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Kurzfassung

Wind ist ein komplexes Phänomen, das von lokalen Brisen bis zu
Gewittern reichen kann und von komplexen Hindernissen in der Um-
gebung abhängt. Diese Arbeit konzentriert sich auf die Entwicklung
von Methoden zur Analyse von Sensitivitäten und zur problemorien-
tierten Netzverfeinerung für solche Strömungen.

Zwei-Gleichunge Reynolds Averaged Navier-Stokes (RANS) Turbu-
lenzmodelle für k −ε, k −ω und k −ω− s s t mit neuartigen Stabilisie-
rungsformulierungen werden so entwickelt, dass ihre Möglichkeiten
zur Entwicklung von adjungierten Sensitivitätsanalysen und ihre Eig-
nung für MPI-parallele-Frameworks für Hochleistungsberechnungen
erhalten bleiben. Nach der Bewertung der Genauigkeit und der Mög-
lichkeiten der neuartigen Stabilisierung wird diese verwendet, um die
Anwendbarkeit der vorgenannten Turbulenzmodelle im Zusammen-
hang mit Fluid-Struktur-Interaktionsproblemen und grundlegenden
Problemen des Windingenieurwesens zu bewerten.

Danach wird eine effiziente Methodik für eine Sensitivitätsanalyse
im stationären Zustand entwickelt und in einem parallelen MPI-
Framework realisiert. Darüber hinaus wird sie in einem Optimie-
rungsproblem eingesetzt, um die Abhängigkeit von Turbulenzmo-
dellen bei der Erzielung optimaler Formen zu ermitteln. Anschlie-
ßend wird sie auf die Sensitivitätsanalyse für instationäre chaotische
Probleme erweitert. Es werden zwei neue Stabilisierungsmethoden
entwickelt, um das exponentielle Wachstum des adjungierten Lö-
sungsfeldes aufgrund des Schmetterlingseffekts zu kontrollieren. Zu-
erst werden zeitlich gemittelte Größen des transienten Problems mit
RANS-Turbulenzmodellierung verwendet. Danach wird eine kon-
trollierte künstliche Diffusion zur adjungierten Lösung hinzugefügt.
Anschließend wird eine systematische Bewertung der Sensitivitä-
ten mit Finite-Differenzen-Lösungen durchgeführt. Die Genauigkeit
der ersten Stabilisierungsmethode hängt von der Genauigkeit des
Turbulenzmodells ab. Die zweite Stabilisierungsmethode zeigt ei-
ne bessere Genauigkeit als die erste Methode. Dies wird durch die
Anwendung auf ein Wirbelabwurf-Frequenz-Optimierungsproblem
validiert. Schließlich wird eine Methodik zur Erlangung räumlicher
Diskretisierungen entwickelt, getestet und für 2D und 3D validiert. Sie
verwendet den neu entwickelten adjungierten Ansatz für stationäre
und instationäre Probleme.

v



Abstract

Wind is a complex phenomenon that may consist of local breezes to
thunderstorms and depends on complex surrounding obstacles. This
thesis focuses on developing methodologies to analyze sensitivities
and to perform goal oriented adaptive mesh refinement for such
flows.

Two equations Reynolds Averaged Navier-Stokes (RANS) turbulence
models for k −ε, k −ω and k −ω− s s t with novel stabilization for-
mulations are developed such that their abilities to develop adjoint
sensitivity analysis and suitability for MPI parallel framework for high
performance computing are preserved. After assessing accuracy and
capability of the novel stabilization, it is used to evaluate applicability
of aforementioned turbulence models in the context of fluid-structure
interaction problems and basic wind engineering problems.

Thereafter, an efficient methodology for steady state sensitivity analy-
sis is developed and realized in MPI parallel framework. Furthermore,
it is used in an optimization problem to identify the dependence on
turbulence models in obtaining optimum shapes. Next, it is extended
to sensitivity analysis on transient chaotic problems. Two novel sta-
bilization methods are developed to control exponential growth of
the adjoint solution field due to presence of butterfly effect. Firstly,
time averaged quantities of the transient problem with RANS turbu-
lence modelling is used. Secondly, controlled artificial diffusion is
added to the adjoint solution. Afterwards, systematic assessment of
sensitivities are carried out with finite difference solutions. Accuracy
of the first stabilization method depends on the accuracy of the tur-
bulence model. The second stabilization method shows improved
accuracy compared to the first method. This is further validated by us-
ing it on a vortex shedding frequency optimization problem. Finally,
a methodology to obtain spatial discretizations which can achieve
given accuracy in a goal (i.e function) is developed, tested and vali-
dated for 2D and 3D using the novel adjoint approach for steady and
transient problems.
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1
INTRODUCTION

Wind is a complex phenomenon which can span in the range from lo-
cal breezes which last for hours to thunderstorms which last for minutes.
Spatially it can scale from a few meters to a few kilometers. The complex
surroundings on which wind is acted upon, turbulence characteristics,
wind speed, wind speed distribution contribute towards increasing this
complexity. Most of the complexity stems from the Atmospheric Boundary
Layer (ABL) which is the layer of wind attached to the surface. It may span
up-to a few 100 meters or to a few kilometers. This consists of multiple tem-
poral and spatial scales and it is highly influenced by complex topographies
such as urban environments. Understanding the wind behavior in ABL
is of great importance for many fields such as thermal comfort (Fröhlich
et al. [47]), renewable energy generation (Mathew et al. [91]).

In the context of Computational Wind Engineering (CWE), it is required to
determine the wind loads acting on structures and structural responses.
This involves understanding the wind effects in the ABL for specified use
cases such as in wind flow in urban topographies, wind turbine design.
Mainly there are two different approaches to determine the wind effects in
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1 Introduction

ABL. First one is wind tunnel testing where a scaled down version of a urban
city or a wind turbine model is constructed using scaling laws (Molina et al.
[98], Ricci et al. [112], and Uehara et al. [130]). One major restriction in
this method is, the scaled down version is not able to replicate all non-
dimensional parameters the same as of the actual problem. Apart from
this, wind tunnel tests are also expensive because they need to construct
physical scaled down models and they need heavy initial investments. They
also have difficulties in analyzing the aerodynamic effects of scaled down
structures due to their higher stiffness. Second approach is performing
numerical wind tunnel tests. Numerical wind tunnels use computational
resources to mimic the actual wind effects. Since this numerical wind
tunnel is only bounded by computational capacity without any physical
bounds such as physical size of structures, it allows replicating actual
problem to actual scale with actual flow and structural properties. This
allows to carry out the aerodynamic effects analysis of a given structure
as well. In addition, cost of a numerical wind tunnel test is less expensive
than its actual wind tunnel counterpart.

1.1 Motivation

Although, numerical wind tunnels are less expensive than actual wind tun-
nels, they also have some associated costs related to labor hours. Figure 1.1
illustrates the break down of relative time used for each step in conducting
a numerical wind tunnel test which includes human time requirements
as well as computational time requirements. It is of interest in many engi-
neering fields to reduce total time required for a numerical wind tunnel
test as in work done by Bouhal et al. [20], Gan [50], and Spence et al. [120].
Therefore one part of this thesis focuses on investigating methodologies to
reduce the overall time consumption of the numerical wind tunnel test. It
can be seen that, considerable amount of time in a numerical wind tunnel
test is spent on steps from "Design of model" through "Mesh manipula-
tion" and "Run simulation" which sums to approx. 80% of the total time
(refer orange regions in figure 1.1). All of these steps involve handling a
mesh. It is also evident that, if a mesh is coarsened, then the overall time
consumption can be reduced at the expense of the accuracy of its solu-
tion. This suggests that, it is important to have an efficient and effective
mesh generation process which can produce meshes to achieve required
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1.1 Motivation

accuracy.

Figure 1.1: Time spent on each step of a numerical wind tunnel
test (Boggs et al. [19]).

The required accuracy of a numerical wind tunnel test is also subjective in
CWE. This mainly depends on problem being solved and the context in
which it is being solved (such as manufacturing, safety, etc). As CWE prob-
lems are most of the time transient and chaotic, it is challenging to replicate
the accurate time instantaneous values of a numerical wind tunnel test as
in the actual problem. This is because, chaotic problems are highly sensi-
tive to initial conditions which is also known as "Butterfly effect" (Lorenz
[83]). Butterfly effect causes small perturbations in initial conditions to
grow at exponential rate and this growth is propagated through time. This
results in a different state of the solution after some time. However, statisti-
cal quantities of the flow are bounded. Therefore, only statistical Quantities
of Interest (QOI) (such as mean drag, mean lift) are of interest for many
applications in CWE.
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1 Introduction

1.2 State of the Art

In CWE, one of the main governing equations for wind is Navier-Stokes
(NS) equation which determines fluid motion, consequently evaluated
QOIs. Turbulence modelling is a crucial part in solving problems governed
by NS which determines required complexity of a mesh and accuracy of
its solution. Direct Numerical Simulation (DNS) is considered to be the
most accurate turbulence resolving computational method. It resolves all
spatial and temporal scales present in turbulence, including Kolmogorov
microscales, without using any turbulence model (Orszag [104]). However,
it can be prohibitively expensive for most practical engineering problems
in CWE because it requires highly refined mesh. Therefore, the economical
Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes (RANS)
methods have gained attention among the CWE community. Even though
LES is economical compared to DNS (Smagorinsky [118]), it is still very
expensive to use for many problems of practical interest, since it requires
a relatively fine mesh and implies the solution to the temporal evolution
of the problem. Due to the butterfly effect, most of the practical problems
have interest in their statistical nature in Computational Fluid Dynamics
(CFD) such as mean flow. This is advantageous for RANS, where it is de-
veloped by time-averaging fluid flow governing NS equations (Reynolds
[111]). This also helps to circumvent the high initial condition sensitivity
exhibited by NS problems. This time-averaging makes it more appropriate
and least expensive method for obtaining mean flow characteristics, and
statistical quantities. Unsteady Reynolds Averaged Navier-Stokes (URANS)
is the transient extension of the RANS, which is used to solve transient
problems. One way to achieve reduced computational cost is to have a less
refined mesh than LES in RANS. Use of wall functions which model near
wall effects rather than resolving them also allows to have a less refined
mesh in RANS. Another way is to reduce the dimensionality of the problem
such as simplifying a given problem from 3D to 2D which allows to have a
less computationally expensive mesh. This is used extensively in solving
optimization problems (Lyu et al. [87]) or flutter derivative analysis (Nieto
et al. [101]).

Another approach to reduce time consumption associated with mesh com-
plexity is to automate the mesh generation process as much as possible;
consequently, reducing the human time consumption for wind tunnel
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1.2 State of the Art

tests. Using mesh-free methods (Idelsohn et al. [65], Wang et al. [137], and
Zhang et al. [149]) can be advantageous in modelling complex urban cities
at the expense of higher computational costs at each solving step, because
this requires re-identifying neighbor connectivities after each solution.
For an urban city scaling up to a few kilometers may lead to infeasible
computational cost if this method is used. On the other hand, Adaptive
Mesh Refinement (AMR) methods can be useful in this case where mesh is
adapted and optimized based on given criteria which can reduce human
time consumption and computational time consumption in wind tunnel
tests. Two of the most common AMR methods are based on flow field error
minimization (Apel et al. [7], Gourma et al. [53], and Verfürth [133]) and
goal oriented error minimization.

In the case of the goal oriented AMR method, it is important to obtain the
sensitivity of a goal with respect to discretization points in the domain.
This can be achieved mainly through two different methods: The first
one is direct sensitivity analysis, where state derivatives are computed
for each state variable by evaluating the primal problem, next followed
by goal sensitivity calculation, thus making this method expensive. The
second approach is adjoint sensitivity analysis, which solves the primal
problem and its dual problem to obtain goal sensitivity, thus making it
more economical in the cases in which a large number of parameters needs
optimization (such as AMR for CWE problems).

The first two stages of the numerical wind tunnel pipeline (refer figure 1.1)
involve designing of a model and analysis of a model which sum up to
approx. 30% of the overall time. Sensitivity analysis of QOIs can be used to
reduce time consumed in these stages (Arriola et al. [8]). Therefore, having
information about QOIs in a CWE problem is also important in reducing
total evaluation time in a numerical wind tunnel test. Sensitivities can be
calculated either by direct method or adjoint method as explained pre-
viously. Since most of the problems in CWE are transient and chaotic in
nature, they pose a challenge to compute the sensitivities of a statistical
QOI. This is because, presence of butterfly effect makes computed sensi-
tivities useless if computed with the adjoint approach, because they grow
exponentially with time. Therefore, stabilization of these sensitivities are
also a focus in this thesis. One other advantage of having sensitivities to a
given QOI is, they can be used to perform optimization of the given QOI
while changing the structural shape (Dhert et al. [38] and Yu et al. [148]).
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1 Introduction

This provides insights to design and analysis stages which enhance the
ability to produce more appealing and efficient structures in CWE

1.3 Outline

In summary, all of these aspects in CWE motivate to investigate different
approaches in turbulence modelling, sensitivity analysis, different AMR
methods, and optimization procedures. Chapter 2 implements, validates
and then investigates applicability of RANS and URANS turbulence mod-
els in the context of CWE. The same developments are then extended for
sensitivity analysis. In the case of steady state sensitivity analysis, a proper
framework is designed and introduced in this thesis in chapter 3. It is then
further extended for transient sensitivity analysis in chapter 4, where a
novel stabilization method is proposed for the adjoint solution of chaotic
problems. Finally goal oriented AMR is introduced in chapter 5 for steady
and transient problems. These developments are carried out in "Kratos-
Multiphysics", the open source Finite Element Method (FEM) framework
(Dadvand et al. [37]). It is a highly modular platform which is shared mem-
ory / distributed memory parallelizable. It provides basic building blocks
for developments in FEM. It is also equipped with optimization procedures,
meshing procedures which are useful in aforementioned developments.
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2
TURBULENCE MODELLING AND FINITE

ELEMENT METHOD

Turbulence is an important phenomenon in everyday life. To date, a large
number of studies have focused on the turbulence in fluid flow. Wind en-
gineering (Prospathopoulos et al. [110]), chemical engineering processes
(Harris et al. [56]), and aerospace engineering (Catalano et al. [25]) are
a few of them. The recent rapid developments in computational power
encouraged most of the researchers in those fields to investigate the use
of computational methods such as DNS, LES, and RANS. Since DNS, LES
methods are very expensive for most of the CWE applications, this chap-
ter focuses on using RANS and URANS turbulence models to solve CWE
problems.

Most of the practical problems in CWE have interest in their statistical
nature such as mean flow. Therefore, RANS has the advantage which is
developed by time-averaging fluid flow governing NS equations (Reynolds
[111]). This time-averaging makes it the more appropriate and the least
expensive method for obtaining mean flow characteristics. However, the

7



2 Turbulence Modelling and Finite Element Method

time-averaging of NS equations introduces Reynolds Stress Tensor (RST)
due to non-linearity in NS equations. This RST leads to new unknowns in
fluid flow description, which is known as the closure problem. A common
approach is to use the Boussinesq hypothesis to reduce the number of
unknowns, providing a model of the RST that depends on a single free
parameter: the turbulent eddy viscosity. Zero equation models (algebraic
models) (Baldwin et al. [11]), one equation models (Spalart et al. [119])
and two equation models (i.e. k −ε, k −ω) are a few examples developed
based on this hypothesis. Research conducted by Mahmood et al. [88]
and Sanderse et al. [115] include comprehensive reviews on the different
methods of turbulence models. Among these, the two equation turbulence
models are of more interest for practical applications due to their robust-
ness, efficiency, and quality of solutions in different fields of applications
(Ahmadi [1], Menter [93], and Svensson et al. [123]).

There is a large number of published studies describing the two previ-
ously mentioned two equation turbulence models using the Finite Volume
Method (FVM) (Jasak [69] and Peric [107]). The Finite Element Method
(FEM) is another emerging fluid flow solving methodology which has made
its success originally in Computational Solid Mechanics (CSM). Recently,
researchers have shown an increased interest in FEM for fluid flow due
to various reasons, one of them being its performance in the context of
Fluid-Structure Interaction (FSI) problems. They involve both fluid and
solid mechanics and interaction between them (Winterstein et al. [145]).
FSI is a crucial part in CWE. Therefore this chapter focuses on developing
robust and efficient RANS modeling methodology to solve CWE problems.
The same methodology serves as a solid basis for economical adjoint sen-
sitivity analysis; which is used to reduce the overall time consumption
of a numerical wind tunnel test with goal oriented AMR as explained in
chapter 1.

Solving RANS equations involve solving PDEs for conservation of mass (i.e.
continuity equation), conservation of momentum and accompanying tur-
bulence eddy-viscosity Convection-Diffusion-Reaction (CDR) transport
equations. In this case, incompressibility is assumed with RANS in most of
the applications in wind engineering (Winterstein et al. [145]), chemical en-
gineering (Harris et al. [56]) and many other fields. As described previously,
FEM is an emerging technique to solve fluid flows which can be used to
solve incompressible RANS PDEs. In FEM, standard Galerkin formulation
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with linear elements has been one of the most popular methods for solv-
ing PDEs due to its simplicity, robustness, and ability to handle complex
geometries with unstructured meshes. Despite its success, the standard
Galerkin FEM formulation with linear elements is not numerically sta-
ble for solving convection or reaction dominated flows. Especially in the
case of incompressible NS, it violates the i n f − s up or Ladyzhenskaya-
Babuška-Brezzi (LBB) condition in solving continuity and momentum
conservation equations. In order to satisfy the LBB condition, an option
would be to use mixed element formulation where higher order interpola-
tion is used for velocity as in work done by Taylor et al. [126] or by having
a weak formulation which is not restricted by the LBB condition, such as
in work done by Cotela Dalmau et al. [35].

Apart from solving for momentum and continuity equations, RANS has
to solve additional CDR transport equations to determine the RST as dis-
cussed before. Especially in two equation models, this involves solving
for turbulent characteristic quantities such as turbulent kinetic energy
(i.e. k ), turbulent energy dissipation rate (i.e. ε), and turbulent specific
energy dissipation rate (i.e.ω). These CDR transport equations need to
be positivity preserving, since negative turbulence quantities represented
by them do not have a physical meaning. In practical situations, these
turbulent quantities may be dominated by convection or reaction effects.
Convection dominated flows are known to produce numerically unstable
node-to-node spurious oscillations when standard Galerkin formulation
is used (Brooks et al. [21]). Consequently, in addition to challenges arising
due to flow dominance from convection or reaction terms, the RANS equa-
tions also have to overcome challenges in achieving positivity preserving
solutions. Stabilization methods are used to overcome these difficulties:
To avoid spurious node-to-node oscillations in convection dominated
flows, Hughes et al. [63, 64] developed the generalized Streamline Upwind
Petrov-Galerkin (SUPG) stabilization method focusing on advection diffu-
sive transport equations. Another study by Galeão et al. [49] focused on
discontinuity capturing methods to add diffusion to overcome convec-
tion dominated instabilities. This method produces excessive diffusion
in the regions of regular solution, which hinders its solution quality. This
drawback was improved by Carmo et al. [24]. Such expositions are unsatis-
factory for RANS because they are unable to assure positivity of solution
field. Ilinca et al. [66]was successful in implementing the k −ε turbulence
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2 Turbulence Modelling and Finite Element Method

model by solving for natural logarithm of k and ε quantities while preserv-
ing positivity. However, this method produced an ill-conditioned system
matrix, thus making it not viable to solve problems involving large complex
domains in CWE.

The next class of positivity preserving stabilization methods were devel-
oped based on Discrete Maximum Principle (DMP). Burman et al. [23]
developed a method to satisfy DMP and was successful in achieving posi-
tivity preserving solutions. However, this method requires an acute mesh
which is not feasible in practical complex geometries discretized with un-
structured meshes. This DMP was further studied by Turek et al. [129],
where a Flux-Corrected Transport (FCT) method was developed which
adds diffusion based on the discretized system matrix. Furthermore, Strehl
et al. [121]was also able to extend FCT schemes for transient CDR transport
equations while preserving positivity of solutions. The Total Variational
Diminishing (TVD) method introduced by Harten [57] was also successful
in attaining positivity preserving solutions. This method was further ex-
tended by Kuzmin et al. [79] to obtain k−ε turbulence model flow solution
while satisfying positivity of the solution field. John et al. [72] conducted a
comparative study on CDR transport equation stabilization methods of
the following types; SUPG, Spurious Oscillations at Layers Diminishing
(SOLD), and FEM-FCT with non-homogeneous Dirichlet boundary condi-
tions and homogeneous Neumann boundary conditions. In this study, it
was shown that the SUPG method and SOLD methods produced overly
diffusive solution fields, whereas the FEM-FCT method produced better
results.

Furthermore, Joshi et al. [73] presented multi-dimensional CDR trans-
port equation stabilization focusing on preserving positivity. Despite the
success in achieving positivity preserving solutions, the discretized sys-
tem of equations produced highly ill-conditioned matrices thus limiting
the applicability of this method for 3D large domain cases. Kuzmin [76]
presented the Algebraic Flux Correction (AFC) method for scalar CDR
transport equations. This method is successful in achieving positivity pre-
serving solution fields with the least amount of artificial diffusion. However,
it requires keeping track of additional variables for each discretized point,
thereby increasing memory consumption. Even though the author iden-
tifies methodologies to overcome these challenges, developing adjoint
sensitivity analysis based on AFC method could be very challenging, and
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memory intensive.

Although some research has been carried out on having positivity preserv-
ing solution techniques in FEM with linear element unstructured meshes
for CDR transport equations, they present shortcomings in either robust-
ness, efficiency or in their ability to perform adjoint sensitivity analysis.
Therefore, this chapter focuses on introducing a novel positivity preserving
stabilization method for FEM used with unstructured grids, while paying
attention to the method’s ability to develop discrete adjoint sensitivity
analysis while minimizing computational cost of evaluating an adjoint
problem. Two equation turbulent eddy-viscosity based turbulence models
are implemented as use cases for the novel stabilization method.

The chapter is organized as follows: Introduction of the novel
Residual-based Flux-Corrected (RFC) stabilization method is in section 2.1.
It is compared against the AFC method developed by Kuzmin [76] and the
CrossWind Diffusion (Crosswind Diffusion (CWD)) method developed
by Joshi et al. [73]. The stabilization methods are then validated using
analytical solutions obtained for scalar transport problems as explained
in section 2.2. Afterwards, the novel RFC method is extended for RANS
turbulence modelling and validated using DNS data and experimental
data for benchmarks in section 2.3. All of these stabilization methods are
studied against three different turbulent eddy-viscosity models, namely
k −ε, k −ω and k −ω− s s t . RANS is further extended for URANS in sec-
tion 2.4, where implementation is validated against data from literature.
Finally RANS and URANS are used to solve CWE problems in section 2.5,
and results are compared against results from LES.

2.1 Residual-based Flux-Corrected Stabilization Method

This section introduces a novel stabilization method named Residual-
based Flux-Corrected (RFC) for scalar transport equations. Following that,
turbulence models are introduced, which will be evaluated in subsequent
sections.

2.1.1 Problem definition

The problem of interest in this study is the scalar CDR transport equation
where φ is the unknown transport function. The general strong form is
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shown in equation (2.1).

∂ φ

∂ t
+u ·

∂ φ

∂ x
−
∂

∂ x

�

ν
∂ φ

∂ x

�

+ sφ = f (2.1)

Where u ∈Rd is convective velocity, d is dimensionality of domain, ν ∈R+
is the effective kinematic viscosity, s ∈ R is the reactive coefficient, and
f ∈R is the source term. Temporal discretization is performed using the
Bossak method (Wood et al. [147]). In the case of ‘‘steady-state’’ problems,
the time derivative of equation (2.1) is assumed to be zero.

A finite element partition of the computational domain Ω ⊂Rd is denoted
by {Ωe }, the index e ranging from 1 to the total number of elements ne l . The
boundary of the computational domain Ω is given by Γ and is partitioned
as a boundary on which Dirichlet conditions are satisfied ΓD and those
where Neumann conditions are specified ΓN satisfying equation (2.2).

Γ = ΓD ∪ΓN and ;= ΓD ∩ΓN (2.2)

The space of test functions is denoted by Ψ =H 1
0 (Ω) and the space of trial

solutions is denoted by equation (2.3) where η is the surface outward unit
normal acting on Γ boundary.

Φ=

�

φ ∈H 1 (Ω) :φ = gD on ΓD , and
∂ φ

∂ x
·η= gN on ΓN

�

(2.3)

A subscript h is introduced to identify the discrete finite element problem
derived from equation (2.1). Therefore the finite element formulation for
solvingφ is: Findφh ∈ Φh for allψh ∈ Ψh such that,
ˆ
Ω
ψh

�

∂ φh

∂ t
+ui

∂ φh

∂ xi
+ sφh

�

dΩ+
ˆ
Ω
ν
∂ ψh

∂ xi

∂ φh

∂ xi
dΩ

−
ˆ
Ω
ψh f dΩ−

ˆ
ΓN

νψh gN dΓN = 0

(2.4)

2.1.2 Novel stabilization method

As was pointed out in the introduction to this chapter, the standard
Galerkin method produces spurious node-to-node oscillations in numer-
ical solution when convection effects are dominant (Brooks et al. [21]).
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This method is also unable to produce positivity preserving solutions for
CDR transport equations. A variety of stabilization methods are successful
in avoiding node-to-node spurious oscillations and having positivity pre-
serving solutions. The CWD method proposed by Joshi et al. [73], and the
AFC method proposed by Kuzmin [76] are two of those chosen stabiliza-
tion methods to compare against the novel RFC stabilization method. It
is important to re-emphasize the fact that the novel RFC stabilization is
developed and validated paying attention to its capability in developing
discrete adjoint sensitivity analysis and usefulness in solving 2D and 3D
complex domain problems.

The evidence presented in chapter 2 introduction suggests that the SUPG
stabilization method is able to successfully minimize spurious node-to-
node oscillations, making the solution strategy stable. Therefore, SUPG
stabilization is used in the novel RFC stabilization method as depicted in
equation (2.5).

ˆ
Ω

N a

�

∂ φ

∂ t
+ui

∂ φ

∂ xi
+ sφ

�

dΩ+
ˆ
Ω
ν
∂ N a

∂ xi

∂ φ

∂ xi
dΩ

+
ne l
∑

e=1

ˆ
Ωe

τ

�

ui
∂ N a

∂ xi
+N a |s |

�

R dΩe

=
ˆ
Ω

N a f dΩ+
ˆ
ΓN

νN a gN dΓN

(2.5)

Where the superscript a denotes a t h node, N is the shape function, R is
the residual of the strong form (depicted in equation (2.6)) to the weak form
depicted in equation (2.4). The second derivative term in this residual van-
ishes because linear finite elements are used for the spatial discretization.

R =
∂ φ

∂ t
+u j

∂ φ

∂ x j
+ sφ− f (2.6)

τ is the SUPG stabilization term calculated using equation (2.7), where
τd y n = 0.0 for steady state problems, and τd y n = 1.0 for dynamic simu-
lations discretized using the Bossak method. αb and γb are Bossak time
discretization constants, and h is element characteristic length (Shakib
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et al. [117]).

τ=





�

τd y n
1−αb

γb∆t

�2

+

�

2|u |
h

�2

+

�

12ν

h 2

�2

+ s 2





−1/2

(2.7)

Furthermore, the weak formulation presented in equation (2.5) is
linearized and illustrated in matrix form as shown in equation (2.8) where
superscripts a and b denote the a t h and b t h point in the FEM spatial
discretization. Subscript i represents the i t h direction.

ˆ
Ω

�

N a (1+τ|s |) +τui
∂ N a

∂ xi

�

N b dΩφ̇b

︸ ︷︷ ︸

M a b φ̇b

+
ˆ
Ω

�

N a (1+τ|s |) +τui
∂ N a

∂ xi

��

ui
∂ N b

∂ xi
+ s N b

�

+ν
∂ N a

∂ xi

∂ N b

∂ xi
dΩφb

︸ ︷︷ ︸

C a bφb

=
ˆ
Ω

�

N a +τ

�

ui
∂ N a

∂ xi
+N a |s |

�

�

f dΩ+
ˆ
ΓN

νN a gN dΓN

︸ ︷︷ ︸

P a

(2.8)

Finally, using the Bossak method for time integration, equation (2.8) can
be further simplified as illustrated in equation (2.9) where Q = θM + C ,
with θ being the time step (i.e.∆t ) dependent value derived using Bossak
method constants.

Qφ = P where Q =
�

q a b
�

, φ =
�

φa
�

and P =
�

P a
�

(2.9)

However, SUPG stabilization (refer equation (2.8)) alone does not guar-
antee positivity of the solution (Codina [33]). Therefore additional sta-
bilization is required. Research done by Kuzmin et al. [78] identifies a
positivity preserving solution for a linear system of equations (depicted
in equation (2.9)) that can be achieved by making system matrix (i.e. Q)
an M-matrix (i.e. making Q a non-singular discrete operator such that

q a b ≤ 0 ∀a ̸= b and all the coefficients of its inverse are nonnegative).
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The sufficient conditions for positivity preservation are written in inequal-
ities equation (2.10a) and equation (2.10b), given that components of φ
and P remain positive.

∑

b

q a b ≥ 0.0 ∀a (2.10a)

q a b ≤ 0.0 ∀b ̸= a (2.10b)

The discrete upwind operator (i.e. D =
�

d a b
�

) depicted in equation (2.11) is
applied to satisfy inequality equation (2.10b). But this still does not guaran-
tee a positivity preserving property because the inequality equation (2.10a)
is not satisfied.

d a b = d b a =−max{0.0, q a b , q b a } and
∑

b

d a b = 0.0 ∀a (2.11)

Therefore, the matrix depicted in equation (2.12) is also added as part of
the stabilization to ensure that inequality equation (2.10a) is also satisfied.

I p p =
�

βp pδ
a b
�

where βp p =max
∀a
{0.0,−

∑

b

q a b } (2.12)

However, adding matrices from equation (2.11) and equation (2.12) to the
system matrix will lead to an inconsistent solution with the original prob-
lem defined in equation (2.1). Therefore, a non-dimensional scaling factor
(i.e. βe x a c t ) as depicted in equation (2.13) is introduced as a scaling factor
for D and I p p . This βe x a c t is proportional to absolute value of strong form
residual (refer to equation (2.6)), which tends to zero when spatial and
temporal resolutions are high enough, thus making the βe x a c t reaching
to zero. This reduces and eventually removes any effect arising from the
addition of D or I p p to equation (2.8) when discretization is refined, even-
tually solving the original problem stated in equation (2.1) which makes
the novel RFC stabilization method consistent with the original problem.
The absolute residual (i.e. |R |) inβe x a c t is scaled by |φ| to compute relative
residual and made non-dimensional by having τ (refer to equation (2.7)).

βe x a c t =







|R |τ
|φ| if |φ|> 0

0 otherwise
(2.13)
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Finally, our modified stabilized positivity preserving elemental equation
system is illustrated in equation (2.14).

h

Q +βe x a c t

�

α1 D +α2 I p p

�
i

φ = P (2.14)

Where α1 and α2 are stabilization control parameters defined by the user.
These two parameters are there to guide the solution field to be positivity
preserving and to make the condition number of the system matrix better.
As will be discussed in section 2.2.4, a wide range of values can be used for
these parameters.

2.2 Steady State Scalar Numerical Experiments

All of the stabilization methods introduced in section 2.1 add artificial
diffusion to the solution so that they can prevent numerical instabilities
and preserve positivity. Their approach is to add the least amount of artifi-
cial diffusion to avert shortcomings of the standard Galerkin formulation
while minimizing error. Therefore, there will be differences in solutions
obtained from the novel RFC stabilization and existing AFC and CWD sta-
bilization methods. In order to have a proper understanding about the
significance of the added artificial diffusion from the novel method, it is
evaluated against three different problems on which the analytical answer
is available (refer section 2.2.1 and section 2.2.2).

Error between the solution from stabilization method and the exact solu-
tion is calculated using equation (2.15), where N is the number of points
in mesh, mi is the nodal weight obtained from diagonal component of the
lumped mass matrix as in work done by Kuzmin et al. [77],φi being the
i t h point value, andφe x a c t

i being its exact solution in the mesh.

ErrorL2 =

√

√

√

N
∑

n=1

mi

�

φi −φe x a c t
i

�2
(2.15)

2.2.1 Circular convection

Problem definition

This experiment is taken from work of Hubbard [62]. The experiment con-
sists of solving a hyperbolic Paritial Differential Equation (PDE) as depicted
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in equation (2.16).

∇·
�

uφ
�

= 0 in Ω = (−1, 1)× (0, 1) (2.16)

Steady circular convective velocity (i.e. u) is defined in equation (2.17). u
is divergence free. Therefore equation (2.16) can be re-organized such that
the same equation (2.1) can be applied to solve it by making all terms zero
except the convective term (Hubbard [62]).

u
�

x , y
�

=
�

y ,−x
�

(2.17)

Exact solution for this numerical experiment is given by equation (2.18).
The boundary values are also computed from this exact solution.

φ
�

x , y
�

=







G (r ) if 0.35≤ r =
p

x 2+ y 2 ≤ 0.65

0 otherwise
(2.18)

We have chosen two functions for G (r ) representing a smooth solution (i.e.
G1) and a discontinuous solution (i.e. G2) as depicted in equation (2.19).
The smooth solution is chosen to determine the novel RFC stabilization
method’s ability to maintain a smooth peak, and the discontinuous solu-
tion is chosen to determine the RFC method’s ability to preserve positivity
of the solution.

G1 (r ) = cos2

�

5π
2r −1

3

�

, G2 (r ) = 1 (2.19)

Results

Figure 2.1 illustrates the exact solution and the computed solution using
RFC stabilization with h = 1/256 mesh for the circular convection problem
with the smooth functional. As depicted in table 2.1, the error is small, this
suggests that the computed solution is adding diffusion only to stabilize
the solution and not to destroy smoothness and peak properties of the solu-
tion of a convection dominated problem while preserving non-oscillatory
properties. It does not exhibit any under shoots or over shoots near the
curvatures of the exact solution for different mesh sizes as well as different
RFC stabilization parameters (refer section 2.2.4).
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(a) Exact solution (b) RFC stabilized solution with h = 1/256

Figure 2.1: Circular convection with the smooth functional
solution comparison.

(a) Exact solution (b) RFC stabilized solution with h = 1/256

Figure 2.2: Circular convection with the discontinuous
functional solution comparison.
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Result of a circular convection experiment with discontinuous functional is
illustrated in figure 2.2. This compares the exact solution and the solution
obtained from the RFC stabilization method with h = 1/256. The RFC
stabilized solution shows overshoots near the top of the discontinuity,
hence it shows higher ErrorL2 value than its smooth counterpart.
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(a) Lower discontinuity
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1 = 1.2, 2 = 1.0

(b) Upper discontinuity

Figure 2.3: Circular convection with discontinuous functional
solution comparison for different stabilization parameters, with

h = 1/256, x ∈ [−1.0,−0.5].

To illustrate this better, the linearly interpolated φ distribution on line
y = 0.1 is plotted in figure 2.3. Figure 2.3(a) illustrates lower discontinuity
and figure 2.3(b) illustrates upper discontinuity where x ∈ [−1,−0.5] for dif-
ferent α1 and α2 values. Both figures do not exhibit significant differences
in solution when α2 is changed, thus indicating α2 has lower influence on
the solution from the added diffusion by RFC stabilization method. We
can identify that the solution differs by varying α1 from 0.6 to 1.2. From
figure 2.3(a), at the lower discontinuity, it shows relatively less deviation
from exact solution for lower α1 values indicating better approximation of
solution is done when α1 is reduced. However, no undershoots are shown.
This demonstrates that the novel RFC stabilization method is capable of
preserving the positivity near discontinuities as well. Figure 2.3(b) illus-
trates oscillations near the top discontinuity. For lower α1 values, it shows
higher overshoots, and for higher α1 values, it shows lower overshoots.
This is because, α1 also controls the contributions from discrete upwind
operator. Higher the diffusion, smoother the solution, and diffusive the
peaks. It is evident that to reduce overshoots,α1 needs to be reduced which
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contradicts with the observations on the solution accuracy at the lower
discontinuity. This is further analyzed in section 2.2.4.

2.2.2 Body force driven bump

Problem definition

An experiment with scalar steady CDR equation where an exact solution
is available also investigated as explained in Barrenechea et al. [12]. This
experiment is conducted to solve equation (2.1) in Ω = (0, 1)2 with ν =
1×10−8, u = [3, 2], and s = 1. f is chosen such that equation (2.20) can be
obtained as the exact solution. Values at the boundaries are also evaluated
using the exact solution.

φ
�

x , y
�

= 100x 2 (1− x )2 y 2
�

1− y
�2

(2.20)

Results

This experiment focuses on understanding how the novel RFC stabiliza-
tion method performs if a scalar CDR is presented where convective and
reactive terms are dominated over diffusive terms. Figure 2.4 illustrates
the exact solution (figure 2.4(a)) and the computed solution via the RFC
stabilization method (figure 2.4(b)). If the given exact solution is smooth,
consequently no oscillations are visible in this experiment as well. It is also
evident from table 2.1, this experiment shows lower error. Consequently it
suggests that the proposed novel RFC stabilization method is capable of
approximating solution near peaks without losing its characteristics.

2.2.3 Effect of added diffusion in RFC stabilization method

It is important to understand how added diffusion in the novel RFC sta-
bilization method affect the solution. We use the exact solutions from
experiments explained in section 2.2.1 and section 2.2.2 to investigate it.
Mesh convergence studies have been carried out on these two experiments
following the same methodology explained in Kuzmin et al. [77] and re-
spective ErrorL2 values are depicted in table 2.1. All the experiments in this
section are carried out with α1 = 1.0 and α2 = 1.0 unless otherwise stated
explicitly.
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(a) Exact solution (b) RFC stabilized solution with h = 1/256

Figure 2.4: Body force driven bump solution comparison.

Table 2.1: ErrorL2 values of mesh convergence study for scalar
PDE numerical experiments (ref. Kuzmin et al. [77]).

h

Circular convection Body force

Smooth (i.e. G1) Discontinuous (i.e. G2) driven

RFC Ref. RFC Ref. bump

1/32 1.70×10−2 5.51×10−2 1.75×10−1 1.52×10−1 4.78×10−4

1/64 4.68×10−3 2.04×10−2 1.14×10−1 1.08×10−1 1.10×10−4

1/128 1.27×10−3 5.95×10−3 8.35×10−2 8.60×10−2 2.69×10−5

1/256 3.38×10−4 1.60×10−3 6.45×10−2 6.01×10−2 6.12×10−6

All of the experiment results shown in table 2.1 are obtained by iteratively
solving the governing PDEs until their residuals are converged below the
tolerance of 1×10−8 using linear triangle element meshes. From table 2.1,
we can observe that the smooth functional exhibits less error than the
reference, indicating that the proposed novel RFC stabilization method
can perform better if a smooth solution is expected. In the case of the
discontinuous functional, RFC stabilization method also shows same order
of error as the reference indicating, it also suffers in estimating the solution
near discontinuities. To clarify these findings, a detailed discussion on
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2 Turbulence Modelling and Finite Element Method

the experiment results from section 2.2.1 and section 2.2.2 is carried out
henceforth.

2.2.4 RFC stabilization method parameter study

As explained in section 2.1.2, the novel RFC stabilization method intro-
duces two new parameters: α1 which controls the diffusion added via dis-
crete upwind operator, and α2, which controls the added mass matrix to
satisfy positivity preserving quality (refer to equation (2.14)). Therefore, it is
crucial to understand how flow solutions and convergences are affected by
these parameters. We have chosen the scalar CDR PDE circular convection
and body force driven bump (refer section 2.2.1 and section 2.2.2) exper-
iments to investigate the effects of the novel RFC stabilization method
parameters on the solution field.
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Figure 2.5: ErrorL2 for different RFC stabilization parameters.

Figure 2.5 illustrates the ErrorL2 distributions for the RFC stabilization
parameters α1 and α2 varied within the range [0.4, 1.4]. Figure 2.5(a) de-
picts error distribution of the circular convection experiment with the
smooth functional and figure 2.5(b) represents the same experiment with
the discontinuous functional. It can be observed from both figures that
the error between the solution from the RFC stabilization and the exact
solution increases with the increase in α1, and no significant changes with
the increase in α2. When α1 is increased, it increases the added diffusion
by increasing the contributions from discrete upwind operator, conse-
quently smoothing out the solution. This is clearly evident in the case of
discontinuous functional as illustrated in figure 2.3(a) and figure 2.3(b) as
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2.3 Applicability to Reynolds Averaged Navier-Stokes Problems

well. So in order to achieve non-oscillatory solution at discontinuities, one
has to increase α1 at the cost of the accuracy at the lower discontinuity.

Figure 2.5(c) illustrates the ErrorL2 distribution for the body force driven
bump experiment. It also depicts higher error when α1 is increased as in
the case with circular convection experiment. It also depicts an increase
in error when α2 is decreased below 0.6 as well indicating, for a problem
governed by CDR equation requires a discrete upwind operator to have
non-oscillatory positivity preserving solution. The effect of changes in α2

is still not having a significant impact on the solution field.

2.3 Applicability to Reynolds Averaged Navier-Stokes
Problems

2.3.1 Turbulence models

In this section, turbulence models are introduced as applications of the
novel RFC stabilization method and evaluates the method’s capabilities
and limitations. As explained in section 2.1.2, two equation turbulent eddy-
viscosity based RANS models are investigated with different stabilization
methods in this study. These two equation models comprise k−ε, k−ω and
k −ω− s s t . And for these turbulence models, the implemented solutions
of the novel RFC stabilization method are compared against those of the
AFC and CWD methods in order to assess shortcomings and advantages.

In the case of turbulence modeling using RANS, it is important to under-
stand how wall treatment is performed. In this study, wall boundaries are
assumed to be in logarithmic region, therefore wall modeling with log-
arithmic wall law is used to approximate near wall effects. Logarithmic
wall law is based on wall friction velocity (i.e. uτ). Since y + of our first
node in domain falls in the logarithmic region, uτ can be calculated using
two alternative methods: turbulent kinetic energy based (i.e. uτ = f (k )
based) given in equation (2.21a) (Grotjans et al. [54]) or velocity-based (i.e.
uτ = f (u ) based) given in equation (2.21b) (Von Kármán [135]). κ is the
Von Kármán constant based on logarithmic wall law (Högström [59]), and
Cµ is a turbulence model constant based on (Versteeg et al. [134]). β is a
roughness coefficient used in logarithmic wall law. k at wall boundaries
is applied with zero gradient Neumann boundary condition since it is
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determined by equation (2.21a).

uτ =C 0.25
µ

p

k (2.21a)

uτ =
|u |

1
κ ln

�

y +
�

+β
(2.21b)

The k−ε turbulence model is implemented based on work done by Kuzmin
et al. [79] and Chien [32]. Equation (2.22) is used as wall normal flux for
Neumann boundary condition at walls, whereν is fluid kinematic viscosity.

gN =
∂ ε

∂ xi
ηi =

u 5
τ

κ
�

y +ν
�2 (2.22)

The k−ω turbulence model is implemented based on studies conducted by
Wilcox [143, 144].ωwall law is modeled by applying Neumann boundary
condition having wall normalω flux, as illustrated in equation (2.23).

gN =
∂ ω

∂ xi
ηi =

u 3
τ

κC 0.5
µ

�

y +ν
�2 (2.23)

The k −ω− s s t model is implemented based on research done by Menter
et al. Menter [94] and Wilcox [142]. The same wall function forω is applied
in k −ω− s s t model as in k −ω turbulence model.

All three turbulence model’s Neumann wall condition integral contribu-
tion for the system of equations are computed using the algorithm shown
in algorithm 1. First, y + computed from the momentum Neumann condi-
tion is taken as an input to compute uτ based on equation (2.21b) or equa-
tion (2.21a). Then, based on the turbulence model, either equation (2.22)
or equation (2.23) is used to compute integral contributions to system of
equations.

As far as flow solution is concerned (i.e. u and p ), two methods, Mono-
lithic (ML) and Fractional Step (FS), are investigated in this study. The
Monolihtic method is based on study done by Cotela Dalmau et al. [35]
where both ‘‘transient’’ and ‘‘steady-state’’ formulations are available. This
method is first used with the novel RFC stabilization method, since it al-
lows easy implementation and understanding of convergence behavior
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Algorithm 1 Calculate CDR transport equation Neumann wall condition
integral.

1: y +← y + from momentum Neumann condition (refer to alg. 2)
2: Compute uτ from either equation (2.21b) or equation (2.21a)
3: Compute Neumann condition integral based on equation (2.22) or

equation (2.23)

Algorithm 2 Calculate momentum Neumann wall condition integral.

1: Solve equation (2.25) for y +l i mi t
2: Solve equation (2.26) for uτ
3: y +←max

� uτ y
ν , y +l i mi t

	

4: Compute new blended uτ from equation (2.24a) for condition integral
5: Compute Neumann condition integral using equation (2.24b)and new

blended uτ from equation (2.24a)
6: Store y + on condition

for relatively small cases. Afterwards, the FS method based on Codina [34]
is also investigated in this study due to the fact that ML method suffers
from convergence issues when applied to problems involving large 3D
complex domains. This is because the resulting linear system from ML
becomes highly ill-conditioned, thus making it challenging to use iterative
linear solvers. The FS method is not implemented to obtain a ‘‘steady-
state’’ solution. It has commonly been assumed that, having large time
steps will guide the flow field solution towards steady state. However,
this will violate Courant–Friedrichs–Lewy (CFL) number requirements for
convergence. Applying smaller time steps will result in oscillations, thus
non-convergence for steady solution in FS. Therefore, the pressure gradi-
ent modification suggested by Firoozjaee et al. [45] is applied to achieve
‘‘steady-state’’ solutions in FS method.

As discussed earlier, walls are applied with wall functions and slip boundary
conditions for u . Nodes falling on boundaries are assumed to be in the
logarithmic region, where wall friction velocity (i.e. uτ) is calculated using
equation (2.24a). This hybrid formulation prevents momentum flux from
going to zero at separation/stagnation points. Equation (2.24b) shows
Neumann wall condition applied on the momentum equations, where ti
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Algorithm 3 Solving strategy.
1: t ← 0.0
2: for t ≤ Te nd do
3: while i ≤mup t or ui , p i ,νi

e f f e c t i v e not converged do
4: while j ≤mup do
5: Compute y + on conditions using algorithm 2
6: Solve for u j and p j

7: while j ≤mkε or ν j
t is not converged do

8: while c ≤mk or k c is not converged do
9: Compute Neumann integral contributions from alg. 1
10: Solve for k c

11: c ← c +1
12: while c ≤mε or εc is not converged do
13: Compute Neumann integral contributions from alg. 1
14: Solve for εc

15: c ← c +1
16: Compute turbulent eddy viscosity ν j

t

17: j ← j +1

18: νi
e f f e c t i v e ← ν+νt

19: i ← i +1
20: t ← t +∆t

is the traction on the Neumann boundary ΓN .

uτ =max

(

C 0.25
µ

p

k ,
|u |

1
κ ln

�

y +
�

+β

)

(2.24a)

ˆ
ΓN

N a ti dΓN =−
ˆ
ΓN

N aρu 2
τ

ui

|u |
dΓN (2.24b)

In order to compute the Neumann wall condition integral shown in equa-
tion (2.24b), first y +l i mi t is calculated from equation (2.25)using the Newton
Raphson method.

y +l i mi t =
1

κ
ln
�

y +l i mi t

�

+β (2.25)
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Then uτ is computed solving equation (2.26) using the Newton-Raphson

method, where y + = uτ y
ν and u+ = |u |uτ

. y is wall distance at nodes in wall
boundary. Afterwards, y + is computed from equation (2.27), which is used
in computing new blended uτ from equation (2.24a).

u+ =







y + for y + ≤ y +l i mi t

1
κ ln

�

y +
�

+β for y + > y +l i mi t

(2.26)

In this, y at wall nodes is calculated as the wall normal distance to its tetra-
hedral (3D) or triangle (2D) cell center from the wall boundary. Algorithm
2 illustrates steps used in calculating y + and momentum Neumann wall
condition integral contributions for momentum system of equations.

y +w a l l =max
�

y +, y +l i mi t

�

(2.27)

Finally, algorithm 3 depicts the overall steps involved in solving for mo-
mentum equation, k , ε using k −ε turbulence model as an example. The
outermost for loop iterates over time steps. In case of a dynamic simula-
tion, this loop iterates over all the time steps. Otherwise it will only run
once when solving a steady-state problem. The mup t loop is the flow solver
and turbulence model coupling loop, where convergence is computed by
checking convergence between two adjacent i iteration values of u , p ,ν,
where ν is the total kinematic viscosity. Then mup loop is the momentum
equation solving loop which solves for u , p and computes appropriate y +

values on Neumann wall conditions and stores them for later use. The loop
with mkε is solved afterwards, which couples two CDR transport equations:
k and ε CDR transport equation. Once they are solved, the turbulent eddy
viscosity (i.e. νt ) is updated. The two CDR transport equation coupling
iterations will continue until max iterations (i.e. mkε) are reached or νt is
converged between iterations. Once the two equation turbulence model is
converged enough, then fluid effective kinematic viscosity (i.e. νe f f e c t i v e )
is updated. Then the same process is repeated again until the flow solution
converges. Once the flow solution is converged for the time step, time is
incremented to solve for next time step.

We assume logarithmic law for the wall boundary for the examples pre-
sented in section 2.3.2 and section 2.3.6, thus forcing nodes at the wall to
have at least y + = y +l i mi t (refer to equation (2.27)). Therefore, results are
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only plotted in range y + ∈
�

y +l i mi t ,∞
�

. k+ and τ+ non-dimensional values
are computed using equation (2.28), where νt is turbulent eddy viscosity,ν
is kinematic viscosity of fluid, d u

d y is wall tangential velocity derivative with
respect to wall distance (y ), and uτ is the wall friction velocity (obtained
from respective benchmark case data).

k+ =
k

u 2
τ

and τ+ =
−1

u 2
τ

�

νt +ν
� d u

d y
(2.28)

2.3.2 Benchmark Problem Definitions - 2D

Channel flow

Moreover, a 2D channel flow for different friction Reynolds numbers (i.e.
R eτ) is investigated; the numbers are 590, 950, and 2000. DNS flow solution
data for R eτ = 590 case is obtained from studies conducted by Moser et al.
[99]. For cases of R eτ = 950 and R eτ = 2000, DNS flow solution data is
obtained from studies conducted by Hoyas et al. [60, 61].

Figure 2.6 presents the domain and boundaries in this problem. A source
term (mimicking pressure gradient d p

d x ) derived from the respective R eτ is
used to drive the fluid flow. Walls are assumed to be smooth (i.e. β = 5.2).

Figure 2.6: Channel flow 2d domain and boundary conditions.

Table 2.2 shows the boundary conditions applied.

Figure 2.7 shows the mesh chosen after a convergence study which is
used for spatial discretization. An unstructured triangular mesh is used
for spatial discretization.
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Table 2.2: Channel and pipe flow boundary conditions.

Variable
Boundary Name

Walls Inlet Outlet

p Free 0 P a 0 P a

u
equation (2.24b)
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P e r i o d i c

uτ from equation (2.24a)

k Zero gradient

ε

equation (2.22)

uτ from

equation (2.21)

ω

equation (2.23)

uτ from

equation (2.21)

Figure 2.7: Channel flow 2d spatial discretization.

Fluid flow computation is computed with half channel length δ = 1m .
Therefore, the channel height is 2δ, and channel length is 2δπ. A boundary
layer mesh is applied near wall regions, and a coarser mesh is maintained
at the middle of the channel. Minimum edge length of mesh is 1×10−3 m ,
and maximum edge length of mesh is 0.125 m .

Backward facing step

The backward facing step is also studied for different turbulence models
with stabilization methods introduced in section 2.1. Results are compared
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against measurement data obtained from research conducted by Jovic et al.
[74].

Figure 2.8 illustrates the domain geometry and dimensions as well as
boundary conditions used in this problem.

Figure 2.8: Backward facing step 2d boundary conditions.

The backward facing step size is h = 9.8 mm . Entry length for flow devel-
opment is 150h , and trailing length after step is 20h . Channel flow devel-
opment region height is 10h , and trailing length channel height is 12h .
x is flow direction and y is wall normal direction. The step is located at
x = 0.0 m . Table 2.3 illustrates the boundary conditions applied for this nu-
merical setup, where Ik is the turbulent intensity, and LT is the turbulent
mixing length.

Figure 2.9 illustrates the 2D unstructured triangular mesh used for spatial
discretization chosen following the mesh convergence study. Figure 2.9(a)
depicts the overall domain, and figure 2.9(b) shows how boundary layer
mesh is applied to near wall regions.

2.3.3 Stabilization method comparison

Until now we have discussed effects of added diffusion by novel RFC sta-
bilization method for simple steady scalar PDEs. This section focuses on
comparing CWD, AFC, and the novel RFC stabilization methods under
one turbulence model, namely k − ε to have a better understanding of
how these methods perform with highly non-linear CDR PDEs. Channel
flow problems described in section 2.3.2 and backward facing step de-
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Table 2.3: Backward facing step 2d boundary conditions.

Variable
Boundary Name

Walls Inlet Outlet

p Free Free 0 P a

u

equation (2.24b) Constant value of










































































































Zero gradient

uτ 7.72 m s−1

equation (2.24a)

k Zero gradient
Constant value with

Ik = 6.1×10−4

ε

equation (2.22)


















































Constant value
with
LT = 0.0588 m

uτ from

equation (2.21)

ω

equation (2.23)

uτ from

equation (2.21)

(a) Overall domain (b) Step close-up

Figure 2.9: Backward facing step 2D spatial discretization.
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scribed in section 2.3.2 are used to illustrate the differences in the different
stabilization methods.

Channel flow results

Figure 2.10, figure 2.11, and figure 2.12 illustrate results obtained from 2D
channel flow solutions with k −ε turbulence model for different stabiliza-
tion methods and different R eτ (respectively 590, 950, and 2000) using
the ML method. uτ for wall nodes are calculated based on k as given in
equation (2.21a) for ε.
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Figure 2.10: Channel flow 2D stabilization method comparison
for R eτ = 590.
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Figure 2.11: Channel flow 2D stabilization method comparison
for R eτ = 950.

A likely explanation for inherent error shown in all the turbulence models
includes errors in the turbulence model assumptions used, errors due to
assumptions made in k−εmodel not being valid near walls, and errors due
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Figure 2.12: Channel flow 2D stabilization method comparison
for R eτ = 2000.

to added artificial diffusion. Specifically, in figure 2.10(b), figure 2.11(b),
and figure 2.12(b), we can observe that k+ near the wall cannot achieve
peak as in the DNS results. The most likely reason for that is the wall law
assumptions are not valid at wall for k computations. In figure 2.10(c),
figure 2.11(c), and figure 2.12(c) exhibit oscillatory behavior near the walls.
This is because,τ+ is calculated with wall tangential velocity gradient which
is relatively large near the walls. Gradients computed on linearly interpo-
lated elements result in staggered gradients. This causes higher tangential
velocity gradients to have oscillatory behavior thus having oscillations in
τ+ computation.

Backward facing step results

Figure 2.13 and figure 2.14 illustrate results obtained for 2D backward
facing step using k−ε turbulence model for different stabilization methods.
Here for comparison as well, wall laws for ε use k -based uτ calculation
(refer to equation (2.21a)). Inlet velocity is taken as u∞ = 7.72 m s−1.

It is apparent from figure 2.13(b) that CWD method performs better in the
region of recirculation. All three methods perform in a relatively indifferent
manner in other regions. It can be seen from figure 2.14(c) that the CWD
stabilization method performs better than others. The CWD method is
based on adding diffusion in stream line direction and crosswind direction
in addition to SUPG stabilization. Despite its better performance, its re-
sulting global system matrix has large additions to off-diagonal terms, thus
increasing the condition number. Therefore, in order to obtain a solution
for the CWD method, direct solvers are used, because iterative solvers have
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Figure 2.13: Backward facing step 2D stabilization method
velocity comparison.
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Figure 2.14: Backward facing step 2D stabilization method
turbulent kinetic energy comparison.

challenges in converging with high matrix condition numbers. But in the
case of AFC and RFC, the condition numbers of their system matrices are
comparatively better due to the M-Matrix property as explained for AFC
in work done by Jha et al. [70], and therefore we are able to use iterative
solvers to obtain the solution. This is important since our study aims at
obtaining solution fields for 3D complex problems where direct solvers
are infeasible. Therefore, the rest of the discussion is mainly focused on
AFC and RFC methods.

2.3.4 Applicability of stabilization methods to different
turbulence models

This section provides a comparison of the k − ε, k −ω, and k −ω− s s t
turbulence models’ solutions for channel flow and backward facing step
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implemented with AFC and RFC stabilization methods. It focuses on iden-
tifying applicability of AFC and the novel RFC stabilization methods for
different CDR transport equations.

Channel flow results

Figure 2.15 illustrates velocity, k ,ω, and νt solution distributions for chan-
nel flow 2D problem with R eτ = 2000. This illustrated representative so-
lution is obtained using the k −ω− s s t turbulence model with the novel
RFC stabilization method, where CDR transport equation Neumann wall
conditions are based on equation (2.21b).

(a) Velocity
�

m s−1
�

(b) k
�

m 2 s−2
�

(c) ω
�

s−1
�

(d) νt

�

m 2 s−1
�

Figure 2.15: Channel flow 2D solution distributions.

Figure 2.16, figure 2.17, and figure 2.18 provide u+, k+ and τ+ variations
with respect to y + for channel flow 2D problem with R eτ = 2000. From
these figures, we can observe that k −ω− s s t model has better agreement
with DNS results, followed by k −ε and then k −ω turbulence models.

A likely explanation is that the presented case of R eτ = 2000 falls under
high R e flows while k −ω− s s t turbulence model is well known for its
ability to model high R e flows. This is followed by the k − ε turbulence
model.
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Figure 2.16: Channel flow 2D u+ vs y + comparison for different
turbulence models.
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Figure 2.17: Channel flow 2D k+ vs y + comparison for different
turbulence models.
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Figure 2.18: Channel flow 2D y + vs τ+ comparison for different
turbulence models.
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As shown in figure 2.16, figure 2.17, and figure 2.18, there is no significant
difference in solutions between AFC and RFC stabilization methods for
each turbulence model. This indicates that the novel RFC stabilization
method performs similarly to the AFC method for different CDR transport
equations, which reflects its robustness in achieving physically meaning-
ful solutions. The comparison of solutions for different uτ calculations
can also be done with same figures. They also show no significant differ-
ence between them. In addition, we have observed that 2D channel flow
benchmark cases with R eτ of 590, and 950 also depict similar behavior.

Backward facing step results

Figure 2.19 illustrates velocity, pressure, k , andω solution distributions
for the 2D backward facing step problem. This illustrated representative
solution is obtained using the k −ω− s s t turbulence model with the novel
RFC stabilization method, where CDR transport equation Neumann wall
conditions are based on equation (2.21b).

(a) Velocity
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Figure 2.19: Backward facing step 2D solution distributions.

Figure 2.20 and figure 2.21 illustrate non-dimensionalized u and k fluctu-
ations along wall normal direction at x = 4h distance for different turbu-
lence models, stabilization methods, and uτ calculation methods used in
2D backward facing step benchmark.
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Figure 2.20: Backward facing 2D step velocity solution
comparison with different turbulence models.
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Figure 2.21: Backward facing 2D step turbulent kinetic energy
solution comparison with different turbulence models.

We can observe from the results that for k −ω and k −ω− s s t , turbu-
lence models do not show significant difference in the solution with re-
spect to change in the uτ calculation method. But in the case of k − ε,
we can see slight deviations in solutions depending on the uτ calculation
method, closest to DNS results are presented with the k -based uτ calcula-
tion method. It is also evident that the novel RFC stabilization method is
showing superior solution quality than the AFC method in the k −ω− s s t
turbulence model. This indicates that the novel RFC method is capable of
adding less artificial diffusion than the AFC method to achieve a positivity
preserving solution.
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2.3.5 Coupling with different flow solving methods

So far, we have presented results obtained using monolithic method to
solve u and p . As discussed in section 2.1, the monolithic method pro-
duces a system matrix which is large, sparse, and highly ill-conditioned
when used to solve large problems (specifically 3D complex problems)
where the number of degrees of freedom is large. Direct solvers are in-
feasible for large sparse systems, therefore iterative solvers need to be
used. However, it is challenging to use iterative solvers to solve a highly
ill-conditioned sparse system of equations without having additional sup-
port from pre-conditioners. Therefore we considered investigating the
fractional step method as u and p solver in RANS for some of the bench-
marks described in section 2.3.2. We also take the opportunity to compare
results of turbulence models with different flow solver implementation
found in OpenFOAM (Weller et al. [141]) to understand performance of
the novel RFC stabilization method. FS approach is used here to compare
results with OpenFOAM because, it also uses segregated manner to solve
for variables u and p .
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Figure 2.22: Backward facing step 2D fractional step u variation
turbulence model comparison.

In the case of fractional step, u and p is solved in a segregated manner,
and thus it does not suffer from the difficulties arising from the monolithic
method. We have chosen the benchmark explained in section 2.3.2 to illus-
trate differences and similarities of solutions obtained using the fractional
step method with the AFC and RFC stabilization methods.

Figure 2.22 and figure 2.23 show non-dimensionalized u and k variation
in backward facing step using the fractional step method. We observe
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Figure 2.23: Backward facing step 2D fractional step k variation
turbulence model comparison.

no significant differences in velocity distribution in different turbulence
models, stabilization, and uτ calculation methods. This FS approach intro-
duces coupling between u and p . We have observed that the AFC method
with uτ based on k failed to converge with the FS method. But, the novel
RFC method was able to converge to an acceptable solution even with
the FS method. This indicates that the novel RFC stabilization method is
capable of coupling with different flow solution methods, thereby further
highlighting its robustness. We can observe from figure 2.23 that there
are differences in the solution of k depending on stabilization, turbulence
model and uτ calculation method. k −ε and k −ω show indifferent results
for k . But in k −ω− s s t , the novel RFC stabilization method shows better
agreement with experimental data from the benchmark case.

Figure 2.22(c) and figure 2.23(c) compares solutions achieved for k −
ω− s s t turbulence model through different stabilization methods im-
plemented in "Kratos Multiphysics" (Dadvand et al. [37]Dadvand et al.
[36]) and OpenFOAM (Weller et al. [141]). We can observe that, velocity
distribution depicted in figure 2.22(c) has better agreement near the walls
in the solution obtained from OpenFOAM, whereas solution from "Kratos
Multiphysics" deviates slightly. "Kratos Multiphysics" has the peak near
the wall under estimated due to the added diffusion. As depicted in fig-
ure 2.23(c), OpenFOAM over estimates the near wall peak in k distribution,
whereas "Kratos Multiphysics" stabilization methods are able to closely es-
timate it. Even though, a similar mesh is used in both "Kratos Multiphysics"
and OpenFOAM numerical experiments. They differ in used element tech-
nologies (i.e. "Kratos Multiphysics" is FEM based, OpenFOAM is FVM

40



2.3 Applicability to Reynolds Averaged Navier-Stokes Problems

based). Due to this difference, there exists differences in how wall func-
tions are applied, and how turbulent quantities are being modelled which
have contributed towards differences in solutions obtained.

2.3.6 3D Pipe flow

A 3D experiment is also evaluated under different stabilization methods
to understand the robustness of the novel stabilization method. We have
chosen a turbulent pipe flow experiment with R e = 100000 case from the
study done by Perry et al. [108] to compare results of the different methods.

Problem definition

The numerical domain and boundaries are illustrated in figure 2.24.

Figure 2.24: Pipe flow boundary conditions.

The diameter of this pipe is D = 0.099 m and its length is 2πD . The bound-
ary conditions are illustrated in table 2.2. Walls are assumed to be smooth
(i.e. β = 5.2). A source term (mimicking pressure gradient d p

d x ) derived from
respective R eτ = 2080 is used to drive fluid flow within the pipe. Figure 2.25
presents unstructured tetrahedral spatial discretization (approx. 4 million
elements) used for this investigation, which is again chosen following a
mesh convergence study.

Results

Until now, we have discussed results from stabilization methods used to
solve 2D benchmark cases. Now let’s turn to a 3D benchmark case whose
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Figure 2.25: Pipe flow spatial discretization.

numerical setup is explained in section 2.3.6. The numerical investigation
on this is carried out across all three different turbulence models under
two different stabilization methods; namely AFC and RFC as discussed
in previous sections. Figure 2.26 illustrates velocity as well as, k ,ω and
νt distributions in the 3D pipe domain, which is solved with the novel
RFC method using uτ = f (u ) for the k −ω− s s t turbulence model as a
representative illustration.

(a) Velocity
�

m s−1
�

(b) k
�

m 2 s−2
�

(c) ω
�

s−1
�

(d) νt

�

m 2 s−1
�

Figure 2.26: Pipe flow 3D solution distributions.
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The non-dimensional velocity distributions for different turbulence mod-
els are presented in figure 2.27; non-dimensional turbulent kinetic energy
distribution is illustrated in figure 2.28. It is apparent from the velocity
distribution that all three turbulence models show only slight deviations
from the experimental results. Figure 2.28 presents the k+ variation, which
shows similar results for RFC stabilization method compared to the AFC
method. The k−ωmodel with AFC stabilization using wall functions based
on u (i.e. uτ = f (u )) failed to converge. The RFC counterparts for the same
turbulence model were successful in converging to acceptable solutions,
indicating its capability for solving different CDR equations used in FEM.
All of these results indicate that, the novel RFC stabilization method pro-
duces acceptable results for even 3D large domains.
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Figure 2.27: Pipe flow 3D u+ vs y + comparison for different
turbulence models.
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Figure 2.28: Pipe flow 3D k+ vs y + comparison for different
turbulence models.
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2.4 URANS in Fluid-Structure Interaction Mok
Benchmark Problem

Until now we have discussed applicability of the novel RFC stabilization
method to different flow solver strategies and different turbulence models
in the context of RANS. This section focuses on investigating solution
behavior in more complex FSI problems in the context of URANS, thus
emphasizing the novel RFC method’s capability in obtaining acceptable
solutions in Arbitrary Lagrangian-Eulerian (ALE) framework.

2.4.1 Mok benchmark problem definition

Figure 2.29 illustrates configuration used in solving the problem following
the work of Mok [97].

Figure 2.29: Mok benchmark case configuration (Zorrilla [151]).

FSI mok problem is considered to be a low R e problem. Therefore, the
solutions from implemented k −ω and k −ω− s s t turbulence models
are investigated because these turbulence models are known to present
good results in the cases of low R e problems. On the other hand, the
implemented variation of k−ε turbulence model is not suitable for low R e
problems, therefore results from it are omitted. Spatial discretization used
in this problem is illustrated in figure 2.30 which is chosen after a mesh
convergence study. Fluid and structural domain properties are illustrated
in table 2.4.
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Figure 2.30: Mok benchmark mesh.

Table 2.4: Fluid and structural domain properties used in FSI
Mok problem.

Domain Property Value

Fluid
Density 956.0 k g m−3

Kinematic viscosity 1.5×10−4 m 2s−1

Solid

Density 1500.0 k g m−3

Young’s modulus 2.3 M P a

Poisson ratio 0.45

Inlet is specified with a fixed parabolic inlet velocity with a ramp up of
t ∈ [0 s , 10 s ] as depicted in equation (2.29). The walls are applied with no
slip boundary condition for u = 0m s−1, k = 1×10−12. The top boundary
is applied with u y = 0 making it a slip boundary condition. Pressure is
applied with P = 0 at the outlet.

u =







0.1214
�

1− cos
�

πt
10

�

�

y
�

1− y
�

if t < 10.0

0.2428y
�

1− y
�

else
(2.29)

ω in k −ω and k −ω− s s t turbulence models tends to infinity at walls.
Therefore, special care has to be taken to correctly identify feasibleω values
for wall if no slip is used for u without any wall modelling as in (ANSYS [6]).
One other concern in this problem is, there is a common spatial location
(lower left corner) which belongs to inlet and wall. The classical approach
(refer equation (2.30b)) of calculating ω creates singularities near that
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corner because the adjacent wall spatial point will have higherω due to
its nature. In order to avoid that, a special blendedω formulation is used
as depicted in equation (2.30c). In there, H represents height of the inlet,
L t u r b is the turbulent mixing length, Cµ is a constant, y is the wall distance,
andωw a l l is the nodes’ respective wallω computed via wallω estimation
method as described in ANSYS [6].

f = e −
20y
H (2.30a)

ωclassical =

p
k

C
1
4
µ L t u r b

(2.30b)

ωblended = f ωwall+
�

1− f
�

ωclassical (2.30c)

Strong coupling is used between FSI coupling iterations as depicted in fig-
ure 2.31. First flow variables u and p are solved with an initial νt until their
governing equations’ residual convergence. Then, k and ε are solved until
their governing equations’ residual converges. Afterwards νt is updated.
The process of solving k and ε is repeated until their residual convergence
and νt convergence up to the specified tolerance. Then, again the gov-
erning equations’ residuals of u and p are checked using the updated νt .
If the residuals’ convergence criteria are satisfied, then the forces on the
structural surface are calculated. This is followed by solving for displace-
ments using the structural solvers with the calculated forces acting on the
structural surfaces. Then the mesh is updated using Laplacian mesh mo-
tion solvers for new displacements. This is continued until displacements
are converged as explained in figure 2.31. Once the displacement field is
converged, then time is incremented by∆t to obtain the solution for the
next time step.

2.4.2 Results

Tip displacement (at point ’’A’’ in figure 2.29) variation with time for dif-
ferent turbulence models is illustrated in figure 2.32. Reference values are
taken from work done by Mok [97] and Vázquez [131]which are shown in
the same figure.

As seen in figure 2.32, k −ω and k −ω− s s t turbulence models show
only a slight deviation in the displacement than the reference values (i.e.
reference from Valdes) at the time instance where maximum displacement
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Figure 2.31: FSI flow solver implementation with URANS for
k −ε turbulence model.

is observed (i.e. t = 9.0 s ). Even though there is a slight deviation in solution
at maximum displacement point, solutions from both turbulence models
illustrate almost the same displacement.

It is observed that y + ≤ 1 near the flexible wall, causing k to be relatively
low (refer figure 2.33(d)), andω being relatively high (refer figure 2.33(e)).
Consequently, νt distribution is also relatively low near the flexible wall
(refer figure 2.33(f)). However, near the upper left corner of the inlet shows
relatively higher νt distribution. This is because, the highest k is found
at the top most location in the inlet boundary, and it is the furthest point
from wall makingω distribution relatively small consequently making the
νt relatively large.
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Figure 2.32: Tip displacement comparison for different
turbulence models.
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Figure 2.33: FSI mok solution fields at t = 9.0 s .
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2.5 RANS/URANS in Wind Engineering Problems

As pointed out in chapter 1, RANS and URANS can be used to reduce the
time consumption in overall numerical wind tunnel tests. Therefore, this
section investigates the applicability of RANS and URANS using the novel
RFC stabilization method to solve Benchmark on the Aerodynamics of a
Rectangular 5:1 Cylinder (BARC) problem. Despite the simple geometry
in BARC, it is well suited for this study because it provides insights to
turbulence characteristics, flow separation and bluff body aerodynamics
which are present in more complex and practical problems in CWE (Bruno
et al. [22]).

2.5.1 BARC problem definition

Figure 2.34 illustrates size of the fluid domain and the rectangular cylinder
geometry with H = 0.05m which is used in BARC problem. The inlet is
specified with 15.26m s−1. The top and bottom is applied with slip wall
(u y = 0). The outlet is applied with P = 0. Fluid density (ρ) is 1.2 k g m−3 and
fluid dynamic viscosity (µmolecular) is 1.83×10−5 P a s which corresponds
to a flow having R e = 5×104 around the rectangular cylinder. The walls
are applied with automatic wall functions which are able to approximate
wall effects using either logarithmic or linear wall laws.ω near the walls
are computed with special care since it tends to infinity at walls (refer
section 2.4.1). Different rectangular cylinder inclination angles measured
in counter clockwise direction (i.e. θI A) are also considered in this study to
understand the flow representations under different Angle of Attack (AoA).
The turbulence models presented here are k −ε and k −ω− s s t which
are evaluated using a 2D domain. Afterwards their solutions are compared
against the reference solution (internal study carried out by Pentek, et al.
using LES) to understand limitations and capabilities of RANS and URANS
with aforementioned turbulence models.

2.5.2 Flow field distributions

Table 2.5 and table 2.6 illustrate solution flow field distributions for θI A =
0d e g and θI A = 10d e g problems respectively. The columns represent
the flow field variables and the rows represent different turbulence models
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Figure 2.34: BARC configuration.

and the reference solution. All the distributions shown in two tables are
time averaged results.

Table 2.5: Time averaged quantities comparison between
different turbulence models for θI A = 0 d e g .
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Table 2.6: Time averaged quantities comparison between
different turbulence models for θI A = 10 d e g .
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The frontal regions (AB section in figure 2.34) in both θI A angles depict so-
lutions in agreement with the reference solution. In the case ofθI A = 0 d e g ,
RANS k −ε turbulence model does not show flow re-attachment, whereas
all the other models clearly identify it. Among those, URANS depicts the
most accurate flow re-attachment compared to its steady counterpart.
The peak velocity depicted by RANS k −ε is lower than other turbulence
models. p distribution is also showing a similar variation between RANS
k −ω− s s t and URANS k −ω− s s t turbulence models. However, only
URANS k −ω− s s t turbulence model illustrates a good agreement with
the reference solution whereas all RANS turbulence models show poor
agreements. This is mainly because of the RANS turbulence models’ in-
ability to accurately predict turbulent mixing of the flow field. In the case
of θI A = 10 d e g , it is also evident that the URANS k −ω− s s t turbulence
model shows the best agreement with the reference solution among all the
turbulence models being investigated. The RANS k −ω− s s t turbulence
model is showing the next best results followed by solution of the RANS
k −ε.
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Even though, the RANS k − ε solution shows poor agreement with the
reference solution due to its inability to predict the turbulent mixing of
the flow, it is used as the initial guess for the solution fields in the cases
of RANS k −ω− s s t . This is because, the RANS k −ω− s s t shows poor
convergence rates if it is initialized with the same flow field distributions
as in the RANS k −εwhich is initialized with constants.

2.5.3 Drag and lift coefficient variation

Time averaged drag and lift coefficients are evaluated for different θI A and
different turbulence models in this section. The k −ω turbulence model
produced lift and drag coefficients with significantly higher errors, hence
they are omitted from the results. This is likely because, the implemented
k −ω turbulence model does not have the ability to obtain solutions for
high R e flow problems. The drag and lift coefficients shown in figure 2.35
depict that the RANS k−ε turbulence model overestimates drag coefficient
whereas, the RANS k −ω− s s t turbulence model under estimates it. Error
shown by the RANS k −ε turbulence model is relatively higher than the
error from k −ω− s s t . One likely reason for this is, k −ω− s s t turbulence
model is known to perform better with recirculation, flow separation as
opposed to the RANS k −ε. Among all the turbulence models, URANS k −
ω− s s t turbulence model shows the results which has the best agreement
with the reference solution.

2.5.4 Pressure variation

In order to better understand the CD and CL distributions obtained by
different turbulence models, this section compares their pressure distri-
bution along the rectangular cylinder surface. Figure 2.36 illustrates the
time averaged pressure variation along the center line of the rectangu-
lar cylinder moving from points in the order "A", "B", "C", "D", "A" (refer
figure 2.34). All of the turbulence models show higher accuracy in predict-
ing time averaged pressure field in the frontal area (i.e. AB face) which is
also made evident from the flow field variations depicted in table 2.5 and
table 2.6. However, prediction of p in the RANS k − ε in all faces shows
weak agreement with the reference solution than the predictions from
other turbulence models. The RANS k −ω− s s t and URANS k −ω− s s t
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Figure 2.35: Time averaged drag (left) and lift (right) coefficient
variation in BARC for different inclination angles.

turbulence models show good approximation of the pressure along the
line on BC face as well, whereas RANS k −ε overshoots.

In the case of θI A = 0d e g , RANS k −ω− s s t and URANS k −ω− s s t
turbulence models show a good agreement with the reference solution
in faces CD and DA as well. When θI A is increased, vortex mixing can
be observed in the flow. This result in a complex flow field, for which
RANS k −ω− s s t turbulence model shows poor p approximation on the
faces CD and DA. This indicates that RANS k −ω− s s t is not suitable for
predicting flow fields where there are significant vortex mixing. Whilst
RANS turbulence models depict poor predictive capabilities in the CD
and DA surfaces, URANS k −ω − s s t turbulence model shows a good
agreement with the reference solution.

2.5.5 Velocity variation

Understanding velocity (i.e. u) is also crucial to understand how well these
turbulence models behave in complex CWE problems. Therefore velocity
distributions along lines perpendicular to the rectangular cylinder are
investigated. Figure 2.37 shows velocity distributions along line L1, L2, L3
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Figure 2.36: Pressure variation along the surface of BARC for
different inclination angles.
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(at 0.07 m , 0.175 m , and 0.28 m distances from point "A" along the center
line of surface). In here also, RANS k −ε shows poor agreement in velocity
distribution near walls which may be one of the reasons why it does not
show good approximation of p and hence the CD and CL variations. RANS
k −ω− s s t and URANS k −ω− s s t turbulence models show better near
wall effect prediction, among them URANS k −ω− s s t being the best.

Figure 2.38 shows velocity distributions along surface perpendicular lines
positioned at L4, L5, L6 (at 0.37 m , 0.475 m , and 0.58 m distances from point
"A" along the center line of surface). This represents velocity distributions
near the lower surface of the rectangular cylinder. As explained in the sec-
tion 2.5.4, vortex mixing near the lower surface makes it difficult to predict
velocity field accurately using RANS models. Even URANS k −ω− s s t tur-
bulence model shows slight deviations from the reference solution when
θI A ≥ 6 d e g , which is one of the main reasons for discrepancies shown in
figure 2.35. However, overall most accurate velocity field distribution is
predicted by the URANS k −ω− s s t turbulence model.
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Figure 2.37: Time averaged streamwise velocity variation along
lines in BARC deck top surface for different inclination angles.
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Figure 2.38: Time averaged streamwise velocity variation along
lines in BARC deck bottom surface for different inclination angles.
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2.5.6 Frequency variation

Drag and lift forces’ frequency distribution for different θI A angles are
illustrated in figure 2.39 for URANS k −ω− s s t turbulence model. Drag
force frequency shows small variations in the force amplitudes compared
to that of lift force variations. This is because, vortex shedding occurs in lift
direction in the BARC problem. This makes lift forces to have more promi-
nent oscillations than in the drag force direction. Hence this discussion
focuses mainly on lift force frequency distribution here onwards. There is
only one prominent lift force frequency shown for problems which have
θI A ≤ 4. The lift force frequency predicted by URANS k −ω− s s t is lower
than the reference solution, reducing the error as θI A increases. There are
two major frequencies present in the problems with θI A > 4 as depicted in
figure 2.39. One reason for this is, when θI A is increased, it produces vortex
mixing which becomes more significant for lift force predictions. URANS
k −ω− s s t turbulence model is capable of predicting two major lift force
frequencies, where highest is lower than the reference, and lowest is higher
than the reference. This makes URANS k −ω− s s t turbulence model also
less accurate on predicting frequency distribution even though it is good
at predicting time averaged p , u , CD , and CL variations for different θI A

values.
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Figure 2.39: Drag and lift coefficient frequency distribution in
BARC deck for different inclination angles.
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2.6 Conclusions and Outlook

A novel positivity preserving residual-based flux-corrected (RFC) stabiliza-
tion method adding artificial diffusion for solving convection-diffusion-
reaction (CDR) equation is presented for unstructured standard Galerkin
linear finite element formulation. This novel RFC stabilization method is
developed paying attention to its ability to obtain adjoint formulations for
adjoint sensitivity analysis. Then, it is tested against 2D scalar transport
problems having analytical answers. There, the novel RFC stabilization
method produced low errors for continuous solutions and relatively higher
errors for discontinuous solutions while preserving the positivity in both
solution types. Afterwards, the novel RFC stabilization method is applied
for different turbulent eddy-viscosity based turbulence modeling CDR
transport equations to identify its robustness in solving RANS equations.
k −ε, k −ω, and k −ω− s s t are chosen as the respective turbulence mod-
els for investigation. The solutions from all stabilization methods (includ-
ing RFC, Algebraic Flux Corrected (AFC), and Crosswind Diffusion (CWD)
methods) and turbulence models are compared against their respective
DNS or experiment results to evaluate physical meaningfulness of solu-
tions and to identify the effect of added artificial diffusion on solution via
stabilization. This study showed that the novel RFC stabilization method
can perform better or at least the same as the existing AFC method when
used in turbulence modeling for different flow fields. The CWD method
outperformed the novel RFC stabilization method, but the CWD method
proved infeasible to be used in large complex domains, where the novel
RFC stabilization and AFC methods are able to obtain satisfactory solu-
tions. Furthermore, the novel RFC stabilization and existing AFC methods
are evaluated against two different velocity and pressure flow variable
solvers: monolithic and fractional step. It was found that the novel RFC sta-
bilization method performs similarly to the AFC method in all turbulence
models based on the monolithic solver for flow variables. This method is
also able to obtain solutions similar to AFC for all turbulence models in the
fractional step method, indicating its flexibility in coupling with different
flow solvers. The fractional step study is carried out because monolithic
solvers become infeasible for problems with large complex domains. The
novel RFC stabilization method introduced two different controlling pa-
rameters which were not found to have significant influence over the final
converged solution for a given range of values, but they have influence
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over the rate of convergence.

Furthermore, the novel RFC stabilization method is used to solve a FSI
problem with turbulence models URANS k −ω and k −ω− s s t . Both tur-
bulence models produced almost similar solution fields. They predicted
the peak displacements slightly higher than the reference solution. How-
ever, both turbulence models were able to predict displacements within an
agreeable range except for the peak. Thereafter, BARC problem solutions
obtained from RANS k − ε, RANS k −ω− s s t , and URANS k −ω− s s t
using the novel RFC stabilization method are compared against a refer-
ence solution obtained from LES study. This included investigations of
flow fields for different inclination angles of the rectangular cylinder. After-
wards, drag coefficient, lift coefficient, pressure along the surface, velocity
near walls, and frequency distribution from RANS and URANS solutions
are compared against the reference solution. URANS k−ω−s s t produced
best agreeable solution in drag coefficient, lift coefficient, pressure along
the surface, velocity near walls whereas others depicted shortcomings
and RANS k −ε showing the least agreeable solution. However, URANS
k −ω− s s t turbulence model also depicted shortcomings in predicting
frequency distributions for different inclination angles.
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STEADY SENSITIVITY ANALYSIS

Sensitivity analysis is the study of how a response (i.e. goal) of a physical
system behaves when it is subjected to infinitesimal perturbations in the
input parameters (i.e. response function gradient w.r.t. input parameters).
This can also be recognized as the uncertainty of a response in a physical
system with respect to its input parameters. Sensitivity analysis is used
in many fields of research such as optimization, uncertainty quantifica-
tion, robustness estimation (Arriola et al. [8] and Gunzburger [55]). There-
fore, this chapter focuses on developing extensible, modular, and efficient
steady state sensitivity analysis for novel stabilization method introduced
in chapter 2. Developed steady state sensitivity analysis methodology acts
as a solid basis for further extensions required for development of transient
sensitivity analysis and goal oriented AMR as explained in chapter 1.

Sensitivities for a given response function can be determined mainly using
two methods namely "direct method" and "adjoint method". In the direct
method, the sensitivity of given number of response functions (i.e. M ) are
computed by first computing a reference solution (i.e. primal solution)
for a given input parameters which is followed by another solution com-
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putation with a perturbed input parameter as elaborated in Dickinson
et al. [39]. This method requires evaluating primal solutions for each input
parameter perturbation, which has a O (N ) cost complexity (where N be-
ing the number of input parameters). In CFD problems, it is of interest to
compute sensitivities with respect to domain discretization coordinates
(i.e. mesh nodal coordinates). Hence the number of input parameters for
sensitivity analysis will be prohibitively large to use in "direct approach"
since this requires N +1 primal solution evaluations.

The next method is the "adjoint approach". This method derives a La-
grange function from primal method’s governing equations’ residuals (i.e.
R a function of mesh nodal coordinates x and state variables w ) as equality
constraints to a mathematical optimization problem for a given response
function (i.e. J ) as depicted in equation (3.1). Thus, the Lagrange multipli-
ers (i.e. w̃ ) are computed by solving for extremum points of the Lagrange
function (i.e. adjoint problem) followed by sensitivity computation.

L = J
�

x , w
�

+ w̃ T R
�

x , w
�

(3.1)

The sensitivities with respect to nodal coordinates can be computed using
equation (3.2) where R̃ is the residual of the adjoint problem.

d L

d x

T

=
∂ J

∂ x

T

+ w̃ T ∂ R

∂ x
+

�

∂ J

∂ w

T

+ w̃ T ∂ R

∂ w

�

︸ ︷︷ ︸

R̃
T

d w

d x
(3.2)

The generalized formulations of Lagrange function (equation (3.1)) and its
sensitivity derivatives (equation (3.2)) require the adjoint problem to be
solved (i.e. R̃ = 0) as depicted in equation (3.3).

w̃ T ∂ R

∂ w
=−

∂ J

∂ w

T

=⇒
d J

d x

T

=
d L

d x

T

=
∂ J

∂ x

T

+ w̃ T ∂ R

∂ x
(3.3)

In the case of two equation turbulence model RANS k −ε primal problems,
the R has the momentum equation residuals (i.e. R u , R v , R w ), continuity
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equation (i.e. R p ), turbulent kinetic energy equation (i.e. R k ), and turbu-

lent dissipation rate equation (i.e. R ε). The w represents
�

u , v, w , p , k ,ε
�T

,

and Rφ,ω =
∂ Rφ
∂ ω .

∂ R

∂ w
=





























R u ,u R u ,v R u ,w R u ,p R u ,k R u ,ε

R v,u R v,v R v,w R v,p R v,k R v,ε

R w ,u R w ,v R w ,w R w ,p R w ,k R w ,ε

R p ,u R p ,v R p ,w R p ,p R p ,k R p ,ε

R k ,u R k ,v R k ,w R k ,p R k ,k R k ,ε

Rε,u Rε,v Rε,w Rε,p Rε,k Rε,ε





























(3.4)

3.1 Adjoint Element Formulation Implementation

The adjoint local element matrix depicted in equation (3.4) has derivatives
for each governing equation residual with respect to all solvable variables.
Often times, it can be found from literature that derivatives of turbulence
viscosity is neglected (i.e. "frozen turbulence": ∂ νt

∂ φ = 0) (Anderson et al. [4],
Jameson et al. [68], Othmer [105], and Papadimitriou et al. [106]). It makes
computation of ∂ R

∂ w simplified because terms R u ,k , R u ,ε, R v,k , R v,ε, R w ,k ,
R w ,ε, R p ,k , R p ,ε becomes zero, thereby not anymore requiring to calculate
any of the derivatives of turbulence transport residuals (i.e. R k , R ε). How-
ever, this simplification may cause deviations in calculated sensitivities
(Zymaris et al. [152]). Therefore, in this study a methodology is developed
to calculate total derivatives effectively and efficiently, while making it
extensible for any turbulence model of interest. This is important because,
if primal is solved with a different turbulence model (i.e. k −ω, k −ω− s s t ,
or extending to support energy equation adjoints) and extensibility is not
considered, then it may require implementing the local element matrix
without the ability to reuse already implemented residual derivatives such
as R u ,u which does not depend on the chosen turbulence model. This
may create opportunities for redundant code, inefficiencies, and errors.
All of the local element matrices are computed at element level for each
gauss point in adjoint solution, hence these calculations need to be effi-
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cient as possible. All of these points out that there is a need for a adjoint
formulation implementation which is flexible/extensible and also efficient
while keeping the redundancies to minimum for better maintainability.
In the context of efficiency, there are few places to look at such as where
value storage should take place when computing derivatives. Since "Kratos
Multiphysics" is having a C++ backend, it allows us to use either "stack
memory" or "heap memory". The stack memory is faster than heap mem-
ory because stack allocation is based on last-in-first-out manner (Ferres
[43]). Therefore, where ever possible, the variables are stored in stack mem-
ory than heap memory in the adjoint formulation implementations.

3.1.1 Primal problem

In order to understand what is required for the adjoint formulation, first it is
important to look at the primal problem. Two equation turbulence models
in RANS consist of momentum equations as depicted in equation (3.5)
where u = [u , v, w ], continuity equation as depicted in equation (3.6), and
two scalar transport equations as shown in equation (3.7) where φ can
be either k , ε, orω in respective k − ε, k −ω, or k −ω− s s t turbulence
models.

rui
= u j

∂ ui

∂ u j
−
∂

∂ x j

�

�

ν+νt

� ∂ ui

∂ x j

�

+
1

ρ

∂ P

∂ xi
− g i = 0 (3.5)

rp =
∂ ui

∂ xi
= 0 (3.6)

ru , rv , rw has νt term which depends on the turbulence model being used.
This is computed via "Constitutive Laws" present in "Kratos Multiphysics"
framework. For each turbulence model, different constitutive laws are
implemented. The constitutive laws are made with an interface to compute
derivatives of νt . Hence, the same constitutive law is used in adjoints to
get derivatives such as ru ,k , rv,k , rw ,k which only have contributions from
derivatives of νt .

rφ = uφ,i
∂ φ

∂ xi
−
∂

∂ xi

�

νφ
∂ φ

∂ xi

�

+ sφφ− fφ = 0 (3.7)
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Scalar transport equation depicted in equation (3.7) is used to compute
scalar turbulence quantities used in RANS turbulence models. It consist
of effective velocity (i.e. uφ,i ), effective kinematic viscosity (i.e. νφ), reac-
tion term (i.e. sφ), and source term (i.e. fφ). "ConvectionDiffusionReac-
tionElementData" interface is developed with member variables "mEf-
fectiveVelocity" to store uφ,i , "mEffectiveKinematicViscosity" to store νφ ,
"mReactionTerm" to store sφ , and "mSourceTerm" to store fφ . "Calculate-
GaussPointData" method calculates all of these variables for each gauss
point once and stores in the derived class primal data container (such
as "KElementData"). These variables are stored in the stack memory of
the common primal data container which is then used to obtain different
derivatives multiple times, and computing these coefficients on the fly
would be redundant and time consuming.

3.1.2 Adjoint problem

Adjoint problem as depicted in equation (3.4) requires to compute deriva-
tives of each residual w.r.t. each solving variable. Momentum equation
residual w.r.t. u , v, w , p does not change with turbulence models except
for the contributions from νt derivatives w.r.t. all the solving variables.
Thereforeνt derivatives are implemented in the "Constitutive Laws" which
already has an interface to compute and provide derivatives.

On the other hand, scalar transport equation has only four coefficients
which need to be given in the primal problem, consequently only four
derivatives of coefficients required in the adjoint problem. Therefore an in-
terface with "CalculateEffectiveVelocityDerivative",
"CalculateEffectiveKinematicViscosityDerivative", "CalculateReactionTer-
mDerivative", and "CalculateSourceTermDerivative" is implemented to
compute each coefficients’ derivatives respectively. These methods are
made to compute derivatives on the fly because they are always only called
once per gauss point so there is no point in storing them.

3.1.3 Stabilized residual derivatives

Equation (3.5), equation (3.6), and equation (3.7) illustrate strong form
residuals of the governing equations. These strong form residuals are trans-
formed to weak formulations in the context of FEM. The bare weak formula-
tions of these strong form residuals are present with numerical instabilities
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(refer chapter 2), therefore stabilization terms are introduced in the primal
problem. Hence it is required to compute derivatives of the weak formula-
tion (i.e. derivatives of Ru , Rv , Rw , Rk , Rε, Rω) which includes derivatives of
coefficients as well as stabilization terms. "RFCVariableDerivatives" class
is designed to compute these derivatives. It takes one template argument
"T" which provides derivatives of the coefficients used in the scalar trans-
port equations. As an example, in figure 3.1, "RFC_CDR_U_Derivative"
represents R k ,u derivative computation class, "RFC_CDR_P_Derivative"
represents R k ,p derivative computation class.

3.1.4 Adjoint element formulation

The most naive way of computing adjoint local element matrix would be
to compute each residual contribution matrix separately and add the final
discrete matrices at the end. This may require computing same gauss point
quantities repeatedly which will have a major impact on the computational
efficiency.

Algorithm 4 illustrates basic flow in building the adjoint element matrix.
dφ corresponds to data holders for each equation ∀φ ∈

�

u , v, w , p , k ,ε
	

.
These equation data holders are implemented such that stack memory al-
location is maximized and heap memory allocations are minimized. dφw
holds respective residual equation’s (i.e. φ) derivatives with respect to
each variable (i.e. w ) used in the residual equation. It has one constructor
argument which passes its residual equation data holder (i.e. dφ). So these
equation derivatives are designed not as data holders but as execution
methods using data from equation data holders. This is because there
needs to be a different object for each equation and its derivatives; and
each derivative with respect to design variable may not hold common
data. All of these objects are created in the stack memory space to en-
hance the efficiency of the overall computation. "CalcGaussPointData"
method involves calculating gauss point data of the primal and common
data for the adjoints as well. This is done once and given to all the equation
derivative objects (i.e. dφw ). "CalcGaussPointResidualsDerivativeCon-
tributions" method takes in output vector (i.e. rφw ), nodal index (i.e. c ),
and derivatives of shape function data.

Figure 3.1 illustrates a representative class diagram of the adjoint element
implementation. "ConvectionDiffusionReactionElement" is the primal el-
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Figure 3.1: Primal and adjoint element class diagram.
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Algorithm 4 Local system matrix building procedure for k −ε turbulence
model.

procedure CALCULATELOCALSYSTEM(Element E, Matrix Output)
Ws← Gauss point weights
Ns← Shape function values at gauss points
dNdXs← Shape function derivative values at gauss points
dφ←Rφ(E ) ▷ ∀φ ∈

�

u , v, w , p , k ,ε
	

dφw ←Rφ,w (dφ) ▷ ∀φ×w ∈
�

u , v, w , p , k ,ε
	2

rφw ←V e c t o r
for g <Number of gauss points do

W ←W s [g ]
N ←N s [g ]
d N d X ← d N d X s [g ]
dφ.CalcGaussPointData(

W , N , d N d X ) ▷ ∀φ ∈
�

u , v, w , p , k ,ε
	

for c <Number of points do

following two operations are ∀φ×w ∈
�

u , v, w , p , k ,ε
	2

dφw .CalcGaussPointResidualsDerivativeContributions(
rφw , c , W , N , d N d X )

AssembleVectorToMatrix(Output, rφw )

dφ.CalcDataAfterGaussPointPointLoop() ▷ ∀φ ∈
�

u , v, w , p , k ,ε
	

for c <Number of points do

following two operations are ∀φ×w ∈
�

u , v, w , p , k ,ε
	2

dφw .CalcAfterGaussPointPointLoop(rφw , c )
AssembleVectorToMatrix(Output, rφw )

ement which is used in solving the primal problem. This element includes
the general weak formulation (refer equation (2.14)) with stabilization.
The coefficients of generalized CDR equation (i.e. uφ ,νφ , sφ , fφ) is defined
via respective equation’s element data (example "KElementData") which
is derived from "ConvectionDiffusionReactionElementData". The class
"Data" is the data holder for stabilized general CDR weak formulation.
"KElementDerivativeData" is the data holder for adjoint element’s k equa-
tion which is derived from "KElementData" data to have maximum reuse
of the existing classes. "KElementUDerivative", "KElementPDerivative",
"KElementKDerivative", "KElementOmegaDerivative" are the derivatives
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of k equation w.r.t. u , p , k ,ω variables. They are designed not to hold
any data except their common data storage object reference (i.e. "KEle-
mentDerivativeData"). "RFCVariableDerivatives" class is used to compute
derivatives of the stabilized CDR equation where coefficient derivatives
are given by the template parameter "T" (refer "RFC_CDR_U_Derivative",
"RFC_CDR_P_Derivative", ...). Finally the class "RFCConvectionDiffusion-
ReactionAdjointElement" computes the adjoint element matrix using each
equations’ derivatives. This structure is made while avoiding virtual table
calls, and all the derivatives are defined at compiler time using template
arguments increasing the run-time efficiency. The other advantage of this
structure is, it is easily extensible to any stabilized CDR formulation be-
cause one only has to implement its storage container and the coefficient
derivatives of the CDR transport equation.

3.1.5 Adjoint slip condition formulation implementation

Slip condition is one of the useful boundary conditions in fluid dynamics.
When slip condition is applied, it makes the velocity along the boundary to
be always in the tangential plane making the normal direction component
to be zero. This is heavily used when simulating far field boundaries which
are supposed to have zero gradient velocity in the wall normal direction
near the boundaries due to zero traction along the far field surface. This can
be achieved in different ways, one is applying constraints on the degrees
of freedom which are perpendicular to the normal and penalizing them,
secondly, solving the solution in a rotated coordinate system which is
aligned with the normal. In the latter case, this can be achieved by simply
using a rotation matrix as depicted in equation (3.8) where R̂ is the rotated
residual and C is the node based rotation matrix.

R̂ =CR (3.8)

The adjoint problem formulation is depicted in equation (3.9).

w̃ T ∂ R̂

∂ w
= w̃ TC

∂ R

∂ w
=−

∂ J

∂ w

T

(3.9)
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Afterwards, shape sensitivity can be computed using equation (3.10).

d L

d x
=
∂ J

∂ x

T

+ w̃ T ∂ R̂

∂ x

=
∂ J

∂ x

T

+ w̃ T

�

∂ C
∂ x

R +C
∂ R

∂ x

� (3.10)

The node based rotation matrix (i.e. C) is computed based on nodal nor-
mals. Nodal normals are computed by first computing boundary surface
normals and then distributing boundary surface normals to their corre-

sponding nodes. Therefore, the term ∂ C
∂ x will have contributions w.r.t. nodal

position of itself and its neighbouring nodal positions as well. As we men-
tioned in previous chapters (refer chapter 1 and 2), it is important to have
distributed memory supported adjoint problem solving capabilities con-
sidering the fact that CFD problems have a large number of degrees of
freedom hence the adjoint problem will also have a large number of de-
grees of freedom. In the case of nodal normal computation in distributed
memory architecture, it can be achieved via assemble methods available
in "Kratos Multiphysics". But for adjoints, it is required to have node based
rotation matrices derivatives w.r.t. node itself and its neighbouring nodes.
These neighbouring nodes may not fall in the same distributed memory
partition in a distributed memory problem solve. Therefore it is required
to carefully collect all the derivatives from all partitions which are required
and assemble the final matrix.

This is achieved through a concept called "GlobalPointers". GlobalPointers
holds memory locations of each node in each owning distributed memory
partition. If one node’s neighbours are in a remote partition, then this node
will have all the GlobalPointers for neighbour nodes. These GlobalPoint-
ers are used to identify and assemble the node based rotation matrix’s
derivatives.

3.2 Testing and Verification

The next part of this chapter is dedicated to one of the most important
aspects of software implementations which is testing and verification. It
is important to design unit tests which can test small parts of the more
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complicated adjoint solvers as well as to validate sensitivities obtained by
them.

3.2.1 Unit testing

Unit tests are developed for each of the primal residual data holders (i.e.
dφ in algorithm 4) with random value initialization for mesh nodes. Fur-
thermore, unit tests for primal elements are also developed in the same
manner by randomly initialized nodal quantities to ensure expected ma-
trices are built when constructing local system matrices.

3.2.2 Verification

Verification is carried out using finite difference method at two different
levels. First level is at the derivative data holder level (i.e. dφw in algorithm
4, or "RFC_CDR_U_Derivative"... in figure 3.1). All the derivative methods
in the interface are verified against finite difference sensitivities calculated
from nodal quantity perturbations.

∂ q

∂ p
≈

q (p +∆p )−q (p )
∆p

(3.11)

Equation (3.11) is used to calculate finite difference approximation to
analytical sensitivities where q is the function of interest, p being the dif-
ferentiation variable. The perturbations(i.e.∆p ) are chosen carefully after
a perturbation study to avoid having issues related to noise due to smaller
perturbations, and to avoid having issues related to non-linearity due to
larger perturbations. Secondly, verification based on finite difference sen-
sitivities is carried out on the method "CalculateLocalSystem" for each
turbulence model, each residual equation, and each dependent variable
for comprehensive testing of the adjoint local element matrix.

3.3 Numerical Experiment

This numerical investigation is designed to investigate the influence on
different two equation RANS turbulence models on drag optimization.
The experiment is carried out with k −ε, k −ω, and k −ω− s s t turbulence
models.
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3 Steady Sensitivity Analysis

3.3.1 Experimental setup

The fluid domain Ω = (−22.5D , 22.5D )× (−16D , 16D )⊂R2 chosen after a
domain size study is illustrated in figure 3.2 where D = 0.1m . Inlet (i.e.
Γi nl e t is applied with a constant velocity (i.e. ui nl e t ), and turbulence quan-
tities determined using turbulence intensity of 5% and turbulent mixing
length of 45D . Outlet (i.e. Γo u t l e t ) is applied with 0 P a Dirichlet boundary
condition for P , zero gradient boundary conditions for u , k ,ε,ω variables.
Slip condition (i.e. Γ f a r ) is applied on top and bottom slip boundary for u
variable, and all other variables are applied with zero gradient boundary
condition. Linear-log law wall functions developed by Launder et al. [80]
are used on aerofoil boundary (i.e. Γs ) to accommodate wide range of
meshes with y + ∈ (0, 300) in the first element near the wall boundary.

Figure 3.2: Aerofoil problem configuration used in RANS in 2D.

Figure 3.3 illustrates the overall mesh (refer figure 3.3(a)) and enlarged
view of the same mesh near the initial aerofoil geometry (refer figure 3.3(b))
consisting of 20183 triangle elements.

3.3.2 Optimization procedure

Drag and lift forces are the interested scalar QOIs in this numerical experi-
ment because, the aerofoil’s usefulness depends on having maximum lift
with minimum drag force. Equation (3.12) describes optimization problem
of interest.
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(a) Initial overall mesh (b) Initial enlarged mesh

Figure 3.3: Initial mesh for 2D aerofoil optimization problem.

min
s

Jd r a g

�

w (s ), s
�

subjected to

Rφ = 0 ∀φ ∈
�

u , v, w , p , k , (εorω)
	

Gc e n t r o i d

�

s
�

= 0

Jl i f t

�

w (s ), s
�

= Jl i f t

�

w (s i ni t i a l ), s i ni t i a l

�

(3.12)

Gc e n t r o i d is computed by averaging all nodal coordinate deviations along
aerofoil boundary as illustrated in equation (3.13) where N represents
number of nodes in Γs . It is applied to constrain aerofoil geometry to be
present at the center of Ω for all the design iterations.

Gc e n t r o i d =











1

N

N
∑

i=1

x i − x i ni t i a l
i











2

2

(3.13)

Initially this study was carried out with
Jl i f t

Jd r a g
as the sole objective for mini-

mization problem. This can give rise to numerical instabilities and signifi-
cant oscillating response in the optimization process. Therefore, Jd r a g is
used as the minimization problem while Jl i f t is used as a constraint keep-
ing the initial lift force through out the optimization process to achieve a

similar effect as maximizing
Jl i f t

Jd r a g
.
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3 Steady Sensitivity Analysis

First of all, the aforementioned minimization problem is solved using a
flow problem where ui nl e t = 1.0 m s−1 withν= 1×10−1 m 2s−1 representing
a flow of R e = 1. Algorithm 5 is used as the optimization procedure for this
problem. RANS turbulence models introduced and implemented in sec-
tion 2.3.1 are used to solve these primal problems. Afterwards, algorithm
6 explains the procedure in detail which is used to solve aforementioned
minimization problem for a chaotic problem where ν = 1× 10−5 m 2s−1.
The chaotic minimization problem is solved with and without frozen tur-
bulence assumption for k −ε and k −ω turbulence models. Each of them
consists of four different phases where each phase is performed with 100
design iterations. First two phases are considered as ramping up phases
where inlet is applied with constant velocity of ui nl e t = 1.0m s−1 which
corresponds to R e = 1×104. This is followed by a second two phases, which
apply constant inlet velocity of ui nl e t = 10.0m s−1 which corresponds to
R e = 1×105. After each phase, an Ω from all the design iterations of that
phase is selected corresponding to best lift to drag ratio. Then this selected
Ω is refined using AMR based on Hessian approach (Mataix Ferrándiz [90]).
Afterwards, refined mesh is used as the initial mesh for the next phase.

Algorithm 5 2D aerofoil lift to drag ratio optimization procedure for non-
chaotic flow.
Ω j ← initial design with discretized fluid domain
j ← 1
for j ≤ 400 do

Solve primal problem with Ω j

Solve Jl i f t adjoint problem with Ω j and calculate ∂
∂ s

�

Jl i f t

�

Solve Jd r a g adjoint problem with Ω j and calculate ∂
∂ s

�

Jd r a g

�

Compute ∂
∂ s

�

Gc e n t r o i d

�

in Ω j

Compute final shape update using gradient projection method
Compute vertex morphed shape update
Change Γs according to shape update
j ← j +1
Ω j ← solved mesh for updated shape

Both ∂
∂ x

�

Jl i f t

�

and ∂
∂ x

�

Jd r a g

�

require the same primal solution for each
design iteration. Therefore, these two response functions are developed
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Algorithm 6 2D aerofoil lift to drag ratio optimization procedure for chaotic
flow.
Ωb e s t

0 ← initial design with discretized fluid domain
i = 1
for i ≤ 4 do

if i ≤ 2 then
ui nl e t = 1.0 m s−1 ▷ Corresponds to R e = 1×104

else
ui nl e t = 10.0 m s−1 ▷ Corresponds to R e = 1×105

j = 1
Ω j ←Ωb e s t

i−1
for j ≤ 100 do

Solve primal problem with Ω j

Solve Jl i f t adjoint problem with Ω j and calculate ∂
∂ s

�

Jl i f t

�

Solve Jd r a g adjoint problem with Ω j and calculate ∂
∂ s

�

Jd r a g

�

Compute ∂
∂ s

�

Gc e n t r o i d

�

in Ω j

Compute final shape update using gradient projection method
Compute vertex morphed shape update
Change Γs according to shape update
j ← j +1
Ω j ←Optimized mesh using Mmg mesh optimization

Ωb e s t
i ← Refined Ωk

§

k ∈ [1, 100] :
�

Jl i f t

Jd r a g

�

m
≤
�

Jl i f t

Jd r a g

�

k
∀m ∈ [1, 100]

ª

i ← i +1

such that whichever is computed first will solve the primal problem and
store solution fields using check pointing method developed using HDF5
format (The HDF Group [127]). Then the second response function will use
the same solution data from the primal solution which is already solved.
Afterwards geometric constraint’s shape derivatives are computed (i.e.
∂
∂ x

�

Gc e n t r o i d

�

). Gradient projection method by Geiser et al. [51] is used to
combine constraints and response function shape sensitivities to obtain
final shape update on Γs . Computed shape updates consist of numerical
noise. Therefore vertex morphing method by Baumgärtner et al. [13] and
Bletzinger [16] is used to smoothen the computed shape update. Steepest
descend algorithm is used to solve minimization problem with a constant
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step size within a phase. This step size is reduced between each phase
by 50% to allow further exploration of the design space to optimize the
obtained design in the previous phase.

3.4 Results

Until now we have discussed implementation of steady state adjoints for
sensitivity analysis and introduced numerical experiments. This section
focusses on systematic analysis and discussion of results from the numeri-
cal experiments. First, results from the optimization process with R e = 1
non-chaotic flow is discussed, then followed by the discussion of results
from the optimization process in the chaotic flow.

3.4.1 Non-chaotic flow optimization process

First Γs surfaces obtained via optimization process using RANS turbulence
models are compared. Then it is followed by the lift to drag ratio varia-
tion comparison for the same turbulence models. Afterwards, lift forces’
and drag forces’ variations are compared between the RANS turbulence
models. The implemented variation of RANS k −ε turbulence model has
deficiencies in modelling low R e flow problems, therfore this non-chaotic
flow problem is solved using only RANS k −ω and k −ω− s s t turbulence
models.

Figure 3.4 and figure 3.5 illustrate Γs surfaces in each design iteration
obtained by the optimization process using the RANS k−ω and k−ω−s s t
turbulence models respsectively. Design surfaces for iterations 50, 100
and 400 are depicted in figure 3.4(a), figure 3.4(b) and figure 3.4(c) for
k −ω turbulence model and figure 3.5(a), figure 3.5(b) and figure 3.5(c) for
k −ω− s s t turbulence model. They illustrate that, for the flow problem
with R e = 1 non-chaotic case, the designs obtained from the optimization
process using different RANS turbulence models do not exhibit significant
differences in each design iteration.

Lift to drag ratio comparison

Figure 3.6 comapres lift to drag ratio variations in design iterations for
RANS k −ω and k −ω− s s t turbulence model. This depicts that corre-
sponding lift to drag ratios do not show differences for different turbulence
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(a) Design iteration 50 (b) Design iteration 100 (c) Design iteration 400

Figure 3.4: Design iterations’ Γs surfaces for optimization
process with k −ω turbulence model used in R e = 1 flow problem.

(a) Design iteration 50 (b) Design iteration 100 (c) Design iteration 400

Figure 3.5: Design iterations’ Γs surfaces for optimization
process with k −ω− s s t turbulence model used in R e = 1 flow

problem.

models because obtained Γs surfaces are similar in each design iteration.
This indicates that the use of different RANS turbulence models can obtain
similar results using the optimization procedure for R e = 1 case.

Lift and drag force comparison

In order to further analyse lift to drag ratios (refer figure 3.6), the lift force
variations (refer figure 3.7) and drag force variations (refer figure 3.8) in
the optimization process for R e = 1 flow problem solved using RANS k −ω
and k −ω− s s t turbulence models are presented here.

Lift forces computed using each turbulence model depict values having
same order of magnitude with small differences. They also illustrate rapid
fluctuations between iterations after design iteration 75 eventually causing
lift to drag ratios to exhibit the same rapid fluctuations in design iterations
for both turbulence models. Drag force fluctuations depicted in figure 3.8
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Figure 3.6: Lift to drag ratio variations in design iterations for
different turbulence models in R e = 1 flow optimization.
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Figure 3.7: Lift force variations in design iterations for different
turbulence models used in flow problem with R e = 1.
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Figure 3.8: Drag force variations in design iterations for different
turbulence models used in flow problem with R e = 1.

show decreasing trend for optimization procedures with each turbulence
model. Both RANS k −ω and k −ω− s s t turbulence models show similar
reductions in drag force indicating both optimization cases with different
RANS turbulence models present similar results.

3.4.2 Chaotic flow optimization process

Turning now to the chaotic flow results, first lift to drag force ratio varia-
tions are compared between each turbulence model obtained for chaotic
flow problem using the optimization procedure where sensitivities are
computed with and without the frozen turbulence assumption. This is fol-
lowed by comparison of drag force minimization in the same optimization
process. Afterwards, a discussion about constraints are also carried out.

Lift to drag ratio comparison

Figure 3.9 illustrates lift to drag force ratio variations in each design itera-
tion for each turbulence model used in the optimization procedure. Best
design iterations’ design surfaces (i.e. Γs ) for each turbulence model and
each phase are illustrated in table 3.1 where frozen turbulence is assumed

81



3 Steady Sensitivity Analysis

in sensitivity calculation and in table 3.2 where sensitivities are computed
without the frozen turbulence assumption.
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Figure 3.9: Lift to drag ratio variations in design iterations for
different turbulence models for chaotic flow problem [Top: k −ε,

middle: k −ω, bottom: k −ω− s s t ].

Phase 1 (i.e. design iterations between 0-100), and phase 2 is conducted
with ui nl e t = 1.0 m s−1 which corresponds to R e = 1×104, whereas phase
3 and phase 4 is conducted with ui nl e t = 10.0 m s−1 which corresponds to
R e = 1×105. It can be seen from figure 3.9 that the lift to drag values vary
within a small interval for phase 1 and 2 than the interval of phase 3 and 4.
This is due to increased R e in phase 3 and 4 which causes notable differ-
ences in lift to drag ratio. There are significant jumps in lift to drag ratio
present in the optimization process with all three turbulence models at
design iterations 200 and 300. Main reason for this jump at 200t h iteration
is the increase in R e . Notable jump at 300t h iterations is further analyzed
in the following section 3.4.2.

When comparing the lift to drag ratios in a given tubulence models with and
without the frozen turbulence assumption, it can be seen from figure 3.9
that k −ω turbulence model shows lower lift to drag ratios when frozen
turbulence assumption is used. However, k −ε turbulence model shows
almost similar lift to drag ratios with and without the frozen turbulence
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Table 3.1: Best design iteration Γs surface for each turbulence
model in each phase of optimization process in chaotic flow

problem with frozen turbulence assumption.

Phase
Turbulence model

k −ε k −ω

1

Design itr. 94 Design itr. 95

2

Design itr. 106 Design itr. 147

3

Design itr. 205 Design itr. 245

4

Design itr. 305 Design itr. 302

assumption. In order to understand this better, this is also further analyzed
in the following section 3.4.2.

Lift and drag force comparison

The lift and drag force variations for phase 3 and 4 are illustrated in fig-
ure 3.10 and figure 3.11 respectively for optimization processes with all
turbulence models.

Optimization process with k −εwith and without the frozen turbulence
assumption shows a notable jump in lift force at 300t h iteration (refer
figure 3.10). However the drag force does not show a significant jump for
the same model when sensitivities are computed without the frozen tur-
bulence assumption. In the case of optimization procedures with k −ω
and k −ω− s s t turbulence models exhibit significant jumps in drag force,
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Figure 3.10: Lift force variations in design iterations in phase 3
and 4 for different turbulence models in solving chaotic flow

problem [Top: k −ε, middle: k −ω, bottom: k −ω− s s t ].
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Figure 3.11: Drag force variations in design iterations in phase 3
and 4 for different turbulence models in solving chaotic flow

problem [Top: k −ε, middle: k −ω, bottom: k −ω− s s t ].
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Table 3.2: Best design iteration Γs surface for each turbulence
model in each phase of optimization process in chaotic flow

problem without frozen turbulence assumption.

Phase
Turbulence model

k −ε k −ω k −ω− s s t

1

Design itr. 97 Design itr. 44 Design itr. 46

2

Design itr. 107 Design itr. 153 Design itr. 122

3

Design itr. 242 Design itr. 211 Design itr. 231

4

Design itr. 396 Design itr. 341 Design itr. 392

but not with the lift force. Lift forces calculated on all the design itera-
tions obtained assuming frozen turbulence depict lower values than the
same obtained using the respective turbulence model without the frozen
turbulence assumption. In the case of drag forces, optimized designs ob-
tained using k−ε turbulence model with the frozen turbulence assumption
demonstrate lower values than its counter part which is obtained without
using the frozen turbulence assumption. This is the reason why optimized
designs obtained using k −ε turbulence model show similar lift to drag
ratios despite the fact that frozen turbulence assumption is used or not.
However, the optimized designs obtained using k −ω turbulence model
with the frozen turbulence assumption illustrate similar drag forces com-
pared to its counter parts which are obtained without the frozen turbulence
assumption. This leads to reduced lift to drag ratios which are depicted in
figure 3.9.
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Figure 3.12 illustrates discretized fluid domain as well as the design surface
on each of the design iterations where they have undergone AMR in the
optimization procedure with k −ε turbulence model where sensitivities
are computed without the frozen turbulence assumption. Figure 3.12(a)
and figure 3.12(d) illustrate similar design surfaces, latter one with a more
refined fluid domain discretization. Because of the similarity in design
surface, lift to drag ratio does not show any significant jumps at 100t h

iteration (refer figure 3.9). It suggests that performing AMR procedure is
not affecting the final solution. Thereby indicating no mesh dependence
is visible in these results for that particular flow R e . On the other hand,
design iteration 201 and 301 show major differences in design surface
which caused lift forces to have a considerable jump. This is because these
iterations use discretized fluid domains obtained after performing AMR
on their respective previous phase’s best designs (refer table 3.2).

(a) Design iteration 100 (b) Design iteration 200 (c) Design iteration 300

 

(d) Design iteration 101

 

(e) Design iteration 201

 

(f) Design iteration 301

Figure 3.12: Design iteration fluid domain discretizations for
optimization process with k −ε turbulence model used in chaotic

flow problem solving.

In the same way, the jumps observed in optimization processes with k −ω
and k −ω−s s t turbulence models without the frozen turbulence aasump-
tion can be explained by observing figure 3.13 and figure 3.14 respectively.
They depict each fluid domain discretizations for each phases’ initial and
final design iterations where frozen turbulence is not assumed.
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(a) Design iteration 100 (b) Design iteration 200 (c) Design iteration 300

 

(d) Design iteration 101

 

(e) Design iteration 201

 

(f) Design iteration 301

Figure 3.13: Design iteration fluid domain discretizations for
optimization process with k −ω turbulence model used in solving

chaotic flow problem.

Figure 3.14 depicts design surfaces obtained with k −ω− s s t turbulence
model. These designs show higher lift to drag ratio values in all the phases
suggesting k −ω− s s t turbulence model is superior in optimizing lift to
drag ratio.

Optimization of these aerofoil surfaces under chaotic flows has been an
interesting research field for past few decades (refer work by Ferreira et al.
[42], Hicks et al. [58], and Najian Asl [100]). In order to compare the op-
timized design surfaces from the proposed approach with the literature,
NACA0012 at R e = 1× 105 design surface with an AoA which result in
having the same lift coefficient as of the best optimized design surface
from the proposed optimization procedure is chosen. The best design
from the current optimization approach is obtained from the optimization
procedure using RANS k −ω− s s t turbulence model. It has a chord length
of 0.246m which corresponds to CL = 0.456 and CD = 0.025 which leads
to CL

CD
= 18.938. The corresponding values for NACA0012 are CL = 0.454,

CD = 0.014 and CL
CD
= 32.429. This indicates that even though the pro-

posed optimization procedure is capable of optimizing the given initial
geomeotry, it is still not reaching for the design with the most optimum
lift to drag ratio. One reasoning behind this is, the optimization procedure
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introduced in this section uses constant step sizes and constant vertex mor-
phing radii which makes the optimizer to adapt designs with coarser step
sizes and vertex morphing radii at the obtained optimum design. This re-
sults in oscillating behaviour for the observed QOI. Another reason for not
obtaining the most optimium design is that, the phases in the optimization
procedure is not run until each phases convergence of the QOI.

Another siginificant observation is, that the optimized designs for k −ε
and k −ωwhere sensitivities are computed without the frozen turbulence
assumption illustrate novel features compared to most optimum design
given by the NACA0012 configuration. These novel protruding features are
visible at the back of the aerofoil configuration. However, these protruding
features are not visible in the same turbulence models when frozen tur-
bulence assumption is used resulting with almost similar shape as in the
designs obtained from k −ω− s s t turbulence model without using the
frozen turbulence assumption. This indicates that, not having the frozen
turbulence assumption may result with designs having protruding features
after flow seperation point for k −ε and k −ω turbulence models. On the
other hand, k −ω− s s t turbulence model without the frozen turbulence
assumption is capable of computing better optimized designs than any
other turbulence model with or without the frozen turbulence assumption
indicating its better applicability in an optimization problem.

Constraints

In addition to discussion about lift and drag, it is also important to ana-
lyze behavior of constraints throughout the optimization procedure. Two
external equality constraints are used in this numerical experiment.

Figure 3.15 illustrates Gc e n t r o i d constraint value variation with design it-
erations for each of the turbulence models used. This constraint does not
exhibit any non-linear behavior, thereby it does not show any significant
constraint violations. This is also evident in the discretized fluid domains
where the optimization procedure is successful in placing the design sur-
face closer to the initial position.

Although Gc e n t r o i d has not shown significant violations, Jl i f t constraint
shows notable violations. This is because Jl i f t being a highly non-linear
constraint (refer figure 3.16). Despite the significant constraint violations,
the significance of constraint violations are reduced more in phase 4 when
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(a) Design iteration 100 (b) Design iteration 200 (c) Design iteration 300

 

(d) Design iteration 101

 

(e) Design iteration 201

 

(f) Design iteration 301

Figure 3.14: Design iteration fluid domain discretizations for
optimization process with k −ω− s s t turbulence model used in

solving chaotic flow problem.
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 constraint variations in design
iterations for different turbulence models [Top: k −ε, middle:

k −ω, bottom: k −ω− s s t ].
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 constraint variations in design

iterations for different turbulence models [Top: k −ε, middle:
k −ω, bottom: k −ω− s s t ].

compared to other phases of optimization procedure. This suggest that
having a refined step size in gradient descend optimization algorithm
helps in finding optimized shapes having relatively reduced constraint
violations.

3.4.3 Comparison of non-chaotic and chaotic flow optimization
processes

By looking at the results from section 3.4.1 and section 3.4.2, it is evident
that optimization cases with chaotic flow where no frozen turbulence is
assumed resulted in different Γs surfaces for different RANS turbulence
models whereas non-chaotic flow resulted in similar Γs surfaces. This
section focuses on investigating further to identify main cause for this
behaviour in different turbulence models when utilized in chaotic flow
optimization problems. Therefore, first the description on how drag and
lift forces are computed is discussed, then followed by a discussion on
the comparison of the primal and the adjoint solution fields of the first
design iteration for the both non-chaotic and chaotic optimization cases
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for different RANS turbulence models.

Drag and lift force computation

In order to compute drag and lift forces, first reactions on the Γs surface’s
mesh coordinates are computed by using the weak formulation of conti-
nuity equations (i.e. R u , R v and R w ) derrived from the strong form for-
mulations depicted in equation (3.5) (Reader is referred to Cotela Dalmau
et al. [35] for exact implementation details of the mentioned residuals).
The residuals R u , R v and R w are computed using only the element contri-
butions in the case where wall functions are used. Reaction force computa-
tion is illustrated in equation (3.14) where D represents final reaction force
acting on the Γs surface, R a

φ being the weak form residual of a t h mesh
coordinate in the Γs surface for allφ ∈ [u , v, w ].

D =
∑

∀a∈{mesh node indices of Γs}











R a
u

R a
v

R a
w











(3.14)

Once the D is computed then equation (3.15) is used to compute drag (i.e.
Jd r a g ) with drag directional vector (i.e. η

d r a g
= [1, 0, 0]) and lift (i.e. Jl i f t )

with lift directional vector (i.e. η
l i f t
= [0, 1, 0])

Jφ =D Tη
φ

(3.15)

Non-chaotic flow optimization first design iteration results

Table 3.3 illustrates primal solution fields of the first design iteration for
optimization cases with RANS k −ω and k −ω− s s t turbulence models. It
depicts velocity magnitude distribution (i.e. |u |), pressure distribution (i.e.
p ) and turbulent viscosity distribution (i.e. νt ). νt is calculated element
wise therefore discontinuities between elements are visible and they are
illustrated in the log scale to highlight the differences. It can be seen that,
both |u | and p do not show any notable differences in considered RANS
turbulence models. The differences in elemental νt are negligible when
compared to kinematic viscosity of 1×10−1 m 2s−1 of the fluid.
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3 Steady Sensitivity Analysis

Table 3.3: Comparison of non-chaotic flow first design
iteration’s primal solution fields

|u | [m s−1] p [P a ] νt [m 2s−1]

|u | ∈ [0, 1.5] p ∈ [−2.5, 2.5] log
�

νt

�

∈ [−12,−8]

k
−
ω

k
−
ω
−

ss
t

Min Max

Since the primal solution fields illustrate negligible differences, conse-
quently the adjoint fields also depict negligible differences for all the tur-
bulence models considered in the optimization case with non-chaotic
flow problem. This is evident in table 3.4, where it illustrates directions

and magnitudes of the drag sensitivities (i.e.
�

d J
d s

�

d r a g
) and the lift sensitiv-

ities (i.e.
�

d J
d s

�

l i f t
) after vertex morphing and rescaling their magnitudes to

range [0, 1]. Therefore, no significant differences in the Γs design surfaces
are observed during the optimization procedure.

Chaotic flow optimization first design iteration results

As pointed out in the section 3.4.2, the optimization procedures with dif-
ferent RANS turbulence models where no frozen turbulence are assumed
resulted in different Γs design surfaces. Therefore this section discusses
results of the primal and the adjoint solution fields of the first design it-
eration of phase 1 in the optimization case with chaotic flow problem.
Table 3.5 illustrates velocity magnitude (i.e. |u |), pressure (i.e. p ) and ele-
mental turbulent viscosity (i.e. νt ) distributions near the Γs design surface.
Both |u | and p illustrate similar distributions and magnitudes for all three
RANS turbulence models. However, the νt distributions are depicting
large deviations. These deviations of the νt distributions are observed
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3.4 Results

Table 3.4: Comparison of non-chaotic flow first design
iteration’s vertex morphed sensitivitiy fields

�

d J
d s

�

d r a g
[N m−1]

�

d J
d s

�

l i f t
[N m−1]

�

�

�

�

�

d J
d s

�

d r a g

�

�

�

�

∈ [0, 1.0]

�

�

�

�

�

d J
d s

�

l i f t

�

�

�

�

∈ [0, 1.0]
k
−
ω

k
−
ω
−

ss
t

Min Max

to be in between
�

1×10−6 m 2s−1, 1×10−2 m 2s−1
�

whereas the fluid kine-
matic viscosity is 1×10−5 m 2s−1. Due to these higher νt distributions, the
reactions computed on Γs surface via these RANS turbulence models illus-
trate different lift and drag forces as depicted in figure 3.10 and figure 3.11
respectively.

Table 3.6 illustrates directions and magnitudes of the drag sensitivities

(i.e.
�

d J
d s

�

d r a g
) and the lift sensitivities (i.e.

�

d J
d s

�

l i f t
) after vertex morph-

ing and rescaling their magnitudes to range
�

0, 1 N m−1
�

for the optimiza-
tion case with chaotic flow problem. It is clearly evident from that, the
first design iterations demonstrate drag and lift sensitivities with different
directions as well as different relative magnitudes in all the turbulence
models where sensitivities are computed without the frozen turbulence
assumption. However, sensitivities calculated using the frozen turbulence
assumption in k −ε and k −ω turbulence models are similar to sensitivi-
ties calculated without the frozen turbulence assumption in k −ω− s s t
turbulence model. These similarities in sensitivities lead to similar opti-
mized designs in k − ε and k −ω turbulence models obtained with the
frozen turbulence assumption and optimized designs in k −ω− s s t tur-
bulence model without using the frozen turbulence assumption which are
depicted in table 3.1 and table 3.2. It is evident that, even with the frozen
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Table 3.5: Comparison of chaotic flow first design iteration’s
primal solution fields

|u | [m s−1] p [P a ] νt [m 2s−1]

|u | ∈ [0, 1.5] p ∈ [−1.0, 1.0] log
�

νt

�

∈ [−6,−2]

k
−
ε

k
−
ω

k
−
ω
−

ss
t

Min Max

turbulence assumption, the obtained sensitivitiy fields and the optimized
designs are not the same for all the turbulence models. This is because, all
of the turbulence models demonstrate differencs in νt distribution (refer
table 3.5) which cause differences in the calculated sensitivities. These
differences in sensitivities are increased when they are computed without
the frozen turbulence assumption because of the differences of νt as well
as differences in ∂ νt

∂ φ .

3.5 Conclusion and Outlook

In this chapter, the aim was to introduce a flexible/extensible adjoint for-
mulation framework developed whilst having the least amount of affect on
computational performance and memory consumption. This was achieved
by templated element local matrix formulation structure discussed in sec-
tion 3.1. Comprehensive testing and verification is also carried out on the
implemented elements. Finally, a numerical study is introduced to show
robustness and flexibility of implemented adjoint formulation by using
them to minimize drag whilst lift is kept at a constant using k −ε, k −ω,
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Table 3.6: Comparison of chaotic flow first design iteration’s
vertex morphed sensitivitiy fields

�

d J
d s

�

d r a g
[N m−1]

�

d J
d s

�

l i f t
[N m−1]

�

�

�

�

�

d J
d s

�

d r a g

�

�

�

�

∈ [0, 1.0]

�

�

�

�

�

d J
d s

�

l i f t

�

�

�

�

∈ [0, 1.0]

Without With Without With
frozen frozen frozen frozen

turbulence turbulence turbulence turbulence

k
−
ε

k
−
ω

k
−
ω
−

ss
t

Min Max

and k −ω− s s t turbulence models for a chaotic and non-chaotic flow.
Results of this minimization problems show even if the initial geometry,
boundary conditions are the same, but depending on the used turbulence
model, the local minima obtained can be different for chaotic flow prob-
lem whereas non-chaotic flow obtains similar local minima. Even though
the final obtained local minima is different for each turbulence model,
they show significant improvement in lift to drag objective which makes
all the turbulence models eligible to be used in maximization of lift to
drag ratio in this context. However, only minor differences are notable in
the design surfaces obtained in optimization procedures using different
turbulence models for non-chaotic flow problem. This indicates, use of
turbulence models and their derivatives in high R e flow problems may re-
sult in different designs if used in an optimization procedure as explained
in this section. The dicussion included results obtained with and without
the frozen turbulence assumption for k −ε and k −ω turbulence models.
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They indicate similar designs as in the case with the k−ω−s s t turbulence
model where sensitivities are computed without the frozen turbulence
assumption. The optimized design surfaces obtained with the frozen turbu-
lence assumption do not illustrate protruding features whereas optimized
designs with the same turbulence models where no frozen turbulence
are assumed demonstrate protruding features after the flow seperation
point. It highlights that, the artificial protrutions presented in k −ε and
k −ω turbulence models without the frozen turbulence assumption can
be mitigated by using the frozen turbulence assumption.

The optimization process used in this section solves drag minimization
problem with lift and geometric center constraint firstly with non-chaotic
flow problem in a single phase and secondly with chaotic flow problem in
four phases. In the case of chaotic flow problem optimization, the initial
fluid domain for a phase is taken after performing AMR on the best design
surface of the previous phase. The current investigation is limited by a
constant step size within a phase which is reduced by 50% after each phase
and with a constant number of design iterations per phase. Due to con-
stant step size limitation, it is shown that lift constraints show relatively
significant violations in first three phases, which is reduced in phase 4 with
reduced step size. Therefore, future work needs to be done to establish
adaptive step sizing for gradient descend algorithm of the optimization
process. Another limitation is performing AMR only at the end of each
phase. This limitation is there because of high computational time/mem-
ory requirement in the used AMR methodology. Therefore, a further study
could assess the effect of performance bottlenecks of used AMR procedure
and rectify them to be used in this optimization procedure efficiently.
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4
TRANSIENT SENSITIVITY ANALYSIS

Problems in transient (i.e. time dependent) nature also hold a great im-
portance in engineering sciences. This is because solutions obtained via
steady methods may include assumptions/approximations which hinder
the final expected outcome, thus making them less accurate or/and even
make those solutions to be useless. Therefore, there has been increased
interest in solving transient problems in many fields of engineering. For
example, aerospace computational engineering (Mak et al. [89], Talnikar
et al. [125], and Tucker et al. [128]), multidisciplinary engineering with
FSI (Andre et al. [5], Johansen et al. [71], and Korobenko et al. [75]), and
multidisciplinary engineering with thermo-structural (Bielecki et al. [15])

Most of the transient problems encountered in CWE are solved with ei-
ther high fidelity solution methodologies such as DNS, LES or Detached
Eddy Simulation (DES) or low fidelity methodologies such as URANS due
to their transient nature (refer chapter 1). These high fidelity solution
methodologies are becoming increasingly popular due to advancements
in computational architecture which can provide greater computational
power. However, using these high fidelity methodologies to solve transient
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problems can lead to solutions with chaotic behavior depending on the
problem’s flow properties. Chaotic behavior may be explained as deter-
ministic dynamical system exhibiting aperiodic behavior that depends
sensitively on the initial conditions (Strogatz [122]). This behavior was also
observed by Lorenz [84] in even simpler studies performed to understand
behavior of convection rolls in atmosphere. This is named as "Butterfly
effect". As a result of the butterfly effect, the time instantaneous values of
QOI may become useless in engineering decision making. However, long
time averaged QOIs is of interest for engineering disciplines in ergodic sys-
tems1. Therefore, specially in engineering design, it is of great importance
to study sensitivity of long time averaged QOIs with respect to changes in
boundary conditions.

This chapter is organized as follows. First the big problem in sensitivity
computation of a chaotic flows is presented in section 4.1. This is then
followed by the definition of the transient chaotic problem which is con-
sidered for evaluation of sensitivities in section 4.2. Afterwards, two novel
adjoint stabilization methods are introduced in section 4.3 to tackle the
problem defined in section 4.1. The proposed stabilization methods are
applied to a chaotic flow example, and verification is carried out in sec-
tion 4.4. Finally, the proposed stabilization method is used in a transient
QOI optimization problem involving a non-chaotic and chaotic flow in
section 4.5.

4.1 The big problem

The big problem in calculating sensitivities of long time averaged QOIs
in chaotic flow solution is its high sensitivity for initial conditions (i.e.
"Butterfly effect") which makes the computed sensitivities useless. This is
illustrated in figure 4.1 which represents work done by Warnakulasuriya
et al. [140]; computing drag sensitivities using adjoint method for a flow
around a cylinder with R e = 1×104. Even though it seems like converging
in the forward time marching problem, in transient adjoint problems, final
shape sensitivity is computed by computing adjoint values in reverse time,
hence the exponential growth which leads to useless sensitivities. Com-
puting primal problem by forward time marching and adjoint problem

1 Systems on which long time averaged QOI does not depend on initial conditions
(Méla et al. [92])
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Figure 4.1: Divergence of sensitivities computed with adjoint
method Warnakulasuriya et al. [140].

by backward time marching raise challenges in transferring solution from
primal problem to adjoint problem, which is also part of the big problem
for numerical solver implementations.

Assume the following general strong form of the governing equations
depicted in equation (4.1)where w represents all the solving variables such
as velocity (i.e. u), pressure (i.e. p ). s represents a design parameter for
which it is of interest to compute sensitivities defined for domain Ω ⊂Rd

where d is the dimensionality of the domain.

∂ w

∂ t
= f

�

w , s
�

(4.1)

As mentioned in the introduction, due to the chaotic behavior, the long
time averaged values of a QOI is of interest in engineering decision making.
Let’s assume QOI as defined in equation (4.2).

J̄ (s ) =
1

T

ˆ T

0
J
�

w (t , s )
�

d t , J̄∞ (s ) = lim
T→∞

J̄ (s ) (4.2)

Investigations carried out by Blonigan et al. [17] have shown that many
non-chaotic systems converge J̄ towards J̄∞, but if the system is chaotic,
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then there exists at least one positive Lyapunov coefficient (Wolf et al.
[146]) which makes the adjoint sensitivity linearization depicted in right
hand side of equation (4.3) to exhibit exponential growth as the limits of
T →∞, thus making the limits of T un-commutable.

d J̄∞

d s
̸= lim

T→∞

d J̄

d s
(4.3)

4.2 Transient problem definition

This chapter focuses on solving transient problems in the context of CFD.
Therefore, governing equations include incompressible Navier-Stokes
as the momentum equation depicted in equation (4.4) and continuity
equation depicted in equation (4.5) in the residual strong forms.

r m = ∂t u +u ·∇u −
1

ρ
∇·σ− f = 0 (4.4)

rc =∇·u = 0 (4.5)

Where ρ is fluid density, u is velocity, f represents external forces acting
on the fluid domain, and σ represents stress tensor which is depicted
in equation (4.6) with p being pressure, I the identity matrix, µ being
molecular dynamic viscosity of fluid.

σ =−p I +2µ

�

∇s u −
1

3

�

∇·u
�

I

�

(4.6)

In the case of two equation URANS turbulence models, momentum and
continuity equations are supported by two additional scalar transport
equations depicted by equation (4.7) where φ is the scalar being solved.
φ scalar depends on the turbulence model being used. k −ε turbulence
model is usingφ as turbulent kinetic energy (i.e. k ) and turbulence energy
dissipation rate (i.e. ε), k −ω turbulence model is usingφ as k and turbu-
lent specific energy dissipation rate (i.e.ω). k −ω− s s t turbulence model
is usedφ as k andω as well. In the case of turbulence modelling,µ in equa-
tion (4.6) is replaced with µ=µmo l e c ul a r +µt u r b ul e n t where µt u r b ul e n t is
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calculated according to chosen two equation turbulence model.

rφ =
∂ φ

∂ t
+uφ ·

∂ φ

∂ x
−
∂

∂ x

�

νφ
∂ φ

∂ x

�

+ sφφ− fφ = 0 (4.7)

Time discretization is done using Bossak time integration method in-
troduced by Wood et al. [147] as depicted in equation (4.8) where w =
[u , p , k ,εo rω], F n represents the discretized source terms, C represents
convective, diffusive and reaction terms in the discretized domain, and M
represents the mass matrix.

R n = F n − C n w n −M n
�

�

1−αb

�

ẇ n +αb ẇ n−1
�

(4.8)

Relationship between w and ẇ is depicted in equation (4.9) where γn is
the newmark constant calculated from γn = 0.5−αb , where αb =−0.3 is
the Bossak constant.

H n = ẇ n −
1

∆t γn

�

w n −w n−1
�

−
γn −1

γn
ẇ n−1 (4.9)

The proposed methodology to solve transient adjoint problem in this chap-
ter is also formulated using discrete adjoint method as in the case with
steady state sensitivity analysis (refer chapter 3), thereby allowing to ex-
tend steady state methodologies to transient methodologies. Therefore
the QOI illustrated in equation (4.2) needs to be discretized in spatial and
temporal domains as depicted in equation (4.10)

J =
1

N

N
∑

n=1

J
�

w n , s
�

=
N
∑

n=1

J n where J n =
J
�

w n , s
�

N
(4.10)

Discretized residuals depicted in equation (4.8) and equation (4.9) are
enforced as equality constraints over discretized fluid domain ΩH ⊂ Ω.
Therefore, a Lagrangian is formulated for transient problem similar to
the steady state problem Lagrangian depicted in equation (3.1) followed
by transient adjoint problem formulation as depicted in equation (4.11).
Here, λn

1 and λn
2 are discretized time instantaneous Lagrange multipliers

for constraint R n and H n . Relationship betweenλn
1 andλn

2 can be obtained
by taking the partial derivatives with respect to ẇ n (refer appendix B).

∂ J n

∂ w n
+
�

λn
1

�T ∂ R n

∂ w n
+
�

λn
2

�T ∂H n

∂ w n
= 0 ∀n ∈ [1, N ] (4.11)
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Afterwards, QOI sensitivities can be computed using equation (4.12).

d J

d s
=

N
∑

n=1

�

∂ J n

∂ s
+
�

λn
1

�T ∂ R n

∂ s
+
�

λn
2

�T ∂H n

∂ s

�

(4.12)

4.3 Stabilization of transient adjoint solution

Figure 4.1 depicts that, sensitivities of a chaotic dynamical system shows
exponential growth when adjoint approach is used. Therefore, it is nec-
essary to investigate engineering solutions to obtain adequately accurate
sensitivity information for dynamical chaotic problems.

One of the most accurate methods so far is the Least-Squares-Shadowing
(LSS) by Wang [138]which finds a shadowing trajectory to its original tra-
jectory by perturbing initial conditions, thereby having non-exponential
growth in the sensitivities. Investigations done by Blonigan et al. [17, 18]
and Chater et al. [29, 30] have used LSS method successfully to obtain sen-
sitivities on chaotic flow problems. A serious weakness in this approach
is the immense computational effort required to identify shadowing tra-
jectory which disallows this to be used in practical problems of interest
in CWE. Ensemble adjoint method proposed by Chandramoorthy et al.
[28], Eyink et al. [41], and Lea et al. [82] calculates sensitivities by sample
averaging of adjoint outputs in short trajectories. Even though this circum-
vent the problem of exponential growth in adjoint variables, but obtained
sensitivities are sensitive towards number of sampling trajectories. Fur-
thermore, the convergence of this method also proven to be not practical
for large systems (refer Eyink et al. [41]), thereby requiring a novel stabi-
lization method for transient adjoint solution. Therefore, following two
stabilization methods are carefully developed such that to reduce overall
cost of the sensitivity evaluation while being in the acceptable error range
of the sensitivity solution.

4.3.1 Time averaged primal

QOIs used in this study are first linearized in spatial and temporal domains.
In such a situation, time instantaneous values of QOI (such as drag and
lift forces) will be a linear combination of time instantaneous solutions.
Therefore, we can interchange the averaging as depicted in equation (4.13)
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where w = 1
N

∑N
n=1 w n .

J = J
�

w , s
�

(4.13)

Consequently, the QOI depends on the long time averaged solution (i.e. w ),
then the adjoint problem is reformulated using long time averaging strong
form of equation (4.4) and equation (4.5) followed by discretizing their
weak formulations. Long time averaging of equation (4.4) raises the closure
problem because of the non-linearity in the convection term. Therefore,
two equation turbulence modelling methodologies developed in chapter 2
are used in this adjoint stabilization method. Time averaged u , p is used
as input for two equation turbulence model’s scalar transport equations
to obtain their respective turbulence quantities. This results in a steady
adjoint formulation as depicted in equation (4.14) where λ is the Lagrange
multiplier which is solved for the long time averaged and discretized equal-
ity constraint of the residual R .

∂ J

∂ w
+λ

T ∂ R

∂ w
= 0 (4.14)

Afterwards, equation (4.15) can be used to compute long time averaged
QOI’s sensitivities.

d J

d s
=
∂ J

∂ s
+λ

T ∂ R

∂ s
(4.15)

Algorithm 7 describes followed aforementioned methodology in obtain-
ing QOI sensitivities. Firstly, transient primal problem is solved for u , p
by marching forward in time. While forward marching, time averaging
of the solution field (i.e. w ) is also done for solution fields u and p . Af-
ter solving the transient primal problem, then w is stored in a file using
HDF5 format (The HDF Group [127]) for efficiency in reading and writ-
ing. Thereafter, these stored w values are fed in to another steady state
problem defined by desired turbulence model where u is taken as a in-
put to solve for turbulence transport quantities using long time averaged
equation (4.7). All of these solved quantities are saved using HDF5 format.
Finally steady RANS adjoint problem is solved using long time averaged u ,
p , and turbulence transport quantities, followed by sensitivity calculation
using equation (4.15).
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Algorithm 7 Time averaged primal method for sensitivity calculation.

w 0← 0
ẇ 0← 0
w ← 0
n← 1
for n ≤N do

Solve for w n using equation (4.8)
Calculate ẇ n using equation (4.9)
Update time averaged w (refer appendix A)

Store w using HDF5 format
Read w from stored HDF5 files
Solve two equation turbulence model transport equations using steady
form of equation (4.7)
Store turbulence model transport quantities (i.e.φ) using HDF5 format

Read w andφ from stored HDF5 files
Solve adjoint RANS problem as depicted in equation (4.14)
Calculate QOI sensitivities using equation (4.15)

4.3.2 Artificial diffusion

As depicted in figure 4.1, QOI sensitivities calculated via adjoint method
exhibit exponential growth. The proposed stabilization methodology in
section 4.3.1 lacks the ability to obtain meaningful sensitivities in cases
where weighted time average is used in a QOI (e.g. frequency). The expo-
nential growth in figure 4.1 is due to exponential growth of the adjoint
solution, thus growth in adjoint energy in L2 norm. Therefore, this sec-
tion investigates a methodology to control adjoint energy generation rate
by adding controlled artificial diffusion to the adjoint problem, thereby
stabilizing adjoint solution and allowing to use it in any QOI.

Adjoint solution energy generation rate

Adjoint energy generation rate is computed using spatially discretized
but temporally continuous primal transient problem as depicted in equa-
tion (4.16). These residuals are scaled by a constant diagonal G matrix
to make residuals to have same dimensions of T −1 for all the residuals.
Spatially discretized state variables are represented by w , and s represents
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shape parameters.

R̃ = G
�

F
�

w , s
�

− C
�

w , s
�

w −M
�

w , s
�

ẇ
�

= G
�

F̃
�

w , s
�

−M
�

w , s
�

ẇ
� (4.16)

Likewise, spatially discretized, but temporally continuous considered QOI
also used in this as depicted in equation (4.17).

J =
ˆ T

0
J
�

w , s
�

d t (4.17)

Afterwards, Lagrangian is formulated as depicted in equation (4.18)

L =
ˆ T

0

h

J
�

w , s
�

+ λ̃
T

G F̃
�

w , s
�

− λ̃T
G M

�

w , s
�

ẇ
i

d t (4.18)

Time derivative of w is transferred to time derivative of λ using integra-
tion by parts over the temporal integration as shown in equation (4.19).
λ
�

�

t=T
= 0 because transient adjoint problem is calculated by reverse time

marching, hence last time step Lagrange multiplier of the residuals is con-
sidered as zero. The term Ṁ also becomes zero because there are no time
dependence in the considered mass matrix. Also the initial condition w

�

�

t=0
is assumed to be zero, making all the boundary terms in integration by
parts to vanish. For brevity, the terms are shortened without indicating
their input parameters here onwards.

L =
ˆ T

0

�

J + λ̃
T

G F̃ + ˙̃λ
T

G M w
�

d t (4.19)

Now partial derivatives with respect to w is taken to formulate adjoint
problem as depicted in equation (4.20). D̃ is the introduced artificial dif-
fusion matrix andψ is diffusion controlling parameter with dimensions
same as kinematic viscosity. G ′ constant diagonal matrix is used to make
the deriving variable w dimensionless.

∂ L

∂ w
=
ˆ T

0

�

∂ J

∂ w
G ′+ λ̃

T
G
∂ F̃

∂ w
G ′−ψλ̃T

D̃ + ˙̃λ
T

G

�

∂ M

∂ w
w +M

�

G ′
�
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(4.20)

In order to make D̃ diffusion matrix positive definite, semi-positive definite
D matrix is added with an identity matrix multiplied by η> 0 as depicted
in equation (4.21).

D̃ = D +η


D




f r o
I (4.21)

Finally equation (4.22) is used to calculate adjoint energy generation rate
(negative because of the reverse time marching property of transient ad-
joint problems).

d E

d t
=−

1

2

∂

∂ t

�

λ̃
T
λ̃
�

=

�

∂ J

∂ w
G ′+ λ̃

T
G
∂ F̃

∂ w
G ′−ψλ̃T

D̃

�

�

G

�

∂ M

∂ w
w +M

�

G ′
�−1

λ̃

(4.22)

One main limitation of adjoint energy generation rate computed by equa-
tion (4.22) is, the ∂ M

∂ w w +M is not invertible. That is because the incom-
pressible Navier-Stokes equation does not have any contribution from
continuity equation to mass matrix hence, producing a singular mass ma-
trix and its derivative. Artificial compressibility can be used in this case to
avoid singular mass matrix (Merkle [95]). However, this requires inversion
of a matrix which may increase computational cost of adjoint evaluation.
Therefore, instead of calculating actual adjoint energy generation rate,
approximate energy generation rate is calculated as depicted in equa-
tion (4.23).

d Em

d t
=− ˙̃λT G

�

∂ M

∂ w
w +M

�

G ′λ̃

=
∂ J

∂ w
G ′λ̃+ λ̃

T
G
∂ F̃

∂ w
G ′λ̃−ψλ̃T

D̃ λ̃

(4.23)

If Ėm is positive, it indicates energy growth in reverse time marching adjoint
problem. Therefore, if inequality shown in equation (4.24) is satisfied in
temporal integration domain, then it should stabilize the adjoint solution.
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4.3 Stabilization of transient adjoint solution

Equation (4.24) disregards term ∂ J
∂ w λ̃ because, adjoint solution exhibits

exponential growth due to physical phenomena which is governed by R .
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�

�λ̃
�

�

�

�

�

�

�
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∂ w
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�

�

�

�

�

�

�λ̃
�

�≥ λ̃T
G
∂ F̃

∂ w
G ′λ̃ (4.24)

If σi are the singular values of matrix G ∂ F̃
∂ w G ′, where σ1 ≥σ2 ≥ · · · ≥σN

and Ψi are eigen values of D̃ where Ψ1 ≥ Ψ2 ≥ · · · ≥ ΨN , then equation (4.24)
can be simplified as shown in equation (4.25).

ψ≥
σ1

ΨN
=

σ1

η


D




f r o

(4.25)

Finally, the stabilized adjoint problem is shown in equation (4.26) where
θs c is a user defined stabilization coefficient used to control added artificial
diffusion.
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(4.26)

One key parameter in this method is θs c which controls relative amount of
added artificial diffusion to the aforementioned adjoint problem, hence it
is a controller which affects the accuracy of the adjoint solution. Therefore,
in order to determine most suitable θs c , a modified bisection method
is utilized. In this bisection method, first slope (i.e. ξ) is calculated by
least squares fitting of adjoint shape sensitivities’ L2 norm as depicted in
equation (4.27).

ξ=

∑n2

n=n1

�

xi − x̄
� �

yi − ȳ
�

∑n2

n=n1
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ni
�

�

�

�

L2

∀ni ∈
�

n1, n2

�

(4.27)
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In here, n1 and n2 are user defined step indices where it make sense to

compute the slope of the
�

�

�

d J
d s

ni

�

�

�

L2
. Onceξ is calculated, it is checked against

user defined allowed maximum slope ξma x .

Algorithm 8 Adjoint solution stabilization coefficient calculation.

procedure COMPUTESTABILIZATIONCOEFFICIENT(a , b , n1, n2, δ, M )
i ← 1
θ ← [a , a+b

2 , b ] ▷ Assumes a ≤ b
while θ2−θ0 ≥δ or i ≤M do

i ← i +1
for j ∈ [0, 1, 2] do
θSC ← θ j

If not solved, then solve adjoint problem (refer equation (4.26))
Calculate ξ j using equation (4.27)

if |ξ j |>ξma x∀ξ j ∈ ξ then

θ ←
�

θ2, 1.5θ2, 2θ2

�

else
if |ξ j |<ξma x∀ξ j ∈ ξ then

θ ←
�

θ0
2 , 3θ0

4 ,θ0

�

else
θ0← θk−1

�

k ∈ [1, 2] : |ξk |<ξma x

	

θ2← θk+1

�

k ∈ [1, 0] : |ξk |>ξma x

	

θ1←
θ0+θ2

2
return θ2

Algorithm 8 depicts the procedure followed in computing optimal θSC . a
and b are initial bounds for θSC where a ≤ b . QOI sensitivities’ L2 norm
is calculated between n1 and n2 time step indices. δ is the tolerance for
convergence of θSC and M is the maximum number of iterations used to
find optimal θSC .

Adding artificial diffusion will diffuse the adjoint solution. Therefore hav-
ing large enough θSC will make the adjoint solution stable if it is unsta-
ble or make the adjoint solution diffused if it is already stable without
having any positive Lyapunov exponents. Reducing it will make adjoint
solution unstable if there are any positive Lyapunov exponents, or make
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4.4 Application to chaotic flow problem

adjoint solution more consistent with the primal solution, hence mak-
ing adjoint solution more accurate. Therefore, If initial θSC ∈ [a , b ] is not
able to stabilize the adjoint solution then, the initial range is expanded
to θSC ∈ [b , 1.5b , 2b ]. On the other hand, if initial range produces sta-
bilized adjoint solution ∀θSC ∈ [a , b ], then the range is constrained to
θSC ∈

�

a
2 , 3a

4 , a
�

. If a θSC ∈ [a , b ] is found with unstable and stable adjoint
solutions, then the range is bisected for the next iteration. This process is
repeated until the given δ tolerance between [a , b ] range is achieved or,
maximum number of iterations (i.e. M ) is reached.

Even though it seems that algorithm 8 has more inputs to determine one
undefined θSC parameter, a , b ,δ, M are input parameters which can be
considered as case-independent. a , b only provides an initial boundary
for bisection, if it is closer to the optimal θSC then there will be faster
algorithm convergence. δ and M control the accuracy of the algorithm.
Hence the only parameters which are case dependent are n1 and n2. They
determine which time span to be used for slope calculation explained in
equation (4.27). Another important fact to note in this algorithm is the
complexity of convergence. If an initial guess is provided which produces

stable and unstable adjoint solutions at their bounds, then log2

�

a−b
δ

�

+2
adjoint solutions are required to compute optimal θSC .

4.4 Application to chaotic flow problem

Until now we have discussed stabilization for shape sensitivities computed
for transient chaotic problems. This section introduces and discusses ap-
plicability of each stabilization method and significance of parameters
using a 2D example.

4.4.1 Chaotic flow problem definition

This problem is adapted from work done by Schäfer et al. [116]. The original
problem is designed to investigate flow behavior around a cylinder with
low R e . In this experiment, R e = 1×104 is chosen by changing the average
inlet velocity. Figure 4.2 illustrates basic configuration used in this problem.

This problem is solved using Variational Multi-Scale (VMS) stabilized in-
compressible NS equations in 2D developed by Cotela Dalmau et al. [35].
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4 Transient Sensitivity Analysis

Figure 4.2: 2D channel flow configuration.

ρ = 1.0k g m−3 (i.e. density) and ν = 1.0× 10−5 m 2s−1 (i.e. kinematic vis-
cosity) are used as flow properties. Outlet is applied with 0.0 P a Dirichlet
boundary condition. Walls and cylinder surfaces are applied with no-slip
(i.e. 0.0 m s−1) velocity Dirichlet boundary condition. Inlet is applied with
a parabolic inlet using equation (4.28) with um = 1.0m s−1 (i.e. mean ve-
locity) which corresponds to R e = 1×104.

u =
4um y

�

0.41− y
�

0.412
(4.28)

Drag over the cylinder surface is chosen as QOI for this problem calcu-
lated using equation (4.29). η represents the outward surface normals, m
represents drag force direction.

J =
1

N

N
∑

n=1

�ˆ
Γc y l i nd e r

σ
�

w n , s
�

·η ·mdΓ

�

(4.29)

4.4.2 Verification methodology

Verification is carried out for the proposed stabilized adjoint problem
using finite difference method as depicted in equation (3.11) where nodal
coordinates are perturbed to obtain finite difference sensitivities. However,
spatial discretizations obtained by perturbing nodal coordinates suffer
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4.4 Application to chaotic flow problem

from mesh irregularity and non-smooth shape derivatives (Chenais [31],
Le et al. [81], and Mohammadi et al. [96]). Therefore vertex morphing is
used to smoothen the sensitivities (Bletzinger [16]).

Vertex morphing method calculates sensitivities with respect to control
points (i.e. s̃ ) designed to obtain a smooth surface for shape parameters
(i.e. s ). Smoothing is performed by a transformation matrix (i.e. Ar ) which
is dependent on the filter radius of r . Equation (4.30) illustrates the rela-
tionship between control points and the shape parameters.

s̃ = Ar s (4.30)

Hence, the smoothened shape sensitivities can be computed by using
equation (4.31) where N are number of time steps, and d J

d s

n
is the n t h time

step’s sensitivity with respect to shape parameters.

d J

d s̃
= AT

r

N
∑

n=1

d J

d s

n

(4.31)

In order to obtain analytical finite difference sensitivities, equation (3.11)
needs to be modified to obtain sensitivities with respect to control param-
eters as depicted in equation (4.32).

d J

d s̃
≈

∑N
n=1

�

J
�

w n +δw n , s +A−1
r δs̃

�

− J
�

w n , s
�

�

δs̃
(4.32)

Where δw n is the solution field obtained using the perturbed control
points δs̃ as depicted in equation (4.33).

δs̃ =

�

s̃i ∈R : max
∀si∈s

si =δs

�

(4.33)

4.4.3 Verification results

Verification requires analytical solutions obtained via equation (4.32) as ex-
plained in section 4.4.2. Figure 4.3 illustrates considered node ids and their
nodal positions used in this verification study. These nodes are carefully
chosen after observing the flow patterns in the problem with R e = 1×104.
Node 1 and node 2 are chosen near the separation point, node 3 is chosen
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1 

2 
3 4 

Figure 4.3: Node ids used in verification of sensitivities.

after the separation point at lower most point on the cylinder surface, and
node 4 is chosen in the back region of the cylinder.

Nodal perturbations alone make mesh-irregularities and non-smooth
shape derivatives as explained in section 4.4.2. The proposed vertex mor-
phing methodology has the filter radius and perturbation size as input
parameters. Therefore, firstly, a filter radius study is done and then fol-
lowed by perturbation size to identify the effect of them towards analytical
finite difference sensitivities.

Filter radius study

Filter radius study is carried out with the same problem but with lower
R e = 1×102. Lower R e is used to fool proof the methodology used to obtain
the analytical finite difference sensitivities without having exponentially
growing adjoint solutions. Figure 4.4 illustrates nodal perturbations at
node 3 obtained with δs = 1×10−8 m in the radial direction for different
filter radii. It can be observed at node 3, r = 1×10−4 m represents pertur-
bations without vertex morphing, whereas all other radii illustrate vertex
morphed perturbations.

Figure 4.5 illustrates Finite Difference (FD) sensitivities and Adjoint (AD)
sensitivities computed for different filter radii at node with id 4. It can be
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4.4 Application to chaotic flow problem

(a) r = 1×10−4 m (b) r = 1×10−2 m (c) r = 4×10−2 m (d) r = 8×10−2 m

Figure 4.4: Radial vertex morphed perturbations for different r
at node 2.

seen that, both FD and AD are agreeing with each other for all r values.
Therefore, hereafter r = 8×10−2 is used as the filter radii.
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Figure 4.5: Finite difference and adjoint sensitivities for
different r with R e = 1×102 at node 4.
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Perturbation size study

Having defined the filter radii, it is also important to identify correct per-
turbation size to be used to compute FD sensitivities. Figure 4.6 illustrates
time averaged drag forces obtained for different radii perturbations sizes.
It can be shown that, time averaged drag values show noise for smaller
perturbations sizes as expected. Larger perturbations sizes may go beyond
the linearization region for the FD sensitivity approximation. Therefore,
δs ∈

�

2.5×10−4, 4.5×10−3
�

is selected as the linear region in calculating
polynomial fit to obtain FD sensitivities for the node 1.
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Figure 4.6: Drag force for different radial perturbation sizes with
r = 8×10−2 m and R e = 1×104 at node 3.

Likewise, time averaged drag force linear regions are identified for all the
nodes considered in this verification study and then polynomial fitting is
used to calculate the respective FD sensitivities as shown in table 4.1.
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4.4 Application to chaotic flow problem

Table 4.1: Nodal time averaged drag radial sensitivity reference
values.

Node id Time averaged drag sensitivity
�

N m−1
�

1 9.0696×10−3

2 1.3977×10−3

3 1.1301×10−2

4 9.0091×10−3

4.4.4 Time averaged primal adjoint sensitivities results

Firstly, results of the adjoint sensitivities computed using time averaged
primal (see section 4.3.1) are presented. Three different turbulence mod-
els are used in this study namely k − ε, k −ω and k −ω− s s t to obtain
time averaged solutions. Figure 4.7 illustrates vertex morphed sensitivities
calculated with time averaged solution and different RANS turbulence
models. The magnitude of each sensitivity arrow is adjusted separately to
show their directions, but the same color graph is used in all three cases
for comparison.

(a) k −ε (b) k −ω (c) k −ω− s s t

Figure 4.7: Vertex morphed adjoint drag force sensitivities
�

N m−1
�

calculated with time averaged solution and RANS
turbulence models.

As depicted in figure 4.7, vertex morphed drag force sensitivities obtained
using three different RANS turbulence models show different sensitivity
values. Drag force sensitivity directions and magnitudes are changing
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with the change of RANS turbulence model. Therefore, table 4.2 is used to
compare nodal adjoint sensitivities with the reference nodes depicted in
figure 4.3.

Table 4.2: Nodal time averaged drag radial sensitivities
calculated using time averaged solution with different RANS

turbulence models.

Node id Time averaged drag sensitivity
�

N m−1
�

Ref k −ε k −ω k −ω− s s t

1 9.0696×10−3 −6.5905×10−3 −9.6931×10−3 3.0349×10−2

2 1.3977×10−3 −8.1326×10−3 8.5208×10−5 3.1939×10−2

3 1.1301×10−2 −4.0183×10−3 1.0027×10−2 5.1514×10−2

4 9.0091×10−3 −1.6871×10−3 9.1547×10−3 3.6037×10−2

The drag force sensitivities obtained using RANS k −ε turbulence model
show all negative values as depicted in table 4.2 which are in the opposite
direction to the reference sensitivities’ directions. In the case of RANS k−ω,
the direction of sensitivities agrees for node ids 2, 3, and 4. However it does
not agree for node 1 which is near the flow separation point in the upper
half of the cylinder. The order of magnitude of all the nodes also does not
match well with the reference values. On the other hand, the drag sensitiv-
ities’ directions obtained using RANS k −ω− s s t turbulence model agrees
with the reference values. Despite the correct directionality in computed
drag sensitivities, the magnitudes do not match well with the reference
values. However, RANS k −ω− s s t turbulence model shows better results
than RANS k−ε or k−ω. This indicates that, having a more accurate RANS
turbulence models (such as Reynolds stress models, 7 equation models,
machine learning) may be able to achieve more accurate adjoint drag
sensitivity results.

4.4.5 Artificial diffusion results

This section focuses on presenting results of stabilized adjoint using added
artificial diffusion (refer section 4.3.2) for the same verification problem
explained in section 4.4.1. Influence of θSC coefficient is presented in the
following section.
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4.4 Application to chaotic flow problem

Effect of stabilization coefficient

Stabilization coefficient (i.e. θSC ) controls relative magnitude of localized
artificial diffusion added to the system which makes adjoint problem incon-
sistent with the primal problem. Despite this, it is critical to add artificial
diffusion to stabilize adjoint solution from having exponential growth due
to butterfly effect. Therefore, it is critical to add least amount of artificial
diffusion just enough to stabilize adjoint solution, thus having least ad-
verse impact on the accuracy and the consistency between adjoint and
primal problems.
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Figure 4.8: Shape sensitivity L2 norm variation for different θSC
values used in verification case.
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Figure 4.8 illustrates L2 norm of shape sensitivity variation with time for
different θSC stabilization coefficients obtained using algorithm 8 with
δ = 1 × 10−4, a = 0.0, and b = 0.1. The plateau range is chosen to be
[n1, n2] = [0.0, 50.0]. It is chosen after conducting an adjoint problem solve
with θSC = 1.0 and then observing the plateau in that adjoint solution.
The optimal is found to be θSC = 1.07×10−3. Figure 4.9 illustrates vertex
morphed shape sensitivities for the optimal θSC . In comparison to results
shown in figure 4.7(c), figure 4.9 also shows same pattern in nodal radial
shape sensitivities near top and bottom regions of the cylinder. However,
frontal and back regions’ nodal shape sensitivities differ.

Figure 4.9: Vertex morphed sensitivities calculated from
stabilized adjoint solution by adding artificial diffusion.

In order to further quantify the accuracy,table 4.3 shows nodal radial vertex
morphed shape sensitivities for selected nodes in the verification case
compared against the reference values obtained from finite differencing
approach. It can be observed that, all the nodal shape sensitivities from
the solution with added artificial diffusion has the same direction as in the
reference solution, and their solution order of magnitude also well agrees
with the reference solution. Specifically nodes with ids 2, 3, and 4 depicts
the least errors among all.

From the results shown in table 4.3, it is evident that adding controlled
artificial diffusion is able to produce meaningful nodal shape sensitivities
and circumvent exponential growth in adjoint solution.
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Table 4.3: Nodal time averaged drag radial sensitivities
calculated using added artificial diffusion solution.

Node id Time averaged drag sensitivity
�

N m−1
�

Ref θSC = 1.07×10−3

1 9.0696×10−3 3.9364×10−3

2 1.3977×10−3 1.8643×10−3

3 1.1301×10−2 1.0377×10−2

4 9.0091×10−3 9.4237×10−3

4.5 Frequency domain optimization

From the previous discussion, it can be seen that adjoint solution stabi-
lization with added artificial diffusion provides meaningful nodal shape
sensitivities. In order to further investigate this method, nodal sensitivi-
ties computed via added artificial diffusion are used in frequency domain
shape optimization problem, where it is critical to have time dependent
QOI, hence transient sensitivities are required with stabilization. There-
fore, stabilization with added controlled artificial diffusion stabilization
method is used.

4.5.1 Primal problem definition

Analyzing vortex shedding frequency is very often carried out when tall
buildings, bridges are constructed (Giosan et al. [52] and Irwin [67]). One
of the popular examples to investigate vortex shedding is the flow around a
circular cylinder example which is studied experimentally and numerically
by Luo et al. [86], Norberg [102], and Oertel Jr [103]. BARC is one of the
heavily used structural configurations to analyze wind effects on structures.
In this section, both flow over a circular cylinder with R e = 100 and BARC
problem explained in section 2.5.1 are used in this optimization problem
with k −ω− s s t as the turbulence model. In the former case, the same
configuration as in BARC is used (refer figure 2.34) where the rectangle
is replaced with the cylinder and H is the diameter (i.e. D = 0.1m) of
the cylinder. A mesh convergence study is carried out to obtain the most
efficient mesh while having acceptable accuracy. The table 4.4 depicts
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drag coefficient (i.e. CD ), lift coefficient (i.e. CL ) and Strouhal number (i.e.
St ) comparison of the final mesh with the literature for the flow over the
cylinder case with R e = 100.

Table 4.4: Comparison of flow over the cylinder statistical
parameters.

Source CD CL St

Wang et al. [139] 1.379 0.357 0.17

Present study 1.26 0.29 0.14

4.5.2 Vortex shedding frequency

Vortex shedding frequency is computed by conducting Discrete Fourier
Transform (DFT) of the time dependent lift force. Equation (4.34) is used
to transform time dependent lift forces to frequency domain where N is
the total number of time steps, F n is the n t h time step lift force over the
rectangular cylinder in BARC problem.

Xk =
N−1
∑

n=0

F n

�

cos

�

2π

N
k n

�

− i sin

�

2π

N
k n

�

�

(4.34)

However, this time dependent lift forces are not periodic in time because
high R e = 5× 104 in the flow produces a chaotic flow. Therefore it can
produce spectral leakage in the frequency domain, thus poor quality results
in frequency domain. In order to mitigate that, Hann (Essenwanger [40])
function is used in windowing as depicted in equation (4.35) where K is
the number of windowing time steps where K ≤N .

w n =







1
2

h

1− cos
�

2π(n−N+K )
K

�
i

if n ≥N −K

0 else
(4.35)

Next, frequency distribution of the windowed time dependent lift force is
calculated using equation (4.36).

X̃k =
N−1
∑

n=0

w n F n

�

cos

�

2π

N
k n

�

− i sin

�

2π

N
k n

�

�

(4.36)

120
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Finally each frequencies’ amplitudes are calculated to estimate each fre-
quencies’ relative importance which is used as the QOI for this optimiza-
tion problem as depicted in equation (4.37) where k1 and k2 are user de-
fined frequency range indices of interest for optimization problem.

J f r e q = max
k∈[k1,k2]

�

�X̃k

�

�

2
(4.37)

4.5.3 Adjoint problem definition

The QOI given in equation (4.37) involves taking magnitude of a complex
number. Therefore, it is required to calculate nodal shape sensitivities of
real and imaginary contributions of the frequency amplitude separately.
Hence two adjoint problems are solved for each real and imaginary com-
ponent as their QOI as depicted in equation (4.38a) and equation (4.38b)
using the same primal solution to compute their respective nodal shape
sensitivities. K for Hann windowing is chosen such that Hann windowing
length corresponds to 3.0 s . It is chosen after following a Hann windowing
length study.

real
�

X̃k

�
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N−1
∑

n=0

w n F n cos

�

2π

N
k n

�

(4.38a)

imag
�

X̃k

�

=
N−1
∑

n=0

w n F n sin

�

2π

N
k n

�

(4.38b)

The flow over the cylinder problem is considered to be a periodic flow
problem which does not require stabilization in adjoint solution. To iden-
tify whether the proposed stabilization method correctly detects whether
the given problem requires adjoint stabilization or not, this problem is
also solved using the same adjoint stabilization algorithm explained in
algorithm 8 with [a , b ] = [0.0, 1.0]. n1 and n2 time step indices are chosen
such that the slope is calculated between t ∈ [0.0 s , 4.5 s ]. ξma x = 50.0 and
δ= 1×10−4 are chosen for the refered algorithm.

The BARC problem is considered to be high R e = 5× 104 chaotic flow
problem which requires stabilization in adjoint solution. Therefore, in
order to identify parameters required for algorithm 8, primal problem is
solved once, and then the adjoint problem with equation (4.38a)as QOI and
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with θSC = 20.0 is solved to identify corresponding parameters required
for algorithm 8. n1 and n2 time step indices are chosen such that slope is
calculated between t ∈ [0.0 s , 4.5 s ] as in the flow over the cylinder problem.
ξma x = 50.0 is chosen after observing the L2 norm variation of the nodal
shape sensitivity. a = 0.0, b = 1.0, and δ= 1×10−4 are other parameters
used for adjoint problem stabilization. Figure 4.10 illustrates results of this
preliminary study.

4.5.4 Optimization problem

Now we have defined primal problem and adjoint problem with stabiliza-
tion. This section focuses on defining optimization problem being solved
which is depicted in equation (4.39).

min
s

J f r e q

�

w (s ), s
�

subjected to

R n
φ = 0 ∀φ ∈

�

u n , v n , w n , p n , k n ,ωn
	

∀n ∈ [1, N ]

Gc e n t r o i d

�

s
�

= 0

Gv o l ume

�

s
�

=Gv o l ume

�

s i ni t i a l

�

(4.39)

The goal of this optimization problem is to obtain novel shapes via shape
optimization by removing frequencies in a given range. This is achieved by
minimizing J f r e q in a given frequency range as depicted in equation (4.39).
Two geometric constraints namely Gc e n t r o i d = 0 (refer equation (3.13)) and
Gv o l ume = 0 are used to avoid rectangular cylinder being moved away from
the fluid domain and rectangular cylinder being smaller by reducing the
size respectively. Equation (4.40) is used to compute Gv o l ume constraint
where M being number of discretized elements in the domain and Vi being
volume of i t h discretized element.

Gv o l ume =
M
∑

i=1

V 2
i (4.40)

In order to be efficient in executing shape optimization problem defined
in equation (4.39), primal problem is only run once and the solution is

122



4.5 Frequency domain optimization

3.0 3.5 4.0 4.5 5.0 5.5 6.0
Time [s]

107

1027

1047

1067

1087

10107

10127

10147

|dJ ds
| L2

sc = 0.00000
sc = 0.50000
sc = 1.00000
sc = 1.50000
sc = 2.00000
sc = 3.00000
sc = 4.00000
sc = 6.00000
sc = 8.00000

sc = 12.00000
sc = 14.00000
sc = 15.00000
sc = 15.12500
sc = 15.18750
sc = 15.21875
sc = 15.22656
sc = 15.23047
sc = 15.23096

sc = 15.23120
sc = 15.23132
sc = 15.23138
sc = 15.23145
sc = 15.23242
sc = 15.23438
sc = 15.25000
sc = 15.50000
sc = 16.00000

Figure 4.10: Shape sensitivity L2 norm variation for different
θSC values used in primal problem in frequency domain

optimization.
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4 Transient Sensitivity Analysis

stored using HDF5 check pointing methodology for later use in two ad-
joint problems. As explained in section 4.5.3, only in the adjoint problem
with equation (4.38a) as QOI is used to compute the optimal θSC using al-
gorithm 8 with coefficients given in section 4.5.3 instead of computing two
different optimal θSC stabilization coefficients for each adjoint problem
with QOI equation (4.38a) and equation (4.38b). This is possible because,
the observed instability in adjoint solution occurs due to presence of posi-
tive Lyapunov coefficients in the primal solution’s lift computation. Both
adjoint problems use the same time dependent lift forces, hence same
stabilization coefficients can be used which make adjoint stabilization
coefficient computation efficient.

Optimization procedure is performed using gradient descend algorithm
with constant step size. Computed nodal shape sensitivities are vertex
morphed to smoothen noisy shape sensitivity field.

4.5.5 Flow over the cylinder results

Until now we have discussed optimization problem definition and its
corresponding primal and adjoint problem definitions. The following sec-
tion will discuss results of the optimization problem of the flow over the
cylinder problem. The optimization frequency index range (i.e.

�

k1, k2

�

)
is chosen such that the optimization problem is considering to minimize
max amplitude of the frequencies in the range of [0 H z , 50 H z ] for the QOI
given in equation (4.37).

Figure 4.11 illustrates maximum amplitude in the chosen frequency range
(refer figure 4.11(b)) and its corresponding frequency (refer figure 4.11(a)).
The frequency with maximum amplitude starts with 21.17H z . It can be
observed that the proposed shape optimization problem with transient ad-
joint stabilization clearly reduces maximum amplitude of the frequencies
within the given range. Until the design iteration 49, it can be observed that
the frequency which corresponds to maximum amplitude varies between
21.17 H z and 21.33 H z . The maximum amplitudes at the design iteration
49 for 0H z and 21.33H z are 0.1193N and 0.1953N . At this design itera-
tion, the amplitudes corresponding to 0H z and 21.33H z have reached
similar values. Therefore, after design iteration 49, the optimization pro-
cedure is identifying 0H z frequency as the frequency with maximum
amplitude and computes sensitivities to reduce the amplitude. This can
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Figure 4.11: Maximum amplitude frequency and maximum
amplitude variations with design iteration in flow over the

cylinder frequency range optimization problem.

be observed at design iteration 50 where 0 H z and 21.33 H z amplitudes are
at 0.3385N and 0.1498N . Thereafter, the optimization procedure keeps
oscilating between 0 H z frequency and 21.33 H z frequency since both the
frequencies are having similar low amplitudes. This is clearly evident in
oscillations found after design iteration 49 in figure 4.11.

Few of the chosen design iterations’ cylinder cross sections and their lift
force frequency distributions are illustrated in figure 4.12. The grey cross
section in each design iteration refers to initial configuration design surface
of the optimization problem. It can be seen that, the proposed shape opti-
mization methodology successfully reduce the frequency range maximum
amplitude of this problem. The computed θSC using transient adjoint sta-
bilization coefficient calculation methodology (refer algorithm 8) is always
0 for all the design iterations in this optimization problem. This indicates
that the proposed transient adjoint stabilization methodology is capable of
identifying when to add controlled artificial diffusion to stabilize transient
adjoint solution. It is also evident from figure 4.12 iteration 49, that both
amplitudes corresponding to 0H z and 21.33H z is becoming closer to
each other which makes the QOI to oscillate after 49t h design iteration.
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Figure 4.12: Frequency distribution within the interested range
and their respective cylinder cross sections for iterations in flow

over the cylinder shape optimization problem.
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4.5 Frequency domain optimization

4.5.6 BARC results

Two optimization problems are conducted and results are presented in
this section having two different frequency ranges (for corresponding
two different frequency index ranges

�

k1, k2

�

) for minimization of QOI de-
picted in equation (4.37) used in optimization problem depicted in equa-
tion (4.39). First frequency range falls between [3 H z , 10 H z ] (i.e. lower
frequency range) and second frequency range falls between [20 H z , 50 H z ]
(i.e. higher frequency range). This allows to observe how different shapes
emerge when interested frequency range is changed, thus giving more
insight on frequency distribution changes with respect to shape change.

Lower frequency range shape optimization

Figure 4.13(a) illustrates frequency of the maximum amplitude for each
design iteration in the low frequency range optimization problem. Fig-
ure 4.13(b) shows maximum amplitude for the same design iterations. It
can be observed that, the maximum amplitudes in the interested lower
frequency range depict a downward trend indicating the proposed op-
timization procedure is being successful. Hence, this provides clear evi-
dence that, proposed stabilization method with added controlled artificial
diffusion is able to produce meaningful nodal shape sensitivities for this
optimization problem. Even though maximum amplitude shows a clear
decline with increasing iterations, after 7t h iteration it shows an oscillatory
behavior. This may be due to the fact that, use of a constant step size and
constant filter radius may prohibit exploring further optimized designs.

It is observable from figure 4.13(a) that, an increasing trend is present in
the frequency corresponding to maximum amplitude (between iteration 1
- 6). This is also in agreement with total energy conservation of the system
because evaluated BARC problems are given the same energy input/out-
put and flow conditions for each design iteration. Therefore it requires to
increase amplitude of a higher frequency in order to reduce amplitude of a
lower frequency in the optimization problem. Evidence from figure 4.13(b)
clearly shows that increment in an amplitude of a higher frequency needs
to be relatively low than the decrement in an amplitude of a lower fre-
quency which is inline with the energy conservation of the total system.
However, a clear drop in frequency corresponding to maximum amplitude
is visible after 6t h iteration. In order to investigate it further, figure 4.14
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Figure 4.13: Maximum amplitude frequency and maximum
amplitude variations with design iteration in BARC low frequency

range optimization problem.

illustrates frequency distributions and corresponding cross sections for
iterations 1, 6, 7, and 15. If observed carefully, cross sections in iteration 6
and iteration 7 do not show significant differences. Even maximum ampli-
tudes do not show a large difference between those two iterations (refer
figure 4.13(b)). A possible explanation for this drop is, having two frequen-
cies in the given low frequency range with close enough amplitudes. This
can be observed in the frequency distributions for both iterations depicted
in figure 4.14. When there are two frequencies which have close enough
amplitudes then the proposed QOI in equation (4.37) may switch between
them within design iterations causing the sudden drop in the frequency
corresponding to maximum amplitude causing the sudden drop in the
frequency corresponding to maximum amplitude.

Furthermore, the geometric constraints (i.e. Gc e n t r o i d and Gv o l ume ) are
satisfied with tolerance of 1×10−6 in all of the design iterations obtained
in solving this optimization problem.

Higher frequency range shape optimization

Lower frequency range shape optimization performed with stabilized ad-
joint solution exhibits arbitrary BARC cross sections in its design itera-
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Figure 4.14: Frequency distribution and BARC cross sections
within the interested range for iterations in low frequency range

shape optimization problem.
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4 Transient Sensitivity Analysis

tions. Therefore, in order to certify whether these arbitrary BARC cross
sections are computed due to aforementioned stabilization used in ad-
joint solution, or whether it is inherent in the optimization problem itself,
another optimization problem is solved with higher frequency range (i.e.
[20 H z , 50 H z ]). This section presents the results of it.
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(b) Lift force amplitude variations

Figure 4.15: Maximum amplitude frequency and maximum
amplitude variations with design iteration in BARC high frequency

range optimization problem for optimized frequency range of
[20 H z , 50 H z ].

A reducing trend in the maximum amplitude can be observed from fig-
ure 4.15(b) for considered high frequency range optimization problem.
This provides further evidence on the ability of stabilization method to
produce meaningful results for optimization problems which involve tran-
sient QOIs and chaotic flow behaviors. Figure 4.15(a) illustrates frequency
of each design iteration corresponding to maximum amplitude. It also
shows an increasing trend which re-assures that total energy conservation
of the BARC problem in each design iteration is not violated. However, it
also shows a sudden drop in the frequency corresponding to maximum
amplitude at iteration 10.

In order to further investigate sudden drop in maximum amplitude fre-
quency at iteration 10, figure 4.18 illustrates frequency distributions and
their corresponding cross sections for iterations 1, 9, 10, 15. Similar to the
sudden drop in the low frequency range optimization problem, drop at
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4.5 Frequency domain optimization

iteration 10 is also because of having two frequencies with close enough
amplitudes causing QOI defined in equation (4.37) to switch frequencies
between iterations. In contrast to the cross sections obtained in low fre-
quency range optimization, high frequency range optimization shows a
clear trend in the cross sections. Until the iteration 10 in high frequency
range optimization, it shows similar design surface features at downstream
section as in the flow over the cylinder case optimization when comparing
design surfaces with figure 4.12.

The design surfaces illustrated in figure 4.18 depict non-symmetrical sur-
faces after 6t h iteration. From figure 4.16(a) which depicts frequency corre-
sponding to maximum amplitude in the frequencies within [0 H z , 50 H z ],
it can be observed that the frequency corresponding to maximum ampli-
tude falls in the range of interest for this high frequency range optimization
problem where symmetrical design surfaces are obtained as depicted in
figure 4.17. After the 6t h iteration, the frequency with most dominant am-
plitude falls out of the interested range making the optimization process
challenging. A similar behaviour is observed in the case of the flow over
the cylinder optimization problem illustrated in figure 4.11.
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Figure 4.16: Maximum amplitude frequency and maximum
amplitude variations with design iteration in BARC high frequency

range optimization problem illustrated for frequency range of
[0 H z , 50 H z ].
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6

Figure 4.17: Design surface variations in BARC high frequency
range optimization problem.

In this experiment also, the geometric constraints (i.e. Gc e n t r o i d and
Gv o l ume ) are satisfied with tolerance of 1×10−6 in all of the design iterations
obtained in solving this optimization problem.

4.6 Conclusion and Outlook

Most of the problems in CWE are chaotic and transient in nature. These
chaotic transient flows are highly sensitive for initial condition perturba-
tions ("Butterfly effect"). Due to butterfly effect, it is meaningless to calcu-
late sensitivities of a QOI in such a flow problem using adjoint approach,
because they depict an exponential growth. Therefore, this chapter intro-
duces two novel stabilization methods to control the exponential growth
and a methodology to validate adjoint sensitivities with finite differencing
sensitivities.

Finite differencing sensitivities are computed for selected few mesh nodes,
and the vertex morphing is used to obtain a smooth sensitivity field. A per-
turbation step size and vertex morphing radius studies have been carried
out to determine the best possible range of values for them.

The proposed time averaged primal method uses time averaged quantities
of u , p to compute RST, and then sensitivities for steady state RANS prob-
lem is derived. This removed the problem arising from butterfly effect. But
the accuracy of the solution is highly dependent on the turbulence model
being used in computing RST. k−ω−s s t illustrated the best results which
is agreeing with the directions of the reference finite difference sensitivities,
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Figure 4.18: Frequency distribution within the interested range
and their respective BARC cross sections for iterations in high

frequency range shape optimization problem.
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where as k −ε and k −ω failed to produce even the sensitivity directions
correctly. However, time averaged primal method was not successful in
obtaining shape sensitivities with the same order of magnitude as in the
reference solution. Therefore, further studies are recommended with this
method to be carried out with more accurate turbulence models.

The time averaged primal method lacks the ability to compute accurate
sensitivities if the QOI is having weighted time averages. Therefore, an-
other novel method named artificial diffusion is introduced in this chapter
to control aforementioned exponential growth in adjoint solution. This
method was successful in producing sensitivities which are agreeing in di-
rection as well as the magnitudes with the reference sensitivities obtained
from finite difference method.

Finally artificial diffusion adjoint stabilization method is used in a vortex
shedding frequency optimization of BARC problem which is chaotic and
transient. Two frequency ranges were used to obtain optimized shapes
in two different optimization problems. Low frequency range and high
frequency range optimization problems were able to obtain expected op-
timized solutions further proving the applicability of proposed artificial
diffusion method to stabilize adjoint solutions of a transient chaotic prob-
lem. However, these optimization procedures illustrated oscillatory be-
havior in the QOI in later iterations due to the constant step size used in
steepest descend algorithm and constant vertex morphing radius used
in vertex morphing to obtain smooth sensitivities. Further studies can be
conducted with adaptive step sizes and adaptive vertex morphing tech-
nologies to further improve obtained optimized design shapes. Another
reason for this oscillatory behavior is, the frequency corresponding to max-
imum amplitude being switched or falling out of the interested frequency
range. Therefore, further investigations can be carried out to minimize
these frequency jumps by utilizing amplitude integration methods.
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GOAL ORIENTED ADAPTIVE MESH

REFINEMENT

One of the main purposes of numerical simulations is to approximate a
Quantity of Interest (QOI) (i.e. goal) acting upon a physical system (Cerutti
et al. [27], Funke et al. [48], and Ricco et al. [113]). As explained in chapter 1,
CWE also requires estimating specific QOIs such as drag, lift, frequency
over structures to design stronger structures which can withstand harsh
weather conditions or to better utilize wind energy for energy production,
etc.. This makes it important to understand sources of error in a numerical
simulation because these errors will grow and will propagate adversely
towards approximation of the QOI.

Figure 5.1 by Szabó et al. [124] illustrates main sources of errors in numeri-
cal methods. In there, errors of idealization are the errors in simplifying
complex physical phenomena. This includes simplifications such as PDE
simplifications, material modelling simplifications, geometry simplifica-
tions. The next source of error is discretization which represents errors
present due to the method of discretization of mathematical model after
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5 Goal Oriented Adaptive Mesh Refinement

Figure 5.1: Process and associated error sources of a numerical
simulation (Szabó et al. [124]).

applying the simplifications in the physical reality. So, it is required to
understand the significance of each of these errors if a decision is to be
made based on a QOI approximated using numerical methods.

Errors due to simplifications need to be addressed by re-evaluating mod-
elling simplifications and assumptions which is out of scope for this study.
Therefore, the focus of this study is to develop a methodology to reduce ap-
proximation error of a QOI which is evaluated using discretized numerical
methods.

Spatial domain discretization error can be reduced by enriching mesh
regions locally where the most adverse effects are present on the QOI
approximation. It is known to be the highest time consuming process of
the whole work flow of applying numerical methods if it is done by the user
(refer figure 1.1). Hence, it is important to consider AMR methods which
automates this process as much as possible while leaving user intervention
to a minimum.

AMR is based on a given error estimator. Gradient based methods by
Zienkiewicz et al. [150], Hessian based methods by Loseille et al. [85], and
error estimators derived from posteriori methods by Ainsworth et al. [3]
are few examples from which the error estimators can be computed. Fid-
kowski et al. [44] provides an in-depth review of the existing methods for
calculating error estimators. Mesh adaptation can be performed with p -
adaptation(Rueda-Ramírez et al. [114]), h-adaptation (Babuška et al. [9]),
or hp -adaptation (Ahrabi et al. [2]).

In the context of CFD, there exists a large amount of local effects which
need to be approximated using spatial discretization. The Hessian based
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approach aims to minimize interpolation error for a given scalar field.
Therefore, it is advantageous to use Hessian approach for AMR in the
context of CFD.

This chapter is organized as follows. Firstly, methodology for steady and
transient AMR are presented in section 5.1. Afterwards 2D and 3D numeri-
cal example configurations are illustrated in section 5.2. Finally results of
these numerical experiments are presented in section 5.3.

5.1 Methodology

This section introduces methodology used in goal oriented adaptive mesh
refinement for steady and transient problems for CDR. Firstly, methodol-
ogy for steady problems is explained, followed by the methodology explana-
tion for transient problems. As explained in the introduction of chapter 5,
there exists many different ways of adapting a mesh. The focus of this study
is to use Hessian based approach for mesh adaptation.

5.1.1 Problem definition

The problem of interest in this study is the CDR transport equation where
φ can represent a scalar quantity (i.e. turbulent kinetic energy), or vector
quantity (i.e. velocity). The general form illustrated in equation (5.1) can
be used to explain a wide array of problems governed by PDEs such as
Navier-Stokes equations as well. Reader is referred to section 2.1.1 for
additional details of the problem definition.

R = f −u ·
∂ φ

∂ x
+
∂

∂ x

�

ν
∂ φ

∂ x

�

− sφ = 0 (5.1)

5.1.2 Hessian Based Metric

Hessian based approach is a subset of metric-based approaches available
for mesh adaptation. Here, the metric is called as the Riemannian metric
field (i.e. M) which is a point wise defined quantity of size d × d for a
domain ofΩ ⊂Rd . One advantage of metric-based approaches is, it allows
to control mesh anisotropy which is controlling the element size as well as
the shape and orientation as explained by works of Wallwork et al. [136].
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Hessian based metric for mesh adaptation is studied extensively by Balan
et al. [10], Frazza et al. [46]. The premise is as following. Assume w as
the exact solution to the given PDE problem in domain Ω. If this is to be
approximated in a discretized ΩH ⊂Ω, then it is required to estimate the
interpolation error in ΩH . Hessian is approximated in element K ∈ ΩH

as H , and ∂K represents edges of the element K. IH is the interpolation
operator fromΩH . Wallwork et al. [136] derived a relationship between the
H and the interpolation error as depicted in equation (5.2) where η> 0 is
a constant related to the spatial dimension (for additional details of the
Hessian derivations, reader is referred to Mataix Ferrándiz [90]).

||w −IH w ||L∞(K) ≤ηmax
x∈K

max
e∈∂K

e T H (x )e (5.2)

Furthermore, from equation (5.2), a metric tensor is derived as depicted in
equation (5.3).

Mx =
η

|δw̃ |
�

�H
�

�

x
(5.3)

Where, |H |x is estimated from eigen decomposition of symmetric positive
definite H |x ∀x ∈ΩH as depicted in equation (5.4).

|H |x =
�

V |Λ|V T
�

�

�

�

x
(5.4)

In the equation (5.3), |δw̃ |> 0 represents the acceptable error level for a
given scalar quantity’s H x at a mesh grid point x .

5.1.3 Goal oriented AMR for steady problems

In order to estimate the Mx at a given mesh grid point (i.e. node), it is
important to identify acceptable error level for that particular node. This
acceptable error level can be given as a user input (refer Mataix Ferrándiz
[90]). Another way is to estimate this acceptable nodal error level based
on the error of the QOI approximation which is the focus of this chapter.
Therefore, let’s assume the QOI to approximate (i.e. goal) is F as depicted
in equation (5.5) where w are all the dependent variables of F .

F = F
�

w
�

(5.5)
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Now, consider a coarse mesh ΩH ⊂ Ω as the initial mesh on which it is
required to perform AMR and produce a goal oriented adapted mesh. The
parameter H represents quantities evaluated in the coarse meshΩH . Then
a refined mesh (i.e.Ωh whereΩH ⊂Ωh ⊂Ω) is chosen such that, each coarse
mesh element is subdivided into smaller refined elements in a recursive
manner. h is used to represent quantities computed on the Ωh . Due to
relatively large number of elements introduced in Ωh , it is practically not
possible to obtain the solution for the physical system governed by PDEs
of interest followed by QOI approximation. Therefore, Taylor expansion is
used to estimate the QOI prediction error as illustrated in equation (5.6).

F
�

w h
�

= F
�

w H̃
�

+
∂ F

∂ w h

�

�

�

�

w H̃

�

w h −w H̃
�

+ · · · (5.6)

w H̃ represents the coarse mesh nodal quantities linearly interpolated
on the refined mesh. Following that, QOI approximation error can be
calculated as given in equation (5.7). M is the number of elements in ΩH .
In the context of FEM, QOI approximation is done by aggregating each
element’s contribution of the QOI, hence the QOI approximation error is
also computed by aggregation of each element’s error contribution.

δF =
M
∑

m=1

h

F
�

w h
m

�

− F
�

w H̃
m

�
i

=
M
∑

m=1

∂ F

∂ w h
m

�

�

�

�

�

w H̃
m

δw h
m

(5.7)

Where w H̃
m is computed from equation (5.8) and G m represents linear

interpolation operator for m t h element in ΩH .

w H̃
m = G m w H

m (5.8)

Assume expected QOI approximation error is δF̃ and number of refined
nodes per each coarse mesh element is P , then equation (5.9) can be stated
from overestimating the actual QOI approximation error by taking absolute
values of each of the coarse element’s error contributions.

δF̃ =
M
∑

m=1

P
∑

p=1

�

�

�

�

�

�

∂ F

∂ w h
mp

�

�

�

�

�

w H̃
m

�

�

�

�

�

�

�

�

�δw h
mp

�

�

�≥δF (5.9)
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δw h
mp is the expected nodal QOI approximation error on the Ωh . The

number of nodes in Ωh is excessive therefore storing expected nodal QOI
approximation errors on those nodes is prohibitively expensive. δw h

mp

also needs to be translated to δw H
m in order to apply AMR on ΩH which

is the objective. Therefore, all the δw h
mp in Ωh will be represented by one

single value per coarse elementΩm ∈ΩH . If each coarse element is allowed
to have the same expected QOI approximation error, then it allows us to
simplify equation (5.9)to equation (5.10)where

�

�δw H
m

�

� represents expected

QOI approximation error in m t h coarse element inΩH . Afterwards
�

�δw H
m

�

�

is equally distributed among its nodes in ΩH to calculate nodal expected
QOI approximation error.

δF̃

M
=
�

�δw H
m

�

�

P
∑

p=1

�

�

�

�

�

�

∂ F

∂ w h
mp

�

�

�

�

�

w H̃
m

�

�

�

�

�

�

∀m ∈ [1, M ] (5.10)

In order to solve the above problem as a posteriori, adjoint approach is used
as depicted in equation (5.11). There,λh

mi represents adjoint solution inΩh .
∂ Ri

∂ w h
mp

�

�

�

u H̃
m

represents governing PDE’s partial derivatives on Ωh evaluated

with values from ΩH linearly interpolated on Ωh .

∂ F

∂ w h
mp

�

�

�

�

�

w H̃
m

=−λh
mi

∂ Ri

∂ w h
mp

�

�

�

�

�

u H̃
m

(5.11)

A variety of methods are used to obtain λh
mi and ∂ Ri

∂ w h
mp

�

�

�

u H̃
m

. A study carried

out by Venditti et al. [132] uses second order interpolation for λh
mi and

linear interpolation for ∂ Ri

∂ w h
mp

�

�

�

u H̃
m

, whereas Power et al. [109] introduces a

novel interpolations scheme to calculate λh
mi , and uses linear interpola-

tion to estimate ∂ Ri

∂ w h
mp

�

�

�

u H̃
m

. For this study, linear interpolation is employed

to estimate λh
mi as well as ∂ Ri

∂ w h
mp

�

�

�

u H̃
m

in order to be computationally less

expensive.
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�

�δw H
m

�

�=
δF̃

M





P
∑

p=1

�

�

�

�

�

�

λH̃
mi

∂ Ri

∂ w h
mp

�

�

�

�

�

w H̃
m

�

�

�

�

�

�





−1

(5.12)

Element refinement procedure

This section describes the element refinement procedure used to produce
Ωh fromΩH required by section 5.1.3. The easiest way to generateΩh is to
subdivide each ΩH

e ∈Ω
H to smaller elements and interpolate quantities

from ΩH
e to Ωh

e . This is explained in detail in algorithm 9.

Algorithm 9 Element refinement procedure.

1: procedure REFINEELEMENT(Ωh , x ,θr l )
2: if θr l = 0 then
3: Add refined nodes at x to Ωh

4: Add Ωe created by x to Ωh

5: Add refined conditions to Ωh representing ΓΩe

6: Store nodal interpolation vectors in each node of Ωe

7: else
8: for i ≤Q do
9: Calculate nodal positions of refined element x i by sudivid-

ing nodal positions given by x
10: REFINEELEMENT(Ωh , x i ,θr l −1)

Number of subdivisions carried out in each ΩH
e is represented by Q in al-

gorithm 9. Figure 5.1 represents single triangle element refinement carried
out with θr l = 1 in left and θr l = 2 in right where Q = 4. This will result
in a Ωh with 4θr l M number of refined elements for given M number of
coarse elements in ΩH . This can lead to prohibitively expensive amount
of elements for higher θr l . Therefore, in this study, only one ΩH

e is refined
(i.e. Ωh

e ) and stored in memory. When refined mesh quantities for a given
ΩH

e is required, then Ωh
e is moved to its respective location of ΩH

e , and the
values are interpolated, and surface conditions on ΓΩH

e
is made active if

they are in Γ .

Figure 5.3 illustrates tetrahedral element refinement carried out in 3D .
This is done by dividing ΩH

e to four corner tetrahedrons, and then the
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5 Goal Oriented Adaptive Mesh Refinement

Figure 5.2: Triangle element refinement in 2D [Left: θr l = 1,
Right: θr l = 2].

inner octagon is further subdivided into four tetrahedrons along the main
diagonal, which results in a subdivision with Q = 8. This will result in Ωh

with 8θr l M number of elements. Due to the high computational memory
cost as explained before, in 3D also only one refined element is created
and then values and nodal positions are interpolated from the values of
ΩH

e when quantities form Ωh is requested.

Figure 5.3: Tetrahedral element refinement in 3D [Left: Refined
elements of outer most tetrahedral elements, Right: Refined

elements in innermost octagon].

Steady state goal oriented adaptive mesh refinement procedure

This section introduces the algorithm (refer figure 5.4) used in AMR for
steady state problems. First refined Ωh

e is created and stored using first
ΩH

e ∈Ω
H using algorithm 9. Then, primal steady problem is solved using

ΩH followed by adjoint problem solve in the same coarse mesh. Afterwards
each ΩH

e is interpolated to Ωh
e to calculate

�

�δw H
m

�

� using "Estimate Nodal
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Interpolation Error" illustrated in figure 5.4 ∀m ∈ [1, M ]. Finally stored
�

�δw H
m

�

� in nodes are used to perform AMR on ΩH . This process is repeated
until user specified Nma x iterations are reached.

Figure 5.4: AMR procedure for steady state problems.

5.1.4 Goal oriented AMR for transient problems

The next class of problems to be considered in this study is transient CDR
transport equation as depicted in equation (5.13).

R = f −
∂ φ

∂ t
−u ·

∂ φ

∂ x
+
∂

∂ x

�

ν
∂ φ

∂ x

�

− sφ = 0 (5.13)

Time discretization is performed using 2nd order accurate Bossak method
(Wood et al. [147]). Time derivatives are derived using equation (5.14).

Z = φ̇n −
1

γ∆t

�

φn −φn−1
�

−
γ−1

γ
˙φn−1 = 0 (5.14)
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Statistical quantities are of an interest in transient problems rather than the
time instantaneous values in CWE. Therefore, time averaged QOI function
is used in this study as depicted in equation (5.15), where N is the number
of time steps.

F =
1

N

N
∑

n=1

f n
�

w n , ẇ n , ẇ n−1
�

(5.15)

As described in the section 5.1.3, Taylor expansion is used to calculate
function approximation error as shown in equation (5.16) where w̃ H̃ ,n

m =
�

w H̃ ,n
m , w H̃ ,n−1

m , ẇ H̃ ,n
m , ẇ H̃ ,n−1

m

�

.

δF =
1

N

N
∑

n=1

M
∑

m=1

P
∑

p=1





∂ f n

∂ w h ,n
mp

�

�

�

�

�

w̃ H̃ ,n
m

δw h ,n
mp +

∂ f n

∂ ẇ h ,n
mp

�

�

�

�

�

w̃ H̃ ,n
m

δẇ h ,n
mp

+
∂ f n

∂ ẇ h ,n−1
mp

�

�

�

�

�

w̃ H̃ ,n
m

δẇ h ,n−1
mp





(5.16)

It is assumed to have the same expected error from each n t h time step
and each m t h coarse element.∆t is assumed to be chosen such that it has
negligible error contribution. Finally we like to over-estimate expected
QOI approximation error. As a result, equation (5.17) can be derived by
using equation (5.16) and equation (5.14) where δF̃ is the expected QOI
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approximation error.

δF̃

M
=

P
∑

p=1



a h ,n
mp

�

�

�δw h ,n
mp

�

�

�+ b h ,n
mp

 

�

�

�

�

γ−1

γ

�

�

�

�

�

�

�δẇ h ,n−1
mp

�

�

�+

�

�

�

�

�

δw h ,n−1
mp

γ∆t

�

�

�

�

�

!



≥
δF

M

∀n ∈ [1, N ] and ∀m ∈ [1, M ]

where

a h ,n
mp =

�

�
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�

�

�

�

�
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∂ w h ,n
mp
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�

�

�

�
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+
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γ∆t
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+
∂ f n+1
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mp

�

�

�

�

�
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�
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�

�

�
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∂ f n

∂ ẇ h ,n
mp

�

�

�

�

�

w̃ H̃ ,n
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+
∂ f n+1

∂ ẇ h ,n
mp
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�

�

�
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�

�

�

�

�

�

(5.17)

Due to high computational storage cost involved in storing δw h ,n
mp , δẇ h ,n

mp ,

and δẇ h ,n−1
mp , each of these quantities are to be represented by one value

per coarse element respectively δw H ,n
m , δẇ H ,n

m , and δẇ H ,n−1
m . Thus equa-

tion (5.17) can be rearranged as depicted in equation (5.18).

δF̃

M
=
�

�δw H ,n
m

�

�

P
∑

p=1

a h ,n
mp

︸ ︷︷ ︸

a n ,h
m

+

��

�

�

�

γ−1

γ

�

�

�

�

�

�δẇ H ,n−1
m

�

�+

�

�

�

�

1

γ∆t

�

�

�

�

�

�δw H ,n−1
m

�

�

� P
∑

p=1

b h ,n
mp

︸ ︷︷ ︸

b n ,h
m

(5.18)
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�

�δẇ h ,n
m

�

� is calculated using equation (5.19) whereδw H ,0
m = 0 andδẇ H ,0

m = 0
∀m ∈ [1, M ].

�

�δẇ H ,n
m

�

�=

�

�

�

�

1

γ∆t

�

�

�

�

��

�δw H ,n
m

�

�+
�

�δw H ,n−1
m

�

�

�

+

�

�

�

�

γ−1

γ

�

�

�

�

�

�δẇ H ,n−1
m

�

� (5.19)

Terms a h ,n
m and b h ,n

m needs to be calculated inΩh using the adjoint solution
for the defined lagrangian as depicted in equation (5.20) where λn is R n ’s
lagrangian multiplier and µn is the lagrangian multiplier of Z n .

L H̃ =
N
∑

n=1

M
∑

m=1





1

N
f n +

P
∑

i=1

�

λh ,n
mi R n

i +µ
h ,n
mi Z n

i

�





�

�

�

�

�

�

�

w̃ H̃ ,n
m

(5.20)

Adjoint problem for lagrangian definition in equation (5.20) is given by
equation (5.21) where λh ,N+1

mp = 0 and µh ,N+1
mp = 0 ∀m ∈ [1, M ] and ∀p ∈

[1, P ].

λh ,n
mi





∂ R n
i

∂ w h ,n
mp

+
1

γ∆t

∂ R n
i

∂ ẇ h ,n
mp





�
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�

�
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∂ f n

∂ w h ,n
mp
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�

�

�

�
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m

−
1

γ∆t

∂ f n

∂ ẇ h ,n
mp

�

�

�

�

�

w̃ H̃ ,n
m

−
1

γ∆t

∂ f n+1

∂ ẇ h ,n
mp

�

�

�

�

�

w̃ H̃ ,n+1
m

−
1

γ∆t
λh ,n+1

mi

∂ R n+1
i

∂ ẇ h ,n
mp

�

�

�

�

�

w̃ H̃ ,n+1
m

−
1

γ2∆t
µh ,n+1

mp

(5.21)

146



5.1 Methodology

Where µh ,n
mp is defined in equation (5.22).

µh ,n
mp =−

∂ f n

∂ ẇ h ,n
mp

�

�

�

�

�

w̃ H̃ ,n
m

−
∂ f n+1

∂ ẇ h ,n
mp

�

�

�

�

�

w̃ H̃ ,n+1
m

−λh ,n
mi

∂ R n
i

∂ ẇ h ,n
mp

�

�

�

�

�

w̃ H̃ ,n
m

−λh ,n+1
mi

∂ R n+1
i

∂ ẇ h ,n
mp

�

�

�

�

�

w̃ H̃ ,n+1
m

+
γ−1

γ
µh ,n+1

mp

(5.22)

From equation (5.21) and equation (5.22), a h ,n
mp and b h ,n

mp terms can be de-
rived. They may require prohibitively expensive computational cost to
compute because λh ,n

mi needs to be computed by solving equation (5.21) in

Ωh . Consequently, linearly interpolated λH̃ ,n
mi ≈λ

h ,n
mi is computed from its

counterpart λH ,n
mi . λH ,n

mi is evaluated by solving same equation (5.21) inΩH .
Finally we can derive a h ,n

mp and b h ,n
mp terms as depicted in equation (5.23)

and equation (5.24) respectively.

a h ,n
mp =−λ

H̃ ,n
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∂ ẇ h ,n
mp

�

�

�

�

�
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1

γ2∆t
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(5.23)

b h ,n
mp =µ

n ,h
mp −λ

H̃ ,n
mi

∂ R n
i

∂ ẇ h ,n
mp

�

�

�

�

�

w̃ H̃ ,n
m

−λH̃ ,n+1
mi

∂ R n+1
i

∂ ẇ h ,n
mp

�

�

�

�

�

w̃ H̃ ,n+1
m

+
γ−1

γ
µh ,n+1

mp

(5.24)

Once
�

�δw H ,n
m

�

� is computed from equation (5.18) for each time step, then
they are aggregated to one coarse elemental quantity as depicted in equa-
tion (5.25).

1
�

�δw H
m

�

�

=
N
∑

n=1

1
�

�

�δw H ,n
m

�

�

�

(5.25)
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Transient goal oriented adaptive mesh refinement procedure

Until now we have discussed formulations which are used to calculate
required nodal interpolation error of QOI’s dependent quantities. As dis-
cussed above, the transient adjoint problem needs to be solved backwards
in time because only λH̃ ,N+1

mp = 0 and µH̃ ,N+1
mp = 0 are defined in equa-

tion (5.21). On the other hand,
�

�δw H ,n
m

�

� needs to be calculated by march-

ing forward in time using equation (5.18) because only
�

�δw H ,0
m

�

� = 0 and
�

�δẇ H ,0
m

�

�= 0 is defined. Therefore following algorithm is used in this study
to estimate nodal interpolation error.

Algorithm 10 describes the procedure followed in this study for AMR.
Firstly, total time span responsible for n ∈ [1, N ] time steps is subdivided
into smaller Ñ time spans of equal length such that

�

N1, N2

�

∪
�

N2, N3

�

· · ·=
[1, N ]. In each smaller time span, the primal and adjoint problems are
solved in ΩH

i where i being the i t h subdivision. Afterwards, QOI function
interpolation error is estimated using equation (5.25). This is followed by
calculation of Hessian matrix for each dof. Thereafter, anisotropic mesh
adaptation is carried out to generate next smaller time span’s mesh (i.e.
ΩH

i+1).

Once the next time span’s mesh is generated, then nodal values from old
mesh are interpolated/mapped to the new mesh using three different
methods. First one being the "nearest neighbor" approach where it calcu-
lates nodal values on ΩH

i+1 based on each nodes’ nearest neighbor in ΩH
i .

The second mapping methodology is called "nearest element", which iden-
tifies the element (in ΩH

i ) in which each node in ΩH
i+1 lies, and uses linear

shape functions to interpolate. The third approach for mapping is called
"smoothed mapping" which is a novel mapping technique introduced in
this thesis. It uses the same "nearest element" approach. However, map-
ping is not done on the time instance where the AMR happens. It uses
solution field at θm s time steps before the AMR time step (this is saved us-
ing HDF format (The HDF Group [127]) check pointing method) to mapΩH

i
fields to ΩH

i+1. Thereafter, forward time marching is done until it reaches
time instance where AMR is performed with an adjusted time step. Ad-
justed time step is calculated by computing the maximum CFL number
in the mapped refined mesh. The maximum CFL is used to estimate the
required time step to achieve user desired CFL. Then the same procedure
is repeated for next time span.
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Algorithm 10 Nodal interpolation error estimation.

1: procedure TRANSIENTADAPTIVEMESHREFINEMENT(ΩH ,θr l , Ñ )
2: Create Ωh using algorithm 9.
3: for i ≤ Ñ do
4: n←Ni

5: w̄ H ,n−1← 0
6: for n ≤Ni+1 do
7: Solve primal (ref. equation (5.13)) for n t h time step in ΩH

i

8: w̄ H ,n ←Mean
�

w H ,n , w̄ H ,n−1
�

(refer appendix A)
9: Store w̄ H ,n , w H ,n , ẇ H ,n

10: n← n +1
11: n←Ni+1

12: for n ≥Ni do
13: Load w H ,n , ẇ H ,n

14: Solve adjoint (ref. equation (5.21)) for n t h time step in ΩH
i .

15: Calculate a h ,n
m , b h ,n

m using equations 5.23, equation (5.24)
16: Store a h ,n

m and b h ,n
m

17: n← n −1
18: n←Ni

19:
�

�δw H ,n−1
m

�

�← 0 ∀m ∈ [1, M ]
20:

�

�δẇ H ,n−1
m

�

�← 0 ∀m ∈ [1, M ]
21:

�

�δw H
m

�

�← 1×10100 ∀m ∈ [1, M ]
22: for n ≤Ni+1 do
23: Load a h ,n

m , b h ,n
m

24: Calculate
�

�δw H ,n
m

�

�,
�

�δẇ H ,n
m

�

� using equations 5.18, 5.14

25: Update
�

�δw H
m

�

� using equation (5.25)
26: n← n +1
27: Calculate H using w̄ H ,Ni+1

28: Calculate M using H and
�

�δw H
m

�

�

29: ΩH
i+1← Perform AMR on ΩH

i
30: Map ΩH

i data to ΩH
i+1

31: Adjust∆t
32: n←Ni

33: for n ≤Ni+1 do
34: Solve primal (ref. equation (5.13)) for n t h time step in ΩH

i+1
35: n← n +1
36: i ← i +1
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5.2 Numerical Experiments

So far this paper has focused on formulations and procedures of the AMR
study. The following section will introduce numerical experiments on
which proposed AMR is applied. Firstly 2D scalar experiments are intro-
duced, then followed by a 3D example.

5.2.1 Circular convection

This experiment is selected to investigate proposed AMR procedure on
steady scalar transport equations. It is taken from Hubbard [62]. Primal
problem details are explained in section 2.2.1. Initial mesh for this problem
is selected to be coarse with triangular elements as depicted in figure 5.5(a).
One of the reasons to have such a coarsened mesh is to highlight the effect
of proposed AMR procedure.

(a) Initial mesh (b) QOI function domain area

Figure 5.5: Circular convection initial mesh and QOI function
domain area.

QOI function (i.e. F ) for this numerical experiment is depicted in equa-
tion (5.26), where the domain ΩF is illustrated in figure 5.5(b).

F =
ˆ
ΩF

φdΩ (5.26)

5.2.2 Diffusion only

Diffusion only initial value experiment is investigated to analyze proposed
transient AMR procedure. This experiment is also a 2D scalar transport
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problem as depicted in equation (5.27).

∂ φ

∂ t
=
∂

∂ x

�

∂ φ

∂ x

�

in Ω = (0, 1)× (0, 1) for t ∈ (0, 40] (5.27)

QOI function used in this experiment is same as the circular convection
experiment which is depicted in equation (5.26). Initial mesh and ΩF are
illustrated in figure 5.6(a) and figure 5.6(b) respectively.

(a) Initial mesh (b) QOI function domain area

Figure 5.6: Diffusion only initial mesh and QOI function domain
area.

Equation (5.28) depicts a single hump used to initialize this experiment. A
is the magnitude, (x0, y0) is the center coordinates of the hump, and r0 is
the radius of the hump.

φ =







A 1+c o s (πr )
4 if r =

Ç

(x−x0)2+(y−y0)2
r0

≤ 1.0

0 otherwise

∀x , y ∈ (0, 1)2 and t = 0

(5.28)

Two initial value conditions are considered in this experiment. First experi-
ment consists of a single hump centered in the domain (i.e. x0 = 0.5, y0 = 0.5
with A = 10.0 and r0 = 0.15). Second experiment consists of two humps
centered at x0 = 0.25, y0 = 0.5 and x0 = 0.75, y0 = 0.5 with A = 10.0 and
r0 = 0.05.
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5.2.3 2D flow over a cylinder

This experiment is carried out to investigate proposed AMR procedure’s
performance with reference to highly non-linear 2D steady-state problem.
It is based on the work done by Catalano et al. [26]. The experiment consist
of rectangular computational domain (i.e. Ω) with a cylinder with a diam-
eter D = 1m . Upstream distance in Ω is 22D , downstream is 17D , and
24D is the distance to the far field. Inlet is applied with constant velocity
of u = 10.0m s−1, turbulent intensity of 0.2. Far field is assigned with slip
conditions. Outlet is assigned with fixed pressure conditions with P = 0.
Linear log-law wall functions are used on the cylinder. The Reynolds num-
ber corresponding to this experiment is 1×106. Drag over the cylinder is
used as the QOI function for AMR procedure.

5.2.4 3D flow over a cylinder

This experiment is based on work of Bayraktar et al. [14]. The experiment
with transient inlet corresponds to R e = 100 is chosen to investigate pro-
posed transient AMR procedure. The computational domain for this prob-
lem is made exact as the reference experiment, and the boundary condi-
tions are also made exact.

Two types of inlets are investigated with this experiment. First one with
the steady inlet as depicted in equation (5.29a) then followed by transient
inlet experiment as depicted in equation (5.29b).

u (0, y , z , t ) = 16×2.25×
y z (0.41− y )(0.41− z )

0.414
(5.29a)

u (0, y , z , t ) = 16×2.25× sin
�

πt

8

�

y z (0.41− y )(0.41− z )
0.414

(5.29b)

5.3 Results of Numerical Experiments and Discussion

In this section we present and systematically analyze results of numerical
experiments. Firstly, 2D scalar steady transport circular convection results
are presented and compared against the exact solutions. Then followed by
scalar 2D transient diffusion only experiment results are presented. After-
wards 2D steady flow over cylinder experiment with k−ω−s s t turbulence
model’s results are presented. Finally transient flow over cylinder results
are presented.
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5.3.1 Circular convection

Figure 5.7(a) and figure 5.7(b) illustrate exact solutions for the circular
convection problem with smooth solution (i.e G1 in equation (2.19)) and
with discontinuous solution (i.e. G2 in equation (2.19)) respectively. This
problem is investigated to understand the performance of the proposed
AMR method for steady state problems. This study is carried out with

(a) Smooth (b) Discontinuous

Figure 5.7: Exact solutions of circular convection problem.

(a) Iteration 2 (b) Iteration 3 (c) Iteration 4

Figure 5.8: AMR study meshes in each iteration with θr l = 2 and
δF̃ = 5×10−2 for circular convection problem with smooth

solution.

different θr l and δF̃ to investigate the effect on the adapted mesh in mesh
iteration study. The QOI functional is chosen as given in equation (5.26).

Figure 5.8 illustrate adapted meshes after each iteration for smooth solu-
tion problem with θr l = 2 and δF̃ = 5× 10−2. As the applied convective
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velocity in the domain is circular (refer equation (2.17)), it is in the clock-
wise direction for

�

x , y
�

∈ (−1, 0)×(0, 1) range. It is encouraging to compare
adapted meshes in figure 5.8 with its initial mesh illustrated in figure 5.5(a).
While the initial mesh is made coarse, figure 5.9 illustrates the proposed
AMR procedure identifies regions correctly which are critical for objective
evaluation. In this case the critical region being the circular region which
is being refined as in the figures figure 5.8, non-critical region being x > 0
coarsened out even more than the initial mesh. This mesh coarsening
results in overshoots in the solution as depicted in figure 5.9 because the
proposed AMR procedure identifies these regions as the regions which
do not have strong influence over the objective evalutation, thus the illus-
trated overshoots do not affect the objective evaluation.

(a) Iteration 2 (b) Iteration 3 (c) Iteration 4

Figure 5.9: φ distribution in circular convection smooth
solution AMR study meshes in each iteration with θr l = 2 and

δF̃ = 5×10−2.

Having discussed how the proposed AMR method is producing mesh re-
finement which is capable of optimizing computational cost via coarsening
non-critical regions and refining critical regions for QOI function evalua-
tion, it is also important to investigate effect of θr l on the overall procedure.

Figure 5.10(a) illustrates actual error for each adapted mesh iteration for
different θr l values. It can be observed that with adapted mesh based on
higher θr l have lower error than with lower θr l . In addition, figure 5.10(b)
shows, higher the θr l higher the number of elements. However, the cal-
culated QOI function approximation error for different θr l do not have
significant difference. Therefore, it is safer to assume in practical applica-
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Figure 5.10: Circular convection smooth AMR study meshes’
solution errors and number of elements.

tions θr l = 2 would suffice. Another observation from figure 5.10(a) is that
actual error (i.e. δF ) is smaller than the expected QOI approximation error
(i.e. δF̃ ). This is due to the fact that in equation (5.9) the expected QOI
approximation is over estimated. This indicates that in order to achieve a
desired level of QOI approximation accuracy, it is possible to use a higher
level of expected QOI approximation error which will result in lower cost
for more complex problems.

Resultant meshes of the discontinuous solution are presented in figure 5.11.
This numerical experiment is carried out to investigate how well the pro-
posed AMR performs near discontinuities. As depicted in the figure, it
correctly identifies critical regions for QOI functional approximation as in
the smooth solution.

(a) Iteration 2 (b) Iteration 3 (c) Iteration 4

Figure 5.11: AMR study meshes in each iteration θr l = 2 and
δF̃ = 5×10−1 for circular convection problem with discontinuous

solution.

Figure 5.12 illustrates φ distribution for different adapted meshes used
in solving discontinuous boundary condition problem. Oscillations can
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5 Goal Oriented Adaptive Mesh Refinement

be observed near the discontinuity due to limitations in CDR transport
equation formulations.

(a) Iteration 2 (b) Iteration 3 (c) Iteration 4

Figure 5.12: φ distribution in circular convection discontinuous
solution AMR study meshes in each iteration θr l = 2 and

δF̃ = 5×10−1.

Figure 5.13(a) illustrates actual errors calculated on θr l study for discon-
tinuous solution problem. As a result of oscillations at the discontinuity,
oscillations can also be observed in actual errors as well. However, the
number of elements in each mesh iteration for discrete solution problem
depicted in figure 5.13(b) follows the same trend as in the smooth solution
problem.
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Figure 5.13: Circular convection discontinuous AMR study
meshes’ solution errors and number of elements.
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5.3.2 Diffusion only

The exact initialization used in this experiment is visualized in figure 5.14
where figure 5.14(a) illustrates initialization with only a single hump and
figure 5.14(b) illustrates initialization with two humps.

(a) Single hump at x0 = 0.5, y0 = 0.5, r0 = 0.15 (b) Double humps with r0 = 0.05 at (x0, y0) =
(0.25, 0.5) and (x0, y0) = (0.75, 0.5)

Figure 5.14: Initial values of diffusion only experiment with
A = 10.

Firstly, resultant meshes of diffusion only AMR experiment with single
hump are illustrated in figure 5.15. While the computed H is symmetrical
along x = 0.5 and y = 0.5 axises due to initial values being symmetrical,
the resultant meshes are not symmetrical. This is because ΩF for the QOI
function evaluation is not symmetrical. The AMR procedure refined mesh
near the region of ΩF . Therefore, it can be stated that the proposed AMR
procedure successfully identifies the regions which are significant for the
QOI function evaluation and refines near them correctly.

Figure 5.16 illustrates φ distribution in different initial time steps. The
observed solution forφ is reduced with time advancement due to the dif-
fusion. This leads to coarsening of the mesh with time advancement as
depicted in figure 5.15 because QOI function evaluation is carried out with
significantly diffusedφ producing low values and the expected approxi-
mation error can be reached with reduced number of elements.
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(a) t = 0.002 s (b) t = 0.052 s (c) t = 0.102 s

Figure 5.15: Diffusion only with single hump solution AMR
study meshes in different time steps θr l = 2 and δF̃ = 5×10−1.

(a) t = 0.002 s (b) t = 0.052 s (c) t = 0.102 s

Figure 5.16: φ distribution in single hump diffusion only
solution AMR for different time steps θr l = 2 and δF̃ = 5×10−1.

The meshes of different time steps for double hump diffusion only exper-
iment are illustrated in figure 5.17. It is evident that at t = 0.002 s (refer
figure 5.17(a)) QOI function evaluation over ΩF has contributions from
both humps where more contributions are from the left most hump and
relatively less contributions from right most hump, thereby higher refine-
ment is carried out near the leftmost hump, and relatively lower refinement
is carried out near the right most hump.

The mesh is coarsened with time marching as in the single hump experi-
ment due to the fact thatφ is being diffused as explained earlier. However,
this experiment illustrates relatively higher coarsening of the mesh for
same time steps than the single hump experiment. This can be attributed
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(a) t = 0.002 s (b) t = 0.052 s (c) t = 0.102 s

Figure 5.17: AMR study meshes in different time steps θr l = 2
and δF̃ = 5×10−1 for diffusion only problem with double hump

solution.

to initial values being different as depicted in figure 5.14. There, single
hump is initialized with comparatively larger values over larger ΩF than
its double hump experiment. This is also evident in the φ distributions
presented in figure 5.18 for different time steps. The overall magnitude
of the φ distribution is smaller in double hump experiment than in the
single hump leading to a coarser mesh in double hump experiment. It
is because, if theφ distribution is smaller, then domain integral over ΩF

is smaller then the expected approximation error can be reached with
reduced number of elements.

(a) t = 0.002 s (b) t = 0.052 s (c) t = 0.102 s

Figure 5.18: φ distribution in double hump diffusion only
solution AMR for different time steps θr l = 2 and δF̃ = 5×10−1.
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5 Goal Oriented Adaptive Mesh Refinement

5.3.3 2D flow over a cylinder

This experiment exhibits performance of proposed AMR procedure for
highly non-linear steady state problems. It is done based on the specifica-
tions given in Catalano et al. [26], following the domain size description,
and boundary descriptions. k−ω−s s t turbulence model is used to obtain
steady state flow field and then to perform the goal oriented AMR.

Figure 5.19 illustrates the solutions for aforementioned 2D flow over a
cylinder problem. Figure 5.19(a) depicts velocity magnitude in the vicinity
of the cylinder. Pressure distribution is shown in figure 5.19(b), turbulent
kinetic energy(i.e. k ) is shown in figure 5.19(c), and turbulent specific
energy dissipation rate (i.e.ω) is shown in figure 5.19(d) in log scale.

(a) U
�

m s−1
�

(b) P (P a )

(c) k
�

m 2 s−2
�

(d) ω
�

s−1
�

in log scale

Figure 5.19: Solution of 2d flow over a cylinder experiment.

Figure 5.20 illustrates meshes obtained after each mesh refinement study
for this experiment. Figure 5.21 illustrates the magnified view of the same
iteration to better understand the behavior of AMR methodology. The
mesh outside the vicinity of cylinder is kept almost same in all the itera-
tions due to the allowed maximum element size restriction in the mesh
refinement study. It is done to have a good quality mesh in the whole do-
main so the drag coefficients can be compared with the reference values
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5.3 Results of Numerical Experiments and Discussion

from Catalano et al. [26].

(a) Iteration 2 (b) Iteration 3 (c) Iteration 4

Figure 5.20: Meshes for each iteration in 2d flow over cylinder
AMR study.

 

(a) Iteration 2

 

(b) Iteration 3

 

(c) Iteration 4

Figure 5.21: Magnified view of meshes for each iteration in 2d
flow over cylinder AMR study.

From figure 5.21, it is evident that the mesh refinement is carried out near
the front half of the cylinder. This refinement is continued from the stag-
nation point till the separation point (refer figure 5.19). This is because in
order to calculate drag accurately, the numerical simulation needs to com-
pute the momentum equation correctly which requires turbulent viscosity
which is dependent on U , k , andω. They exhibit prominent variations in
region along the cylinder from stagnation point till the separation point,
hence the refinement of mesh. It is also evident that each iteration refines
elements in the vicinity of cylinder, with relatively higher refinement from
stagnation point till the separation point. This can be attributed to the fact
that, proposed AMR does not impose a lower bound on the error calcu-
lation and the solution field is not vanishing, therefore AMR will keep on
refining the mesh.

Finally resultant Cd from each iteration is compared against RANS results
for the same experiment found in Catalano et al. [26]. Figure 5.22(a) shows
the error calculated w.r.t. the reference result after each iteration. The
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5 Goal Oriented Adaptive Mesh Refinement

proposed AMR procedure is able to achieve desired QOI function approxi-
mation error δF̃ within 1 iteration. It is also evident that the error has a
reducing trend with the increase in mesh iteration re-enforcing the fact
that the proposed AMR procedure is developed without a lower bound for
desired QOI function approximation error. Figure 5.22(b) illustrates the
number of elements in each mesh refinement iteration.
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(a) Cd error w.r.t. ref Catalano et al. [26]
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Figure 5.22: Steady state AMR study on 2d flow over cylinder
experiment.

5.3.4 3D flow over a cylinder

Results of this experiment are investigated to understand proposed tran-
sient AMR procedure’s ability to perform if an highly non-linear transient
3D problem is presented. Figure 5.23 illustrates velocity field distribution
(refer figure 5.23(a)) and pressure field distribution (refer figure 5.23(b))
for transient inlet condition at t = 2.17 s .

Figure 5.24 illustrates Cd distribution over the time with different mapping
methods elaborated in section 5.1. Reference data is taken from Bayraktar
et al. [14]. It can be observed that directly mapping current time step as
in "nearest neighbor" and "nearest element" approaches produce oscilla-
tions at the mapping time step which are reduced over time. Oscillations
are there because, Cd is computed by calculating reaction forces on each
surface node on the cylinder. Reactions are computed by computing resid-
ual of the momentum equation. Since interpolation does not guarantee

162



5.3 Results of Numerical Experiments and Discussion

(a) U
�

m s−1
�

(b) P (P a )

Figure 5.23: 3D flow over a cylinder velocity and pressure
distribution for transient inlet at t = 2.17 s .

satisfaction of the residuals, hence the spikes are visible. This is relatively
less significant in the case with "smoothed mapping" approach introduced
in this thesis work. That is because, mapping is done in a previous time
step (i.e. θm s steps before current step) and forward problem is run un-
til the current time step. This allows solution field to build the solution
while satisfying residuals for smoothing steps. "Smoothed mapping" is
investigated with different θm s steps to identify effect of number of steps
for prediction of QOI function value. It is evident that θm s does not have a
strong influence over the final QOI function approximation.
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smoothed mapping with ms = 10
smoothed mapping with ms = 15

Figure 5.24: 3D flow over a cylinder Cd variation over the time
for different mapping techniques.
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Figure 5.25 illustrates QOI function approximation error variation with
time averaging time window. "Nearest neighbor" and "nearest element"
mapping techniques show steady oscillating behavior until the end of AMR
period which is caused by the Cd spikes evident in figure 5.24. Afterwards,
it shows almost steady error convergence. However, "smoothed mapping"
techniques with different θm s values illustrate a different behavior. This is
because, initially the Cd variation with time is below the reference (refer
t ∈ [0,1] in figure 5.24). Then it increases beyond the reference value
creating the first valley in figure 5.25. After the AMR period, Cd is again go
below the reference value, consequently resulting in the second valley as
depicted in figure 5.25.
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Figure 5.25: 3D flow over a cylinder time averaged Cd error
variation over the time for different mapping techniques.

Even though results from mapping methodologies depicted in figure 5.24
show spikes when transient AMR is performed, the effect of spikes on over-
all QOI computation dies down with time. This is because, time averaged
QOI is used in this case. It is important to make users aware that, in a high
R e chaotic transient problem, these spikes may carry out artificial effects
for a longer time than the experiment results shown in here. Therefore,
it is important to understand the requirement to have a better mapping
methodology to reduce these spikes. From figure 5.25, it is evident that,
"smoothed mapping" technique provides better approximation of the
QOI function for a given δF̃ value and shows less deviations from the
reference value at positions where transient AMR is performed. Therefore,
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"smoothed mapping" technique is used hereafter.

Afterward, the transient AMR procedure is investigated for different δF̃
values. Then calculated Cd error with reference is illustrated in figure 5.26.
Actual error (i.e. δF ) is reducing with reduction in expected QOI approx-
imation error (i.e. δF̃ ), with δF ≤ δF̃ which illustrates transient AMR
procedure’s ability to obtain solutions satisfying the given approximation
error. To illustrate this further, different meshes (obtained via anisotropic
meshing methodology) for first three different transient AMR steps per-
formed with different δF̃ values are depicted in table 5.1. It can be seen
in all the cases, it identifies cylinder region as most important for drag
computation, therefore it is refined more relative to other regions. In the
case of δF̃ = 0.01, transient AMR procedure identifies walls closer to the
cylinder also has an effect towards computation of drag over the cylinder
to obtained given δF̃ , thus making refinement there as well.
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Figure 5.26: 3D flow over a cylinder Cd variation for different δF̃ .

5.4 Conclusions and Outlook

Most of the time in CWE, numerical wind tunnel tests are performed to cal-
culate one or many QOIs. The flow behavior of a CWE problem is transient
and chaotic. Therefore, this chapter focused on developing methodologies
to obtain optimized meshes to achieve given accuracy for a given QOI.

Firstly, AMR method for steady state problems were developed. Then they
are evaluated against 2D scalar transport problems having analytical solu-

165



5 Goal Oriented Adaptive Mesh Refinement

Table 5.1: Meshes after transient AMR procedure for different
δF̃ values.

δF̃
Transient AMR step

1 2 3

0.5

0.1

0.05

0.03

   

0.01

   

tions. Comparison with analytical solutions illustrated that proposed AMR
method for steady state problems can achieve expected or better accuracy
levels for given QOIs. Thereafter, the same methodology was tested against
a highly non-linear 2D flow over a problem with k −ω− s s t turbulence
model. It also showed that, the given accuracies can be achieved with
proposed AMR methodology.

Afterwards, transient AMR methodology was developed. Special care has
to be taken when developing transient AMR methodology otherwise, the
naive implementation requires prohibitively expensive memory when
computing expected error values for given QOI. Finally proposed tran-
sient AMR methodology is used to solve a 2D scalar transient transport
problem which has an analytical answer. Comparison with the analytical
results showed, proposed transient AMR method also capable of achieving
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expected or better accuracies in QOI evaluations.

While developing transient AMR methodology, one crucial aspect also
investigated which is mapping between coarse and refined meshes. Two
different existing mapping methodologies and one novel "smoothed"
mapping methodology were tested in a 3D low R e transient problem.
It showed novel "smoothed" mapping methodology was able to perform
better than other two mapping methodologies. It is important to note here
that, other two mapping methodologies showed spikes at the points where
transient AMR is performed, whereas "smoothed" mapping methodology
only showed small deviations. This is important because, in a high R e
chaotic transient problem, these artifacts may travel through time for a
longer time affecting the overall solution. This makes it important to either
make the time between two different transient AMR points longer, or to
further investigate into better mapping methodologies which preserve
conservation laws.
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6
CONCLUSIONS AND OUTLOOK

Predicting wind field around urban cities/structures poses many chal-
lenges in engineering. Computational Wind Engineering (CWE) is one
branch of the engineering sciences which focuses on modelling wind ef-
fects around cities/structures in a numerical wind tunnel. It also poses
many challenges because of the time investment required to properly
define and solve the problem (i.e. defining assumptions, making mesh,
solving). Therefore, this thesis focused on methodologies to reduce overall
time taken for a numerical wind tunnel test. Chapter 1 gives a brief intro-
duction to many challenges faced in preparing a numerical wind tunnel
test for a CWE problem.

Chapter 2 introduces turbulence modelling in Finite Element Method
(FEM) to reduce computational time required in evaluating a CWE prob-
lem. A novel Residual-based Flux-Corrected (RFC) stabilization method
was introduced in this chapter to overcome difficulties faced in obtaining
positivity preserving solutions for turbulence quantities used in two equa-
tions Reynolds Averaged Navier-Stokes (RANS) turbulence modelling. This
novel RFC stabilization methodology was developed while keeping the
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possibility to easily extend it for adjoint sensitivity analysis, applicability
in ALE frameworks for FSI analysis, and robustness. Firstly, the proposed
stabilization method was tested against 2D scalar transport equations
which have their analytical solutions. It showed that, novel RFC stabiliza-
tion method was able to produce positivity preserving solutions and was
giving better system matrix conditioning which is beneficial to be used
in iterative linear solvers. Afterwards, it was tested against benchmark
problems, obtained results were compared against their respective DNS
or experimental data. It also showed, the proposed novel RFC stabilization
method performs as expected giving accurate solution fields. Thereafter,
developed stabilization method was extended to solve Unsteady Reynolds
Averaged Navier-Stokes (URANS) problems and tested against a Fluid-
Structure Interaction (FSI) benchmark case. Finally, the same stabilization
method was used with different turbulence models namely RANS k −ε,
RANS k −ω− s s t and URANS k −ω− s s t to evaluate applicability of tur-
bulence modelling in a CWE problem and compared against Large Eddy
Simulation (LES) results. The results of this investigation showed, that
URANS k −ω− s s t turbulence model performed better and produced
more accurate results. However, it also had short comings in replicating
vortex shedding frequencies as in the reference solution.

The chapter 3 focused on developing steady state adjoint sensitivity analy-
sis which is highly modular/extensible and efficient. The proposed de-
velopments in this chapter were then extended to obtain sensitivities for
three different turbulence models namely k − ε, k −ω, and k −ω− s s t
with and without using the frozen turbulence assumption. Finally these
developed sensitivities were used in different chaotic and non-chaotic
flow optimization problems having drag as the minimization Quantities
of Interest (QOI), with lift as a constraint. The results suggest that, having
different turbulence models lead to different local minima in optimization
procedures. The best results were shown in k −ω− s s t turbulence model
without the frozen turbulence assumption, which indicates the most accu-
rate turbulence modelling methodology may produce the best optimized
design when used in optimization problems.

Afterwards, chapter 4 extends proposed developments in chapter 2 and
chapter 3 for transient sensitivity analysis. One major problem in transient
sensitivity analysis is the butterfly effect, which causes chaotic transient
systems to be highly sensitive for initial conditions. This causes computed
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transient adjoint solution to has an exponential growth in time, thus mak-
ing them useless. Therefore, this chapter focused on introducing two novel
approaches to stabilize these transient adjoint solutions. Time averaged
primal was the first stabilization methodology which has proven to be
providing stabilized adjoint sensitivities. However, the computed stabi-
lized adjoint sensitivities showed dependence on the turbulence model
used in estimating Reynolds Stress Tensor (RST) when time averaged solu-
tions were used. This illustrated that, if a more accurate turbulence model
was used, then more accurate adjoint sensitivities can be obtained. This
warrants further investigations in implementing better accurate turbu-
lence modelling methodologies. The next novel stabilization method was
named artificial diffusion. It adds controlled artificial diffusion to miti-
gate exponential growth in transient adjoint solution. It was successful
not only in stabilizing transient adjoint solution, but also in providing
meaningful shape sensitivities which were having reduced errors with
the sensitivities computed via finite difference method. Afterwards, this
stabilization method was utilized in an optimization problem. This op-
timization problem involved reducing amplitudes of maximum vortex
shedding frequencies in a given range for a chaotic transient Benchmark
on the Aerodynamics of a Rectangular 5:1 Cylinder (BARC) problem. The
proposed artificial diffusion stabilization problem was able to provide
meaningful sensitivities, making the optimization problem to have the
QOI reduced.

Chapter 5 developed goal oriented Adaptive Mesh Refinement (AMR)
methodologies for steady state and transient problems using adjoint ap-
proach to obtain error sensitivities for a given QOI. First, methodology
for steady state problems was developed. Then it was tested against 2D
scalar transport problems and a highly non-linear high R e flow problem
using k −ω− s s t as the turbulence model. Results from these studies
depicted that, the proposed steady state AMR methodology can provide
meshes which lead to expected accuracy levels in QOI. Then this steady
state methodology was extended for transient AMR methodology. In here,
special care has been taken to reduce overall memory consumption due to
requirement in refined mesh to obtain QOI error sensitivities. Two differ-
ent existing mapping methodologies and one novel "smoothed" mapping
methodology were also used in this chapter to map coarse mesh field
solution to refined mesh field when using AMR. Two existing mapping
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methodologies showed spikes in QOI at points when transient AMR were
performed. These spikes were then diffused with time since time aver-
aged QOI was used. However, the proposed novel "smoothed" mapping
methodology showed only small deviations at points where transient AMR
were performed indicating its better performance in mapping. Finally pro-
posed transient AMR methodology was tested against a 2D scalar transient
transport equation problem and a 3D flow problem. Results from both il-
lustrated that proposed transient AMR methodology were able to produce
meshes which can lead to expected accuracy levels in the used QOI.

Finally it can be stated that, this thesis successfully addressed the prob-
lem of requiring substantial amount of time to perform a numerical wind
tunnel test in CWE by breaking down the problem in small sections such
as reducing time consumption via developed turbulence modelling, re-
ducing time spent on design analysis via developed shape optimization
methodologies, and reducing time spent on designing and making spatial
discretizations by developed steady state and transient AMR methodolo-
gies. All of these developments were thoroughly tested and validated using
examples from literature and internal work. The results of these testing
illustrated, that the proposed developments are performing as expected,
thus reducing the overall time consumption in performing a numerical
wind tunnel test.

As for the outlook, even though proof of concept for the proposed novel
RFC stabilization is validated for non-turbulent FSI problem, the method
can be used to solve turbulent FSI problems as well. Therefore, further
studies can be carried out to evaluate novel RFC stabilization method’s
effectiveness in solving turbulent FSI problems. Furthermore, future stud-
ies on the proposed time averaged transient adjoint stabilization method
warrants for more accurate turbulence models such as machine learning
based, three equations based, four equations based, etc. Therefore, novel
RFC stabilization with developed modular sensitivity analysis methodol-
ogy can be extended for aforementioned high accuracy turbulence models
to investigate their ability to provide sensible sensitivity values for chaotic
flow problems. Thereafter, further research can be undertaken to extend
novel RFC stabilization method and its modular sensitivity analysis for
analyzing wind-thermal related problems by implementing energy equa-
tion which will open whole new branch of transient sensitivity analysis for
wind problems.
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STATISTICAL QUANTITIES

The definitions for statistical quantities for a givenφn is given below.

A.1 Mean

Mean ofφn is computed as

φ
N
=

1

N

N
∑

n=1

�

φn
�

(A.1)

A continuous mean can be computed for a transient forward time marching
problem as

φ
N+1
=

Nφ
N
+φN+1

N +1
where φ

0
= 0 and N ≥ 0 (A.2)
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A.2 Variance

Variance ofφn is computed as

Var
�

φ
�N
=

1

N

N
∑

n=1

h
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φn
�2
i

−
�

φ
N
�2

(A.3)

A continuous variance can be computed for a transient forward time
marching problem as

Var
�

φ
�N+1

=
N

�
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φ
�N
+
�

φ
N
�2
�

+
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φ
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(A.4)

A.3 Standard Deviation

Standard deviation ofφn is computed as follows

σ
�

φ
�N
=
r

Var
�

φ
�N

(A.5)
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DISCRETE TRANSIENT ADJOINT

FORMULATION

B.1 Primal Problem

Primal problem’s discrete residual is defined as in equation (B.1) using
Bossak time integration scheme.

R n = F n − C n w n −M n
�

�

1−αb

�

ẇ n +αb ẇ n−1
�

(B.1)

Where F n , C n w n , M n are discrete time instantaneous force vector, con-
vective matrix and mass matrix. w n is the time instantaneous solution
vector and ẇ n is the time derivative of time instantaneous solution vec-
tor. αb is the Bossak constant. ẇ n is obtained by using the equation (B.2)
where γb is the newmark constant calculated from γb = 0.5−αb .

H n = ẇ n −
1

∆t γb

�

w n −w n−1
�

−
γb −1

γb
ẇ n−1 = 0 (B.2)
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B.2 Quantity of Interest

Time averaged (or weighted averaged) QOI is illustrated in equation (B.3)
where s is the shape parameter.

J =
1

N

N
∑

n=1

J
�

w n , s
�
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B.3 Adjoint Problem

Hence the Lagrangian can be formulated as in equation (B.4).
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Equation (B.5) illustrates the total derivative w.r.t s of the formulated La-
grangian.
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Equation (B.5)can be simplified as depicted in equation (B.6)using d w
d s
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= 0,
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B.3 Adjoint Problem

R̃
T
1 and R̃

T
2 is defined in equation (B.7a) and equation (B.7b).
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In the discrete adjoint approach, R̃ 1 = 0 and R̃ 2 = 0 is assumed to avoid

expensive evaluation of total state derivatives (i.e. d w
d s

n
, d ẇ

d s

n
) when calcu-

lating adjoint solutions (i.e. λn
1 ,λn

2 ). Simplifying equation (B.7b) will result
in the definition for λn

2 as depicted in equation (B.8).
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Applying equation (B.8) to equation (B.7a) will result in the final transient
adjoint system of equations as depicted in equation (B.9).
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39 Altuğ Emiroğlu, Multiphysics Simulation and CAD Integrated Shape Optimiza-
tion in Fluid-Structure Interaction, 2019.

40 Mehran Saeedi, Multi-Fidelity Aeroelastic Analysis of Flexible Membrane Wind
Turbine Blades, 2017.

41 Reza Najian Asl, Shape optimization and sensitivity analysis of fluids, structures,
and their interaction using Vertex Morphing parametrization, 2019.

42 Ahmed Abodonya, Verification Methodology for Computational Wind Engineer-
ing Prediction of Wind Loads on Structures, 2020.

43 Anna Maria Bauer, CAD-integrated Isogeometric Analysis and Design of
Lightweight Structures, 2020.

44 Andreas Winterstein, Modeling and Simulation of Wind-Structure Interaction
of Slender Civil Engineering Structures Including Vibration Mitigation Systems,
2020.

45 Franz-Josef Ertl, Vertex Morphing for Constrained Shape Optimization of Three-
dimensional Solid Structures, 2020.

46 Daniel Baumgärtner, On the Grid-based Shape Optimization of Structures with
Internal Flow and the Feedback of Shape Changes into a CAD Model, 2020.

47 Mohamed Khalil, Combining Physics-based models and machine learning for an
Enhanced Structural Health Monitoring, 2021.

48 Long Chen, Gradient Descent Akin Method, 2021.

49 Aditya Ghantasala, Coupling Procedures for Fluid-Fluid and Fluid-Structure
Interaction Problems Based on Domain Decomposition Methods, 2021.

50 Ann-Kathrin Goldbach, The Cad-Integrated Design Cycle for Structural Mem-
branes, 2021.

51 Iñigo Pablo López Canalejo, A Finite-Element Transonic Potential Flow Solver
with an Embedded Wake Approach for Aircraft Conceptual Design, 2022.

52 Mayu Sakuma, An Application of Multi-Fidelity Uncertainty Quantification for
Computational Wind Engineering, 2022.

208


	Contents
	List of Abbreviations
	List of Symbols
	Material properties
	Flow properties
	Dimensionless numbers
	Mathematical symbols

	Introduction
	Motivation
	State of the Art
	Outline

	Turbulence Modelling and Finite Element Method
	Residual-based Flux-Corrected Stabilization Method
	Problem definition
	Novel stabilization method

	Steady State Scalar Numerical Experiments
	Circular convection
	Body force driven bump
	Effect of added diffusion in RFC stabilization method
	RFC stabilization method parameter study

	Applicability to Reynolds Averaged Navier-Stokes Problems
	Turbulence models
	Benchmark Problem Definitions - 2D
	Stabilization method comparison
	Applicability of stabilization methods to different turbulence models
	Coupling with different flow solving methods
	3D Pipe flow

	URANS in Fluid-Structure Interaction Mok Benchmark Problem
	Mok benchmark problem definition
	Results

	RANS/URANS in Wind Engineering Problems
	BARC problem definition
	Flow field distributions
	Drag and lift coefficient variation
	Pressure variation
	Velocity variation
	Frequency variation

	Conclusions and Outlook

	Steady Sensitivity Analysis
	Adjoint Element Formulation Implementation
	Primal problem
	Adjoint problem
	Stabilized residual derivatives
	Adjoint element formulation
	Adjoint slip condition formulation implementation

	Testing and Verification
	Unit testing
	Verification

	Numerical Experiment
	Experimental setup
	Optimization procedure

	Results
	Non-chaotic flow optimization process
	Chaotic flow optimization process
	Comparison of non-chaotic and chaotic flow optimization processes

	Conclusion and Outlook

	Transient Sensitivity Analysis
	The big problem
	Transient problem definition
	Stabilization of transient adjoint solution
	Time averaged primal
	Artificial diffusion

	Application to chaotic flow problem
	Chaotic flow problem definition
	Verification methodology
	Verification results
	Time averaged primal adjoint sensitivities results
	Artificial diffusion results

	Frequency domain optimization
	Primal problem definition
	Vortex shedding frequency
	Adjoint problem definition
	Optimization problem
	Flow over the cylinder results
	BARC results

	Conclusion and Outlook

	Goal Oriented Adaptive Mesh Refinement
	Methodology
	Problem definition
	Hessian Based Metric
	Goal oriented AMR for steady problems
	Goal oriented AMR for transient problems

	Numerical Experiments
	Circular convection
	Diffusion only
	2D flow over a cylinder
	3D flow over a cylinder

	Results of Numerical Experiments and Discussion
	Circular convection
	Diffusion only
	2D flow over a cylinder
	3D flow over a cylinder

	Conclusions and Outlook

	Conclusions and Outlook
	Statistical Quantities
	Mean
	Variance
	Standard Deviation

	Discrete Transient Adjoint Formulation
	Primal Problem
	Quantity of Interest
	Adjoint Problem

	List of Figures
	List of Tables
	Bibliography

