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Abstract—In this work, we present methods for distributed
domain generation within the constraints of our decentral domain
management concept. Here, all participating actors only have
knowledge of their immediate neighbours, which are defined by
geometric and hierarchical relations between nodes that represent
subsets of the computational domain. We generate this domain
following a hierarchical spacetree refinement. First, an initial tree
is generated on every participating process. Second, this tree is
distributed following a space-filling curve linearisation locally.
Every process is assigned at least one leaf node of the initial
tree, which acts as a starting point for the subsequent domain
generation. From here, every process independently refines a
subdomain using a decomposition method, which transforms a
triangular surface-based geometry description into a volume-
based one, using increasingly complex intersection tests. The
resulting domain tree is distributed, yet neighbourhood references
of neighbouring subtrees are not resolved. We combine the
resolution of these relations with a 2:1 tree balancing, which
involves the transfer of the surface of neighbouring subtrees.
We provide results of a domain generation testcase, using an
input geometry with 84,072 triangles on up to 896 processes of
the CoolMUC-2 cluster segment of LRZ’s Linux Cluster System.
Here, we bring down the overall time it takes to generate an
adaptively refined and balanced octree with depth d = 7 from
5.5 hours on one process to two seconds on 896 processes.

Index Terms—Large-scale scientific computing, parallel algo-
rithms, distributed algorithms, distributed systems, distributed
domain generation, spacetrees

I. INTRODUCTION

In the ever growing landscape of numerical computing on
high-performance clusters, every part of a dedicated simulation
codebase must be custom-tailored for the distributed hardware.
With machines encompassing core counts in the range of mil-
lions of cores, every serial section of a code must be avoided as
far as possible, to make efficient use of the parallel hardware.
Within the codebase developed at our institute for the real-time
simulation of physical phenomena described by the Navier-
Stokes Equations [1], one of these limiting serial sections is the
domain generation. It followed a centralised approach, where
a single management instance is responsible for reading in
input files containing geometrical information, generating the
datastructure, partitioning the structure and distributing it to
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the responsible processes. Only then a computation in parallel
is possible.

The central management instance has been identified as one
of the main bottlenecks to performance and has been replaced
recently. Our current approach employs a decentral approach
to domain organisation, where the essential idea is to limit
the domain view of each participating unit to their direct
neighbours. The new approach affects various parts of the
numerical code significantly. Among them, the octree-based
domain generation, which had to be revamped from a central
based one to support the decentral structure similarly. To this
end, an algorithm has been devised, where all participating
processes generate the computational domain up to a prede-
termined depth, before distributing the resulting leaf nodes
of the geometry to be starting points for a subsequent local
refinement. Furthermore, we introduce a balancing algorithm
to only allow a maximum difference of the refinement depth
of neighbouring tree nodes of one. Finally, we detail the
resolution of the neighbourhood relations between the newly
generated local trees of each process, both locally and across
process borders.

The remainder of this article is structured in the following
way. In the next section II, we detail all foundational concepts
of our codebase. These include a short overview over different
domain management concepts and the partitioning of our data
structure. To conclude the section we introduce a spacetree
generator to create a volume-based model from a surface-based
(triangular) geometry description. The following section III
introduces the distributed domain generation algorithms in
detail, including the 2:1 tree balancing and the resolution
of neighbourhood relations across different neighbouring pro-
cesses. We show experimental results of the decentral approach
in section IV before some conclusions and closing remarks in
section V.

II. FOUNDATIONS

Our fluid flow simulation framework is custom-tailored to
be deployed on current top tier massive parallel machines.
It has been tested on multiple high-performance clusters and
showed good scaling behaviour on up to 140,000 cores [2].
Nevertheless, we also identified bottlenecks, one of which
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turned out to be the central management instance. In the
following, we will give an overview over the different man-
agement concepts and detail briefly the old approach based on
a global view of the domain and the current approach, which
follows a local domain view. Furthermore, we detail another
key component of the codebase, the partitioning scheme based
on the idea of a spacetree refinement (with quadtrees as 2D
and octrees as 3D representatives). We close the chapter with
the description of the voxel based algorithm to generate our
geometry description.

A. Domain management

In a parallel environment, the simulation domain must be
partitioned and distributed to the responsible processes. When
viewed as a graph, the domain partitions appear as nodes of the
graph. Neighbouring partitions usually have to exchange bor-
dering values and information during the simulation process.
These data dependencies are represented by edges in the graph.
The distribution of individual partitions, i.e. nodes, must sat-
isfy two criteria, such that the computation is able to efficiently
use the parallel hardware: a reasonably balanced distribution of
individual partitions to processes and the minimisation of inter-
process edges, minimising communication over the cluster
network. Furthermore, if an adaptive mesh refinement and
coarsening is to be employed, causing imbalances in partition
size and therefore imbalances in computational load among
the processes, a continuous load balancing is advantageous.
All these tasks must be handled by a domain management
instance.

There has been extensive effort into developing libraries that
take the burden of domain management. The most well known
are metis and its variant for distributed machines parmetis [3]-
[8], which are based on various graph partitioning methods
to find an efficient distribution of the simulation domain. And
p4est [9]-[12], which is based on so called forests (distributed
connected octrees) and space-filling curves to evaluate efficient
distributions of these octrees to processes.

Domain management concepts can be classified by the
domain view, that is the extent of knowledge of the domain
graph, and the number of processes that hold this information.
If the complete domain graph is available, one speaks of
a global view. Consequently, a local view means the graph
is only partially available. Both mentioned libraries employ
a hybrid approach of the domain view. The partitioning
of the domain is exclusive, each process has only a local
view of its assigned partitions, however all processes share a
macrostructure connecting the individual partitions. Changes
to the overarching macrostructure are costly, but happen very
rarely, such that these libraries work exceptionally well in
practice and show scalability up to the maximum capabilities
of current hardware.

At the initial design of our codebase, a domain management
concept was chosen following a global view strategy on a
single management instance [13]. This choice was motivated
to support adaptive mesh refinement and coarsening during
the runtime of the domain, allowing to dynamically rebal-

ance the computational load. Having the complete domain
graph available, state-of-art balancing techniques based on
space-filling curves (SFC) can be employed. As mentioned
above, employing this strategy has performed quite well on
current hardware. Nevertheless, the requirement to communi-
cate regularly with a single management instance has been
identified as a bottleneck to performance, especially with ever
growing numbers of available cores and therefore processes.
An extension has been proposed to use multiple management
instances, each responsible for a subset of the computational
domain, while synchronising an overarching macrostructure
among them, comparable to the approaches taken by metis
and p4est. Yet, we believe, keeping any kind of metadata that
has to be synchronised among all or a subset of processes,
cannot be infinitely scaled.

To this end, we have developed a domain management
concept based on an exclusive partitioning of the domain graph
among the participating processes without any overarching
structure that connects all subgraphs [14]. Each process only
holds information about its own local partition and is aware
of topological connections to neighbouring partitions. Infor-
mation is exchanged only with processes holding connected
partitions. Therefore, information travels through the domain,
following a diffusion model, concentrically from its source.
This information transfer is comparably slow when applied
purely geometrical, but this is alleviated by making use of
our hierarchical data structure, which allows information to
travel through the hierarchy of the spacetree in addition to
the geometrical neighbours. Nevertheless, global information
exchange is intentionally avoided in our concept. Neither
do we have to synchronise a macrostructure, nor do our
management methods require any kind of global domain view.
Most affected by this is the load-balancing after an adaptive
mesh refinement and coarsening. Having only local domain
information, we use a diffusion-based approach to exchange
load between neighbouring processes. Limiting the number of
diffusion steps certainly is unable to achieve a perfect balance
for arbitrary large domains as a global view method would,
however a theoretical scalability independent from the total
size of the domain graph is only possible by limiting the
domain view.

B. Partitioning

As mentioned above, we follow the idea of spacetrees to
partition the simulation domain. Our graph starts with a root
node, representing the complete domain at depth d = 0.
The domain is then successively subdivided in each cardinal
direction, generating subblocks in each refinement step. This
subdivision is continued up to a predefined depth d,,q,. We
also allow an adaptive refinement, in which blocks are only
refined if they satisfy a defined condition. For example, if they
contain geometry or other interesting features of the simula-
tion. Since the refinement depth will be directly responsible for
the resolution of the numerical mesh, a greater depth leads to
a greater accuracy. An exemplary 2D data structure adaptively
refined to depth d = 5 is illustrated in Figure 1.
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In addition to classical spacetrees,
we allow varying subdivisions from
one to seven in each cardinal direc-
tion, amounting up to 49 (2D) or
343 (3D) child nodes per refinement
step. This allows us to represent com-
plex domains with no degeneration of
partitions by being overly stretched
in one direction. A node is uniquely
identified by a 64 bit integer, whereas
the last nine bits are used to encode
the position of a node in the parent’s

§> ‘ local coordinate system. With three
bits per direction, we are left with

< eight representable positions. A recur-
- sive subdivision of more than five is
7| hysically not feasible [1], therefore,
~_ phy y
L we use seven valid positions and one
invalid position.

In our implementation, each graph
node is then discretised by a regu-
lar, orthogonal, block-structured grid.
Each grid comprises cells of size
84 X 8y X 5, which store all necessary

Fig. 1. A spacetree struc-  problem variables such as velocities,
ture as a result of the parti-
e . pressure or temperature values. Fur-
tioning of an arbitrary nu-
merical domain: the refine-
ments with all hierarchical
levels are shown from top
to bottom. The bottom de-
piction shows an agglom-
eration of the finest resolu-
tion available.

thermore, each grid is surrounded by
a halo of ghost cells storing a current
copy of the neighbouring cell values.
Since each node is discretised by a
grid, our data structure represents the
simulation domain in various resolu-
tions throughout the whole spacetree
hierarchy.

Each node has two types of neighbours, hierarchical neigh-
bours and geometrical neighbours. Hierarchical neighbours are
parent or child nodes from the spacetree refinement. They
all represent the same space or parts thereof in different
resolutions. Geometrical neighbours are the “real” neighbours,
located adjacent to a node in the simulation space. Here, we
only consider geometrical neighbours on the same refinement
depth. These neighbours discretise the space with the same
resolution. Figure 2 illustrates all hierarchical and geometrical
neighbours of a node (orange checkers) in two dimensions. A
node has exactly one parent (grey on top level). The number
of child nodes depends on the subdivision chosen. Here, a
bisection in each cardinal direction per refinement step was
used, which amounts to four children (yellow on bottom level)
per refined node. In two dimensions, a regular grid has at
most four geometrical neighbours on the same refinement level
(solid orange). Nodes at the domain border have fewer. If
the domain is non-uniformly refined, nodes may also have
fewer geometrical neighbours. In accordance with the premise
of minimising the connections among processes and avoiding
broadcast operations, each process only communicates with
other processes that were assigned neighbouring nodes.

Fig. 2. An illustration of all geometrical and hierarchical neighbours of a
node in two dimensions. When a node is refined, the space is bisected in
each cardinal direction, spawning four child nodes.

C. Geometry generation

In order to set up simulation scenarios involving complex
geometries, a fast and reliable way is needed to generate a
volume-based description according to our data structure. Even
more so, if scenarios should be evaluated in which geometries
are moving or the mesh is dynamically refined during runtime,
which requires a re-evaluation on the fly. References [15], [16]
describe the idea of a spacetree generator to create a volume-
based model from a surface-based description.

The general idea is again following a spacetree refinement,
this time however in an adaptive fashion. In three dimensions
the geometrical primitive is a voxel. If a voxel is refined,
each dimension is subdivided, resulting in a number of child
voxels. The decision if a voxel should be refined is based on
a geometrical intersection test with the surface-based descrip-
tion. If one triangle is inside, touches or intersects a voxel,
the voxel is added to the candidate list for refinement. This
process is carried out starting from a single voxel containing
the complete domain and is subsequently executed for each
successive refinement depth, until a prescribed depth has been
reached, or no voxels are flagged as refinement candidates
during the intersection tests anymore. Reference [16] proposes
a fast generator based on intersection tests with increasing
costs. The logic behind this is, while applying less complex,
inexpensive tests, many candidates can be discarded quickly
before more expensive tests have to be applied. Figure 3
shows an example from [17] and [18], an operating theatre
located at the university hospital “Klinikum rechts der Isar”
in Munich. We used the surface model to generate a volume
description using the voxel generator. Figure 3a shows the
input geometry, while figure 3b and figure 3c depict a volume
based model refined up to depths d = 5 and d = 6. In
each cardinal direction, a bisection was used when subdividing
voxels, following the classical octree scheme.

The voxel generator has been adapted to our data structure
in [19]. A first pass of the algorithm generates the octree,
which turns into our domain graph. Subsequently each node
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(a) Surface-based model

is discretised with a computational mesh that consists of a
predefined amount of cells. Then, a second run is carried out.
Here intersection tests are performed on the actual cells to set
the geometrical boundary conditions directly.

Until lately, we used this algorithm on the central manage-
ment instance to generate the domain and set the boundary
conditions on the created cells. The domain was then dis-
tributed using a Z-Order SFC to all participating processes.
Not only the distribution of the domain from a single source
was identified as a bottleneck, but also the memory require-
ment of this single instance has proven to be prohibitive for
large-scale examples from real-world applications. With the
recent overhaul of the management concept of our codebase,
the domain generation had to be revamped as well, following
a decentral approach.

III. DISTRIBUTED DOMAIN GENERATION

With the abolition of our central domain management
instance, there is still the possibility of using the old domain
generation facilities by selecting a single process from the
cluster and performing the initial generation and distribution
process from this single source as described before. This
naturally does not solve any of the bottlenecks, therefore we
updated the domain generation to make use of the distributed
hardware.

The basic idea is to have every process be responsible for
the generation of its own share of the simulation domain.
Therefore, every process needs a starting voxel to carry out
a spacetree refinement. As such, the actual generation is a
multistage process. In the first stage, each process either uni-
formly or adaptively generates a domain following a uniform
spacetree refinement or an adaptive approach, using the voxel
generator with a triangular-based input file. The key aspects
of this initial domain structure are a refinement up to a
depth, in which the amount of leaf nodes of the generated
domain tree are at least equal to the amount of participating
processes. Furthermore, only the tree nodes are generated

(b) Volume-based model, depth d =5

Fig. 3. Generation of the volume-based models from a surface-based description, resolved up to depths d = 5 and d = 6.

(¢) Volume-based model, depth d = 6

without initialising the corresponding computational grids,
which keeps the memory requirement low. Figure 4a illustrates
an example domain uniformly refined in a simplified fashion.
Four participating processes generate the initial domain up to
a depth of three, with four leaf nodes depicted in green on the
deepest refinement level.

At this point, every process has the complete domain
information available locally. This allows to resolve the neigh-
bourhood relations on all nodes directly. Metadata about each
nodes’ parent and child nodes are stored with the node during
generation of the tree. In other words every node is able to
reference its parent and possible children, making it possible
to traverse the complete domain tree and find horizontal
neighbours easily. Furthermore, the global view of the domain
allows the computation of a space-filling curve. Subsequently,
each process computes the final distribution according to the
linearisation from the SFC and updates all local metadata
accordingly. After all nodes that do not belong to a process are
deleted, we arrive at an initial domain configuration exactly
equal to a configuration we would have got with a central
management instance. Additionally, no communication has
taken place so far. Figure 4b shows a simplified illustration of
the current domain distribution after the deletion of all foreign
nodes. The now deleted nodes on a process are signified with
a hatching.

Each process has now been assigned an exclusive partition
of the initial tree with at least one of its leaf nodes. In the
third stage, each process individually generates a new subtree
with its leaf nodes as a starting point following the geometry
generation method outlined in section II-C. Figure 4c again
shows a simplified view of the current configuration in which
each process has refined its local subtree at the bottom of the
illustration. For the local subtree, we are again able to resolve
the neighbourhood relations by traversing the tree using the
hierarchical domain structure. However, neighbouring trees
are not available, so inter-process neighbourhood cannot be
resolved locally. One remedy would be to keep the domain
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generation purely local, that means every process generates
the subtrees of all geometrical neighbours to its leaf nodes
in addition to its own local subtree. Having the neighbouring
subtrees available locally in turn allows to resolve the neigh-
bourhood information without any communication. It is not
necessary to update neighbourhood metadata of the foreign
trees. Furthermore, after the metadata is updated, they may
simply be deleted.

Our code supports ghost layer updates across different
refinement depths. Nevertheless, numerical constraints limit
the amount of depth discrepancies between neighbouring
nodes. Our implementation therefore balances the ensuing
local subtrees following a 2:1 balance constraint. In other
words, geometrical neighbouring nodes cannot exceed a depth
difference of more than one. This inevitably requires com-
munication between processes holding neighbouring subtrees,
therefore, we are able to combine communication of the
neighbourhood metadata with tree information that allows us
to balance the trees. This means, we do not generate foreign
subtrees to resolve neighbourhood information, but rather
use the communicated metadata to combine balancing and
updating neighbourhood references. In the next section, we
illustrate the details of this balancing and the neighbourhood
resolution.

A. 2:1 tree balancing and resolution of inter-process neigh-
bourhood relations

Refining a node without also refining its neighbours leads
to a discrepancy in refinement depth of the space discretised.
Consequently, the grids that discretise geometrical neighbour-
ing nodes are non-conforming and the problem of hanging
nodes arises. As mentioned above, our data structure allows
an arbitrary number of hanging nodes, using the space tree
hierarchy to exchange the necessary ghost cell data through in-
terpolation from finer resolutions or prolongation from coarser
ones. Yet, to ensure the convergence of numerical solvers
by limiting the interpolation errors, we require a difference
between neighbouring refinement levels of at most one level.
This problem is well known in literature as the tree balancing
problem and has been extensively studied for octrees, for
example in [20], [21] and [22]. Again, our completely local
domain view does not allow the use of algorithms requiring
any kind of global knowledge of the domain structure. There-
fore, the starting point of our investigation is a local 2:1 tree
balancing algorithm.

Prerequisite for the local tree balancing is a complete local
tree structure, where every node is connected and can be
reached. The pseudo code for the method is illustrated in
algorithm 1 and its main task is to determine whether the
level of a geometrically neighbouring node is two levels finer
than the current node that is treated. If that is the case, the
node needs to be refined. The method therefore loops over
all leaf nodes in the tree and performs a number of checks.
Every other node is already refined and does not need to be
taken into account. First, all geometrical neighbours of the
node are referenced. For any refined neighbours, their children

(a) Stage 1: initial tree generation on all processes.
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(d) Stage 4: exchange of surface trees.

Fig. 4. Four stages of the distributed tree generation algorithm: generation
of the initial tree on all processes, subsequent deletion of all foreign nodes
and generation of individual subtrees with the previous leaf nodes as starting
points. The last stage depicts the exchange of the surface trees to balance
local subtrees and update neighbourhood metadata.

are referenced. Finally, the children are checked if they lie
bordering to the original node and whether they are refined
themselves. If both requirements are true, we have determined
that the discrepancy between the refinement depth is at least
two or greater and the original node has to be refined. Any
remaining checks for the current node can be forfeited at this
point. Tree balancing is repeated until a complete iteration
through all leaf nodes does not yield a single refinement any
more. A simple flag, set when a node is refined and unset
between iterations of the method, is sufficient for this task.
After locally balancing the subtrees, information has to be
exchanged between processes that hold neighbouring subtrees,
i.e. subtrees generated from geometrically neighbouring inter-
mediate leaf nodes. It is sufficient to exchange information
concerning the surface in the direction of the neighbouring
subtree. The surface of a spacetree is a tree itself, only with
one dimension less. There are multiple ways to store spacetrees
very memory efficiently. One is converting the tree structure
into a depth first list of bits. Each bit encodes whether a node is
refined or not. With the knowledge of the subdivision spacing,
i.e. the amount of new nodes generated when a refinement
happens, the tree can be rebuilt from this list of bits. Figure 5
shows an example spacetree with a subdivision of two for
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Algorithm 1 Local tree balancing method.
1: for all leaf nodes do
2:  for all geometrical neighbours do
3 if neighbour is refined then
4: for all child nodes do
5 if children are bordering the original node and
are refined then

6: refine original node
7: jump to next node
8: end if

9: end for

10: end if

11:  end for

12: end for

every refinement. The list is generated going through the tree
from top to bottom first and from left to right second. The id is
an increasing number, signifying the order of traversal of the
tree. ref takes the value 1 if the node is refined and 0 otherwise.
To transfer surface information of surrounding subtrees, we
send this bit encoding of the surface tree, followed by a list
of identifiers to uniquely reference the nodes making up the
surface in the computational domain. In figure 4d the transfer
of the subtree surfaces is illustrated in a simplified fashion. The
nodes that make up the surface to be transfered are depicted
with a dotted pattern.

0 id | ref

0 1

11

o @ 2.0
301

@ © T 0
® G i

Fig. 5. Depth-first encoding of an example spacetree (binary-tree) with seven
nodes in total. id refers to a consecutive numbering of nodes following their
traversal, ref is encoding the tree structure and encodes whether a node
identified by id is refined (1) or not (0).

Both lists allow the receiver process to generate a mock
tree, which can be traversed similarly as the processes’ own
subtree. Furthermore, it contains all neighbourhood references
of the foreign nodes, which are used to update the references of
the locally held nodes. Having all the neighbourhood surface
trees available, after updating the neighbourhood references
of all locally held nodes, the local tree balancing can be
applied similarly as before. Newly generated nodes on one
process may warrant subsequent updates on remote processes
and vice versa. As such, the cycle of communicating the
surface information, updating neighbourhood references of
nodes that have gotten new neighbours and balancing the local
tree with the help of the surrounding mock trees, has to be
repeated multiple times. After the first cycle though, only
changes to the surface structure have to be communicated
and not the complete subtree surface. After all cycles are

completed, the mock trees are deleted. The upper bound for the
amount of needed cycles is given by the maximum refinement
depth minus the depth of the initial tree minus one (since
we allow an imbalance of one between neighbouring nodes).
Even if subsequent cycles yield no more refinements anymore,
we cannot break early. Refinements caused by nodes on the
opposite side of a remote subtree may only be visible after
refinements have cascaded through the remote subtree in a
later cycle.

There are two remarks worth mentioning. First, nodes gen-
erated from the 2:1 balancing cannot have geometry boundary
conditions. As such, further intersection tests on the cells
of the new nodes are not necessary. If a node had parts of
the geometry in the first place, it would have been refined
previously when we generated the subtree. Second, it is not
possible to employ the same strategy of generating the subtrees
from neighbouring intermediate leafs on a process and use
these trees to apply a local 2:1 tree balancing. A node is
identified by the rank of the process it is held by and a unique
id, local to the owning process. This id cannot be computed
by a foreign process since the exclusive domain distribution
prohibits knowledge about neighbours of neighbours (second
level neighbours). If nodes are refined due to an inter-process
tree balancing, these refinements cannot be seen by the neigh-
bouring subtree on the other side. With this we conclude
the section explaining our decentral domain generation within
the constraints given by the data structure and the domain
management concept.

IV. IMPLEMENTATION RESULTS

In order to show the viability of the decentral domain
generation, we used the operating theatre from section II-C,
illustrated in figure 3 again, an example we have previously
computed using our old centralised approach. The underlying
geometry has dimensions of 6.3m x 6.25m x 3.5m, the input
file contains 84, 072 triangles. All tests were run on the Linux
Cluster System provided by the Leibniz Supercomputing Cen-
tre (LRZ) [23]. We used the CoolMUC-2 cluster segment
[24], which consists of 812 28-way Intel Xeon E5-2690 v3
Haswell-EP nodes with Infiniband FDR14 interconnect and
two hardware threads per physical core. It’s theoretical peak
performance amounts to 1,400 TFlop/s. The used compiler
was the Intel Compiler in version 19.0.

We used our distributed domain generation method to
generate and balance the domain with refinement depths d = 3
to d = 7. We used increasing process counts starting from 1
process on 1 cluster-node up to 896 processes, with 28 pro-
cesses per cluster-node and 32 nodes. The chosen subdivision
Ty X Ty X7, 18 2 X 2 X 2, resulting in 8 child nodes for every
refined node (the classic octree). Each node is discretised after
the initial partitioning with a grid of 8 x 8 x 8 cells. Each
individual test combination was run multiple times to calculate
the truncated mean, where we discarded extreme outliers. The
Linux Cluster is a shared resource that is used by many
researchers simultaneously. Therefore, outliers are caused by
other running applications that also use the interconnect.
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Fig. 6. Times for domain generation including a 2:1 tree balancing and resolving the neighbourhood relations for different domain resolutions from refinement
depths from d = 3 to d = 7, measured against the amount of processes used from 1 to 896.
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Fig. 7. Times for domain generation using the described decentralised methods compared against the former centralised methods. The measurements are
broken down into a refinement step to generate the domain tree and a balance step for the decentral approach and a migration step for the central approach.
The times are measured against the amount of processes used from 1 to 896.

Consequently, without the outliers, the given truncated mean
agrees very closely with the minimum observed times. There
are no measurements for refinements of depth d = 3 and
processor counts from 112 onwards. The intermediate tree
needed such that every participating process is assigned at least
one leaf grid must be refined to depth d = 3. Therefore, every
process performs the complete refinement locally without any
inter-process communication and deletes all foreign nodes
according to the SFC linearisation. The same is true for
refinements of depth d = 4 and a processor count of 896.
Figure 6 illustrates the measurements. We observe a steady
decline for generation times with increasing processor counts
for a refinement depth d = 7. Generating the domain takes
approximately 20,000 seconds or roughly to 5.5 hours on a
single process. Increasing the processor count, the time comes
down to approximately two seconds using 896 processes

111

eventually. For comparison, we posed the former centralised
method for domain generation against the new decentral
approach. Figure 7a and figure 7b illustrate these measure-
ments. The times shown for the decentral domain generation
are further broken down into the adaptive generation of the
domain tree and the migration from the central instance to
all participating processes. The times for the 2:1 balancing
were omitted, because they have no significant influence on
the total time. The time for the load-balancing is included
in the migration, where nodes are sorted according to their
Morton ordering and equal chunks of nodes are distributed to
their respective processes. The sorting itself has similarly no
significant influence on the time, though. Finally, the total time
as sum of the former two is depicted. The new approach is
similarly broken down. The first part is the generation of the
domain tree, made up by the generation of the intermediate
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tree plus the refinement of the local leaf nodes. A migration
step is not needed here, as all nodes are generated on their
respective processes. The 2:1 balancing however, requires
much more effort and communication over the network and
is significant. Again, the total time as sum of the two parts is
illustrated likewise.

The central approach always takes the same amount of
time with around 15 minutes for depth d = 6 and around
5.5 hours for depth d = 7 to generate the domain tree, as
no parallelisation is used. The time it takes to migrate the
nodes to their respective processes is slowly increasing the
more processes are involved, from around 50 seconds at 7
processes to 80 seconds at 896 processes at depth d = 6.
For depth d = 7, the times increase from 613 seconds to
971 seconds. For the measured range of processes used, the
generation is clearly the dominating factor. Both parts of
the decentral approach, the tree generation and the balancing
clearly benefit from the parallelisation. We observe a steady
decline for generation times with increasing process counts
for both refinement depths. The single process performance
is equal to that of the centralised approach. Increasing the
process count, the time comes down to approximately 2
seconds using 896 processes and a depth of d = 7. For depth
d = 6 we observe a similar benefit from using more processes.
However, at 896 processes, the time for the refinement stage
increases again. At 448 the intermediate tree is refined on
every process up to depth d = 3 resulting in an average number
of leafs per process of 1.1. For 896 processes we need to refine
the intermediate tree one level further. Using the classical
octree with 8 children, the average number of processes comes
out to 4.6. This explains the added time, each process has to
refine the intermediate tree one level further, refining also non
local nodes. Moreover, the amount of individual subtrees to
generate is increased as well.

The speedups we observe for depths d = 6 and d = 7 are on
average four times the amount of processes used. We mainly
attribute this superlinear speedup to cache effects. Storing the
complete domain tree on a single node far exceeds the size
of faster caches. Increasing parallelisation not only shares
workload, but also splitting up the domain tree allows for
subtrees to fit into cache memory and allows faster access.
The speedup in the balancing stage has multiple sources. The
intermediate tree is balanced on all processes locally. This
happens only once and is comparably very cheap. Increasing
the process count leads in general to less subtrees to balance.
In the best case, decreasing the amount of subtrees by one
saves communication with four neighbours (3D). Furthermore,
with the intermediate tree refined deeper, the subtrees are
refined less, decreasing the effort to balance the local subtrees
and the surface areas to communicate.

In figure 8 we show memory measurements during the
domain generation process. The memory of the intermediate
tree is increasing incrementally with the height of the tree. The
intermediate tree for 896 processes refined to depth d = 4
with 4,681 nodes in total requires roughly 1.9 MB. After
the intermediate tree has been generated, nodes that belong
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Fig. 8. Memory requirement of the intermediate tree and the complete node
share of the process with the most nodes for depths d = 6 and d = 7
measured against process counts from 1 to 896.

to other processes are deleted, leaving a process with only its
assigned leaf nodes and their share of the tree with an impact
of around 2 kB. The memory requirement for the complete
local node share decreases with the amount of processes used.
The complete tree refined to depth d = 6 requires 45 MB
and 200 MB for depth d = 7. The process with the largest
share of the completely refined tree to depth d = 6 bears
270 kB and 1.4 MB when refined to depth d = 7. At 896
processes used, we observe that the memory requirement of the
intermediate tree becomes the determining factor in how much
memory must be available per process. At this point, using
more processes will increase memory consumption again, up
to the point were the intermediate tree and the final tree match
each other at approximately half a million used processes
for depth d = 7. At which point, the number of nodes on
processes is very low and a simulation run won’t be resource
efficient. Nevertheless, the overall memory consumption has
been lowered in the observed range of processes by two orders
of magnitude compared to the centralised approach and can
even in the worst case, never be higher than before.

V. CONCLUSIONS

From our measurements, we conclude two main findings.
Our decentral domain generation succeeds in bringing the
domain generation times down multiple orders of magnitude,
within the constraints given by our domain management
concept. A simulation preprocessing that took 5.5 hours could
be brought down to two seconds in one case. Furthermore, the
memory requirement on a single process has been lowered,
in all observed cases, from being able to store the complete
domain tree including all discretised grids to either only the
local subtree of a process plus its share of the initial tree and
the corresponding discretised grids or the intermediate tree.
Configurations where the impact of the intermediate tree’s
memory requirement outweigh the requirement of the local
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node share, are deemed unfit from an efficiency standpoint,
though.

One caveat that has to be mentioned, is that the ensuing
domain configuration is not yet load balanced. Only the
intermediate tree is distributed following an SFC linearisation.
Depending on the geometry, the resulting domain might be
highly imbalanced when it comes to the number of nodes per
process. Furthermore, the local view of the domain prohibits
further use of an SFC linearisation to rebalance the domain.
One possible remedy, would be to have an intermediate actor
that after the domain has been generated and balanced, gathers
the domain metadata, computes a balanced distribution and
orders all processes to transfer nodes to their designated
targets. Since this operation has to be carried out only once, the
added cost could be justified. Another approach, we illustrated
in [14], is a diffusion based load-balancing. This balancing
is carried out continuously during runtime of the simulation
to support adaptive mesh refinement and coarsening. It could
similarly be used to achieve a balanced state after the domain
generation.

Another valid criticism is, even though the decentral domain
management promises a theoretical infinite scalability, the
domain generation does not. To arrive at the point at which
every participating process is assigned at least one leaf node,
the intermediate tree has to be refined down to a depth on
where at least as many leaf nodes as processes exist. The depth
needed increases with the amount of processes participating.
A conclusive solution to the increasing sequential part has yet
to be found.

In conclusion, this article illustrates a distributed octree-
based domain generation under the constraint of a decentral
approach to domain organisation, where the essential idea
is to limit the domain view of each participating unit to
their direct neighbours. To this end, an algorithm has been
devised which refines an input geometry on all processes up
to a predetermined depth, before distributing the resulting leaf
nodes of the geometry to be starting points for a subsequent
refinement on their respective processes. We have discussed
the key points of the approach, including the distribution
of the initial tree, avoiding costly communication for the
neighbourhood resolution by processes refining the complete
initial tree and a combined neighbourhood resolution and tree
balancing for the generated subtrees.
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