Cl〉 is relatively linear
and we would suggest that this is why the improvement of the multi-fidelity
framework cannot be seen for the standard deviation of 〈Cl〉 in this particular
case.

Now let us look at the time standard deviation of bulk parameters. Com-
parison of PDF of the time standard deviation of the bulk parameters are
shown in Fig. 4.22. Compared to the time-averaged bulk parameters, there
is greater discrepancy between positions of PDFs calculated by LES and
URANS. Having applied the multi-fidelity framework, the mode of the PDF
is improved. On the other hand, if we look at the response surfaces in Fig.
4.23, the response surfaces are not as non-linear as the response surface of the
time-averaged Cd. Therefore, as it can be seen in Table 4.3, the improvement
of MF compared to HF(L2) with respect to mean and standard deviation is
not obvious in case for the time standard deviation of bulk parameters.

In addition to check the shape of response surface, Eldred et al. [43]
calculated spectral coefficients of the PCE to compare the complexity of
stochastic approximations of each model. Fig. 4.24 shows the spectral
coefficients of the PCE estimated by HF(L3) and the discrepancy calculated
by LES and URNAS which is used for MF framework. As we observed,
〈Cl〉 has rather simple response surface and value of the spectral coefficients
are relatively small compared to ones of other QoIs. Except for 〈Cl〉, the
spectral coefficient at the polynomial order 2 of the discrepancy between HF-
and LF model is smaller than the spectral coefficient estimated solely by
HF. From these results it can be said that PCE of the discrepancy is less
complicated than PCE estimated by HF solely and the PCE of the discrepancy
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(a)

(b)

Figure 4.21: Response surface of (a) 〈Cd〉 and (b) 〈Cl〉, calculated by
the the multi-fidelity model with CFD results at level 3
collocation points of the high-fidelity model (HF, orange)
and the low-fidelity model (LF, blue).
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(a)

(b)

Figure 4.22: Probability Density Function of (a) std(Cd) and (b)
std(Cl), calculated by the high-fidelity model L2(HF_L2,
green), the high-fidelity model level 3 (HF_L3, blue),
the low-fidelity model (LF, orange) and the multi-fidelity
model (MF, pink).
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(a)

(b)

Figure 4.23: Response surface of (a) std(Cd) and (b) std(Cl), calcu-
lated by the multi-fidelity model with CFD results at
level 3 collocation points of the high-fidelity model (HF,
orange) and the low-fidelity model (LF, blue).
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HF(L3) absolute error from HF(L3)
HF(L2) LF(L3) MF

std(Cd)
mean 0.0844 0.0 0.0389 0.0017
std 0.0076 0.0017 0.015 0.0017

std(Cl)
mean 0.1554 0.0002 0.0808 0.0005
std 0.0171 0.0005 0.0047 0.0011

Table 4.3: Comparison of standard deviation of the bulk parameters
with different models and polynomial orders. The bulk
parameters of the high-fidelity model with level 3 (HF(L3))
is presented and based on HF (L3) results the absolute
error of the high-fidelity model with level 2 (HF(L2)), the
low-fidelity model with level 3(LF(L3) and the multi-fidelity
model (MF) is calculated. The lowest absolute error for
each value are shown in bold.

can converge faster than the PCE of HF.
Then let us investigate correlation of URANS and LES results, by com-

paring the deterministic results calculated at all collocation points. Fig. 4.25
compares the LES results and the URANS results calculated at all the collo-
cation points. The LES results and the URANS results correlate very well
for 〈Cd〉 and 〈Cl〉, and for σCd and σCl the coefficient of determination are
relatively low. This may explain why the improvement of the multi-fidelity
framework is not as obvious as it is seen for 〈Cd〉 and 〈Cl〉.

Finally, computational time is compared in different models. Fig. 4.26 plot
the bulk parameters calculated by different models and polynomial orders.
The bulk parameters are plotted against the total CPU time. In order to
carry out one simulation, URANS is simulated with 8 threads and the total
CPU time of one simulation is about 400 hours. LES are calculated with
16 threads and the total CPU time of one simulation is about 1333 hours.
Calculation time of URANS is relatively long compared to usual URANS
simulations, since the mesh is so refined that change of curvature can be
correctly visualized. As discussed above, about σCd and σCl HF(L2) converges
to the result of HF(L3) and the improvement thanks to MF is not significant.
For the 〈Cd〉 and 〈Cl〉, the improvement of MF from HF(L2) are seen.

4.3.2 Pressure coefficient

Having compared the PDFs for the bulk parameters estimated through the
four computational methods against one another, we now compare the results
of MF-NIPC to wind tunnel data. This comparison is made through the time-
averaged pressure coefficient and the standard deviation of pressure coefficient.
Fig. 4.27 compares the time-averaged- and standard deviation pressure
coefficients of wind tunnel data with those predicted from MF-NIPC. The
95% confidence interval of MF-NIPC is also shown. This confidence interval
was calculated using Monte Carlo sampling, referred to as the parametric
bootstrap (Dubreuil et al. [40]). Let us look at the result of the time-
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(a) 〈Cd〉 (b) 〈Cl〉

(c) σCd (d) σCl

Figure 4.24: Comparison of spectral coefficient of PCE estimated
by HF(L3)(:blue) and discrepancy between HF and
LF(:pink).
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(a) 〈Cd〉 (b) 〈Cl〉

(c) σCd (d) σCl

Figure 4.25: Comparison between the LES results(HF, x-axis) and the
URNAS results(LF, y-axis) calculated at the collocation
points for sparse grid level 2 and level 3. The linear
approximation (:green) is plotted by the linear regression
method. The coefficient of the linear approximation and
the coefficient of determination R2 are also shown.
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(a) 〈Cd〉 (b) 〈Cl〉

(c) σCd (d) σCl

Figure 4.26: Bulk parameters calculated with different models and
polynomial orders. The bulk parameters are plotted
against the total CPU time of each model.
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(a)

(b)

Figure 4.27: The side-averaged, span-wise-averaged distribution of
(a) 〈Cp〉 and (b) std(Cp): wind tunnel (6 realizations),
mean and 95% confidence interval of the multi-fidelity
NIPC result and deterministic simulation results (LES,
URANS).
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Figure 4.28: The Sobol sensitivity index as a function of downstream
displacement. Close to the leading and trailing edges, the
curvature radius is the dominant contributor to the uncer-
tainty. However, in the region around the point where the
pressure recovery starts both variables contribute almost
equally.

averaged Cp. From Fig. 4.27(a), it can be seen that the largest uncertainties
in MF-NIPC occur in the region where pressure recovery starts, with a
similar tendency displayed in the six wind tunnel tests. For comparison, the
deterministic simulations from section 4.2.4 are again plotted. We see that
taking account of the uncertainties in the inflow conditions and the geometry
of the structure in the MF-NIPC has produced a meta-model that is more
consistent with the wind tunnel data than either of the two deterministic
simulations. In the MF-NIPC, the position of pressure coefficient recovery
moves upstream, which is closer to the behaviour seen in the wind tunnel
results. Then, let us look at the results of the standard deviation of Cp. The
largest uncertainties in MF-NIPC occur in the region where the standard
deviation of Cp takes the maximum value, which is also seen in the wind
tunnel tests. From these results, it can be said that the region, where the
maximum standard deviation of Cp occurs, is caused by the considered input
uncertainties in the MF-NIPC, namely: angle of attack and the curvature
radius.
A benefit of employing Polynomial Chaos for uncertainty analyses is that the
Sobol’s sensitivity indices may be calculated at no additional cost through
post-processing the PCE coefficients. The Sobol indices Si1,...,is for 1 ≤ i1 <
· · · < is ≤ n, s = 1, . . . , n (n:number of random variables) is defined as:

Si1,...,is =
Di1,...,is

D
, (4.4)
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where Di1,...,is is the partial variances and D is the total variance. Let us
consider a two dimensional problem. As defined in the previous chapter PCE
with two dimensional input variables is written as:

Y = g(x1, x2)

≈
P∑
k=1

akΨk(x1, x2).
(4.5)

The first order Sobol’s indices for each random variable are defined as:

S1 =
D1

D
S2 =

D2

D
. (4.6)

The second order Sobol’s indices is defined as:

S12 =
D12

D
. (4.7)

The first order Sobol’s indices means the influence of each variable alone
and the second order Sonol’s indices means the mixed influence of various
variables. The total sensitivity indices for each variable is defined as:

ST1 = S1 + S12 ST2 = S2 + S12. (4.8)

The partial variance is is defined from the Sobol’s decomposition of PCE
given in appendix A. Interested readers about the sensitivity analysis for
the PCE methods are referred to Sudret [148]. Fig. 4.28 shows the total
Sobol indices of each random variable as a function of distance downstream.
From this figure, it can be seen that in region close to the leading and trailing
edge, the curvature radius mostly effects the pressure coefficients. On the
other hand, around the point where the pressure recovery starts (s/D ≈ 2.4)
uncertainties in both the curvature radius and the angle of attack contribute
almost equally to the results.

4.3.3 Velocity field

Finally we consider the spatial distribution of the uncertainties in the velocity
field. Fig. 4.29 shows the standard deviation of the span-wise averaged and
time-averaged velocity field calculated by MF-NIPC. From this figure it can
be seen that there is a significantly large uncertainty in the detached region
at the leading edges. In addition, uncertainty can also be observed at the
reattachment region to the rectangular cylinder and it results in the variation
of the flow reattachment points.

4.4 Conclusion

In this chapter an uncertainty study using multi-fidelity NIPC has been carried
out on the Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder
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Figure 4.29: Standard deviation of span-wise averaged and time-
averaged velocity calculated by MF-NIPC

(BARC). The effect of uncertainties associated with the angle of attack
and radius of curvature of the cylinder corners were considered. Through a
comparison of the PDFs for the bulk parameters, it was demonstrated that
leveraging the results of low-fidelity models in a multi-fidelity framework could
improve the accuracy of the uncertainty analysis. The results of the uncertainty
analysis were then compared to experimental data from wind tunnel tests.
It was observed that the multi-fidelity results were more consistent with the
experimental data than deterministic simulations that were evaluated at the
mean values of the uncertain inputs, with the pressure recovery start point
moved noticeably further upstream. We can conclude from this study that
the curvature radius and the angle of attack, that are both potential sources
of uncertainty in wind tunnel tests, can effect the pressure coefficient results,
particularly in the region of pressure recovery.

From a practical point of view, it is still not straightforward to carry out
uncertainty analysis for the BARC geometry, even with the reductions in
computational cost thanks to the multi-fidelity framework. A significant
challenge exists in changing the curvature radius of the cylinder corners. This
is understood to be a significant source of error in wind tunnel tests, however,
the numerical implementation of this is difficult as it entails remeshing for
each simulation, with a sufficiently refined mesh so that the curvature added
to the cylinder corners can be captured by the simulation. This significantly
increases the expense of the URANS simulations. Future research on this
topic will seek to address these issues.





Chapter 5

Application of MF-NIPC to natural
wind inflow problems

In this chapter, the introduced multi-fidelity Non-Intrusice Polynomial Chaos
methods are applied to a natural wind inflow problem. The architectural
structures are located in the atomospheric boundary layer (ABL), and the
inlet wind velocity is affected by ground surface. In order to model this inlet
velocity, the vertical wind variation and the turbulence intensity should be
considered. In this chapter we choose the Silsoe 6m cube problem as a target
case. The Silsoe 6m cube is well-documented benchmark cases for flow around
a low-rise building. The significant advantage of the Silsoe cube is that there
are full-scale observation data is available, while in CWE problems there are
often only wind tunnel data available. In this chapter, first literature about
the Silsoe cube are reviewed. Then, set ups and the validation of the CFD
simulations are introduced. In order to carry out MF-NIPC, LES simulations
are used as the high-fidelity simulation and URANS simulations are used as
the low-fidelity simulations. Finally, the MF-NIPC is applied to the Silsoe
6m cube problem. The accuracy of MF-NIPC are checked by comparing the
results from different models and the MF-NIPC results are compared with
experiment results.

5.1 Introduction: the Silsoe 6m cube

For wind engineering problems, in many cases it is not possible to carry out
wind tunnel experiments which have the same Reynolds number as actual
problems, though it is recommended to keep the Reynolds number in the
same range to observe turbulence phenomenon which have similar nature as
the turbulence phenomenon of real buildings. For example, the Reynolds
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number for the Silsoe cube is about 3× 106. If 1/20 scale model is made, the
inlet velocity should be about 166m/s to keep the same Reynolds number,
which is almost impossible in normal wind tunnels. Therefore the full-scale
data plays an important role in wind engineering problems.
In order to obtain the full-scale data, a 6m cube has been constructed at the
Silsoe Research Institute in the United Kingdom in an open country exposed
position as shown in Fig. 5.1. The 6m cube has a plain smooth surface finish
and surface pressure is measured on a vertical and on a horizontal centerline
section as shown in Fig. 5.2. Additionally surface pressure on the roof of
the cube are also measured as shown in Fig. 5.3, however, these data are
limited compared to the pressure on vertical- and horizontal center lines. In
most measurements velocity is measured only at the reference mast, shown in
Fig. 5.3, at the cube height. The most often reported Quantity of Interest
in literature is the time averaged pressure coefficient Cp on the vertical- and
horizontal ring. The time averaged pressure coefficient Cp is calculated as:

Cp =
p

q
, (5.1)

where p is the time averaged surface pressure and q is the time averaged
dynamic pressure calculated from the velocity measured at the reference mast.
The time statistics are calculated in time window of 12 minutes. The dynamic
pressure q in Eq. (5.1) is defined as:

q =
ρ

2
(u2 + v2 + w2), (5.2)

where ρ is the air density and (u, v, w) is the instantaneous velocity components
at the reference position. In the full scale measurement the pressure is stored as
the relative pressure to static pressure at the reference mast. Literature about
the Silsoe cube measurement can be roughly categorized to three categories,
namely: about the full scale observation, about the CFD simulation and about
the wind tunnel tests. Considering literature about the full scale observation,
it can be classified to three aspects, namely: surface pressure observation
(Kasperski et al. [75] and Richards et al. [120, 123, 127]), velocity field
observation (Richards et al. [119, 122, 125] and Sterling et al. [145]) and
the quasi-steady analysis (Richards et al. [118] and Richards et al. [121]).
About the surface pressure, Kasperski et al. [75] investigated whether extreme
values of the aerodynamic coefficients from the full scale observation follows
the Extreme Value distribution type III. Though the full scale observation
is advantageous, a problem of the full scale observation is that the wind
condition is not controllable. Kasperski et al. [75] investigated how to obtain
comparable peaks from raw data sets, by adjusting the time axis and frequency
content. Richards et al. [123] introduce results of the additional pressure
tappings on the roof shown in Fig. 5.3 and investigated pressure distribution
on the roof. In addition, though most of the literature uses statistically
analyzed data, such as mean, standard deviation, minimum and maximum
values of measured data in a time window (mostly 12 minutes), Richards
et al. [123] analyze raw data for 36 minutes before statistics are calculated,
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Figure 5.1: The Silsoe 6m cube (Richards et al. [120])

Figure 5.2: The pressure tap on a vertical and on a horizontal centerline
(Richards et al. [120])
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Figure 5.3: The additional roof tappings (Richards et al. [123])

and compares the effect of different time averaging window. Richards et al.
[120] and Richards et al. [127] analyze the pressure on the vertical- and
the horizontal center lines shown in Fig. 5.2, and fit the resulted pressure
coefficient to the Fourier series as function of the time averaged wind direction
θ as:

Cp(θ) =

n∑
k=0

ak cos(kθ) + bk sin(kθ), (5.3)

where Cp is the time averaged pressure coefficient, n is the order of the
Fourier series and ak, bk are fitted by the observation data. This is done
by using large set of observation data. In order to get the variety of wind
direction required to complete the Fourier analysis, the cube had been rotated.
These results of Fourier analysis have been widely used for validation of CFD
simulations and wind tunnel tests. In addition to the observation data, the
quasi-steady method is often applied for the Silsoe cube problem. The quasi-
steady method is popular in wind engineering problems, since mostly only
the time averaged pressure coefficient is available as observation data, though
the extreme pressure is required for designing structures. The quasi-steady
method is a method to relate instantaneous pressure to the time averaged
pressure coefficient and dynamic pressure. The simplest model in Richards
et al. [121] is the equivalent-steady-gust (ESG) model:

pESG = Cp(θ)q, (5.4)

where pESG is the pressure calculated from ESG model and q is the dynamic
pressure.
CFD simulations have been carried out for the Silsoe cube using LES (e.g.
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Guichard [63], Lim et al. [82], and Richards et al. [117]) and using RANS
(e.g. Abohela et al. [3] and Wright et al. [166]). It should be noted that all
CFD simulations in literature are carried out by the Finite Volume Method
(FVM), rather than the Finite Element Method (FEM) used in this thesis.
The notable aspect to carry out LES simulations to the Silsoe cube is that
it is necessary to generate inflow turbulence (Lim et al. [82]), which is not
common implementing LES simulations. Wind tunnel tests have been carried
out and compared with full scale results (Richards et al. [124, 126]).

5.2 The Silsoe 6m cube test case

5.2.1 Calculation of the collocation points

In this chapter, the parameters of inlet wind, namely: velocity at the cube
height and the inlet wind direction, are considered as uncertain variables.
From now on we focus on an observation case with the wind direction 92°,
which is a direction about to perpendicular to the front wall of the cube. We
use a data set of 36 minutes observation, which is introduced in Richards
et al. [123] as Run 242. In this observation the pressure taps on the roof
and velocity at the mast in Fig. 5.3 had been recorded for 36 minutes. 4.17
samples are recorded per 1 second, which results in 9000 samples for 36
minutes. The reference velocity and wind direction are considered as input
random variables. Definition of inlet velocity parameters will be explained
in detail in following section. The histograms plotted by the 9000 samples
are shown in Fig. 5.4. The collocation points are calculated by the arbitrary
polynomial chaos methods introduced in previous chapter for the sparse grid
level 2 and level 3. The sparse grid level corresponds to polynomial order
= sparse grid level + 1. There are 14 collocation points for level 2 and 29
collocation points for level 3. 12 collocation points in level 3 are nested to
those of the level 2.

5.2.2 High-fidelity model: Large Eddy Simulation

As a high-fidelity model the Large Eddy Simulation (LES) has been used. The
computational domain is shown in Fig. 5.6. One side of the cube is H = 6.0m,
and the size of computational domain was (Dx, Dy, Dz) = (21H, 11H, 6H).
The distance from the inlet boundary to the cube was 5H. The outlet
pressure was set to zero. The side boundaries and top boundary were slip
boundary, and the slip condition and the wall functions were given to the
surface of the cube and the ground. The wall function and the inlet wind
boundary will be introduced in greater detail later. The computational
domain was spatially discretized by unstructured tetrahedral elements. The
computational domain was divided into four areas, and the meshes are refined
in inner region. MPI with 72 threads are used for parallel computing. It is
noted that KratosMultiphysics does not support periodic condition for MPI
parallel computing, and in order to change the wind direction, the cube was
rotated and the computational domain is remeshed. The mesh is shown in
Fig. 5.8 for wind direction 92°. The height of the first cell closest to the cube



86
CHAPTER 5. APPLICATION OF MF-NIPC TO NATURAL WIND

INFLOW PROBLEMS

(a) velocity [m/s]

(b) wind direction [°]

Figure 5.4: Histograms plotted by 9000 samples of observation data

sides is 0.1. The mesh study has been carried out using coarser mesh and
finer mesh, and the convergence with respect to Cp value on horizontal- and
vertical rings are checked. The mesh is further refined at the roof to the height
of the first cell as size 0.03. The mesh has 1, 851, 481 elements. Time step is
0.03s and the statistical values are calculated for 600s , so that the residual
of the time averaged- and time standard deviation pressure coefficient on the
roof center from the previous time window becomes less than 2.5 %. As time
discretization the fractional step time discretization is used.

5.2.2.1 Inlet velocity

The natural wind velocity u is written as:

u = u + u′, (5.5)
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Figure 5.5: The collocation points calculated by the arbitrary polyno-
mial chaos method based on the histograms

Figure 5.6: The computational domain of the Silsoe 6m cube simula-
tion
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Figure 5.7: The computational domain of the Silsoe 6m cube simula-
tion

where u is the mean velocity and u′ is the gust velocity. As it is pointed out
by Lim et al. [82], it is important for natural wind LES simulations to take the
gust velocity into account at the inlet boundary. In this section we introduce
how to impose natural wind to inlet boundary to the LES simulations.

Considering the mean velocity u, according to Richards et al. [125], the
mean velocity at the Silsoe research Institute follows the logarithmic profile:

u(z) =
uτ
κ

ln(
z

z0
), (5.6)

with a roughness length z0 = 0.01m, von Karman’s constant κ = 0.4 and uτ
is the friction velocity. Here the friction velocity is determined as the velocity
at the cube height and we call it now as the reference velocity. The reference
velocity uτ is considered as an input random variable in this chapter and is
changed according to the collocation points calculation calculated in Section
5.2.1. Considering the gust velocity u′, characteristics of the gust velocity
is usually expressed by the Turbulence Intensity (T.I.) and the turbulence
energy spectrum Si(f) as:

T.I. =
u′u′

u
, (5.7)

Si(f) = 2

∫ ∞
−∞

u′i(t0)u′i(t0 + t) exp(−2πift)dt. (5.8)

Two methods are known to generate time-varying inlet wind from the turbu-
lence intensity and the spectrum, namely: the precursor simulations (Tabor
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(a)

(b)

Figure 5.8: Meshing for LES (a) whole cross section and (b) near-body

et al. [151]) and the synthetic generations (Mann [87]). Due to lower compu-
tational cost, the Mann’s method which is one of the synthetic generations is
used in this chapter to generate the gust velocity at the inlet boundary of
the LES simulations. Mann [86] introduces an explicit model of the spectral
tensor Φ(βLT ), where βLT = t ∂u

∂z
: a dimensionless eddy lifetime. The spectral

tensor corresponds to isotropic turbulence with von Kármán energy spectrum:

E(k) = E0L
5/3
iso

(Lisok)4

(1 + (Lisok)2))(17/6)
, (5.9)

where k: wavenumber andE0 and Liso is model parameters. The dimensionless
eddy lifetime βLT is modeled as:

βLT (k) = ΓLT (Lisok)−2/3

[
2F1

(
1

3
,

17

6
;

4

3
;

1

(Lisok)2)

)]−1/2

, (5.10)
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size of computational domain Lx × Ly × Lz 11520× 90× 45

grid refinement in each direction Nx ×Ny ×Nz 16384× 128× 64

the reference height z 25 m

mean velocity at z u(z) 10.20 m

roughness for logarithmic profile of
the mean velocity z0 0.01 m

roughness z∗ 0.03 m

Table 5.1: parameters for generating the inlet wind

where ΓLT is a model parameters and it is often assumed as 3.9. In the
Mann’s method the gust velocity u′ is calculated as:

u′(x) =
∑
k

û′(k) exp(ik · x)∆k, (5.11)

where

û′ =

√
L1L2L3

(2π)3/2
C(k)n(k), (5.12)

with Li: computational domain for the time varying velocity calculation, n(k)
is the independent Gaussian complex random vector of the unit variance
and C(k) is a tensor calculated from the turbulence energy spectrum tensor
Φ(βLT ). In order to give the time varying inlet velocity, first the spatially
varying gust velocity is calculated by Eq. (5.11). Then temporally varying
inlet velocity data is generated based on the Taylor’s frozen turbulence
hypothesis (Taylor [154]). The Mann’s method is implemented in the C
library as WindGen (Andre [8]). The interested reader for the implementation
of the WindGen is reffered to Andre [7]. The parameters used for the inlet
wind generations are shown in Table 5.1. These parameters are used for a
validation case, in which mean velocity at the cube height is 8.34m/s. The
reference height z is used to calculate the model parameter Liso in Eq. (5.9)
as Liso = 0.59z, and it controls the turbulence length. The roughness z∗ and
the reference height z are used to calculate the model parameter E0 in Eq.
(5.9) as E0 = 3.2u2

∗/z
2/3, where u∗ is calculated from the logarithmic profile

Eq. (5.6), with uτ calculated from defined mean velocity and the roughness
z∗. z∗ influences the turbulence intensity and it is calibrated, so that the
resulted turbulence intensity becomes around 10 ∼ 20%. It should be noted
that in WindGen the turbulence intensity cannot be imposed directly and the
turbulence intensity should be controlled through the parameter z∗. Therefore
it is very difficult to change the turbulence intensity to exact value and it is
a reason why the turbulence intensity cannot be used as an input random
variable. In order to generate the velocity at each collocation point calculated
in Section 5.2.1, the mean velocity u(z) in Table 5.1 is adjusted, otherwise
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Figure 5.9: Inlet velocity at the cube height generated by the WindGen
using parameters indicated in Table 5.1

parameters were kept same. The inlet velocity generated by WindGen at
the cube height is shown in Fig. 5.9. The resulted turbulence intensity is
T.I. = 10.5%.

Having inputted the generated time varying inlet velocity, the LES sim-
ulations are carried out. Fig. 5.10 shows the wind velocity profile and the
turbulence intensity profile at x = 0.0 m, 6.0m, 12.0 m and 18.0 m. The inlet
boundary of the computational domain is located at the x = 0.0 m and the
front wall of the cube is located at x = 30.0 m. The CFD results are compared
with the full scale measurement data and the wind tunnel experiments data
from Richards et al. [124]. The mean velocity distribution matches very
well with the full scale measurement data. The turbulence intensity matches
also well with the full scale data and the wind tunnel experiment data. The
turbulence intensity in y direction (c) is slightly smaller than the full scale
data. It may be because σ2

v/σ
2
u in the Kaimal model is smaller than the one

in the full scale.

5.2.2.2 Near wall treatment

Since the Reynolds number is very high for the natural wind problems, it is
required to use wall functions at the surface boundary of the cube instead of
the no-slip condition. While the simple log-law model has been introduced in
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(a)

(b)

(c)

(d)

Figure 5.10: The evolution of z direction profile of (a) mean velocity
(b) T.I. in x direction (c) T.I. in y direction (d) T.I. in z
direction at x = 0.0 m, 6.0 m, 12.0 m, 18.0 m. The inlet
boundary is located at x = 0.0 m and the front wall of the
cube is located at x = 30.0m. The results are compared
with the full scale observation data (:FS) and the wind
tunnel experiment data (:exp) in Richards et al. [124]
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the previous Chapter 3.1.3, for the LES simulation for the Silsoe cube, the
Werner and Wengle wall functions has been used. The Werner and Wengle
wall function was introduced by Werner et al. [161] for LES simulations of
flow around obstacles with sharp edges and corners. Interested readers for
detailed implementation and application examples of the Werner and Wengle
wall function within the FEM based CFD are referred to Andre [7]. In the
Werner and Wengle wall function, the wall shear stress τw is calculated as:

τw =


µ|u(yw)|
yw

if µ|u(yw)| ≤ uc ,

ρ
[

1−α
2
A

1+α
1−α

(
µ

2ρyw

)
+ 1+α

A

(
µ

2ρyw

)α
|u(yw)|

] 2
1+α otherwise,

(5.13)
where uc = µ

4ρyw
A

2
1−α , A = 8.3 and α = 1/7. u(yw) is computed as

the projection of the instantaneous velocity onto the plane defined by the
boundary face. yw is defined as an intersection point of the normal vector of
the boundary face with the interior surface of the boundary cell. Using the
τw, the friction velocity uτ is calculated by uτ =

√
τw/ρ and the Neumann

condition is applied using uτ as explained in the previous Chapter 3.1.3.

5.2.3 Low-fidelity model: Unsteady Reynolds Averaged
Navier-Stokes simulation

As a low-fidelity model the unsteady Reynolds Averaged Navier-Stokes simula-
tions (URANS) has been used. URANS simulations with a k-ω SST turbulence
model were carried out in three dimensions, so that the wind direction can
be changed for MF-NIPC. The size of computational domain was same as
the one for the LES simulations. At the inlet boundary condition the log
normal mean velocity, the turbulence intensity 17.47% and the turbulence
mixing length 126.0 m are given. The turbulence intensity is taken from the
full scale measurement. The turbulence mixing length is the length of the
computational domain. The given log normal mean velocity (Eq. (5.6)) at the
inlet boundary is same as the ones used for the LES simulations. The reference
velocity uτ is changed according to value at each collocation point. The outlet
pressure was set to zero. The side boundaries and top boundary were slip
boundary, and the slip condition and the wall functions were given to the
cube surface and the ground. The log-law function was used as a wall function
(see Section 3.1.3). Time step was 0.03[s] and the simulation was run until
it converges to steady state, which is until 50[s]. As time discretization the
fractional step time discretization is used. URANS simulations are paralleled
by OpenMP with 12 threads. Determination of mesh will be explained in
greater detail below.

Determination of mesh The accuracy of an URANS simulation highly
depends on mesh refinement. The finer mesh gives more accurate results,
however it is clear that the finer mesh requires more computational power.
The objective of this thesis is to reduce total computational cost by running
low-fidelity models in the higher order collocation points instead of running
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focused
region

cube side
surface

cube roof
surface number of cells

fine 0.05 0.017 0.017 1,607,004

middle 0.067 0.033 0.017 910,131

coarse 0.1 0.05 0.25 461,251

Table 5.2: Size of cells δ/H (H = 6m) and the number of cells for
three different mesh settings

the high-fidelity model. In order to get meaningful computational time saving,
an appropriate mesh size should be chosen by considering calculation accuracy
and computational time. In this section the results of three meshes are
compared and a mesh is chosen for the low-fidelity model. In Table 5.2 the
size of cells and the number of cells for three mesh settings are indicated. The
computational domain is divided in the same manner as for LES simulations
(see Fig. 5.7). The cell sizes of outer region were kept same, since it has been
observed that the size of the outer mesh has less influence to the results. The
mesh overview for the coarse mesh is shown in Fig. 5.11. In Fig. 5.12 the
result of the time averaged pressure coefficients on vertical- and horizontal ring
calculated by the three different meshes are compared with the observation
data based results with the angle of attack 90 ° in Richards et al. [120].
Then the total computational time for the MF-NIPC and the time saving
of the multi-fidelity framework compared to single fidelity NIPC with the
high-fidelity model and average relative deviation from the experimental data
of Cp from Richards et al. [120] are compared in Table 5.3. LES simulations
are calculated using 72 threads and one deterministic simulation takes about
1728 total CPU time [hours]. URANS simulations are calculated using 12
threads and one deterministic simulation takes fine mesh: 308 [h], middle
mesh: 209 [h] and coarse mesh: 99 [h]. From Fig. 5.12 it can be seen that Cp
converges for the fine mesh and middle mesh. Cp of the coarse mesh does not
converge perfectly, however it can be seen that the coarse mesh is also able to
detect the trend. According to Table 5.3, the average relative deviations from
the observation data do not exceed 25% in every case, and the time saving of
the coarse mesh is significant. Having considered that the coarse mesh could
detect the trend of Cp distribution and its time saving, we decided to choose
the coarse mesh as the low-fidelity model for MF-NIPC.

5.2.4 Validation of deterministic results

In this section, the results of aforementioned LES simulations and URANS
simulations are compared with the observation data in purpose of validation.
First, let us compare the evolution of velocity profile. Fig. 5.13 compares
the evolution of mean velocity profile between LES simulation, URANS
simulation and the full scale observation Richards et al. [124]. x = 0.0 is the
inlet boundary of the computational domain and the front wall of the cube
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(a)

(b)

Figure 5.11: Meshing for URANS (a) whole cross section and (b) near-
body

locates at x = 30.0. The mean velocity profile matches very well in all results.
In order to change the wind direction in CFD simulations, the cube is rotated,
therefore the inlet wind is changed only due to the mean velocity to carry
out MF-NIPC.

Then let us compare the time averaged pressure coefficient Cp on the
vertical- and horizontal ring. The definition of vertical- and horizontal lines’
name are illustrated in Fig. 5.14. Cp results are plotted distance over the
cube divided by a side of the cube h = 6m. In order to confirm that both
models can detect change of wind direction, Cp is compared for the case with
wind direction 92° (Fig. 5.15) and 64° (Fig. 5.16), which are values at ones of
the collocation points. The inlet mean velocity at the cube height is 8.34m/s
for the wind direction 92° and 8.54m/s for the wind direction 64°. The Fourier
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(a)

(b)

Figure 5.12: Comparison of the time averaged pressure coefficient Cp
on (a) horizontal ring and (b) vertical ring. URANS
simulations are calculated using the three mesh settings
and compared with the experimental data analyzed for
the wind direction 90° in Richards et al. [120]



5.2. THE SILSOE 6M CUBE TEST CASE 97

average relative devia-
tion from exp.

total calcula-
tion time

time
saving

H-ring V-ring HF(L3) MF

fine 17.4 % 17.2 %
50112

34048 32.1 %

middle 18.7 % 17.9 % 30880 38.4 %

coarse 21.2 % 20.0 % 27360 45.4 %

Table 5.3: Comparison of calculation time and average relative devi-
ations from the experimental data of Cp. The calculation
time is shown in total CPU time [hours]. HF(L3): total
CPU time for Level 3 NIPC with high-fidelity model only,
MF: total CPU time for multi-fidelity NIPC.

Figure 5.13: Comparison of evolution of the mean velocity profile. FS:
the full scale observation data from Richards et al. [124]

analyzed full scale data from Richards et al. [120] with wind direction 90° and
60° are also plotted in Fig. 5.15 and Fig. 5.16 respectively. From Fig. 5.15
and Fig. 5.16, it can be seen that both LES and URANS show similar trend
with the full-scale observation data. It is noted that the Cp distribution on
horizontal ring 1.0 < s/h ≤ 2 and 3.0 < s/h ≤ 4 are not symmetric, because
the wind directions in CFD simulations are not exactly 90° but 92°. In Table
5.4, the average relative deviation of LES results from the analyzed full scale
data and the URANS results from the LES results for both wind direction 92°
and 64° are summarized. It is calculated by averaging the relative deviation
at the pressure taps on a same face of the cube. The numbering of each face
is illustrated in Fig. 5.14. The average relative deviation on H4 for 64° is
very high, because the absolute value is close to zero. Except for this, the
average relative deviation does not exceed 27% and it can be said that all
results agree well, as all the average relative deviation is smaller than 27%.
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(a)

(b)

Figure 5.14: (a) horizontal ring and (b) vertical ring

Comparing the average relative deviation of URANS from LES between 92°
and 64°, there are no trend which direction can be estimated better or worse
by the low-fidelity model URANS.

Then time averaged pressure coefficient Cp at the pressure taps on the
roof of the cube calculated by the LES simulation, the URANS simulation
and the full scale observation reported in Richards et al. [123] are compared
in Fig. 5.17. The numbering of the pressure taps is illustrated in Fig. 5.3.
The averaged relative deviation for each row is calculated in Table. 5.5. It
can be seen that in every row results of LES simulations matches well with
experimental data, as the average relative deviations from the experimental
data are less than 10% for every row. The discrepancy between URANS results
and LES results are relatively large at the rows close to the edge (R1 and R2).
Since the mesh of URANS is coarser than the mesh of LES, URANS might
include larger error due to singularity happened at the edges than at the center
of the cube. In every row, the LES simulations underestimate the minimum
suction of first column (C1) where the closest column to windward face,
especially at the corner of the roof (R1C1) the underestimation is significant.
This will be investigated in greater detail later with the MF-NIPC results.
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(a)

(b)

Figure 5.15: Comparison of the time averaged pressure coefficient Cp
on (a) horizontal ring and (b) vertical ring. URANS and
LES simulations are carried out for wind direction 92°.
The experimental data was Fourier analyzed for the wind
direction 90° in Richards et al. [120]
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(a)

(b)

Figure 5.16: Comparison of the time averaged pressure coefficient Cp
on (a) horizontal ring and (b) vertical ring. URANS and
LES simulations are carried out for wind direction 64°.
The experimental data was Fourier analyzed for the wind
direction 60° in Richards et al. [120]
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wind direction 92°

H1 H2 H3 H4 V1 V2 V3

LES -
exp.

8.2 % 13.0 % 11.7 % 12.2 % 5.7 % 12.8 % 12.5 %

URANS
- LES

3.8 % 26.7 % 14.0 % 23.2 % 14.3 % 22.6 % 15.5 %

wind direction 64°

H1 H2 H3 H4 V1 V2 V3

LES -
exp.

21.6 % 6.0 % 19.6 % 111.4
%

8.4 % 11.0 % 5.8 %

URANS
- LES

10.7 % 22.5 % 17.2 % 206.8
%

12.7 % 19.6 % 9.3 %

Table 5.4: Average relative deviation for Cp on horizontal ring (H1-H4)
and vertical ring (V2-V3). The average relative deviation of
LES results from the full scale analyzed data from Richards
et al. [120] and URANS results from LES results for wind
direction 92° and 64° are calculated. The average relative
deviation which exceed 20% are shown in bold.

R1 R2 R3 R4 R5 R6

LES-
exp.

7.4 % 7.4 % 7.6 % 7.8 % 9.3 % 9.1 %

URANS-
LES

36.6 % 32.1 % 28.3 % 24.3 % 22.5 % 22.6 %

Table 5.5: Relative deviations for Cp of the roof pressure tap. The
relative deviations are averaged in every row. The average
relative deviation of LES results from the full scale analyzed
data from Richards et al. [123] and URANS results from
LES results for wind direction 92° are calculated.
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5.3 Results: Multi-fidelity Non-Intrusive Polynomial
Chaos

In this section, the result of MF-NIPC applied to the flow around the Silsoe
cube simulations is introduced. First we compare Probability Density Func-
tion (PDF) results calculated by MF-NIPC and single-fidelity NIPC, and
investigate accuracy of the multi-fidelity framework. Afterwards we compare
the stochastic results calculated by MF-NIPC with experimental results and
investigate the effect of input random variables to the Quantity of Interests
(QoIs).

5.3.1 Accuracy of the multi-fidelity framework

In this section, PDF results of pressure coefficient Cp at the pressure taps
on the roof center V7 - V12 calculated by different models are compared to
highlight the accuracy of the multi-fidelity framework compared to single-
fidelity NIPC (See the numbering of the pressure taps in Fig. 5.2). The
results are compared between high-fidelity level 2 (HF(L2)), high-fidelity level
3 (HF(L3)), low-fidelity level 3 (LF(L3)) and multi-fidelity (MF). Before
analyzing the PDF, let us look at streamlines for a deterministic simulation
to overview flow characteristic around the roof. Fig. 5.18 shows the time
averaged streamlines calculated by a LES deterministic simulation with wind
direction 92°. From Fig. 5.18 it can be seen that flow separate at the leading
edge and reattach around the observation point V11, which corresponds to
the Cp distribution result Fig. 5.15. Now let us analyze the PDFs of the
pressure coefficients calculated by different models. First we consider the
time averaged pressure coefficient as QoI. Fig. 5.19 shows PDFs calculated
by the high-fidelity model with the sparse grid level 3(HF(L3)), the high-
fidelity model with the sparse grid level 2(HF(L2)), the low-fidelity model
with the sparse grid level 3(LF(L3)) and the multi-fidelity model(MF). At
the tap V7 and V9, PDFs of HF(L2), HF(L3) and MF converge to the almost
same results and the improvement of MF framework from HF(L2) is not
significant. PDFs of V10 and V11 have discrepancy between HF(L2) and
HF(L3), however MF gives rather similar results with HF(L2) than HF(L3),
and the improvement of MF framework is not clear. PDFs of V8 and V12
have also discrepancy between HF(L2) and HF(L3). PDF of MF has closer
shape to HF(L3) than to HF(L2), and the improvement of MF can be seen
here. Fig. 5.20 shows the response surface estimated by MF-NIPC and the
deterministic results calculated by the high-fidelity model and the low-fidelity
model. The pressure taps V8 and V12, where improvement of MF can be seen,
have more complicated response surface shape compared to other pressure
taps.

Then, let us consider the time standard deviation of the pressure coefficients.
Following Richards et al. [120], the time standard deviation of the pressure
coefficient t− std(Cp) is calculated as:

t− std(Cp) =
σp
σq
, (5.14)
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(a)

(b)

Figure 5.18: Time averaged streamlines calculated by LES for wind
direction 92° and inlet velocity at the cube height 8.53
m/s. The streamlines around the roof is shown in (a),
and the pressure observation points are indicated in (b)

where σp is the time standard deviation of the pressure and σq is the time
standard deviation of the dynamic pressure. Since URANS simulations con-
verge to the steady state solution, the time standard deviation of the pressure
coefficients cannot be obtained from URANS simulations. Richards et al. [121]
introduces the quasi-steady methods to estimate the time standard deviation
of the pressure coefficients from the time averaged pressure coefficients. Based
on the simplest quasi-steady theory (Cook [31]), the pressure variations are
caused by change in the instantaneous dynamic pressure alone, therefore the
standard deviation of the pressure coefficients may be estimated by equal
to the absolute value of the time averaged pressure coefficients. Though it
is the simplest and rough estimation of the standard deviation of the pres-
sure coefficients, we investigate the ability of MF framework to improve the
stochastic results compared to single-fideliy NIPC. Fig. 5.21 shows the PDF
comparisons of the time standard deviation of the pressure coefficients at the
pressure taps V7 - V12. At V9, V10, V11 and V12 the PDFs of HF(L2) almost
converges to the PDFs of HF(L3) and MF. At V7, PDF estimated by MF
is in between HF(L2) and HF(L3) and the improvement of MF can be seen,
even though LF is the very rough estimation calculated by the quasi-steady
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(a) V7 (b) V8

(c) V9 (d) V10

(e) V11 (f) V12

Figure 5.19: Probability Density Function of the time averaged pres-
sure coefficient at the pressure tap (a) V7 (b) V8 (c) V9
(d) V10 (e) V11 (f) V11, calculated by the high-fidelity
model with sparse grid level 2(HF_L2, green), the high-
fidelity model with sparse grid level 2(HF_L3, blue),
the low-fidelity model with sparse grid level 3(LF_L3,
orange) and the multi-fidelity model (MF, pink). The
experimental results from Richards et al. [120] are also
plotted.
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(a) V7 (b) V8

(c) V9 (d) V10

(e) V11 (f) V12

Figure 5.20: Response surface of the time averaged pressure coefficient
at the pressure tap (a) V7 (b) V8 (c) V9 (d) V10 (e) V11
(f) V11, calculated by the high-fidelity model(HF), the
low-fidelity model (LF) and the multi-fidelity model (MF).



5.3. RESULTS: MULTI-FIDELITY NON-INTRUSIVE POLYNOMIAL
CHAOS 107

model. At V8, PDF of MF and HF(L2) are almost same and the improvement
of MF is not significant. Fig. 5.22 shows the response surface estimated by
MF-NIPC and the deterministic results calculated by the high-fidelity model
and the low-fidelity model. The pressure tap V7, where improvement of MF
can be seen, have more non-linear response surface compared to other pressure
taps as observed in the response surface of Cp.

Overall, it is confirmed that the MF-NIPC can improve the stochastic re-
sults compared to single-fidelity NIPC, especially in case the resulted response
surface have complicated shape. As indicated in Table 5.3, MF framework
can save 45.4 % of total CPU time compared to HF(L3). Having considered
this significant time saving, though improvement of MF is not observed at the
all pressure taps, we can conclude that it is worth applying MF framework to
NIPC.

5.3.2 Comparison of UQ results with experimental data

From this point we will use only MF-NIPC results as UQ result. First, let us
consider the pressure coefficient distribution of the vertical ring shown in Fig.
5.2. In Section 5.2.4 the CFD results are compared with results from Richards
et al. [120], which is after the Fourier analysis. In this section the stochastic
results calculated by MF-NIPC are compared with experimental raw data
before Fourier analysis is applied. One experimental data is time averaged in
12 minutes and the data sets which has mean wind direction 92±1° are selected
for comparison. Fig. 5.23 shows the comparison of the stochastic results,
deterministic results of LES and URANS and the experimental data. The 95%
confidence interval is calculated using the parametric bootstrapping explained
in the previous chapter. Unlike BARC case, the stochastic mean value has
very close value as the deterministic result calculated by a LES deterministic
simulation. It is to say that the stochastic mean value is not greatly affected
by considered input random variables, namely: wind direction and velocity
at the reference height. Comparing the variation of experimental data and
the 95% confidence interval calculated by MF-NIPC, on the windward face
(0.0 ≤ s/h < 1.0) and the leeward face (2.0 ≤ s/h < 3.0), the variation of the
experimental data and the 95% confidence interval calculated by MF-NIPC
has almost same range. It means that the variation of the experimental
data can be caused by the input random variables considered in MF-NIPC.
However, at the roof (1.0 ≤ s/h < 2.0) the variation of the experimental data
and the 95% confidence interval shows different range. At the observation
point V8 (s=1.24), where the pressure coefficient takes minimum value, the
95% interval of MF-NIPC is much smaller than variation of the observation
data. On the other hand, at observation points V9 - V11, where the pressure
is recovering, the 95% interval of MF-NIPC is slightly bigger than variation
of the experimental data. From this results, it can be expected that at
the observation points V8, not the wind direction and the wind velocity at
the reference height, but other uncertainties in the full scale observations,
for example, geometry of the cube, turbulence intensity, the shape of the
wind distribution and the measurement technique, may affect variation of
the experimental data. Considering the shape of the pressure coefficient
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(a) V7 (b) V8

(c) V9 (d) V10

(e) V11 (f) V12

Figure 5.21: Probability Density Function of the standard deviation
of pressure coefficient at the pressure tap (a) V7 (b) V8
(c) V9 (d) V10 (e) V11 (f) V12, calculated by the high-
fidelity model with sparse grid level 2(HF_L2, green), the
high-fidelity model with sparse grid level 2(HF_L3, blue),
the low-fidelity model with sparse grid level 3(LF_L3,
orange) and the multi-fidelity model (MF, pink). The
experimental results from Richards et al. [120] are also
plotted.
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(a) V7 (b) V8

(c) V9 (d) V10

(e) V11 (f) V12

Figure 5.22: Response surface of the standard deviation of pressure
coefficient at the pressure tap (a) V7 (b) V8 (c) V9 (d) V10
(e) V11 (f) V11, calculated by the high-fidelity model(HF),
the low-fidelity model (LF) and the multi-fidelity model
(MF).
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Figure 5.23: the pressure coefficient distribution on the vertical ring of
the cube of mean calculated by MF-NIPC(pink), 95% con-
fidence interval calculated by bootstrapping of the result
of MF-NIPC(grey), LES deterministic simulation(blue),
URANS deterministic simulation(green) and the experi-
mental data(black)

distribution on the roof (1.0 ≤ s/h < 2.0), after minimum pressure coefficient
at V8 the flow reattachment to the roof happens. The larger gradient of the
pressure coefficient means faster reattachment, in other words, gradient of
the pressure coefficient distribution at the roof (1.0 ≤ s/h < 2.0) shows flow
separation and reattachment process. Fig. 5.24 shows the gradient of the
pressure coefficient distribution between each observation points calculated
from the pressure coefficient distribution in Fig. 5.23. After minimum pressure
at V8 the pressure recovers, the positive bigger gradient means faster pressure
recovery. About the gradient between V9 - V10 the variation of experiment
data and the MF-NIPC results matches very well, otherwise the MF-NIPC
results are more variant compared to experiment results, especially at V8 - V9,
where the beginning of pressure recovery. At V8-V9 the gradient calculated by
MF-NIPC is bigger than the experimental data, it is to say that the pressure
recovers faster in MF-NIPC results than the experiment data. The reason of
this fast pressure recovery in MF-NIPC can be caused by either:

1. the computational simulation overestimate the effect of input uncer-
tainties, namely: velocity at the reference height and wind direction
or

2. uncertainties, which are not considered in the MF-NIPC, controls reat-
tachment more than the considered input uncertainties

Considering 1), the CFD simulations have been validated for wind direction
92° and 64° in Section 5.2.4 for both LES and URANS simulations (See
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Figure 5.24: gradient of the pressure coefficient distribution on the
vertical ring of the cube of mean calculated by MF-
NIPC(pink), 95% confidence interval calculated by boot-
strapping of the result of MF-NIPC(grey), LES deter-
ministic simulation(blue), URANS deterministic simula-
tion(green) and the experimental data(black)

Fig.5.15 and Fig. 5.15). As we discussed, the pressure coefficient on the
vertical ring calculated from CFD simulations matched well in both value and
trend, though both CFD simulations underestimate the minimum pressure
coefficient at V8. In addition to the previous validation, let us consider
correlation of CFD results and experimental data again, in this time using
CFD results obtained in UQ process. Since only the wind direction and
the pressure coefficients value are recorded for the experimental data, the
correlation between CFD results and experimental data with respect to the
wind direction will be compared. In Fig. 5.25, Cp which has the same wind
direction are plotted. Since the PDF of HF(L3) and MF converge well, we
now focus only on HF results. From Fig. 5.25, it can be seen that, though
the HF results under estimate Cp than experimental data, the correlation
between HF results and experimental results can be seen for both observation
taps V8 and V9. Therefore we suggest that it is less likely that the MF-NIPC
significantly overestimates the effect of input uncertainties.

Considering 2), it has been known that the experimental data of the roof
shows patterns which cannot be explained and may be associated with the
approaching turbulence intensity variation. It is to say that the roof top
pressure reattachment on the center line of the cube can be controlled rather
by the inlet turbulence intensity variation than input uncertainties which are
used in this case, namely: the reference velocity and angle of attack. In the
WindGen (Andre [8]), which is the software used in this chapter to generate
the time varying input inlet velocity, the turbulence intensity is not a direct
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(a) V8

(b) V9

Figure 5.25: Correlation between experimental data and CFD simula-
tions HF(blue) and LF(green) at observation point (a)V8
and (b)V9. Cp which has the same wind direction are
plotted. The grey line show y = x, which means that
the experimental data and the HF simulations data are
completely correlated. The blue dotted line shows linear
regression of plots for HF and experimental data
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Figure 5.26: time averaged velocity coefficient (velocity component
perpendicular to the windward face divided by the ref-
erence velocity) 60mm above the cube calculated by
MF-NIPC(pink), 95% confidence interval calculated by
bootstrapping of the result of MF-NIPC(grey), LES de-
terministic simulation(blue) and URANS deterministic
simulation(green)

input parameter but calibrated using another parameter, and it requires a
huge amount of effort to find out the appropriate parameter to reproduce the
required turbulence intensity. It was the reason why the turbulence intensity
is not chosen as an input random variable, however future research on this
topic will seek to address this issue.

In order to further analyze the recirculation of the flow above the roof, let
us look at the time averaged velocity 60 mm above the cube. Fig. 5.26 shows
the time averaged velocity coefficient 60 mm above the cube calculated by MF-
NIPC, LES deterministic simulation and URANS deterministic simulations.
The results of MF-NIPC consists of its mean value and 95% confidence inter-
val. The velocity coefficients are calculated by dividing velocity component
perpendicular to the windward face by the reference velocity. The negative
velocity coefficient means that there is the recirculation 60 mm above the roof.
Comparing the result of MF-NIPC and the LES deterministic simulation,
starting point of the recirculation is almost same in both results, however
in the MF-NIPC the recirculation is smaller than in the LES deterministic
simulation. This tendency is consistent to the results of pressure coefficient,
as MF-NIPC shows the faster pressure recovery.

Having considered the pressure and velocity distribution, we can now
conclude that the input uncertainties, the reference velocity and the wind
direction, affects the size of the recirculation. The input uncertainties make
the recirculation above the roof smaller and the pressure recovery faster than
without considering the uncertainties.

Now let us move on to the time averaged pressure coefficient of the pressure
taps on the roof of the cube. The numbering of the pressure taps on the
roof is shown in Fig. 5.3. The experimental data for the roof taps are
limited compared to the pressure distribution data on the vertical ring. Row
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6 corresponds to the center line of the cube, and C1R6, C3R6 and C5R6
correspond to V7, V8 and V9 respectively. Looking at Fig. 5.27, unlike
the pressure coefficient on the vertical ring shown in Fig. 5.23, the result
calculated by LES deterministic simulation and the mean calculated by MF-
NIPC have discrepancies especially close to the edge row of the cube (R1). The
discrepancy between the LES deterministic result and the mean calculated
by MF-NIPC decreases as it goes to the center row (R5). The absolute value
of the pressure coefficient of the LES deterministic results are closer to the
experimental data especially close to the center column (C5) than mean value
of MF-NIPC, however trend of the mean value of MF-NIPC shows matches
better to trend of the experimental data. Especially at the edge row (R1),
the pressure coefficient shows minimum suction at the corner of the cube
(R1C1), as observed in Richards et al. [123]. To further investigate pressure
distribution of the roof, the time averaged pressure contour is drawn in Fig.
5.29 (a) calculated by a LES deterministic simulation and (b) mean of MF-
NIPC. From the result of the LES deterministic simulation, the maximum
suction (:the minimum pressure) occurs not at specific corner but in area
close to windward face. However, the mean of MF-NIPC shows that the
minimum suction occurs at the corner of the cube. According to Banks et al.
[12], if the wind direction is aligned to the wind-ward face of the structure,
the minimum suction occur at the corner of the roof because of the corner
vortices. Having considered that MF-NIPC takes into account the variation
of the wind direction, it is reasonable that the result of the MF-NIPC shows
the minimum suction at the corner. Fig. 5.29 shows standard deviation of
the time averaged pressure calculated by MF-NIPC. From Fig. 5.29, it can
be seen that the variation of pressure becomes large in the region close to the
windward face, where the suction occurs as seen in Fig. 5.29. In addition,
there are also variations at the side edges of the cube. We suggest that it is
because the region where minimum suction occurs changes depending on the
wind direction, as with aligned wind the minimum suction occurs at the edge
of the roof.

5.4 Conclusion

In this chapter MF-NIPC is applied to the Silsoe cube problem. In order
to investigate effect of uncertainties exists in the full scale observation, the
wind direction and the velocity at the reference height are considered as input
random variables and the uncertainties are propagated to quantity of interests.
To carry out the MF-NIPC, the LES simulations are used as a high-fidelity
model and the URANS simulations are used as a low-fidelity model. Though a
relatively coarse mesh is chosen as the low-fidelity simulation, we observed that
the multi-fidelity framework improves the stochastic results compared to the
single-fideliy NIPC in terms of the time averaged- and the time stand deviation
of the pressure coefficient on the roof. Considering the 45.5 % computational
time reduction of the multi-fidelity framework from the single-fidelity model,
we confirmed that it is reasonable to use the multi-fidelity framework. After
the accuracy of MF-NIPC is confirmed, the pressure coefficients calculated by
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(a)

(b)

Figure 5.28: Time averaged pressure contour of the roof of (a) LES
deterministic simulation result and (b) mean of MF-NIPC
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Figure 5.29: Standard deviation of time averaged pressure contour of
the roof calculated by MF-NIPC

the MF-NIPC is compared with the deterministic results of the LES simulation
and the URANS simulation and the experimental data given from the full
scale observation. Considering pressure coefficient distribution at the taps of
the roof, by taking into account the input uncertainties, UQ could express
that the minimum suction occurs at the corner of the roof, which matches to
the full scale observation. This is also confirmed from the counter of the mean
value calculated by MF-NIPC. Considering pressure coefficient distribution
on the center line of the cube, it is found that considered uncertainties affect
characteristics of the recirculation of the flow and the pressure recovery on the
roof of the cube. It is observed that in the MF-NIPC results the recirculation
area above the roof becomes smaller and the pressure recovery happens faster
than a deterministic simulation evaluated with the mean value of the input
random variables. On the other hand, having compared the MF-NIPC results
with the experimental data, the variation obtained by the MF-NIPC is smaller
than the variation of the experimental data and this cannot be explained from
currently obtained results. It is suggested in future to include the turbulence
intensity as an input random variables.

I would like to acknowledge Prof. Peter J. Richards for kindly providing
the full scale observation data sets.





Chapter 6

Conclusions and outlook

In this thesis the Multi-Fidelity Non-Intrusive Polynomial Chaos methods
were applied to computational wind engineering problems. Though computa-
tional wind simulations include uncertainties, the uncertainty analysis has not
been popular in the computational wind engineering field. It is because, the
computational wind engineering problems have high Reynolds number com-
pared to mechanical engineering problems and are computationally expensive.
Since the uncertainty analysis requires number of deterministic simulations, it
has been difficult to apply the uncertainty analysis to the computational wind
engineering problems. To overcome this problem, we introduced the multi-
fidelity framework. The multi-fidelity framework has been getting attention
mainly for the optimization, which is not common in the computational wind
engineering, and in this thesis the multi-fidelity uncertainty quantification is
applied for the first time to the computational engineering problems.

To carry out the multi-fidelity analysis the Large Eddy Simulations were
used as the high-fidelity model and the Unsteady Reynolds Averaged Navier-
Stokes simulations were used as the low-fidelity model. Both CFD simulations
are discretized by Finite Element Method, which has an advantage to ex-
press accurate geometry. As target problems we chose two well-documented
benchmark cases in the computational engineering problems, namely: the
Benchmark on Aerodynamics of a Rectangular 5:1 Cylinder (BARC) problem
and flow around the Silsoe 6 m cube problem. The rectangular shape used in
BARC problem plays an important role in architectural design and BARC
focuses on analyzing the flow around the rectangular shape. In this thesis the
curvature of the rectangular cylinder and the angle of attack are considered as
input random variables for the purpose of validation of CFD simulations with
the experiment data of the wind tunnel tests. It is confirmed by comparing
the results of the bulk parameters calculated by the multi-fidelity models and
single-fidelity models that the multi-fidelity framework could improve the
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accuracy of uncertainty analysis. Then results of the uncertainty analysis was
compared with the experimental results. It was observed that the multi-fidelity
results are more comparable to the experimental data than the deterministic
simulations evaluated at the mean value of the input random variables. From
this study we conclude that the common uncertainties in the wind tunnel
tests affect the pressure distribution especially in the region of the pressure
recovery.

The other benchmark case is flow around the Silsoe 6m cube problem, which
represents natural inflow problems. The architectural structures are located
in the atmospheric boundary layer, in which the wind velocity is affected by
ground surface. The Silsoe cube problem is a well-documented benchmark
problem for a low-rise building located at the open terrain, and the full scale
observation had been carried out. In this thesis the wind direction and the
velocity at the cube height were considered as input random variables for the
purpose of validation of CFD simulations with experiment data of the full
scale observation. The accuracy of the multi-fidelity framework was confirmed
by comparing PDF results with ones calculated from the single-fidelity model,
even though comparably coarse mesh was chosen as the low-fidelity model.
By using the multi-fidelity analysis we could save 45% of calculation time
compared to the single-fidelity model. Then the results of the multi-fidelity
model was compared with the experimental data. It was observed that the
multi-fidelity model can demonstrate that the minimum suction on the roof
occurs at the corner of the roof, which is compatible with the experiment
data of the full scale observation.

By investigating two well-known benchmark cases in the computational
wind engineering, we demonstrated the applicability of MF-NIPC to practical
computational engineering problems. By comparing the multi-fidelity results
with single-fidelity results, we confirmed that the multi-fidelity framework
could improve the accuracy. Both studies were carried out for the purpose
of validation of the CFD simulations with the experimental data, and we
observed that the multi-fidelity analysis gives more compatible results to
the experimental data than the deterministic simulations evaluated at the
mean value of input random variables. In addition we observed significant
computational time saving especially for the Silsoe cube problem. Practically,
it requires great effort to set up the CFD simulations at the collocation points
calculated by the polynomial chaos methods, as it was observed to express
change of the curvature in BARC problems. The Finite Element Method
based CFD has strong advantage to simulate accurate geometries. In future
more research would be necessary with respect to change inlet wind velocity
for natural wind, so that inlet wind direction and the turbulence intensity
can be easily set to value at the collocation points without remeshing.



Appendix A

Polynomial Chaos based Sobol’s
indices

Polynomial Chaos Expansion (PCE) of Y is written as:

Y = g(X) ≈
P∑
k=1

akΨk(X), (A.1)

where X = (X1, ..., Xn) is the input random variables and Ψk(X) is the
orthogonal polynomials. Let us assume a multivariate polynomial orthogonal
as:

Ψj ≡ Ψα : Ψj(X) =

n∏
i=1

Pαi(xi), (A.2)

where Pk(x) is the k th orthogonal polynomial and α = (α1, . . . , αn). Let us
define I{i1,...,is}, the set of α as:

Ii1,...,is =

{
αk > 0 ∀k = 1, . . . , n, k ∈ (i1, . . . , is)
αj = 0 ∀k = 1, . . . , n, k /∈ (i1, . . . , is)

}
. (A.3)
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The polynomial chaos based Sobol decomposition is written as:

gPC(X) =g0 +
n∑
i=1

∑
α∈Ii

gαΨα (Xi)

+
∑

16i1<i26n

∑
α∈Ii1,i2

gαΨα (Xi1 , Xi2) + · · ·

+
∑

16i1<···<is6n

∑
α∈Ii1,...,is

gαΨα (Xi1 , . . . , Xis)

+ · · ·+
∑

α∈I1,2...n

gαΨα (X1, . . . , Xn) .

(A.4)

Having considered the polynomial chaos based Sobol decomposition, the
Sobol’s indices SUi1,...,is is written as:

SUi1,...,is =
∑

α∈Ii1,...,is

g2
αE
[
Ψ2
α

]
/DPC, (A.5)

where DPC is the total variance.



Appendix B

Sparse quadrature (Smolyak rule)

Sparse quadrature method for the Gauss quadrature Qqj is written as:

Qd,k =

k−1∑
k−d

(−1)(k−1−i)
(

d− 1
k − 1− i

) ∑
q∈Ndi

Qq1 ⊗ . . . Qqd . (B.1)

An advantage to use the sparse quadrature instead of the Gauss quadrature
ever for small number of input random variables is what the collocation points
calculated by the sparse grid are nested. Fig. B.1 shows the collocation points
calculated by the Gauss quadrature methods for the polynomial order 2 and
3 and the sparse quadrature methods for the sparse grid level 2 and 3 for
the input random variables of BARC, namely angle of attack as a normal
distribution with a mean of 0.0 and standard deviation 0.51 and the curvature
radius r/D with a uniform distribution in (0, 0.054). The collocation points
calculated by the Gauss quadrature are not nested at all, while about the
collocation points calculated by the sparse quadrature 11 points of level 3
are included in the points for level 2. In order to carry out MF-NIPC, the
nested collocation points play an important role, since the low-fidelity model
should be run at the collocation points of both level 2 and level 3. Therefore
in this thesis the sparse grid method has been used in this thesis, though the
dimension of input random variables are not high.
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(a)

(b)

Figure B.1: Comparison of the collocation points calculated by (a) the
Gauss quadrature for polynomial order 2 and 3 (b) the
sparse quadrature for sparse grid level 2 and 3



List of Figures

1.1 The procedure of determining wind load in Japan . . . . . . . . . 4
1.2 Illustration of Verification and Validation process . . . . . . . . . 6
1.3 Illustration of Verification and Validation process in CWE. Pic-

tures are taken from muenchen.de Das offizielle Stadtportal [98],
Richards et al. [124] and Richards et al. [120] . . . . . . . . . . . 8

2.1 Uncertainties in CWE . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 The law of the wall (Durbin et al. [41]) . . . . . . . . . . . . . . 27
3.2 Implementation of the Neumann boundary condition using the

wall function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Flowchart and software usage for NIPC . . . . . . . . . . . . . . 37
3.4 Details of the fine and coarse meshes used . . . . . . . . . . . . . 38
3.5 Definition of the curvature . . . . . . . . . . . . . . . . . . . . . . 39
3.6 The collocation points for the sparse grid level 1 to 3 . . . . . . 39
3.7 The PDF outlines of (a) t−avr(Cd) and (b) t− std(Cl) computed

by the single fidelity model (the coarse mesh level 3, the fine mesh
level3) and the Multi-fidelity model (the coarse mesh level, the
fine mesh level) = (3,1),(3,2)) . . . . . . . . . . . . . . . . . . . . 41

3.8 The moment convergence of t−mean(Cd) . . . . . . . . . . . . . 42
3.9 The moment convergence of t− std(Cl) . . . . . . . . . . . . . . 43

4.1 Assumption of the curvature radius at the edge of the rectangular
cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Collocation points calculated by Smolayak’s algorithm at levels 2
and 3. The high-fidelity model is evaluated at the level 2 sample
points, the low-fidelity model at the sample points in level 2 and
level 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 The computational domain for the LES. The axes and the bound-
ary conditions are indicated. . . . . . . . . . . . . . . . . . . . . 52

4.4 Meshing for LES (a) whole domain and (b) near-body . . . . . . 53
4.5 Time histories and the residual of statistics for (a) drag coefficient

Cd and (b) lift coefficient Cl . . . . . . . . . . . . . . . . . . . . . 54



126 LIST OF FIGURES

4.6 The side-averaged, span-wise averaged and time averaged pressure
coefficient distribution: box plot of six wind tunnel tests, LES
with wall function for the wall boundary condition and LES with
no slip for the wall boundary condition . . . . . . . . . . . . . . . 55

4.7 3D computational domain for LES simulations. The refined box
and its size is indicated. . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 The side-averaged, span-wise averaged and time averaged pressure
coefficient distribution: box plot of six wind tunnel tests, LES
calculated with the fine mesh, the medium mesh and the coarse
mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.9 Meshing for LES mesh study with curvature (a) fine (b) coarse . 57
4.10 The side-averaged, span-wise averaged and time averaged pressure

coefficient distribution: box plot of six wind tunnel tests, LES
with the reference curvature R/D = 0.027 calculated with the fine
mesh and the coarse mesh . . . . . . . . . . . . . . . . . . . . . . 58

4.11 Meshing for URANS (a) whole domain and (b) near-body . . . . 59
4.12 Time histories and the residual of statistics for (a) drag coefficient

Cd and (b) lift coefficient Cl calculated by URANS . . . . . . . . 60
4.13 2D computational domain for URANS simulations. The refined

box and its size is indicated. . . . . . . . . . . . . . . . . . . . . . 61
4.14 The side-averaged, span-wise averaged and time averaged pressure

coefficient distribution: box plot of six wind tunnel tests, URANS
calculated with the fine mesh and the coarse mesh . . . . . . . . 61

4.15 Meshing for URANS mesh study with the reference curvature of
(a) fine mesh (b) coarse mesh . . . . . . . . . . . . . . . . . . . . 62

4.16 The side-averaged, span-wise averaged and time averaged pressure
coefficient distribution: box plot of six wind tunnel tests, URANS
with the reference curvature R/D = 0.027 calculated with the
coarse mesh and the fine mesh . . . . . . . . . . . . . . . . . . . 62

4.17 Comparison between results of LES, URANS, computational re-
sults from Bruno et al. [22] which consist of 〈Cd〉 over 36 realization,
〈Cl〉 over 36 realizations, σCl over 30 realizations and St over 25
realizations and wind tunnel experiment results from Schewe [135] 63

4.18 The side-averaged, span-wise averaged and time averaged pressure
coefficient distribution: box plot of six wind tunnel tests, LES
and URANS (a)〈Cp〉 (b)the standard deviation of the pressure
coefficient distribution std(Cp) . . . . . . . . . . . . . . . . . . . 65

4.19 Velocity contours from the two deterministic CFD simulations. . 66
4.20 Probability Density Function of (a) 〈Cd〉 and (b) 〈Cl〉, calculated

by the high-fidelity model L2(HF_L2, green), the high-fidelity
model level 3 (HF_L3, blue), the low-fidelity model (LF, orange)
and the multi-fidelity model (MF, pink). . . . . . . . . . . . . . . 67

4.21 Response surface of (a) 〈Cd〉 and (b) 〈Cl〉, calculated by the the
multi-fidelity model with CFD results at level 3 collocation points
of the high-fidelity model (HF, orange) and the low-fidelity model
(LF, blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



LIST OF FIGURES 127

4.22 Probability Density Function of (a) std(Cd) and (b) std(Cl), calcu-
lated by the high-fidelity model L2(HF_L2, green), the high-fidelity
model level 3 (HF_L3, blue), the low-fidelity model (LF, orange)
and the multi-fidelity model (MF, pink). . . . . . . . . . . . . . . 70

4.23 Response surface of (a) std(Cd) and (b) std(Cl), calculated by the
multi-fidelity model with CFD results at level 3 collocation points
of the high-fidelity model (HF, orange) and the low-fidelity model
(LF, blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.24 Comparison of spectral coefficient of PCE estimated by HF(L3)(:blue)
and discrepancy between HF and LF(:pink). . . . . . . . . . . . . 73

4.25 Comparison between the LES results(HF, x-axis) and the URNAS
results(LF, y-axis) calculated at the collocation points for sparse
grid level 2 and level 3. The linear approximation (:green) is
plotted by the linear regression method. The coefficient of the
linear approximation and the coefficient of determination R2 are
also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.26 Bulk parameters calculated with different models and polynomial
orders. The bulk parameters are plotted against the total CPU
time of each model. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.27 The side-averaged, span-wise-averaged distribution of (a) 〈Cp〉 and
(b) std(Cp): wind tunnel (6 realizations), mean and 95% confi-
dence interval of the multi-fidelity NIPC result and deterministic
simulation results (LES, URANS). . . . . . . . . . . . . . . . . . 76

4.28 The Sobol sensitivity index as a function of downstream displace-
ment. Close to the leading and trailing edges, the curvature radius
is the dominant contributor to the uncertainty. However, in the
region around the point where the pressure recovery starts both
variables contribute almost equally. . . . . . . . . . . . . . . . . . 77

4.29 Standard deviation of span-wise averaged and time-averaged ve-
locity calculated by MF-NIPC . . . . . . . . . . . . . . . . . . . 79

5.1 The Silsoe 6m cube (Richards et al. [120]) . . . . . . . . . . . . . 83
5.2 The pressure tap on a vertical and on a horizontal centerline

(Richards et al. [120]) . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 The additional roof tappings (Richards et al. [123]) . . . . . . . . 84
5.4 Histograms plotted by 9000 samples of observation data . . . . . 86
5.5 The collocation points calculated by the arbitrary polynomial

chaos method based on the histograms . . . . . . . . . . . . . . . 87
5.6 The computational domain of the Silsoe 6m cube simulation . . . 87
5.7 The computational domain of the Silsoe 6m cube simulation . . . 88
5.8 Meshing for LES (a) whole cross section and (b) near-body . . . 89
5.9 Inlet velocity at the cube height generated by the WindGen using

parameters indicated in Table 5.1 . . . . . . . . . . . . . . . . . . 91



128 LIST OF FIGURES

5.10 The evolution of z direction profile of (a) mean velocity (b) T.I.
in x direction (c) T.I. in y direction (d) T.I. in z direction at x =
0.0 m, 6.0 m, 12.0 m, 18.0 m. The inlet boundary is located at x
= 0.0 m and the front wall of the cube is located at x = 30.0m.
The results are compared with the full scale observation data (:FS)
and the wind tunnel experiment data (:exp) in Richards et al. [124] 92

5.11 Meshing for URANS (a) whole cross section and (b) near-body . 95

5.12 Comparison of the time averaged pressure coefficient Cp on (a)
horizontal ring and (b) vertical ring. URANS simulations are
calculated using the three mesh settings and compared with the
experimental data analyzed for the wind direction 90° in Richards
et al. [120] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.13 Comparison of evolution of the mean velocity profile. FS: the full
scale observation data from Richards et al. [124] . . . . . . . . . 97

5.14 (a) horizontal ring and (b) vertical ring . . . . . . . . . . . . . . 98

5.15 Comparison of the time averaged pressure coefficient Cp on (a)
horizontal ring and (b) vertical ring. URANS and LES simulations
are carried out for wind direction 92°. The experimental data was
Fourier analyzed for the wind direction 90° in Richards et al. [120] 99

5.16 Comparison of the time averaged pressure coefficient Cp on (a)
horizontal ring and (b) vertical ring. URANS and LES simulations
are carried out for wind direction 64°. The experimental data was
Fourier analyzed for the wind direction 60° in Richards et al. [120] 100

5.17 Comparison of the time averaged pressure coefficientCp on pressure
taps on the roof of the cube shown in Fig. 5.3. URANS and LES
simulations are carried out for wind direction 92°. The CFD results
are compared with the experimental data in Richards et al. [123] 102

5.18 Time averaged streamlines calculated by LES for wind direction
92° and inlet velocity at the cube height 8.53 m/s. The streamlines
around the roof is shown in (a), and the pressure observation
points are indicated in (b) . . . . . . . . . . . . . . . . . . . . . . 104

5.19 Probability Density Function of the time averaged pressure coeffi-
cient at the pressure tap (a) V7 (b) V8 (c) V9 (d) V10 (e) V11
(f) V11, calculated by the high-fidelity model with sparse grid
level 2(HF_L2, green), the high-fidelity model with sparse grid
level 2(HF_L3, blue), the low-fidelity model with sparse grid level
3(LF_L3, orange) and the multi-fidelity model (MF, pink). The
experimental results from Richards et al. [120] are also plotted. . 105

5.20 Response surface of the time averaged pressure coefficient at the
pressure tap (a) V7 (b) V8 (c) V9 (d) V10 (e) V11 (f) V11,
calculated by the high-fidelity model(HF), the low-fidelity model
(LF) and the multi-fidelity model (MF). . . . . . . . . . . . . . 106



LIST OF FIGURES 129

5.21 Probability Density Function of the standard deviation of pressure
coefficient at the pressure tap (a) V7 (b) V8 (c) V9 (d) V10 (e)
V11 (f) V12, calculated by the high-fidelity model with sparse grid
level 2(HF_L2, green), the high-fidelity model with sparse grid
level 2(HF_L3, blue), the low-fidelity model with sparse grid level
3(LF_L3, orange) and the multi-fidelity model (MF, pink). The
experimental results from Richards et al. [120] are also plotted. . 108

5.22 Response surface of the standard deviation of pressure coefficient
at the pressure tap (a) V7 (b) V8 (c) V9 (d) V10 (e) V11 (f) V11,
calculated by the high-fidelity model(HF), the low-fidelity model
(LF) and the multi-fidelity model (MF). . . . . . . . . . . . . . 109

5.23 the pressure coefficient distribution on the vertical ring of the
cube of mean calculated by MF-NIPC(pink), 95% confidence inter-
val calculated by bootstrapping of the result of MF-NIPC(grey),
LES deterministic simulation(blue), URANS deterministic simula-
tion(green) and the experimental data(black) . . . . . . . . . . . 110

5.24 gradient of the pressure coefficient distribution on the vertical
ring of the cube of mean calculated by MF-NIPC(pink), 95%
confidence interval calculated by bootstrapping of the result of
MF-NIPC(grey), LES deterministic simulation(blue), URANS
deterministic simulation(green) and the experimental data(black) 111

5.25 Correlation between experimental data and CFD simulations
HF(blue) and LF(green) at observation point (a)V8 and (b)V9.
Cp which has the same wind direction are plotted. The grey line
show y = x, which means that the experimental data and the HF
simulations data are completely correlated. The blue dotted line
shows linear regression of plots for HF and experimental data . . 112

5.26 time averaged velocity coefficient (velocity component perpendicu-
lar to the windward face divided by the reference velocity) 60mm
above the cube calculated by MF-NIPC(pink), 95% confidence in-
terval calculated by bootstrapping of the result of MF-NIPC(grey),
LES deterministic simulation(blue) and URANS deterministic
simulation(green) . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.27 Comparison of the time averaged pressure coefficient Cp on pres-
sure taps on the roof of the cube shown in Fig. 5.3. Cp are
calculated by MF-NIPC(pink), 95% confidence interval calculated
by bootstrapping of the result of MF-NIPC(grey), URANS de-
terministic simulation(green), LES deterministic simulation(blue)
and experimental data(black) . . . . . . . . . . . . . . . . . . . . 115

5.28 Time averaged pressure contour of the roof of (a) LES deterministic
simulation result and (b) mean of MF-NIPC . . . . . . . . . . . 116

5.29 Standard deviation of time averaged pressure contour of the roof
calculated by MF-NIPC . . . . . . . . . . . . . . . . . . . . . . . 117

B.1 Comparison of the collocation points calculated by (a) the Gauss
quadrature for polynomial order 2 and 3 (b) the sparse quadrature
for sparse grid level 2 and 3 . . . . . . . . . . . . . . . . . . . . . 124



List of Tables

3.1 Comparison of time statistics of the aerodynamics coefficient and
Strouhal number . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 The correlation and the mean absolute relative error between the
coarse- and the fine mesh models . . . . . . . . . . . . . . . . . . 44

3.3 The comparison between the stochastic result and the deterministic
result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Bulk parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Comparison of bulk parameters with different models and polyno-
mial orders. The bulk parameters of the high-fidelity model with
level 3 (HF(L3)) is presented and based on HF (L3) results the
absolute error of the high-fidelity model with level 2 (HF(L2)),
the low-fidelity model with level 3(LF(L3) and the multi-fidelity
model (MF) is calculated. The lowest absolute error for each value
are shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Comparison of standard deviation of the bulk parameters with
different models and polynomial orders. The bulk parameters of
the high-fidelity model with level 3 (HF(L3)) is presented and
based on HF (L3) results the absolute error of the high-fidelity
model with level 2 (HF(L2)), the low-fidelity model with level
3(LF(L3) and the multi-fidelity model (MF) is calculated. The
lowest absolute error for each value are shown in bold. . . . . . . 72

5.1 parameters for generating the inlet wind . . . . . . . . . . . . . . 90

5.2 Size of cells δ/H (H = 6m) and the number of cells for three
different mesh settings . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Comparison of calculation time and average relative deviations
from the experimental data of Cp. The calculation time is shown
in total CPU time [hours]. HF(L3): total CPU time for Level
3 NIPC with high-fidelity model only, MF: total CPU time for
multi-fidelity NIPC. . . . . . . . . . . . . . . . . . . . . . . . . . 97



LIST OF TABLES 131

5.4 Average relative deviation for Cp on horizontal ring (H1-H4) and
vertical ring (V2-V3). The average relative deviation of LES results
from the full scale analyzed data from Richards et al. [120] and
URANS results from LES results for wind direction 92° and 64°
are calculated. The average relative deviation which exceed 20%
are shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Relative deviations for Cp of the roof pressure tap. The relative
deviations are averaged in every row. The average relative devia-
tion of LES results from the full scale analyzed data from Richards
et al. [123] and URANS results from LES results for wind direction
92° are calculated. . . . . . . . . . . . . . . . . . . . . . . . . . . 101





Bibliography

[1] a Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder.
Italian National Association for Wind Engineering (ANIV).

[2] A. K. Abodonya. “Verification methodology for computational wind
engineering prediction of wind loads on structures”. PhD thesis. 2019.

[3] I. Abohela, N. Hamza, and S. Dudek. “Validating CFD Simulation
Results: Wind flow around a surface mounted cube in a turbulent
channel flow”. In: 28th Conference, Opportunities, Limits Needs
Towards an environmentally responsible architecture. Lima, Peru,
2012.

[4] R. Ahlfeld, B. Belkouchi, and F. Montomoli. “SAMBA: Sparse
Approximation of Moment-Based Arbitrary Polynomial Chaos”. In:
Journal of Computational Physics 320 (2016), pp. 1–16. doi:
10.1016/j.jcp.2016.05.014.

[5] R. Ak, V. Vitelli, and E. Zio. “An interval-valued neural network
approach for uncertainty quantification in short-term wind speed
prediction”. In: IEEE transactions on neural networks and learning
systems 26.11 (2015), pp. 2787–2800. doi:
10.1109/TNNLS.2015.2396933..

[6] American Society of Civil Engineers. ASCE 7: Minimum Design
Loads for Buildings and Other Structures. 2013.

[7] M. Andre. “Aeroelastic modeling and simulation for the assessment of
wind effects on a parabolic trough solar collector”. PhD thesis.
Technical University of Munich, 2018.

[8] M. Andre. WindGen. 2017. url:
https://github.com/msandre/WindGen.

[9] M. S. Andre. “Aeroelastic modeling and simulation for the assessment
of wind effecs on a parabolic trough solar collector”. PhD thesis. 2018.

[10] Architectural Institute of Japan. AIJ Recommendations for Loads on
Buildings. 2015.

[11] Architectural Institute of Japan. Guidebook of Recommendations for
Loads on Buildings 2 – Wind induced Response and Load
Estimation/Practical Guide of CFD for Wind Resistant Designs. 2017.



134 BIBLIOGRAPHY

[12] D. Banks, R. Meroney, P. Sarkar, Z. Zhao, and F. Wu. “Flow
visualization of conical vortices on flat roofs with simultaneous surface
pressure measurement”. In: Journal of Wind Engineering and
Industrial Aerodynamics 84.1 (2000), pp. 65–85. doi:
10.1016/S0167-6105(99)00044-6.

[13] Y. Bazilevs and T. J. Hughes. “Weak imposition of Dirichlet
boundary conditions in fluid mechanics”. In: Computers & Fluids 36.1
(2007), pp. 12–26. doi: 10.1016/j.compfluid.2005.07.012.

[14] E. Bernardini, S. M. Spence, D. Wei, and A. Kareem. “Aerodynamic
shape optimization of civil structures: A CFD-enabled Kriging-based
approach”. In: Journal of Wind Engineering and Industrial
Aerodynamics 144 (2015), pp. 154–164. doi:
10.1016/j.jweia.2015.03.011.

[15] B. Blocken. “50 years of Computational Wind Engineering: Past,
present and future”. In: Journal of Wind Engineering and Industrial
Aerodynamics 129 (June 2014), pp. 69–102. doi:
10.1016/j.jweia.2014.03.008.

[16] B. Blocken, T. Stathopoulos, J. Carmeliet, and J. L. Hensen.
“Application of computational fluid dynamics in building performance
simulation for the outdoor environment: an overview”. In: Journal of
Building Performance Simulation 4.2 (June 2011), pp. 157–184. doi:
10.1080/19401493.2010.513740.

[17] R. Bradley. “CFD Validation Philosophy”. In: AGARD Symposium
on Validation of Computational Fluid Dynamics, Conf. Paper No. 1.
1988.

[18] A. Bronkhorst, C. Geurts, and C. Van Bentum. “Unsteady pressure
measurements on a 5: 1 rectangular cylinder”. In: Proceedings of the
13th International Conference on Wind Engineering, Amsterdam, The
Netherlands. Vol. 1015. 2011.

[19] L. Bruno, C. Canuto, and D. Fransos. “Stochastic aerodynamics and
aeroelasticity of a flat plate via generalised polynomial chaos”. In:
Journal of Fluids and Structures 25.7 (2009), pp. 1158–1176. doi:
10.1016/j.jfluidstructs.2009.06.001.

[20] L. Bruno and D. Fransos. “Probabilistic evaluation of the
aerodynamic properties of a bridge deck”. In: Journal of wind
engineering and industrial aerodynamics 99.6-7 (2011), pp. 718–728.
doi: 10.1016/j.jweia.2011.03.007.

[21] L. Bruno, D. Fransos, N. Coste, and A. Bosco. “3D flow around a
rectangular cylinder: a computational study”. In: Journal of Wind
Engineering and Industrial Aerodynamics 98.6-7 (2010), pp. 263–276.
doi: 10.1016/j.jweia.2009.10.005.

[22] L. Bruno, M. V. Salvetti, and F. Ricciardelli. “Benchmark on the
aerodynamics of a rectangular 5: 1 cylinder: an overview after the
first four years of activity”. In: Journal of Wind Engineering and
Industrial Aerodynamics 126 (2014), pp. 87–106. doi:
10.1016/j.jweia.2014.01.005.



BIBLIOGRAPHY 135

[23] C. Canuto and D. Fransos. “Numerical solution of partial differential
equations in random domains: An application to wind engineering.”
In: vol. 5. 2-4. Citeseer, 2009, pp. 515–531.

[24] M. Carnevale, F. Montomoli, A. D’Ammaro, S. Salvadori, and
F. Martelli. “Uncertainty quantification: A stochastic method for heat
transfer prediction using LES”. In: Journal of Turbomachinery 135.5
(2013), p. 051021. doi: 10.1115/1.4007836.

[25] M. Casey, T. Wintergerste,
T. European Research Community on Flow, and Combustion.
ERCOFTAC Best Practice Guidelines: ERCOFTAC Special Interest
Group on "quality and Trust in Industrial CFD". ERCOFTAC, 2000.

[26] W.-C. Chuang and S. M. Spence. “Rapid uncertainty quantification
for non-linear and stochastic wind excited structures: a metamodeling
approach”. In: Meccanica 54.9 (2019), pp. 1327–1338. doi:
10.1007/s11012-019-00958-9.

[27] M. Ciampoli, F. Petrini, and G. Augusti. “Performance-based wind
engineering: towards a general procedure”. In: Structural Safety 33.6
(2011), pp. 367–378. doi: 10.1016/j.strusafe.2011.07.001.

[28] “Climate change 2007: The physical science basis”. In: Agenda 6.07
(2007), p. 333.

[29] R. Codina, J. Principe, O. Guasch, and S. Badia. “Time dependent
subscales in the stabilized finite element approximation of
incompressible flow problems”. In: Computer Methods in Applied
Mechanics and Engineering 196.21 (Apr. 2007), pp. 2413–2430. doi:
10.1016/j.cma.2007.01.002.

[30] T. Connor, R. Niall, P. Cummings, and M. Papillo. “Incorporating
Climate Change Adaptation into Engineering Design Concepts and
Solutions”. In: Australian Journal of Structural Engineering 14.2
(2013), pp. 125–134. doi: 10.7158/13287982.2013.11465127.

[31] N. Cook. “The designer’s guide to wind loading of buildings
structures. Part 2: static structures”. In: BRE (Building Research
Establishment) (1985).

[32] J. Côté, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth.
“The operational CMC–MRB global environmental multiscale (GEM)
model. Part I: Design considerations and formulation”. In: Monthly
Weather Review 126.6 (1998), pp. 1373–1395. doi:
10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2.

[33] J. Cousin and M. Metcalfe. “The bae (commercial aircraft) ltd
transport aircraft synthesis and optimisation program (tasop)”. In:
Aircraft Design, Systems and Operations Conference. 1990, p. 3295.
doi: 10.2514/6.1990-3295.

[34] W. Cui and L. Caracoglia. “New GPU computing algorithm for wind
load uncertainty analysis on high-rise systems”. In: Wind and
Structures An International Journal 21 (Nov. 2015), pp. 461–487.
doi: 10.12989/was.2015.21.5.461.



136 BIBLIOGRAPHY

[35] J. C. Dalmau. “Applications of turbulence modeling in civil
engineering”. PhD thesis. 2016.

[36] Deutsches Institut für Normung e. V. DIN EN 1991-1-4/NA,
Nationaler Anhang - National festgelegte Parameter - Eurocode 1:
Einwirkungen auf Tragwerke - Teil 1-4: Allgemeine Einwirkungen -
Windlasten. 2010.

[37] F. Ding and A. Kareem. “A multi-fidelity shape optimization via
surrogate modeling for civil structures”. In: Journal of Wind
Engineering and Industrial Aerodynamics 178 (2018), pp. 49–56. doi:
10.1016/j.jweia.2018.04.022.

[38] E. H. Dowell and K. C. Hall. “Modeling of fluid-structure interaction”.
In: Annual review of fluid mechanics 33.1 (2001), pp. 445–490. doi:
10.1146/annurev.fluid.33.1.445.

[39] P. Du, W. Li, X. Ke, N. Lu, O. A. Ciniglio, M. Colburn, and
P. M. Anderson. “Probabilistic-based available transfer capability
assessment considering existing and future wind generation resources”.
In: IEEE Transactions on sustainable Energy 6.4 (2015),
pp. 1263–1271. doi: 10.1109/TSTE.2015.2425354.

[40] S. Dubreuil, M. Berveiller, F. Petitjean, and M. Salaün.
“Construction of bootstrap confidence intervals on sensitivity indices
computed by polynomial chaos expansion”. In: Reliability Engineering
System Safety 121 (Jan. 2014), pp. 263–275. doi:
10.1016/j.ress.2013.09.011.

[41] P. A. Durbin and B. P. Reif. Statistical theory and modeling for
turbulent flows. John Wiley & Sons, 2011.

[42] B. Efron. “Bootstrap Methods: Another Look at the Jackknife”. In:
Breakthroughs in Statistics: Methodology and Distribution. Ed. by
S. Kotz and N. L. Johnson. New York, NY: Springer New York, 1992,
pp. 569–593. doi: 10.1007/978-1-4612-4380-9_41.

[43] M. Eldred, L. Ng, M. Barone, and S. Domino. “Multifidelity
Uncertainty Quantification Using Spectral Stochastic Discrepancy
Models”. In: Jan. 2015, pp. 1–45. doi:
10.1007/978-3-319-11259-6_25-1.

[44] M. S. Eldred, L. W. T. Ng, M. F. Barone, and S. P. Domino.
“Multifidelity Uncertainty Quantification Using Spectral Stochastic
Discrepancy Models”. In: Handbook of Uncertainty Quantification.
Ed. by R. Ghanem, D. Higdon, and H. Owhadi. Cham: Springer
International Publishing, 2015, pp. 991–1040.

[45] M. Eldred, L. Ng, M. Barone, and S. Domino. “Multifidelity
uncertainty quantification using spectral stochastic discrepancy
models”. In: ed. by R. Ghanem, D. Higdon, and H. Owhadi. Vol. 6.
Springer, 2017, pp. 991–1036.

[46] European Committee for standardization. EN 1991-1-4:2005+A1,
Eurocode 1: Actions on structures -Part 1-4: General actions -Wind
actions. 2010.



BIBLIOGRAPHY 137

[47] J. Feinberg and H. P. Langtangen. “Chaospy: An open source tool for
designing methods of uncertainty quantification”. In: Journal of
Computational Science 11 (2015), pp. 46–57. doi:
10.1016/j.jocs.2015.08.008.

[48] V. M. Ferrándiz, P. Bucher, R. Rossi, R. Zorrilla, J. Cotela, J. Maria,
M. A. Celigueta, and G. Casas. KratosMultiphysics (Version 8.1).
https://zenodo.org/record/3234644. Nov. 2020.

[49] A. I. Forrester, A. Sóbester, and A. J. Keane. “Multi-fidelity
optimization via surrogate modelling”. In: Proceedings of the royal
society a: mathematical, physical and engineering sciences 463.2088
(2007), pp. 3251–3269. doi: 10.1098/rspa.2007.1900.

[50] J. Franke, C. Hirsch, A. Jensen, H. Krüs, M. Schatzmann,
P. Westbury, S. Miles, J. Wisse, and N. Wright. “Recommendations
on the use of CFD in predicting pedestrian wind environment”. In:
Cost action C. Vol. 14. 2004.

[51] J. Franke, C. Hirsch, G. Jensen, H. Krüs, S. Miles, M. Schatzmann,
P. Westbury, J. Wisse, and N. Wright. “Recommendations on the use
of CFD in wind engineering”. English. In: Proceedings of the
International Conference on Urban Wind Engineering and Building
Aerodynamics. 2004, pp. C.1.1–C1.11.

[52] J. Franke, A. Hellsten, K. H. Schluenzen, and B. Carissimo. “The
COST 732 Best Practice Guideline for CFD simulation of flows in the
urban environment: a summary”. eng. In: International Journal of
Environment and Pollution 44.1-4 (2011), pp. 419–427. doi:
10.1504/IJEP.2011.038443.

[53] C. Garcıéa-Sánchez and C. Gorlé. “Uncertainty quantification for
microscale CFD simulations based on input from mesoscale codes”. In:
Journal of Wind Engineering and Industrial Aerodynamics 176 (2018),
pp. 87–97. doi: 10.1016/j.jweia.2018.03.011.

[54] C. Garcıéa-Sánchez, D. Philips, and C. Gorlé. “Quantifying inflow
uncertainties for CFD simulations of the flow in downtown Oklahoma
City”. In: Building and environment 78 (2014), pp. 118–129. doi:
10.1016/j.buildenv.2014.04.013.

[55] C. Garcıéa-Sánchez, G. Van Tendeloo, and C. Gorlé. “Quantifying
inflow uncertainties in RANS simulations of urban pollutant
dispersion”. In: Atmospheric environment 161 (2017), pp. 263–273.
doi: 10.1016/j.atmosenv.2017.04.019.

[56] M. Gasca and T. Sauer. “Polynomial interpolation in several
variables”. In: Advances in Computational Mathematics 12.4 (2000),
pp. 377–410. doi: 10.1023/A:1018981505752.

[57] N. Geneva and N. Zabaras. “Quantifying model form uncertainty in
Reynolds-averaged turbulence models with Bayesian deep neural
networks”. In: Journal of Computational Physics 383 (2019),
pp. 125–147. doi: 10.1016/j.jcp.2019.01.021.



138 BIBLIOGRAPHY

[58] M. Giselle Fernández-Godino, C. Park, N. H. Kim, and R. T. Haftka.
“Issues in deciding whether to use multifidelity surrogates”. In: AIAA
Journal 57.5 (2019), pp. 2039–2054. doi: 10.2514/1.J057750.

[59] M. B. Goldsmith, B. V. Sankar, R. T. Haftka, and R. K. Goldberg.
“Effects of microstructural variability on thermo-mechanical
properties of a woven ceramic matrix composite”. In: Journal of
Composite Materials 49.3 (2015), pp. 335–350. doi:
10.1177/0021998313519151.

[60] G. H. Golub and J. H. Welsch. “Calculation of Gauss Quadrature
Rules”. In: Math. Comp. 23 (1969), pp. 221–230. doi:
10.1090/S0025-5718-69-99647-1.

[61] C. Gorlé, S. Zeoli, M. Emory, J. Larsson, and G. Iaccarino.
“Epistemic uncertainty quantification for Reynolds-averaged
Navier-Stokes modeling of separated flows over streamlined surfaces”.
In: Physics of Fluids 31.3 (2019), p. 035101. doi:
10.1063/1.5086341.

[62] C. Gorlé, C. Garcia-Sanchez, and G. Iaccarino. “Quantifying inflow
and RANS turbulence model form uncertainties for wind engineering
flows”. In: Journal of Wind Engineering and Industrial Aerodynamics
144 (2015), pp. 202–212. doi: 10.1016/j.jweia.2015.03.025.

[63] R. Guichard. “Large eddy simulation of pressure fluctuations on a
surface-mounted cube”. In: Proc. For the 7th European-African
Conference on Wind Engineering. 2017.

[64] Guide for the Verification and Validation of Computational Fluid
Dynamics Simulations. American Institute of Aeronautics and
Astronautics. 1998.

[65] T. A. Helgedagsrud, Y. Bazilevs, A. Korobenko, K. M. Mathisen, and
O. A. Øiseth. “Using ALE-VMS to compute aerodynamic derivatives
of bridge sections”. In: Computers & Fluids 179 (2019), pp. 820–832.
doi: 10.1016/j.compfluid.2018.04.037.

[66] T. van Hooff, B. Blocken, J. Hensen, and H. Timmermans. “On the
predicted effectiveness of climate adaptation measures for residential
buildings”. In: Building and Environment 82 (2014), pp. 300–316.
doi: 10.1016/j.buildenv.2014.08.027.

[67] S. Hosder, R. W. Walters, and M. Balch. “Point-collocation
nonintrusive polynomial chaos method for stochastic computational
fluid dynamics”. In: AIAA journal 48.12 (2010), pp. 2721–2730. doi:
10.2514/1.39389.

[68] K. Hourigan, M. Thompson, and B. Tan. “SELF-SUSTAINED
OSCILLATIONS IN FLOWS AROUND LONG BLUNT PLATES”.
In: Journal of Fluids and Structures 15.3 (Apr. 2001), pp. 387–398.
doi: 10.1006/jfls.2000.0352.



BIBLIOGRAPHY 139

[69] T. J. Hughes. “Multiscale phenomena: Green’s functions, the
Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and
the origins of stabilized methods”. In: Computer Methods in Applied
Mechanics and Engineering 127.1 (1995), pp. 387–401. doi:
10.1016/0045-7825(95)00844-9.

[70] L. Huyse and R. W. Walters. Random field solutions including
boundary condition uncertainty for the steady-state generalized
Burgers equation. Tech. rep. NATIONAL AERONAUTICS and
SPACE ADMINISTRATION HAMPTON VA LANGLEY
RESEARCH CENTER, 2001.

[71] G. Iaccarino, A. Ooi, P. Durbin, and M. Behnia. “Reynolds averaged
simulation of unsteady separated flow”. In: International Journal of
Heat and Fluid Flow 24.2 (Apr. 2003), pp. 147–156. doi:
10.1016/S0142-727X(02)00210-2.

[72] D. I. Jeong and L. Sushama. “Projected changes to extreme wind and
snow environmental loads for buildings and infrastructure across
Canada”. In: Sustainable cities and society 36 (2018), pp. 225–236.
doi: 10.1016/j.scs.2017.10.004.

[73] J. Jin, Y. Che, J. Zheng, and F. Xiao. “Uncertainty Quantification of
a Coupled Model for Wind Prediction at a Wind Farm in Japan”. In:
Energies 12.8 (2019), p. 1505. doi: 10.3390/en12081505.

[74] A. Kareem. “Numerical simulation of wind effects: A probabilistic
perspective”. In: Journal of Wind Engineering and Industrial
Aerodynamics 96.10–11 (Oct. 2008), pp. 1472–1497. doi:
10.1016/j.jweia.2008.02.048.

[75] M. Kasperski and R. Hoxey. “Extreme-value analysis for observed
peak pressures on the Silsoe cube”. In: Journal of wind engineering
and industrial aerodynamics 96.6-7 (2008), pp. 994–1002. doi:
10.1016/j.jweia.2007.06.024.

[76] S. Kawai and K. Shimoyama. “Kriging-model-based uncertainty
quantification in computational fluid dynamics”. In: 32nd AIAA
Applied Aerodynamics Conference. 2014, p. 2737. doi:
10.2514/6.2014-2737.

[77] L. Kleerekoper, A. van den Dobbelsteen, G. Hordijk, M. van Dorst,
and C. Martin. “Climate adaptation strategies: achieving insight in
microclimate effects of redevelopment options”. In: Smart and
Sustainable Built Environment (2015). doi:
10.1108/SASBE-08-2014-0045.

[78] D. Kuzmin, R. Löhner, and S. Turek. Flux-corrected transport:
principles, algorithms, and applications. Second. Scientific
Computation. Springer, 2012. isbn: 9789400740389.

[79] G. Lamberti and C. Gorlé. “Uncertainty Quantification for RANS
Predictions of Wind Loads on Buildings”. In: Conference of the
Italian Association for Wind Engineering. Springer. 2018,
pp. 402–412. doi: 10.1007/978-3-030-12815-9_32.



140 BIBLIOGRAPHY

[80] O. P. Le Maître and O. M. Knio. Spectral methods for uncertainty
quantification: with applications to computational fluid dynamics.
Scientific computation. Springer, 2010. isbn: 9789048135196.

[81] G. Li and H. Hu. “Risk design optimization using many-objective
evolutionary algorithm with application to performance-based wind
engineering of tall buildings”. In: Structural Safety 48 (2014),
pp. 1–14. doi: 10.1016/j.strusafe.2014.01.002.

[82] H. C. Lim, T. Thomas, and I. P. Castro. “Flow around a cube in a
turbulent boundary layer: LES and experiment”. In: Journal of Wind
Engineering and Industrial Aerodynamics 97.2 (2009), pp. 96–109.
doi: 10.1016/j.jweia.2009.01.001.

[83] J. Ling and J. Templeton. “Evaluation of machine learning algorithms
for prediction of regions of high Reynolds averaged Navier Stokes
uncertainty”. In: Physics of Fluids 27.8 (2015), p. 085103. doi:
10.1063/1.4927765.

[84] A. Loeven, J. Witteveen, and H. Bijl. “Efficient uncertainty
quantification using a two-step approach with chaos collocation”. In:
European Conference on Computational FluidDynamics ECCOMAS
CFD. 2006.

[85] G. Loeven and H. Bijl. “Probabilistic collocation used in a two-step
approach for efficient uncertainty quantification in computational
fluid dynamics”. In: Computer Modelling in Engineering and Science
36.3 (2008), pp. 193–212. doi: 10.3970/cmes.2008.036.193.

[86] J. Mann. “The spatial structure of neutral atmospheric surface-layer
turbulence”. In: Journal of fluid mechanics 273 (1994), pp. 141–168.
doi: 10.1017/S0022112094001886.

[87] J. Mann. “Wind field simulation”. In: Probabilistic engineering
mechanics 13.4 (1998), pp. 269–282. doi:
10.1016/S0266-8920(97)00036-2.

[88] C. Mannini, A. Šoda, and G. Schewe. “Numerical investigation on the
three-dimensional unsteady flow past a 5: 1 rectangular cylinder”. In:
Journal of Wind Engineering and Industrial Aerodynamics 99.4
(2011), pp. 469–482. doi: 10.1016/j.jweia.2010.12.016.

[89] C. Mannini, A. Šoda, and G. Schewe. “Unsteady RANS modelling of
flow past a rectangular cylinder: Investigation of Reynolds number
effects”. In: Computers & fluids 39.9 (2010), pp. 1609–1624. doi:
10.1016/j.compfluid.2010.05.014.

[90] L. Margheri and P. Sagaut. “A hybrid
anchored-ANOVA–POD/Kriging method for uncertainty
quantification in unsteady high-fidelity CFD simulations”. In: Journal
of Computational Physics 324 (2016), pp. 137–173. doi:
10.1016/j.jcp.2016.07.036.



BIBLIOGRAPHY 141

[91] A. Mariotti, M. Salvetti, P. Shoeibi Omrani, and J. Witteveen.
“Stochastic analysis of the impact of freestream conditions on the
aerodynamics of a rectangular 5:1 cylinder”. In: Computers Fluids
136 (Sept. 2016), pp. 170–192. doi:
10.1016/j.compfluid.2016.06.008.

[92] A. Mariotti, M. V. Salvetti, P. S. Omrani, and J. Witteveen.
“Stochastic analysis of the impact of freestream conditions on the
aerodynamics of a rectangular 5: 1 cylinder”. In: Computers & Fluids
136 (2016), pp. 170–192. doi: 10.1016/j.compfluid.2016.06.008.

[93] A. Mariotti, L. Siconolfi, and M. V. Salvetti. “Stochastic sensitivity
analysis of large-eddy simulation predictions of the flow around a 5: 1
rectangular cylinder”. In: European Journal of Mechanics-B/Fluids 62
(2017), pp. 149–165. doi: 10.1016/j.euromechflu.2016.12.008.

[94] B. Maskew. “Prediction of subsonic aerodynamic characteristics: a
case for low-order panel methods”. In: Journal of Aircraft 19.2 (1982),
pp. 157–163. doi: 10.2514/3.57369.

[95] F. Menter. “Zonal two equation kw turbulence models for
aerodynamic flows”. In: 23rd fluid dynamics, plasmadynamics, and
lasers conference. 1993, p. 2906. doi: 10.2514/6.1993-2906.

[96] A. Mochida and I. Y. Lun. “Prediction of wind environment and
thermal comfort at pedestrian level in urban area”. In: Journal of
Wind Engineering and Industrial Aerodynamics 96.10–11 (Oct. 2008),
pp. 1498–1527. doi: 10.1016/j.jweia.2008.02.033.

[97] F. Montomoli, D. Amirante, N. Hills, S. Shahpar, and M. Massini.
“Uncertainty quantification, rare events, and mission optimization:
Stochastic variations of metal temperature during a transient”. In:
Journal of Engineering for Gas Turbines and Power 137.4 (2015).
doi: 10.1115/1.4028546.

[98] muenchen.de Das offizielle Stadtportal. url:
https://www.muenchen.de/.

[99] J. P. Murcia, P.-E. Réthoré, N. Dimitrov, A. Natarajan,
J. D. Sørensen, P. Graf, and T. Kim. “Uncertainty propagation
through an aeroelastic wind turbine model using polynomial
surrogates”. In: Renewable Energy 119 (2018), pp. 910–922. doi:
10.1016/j.renene.2017.07.070.

[100] J. Murray and M. Barone. “The development of cactus, a wind and
marine turbine performance simulation code”. In: 49th AIAA
Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition. 2011, p. 147. doi: 10.2514/6.2011-147.

[101] H. Nakaguchi, K. Hashimoto, and S. Muto. “An Experimental Study
on Aerodynamic Drag of Rectangular Cylinders”. In: The Journal of
the Japan Society of Aeronautical Engineering 16.168 (1968), pp. 1–5.
doi: 10.2322/jjsass1953.16.1.



142 BIBLIOGRAPHY

[102] A. Narayan, C. Gittelson, and D. Xiu. “A stochastic collocation
algorithm with multifidelity models”. In: SIAM Journal on Scientific
Computing 36.2 (2014), A495–A521. doi: 10.1137/130929461.

[103] A. Nelson, J. Alonso, and T. Pulliam. “Multi-fidelity aerodynamic
optimization using treed meta-models”. In: 25th AIAA applied
aerodynamics conference. 2007, p. 4057. doi: 10.2514/6.2007-4057.

[104] W. Oberkampf. “A proposed framework for computational fluid
dynamics code calibration/validation”. In: 25th Plasmadynamics and
Lasers Conference. American Institute of Aeronautics and
Astronautics, June 1994. doi: 10.2514/6.1994-2540.

[105] W. Oberkampf, J. Helton, and K. Sentz. “Mathematical
representation of uncertainty”. In: 19th AIAA applied aerodynamics
conference. 2001, p. 1645. doi: 10.2514/6.2001-1645.

[106] W. L. Oberkampf, T. G. Trucano, and C. Hirsch. “Verification,
validation, and predictive capability in computational engineering and
physics”. In: Applied Mechanics Reviews 57.5 (Sept. 2004),
pp. 345–384. doi: 10.1115/1.1767847.

[107] W. L. Oberkampf, T. G. Trucano, and C. Hirsch. “Verification,
validation, and predictive capability in computational engineering and
physics”. In: Appl. Mech. Rev. 57.5 (2004), pp. 345–384. doi:
10.1115/1.1767847.

[108] H. Ouvrard, B. Koobus, A. Dervieux, and M. V. Salvetti. “Classical
and variational multiscale LES of the flow around a circular cylinder
on unstructured grids”. In: Computers Fluids 39.7 (Aug. 2010),
pp. 1083–1094. doi: 10.1016/j.compfluid.2010.01.017.

[109] A. S. Padron, J. J. Alonso, F. Palacios, M. F. Barone, and
M. S. Eldred. “Multi-fidelity uncertainty quantification: application
to a vertical axis wind turbine under an extreme gust”. In: 15th
AIAA/ISSMO multidisciplinary analysis and optimization conference.
2014, p. 3013. doi: 10.2514/6.2014-3013.

[110] P. S. Palar, L. R. Zuhal, K. Shimoyama, and T. Tsuchiya. “Global
Sensitivity Analysis via Multi-Fidelity Polynomial Chaos Expansion”.
In: Reliability Engineering and System Safety 170.C (2018),
pp. 175–190. doi: 10.1016/j.ress.2017.10.013.

[111] C. Park, R. T. Haftka, and N. H. Kim. “Remarks on multi-fidelity
surrogates”. In: Structural and Multidisciplinary Optimization 55.3
(2017), pp. 1029–1050. doi: 10.1007/s00158-016-1550-y.

[112] B. Peherstorfer, K. Willcox, and M. Gunzburger. “Survey of
multifidelity methods in uncertainty propagation, inference, and
optimization”. In: Siam Review 60.3 (2018), pp. 550–591. doi:
10.1137/16M1082469.

[113] N. Pepper, F. Montomoli, and S. Sharma. “Data fusion for
Uncertainty Quantification with Non-Intrusive Polynomial Chaos”. In:
Computer Methods in Applied Mechanics and Engineering 374 (2021),
p. 113577. doi: 10.1016/j.cma.2020.113577.



BIBLIOGRAPHY 143

[114] D. A. Phillips and M. J. Soligo. “Will CFD ever Replace Wind
Tunnels for Building Wind Simulations?” In: International Journal of
High-Rise Buildings 8.2 (June 2019), pp. 107–116. doi:
10.21022/IJHRB.2019.8.2.107.

[115] M. Pisaroni, F. Nobile, and P. Leyland. Continuation multi-level
Monte-Carlo method for uncertainty quantification in turbulent
compressible aerodynamics problems modeled by RANS. Tech. rep.
Technical Report 10.2017, École Polytechnique Fédérale de Lausanne,
2017. doi: 10.13140/RG.2.2.28473.57442.

[116] M. Ravensbergen, T. A. Helgedagsrud, Y. Bazilevs, and
A. Korobenko. “A variational multiscale framework for atmospheric
turbulent flows over complex environmental terrains”. In: Computer
Methods in Applied Mechanics and Engineering 368 (2020), p. 113182.
doi: 10.1016/j.cma.2020.113182.

[117] P. Richards and S. Norris. “LES modelling of unsteady flow around
the Silsoe cube”. In: Journal of Wind Engineering and Industrial
Aerodynamics 144 (2015), pp. 70–78. doi:
10.1016/j.jweia.2015.03.018.

[118] P. J. Richards and R. P. Hoxey. “Quasi-steady theory and point
pressures on a cubic building”. In: Journal of wind engineering and
industrial aerodynamics 92.14-15 (2004), pp. 1173–1190. doi:
10.1016/j.jweia.2004.07.003.

[119] P. Richards, S. Fong, and R. Hoxey. “Anisotropic turbulence in the
atmospheric surface layer”. In: Journal of wind engineering and
industrial aerodynamics 69 (1997), pp. 903–913. doi:
10.1016/S0167-6105(97)00216-X.

[120] P. Richards and R. Hoxey. “Pressures on a cubic building—Part 1:
Full-scale results”. In: Journal of Wind Engineering and Industrial
Aerodynamics 102 (2012), pp. 72–86. doi:
10.1016/j.jweia.2011.11.004.

[121] P. Richards and R. Hoxey. “Pressures on a cubic building—part 2:
quasi-steady and other processes”. In: Journal of wind engineering
and industrial aerodynamics 102 (2012), pp. 87–96. doi:
10.1016/j.jweia.2011.11.003.

[122] P. Richards and R. Hoxey. “Unsteady flow on the sides of a 6 m
cube”. In: Journal of Wind Engineering and Industrial Aerodynamics
90.12-15 (2002), pp. 1855–1866. doi:
10.1016/S0167-6105(02)00293-3.

[123] P. Richards and R. Hoxey. “Wind loads on the roof of a 6 m cube”.
In: Journal of Wind Engineering and Industrial Aerodynamics 96.6-7
(2008), pp. 984–993. doi: 10.1016/j.jweia.2007.06.032.

[124] P. Richards, R. Hoxey, B. Connell, and D. Lander. “Wind-tunnel
modelling of the Silsoe Cube”. In: Journal of Wind Engineering and
Industrial Aerodynamics 95.9-11 (2007), pp. 1384–1399. doi:
10.1016/j.jweia.2007.02.005.



144 BIBLIOGRAPHY

[125] P. Richards, R. Hoxey, and J. Short. “Spectral models for the neutral
atmospheric surface layer”. In: Journal of Wind Engineering and
Industrial Aerodynamics 87.2-3 (2000), pp. 167–185. doi:
10.1016/s0167-6105(00)00035-0.

[126] P. Richards, R. Hoxey, and L. Short. “Wind pressures on a 6 m cube”.
In: Journal of Wind Engineering and Industrial Aerodynamics
89.14-15 (2001), pp. 1553–1564. doi:
10.1016/S0167-6105(01)00139-8.

[127] P. Richards, R. Hoxey, and B. Wanigaratne. “The effect of directional
variations on the observed mean and rms pressure coefficients”. In:
Journal of wind engineering and industrial aerodynamics 54 (1995),
pp. 359–367. doi: 10.1016/0167-6105(94)00067-N.

[128] P. J. Roache. “QUANTIFICATION OF UNCERTAINTY IN
COMPUTATIONAL FLUID DYNAMICS”. In: Annual Review of
Fluid Mechanics 29.1 (Jan. 1997), pp. 123–160. doi:
10.1146/annurev.fluid.29.1.123.

[129] P. Roache, K. Ghia, and F. White. “Editorial policy statement on the
control of numerical accuracy”. In: Journal of Fluids Engineering 108
(1986), p. 2. doi: 10.1115/1.3242537.

[130] B. Rocchio, A. Mariotti, and M. Salvetti. “Flow around a 5:1
rectangular cylinder: Effects of upstream-edge rounding”. In: Journal
of Wind Engineering and Industrial Aerodynamics 204 (Sept. 2020),
p. 104237. doi: 10.1016/j.jweia.2020.104237.

[131] H. Rutishauser. “On a modification of the QD-algorithm with
Graeffe-type convergence”. In: Proc. IFIP Congress, vol. 62. 1963,
pp. 93–96. doi: 10.1007/bf01601077.

[132] S. D. Sabatino, R. Buccolieri, and P. Salizzoni. “Recent advancements
in numerical modelling of flow and dispersion in urban areas: a short
review”. In: International Journal of Environment and Pollution
52.3/4 (2013), p. 172. doi: 10.1504/IJEP.2013.058454.

[133] E. Sakai, M. Bai, R. Ahlfeld, K. Klemmer, and F. Montomoli.
“Bi-fidelity UQ with combination of co-Kriging and arbitrary
polynomial chaos: Film cooling with back facing step using RANS
and DES”. In: International Journal of Heat and Mass Transfer 131
(2019), pp. 261–272. doi:
10.1016/j.ijheatmasstransfer.2018.10.071.

[134] B. V. Sankar and R. V. Marrey. “Analytical method for
micromechanics of textile composites”. In: Composites Science and
Technology 57.6 (1997), pp. 703–713. doi:
10.1016/S0266-3538(97)00030-4.

[135] G. Schewe. “Reynolds-number-effects in flow around a rectangular
cylinder with aspect ratio 1:5”. In: Journal of Fluids and Structures
39 (May 2013), pp. 15–26. doi:
10.1016/j.jfluidstructs.2013.02.013.



BIBLIOGRAPHY 145

[136] S. Schlesinger. “Terminology for model credibility”. In:
SIMULATION 32.3 (Mar. 1979), pp. 103–104. doi:
10.1177/003754977903200304.

[137] H. Schlichting. Boundary-layer theory. 7th ed. McGraw-Hill series in
mechanical engineering. McGraw-Hill, 1979. isbn: 9780070553347.

[138] K. Shimoyama and A. Inoue. “Uncertainty quantification by the
nonintrusive polynomial chaos expansion with an adjustment
strategy”. In: AIAA journal 54.10 (2016), pp. 3107–3116. doi:
10.2514/1.J054359.

[139] L. Siconolfi, A. Mariotti, and M. Salvetti. “Uncertainty Quantification
in Large-Eddy Simulations of the Flow Around a 5: 1 Rectangular
Cylinder”. In: Direct and Large-Eddy Simulation X. Springer, 2018,
pp. 101–107. doi: 10.1007/978-3-319-63212-4_12.

[140] E. Simiu and D. Yeo. Wind effects on structures: Modern structural
design for wind. John Wiley & Sons, 2019. isbn: 9781119375883.

[141] P. Sochala, C. Chen, C. Dawson, and M. Iskandarani. “A polynomial
chaos framework for probabilistic predictions of storm surge events”.
In: Computational Geosciences 24.1 (2020), pp. 109–128. doi:
10.1007/s10596-019-09898-5.

[142] M. A. Sprague, S. Ananthan, G. Vijayakumar, and M. Robinson.
“ExaWind: A multifidelity modeling and simulation environment for
wind energy”. In: Journal of Physics: Conference Series. Vol. 1452. 1.
IOP Publishing. 2020, p. 012071. doi:
10.1088/1742-6596/1452/1/012071.

[143] A. E. Stagrum, E. Andenæs, T. Kvande, and J. Lohne. “Climate
change adaptation measures for buildings—A scoping review”. In:
Sustainability 12.5 (2020), p. 1721. doi: 10.3390/su12051721.

[144] T. Stathopoulos and H. Wu. “Using Computational Fluid Dynamics
(CFD) for Pedestrian Winds”. In: Structures 2004. American Society
of Civil Engineers, May 2004, pp. 1–9. isbn: 9780784407004. doi:
10.1061/40700(2004)51.

[145] M. Sterling, C. Baker, P. Richards, R. Hoxey, and A. Quinn. “An
investigation of the wind statistics and extreme gust events at a rural
site”. In: Wind & structures 9.3 (2006), pp. 193–215. doi:
10.12989/was.2006.9.3.193.

[146] M. G. Stewart and X. Deng. “Climate impact risks and climate
adaptation engineering for built infrastructure”. In: ASCE-ASME
Journal of Risk and Uncertainty in Engineering Systems, Part A:
Civil Engineering 1.1 (2015), p. 04014001. doi:
10.1061/AJRUA6.0000809.

[147] B. Sudret. “Global sensitivity analysis using polynomial chaos
expansions”. In: Reliability engineering & system safety 93.7 (2008),
pp. 964–979. doi: 10.1016/j.ress.2007.04.002.



146 BIBLIOGRAPHY

[148] B. Sudret. “Global sensitivity analysis using polynomial chaos
expansions”. In: Reliability Engineering System Safety 93.7 (July
2008), pp. 964–979. doi: 10.1016/j.ress.2007.04.002.

[149] X. Sun, J. Park, J.-I. Choi, and G. H. Rhee. “Uncertainty
quantification of upstream wind effects on single-sided ventilation in a
building using generalized polynomial chaos method”. In: Building
and Environment 125 (2017), pp. 153–167. doi:
10.1016/j.buildenv.2017.08.037.

[150] Y. Sun, Y. Heo, M. Tan, H. Xie, C. Jeff Wu, and G. Augenbroe.
“Uncertainty quantification of microclimate variables in building
energy models”. In: Journal of Building Performance Simulation 7.1
(2014), pp. 17–32. doi: 10.1080/19401493.2012.757368.

[151] G. R. Tabor and M. Baba-Ahmadi. “Inlet conditions for large eddy
simulation: A review”. In: Computers & Fluids 39.4 (2010),
pp. 553–567. doi: 10.1016/j.compfluid.2009.10.007.

[152] T. Tamura. “Reliability on CFD estimation for wind-structure
interaction problems”. In: Journal of Wind Engineering and
Industrial Aerodynamics 81.1–3 (May 1999), pp. 117–143. doi:
10.1016/S0167-6105(99)00012-4.

[153] T. Tamura, K. Kondo, H. Kataoka, Y. Ono, and H. Kawai.
“Application of LES to wind loading estimation on buildings”. In:
(2017), 1403163 Bytes. doi: 10.17608/K6.AUCKLAND.5630992.V1.

[154] G. I. Taylor. “The spectrum of turbulence”. In: Proceedings of the
Royal Society of London. Series A-Mathematical and Physical
Sciences 164.919 (1938), pp. 476–490. doi:
10.1098/rspa.1938.0032.

[155] A. L. Teckentrup, P. Jantsch, C. G. Webster, and M. Gunzburger. “A
multilevel stochastic collocation method for partial differential
equations with random input data”. In: SIAM/ASA Journal on
Uncertainty Quantification 3.1 (2015), pp. 1046–1074. doi:
10.1137/140969002.

[156] L. Temmerman, M. A. Leschziner, C. P. Mellen, and J. Fröhlich.
“Investigation of wall-function approximations and subgrid-scale
models in large eddy simulation of separated flow in a channel with
streamwise periodic constrictions”. In: International Journal of Heat
and Fluid Flow 24.2 (2003), pp. 157–180. doi:
10.1016/S0142-727X(02)00222-9.

[157] M. S. Thordal, J. C. Bennetsen, S. Capra, and H. H. H. Koss.
“Towards a standard CFD setup for wind load assessment of high-rise
buildings: Part 1–Benchmark of the CAARC building”. In: Journal of
Wind Engineering and Industrial Aerodynamics 205 (2020), p. 104283.
doi: 10.1016/j.jweia.2020.104283.



BIBLIOGRAPHY 147

[158] Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu,
M. Yoshikawa, and T. Shirasawa. “AIJ guidelines for practical
applications of CFD to pedestrian wind environment around
buildings”. In: Journal of Wind Engineering and Industrial
Aerodynamics 96.10–11 (Oct. 2008), pp. 1749–1761. doi:
10.1016/j.jweia.2008.02.058.

[159] R. W. Walters and L. Huyse. Uncertainty analysis for fluid mechanics
with applications. Tech. rep. NATIONAL AERONAUTICS and
SPACE ADMINISTRATION HAMPTON VA LANGLEY
RESEARCH CENTER, 2002.

[160] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. “A tensorial
approach to computational continuum mechanics using
object-oriented techniques”. In: Computers in physics 12.6 (1998),
pp. 620–631. doi: 10.1063/1.168744.

[161] H. Werner and H. Wengle. “Large-eddy simulation of turbulent flow
over and around a cube in a plate channel”. In: Turbulent shear flows
8. Springer, 1993, pp. 155–168. doi:
10.1007/978-3-642-77674-8_12.

[162] A. Winterstein. “Modeling and simulation of wind-structure
interaction of slender civil engineering structures including vibration
mitigation systems”. PhD thesis. 2020.

[163] J. Witteveen, P. S. Omrani, A. Mariotti, M. V. Salvetti, L. Bruno,
and N. Coste. “Uncertainty Quantification of the Aerodynamics of a
Rectangular 5:1 Cylinder”. In: Uncertainty Quantification in
Computational Fluid Dynamics, Pisa, Italy. 2014.

[164] W. Wood, M. Bossak, and O. Zienkiewicz. “An alpha modification of
Newmark’s method”. In: International journal for numerical methods
in engineering 15.10 (1980), pp. 1562–1566. doi:
10.1002/nme.1620151011.

[165] S. Wornom, H. Ouvrard, M. V. Salvetti, B. Koobus, and A. Dervieux.
“Variational multiscale large-eddy simulations of the flow past a
circular cylinder: Reynolds number effects”. In: Computers Fluids
47.1 (Aug. 2011), pp. 44–50. doi:
10.1016/j.compfluid.2011.02.011.

[166] N. G. Wright and G. Easom. “Non-linear k–ε turbulence model
results for flow over a building at full-scale”. In: Applied Mathematical
Modelling 27.12 (2003), pp. 1013–1033. doi:
10.1016/S0307-904X(03)00123-9.

[167] T. Wu and A. Kareem. “A low-dimensional model for nonlinear
bluff-body aerodynamics: a peeling-an-onion analogy”. In: Journal of
Wind Engineering and Industrial Aerodynamics 146 (2015),
pp. 128–138. doi: 10.1016/j.jweia.2015.08.009.

[168] D. Xiu and G. E. Karniadakis. “Modeling uncertainty in flow
simulations via generalized polynomial chaos”. In: Journal of
computational physics 187.1 (2003), pp. 137–167. doi:
10.1016/S0021-9991(03)00092-5.



148 BIBLIOGRAPHY

[169] D. Xiu and G. E. Karniadakis. “The Wiener–Askey Polynomial Chaos
for Stochastic Differential Equations”. In: SIAM Journal on Scientific
Computing 24.2 (2002), pp. 619–644. doi:
10.1137/S1064827501387826.

[170] D. Xiu, D. Lucor, C.-H. Su, and G. E. Karniadakis. “Stochastic
modeling of flow-structure interactions using generalized polynomial
chaos”. In: J. Fluids Eng. 124.1 (2002), pp. 51–59. doi:
10.1115/1.1436089.

[171] R. Yoshie, A. Mochida, Y. Tominaga, H. Kataoka, K. Harimoto,
T. Nozu, and T. Shirasawa. “Cooperative project for CFD prediction
of pedestrian wind environment in the Architectural Institute of
Japan”. In: Journal of Wind Engineering and Industrial
Aerodynamics 95.9–11 (Oct. 2007), pp. 1551–1578. doi:
10.1016/j.jweia.2007.02.023.



Bisherige Titel der Schriftenreihe

Band Titel

1 Frank Koschnick, Geometrische Lockingeffekte bei Finiten Ele-
menten und ein allgemeines Konzept zu ihrer Vermeidung, 2004.

2 Natalia Camprubi, Design and Analysis in Shape Optimization
of Shells, 2004.

3 Bernhard Thomee, Physikalisch nichtlineare Berechnung von
Stahlfaserbetonkonstruktionen, 2005.

4 Fernaß Daoud, Formoptimierung von Freiformschalen - Mathe-
matische Algorithmen und Filtertechniken, 2005.

5 Manfred Bischoff, Models and Finite Elements for Thin-walled
Structures, 2005.

6 Alexander Hörmann, Ermittlung optimierter Stabwerkmodelle
auf Basis des Kraftflusses als Anwendung plattformunabhängiger
Prozesskopplung, 2006.

7 Roland Wüchner, Mechanik und Numerik der Formfindung und
Fluid-Struktur-Interaktion von Membrantragwerken, 2006.

8 Florian Jurecka, Robust Design Optimization Based on Metamod-
eling Techniques, 2007.

9 Johannes Linhard, Numerisch-mechanische Betrachtung des En-
twurfsprozesses von Membrantragwerken, 2009.

10 Alexander Kupzok, Modeling the Interaction of Wind and Mem-
brane Structures by Numerical Simulation, 2009.



Band Titel

11 Bin Yang, Modified Particle Swarm Optimizers and their Appli-
cation to Robust Design and Structural Optimization, 2009.

12 Michael Fleischer, Absicherung der virtuellen Prozesskette für
Folgeoperationen in der Umformtechnik, 2009.

13 Amphon Jrusjrungkiat, Nonlinear Analysis of Pneumatic Mem-
branes - From Subgrid to Interface, 2009.

14 Alexander Michalski, Simulation leichter Flächentragwerke in
einer numerisch generierten atmosphärischen Grenzschicht, 2010.

15 Matthias Firl, Optimal Shape Design of Shell Structures, 2010.

16 Thomas Gallinger, Effiziente Algorithmen zur partition-
ierten Lösung stark gekoppelter Probleme der Fluid-Struktur-
Wechselwirkung, 2011.

17 Josef Kiendl, Isogeometric Analysis and Shape Optimal Design of
Shell Structures, 2011.

18 Joseph Jordan, Effiziente Simulation großer Mauerwerksstruk-
turen mit diskreten Rissmodellen, 2011.

19 Albrecht von Boetticher, Flexible Hangmurenbarrieren: Eine
numerische Modellierung des Tragwerks, der Hangmure und der
Fluid-Struktur-Interaktion, 2012.

20 Robert Schmidt, Trimming, Mapping, and Optimization in Isoge-
ometric Analysis of Shell Structures, 2013.

21 Michael Fischer, Finite Element Based Simulation, Design and
Control of Piezoelectric and Lightweight Smart Structures, 2013.

22 Falko Hartmut Dieringer, Numerical Methods for the Design and
Analysis for Tensile Structures, 2014.



Band Titel

23 Rupert Fisch, Code Verification of Partitioned FSI Environments
for Lightweight Structures, 2014.

24 Stefan Sicklinger, Stabilized Co-Simulation of Coupled Problems
Including Fields and Signals, 2014.

25 Madjid Hojjat, Node-based parametrization for shape optimal
design, 2015.

26 Ute Israel, Optimierung in der Fluid-Struktur-Interaktion - Sen-
sitivitätsanalyse für die Formoptimierung auf Grundlage des par-
titionierten Verfahrens, 2015.

27 Electra Stavropoulou, Sensitivity analysis and regularization for
shape optimization of coupled problems, 2015.

28 Daniel Markus, Numerical and Experimental Modeling for Shape
Optimization of Offshore Structures, 2015.

29 Pablo Suárez, Design Process for the Shape Optimization of Pres-
surized Bulkheads as Components of Aircraft Structures, 2015.

30 Armin Widhammer, Variation of Reference Strategy - Generation
of Optimized Cutting Patterns for Textile Fabrics, 2015.

31 Helmut Masching, Parameter Free Optimization of Shape Adaptive
Shell Structures, 2016.

32 Hao Zhang, A General Approach for Solving Inverse Problems
in Geophysical Systems by Applying Finite Element Method and
Metamodel Techniques, 2016.

33 Tianyang Wang, Development of Co-Simulation Environment and
Mapping Algorithms, 2016.

34 Michael Breitenberger, CAD-integrated Design and Analysis of
Shell Structures, 2016.



Band Titel

35 Önay Can, Functional Adaptation with Hyperkinematics using
Natural Element Method: Application for Articular Cartilage,
2016.

36 Benedikt Philipp, Methodological Treatment of Non-linear Struc-
tural Behavior in the Design, Analysis and Verification of Light-
weight Structures, 2017.

37 Michael Andre, Aeroelastic Modeling and Simulation for the As-
sessment of Wind Effects on a Parabolic Trough Solar Collector,
2018.

38 Andreas Apostolatos, Isogeometric Analysis of Thin-Walled Struc-
tures on Multipatch Surfaces in Fluid-Structure Interaction, 2018.

39 Altuğ Emiroğlu, Multiphysics Simulation and CAD-Integrated
Shape Optimization in Fluid-Structure Interaction, 2019.

40 Reza Najian Asl, Shape optimization and sensitivity analysis of
fluids, structures, and their interaction using Vertex Morphing
Parametrization, 2019.

42 Ahmed Abodonya, Verification Methodology for Computational
Wind Engineering Prediction of Wind Loads on Structures, 2020.

43 Anna Maria Bauer, AD-integrated Isogeometric Analysis and
Design of Lightweight Structures, 2020.

44 Andreas Winterstein, Modeling and Simulation of Wind-Structure
Interaction of Slender Civil Engineering Structures Including Vi-
bration Mitigation Systems, 2020.

45 Franz-Josef Ertl, Vertex Morphing for constrained shape optimiza-
tion of three-dimensional solid structures, 2020.

46 Daniel Baumgärtner, On the grid-based shape optimization of
structures with internal flow and the feedback of shape changes
into a CAD model, 2020.



Band Titel

47 Mohamed Magdi Mohamed Mohamed Khalil, Combining Physics-
Based Models and Machine Learning for an Enhanced Structural
Health Monitoring, 2021.

48 Long Chen, Gradient descent akin method, 2021.

49 Aditya Ghantasala, Coupling Procedures for Fluid-Fluid and Fluid-
Structure Interaction Problems Based on Domain Decomposition
Methods, 2021.

50 Ann-Kathrin Goldbach, The CAD-integrated Design Cycle for
Structural Membranes, 2021.

51 Iñigo Pablo López Canalejo, A Finite-Element Transonic Poten-
tial Flow Solver with an Embedded Wake Approach for Aircraft
Conceptual Design, 2022



154 BIBLIOGRAPHY


